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Abstract

The demand for low latency video streaming has dramatically increased as live video
streaming applications, such as Twitch and Youtube Live, are becoming more popular.
According to the 2021 Bitmovin video developer report, the biggest challenge that video
developers are experiencing today is providing low latency video streaming. One of the
most common on-site live streaming methods is using a wireless LTE network. There have
been many approaches for characterizing wireless links and accurately measuring available
bandwidth to provide low latency streaming over a wireless LTE network link. However,
even with fine-grained bandwidth estimation, video streaming on a single LTE link is still
susceptible to unexpected network delay from a sudden drop in available bandwidth or
temporal disconnection.

People can utilize multiple wireless LTE links to overcome the limitations of using a
single LTE link for low latency video streaming. Using multiple links can enhance video
quality through increased bandwidth and resilience. However, multi-homed low latency
video streaming protocols may achieve lower video quality than single-homed protocols
when a frame is split and sent over more than one link. Suppose one of the links becomes
congested or gets disconnected. In that case, the part of the frame sent on stable links must
wait until the packets sent on the problematic link are re-transmitted through another link.
Re-transmission requires at least one extra round trip time. A video player may skip the
late frame or serve only the received part of the frame due to the re-transmission delay.
Ferlin et al. suggest using Forward Error Correction (FEC) on Multipath TCP (MPTCP)
to reduce re-transmission delay. However, FEC is not helpful in the event of a significant
bandwidth drop. If the sender does not use sufficient redundancy to handle a significant
bandwidth drop, the receiver will not receive enough blocks to decode the video data.
FEC requires using a large portion of the network bandwidth for redundancy to handle
significant bandwidth drops even when the links are stable.

In this thesis, I present Squash, a low latency video transport protocol that encodes
each frame at multiple bitrates and sends them across different links to minimize video
stream disruption in the event of unexpected bandwidth drops. The encoder encodes a
frame into multiple different bitrates, which are high-bitrate and low-bitrate. When a high-
bitrate frame cannot arrive on time due to congestion from an unexpected drop in available
bandwidth, the low-bitrate frame is used to replace the missing frame. This is because the
low-bitrate frame is smaller and is sent on the links that are disjoint from those used
by the high-bitrate frame. To the best of my knowledge, Squash is the first architecture
that uses multi-bitrate frames to increase resilience against unexpected bandwidth drops
in low latency video streaming over multiple wireless LTE links. In emulated wireless
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LTE network environment using Mahimahi network traces, the average SSIM of the video
streamed on Squash is 13 – 58% higher than that streamed on the baseline protocol, which
is designed in the same manner as Squash except that it employs single-frame encoding.
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Chapter 1

Introduction

In recent years, there has been a rise in the popularity of live video streaming applications,
such as Twitch, YouTube Live, and Instagram Live, that allow users to communicate with
each other in real time. These interactive live streaming applications require a low end-to-
end delay, the time it takes for an event to be captured and displayed on a user’s screen.
On-site streaming has become prevalent in live video streaming with the proliferation of
wireless LTE networks and mobile devices. However, wireless LTE networks experience
high variability in available bandwidth and latency. The variability in LTE networks
presents challenges for low latency streaming because it requires a short frame deadline.
An unexpected bandwidth drop or temporary disconnection in a wireless network increases
network delay. To avoid long end-to-end delay, the video player skips the frames that arrive
late due to the increased network delay [57]. Skipping a frame significantly decreases the
Quality of Experience (QoE) from lagging or freezing.

Many buffer-based Adaptive BitRate (ABR) protocols [33, 46, 62, 64, 77] use a play-
back buffer to mitigate the lagging or freezing of video from sudden bandwidth drops or
temporal disconnection. The video player preloads future frames in the playback buffer,
and these protocols adapt the video bitrate according to playback buffer occupancy. High
playback buffer occupancy enables the video stream to withstand network congestion. In
live streaming, however, video frames are encoded in real time, and the video player cannot
preload the future frames to increase the playback buffer occupancy. Low latency video
streaming protocols usually use a very small or no playback buffer because using a large
playback buffer increases the end-to-end delay in live streaming.

An alternative approach is using Web Real-Time Communication (WebRTC) [2], which
is one of the most widely used real-time video streaming protocols. It quickly adapts
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to changing network capacity without using a large playback buffer. However, frequent
video bitrate changes resulting from fluctuating wireless LTE network capacity causes
WebRTC’s QoE to suffer. This is because there is additional delay between when the
encoder is notified of the new video bitrate and when the generated frames reflect this
updated bitrate [79]. WebRTC [2] does not consider this delay. In a wireless LTE network
environment, the estimated bandwidth significantly changes on every RTT, which has
millisecond granularity. On the other hand, the updated video bitrate is applied over
the next 1 to 2 seconds [26]. If the network bandwidth drop is detected after the frame
encoding has already started, the updated encoding rate is averaged over the next several
frames instead of the current frame. As a result, the link can become congested due to the
larger frame.

Salsify [26] reduces the delay in applying the changed video encoding rate to the new
frames by integrating video codec and transport protocol. The video encoder combined
with transport protocol can quickly adapt to fluctuating network bandwidth. However,
Salsify [26] requires a custom video codec to keep the internal encoding state because most
existing hardware codecs do not support it [79]. Moreover, Salsify [26] uses a single link. If
a single link experiences an unexpected bandwidth drop or temporal disconnection, which
often happens in wireless LTE networks [31, 72], the frame is likely to be skipped because
of deadline violation from the increased network delay.

One solution to overcome the variability of wireless LTE networks is to utilize mul-
tiple LTE network interfaces. Using multiple links provides many advantages, including
increased available bandwidth for the application through aggregation and sustaining some
link failures. When one link is congested, the application supporting Automatic Repeat
reQuest (ARQ) [21] can re-transmit the packets sent on the congested link to the sta-
ble link. However, using ARQ incurs additional delays in detecting and resending a lost
packet, which requires at least one extra round trip [24]. This may cause a frame deadline
violation. For example, if part of a frame is lost, the receiver must wait for the lost data to
be re-transmitted. The re-transmission delay increases the end-to-end delay and reduces
the on-time frame arrival rate.

An alternative to ARQ is Forward Error Correction (FEC) [48], which preemptively
sends recovery data. However, FEC risks using excess bandwidth and can only tolerate
a bandwidth drop that is proportional to the amount of recovery data. Wireless LTE
networks are susceptible to a large bandwidth drop. Supporting them would require sig-
nificant replication. If the available bandwidth is predominantly used for recovery data to
handle significant bandwidth drop, then the video encoding rate will be low. When the
link quality is good, it should not use excessive network capacity.
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In this thesis, I present Squash: a multi-homed, multi-bitrate, low latency video stream-
ing protocol that provides high quality video with minimal recovery bandwidth usage.
Squash encodes and transmits multiple versions of the same video frame: the high-bitrate
frame and the low-bitrate frame. A high-bitrate frame is used as a primary video stream,
and a low-bitrate frame is used as a backup delivered to the user when a high-bitrate frame
does not arrive on time. Compared to FEC [48] and replication of data on all links, Squash
uses only a small portion of the available bandwidth to send a low-bitrate frame because
low-bitrate frame is used to avoid QoE drop from skipping a frame when the high-bitrate
frame is discarded from a deadline violation. A small-sized frame also has a higher chance
of being transmitted under a significant bandwidth drop.

Squash determines the following parameters to provide high-quality video and resilience
for low latency video streaming over multiple links: video encoding rate, number of links
to replicate low-quality frame, and on which links to send the low-bitrate frame. To
determine these parameters, Squash characterizes each link by using the knowledge of the
link’s condition, which includes packet latency and delivery rate.

Firstly, Squash needs to determine the video encoding rate of the low-bitrate frame.
There is an inherent trade-off between the quality of the low-bitrate frame and the chance
that the frame arrives on time under a significant bandwidth drop. A large low-bitrate
frame limits the video quality drop from replacing the high-bitrate frame when the high-
bitrate frame cannot arrive on time. However, if the network capacity is severely decreased
and becomes smaller than the low-bitrate frame size, the frame cannot be delivered within
the deadline. Squash allows the user to set the expected bandwidth drop, which is the
maximum encoding rate of a low-bitrate frame. Squash ensures that the low-bitrate frame
will arrive when the bandwidth drop is less severe than expected. Moreover, Squash
considers the minimum bandwidth of each link in encoding the low-bitrate frames so that
they can be sent on any link without aggregation. This is because aggregating links to
send a frame has a higher risk of deadline violation than sending a frame on a single link.
When a frame is sent over the aggregated links, a lost or late packet delivery on any of
the links obstructs decoding the frame [11]. Consequently, encoding rates for low-bitrate
frames are determined by calculating the expected bandwidth drop and the bandwidth of
each link.

Secondly, Squash decides the link(s) to send the low-bitrate frame on because it needs
to ensure that the low-bitrate frame can be provided to the decoder in case the high-bitrate
frame does not arrive on time. To accomplish this, Squash estimates each link’s stability
by calculating the ratio of expected acknowledged video packets to acknowledged video
packets. This ratio is referred to as the stability score. Squash prioritizes links to send
a low-bitrate frame by stability score. When more than one link has the same stability
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score, Squash compares the estimated bandwidth of the links. Squash sends through the
link with higher network bandwidth because the link will have higher bandwidth when all
links drop the bandwidth in the same ratio.

Lastly, Squash must decide on how many links it should replicate the low-bitrate frame
to. Squash has to ensure that the low-bitrate frame arrives on time during an unexpected
link disconnection. If the low-bitrate frame is replicated on many links, the resilience
of the video stream increases; however, the video encoding rate of both types of frames
decreases. Chapter 4.3, explore different replication strategies for sending a low-bitrate
frame. Squash supports both dynamic and static numbers of replications. The static
replication strategy sends a low-bitrate frame either on a single or all available links. On
the other hand, the dynamic replication strategy decides the number of replications based
on link stability (Chapter 3.4.2). I could not determine a single strategy that is appropriate
for all workloads. During the experiments, however, replicating the low-bitrate frame on
multiple links improves the video quality when the links have variable bandwidth.

This thesis makes the following contributions:

• Squash uses multi-bitrate frames to address the challenges of low latency video
streaming over heterogeneous wireless LTE networks.

• Squash characterizes each heterogeneous link and schedules video packets to send.

• Squash determines the video bitrates on the multi-bitrate encoder, the number of
links to replicate a backup frame, and which link(s) to send the backup frame.

• The experiments (Chapter 4.2) show that the impact of sudden bandwidth drops is
severe. Utilizing a small portion of the overall network bandwidth, Squash efficiently
handles unexpected network bandwidth drops.
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Chapter 2

Related Work & Background

This chapter explains Squash’s video streaming environment (Chapter 2.1) and presents
related work on ABR protocols (Chapter 2.2) and multi-homed transport protocols (Chap-
ter 2.3). There are many multi-homed ABR protocols for aggregating links and handling
link failure and congestion by utilizing FEC or ARQ. However, to the best of my knowl-
edge, there does not exist a low latency video protocol that uses multiple video bitrate
encodings to mitigate the impact of congestion in multi-homing environment.

2.1 System Environment

Squash provides low latency video streaming over mutliple wireless LTE network. The fol-
lowing chapters describe the network environment (Chapter 2.1.1), other applications that
use multi-bitrate encoding (Chapter 2.1.2), and the possible video codecs (Chapter 2.1.3).

2.1.1 Wireless LTE Network

Squash is designed to support low latency video streaming over a wireless LTE network.
A cellular network has a highly variable condition, which is affected by various factors,
such as signal strength, the user’s location, and competing traffic from other users [32].
Most base stations of wireless LTE networks have exceptionally large buffers to cope with
a burst of traffic and channel variability [36]. In addition to a large buffer, link layer
re-transmission in wireless LTE networks significantly reduces the probability of packet
loss [36]. Even though large buffers and link layer re-transmission conceal packet loss, they
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introduce congestive delays in response to poor signal or temporal disconnection. This
makes low latency video streaming challenging because network congestion increases the
delay in transporting a frame. The increased transport delay causes a frame skip that
deteriorates the user’s QoE.

2.1.2 Multi-bitrate Encoding

The advancement in video encoding technology and hardware allowed multi-bitrate en-
coding for popular video conferencing applications, such as Skype and Google Hangouts.
These applications utilize multi-bitrate encoding to provide video frames that fit into each
receiver’s network capacity [75]. The use of multi-bitrate encoding in these applications
demonstrates that the additional overhead for video encoding is sustainable on current
commodity devices.

2.1.3 Video Codec

Squash uses H.264 codec to encode a video frame captured by a camera. According to
the bitmovin video developer report 2021 [7], the two most commonly used video codecs
are Advanced Video Coding (AVC) and High Efficiency Video Coding (HEVC). In live
streaming, the speed of encoding and the amount of compression have a large impact on
the user’s quality of experience. The encoding speed affects the glass-to-glass latency, and
the compression rate affects the video’s image quality as the available network bandwidth
is limited. HEVC has a higher compression rate, but its higher complexity slows down the
encoding speed. In the testbed, outlined in Chapter 4.1, the x265 encoder was not able
to finish encoding a video frame before the next frame’s arrival. I decided to use AVC in
order to reduce the encoding delay.

VP8 [71] is a widely used codec that provides a similar compression rate to H.264 and it
is under a royalty-free public license. However, Squash uses H.264 instead of VP8 because
other works [22, 58, 59] have shown that H.264 outperforms VP8 in both compression
quality and speed of encoding.

2.2 Adaptive Bitrate Streaming

Streaming video over a wireless network requires ABR because the available bandwidth
fluctuates over time. ABR algorithms change the video encoding rate according to link
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status information in order to avoid over-sending, which causes link congestion and video
stalls. However, many proposed ABR protocols are designed for on-demand video stream-
ing over a single link with high latency requirements. These protocols can be categorized
as buffer-based [33, 46, 62, 77], rate-based [37, 66], or a hybrid of the aforementioned
approaches.

In a buffer-based protocol, the playback buffer’s occupancy on the receiver is used to
select the desired video bitrate. The receiver requests higher-quality video if the number of
preloaded frames in the playback buffer exceeds the threshold. Using high buffer occupancy
can withstand congestion because a buffer having high occupancy can be used to mitigate
fluctuating network conditions. However, the buffer having high occupancy increases the
end-to-end delay, the time it takes for an event to be captured and displayed on a user’s
screen. The video player does not start playing until it has enough preloaded frames in
the playback buffer. Buffer-based protocols are more appropriate for on-demand video
streaming than for low latency, live video streaming.

Rate-based protocols estimate the currently available bandwidth. Examples include
FESTIVE [37] and CS2P [66], which use the harmonic mean of throughput information
collected from the sample video chunk downloads. However, these methods require collect-
ing samples from several video chunk downloads for accurate bandwidth estimation. Doing
so takes time; thus, this method is inappropriate for low latency streaming over wireless
LTE networks with highly fluctuating bandwidth.

Squash aims to provide low latency video streaming over wireless LTE links having
highly variable bandwidth. Squash quickly adapts the video bitrate to the variable band-
width by updating the link’s sending rate on each acknowledgement message instead of
a video chunk download. Squash also supports stable video streaming under unexpected
bandwidth drops with a small playback buffer by utilizing multi-bitrate frames.

2.3 Existing Approaches Using Multiple Links

Using multiple wireless LTE network links can provide higher throughput through aggre-
gation. However, congestion on one link can affect all of the aggregated links. When the
sender sends a video frame over the aggregated links, the received part of the frame has
to wait in the receiver buffer until the rest of the frame sent on the congested link arrives.
This increases the delay to transmit a frame and causes a frame to skip due to a deadline
violation in low latency streaming.
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Several multi-path transport protocols [51, 63, 68] provide resilience against link con-
gestion by re-transmitting the lost packets through an alternative link. However, it causes
additional delays in detecting the congestion and resending the packets. The increased
transport delay may result in a frame skip due to a deadline violation in low latency
streaming.

Another way to deal with link congestion in a multi-homing environment is to add
redundancy to video data, such as replicating a frame on multiple links or using FEC [48].
Preemptively sending redundant video data provides resilience without requiring additional
delay to re-transmit the packets sent on congested links. Replicating a frame on all links
ensures the frame arrival if at least one link is available, but it is not efficient because it
wastes a large portion of the network bandwidth. The degree of replication increases as
more links are available. When there are more than two links, it uses more than half of the
available links to send the replicated video data. In addition, each link may have different
network bandwidth. Some links can experience congestion from over-sending, while other
links are underutilized.

Compared to replicating a frame on all available links, FEC is a more efficient way
to provide resilience against link congestion on aggregated links. Several protocols [11,
24, 73] send recovery data using some portion of the aggregated links’ bandwidth. The
receiver can use the recovery data when part of the frame does not arrive on time due to
congestion. However, the amount of recovery data determines how much bandwidth drop
can be tolerated. It risks using excess bandwidth when the links are stable to prepare for
a significant bandwidth drop.

Squash utilizes multi-bitrate frames to provide resilience against a significant bandwidth
drop without using excess bandwidth when the links are stable. Squash increase the
availability of video frames in more efficient way than FEC by encoding a frame at low
and high bitrates. As high bitrate frames are the main video stream, low bitrate frames
use only a small portion of the overall bandwidth to mitigate the impact of a significant
bandwidth drop on video quality.
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Chapter 3

Architecture and Design

This chapter describes Squash’s design to support low latency streaming over multiple
wireless LTE networks. Chapter 3.1 describes Squash’s protocol design and its process of
video streaming. Chapters 3.2 to 3.6 describe each component of Squash and its role.

3.1 Squash Protocol Design

Squash is a low latency video transport protocol that delivers multimedia content across
multiple wireless LTE network links. Its design is motivated by the challenges of providing
on-site live video streaming. These applications send time-critical content and must handle
the latency and bandwidth variability of public shared wireless LTE networks.

Squash provides stable on-time delivery of video frames by leveraging hardware support
for using multi-bitrate frame encoding that encodes the same stream at different rates. The
high-bitrate frame (primary frame) is the main video stream that is delivered to the user
when links are stable. Squash delivers the low-bitrate frame (backup frame) to the user
when the primary frame does not arrive on time. In the event of link congestion from
significant bandwidth drops, sending a backup frame increases the likelihood of avoiding
frame skips due to a deadline violation without consuming excessive bandwidth to add
redundancy. Although the backup frame does not offer the same level of video quality
as the primary frame, it reduces the number of skipped frames that significantly decrease
video quality.

Additionally, Squash improves the quality of video encoding by aggregating the avail-
able links when the links are stable. To support link aggregation, Squash divides a frame
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Figure 3.1: Squash Sender. Each link manages its status, which includes its estimated
bandwidth(Chapter 3.4.1) and stability score (Chapter 3.4.2). The link status is updated
on every acknowledgement. The Encoding Bitrate Controller collects each link’s status
information and decides the encoding rates of the primary frame and the backup frame.
The encoded video frame is partitioned into multiple packets and distributed over the
multiple links. The number of packets sent on a link depends on the link’s available
bandwidth.

into multiple packets and sends the packets using different links. This increases the video
encoding rate at the cost of potentially increasing the probability that Squash falls back
to using a backup frame because part of the primary frame does not arrive before the
deadline. Squash’s main challenge is determining the video stream to send on each link
and the encoding rate of each video stream. Squash decides which links to send video
data and the video bitrates of the encoders based on each link’s bandwidth estimation
(Chapter 3.4.1) and quantified stability (Chapter 3.4.2). In the next chapter, I describe
the different components of Squash.

3.2 Modules of Squash Sender

A Squash deployment consists of a sender and a receiver that communicates using the
Squash modules over multiple wireless LTE network interfaces. Figure 3.1 illustrates
Squash’s sender components. The sender consists of theCamera, the Encoding Module,
the Control Module, and the Sender Transport Module.
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3.3 Encoding Module

The Encoding Module receives a raw video frame from the Camera that captures the
picture for video streaming. The Encoding Module then encodes the raw video frame at
different bitrates to send over the network. The Encoding Module contains the Primary
Encoder and the Backup Encoder, which are used to generate two separate video streams.
The Primary Encoder encodes the raw video frames at a high bitrate, which forms the
main video stream. This stream is delivered to the user when the links are stable. The
Backup Encoder encodes the raw video frames at a low bitrate to create a secondary
stream. This stream is used when the primary frames of the main stream do not arrive at
the receiver before their deadline. The Encoding Module passes the encoded video frames
to the Control Module. The video bitrate of each encoder is assigned by the Encoding
Bitrate Controller in the Control Module before it starts encoding the next frame. The
next chapter explains about the Sender Transport Module because the Control Module
requires information about each link to make a decision.

3.4 Sender Transport Module

The Sender Transport Module manages each link component that sends the assigned pack-
ets through the network interface. The link component updates its estimated bandwidth
(Chapter 3.4.1) and stability score (Chapter 3.4.2) every time it receives an acknowledge-
ment. After updating the information, the link component notifies the Encoding Bitrate
Controller in the Control Module to determine the new video bitrates for subsequent video
frames from the Camera. The link component also shares its estimated bandwidth and
stability score with the Packet Scheduler in the Control Module when the Packet Scheduler
assigns packets to send. The following chapters explain how the link measures bandwidth
and quantifies the link’ stability.

3.4.1 Sending Rate Control

Inaccurate bandwidth estimation can cause under-utilization of the network or traffic con-
gestion due to over-sending. Avoiding network congestion is critical in low latency video
streaming because frames have short deadlines. Even though Squash mitigates significant
video quality loss resulting from skipped frames by using backup frames from the sec-
ondary stream, the video quality is still lower when compared to using a primary frame
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Figure 3.2: The delivery rate and RTT versus the number of in-flight packets. When the
sender continues to increase the sending rate, the delivery rate does not exceed beyond the
available bandwidth. The packet latency increases until the buffer becomes full and starts
dropping packets.

from the main stream. Squash needs accurate bandwidth estimation to maximize the us-
age of primary frames. However, the bandwidth of a wireless network is highly variable,
and providing accurate bandwidth estimation is challenging. Squash addresses this chal-
lenge by introducing its bandwidth estimation algorithm, which is inspired by Bottleneck
Bandwidth and Round-trip propagation time (BBR) [8] and Copa [6]. Squash adjust these
approaches for low latency video streaming over a wireless LTE network.

The link module estimates the available bandwidth by utilizing the delivery rate, which
is measured by the receiver by calculating how many bytes were received over the last 500
ms. The delivery rate becomes the same as the link’s available bandwidth when the link
is saturated. Figure 3.2 illustrates delivery rates and packet latency when the sender
increases the number of in-flight packets. The delivery rate does not increase when the
sender sends more than the available bandwidth. Instead, the packets are queued in buffers
within the network until a buffer becomes full, leading to increased packet latency. As a
result, the sender can find the maximum delivery rate by saturating the link. However, it
is challenging to determine the saturation point without causing a frame deadline violation
because a saturated link can become congested from over-sending. When the link becomes
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Figure 3.3: This is the latency of each packet when a frame is partitioned and sent as
multiple packets. The sender bursts multiple packets when it sends a frame on the link.
The later packets in the burst have higher latency because of the delay to process earlier
packets in the burst. If the packets from the previous frame are still in the link, the
minimum packet latency of the current frame is increased.

congested from over-sending, the packets sent on the link have to wait for the link’s buffer
to flush. To detect link saturation before the link becomes congested, the link module
compares two groups of windowed RTT measurements.

The link module compares the true minimum RTT (RTTmin) against the standing
RTT (RTTstanding) to measure the queuing delay. The queuing delay is calculated by
RTTstanding − RTTmin. RTTmin is the minimum RTT over the last 10 seconds.
RTTstanding is the minimum RTT of the packets in the most recently acknowledged frame.
The link module sets the window of RTTmin to 10 seconds to handle route changes that
might affect the minimum RTT of the path [6]. Considering the interval of video data avail-
ability and the variable encoding speed, the link module sets the window of RTTstanding

to the most recently acknowledged frame.

The link module detects if packets from the previous frame are queued on the link by
measuring the queuing delay. If packets from the previous frame are queued, the following
packets experience queuing delay which results in increased RTTstanding. The sender sends
a burst of packets when a frame is produced at the video’s frame rate. Frame rate is the
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frequency at which a camera captures an image; it is typically represented as Frames Per
Second (FPS). For example, a frame rate of 25 FPS means that a frame is captured every
40 ms. Squash aims to send the size of a frame that can be transmitted within 40 ms so
that it does not cause queuing delay that increases the network delay of subsequent video
frames.

Figure 3.3 illustrates each packet’s latency when the Squash sender sends three video
frames on a link that can transmit five packets within a frame interval. Packets from
Frame 1 do not experience queuing delay because there is no previous frame. In this
example, these packets are transmitted before Frame 2 is sent on the link. As a result,
the RTTstanding from Frame 1 and Frame 2 is the same as the RTTmin. However,
Frame 2 is too large to send completely within one frame interval and the link cannot
process all the packets from Frame 2 before the sender transmits Frame 3. Due to the
queued packets from Frame 2, packets from Frame 3 experience additional queuing delay.
The queuing delay increases the RTTstanding from Frame 3’s minimum packet latency.
The sender has to decrease the sending rate so that the queued packets are flushed out of
the link without delaying the following frames.

Algorithm 1 Sending Rate Update on a Link

Require: DeliveryRate ▷ Received from acknowledgement
Require: SaturatedDeliveryRate ▷ Delivery rate when the link is saturated
Require: QueuingDelay ← RTTstanding −RTTmin
Require: ExpectedTransmissionDelay ← MTU

DeliveryRate

Require: β ←MTU per second ▷ How much sending rate to increase
if QueuingDelay <= ExpectedTransmissionDelay then

DeliveryRate←MAX(DeliveryRate, SaturatedDeliveryRate)
if DeliveryRate > SendingRate then

SendingRate← DeliveryRate
else

SendingRate← SendingRate+ β
end if

else
SendingRate← DeliveryRate · (1− α · RTTstanding−RTTmin

FrameInterval
)

SaturatedDeliveryRate← DeliveryRate
end if

Algorithm 1 illustrates how the link component changes its sending rate. The link
component calculates the queuing delay by subtracting RTTmin from RTTstanding. Every
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time the link component receives an acknowledgement, it updates the sending rate based
on the queuing delay.

The link component increases the sending rate when the measured queuing delay is
smaller than or equal to the expected transmission delay, which is defined as how long
it takes to send a Maximum Transmission Unit (MTU) packet at the current delivery
rate. The link component calculates the expected transmission delay by MTU

DeliveryRate
. When

the queuing delay is smaller than the expected transmission delay, the queued packet is
smaller than one MTU packet. The link component increases the sending rate by a constant
amount (β) on each acknowledgement. We set the β to 1472 bytes per second, which is
based on the MTU in our system.

When the link component increases the sending rate, it utilizes the delivery rate to
quickly recover the sending rate from dropping the sending rate due to the latency increase.
When the link component detects link saturation, it reduces the sending rate until all
queued packets are flushed out. While the link component reduces the sending rate, it
keeps track of the delivery rate. As the queued packets are flushed out and the link
component starts increasing the sending rate, the link component sets the sending rate to
the delivery rate if the delivery rate is larger than the current sending rate.

The link component decreases the sending rate if it detects the link saturation by
measuring queuing delay. The link component divides the queuing delay by the Frame
Interval to calculate how much it should decrease from the delivery rate to flush the queued
packets from the link before the next frame is ready to be sent. To control how aggressively
or conservatively the link component reduces the sending rate, Squash takes a parameter
α when the application starts. The parameter α reflects the risk tolerance. The user has
the domain knowledge of the application requirement. The user can take a risk of higher
latency increase from a network bandwidth drop to increase the link utilization by setting
a low α. Alternatively, the link component can preemptively reduce the sending rate to
avoid significant latency increases by setting a high α. During the experiments that we
ran in the evaluation (Chapter 4), Squash provided the highest performance metrics when
we set α to 0.5.

3.4.2 Quantifying link stability

Squash quantifies each link’s stability to determine how many links it should replicate a
backup frame to and which link(s) to send the backup frame. The stability score indicates
whether the link module is sending the video data to the destination without significantly
increasing queuing delay that can cause a frame deadline violation. The link component
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Figure 3.4: Anticipating the frame that expected to be acknowledged from the RTTmin

and frame interval

determines the stability score by tracking the number of the acknowledgment messages
that arrive in time. The link component calculates the stability score by dividing the
number of acknowledged packets by the number of sent packets for each frame. Based
on the estimated bandwidth, Squash encodes each frame at the video bitrate that can be
fully transmitted within a frame interval. Therefore, the link component should receive an
acknowledgement for a frame in (frame interval + RTTmin) ms after it sends the frame.

When all the packets from each frame receive acknowledgements in the expected period,
the stability score becomes 1.0 and the link is considered stable. On the other hand, if
some of the packets from the frame did not receive acknowledgements in time, it indicates
that the link experienced queuing delay from over-sending or jitter from link layer re-
transmission. As there is more variability in latency, the stability decreases and the link
is considered unstable. The Control Module sends a backup frame on a stable link and
changes the number of links to replicate a backup frame to by considering how many links
are stable.

Figure 3.4 illustrates an example of how the link module estimates the frame that
should be acknowledged at each frame interval. The video is recorded at 25 FPS, and the
RTTmin is measured to be 40 ms. The video data becomes available every 40 ms because
the video is recorded at 25 FPS. The link component expects each frame to be acknowledged
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in (Expected Transmission Delay + RTTmin + Encoding Delay) ms after Squash starts
encoding the frame. In the example, each frame is expected to be acknowledged in (80 + E)
ms. When Frame 4 starts to be encoded, Squash calculates the stability score of each link
module based on the packets from the Frame 1 as Squash expects that all packets from
Frame 1 to be acknowledged. When Squash starts encoding the Frame i, it calculates
the stability score based on the packets from the Frame j, which is estimated by following
the formula 3.1.

j = i− (1 +
FrameInterval +RTTmin

FrameInterval
) (3.1)

3.5 Control Module

The Control Module consists of the Packet Scheduler and the Encoding Bitrate Controller.
Based on the information from each link component in the Sender Transport Module,
the Packet Scheduler assigns the encoded packets to the different link components and
the Encoding Bitrate Controller decides the video encoding bitrate of the encoders in the
Encoding Module.

3.5.1 Packet Scheduler

The Packet Scheduler module determines how to transmit video frames on heterogeneous
links. This chapter has two main parts, which are Video Packet Scheduling and
Backup Frame Prioritization. The Video Packet Scheduling explains how the
Packet Scheduler module decides which links to probe and which links to send the pri-
mary frame and the backup frame. The Backup Frame Prioritization explains why the
Packet Scheduler has to prioritize backup frames over primary frames when both frames
are ready to be sent.

Video Packet Scheduling

When the Packet Scheduler receives a video frame from the Encoding Module, it splits the
frame into multiple packets that are smaller than or equal to the MTU to avoid packet
fragmentation at the link layer. Squash aggregates multiple links to send a primary frame at
a higher video bitrate. To aggregate the available links to transmit the primary frames, the
Packet Scheduler distributes the packets on the link modules based on the their estimated
bandwidth. In contrast, the Packet Scheduler sends backup frames without aggregating the
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Algorithm 2 Packet Scheduling

Require: n ▷ the number of available links
Require: b ▷ number of backup replications
Require: x← 2 ∗ FrameInterval+RTTmin

FrameInterval

Require: links ▷ array of n available links
Require: ProbingLinks ← [], StableLinks ← [], BackupLinks ← [], i← 0, j ← 0
while i+ j < n do ▷ Classify probing links

if links[i+ j].NumberOfAckedPacketsOnPreviousFrames(x) = 0 then ▷ Check
if any packet is acknowledged from the previous x frames

ProbingLinks[i]← links[i+ j]
i← i+ 1

else
StableLinks[j]← links[i+ j]
j ← j + 1

end if
end while
k ← 0
while k < b do ▷ Choose the link(s) to replicate a backup frame

l← 0
HighestStabilityScore← 0
MostStableLink ← 0
while l < j do

if StableLinks[l].StabilityScore > HighestStabilityScore then
HighestStabilityScore← StableLinks[l].StabilityScore
MostStableLink ← StableLinks[l]

end if
if StableLinks[l].StabilityScore = HighestStabilityScore then

if StableLinks[l].SendingRate > MostStableLink.SendingRate then
MostStableLink ← StableLinks[l]

end if
end if
l← l + 1

end while
BackupLinks[k]←MostStableLink
k ← k + 1

end while
Send Backup Frame On(ProbingLinks + BackupLinks) ▷ Replication
Send Primary Frame On(StableLinks) ▷ Aggregation
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links. If the frame is sent over aggregated links, the frame may suffer additional network
delays in the event that one of the links becomes congested. The Packet Scheduler decides
which link to send the backup frame based on the link’s estimated bandwidth and stability
score.

Algorithm 2 shows how the sender selects the candidates to probe or send a backup
frame and primary frame. The link module updates the estimated bandwidth based on
RTT and delivery rate from acknowledgement messages. When no recent acknowledge-
ment messages arrive due to temporal link disconnection or significant congestion, the link
module does not have sufficient samples to estimate the current network status. If there is
no acknowledgement message for a frame during twice the time that the frame is expected
to be acknowledged, the sender defines it as a link failure and starts probing by sending a
copy of the backup frame on that link until it receives an acknowledgement message. The
link module estimates the time that it takes to receive an acknowledgement for a frame
based on the estimated bandwidth and RTTmin (Chapter 3.4). When the Packet Scheduler
aggregates links to send a primary frame, it excludes failed links to reduce the risk of late
frames.

The Packet Scheduler decides which links to send a backup frame by their stability
scores. When more than one link has the same stability score, it compares the estimated
bandwidth of the links. The Packet Scheduler sends packets on the link with higher network
bandwidth. After deciding the links to send a backup frame, the Packet Scheduler sends a
primary frame on the aggregated links.

Backup Frame Prioritization

The Packet Scheduler supports prioritized packet scheduling. When the Packet Scheduler
sends video data, it places primary frames and backup frames on separate queues to dis-
tinguish their priorities. When the Packet Scheduler schedules frames to send, it pulls
the packets from the backup frame queue before the primary frame queue to increase the
probability of the backup frame’s on-time arrival. This is because packets are generally
delivered in order when they are sent on the same link. If the sender transmits a primary
frame before a backup frame when the link experiences a significant bandwidth drop, the
packets from the backup frame are blocked until the queued packets from the primary
frame are drained. This causes both the primary and backup frames to be dropped due to
a deadline violation. Alternatively, if the backup frame is sent before the primary frame on
a link where its decreased bandwidth is larger than the backup frame’s video bitrate, the
backup frame can arrive on time when the link experiences a significant bandwidth drop.
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However, prioritized packet scheduling is not helpful when the available bandwidth
becomes lower than the backup encoder’s video bitrate or when the link is already congested
before the sender sends the backup frame. Squash can replicate a backup frame on multiple
links to provide higher resilience to link congestion. The Encoding Bitrate Controller
decides how many links it replicates the backup frame to and the video bitrate of the backup
frame and the primary frame. As described in the algorithm 2, the Packet Scheduler probes
unstable links by sending a backup frame instead of packets from the primary frame.

3.5.2 Encoding Bitrate Controller

The Encoding Bitrate Controller determines two main decisions: the number of links that
the backup frame should replicate to and the video bitrate for each encoder in the Encoding
Module. The Encoding Bitrate Controller makes these decisions based on the estimated
bandwidth and stability score of each link. After making a decision, the Encoding Bitrate
Controller notifies the Packet Scheduler of the number of links used for backup frame
replication.

Algorithm 3 illustrates how the Encoding Bitrate Controller decides the video bitrate for
the Backup Encoder and the Primary Encoder. The Encoding Bitrate Controller calculates
the video bitrate for the Primary Encoder by subtracting the video bitrate for the Backup
Encoder from the total available bandwidth. In order to determine the video bitrate of a
backup frame, the Encoding Bitrate Controller has to decide on the number of links used
for backup frame replication.

The Encoding Bitrate Controller dynamically changes the number of replications to
minReplicationNum or maxReplicationNum depending on whether there is a stable link.
When at least one of the available links has a stability score of 1.0, the Encoding Bitrate
Controller sets the number of replications to minReplicationNum. The link having a sta-
bility score of 1.0 has a low probability of becoming congested because the link currently
does not have packets in the network queue. On the other hand, when all links have a
stability score below 1.0, the Encoding Bitrate Controller sets the number of replications
to maxReplicationNum to increase the probability of delivering the backup frame before
the deadline in the event that some of the links get congested.

When the application starts, Squash receives the parameters, minReplicationNum and
maxReplicationNum, from the user. Considering the number of available network interfaces
and application requirement, the user can choose these parameters. The user may choose
to provide higher availability of a backup frame by increasing these parameters. However,
the user should be cautious about increasing the number of replications since it may reduce
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Algorithm 3 Encoding Bitrate Control

Require: n ▷ the number of available links
Require: b ▷ number of backup replications
Require: availableBandwidth ▷ The total available bandwidth
Require: maxBackupBitrate ▷ The maximum bitrate for a backup frame
Require: minLinkSendingRate ▷ The minimum link’s sending rate
Require: links ▷ array of n available links
Require: numberOfReplications
Require: backupFrameEncodingRate
Require: primaryFrameEncodingRate
Require: minReplicationNum
Require: maxReplicationNum
i← 0 ▷ Check if any link’s stability score is 1.0
isAnyLinkStable← FALSE
while i < n do ▷ Classify probing links

if links[i].stabiilityscore == 1 then
IsAnyLinkStable← TRUE
break;

end if
i← i+ 1

end while
if IsAnyLinkStable = TRUE then ▷ Decide the number of replications

numberOfReplications← minReplicationNum
else

numberOfReplications← maxReplicationNum
end if
backupFrameEncodingRate←MIN(minLinkSendingRate, maxBackupBitrate

numberOfReplications
)

primaryFrameEncodingRate← availableBandwidth− backupFrameEncodingRate
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the video bitrate of both the backup frame and the primary frame by using large portions
of the network capacity for replication.

After deciding the number of replications for a backup frame, the Encoding Bitrate
Controller determines the size of the backup frame by getting the smaller of the min-
LinkSendingRate and maxBackupBitrate. The minLinkSendingRate is the minimum send-
ing rate among the available links. As Squash streams video over heterogeneous links.
A backup frame should be encoded at a video bitrate that is smaller than or equal to
the minLinkSendingRate to be sent the backup frame over any stable link without link
aggregation.

The maxBackupBitrate is the maximum video bitrate that the Encoding Bitrate Con-
troller can assign to a backup frame. Squash takes the maximum bitrate percentage of
the overall network bandwidth for a backup frame from the user as a parameter when the
application starts. This limits bandwidth usage for the backup frame when the minimum
link’s sending rate is similar to the bandwidth of the other links. For example, when Squash
uses two links and both links have the same bandwidth, the minimum link’s bandwidth
is half of the overall bandwidth. If the Encoding Bitrate Controller only considers the
minimum link’s bandwidth, the bandwidth usage for the backup frame becomes the same
as the bandwidth usage for the primary frame. Sending a large backup frame reduces the
primary frame’s encoding rate and risks deadline violations when the link experiences a
significant bandwidth drop. The user can increase the maxBackupBitrate to enhance a
backup frame’s quality when the user expects that backup frames are going to frequently
replace primary frames. However, as the available bandwidth is limited, increasing the
maxBackupBitrate reduces the video quality when backup frames are barely used. During
the experiments using the emulated wireless LTE network environment (Chapter 4.1), I
found that Squash provides the highest video quality when the maxBackupBitrate is 10%
of the total available bandwidth.

The maxBackupBitrate is divided by the number of replications. As the backup frame is
replicated on more links, the backup frame size should become smaller to prevent reducing
the primary frame’s image quality by using a large portion of the total available bandwidth
for a backup frame. For example, when Squash replicates a backup frame on two links and
the maxBackupBitrate is 10% of the overall bandwidth, the backup frame encoding rate
should be less than 5% of the overall bandwidth.
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Figure 3.5: Squash Receiver. When a packet arrives, the receiver sends an acknowledge-
ment containing the one-way delay and the measured delivery rate. The received packets
are stored in a buffer until the entire frame is received. If the entirety of the primary frame
does not arrive on time, Squash provides the backup frame to the decoder. If the primary
and backup frames are both late, the frame is skipped.

3.6 Modules of Squash Receiver

Figure 3.5 illustrates the Squash receiver’s components. The receiver has a simpler struc-
ture than the sender because most decisions about streaming video are made by the sender,
and the receiver provides information for the sender to consider. The receiver consists of
the Receiver Transport Module, the Buffer Module, and the Decoding Module.
The Receiver Transport Module manages each link that receives video packets from the
sender and passes the received packets to the Buffer Module. When a link receives a video
packet, it updates the delivery rate on the link and sends an acknowledgement message for
the received packet. The acknowledgement includes the delivery rate, which is used by the
sender to estimate bandwidth.

The Buffer Module stores the video packets from the Receiver Transport Module until
the complete frame is received before passing them to the Decoding Module. The Buffer
Module consists of the Primary Frame Buffer and the Backup Frame Buffer. The Buffer
Module stores frames in separate buffers because they are serviced under different condi-
tions depending on whether the frame is ready before its deadline. The Buffer Module
delivers the frames from the Primary Frame Buffer to the Decoding Module when the
frames are received on time. If the primary frame does not arrive on time, the Buffer
Module passes the frames from the backup frame buffer. When both frames do not arrive
before the deadline, the Buffer Module signals the Decoding Module to skip the frame.

23



The Decoding Module decodes the frames received from the Buffer Module to display on
the user’s screen.

24



Chapter 4

Evaluation

The goal of this evaluation is to answer the following question: Does sending multi-bitrate
frames improve the received video quality for low latency video streaming over wireless LTE
networks? I answer this by conducting experiments that compare my approach against
other reference systems using SSIM [70] as a primary metric. The experimental results
show that sending multiple versions of a frame to avoid a frame skip enhances the qual-
ity of received video in the wireless LTE network environment. These experiments were
conducted in an emulated network environment using Mininet [41], which I describe next.

4.1 Implementation & Experimental Setup

Squash consists of 1724 lines of C++ code. Squash uses the x264 library [3] to encode
raw video in H.264 format. It pipes the raw video data into the application through stdin
in Linux Ubuntu 20.04.3. The video source is FHD and 25 FPS. The original video used
in the experiments was downloaded from the Blender Foundation [27]. I converted the
original video from 60 FPS to 25 FPS. I selected 25 FPS instead of 60 FPS as 60 FPS
is not supported to pipe raw video into the application with FFmpeg that regulates the
speed of video. I ran the tests on a machine with the Intel(R) Xeon(R) CPU E5-2620 v2
@ 2.10GHz (12 physical cores total).

I tested Squash and the reference systems on a virtual network that was created by
using Mininet [41]. In my setup, there are two hosts: one for the sender and one for
the receiver. Each host has multiple network interfaces that are connected to each other,
emulating multiple available links. The propagation delay is set to 20 ms each way. The
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minimum RTT is 40 ms. The network bandwidth is emulated through LTE bandwidth
traces, which are collected from [72]. These traces are designed for Mahimahi [49], where
Mahimahi [49] is able to emulate only a single link. I have converted these traces to Mininet
traces [41], which can emulate multiple LTE links.

For all of the tests, I evaluate Squash and the reference systems by using different
combinations of Mahimahi [49] traces. Mahimahi provides six LTE traces collected from
major Internet service providers, including T-Mobile, AT&T, and Verizon. I exclude traces
whose mean available bandwidth is less than 1 Mbps for upload because it seems outdated
these days when the global average LTE upload speed is 12 Mbps [38]. I repeat each test,
which comprises a single combination of traces, 20 times to obtain confidence intervals.

I measure the network delay by comparing the sender and receiver timestamps of each
frame. I do not worry about clock synchronization during the experiments because both
the sender and the receiver are on the same machine. After a frame is encoded into
H.264, I assign the sender timestamp to the frame. When all the packets in the frame
are received, the receiver assigns the frame’s receive timestamp. The receiver subtracts
the sender timestamp from the receiver timestamp to calculate the network delay. Squash
receiver drops late frames whose network delay exceeds the acceptable delay. The receiver
skips writing late frames to the output video file. I compare this file with the original video
file to determine the SSIM [70] that Squash can achieve. SSIM is one of the most promi-
nent metrics to evaluate perceived video quality [50, 55, 69], and many video streaming
protocols [26, 40, 54, 76, 78] use SSIM to compare the video quality.

4.2 Quality Improvement from Backup Frame

In this experiment, I demonstrate the potential benefits of utilizing backup frames for low
latency video streaming over multiple wireless LTE network links. Even though sending
a backup frame has additional bandwidth overhead, the backup frame can mitigate the
quality drop from a skipped frame that is the result of aggregated links experiencing a
significant loss of available bandwidth. I explore whether or not it is better to use a small
portion of the bandwidth for the backup frame as opposed to using that bandwidth to
increase the main video stream’s encoding bitrate.

I compare Squash against two baseline adaptive bitrate protocols. The first baseline
protocol (baseline-1) is designed in the same manner as Squash except that it employs
single-frame encoding. Both Squash and the baseline-1 uses the same bandwidth esti-
mation and packet scheduling approach because I wish to compare the impact of using
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Figure 4.1: Each boxplot shows the SSIM of received video compared to the original video
when the video is streamed using the baseline protocol and Squash on each combination
of emulated LTE traces.

backup frames. The baseline-1 encodes the main video stream at a higher bitrate than
Squash because it does not require additional bandwidth to send backup frames. However,
the baseline-1 experiences skipped frames during the experiment due to deadline viola-
tions resulting from unexpected bandwidth drops on the aggregated links. This results in
significant decreases in the received video’s SSIM.

The second baseline protocol (baseline-2) also employs single-frame encoding that en-
codes at the same video bitrate as Squash’s primary frame by tracking Squash’s encoding
rate logs. It shows the video quality if Squash only sends primary frames. The baseline-2
experiences fewer skipped frames from unexpected bandwidth drop than the baseline-1 on
some traces. This is because the baseline-2 intentionally under-utilizes the links. It only
uses the bandwidth that transmits the size of Squash’s primary frame, while the baseline-1
uses all of the estimated bandwidth to send the main video stream.

Figure 4.1 displays the received video’s SSIM on various combinations of LTE traces
for each approach. The SSIM of the video streamed on Squash is 13 – 57% higher than
that streamed on the baseline-1 for all combinations of LTE traces. In comparison to the
baseline-2, the SSIM of the video transmitted over Squash is 13 – 50% higher. Squash out-
performs the baseline protocols because the baseline protocols skip frames due to deadline
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Figure 4.2: The graph shows the delivery rate and packet latency of Squash and the baseline
protocol during the test using on Verizon-short LTE trace and AT&T LTE 2016 trace

violations when one of the links is congested. The difference in SSIM between Squash and
the baseline protocols became larger in the test that uses the AT&T LTE 2016 trace since
this trace frequently experiences significant bandwidth drops. The part of the frame sent
over the AT&T link does not arrive before the deadline. This causes a frame skip due to
a deadline violation.

During the tests, I found that the baseline protocols experienced more frame skips as
the number of links that a frame is distributed across is increased. Aggregating more links
to send a frame increases image quality; however, each time one of the links experiences
a significant bandwidth drop, the frame is discarded due to a deadline violation. The
experimental results indicate that using a backup frame can mitigate the distortion of the
received video caused by skipped frames when there are unexpected drops in available
bandwidth.

Figure 4.2 illustrates link utilization and packet latency when video is streamed using

28



Squash and the baseline-1 over multiple wireless LTE links. This test uses the Verizon-short
LTE trace and AT&T LTE 2016 trace [49]. The spike in packet latency indicates network
congestion. Both links experience temporary disconnection or significant bandwidth drops.
Both protocols experience congestion. Congestion on a link may cause a skipped frame
since the frame may be late as it is distributed over multiple links. However, Squash
prevents a frame skip by transmitting a backup frame on the stable link when one link
becomes congested. Sending backup frames mitigates the impact of skipped frames on
video quality in highly variable network environments.

4.3 Optimized Link Replication

In this experiment, I test different Squash replication strategies for the backup frame to
explore the impact of the different replication strategies on video quality. Squash provides
the following three backup frame modes:

• Single replication: Single backup frame is generated and sent

• Full replication: A backup frame is replicated and sent on all links

• Optimized replication: Squash assesses link stability to dynamically determine
the number copies of the backup frame that are sent.

Replicating the backup frame on more links increases resilience; however, additional
replication requires more bandwidth. When the available bandwidth is limited, using
more bandwidth for replication reduces the video encoding bitrate of the backup frame.
This results in lower image quality. It is challenging to determine the minimum replication
factor (i.e., the number of backup frame copies) that secures frame delivery.

Figure 4.3 shows the received video’s SSIM using the different replication strategies. In
most tests, the SSIM achieved using the single replication mode is lower than the SSIM
achieved using the full replication mode and optimized replication mode. The SSIM of the
video streamed using Optimized replication mode is 0.31 – 11.77% higher than the Single
replication mode for all tests. Single replication mode provides lower video quality because
it skips 2 – 5 frames out of 3000 frames on average due to deadline violations. If the link
that transmits the backup frame experiences congestion from a sudden bandwidth drop, the
backup frame arrives late. Squash fails to predict the link’s stability about 0.07 – 0.16%
of the time because of sudden bandwidth drops, and these mispredictions significantly
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Figure 4.3: Comparing Squash’s replication modes. Single replication mode provides less
stable video streaming than the full and optimized replication modes when the links have
variable bandwidth.

impact video quality. When the decoder skips a video frame, the video quality significantly
decreases. Despite having a higher video bitrate when sending one backup frame, the
video stream is more susceptible to delayed frames due to unexpected bandwidth drops.
Alternatively, the full replication mode and the optimized replication mode require more
bandwidth; however, the backup frames arrive on time, and there are no skipped frames
in all tests. Replicating a backup frame on multiple links is necessary when network links
have highly variable bandwidth.

The experiment showed that the difference between the full replication mode and the
optimized replication mode is not noticeable with regards to SSIM, as their medians and
confidence interval are similar for all of the tests. The optimized replication mode uses less
bandwidth for replication than the full replication mode. However, using the optimized
replication mode has a minor impact on the received video quality.

When Squash streams video over links with higher bandwidth variability, such as AT&T
LTE trace and Verizon LTE trace, the resulting SSIM is lower. In these traces, Squash
frequently experiences significant bandwidth drops that result in delivering backup frames
instead of primary frames. I found that the received video’s SSIM primarily depends on
the number of backup frames that replace primary frames. Using backup frames results
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Figure 4.4: The graph shows the received video’s SSIM compared to the original video
when the video is streamed using MPTCP and Squash over each combination of emulated
LTE traces.

in higher video quality than incurring a missing frame; however, the quality is lower than
when using primary frames. When no frame is skipped, fewer number of frame replacement
results in higher received video quality.

In addition to the number of frame replacements, the decoded video quality depends
on the type of frame that is replaced by a backup frame. X264 video encoding uses
three types of frames: keyframes (I-frame), predictive frames (P-frame), and bi-directional
predicted frames (B-frame) [56]. I-frame is the full frame of the image in a video. P-frame
and B-frame contains newly added information between the previous frame and the next
frame. When an I-frame is replaced by a backup frame, the video quality experiences
more distortion than when a P-frame or B-frame is replaced. Currently, Squash does not
differentiate the frame type when it sends a frame. This should be considered for packet
scheduling in future work.
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4.4 Multiple Link Application

In this experiment, I compare Squash against MPTCP, which is one of the most widely
used multi-path network transport protocols. The video streaming application running
on MPTCP uses the same encoder settings as Squash, and both systems use the x264
library. They skip a frame when the frame’s latency exceeds the acceptable delay. I provide
knowledge of future network bandwidth on each link to the video streaming application
that uses MPTCP. This is because MPTCP is a network transport protocol and does
not inform the encoder of the desired video bitrate for the current link status. When
encoding the next frame to be sent, the video streaming application knows all available
links’ bandwidth. The video streaming application encodes the video at a bitrate that is
calculated by aggregating each link’s bandwidth to provide the amount of video data that
the network can handle.

Figure 4.4 shows the SSIM of the received video when the video is streamed over various
combinations of LTE traces by using Squash and the MPTCP video streaming application
that encodes the video at 30% and 50% of the total available bandwidth. Initially, I
tested the video streaming application by setting the target encoding rate to be 90% of the
total available bandwidth after accounting for the packet header and the variability of the
encoded frame size. However, I found that the received video had a higher SSIM when the
target encoding rate was lower than 50% of the total available bandwidth than when the
target encoding bitrate is 90% of the total available bandwidth. While encoding the video
at 90% of the available bandwidth provides high-quality video frames, it suffers from more
frequent frame skips, resulting in a major decrease in the quality of the received video. I
tested the MPTCP video streaming application with different target encoding rates (30 –
90%), and it provided the highest median SSIM at 30% and 50% target encoding rates.

Comparing the median SSIM in all tests, Squash’s SSIM is 7 – 8% higher on average
than video streaming on MPTCP, which encodes video at 30 – 50% of the total avail-
able bandwidth. I also compare network utilization, which is measured by ethstats. The
MPTCP video streaming application uses only 25 – 43% of the total available bandwidth
to avoid a frame skip due to deadline violation while Squash utilizes 66% of the available
bandwidth. MPTCP’s default scheduler sends data on the link with the lowest RTT until
its congestion window becomes full. This approach does not consider each link’s capacity
when data is transmitted over heterogeneous links [23, 45]. A low bandwidth link with low
RTT may experience congestion due to over-sending while other links with high bandwidth
and a high RTT are under-utilized.

Another reason that Squash outperforms MPTCP is that the default MPTCP scheduler
uses ARQ for lost packets to provide reliable transport. ARQ requires additional delay to
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Figure 4.5: Comparing the received video’s SSIM when the video is streamed on Squash
against on Dash.js, which encode at different frame deadline.

detect packet loss and to resend the packet. It causes the head-of-line blocking problem
where the received part of a frame has to wait in the receiver buffer until the resent
packets arrive [24, 34]. Each frame has a short deadline in a low latency video streaming
environment. The receiver has to discard the frames that arrive late because of the re-
transmission delay.

4.5 Single Link Approach

In this experiment, I compare Squash against Dash.js [15] to evaluate how well Squash is
able to overcome the challenges of multihoming. Both systems have the same amount of
total available bandwidth at their disposal. In the case of Dash.js, I aggregate the available
bandwidth of the LTE traces into a single trace representing a single link. Dash.js uses
this trace for its experiments; therefore, it has the same amount of available bandwidth as
Squash and does not have to contend with the challenges of utilizing multiple heterogeneous
links. Dash.js is a widely used video streaming application. Dash.js supports a low latency
mode that allows the user to set a target latency, which is defined as the acceptable
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Figure 4.6: The graph shows the delivery rate and available bandwidth when Squash and
Dash.js streams video over Verizon LTE trace and T-Mobile LTE trace.

amount of time between video encoding and display. I use DASH-IF DASH Live Source
Simulator [14] to simulate live streaming with pre-encoded video. The original video is
encoded at 6 different video encoding rates (0.1 Mbps, 0.5 Mbps, 1 Mbps, 2 Mbps, 4
Mbps, 8 Mbps, 16 Mbps) to provide ABR streaming. Each video chunk length is set to
100ms, which is the minimum chunk length in the DASH-IF DASH Live Source Simulator.

Figure 4.5 illustrates the measured SSIM of the received video using Squash and Dash.js
over various combinations of LTE traces. I ran the tests for Dash.js with different frame
deadlines while the frame deadline for Squash is fixed to 500ms. This is because Dash.js
sends at the minimum encoding rate when I set the frame deadline to 500 ms target latency.
Squash outperformed Dash.js by 18 – 25% in SSIM when Dash.js sets the acceptable delay
to 700ms. I have to set the frame deadline for Dash.js to be at least 1 second to provide
comparable video quality with Squash. This is because of its longer chunk length than
Squash. The minimum chunk length in the DASH-IF DASH Live Source Simulator is 100
ms while Squash encodes a frame every 40 ms. The video chunk is larger and takes longer
to deliver to the receiver.

Another reason that Squash outperforms Dash.js in the tests is Dash.js’ conservative
ABR streaming. Figure 4.6 displays the available bandwidth and how much Dash.js uses
on the link when the acceptable delay is 1 second. The link provides the same bandwidth
as 2 links. Dash.js uses only 6% of the available bandwidth while Squash uses 66%. Squash
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can aggressively increase the video bitrate with a shorter acceptable delay (500ms) because
it utilizes a backup frame.
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Chapter 5

Conclusion

5.1 Contribution

Squash is a multi-homed, low latency video transport protocol that uses multi-bitrate
encoding. To the best of my knowledge, Squash is the first approach to increase resilience
on multiple links by utilizing copies of frames that are encoded at multiple bitrates. Squash
increases resilience against link congestion by using only a small portion of the networks’
bandwidth compared to FEC. From our experimental evaluation, the average size of the
backup frames is less than 8.3% of the Squash’s total bandwidth usage. Using multiple
encodings can efficiently mitigate the impact of sudden, unexpected bandwidth drops.

The evaluation (Chapter 4) demonstrates the advantages of sending a backup frame
on the links having variable bandwidth. Firstly, I compare Squash with a baseline proto-
col that uses single encoded frames to show that utilizing backup frame mitigates video
quality drop from frame skip caused by deadline violation. Secondly, I explore different
replication strategies to determine the most efficient way to decide the video encoding rate
and replication factor. Thirdly, I compare Squash with the implemented video streaming
application that uses MPTCP, which is one of the most widely used multi-path protocols.
The test results show that the SSIM attained by Squash is 7 – 8% higher on average than
when using MPTCP. Finally, I also compare Squash to Dash.js in a single-homed environ-
ment where it does not have to deal with the challenges of using multiple links. Dash.js
requires at least 1 second of acceptable delay to provide comparable video quality with
Squash when Squash’s acceptable delay is 500 ms.
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5.2 Limitations and Future Work

The design and evaluation of Squash reveal several future research directions, which I
describe in the following paragraphs.

5.2.1 Deciding the size of backup frame

When Squash decides the video encoding rate, it does not consider the impact of changing
the video encoding rate on the received video’s image quality. This is because Squash does
not know the quantified quality of the encoded video frame in real time. As shown in
Appendix A, the SSIM of a video frame does not increase linearly as the encoding rate
is increased. The impact of increasing the encoding rate is different for each video. More
research on the relationship between video encoding rate and encoded video quality. If
Squash can determine the expected quality of the encoded frame on the specific encoding
rate, Squash can improve the decision making model to determine the encoding rate for
the backup frame and the primary frame.

5.2.2 Limitations in Evaluation

LTE trace conversion I convert the Mahimahi [49] LTE traces into Mininet LTE traces
because Mahimahi does not support multi-link network emulation. When I convert, I
need to change the frequency that the network bandwidth is changed from millisecond to
second. This is because I observed that the changed bandwidth is not applied correctly
on Mininet when the network bandwidth is changed every millisecond. In the future,
extending the Mahimahi project to support multi-link network emulation will make the
experiment environment closer to the collected LTE data.

Outdated LTE trace The wireless LTE traces from [72] are collected in 2013. There
have been many works improving the quality of wireless LTE network since it first came
out. These traces may not represent current network environment, but this is one of
the most practical LTE network traces among publicly available LTE network traces. It
reflects the highly variable bandwidth of wireless LTE network, and there is no significant
difference from the more recently collected network traces [5] in link capacity.
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User Fairness The evaluation does not contain the tests for user fairness on the network
resource because the primary focus of Squash is to show the effect of using a backup frame.
Future work can include experiments running multiple Squash applications that share the
same network links. It will make this work more practical.

Comparison with a single link application The experiment from Chapter 4.5 com-
pares Squash with Dash.js because it allows us to set the target delay in low latency
mode while other commonly used applications do not. However, according to their docu-
ment [60], the recommended target delay is from 1.5 to 2 seconds, while our goal is under
500ms. WebRTC supports lower latency requirements than Dash.js, but I could not com-
pare WebRTC with Squash because it does not allow setting the latency requirement to
skip late frames. Adding more competitors that support lower latency requirements than
Dash.js will make the experiment comparing Squash with a single link more reasonable.
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Appendix A

SSIM / PSNR comparison on
different video bitrate

A.1 Big Buck Bunny and recorded geese video
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Bitrate(kBit/s) SSIM(BBB) PSNR(BBB) SSIM(geese) PSNR(geese)

100 0.719988 18.170111 0.494211 20.432911
200 0.748171 21.092699 0.550298 23.676379
300 0.795023 23.275786 0.620311 24.794877
400 0.828264 24.673462 0.689590 25.815639
500 0.861270 26.862021 0.744523 26.788844
600 0.882503 28.578364 0.785305 27.651534
700 0.898651 30.079848 0.814827 28.384299
800 0.910010 31.068385 0.836524 28.991489
900 0.918962 31.889986 0.853365 29.515943
1000 0.926141 32.602574 0.866605 29.970969
1500 0.949240 35.110441 0.905434 31.588178
2000 0.961390 36.749313 0.924596 32.648890
2500 0.969020 37.993513 0.936357 33.438221
3000 0.974212 39.018333 0.944564 34.086373
4000 0.980860 40.709562 0.955508 35.130700
5000 0.984910 42.037322 0.962757 35.981292
8000 0.990874 44.803367 0.975341 37.951469
10000 0.992836 46.157395 0.979946 38.966658
15000 0.995334 48.541878 0.986199 40.889639
20000 0.996557 50.206696 0.989393 42.327756
25000 0.997314 51.533888 0.991356 43.512647
30000 0.997826 52.652603 0.992678 44.508586
35000 0.998195 53.565877 0.993640 45.380160
40000 0.998477 54.385593 0.994365 46.152090
45000 0.998693 55.064173 0.994942 46.855329
50000 0.998877 55.847535 0.995413 47.499676
60000 0.999148 57.149799 0.996175 48.683342
75000 0.999415 58.655838 0.997020 50.242375
90000 0.999567 60.121177 0.997667 51.651845
100000 0.999625 60.853671 0.998033 52.545534
120000 0.999699 61.977986 0.998685 54.452298
160000 0.999755 62.955999 0.999607 59.722215
200000 0.999763 63.283097 0.999703 60.839319

Table A.1: This table compares the SSIM and PSNR of two FHD videos when they are
encoded at different video bitrates. The Big Buck Bunny is a short computer-animated
comedy film. The geese video is a recording of geese using an iPhone 8.
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