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Abstract 

Significant research efforts have been conducted over the last several decades to better 

understand the groundwater flow and subsurface contaminant transport. It has been found that 

building a groundwater model for remediation decision-making requires an accurate delineation 

of spatial variation in hydraulic conductivity (K) and specific storage (Ss). Currently, numerous 

methods are available for site characterization. Traditional methods such as grain size analyses, 

permeameter and slug tests can provide point-scale estimates of K, while large-scale estimates 

from pumping tests are widely used for water-supply and water-quality investigations. However, 

when the degree of local heterogeneity increases, the necessary number of K increases 

dramatically, which presents a challenge to conventional methods. As a consequence, Direct 

Push (DP) based methods have been developed as efficient alternatives to conventional well-

based approaches to provide K variability for shallow, unconsolidated aquifers. Hydraulic 

Profiling Tool (HPT) is one of the novel DP approaches designed for high-resolution site 

characterization with a test interval of about 1.5 cm. Various site-dependent formulae can be 

utilized to convert data collected during the HPT surveys into K estimates over a limited range. 

More recently, inverse modeling approaches of varying degrees of parametrization have become 

one of the most promising techniques to map hydrostratigraphic spatial variations between 

boreholes and identify heterogeneity characteristics with a level of detail never before possible. 

Many comparisons of diverse approaches have been performed, but there is no consensus on 

which approach yields parameters that are representative for field sites. The main objective of 

this study is to evaluate K estimates obtained via various site characterizations methods including: 

(1) grain size analyses; (2) falling head permeameter tests; (3) slug tests; (4) HPT with three 

different formulae; (McCall and Christy, 2020; Borden et al., 2021; and Zhao and Illman, 2022b) 
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(5) inverse modeling based on a geological zonation approach, and (6) a highly parametrized 

transient hydraulic tomography (THT) approach. The performance of each approach is first 

qualitatively analyzed by comparing it with site geology. A 19-layer geological model and 

forward groundwater model are employed to further assess various methods by simulating seven 

independent pumping tests that are not used for model calibration under both steady-state and 

transient-state conditions. Results reveal that the highly parametrized THT analysis with prior 

geological information yields the best results in model validation under both steady and transient 

states, and the generated K field revealed the most salient features of inter- and intra-layer 

heterogeneity. In contrast, traditional methods yield biased prediction of drawdowns, while HPT 

methods are primarily constraint by the limited range of estimates, especially for low permeable 

materials. 
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Chapter 1. Introduction 

Significant research efforts have been expended over the last several decades to better 

understand groundwater flow and subsurface contaminant transport. Considerable progress has 

been achieved both in advancing theories and developing models (e.g., Hazen, 1911; Hvorslev, 

1951; Freeze & Cherry, 1977; Puckett et al., 1985; Barr, 2001; Zhu & Yeh, 2005; Xiang et al., 

2009; McCall & Christy, 2020; Borden et al., 2021; and Zhao & Illman, 2022b). Groundwater 

flow patterns, contaminant transport and their subsurface distributions have been found to be 

primarily governed by the spatial distribution of hydraulic conductivity (K) and specific storage 

(Ss), but the accurate delineation of such parameters is very difficult in complex groundwater 

flow systems due to strong heterogeneity of the geological media (Sudicky & Huyakorn, 1991). 

Besides, the development of accurate groundwater flow models for remediation decision-making 

is critically dependent on the ability to provide adequate and precise hydraulic parameter 

estimates. Inaccurate hydraulic parameter estimates will lead to poor groundwater flow and 

solute transport predictions (Berg & Illman, 2011, 2013, 2015; Zhao & Illman, 2017, 2018; Zhao 

et al., 2022). In addition, as it was clearly demonstrated by Rehfeldt et al. (1992) and Sudicky et 

al. (2010), to accurately forecast the migration of groundwater flow, the required number of K 

increases significantly as the level of local heterogeneity increases, which presents a challenge to 

implementing traditional site characterization techniques. 

Traditional methods such as empirical-relation-based grain size analysis, laboratory 

permeameter analysis of core samples, slug test and pumping test have been used in water-

supply investigations for several decades. However, most of them are not capable of providing 

reliable and sufficient information about local heterogeneity efficiently (Butler, 2005; Alexander, 

2009). For example, laboratory analyses of core samples such as grain size analysis and 
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permeameter test can provide small-scale estimates of K based on various analytical solutions at 

sampling locations. However, they are usually time-consuming, notwithstanding the low sample 

recovery rate at high permeable zone, deviation from using repacked samples and different lab 

conditions than nature in situ conditions (Klute & Dirksen, 1986; White, 1988). Moreover, the 

information between boreholes cannot be easily delineated without interpolating point-scale 

measurements by geostatistical methods such as kriging (Alexander et al., 2011; Berg & Illman, 

2011b). Slug tests are usually conducted to provide small-scale K and Ss estimates of materials in 

the close proximity of screened interval, however, considerable care must be taken as the quality 

of well development activity will have a significant impact on the K and Ss estimates (Beckie 

and Harvey, 2002; Butler, 1997, 2002). In addition, using solutions that ignore inertial 

mechanisms such as the typical form of Hvorslev (1951) can lead to a significant overestimation 

of K (Butler et al. 2003). The K and Ss estimates from pumping tests are averaged parameters 

over a large volume, with zero information regarding the assessment of spatial variation (Leven 

& Dietrich, 2006). Moreover, conventional type curve and straight-line methods assume a 

homogeneous medium, which presents a challenge in analyzing complex groundwater systems 

that have strong heterogeneity (Theis, 1935; Cooper and Jacob, 1946). Additionally, if a 

pumping test is being performed in a contaminated aquifer, the management of the contaminated 

water pumped from the subsurface can lead to significant treatment costs. Therefore, to better 

capture subsurface heterogeneity, it is critically necessary to advance traditional characterization 

methodologies to be more efficient and precise in both time and space aspects. 

During the past two decades, various direct push (DP) methods, such as DP slug test 

(DPST), DP permeameter (DPP), DP injection logger (DPIL) and hydraulic profiling tool (HPT), 

have been proposed as efficient alternatives to conventional well-based approaches to provide 
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vertical profiles of K variability for shallow, unconsolidated aquifers (Hinsby et al., 1992; 

Stienstra and van Deen, 1994; Lowry et al., 1999; Butler, 2002; Dietrich et al., 2008; McCall and 

Christy, 2010; Geoprobe, 2015). However, most DP approaches except for DPP are sensitive to 

skin effects as the probe is advanced into the formation, while it offers no information between 

test intervals and only provides small-scale K estimates (~ 0.4m) (Liu et al., 2012, 2019). The 

HPT, which is similar to DPIL, has been recognized as one novel DP approach to rapidly obtain 

high-resolution (~1.5cm) K profiles based on the ratio of water injection rate and corrected 

down-hole water pressure measured in situ (McCall and Christy, 2020). Existing formulae can 

only convert the measured HPT data into K estimates, and such models are usually site-

dependent (Borden et al., 2021; Zhao and Illman, 2022b). The cross-sectional view of HPT 

pressure logs provides an opportunity to interpret heterogeneity between each survey (Zhao & 

Illman, 2022a). However, the assessment should be conducted with caution, as solely relying on 

pressure logs to delineate stratigraphic boundaries can be sometimes misleading (McCall & 

Christy, 2020). 

Most approaches described here can only provide K variations in the immediate vicinity 

of a well or DP location, reliable information away from or between the boreholes is hard to 

obtain. A dense network of multilevel-sampler tracer tests can be used to reveal K variations 

between existing wells by analyzing a large number of point measurements where plume 

migration can be examined, but they are commonly not practical under limited time, budget and 

effort (Freyberg, 1986; Hess et al., 1992). As a result, geostatistical and inverse modeling 

methods such as kriging, effective parameter approach, stochastic inverse methods, calibration of 

the geological model, and hydraulic tomography (HT) have been developed and heavily tested 

through a number of synthetic (e.g., Yeh & Liu, 2000; Bohling et al., 2002; Xiang et al., 2009; 
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Zhu & Yeh, 2005; Zhao and Illman, 2022b), laboratory (e.g., Liu et al., 2007; Berg and Illman, 

2011a; Zhao et al., 2016, 2022; Luo et al., 2017; Jiang et al., 2022) and field studies (Jones et al., 

2008; Bohling & Butler, 2010; Alexander et al., 2011; Berg and Illman, 2011b, 2013, 2015; 

Zhao and Illman, 2017, 2018, 2022a; Liu et al., 2021). Kriging, however, normally relies on 

point-scale K measurements only, and the created K field is generally not calibrated to geological 

data. Calibration of geological models through trial-and-error or automated methods can produce 

representative values of K if the zonation is accurate. HT can invert all pumping tests 

sequentially or simultaneously, while treating the medium to be heterogeneous and highly 

parameterized (Berg & Illman, 2015; Zhao et al., 2016; Luo et al., 2017; Zhao & Illman, 2017, 

2018). As a consequence, HT has become one of the most promising approaches in terms of 

mapping hydrostratigraphic spatial variations between boreholes and revealing salient 

heterogeneity features with a degree of detail that has never been attainable (Berg and Illman, 

2011, 2013, 2015; Zhao and Illman, 2018; Tong et al., 2021; Luo et al., 2022; Ning et al., 2022; 

Zhao et al., 2022). This type of approach usually depends on the joint inverse modelling of 

pressure change or drawdown data measured at multiple monitoring wells during a series of 

pumping/injection tests with varying stressed intervals. Steady-state hydraulic tomography 

(SSHT) can provide K estimates, while transient hydraulic tomography (THT) can provide both 

K and Ss estimates. Despite most of the advantages, HT could generate non-unique solutions that 

can deviate from the true K and Ss fields. In addition, smooth distributions of K and Ss 

heterogeneity can be obtained at locations with insufficient monitoring data (Bohling & Butler, 

2010; Berg & Illman, 2011b, 2013). Therefore, the accurate depiction of subsurface 

heterogeneity via HT is dependent on data fusion. As Zhao et al. (2016) and Luo et al. (2017) 

demonstrated through laboratory synthetic sandbox studies, providing geological models as prior 
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mean K distributions for HT is useful in terms of introducing regularization and preserving 

stratigraphic features. While calibrations of inaccurate zonation models can lead to unrealistic 

tomograms, the accuracy of parameters generated from such integration is heavily dependent on 

the ability to construct an accurate geological model from a limited number of boreholes. 

Based on diverse data collection and interpretation approaches, three generations of site 

characterization methodologies, have so far been widely employed. The first generation is 

described as traditional methods including grain size analyses, permeameter, slug and pumping 

tests. The second generation is designated as DP approaches including DPST, DPP, DPIL and 

HPT. The third generation is designated as inverse modeling methods with various degrees of 

model parametrization including calibration of geological model and HT. However, the dilemma 

frequently encountered by hydrogeologists stems from the adoption of a variety of techniques to 

assess hydraulic properties. A significant amount of research has been conducted to examine the 

effectiveness of different approaches (Alexander et al., 2011; Berg & Illman, 2015; Brauchler et 

al., 2013; Butler, 2005; Butler et al., 2007; Chapuis et al., 2005; Cheong et al., 2008; de Marsily 

et al., 2005; Hussain & Nabi, 2016; Ishaku et al., 2011; Liu et al., 2012; Rosas et al., 2014; Song 

et al., 2009; Vienken & Dietrich, 2011; Zhao & Illman, 2018). Specifically, Ishaku et al. (2011) 

utilized various empirical formulae to analyze grain size sieve results. Alexander et al. (2011) 

compared many traditional methods including grain size analysis, permeameter, slug and 

pumping tests. Liu et al. (2012) assessed multiple DP approaches including DPST, DPP and 

DPIL. Zhao & Illman (2018) evaluated numerous inverse modeling methods such as effective 

parameter approach, calibration of geological model, and THT. While only a few of the studies 

have compared cross-generation approaches, Butler et al. (2007) assessed the first two 

generations including grain size analysis, DPST, and DPP. Brauchler et al. (2013) compared the 
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last two generations including DPIL and HT. However, only qualitative and quantitative analyses 

have been conducted to analyze the estimated K, and there is no consensus on which approach 

yields parameters that are representative of a field site. As a result, a rigorous assessment 

designed to validate K estimations from cross-generation methodologies in three-dimensions (3-

D) through steady state and transient state drawdown data is still lacking. 

The main objective of this study is to evaluate three generations of K estimates obtained 

from various data types including grain size data, repacked core samples, head change data from 

slug tests, flow injection rate and water pressure from DP surveys with the HPT, as well as 

pumping/injection rates and drawdown data from pumping/injection tests at the well-studied 

North Campus Research Site (NCRS) underlain by a multiple aquifer-aquitard system consisting 

of highly heterogeneous glaciofluvial deposits. In particular, we choose what we believe to be a 

large sample of representative, widely utilized and most promising site characterization methods 

in terms of dealing with heterogeneity. Approaches that are evaluated include: (1) grain size 

analysis; (2) permeameter test; (3) slug test; (4) HPT methods; (5) calibration of a geological 

model; and (6) highly parameterized THT analysis. It is crucial to understand that each approach 

differs in terms of the scale and resolution at which heterogeneity is captured as well as the types 

and quantity of data that they rely on. Since there is no information about the true K field and 

most traditional and DP methods cannot provide Ss estimates, the ability to predict drawdowns 

under steady state is the first metric utilized for evaluation. The best way to assess K estimates 

from HT, according to Liu et al. (2007) and Berg and Illman (2011a), is the independent 

prediction of pumping tests or other drawdown-inducing events that have not been used during 

model calibration. As a result, a 3-D forward groundwater model was developed using 

HydroGeoSphere (HGS) (Aquanty, 2019) for forward simulations of steady-state drawdown data 
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from seven independent pumping tests that were not used for K estimation by any method 

evaluated in this study. Then, transient forward simulations were performed for simulations of 

transient drawdown data from the same pumping tests. This research was designed to examine 

three generations of site characterization techniques to answer the question of which method can 

provide sufficient information to accurately forecast groundwater flow through heterogeneous 

geological media. The complex glaciofluvial and heterogeneous field conditions are frequently 

seen in southern Ontario, as a result, the study findings may provide some valuable information 

about other locations with comparable subsurface characteristics.  
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Chapter 2. Description of Field Site and Data Used for Analysis 

2.1 Site description and hydrogeology 

The NCRS is situated in Waterloo, Ontario, Canada, on the campus of the University of 

Waterloo (UW). The primary topographic feature of the area is Waterloo Moraine which is a 

highly heterogeneous mixture of glaciofluvial deposits and tills. Deposits around and below the 

surface are mostly an outcome of advances and retreats of the Laurentide ice sheet lobes during 

glaciations. Tills covering and concealing the bedrock are laid down directly by the ice, mixing 

all sizes of materials from clay to boulders (Karrow, 1993).  

Karrow (1979) drilled a 50-meter-long borehole to obtain a continuous core sampling of 

the materials down into the bedrock. According to the drilling report, below the top organic soil 

is a thin silt layer, followed by the Tavistock till which is composed of sandy-to-clay silt but only 

exists as erosional remnants. This till is underlined by a 3-meter-thick sand sequence, followed 

by the silty clay Maryhill till and dense Catfish Creek till, which consist of silty sand and stony 

silt. The Catfish Creek till extends approximately 20 meters below the ground surface and has 

been treated to be the hydraulic barrier of the field site (Alexander, 2009). Subsequent work by 

Sebol (2000) and Alexander et al. (2011) has revealed that the primary characteristic of the site is 

the alternating and interfingering aquifer-aquitard system which is made up of two high-K units 

separated by a discontinuous low-K layer. The lower aquifer consists of sandy gravel, while the 

upper aquifer is comprised of sand to sandy silt. Hydraulic connections are known to be provided 

by the low K layer in between, and the aquifer can be considered to be semi-confined. Silts and 

clays were discovered above and below the aquifer zone. Local stratigraphy is discontinuous 

with the presence of stratigraphic windows, although there are hints of layering, neither of these 

features spans continuously across the entire study site.  
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2.2 Available field data and the 19-layer geological model 

The schematic configuration of the wells used in the study at the NCRS is shown in 

Figure 1a. The blue dashed box represents a nine-well pumping and observation network. During 

the study of Alexander et al. (2011), four continuous multichannel tubing wells (CMT 1 – 4), 

each with seven observation ports and a pumping well (PW1) screened at eight different 

elevations were installed at the site. Continuous soil samples were collected with recovery rates 

ranging from 68.9% to 83.2% during well installations. To provide a comprehensive K profile 

for each borehole, 270 gain size analyses and 471 falling head permeameter tests were carried 

out by Alexander et al. (2011). 28 slug tests were also performed at each monitoring port of the 

CMT systems. Later, two multi-screened wells (PW3, PW5) and two well clusters (PW2, PW4) 

were installed and described in Berg and Illman (2011). 15 additional slug tests were performed 

at PW1, PW3 and PW5 by Xie (2015) using various analytical models. Nine pumping tests 

(PW1-3, PW1-4, PW1-5, PW3-3, PW3-4, PW4-3, PW5-3, PW5-4, and PW5-5) were conducted 

mainly within aquifer layers to conduct a Hydraulic Tomography (HT) survey. Zhao and Illman 

(2017) then ran six additional pumping/injection tests (PW1-1, PW1-6, PW1-7, PW2-3, PW3-1, 

and PW5-1) with longer durations to stress the aquitard units, and details of the 15 pumping tests 

were summarized in Zhao and Illman (2017). Additional permeameter tests have also been 

performed in all CMT and pumping wells. To date, a total of 270 grain size analyses, 642 

permeameter analyses of core samples, 43 slug tests and 15 pumping and injection tests were 

performed within the CMT and PW system. Additionally, two cross-hole flowmeter 

measurements were conducted at PW 1-3 and PW 5-3, while monitoring vertical flow at other 

pumping wells. Various geophysical surveys were also performed at the NCRS, geoprobe direct-

push (DP) surveys were first conducted in April of 2015 at eight EC wells to obtain electrical 
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conductivity (EC) profile. In late July and early August of 2019, Sun et al. (2022) carried out 11 

HPT surveys (HPT1, HPT2, HPT3, HPT4. HPT5. HPT6, HPT6-2, HPT7, HPT8, HPT9, and 

HPT10). Geonics EM39 and Gamma39 were utilized to obtain EC and gamma profile from four 

CMT and all PW wells in September of 2022. Figure 1b is the 3D perspective view of wells and 

DP locations around the 15m ×  15m well clustering area, corresponding pumping and 

observation locations, bentonite sealings and high-resolution HPT survey intervals. 

Figure 2 is the cross-sectional view (directions of cross sections are indicated on Figure 

1a) of the 3D geological zonation model containing 19 different layers representing seven 

different material types created by Zhao and Illman (2017) for the NCRS. The geological model 

is 70𝑚𝑚 × 70𝑚𝑚 × 17𝑚𝑚 in extent and is constructed by the commercial software Leapfrog Geo 

which is a modeling tool using a volumetric algorithm called dual kriging to quickly construct 

models directly from various data types (ARANZ Geo. Limited, 2015). Locations of the CMT 

and PW wells and screened intervals associated are shown in the C-C’ and D-D’ cross sections in 

Figure 2, and A-A’ and B-B’ cross sections in Figure S1 in the Supplementary Information 

section. The geological model has been created by interpolating the drill logs from the CMT and 

PW wells as well as additional nine wells (NC3, NC6, NC30, NC45, NC65, NC69, NC75, 

NC104, NC105; see Figure 1) described by Sebol (2000). The interpolated geology between 

boreholes based on known geology is a reasonable representation of the site. The complex and 

truncated layering of different soil types indicates the highly heterogeneous nature of the 

glaciofluvial deposit at the NCRS. The two main aquifer units are separated by various 

discontinuous low-permeable materials. In addition, most of the features pitch out and do not 

continue along the modelled extent, which matches the vast majority of collected core logs 

(Sebol, 2000).  
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Figure 1. a) Schematic configuration of wells used in the study at the NCRS including the CMT 

and PW network and nine NC wells where geological data are obtained, as well as 11 HPT 

profiles. Grey dashed lines represent four geological cross sections A-A’, B-B’, C-C’ and D-D’ 

as presented in Figure 2. b) 3D perspective of wells and DP locations around the 15m × 15m 

well clustering area shown as the blue dashed area in Figure 1a), corresponding well screen and 

pumping locations, bentonite sealings and high-resolution HPT survey intervals. 
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Figure 2. Cross-sectional view of the 19-layer geological zonation model with CMT and PW 

screened intervals shown in cross sections C-C’ and D-D’. Cross section of A-A’ and B-B’ is 

available in Figure S1 in the Supplementary Information section. The 19 layers represent 7 

different material types as indicated in the stratigraphic index. Specifically, the 19 layers are clay 

(1, 4, 8, 12, 16, 18), silt and clay (17, 19), silt (2, 7, 10, 14), sandy silt (6, 9, 13), silt and sand (5), 

sand (3, 11) and sand and gravel (15). 
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Chapter 3. Description of Various Subsurface Characterization Approaches 

3.1 Conventional methods 

3.1.1 Grain Size Analysis 

The first method widely used for K estimation is grain size analysis. Many empirical 

formulae have been developed to establish relationships between K and particle size statistics 

(Ishaku et al., 2011; Rosas et al., 2014; Hussain & Nabi, 2016). This method is cost-efficient 

compared to other conventional approaches when it comes to obtaining rapid estimates of K, 

which avoids the need of conducting permeameter tests through core samples and the efforts to 

install wells for multiple slug tests. However, performing sieve analyses to obtain grain size 

distributions of multiple samples can be time-consuming. Alexander (2009) obtained 270 K 

estimates from grain size analyses using the empirical formulae of Puckett et al. (1985) and 

Hazen (1911). Between formulas, the K generated are obviously independent as the Puckett et al. 

(1985)’s formula, with a mean of 2.04E-06 m/s consistently generate greater conductivity than 

those estimated by the Hazen (1911)’s formula, which produced a mean of 2.34E-08 m/s. 

The heterogeneous subsurface geological condition at the NCRS causes significant 

challenges to the analysis as most of the equations described in the literature were developed 

based on highly permeable materials, especially sand (Krüger, 1918; Terzaghi, 1925; Krumbein 

& Monk, 1943; Kozeny, 1953). Therefore, it is hard to determine if one dedicated empirical 

relationship is suitable for various unconsolidated materials. To confront the appropriateness of 

numerous relationships for a complex site, three different models are chosen to estimate K based 

on various material types.  

Specifically, we chose Hazen (1911)’s model which is commonly used for estimating K 

of coarse-grained materials: 
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 𝐾𝐾 = 𝐶𝐶𝑑𝑑102  (1) 

where 𝐶𝐶 is a coefficient depending on the grain size distributions of sand and 𝑑𝑑10 is the grain size 

(𝑐𝑐𝑐𝑐) in which 10% of the sample is finer.  

Puckett et al. (1985) ’s relationship was chosen to analyze fine grained materials since the 

equation only depends on clay content: 

 𝐾𝐾 = 0.0000436 × 𝑒𝑒−0.1975×%𝑐𝑐𝑐𝑐 (2) 

where %𝑐𝑐𝑐𝑐 is the percentage of samples finer than 0.002 mm. 

Barr (2001)’s formula was selected for silty materials assuming 𝑑𝑑10 = 2𝑟𝑟, where 𝑟𝑟 is the 

pore throat diameter (𝑐𝑐𝑐𝑐): 

 𝐾𝐾 = 𝜌𝜌𝜌𝜌
𝜇𝜇

× 1
(36)5𝐶𝐶𝑠𝑠2

× 𝑛𝑛3

(1−𝑛𝑛)2
× 𝑑𝑑102   (3) 

where 𝜌𝜌 is the density of the fluid (𝑔𝑔/𝑐𝑐𝑐𝑐3), 𝑔𝑔 is the gravitational constant (𝑐𝑐𝑐𝑐/𝑠𝑠−2), 𝑢𝑢 is the 

dynamic viscosity (𝑃𝑃𝑃𝑃/𝑠𝑠) of the fluid, 𝑛𝑛 is the porosity and 𝐶𝐶𝑠𝑠 is a shape factor ranging from 1 to 

1.3 depending on the surface area, where 1 represents spherical grains, while 1.3 is used for 

angular grains. In addition, the fluid density and viscosity are temperature dependent and can be 

adjusted by: 

 𝜌𝜌 = 3.1 × 10−8 𝑇𝑇3 − 7.0 × 10−6 𝑇𝑇2 + 4.19 × 10−5 𝑇𝑇 + 0.99985  (4) 

 𝑢𝑢 = −7.0 × 10−8 𝑇𝑇3 + 1.002 × 10−5 𝑇𝑇2 − 5.7 × 10−4 𝑇𝑇 + 0.0178 (5) 

where T is the water temperature in degrees Celsius (°𝐶𝐶). The mean annual groundwater 

temperature of 7 °𝐶𝐶 in waterloo area is utilized for calculation (Alexander et al, 2011). The 

porosity can be calculated through the empirical relationship given by Vukovic and Soro (1992): 
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𝑛𝑛 = 0.255 × (1 + 0.83𝐶𝐶𝑢𝑢) (6) 

where 𝐶𝐶𝑢𝑢 is the uniformity coefficient which can be calculated by: 

𝐶𝐶𝑢𝑢 =
𝑑𝑑60
𝑑𝑑10

(7) 

where 𝑑𝑑60 is the grain size (𝑐𝑐𝑐𝑐) in which 60% of the sample is finer. A constant value of 1.15 

was assigned to 𝐶𝐶𝑠𝑠 in equation (3) to calculate K for all silt materials. The computational burden 

of utilizing various models is ameliorated by utilizing HydrogeoSieveXL (Devlin, 2015) which 

is a utility designed to give hydrogeologists a rapid and comprehensive way to rapidly obtain K 

estimates from grain size analyses data. 

3.1.2 Permeameter Test 

Another conventional method for understanding the characteristics of 

subsurface formation is to conduct laboratory analyses of repacked or original samples taken 

during well installation and borehole logging. Hydraulic conductivity (K) estimates can be 

obtained through several permeameter techniques. The constant head permeameter test is usually 

used for materials with moderate to high K, while a falling head permeameter test is primarily 

utilized to analyze materials with low permeability. During previous work by Alexander (2009) 

and Zhao and Illman (2017), a total of 642 temperature-corrected falling head permeameter 

analyses were performed on repacked samples to estimate K based on an equation provided by 

Freeze & Cherry (1977): 

 𝐾𝐾 = 𝑎𝑎𝑎𝑎
𝐴𝐴𝐴𝐴
𝑙𝑙𝑙𝑙 𝐻𝐻0

𝐻𝐻1
 (8) 
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where 𝑎𝑎 is the cross-sectional area (𝑐𝑐𝑐𝑐2) of the manometer, 𝐿𝐿 is soil sample length (𝑐𝑐𝑐𝑐), 𝐴𝐴 is 

the cross-sectional area (𝑐𝑐𝑐𝑐2) of the sample, 𝑡𝑡 is the averaged time (𝑠𝑠) from multiple trials, 𝐻𝐻0 is 

the total head (𝑐𝑐𝑐𝑐) at the beginning of the test, and 𝐻𝐻1 is the total head (𝑐𝑐𝑐𝑐) at the end of the test.  

The falling head permeameter test is suitable for materials with moderate to high K, while 

low K material could also be tested, but the test could take a very long time to complete. By 

conducting a falling head permeameter test, vertical K is preferentially determined. As reported 

by Klute & Dirksen (1986), K of repacked samples estimated in the laboratory can be artificially 

lower than those from intact samples. In addition, the extraction and repacking process may 

induce fractures and destroy the internal structures that are well-preserved in intact samples. 

Sudicky (1988) demonstrated that the potential error caused by using repacked samples in 

permeameter tests to be small compared to the heterogeneity of the lithology within a highly 

heterogeneous site. Moreover, it is very difficult to recover substantial intact core samples from 

highly permeable zones (Butler, 2005; Alexander et al., 2011). As a consequence, 

underprediction of K is possible for permeameter tests conducted with materials from highly 

permeable intervals. 

3.1.3 Slug Tests 

Slug tests are important for water-supply investigations, as it is relatively easy to conduct 

and can yield K values that are representative of the aquifer around the well screen. A total of 43 

slug tests were conducted by Alexander (2009) and Xie (2015), and Micron System pressure 

transducers were utilized to collect data automatically. To conduct a slug test, the ambient 

hydraulic head was perturbed by adding a slug of water. The increased head causes water to 

move out of the well and into the aquifer resulting in the head recovering over time until it 

reaches the initial head. Since the arrival of the slug is non-instantaneous, additional translation 
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was conducted based on Butler (1997), which neglects the noisy early time part of the data 

(Alexander et al., 2011; Xie, 2015). Most traditional slug test models are not consistent with the 

geometry of CMT wells, and for a screen length that is eight times longer than the radius, it is 

appropriate to use the following version of the Hvorslev model (Hvorslev, 1951): 

 𝐾𝐾 = 𝑟𝑟2ln (𝐿𝐿𝑒𝑒 𝑅𝑅� )
2𝐿𝐿𝑒𝑒𝑡𝑡37

 (9) 

where 𝑟𝑟 is the effective radius (𝑐𝑐𝑐𝑐) of the piezometer, 𝑅𝑅 is the screen radius (𝑐𝑐𝑐𝑐), 𝐿𝐿𝑒𝑒 is the well 

screen length (𝑐𝑐𝑐𝑐) and 𝑡𝑡37 is the time (𝑠𝑠) it takes for the water to fall to 37% of the initial value.  

The slug test is suitable for materials that have moderate to low values of K, while high K 

materials could also be tested and analyzed. Moreover, the sampled volume of the slug test is 

usually considered to be considerably smaller compared to a pumping test, and the estimated 

hydraulic parameters are only representative of materials around the test interval, and usually not 

between boreholes based on site heterogeneity (Butler, 1997).  

3.2 Direct Push Methods 

Strata often exhibit considerable continuity in the lateral direction, but much less in the 

vertical. According to experimental research, hydraulic conductivity varies in a similar manner 

(Sudicky, 1986; Hess et al., 1992). Conventional methods are usually not capable of providing 

reliable and sufficient information about local heterogeneity efficiently, as a result, various DP 

approaches have been developed to rapidly characterize vertical variations of K along at finer 

resolution within unconsolidated formations. Direct-push slug test (DPST) and direct-push 

permeameter (DPP) are extensions of slug and permeameter tests where several tests can be 

performed at multiple elevations of interest in a single DP location. However, DPST is very 

sensitive to skin effects formed during the advancement of the probe resulting in a zone of 
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compaction around the probe and is relatively time-consuming to obtain a detailed vertical 

variation of K. DPP has shown to be less influenced by a skin effect, while it can only provide 

volumetric K estimates (~ 0.4m) and may encounter anomalies in highly heterogeneous media 

(Lowry et al., 1999; Butler, 2005; McCall & Christy, 2020). DPIL is one promising technique for 

measuring K with a pressure transducer placed on the surface (Dietrich et al., 2008). HPT is 

similar to DPIL, but the transducer is installed just above the probe tip down-hole, thus pressure 

measurements are taken continuously during probe advancement. This adjustment eliminates the 

necessity for friction loss correction in the supply line compared to DPIL (McCall and Christy, 

2020). 

3.2.1 HPT methods 

Geoprobe System, Inc (Salinas, Kansas) began the design of HPT in 2006 (Geoprobe 

2006). It has quickly become one of the most novel and efficient methods for high-resolution (~ 

1.5cm) site characterization of unconsolidated formations based on the percussion probing 

method with a hydraulic hammer. Some of the most important components of the HPT are the 

replaceable injection port, downhole pressure transducer and electrical conductivity (EC) array. 

The injection screen is placed around 0.4 m above the probe tip, which avoids the influence of 

potential pressure build-up near the conical probe tip during the advancement, as it is commonly 

reported in cone penetrometer test (CPT) studies (Robertson et al., 1992). A robust downhole 

pressure sensor is utilized to measure the total pressure required to inject water into the 

formation. Additionally, the down-hole positioning of the sensor makes it possible to assess the 

ambient hydrostatic pressure at depth with several dissipation tests that are usually performed in 

transmissive zones. An EC array is located at the lower part of the probe, which can 
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simultaneously provide a bulk formation EC log as the probe is advanced into the formation 

(McCall and Christy, 2020). 

During a HPT survey, an injection test is continuously performed by injecting water via 

the screen. Typically, water is injected at a rate of 200 to 300 mL/min, but in reality, flow rates 

below 100ml/min with the HPT system are not recommended as the flowmeter becomes unstable 

and reported flow rates are not accurate. Flow rates, HPT pressure and EC data are continuously 

recorded along with depth during advancement and data are displayed on a laptop computer 

screen through an acquisition software called DI Viewer (Geoprobe, 2015). A combination of 

pressure and EC log is useful for constructing site stratigraphy models based on some basic 

rubrics: (1) high pressure indicates low permeability formation and vice versa; (2) high EC 

implies the existence of clay material and therefore, decreased permeability. However, pressure 

or EC data alone is very complicated to be interpreted and may lead to misleading results since 

not all materials containing fine grains possess high EC. Ionic pollutants, chemicals used for 

remediation, and road salt may result in an artificially increased EC. Calcite cementing can lead 

to high pressure (McCall et al., 2014; McCall et al., 2017). 

Various (site-dependent) formulae can be utilized to transfer the collected data to K 

measurements. For example, the measured HPT ratio of injection rate over corrected pressure 

can be explicitly converted to K estimates through an empirical formula developed by McCall 

and Christy (2010): 

    𝐾𝐾 = 21.14 𝑙𝑙𝑙𝑙 �𝑄𝑄
𝑃𝑃𝑐𝑐
� − 41.71 (10) 

where 𝑄𝑄 is the injection rate (𝑚𝑚𝑚𝑚/𝑚𝑚𝑚𝑚𝑚𝑚) and 𝑃𝑃𝑐𝑐 is the corrected water pressure (𝑝𝑝𝑝𝑝𝑝𝑝) which can be 

calculated by: 



20 
 

  𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑡𝑡 − (𝑃𝑃ℎ𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎) (11) 

where 𝑃𝑃𝑡𝑡 is the total pressure (𝑝𝑝𝑝𝑝𝑝𝑝) measured by the pressure transducer, 𝑃𝑃ℎ𝑑𝑑𝑑𝑑𝑑𝑑 is the hydrostatic 

water pressure (𝑝𝑝𝑝𝑝𝑝𝑝 ) measured through dissipation tests that are usually conducted in high 

permeable zones. 𝑃𝑃𝑎𝑎𝑎𝑎𝑎𝑎 is the ambient atmospheric pressure (𝑝𝑝𝑝𝑝𝑝𝑝). 

The equation (10) was generated by fitting co-located HPT-ratio with slug test estimated 

K in an alluvial aquifer. The model was then evaluated by paring the HPT-ratio and slug test 

estimations from five other sites underlain by unconsolidated sediments (McCall & Christy, 

2020). The model fit to data is significantly beneficial as the effect of dynamic movement, 

pressure generated by advancement and skin effects are all built into the equation. The biggest 

challenge for HPT is the relatively narrow range of estimate from 3.5𝐸𝐸 − 07 to 2.6𝐸𝐸 − 04 m/s, 

which ranges around three orders of magnitude. Data near the higher bound of estimates could be 

much higher and vice versa (McCall & Christy, 2020). Finding or fabricating a more sensitive 

pressure transducer that can withstand the force of hammering can potentially increase the higher 

range of estimates. However, Sun et al. (2022) have found that this limited range primarily 

presented a difficulty in estimating K for low permeable materials such as clay.  

Borden et al. (2021) indicated that while the probe is rapidly advanced through aquitard 

units, the high pressure formed around the probe tip may not fully dissipate before the injection 

port passes through the tip location. In addition, the high stress around the probe tip may induce 

local shear failure. As the probe is advanced, the plasticized soil is pushed to the side, resulting 

in a less permeable zone (i.e., skin effect) surrounding the HPT injection port and therefore, 

leading to a higher pressure reading, and lower K estimates. As a result, a new relationship was 

developed based on numerical simulations of the physical flow process: 
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 𝐾𝐾 = 𝐸𝐸(0.1235𝑉𝑉𝐷𝐷2 + 0.119𝑄𝑄)𝑃𝑃𝑐𝑐−1.017 (12) 

Where 𝐸𝐸  is an empirically-derived efficiency factor to account for potential effects of soil 

displacement, 𝑉𝑉 is probe rate of penetration (𝑐𝑐𝑐𝑐/𝑠𝑠), and 𝐷𝐷 is probe diameter (𝑐𝑐𝑐𝑐). The model 

was then assessed by paring 23 HPT survey K results using equation (12) assuming 𝐸𝐸 = 1 to 

adjacent slug test K estimations along screen intervals at four different field sites. Continuous 

lower estimates of K were reported compared to slug test results, which is demonstrated to be the 

reason of skin effect, and the best E was then determined to be 2.02. 

The efficiency factor from Equation (12) is established by averaging considerable 

fluctuations in centimetre-resolution results (HPT K measurements) over a substantial screened 

volume of the slug test, which is questionable. In addition, considering varying degrees of 

heterogeneity and conditions at different sites, empirical formulae developed from other sites 

may result in biased K estimates for other locations. To overcome these issues, a site-specific 

power law model for the NCRS without upscaling point-scale measurements based on inverse 

modeling was built by Zhao & Illman (2022b): 

  �
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 1.41 log �𝑄𝑄

𝑃𝑃𝑐𝑐
� + 4.25, 𝑄𝑄

𝑃𝑃𝑐𝑐
< 5.5𝐸𝐸 − 06   𝑚𝑚2/𝑠𝑠

𝐾𝐾 = 6.9 × 10−4  𝑚𝑚 𝑠𝑠⁄  , 𝑄𝑄
𝑃𝑃𝑐𝑐
≥ 5.5𝐸𝐸 − 06   𝑚𝑚2/𝑠𝑠

 (13) 

The K estimates from the power law model have shown better corresponds with permeameter 

test results compared to those generated from the equation (10) at the NCRS. 

3.3 Inverse modeling methods 

3.3.1 Calibration of the geological model 

One effective way for capturing the spatial variation of hydraulic parameters is to 

develop stratigraphic and zonation models in which the layers are calibrated to pumping tests or 
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other data through trial-and-error or automated methods (Martin & Frind, 1998; Jones et al., 

2008; Berg & Illman, 2015; Zhao & Illman, 2017, 2018). Through laboratory synthetic sandbox 

experiments, Zhao et al. (2016) and Luo et al. (2017) discovered that calibrations of inaccurate 

zonation can result in unrealistic K and Ss estimates. As a consequence, the accuracy of 

estimated hydraulic parameters is strongly reliant on the ability to establish an accurate 

geological model. 

The joint calibration of a 19-layer geological model built for the NCRS using transient 

drawdown data from eight pumping tests (PW1-1. PW1-4, PW1-6, PW1-7, PW2-3, PW3-3, 

PW4-3, and PW5-3) was conducted by Zhao & Illman (2018). The calibration was performed by 

coupling HGS (Aquanty, 2019) with the parameter estimation code, PEST (Doherty, 2004) while 

treating elements in each layer to be homogeneous and isotropic for individual layers. The 

simulations of groundwater flow during inverse modeling were conducted on the same 3-D 

domain that was used in this study for forward groundwater modeling and will be described in 

the next section. 

3.3.2 Highly parameterized transient hydraulic tomography (THT) 

A large number of synthetic, laboratory experiments and field studies have shown that 

HT is one of the most promising inverse methods for analyzing multiple pumping tests data to 

estimate hydraulic parameters sequentially or simultaneously (Yeh & Liu, 2000; Bohling et al., 

2002; Zhu & Yeh, 2005; Xiang et al., 2009; Bohling & Butler, 2010; Liu et al., 2021; Tong et al., 

2021; Jiang et al., 2022; Luo et al., 2022; Ning et al., 2022). Compared with traditional methods, 

HT can map hydrostratigraphic spatial variations between boreholes and reveal the most salient 

heterogeneous features with a level of detail that has never been attainable. 
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The Simultaneous Successive Linear Estimator code (SimSLE) developed by Xiang et al. 

(2009) was utilized by Zhao & Illman (2018) to inversely model transient drawdown data from 

the above-mentioned eight pumping tests, while treating each element to be homogeneous and 

isotropic. The inverse model results utilized for this study started with K and Ss values from the 

calibration of the geological model using the same grid. 

3.3.3 Averaged THT geological model 

The elemental K and Ss results from the highly parameterized THT analysis are then 

averaged for each layer based on the geological model to further assess the performance of HT 

and to compare with the results from the calibration of geological model using the parameter 

estimation code, PEST (Doherty, 2004). 
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Chapter 4. Description of Groundwater Model and Experimental Design 

According to Liu et al. (2007) and Berg and Illman (2011a), the best way to assess K 

estimates from HT, is the independent prediction of pumping tests or other drawdown-inducing 

events that have not been used during model calibration. As a consequence, A 3-D forward 

numerical model with the same dimensions as the 19-layer geology model was built using HGS 

(Aquanty, 2019). The model was discretized into 31,713 rectangular finite elements of varying 

sizes and 34,816 nodes to simulate groundwater flow for model validation. From the central well 

cluster area to the model boundary, the element size gradually increases, with blocks expanding 

from 0.5m × 0.5m  × 0.5m to 5m  × 5m  × 0.5m. In this study, the unsaturated zone is not 

considered, and the water table is designated as the model's upper boundary. The water table is 

modelled as a flat surface since the change in water level is less than the height of the elements at 

the top. The Catfish Creek till is identified as a hydraulic barrier and is served as the lower 

boundary of the model (Alexander et al., 2011). Both the top and bottom model boundaries were 

treated as impermeable boundaries, while the remaining four boundaries were treated as constant 

head boundaries. The computational mesh is provided as Figure S2 in the Supplementary 

Information section. 

After obtaining K estimates from various approaches, qualitative and quantitative 

analyses were conducted from adjacent well and DP locations along with site stratigraphy. The 

estimated K were then populated into each layer of the geological model which was discretized 

in the same manner as the groundwater model to build the property fields. Descriptive statistical 

analysis based on box-and-whisker plots, qualitative and quantitative analysis of the layered K 

were then conducted to better compare and contrast the abundant data sets. Nine cases were 

created for forward groundwater simulations, specifically, case 1a is grain size analysis using 
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three models, case 1b is the permeameter test, case 1c is the slug test, case 2a is HPT using 

McCall and Christy (2010)’s model, case 2b is HPT using the Borden et al. (2021)’s model, case 

2c is HPT using the power law model (Zhao and Illman, 2022b), case 3a is the calibration of 

geological model using the parameter estimation code, PEST (Doherty, 2004), case 3b is the 

calibration of the geological model using THT by smoothing the highly parameterized THT 

analysis results, while treating elements in each layer to be homogeneous, and case 3c is the 

highly parameterized THT analysis. Since there is no information about the true K field and most 

of the conventional and HPT methods are not capable of providing Ss estimates, the ability to 

forecast drawdowns under steady state is the first metric utilized for evaluation. As a result, 

forward simulations of seven independent pumping tests (PW1-3. PW1-5, PW3-1, PW3-4, PW5-

1, PW5-4, and PW5-5) that were not used for calibration were conducted, and the results are 

summarized and presented in scatterplots. Then, transient forward simulations were performed 

for simulations of transient drawdown data from the same pumping tests. Specifically, the 

heterogeneous Ss generated from case 3a (PEST-calibrated geological model) are utilized in case 

1a to case 2c for transient forward simulations. 
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Chapter 5. Statistical Analysis of Hydraulic Conductivity Collected from 

Various Site Characterization Approaches 

5.1 Direct comparison of K estimates 

Figure 1 shows that CMT1 is spatially close to HPT3, while CMT3 is close to both HPT6 

and HPT6-2. Therefore, K estimates at CMT1 and CMT3 from permeameter tests, grain size 

analysis using three models, slug tests as well as elemental highly parameterized THT analysis 

could be compared with HPT results obtained at adjacent DP locations qualitatively and 

quantitatively. 

 

Figure 3. Vertical profiles of log10𝐾𝐾 (m/s) estimates from grain size analyses using three 

models, permeameter tests, slug tests, HPT with three formulae, as well as the highly 

parameterized THT analysis along site stratigraphy at borehole, DP, and elemental locations. 
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 In Figure 3, stratigraphy from core analysis, K estimations from various methods are 

provided as log10𝐾𝐾 (m/s) along two CMT wells and at three DP locations with HPT surveys. 

Results show that K measurements are highly variable (around 7 orders of magnitude) across the 

two CMT wells indicating the highly heterogeneous nature of K at the site. Figure 3 reveals that 

K varies by several orders of magnitude within 1 m, thus interlayer heterogeneity could be 

captured by most of the methods, while only small-scale measurements such as grain size 

analysis, permeameter test, HPT method and the highly parametrized THT analysis reveal the 

salient intralayer heterogeneity which is usually hard to be detected through core logging. 

Additionally, the alternating aquifer-aquitard system is reflected in the datasets. 

In terms of traditional methods, point-scale measurements of K from grain size analysis 

and permeameter test follow a similar trend. Slug test results also follow the general trend, but 

the measured K values are generally larger than the grain size analysis and permeameter test 

estimates, especially at highly permeable zone. Such behaviour is referred to as the scale effect, 

which is primarily caused by different sample volumes from various approaches. Therefore, the 

method that samples large volumes may encounter highly permeable zones not discovered by 

other methods that sample smaller volumes (Vesselinov et al., 2001; Illman and Neuman, 2003; 

Martinez-Landa and Carrera, 2005; Illman and Tartakovsky, 2006).  

However, this phenomenon does not apply to HPT methods which sample extremely 

small intervals for high-resolution site characterization methods. HPT results at three DP 

locations generally follow the trend of K from permeameter tests, while the K estimates are 

around 1 to 2 orders of magnitude larger than those estimated by permeameter tests, especially 

from 4 m to 8 m where local geology is primary low permeable materials such as clay and silt 

(Fig. 3). This is mainly due to the limited range of estimates, which results in K that are, at best, 
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order-of-magnitude estimates for the K of the geological media. Using various site-dependent 

formulae yields similar results at this upper depth range. Significant differences are observed in 

the middle and lower portions of the site.  

According to CMT1_HPT3 (Fig. 3), at around 8 m – 10 m, together with the core log, 

local geology is primarily highly permeable materials such as sand, thus K estimates from 

permeameter tests, grain size analyses and slug tests yielded relatively higher estimates of K than 

for silt materials located above and below, while HPT using McCall and Christy (2010)’s model 

only yields a fixed estimate of the lower bound (3.5𝐸𝐸 − 07 m/s). The Borden et al. (2021) and 

the power law model (Zhao and Illman, 2022b) both provide more reasonable estimates that are 

higher than those generated from McCall and Christy (2010)’s relationship.  

According to CMT3_HPT6 and CMT3_HPT6-2 (Fig. 3), at depth ranges from 9 m – 11 

m, a transition zone from sand to silt is discovered by core logs, and permeameter tests and grain 

size analyses measurements both capture this variation. However, none of the HPT methods 

successfully detect the change, while McCall and Christy (2010)’s model only gives a fixed 

lower bound. The Catfish Creek till located at depths below 12 m for CMT1 and below 14 m for 

CMT3 is detected by a significant drop in K estimates from traditional methods. McCall and 

Christy (2010)’s model yields a fixed lower bound, while Borden et al. (2021)’s model generates 

even higher estimates of K. Surprisingly, the power law model (Zhao and Illman, 2022b) 

delineates the low permeable materials at HPT3 and HPT6-2 and yields estimates that are close 

to grain size analyses and permeameter tests. The elemental highly parameterized THT analysis 

results are also plotted for comparison (Fig. 3). From 0 m to 3 m, K estimates are quite smooth 

because there is no monitoring data available for inversion. Below 3 m, compared with other 

methods, K estimates from THT captures the small-scale interlayer heterogeneity. For example, 
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the transition zone at 3 m and 10 m from CMT1, are not captured by the other methods. 

However, THT results at CMT1 from 12 m to 16 m indicate a substantial increase in K, which 

does not conform to the characterized site geology. Thus, the stratigraphy information should be 

used with caution in practice. 

Table 1. Descriptive statistics of K from various site characterization approaches at the NCRS. 

Method n 
Minimum K 

(m/s) 

Maximum K 

(m/s) 

Geomean of K 

(m/s) 

Range of log10 

K  

Variance of 

log10 K 

Grain Size Analyses_Three Models 270 3.07E-11 2.50E-03 1.19E-07 7.91 2.63 

Permeameter Tests 642 1.15E-10 4.63E-03 3.03E-07 7.60 1.55 

Slug Tests 43 1.21E-08 1.68E-04 2.65E-06 4.14 1.47 

HPT McCall and Christy Model 7660 3.53E-07 2.65E-04 2.85E-06 2.88 1.28 

HPT_Borden Model 7660 1.13E-08 2.69E-04 5.78E-06 4.38 0.38 

HPT_Power Law Model 7660 8.50E-11 6.90E-04 3.84E-06 6.91 0.86 

Highly Parameterised THT Analysis 31713 4.20E-11 2.90E-03 5.79E-07 7.84 1.47 

 

Table 1 summarizes the K statistics from various approaches across the site including 

minimum, maximum, geometric mean of K in m/s as well as the range of K in logarithm with a 

base of 10 and the population variance of 𝑙𝑙𝑙𝑙𝑙𝑙10𝐾𝐾. Which can be calculated by: 

𝜎𝜎2 =
∑(𝑋𝑋 − 𝑢𝑢)2

𝑁𝑁
(14) 

where 𝑋𝑋 is each individual value, 𝑢𝑢 is the population mean and 𝑁𝑁 is the number of values in the 

population. 

Compared to conventional methods, the HPT method yields a significantly larger number 

of K due to high-resolution profiling intervals. The THT analysis has the largest number of K 
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measurements due to significant parameterization. The geometric mean of K (𝐾𝐾𝐺𝐺) from HPT 

methods are higher than those generated through traditional methods. In addition, 𝐾𝐾𝐺𝐺 increase 

from the grain size analyses to permeameter tests and to slug tests due to the scale effect. 

Moreover, McCall and Christy (2010)’s model has the smallest range of log10𝐾𝐾 (m/s), while 

Borden et al. (2021)’s model extends the range especially at the lower end. In contrast, the power 

law model (Zhao and Illman, 2022b) extends the range in both the higher and lower ends and 

yields the largest range of log10𝐾𝐾 (m/s) among the three formulae to interpret HPT data.  Slug 

tests yield a relatively small range of K estimates, while grain size analyses with three models, 

permeameter tests,  and THT analysis all yield larger range of estimates.  

In terms of the variance of log10K, the value for slug tests is relatively high given the 

smallest number of measurements. Grain size analysis yields the highest log10K variance 

probably because of the use of three models to target various soil types, while each formula has 

its assumption behind it. Remarkably, both Borden et al. (2021) and the power law model (Zhao 

and Illman, 2022b) yield a smaller log10K variance given an increased range of estimates 

compared with the variance estimate based on McCall and Christy (2010)’s relationship. It is 

also noteworthy that the highly parameterized THT analysis yields 31,713 estimates of K, but 

results in a relatively small variance of 1.47. 

5.2 Descriptive statistical analysis of zonation populated K 

K measurements from various approaches are then used to populate the 19-layer 

geological model by taking the geometric mean of all data points located in each layer. 

Measurements from similar soil material are attributed to layers that have no sample data 

available. As only 43 K estimates in 11 out of 19 layers of the geological model are available 

from slug tests, it is most difficult to populate the model. As a result, 𝐾𝐾𝐺𝐺 from layers 4, 8, 16 and 



31 
 

18 (clay) is assigned to layers 1 (clay); 𝐾𝐾𝐺𝐺 from layers 2, 7 and 14 (silt) is assigned to layer 10 

(silt), 𝐾𝐾𝐺𝐺 from layer 13 (sandy silt) is assigned to layers 6 and 9 (sandy silt), 𝐾𝐾𝐺𝐺 from layer 11 

(sand) is assigned to layer 3 (sand), 𝐾𝐾𝐺𝐺 from layer 17 (clay & silt) is assigned to layer 19 (clay & 

silt), and 𝐾𝐾𝐺𝐺 from layers 3 and 11 (sand) and 2 and 10 (silt) is assigned to layer 5 (sand & silt). 

Similar but simpler steps are also performed for the other methods if there are layers that do not 

contain any K estimates. Additionally, the maximum, upper quartile, median, 𝐾𝐾𝐺𝐺, lower quartile 

and minimum are also calculated for each layer, and details are summarized in Tables S1 to S7 

(in the Supplementary Information section) and plotted as box-and-whisker plots in Figure 4. 

The lower and higher range of K estimates from McCall and Christy (2010)’s model and the 

higher range of the power law model (Zhao and Illman, 2022b) are indicated beside the box plot.  

 

Figure 4. Box-and-whisker plots of K estimates from various site characterization methods for 

19 layers of the geological model. 
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Examination of Figure 4 reveals that most of the box plots are either positively skewed or 

negatively skewed, and there is rarely a normal distribution. In addition, the interquartile range 

(IQR) of K estimates from the permeameter tests and grain size analyses over 19 layers is 

generally larger than those from other methods, suggesting larger spreads of K estimates in each 

layer. The IQR for the highly parameterized THT analysis is consistently smaller, which 

indicates less dispersion of the data set throughout. The IQR from McCall and Christy (2010)’s 

model is larger than the Borden et al. (2021) and power law (Zhao and Illman, 2022b) models. In 

addition, the 𝐾𝐾𝐺𝐺 from Borden et al. (2021)’s model is less variable than the McCall and Christy 

(2010) and power law (Zhao and Illman, 2022b) models. 

Next, the 𝐾𝐾𝐺𝐺  from various approaches together with calibration of geological model 

results using PEST through 19 layers are plotted together as shown in Figure 5, and statistics are 

summarized in Table 2. Figure 5 reveals that it is very hard to accurately characterize a 

heterogeneous site such as the NCRS as log10𝐾𝐾 (m/s) could range about 4 orders of magnitude 

within a single geological unit using various site characterization approaches. Overall, the slug 

test yields higher K estimates than from grain size analyses and permeameter tests. HPT K 

estimates using three different models yield similar K estimates, while the estimates are generally 

higher than those generated from conventional methods (i.e., grain size analysis and 

permeameter test). The K values estimated from the PEST-calibrated geological model are close 

to those generated from the averaged THT geological model. Table 2 shows that the PEST-

calibrated geological model has the largest range of K estimates followed by the averaged THT 

geological model and grain size analyses using three models. It is surprising to find out that after 

populating K estimates, Borden et al. (2021)’s model yields the smallest range of K estimates, 

while the power law model (Zhao and Illman, 2022b) has a slightly larger range than McCall and 
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Christy (2010)’s model. In addition, 𝐾𝐾𝐺𝐺 values from permeameter tests and grain size analyses 

are relatively smaller than those generated from PEST and averaged THT geological models, 

while the slug test and three HPT formulae all yield relatively larger 𝐾𝐾𝐺𝐺 estimates.  

 

Figure 5. 𝐾𝐾𝐺𝐺 estimates from various site characterization approaches for 19 layers of the 

geological model. 
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Table 2. Summary of 𝐾𝐾𝐺𝐺 estimates for the 19-layer geological model from various site 

characterization approaches. 

Method Minimum (m/s) Maximum (m/s) Geomean of K (m/s) Range of log10 K  

Grain Size Analyses_Three Models 9.98E-10 1.52E-05 1.34E-07 4.18 

Permeameter Tests 9.23E-09 4.36E-06 2.28E-07 2.67 

Slug Tests 2.49E-08 3.74E-05 3.11E-06 3.18 

HPT_McCall and Christy Model 3.53E-07 4.98E-05 2.85E-06 2.15 

HPT_Borden Model 7.67E-07 1.85E-05 5.45E-06 1.38 

HPT_Power Law Model 1.04E-07 2.66E-05 3.76E-06 2.41 

PEST Calibrated Geological Model 2.53E-09 1.07E-04 1.25E-06 4.63 

Averaged THT Geological Model 5.44E-09 1.29E-04 1.14E-06 4.37 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



35 
 

Chapter 6. Evaluation and Validation of Hydraulic Conductivity from 

Various Subsurface Characterization Methods Using a Groundwater Model 

6.1 Comparison of K distributions 

 

Figure 6. K distributions at the NCRS from various site characterization approaches. Positions of 

CMT and PW wells (red lines) along with their screened intervals (black colour) as well as HPT 

loggings (dashed pink lines) are shown on each subfigure. 
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The estimated K distributions from traditional, HPT, and inverse modeling are presented 

as fenced diagrams in Figure 6. As previously noted, the primary characteristic of the site is the 

alternating aquifer-aquitard system comprised of two high-K units separated by a discontinuous 

low-K layer. The lower aquifer is made up of sandy gravel and the higher aquifer is made up of 

sand to sandy silt. Above and below the two aquifers are low-permeable materials such as silt 

and clay.  

The K distributions from HPT using three different models (Cases 2a – 2c) are generally 

biased towards the higher K end. Specifically, results from McCall and Christy (2010)’s model 

(Case 2a) capture the lower aquitard. However, K estimates tend to be larger than those 

generated from conventional methods. In addition, only the lower aquifer is revealed, while the 

clay layer 4 and silt layers 6, 7 and 10 located in the upper aquitard, based on Table S4, have 

higher K estimates than the most permeable aquifer unit layer 15, which does not conform to 

known geology. Results from Borden et al. (2021)’s model (Case 2b) only captures the lower 

aquitard, while K estimates are generally larger, thus everything above the lower aquitard is hard 

to be distinguished. The K distributions from the power law model (Zhao and Illman, 2022b) 

(Case 2c) only captures the lower aquifer and the lowest aquitard, while the K values for units 

above the lower aquifer are generally less variable and the aquitard layers have generally larger 

K estimates. The less variable values from high-resolution HPT methods are mainly due to the 

limited range of estimates and the upscaling of centimetre-scale measurements into much larger 

grid elements (for each layer). This type of averaging is meaningful and could generate results 

with reasonable fidelity because building forward and inverse groundwater models for flow 

prediction and remediation decision-making has become one of the most efficient ways for site 

characterization while most of the grids are not designed in millimetres or, even centimetre scale, 
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especially for large-scale water-quality investigations to save computational burden (Alexander 

et al., 2011; Berg & Illman, 2011b, 2013, 2015; Brauchler et al., 2013; Luo et al., 2022; Tong et 

al., 2021; Zhao & Illman, 2017, 2018). 

Examination of three inversion-derived property fields reveals K variations more 

accurately. The K values from the PEST calibrated geological model (Case 3a) capture the 

expected variation from one layer to the next, specifically, the double-aquifer system, and the 

aquitard in between is clearly implied. Aquitards above and below the aquifer system are also 

specified, however, the K estimate for the upper aquitard is relatively larger than it generated 

from permeameter test, which is because of the sparse monitoring data at the uppermost model 

domain. The unreasonably large 95% confidence intervals, according to Zhao and Illman (2018), 

could attribute to the merging of layers and fixing the layer geometry during model calibration. 

The averaged THT geological model (Case 3b) has a similar K distribution compared to the 

PEST calibrated geological model (as shown in Figure 5), and the K estimate for the lowest 

aquifer agrees more with those obtained by traditional methods (i.e., grain size analyses and 

permeameter). The highly parameterized THT analysis (Case 3c) yields a similar property field, 

while the estimated K for the lower aquifer layer 15 is higher compared with Cases 3a and 3b. 

6.2 Results from model validation 

The performance of each K distribution obtained by various methods is then evaluated by 

predicting independent pumping tests that are not used for model calibration using HGS 

(Aquanty, 2019) with the grid structures described earlier. As previously noted, a total of 15 

pumping tests (PW1-1, PW1-3, PW1-4, PW1-5, PW1-6, PW1-7, PW2-3, PW3-1, PW3-3, PW3-4, 

PW4-3, PW5-1, PW5-3, PW5-4, and PW5-5) were conducted at the NCRS. Of those 15 tests, 

eight tests were utilized for case 3 model calibrations (PW1-1. PW1-4, PW1-6, PW1-7, PW2-3, 
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PW3-3, PW4-3, and PW5-3) by Zhao & Illman (2018). Therefore, for this study, seven tests not 

used in model calibration by Zhao and Illman (2018) are chosen for model validation.  

Since most of the conventional (i.e., permeameter test and grain size analysis) and all 

HPT methods cannot provide Ss estimates, steady-state simulation is the first metric to analyze 

various approaches. Only late-time pressure heads from ports that reach steady or quasi-steady 

state are chosen, which results in 153 head data. To better evaluate the correspondence between 

the simulated and observed drawdown values, quantitative analyses are first performed by 

comparing the coefficient of determination (𝑅𝑅2), mean absolute error (𝐿𝐿1) and mean square error 

(𝐿𝐿2), which are provided as: 

𝑅𝑅2 =
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⎨
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𝐿𝐿1 = 1
𝑛𝑛
∑  𝑛𝑛
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where 𝑛𝑛 is the total number of data, 𝑖𝑖 indicates the data number, 𝑋𝑋𝑖𝑖 is the simulated drawdown,  

𝑋𝑋�𝑖𝑖 is the observed drawdown, 𝑋𝑋 is the mean of simulated drawdown, 𝑋𝑋𝚤𝚤�  is the mean of observed 

drawdown.  

Statistics calculated from each method through seven simulations are summarized in 

Tables S8 to S10 (in the Supplementary Information section). Cells in Tables S8 to S10 are 

colour-coded to enhance the comparison, specifically, the green colour represents the maximum 

value of 𝑅𝑅2, the minimum value is assigned with red colour and the 60-percentile value has a 
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colour yellow. While for the 𝐿𝐿1 and 𝐿𝐿2 norms, the red colour is assigned the maximum value, 

and the minimum value is represented by green. The arithmetic mean of 𝑅𝑅2, 𝐿𝐿1 and 𝐿𝐿2 norms is 

calculated to rank various approaches. Examination of Tables S8 to S10 reveals that the highly 

parameterized THT analysis (Case 3c) performs the best yielding the smallest disagreement 

between simulated and measured drawdowns and the highest 𝑅𝑅2, followed by the averaged THT 

geological model (Case 3b) and PEST calibrated geological model (Case 3a) methods. In 

addition, the discrepancy between simulated and observed drawdown values is smallest for the 

power law model (Zhao and Illman, 2022b) among the three HPT formulae. Three conventional 

methods, especially the grain size analysis (Case 1a) and permeameter test (Case 1b) rank at the 

lower end. The simulation results are also assessed by plotting scatterplots, as shown in Figure 7. 

To evaluate the performance, a linear model is fitted including the slope, intercept and 𝑅𝑅2, a 45° 

line is also included in each plot to indicate a perfect match. The slope and intercept details 

calculated from each method through seven simulations are summarized in Table S11 for 

interested readers. 

To enhance our comparison and evaluation, transient simulations are also performed. 

Since most of the selected traditional methods and HPT methods cannot yield Ss estimates, the 

heterogeneous Ss estimated from case 3a (PEST calibrated geological model) are assigned to case 

1a to case 2c. Three points are selected from the early, intermediate, and late time of each 

drawdown curve, which results in a total of 388 head data. It is worth noting that less drawdowns 

are selected from PW3-1 and PW5-1 because significant Noordbergum effects are observed from 

majority of the monitoring ports and the two pumping tests were only monitored through CMT 

wells. The Noordbergum effect is also called poroelastic effect which will produce drawdowns 

that deviate substantially from those predicted from traditional groundwater theories and may 
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exhibit itself as reverse water level fluctuations (Verruijt, 1969; Rodrigues, 1983; Berg and 

Illman, 2015). However, based on Berg et al. (2011), the late time drawdowns after the 

Noordbergum effects being fully dissipated can be utilized for transient analysis. As a results, 

only late times are selected from those particular monitoring ports. 

Quantitative and qualitative analyses are conducted, the 𝑅𝑅2, 𝐿𝐿1, 𝐿𝐿2, slope and intercept of 

the linear model are summarized in Tables S12 to S15, while corresponding scatterplots are 

presented in Figure 8. Specifically, the 𝐿𝐿1 norms are presented for transient simulations as a 3-D 

histogram with varying heights as shown in Figure 9, which will be discussed in the next section. 

Meanwhile, observed and simulated drawdowns from various approaches are plotted in Figure 

10 for the simulation of a pumping test at PW1-3 and the rest are presented in Figures S3 to S8 in 

the Supplementary Information section. Selected transient pressure heads are shown as solid, 

black circles on the observed drawdown curves, while forward simulation results of various 

cases are provided with curves of different colors. Specifically, the red straight line represents 

case 1a, red long dashed line represents case 1b, red short dashed line represents case 1c; case 2a 

is shown as green straight line, case 2b is shown as green long dashed line, case 3c is shown as 

green short dashed line; the blue straight line indicates case 3a, blue long dashed line indicates 

case 3b and the blue short dashed line indicates case 3c. 
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Figure 7. Scatterplots of observed versus simulated drawdowns from various K characterization 

approaches for model validation under steady state conditions. 
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Figure 8. Scatterplots of observed versus simulated drawdowns from various K characterization 

approaches for model validation under transient conditions. 
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Figure 9. 𝐿𝐿1 norms of observed versus simulated drawdowns from various K characterization 

approaches through the forward simulations of seven independent pumping tests under transient 

conditions. 
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b) 

 

Figure 10. Simulated drawdown curves from forward simulations with various K 

characterization approaches at a) CMT and b) PW wells from PW1-3. Observed drawdown 

curves are plotted as black curves and the data selected for computation of model performance 

metrics and scatterplots are solid black circles. 
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6.3 Discussion 

Examination of Figures 7 and 8 reveals that steady-state and transient simulation results 

are quite comparable. Specifically, both groundwater models built with traditional (Cases 1a - 1c) 

and HPT (Cases 2a - 2b) K estimates yield biased drawdown predictions. The PEST calibration 

of geological model (Case 3a) and averaged THT Geological Model (Case 3b) both yield a good 

prediction of drawdowns, while the highly parametrized THT analysis (Case 3c) produces an 

excellent match. 

In terms of traditional methods, both K estimates from permeameter tests and grain size 

analyses overpredict drawdowns, while K estimates from slug tests underpredict drawdowns 

under both steady-state and transient-state conditions. Usually, materials such as silt and clay 

that have lower K, but higher Ss tend to provide higher drawdowns during pumping tests, while 

high permeable materials such as sand or sand and gravel are likely to yield lower drawdowns. 

According to Tables 1, 2, and Figure 5, overall, permeameter tests and grain size analyses 

provide smaller K estimates than slug tests. This phenomenon can be explained by the scale 

effect, which is primarily due to various sample volumes from different methods. Therefore, the 

method that samples larger volumes, like the slug test, may be impacted by highly permeable 

zones not discovered by other methods that sample smaller volumes such as the permeameter 

tests and grain size analyses. Nevertheless, none of the K estimations from traditional methods 

represent the true K field and cannot be utilized to accurately simulate groundwater flow under 

both steady-state and transient conditions. According to Figure 10 and Figures S3 to S8, 

conventional methods either overpredict or underpredict drawdowns to some extent. 

In terms of the grain size analyses, the underestimation of K could be attributed to two 

potential reasons: (1) the majority of the relationships developed are for high permeable 
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materials, but for this study, we utilize three models that are appropriate for various soil types at 

the NCRS, however, models do not perform as expected. Specifically, K estimates from sand 

layers are smaller than those generated from clay layers; and (2) significant sample loss in the 

high permeable zone (Alexander et al., 2011). Using a split spoon to sample saturated sand, the 

probability of losing fines in the recovery process is high. Therefore, those finer fractions cannot 

even make it to the sieves to be further analyzed. 

The overprection of drawdowns from the permeameter test could because this method 

targets primarily vertical estimates of K. Zhao and Illman (2017) through automatic model 

calibration of seven individual pumping tests (PW1-1, PW1-4, PW1-6, PW2-3, PW3-3, PW4-3, 

and PW5-3) with steady-state drawdown responses and Zhao & Illman (2018) through effective 

parameter calibration of eight pumping tests (PW1-1, PW1-4, PW1-6, PW1-7, PW2-3, PW3-3, 

PW4-3 and PW5-3) with transient pressure heads both found that the vertical hydraulic 

conductivity in the z-direction (𝐾𝐾𝑧𝑧) is about two orders of magnitude smaller than the horizontal 

hydraulic conductivities in the x- (𝐾𝐾𝑥𝑥) and y- (𝐾𝐾𝑦𝑦) directions for the NCRS. As a result, it is not 

suitable to utilize approaches that focus on the vertical parameters to characterize such a highly 

heterogeneous glaciofluvial site. Even though the repacked samples instead of intact cores are 

utilized, we believe the nature of original samples is still preserved at some extent otherwise it is 

useless to use repacked samples for any permeameter analysis. In addition, Klute & Dirksen 

(1986) demonstrated that K of repacked samples estimated in the laboratory can be artificially 

lower than those from intact samples. Moreover, it is very difficult to recover substantial intact 

core samples from highly permeable zones (Butler, 2005; Alexander et al., 2011). As a 

consequence, underprediction of K is possible for permeameter tests conducted with materials 

from highly permeable intervals. 
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It is surprising to note that the slug tests consistently underpredict the drawdowns as this 

method is widely used for water-supply and water-quality investigations (Butler, 1997, 2005; 

Cardiff et al., 2011). This can be explained by several reasons: (1) the relatively sparse data 

points available at the site. A total of 43 slug tests were performed and analyzed, and the K 

estimations are then populated into the 19-layer geological model. However, due to the lack of 

data points, only 11 layers have been assigned with K. 2 out of 3 sandy silt layers do not have 

any data points available and have been assigned with unreasonably large estimates of K. As a 

consequence, a denser slug test well setting is needed to better analyze the performance of slug 

tests for the characterization of the highly heterogeneous site while this is time-consuming and 

usually not possible with a limited budget. (2) Hvorslev (1951) method is a slug test solution 

developed for confined aquifers while the highly heterogeneous aquifer-aquitard system in this 

study is semi-confined. (3) The adding of “slug” is conducted by injecting a fixed volume of 

water or by performing short duration pumping tests (Alexander et al., 2011; Xie, 2015). Since 

the processes are non-instantaneous, error could be introduced into the collected data even 

though additional translation was taken. 

HPT K estimates persistently yield biased low predictions of drawdowns under both 

steady-state and transient conditions. Validation results by using three different models are 

slightly different and improved. Specifically, based on Figures 7 and 8, 𝑅𝑅2 increase, while both 

𝐿𝐿1 and 𝐿𝐿2 norms decrease from case 2a to 2c. As previously mentioned, the power law model 

(Zhao and Illman, 2022b) is a site-specific relationship developed for the NCRS, therefore, 

building a site-specific model to interpret HPT data is helpful in terms of site characterization. 

However, the advancement is not significant, based on Figure 10 and Figures S3 to S8, case 2a to 

case 2c yield similar head predictions that all underpredict observed drawdowns. According to 
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Tables 1 and 2, the 𝐾𝐾𝐺𝐺  estimated from three HPT methods are relatively large than those 

generated from conventional methods. The scale effect cannot explain the behaviour of high-

resolution HPT methods. The limited range of K estimates presents a substantial challenge to 

precisely characterize low-permeable materials such as silt and clay. While the loss of Darcian 

flow into fine-grained materials during injection is the primary cause for the inability of the rapid 

logging method to provide accurate K estimates for these low permeable zones. The loss of 

Darcian flow in low K materials may express itself as bypass of water along the probe and rods 

(preferential flow paths). As a result, instead of building a site-specific formula, it would be 

necessary to modify the logging equipment and method to achieve an extended range for both 

higher and lower K subsurface formations (McCall & Christy, 2020). 

Inverse modeling approaches with various parametrizations all yield results with great 

optimism at the NCRS. The calibration and geological model (Case 3a) and averaged THT 

geological model (Case 3b) both yield a good drawdown match with the measured data, while 

the highly parameterized THT analysis (Case 3c) with prior geological information yields 

excellent forward simulation results under both steady and transient conditions. Based on Tables 

S8 to S10 and Tables S12 to S14 (in the Supplementary Information section), the highly 

parametrized THT analysis consistently (Case 3c) yields the best 𝑅𝑅2, 𝐿𝐿1 and 𝐿𝐿2 norms under both 

steady and transient states followed by the calibration of geological model (Case 3a) and 

averaged THT geological model methods, which indicates that, even though the property K 

fields (refer to Figure 6, Case 3a to 3c) reveal similar overall characteristics, the elemental scale 

differences in K could lead to noticeable differences between simulated drawdowns at various 

observation intervals. As a result, the highly parametrized inverse modeling approach that can 

accurately map both interlayer and intralayer heterogeneities with regularization should be 
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advocated for high-resolution site characterization. Based on Figure 9, it is clear that with the 

advancement of generations of site characterization methodologies and theories, the ability to 

accurately map the site heterogeneity is increased significantly. 

Ss plays an important role in transient state simulations, however, most of the 

conventional and HPT methods cannot yield reliable and sufficient Ss estimates for numerical 

modeling. As a result, the importance of including accurate Ss for groundwater simulation is 

analyzed in the study by creating two cases: (1) using an effective Ss from Zhao and Illman. 

(2018) case 1a, which couples HGS (Aquanty, 2019) with the parameter estimation code, PEST 

(Doherty, 2005), while treats the aquifer-aquitard system to be homogeneous and isotropic; (2) 

using the heterogeneous Ss generated from the PEST calibrated geological model (Case 3a). 

Transient simulations are performed along seven pumping tests previously used through case 1a 

to case 2c. 𝐿𝐿1 and 𝐿𝐿2 are summarized in Table S16 and S17, where yellow color represents the 

results from heterogeneous Ss, and blue color represents the results from homogeneous Ss. If the 

discrepancy between simulated and observed drawdowns from the heterogeneous case is smaller 

than the homogeneous case, a green check will be marked, otherwise, a red cross will be given. 

Examination of Table S16 and S17 reveals that, in most cases, accurate and heterogeneous Ss 

yield better simulation results than a homogeneous Ss. As a result, the accurate delineation of 

heterogeneous Ss from inverse modeling is remarkable and should be advocated to practitioners 

and hydrogeologists. 
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Chapter 7. Summary and Conclusions 

The accurate delineation of subsurface heterogeneity in K and Ss is important in building 

an accurate groundwater model for robust predictions of groundwater flow and remediation 

decision-making. Traditional methods such as slug and pumping tests are commonly used for 

water-supply investigations, where it may be sufficient to use a single estimate of averaged K 

and Ss over a reasonable volume, while such approximations can be of limited value for 

contaminant transport investigations. Over the last two decades, several DP-based field methods 

such as DPIL and HPT have been developed to assess small-scale spatial variations of K in 

heterogeneous unconsolidated formations. The robust machine with advanced theory has made it 

one of the most efficient approaches for site investigation and characterization compared to 

conventional methods, while information between each DP location is hard to be interpreted. 

Inverse modeling such as calibration of geological model and HT has been developed and 

analyzed significantly in the last decade and a half, numerous promising findings from synthetic, 

laboratory and field experiments have proved that HT is an effective and robust approach to map 

site heterogeneity between boreholes. Qualitative and quantitative analyses were conducted by 

various researchers to compare different approaches but there is no consensus about which 

method can generate parameter estimations that are representative of a site. In this study, we 

utilize a 19-layer geological model and a forward groundwater model to evaluate the 

performance of three generations of site characterization approaches for K including: (1) grain 

size analyses; (2) permeameter tests; (3) slug tests; (4) HPT with three different models (McCall 

and Christy, 2020; Borden et al., 2021; and Zhao and Illman, 2022b); (5) calibration of a 

geological model; and the (6) highly parameterized THT analysis in terms of their ability to 
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predict drawdowns under both steady-state and transient conditions. This study leads to the 

following findings and conclusions: 

1. Despite the time and effort to conduct 270 grain size analyses, 642 permeameter tests, 

and 43 slug tests, all of the traditional methods yield biased K estimates that lead to poor 

predictions of drawdowns from pumping tests. The scale effect is observed as the 

measured K increases with the sampled volume. A majority of the grain size analysis 

solutions were developed based on high permeable materials, which presents a challenge 

for the applicability in heterogeneous settings. More importantly, the low sample 

recovery in the high permeable zone will lead to biased low K estimates. Permeameter 

tests tend to yield lower K estimates due to the influence of using repacked samples and 

different lab conditions that could lead to differences from in-situ conditions. In addition, 

it is very difficult to recover considerable intact core samples from high permeable zones. 

As a result, underprediction of K is possible for permeameter tests conducted with 

materials from highly permeable intervals. In addition, the current density of CMT wells 

cannot provide sufficient slug test data for robust forward groundwater simulations, while 

this method has a relatively larger sample volume than the grain size analysis and 

permeameter test, thus, a higher chance to include high permeable zones that are not seen 

by point-scale approaches, thus, lead to relatively higher estimates of K. In addition, 

considerable care must be taken when adding/removing the “slug”. Moreover, when 

selecting formulas, the assumptions and inherent mechanisms must be considered very 

carefully. Nevertheless, none of the traditional methods can provide adequate information 

between boreholes without utilizing additional geostatistical interpolation tools such as 

kriging. 
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2. HPT is one of the most novel DP approaches, which has the merit of providing 

substantial measurements of vertical K to investigate spatial variation efficiently 

compared to conventional methods. The interpretation from pressure and EC logs 

between each survey can be employed for site conceptualization. Building site-specific 

models based on HPT data is helpful, however, K estimations from the HPT method are 

primarily constraint by the limited range of estimates, which presents a considerable 

challenge to characterize low permeable materials such as silt and clay. The forward 

simulation of centimeter-scale K estimates from three HPT relationships generates a 

biased low prediction of drawdowns. Given HPT’s significant advantage in the 

geohydrologic characterization of unconsolidated deposits, it is necessary to advance the 

logging apparatus and theories to attain an extended range of estimates for both higher 

and lower K geological media. 

3. Majority of the traditional and HPT methods cannot provide precise and enough Ss for 

numerical modeling while including accurate and heterogeneous Ss is crucial in terms of 

groundwater simulations. As a consequence, inversion approaches that can delineate 

accurate Ss with various model parametrization should be advocated. 

4. Inverse modeling approaches such as calibration of geological model yield good 

validation results, while the highly parameterized THT analysis consistently yields 

excellent drawdown predictions under both steady-state and transient conditions. The 

highly parameterized estimated K field revealed the most salient features of interlayer and 

intralayer heterogeneity. The inclusion of accurate geological zonation and long-term 

pumping responses from both aquifer and aquitard layers makes HT a clear choice for 

accurate site characterization compared to traditional and DP methods. The precise 
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parametrized tomogram is representative of local hydrostratigraphic features. While the 

accurate prediction of drawdowns from pumping tests is promising, further studies are 

needed to see whether these K distributions are useful for contaminant transport 

predictions.  

Based on the study results, we recommend the following workflow when characterizing 

an heterogeneous site which may have plume contamination: 

1. Conduct various HPT tests. The generated HPT pressure and EC logs are helpful for site 

conceptualization. Specifically, a fuzzy clustering analysis of HPT pressure logs has been 

conducted by Zhao and Illman (2022a), the layer boundaries and thicknesses information 

was used to build geological models and has shown promising performance in 

groundwater modeling. In addition, analyzing cross-sectional view of pressure and EC 

logs is useful in detecting contaminant and its migration path (McCall & Christy, 2020). 

2. Install and develop a number of pumping and monitoring wells with screen ports isolated 

by packers. Then perform multiple pumping/injection tests with longer durations to stress 

both the aquifer and aquitard units. If contaminants are detected in step 1, considerable 

care must be taken when pumping water out. 

3. Calibrate geological model and HT. The generated geological model from step 1 should 

calibrate with collected pressure heads, and the inversion of HT then starts with the 

heterogeneous K and Ss values generated from the calibration of geological model. The 

inversion with desired degree of parametrization should be conducted by calibrating all 

pressure heads simultaneously with the code created by Xiang et al. (2009). And the 

generated property tomograms should be a reasonable representation of the subsurface 

geological media, which captures the majority of the inter- and intra-layer heterogeneity. 
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Appendix A. Additional Tables 

 

Table S1. Populated grain size analysis using three models for the 19-layer geological model. 

 

Table S2. Populated permeameter test for the 19-layer geological model. 

 

layers # of data points Model used Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 17 Puckett et al (1985) 4.03E-06 2.42E-04 -5.39 -7.37 -6.16 -5.05 -4.54 -4.36
2-silt 16 Barr (2001) 8.99E-08 5.39E-06 -7.05 -9.45 -8.72 -6.52 -5.50 -5.14

3-sand 1 Hazen (1911) 4.80E-09 2.88E-07 -8.32 -8.32 -8.32 -8.32 -8.32 -8.32
4-clay 8 Puckett et al (1985) 7.73E-07 4.64E-05 -6.11 -8.05 -6.87 -5.87 -4.83 -4.62

5-sand & silt 0 NA 9.32E-08 5.59E-06 -7.03 -7.03 -7.03 -7.03 -7.03 -7.03
6-sandy silt 11 Barr (2001) 6.49E-08 3.89E-06 -7.19 -9.61 -7.86 -7.15 -6.13 -5.21

7-silt 58 Barr (2001) 6.03E-08 3.62E-06 -7.22 -9.63 -8.06 -7.31 -6.23 -5.38
8-clay 4 Puckett et al (1985) 1.52E-05 9.09E-04 -4.82 -5.22 -5.15 -4.76 -4.51 -4.36

9-sandy silt 3 Barr (2001) 2.06E-07 1.24E-05 -6.69 -8.42 -7.42 -7.14 -4.80 -4.50
10-silt 7 Barr (2001) 2.42E-07 1.45E-05 -6.62 -8.14 -7.88 -6.35 -5.70 -4.50

11-sand 18 Hazen (1911) 7.23E-07 4.34E-05 -6.14 -8.85 -7.62 -5.21 -4.92 -4.70
12-clay 10 Puckett et al (1985) 7.15E-06 4.29E-04 -5.15 -6.12 -5.28 -5.17 -4.72 -4.54

13-sandy silt 9 Barr (2001) 2.31E-08 1.39E-06 -7.64 -9.70 -8.52 -7.49 -7.28 -4.88
14-silt 29 Barr (2001) 1.21E-08 7.23E-07 -7.92 -10.51 -9.04 -7.82 -6.98 -4.53

15-sand and gravel 14 Hazen (1911) 1.64E-06 9.82E-05 -5.79 -10.17 -7.10 -4.78 -3.87 -2.60
16-clay 41 Puckett et al (1985) 8.18E-08 4.91E-06 -7.09 -9.68 -8.05 -7.06 -6.08 -4.88

17-clay & silt 8 Puckett et al (1985) 7.38E-09 4.43E-07 -8.13 -10.15 -9.08 -7.82 -7.07 -6.00
18-clay 12 Puckett et al (1985) 2.04E-09 1.23E-07 -8.69 -10.49 -9.75 -9.51 -6.93 -5.22

19-clay & silt 4 Puckett et al (1985) 2.05E-06 1.23E-04 -5.69 -6.51 -5.74 -5.44 -5.30 -5.30

Grain Size 
Analysis_ Three 

Models
(Total of 270 
data points)

Grain Size Analysis_Three Models

layers # of data points Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 67 1.40E-07 8.42E-06 -6.85 -9.60 -7.50 -6.74 -5.98 -4.30
2-silt 24 3.70E-07 2.22E-05 -6.43 -8.67 -7.35 -5.99 -5.51 -4.55

3-sand 7 1.49E-07 8.94E-06 -6.83 -8.74 -7.37 -6.71 -5.89 -5.35
4-clay 23 3.39E-08 2.03E-06 -7.47 -9.94 -8.43 -7.33 -6.39 -5.70

5-sand & silt 0 7.31E-07 4.38E-05 -6.14 -6.14 -6.14 -6.14 -6.14 -6.14
6-sandy silt 21 6.07E-07 7.11E-07 -6.22 -8.71 -6.52 -6.05 -5.67 -5.16

7-silt 157 4.36E-07 2.62E-05 -6.36 -8.33 -6.82 -6.43 -5.72 -4.52
8-clay 19 1.85E-07 1.11E-05 -6.73 -9.30 -7.38 -6.80 -5.83 -4.57

9-sandy silt 13 8.21E-07 4.93E-05 -6.09 -7.88 -7.47 -6.30 -4.67 -4.48
10-silt 19 1.19E-06 7.12E-05 -5.93 -8.00 -7.07 -6.68 -4.68 -3.70

11-sand 69 4.36E-06 2.62E-04 -5.36 -9.51 -5.23 -4.95 -4.68 -3.63
12-clay 20 9.93E-08 5.96E-06 -7.00 -9.43 -7.16 -6.93 -6.67 -6.01

13-sandy silt 20 3.98E-07 2.39E-05 -6.40 -7.95 -7.08 -6.57 -5.99 -3.67
14-silt 65 1.71E-07 1.03E-05 -6.77 -8.80 -7.19 -6.96 -6.47 -3.57

15-sand and gravel 36 3.22E-06 1.93E-04 -5.49 -8.79 -6.88 -5.06 -4.39 -2.33
16-clay 48 2.30E-08 1.38E-06 -7.64 -9.06 -8.23 -7.65 -7.06 -5.86

17-clay & silt 10 1.96E-08 1.17E-06 -7.71 -8.70 -7.95 -7.66 -7.33 -7.07
18-clay 17 9.23E-09 5.54E-07 -8.03 -9.24 -8.58 -7.95 -7.40 -7.06

19-clay & silt 7 1.78E-07 1.07E-05 -6.75 -7.43 -7.16 -6.60 -6.49 -5.92

Permeameter 
Test (Total of 

642 Data Points)

Permeameter Test
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Table S3. Populated slug test for the 19-layer geological model. 

 

Table S4. Populated HPT method using McCall (2010)’s model for the 19-layer geological 

model. 

 

layers # of data points Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 0 9.05E-07 5.43E-05 -6.04 -6.04 -6.04 -6.04 -6.04 -6.04
2-silt 2 4.24E-06 2.54E-04 -5.37 -5.72 -5.42 -5.25 -5.12 -5.03

3-sand 0 2.31E-05 1.38E-03 -4.64 -4.64 -4.64 -4.64 -4.64 -4.64
4-clay 1 9.10E-07 5.46E-05 -6.04 -6.04 -6.04 -6.04 -6.04 -6.04

5-sand & silt 0 1.05E-05 6.32E-04 -4.98 -4.98 -4.98 -4.98 -4.98 -4.98
6-sandy silt 0 3.62E-05 2.17E-03 -4.44 -4.44 -4.44 -4.44 -4.44 -4.44

7-silt 11 1.35E-06 8.10E-05 -5.87 -6.78 -6.47 -6.02 -5.70 -4.07
8-clay 1 3.74E-05 2.25E-03 -4.43 -4.43 -4.43 -4.43 -4.43 -4.43

9-sandy silt 0 3.62E-05 2.17E-03 -4.44 -4.44 -4.44 -4.44 -4.44 -4.44
10-silt 0 5.46E-06 3.27E-04 -5.26 -5.26 -5.26 -5.26 -5.26 -5.26

11-sand 5 2.31E-05 1.38E-03 -4.64 -5.06 -4.71 -4.59 -4.52 -4.31
12-clay 0 9.05E-07 5.43E-05 -6.04 -6.04 -6.04 -6.04 -6.04 -6.04

13-sandy silt 4 3.62E-05 2.17E-03 -4.44 -4.69 -4.57 -4.52 -4.33 -4.04
14-silt 2 2.84E-05 1.70E-03 -4.55 -5.11 -4.50 -4.25 -4.10 -3.98

15-sand and gravel 5 2.88E-05 1.73E-03 -4.54 -6.38 -4.76 -3.98 -3.81 -3.77
16-clay 7 5.32E-07 3.19E-05 -6.27 -7.70 -7.18 -6.50 -5.18 -4.81

17-clay & silt 1 2.49E-08 1.49E-06 -7.60 -7.60 -7.60 -7.60 -7.60 -7.60
18-clay 4 3.71E-08 2.22E-06 -7.43 -7.92 -7.39 -7.30 -7.27 -7.22

19-clay & silt 0 2.49E-08 1.49E-06 -7.60 -7.60 -7.60 -7.60 -7.60 -7.60

Slug Test

Slug Test (Total 
of 43 Data 

Points)

layers # of data points Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 0 1.73E-06 1.04E-04 -5.76 -5.76 -5.76 -5.76 -5.76 -5.76
2-silt 86 2.65E-05 1.59E-03 -4.58 -6.45 -4.63 -4.22 -4.06 -3.72

3-sand 0 1.88E-06 1.13E-04 -5.73 -5.73 -5.73 -5.73 -5.73 -5.73
4-clay 79 1.12E-05 6.72E-04 -4.95 -6.45 -6.45 -4.28 -4.17 -4.07

5-sand & silt 28 3.53E-06 2.12E-04 -5.45 -6.45 -6.45 -5.25 -4.39 -4.09
6-sandy silt 353 1.60E-05 9.61E-04 -4.80 -6.45 -5.25 -4.37 -4.13 -3.70

7-silt 1446 4.98E-05 2.99E-03 -4.30 -6.45 -5.07 -4.41 -4.04 -3.62
8-clay 254 2.87E-06 1.72E-04 -5.54 -6.45 -6.45 -6.45 -4.28 -3.67

9-sandy silt 114 5.75E-06 3.45E-04 -5.24 -6.45 -6.45 -4.76 -4.07 -3.63
10-silt 108 2.18E-05 1.31E-03 -4.66 -6.45 -5.29 -4.19 -3.90 -3.63

11-sand 1097 1.88E-06 1.13E-04 -5.73 -6.45 -6.45 -6.45 -4.69 -3.65
12-clay 311 1.60E-06 9.63E-05 -5.79 -6.45 -6.45 -6.45 -5.07 -3.61

13-sandy silt 205 5.59E-07 3.35E-05 -6.25 -6.45 -6.45 -6.45 -6.45 -4.34
14-silt 552 1.21E-06 7.28E-05 -5.92 -6.45 -6.45 -6.45 -6.45 -3.58

15-sand and gravel 1186 6.11E-06 3.66E-04 -5.21 -6.45 -6.45 -6.25 -3.80 -3.58
16-clay 1470 4.18E-07 2.51E-05 -6.38 -6.45 -6.45 -6.45 -6.45 -3.80

17-clay & silt 90 3.53E-07 2.12E-05 -6.45 -6.45 -6.45 -6.45 -6.45 -6.45
18-clay 281 6.89E-07 4.13E-05 -6.16 -6.45 -6.45 -6.45 -6.45 -3.67

19-clay & silt 0 3.53E-07 2.12E-05 -6.45 -6.45 -6.45 -6.45 -6.45 -6.45

HPT_McCall Model

HPT_McCall 
Model (Total of 

7660 Data 
Points)

layers # of data points Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 0 5.35E-06 3.21E-04 -5.27 -5.27 -5.27 -5.27 -5.27 -5.27
2-silt 86 1.46E-05 8.77E-04 -4.84 -5.49 -5.03 -4.79 -4.65 -4.04

3-sand 0 6.06E-06 3.64E-04 -5.22 -5.22 -5.22 -5.22 -5.22 -5.22
4-clay 79 1.04E-05 6.25E-04 -4.98 -5.51 -5.23 -4.85 -4.76 -4.64

5-sand & silt 28 8.02E-06 4.81E-04 -5.10 -5.32 -5.25 -5.16 -4.94 -4.71
6-sandy silt 353 1.20E-05 7.18E-04 -4.92 -5.55 -5.16 -4.93 -4.76 -4.00

7-silt 1446 1.46E-05 8.76E-04 -4.84 -5.59 -5.11 -4.95 -4.65 -3.75
8-clay 254 8.02E-06 4.81E-04 -5.10 -5.62 -5.39 -5.23 -4.87 -3.88

9-sandy silt 114 9.66E-06 5.80E-04 -5.02 -5.55 -5.33 -5.08 -4.65 -3.76
10-silt 108 1.85E-05 1.11E-03 -4.73 -5.53 -5.14 -4.81 -4.45 -3.73

11-sand 1097 6.06E-06 3.64E-04 -5.22 -6.89 -5.54 -5.37 -5.08 -3.86
12-clay 311 6.60E-06 3.96E-04 -5.18 -6.18 -5.55 -5.31 -5.13 -3.75

13-sandy silt 205 3.14E-06 1.89E-04 -5.50 -5.81 -5.62 -5.57 -5.44 -4.93
14-silt 552 4.80E-06 2.88E-04 -5.32 -6.35 -5.61 -5.47 -5.21 -3.60

15-sand and gravel 1186 9.68E-06 5.81E-04 -5.01 -7.31 -5.60 -5.19 -4.26 -3.57
16-clay 1470 1.49E-06 8.94E-05 -5.83 -7.95 -6.11 -5.76 -5.58 -4.26

17-clay & silt 90 7.67E-07 4.60E-05 -6.12 -7.37 -6.16 -6.09 -5.99 -5.85
18-clay 281 1.94E-06 1.16E-04 -5.71 -7.75 -6.02 -5.75 -5.61 -3.94

19-clay & silt 0 7.67E-07 4.60E-05 -6.12 -6.12 -6.12 -6.12 -6.12 -6.12

HPT_Borden Model

HPT_Borden 
Model (Total of 

7660 Data 
Points)
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Table S5. Populated HPT method using Borden et al. (2021)’s model for the 19-layer geological 

model. 

 

Table S6. Populated HPT method using the power law model for the 19-layer geological model. 

 

 

Table S7. Populated highly parameterized THT analysis (THT calibrated geological model) for 

the 19-layer geological model. 

layers # of data points Geomean of K (m/s) Goemean of K (m/min) Log10 (K) (m/s) min lower median upper max
1-clay 0 3.05E-06 1.83E-04 -5.52 -5.52 -5.52 -5.52 -5.52 -5.52
2-silt 86 1.45E-05 8.69E-04 -4.84 -5.77 -5.10 -4.79 -4.59 -3.72

3-sand 0 4.51E-06 2.71E-04 -5.35 -5.35 -5.35 -5.35 -5.35 -5.35
4-clay 79 9.31E-06 5.59E-04 -5.03 -5.76 -5.35 -4.85 -4.74 -4.59

5-sand & silt 28 6.98E-06 4.19E-04 -5.16 -5.45 -5.36 -5.25 -4.95 -4.64
6-sandy silt 353 1.15E-05 6.93E-04 -4.94 -5.83 -5.25 -4.94 -4.70 -3.67

7-silt 1446 1.50E-05 9.02E-04 -4.82 -5.85 -5.22 -4.98 -4.55 -3.32
8-clay 254 6.56E-06 3.94E-04 -5.18 -5.92 -5.59 -5.37 -4.87 -3.56

9-sandy silt 114 8.45E-06 5.07E-04 -5.07 -5.82 -5.50 -5.15 -4.58 -3.39
10-silt 108 2.08E-05 1.25E-03 -4.68 -5.70 -5.25 -4.75 -4.25 -3.36

11-sand 1097 4.51E-06 2.71E-04 -5.35 -7.72 -5.80 -5.55 -5.13 -3.46
12-clay 311 5.19E-06 3.12E-04 -5.28 -6.62 -5.77 -5.45 -5.22 -3.28

13-sandy silt 205 1.84E-06 1.10E-04 -5.74 -6.21 -5.91 -5.84 -5.69 -4.92
14-silt 552 3.24E-06 1.94E-04 -5.49 -7.51 -5.90 -5.69 -5.32 -3.16

15-sand and gravel 1186 2.66E-05 1.60E-03 -4.57 -9.10 -5.86 -5.29 -4.00 -3.16
16-clay 1470 1.25E-06 7.53E-05 -5.90 -9.42 -6.81 -6.14 -5.83 -4.00

17-clay & silt 90 1.04E-07 6.24E-06 -6.98 -10.07 -7.06 -6.85 -6.74 -6.46
18-clay 281 6.65E-07 3.99E-05 -6.18 -8.83 -6.77 -6.09 -5.88 -3.54

19-clay & silt 0 1.04E-07 6.24E-06 -6.98 -6.98 -6.98 -6.98 -6.98 -6.98

HPT_Power Law Model

HPT_Power 
Law Model

(Total of 7660 
Data Points)
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Table S8. 𝑅𝑅2 of observed versus simulated drawdowns from seven pumping tests under steady-

state condition for model validation.      

 

Table S9. 𝐿𝐿1 norm of observed versus simulated drawdowns from seven pumping tests under 

steady-state condition for model validation. 

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.01

0.68

Approaches

Case 1b: Permeameter Test 0.35 0.18 0.12 0.14 0.56 0.23 0.32 5

Case 1a: Grain size Analysis_Three Models 0.17 0.14 0.30 0.03 0.80 0.32 0.25 7

Case 1c: Slug Test 0.001 0.38 0.31 0.30 0.94 0.26 0.37 40.37

Case 2a: HPT_McCall and Christy Model 0.07 0.29 0.38 0.07 0.42 0.31 0.29 60.51

Case 2b: HPT_Borden Model 0.06 0.21 0.17 0.15 0.40 0.17 0.25 70.56

Case 2c: HPT_Power Law Model 0.21 0.23 0.22 0.15 0.41 0.18 0.29 60.61

Case 3a: PEST Calibrated Geological Model 0.68 0.41 0.87 0.11 0.81 0.01 0.42 30.08

Case 3b: Averaged THT Geological Model 0.68 0.39 0.87 0.10 0.82 0.01 0.43 20.11

Case 3c: Highly Parameterised THT Analysis 0.74 0.45 0.86 0.20 0.94 0.19 0.54 10.37

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.201

0.038

0.024

0.114

0.112

0.111

0.063

0.061

0.024

0.342

0.021

0.013

0.012

0.013

0.015

0.017

0.013Case 3c: Highly Parameterised THT Analysis 0.139 0.036 0.043 0.104 0.060 10.064

9

8

6

7

5

4

3

2Case 3b: Averaged THT Geological Model 0.306

Case 2a: HPT_McCall and Christy Model

0.095

0.097

0.105

0.063

0.056

0.034

0.109

0.071

0.045

0.0720.098

0.091

0.1040.341

Case 2b: HPT_Borden Model

Case 2c: HPT_Power Law Model

Case 3a: PEST Calibrated Geological Model

0.079

0.078

0.077

0.080

0.077

Approaches

1.178 1.572 1.591Case 1b: Permeameter Test

Case 1a: Grain size Analysis_Three Models

Case 1c: Slug Test

2.873

0.1380.046

1.136

0.859

0.375

0.279

0.284

0.271

0.093 0.113

0.116

1.314 1.547 1.176 1.733

0.112

0.103

0.099

0.132

0.038 0.055 0.112

0.075

0.196

0.092
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Table S10. 𝐿𝐿2 norm of observed versus simulated drawdowns from seven pumping tests under 

steady-state condition for model validation. 

 

Table S11. Statistics of the linear model fit from scatterplots of simulated versus observed 

drawdowns during model validation under steady-state condition.   

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.010

0.007

0.007

0.007

0.010

0.009

0.009

0.001

0.0003

Case 2b: HPT_Borden Model 0.116 0.006 0.015 0.009 0.024

Case 3a: PEST Calibrated Geological Model 0.192 0.002 0.003 0.018

Case 2c: HPT_Power Law Model

0.145

0.023

0.112 0.005 0.012 0.008

4

Case 3c: Highly Parameterised THT Analysis 0.043 0.002 0.004 0.016 0.011 1

0.0004

0.0002

0.0005

0.033

Case 3b: Averaged THT Geological Model 0.147 0.002 0.005 0.020 0.027

0.002

0.019

0.018

0.017

0.008

0.007

0.002

0.0002

0.0002

0.047

0.002 9

8.470 1.745 2.733 2.819

0.016

0.052

7

5

3

2

6

8

Case 2a: HPT_McCall and Christy Model 0.127 0.019 0.018 0.025 0.031

0.023

2.287

Case 1a: Grain size Analysis_Three Models 1.933 6.792 2.300 9.127 2.885

Case 1c: Slug Test 0.253 0.003 0.016 0.025 0.044

Approaches

Case 1b: Permeameter Test

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1
Slope 0.57 21.20 5.79 4.91 1.07 10.14 0.29
Intercept 1.51 -0.09 0.51 1.01 0.05 -0.30 -0.14
Slope 1.02 4.53 1.94 2.62 2.39 28.45 3.17
Intercept 2.86 0.98 1.44 1.29 0.10 -0.98 0.03
Slope -0.002 0.17 0.09 0.11 1.25 0.35 0.12
Intercept 0.09 0.02 0.03 0.03 0.01 0.00 0.00
Slope 0.02 1.22 0.65 0.44 0.11 2.56 0.10
Intercept 0.32 0.08 0.15 0.18 -0.01 -0.08 -0.02
Slope 0.03 0.33 0.28 0.34 0.16 1.75 0.15
Intercept 0.36 0.13 0.18 0.16 0.00 -0.04 -0.01
Slope 0.06 0.41 0.29 0.31 0.17 1.92 0.17
Intercept 0.33 0.12 0.17 0.16 0.00 -0.05 -0.01
Slope 1.33 0.95 0.72 0.32 1.99 1.45 0.52
Intercept 0.14 -0.02 -0.001 0.03 0.15 -0.04 -0.12
Slope 1.21 0.82 0.63 0.27 1.98 1.06 0.62
Intercept 0.15 -0.02 0.00 0.03 0.15 -0.02 -0.11
Slope 1.01 0.95 0.61 0.35 1.29 2.09 1.38
Intercept 0.04 -0.02 0.01 0.02 0.03 -0.07 -0.02

Case 2a: HPT_McCall and Christy Model

Approaches

Case 1b: Permeameter Test

Case 2b: HPT_Borden Model

Case 1a: Grain size Analysis_Three Models

Case 1c: Slug Test

Case 3b: Averaged THT Geological Model

Case 3c: Highly Parameterised THT Analysis

Case 2c: HPT_Power Law Model

Case 3a: PEST Calibrated Geological Model
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Table S12. 𝑅𝑅2  of observed versus simulated drawdowns from seven pumping tests under 

transient-state condition for model validation.      

 

Table S13. 𝐿𝐿1 norm of observed versus simulated drawdowns from seven pumping tests under 

transient-state condition for model validation.     

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.45

0.71

Approaches

Case 1b: Permeameter Test 0.32 0.34 0.26 0.46 0.64 0.44 0.45 2

Case 1a: Grain size Analysis_Three Models 0.41 0.22 0.27 0.12 0.80 0.26 0.36 4

Case 1c: Slug Test 0.11 0.25 0.33 0.56 0.59 0.40 0.33 60.09

Case 2a: HPT_McCall and Christy Model 0.18 0.31 0.37 0.27 0.66 0.40 0.35 50.23

Case 2b: HPT_Borden Model 0.16 0.26 0.23 0.40 0.59 0.30 0.30 80.20

Case 2c: HPT_Power Law Model 0.18 0.25 0.27 0.38 0.60 0.32 0.32 70.23

Case 3a: PEST Calibrated Geological Model 0.65 0.33 0.57 0.25 0.78 0.19 0.44 30.33

Case 3b: Averaged THT Geological Model 0.69 0.28 0.83 0.25 0.79 0.13 0.45 20.17

Case 3c: Highly Parameterised THT Analysis 0.75 0.34 0.40 0.35 0.92 0.39 0.51 10.40

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.036

0.048

0.042

0.044

0.042

0.036

0.058

0.028

0.404

0.262

0.190

0.175

0.180

0.180

0.071 0.069

0.070

0.411 0.590 0.312 0.392

0.070

0.067

0.066

0.071

0.034 0.035 0.066

0.013

0.027

Approaches

0.639 0.544 0.592Case 1b: Permeameter Test

Case 1a: Grain size Analysis_Three Models

Case 1c: Slug Test

0.791

0.0490.037

Case 2a: HPT_McCall and Christy Model

0.057

0.055

0.058

0.046

0.045

0.031

0.062

0.060

0.043

0.0600.060

0.059

0.0650.161

Case 2b: HPT_Borden Model

Case 2c: HPT_Power Law Model

Case 3a: PEST Calibrated Geological Model

Case 3b: Averaged THT Geological Model 0.158

9

8

6

7

5

4

2

3

Case 3c: Highly Parameterised THT Analysis 0.091 0.033 0.049 0.061 0.041 1

0.037

0.032

0.072

0.069

0.068

0.067

0.032

0.034

0.017

0.187

0.013

0.010

0.010

0.016

0.013

0.009
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Table S14. 𝐿𝐿2 norm of observed versus simulated drawdowns from seven pumping tests under 

transient-state condition for model validation. 

 

Table S15. Statistics of the linear model fit from scatterplots of simulated versus observed 

drawdowns during model validation under transient state condition.  

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1 Average Rank

0.004

0.003

0.003

0.003

0.002

0.006

0.002

0.001

Case 2a: HPT_McCall and Christy Model 0.073 0.006 0.006 0.009 0.015

0.014

0.446

Case 1a: Grain size Analysis_Three Models 0.353 1.211 0.297 1.244 0.445

Case 1c: Slug Test 0.105 0.002 0.008 0.004 0.019

Approaches

Case 1b: Permeameter Test

6

5

4

4

3

80.003

0.002 7

1.183 0.601 0.567 0.713 0.003

0.010

0.009

0.009

0.008

0.002

0.002

0.001

0.0002

0.0001

0.0002

0.0002

2

Case 3c: Highly Parameterised THT Analysis 0.024 0.002 0.004 0.008 0.006 1

0.0003

0.0001

0.0003

0.013

Case 3b: Averaged THT Geological Model 0.058 0.002 0.002 0.009 0.011

0.005 0.014

Case 3a: PEST Calibrated Geological Model 0.069 0.002 0.004 0.009

Case 2c: HPT_Power Law Model 0.071 0.003 0.005 0.005

Case 2b: HPT_Borden Model 0.073 0.003 0.006

0.008

0.054

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1
Slope 1.45 11.00 3.27 4.35 0.76 3.12 0.47
Intercept 0.20 -0.03 0.07 -0.02 0.01 0.00 -0.05
Slope 1.83 6.59 3.66 5.21 1.24 10.90 0.45
Intercept 0.54 0.30 0.29 0.12 0.03 -0.14 -0.03
Slope 0.21 0.71 0.52 0.64 0.40 0.83 1.77
Intercept 0.18 0.07 0.09 0.06 -0.02 0.02 -0.04
Slope 0.16 0.97 0.66 0.64 0.07 0.88 4.10
Intercept 0.12 0.06 0.05 0.05 -0.01 0.00 0.03
Slope 0.15 0.61 0.41 0.59 0.09 0.88 2.79
Intercept 0.12 0.06 0.05 0.04 -0.01 0.00 -0.01
Slope 0.17 0.58 0.44 0.55 0.10 0.90 2.67
Intercept 0.13 0.06 0.06 0.04 -0.01 0.00 0.00
Slope 1.21 0.69 0.48 0.36 1.25 1.02 0.47
Intercept 0.00 0.01 0.01 0.02 0.04 -0.02 -0.02
Slope 1.17 0.60 0.64 0.34 1.25 0.78 0.27
Intercept 0.03 0.01 0.00 0.01 0.03 -0.01 -0.03
Slope 0.95 0.73 0.44 0.39 1.10 1.25 0.51
Intercept 0.01 0.01 0.03 0.01 0.02 -0.02 -0.02

Case 2a: HPT_McCall and Christy Model

Approaches

Case 1b: Permeameter Test

Case 2b: HPT_Borden Model

Case 1a: Grain size Analysis_Three Models

Case 1c: Slug Test

Case 3b: Averaged THT Geological Model

Case 3c: Highly Parameterised THT Analysis

Case 2c: HPT_Power Law Model

Case 3a: PEST Calibrated Geological Model
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Table S16. L1 norms of observed versus simulated drawdowns from the seven pumping tests 

under transient state condition. The yellow blocks represent the heterogeneous Ss case (Ss from 

case 3a), the blue bocks represent the homogeneous Ss case (Ss from Zhao and Illman. 2018, 

case 1a). 

 

Table S17. L2 norms of observed versus simulated drawdowns from the seven pumping tests 

under transient state condition. The yellow blocks represent the heterogeneous Ss case (Ss from 

case 3a), the blue bocks represent the homogeneous Ss case (Ss from Zhao and Illman. 2018, 

case 1a).   

 

 

 

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1
0.411 0.590 0.312 0.392 0.032 0.071 0.027
0.716 1.221 0.601 0.778 0.053 0.175 0.107
0.791 0.639 0.544 0.592 0.037 0.187 0.036
1.345 0.922 0.799 0.795 0.174 0.330 0.239
0.190 0.037 0.071 0.049 0.072 0.013 0.048
0.190 0.036 0.058 0.076 0.097 0.022 0.049
0.175 0.058 0.062 0.070 0.069 0.013 0.042
0.208 0.113 0.105 0.099 0.085 0.021 0.040
0.180 0.046 0.060 0.060 0.068 0.010 0.044
0.228 0.089 0.097 0.082 0.081 0.016 0.039
0.180 0.045 0.059 0.060 0.067 0.010 0.042
0.222 0.081 0.091 0.077 0.081 0.016 0.049

Approaches

Case 1b: Permeameter Test

Case 2b: HPT_Borden Model

Case 2c: HPT_Power Law Model

Case 1a Grain size Analysis_Three Models

Case 1c: Slug Test

Case 2a: HPT_McCall and Christy Model

PW1-3 PW1-5 PW5-4 PW5-5 PW3-1 PW3-4 PW5-1
0.353 1.211 0.297 1.244 0.002 0.008 0.001
0.903 5.031 1.060 3.549 0.005 0.034 0.024
1.183 0.601 0.567 0.713 0.003 0.054 0.003
2.937 1.139 1.036 1.114 0.035 0.126 0.072
0.105 0.002 0.008 0.004 0.010 0.0002 0.004
0.102 0.002 0.007 0.011 0.013 0.0008 0.005
0.073 0.006 0.006 0.009 0.009 0.0002 0.003
0.080 0.020 0.017 0.020 0.011 0.0008 0.003
0.073 0.003 0.006 0.005 0.009 0.0002 0.003
0.075 0.010 0.014 0.012 0.010 0.0004 0.003
0.071 0.003 0.005 0.005 0.008 0.0001 0.002
0.073 0.009 0.013 0.010 0.010 0.0004 0.003Case 2c: HPT_Power Law Model

Case 2b: HPT_Borden Model

Case 2a: HPT_McCall and Christy Model

Case 1c: Slug Test

Case 1b: Permeameter Test

Approaches

Case 1a: Grain size Analysis_Three Models
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Appendix B. Additional Figures   

 

Figure S1. Cross-sectional view of the 19-layer geological zonation model with CMT and PW screened 

intervals shown in cross sections A-A’ and B-B’. 
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Figure S2. Mesh grid used for forward simulation. 
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Figure S3. Validation drawdown curve from various approaches at CMT and PW wells from PW1-5. 
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Figure S4. Validation drawdown curve from various approaches at CMT wells from PW3-1. 
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Figure S5. Validation drawdown curve from various approaches at CMT and PW wells from PW3-4. 
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Figure S6. Validation drawdown curve from various approaches at CMT and PW wells from PW5-1. 
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Figure S7. Validation drawdown curve from various approaches at CMT and PW wells from PW5-4. 
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Figure S8. Validation drawdown curve from various approaches at CMT and PW wells from PW5-5. 
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