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Abstract

Every decade, a new generation of cellular networks is released to keep up with the
ever-growing demand for data and use cases. Traditionally, cellular networks rely on par-
titioning radio resources into a set of physical resource blocks (PRBs). Each PRB is used
by the base-station to transmit exclusively to one user, which is referred to as single-
user transmission. Recently, multi-user transmission has been introduced to enable the
base-station to simultaneously serve multiple users using the same PRB. While multi-user
transmission can be much more efficient than its single-user counterpart, it is significantly
more challenging to operate. Thus, in this thesis we study the operation, i.e., the Ra-
dio Resource Management (RRM), for two popular multi-user transmission technologies;
namely, 1) NOMA (Non-Orthogonal Multiple Access) and 2) Multi-User Multiple-Input
Multiple-Output (MU-MIMO).

For NOMA RRM, we study a multi-cell, multi-carrier downlink system. First, we
formulate and solve a centralized proportional fair scheduling genie problem that jointly
performs user selection, power allocation and power distribution, and MCS (Modulation
and Coding Scheme) selection. While such a centralized schedule is practically infeasible,
it upper bounds the achievable performance. Then, we propose a simple static coordinated
power allocation scheme across all cells for NOMA using a simple power map that is easily
calibrated offline. We find that using a simple static coordinated power allocation scheme
improves performance by 80% compared to equal power allocation. Finally, we focus on
online network operation and study practical schedulers that perform user-selection, power
distribution, and MCS selection. We propose a family of practical scheduling algorithms,
each of them exhibiting a different trade-off between complexity (i.e., run-time) and per-
formance. The one we selected sacrifices a maximum of 10% performance while reducing
the computation time by a factor of 45 with respect to the optimal user scheduler.

For MU-MIMO RRM, we focus on the study of the downlink of an OFDMA massive
MU-MIMO single cell assuming ZFT (Zero Forcing Transmission) precoding. An offline
study is initiated with the goal of finding the best achievable performance by jointly op-
timizing user-selection, power distribution and MCS selection. The best performance is
analyzed by using both BRB (Branch-Reduce-and-Bound) global optimization technique
for upper-bounding the achievable performance and a set of different greedy searches for
lower bounding the achievable performance to find good feasible solutions. The results sug-
gest that a specific search strategy referred to as greedy-down-all-the-way (GDAW) with
full-drop (FD) is quasi-optimal. Afterwards, we design a simple practical scheduler that
achieves 97% of the performance to GDAW with FD and has comparable runtime to that
of the state of the art benchmark that selects all users, performs ZFT precoding followed

v



by power distribution using water-filling. The proposed scheme performs a simple round
robin grouping to select users, followed by ZFT precoding and joint power distribution
and MCS selection via a novel greedy algorithm with a possible additional iteration to
take zero-rate users into account. Our solution outperforms the benchmark by 281%.
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Chapter 1

Introduction

5G (Fifth Generation) and beyond cellular networks are designed to provide unprecedented
network capacity. This is due to the need for ever higher data rates for eMBB (Enhanced
Mobile Broadband) applications as well as the proliferation of connected devices brought
by the IoT (Internet of Things). These networks must therefore provide higher system-level
spectral efficiency than that provided by their 4G (Fourth Generation) counterparts.

A base station typically has access to a variety of communication resources, including
RF bandwidth, transmission power, and antennas. The key to improving spectral efficiency
lies in smart network operation, efficient resource allocation, and the use of advanced
physical layer technologies.

The underlying physical layer structure has a significant impact on network operation.
Up to 4G, the cellular network depended on SUT (Single User Transmission) at the physical
layer. In SUT, network resources are divided into orthogonal units and each unit is used to
serve a single user at a time. As an example, 4G LTE and 5G NR are based on OFDMA
(Orthogonal Frequency Division Multiple Access) where the available RF band is divided
into sub-channels and time is divided into slots. In the DL (downlink)! case, a single
sub-channel for one time-slot is referred to as PRB (Physical Resource Block). In SUT
systems, a PRB is used by the base-station to exclusively serve (i.e., transmit to) a single
user.

Although SUT-based networks are simple to operate, they suffer from a major short-
coming. Information theory shows that capacity achieving transmission schemes should

!The same applies for communication in the UL (Uplink). However, we focus solely on DL. OFDMA
cellular networks in this thesis.



rely on MUT (Multi-User Transmission)?. In multi-user transmission based networks, a
single PRB is used to simultaneously transmit to several users at the same time. This gen-
erates additional inter-user interference. However, when the network is operated properly,
multi-user transmission can significantly outperform single-user transmission. Thus, MUT
is one of the promising technologies for 5G and beyond cellular systems.

For implementing downlink multi-user transmission, there are two common types of
physical layer technologies: 1) NOMA (Non-Orthogonal Multiple Access) and, 2) MIMO
(Multiple Input - Multiple Output) transmission. In NOMA, MUT is implemented by su-
perimposing the transmitted messages, typically in the power domain or the code-domain.
At the receiver side, SIC (Successive Interference Cancellation) is used to remove unwanted
weaker signals [5]. NOMA does not require multiple antennas at either the base-station or
the UE; however, it needs complex SIC receivers.

On the other hand, MIMO allows the base station to generate multiple beams for the
same PRB, each of which carries a signal dedicated to a particular user. Furthermore,
massive MIMO takes MIMO to the next level by increasing the number of antennas dra-
matically which drastically increases the overall data rate. As a result, massive MIMO is
an attractive approach.

Although information theory gives us valuable tools for establishing upper bounds on
the total system throughput, this is usually done assuming impractical channel coding
schemes. In reality however, a finite set of practical Modulation and Coding Schemes
(MCS) is used. Moreover, information theory does not help us design practical RRM
(Radio Resource Management) solutions.

This chapter is structured as follows. The RRM problem is first discussed in the context
of traditional Single Input Single Output (SISO) downlink OFDMA systems and is followed
by an overview of the multi-user transmission specific RRM characteristics. Following this,
we go over the key background as well as the RRM problem for both NOMA and MIMO.
Finally, we outline the main research questions and the thesis structure. Note that there
is a more detailed background section for NOMA in Chapter 2 and for MU-MIMO in
Chapter 3.

1.1 SISO RRM Problem

The RRM (Radio Resource Management) problem can be formulated as a joint optimiza-
tion problem where the base-station jointly optimizes a set of decisions to maximize a

2This is true for both single antenna and multi-antenna systems [2, 3, 4].



certain fairness criteria, e.g. proportional fairness. In SISO OFDMA RRM, the base-
station station has to allocate power to each PRB. This is referred to as power allocation.
Then, it has to select a user to be served in each PRB. This is referred to as user selection.
Finally, an estimate of the SINR (Signal-to-Noise and Interference Ratio) for the selected
user is computed given the channel state information for that user, and, based on that
SINR, a MCS (Modulation and Coding Scheme) is selected for transmitting to the selected
user. Although MCS selection seems like a trivial step, it is almost always done in the lit-
erature with an approximated rate function (e.g., Shannon) as opposed to with the exact
piecewise constant rate function corresponding to a small number of MCSs which has a
significant impact on the results as will be discussed extensively in this thesis.

While assigning different radio resources, the base-station seeks to optimise total through-
put while preserving fairness, i.e., it tries to ensure that no one is denied data service for a
prolonged period. Typically, the base-station’s goal is to enforce proportional fairness [6],
which is defined as finding the set of rates in which no user can unilaterally increase their
own rate without reducing another user’s rate by at least the same percentage. This means
that a user in good radio-conditions will get a high data rate and a cell-edge user will not
be deprived. Although there are other proposed fairness criteria, operators typically prefer
proportional fairness and thus, for the remainder of this thesis we consider proportional
fairness in rates as our objective.

In cellular networks, the SINR estimate is a critical metric used in downlink scheduling
to assess the quality of the communication link between the base-station and the UE. It
is defined as the ratio of the received signal power to the summation of the interference
and noise power at the receiver. The base-station uses the SINR estimate to determine
the best MCS to efficiently transmit to each UE. To calculate the SINR estimate accu-
rately, it is important to have accurate channel state information. Channel estimation
in cellular systems is typically pilot-based. In pilot-based channel estimation, the base-
station periodically transmits known pilot data symbols for channel estimation. The UE
receives these pilot symbols and uses them to estimate the channel characteristics. The
channel estimation process is performed periodically as the channel accuracy is critical for
the cellular system performance. In this thesis we focus on analyzing MUT performance
assuming perfect channel state information and leave the study of the system performance
under imperfect channel estimation to future work.



1.2 RRM for MUT networks

With multi-user transmission, the RRM problem becomes much more complicated. In
order to ease the discussion of RRM in MUT-based systems, we start by defining the main
RRM procedures, that should be jointly optimized, then we go into the specifics for each
MUT technology.

Definition 1.2.1 (Power allocation). The process by which the base-station determines
the total power to be allocated to a given PRB.

Power allocation is a process that is performed for both single-user transmission and multi-
user transmission-based cellular networks. The defacto approach is to allocate power
equally across the available sub-channels. Although this approach is simple and good
for single-cell networks, it is sub-optimal in multi-cell network as will be shown in Chap-
ter 2 for multi-cell NOMA downlink systems [7]. Power allocation optimization gain for
single-user transmission systems was studied in [§].

For a given power allocation, the RRM problem can be approximated as a sequence
of smaller per PRB joint optimization problems. Each per PRB problem includes the
following procedures® and possibly others specific to the MUT technology (e.g., precoding
for MIMO):

Definition 1.2.2 (User selection). The process by which the base-station selects the set
of users to be allocated a certain PRB.

One of the main differences between single-user transmission and multi-user transmission
based cellular networks lies in the user-selection process. In single-user transmission, the
process is simpler since the base-station has to only select one user to be scheduled in each
PRB. On the other hand, in multi-user transmission a subset of users has to be scheduled
to simultaneously transmit on the same PRB. Furthermore, depending on the multi-user
transmission technology, i.e., NOMA or MIMO, there could be constraints on the selected
user-set.

Definition 1.2.3 (Power distribution). Another major difference between SUT and MUT
is the need to distribute the power allocated to a PRB among the selected users in that
PRB. This is what we call power distribution.

3As channel conditions remain almost the same across a range of PRBs, denoted as a coherence block,
the base-station could reuse the same decisions for a subset of PRBs within that range. Although this
approach reduces computational complexity, it also reduces the overall performance and thus in this thesis
we only consider per PRB decisions.



Power distribution is performed to distribute the available power among the selected users.
While computing the power distribution can be performed simply by equally distributing
power among scheduled users, this yields poor performance. Instead, power distribution
is performed through an optimization problem or an algorithm derived from it and that
is when the piecewise rate function is replaced by a smooth approximation which is easier
to handle in that context. A typical approximation is the Shannon capacity formula. As
shown in the following chapters, power distribution is essential for enforcing fairness among
the scheduled users as well as maximizing network performance.

Definition 1.2.4 (MCS selection). The process by which the base-station selects the
MCS to be used for communicating with each scheduled user on a given PRB based on the
estimated SINR.

As previously mentioned, the RRM problem is equivalent to a joint optimization problem
where the base-station optimizes the different RRM procedures to maximize the target fair-
ness criteria. The MCS selection procedure is nearly always overlooked in the literature,
despite the fact that it is crucial. Assuming that the relation between the received rate
and the experienced SINR (Signal-to-Noise and Interference Ratio) is dictated by Shan-
non’s rate function not only produces optimistic results, but it can also lead to inaccurate
conclusions. Although, this assumption is typically performed to simplify the underlying
optimization problem, the actual relationship between the SINR a user experiences and
the rate it receives due to the finite number of MCS is defined by a piece-wise constant rate
function. This is opposed to the smooth increasing log(1 + SIN R) Shannon rate function
and provides a crucial distinction especially at low SINR since a practical system cannot
transmit successfully to a user that sees an SINR lower than that required for decoding
the lowest rate MCS.

1.3 NOMA Background and RRM

NOMA (Non-Orthogonal Multiple Access) is one of the most recent advances to be con-
sidered for 5G cellular systems [9]. NOMA allows for multi-user transmission using a
single antenna at the BS and at the UE, i.e., it allows multiple users to be simultaneously
allocated to the same PRB. This is implemented by using superposition coding at the
base-station and SIC at the receiver.

In NOMA, a single-antenna base station can transmit to multiple users in the same
band and at the same time, with each user assigned a certain power. In other words,



the base-station superimposes different messages in the power domain creating a power
division multiple-access scheme. Alternatively, NOMA could superimpose messages using
non-orthogonal codes which is referred to as code-domain NOMA.

SIC is used at the receiver to remove some of the unwanted signals at the receiver. For
a UE to be able to remove an interfering signal, it needs to have at least the same SINR
as the intended receiver. This is described by saying that a user A is at least as strong
as user B and thus user A can use SIC to remove the interference caused by the message
transmitted to user B.

For NOMA DL OFDMA cellular operation, RRM is composed of 4 steps; namely, 1)
power allocation, 2) user-selection, 3) power distribution and 4) MCS selection. As men-
tioned in Section 1.2, power allocation is defined similarly for NOMA as well as traditional
OFDMA systems. Although equal power allocation is the defacto approach, simple power

allocation optimization can bring significant gains as shown in [8] for SISO systems as well
as in Chapter 2 for NOMA (and published in [7]).

User-selection for NOMA is challenging because not only does the base-station have
more options, but there are also various restrictions on user-set selection imposed by hard-
ware limitations. Because NOMA requires the usage of SIC receivers, each selected UE
must notify the base-station as to the maximum number of SIC operations it can perform.
This is because it does not make sense to select users to be jointly scheduled on the same
PRB if they cannot receive the sent messages due to the lack of hardware capability.

Additionally, with NOMA-N | the base-station selects an ordered set of N users (iy, ..., iy)
on a per PRB basis. The users are selected such that user 7,, can use SIC to remove the
interference caused by 7,1, ..., 72y and then user ¢,, decodes its message under the interfer-
ence caused by the transmissions to users ¢y, ...,%,_1. This constrains which users can be
selected together since not all users selections can satisfy this condition.

Power distribution for NOMA is tricky and typically confused with power allocation in
the literature. Since with NOMA, the UE uses SIC to cancel the effect of some signals,
precise power distribution is required to guarantee that the message is successfully received
despite the presence of residual interference from signals not removed with SIC.

Finally, depending on the decoding order as well as the power allocated to each PRB
and the power distributed to each selected user, the base-station selects a MCS to be used
for transmission. This final step is critical and has a significant impact on performance as
well as conclusions as will be studied extensively in Chapter 2.



1.4 MIMO Background and RRM

A MIMO system, as first proposed by Winters [10], uses multiple antenna elements for
transmission and reception to boost wireless connection robustness and improve spectral
efficiency capacity. The development of practical MIMO techniques over the last 20 years
has been one of the reasons for the success of 4G/LTE (Long Term Evolution) and 5G/NR
(New Radio).

In a MIMO system, the antenna elements can be used for diversity or spatial multi-
plexing. In diversity MIMO, the transmitter sends multiple copies of the message using
its antennas, and the receiver decodes the message using all of its antennas. This method
increases the reliability of a wireless connection by providing redundancy in the form of
numerous copies of the same message, which reduces the likelihood of a failure. On the
other hand, spatial multiplexing allows for a direct increase in link capacity by transmitting
multiple data streams at the same time.

To exchange multiple data streams at the same time, the base-station employs linear
precoding. Precoding is an extension of beamforming. In traditional single-stream beam-
forming, each antenna element is linked to an RF processing chain that adjusts the gain and
phase of the sent signal to maximise the received power. Precoding allows the base-station
to transmit multiple data streams simultaneously.

The precoding varies depending on the MIMO operation mode. MIMO can be utilised
in either a SU-MIMO (Single-User MIMO) or a MU-MIMO (Multi-User MIMO) operation
mode as shown in Fig. 1.1. In SU-MIMO operation mode (also known as point-to-point
MIMO) the base-station employs all of its antennas to serve one selected multi-antenna
receiver per PRB. In this case, precoding results in multiple (the number of streams is
upper bounded by the number of receive antennas) data streams emitted from the transmit
antennas to serve one user. In SU-MIMO OFDMA systems, only one user is selected per
PRB but it is served with potentially multiple streams.

SU-MIMO is widely adopted in today’s wireless networks due to its simplicity as the op-
timal precoder is a linear precoder [11]. However, the number of simultaneously transmitted
streams is upper-bounded by the minimum of the number of antennas at the base-station
and the UE. Because UEs are often constrained in both battery and space, the number of
antennas that could be installed in a UE is small, limiting the benefits brought by MIMO.
Furthermore, as the UE antennas are physically close, the probability that the receive
channels at the UE antennas are correlated increases, and thus the channel matrix has a
low rank, reducing the number of spatial streams that can be received simultaneously. To
overcome these limitations, MU-MIMO has been proposed.



In MU-MIMO operation mode, the base-station uses its antennas to send multiple data
streams, each intended to a different end user. Unlike with SU-MIMO, the MIMO link
is between the base-station’s antennas and all the antennas of the selected users. For
simplicity, we will assume single-antenna receivers throughout this thesis. Precoding in
MU-MIMO is used to generate multiple-streams, each intended for a different user chosen
to maximize some metric of each user’s throughput to balance fairness, performance and
inter-user interference.

Precoding in 4G/LTE was codebook based, i.e., the precoders were chosen from a set
of fixed precoders known as the codebook. Furthermore, the maximum number of streams
that could be transmitted was limited by the codebook. This simple approach eased the
adoption of MIMO technology into cellular networks. However, the codebook approach is
sub-optimal.

Massive MIMO refers to MU-MIMO systems where the number of antennas is sig-
nificantly large, typically at least 64 antennas. The relative gap between simple linear
precoding techniques, such as ZFT (Zero Forcing Transmission) and optimal precoding
vanishes as the number of antennas increase [12, 13]. Furthermore, due to the fact that
ZF'T forces inter-user interference to be zero, the design of RRM algorithms is simplified.
This is due to the fact that ZFT cancels inter-user interference and transforms the channel
into an equivalent system of parallel SISO channels thus decoupling the precoding and
the power distribution procedures. As a result, we will concentrate on ZFT (Zero Forc-
ing Transmission) precoding in the massive MIMO regime in this thesis since it strikes
a favourable compromise between complexity and performance making it an attractive
option for practical deployment.

The RRM problem for SU-MIMO DL OFDMA systems is a straightforward extension
to the SISO DL OFDMA RRM problem. The key difference is that the rate that one user
may get depends on the precoding used as well as the number of transmitted streams.
Furthermore, assuming the UE has N antennas and the base-station has M antennas, the
wireless channel between the base-station and the UE is defined by a complex channel
matrix H € CNV*M rather than a scalar in the SISO case. Singular Value Decomposition
(SVD) of the channel matrix determines the best precoding for SU-MIMO as well as per
stream power assignment as discussed in [11]. MU-MIMO is much more complex and
MU-MIMO RRM is the focus of Chapter 3.

Due to the lack of cooperation amongst end users when decoding in the downlink,
designing practical schemes for MU-MIMO systems is significantly more challenging than
developing practical schemes for SU-MIMO systems. In SU-MIMO, all streams belong to
the same UE and thus a single decoder can jointly decode all streams. This is not possible
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Figure 1.1: An illustration of SU-MIMO (left) and MU-MIMO (right).

in MU-MIMO since a UE cannot make use of the received copies at other UEs.

The RRM problem for MU-MIMO DL OFDMA systems is the problem of jointly op-
timizing; 1) Power allocation, 2) User-selection, 3) Precoding, 4) Power distribution, and
5) MCS Selection. The definitions of the power allocation and MCS selection steps are
similar to the definitions established for single-user transmission techniques.

In general, the maximum number of streams that can be sent by a base-station is
limited by the number of antennas installed at the base-station. With massive MIMO,
the base-station has access to a large number of antennas which means that we could
potentially select all users. However, as we will show in Chapter 3, although this strategy
is very simple, it performs poorly.

In MU-MIMO, once a user-set is selected, the base-station needs to compute a precoder
for it. The selected user-set as well as the precoding strategy and the power distribution
impact the received signal strength not only for the user but also for other selected users.
In general precoding and power distribution are coupled problems, however, in special cases
such as with ZFT precoding, the problems can be decoupled.

The complexity of power distribution is a function of the used precoding. Depending
on the precoding technique, the SINR experienced by the UE varies. For example, with
ZFT, the precoder is designed to ensure that the intra-cell interference experienced by all
selected users is nullified and power distribution can be decoupled.



1.5 Research Questions

In this thesis, we study the problem of operating, in a proportional fair manner, the
downlink of an OFDMA network performing multi-user transmission. We study two types
of multi-user transmission techniques, i.e., NOMA as well as MU-MIMO.

For both techniques we ask two main research questions: 1) what is the best we can
do in terms of performance? and, 2) what can we do in real-time? The first question aims
at assessing the best achievable performance under no runtime constraints to understand
the achievable performance that we can aspire to in real network deployments. We address
this question by writing the optimal RRM problem and then casting it into a problem
with a favourable structure that can be utilized by specialized algorithms to efficiently find
quasi-optimal solutions.

For the second question, we develop practical real-time solutions, i.e., algorithms that
can produce a decision within a specific maximum amount of runtime, that can be used for
network operation. To derive these solutions, we decouple the problem into several sequen-
tial processes corresponding to the different procedures defined in Section 1.2. Following
this, we derive simple methods for performing each sequential step. Finally, we compare
the performance achieved with the proposed online methods to those obtained during the
initial offline assessment study via optimization algorithms.

1.6 Thesis outline

This thesis is structured as follows. In Chapter 2, we study in detail the RRM problem
for multi-cell DL OFDMA systems performing multi-transmission using NOMA. We start
by reviewing the related literature to position the main contributions with respect to
the previous work on the subject. Then, we perform an offline study, i.e., we formulate
the optimization problem to compute the optimal performance and present a method for
providing a quasi-optimal offline solution. Moreover, we present our proposed solutions for
real-time network operations that perform close to the quasi-optimal solutions derived in
the offline solution. This chapter is based on the results published in [7].

In Chapter 3, we switch our focus to studying the problem of operating the downlink of
a MU-MIMO single- cell system. In this chapter, we assume a single-cell DL OFDMA MU-
MIMO system serving a set of single antenna UEs. Following a review of the related work,
we present the system model as well as the RRM problem definition. Then we present the
proposed methods for searching for good feasible solutions in an offline scenario. Finally,
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we present a real-time solution that performs similar to the best offline solutions while
having reasonable computational complexity.

Finally, in Chapter 4, we summarize the main results and insights on NOMA and
MU-MIMO and we describe possible directions for future work.

Note that the contributions are listed in Chapter 2 for NOMA and in Chapter 3 for
MU-MIMO.
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Chapter 2

Hybrid NOMA in Multi-Cell
Networks: From a Centralized
Analysis to Practical Schemes

In this chapter, we investigate the performance of a hybrid! NOMA (Non-Orthogonal Mul-
tiple Access) multi-cell downlink system. The results in this Chapter have been published
in [7].

2.1 Motivation

NOMA (Non-Orthogonal Multiple Access) is one of the most recent advances to be con-
sidered for 5G cellular systems[9]. In contrast to traditional OMA (Orthogonal Multi-
ple Access) systems, NOMA allows multiple users to be simultaneously allocated to the
same PRB (Physical Resource Block). This is achieved by superimposing the transmitted
messages, typically in the power or code domain. At the receiver side, SIC (Successive
Interference Cancellation) is used to eliminate unwanted weaker signals in a certain order
(referred to as decoding order in the following).

With the rapid increase in the number of active devices [14] and growth in popularity
of IoT (Internet of Things) applications, the efficient use of radio spectrum is becoming in-
creasingly critical. NOMA improves spectral efficiency by sharing the same resource among

Lwe call it hybrid because user equipment can have different SIC (Successive Interference Cancellation)

capabilities.
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several users at the expense of some additional interference. ICIC (Inter-Cell Interference
Coordination) schemes can therefore be even more important than for OMA.

As opposed to OMA where a PRB is used exclusively by a single user, NOMA-N is
a technology that allows a base-station to simultaneously transmit to N users using the
same PRB (Physical Resource Block) and the same antenna element. The base-station
selects an ordered set of users (iy,...,ix) and transmit to them so that, at the receiver
side, selected user i,, uses Successive Interference Cancellation (SIC) techniques to remove
the interference induced by users ,1, ..., 2y and then decodes its message under the inter-
ference created by users iy, ...,7,_1. For successful decoding, the receiver has to succeed in
the SIC procedure as well as in decoding its own message. The main differences between
NOMA and OMA are illustrated in Fig. 2.1 and Fig. 2.2, respectively.

This chapter investigates the scheduling of a hybrid NOMA-N multi-cell DL (Downlink)
system where N denotes the maximum number of users that can be multiplexed in a given
PRB (we call it hybrid to emphasize that UEs (User Equipment) have heterogeneous SIC
capabilities). There is no clear consensus in the literature as to what falls under the term
scheduling for a NOMA-N system. In this work, scheduling is defined as the joint process
of i) allocating power to each PRB in each cell (i.e., the power allocation problem), ii)
selecting for each PRB an ordered set of at most N users in each cell, iii) distributing
the allocated power among the selected users in each PRB of each cell (i.e., the power
distribution problem), and iv) selecting the MCS (Modulation and Coding Scheme) used
for each transmission in each PRB in each cell. By incorporating the MCS selection to
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the joint scheduling definition, as opposed to using Shannon’s logs(1 + SINR) capacity
formula, the problem becomes even more challenging but much more realistic as will be
discussed later. The contributions of this chapter are:

1. The formulation of the centralized (DL) scheduling problem for a proportional fair
multiple access scheme that combines hybrid NOMA and OFDMA. The scheduler
selects an ordered set of up to N users to share each PRB using power-domain NOMA.
This formulation of the centralized scheduling problem accounts for frequency-selective
fading variations, different UE SIC capabilities and inter-cell interference while jointly
optimizing power allocation and user and MCS selection. Although this centralized
problem cannot be used in practice as it requires a large amount of information to
be exchanged in real time and is too large to be solved quickly, it can serve as an
upper-bound for studying the performance of practical schemes in offline studies.
Numerical results show that inter-cell interference coordination through centralized
power control can improve system performance by up to 100% when compared to the
case where power is allocated equally to the channels. They also show that the per-
formance gain might be less than computed in other studies due to the heterogeneity
of the UEs” SIC capabilities.

2. Regarding power allocation, a static inter-cell interference coordination scheme for
hybrid NOMA-N, based on a power map, that achieves performance close to that
of the theoretical centralized problem is proposed. The proposed power map is cali-
brated offline in a robust manner during the planning phase of the network. Rather
strikingly, it offers performance that is only 15% away from the centralized upper-
bound regardless of the value of N, and the variations in the operation conditions
such as the user mobility and channel coherence characteristics.

3. Engineering insights into the effect of UE velocity on NOMA performance and of
using Shannon’s formula instead of a practical MCS scheme are presented.

4. Finally, given a static power allocation, a family of practical scheduling algorithms
for hybrid NOMA-N is proposed. The algorithms are local because scheduling can
be decoupled into local problems for a given static power allocation. The proposed
algorithms use OMA SINR reports from UEs and therefore no additional measure-
ments are needed with respect to OMA. Each of them exhibits a different trade-off
between complexity (i.e., run-time) and performance.

This chapter is structured as follows; Section 2.2 presents the necessary background on
NOMA. Section 2.3 presents a summary of the related work. The system model and the
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Figure 2.3: Superposition coding process setup for downlink NOMA.

main assumptions are presented in Section 2.4. In Section 2.5, we formulate and solve the
centralized scheduling problem and present numerical results that show the maximum gain
achievable by NOMA over OMA and by NOMA with smart power allocation compared to
NOMA with simple equal power allocation. Motivated by these results, a simple power
allocation scheme based on a power map is presented and evaluated in Section 2.6. In
Section 2.7, a family of practical user scheduling algorithms is proposed and evaluated in
terms of complexity and performance. Finally, the study is concluded in Section 2.8.

2.2 Background

NOMA (Non-Orthogonal Multiple Access) is a technology that increases the capacity of
a wireless communication system by allowing multiple signals to be transmitted simulta-
neously using the same PRB (Physical Resource Block). Simply put, NOMA allows the
base-station to communicate with multiple UEs on the same PRB at the same time. It
does not require multiple antennas at the base-station or at the UEs.

NOMA can be implemented in two ways: in the power domain or the code domain. In
power domain NOMA, the base-station uses varying levels of power to allow the receivers
to distinguish the messages sent to different users. This causes the message sent with the
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Figure 2.4: NOMA-3 setup for the downlink illustrating the SIC decoding process.

highest power to be heard the best, while the other messages may be more difficult to
decode. In code domain NOMA, the base-station distinguishes the different messages by
assigning different codes associated with each message. Whereas power domain NOMA
is analogous to distinguishing two continuous conversations at a party based on loudness,
code domain NOMA distinguishes conversations based on the language spoken.

Code-domain NOMA is more complicated than power-domain NOMA for several rea-
sons. First, in code-domain NOMA, the interference from different users is more complex
and harder to manage compared to power-domain NOMA. In power-domain NOMA, the
interference from other users is simply proportional to their power levels and channel gains.
However, in code-domain NOMA, the interference from other users depends on the spread-
ing code used, as well as the channel conditions, making it more difficult to predict and
manage. Moreover, the receiver design for code-domain NOMA is more complex com-
pared to power-domain NOMA since it needs to perform additional code spreading and
de-spreading operations. For these reasons the 3GPP standards mainly considers power-
domain NOMA for 5G and beyond cellular systems [15].

Proceeding henceforth, the discussion will focus on power-domain NOMA. At the trans-
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mitter, a NOMA-N enabled base-station selects an ordered set (iy,...,iy) of N users to
transmit to on a given PRB simultaneously. Following this the base-station distributes
power among the selected set of users. The downlink transmission process for NOMA-3 is
illustrated in Fig. 2.3.

At the receiver side, a technique known as SIC (Successive Interference Cancellation)
is used to separate and decode different messages. Specifically, with the ordered set of N
users, (i1, ...,1y), the following occurs. Receiver i, will use SIC to cancel the interference
cause by iy, then iy_; and so on until it removes the interference caused by 4,.;. Then
it decodes its message under the interference caused by users i,,_1, ...,7;. This means that
receiver i will decode its signal without performing any SIC operations and receiver 1,
will use SIC operations to remove every other message in the order iy, iny_1, ..., 2 prior to
decoding its intended message. The reception process for NOMA-3 is illustrated in Fig. 2.4.

Therefore, in the NOMA downlink, when the base-station transmits a superimposed
signal to both a weak and a strong user, the base-station assigns a power level to the
weak user, i.e., user with poor channel quality, such that it can decode its signal without
performing SIC. The strong user can correctly decode its signal by performing a SIC
operation in which the signal intended to the weak user is first subtracted, leaving only the
signal intended for the strong user. This decoding order is feasible since the strong user
has better channel quality than the weak user and therefore can successfully decode the
message intended to the weak user and remove its impact on the total received signal.

Despite NOMA being a new multiple access technique that is based on both superposi-
tion coding at the transmitter and SIC at the receiver, these techniques are not new; their
origins can be found in the existing literature on information theory [2]. The elegant idea
of using superposition coding at the transmitter along with SIC at the receiver was first
proposed by Cover [3] and it was shown to achieve the capacity of the broadcast channel
[16]. The information theoretic broadcast channel is a communication scenario where a
single transmitter (base-station) sends different messages to several receivers taking into
account the limitations of the channel and the interference between the messages.

Although NOMA is a promising technique to improve the capacity of wireless com-
munications systems as well as increase the number of supported users, it faces several
challenges that need to be addressed. First it requires complex SIC receivers to decode
the different messages being transmitted simultaneously. Moreover, as a result of multi-
plexing different messages in the power or the code domain, NOMA generates additional
inter-user interference which can affect system performance and needs to be carefully man-
aged. These challenges can be addressed using advanced signal processing techniques and
efficient network operation solutions.
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2.3 Related Work

Significant efforts have been made towards designing schedulers for NOMA since such
designs are not trivial extensions to OMA scheduling even when the power per PRB is
given. In addition to selecting users and the decoding order for a given PRB, the scheduler
has to determine how to distribute the power between the scheduled users.

A plethora of (joint) resource allocation problems and algorithms for DL NOMA have
been proposed with various design objectives and with different assumptions (single cell
vs. multi cells, flat-fading channels, etc.). DL NOMA algorithms have been proposed for
maximizing energy efficiency [17, 18, 19, 20, 21], total system-throughput [22, 23, 24] and
outage minimization [25, 26]. Practical system constraints such as SIC receiver sensitiv-
ity [27, 28] and maximum power per antenna [29] have been considered. Fair resource
allocation in NOMA has been considered through minimum QoS (Quality of Service) con-
straints [30, 31], min-max fairness [32], utility fairness, [33, 34], weighted sum-rate [35] and
proportional fairness [36].

The scheduling problem is typically formulated as a non-convex optimization problem
that is NP hard [37, 38]. In the special case of a single-cell network, the authors in [21, 39]
used bio-inspired global optimization heuristics to jointly optimize power allocation and
user selection. The joint user-selection and power distribution for NOMA is typically
divided into sub-problems where each problem is solved independently (note that the power
allocation problem defined as the allocation of power to different PRBs is rarely studied).
For the special case of a flat-fading multi-carrier NOMA system [34, 31] have proposed a
decomposition approach [40] to divide the joint problem into sub-problems that are solved
independently and iteratively. This iterative process has no guarantees of solving, or even
convergence, but often works well in practice.

In [41], theoretical guidelines for user-selection algorithms are studied assuming a fixed
power distribution strategy and the authors focus on single carrier systems. In [42], an
algorithm for finding the user-selection that maximizes the sum-rate is proposed for a
given power allocation in a downlink multi-carrier single-cell system with the constraining
assumption that the number of active users is N times the number of subchannels. A
greedy user-selection method for weighted sum-rate maximization has been proposed in
[43] along with a DC (Difference of Convex)-programming power distribution method for
a multi-carrier single-cell system. In [22], K-means clustering is employed to solve the user
selection sub-problem.

The power distribution sub-problem has been studied extensively for some scenarios.
For a single-cell single carrier system, the authors in [33] have found a closed form solution
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for a-fair power distribution with the assumption that all users are scheduled for the whole
time-slot. In general, for the single-cell single-carrier case, a solution can be derived by
solving the KKT (Karush—-Kuhn—Tucker) optimality conditions of the problem as shown
in [44, 45]. In [46], the authors propose a variant of the water-filling method for power
distribution. In [43], DC programming was proposed to find the proportional fair power
allocation.

Most of the proposed resource allocation policies for NOMA ignore power allocation,
inter-cell interference and assume single-cell systems. In [47], a case study of max-min
fair NOMA is analyzed to show the limitations of such inter-cell interference agnostic
schemes. In [48], an inter-cell interference coordination scheme for NOMA is presented.
The main idea is to use a central controller to dynamically allocate bandwidth per cell. The
scheme increases the amount of signaling in the network since it requires active coordination
between different base-stations.

The majority of papers assume flat-fading. However as 5G is envisioned to support
much higher speeds there is a need for NOMA schemes that can work well in frequency-
selective fading scenarios. Furthermore, most prior works compute the achievable rate using
Shannon’s capacity formula. Not only does this lead to overestimation of the achievable
system performance but it also biases user selection. Indeed, with Shannon’s formula, it
rarely makes sense to select less than the maximum number of users while with a practical
MCS scheme, it does as will be shown later.

The novelty of our work resides in the fact that we i) study a hybrid multi-cell NOMA-
N system, consider MCS selection and non-flat channels, ii) formulate and solve the most
general centralized joint scheduling problem for different values of NV (this centralized prob-
lem can be seen as the optimum inter-cell interference coordination scheme), iii) address
the problem of power allocation through the design and the calibration of a power-map
suitable for both OMA and NOMA, and iv) propose a simple practical local algorithm for
user selection as an alternative to optimal user-selection, achieved by exhaustive search.

2.4 System Model and Assumptions

We consider a DL cellular system with J base-stations (the set of base-stations is denoted
as J = {1,... ,J}) and a licensed band of size B Hz that is reused at each base-station.
The system is OFDMA-based and the band is divided in M subchannels, each with a
bandwidth b = % Hz. Each base-station j has a total transmission power P; (in Watts).
Time is slotted and a frame is composed of T time-slots of duration 7 sec each. The
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sets of all channels and times slots in a frame are denoted as M = {1,... ,M} and T =
{1,... ,T} respectively. A PRB (Physical Resource Block) is a pair (m,t), and is the
smallest scheduling unit.

We consider a realization w that is characterized by the set of all users i = {1,... ,U}
in the system, the user association that partitions ¢/ into J subsets U; and all the DL
channel gains. Let gZ}’t be the channel gain between base-station j and user ¢ on PRB
(m,t). Note that we assume a general frequency-selective channel. Let y;; be a binary
parameter indicating if user ¢ is associated with base-station j when y;; = 1 or not if
y;; = 0. We assume that user association y; ; is computed beforehand and that each user ¢
is associated with only one base-station, i.e., Zj yi; =1and j(i) = Zjej y;,; denotes the
base-station that user 7 is associated with.

The transmit power of base-station j on PRB (m,t) is denoted as pgn’t. In an OMA
system, the SINR (Signal-to-Noise and Interference Ratio) experienced by user ¢ on PRB

(m, t), if the user is allocated that PRB exclusively, can be computed as:
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where S;™", I o2 are the received signal, inter-cell interference and noise powers respec-
tively.

The rate rzm’t, seen by user i on PRB (m,t), is a function of the SINR ~." * experienced
by the user, i.e., r;”’t = f(" ). In practical cellular systems, a base station has access
to K MCS (Modulation and Coding Scheme) and needs to select one of them for each
user it wants to transmit to, based on its radio conditions. In that case, the function f(.)
is a piece-wise constant increasing function [1]. From an optimization perspective, this
piece-wise constant function is problematic since it is non-differentiable and quasi-concave
[49]. For more on rate functions please see Section 2.9.

In DL NOMA-N, base-station j can transmit at most N messages simultaneously using
the same PRB (m,t) via superposition coding. Hence, in its most general form, the DL
scheduler computes, on a per PRB basis, the power allocation p;”’t, selects an ordered set of
active users (i(1),%(2), ..., %)) (with the appropriate SIC capabilities) to share the PRB as
well as the power share of each user. Mathematically, mapping between users and selected
users is represented by the binary decision variable a;’ff € {0,1} which has a value of 1
when user 7 is selected as the n-th user, i.e. i), in PRB (m,t) and 0 otherwise. The
power share of the n-th selected user i(,) is denoted by x;nf € [0, 1]. Note that it is possible
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to select less than N users in a PRB by allocating no power to some of the users in the
ordered set.

Due to the nature of DL-NOMA, there are certain restrictions on the selection of the
ordered user set. At the receiver side, each user in this ordered set decodes several messages
in a specific order using SIC. User ¢(y) decodes its message treating every other message as
a source of interference, i.e., it does not require any SIC capability. User i), with n < N,
uses SIC to eliminate the interference induced by users i, 1), ..., i) prior to decoding its
message under the interference created by users iy, ..., i(,—1), hence, it needs the capability
to decode K = N —n —1 other signals than its own, which we refer to as SIC-K capability
User (1) uses SIC-N to cancel every other message and decodes its message free from
intra-cell interference. Therefore, user i, the n* user in the ordered set, gets the following
rate in PRB (m, t):

xm’.t . ym’t
n,J () 1t ) (2.2)

7ﬁm,t o am,tf<
nae  Ong n—1 m,t m,t
z:q=1 Lo i +1

where recall that j(i) denotes the base-station that user i is associated with. As a result,
two main constraints on the ordered user set selection arise. Namely, a UE selected as the
n-th active user in a NOMA-N system must: 1) have SIC hardware capability to decode
(N — n) messages before decoding its own message, and 2) its current channel conditions
allow for successful elimination of these messages.

The SIC capability of a UE is determined by the number of interfering signals a UE
can cancel before decoding its own message. A UE with SIC-K capability (K > 0) can
cancel K messages before decoding its own message. For a UE ¢ with SIC-K capability,
we define the binary capability indicator parameter z;,, as:

1 n>N-K
’ 0 otherwise,

which determines if user i can be selected or not as the n-th active user considering its
SIC capability. We clarify the parameter through the following examples. Assume UE ¢
has a SIC-1 capability and that the base-station is using NOMA-3. It would have z;; = 0,
Z9; = 1 and z3; = 1 which means that it can never be selected as the first in the order,
i.e., as i(1). In addition, if a UE has no SIC capability (X = 0) it would only have zy; = 1
and z,; =0 Vn < N. Note that zy,;, =1 Vi.

Recall that the n-th selected user needs to decode the messages intended for i, 11y, ..., i(w)
successfully to ensure that its own message is decoded successfully. For i,y to be able to
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decode the message intended to user 4,11y the following condition must be satisfied:

xm,t Fym,t mm,t ,-)/mvt
m,t n+1,5 14 mt n+1,5 Vi .
Z an,i f(zn xm,t m,t + 1> Z § a’n-i-l,i f ( Zn :Cm’t mt I 1) \V/] (24)
i€l; g=1%q;; i i€l; g=1%q,5 Vi

This condition can be simplified to be: ”y{? nf > 72231) if the rate function is monotonically
increasing. In short, the ordering is based on the OMA SINR reported by each user. Note
that due to the frequency-selective nature of the channel a valid order in one PRB might
not necessarily be valid in another PRB due to channel variations.

Next we formulate the centralized scheduling problem for the hybrid NOMA multi-cell
system.

2.5 Centralized Scheduling for Hybrid NOMA

2.5.1 Problem Formulation

Recall that by scheduling, we refer to the problem of jointly selecting the per PRB power
allocation p?’t, the ordered set of users characterized by (anm7;t), the intra-PRB power dis-
tribution among the selected users x%t, and the MCS selection for each transmission in
each PRB which gives the rates rf:;t. Scheduling is performed on a frame-basis and channel

gains are not assumed flat within a frame.

Given a multi-cell system realization w (that includes the set of users (U), the user
associations given by y; ;’s, all the channel gains gglj’t’s, the K;’s (i.e., the SIC capability of
each user), the z,;’s, the P;’s, and 0?), we formulate problem P;(w) as follows all variables
are non-negative and real except the az;t’s that are binary. The purpose of investigating

centralized scheduling is to provide an upper-bound against which practical schemes can
be compared.
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P;(w): Centralized NOMA-N scheduling problem

max ||||/\,
m,t m,t m,t

Afj;z;?gzn’fj e €T €U

tc {0,1} Yn,m,t,i (2.5a)
Za”” <1 Vn, m,t (2.5b)
i€U;
Zx”” <1 Vm, t, j (2.5¢)

N
<> > e Vi (2.5d)
teT meM n=1
m,t m,t

m,t m,t x n,j(i)"~e .
o <a,:f — mt o o Vn,m,t,1 (2.5e)
’ SN TS o+ I
m,t m,t
x S
m,t m,t J(Z y
ot < Z ayn, < — mt — mt), Yoe{l,...,.n—1},n,m,t,i
S Yoy A Sat 4 o + I
2.5f)
=y & M=) (U —yi)elt Viom,t (2.58)
JeT JjeT
meM
an < Zng Vn,m,t,i (2.51)

The objective of the centralized scheduler is to maximize the product of the throughput
of all users in the multi-cell system within a given frame comprising MT PRBs to achieve
per-frame proportional fairness between the users. In that case, as discussed in [50, 51,
52], the natural performance metric to compare schemes is the geometric mean of the
throughput, which is the normalized product defined as: GM (w) = (T] T i)Y/

JET i€l

Constraint (2.5b) follows from the fact that a PRB can only be allocated to a single

user of each rank in the order. Constraint (2.5¢) follows from the power distribution
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fraction definition for each user in the ordered set for a given PRB. Constraints (2.5¢) -
(2.5f) follow from the NOMA conditions for successful operation described in the previous
section. Constraint (2.5h) states that the power per time-slot is kept below the maximum
transmission power available. Finally, constraint (2.51) ensures that a user has the SIC
capability needed to perform the required interference elimination procedures prior to
decoding its own message.

The problem in the current form is a MINLP (Mixed Integer Non-Linear Program)
which is very hard to solve for a reasonably sized system. To solve the problem more
efficiently, the following change of variable is performed:

m,t _mt

m,t o m,t
Prg = ni Ty )Pig) (2:6)

This is done by noting that we can move the binary allocation variable inside the rate
function and thus the product of the three variables appears in the argument of the rate
function. Constraint (2.51) is dropped and the binary capability z, ; parameter is multiplied
by the rate function to yield the same behavior as constraint (2.51) by blocking allocation
to users that lack the require SIC decoding capability.

By using the variables <pnm7;t along with p;-"’t, the problem can be re-written as P2(w)
(all variables are non-negative and real and ¢ > 0 is a small constant).
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P;(w): Centralized NOMA-N scheduling problem (signomial form)

Lomax T

t ,rm

PuiPy jeT iel;
zEZ/{jn 1

mit
Qpnl SO’n’U SE

m,t m,t
Tnz Tnv <e

met<P

meM

LEY Y

teT meM n=1

m,t
g i 907”
:Lnlt < Zn Zf — 7.7()
gl ST S on 4o + §: e
0,5(2) —
lleuj(i) g=1
(pnz Z Qog,
it < sz<

> (e, ©

Zgo '+ o2+ Z

UEZ/{]<,L) VGL{j(Z) q=

Vi,m,t  (2.7a)

Vi, v €U i # v}, j,m,t,n

(2.7b)

V{i,v el i# v}, j,m,t,n
(2.7¢)

v (2.7d)

Vi (2.7¢)

Vi,m,t,n (2.7f)

> Voe{l,..,n—1},i,m,t,n

(2.7g)

The total transmitted DL power per PRB is the sum of the power allocated to the

N multiplexed users (constraint (2.7a)).

Constraints (2.7b) and (2.7¢) enforce that only

one user can be allocated a non-negligible power or rate at every rank in the ordered set

allocated to each PRB.

Upperbound to P (w): Py(w) is equivalent to problem P (w) for e = 0 and it becomes
an upper-bound if € > 0 since it has a larger feasible search space. To solve the problem,



we replace the piece-wise MCS function f(.) by a monomial power function f(.) that upper
bounds it and then Py(w) becomes a signomial program. The single-condensation method
is then used to solve Py(w) [53], [54].

Feasible solution to P;(w): Let the solution of Py(w) be denoted as ((pif)* and
(pT’t)*. The value of the objective function is an upper bound for problem P;(w). A
feasible solution (and hence a lower bound) to P;(w) can be obtained from the solution of

P3(w) by using the following procedure. First, a feasible user selection is computed as:

1 if ¢ = argmax (gpf':;t)*
(ani)" = et (2.8)
0 otherwise

Then, a feasible power-split is computed using

> (end)

€U
m,t)*

(pj(l-) (2.9)

m,t \x __
(@) =

Finally, the rate ;" " is calculated by using the piece-wise constant MCS function f(.).

If the upper bound and the lower bound are close, then the feasible solution is quasi-
optimal. Note that a better feasible solution could be obtained from problem Py(w) by
replacing f(.) by a tight (not necessarily upper bounding) monomial approximation f4(.).
More details on the rate function approximation are given in section 2.9.

2.5.2 Numerical Results

In this subsection, the upper bound and the feasible solution (lower bound) for P;(w) for
NOMA-2 and NOMA-3 are compared for different mixes of SIC capabilities. To quantify
the impact of careful power allocation, the feasible solution is also compared with the one
obtained with equal power allocation per PRB. Specifically, a regular (hexagonal) network
with J = 7 identical base-stations (P; = 40 W for all j) is considered with wrap-around to
prevent border effects.

We consider an urban setting and the large scale fading component of g%’t is calculated
using the corresponding 3GPP model [55]. The channel power gain between user i and
base-station j in PRB (m,t) is calculated as:

m,t m,t 7PL4,-/10
9ij = Fiy 10770,

26



Table 2.1: System parameters used in the simulation.

Network Model Parameters Channel Model Parameters
Parameter Symbol | Value Parameter Symbol Value
Minimum UE distance d(min) 35 ms Subchannel bandwidth b 180 KHz
Inter-site distance D 500 m Carrier frequency fe 2.5 GHz
Number of users U 10 J Shadowing coefficient O shadow 6 dB
Number of base-stations J 7 Noise spectral power density N, -174 dBm/Hz
Number of subchannels M 100 | Coherence bandwidth (pedestrian) B 100 MHz
Number of time-slots T 10 Coherence time (pedestrian) . 10 ms
Time slot duration T 1 ms | Coherence bandwidth (vehicular) By, 2 MHz
Base-station power P; 40 W Coherence time (vehicular) T, 10 ms

where Ff;t is the small scale fading component and PL; ; is the path loss which is assumed
to be the same for all PRBs in the frame.

Specifically, the path-loss PL; ;, in dB, between user i and base-station j is computed
as:

PL;; = 13.54 4 39.08 log, <\/d3j (m) + (25 — 1.5)2> +201og,(fo) +20+ S, (2.10)

where d; ; is the distance between base-station j and user ¢ in meters, f, is the carrier
frequency in GHz and S, ; is a log-normal random variable with a zero mean and a standard
deviation ogr = 6 dB that accounts for the impact of large scale shadowing.

For small scale fading, independent and identically distributed (i.i.d) block Rayleigh
fading is considered in which the small-scale fading parameters are constant within each
coherence block, and are independent from block to block. A coherence block is defined as
the set of adjacent PRBs in time and frequency for which the channel fading parameters
remain the same. This time (resp. bandwidth) is called the channel coherence time (resp.
channel coherence bandwidth). The fading component within a coherence block is an
exponential random variable with a unit mean.

Two fading scenarios are considered, one for pedestrian users and one for vehicular
users. For the pedestrian setting, a coherence bandwidth and time of 10 MHz and 100 ms
respectively are considered. For the vehicular setting, a coherence bandwidth and time of
2 MHz and 10 ms are assumed. A user sees the same channel gains on all the PRBs of
a coherence block. The feasible rate computations are based on the MCS mapping table
presented in [1]. We assume that the user association is determined based on the best
mean SINR. The values of the parameters are listed in Table 2.1. Note that o2 = Nyb.

Five scenarios are compared, each with specific system and UE capabilities. Namely,
the scenarios considered are:
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Figure 2.5: Centralized scheduling performance for the pedestrian setting, results are av-
eraged over 100 realizations with 70 users uniformly distributed over the 7 cells.

1. OMA where the base-stations transmit only one message to one user in a PRB.

2. Hybrid NOMA-2 where the base-station can schedule two users in a PRB but only
50% of UEs are SIC-1 capable.

3. Hybrid NOMA-3 where 33% are SIC-2 UEs and 67% are SIC-1 UEs.
4. NOMA-2 N = 2 where all UEs are capable of doing SIC-1.
5. NOMA-3 where all UEs are capable of doing SIC-2.

Figs. 2.5 and 2.6 present the numerical results (feasible solution and upper bound) for the
centralized NOMA scheduling for the pedestrian and the vehicular settings, respectively.
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Figure 2.6: Centralized scheduling performance for the vehicular setting, results are aver-
aged over 100 realizations with 70 users uniformly distributed over the 7 cells.

For each scenario we also show the state-of-the-art where the power is divided equally per
subchannel, i.e., p;n’t = % V'm e M, t € T. This scheme is referred to as the equal

power allocation scheme in the following.

The results given are averaged over 100 realizations, (which corresponds to 1000 time-
slots and 100,000 PRBs) when the total number of users in the system is 70 uniformly
distributed over the 7 cells. The geometric mean throughput is used as performance indi-
cator since it is the objective function for proportional fair scheduling.

The gap between the feasible solution and the upper bound shows that the upper bound
is tight. For the pedestrian setting, the gap is 3.4%, 5.3%, 5.4% for the centralized OMA,
NOMA-2 and NOMA-3 schemes respectively. Similarly, for the vehicular setting, the gap
is 1.8%, 2.2%, 2.3% for the centralized OMA, NOMA-2 and NOMA-3 schemes respectively.
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Likewise, the gap in the cases of hybrid NOMA-2 and NOMA-3 the gap is 4.6% and 4.8%
respectively at low UE speed and the gap is 2.0% and 2.1% respectively at vehicular speed.
Hence, the centralized scheduling problem has been solved to quasi-optimality.

The first observation is that, if we take OMA with equal power allocation as the baseline,
a larger gain can be obtained by improving power allocation (and remaining with OMA)
than using NOMA-2 (or 3) with equal power allocation. In fact, with optimal power
allocation, the gain due to NOMA decreases (the gain of NOMA-2 over OMA is about 31%
and 22% with equal and optimal power allocation respectively). The second observation
is that NOMA-3 does not bring a significant improvement over NOMA-2. The fact that
power allocation can significantly improve performance motivates the derivation of simple
and efficient power allocation schemes in the next section. We also note that the mobility
model has a significant impact on the gains achievable via NOMA. Indeed, the centralized
scheduling, with optimal power allocation, for NOMA-2 (resp. NOMA-3) brings a gain
(compared to equal power allocation) of 108% (resp. 106%) for the pedestrian case and
only 17% (resp. 17%) for the vehicular case. This is mainly due to the longer fading
duration for low mobility users that can be counteracted by well-thought power allocation
and interference coordination. Finally, the fact that not all users have the right SIC
capability impacts NOMA’s achievable performance.

The results so far are based on centralized scheduling and do not show large gains for
NOMA over OMA (for a given power allocation scheme). However, these results are based
on independent realizations as oppose to a dynamic scenario where users come and go.
To validate these conclusions in a more dynamic setting, we will first propose a realistic
(static) power allocation scheme. Indeed, a dynamic coordinated power allocation is too
difficult to manage in practice. We will show next that the practical static power allocation
scheme ensures operation simplicity, is easy to calibrate, and produces performance that
is relatively close to the performance of the upper bound centralized scheduling. However,
we have one additional engineering insight to discuss before doing so regarding the use of
a practical MCS function instead of Shannon’s formula.

In Fig. 2.7 (resp. Fig. 2.8), we compare how often the scheduler would select 1 user
instead of 2 (resp. 1 user or 2 users instead of 3) when Shannon’s log,(1+ SIN R) formula
is used as opposed to when the practical MCS is used for NOMA-2 (resp. NOMA-3).
The results show that with Shannon’s formula, the scheduler will always try to select the
maximum number of users. However, with the practical MCS scheme, the scheduler will
select a single user for 20% of the PRBs for NOMA-2 and will select 1 or 2 users for 50%
of the PRBs for NOMA-3. Hence, using Shannon’s formula to perform user selection can
be misleading.
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Figure 2.7: Probability of scheduling one user with Shannon formula (Red) and practical
MCS rate function (blue), assuming NOMA-2 and all users are at least SIC-1 capable.

2.6 Static Power Allocation via Power Map for NOMA

It is important to note that once the power per PRB is fixed, as in the case of the equal
power allocation scheme, each base-station can determine its scheduling locally (i.e., the
selection of users in each PRB, the power distribution within a PRB among the selected
users, and the MCS selection for each transmission in each PRB), making the scheduling
problem much simpler. Indeed, in the centralized problem above, the scheduling in each
cell is only coupled to scheduling in other cells because of power allocation. In this section,
a simple scheme is presented that sets the power allocation statically (but not equally)
for NOMA by pre-computing beforehand (i.e., in the planning stage) a power map, using
many realizations. This power map is then published and used by each base station during
scheduling. Combined with a practical local user scheduling algorithm, to be presented
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Figure 2.8: Probability of selecting one user (solid) and two users (dashed) with Shannon’s
formula (Red) and practical MCS rate function (blue) assuming NOMA-3 and all users are
SIC-3 capable.

next, the proposed power map improves the performance of NOMA compared to the state of
the art that uses equal power allocation and approaches the performance of the centralized
upper-bound presented earlier.

Specifically, while pT’t, the power used by base-station j in PRB (m,t), is a variable in
Py (w), it will be set offline (and remains the same for all frames) using a process described
next and become an input to the scheduling problem. The set of p;”’t for all j,m,t is called
a power map. Note that equal power allocation can be seen as a special power-map. It
was shown in [56], that carefully calibrated power maps for OMA are robust to changes
in operating conditions such as the number of users per cell and the channel conditions
and yield excellent performance. To the best of our knowledge, this work shows the first
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attempt at generalizing the concept of power map to NOMA.

To compute our power map, the M subchannels are divided into L interleaved sub-
bands, each with an equal number of subchannels, denoted as M;. In cases where the
number of subchannels M is not divisible by L, a minor adjustment is made to keep the
number of channels in all interleaved sub-bands roughly the same. For each base-station,
each PRB in a sub-band is allocated the same power level.

Base-stations in the system are divided into L groups (similar to frequency reuse col-
oring). Let s(j) be the group number for base-station j. All base-stations in the same
group use the exact same transmit power in PRB (m,t). We assume that the power used
on a PRB can only take one of L values. Let £ = {f,..., 5L} be the set of per channel
power levels where 0 < 5, < P; for [ = 1,..., L (our purpose is to compute these values
offline). The power levels are allocated cyclically to each PRB with a different initial level
per group, i.e., each group uses a different level in PRB (1,1). For example, referring to
Fig. 2.9 where L =T = 3 and M = 5, the base-stations in group 1 would use power level
p1 on PRB (1,1), f; on PRB (2,1), etc. Base-stations in group 2 starts the cycle with
power 35 on PRB (1, 1), etc. Thus, the transmit power p;”’t used by base-station j on PRB
(m,t) is statically set at (5, where

=1+ ((s(j)—1)+(m—1)+(—1) mod L). (2.11)

The interleaving helps reduce long-term fades by providing more diverse opportunities
to be utilized by a smart scheduling algorithm. With this scheme each cell sees some PRBs
with improved SINR (with respect to the case with equal power allocation) by reducing
the inter-cell interference (of course in return, each cell also sees some PRBs with worse
SINR). As an example, assume that (51,32, 53) = (0.04,0.06,0.9) which makes all the
PRBs assigned 5 see very good SINRs (since the BSs in other groups transmit with low
power). These PRBs could be used for edge users while the users closer to the center can
make use of the PRBs where the inter-cell interference is larger. Recall that the PRBs are
dynamically allocated to users by a local scheduler.

The objective is to obtain a power map that is robust, i.e., performs well for a large
range of realizations. To do so, a methodology similar to the one proposed in [8] is followed.
A set ) of test realizations is considered to calibrate, for a given L, the power map (i.e.,
obtain the set £). Given a pre-selected partition of the base-stations into L groups, the
objective is to select £ that maximizes the ensemble average of the geometric mean GM (w)
over the test realizations.

Specifically, given a set of realizations {2 where each realization w includes the set of
user U (w), the y; ;(w)’s, all the channel gains gZLj’t(w)’s, the K;(w)’s (i.e, the SIC capability
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Figure 2.9: Example power map with L =3, M =5 and T = 3.

of each user), the z, ;(w)’s), the P;(w)’s, the s(j)’s (i.e, the group number per base-station),
L and o2, we formulate problem P3(w) as below. All variables are non-negative and real
except the a™’s that are binary.

n,t
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P3(£2): Power map calibration with L levels for NOMA-N.
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The objective function of P3(€2) is the weighted average of the geo-mean throughputs
computed over the calibration set of realizations €2. The weight is the number of users in a
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given realization since the geo-mean throughput decrease as the number of users increase
and this modification prevents the solver from returning a solution biased towards lightly
loaded scenarios.

This calibration problem can be transformed into a signomial program and solved the
same way as for the centralized problem (though it is larger). Note that this problem has
to be solved offline in a planning phase and hence its complexity is not a major issue.

2.6.1 Numerical Results

We consider the same network as before and focus on the power map computations. We
show that the power map computed for OMA for the pedestrian setting works well for
OMA in the vehicular setting and for NOMA in both settings. The performance results
for two distinct single settings, i.e., a pure pedestrian and a pure vehicular are shown.
Next, a mixed setting consisting of both pedestrian and vehicular users is studied. Similar
conclusions have been seen in irregular (non-hexagonal) network deployments.

We test the power map approach for L = 2,3, and 5. The power levels are calibrated
by using a calibration set ) containing 60 realizations with different average numbers of
users per base-station, i.e., 5, 10 and 15 users. We test the power maps with another set
of 100 realizations. All shown results are averaged over these 100 test realizations.

Power map robustness

For a given L, 6 power maps have been computed (one for OMA and pedestrian, one for
OMA and vehicular, one for NOMA-2 and pedestrian). The power maps for all the cases
are given in Table 2.2. The six power maps are very similar and hence, for a given L,
the power map obtained for OMA and pedestrian was used in all settings going forward.
To test the robustness of the power map calibrated for OMA for the pedestrian setting,
we apply it to the 5 other scenarios and show the differences in performance in Table 2.2.
Strikingly, the results show that the losses are minimal and this power map is robust to
the setting and the scheme.

Performance for two distinct “pure” settings

Fig. 2.10 (resp. Fig. 2.11) shows the results for the pure pedestrian (resp. vehicular) setting
for OMA, NOMA-2 and NOMA-3. For each case, for an average of 10 users per cell, there
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Table 2.2: Values of the f;’s for different schemes and settings. The last column shows the
performance loss when using the OMA pedestrian power map instead of the power map
specifically computed for a setting and a scheme.

Pedestrian Vehicular
L | Scheme I P
B/ 5 Performance Loss 16/ 5% Performance Loss

OMA 0.10.9 - 0.12 0.88 0.1%
2 | NOMA-2 0.10.9 0% 0.16 0.84 0.2%
NOMA-3 0.10.9 0% 0.16 0.84 0.3%
OMA 0.04 0.06 0.9 - 0.06 0.09 0.85 0.7%
3 | NOMA-2 0.04 0.06 0.9 0% 0.06 0.09 0.85 0.6%
NOMA-3 0.04 0.06 0.9 0% 0.07 0.09 0.84 0.6%
OMA 0.001 0.05 0.049 0.05 0.85 - 0.05 0.05 0.10 0.05 0.75 0.3%
5 | NOMA-2 | [0.001 0.05 0.049 0.05 0.85 0% 0.05 0.05 0.05 0.05 0.80 0.2%
NOMA-3 | [0.001 0.05 0.049 0.05 0.85 0% 0.05 0.10 0.05 0.05 0.75 0.2%

are b results corresponding to equal power allocation, optimal power allocation (referring
to the upper bound computed by solving the centralized problem) and three power maps
(for L = 2,3 and 5). For each value of L, a power map is computed for OMA pedestrian
and is used for OMA, NOMA-2 and NOMA-3 for both settings. Given a power map, the
scheduling for each realization is done optimally and locally as explained previously.

Focusing first on Fig. 2.10, there is a significant improvement in performance when
using power maps instead of equal power allocation for all cases. For OMA, the gains
are 49.7%, 70.4% and 89.1% for L = 2,3 and 5 respectively with respect to equal power
allocation. For NOMA-2 (resp. NOMA-3) the gains are 43%, 59%, 72%% (40%, 54%, 67%)
with respect to equal power NOMA-2 (resp. NOMA-3). The gaps between the optimal
power allocation and the best power map are 25%, 20% and 19% for OMA, NOMA-2 and
NOMA-3 respectively.

Comparing NOMA-2 (resp. NOMA-3) over OMA, a gain of 38.5% (resp. 49%) with
respect to equal power allocation and 21.1% (resp. 29.6%) is obtained when a power map
with L = 5 levels is applied. The gain of NOMA-3 over NOMA-2 is between 7.6% for equal
power allocation and 6.9% for the power map with L = 5.

Focusing now on Fig. 2.11, it is seen that the achieved rates are higher due to the
shorter fade duration and that the gains due to the power map over equal power are less
significant. For OMA, the gains with respect to equal power are 9.9%, 13.5%, 15.4% for
L = 2,3, and 5 respectively. For NOMA-2 (resp. NOMA-3), the gains with respect to
equal power, are 3.7%, 6%, 6.6% (resp. 2.3%,3.2%,3.9%). The gap between the optimal
power allocation and the best power map is: 22.1%, 11.4% and 11.1% for OMA, NOMA-2
and NOMA-3 respectively. Comparing NOMA-2 (resp. NOMA-3) over OMA, a gain of
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Figure 2.10: Power map performance for OMA, NOMA-2, NOMA-3 for the pedestrian
setting when the average number of users per cell is 10 and all users have full SIC capability.

29.9% (resp. 36.1%) with equal power allocation and 20.3% (resp, 22.4%) with a power
map with L = 5 levels are observed. The gain of NOMA-3 over NOMA-2 is between 4.7%
for equal power and 2.9% for power map with L = 5.

The following results show that the benefits of NOMA versus OMA and of power map
versus equal power are very dependent on the setting. In a real scenario, there would be a
mix of pedestrian and vehicular users. Hence, mixed settings are studied next.

Performance for mixed settings

In the following, a mixed setting is assumed where 20% of the users are vehicular users,
i.e, their channels have smaller coherence blocks while the remaining users are pedestrians.
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Figure 2.11: Power map performance for OMA, NOMA-2, NOMA-3 for the vehicular
setting when the average number of users per cell is 10 and all users have full SIC capability.

We compare the performance of OMA, NOMA and hybrid NOMA for this setting.

Fig. 2.14 gives the gain of NOMA-2 and NOMA-3 over OMA when using the same
power map with L = 5 as a function of the average number of users per cell for an hybrid
case and a non-hybrid one. The hybrid NOMA-2 case has only 50% of the UEs capable of
doing SIC and for the hybrid NOMA-3 case, each UE is equally likely to have SIC-2, SIC-1
or no SIC capabilities. The results show that the gain increases with the number of users
per cell since more users means more options for the scheduler to make use of NOMA and
enhance the system performance. The gain of using NOMA-3 over NOMA-2 also increases
with the number of users. Finally, a hybrid mix of SIC capability has a significant impact
on the performance.

Figs. 2.12 and 2.13 compare the performance gain of NOMA-2 with power map with
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Figure 2.12: NOMA-2 geometric mean throughput gain for power map relative to equal
power allocation versus the average number of users per cell for the mixed setting.

L = 2,3, and 5 over NOMA-2 with equal power allocation. The gains are significant. As
expected, the more power levels the better the performance since the system have more
degrees of freedom to optimize over. The gains also increase with the number of users until
they reach a plateau. Similar results were obtained for NOMA-3 as seen in Fig. 2.13. We
also performed a similar numerical campaign for the case of an irregular non-hexagonal
network. It led to similar conclusions.

In Fig. 2.15, the geometric mean throughput for hybrid NOMA-2 assuming different
SIC-1 users ratio per cell for different power maps. We conclude the following about
hybrid NOMA. First, the geometric mean throughput increases with the SIC capability
probability of the served users, where we define this probability to be the ratio of users
with SIC 1 capability to the number of served users. Second, the proposed power map
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Figure 2.13: NOMA-3 geometric mean throughput gain with power map relative to equal
power allocation versus the average number of users per cell for the mixed setting.

brings an approximately equal gain to OMA, Hybrid NOMA and NOMA which means
that the present solution is robust to the choice of multiple access scheme as well.

In summary, NOMA-2 is likely good enough since NOMA-3 provides only 8% more gain
compared to NOMA-2 considering the associated hardware complexity, and that NOMA-2
with a power map with L = 5 performs significantly better than NOMA-2 with equal
power allocation (the state-of-the-art). In the next section, NOMA-N (N = 2,3) is used
with a power map and a practical local scheduling scheme is proposed for NOMA-2 and
NOMA-3 that is of low complexity and provides good performance.
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Figure 2.14: NOMA vs. OMA gain in geometric mean throughput with a power map with
L = 5 versus the average number of users per cell for the mixed setting

2.7 Practical Local Scheduling for NOMA with Power
Map

2.7.1 Design of Online Algorithms

Assuming a pre-computed static power allocation as presented in Section 2.6 (this includes
equal power allocation), the centralized scheduling problem P;(w) can be decoupled into
local scheduling problems, to be performed at each base-station independently, without
loss of optimality. These local problems only require the OMA SINR estimates per PRB
at each base-station (hence NOMA does not incur a larger signaling overhead). In the
following, the local hybrid NOMA-N scheduling problem is formulated on a given frame
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as P4(d) for a given single cell system realization 6 which contains all the per PRB SINRs,
~¢’s. In this problem, for ease of notation, the PRB double index (m,t) is replaced by a
single index ¢ = m + M (t — 1) and the local scheduling problem is formulated in terms
of the OMA SINR values 7{ directly. Furthermore, as the scheduling problem is now a
local problem, the index 7 is omitted for simplicity. Note also that all variables except the
(a5, ;)’s are non-negative and real. P,4(d) is a much smaller MINLP than P;(w). However,
it cannot be solved fast enough to be practical. Instead of trying to compute the schedule
for one frame at a time, we will follow a sequential approach. A scheduling decision is
computed for each PRB sequentially in a myopic fashion while keeping track of history to
provide fairness on a period possibly larger than a frame. This is in line with state of the
art OMA schedulers that are opportunistic, sequential and aim to maximize proportional
fairness at each step considering the past but without considering the future (i.e., the rest
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P,4(9): Local NOMA-N scheduling problem (per frame)

ay; €10,1} Vn, c,i (2.13a)
Zafm <1 Vn, ¢ (2.13b)
N
> e <1 Ve (2.13¢)
n=1
Ui < Zni Vn,c, i (2.13d)
N
AN e, Vi (2.13¢)
c n=l1
i ‘
Tri < Qi ( T C) Vn,c, i (2.13f)
Zq 1 xc 1/77,

Thi < a uf( ) Vn,c,i,0 € {1,....,n— 1} (2.13g)
Z ) q 1xn+1/fy§

of the frame). Consider PRB ¢ and let the rate seen by user i over the window including
PRB ¢ and the past W PRBs, be

Ai(€) = WRS +1¢, (2.14)

where 7¢ is the potential rate user i can receive if allocated PRB ¢ (this rate will depend on
its place in the ordered set), W is the fairness window chosen by the operator, and R is the
average per PRB rate seen by user ¢ in the past W PRBs. Then the optimum scheduling
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decision in PRB c¢ is the solution to a problem with the following objective function:

argmax log()\;) = argmax Z log(WRf + Tf)

x§ a¢ . x¢

nz’ n,in el
= argmaxz log (VVRC +a;, Zf(z :::Cn—l- 1/70>)
n z’wc i n q= 1 '3

C :L.C
= argmax log [ 1+ ( n )
2 g( e (S v )

i
~ azgmaxz <Z ey ) (2.15)
q= %

where we have used the approximation log(1l + x) ~ x for x < 1 since W > 1, and we
have removed W from the optimization since it is a constant common to all users. Hence,
in PRB ¢, the scheduler would solve the sequential problem P5(¢d) below.

P;(9): Local sequential NOMA-N scheduling problem (for PRB c¢)

xC

max ’“f(znl +1/7;> st (2.13a) — (2.13d)

as . ,xs ZEC
n,i in q= 1

Problem P5(6) is still an MINLP but of reduced size. Note, that in practice, in OMA
local scheduling algorithms that are also sequential, to avoid tracking the detailed rate
history of each user, the exact average rate R$ over the window of size W is replaced by
the exponential moving average of the rates over the period, i.e., it is updated as

c

R = (1- %)Rf + % i(a;,i)*f(zz 1((33’)‘)1 1/%> (2.17)

where (a¢ ;)* and (z£)* denote the solution selected by the local scheduler. We adopt the

n,i
same practice in the following.

A local scheduler that solves P5(d) performs user selection and power distribution
jointly and might not be fast enough (it has to be solved for each PRB). Thus, the problem
is further decoupled into two sequential independent problems: user selection followed by
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Figure 2.16: An example of a possible problem with the Shannon-based power distribution
scheme to be used as an approximation for the MCS-based rate function generated assum-
ing R;, =3, Ry, =2, v;, =300 and ~;, = 20.

power distribution given the selected users. The goal of the user selection problem is to
propose a set of tuples (iy,...,iy), while the goal of the power distribution is to compute
for each proposed tuple, the optimal choice of power levels, i.e. the x, values. An optimal
solution to P5(d) can only be determined using an Exhaustive Search (ES) user selection
[57], i.e., proposing all possible tuples and finding for each tuple the unique combination
of x,. Greedy search (GS), presented in [43], finds a good sub-optimal user-selection for
1}1( O%\/IA—Q by only proposing all the pairs of users that contain the user with the highest
ot

~—+~. This method, along with an optimal power distribution, achieves a quasi-optimal

performance, however, it is complex and cannot easily be extended to higher order NOMA.
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and an average of 10 users per cell vs. runtime. For each user selection scheme, power
distribution with ks € {0,2,4,8,12,16} is tested.
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Algorithm 1: Simplified Local Scheduling (SLS) for NOMA-2 in PRB ¢

Given: ki, ka, (7), (Ty), (RS); // returns a sorted list of users
sorted_users = Sort(f(v¢)/R¢)); // builds the chain of k; pairs to test
chain = BuildUserPairChain (sorted_users,k;); // returns the first pair,
i.e. N (il,ig)

(test_pd, test_score) = ComputePowerDistribution (test_pair) ;

(selected_score, selected _pair, selected_pd) = (test_score, test_pair, test_pd) ;
number_of_tested_pairs = 1 ;

// end of initialization

while number_of tested_pairs < ky do
test_pair = GenerateNextPair (test pair, Chain);

(test_pd, test_score) = ComputePowerDistribution (test_pair) ;

if test_score > selected_score then

‘ (selected_score, selected _pair, selected_pd) = (test_score, test_pair, test_pd) ;
end

number _of_tested_pairs = number_of_tested pairs + 1;

end

compute RS using eq.(2.17);

return (selected pair, selected pd) ;

Function ComputePowerDistribution (iy,is):

x = Solve (2.18); // value of (2.15) given pair and =z
L —z
T x(+11/7)g2 ;
Ev] =Ty/vi, Yv ;3 // sort £[v] (nearest to farthest from x)
¢ = Sort( [|¢[v] —|]) ;

for index € {1,...,ky} do

y = ¢[index];

test_score = // computes the discontinuity points

Yy, 1—
next_score = ‘o L _(-y)
i1

e TRyt
if next_score > test_score then
‘ (x, test_score) = (y, test_score) ;

end

end
test_pd = z ;
return (test_pd, test_score) ;

end

We propose a family of solutions for sequential user-selection and power distribution,
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called Simplified Local Scheduling SLS(ky, k2), that strikes different complexity and per-
formance tradeoffs based on the selection of integers k; and ks. We describe SLS(k, ko)
for NOMA-2 in the following. The extension to NOMA-3 is straightforward. In a given
PRB ¢, the user-selection part of SLS starts by sorting users in terms of their ratio of
achievable OMA rate to the average received rate so far, i.e., f(v¢)/R¢ and thus for sim-
plicity we describe SLS assuming f(v¢)/R¢, > ... > f(7%,)/R¢, . SLS starts with the pair
(11,172) then tests an additional k; — 1 extra pairs to select the one achieving the highest
objective value. The k; — 1 extra pairs are selected following this order: (iq,13),(i1,44), - .-
, (i1,1v), (i9,13), ... ,(iy_1, %), which we call a chain in the following. It should be noted
that both ES and GS can be considered as special cases of SLS and that, for NOMA-2, ES
corresponds to ky = U(U — 1) while GS corresponds to k; = U — 1. For each selected pair,
power distribution is performed as described next.

For the power-distribution problem, the optimal solution for P5(d) for a given user-
selection (u1,ug), assuming a piece-wise rate function, can only be determined using an
exhaustive search. In [58], the authors have proposed the following power-distribution
strategy

RS, e — R 76

n _ _
L RS > R¢

Z gj; — RUniRunﬁ,l 7“” 7Un+1 (218)

q=1 1 Rf’«n S Rictnﬂ

which is optimal assuming an unbounded log rate function. However, it is sub-optimal for
practical MCS as indicated by the results in the following subsection. This is because, by
not taking the MCS levels into account, we are not distributing the power efficiently as
seen in the example in Fig. 2.16 where we show the value of the objective function in one
PRB for specific values of the rates R and the SINRs as a function of x; = . The value
of x at which the objective function is optimal for Shannon is very bad for the practical
case of the piece-wise constant rate function. Hence, using the value given by (2.18) may
be sub-optimal and a search around this value can help find a better solution. Note that
while the objective function is smooth with Shannon, it is piece-wise constant in practice
and hence, it is enough to compute the objective function at the discontinuity points. A
discontinuity point is a value of z for which one of the two selected users sees an abrupt
change of rate (or similarly, the objective function sees a discontinuity). There are at most
2V such points.

In PRB ¢, for a given pair (i, i), the power distribution component of SLS starts by
computing an initial estimate of the normalized power ratio x° based on (2.18) and tries
the ko discontinuity points nearest to the initial estimate z¢. To eliminate redundancies, we
only compute V' of these discontinuity points corresponding to &, = ,1;—“1’ for all v. SLS sorts

these based on the Euclidean distance from the initial estimate z., computes the weighted
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sum-rate for the first ky of those discontinuity points and selects the point achieving the
largest value. Algorithm 1 on page 48 presents the different steps of SLS(k1, k) in more
details.

SLS(ky, ko) computes in each PRB for each of the k; user-pairs, ks values of the weighted
sum-rate which greatly reduces the complexity with respect to the ES-based optimal so-
lution that corresponds to SLS(U(U — 1),V). We show next how one can strike differ-
ent trade-offs in terms of performance and run-time by adjusting with k; and ky. Note
that, with a slight abuse of notation, we call ES(ky) as SLS(U(U — 1), ks) and GS(kz) as
SLS(U — 1, k).

2.7.2 Numerical Results

The performance of SLS(ky, k2) is evaluated in the same mixed setting described in Sec-
tion 2.6. The system is simulated for a duration of 100 frames for 100 different realizations
of a multi-cell systems with J = 7 base-stations and an average of 10 users per base-station.
The UE traffic is generated using the full-buffer model, which is the recommended model
for assessing throughput and spectral efficiency by 3GPP [59].

To quantify the complexity/performance trade-offs associated with SLS, we character-
ized the complexity by the runtime of the C language implementation of the algorithms
averaged over 1000 realizations on an Intel core i7-9750H machine clocked at 2.60 GHz. For
a given kp, we compute the average over 100 realizations of the geometric mean through-
put for different values of ky and record the average run-time. We then plot the gain with
respect to OMA versus the run-times instead of with respect to ks in Fig. 2.17. The results
show i) the high runtime cost of ES and to a smaller extent of GS; ii) the importance of
power distribution in terms of run time (this is often ignored in previous works); iii) that
SLS provides a continuum of trade-offs depending on the values of k; and ks; iv) that the
majority of the NOMA gain with respect to OMA can be achieved in around 20ms; further
computation time brings limited additional gain. It is also observed that power distribution
based strictly on (2.18) (corresponding to the lowest point in each curve) performs poorly.
Finally, SLS can achieve 95% of the optimum performance much faster than ES(ky) and
even GS(k2).
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Table 2.3: Available rates and the corresponding SINR thresholds [1].

SINR Threshold (dB) -6.5 | -4 -26 | -1 |1 3 6.6 | 10 114 | 11.8 | 13 13.8 | 15.6 | 16.8 | 17.6
Efficiency (bits/symbol) | 0.15 | 0.23 | 0.38 | 0.6 | 0.88 | 1.18 | 1.48 | 1.91 | 2.41 | 2.73 | 3.32 | 3.9 | 4.52 | 5.12 | 5.55

2.8 Conclusion

In this work, we studied hybrid NOMA-N in frequency selective fading channels while
assuming a practical MCS rate function. We formulated a centralized scheduling problem to
compute an upper-bound on practical schemes from which we conclude that the geometric
mean throughput can be improved by up to 108% with optimal power allocation and
scheduling with NOMA-2 over OMA. Motivated by such results, a practical static power
allocation is proposed. Strikingly, it performs only 15% worse than the centralized upper-
bound irrespective of the multiple access scheme selection (i.e., OMA, NOMA-2 or NOMA-
3) and mobility and channel models. Finally, a family of practical (local) scheduling
schemes denoted as SLS(ky, ko) is proposed. SLS (ki, k2) is a generalization of previous
user-selection algorithms such as Exhaustive Search and Greedy Search, is suitable for
hybrid NOMA-N and introduces a scalable power distribution scheme suitable for practical
(i.e., piece-wise constant) rate function.

2.9 Rate functions

The rate r™* seen by user i associated with base-station j(i) on PRB (m, ) is a function
of the SINR ™" experienced by the user on that PRB. In practice, the rate function is
step-wise. For example, the one given by 3GPP for LTE [1] is provided in Table 2.3 and
illustrated in Fig. 2.18. 3GPP provides a table of the modulation coding schemes (MCS)
along with the range of SINR values for the latest standard release. Mathematically, it can
be written as r;" = fsapp(V" ’t) a piece-wise constant increasing function with:

0 v < Fl
ap 't <y <Thy

faapp(7) = . . (2.19)
ag T'x <7

where K is the number of available MCSs; ay, is the spectral efficiency in bits/s/Hz for
MCS k and the I'y’s are the SINR thresholds in dB. Let the set £ = {1,2,..., K} be the
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Figure 2.18: Comparison of various rate functions.

set of all possible MCSs. T'y is the minimum required SINR for a user to decode a signal
with MCS £ and receive a rate a, successfully. We emphasize that I'; is the minimum
SINR required for getting a non-zero rate.

Unfortunately, this function is difficult to use in an optimization problem due to its dis-
continuities and non-convexity. A work-around suggested in [56] is to replace this function
by a tight upper bound monomial approximation, i.e., fyou(7) = min (n’ya, aK).

It is important to note that these approximations are only valid as long as 77 does not
exceed ag. Hence, the approximation needs to be truncated accordingly. A comparison of
the various rate functions is presented in Fig. 2.18.

In this chapter, the upper bounding monomial approximation fyz(y) = min(5.55, v%43)

to the piece-wise rate function is used to derive an upper bound solution to the cen-
tralized joint problem. Additionally, the well-fitted monomial approximation fr;(y) =
min(5.55,0.53 4°%%) is used to derive a feasible solution for the problem.
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Chapter 3

Resource allocation for MU-MIMO
systems

In this chapter, we investigate the performance and operation of the downlink of a massive
multi-user MIMO single cell system when using ZFT (Zero Forcing Transmission) precoding
and the user equipment (UE) has a single antenna.

3.1 Motivation

Massive MU-MIMO (Multi-User MIMO) [12] is a game-changing technology and a strong
catalyst for next generation networks that could not otherwise keep up with the ever-
growing demand for mobile data. When combined with OFDMA, a base-station equipped
with a large number of antennas can simultaneously serve many end-users using the same
time-frequency resource. Specifically, in OFDMA | the available bandwidth is divided into
sub-channels and time is divided into time-slots where each sub-channel and time-slot pair
is called a Physical Resource Block (PRB). OFDMA MU-MIMO enabled-systems can then
transmit to multiple users at once in each PRB. However, to reap the benefits of MU-MIMO
in practice, well-designed resource allocation processes are needed to efficiently operate the
network in real-time. Hence, the trade-off to strike when designing these processes is
between efficiency and runtime.

Network operation, i.e., RRM (Radio Resource Management), is the problem of allo-
cating different radio resources such as power, frequency and antennas to different users
in a fair manner. Proportional fairness in rates [51] is most commonly used by operators.
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With proportional fairness, network resources are allocated in such a way that no single
user can increase their rate without decreasing another user’s rate by at least the same
percentage. A proportional fair set of rates maximizes the geometric mean of the users
rates [50].

Specifically, the ultimate goal in this chapter is to design practical algorithms for op-
erating a massive MU-MIMO downlink system serving single antenna UEs using ZFT
precoding. To achieve this, we first study the best performance that can be achieved by
the system when there is no constraint on the runtime, and we call this an offline study.
This offline study gives us insights on the operation and sets a performance target for our
practical algorithms.

The best achievable performance is the solution of a challenging problem that jointly
optimizes 1) power allocation, 2) user selection, 3) precoding, 4) power distribution and
5) Modulation and Coding Scheme (MCS) selection such that the overall proportional
fairness in rate is maximized over a certain horizon. Power allocation is the process that
determines the amount of power allocated to a sub-channel by the base-station. Typically,
power is allocated equally across all sub-channels on the downlink. With the help of this
assumption, the solution to the original problem is approximated by solving a sequence of
smaller per PRB problems weighted sum-rate as discussed in Section 3.5.

Focusing now on one of these per PRB problems, the processes to jointly optimize are
1) user selection, 2) precoding, 3) power distribution among the selected users, and 4) MCS
selection. This joint optimization problem is NP-hard [60, 61] and cannot be directly solved
except for very small systems. However, for a given user selection, precoding can be done
first and then, given precoding, the remaining processes can be formulated into a smaller
non-convex power distribution problem that can be solved (this is only possible because of
the choice of ZF'T precoder — not all precoders allow the decoupling of precoding and power
distribution). Assuming that this power distribution problem can be solved easily (which
is discussed in the next paragraph) for a given user-set, then the original PRB problem can
be solved by searching over all user-sets, which is cumbersome except for small systems.
One of the contributions of this chapter is to explore smart search techniques that limit the
number of user-sets that we try. Note that the common belief is that in a massive MIMO
system, all active users can be transmitted to in a PRB. While this is indeed possible, we
will show that this is not a good idea and we propose a user selection based on grouping
users in random groups of size Krr and we discuss a way to determine Krp based on the
setting.

We now focus on the joint per PRB problem given a user-set. In our system, there is one
transmitted signal stream per selected user (since UEs have a single antenna) and with ZF'T,
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these streams are designed such that there is no inter-user interference. Note that ZFT
precoding can easily be computed [61, 62] and the relative gap between the performance of
ZFT and capacity diminishes as the number of antennas increase [12]. These reasons make
ZF'T precoding a strong candidate for practical deployments. Following ZFT precoding,
each users sees an effective SISO channel! with no inter-user interference.

The next step is power distribution, where the power allocated to a PRB is distributed
among the selected users in a manner that maximizes the weighted sum-rate. If a selected
user u has an effective channel 7, in the PRB under consideration and is allocated power
Pu, then its SNR? will be n,p,/0? where o2 is the noise power. Its rate is determined by
the so-called rate function that translates the SNR into a rate. The exact rate function
is piecewise constant made of L levels corresponding to the L Modulation and Coding
Schemes (MCS) of the system (please see Section 3.4 for more details).

The power distribution problem can then be formulated directly with the exact piece-
wise rate function or using an approximate rate function which is smooth and concave (e.g.,
the Shannon rate function). The approximation ignores the discrete nature of the MCS
rate function and the fact that there is a certain SNR threshold I'y below which no rate
can be received but it allows the problem to be solved using the well-known water-filling
method [63, 49, 64]. While there is a significant body of work on MU-MIMO, virtually all
use the approximation approach. We show that this is a critical flaw of these studies since
due to the threshold I'y, many users are often effectively assigned a zero rate even if they
have been assigned some power. In that case, power is wasted. Yet another contribution
is to formulate and solve the power distribution problem using the exact piecewise rate
function and hence, get an optimal solution to the joint problem of power distribution and
MCS selection.

Irrespective of the rate function being used for power distribution, it is possible that
some selected users see an SNR lower than I';, though the approach using the exact rate
function would allocate a zero power to those users. In that case, those users will not
be transmitted to and thus, they should not be included in the precoding phase, since
it makes the effective channels of other users worse than necessary. At the very least,
another iteration is needed where these users are removed and precoding is performed on
the reduced user-set. Of course, we could remove only a subset of the users that see a zero-
rate at a given time to perhaps give non-zero rate to the others in a subsequent iteration.
We will show that even a single additional iteration brings a very large performance gain.

"'We use the terms effective channel and effective SISO channel interchangeably.
2Recall that, thanks to ZFT precoding, the interference is been cancelled and hence in the remainder
of this chapter, we will work with SNR.
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Figure 3.1: The sequence of processes performed per PRB assuming a user-set is pre-
selected.

Thus, by starting with a certain user-set and then removing some or all users with zero rate,
the overall process becomes iterative. With extra iterations, we will get better performance
at the expense of additional computational complexity. Another contribution is to propose
and evaluate an iterative solution with a simple de-selection policy when several users see
a zero-rate in the first iteration.

A summary of the RRM process sequence, following an initial user selection, is illus-
trated in Fig. 3.1. Initially a user-set is pre-selected for which a ZFT precoder is computed
and then power is distributed among the selected users. The resulting rates after MCS
selection are checked to see if there are any users assigned a zero rate and if so, some or
all of those users are removed to improve the system performance. This proposed iterative
method is shown to outperform the benchmark that does not perform similar iterations.

Finally, based on all the insights obtained from the offline study, we first propose (yet
another contribution) an MCS-aware greedy algorithm, inspired by the offline study, to
solve the power distribution problem quickly using the exact piecewise rate function and
show how the end result is quasi optimal and much better than the water-filling approach
used in the literature.

The final contribution is the proposal of a real-time network operation solution that is
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almost as fast as the state of the art benchmark adopted from the literature and provides
performance close to the target performance obtained in the offline study. Our solution
includes random grouping of users in groups of fixed size Krg, our new MCS-aware greedy
power distribution algorithm and a single additional iteration to remove all zero-rate users
(we call this Full Drop (FD)). The improvement in performance of our integrated proposed
solution with respect to the benchmark can be as high as 233%. We also quantify the
performance gain of each of these new steps.

In summary, the main messages are:

1. Because of the existence of an SNR threshold I'; below which non zero rate cannot
be obtained, power distribution might yield zero-rate users that have to be deselected
to improve the effective channels of other users. Dropping all the zero-rate users at
once is found to be good enough.

2. Although in massive MIMO networks all users could be selected, this approach yields
poor performance. Astonishingly, random user grouping, with a relatively small
group size compared to the number of antennas, is shown to, when used with the
proper power distribution and user de-selection method, not only achieve compara-
ble geometric mean throughput performance to the best feasible solution computed
offline, but it reduces runtime as well.

3. In order to compute the offline performance target for a given PRB, we propose a
set of greedy search methods (to search for a good user-set) as well as an approach
based on Branch-Reduce-and-Bound (BRB), where the latter yields an upper-bound
to the achievable performance and all yield feasible solutions to the problem. While
all the proposed search methods find good performing user-sets in different ways,
many of them achieve performance comparable to the feasible solution returned by
BRB. This achieved performance is shown to be quasi-optimal for small systems
(with less than 30 users) since it is within 10% of the upper-bound computed with
BRB. We found out that a particular greedy search method yields good performance
within a reasonable runtime (for planning purposes) even if its complexity renders it
impractical for real-time deployments.

4. We show that the power distribution computation done under the assumption that
the rate function is approximated by Shannon’s formula yields wrong insights, in
addition to being 22% sub-optimal. Instead of spreading the power thin as recom-
mended with Shannon, the power is focused on a smaller set of users. Our alternative
MCS-aware power distribution uses a simple greedy power distribution algorithm and
is found to be quasi-optimal.
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The remainder of this chapter is structured as follows. A review of the necessary
background is presented in Section 3.2. Related work is surveyed in Section 3.3 where the
main distinguishing features of our study are highlighted. In Section 3.4, the system model
and our notations are presented as well as the joint optimization problem that we seek to
solve. We start our offline study in Section 3.5 with the aim of finding the best feasible
solution to the resource management problem in an offline setting with no-constraint on
runtime. Following this, in Section 3.6, we focus on practical algorithms for real-time
network operations, beginning with a description of the state of the art benchmark. Then
we develop our practical scheme that provides excellent performance/runtime tradeoffs,
i.e., its performance is close to the performance obtained in the offline study with runtime
comparable to that of the state of the art benchmark. Numerical results showing the
superiority of the proposed scheme compared to the benchmark are presented and discussed
in Section 3.7. Finally, the chapter is concluded in Section 3.8.

3.2 Background

3.2.1 Beamforming

Because of its simplicity and flexibility, OFDMA (Orthogonal Frequency Division Multiple
Access) is the de facto multiple access mechanism in 4G and 5G cellular systems. In
OFDMA, the base-station divides the available frequency and time into physical resource
blocks (PRBs) and dynamically assigns PRBs to end users, as shown in Fig. 3.2. The PRB
is the smallest scheduling unit. The maximum number of end users scheduled on a PRB
in a SISO (Single Input - Single Output) system is one, i.e., it is a SUT system. In the
following, we discuss the usage of multiple antennas in order to improve the overall system
performance and to allow for MUT transmission.

Beamforming is a wireless communication technology that directs and shapes radio
wave signals transmitted and received by multiple antennas. The purpose of beamforming
is to increase signal strength while decreasing interference, resulting in improved wireless
connection reliability and performance.

Traditionally, omni-directional antennas were used in wireless communication. Because
these antennas broadcast signals in all directions, the transmissions are weaker and more
susceptible to interference. Sectorization was proposed to overcome these shortcomings.
The coverage area was divided into smaller sectors, each of which was covered by a direc-
tional antenna.
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Figure 3.2: OFDMA frame structure for 5G NR standard.

Sectorization was a huge success but it has some limitations. One of them was the
antenna’s fixed beam direction. The beam direction could not be dynamically altered to
match the positions (and the movements) of the receivers, resulting in poor signal quality
and increased interference in many cases. Interference from adjacent sectors may also arise
as result of overlapping beam patterns. Moreover, the capacity of the network was also
limited by the number of sectors and the number of users that could be served by each
sector.

Steering antennas was the way forward but originally it was done through a cumbersome
mechanical process. To remedy these shortcomings, smart antennas were developed.

The introduction of smart antennas was a major game changer. Smart antennas are
multi-antenna arrangements, often known as antenna arrays with multiple antenna ele-
ments, that use appropriate signal processing techniques to create and steer beams. The
intelligence of the smart antennas is not in the actual antenna, but rather in signal pro-
cessing. These antennas employ signal processing techniques to dynamically direct radio
waves towards the receiver. This enables the antenna to track the receiver’s movement and
alter the beam direction accordingly. As a result, the link is more robust and reliable, and
the limitations of sectorization are addressed.

Adjusting the direction of the signal transmitted from an antenna array can be per-
formed electronically by controlling the phase and the amplitude, i.e., the beamforming
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Figure 3.3: An illustration of the beamforming process.

weights, of the signals transmitted by each antenna element. Tuning the phase and ampli-
tude can be performed dynamically in real-time, allowing the radiated radio signal direction
to be changed quickly and more accurately. This process of directing the radio signal en-
ergy in a specific spatial direction by tuning the phase and the amplitude of the signals
transmitted from an antenna array is referred to as beamforming. An illustration of the
beamforming process is provided in Fig. 3.3.

Analog, digital, and hybrid beamforming are three types of beamforming techniques
used in wireless communication systems. Analog beamforming is the simplest form of
beamforming, in which the beamforming weights are applied to the signal at the RF (radio
frequency) level using analog components such as phase shifters and power amplifiers.
Analog beamforming is less complex and cheaper than digital beamforming, but it has
limited flexibility in terms of the beam patterns since it uses analog components, such
as phase shifters and power amplifiers, that are designed for specific beam patterns and
frequency ranges making them less agile in adapting to changing channel conditions.

More importantly, analog beamforming uses a single RF processing chain. An RF
processing chain refers to a sequence of signal processing components and processes used
to preprocess and transmit radio signals. It includes all the single processing stages from
the digital base-band output of the physical layer to the antenna, including, digital to
analog conversion, upconversion, amplification, ... etc. In analog beamforming, a single
RF processing is used meaning that only one downlink signal can be transmitted at a
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time. In contrast, digital and hybrid beamforming allow for the simultaneous transmission
of multiple downlink signals from multiple RF processing chains. Hence, MUT transmission
is not possible with analog beamforming.

Digital beamforming applies the beamforming weights in the digital domain before
they are converted to the analog RF domain. Digital beamforming allows for more precise
control over the signal transmission direction since digital signal processing provides the
ability to generate a wider range of beamforming patterns. This can be employed to im-
prove the communication reliability, reduce interference and increase the system capacity.
However, digital beamforming requires having a number of RF chains equal to the number
of available antenna elements making it a more costly solution, especially when the number
of antennas is large like for mmWave bands.

Hybrid beamforming is a combination of analog and digital beamforming. In this
technique, the phase and amplitude, i.e. the beamforming weights, adjustments are applied
to the signals using both analog and digital components. Hybrid beamforming achieves a
trade-off with better flexibility than analog in terms of the beamforming patterns that can
be generated and lower complexity and cost compared to pure digital beamforming. This
is achieved by having a number of RF chains lower than the number of available antenna
elements. For further discussion on hybrid beamforming and its different implementation
structures and their design trade-offs, the interested reader is referred to [65, 66].

3.2.2 Evolution of MIMO in Cellular Systems

Smart antennas, i.e., combining multiple antenna arrays with beamforming, can be utilized
for various objectives; such as: 1) improve robustness to fading, 2) increased coverage, 3)
interference suppression, and 4) increase the number of served users. The different antenna
elements of a smart antenna can be employed to offer spatial diversity, and thus enhance
the system’s fading resilience. By coherently forming an antenna pattern that maximizes
the receive power at a specific location, coverage may be extended. Alternatively, the
antenna pattern can be designed to reduce interference. Multiple antennas can increase
the number of served users by decreasing interference and/or serving multiple users located
in different directions. It should be emphasized that it is not possible to have all those
benefits simultaneously to their fullest extent. For example, smart antennas can be utilized
to reduce interference in order to either improve the quality of a single link or have more
users in the system or to have a trade-off between the two.

The ability to independently control the data stream fed to each element of the an-
tenna array enables MIMO (Multiple Input - Multiple Output) wireless communications.
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In MIMO, which was first proposed by Winters [10], multiple data streams are transmit-
ted simultaneously over multiple antenna elements which boosts the wireless connection
robustness and improves the link capacity. The development of practical MIMO techniques
over the last 20 years has been one of the primary enablers of 4G/LTE and more recently
5G/NR.

The key enabler of MIMO is precoding. Precoding is a signal processing technique
used to shape the transmission of multiple data streams over multiple antennas in a MIMO
systems. It involves applying a set of weights, precoding weights, to each data stream before
it is transmitted over the wireless link. Additionally, where optimizing the beamforming
weights implies that they are chosen to maximize the SINR at the receiver, various cost
functions could be defined for optimizing precoding weights as there is a trade-off between
different streams.

Precoding is a generalization of beamforming to multiple data streams, where precoding
weights serve a similar role as beamforming weights in beamforming. While beamforming
is typically used to control the direction and shape of the beam pattern for a single data
stream, precoding is used to control the direction of multiple data streams transmitted
simultaneously.

During the early phases of MIMO in 4G networks, precoding was performed using a
code-book based approach. In this approach, a code-book is predefined, containing a set
of precoding matrices. The precoding matrix for a given transmission is selected from this
code-book and applied to the data streams prior to transmission. This method is simple
and computationally efficient, as the number of precoding matrices in the code-book is
limited.

However, the limited number of precoding matrices available for selection results in sub-
optimal performance. To overcome these limitations, more advanced precoding methods,
such as linear precoding and non-linear precoding, have been introduced. These methods
can provide better performance and reliability but at the cost of increased computational
complexity.

Precoding can be either linear or non-linear. Linear precoding is a method of precoding
in which the precoded data streams are obtained as linear combination of the original data
streams. In other words, the precoded data streams are the results of applying a linear
precoding matrix to the original data stream as illustrated in Fig. 3.4. Linear precoding
is more computationally efficient than non-linear streams and as the number of antennas
increase the gap in performance vanishes. With precoding, the precoding matrix is designed
based on the channel information and other system constraints, rather than being selected
from a predefined code-book. This approach provides better performance as the precoding
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Figure 3.4: An illustration of the linear precoding process.

matrix is optimized for the given channel conditions and/or the system objectives, but it
also requires more computational resources and system complexity.

In a cellular environment, MIMO can be utilised in either a SU-MIMO (Single-User
MIMO) or a MU-MIMO (Multi-User MIMO) operation mode. In SU-MIMO, the base
station employs all of its antenna elements to serve one end user per PRB, whereas in MU-
MIMO, the base station connects with several end users simultaneously. An illustration of
both concepts is presented in Fig. 3.5.

Because MU-MIMO systems are more flexible, they outperform SU-MIMO counter-
parts. However, designing practical schemes for MU-MIMO systems is significantly more
challenging than developing practical schemes for SU-MIMO systems due to the lack of
cooperation amongst end users when decoding in the downlink. In SU-MIMO, all antennas
belong to the same UE and thus a single decoder can jointly decode all streams. This is

not possible in MU-MIMO since each UE cannot make use of the received copies at other
UEs.

In Fig. 3.6, an illustration of a general downlink MU-MIMO system is presented. At
each PRB, the base-station selects a number of users to serve as well as the number of
streams per user. The users’ data streams are precoded using a linear precoding matrix
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Figure 3.5: An illustration of SU-MIMO (left) and MU-MIMO (right).

before being fed to the base station’s transmit antennas. Each user uses their antenna
elements to receive the data streams intended for them.

Massive MIMO is a game-changing technology that allows a large number of end users
to communicate simultaneously using the entire allocated frequency spectrum. This ag-
gressive spatial multiplexing is enabled by having a greater number of antenna elements
than end-users.

In massive MIMO, the large number of antennas at the base-station provides the high
antenna array gain and a lot more degrees of freedom for beamforming. This enables the
base-station to direct more energy toward the intended user and reduce the interference to
other users. This results in improved spectral efficiency and increased coverage as well as
reduced power consumption for the users. Moreover, as the number of antennas increase,
the channel robustness to small scale fading increases, a property referred to as channel
hardening. Furthermore, channel hardening simplifies the processing at the base-station
as it allows linear precoding to achieve near-optimal performance as the channel gains
between the base-station and the UE become approximately constant [12, 13, 67].

In conclusion, Massive MIMO has the potential to revolutionize wireless communi-
cations by providing high capacity at a reasonable level of complexity, making it a key
technology for 5G and beyond cellular systems. However, in order to achieve these gains
in practice, efficient network operation algorithms are required.
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Figure 3.6: Typical MU-MIMO system block diagram.

3.3 Related Work

Because spectrum is scarce, it must be efficiently used, and therefore resource allocation is
one of the most essential operational mechanisms in cellular networks. An efficient use of
radio resources is one that maximizes an objective function, carefully chosen to trade-off
the rates of the users and fairness, such that no user is starved. As mentioned previously,
proportional fairness [6] is a common fairness criteria in which the operator chooses a
resource allocation at which no relative increase in one user’s rate can be achieved without
lowering the rate of another user by the same relative amount or more.

As mentioned in the introduction, resource allocation for a massive MIMO cellular
system is composed of multiple steps: power allocation, user selection, precoding, power
distribution and MCS' selection. In terms of power allocation for OFDMA systems, the
defacto approach is to perform equal power allocation per PRB. Equal power allocation,
along with approximating the proportional fairness objective as a weighted sum of the
users’ rate allows the decomposition of the original problem as a sequence of per PRB
problems. Although recent works [68, 7] have shown that using power maps can be a
practical and more efficient alternative to equal power allocation in multi-cell systems,
power maps have not been extended to MIMO multi-cell networks. Since in this chapter
we focus on operating a single-cell MU massive MIMO system, we assume equal power
allocation, and power map design for MU massive MIMO systems is left for future work.

User selection is, in principle, optional in massive MIMO networks since by definition,
there are many more antennas at the base-station than users to be served. Nevertheless,
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user selection can drastically improve performance and fairness and, depending on system
assumptions, the optimal number of scheduled users can be much smaller than the number
of users. In [69, 67], it was found that to maximize capacity, the number of users should
be around 20% to 40% of the number of antennas However, this result was found under
the assumption that the optimization goal is the sum spectral efficiency without any con-
sideration of fairness or discrete MCS. Furthermore, in [70], it is shown that users that
experience similar channels (which happens with non-negligible probability [71]) should
not be simultaneously scheduled. The authors, however, consider max-min fairness and
neglect the impact of discrete MCS.

Several studies have investigated the user selection for MU-MIMO systems [60]. Finding
the optimal user selection is NP-hard[60], and it can only be done in reasonable time in
extremely specific scenarios involving a small number of users and antennas. As a result, the
standard approach in the literature is to design sub-optimal heuristic algorithms that strike
a balance between complexity and performance. The use of general purpose optimization
meta-heuristics such as genetic [72] and particle swarm [73] have been proposed to solve
the user selection sub-problem. However, these algorithms have significant complexity and
are thus impractical for MU massive MIMO systems, which have tight runtime constraints.
For MU-MIMO systems, greedy opportunistic techniques such as in [74, 75, 76] have been
developed assuming a Shannon rate function, where the base-station starts with an initial
guess for the user-set and then iteratively updates the solution as long as the objective
improves. Furthermore, it was shown in [77] that, compared to [74, 75, 76], starting with
a full set of users and gradually removing one user at a time achieves a slightly better
sum-rate while greatly reducing user selection complexity by using vectorized operations
for precoder re-computation after removing users. In this work, we also consider different
greedy searches. However, we focus on proportional fairness rather than sum-rate and we
use a different stopping criteria. Unlike previous works that used incremental performance
as a stopping criteria, i.e., the search is stopped when a change would result in performance
degradation, we propose to keep searching until there are no users left to drop and taking
the best out of all test user selections.

Once a user-set has been selected, the next sub-problem to be tackled is precoding.
While the optimal choice of precoding is known to be non-linear dirty-paper-coding with
successive interference cancellation at the receiver [78], this approach is too complex for
practical deployment. Furthermore, the computation of optimal linear precoding vectors
is generally an NP-hard problem [61] and can only be obtained using techniques such
as branch and reduce [79]. Alternatively, sub-optimal linear precoding can be derived
using techniques such as fractional programming [80, 81] or through the combination of
line-search techniques with convex optimization [82]. In practice, linear precoding heuris-
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tics such as Maximum Ratio Transmission (MRT'), Zero-forcing Transmission (ZFT) and
Regularized Zero-forcing Transmission (R-ZFT) [83] are quick to compute. ZFT is par-
ticularly attractive since it nullifies inter-user interference and thus greatly simplifies the
power distribution sub-problem. For these reason, in this work we focus exclusively on
ZFT systems.

After determining the user selection and ZFT precoding, the base-station must solve
the power distribution sub-problem which determines the power allocated to each selected
user in a PRB based on the selected objective function. The selected objective is a func-
tion of the power allocated to each user that reflects the chosen trade-off between fairness
and spectral efficiency. To solve the power distribution work, the defacto approach is to
assume that the rate is an increasing concave function of the assigned power which al-
lows the usage of the well known water-filling algorithm [64, 49]. It should be noted that
this simple approach is only applicable with ZFT precoding and in general power distri-
bution cannot be decoupled from precoding and would thus require more sophisticated
optimization techniques such as geometric programming [84] or fractional programming
[80]. Although several works have investigated power distribution, all assume a Shannon
rate function which is a poor approximation to the piece-wise constant rate function ob-
tained from practical MCS. In this work, we avoid this pitfall and design an MCS-aware
solution that tackles the problem directly without approximation.

Finally, MCS selection refers to the process by which the base-station selects an MCS
for each user in a PRB based on their SNR. To the best of our knowledge, this process is
not taken into account in prior studies. Nevertheless, we will show that its effects cannot
be neglected. In particular, as there are a limited number of MCSs to select from and each
has a corresponding SNR threshold below which a user cannot correctly demodulate and
decode, the actual rate-function is piece-wise constant. There is therefore an SNR threshold
below which even the lowest rate MCS cannot be demodulated and decoded. Thus, below
this SNR, the delivered rate to a user is zero, a point that is always overlooked when
using the Shannon rate function. Thus, one can identify a set of users that would then
receive a rate of zero in the PRB and that can therefore be dropped from the PRB without
reducing performance. Indeed, one could deselect these users, and perform precoding
and power distribution calculations anew. This is an optional iterative process that can
improve overall performance, as will be shown in Section 3.7. Alternatively, one can skip
any iterations and “waste” the power assigned to these users at the benefit of reduced
computational complexity.

Although several works have already investigated the different steps considered dur-
ing the operation of a MU massive MIMO network, these studies have not considered
the discrete nature of the rate function. Moreover, most of the related works focus on
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single-carrier and do not consider the massive MIMO OFDMA case. The results of our
investigation indicate that combining grouping with simple deselection strategies is an ef-
fective operation strategy that strikes a favourable balance in terms of both performance
and runtime. Furthermore, our proposed approach achieves in real-time performance that
is close to the best offline feasible solution to joint optimization problem.

3.4 System Description and Assumptions

Notation: matrices and vectors are set in upper and lower boldface, respectively. The
operators (.)T, (), ()T and [|.|| denote, the transpose, the Hermitian transpose, the
pseudo inverse and the Euclidean norm. Caligraphic letters, such as A, denote sets and
|A| denotes set cardinality of set \A. Finally, C denotes the complex numbers.

In this work, we assume that the base-station uses massive MU-MIMO which implies
that there are more antennas (M) than users (U). Moreover, the used precoding is ZFT
since it simplifies the design of network operation algorithms and because its relative gap
to the optimal precoding diminishes as the number of antennas grows [12, 13]. In addition,
we assume digital beamforming, i.e., one RF processing chain per antenna, is used since it
allows the base-station to change precoding on a per PRB basis. Furthermore, we assume
a full-buffered traffic model, i.e., the base-station always has data to send to every user.
Finally, we assume perfect channel state estimation.

We consider the downlink of an OFDMA single-cell system with C' subchannels,; a total
power budget per time-slot of P*® and M antennas at the base-station. In OFDMA,
the smallest resource unit is called a PRB (Physical Resource Block) and is indexed by
a frequency subchannel ¢ and time-slot ¢ pair (c,t). These radio resources are used to
serve a set of U single-antenna users, /. We assume that each PRB is allocated a power
P = Pl /C (corresponding to equal power per PRB allocation). For a given PRB
(c,t) the complex channel coefficient between the m-th antenna at the base-station and
user u is ¢g"(c,t). We denote the channel vector between the base-station and user u as

g5 = [gi(c,t), g2(c,t), ..., gd (e, t)}T € CM*1 and the channel matrix as G(c,t) € CV*M:

c c ct1 T
G(Cﬂ t) = [ g17t7 g2,t7 ce JgU’t:| : (31)

3.4.1 Precoding

Given a set of selected users X' = {u1,...,u;x|} C U for a given PRB, the base-station
performs ZFT. The precoding vector for a selected user v and PRB is denoted as W& =
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[ (c,t),w(c,t),...,wY(c,t)] € CM*1. The precoding matrix W € CM*I*| is defined as:

u

Wic, t) = [wi, wil, ..., Wi ] (3.2)

u? 0 Nk

Let s be a transmitted symbol to user u on PRB (¢, ¢). We assume that the trans-
mitted symbols are normalized to unit average power, i.e., E[|s¢!|?] = 1. We denote the

vector of transmitted symbols as s = [s&7, s ... s |. Therefore, the allocated power
17 "u2 U x|

to user u € X on a given PRB is: p&' = [|[W[|? and we have
—c,t __ ct et
wot — \/piiwet, (3.3)

7C’t . . . —
where w&! = % is the normalized precoding vector of W&*
u

With a linear precoder, the transmitted signal vector from all base-station antennas on

a given PRB is defined as:
—ct Z—ct ct W Sc,t. (34)

ueX

The received symbol y&' at user u is then:

v’ =(gy")s + ny!
:( C’t)TW(C t) c,t+nc,t
=(go)wolsst + Y (gl WSy + ng! (3.5)

vEX vF£U

where n,, ~ N¢(0,0?) is a complex circularly-symmetric Gaussian random variable that
models additive white Gaussian noise (AWGN) at user u. Assuming the system uses ZFT,
we have, for each two selected users u and v:

(gz,t)TWC,t — 0, U # v A U, v - X,Vc,t (36)

v

and the SNR? ~5* for user u at PRB (¢, t) is then

vt =) willP o (3.7)

3The fact that ZFT precoding cancels inter-user interference means that the rate is governed by the
signal to noise ratio.
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Table 3.1: Available rates and the corresponding SNR thresholds [1].

SNR Threshold (dB) -6.5 | -4 -26 | -1 |1 3 6.6 | 10 114 | 11.8 | 13 13.8 | 15.6 | 16.8 | 17.6
Efficiency (bits/symbol) | 0.15 | 0.23 | 0.38 | 0.6 | 0.88 | 1.18 | 1.48 | 1.91 | 2.41 | 2.73 | 3.32 | 3.9 | 4.52 | 5.12 | 5.55

3.4.2 Rate function assumptions

In practice, a base station has access to L modulation and coding schemes and needs
to select one of them for each user it wants to transmit to, based on the user’s radio
conditions. In that case, the rate function f(.) that maps SNR +, of user u to the rate r,,
corresponding to the highest allowed Modulation and Coding Scheme (MCS) for a given
target Block Error Rate (BLER), is a piece-wise constant increasing function described as:

f(i’) = BC X ( 611]_[F17I‘2)(l') —+ 4 eL]]-[FL,oo)(x) ) (38)

where 1 4(x) denotes the indicator function with a value of 1 if x € A and zero otherwise,
I'; is the SNR decoding threshold for MCS [, i.e., the minimum required SNR for using
MCS level [, and ¢, is the spectral efficiency of MCS [ measured in bit/s/Hz. An example
of the SNR thresholds and spectral efficiencies is provided in Table 3.1 [1]. From an opti-
mization perspective, this piece-wise constant function is problematic since its derivative
is 0 everywhere except at its points of discontinuity [49]. We also note that if the received
SNR is less than I'y then the received rate is zero. i.e., f(z) =0 Vx < T';.

Most of the literature assumes that the relationship between the SNR experienced by a
user and the rate received follows the Shannon capacity formula, i.e., f(z) = B.log,(1+x).
This approximation simplifies the problems by replacing the actual rate function with a
smooth increasing concave function. Some works have proposed a different approximation
by adding a penalty parameter [85] or by using different approximation such a monomial
[7, 8]. However, as illustrated in Fig. 3.7, which compares the exact rate function and
Shannon’s capacity formula, Shannon’s formula ignores both the minimum SNR required
for getting a non-zero rate as well as it overestimates the achieved rate. With Shannon, a
small positive increase in SNR yields a positive increase in rate and any strictly positive
SNR yields a strictly positive rate which is not true for the exact rate function.

3.5 Optimal Resource Allocation: The Offline Study

In this section, our objective is to find a method for offline benchmarking of a massive
MU-MIMO OFDMA downlink system. This method will be used as an offline performance
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Normalized exact rate function (f(v)/B.)

e l0g(f(7)/B. = log(1 + 7))
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Figure 3.7: Comparing the actual rate function [1] with Shannon capacity formula in terms
of the spectral efficiency (bits/Hz/s) at different SNR values (dB).

target for online systems that must compute decisions in milliseconds or less, as discussed
in 3.6. In order to be able to do so effectively, we need an offline method that can compute
quasi-optimal solutions in a reasonable time (e.g. a few minutes). More will be said on
that later.

Ideally, the base-station would find the resource allocation by solving the optimization
problem Py(w) that strikes a trade-off between fairness and performance [6]. Problem
Py(w) below is the problem of jointly optimizing user selection, ZFT precoding, user power
distribution and MCS selection over T time-slots (i.e., C'T" PRBs). Specifically, this problem
is for a single-cell OFDMA massive MIMO system realization w that is characterized by a
given set of users U (such that U < M), the channel gains per PRB {g&'}, per PRB power
budget P, 0%, the piece-wise constant rate function f(.) and a large positive constant B.
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Po(w): Joint user selection, ZFT precoding and power distribution optimization for WSR
maximization over a horizon of W PRBs of a single-cell multi-carrier DL system, given the
rate function f(.), the channel gains g&', the noise variance %, power allocated per PRB
P and a large positive constant B.

max ||)\
c,t ct ct c,t

st Ay = Z erb’t Y (3.9a)
= f (% ) Vu (3.9b)
vt = s WP o Vu, ¢ (3.9¢)
U
DO A Ve, t (3.94)
ot € {0,1} Vu, et (3.9¢)
ot <aPtP Yu,c,t (3.9f)
1(gs") ' wi(]? < (2 — a2y —23")B Vu, v # u, et (3.9¢)
lwet||? = 1 Vu, ¢, t (3.9h)

The binary indicator variable z¢' indicates whether user u is selected to be transmitted
to or not in PRB (¢, t), modelling the user selection decision. Precoding on a PRB is
modelled using the complex vector wé' for user w. The variable pS' denotes the power
allocated to user u in the PRB, modelling the power distribution step. The MCS selection
step is reflected in the variable r&* which denotes the selected rate for a user u in terms
of its SNR 7" through the piece-wise constant rate function f(.). The SNR is determined
directly from the allocated power and ZFT precoder vector as described in (3.9¢c). Con-
straint (3.9d) states that the total of the power distributed to all users in a PRB should be
no more than the power P allocated to the PRB (c,t). Constraint (3.9f) ensures that the
power allocated to the PRB in consideration, P, will only be distributed to selected users,
i.e., users with a binary variable z&' equal to 1. Furthermore, constraint (3.9g) ensures
that the precoder zeros the intra-cell interference from a selected user to all other selected
users.

The objective of the joint problem Py(w) is to maximize the geometric mean of the
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total throughput received by each user A, over the horizon of C'I' PRBs. This objective
is chosen since it is equivalent to achieving proportional fairness in the received rates
[51, 6, 50]. Proportional fairness strikes a favourable balance between fairness and cell
capacity maximization since it ensures that no one user can unilaterally improve their rate
without degrading the throughput of another user by at least the same percentage.

Since the power allocation to each PRB is given, the optimization problem is only
coupled because the rate a user gets in the time horizon is the aggregate over all the CT
PRBs and the objective is to maximize the geometric mean of the users rates. The larger
the T', the larger the fairness window. However, using a large window would imply knowing
channel state information (CSI) for a large window, which is unreasonable. Hence, typically
T is chosen to be the length of a frame with a proper mechanism to keep track of recent
past history. However, for a practical solution, computation would have to be done on a
PRB level to be fast. In that case Py(w) has to be transformed. Specifically, the problem is
approximated as a sequence of per PRB weighted sum-rate (WSR) maximization problems.
This approximation is in line with the state of the art schedulers that are opportunistic,
sequential, and aim to maximize proportional fairness at each step considering the past
but without considering the future, i.e., they are myopic. Specifically, on PRB (¢, ), let
the rate received by user u in a window of W + 1 PRBs finishing at PRB (¢, ) be,

AGE = WRSE 4 ot (3.10)

where &' is the rate that user u will receive in PRB (¢, t), W 4 1 is the selected fairness
window and RS is the per PRB average rate received by user u in the past W PRBs which
is assumed to be known. Then the optimum resource allocation decision for PRB (¢, t) is
the solution to an optimization problem with the following objective:

[ WR + i)V =" log(WRS + 1)
> [log(WRE') +log(1+ g /WR)
> log(1+rg'/WRS)]

= 3 R,

where = indicates that the optimization problem is equivalent in the sense that the same
resource allocation maximizes both sides of the equation. The last step comes from
log(1 + x) ~ x when z is small. Maximizing a WSR )" 65'rS" with the weights chosen as

u
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P, (w): Joint user selection, ZFT precoding and power distribution optimization for WSR
maximization in one PRB of a single-cell multi-carrier DL system, given the weights 6,
the rate function f(.), the noise variance 2, the channel gains g,, the power allocated per
PRB P and a large positive constant B.

U
zu,jloil,%v}i,ru Zu:l euru

s.t. = f(Yu) Yu (3.11a)
Tu :I)UHgZ:VVuHQ/O'2 Vu (3.11Db)

U
> _ PSP (3.11c)
2, € {0,1} Vu (3.11d)
Pu < Ty P Vu (3.11e)
llgfw,||> < (2~ 2y —2,)B Yu,v # u (3.11f)
W ||? = Yu (3.11g)

05t = 1/RS" asymptotically maximizes the long term utility function, i.e., the geometric
mean of the rates or the proportional fairness in rates.

Hence Py(w), can be decoupled into a sequence of weighted sum-rate maximization
problems. The resulting per PRB problem, P;(w), given below, is then a joint user selec-
tion, ZFT precoding, user power distribution and MCS selection problem on a given PRB.
It should be noted that the explicit dependence on (c,t) for all variables is omitted for
simplicity of notation.

Problem P;(w) is a non-convex Mixed Integer Nonlinear Programming (MINLP) with
a large number of variables since in massive MIMO the number of antennas is large and
consequently, the number of users can also be quite large. Solving this problem exactly
has an exponential worst-case runtime and thus, we present several method for obtaining
good feasible solutions in reasonable time.

First, we note that given a user selection, i.e., given (x,)’s, the ZFT precoder can be
computed optimally in closed form as shown in [62]. Specifically, given a user selection
characterized by the vector x = [z1, x9, ..., zy], we define Gy as a sub-matrix constructed
from the channel matrix G by selecting the u* row if 2, = 1 and dropping the row
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Py (w): Equivalent joint power distribution for a given user selection and the effective SISO
channel 7, gains generated by ZFT precoding defined with a general rate function given
f(.), 6, and P.

T
H}fiX Zu Ouf (Pu o2 )

s.t. Zupu <P, (3.14a)

otherwise. The ZFT precoder for a selected user u is then

W, =
[cr@an]

where [A];(,) represents the m(u)-th column of matrix A and m(u) denotes the row number
of gl' in G4. This is to say that the ZFT precoder for a user is computed based on the
pseudo-inverse of the channel matrix of the selected users. It should be noted that the
computational complexity of finding the ZFT precoders is O(UM?).

Following the computation of the normalized ZFT precoders, the SNR for user u can
be computed as:

Yu = punu/027 (313)

where p, is the power allocated to user u and n, = ||glw,||?, the equivalent SISO channel
gain experienced by user u after ZFT precoding. The dependency of 1, on the user-selection
X is omitted for brevity.

For a given user selection, Py (w) simplifies to a smaller per PRB power distribution
and MCS selection problem Py(w), with an objective obtained by combining (3.17a), (3.9b)
and (3.13). Since the rate function is piece-wise constant, the power distribution problem,
for a given user selection, can be described as the ILP (Integer Linear Program) shown in
P3(w) where @, is a binary indicator variable showing whether user u is allocated MCS
level [. Constraint (3.15a) ensures that the total power required never exceeds the available
power on the PRB and constraint (3.15b) indicates that only one MCS is allocated to each
user.

P3(w) is a ILP, with at most LM variables, and although generally ILPs can be hard
to solve, several commercial solvers such as CPLEX [86] and MATLAB’s intlinprog [87]
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P3(w): ILP defining the joint power distribution and MCS selection for a given user selec-
tion and the effective SISO channel gains generated by ZFT precoding.

max E E 0.¢'a,
a, €{0,1}

ueX le{l,...,L}
Fl
s.t. Z Z a, <P (3.15a)

> o <1 Yu € X (3.15h)
le{1,....L}

can be used to solve small ILPs to optimality in a reasonable time. Since our first goal in
this study is to estimate the maximum achievable performance in an offline setting where
runtime is not a limiting factor we will rely on using commercial ILP solvers for solving
P3(w). This formulation will also serve as an inspiration to our proposed greedy algorithm
for power distribution presented in Section 3.6.

Therefore, given a user selection we can compute precoding optimally in closed form
and then find the optimal power distribution and MCS selection using an ILP solver. Thus
the per PRB joint resource allocation can be solved via a search problem over {z,}. While
this problem can be solved optimally by a brute-force exhaustive search, this approach does
not scale. Therefore, we propose using a global search using BRB (Branch-Reduce-and-
Bound) to get an upper-bound as well as a lower-bound, and local greedy search methods
to compute good feasible solutions since BRB turned out to be too slow for our planning
purposes for U > 30.

3.5.1 Branch-Reduce-and-Bound (BRB) based search

First, we notice that a user is selected if it is allocated a non-zero rate or equivalently an
SNR greater that I';, where I'; is the required SNR for decoding the lowest MCS. This
means that

Ty = ]]-Tu>07 (316)

and x, is non-decreasing in 7,. As a result, the joint resource allocation problem with
discrete MCS can be described in terms of rates, as shown in Problem P4(w), where the
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P4(w): Equivalent joint network operations written solely in terms of the assigned rates
per user as a variable.

max 0,74 3.17a
TUE{O,El,...76L} UGZ]/{ ( )
fil(TU)
st Y i <P (3.17b)
u€{u|r, >0} T X(I‘))/O‘

constraint (3.17b) means that the summation of the required power for all users with
non-zero rate should not exceed the total power allocated to the PRB. Eq. (3.17b) is the
result of combining both (3.13) with (3.9b). The notation n,(x(r)) emphasizes that the
equivalent SISO channel gains are a function of the allocated rates r since the binary user
selection vector x is determined by r following (3.16). Note that the selected rate r,, for
user u, is constrained to the discrete set of allowed rates defined by the used MCSs.

Moreover, constraint (3.17b) is an non-decreasing function of the rate. This is because
f~(ry) is non-decreasing in 7, and 7,(x(r)) is non-increasing in r,. The latter follows
noting that x is a binary vector and:

Mu(X) = Hmﬁt|>51||g?§vvu||2 (3.18a)
st ||glw,|[* =0 Voust z,=1v#u (3.18b)

and thus, increasing r, to a positive value results in more constraints that cannot increase
the maximum.

P,(w) is therefore a discrete monotonic program where both the objective and the
constrains are non-decreasing functions of the discrete rate variable. Despite the fact that
discrete monotonic programs are non-convex, their structure allows for the use of BRB
(Branch-Reduce-and-Bound) algorithm [88] which provides a sequence of upper bounds
as well as lower bounds (feasible solutions) at each iteration until they converge to the
optimal solution. In contrast to exhaustive search, BRB has a better than exponential
average case complexity. As a result, even with a limited number of iterations, we can
obtain more meaningful insights than a brute-force exhaustive search.

Ideally, BRB could be the only technique used for offline performance benchmarking
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since it provides a quasi-optimal® solution. However, as the problem size gets large, it
becomes too slow and cannot find a good feasible solution in a reasonable time. However, we
will show that greedy search methods are alternatives that can find feasible solutions faster
and as good as BRB. Nevertheless, only by using BRB can we determine an upperbound.

3.5.2 Greedy search

In order to find a good feasible solution faster, we consider various greedy search solutions.
The common feature of all the proposed methods is that we initially select a user-set and
iteratively refine the set by either adding or deleting one user at a time. After several
iterations, the best performing user-set, out of all tried user-sets, is returned.

The first approach is denoted as Greedy-up-all-the-way (GUAW). As shown in Fig. 3.8,
the search starts at the root with an empty user-set X = {¢} and progresses upwards in
the tree of all possible user-sets until we reach its peak, i.e., the user-set containing all
users. At each search iteration, we try adding one user to the current set and we compute
the weighted sum-rate. After that, we retain the one with the highest weighted sum-rate
and go to the next iteration. The algorithm is stopped when there are no more users to add
and the best performing user-set is returned and thus it always tries U(U — 1)/2 user-sets.

Alternatively, we can search the tree downwards using a Greedy-down-all-the-way
(GDAW) algorithm. In Fig. 3.9, a sample path of one run of the GDAW is presented.
Initially, the search is started with the user-set containing every user. Following this, one
user is removed in each search iteration. The algorithim is stopped when there are no
more users to drop. GDAW can potentially use various criteria for removing users. The
proposed criteria are:

1. GDAW: In this case, we drop the weakest user based on its current experienced
SNR, i.e., we drop the user v = argmin,cy 7,, where v, is the experienced SNR of
user u assuming optimal power distribution and MCS selection for the user-set X.
We try a total of U users sets with GDAW.

2. GDAW + FD: Initially, we perform the same computations done as with GDAW.
Afterwards, for each user-set, we drop all users with zero rate (we call it full-drop),

4For runtime purposes, BRB is typically stopped at a reasonable tolerance, e.g. 10% gap between
upper and lower bounds, despite the fact that with a discrete search space it will find eventually the exact
optimum solution.
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|:| Retained

|:| Tested

|:| Unexplored

Figure 3.8: An example of a sample path performed by GUAW.

recompute precoding and optimal power distribution and MCS selection. Thus, in-
stead of performing the computations for U user-sets, we compute for 2U user-sets
at most.

3. GDAW with look ahead (GDAW w LA): In this cases, similar to GUAW,
we compute the weighted sum-rate achieved by dropping each user in the current
user-set. The user drop resulting in the highest weighted sum-rate is retained and is
excluded from the following search iterations. We try U(U — 1)/2 user-sets which is
the same number of user-sets as with GUAW.

It should be emphasized that although the various greedy search techniques only scan a
portion of the user-set tree, i.e., they do not explore all nodes and thus, they are generally
providing sub-optimal solutions. However, as will be seen, some of the search methods end
up performing similarly, suggesting that these simple search methods are quasi-optimal.

3.5.3 Comparing the greedy search to BRB
We compare the average weighted sum-rate value computed by both BRB and the pro-

posed greedy search methods over 100 instances of P;(w) as well as their runtimes. As
a benchmark, we include the exact optimal solution for small problems (up to 15 users)
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Figure 3.9: An example of a sample path performed by GDAW.

computed by exhaustive search on the user-sets. An instance of Py(w) is characterized
by a set of Independent and Identically Distributed (IID) uniformly generated random
weights and a realization i.e., a channel matrix. The weights are normalized to one after
generation. The channel matrix is composed of two parts, specifically,

where (3, is a log-normal random variable representing the large-scale fading, i.e., path
loss and shadowing, and g, is a random vector representing the small-scale fading. g, is
generated following a Rician fading process. The generation method of 3, and g, is the
same as the one mentioned in Chapter 2 which is also described in [55, 82].

Figures 3.10 (resp. 3.11) compare the average weighted sum-rate of the different meth-
ods as a function of the number of users assuming the allocated power per PRB to be
10mW and M = 100 (resp. 64) antennas. First, we note that for a number of users less
than 15, greedy-search methods are quasi-optimal since they achieve the same WSR as
exhaustive search. Regarding BRB, we limit the computation time by limiting the number
of iterations to 200,000 with a goal of providing a gap between the upper-bound and the
lower bound of at most 10%. Clearly, BRB can achieve these this gap for a number of
users less that 30. However, as the number of users grows beyond 30, the BRB process is
very slow at reducing the gap between its upper and lower bounds. This is visible since the
upperbound is more than 10% away from the lower bound indicating that the algorithm
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Figure 3.10: Weighted sum-rate achieved by exhaustive search, greedy search and bounds
returned via BRB global search for M = 100 antennas and P = 10 mW. The bounds are
returned after 200, 000 iterations per instance.

stopped because it reached the maximum number of iterations which is equivalent to a
runtime of 18.2 hours per instance for the case of U = 40. Interestingly, all greedy-search
methods except GDAW as well as BRB yield similar results in terms of feasible solutions
suggesting that the upper-bound is likely loose and that GDAW + FD is sufficient and
they require only a few minutes per instances.

In summary, in this section, we have started with formulating a long-term horizon
problem Py(w) which maximizes proportional fairness by jointly optimizing user-selection,
power distribution and MCS selection. We approximated Py(w) by a sequence of weighted
sum-rate problems. The per PRB problem P;(w) is inline with the state of the art op-
portunistic schedulers. Then, we showed that P;(w) for a given user selection can be
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Figure 3.11: Weighted sum-rate achieved by exhaustive search, greedy search and bounds
returned via BRB global search for M = 64 antennas and P = 10 mW. The bounds are
returned after 200, 000 iterations per instance.

further simplified into a smaller ILP P3(w). Thus, solving P;(w) optimally requires solv-
ing an ILP P3(w) for every possible user-set which is unrealistic except for small number of
users (U < 15). In order to find solution for larger systems (U > 15), we considered BRB
(Branch-Reduce-and-Bound) which is used to find a upper-bound as well as an lower bound
and thus if the gap is small (e.g., within 10%), it shows that the solution is quasi-optimal.
This is useful for cases with U < 30. However, since the method takes a huge number of
iterations to find a feasible solution, i.e., a lower bound, we also use greedy search methods
to find good feasible solutions faster. Except for GDAW, all of the approaches for finding
a feasible solution converge to similar performance; thus, for the following, we would rely
on GDAW + FD for providing an offline target performance because it achieves the same
performance as other methods with much lower computational cost.
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3.6 Proposed Solution for Realtime Smart Network
Operation

So far, we have seen that using a GDAW + FD for iterative user-selection with optimal
power distribution obtained by exactly solving an ILP yields good feasible solutions that
perform similarly to much more involved strategies and is shown to be quasi-optimal for
up to 30 users. However, this method has a reasonable but still high runtime making
it impractical for real-time operation. Thus, we use it to provide an offline performance
target for practical schemes.

For real-time network operation, since ZFT precoding can be computed optimally in
closed form for a given user selection, we need to develop efficient methods for performing
user selection, power distribution and MCS selection. For a given user selection, we first
propose a simple heuristic for jointly performing power distribution and MCS selection as
an alternative to solving the ILP described by P4(w). Second, we present a heuristic for
user selection. But first we present the benchmark method inspired from the literature for
network operation that we will use to assess the performance of the proposed method.

3.6.1 The Benchmark

For massive MIMO systems, we typically have a number of antennas much larger than the
number of active users. Therefore most papers and the benchmark assume that all users
are selected. Then precoding is performed according to (3.12). Finally, power distribution
is computed using the waterfilling algorithm in [63, 64, 49]. Water filling is the solution to
the power distribution, Py(w), under the assumption that the relationship between the rate
and SNR is determined via Shannon’s capacity formula, i.e., f(7) = logy(1 + 7). Finally,
MCS selection is then performed by mapping the resulting SNR to the highest allowable
MCS level. Note that this last step is typically ignored in most related works.

As a result, there is no attempt in the benchmark to address the issue that users may
see a zero-rate when their SNR is less than I'y. By removing users with zero rate, better
effective channels are obtained for the other selected users and power can be used more
effectively. This approach ling power distribution from the MCS selection will be shown to
be sub-optimal and a significant gain can be achieved at no extra complexity by switching
to the proposed greedy based method described next. This result is in line with previous
works [7, 89, 56, 68, 82] that show that a significant gain can be obtained by designing
algorithms that are aware of the nature of the underlying physical layer limitations and
the discrete nature of the rate function.
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3.6.2 A Greedy Algorithm for Joint Power Distribution and MCS
Selection

For power distribution and MCS selection, we replace the ILP described by P3(w) with our
proposed greedy algorithm that takes the two specific characteristics of the rate function
as an inherent part of the problem instead of ignoring them. Hence, our proposed power
distribution algorithm is MCS-aware. The algorithm greedily selects the user with the
largest marginal improvement at each step, defined as the ratio of the gain in weighted
sum-rate obtained by increasing the user’s rate to the next MCS level to the required
additional power for decoding this level.

The proposed heuristic algorithm is outlined in Algorithm 2. The notation [(u) is used
to denote the current MCS level selected for user u and it is computed as

l(u)=> all, (3.20)

where a!, is the binary indicator variable with a value of 1 if user u is allocated MCS level
[ and zero otherwise.

In each iteration, the algorithm selects the user with the largest marginal improvement

Gu(el(u)+1_el(u))

(L) F1—THw)) /n,
remaining power does not permit allocating a higher MCS, the user is removed from the

set of users under-consideration. In addition, a user is removed from the set of users under-
consideration if it is allocated the highest possible MCS. The algorithm keeps iterating until
no power remains or no user remains in the set of users under-consideration.

to assign it a higher MCS than its currently allocated level I(u). If the

The computation of the marginal improvement ratios and choosing the highest among
them are the key computational challenges of the algorithm. The algorithm takes a max-
imum of UL iterations, which occurs when every user gets the maximum MCS. Since for
each iteration, we need to find a maximum out of U values, the worst case complexity of
the proposed algorithm is O(U?) since L is a constant factor. This approach is comparable
to that required by waterfilling [64] based approaches for solving P3(w) which solves the
power distribution problem.

To illustrate the advantage of our proposed MCS-aware greedy power distribution so-
lution over waterfilling we plot the weighted sum-rate per PRB when all users are selected
and the power distribution is computed using Shannon-based waterfilling, ILP, and our
suggested greedy algorithm against the number of users in Fig. 3.12. The results are com-
puted as the average weighted sum-rate achieved over 10,000 instances of P;(w), each
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Algorithm 2: A greedy algorithm for joint power distribution and MCS selection
given a user-set X’

Given: 0,,¢', T, n,, P, X;

Initialization: {(u) = p(u) =0 Vue X; Pr" = P; A= X;

while P™™ >0 and |A| > 0 do

a a gu(el(u)—kliel(u)rl(u))
VU = argimnax )
%e)( (TH+HL_THw)) /2

if prem _ (DI04 _ [U0Y) /p < 0 then
prem — prem _ (Fl(v)-‘,—l _ Fl(v))/nv’
[(v) =1(v) + 1;

if [(v) = L then

| A=A-{v};
end
else
| A=A—{v};
end
end

plw) =T"/n,  Vue X;
return [(u), p(u) ;

characterized by a set of iid uniformly generated random weights and a channel matrix.
Although, selecting all users is sub-optimal, this is done to fairly compare different power
distribution methods. The ILP yields a solution that is 22.50% better than waterfilling.
The gap between our proposed greedy algorithm and ILP is negligible making our algorithm
quasi-optimal. As a result, we consider this algorithm to be an important contribution be-
cause the performance results are strikingly better for our MCS-aware greedy algorithm
and the runtimes of both the waterfilling and greedy algorithms are comparable, as will be
discussed later.

3.6.3 User Selection

For the user selection problem, we propose a simple heuristic denoted as grouping with
full-drop. Our user selection is decoupled into two stages 1) user grouping, and 2) user
deselection via full-drop. In the first stage, a group of Krg users are selected at random.
The group size Krpg is determined empirically during the network planning phase and it
is found to be much less than the number of the antennas.
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Figure 3.12: A comparison of different power-distribution methods in terms of the average
weighted sum-rate per PRB assuming all users are selected for M = 100 and R = 200 m
(10,000 instances per point).

It should be emphasised that we merely limit the amount of users who may be chosen,
and select a subset of the users allocated to the group at random. This design decision
lessens the complexity of user selection, and numerical results in Section 3.7 shows that
it performs just as well as the best feasible solution computed offline. This indicates
that for massive MIMO, reducing the number of selected users is critical for optimizing
performance, and which users are selected into the group does not matter much as long as
each has an equal chance of being selected.

After user grouping, the base-station computes precoding according to (3.12) and the
power distribution based on Algorithm 2. After this preliminary stage, we examine the
MCS levels assigned to each user, and if any user is given a zero rate, it is deselected. In
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Figure 3.14: The sequence of RRM processes performed by the proposed solution.

other words, we fully drop all users receiving a zero rate. Then, the base-station recomputes
precoding and power distribution resulting in potentially better rates for the remaining
users since the equivalent SISO channel gains increase with the decrease in the number of
selected users.

The overall complexity of operating a ZFT network using the proposed method is
proportional to the number of selected users in the group, i.e., Kgrg. Specifically, with the
proposed network operation solution the worst case computational complexity is of the
order O(M?Kgp + K%). Since by definition, in massive MIMO systems the number of
antennas is larger than the number of users, then the overall computational grows at a rate
of the order O(M?Krp).

As a summary in this section, we compare our proposed RRM solution with the bench-
mark RRM solution. As illustrated in Fig. 3.13, the benchmark starts by selecting all users,
then performs power distribution using water-filling, then MCS selection is performed. Al-
ternatively, our proposed method, illustrated in Fig. 3.14, starts by selecting a group of
Kprpg users randomly. Precoding is performed on the group followed by power distribution
which is computed using the proposed greedy algorithm. Finally, if all selected users are
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assigned a non-zero rate, then the result is returned else we recompute precoding and power
distribution for the set of users assigned a non-zero rate, i.e., we full-drop all users with
zero-rate.

Next, we study the process of choosing the group size Krr and show the importance
of the 3 main parts of our proposed solution; namely, user-grouping, full-drop and the
proposed greedy power distribution algorithm.

3.7 Simulation Results

3.7.1 Simulation Setup

The main goal is to compare the different practical solutions in terms of the geometric mean
of the users’ throughput (geometric mean throughput) over a large horizon and determine
Kprgr. The geometric mean throughput is selected as the performance metric since it is the
objective function that is maximized by proportional fairness and it measures both fairness
and performance simultaneously [50]. We also present runtime results. All computations
are done using a MATLAB implementation executed on a Windows machine equipped
with an Intel(R) Xeon(R) E5-2660 v3 with a total of 40 cores clocked at 2.6 GHz and 64
Gigabytes of RAM.

We assess the performance of the proposed solutions in a single cell network, assuming
equal power allocation per sub-channel. We measure the average performance over 100
realizations where a realization is characterized by a channel matrix, per PRB. We assume
stationary full-buffer users scattered randomly in a given area of radius R. The channel
gains for each user are generated in accordance with the method given in [55], i.e., by
multiplying the square root of the log-normal random path-loss component by a circularly
symmetric random vector representing the small scale fading per antenna. Each realization
corresponds to 1000 PRBs. The weights per user are updated on a per PRB basis as:

1 1.1 1

— =(1—-=)— 4 —=ru, 3.21

6, W tw (3:21)
where W is the fairness window. This approximates the exact mean rate R, over a window
W, derived in the Appendix, with an exponential moving average to remove the need for

storing W rate values.

We use the rate function, i.e., the SNR to MCS mapping given in [1]. The other
simulation parameters are summarized in Table 3.2 and used as the default setting unless
stated otherwise.
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Table 3.2: Single cell neutral host model parameters.

Simulation Parameters | Symbols | Values
Carrier frequency fe 2.5 GHz
Total available power protal 1W
Number of antennas M 64 or 100
Number of channels C 100
Cell radius R 200 m
Time-slot duration T 1 ms
PRB bandwidth B. 168 KHz
Fairness window |14 100 PRBs

3.7.2 Choosing the group size Kpp

First, we explore the performance of the proposed user grouping, i.e., picking, on a per
PRB basis, a group of Kgg users randomly. We try grouping with and without full-
drop (FD). Also we try waterfilling vs the proposed MCS-aware greedy power distribution.
In Fig. 3.15, the geometric mean throughput performances of the following schemes are
compared as a function of Krgr for U = 60 users:

1. Shannon + ND: In this scheme, the power distribution is computed assuming the

rate function to be modelled using Shannon’s capacity formula, i.e., power distri-
bution is done using the waterfilling algorithm. Additionally, even if a user in the
selected set is assigned a zero rate following MCS selection, they are not dropped
(ND).

. Shannon 4+ FD: As opposed to Shannon + ND, all users assigned a zero rate
are dropped at once and precoding, power distribution and MCS selection steps are
recomputed.

. Greedy + ND: Power distribution is computed using the proposed MCS-aware
greedy algorithm. If some users are allocated a zero rate no re-computation is per-
formed.

. Greedy + FD: Power distribution is computed using the proposed MCS-aware
greedy algorithm, however, users with zero rate are fully dropped.

In addition to the above schemes, we add dashed lines corresponding to the benchmark
solution as well as the target performance set by the offline study and computed using
GDAW + FD and ILP power distribution. First, it is observed that the benchmark is
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Figure 3.15: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 100 antennas, U = 60 users and cell radius R = 200 meters.

far away from the target performance set by the offline study and thus, there is a need
for a real-time solution that can perform similar to the target while having comparable
runtime to the benchmark. Second, focusing on Shannon + ND, we can see that by just
performing grouping a gain of 128% could be achieved by limiting the number of selected
users. Furthermore, by comparing Shannon + FD and Shannon + ND, we can observe
that an additional 21% gain can be obtained, however, a gap of 37.5% to the offline target
performance still exists. Finally, by replacing water-filling with our MCS-aware greedy
algorithm for power distribution, i.e., Greedy + FD with the best Kgzgr choice, we can
achieve 96% of the performance achieved by the offline GDAW + FD + ILP. This solution
brings a gain of 238% with respect to the benchmark for U = 60.

The choice of the best group size Kgg is found to be a function of static system
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Figure 3.16: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 100 antennas, U = 20 users and cell radius R = 200 meters.

parameters such as the number of antennas M and the cell radius R and independent of
the number of users and thus it can be determined offline during the network planning
phase. This is expected since with massive MIMO the effect of small scale fading vanishes
due to channel hardening. This is supported by the an empirical study where a wide range
of values for Krr were tried and it was found that min(U, M/3) was the best setting. The
results of this study on the group size Krr for M = 100 and U = 20,40,60 and 80 are
shown in Figs. 3.16, 3.17, 3.15 and 3.18 respectively.

In all the previous examples, Krpr = min(U, M /3) was found to be the best performing
group size when M was set to 100 and the cell radius R was set to 200m. In Figures 3.19 and
3.20, we study the impact of changing the number of antennas from M = 100 to M = 64
and M = 144, respectively. It is still observed that the choice of Krr = min(U, M/3)
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Figure 3.17: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 100 antennas, U = 40 users and cell radius R = 200 meters.

performs best and remains the best selection. However, if instead of changing the number
of antennas, the planned cell radius R was to change as shown in Fig. 3.21 where R = 300
meters, then the choice of Krr = min(U, M/3) is no longer the best and the best choice
becomes Krr = min(U, M/6). In the following, we will set Kgrg accordingly based on the
value of R.

3.7.3 Performance and Runtime Results
In this section, our proposed solution is compared to both the benchmark and the offline

target performance obtained by using GDAW + FD. In Fig. 3.22, the geometric mean
throughput achieved by different schemes is plotted against the number of users in the cell
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Figure 3.18: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 100 antennas, U = 80 users and cell radius R = 200 meters.

assuming M = 100 antennas and R = 200 meters. The different schemes compared are:

1. Bench: The benchmark scheme that starts by selecting all users and computes the
optimal ZFT from (3.12), then determines the power distribution by using waterfill-
ing. No iteration are performed if some users see a zero rate.

2. Bench + FD: This is the benchmark approach to which an additional full-drop
iteration is added if there are zero-rate users.

3. Bench + Grouping + FD: This is a scheme that uses grouping, waterfilling for
power distribution and full-drop
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suming M = 64 antennas, U = 60 users and cell radius R = 200 meters.

4. Proposed: The proposed solution comprised of grouping, full-drop and the proposed

greedy algorithm for power distribution.

5. GDAW + FD: The offline performance target, i.e., greedy search for finding a good
user-set coupled with the optimal ILP-based power distribution and MCS selection

computed using a commercial ILP solver.

From Fig. 3.22, Bench + FD sees a 64.5% improvement with respect to the benchmark
for U = 40. This is due to the additional an extra full-drop iteration. However, this gain
diminishes as the number of users increase. By doing grouping as well, i.e., with Bench +
Grouping + FD, a consistent gain can be maintained as the number of users increases.

Focusing now on Fig. 3.23 that shows the percentage of the offline target performance
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Figure 3.20: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 144 antennas, U = 60 users and cell radius R = 200 meters.

achieved by the different online methods as a function of the number of users U. Bench
+ Grouping + FD achieves around 20% less compared to the offline performance target.

Finally, the performance of our proposed solution is about 5% less than that obtained by
the GDAW + FD.

In Figs. 3.24 and 3.25, we compare the proposed solution against the number of antennas
M and the cell radius R, respectively for U = 60. It is clear that similar conclusions hold
across the range of system parameters tested as the proposed solution continues to achieve
similar performance to that obtained by the offline target performance.

In Fig. 3.26, on the runtime of the different schemes is presented for the case with
M = 100 antennas and R = 200 meters. First, we notice that the runtime of the benchmark
grows with the number of users since it always selects all users. Second, doing a second full-
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Figure 3.21: Comparison of the geometric mean throughput vs. the group size Kgrgr as-
suming M = 100 antennas, U = 60 users and cell radius R = 300 meters.

drop iteration increases runtime by 35.9% on average. Third, grouping caps the runtime
since the number of users is limited to a maximum of Kgrg. Finally, we see that our
proposed MCS-aware greedy power distribution algorithim is comparable to water-filling
power distribution and it is generally better in runtime than the benchmark when the
number of users U > 40.

3.8 Conclusions

Operating a massive MIMO OFDMA network requires far more effort than a traditional
SISO one. In this chapter, we have investigated three of the steps involved in practical
resource allocation in massive MIMO networks, i.e., the user selection, power distribution
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proposed network operation solution compared to the benchmark assuming M = 100 and
R = 200. The offline target obtained via GDAW and ILP is included as a reference.

and MCS selection steps. The MCS selection step is often overlooked due to its supposed
simplicity; yet, it has a significant influence on performance since it can trigger potential
user de-selection and possible iterations. We have shown that iterations can yield significant
performance gains but the impact on runtime is not negligible.

Careful distribution of power among the selected users is critical. The popular belief
that water-filling power distribution is optimal, is only true if the rate and SNR relationship
is governed by Shannon’s capacity formula. However, practical limitations introduced by
the usage of a finite set of MCSs makes this approach suboptimal. A significant drop in
performance can be avoided by using the proposed greedy power distribution which jointly
optimizes power distribution and MCS selection.
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achieved by adding different steps of the proposed network operation solution assuming
M =100 and R = 200.

What our results show is that the common myth that since in massive MIMO there are
significantly more antennas than users, user selection is no longer needed, is not correct.
Furthermore, while the most obvious user deselection strategy that removes all users with
a rate of zero at once, full-drop, provides great gains with respect to the common approach,
it is still far from the best solution in terms of geometric mean throughput performance if
applied after initially selecting all users. Interestingly, random user grouping does not only
provide a reduction in complexity, but also boosts performance. Coupling both full-drop
and grouping can achieve in real-time 80% of the offline performance target, and when
combined with the greedy power distribution algorithm, 95% of that target.
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Chapter 4

Conclusion

4.1 Contributions

In this work, we have studied two multi-user transmission (MUT) techniques; namely,
NOMA and massive MU-MIMO, proposed for 5G and beyond cellular networks. In both
of the studies, we started by searching for the optimal or quasi-optimal performance achiev-
able on the downlink, assuming an offline setting, i.e., no runtime limitations. The offline
search allowed us to evaluate the usefulness of using such techniques in practice and to set
a performance target which can be computed offline for the system under consideration.

We then proposed practical methods that can be used for real-time network operation.
For NOMA, we first proposed a static power-map for power allocation. Then we proposed
a family of schedulers with varying complexity and performance tradeoffs that dynamically
perform both power distribution and user-selection.

The results indicate that both OMA and NOMA systems can benefit significantly from
proper power allocation. Additionally, the results show that power allocation brings more
gain than NOMA and that the percentage of SIC-capable devices affects NOMA gains.
Furthermore, equipping users with NOMA-N for N > 2 results in significantly diminishing
returns.

We also began our study of massive MU-MIMO by an offline study of the joint RRM
problem. Even in an offline setting, the joint RRM problem, where we jointly optimize
user-selection, power distribution and MCS selection, is too difficult to solve, despite the
fact that it can be cast and solved using BRB (Branch-Reduce-and-Bound). BRB does,
however, help to show the quasi-optimality of greedy search algorithms for use-cases with up
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to 30 users. Given a user set, the joint problem can be solved and then the problem become
one of a search over user sets. The various search methods that we considered, including
greedy search with different initial sets, have yielded nearly identical performance results
and thus we chose the least complex method, GDAW + FD, to compute our performance
target.

We then proposed a simple iterative per PRB procedure for operating massive MIMO
networks. The procedure is based on grouping the users in random groups of size Kgg,
ZFT precoding, a greedy algorithm for joint power distribution and MCS selection and if
necessary, an additional iteration after performing full-drop of all users who saw an SNR
less than I'y, and hence a zero-rate. Although the solution seems quite simple, numerical
experiments shows that the system achieves, in real-time, performance very close to that
achieved by the best-feasible solution found for the offline problem.

Showing that the proposed solutions are near-optimal was a challenging undertaking.
In order to demonstrate that the proposed solutions were near-optimal, we had to employ
complex optimization algorithms. One such algorithm was signomial programming, which
is a type of non-convex optimization that was used to establish an offline performance
target for NOMA systems. By using the proposed power maps as well as the simplified
local scheduling (SLS) heuristic, near optimal performance was found to be achievable in
a reasonable runtime.

For MU-MIMO, the joint RRM problem was solved using a BRB (Branch-Reduce-
and-Bound) algorithm. This complex algorithm allowed us to efficiently search the large
combinatorial space of user-selection, power distribution and MCS selection for ZFT-based
MU-MIMO systems. For cases where BRB was infeasible due to the very large search
space, we turned to alternative approaches using greedy search methods to find offline
performance targets. Despite the computational complexity involved in our approach, we
were able to demonstrate the effectiveness of our proposed solutions for user selection and
power distribution in MU-MIMO systems.

4.2 Messages

We summarize the main messages below.
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4.2.1 Opportunities for significant performance gains in RRM
for NOMA and MU-MIMO systems

Clearly the first message is that by performing RRM carefully, huge gains can be obtained
with respect to the existing benchmarks. More surprisingly maybe is that we were able to
develop practical (i.e., fast) heuristics for MU-MIMO that perform quasi optimally.

4.2.2 The power of power allocation

Another important message is that in a multi-cell NOMA system, power allocation yields
a much higher gain than that achieved by NOMA. With respect to the benchmark OMA
with equal power allocation, we would gain 89.1% with static power allocation, while
optimum NOMA-2, with equal power allocation, would only give a 38.5% increase. This
NOMA-based improvement would necessitate UEs having access to SIC hardware and
the base-station computing the optimal scheduling in realtime. A static power map, on
the other hand, only needs the base-station to use an offline calibrated power map and
no additional hardware at the UEs. Furthermore, adopting MU-MIMO in the downlink
would be better to NOMA because it needs only the base-station to build more antennas
rather than needing UEs to have additional hardware.

4.2.3 Navigating the Limitations of Shannon Capacity Formula
in Practice: Challenges and Solutions

Shannon capacity formula quantifies the theoretical maximum capacity of a communication
channel. The formula provides a mathematical expression for the maximum amount of data
that could be transmitted reliably over a given communication channel as a function of the
available bandwidth and the SINR. One of the advantages of the Shannon capacity formula
is that it enables the abstraction of the key characteristics of the communication process
as well as the physical properties of the channel. Furthermore, the formula is a concave
and monotonically increasing function, which facilitates the study of system performance
via optimization problems and the design of practical solutions.

For example, under the assumption that the rate function is defined using Shannon’s
capacity formula, the power distribution for both NOMA and ZFT-based MU-MIMO can
be solved to optimality using the methods in [58] and [63], respectively.

Despite its popularity and usefulness, It is important to understand its limitations and
the assumptions that Shannon capacity makes. Specifically, it assumes that the system uses
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an idealized channel code that ensures communications reliability, i.e., that the receiver
can decode the transmitter’s message successfully without errors. Practical systems, on the
other hand, are limited by the set of predefined MCSs available in the system. This results
in a piece-wise constant rate function that depends on the SINR of the channel. Solving
the RRM problem with Shannon’s capacity formula might lead to incorrect insights and
sub-optimal design.

Shannon formula is misleading since it hides several key characteristics of the piece-wise
constant rate function defined by the set of available MCSs. First, it neglects the critical
fact that there is a minimum required SINR, I'y, for receiving a non-zero rate. Second, it
indicates that the rate increase monotonically with any increase in power or bandwidth
which is not the case with the practical piece-wise constant rate function. Finally, it ignores
the fact that there is a maximum rate, R,,.x, supported by the system as a result of using
a finite set of MCSs. However, this last limitation can easily be addressed by adding a
constraint in the optimization problems. It is worrying that this is not done more often in
the literature.

With Shannon, we are more likely to distribute power to a large number of users in
MU-MIMO systems than concentrate power on fewer users. This is a misleading insight if
used to develop heuristics. As a result, solutions based on the Shannon capacity formula,
such as waterfilling, often advocate distributing power among multiple users to maximize
the overall system performance.

In practice, it is often more effective to focus the transmission power on a smaller
number of users that can receive a strong signal, rather than distributing the power thinly
over multiple users. Our results show that replacing Shannon-based solutions with MCS-
aware solutions for power distribution can bring performance gains of up to 22%. This
is shown for the proposed search method suggested for NOMA that searches for the best
performing set of MCS in the nearest ko options. Also, it is shown for the greedy search
method proposed as an alternative to waterfilling power distribution in ZFT MU-MIMO
systems. Both of these solutions perform similarly in terms of runtime to Shannon-based
solution while being superior in terms of performance.

Furthermore, Shannon’s formula indicates that the rate increases as the available band-
width increases. However, the UE’s ability to correctly receive the signal is also dependent
on the minimum SINR required, which is a function of the received signal power. If the
minimum SINR is not achieved, even with a large bandwidth, the rate will not increase,
and communication may not be even possible. As the bandwidth increases and the base-
station is required to spread power thin, there comes a point where any further increase in
bandwidth is no longer beneficial.
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Handling the minimum SINR constraint is more challenging than handling the maxi-
mum rate constraint, as it makes the optimization problem non-convex and more difficult
to solve. Incorporating the constraint that each user must have an SINR of at least I'; into
the optimization problem can result in a non-linear, non-convex problem that is difficult to
solve. A practical approach for handling this challenging fact is discussed in the following.

4.2.4 The iterative approach to RRM in MUT systems is critical
to balance performance and complexity

The first message here is that ignoring the minimum SINR constraint when distributing
power is a very bad idea in terms of performance and insights.

We proposed an approach to handle the minimum SINR constraint after the fact, by
revisiting the RRM decision, in the given PRB, if necessary. This provides a more practical
solution than trying to handle the constraint up front. In this approach, power distribution
is first solved without considering the minimum SINR constraint, and the resulting SINR
for each user is checked to determine if any users have an SINR lower than I';. If any users
have an SINR lower than I';, the RRM decision is revisited, as discussed next.

The minimum SINR constraint is typically not as critical in SUT-based systems as in
MUT-based systems such as NOMA and MU-MIMO. The minimum SINR constraint is
more likely to be violated with NOMA and MU-MIMO than SISO since multiple users
sharing the same PRB (Physical Resource Block), means that the power needs to be dis-
tributed and hence “thinned” among those users while, at the same time, more interference
is generated compared to SISO.

In NOMA systems, the users assigned a zero rate in a PRB can lead to significant
power wastage. This is because these users are allocated power without contributing to
the overall data rate. Hence, to conserve power and make a more efficient use of the
available resources, it is important to revisit the RRM decision, i.e., remove some of these
users by forcing their power to be zero in the PRB under consideration and redo the power
distribution over the remaining users.

As a result, while Shannon capacity indicates that NOMA should always be employed
(i.e., we should always select N users with NOMA-N). With real MCS, there is a high
probability that using less than N users in a PRB is optimal. This is supported by our
results in Chapter 2, which show that with practical MCS, it is better to use OMA instead
of NOMA-2 20% of the time. Furthermore, with NOMA-3 with practical MCS, it is better
to use NOMA-2 and OMA 30% and 20% of the time, respectively.

106



In MU-MIMO systems, the selection of the precoding matrix plays a crucial role in
determining the SINR and the rate for each selected user. ZFT is a popular choice since it
removes inter-user interference. However, when some of the users are assigned a zero rate,
this results in power wastage as well as in inefficiencies in the ZF precoding matrix as it
is designed for a larger group of users than necessary. Hence it is important to revisit the
RRM decision and remove some of these zero rate users and recompute the ZF precoding
matrix. Our solution based on a single additional iteration after removing all users that
see a zero-rate results in up to 80% improvement in performance. Clearly, we could remove
users one at a time but this would increase the number of iterations and the increase in
performance with respect to our solution is not large.

4.2.5 Beyond necessity: The Role of Grouping in improving per-
formance and Reducing Complexity in massive MIMO sys-
tems

In massive MIMO systems, the number of antennas is typically much larger than the num-
ber of available users and thus, the base-station can ignore user-selection and serve all users
simultaneously. However, focusing on a smaller user set not only improves performance
but also reduces complexity.

Our results show that by limiting the group size Krg to a maximum of M/3, both
performance and complexity improve compared to the benchmark that select all users. The
performance improvement is a result of the base-station being able to focus and optimize
the use of available resources on a smaller user set and maintain high system performance.

Furthermore, the complexity of the precoding matrix computation is a function of the
total number of users selected. By selecting, a limited number of users this ensures that
the complexity of computing the ZFT precoder is kept at a reasonable level.

4.2.6 Balancing Performance and Complexity: The Power of
Search in Practical Wireless Systems

Although extensive search iterations are required for finding good solutions for RRM for
offline studies, a well designed search strategy for user selection can make the process more
cost-effective by reducing the amount of unnecessary iterations. By using a search strategy
that focuses on the most promising solutions, we can avoid over-searching and still obtain
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good results. This approach is shown to reduce the computational complexity of the RRM
process and make it more practical for real-world applications.

For NOMA, we proposed using a Simplified Local Scheduling (SLS) algorithm that can
provide tailored performance and runtime requirements by tuning its parameters (ki, kz).
The proposed SLS solution starts by sorting the users into sets. It computes the achievable
performance for the first k; user sets, using the proposed power distribution method with
parameter ks as discussed earlier in Chapter 2. Finally, it returns the best performing user
set out of all searched sets. SLS provides a continuum of trade-offs depending on the values
of k1 and ko, enabling tailored support for different performance and runtime requirement.
Moreover, our results show that SLS can achieve 95% of the optimum performance found
by exhaustive search in a fraction of the required runtime.

For MU-MIMO, we proposed a simple RRM algorithm, which involves a sequence of
steps that efficiently compute an RRM decision of ZF'T MU-MIMO networks. On a per
PRB basis, the algorithm starts by selecting a group of users at random, for which we
compute a ZFT precoding matrix and perform power distribution, with our proposed MCS-
aware greedy algorithm, and MCS selection. Then we perform a single extra (full-drop)
iteration where all users with zero-rate are dropped, and the precoding, power distribution
and MCS selection are recomputed. Although the method limits the number of iterations,
it has been shown to achieve approximately 95% of the performance obtained by more
extensive search methods, which are only suitable for offline benchmarking. In addition,
the proposed method can achieve significant performance gains compared to the benchmark
while improving o the benchmark’s runtime when the number of users exceeds 40 and
performs comparably otherwise.

4.3 Future research directions

This thesis has considered two MUT (Multi-User Transmission) techniques and their us-
age for downlink cellular systems. While there is a lot of theoretical work on multi-user
transmission techniques, practical network operation algorithms are required to harness
the capacity gains in real systems with limitations due to finite MCS and run time.

First, the study on massive MIMO can be extended to general precoding to see how
far is ZFT from optimal linear precoding with discrete MCS. Although, there are results
showing that the relative gap with Shannon capacity diminishes quickly as the number of
antennas increase, these are done for the case where the network operation is the sum-rate
and the assumption that the rate function is modelled using Shannon’s capacity formula.
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Checking the case with practical MCS and a proportional fair optimization objective is
interesting and it is left for future work.

Second, in the massive MIMO study, we assumed that all UEs are equipped with single
antenna receivers. However, most UEs have access to a few antennas that can receive
multiple streams at the same time. Although a simple solution would be to treat each
UE antenna as an independent user or to allocate only one stream per UE, this is clearly
sub-optimal. A further investigation is required to determine the best way to operate a
network with multiple antenna UEs.

Third, in the massive MIMO study, we assumed a single cell system. The extension
to multi-cell systems would require a revisit of the proposed equal power allocation and a
solution using a power-map is likely to provide significant performance gain as shown in

the case of SISO OMA [8] and NOMA [7].

Fourth, although we have studied both NOMA and massive MIMO independently,
the combination of both is something potentially interesting and we leave it for future
investigation. NOMA often needs users that have highly correlated channels to function
efficiently, whereas MIMO typically demands that users have distinct channels. Therefore,
both methods can complement each other.

Fifth, this work has focused on proportional fairness while different fairness objectives,
such as max-min fairness or a-fairness, can potentially lead to different conclusions. Finally,
all studied techniques have focused on the downlink and, the uplink is left for future work.
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