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Abstract

Visual content characterization is a fundamentally important but under exploited step

in dataset construction, which is essential in solving many image processing and computer

vision problems. In the era of machine learning, this has become ever more important,

because with the explosion of image and video content nowadays, scrutinizing all potential

content is impossible and source content selection has become increasingly difficult. In

particular, in the area of image/video coding and quality assessment, it is highly desirable

to characterize/select source content and subsequently construct image/video datasets that

demonstrate strong representativeness and diversity of the visual world, such that the visual

coding and quality assessment methods developed from and validated using such datasets

exhibit strong generalizability.

Encoding Rate-Distortion (RD) analysis is essential for many multimedia applications.

Examples of applications that explicitly use RD analysis include image encoder RD opti-

mization, video quality assessment (VQA), and Quality of Experience (QoE) optimization

of streaming videos etc. However, encoding RD analysis has not been well investigated in

the context of visual content characterization. This thesis focuses on applying encoding RD

analysis as a visual source content characterization method with image/video coding and

quality assessment applications in mind. We first conduct a video quality subjective evalu-

ation experiment for state-of-the-art video encoder performance analysis and comparison,

where our observations reveal severe problems that motivate the needs of better source

content characterization and selection methods. Then the effectiveness of RD analysis in

visual source content characterization is demonstrated through a proposed quality control

mechanism for video coding by eigen analysis in the space of General Quality Parameter

(GQP) functions. Finally, by combining encoding RD analysis with submodular set func-

tion optimization, we propose a novel method for automating the process of representative

source content selection, which helps boost the RD performance of visual encoders trained

with the selected visual contents.
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Chapter 1

Introduction

1.1 Motivation

Visual content characterization, which can be defined as a description of the distinctive

nature or features for visual content, is a concept frequently used in the database con-

struction of many visual-related research areas. For instance in computer vision area,

during the database construction, the visual content such as image or video is classified

by human labellers through characterizing visual contents based on different semantic cat-

egories. However, unlike its direct application on visual content classification database,

visual content characterization has not been deeply investigated in the source content se-

lection process for image/video coding and visual quality assessment database. Visual

quality database usually consists of source pristine contents, distorted contents generated

from the source contents, and human subjective quality ratings. It is a common practice for

researchers to make empirical use of some low-level characteristics such as brightness, con-

trast, and sharpness etc. to select source contents. Even though visual quality assessment

is considered to be a low-level vision task, there is no proof that those low-level features

can describe the source content accurately from visual coding and quality perspective.

The concept of visual complexity has been proposed to capture source visual contents’

level of compression difficulty. [3] With the assumption that several visual traits, such as
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edge information in image and temporal frame difference in video, may reflect the com-

pression difficulty of source contents, the visual features of Spatial Information (SI) and

Temporal Information (TI) have been proposed and included in the ITU recommendation

on guiding the source content selection for visual quality database. [4] However, with the

many visual characteristics at hand, it is hard, if not impossible, to verify how each of

them affects source contents from quality perspective. Therefore, in image and video qual-

ity studies, researchers empirically combined the aforementioned low level traits, namely

brightness, contrast, and sharpness etc., with the SI and TI on selecting source contents.

In an ideal scenario, researchers should select source contents based on the aforementioned

visual characteristics. However, in reality for most quality database studies, the visual

characteristics are only used for demonstrating the diversity of selected source contents

through drawing a convex hull on the scatter plot. The source contents are actually hand-

picked by researchers based only on their subjective judgement, where the subjective bias

across different researchers would greatly affect the source content selection process. This

is largely due to the lack of reliable systematic methods to automate the selection pro-

cess that guarantees the selected source contents is representative for specific applications.

More details will be discussed further in the background chapter.

The research on Rate-Distortion (RD) analysis in visual quality area originates from

modelling and predicting the RD behaviour for different source contents when they are

compressed into different lossy compression levels [5, 6]. With an accurate RD modeling

for source contents, image and video encoders are expected to select appropriate sets of

coding parameters so that the least possible distortion, usually measured in Peak Signal

to Noise Ratio (PSNR), can be achieved given the limited data rate budget, which is con-

sidered a better RD performance in the literature. In recent decades, with the success of

Human Visual System (HVS) driven image quality assessment (IQA) and video quality

assessment (VQA) models such as SSIM [7] and SSIMplus [8], it is possible to automate

visual quality assessment process with high correlation against human perception of com-

pression quality. The application of HVS driven quality models on RD analysis not only

makes compression more meaningful in terms of human quality perception, but also opens

the door for analyzing the visual source content characteristics from HVS perspective be-

cause the RD statistics can be directly linked to perceived quality by humans. Moreover,
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unlike other visual characteristics that only capture source content characteristics from a

single perspective using one number, the RD statistic is a high dimensional measure since

one need to compress source contents into different lossy compression levels to obtain the

RD curve, which can be further expanded into more than two dimensions when consid-

ering other factors such as resolution [9]. When compared to other visual characteristics,

RD enjoys a much deeper relationship with quality by serving as a visual characteristics

summarization measure by leveraging visual encoder as a source content analyzer.

With the compression quality related characterization measure at hand, the last piece

of puzzle towards representative source content selection is the automatic objective content

selection framework. In visual quality research area, source content selection usually starts

with a large collection of pristine contents, which is essentially a subset selection process

with each pristine content treated as an element, the collection of pristine contents treated

as the ground set, and the selected source contents treated as a subset. Submodular set

function, naturally modeling notions of information, diversity, and coverage in many ap-

plications [10], can be used to measure selected subset’s representativeness. As proved by

its application in many machine learning tasks [11], the optimization of submodular set

functions that come with “diminishing return” property, is both theoretically sound and

practically useful for solving subset selection problem. Therefore, the submodular set func-

tion optimization solution nicely fits the task of selecting source contents for compression

quality database. Therefore, we solve the source content selection problem in RD domain

by submodular set function optimization, which leads to a systematic objective source

content selection framework that guarantees the representativeness.

1.2 Objectives

The primary objective of the thesis is to address the visual content charac-

terization problem for image/video compression and quality related tasks by

means of RD behavior analysis of visual content, leveraging visual encoders as

an analytical tool. The necessity of effective visual content characterization, which is

briefly discussed in the motivation section, is demonstrated through a thorough review of
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the visual content characterization problem, with a specific focus on its applications for

image/video compression and quality-related tasks. In the literature review at Chapter

2 and the subsequent quality subjective experiment at Chapter 3, widely used heuristic

visual traits utilized to describe visual characteristics are proven to be unreliable, while

the effectiveness of utilizing encoding RD behavior analysis to address the visual content

characterization problem is validated.

Based on the fact that visual encoders can serve as content characteristics analyzers

through encoding RD analysis, we aim to address two real-world engineering needs as

sub-objectives of the thesis.

The first sub-objective is the precise perceptual quality control of image/video

encoders. As discussed in the motivation section, over-simplified visual traits such as SI

and TI are unreliable but play key roles in the visual encoder control process for charac-

terizing source contents. This can lead to inferior quality control performance for modern

visual encoders. By adopting the primary objective’s “encoder as analyzer” philosophy, we

propose the eigen-General Quality Parameter (GQP) method. This method is inspired by

encoding RD modeling and effectively solves the long-standing problem of precise visual

encoder perceptual quality control.

The second sub-objective is the source content selection in image quality

database construction. As briefly mentioned in the previous section, the motivation

originates from the need for a systematic objective visual quality database source content

selection process. Currently, this process relies on the empirical use of low-level visual char-

acteristics or even researchers’ personal preferences based on their ”expert experiences”.

To address this issue, we propose a systematic source content selection framework for com-

pression and quality-related applications, using encoding RD statistics and submodular

representativeness optimization. This framework is validated through a learning-based

image compression framework and effectively replaces the unjustified low-level visual char-

acteristics and easily biased ”expert experiences” in content selection problems.
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1.3 Contributions

Visual content lives in an extremely high dimensional space if each pixel value is treated

as a single dimension. Moreover, the growing accessibility of image and video capturing

devices such as smartphones results in an explosion of the amount of visual content in re-

cent years. The high dimensionality and high volume of visual content make it impossible

for all content to be scrutinized by humans in their life times, and thus it is imperative

to smartly summarize and select from collected visual content, upon which visual quality

and visual information compression research can be conducted. The visual characteristics

ideally should be low dimensional and convenient for processing. Moreover, the visual

characteristics, if properly designed, make it possible for researchers to objectively select

source contents for the quality databases. The first contribution in this thesis is

to point out the importance of establishing visual content characterization as

a critical problem in visual compression and quality research (as opposed to

purely empirical content selection), and for the first time to provide a compre-

hensive review and analysis of the related literature. Although previously several

indicators have been used by researchers for selecting source contents, a comprehensive

literature review on those indicators and their underlying methodology is lacking. The re-

view of the visual content characterization problem provides a common ground for future

compression and quality database related research.

As discussed in the motivation section, the characteristics such as brightness, contrast,

SI, and TI etc have been widely used for selecting source visual contents while their ef-

fectiveness on capturing the source contents from quality perspective is unverified. The

aforementioned characteristics are only collected from source pristine content, making it

untenable to claim they are suitable for compression applications. Therefore, the second

contribution of the thesis is that we propose to use encoding RD statistics as a

better visual content characterization method for compression quality related

tasks. Since the RD statistics can directly include HVS inspired quality models as mea-

sures to explain the distortion of lossy encoded contents, using RD as a characteristic for

source visual contents is well motivated and promising. Moreover, we provide several real

case examples to verify the usefulness of RD analysis in the background chapter and using
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a specific application for RD analysis on encoding quality control. By applying the pro-

posed RD analysis method, which is an eigen analysis approach, on video encoder control

parameter against the encoded video quality, the proposed framework clearly outperforms

the current quality control method and makes it possible to predict the relationship be-

tween quality and encoding parameters in a time efficient manner, precluding the necessity

of designing ad-hoc methods aiming for saving encoding time. Moreover, the RD analysis

inspired quality control method not only works on video encoders, but also deep neural

network (DNN) driven End-to-End (E2E) image encoder.

Source visual content selection has always been a difficult task for visual quality dataset

construction. Since the subjective experiment capacity is always limited, researchers can

only test tens of source contents together with their distorted versions at most for hu-

man subjective quality evaluation in a lab setting. On the other hand, the pristine visual

contents are so abundant, especially in recent years, thanks to the online content view-

ing platform such as YouTube and Netflix. Therefore, the challenge becomes obvious for

quality research: how to select representative source contents given the uncountable large

amount of pristine source visual contents? Nowadays, researchers usually start the database

construction process by selecting a subset of data from a large collection of pristine visual

contents. The selection procedure is usually subjective and biased since there is no objec-

tive selection procedure or testing criterion/tool available in the literature and the problem

has often been neglected by researchers. Researchers have to select contents randomly or

based on their own “expert experience”. In this thesis, the third contribution is that

we provide a theoretically sound and practically useful framework for source

content characterization and selection. The third contribution is built based on the

previously proposed quality related visual content characteristics, encoding RD statistics.

Subset selection problem is frequently visited in machine learning area, especially for Nat-

ural Language Processing (NLP) tasks such as text summarization. Among the many

solutions to subset selection problem, submodular set function optimization is an effective

approach that has been proven both in theory and practice. Our proposed framework

utilizes the submodular optimization approach.
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1.4 Thesis Outline

The thesis is organized as the following:

In Chapter 2, visual characterization concept is introduced, followed by a review of fre-

quently used visual characteristics in quality research area including their implementations

and applications. Moreover, the background of encoding RD analysis is discussed in detail.

The validity of using encoding RD statistics as a characterization measure is addressed.

Lastly the modern video encoder High Efficiency Video Coding (HEVC) and recently suc-

cessful neural network based E2E image compression model are described, which will be

utilized later in the thesis.

In Chapter 3, we present our work on quality subjective experiment with the application

on encoder comparison, which reveals the problems of visual content characterization and

source content selection. Firstly in Section 3.1, the purpose of a comprehensive subjective

and objective assessment of encoders is elaborated. Then the database construction and

experiment setup are described thoroughly in Section 3.2. Lastly in Section 3.3 and Section

3.4, based on the subjective experiment results and the problems encountered during the

database construction, the objectives of the thesis are analyzed.

In Chapter 4, the effectiveness of encoding RD analysis is demonstrated through its

application in the precise control of visual coding. Section 4.1 gives an introduction of

the related works and the connection between RD analysis and encoder quality control

is drawn. In Section 4.2 and Section 4.3, the mathematical foundation is introduced and

therefore the modelling of GQP is proposed. In Section 4.4, the eigen analysis guided

algorithm for recovering GQP space from sparsely sampled data points is described. The

effectiveness of the proposed framework is validated by the experiments in Section 4.5 and

Section 4.6. Lastly in Section 4.7, the conclusions are drawn and further directions of

research are discussed.

In Chapter 5, a novel source content selection framework based on submodular opti-

mization in RD domain is proposed. Firstly in Section 5.1, the background of compression

quality dataset construction and the benefit of selecting contents in RD domain is intro-

duced. Secondly in Section 5.2, the submodular optimization and its suitability for the
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problem of content selection are discussed in detail. In Section 5.3, the source content

selection procedure is introduced. In Section 5.4, experiment using E2E learning based

image compression model is conducted to validate the usefulness of the proposed measure

in promoting the representativeness of image quality dataset for compression applications.

In Chapter 6, the thesis is summarized, the importance of including encoding RD

analysis as a visual content characterization measure for compression applications is reem-

phasized. Future directions are discussed.
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Chapter 2

Background

This chapter begins with the introduction of the visual content characterization concept

from low level vision perspective, which plays a key role in visual quality research, especially

in visual quality dataset construction. In the area of visual coding and visual quality, visual

content characterization is a broad concept not only includes some common low level vision

traits such as brightness, contrast, and sharpness, etc, but also other compression related

factors such as visual complexity. The low level vision traits and visual complexity will be

reviewed in the context of image and video quality database construction. Moreover, the

usage of encoding Rate-Distortion (RD) performance statistics as a better characterization

method for compression applications will be investigated through a review of its existing

applications and observations about its capability in reflecting source content compression

related characteristics.

The encoding RD inspired precise quality control proposed later in Chapter 4 is built

upon the video and image encoders. Therefore, the second half of this chapter will review

the modern video encoding pipeline using High Efficiency Video Coding (HEVC) as an

example, specifically focusing on the rate and quality controlling mechanism. Moreover,

the deep neural network (DNN) based End-to-End (E2E) image compression method using

convolutional network and optimized in E2E manner will be reviewed [12]. The idea of

DNN driven E2E learning incorporated into the encoding framework plays a key role in

its state-of-the-art RD performance but at the same time brings major new challenges to
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encoder control, hindering it from real applications.

2.1 Visual Content Characterization

2.1.1 Low level vision traits

In vision science, a hierarchical framework is typically considered as a way to explain

human visual processing framework. It consists of a series of discrete stages that suc-

cessively produce increasingly abstract representations. Shown in Fig.2.1, the stages are

often considered in terms of low-, mid- and high-level representations. Low-level vision is

related to representations of elementary features such as local colour, luminance, spatial

frequency, orientation or contrast while high level stage is related to categorical or semantic

representations to enable classification or identification [13]. Since the Human Visual Sys-

tem (HVS) quality assessment process does not involve classification or identification and

human participants typically give out a quality rating based on their general perception

during the visual quality subjective experiment, the quality assessment is believed to be

mainly a vision task involving low-level vision features. Therefore, the features frequently

used in vision science area for low-level vision perception are borrowed for visual quality

assessment purposes, such as luminance (equivalent to brightness in the thesis), color, and

contrast etc.

Brightness

Recommended in ITU-R BT.601 [14], brightness is defined as a weighted sum of the RGB

three channels of source signal.

Y = 0.299r + 0.587g + 0.114b (2.1)

In the image quality database CID2013 [15], brightness was used for the first time as

a measure guiding the source content selection. The author claims that the brightness

distribution of their selected source contents represent typical photographs that consumers
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Figure 2.1: Hierarchical human vision system

might capture with their cameras. The source contents are selected based on the brightness

levels aiming for a good coverage of typical photographs brightness range. In KonIQ-10K

image quality dataset [16], around 10 thousand images are selected in a uniformly sampling

strategy according to the brightness distribution of the 4 million image collection. It

should be noted that the authors of KonIQ-10K database use the uniform sampling as

a way to ensure the diversity of selected images. In case of video quality databases, the

MCL-V streaming video quality database proposed in 2015 is the first work that takes

brightness into consideration [17]. In this work, the brightness for source contents are

divided into three levels and a summary of each content’s brightness level is shown in

a table demonstrating that the 12 source contents have a good coverage of brightness
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levels. In YouTube UGC database [18], the brightness distribution is plotted against

other databases and the convex hull is plotted for the 2 dimensional plot of brightness

and contrast to demonstrate the diversity since its convex hull’s coverage is the largest

compared to other databases.

Figure 2.2: Scatter plots examples with six features: contrast (CT), brightness (BR),

sharpness (SR), colorfulness (CF), temporal information (TI), spatial information (SI)
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Contrast

Contrast, defined as the difference between the maximum brightness and the minimum

brightness, is an indicator used by many quality datasets for selecting source contents

as well. In authentically distorted image quality dataset KonIQ-10K [16], contrast is

used together with other visual content characteristics such as brightness, colorfulness

by uniformly drawing selected contents to ensure the diverse selection. For video quality

database, the distribution of contrast for three database, KoNVid-1k [19], Live-VQC [20],

and YouTube-UGC [18] are plotted and compared in the paper [21], where the authors

use contrast together with other indicators to review the selected contents. In addition to

distribution plot, the scatter plots of contrast versus brightness are drawn with the convex

hull. The practice of drawing visual characteristics on a scatter plot with convex hull is

common in visual quality database studies. An example is shown in Fig.2.2 [21].

Colorfulness

Colorfulness is another visual characteristics widely utilized in the quality database works.

Proposed by Hasler et al [22], the measure is defined using the difference between R, G,

and B channels:

rg = R−B (2.2)

yb =
1

2
(R +G)−B (2.3)

The standard deviation σ and the average µ of the color differences are further calculated

and utilized in the final empirical colorfulness measure C.

σrgyb =
√
σ2
rg + σ2

yb (2.4)

µrgyb =
√
µ2
rg + µ2

yb (2.5)

C = σrgyb + 0.3µrgyb (2.6)
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For image datasets, colorfulness are usually combined with Spatial Information (SI)

to demonstrate the diversity of source contents. Examples can be seen in the MDID

dataset [23] and Waterloo Exploration-II dataset [2]. The authors in those image quality

dataset papers draw a 2D convex hull of the scatter plots with the assumption that the

diversity of selected contents is positively correlated with the area of the convex hull,

though no justification of such an assumption has ever been provided. The colorfulness

for each video frame is averaged for evaluating the video colorfulness in the BVI-CC video

compression quality database [24]. The distribution of colorfulness for three database,

KoNVid-1k [19], Live-VQC [20], and YouTube-UGC [18] are plotted and compared in the

video quality database review paper [21].

2.1.2 Visual complexity measures

The need for visual complexity measures arises from the need of evaluating video compres-

sion related dataset using simple metrics.[3] Researchers want to find a metric that can

capture the visual content’s level of complexity viewed by HVS and therefore expect the

level of complexity is related to the source content’s level of compression difficulty. For this

purpose, several measures have been proposed to evaluate visual complexity, which can be

classified into filter based solutions and compression based solutions.

For filter based solution, it is assumed that the complexity can be explained in the level

of edge contents.[25, 26, 27] Among many of the visual complexity measurements, the work

by Yu et al.[3] proposed a Sobel filter based metric to evaluate image complexity, which

is the recommended method SI in ITU recommendation based upon [4]. In the study,

two complexity measures are proposed based on the Sobel filter. Let sh and sv denote

gray-scale images filtered with horizontal and vertical Sobel kernels, respectively:

SIr =
√
s2h + s2v (2.7)

Let P denote the number of pixels in the image. Two complexity measures are defined as

SImean =
1

P

∑
SIr (2.8)
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SIstdev =

√
1

P

∑
(SIr − SImean)2 (2.9)

Since the above methods can only evaluate image complexity or video frame-level com-

plexity, the video complexity from temporal perspective in ITU recommendation [4] is

defined as:

TI = maxtime{stdspace[Mn(i, j)]} (2.10)

where Mn(i, j) is the motion difference defined as the pixel value difference at location

(i, j) between the two adjacent frames Fn(i, j) and Fn−1(i, j):

Mn(i, j) = Fn(i, j)− Fn−1(i, j) (2.11)

Regardless of the adoption of the filter-based method SI and frame difference based Tempo-

ral Information (TI) in ITU standard recommendation, they only capture limited aspects

of visual contents, namely edge information and frame difference. What is more, their

effectiveness is questionable on characterizing extremely complex visual content with just

the two over-simplified single dimension features.

As will be discussed in the video encoding pipeline section, encoder control for lossy

visual content is a hard problem. Because of the high dimensional data space, the encoding

parameters have to be adapted based on different characteristics for the large amount of

images or videos. Though visual contents can be characterized by contrast, color, texture,

SI, or TI etc, the encoders often have to take additional visual characteristics and image

statistics into account to find the best encoding parameters, which is a difficult problem, if

not impossible, given our limited understanding of the visual content space. Therefore, in

practice, SI and TI find limited usage on guiding encoding parameter selection for different

source contents because they could not meet the need of accurately describe source contents

from compression perspective for precise encoder control.

Compression based complexity measures are inspired by the concept of Komogrov

complexity.[3] As stated in Komogrov complexity theory, an object (such as an image)’s

complexity is represented by the length of the shortest computational program that can
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describe the object. Due to the fact that Komogrov complexity is not computable, it

can only be approximated by real-world compressors [28]. Several image complexity (IC)

metrics based on the Komogrov complexity are listed as below:

ICLS =
1

CR
(2.12)

ICRMSE(q) =
RMSE(q)

CR(q)
(2.13)

ICLY (q) =
1

CR(q)
(2.14)

where CR denotes the compression ratio defined by CR = s(I)
s(C(I))

, where s(I) is the uncom-

pressed image or video file size and s(C(I)) is the encoded bitstreams’ size of the compressor

C. When an image is losslessly compressed, the ICLS represents the lossless image com-

plexity. When the lossy compressed image file size is achieved at certain compression levels

q, the image complexity ICLY (q) can be defined. In computing aesthetics [29, 30], lossy

compression and distortion are used to define image complexity, where RMSE is the root

mean square error (RMSE) between the original image and the lossy compressed image,

and q is a parameter that controls the level of lossy compression.

The compression based metrics are used as ground truth for some complexity metrics’

performance assessment. In [3], correlation against the image compression based complex-

ity measure is used as a way to validate the effectiveness of the proposed model. The

evaluation process leads to a paradoxical situation: If Komogrov complexity motivated

complexity measures are considered as alternatives to visual content complexity measures,

then they are not supposed to be used as ground-truth in evaluating other filter-based

metrics.

2.1.3 Visual complexity and human perception

Conceptually, how much a visual content can be compressed is related to the complexity

of the content, which naturally brings about the problem of visual content complexity

comparison. Many subjective experiments are conducted in reviewing the complexity level
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of different content so as to evaluate the performance of their proposed complexity met-

rics [31, 27, 32]. In paper [32], a subjective experiment is conducted on evaluating video

content complexity. A total of nine videos are watched by three participants. Viewers are

asked to rate the level of video complexity in a 5 scales rating. The average scores are

obtained after the subjective experiment. Since the number of participants is limited and

no statistical analysis is done to verify the importance of obtained data, the experiment is

only treated as preliminary. Recently in the work by Durmus [31], a more comprehensive

image complexity subjective experiment is done. There are a total of 16 contents, ranging

from natural scenes, paintings to simple lines. Forty-four viewers participate in the experi-

ment and the final results show that mean opinion score (MOS) for image complexity varies

significantly across participants, suggesting that subjective experiments on verifying the

designed metrics are not conclusive. The author admitted that the observers’ judgements

should be “taken with a grain of salt”.

As can be observed from the past subjective experiments on visual complexity, there is

a large variation in human observers’ opinions on visual complexity and it is often unrealis-

tic to achieve a consensus on the complexity level for a specific video or image content. As

a result, it may only be considered as both the filter based and compression based features

visual content characteristics instead of visual complexity measure. Moreover, the subjec-

tive experiments suggest that human judgements are not reliable for evaluating the visual

contents for compression applications. Consequently, during the source content selection

for compression quality database, human bias towards different contents could significantly

affect the performance of the compression applications utilizing the database.

In comparison with subjective visual complexity, visual content characterization may

be a better concept to describe visual content for visual quality and compression tasks.

Besides SI and TI, other visual content features such as Colourfulness (CF), contrast, and

RD statistics may also be incorporated and a better description of visual content is highly

desirable.
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2.1.4 Encoding RD analysis as a characterization measure

Encoding RD analysis is an essential step in evaluating different data compressors’ perfor-

mance. In video and image encoding area, new generation encoder’s improvement is vali-

dated through RD analysis, which is conducted by encoding source contents into a range

of compression levels, so that RD curves can be drawn to compare quality improvement

given the same data rate or rate saving at the same quality level [33, 34, 35, 36, 37]. Since

different video contents may vary drastically in their RD curves, an aggregate evaluation

of a large number of contents’ RD performance offers a meaningful overall performance

evaluation. Moreover, with researchers paying more attention to other factors affecting

compression quality, such as spatial resolution and frame rate, the RD analysis may be

extended to a generalized rate distortion (GRD) analysis.

The RD statistics contain more information than widely used characterization methods

such as SI and TI. As seen in Fig.2.3, the two images share the same SI value 68 but the

RD curve for the natural scene with building content is lower than that for the flowerpot

content on the right, which indicates the flowerpot is actually easier to be encoded in

terms of compressibility. For video content, the two contents in Fig.2.4 not only share

the same SI value 54, but also have close TI values 23 and 24. However, their RD curves

behave differently and cross each other. In this figure, the y axis represents the MOS value

collected in the subjective experiment in Chapter 3.

Unlike the complexity measure such as SI that can be compared in terms of a single

dimensional value only, the RD curves shown in Fig.2.3 and Fig.2.4 contain more informa-

tion not just limited to the level of source content compressibility. As shown in Fig.2.5,

the RD curve for the river content is higher than that of the flower content at low bitrate

range while lower in the high bitrate range. The two videos are encoded using HEVC video

encoder under 90 bitrate levels at 1080p resolution. The common crossing phenomenon

in video RD analysis implies that single dimensional numbers are insufficient and richer

information about visual content characteristics are captured by encoding RD analysis.

What is more, as pointed out in [38], visual content details are embedded in multiple

resolutions that have varying impact on the perceptual quality evaluation of the contents.

The RD statistics can be extended to incorporate RD information on different resolutions,
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(a) (b)

Figure 2.3: Samples of RD curves for different image contents with the same SI

which are exemplified by 3-dimensional surfaces in Fig.2.6 [1].

Therefore, we propose to characterize visual content using encoding RD analysis for

compression applications. In our proposal the visual encoders directly work as analyzers

through the encoding RD analysis of lossy encoding. We intend to characterize visual con-

tent directly from compression perspective, which makes it better matched to compression

and related quality evaluation tasks.

2.2 Video Encoding Pipeline

Fig 2.7[39] illustrates how typical predictive video encoder and decoder work. Firstly,

the video frame is partitioned into image patches, which are called Coding Tree Unit

(CTU). Then for each CTU, based on its characteristics, the encoder will either pass

it through intra-frame estimation (a.k.a intra-prediction) or motion compensation (a.k.a

inter-prediction). After all the predictions are done, the encoder subtracts the predicted

signal from the original CTU signal, and the residual will go through the transform, scaling

and quantization processes. The decoder reverses the aforementioned process to reconstruct
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Encoding RD Comparison

Figure 2.4: Samples of RD curves for different video contents with the same SI and similar

TI

the video image so that the filter control analysis is performed to enhance the final decoded

video quality. At the end, the encoder uses source coding methods to compress the general

control data, the quantized transform coefficients, the intra-prediction data, the inter-

prediction data, and the filter control data into a coded bitstream for transmission or

storage.

In this thesis, the quantization and rate/quality control are the main focuses.
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Figure 2.5: Videos with crossing RD curves

2.2.1 Transform and quantization

After all the mode predictions have been finished, no matter how effective a prediction mode

selection scheme is used, the final quality and bitrate are determined by the transform and

quantization applied to the remaining residual signal. In block-based hybrid coding such

as HEVC, transforms are applied to the residuals obtained after the mode prediction.

There are two types of transforms used in HEVC: the core transform based on the discrete

cosine transform (DCT) and the alternate transform based on the discrete sine transform

(DST). After transforming the residual from spatial domain to frequency domain, in order

to achieve different levels of compression, a quantization step is necessary.

In signal processing, quantization is a process that maps input from a large set of

possible values to an output value in a smaller set. Through mapping multiple values to
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Figure 2.6: Samples of RD surfaces for different video content.

a single value, the higher compression ratio could be achieved using the entropy coding.

Scalar quantization is usually done by rounding and truncation. In video encoder, quan-

tization consists of division by a quantization step size (Qstep) and subsequent rounding,

while inverse quantization consists of multiplication by the quantization step size. Similar

to H.264/AVC [40], a Quantization Parameter (QP) is used to determine the quantization

step size in HEVC. QP can take 52 values from 0 to 51 for 8-bit depth video sequences.

An increase of 1 in QP means an increase of the quantization step size by approximately

12 percent (i.e., 21/6 ). An increase of 6 leads to an increase in the quantization step size

by a factor of 2[41]. In addition to specifying the relative difference between the step-sizes

of two consecutive QP values, there is also a need to define the absolute step-size associ-

ated with the range of QP values. The following equation shows the relationship between

quantization step size Qstep and QP.

Qstep(QP ) = (21/6)(QP−4) (2.15)

As shown in Fig 2.8, the quantization step size increases non-linearly with respect to QP.

2.2.2 RD analysis based video rate control

RD analysis is an essential step in encoder rate control. For real world applications,

the transmission bandwidth and storage space are limited so that the signal is required
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Figure 2.7: HEVC video encoder structure (decoder modeling elements shaded in grey)
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Figure 2.8: Relationship between Qstep and QP
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to be transmitted or stored under a predefined data rate. Due to the fact that video

signal intrinsically contains a large amount of information both in spatial domain and time

domain, it is critical to control its bitrate, which is usually measured in unit of bits/second

for video, through compression. The goal of rate control is to keep the bitrate of video

below or equal to a certain threshold while selecting the set of coding parameters that

achieves the best quality among all possible combinations. The rate control problem can

be formulated as finding the set of coding parameters so that the distortion D is minimized,

subject to the condition that the encoded video bitrate R is less than or equals to the target

bitrate Rt.

In HEVC, the success of rate control is backed by better RD modelling, which guides the

modelling between rate and encoder parameters. The RD trade-off can be mathematically

formulated:

{Params}optimal = arg min
{Params}

D s.t. R ≤ Rt (2.16)

where {Params} is the set of coding parameters including intra-prediction modes, inter-

prediction modes, and QP etc.. With the help of Lagrange multiplier methods, this hard

constrained optimization problem in Eq 2.16 can be relaxed into a soft constraint problem

{Params}optimal = arg min
{Params}

D + λR (2.17)

where λ is the Lagrange multiplier, which corresponds the slope of the RD curve. The

term D + λR is usually treated as the RD cost. In Fig 2.9[42], the best operation point

with optimal RD cost for the specific λ can be achieved at the intersection between the

line of the cost function J = D + λR and the RD curve.

Based on the idea of RD trade-off, for HEVC and later developed video encoders such

as AOMedia Video 1 (AV1), a λ-domain rate control algorithm is proposed to tackle the

rate control problem [43].

For the λ-domain rate control algorithm, firstly, an analytic function is used to model

the encoded video RD curve.

25



Figure 2.9: Typical RD curve and cost function J with slope −λ

D(R) = CR−K (2.18)

where C and K are model parameters related to the characteristic of source video content.

The value of R is determined by Eq 2.19.

bpp = R/(f · w · h) (2.19)

where R is the target bitrate, f is the video frame rate, w is the frame width measured in

pixels, and h is the frame height measured in pixels. It should be noted that in practical

encoder implementation, bits per pixel (bpp) is used to denote the R value in Eq 2.18.

As mentioned in Fig 2.9, λ is the slope of the RD curve. Therefore, it can be expressed

as

λ = −∂D
∂R

= CK ·R−K−1 ∆
= αRβ = αbppβ (2.20)
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where α and β are parameters related to the source video content. In practical HEVC

implementation, the Eq 2.20 is repeatedly calculated for the basic coding unit, i.e., CTU,

to determine the value of λ for the Rate-Distortion Optimization (RDO) process.

The author of [43] uses only four video sequences with four compression levels each to

demonstrate the effectiveness of RD modelling by the analytic function Eq 2.18, which is

shown in Fig 2.10.

Figure 2.10: RD curve fitting for 4 video sequences

Because the parameters α and β need to adapt to the content of each CTU, an algorithm

to update their values is also proposed, as shown below. A more detailed proof can be

found at the appendix of [43].

λcomp = αoldbpp
βold

real (2.21)
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αnew = αold + δα × (lnλreal − lnλcomp)× αold (2.22)

βnew = βold + δβ × (lnλreal − lnλcomp)× lnbppreal (2.23)

In Eq 2.21, Eq 2.22, and Eq 2.23, λcomp is the λ used for the RDO process for the

current CTU. αold and βold are the pre-calculated α and β values, respectively, according

to the previous round of update. bppreal is the bits per pixel allocated to the current CTU

according to the bit allocation process beforehand. λreal is the real λ calculated based on

the previous encoded frame. δα and δβ are the two predefined step sizes. It should be

noted that the initial values of α and β are set to 3.2003 and -1.367, respectively, which

are given empirically by the authors.

Because QP still needs to be determined for the CTU’s encoding, in Eq 2.24, a mapping

from λ to QP is defined

QP = c1 × ln(λ) + c2 (2.24)

where c1 and c2 are two predefined values set to 4.2005 and 13.7122, respectively. By

testing out the algorithm on only 20 video sequences, the author of [43] claims that the

aforementioned method can achieve up to 1.81 dB PSNR reduction.

Even though the RD analysis based λ domain rate control enjoys performance gain

against previous rate control methods, there are still some shortcomings.

Firstly, the analytic modelling of the RD curve may not be accurate enough. The

author claims that the correlation coefficient can achieve 0.99. However, the observation is

based on only four source video contents which are encoded at only four distortion levels

as shown in Fig 2.10.

Secondly, the update of the parameters of α and β introduces two new heuristic pa-

rameters δα and δβ. Although the authors set the two values to 0.1 and 0.05, respectively,

in their experiment, in HEVC implementation the two values, ranging from 0.01 to 0.4

and 0.005 to 0.2 respectively, are set according to the bpp, which voids the mathematical

derivation of the update rule.
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Thirdly, in order to determine the QP value to encode the CTU, the authors link the

QP to λ, which in turn links QP to bitrate again according to Eq 2.18. Interestingly,

the practice of linking QP with bitrate has already been criticized in the paper for not

considering the increased number of coding modes in HEVC.

Though the RD analysis improves the performance of HEVC rate control, the current

rate control method still has a large room for improvement. The mathematically derived

solutions still need to be guided by heuristic modelling and tuning in real video encoder

applications. In real world applications such as x265 video encoder, the heuristic modelling

fails frequently. In order to compensate for the short usage of the given bandwidth, redun-

dant bits are appended to the encoded bitstream. And dropping video frames is common if

the actual encoded signal rate is higher than the target rate. The inaccurate RD modelling

lead to inefficient use of the precious bandwidth in the encoded bitstream.

2.2.3 Video encoder quality control

Quality control is necessary for many research applications such as encoder performance

comparison and visual quality database construction. For modern video encoders, users

can select the quality level by adjusting the values in constant rate factor (CRF) encoding

mode. The mode limits the quality variation across the frames, while rate control and

Constant Quantization Parameter (CQP) methods would result in degraded quality in

high motion or complex texture part of the video sequence. Moreover, since the CRF

encoding mode would disable the rate control mechanisms that lead to lower-than-claimed

RD performance, many video quality related datasets make use of CRF encoding mode in

database construction.[44, 45, 46, 47]

Most viewers care about the quality of encoded video. Therefore, video quality has

always been an active research area and many HVS inspired objective video quality metrics

are proposed such as SSIMplus[8] and VMAF[48]. They are becoming widely accepted as

the necessary tool to assess the encoded video quality in both academic research and

industrial applications.

In the reference encoder of HEVC, constant quality across the frames can only be

achieved using CQP setting for all frames. Since each QP value comes with a predefined
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quantization matrix, the constant QP mode cannot adapt according to the content, result-

ing in large quality variations between different frames depending on their complexity. As

a solution to the problem, CRF encoding mode mechanism would adapt the QP value ac-

cording to the content complexity, especially motion information, of each frame[49]. Unlike

RD analysis backed rate control mechanism, the CRF method employs a much simplified

modelling of the quality against encoding parameter QP.

In real world applications of x264[50] and x265[51], CRF values range from 0 to 51,

where 0 represents the lossless quality and 51 represents the worst quality the encoded

video can achieve. During the encoding of each frame, the look ahead mechanism would

make use of the residual signal to analyze the complexity of the frame ahead to adjust the

quantizer curve compression factor, which can be symbolized as qComp. Therefore, the

QStep in 2.15 can be divided by the qComp as follows:

Qstep(QP ) = (21/6)(QP−4)/qComp (2.25)

where qComp is defined in the range of (0, 1], which increases when the complexity is high

so that the quantizer curve in Fig. 2.8 would change accordingly. The described formulation

of the CRF control process is a simplified version but captures the essential idea of how

modern video encoders achieving constant quality.

There are several drawbacks of the current constant quality control mechanism. The

CRF method falls short of the growing expectation of better quality control given the

development of HVS inspired quality metrics:

Firstly, adapting the quantization curves merely based on the analysis on residual is

not enough. Since the residual signal is obtained after mode prediction as described in

section 2.2.1, the values are greatly affected by the inter or intra prediction mode selected,

which is far from an adequate prediction of frame complexity.

Secondly, the actual relationship between content characteristics and QP is unknown

and has never been thoroughly investigated in the research area. The current widely used

quality control methods are mostly based on heuristics and ad-hoc mechanisms such as

using the quantizer curve compression factor qComp described above.
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Thirdly, the established HVS inspired metrics such as SSIMplus and VMAF has been

validated as meaningful metrics that well capture the quality of encoded videos effectively,

much better than the signal error estimators such as Peak Signal to Noise Ratio (PSNR)

and Mean Square Error (MSE). Therefore, adjusting encoded video quality according to

HVS inspired metrics is highly desirable and beneficial to many tasks such as video database

construction or video encoder comparison.

Both the rate and quality control of video encoders boil down to the problem of mod-

elling encoder control parameters against the target rate and the quality of the encoded

videos. With the help of the RD analysis conducted in the rate control mechanism of

HEVC, a better quality control could not only make the encoded video achieve less quality

variation but also enable the encoded video to achieve the target quality level measured

by HVS inspired metrics. Without a good estimation of video characteristics, it would be

a hard task to find an appropriate set of parameters that are suitable for different content.

Therefore, a thorough investigation and better mathematical modelling on visual content

characterization from the RD perspective would benefit the encoder quality control. The

work in Chapter 4 tackles the problem from an RD analysis perspective and solves it by

introducing a better quality-parameter modelling method.

2.3 End-to-End Image Compression

In 2017, Ballé et al. proposed a neural network based E2E image compression framework.[12]

The encoder and decoder are comprised of convolutional neural networks followed by non-

linear functions. By using RD as the cost function, the proposed work achieves much better

performance when compared against conventional image encoders such as JPEG and JPEG

2000, especially measured in HVS inspired metrics such as MS-SSIM[52]. Following the

paper, many works have been done based on the idea of E2E optimized RD balance con-

volutional framework [53, 54, 55]. In the work proposed by Minnen et al [53], the authors

make use of the Gaussian hyperprior assumption of the encoded parameters, achieving bet-

ter performance against HEVC intra coding, the best performing transform-based image

encoder.
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2.3.1 General framework

The goal of signal compression is to achieve the best quality under limited data rate budget,

which can be expressed mathematically as an RDO problem. The RD cost function is given

by R + λD, where R represents the data rate, usually measured in the unit of bits per

second or bits per sample, D represents the distortion, usually measured in mean square

error or perceptually inspired quality metrics, and the Lagrange multiplier λ balances the

trade-off between rate and distortion. The proposed general nonlinear transform coding

framework directly optimizes for the RD cost function in an E2E manner.

Figure 2.11: Autoencoder in a transform coding framework.

Fig.2.11[12] illustrates the coding framework, where x and x̂ represent the original

pristine and reconstructed signals in data space, respectively, y and ŷ represent the corre-

sponding coded signals in the continuous code space, and z and ẑ represent the transformed

signals in the perceptual space for quality purpose. In this framework, a vector of signal

values x ∈ RN is mapped to the latent code space by a parametric analysis transform,

y = ga(x, ϕ), where ϕ represents the vector of parameters that need to be optimized. Af-

ter the analysis transform, the coding space representation y is quantized, producing a

discrete-valued vector q ∈ Zm, which is compressed afterwards using context-adaptive bi-

nary arithmetic coding (CABAC)[56]. The rate R of the discrete code is lower-bounded by
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the entropy of the quantized vector H[Pq]. To reconstruct the signal, the quantized signal

is mapped back to the continuous code space. Then the parametric synthesis transform

is applied on the dequantized signal ŷ, x̂ = gs(ŷ, θ), where θ represents another vector of

parameters that need to be optimized. The distortion is computed by transforming to a

perceptual space using the transform ẑ = gp(x̂), followed by evaluating a distortion metric

d(z, ẑ). The perceptual transform in the proposed method is the identity transform, but

other perceptually meaningful transforms can be applied as well. The parameter vectors

ϕ and θ are optimized for a weighted sum of the rate and distortion measures, R + λD,

over a set of images. As in [12], CNNs are used to implement the analysis and synthesis

transforms, allowing for end-to-end learning and testing. There are three layers in the

analysis transform, each consisting of a convolutional layer (with 128 kernels of sizes 9, 5,

5), followed by a down-sample layer (of downsampling factors 4, 2, 2) and a Generalized

Divisive Normalization (GDN) layer. The synthesis transform is the inverse of the analysis

transform.

The optimization process aims to minimize the RD cost over the parameters of for-

ward, inverse and perceptual transforms. The Lagrange multiplier λ is set to govern the

trade-off between rate and distortion. A key difference between the proposed method and

conventional image encoding methods is to directly applying RD analysis in an end-to-end

manner. Furthermore, the nonlinear transform is used to warp the space appropriately

instead of searching for the optimal quantization scheme over the high dimensional signal

space which is nearly intractable. The warping process makes it possible to use a fixed

uniform scalar quantizer in code space, and largely simplifies the coding process. The

objective function is defined in terms of entropy as

L[ga, gs, Pq] = −E[log2 Pq] + λE[d(z, ẑ)] (2.26)

where Pq is the probability mass function of the quantized output vector of the analysis

transform.

A technical difficulty is that the derivatives of the quantization function are zero almost

everywhere, making it impossible to execute any gradient descent based optimization meth-

ods. As in [12], the quantizer is replaced with an additive i.i.d uniform noise source △y,
which has the same width as the quantization bins (one). Consequently, the continuous
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relaxation density function of ỹ = y +△y can be used in the gradient descent process

pỹ(n) = Pq(n), for all n ∈ ZM (2.27)

With the continuous approximation of the quantized coefficient distribution, the loss func-

tion for parameters θ and ϕ across all training samples i is

L(θ, ϕ) = Ex,△y[−
∑
i

log2 pỹi(ga(x;ϕ) +△y;ψ(i))

+λd(gp(gs(ga(x;ϕ)) +△y; θ), gp(x))]
(2.28)

Mean squared error (MSE) is chosen as the distortion measure d, though any other differ-

entiable quality metric can be adopted in the general framework.

2.3.2 Performance

In terms of performance, the proposed framework greatly outperforms conventional trans-

form based encoders such as JPEG and JPEG2000. Fig.2.12 shows an aggregate perfor-

mance comparison of the three encoders on Kodak dataset. Since quality and rate cannot

be fixed across different images and encoders, the points on the average curves are the mean

RD points connected by the 24 encoded source content images’ RD data. Two different

modes, target quality and target rate, are tested for JPEG 2000 since the two modes lead

to different image encoder parameter selections.

It can be seen from the Fig.2.12 that the proposed work achieves the best aggregated

performance for all RD levels. Fig.2.13, Fig.2.14 and Fig.2.15 are three examples of the

content-wise performance comparison including a visual comparison of encoded images.
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Figure 2.12: Summary rate-distortion curves.
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Figure 2.13: Natural Scene Example

36



Figure 2.14: City View Example
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Figure 2.15: Drawing Example
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2.3.3 Observation and discussion

Though the E2E encoding framework outperforms conventional image encoders by a large

margin, it can hardly be applied in real world applications due to the lack of an accurate

control mechanism to guide the image encoder to select the appropriate λ value for a specific

quality or rate level. Without knowledge of λ-quality or λ-rate relationship, quality or rate

control for encoded images is not feasible since the source image complexity varies across

different content. As shown in Fig.2.13, Fig.2.14 and Fig.2.15, rate-distortion behavior

varies substantially across bit rates for different contents. Image space contains tens of

thousands of contents. Each content has its own characteristics, leading to drastically

different RD behaviors. It would be beneficial to analyze the characteristics of image in

terms of RD so that encoding parameters can be chosen appropriately for the target quality

level or data rate.

In order to conduct a controlled ablation experiment for deeper analysis, only one

parameter should be changed while all other parameters are fixed to the same level. For

encoder performance comparisons such as the one shown in Fig.2.12, the rate or distortion

cannot be aligned across encoders for the same source content compressed by different

encoders. This is due to the lack of an accurate and generalized encoding parameter

model against quality or rate without sacrificing encoding efficiency. There are two ways to

compare encoders’ performance. The first is to average RD data points and then interpolate

the mean data points. However, since the encoding control methods are not the same across

encoders, the average RD behaviours are different. As can be seen from the performance

comparison in Fig.2.12, the average data points for each RD curve have to be the average

of the 24 individual contents’ RD points. For the E2E method the points are grouped

and averaged based on the same λ value. For JPEG 2000, the target quality points are

averaged according to the same quality level while in target rate setting points are averaged

for the same rate level. The averaging target choice has a substantial effect on the RD

plots since different choices lead to the average over different set of RD points. The other

way to compare encoders’ performance is to obtain the RD curves for each individual

content across different encoders first. Using the Bjøntegaard Delta (BD) method [57][58]

by interpolating the sparse points with polynomial functions, one can then calculate the
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rate saving by integration. However, as discussed by Duanmu et al.[1], the BD-rate method

is prone to produce non-monotonic RD curves and cannot guarantee the inversibility of

rate-distortion and distortion-rate curves for the same set of data points. Therefore, the

BD-rate method cannot be counted as a reliable way to compare encoder performance. The

aligned quality or rate for each compressed image or video is necessary for an objective

and accurate evaluation of the encoders performance.

Without the knowledge of λ-quality or λ-rate relationship, which are based on the visual

content characteristics such as RD information, the aforementioned E2E image compression

control is not possible. In summary, just as its importance in video quality and rate control,

image content characterization plays an essential role in E2E neural network driven encoder

control as well.

2.4 Summary and Discussion

This chapter begins with the introduction of the low level vision traits for visual content

characterization and their usage in both image and video quality databases. Then we intro-

duce visual complexity, which is a concept often used in the area of image compression in

evaluating the source contents’ compressibility. By classifying the visual complexity traits

into filter based measures and compression based measures, we describe the frequently

used SI and TI and several Komogrov complexity inspired measures. We conclude that the

over-simplified single dimension visual traits can only capture limited perspectives of vi-

sual contents. We show that the RD behaviors vary drastically for different visual content

with similar SI and TI values. Therefore, there is a strong desire to develop visual con-

tent characterization method for image compression and related image quality assessment

applications.

We introduce video encoding pipeline focusing on encoder rate and quality control using

HEVC as the example. By describing the control mechanism and the complex workflow of

video encoder, the necessity of a precise content adaptive control of the encoding param-

eter becomes manifest. Furthermore, the framework of neural network based E2E image

compression is introduced. We apply the RD analysis inspired quality control model in
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Chapter 4. We will also use it for testing the source content selection method in Chapter

5.
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Chapter 3

Encoder Performance Analysis and

Observations

3840 × 2160 or 4096 × 2160 pixel resolution (4K), Ultra High Definition (UHD), and

higher resolution video contents have become increasingly popular recently. The largely

increased data rate casts great challenges to video compression and communication tech-

nologies. Emerging video coding methods are claimed to achieve superior performance

for high-resolution video content, but thorough and independent validations are lacking.

In this study, we carry out an independent and so far the most comprehensive subjective

testing and performance evaluation on videos of diverse resolutions, bit rates and con-

tent variations, and compressed by popular and emerging video coding methods includ-

ing H.264/Advanced Video Coding (AVC), H.265/High Efficiency Video Coding (HEVC),

VP9, Audio Video Coding Standard 2 (AVS2) and AOMedia Video 1 (AV1). Our sta-

tistical analysis derived from a total of more than 36,000 raw subjective ratings on 1,200

test videos suggests that significant improvement in terms of Rate-Distortion (RD) perfor-

mance against the AVC encoder has been achieved by state-of-the-art encoders, and such

improvement is increasingly manifest with the increase of resolution. Most importantly,

based on the database construction process and encoder performance comparison through

RD analysis, the problems of video quality parameter modelling for precise encoded video

quality control, limitations of widely used visual features for compression datasets, and
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source content selection are discovered, revealed, and discussed.

3.1 Introduction

4K, UHD, and higher resolution video contents have enjoyed a remarkable growth in recent

years. 4K/UHD (4096×2160 or 3840×2160) video increases the resolution by a factor

of four from Full High Definition (FHD) (1920×1080) and offers significantly increased

sharpness and fine details. 4K/UHD video displays are believed to deliver better Quality

of Experience (QoE) to viewers and are becoming widely available on the consumer market.

While 4K/UHD videos raise the potentials for better user QoE, their higher data rates

cast great challenges to video distributions, for which video compression technologies are

crucial in controlling the bandwidth of video so as to fit the distribution pipeline. The

currently most widely used video coding technologies based on H.264 AVC standards

hardly meet the requirement. To this end, several modern video encoders including H.265

HEVC [59], AV1 [60], and AVS2 [61] are deliberately optimized for compressing content

of 4K and higher resolutions. With many video encoders at hand, it becomes pivotal to

compare their performance, so as to choose the best algorithms and find the direction for

further advancement. Because the Human Visual System (HVS) is the ultimate receiver

in most applications, subjective evaluation is a straightforward and reliable approach to

evaluate the quality of videos. Although expensive and time consuming [62], a comprehen-

sive subjective study has several benefits. First, it provides useful data to study human

behaviors in evaluating perceived quality of encoded videos. Second, it supplies a test set

to evaluate and compare the relative performance of classical and modern video encod-

ing algorithms. Third, it is useful to validate and compare the performance of existing

objective video quality assessment (VQA) models in predicting the perceptual quality of

encoded videos. This will in turn provide insights on potential ways to improve them.

Several recent subjective studies have been conducted to evaluate the encoder perfor-

mance on 4K video compression [63, 64, 65, 66]. It is generally observed that the latest

video encoders can deliver 4K contents with better viewer QoE, although the test only

covers a small number of contents. In addition, most of the work covers FHD and 4K for
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HEVC and AVC encoders only. In [67], HEVC encoder is evaluated by using 10 contents

under 4K resolution. In [68], the performance of HEVC, AVC, and VP9 [69] at FHD and

4K are compared on 10 contents, from which it is shown that HEVC and VP9 achieve

better bitrate reduction than AVC at the same quality level. The performance of the

emerging next-generation encoders, AV1 and AVS2, on 4K videos has not been systemat-

ically evaluated. In summary, all of the aforementioned studies suffer from the following

problems: (1) the test dataset is limited in size; (2) the types of encoders do not fully

reflect the state-of-the-art; and (3) the spatial resolutions do not cover commonly used

display sizes. Moreover, many tests have been conducted by the developers or participants

of the coding standards. Independent datasets and test results commonly available to the

public is lacking.

In this work, we conduct subjective evaluation of popular and emerging video encoders

on 4K content. Our contributions are twofold. First, we carry out an independent and so

far the most comprehensive subjective experiment to evaluate the performance of modern

video encoders including AVC [50], VP9 [69], AV1 [70], AVS2 [71] and HEVC [72]. Second,

we applied statistical analysis on the subjective data and observe some significant trends.

3.2 Video Database Construction and Subjective Ex-

periment

The video database is created from 20 pristine high-quality videos of UHD resolution

(3840×2160, progressive) selected to cover diverse content types, including humans, plants,

natural scenes, architectures and computer-synthesized sceneries. All videos have the

length of 10 seconds [73]. The detailed specifications are listed in Table 3.1 and the screen-

shots are shown in Fig. 3.1. Spatial Information (SI) and Temporal Information (TI) [4]

that roughly reflect the complexity of the video content are also given in Table 3.1, which

suggests that the video sequences are of diverse spatio-temporal complexity and widely

span the SI-TI space. Using the aforementioned video sequences as the source, each video

is encoded with AVC, VP9, AV1, AVS2 and HEVC encoders with progressive scan at three

spatial resolutions (3840×2160, 1920×1080, and 960×540) and four distortion levels. The
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.1: Snapshots of source video sequences. (a) Safari. (b) 2D cartoon. (c) News.

(d) Teppanyaki. (e) Screen recording. (f) Botanical garden. (g) Tears of steel. (h) Soccer

game. (i) Animation. (j) Motor racing. (k) Climbing. (l) Colorfulness. (m) Forest. (n)

Lightrail. (o) Dolphins. (p) Dance. (q) Spaceman. (r) Barbecue. (s) Supercar. (t) Traffic.
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detailed encoding configurations are as follows:

• HEVC: We employ x265 [72] with main profile for HEVC encoding. The Group of

Pictures (GOP) size is set to 60. Rate control mode is selected to be constant rate

factor (CRF). Videos are encoded in “veryslow” speed setting.

• AVC: The x264 [50] with high profile of level 5 is used for AVC encoding. Other

settings such as GOP size, rate control mode and speed setting are the same as those

of the HEVC configurations.

• VP9: The libvpx software [69] is used for VP9 encoding. The encoding parameters,

such as GOP size, rate control mode, etc., are set to be as similar as possible to

HEVC. The parameter selection is based on [74].

• AV1: The AV1 reference software aomenc [70] is used for AV1 encoding. The encod-

ing parameters are set to be as similar as possible to HEVC. The parameter selection

is based on [74].

• AVS2: The libxavs2 [71] is used for AVS2 encoding. The encoding parameters, such

as GOP size and speed setting are set to be as similar as possible to HEVC. The

parameter selection is based on the configuration file “encoder ra.cfg” that comes

with AVS2 source code [71].

A small-scale internal subjective test is conducted and the encoding bitrates are ad-

justed to ensure that the neighboring distortion levels are perceptually distinguishable.

Eventually, we obtain 1,200 videos encoded by 5 encoders in 3 resolutions at 4 distortion

levels.

Our subjective experiment generally follows the single stimulus methodology as sug-

gested by the ITU Telecommunication Standardization Sector (ITU-T) recommendation

P.910 [4]. The experiment setup is normal indoor home settings with ordinary illumina-

tion level and no reflecting ceiling walls or floors. All videos are displayed at 3840×2160
resolution on a 28 inch 4K LED monitor with Truecolor (32bit) at 60Hz. The monitor

is calibrated to meet the ITU-T BT.500 recommendations [75]. Videos are displayed in
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Table 3.1: SI, TI, Frames per Second (FPS), and Description of Source Videos

Name FPS SI TI Description

Safari 24 26 41 Animal, smooth motion

2D carton 25 38 55 Animation, camera motion

News 25 32 45 Human, static

Teppanyaki 24 33 32 Food, average motion

Screen recording 30 82 12 Screen content, partial motion

Botanical garden 30 112 10 Natural scene, static

Tears of steel 24 28 61 Movie, high motion

Soccer game 30 54 24 Sports, high motion

Animation 30 55 32 Animation, high motion

Motor racing 24 57 37 Sports, camera motion

Climbing 30 38 73 Game, high motion

Colorfulness 30 23 65 Texture, smooth motion

Forest 24 46 24 Natural scene, camera motion

Lightrail 30 79 32 Architecture, camera motion

Dolphins 25 54 23 Animal, smooth motion

Dance 30 73 32 Human, high motion

Spaceman 24 51 2 Human, static

Barbecue 25 100 11 Natural scene, smooth motion

Supercar 25 80 22 Sports, average motion

Traffic 30 89 24 Architecture, high motion
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random order using a customized graphical user interface from which individual subjects’

opinion scores are recorded.

A total of 66 näıve subjects, including thirty nine males and twenty seven females aged

between 18 and 35, participated in the subjective test. Visual acuity and color vision are

confirmed with each subject before the subjective test. To familiarize the subjects with the

testing environment, a training session is performed before the formal experiment, in which

3 videos different from those in the formal experiment are rendered. The same methods

are used to generate the videos used in the training and testing sessions. Therefore, before

the testing session, subjects knew what distortion types would be expected. Subjects were

instructed with sample videos to judge the overall video quality based on the distortion

level. Due to the limited subjective experiment capacity, we employed the following strat-

egy. Each subject is assigned 10 contents in a circular fashion. Specifically, if subject i is

assigned contents 1 to 10, then subject i+1 watch contents 2 to 11. Each video is assessed

for at least 30 times and more than 36,000 subjective ratings are collected in total. For

each subject, the whole study takes about 3 hours, which is divided into 6 sessions with

five 5-minute breaks in-between to minimize the influence of fatigue effect.

We employ 100-point continuous scale as opposed to a discrete 5-point ITU Radiocom-

munication Sector (ITU-R) Absolute Category Scale (ACR) for three advantages: broader

range, finer distinctions between ratings, and demonstrated prior efficacy [76]. After con-

verting the subjective scores to Z-scores per session to account for any differences in the

use of the quality scale between sessions, we proceed to an outlier removal process sug-

gested in [75]. No outlier detection is conducted participant-wise. After outlier removal,

Z-scores are linearly re-scaled to lie in the range of [0, 100]. The final quality score for each

individual video is computed as the average of the re-scaled Z-scores, namely the mean

opinion score (MOS), from all valid subjects. Pearson linear correlation coefficient (PLCC)

and Spearman rank-order correlation coefficient (SRCC) between the score given by each

subject and MOS are calculated. The average PLCC and SRCC across all subjects are

0.79 and 0.78, with standard deviation (STD) of 0.09 and 0.08, respectively, suggesting

that there is considerable agreement among different subjects on the perceived quality of

the test video sequences.
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3.3 Encoder Performance Analysis

We use the MOS of the test videos described in the previous section to evaluate and

compare the performance of the encoders. It is worth noting that the performance com-

parison is based on the encoder configuration provided earlier, where all encoders are set

to configurations equivalent to the ‘veryslow’ setting of the HEVC encoders.

Sample RD curves for individual test videos are given in Fig. 3.2. From the RD curves

of all content, we have three observations.

First, AVC under-performs all the other four encoders in most cases, which can be jus-

tified by the increased flexibility in almost every prediction coding part of recent encoders.

For instance, during the process of intra-prediction, AVC only supports intra mode in 9

directions. Comparatively, the number of directions becomes 10 for VP9, 33 for AVS2,

35 for HEVC, and 56 for AV1. In addition to increasing number of prediction directions,

AVS2, VP9 and AV1 add another level of flexibility by increasing number of possible par-

tition modes. In AVC and HEVC, the current Coding Unit (CU) can only be partitioned

into 4 smaller size CUs, if the encoder decide not to further split the CU, the current CU

will be directly used for direction prediction[77]. However, in VP9 if the encoder decide

there is no need to further split the CU, it still has two more partition options to choose,

namely horizontal split and vertical split[78]. The same number of options becomes 4 and

9 for AVS2 and AV1 respectively[79, 78].

Second, the performance difference between different encoders, exhibited as the gaps

between the RD curves, become increasingly manifest with the increase of resolution from

540p to 1080p, and then to 2160p. This validates the coding gain obtained by the ad-

vanced technologies specifically designed for high resolution videos in the newly developed

encoders, for which the increased coding unit size makes the major contribution. In con-

trast to AVC’s basic coding unit size of 16×16, the largest coding unit size becomes 64×64
for HEVC, VP9 and AVS2. For AV1, the size can even go up to as large as 128 × 128.

Larger block size is more efficient in rate distortion sense[80, 81, 82].

Third, we observe that different video content lead to different RD behaviour. For

example in Fig.3.2, the high motion content Tears of steel has an upward trended RD
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curves when compared with the Barbecue content at high quality range. The reason may

be that the smoke content in the Barbecue video contains a lot of texture that cannot be

well predicted using predictive encoding methods.

Table 3.2: Column BD-Rate Saving vs. Row (negative percentages suggest column encoder

savings against row)

540p AVC HEVC AVS2 VP9 AV1

AVC 0 - - - -

HEVC -22.7% 0 - - -

AVS2 -20.3% -4.7% 0 - -

VP9 -28.9% -20.5% -25.7% 0 -

AV1 -34.4% -23.3% -17.6% -4.5% 0

1080p AVC HEVC AVS2 VP9 AV1

AVC 0 - - - -

HEVC -42.2% 0 - - -

AVS2 -45.8% -9.8% 0 - -

VP9 -47.5% -18.5% -18.1% 0 -

AV1 -48.7% -20.1% -21.4% -3.5% 0

2160p AVC HEVC AVS2 VP9 AV1

AVC 0 - - - -

HEVC -61.2% 0 - - -

AVS2 -63.5% -9.7% 0 - -

VP9 -62.2% -8.7% -5.3% 0 -

AV1 -63.2% -9.5% -15.0% -16.4% 0

In addition to the qualitative analysis, we also compute the average bitrate saving [57,

58] of each encoder over another. The result is shown in Table 3.2, from which we can

observe that on average AV1 outperforms the other encoders with a sizable margin. How-

ever, it is worth noting that the RD performance gain by AV1 is highly content dependent
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Figure 3.2: RD curves of AVC, VP9, HEVC, AVS2 and AV1 encoders for 540p, 1080p and

2160p resolutions for Tears of steel (left) and Barbecue (right).
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and that AV1’s performance is achieved on the condition of its much higher complexity

compared with all other encoders.

The time complexity performance test is done on a Ubuntu 16.04 system with Intel

E5-1620 CPU, 32GB Corsair 2666MHz RAM and Crucial 2TB 530/510 MB/s read/write

speed hard drive. As shown in Table 3.3, we can see that AV1 consumes over 500 times

of AVC’s computational time, which takes the least amount of encoding time. The results

suggest that state-of-the-art AVC implementations are still highly competitive choices for

time critical tasks, while the encoding speed of AV1 may hinder it from many practical

applications. It is worth mentioning that AV1 is still under development and the current

version has not been fully optimized for multi-thread encoding. VP9 and HEVC show

comparable time complexity, while AVS2 doubles their encoding time. They compromise

between compression performance and speed. We have observed that each generation

of video encoder outperforms the other encoder in RD sense by a sizable margin. On the

other hand, it is almost certain that each generation of video encoders are slower than their

previous generation due to that the increased encoding flexibility brings more decisions to

be made during encoder mode prediction process. Even though it has always been claimed

that video encoder can be sped up by code optimization techniques such as multi-threading,

the RD performance has to be sacrificed in exchange for lower time complexity [83, 84].

Table 3.3: Encoder Relative Complexity vs. AVC at 3 Resolutions

AVC HEVC AV1 VP9 AVS2

2160p 1 4.2810 590.74 5.2856 9.8568

1080P 1 4.7314 546.19 6.6286 10.0401

540P 1 5.2805 806.15 5.2572 11.7716

3.4 Observations and Discussion

Besides the encoder performance analysis, which is the original objective of this work, we

have several observations regarding the current video encoding framework and the general

practice of compression quality database construction:
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1. The current quality control CRF method implemented in video encoders is far

from perfect. Though the purpose of CRF method is to achieve constant quality levels of

the encoded video across video frames by tuning the CRF parameter to achieve different

levels of quality, the actual final quality varies significantly and is difficult to predict due

to different video contents’ distinctive characteristics. As discussed in the background

chapter, the constant quality controller implemented in all video encoders utilize variations

of visual complexity metric SI for each frame while we have already known that SI is not a

reliable metric given the complex RD behaviours of different source contents. During the

construction of the dataset, in order to select the encoder CRF that guarantees meaningful

separated distortion levels in terms of human perception, we encode source pristine videos

into over 10,000 different encoded videos with a range of CRF levels. Then it takes us a

significant amount of time to visually check them in order to pick four suitable CRF values

that are suitable for all 20 source contents.

Since recent video quality metrics have achieved high correlation against human ob-

servers’ MOS, it would be much easier to select encoding levels directly using the objective

quality metric such as SSIMplus with a set of pre-defined scores (e.g., four scores 90, 75,

60 and 54, representing a wide span of quality levels in practically useful range) as the

target quality. Moreover, with a predefined encoded video quality level, average encoder

RD performance comparison would be easier. Since videos are encoded into four quality

levels that are not aligned across different contents and for different encoders, the inter-

polated RD curves should be taken with grain of salt. For example in the 2160p tears of

steel performance comparison of Fig.3.2, the AV1’s RD curve has little overlap with the

AVC’s RD curve, it is only possible to interpolate the two curves for BD rate comparison.

As discussed in [1], the choice of interpolation function has an unpredictable result on the

trend of the curves. Therefore, it would be beneficial to have the target quality mode in

modern video encoders, where the target quality is measured by objective quality metrics.

2. From the RD performance analysis in this study, we further validate that widely

used complexity measures SI and TI are not reliable for source content characterization

for compression applications. In the Fig.3.3, we select two contents soccer and dolphin as

examples. The two contents have the same SI value of 54 and close TI values of 24 and

23, respectively, while their RD behaviours are different across all the five encoders we
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tested. For encoders AV1, VP9, HEVC, and H264, the two contents’ RD curves all cross

each other. Even though for encoder AVS2, the RD curves do not cross each other, the

quality indicated by MOS of dolphin content saturates at around the bitrate of 2.9 kbps

while the soccer content has a much worse quality. Therefore, the two single dimensional

space of (SI, TI) is extremely limited in describing the complex visual contents containing

billions of pixels. Higher dimensional encoding RD analysis is a desirable and potentially

more reliable measure for compression applications.

Figure 3.3: RD behaviors for the soccer and dolphin contents across the five encoders

3. The choice of source contents have a great influence on the final encoder performance

comparison. As discussed in the RD performance comparison, different video content lead
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to different RD behaviour. We design a small experiment to verify that the choices of

source contents greatly affect the final experiment result:

Instead of 20 source content, 10 out of 20 source contents’ RD statistics are picked

randomly and the encoder BD-rate performance for them are analyzed. Three encoders,

HEVC, VP9 and AVS2, are selected for the encoder performance comparison. Below is

a table summarizing their performance rank. The experiment is repeated 100 times with

random selections of the 10 source contents.

Table 3.4: Percentage of Encoders’ Rate Saving Ranking Order for Different 10 Source

Contents (Experiment Repeated 100 Times)

Ranking Percentage

HEVC>VP9>AVS2 30%

VP9>HEVC>AVS2 26%

HEVC>AVS2>VP9 14%

VP9>AVS2>HEVC 16%

AVS2>VP9>HEVC 8%

AVS2>HEVC>VP9 6%

The results in Table.3.4 indicate that the choice of source contents plays an important

role in the final result of compression applications. If the number of source contents is

decreased to about 10, as is the case of most video codings standard development in

the past 3 decades. the encoder performance would vary dramatically depending on the

selected contents, which can be inevitably and unconsciously biased due to researchers’

preference. Even though the problem of inconsistent result due to source contents can

be solved by increasing the number of source videos, the number has to be limited in

practice. As discussed in previous sections, quality database’s size is limited due to the

high cost such as number of participants in subjective experiments and the availability of

computing resource. The process of quality database construction begins with collecting

a large number of candidates for the source contents, as shown in Fig.3.4. Researchers

have to examine not only the quality of the collected videos one after another but also
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Figure 3.4: Quality database construction process

considering many factors such as content types, Colourfulness (CF), and SI etc.. With

all collected characteristics taken into consideration, the task of source content selection

considering information from thousands of visual contents is subjective and extremely

difficult. Therefore, it is necessary to design an automated source content selection method

based on the visual content characterization model so that representative source contents

can be objectively selected for visual quality dataset.
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3.5 Conclusion

We conduct an independent and so far the most comprehensive subjective evaluation and

performance analysis, specifically on popular and emerging video encoders (AVC, HEVC,

VP9, AVS2, and AV1) with video content of diverse resolutions and bitrates. The five

video encoders are evaluated across 20 source 4K contents from the view points of content

dependency and resolution adaptation. The testing results have been made publicly avail-

able to facilitate future video coding and VQA research. Furthermore, we comparatively

analyze the encoder performance through subjective experiment and find out that the in-

creased flexibility enables recent video encoders to have better efficiency in RD sense but

also brings the problem of increased coding complexity.

Based on the observations from database construction and encoder performance anal-

ysis, current quality control mechanism implemented in most video encoders hinders the

distortion level selection, which is often carried out based on inefficient visual check pro-

cedures. A direct modelling between encoder parameters such as Quantization Parameter

(QP) against HVS inspired metric such as SSIM would speed up the database construction

process. What is more, the better quality control mechanism would alleviate the problem

of quality misalignment across different RD curves. Therefore, in Chapter 4, we will intro-

duce the RD analysis motivated encoding parameter selection, which will demonstrate the

effectiveness of using encoding RD analysis for content characterization for compression

applications.

We also observed that the widely used visual features, the SI and TI, are not reliable

in characterizing source contents for compression quality database. Shown by the example

of the two contents sharing the same or similar SI and TI scores, their drastically different

RD behaviours justify the motivation and main theme of the thesis, which aims to utilize

encoding RD for visual content characterization for the compression applications.

Moreover, the small scale encoder performance comparison experiment using randomly

selected content demonstrates the importance of source content selection. The number of

source contents included in a image/video compression database is largely limited by the

high cost of computing resources and subjective experiments. To overcome these limita-

tions, it is critical to develop a systematic approach so as to select the most representative
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videos or images that exhibit diverse and representative characteristics, best reflecting

content variations and human visual quality experience. Therefore, in Chapter 5, we will

propose an objective source visual content selection method, which is based on encoding

RD analysis and submodular optimization.
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Chapter 4

Quality Control for Visual Coding by

Eigen Analysis of Generalized

Quality Parameter Functions

While pushing the rate-quality (RD) limit to the next level will always be a paramount

goal of video/image compression models, precise control in terms of both rate and quality

is the necessary cornerstone for real world applications. Recent years have witnessed great

advancement of accurate rate control method for video encoders, whereas quality control

that based on the accurate video quality and encoding parameter modelling is less vis-

ited. In this work, the generalized function space of quality-encoding parameter inspired

by Rate-Distortion (RD) analysis is constructed and analyzed. Then an eigen analysis

approach is proposed for the modelling of image/video quality against the encoding pa-

rameter, which is named as generalized quality parameter (GQP) model. The theoretical

function space is defined and proved to be a convex set in a Hilbert space, which inspires

a computational model of GQP function and a method of sparse measurements parameter

estimation. Two large-scale databases, one for videos and the other for images, are used to

demonstrate the idea through experiments. With the computational model and the sparse

measurements method, the GQP function of a specific video/image can be reconstructed

accurately from only a few queries, which significantly outperforms the current widely used
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empirical estimation methods both in accuracy and efficiency.

4.1 Motivations and Related Work

RD trade-off plays a key role in visual compression models. For modern video encoding

method such as HEVC [85] and VVC [86], with more flexible coding parameters, such

as increased number of intra-prediction modes and quad-tree coding unit structure, the

introduction of rate-distortion optimized encoding parameter selection has enabled HEVC

and VVC to out-perform H264 [36] by a large margin in terms of RD performance [43,

87]. On the other hand, in the area of image compression, the rate-distortion trade-off is

incorporated as the optimization goal in many recent End-to-End (E2E) optimized learning

based methods [88, 89, 53, 90, 91]. While pushing the RD limit to the next level will always

be a paramount goal of modern video/image encoders, precise controlling in terms of both

rate and quality is necessary in real world applications of video/image compression such as

video transmission under limited bandwidth and targeting constant quality of experience

for video viewers. With the improvement in RD performance achieved in both video

and image compression area, RD optimization casts a great challenge on rate control and

quality control. The rate/quality against encoding parameters relationship across different

source video or image contents is becoming increasingly sophisticated because of the more

flexible yet much more complicated encoding parameter combinations in video compression

methods and the Lagrangian multiplier introduced for RD trade-off control in learning

based image compression methods [92, 93].

Rate control, aiming for achieving target data rate with a small variation across different

parts of the visual content and meanwhile maintaining the best possible quality, has always

been a frequently visited problem in video/image compression area [94, 95]. Controlling

parameters, such as Quantization Parameter (QP), modelled against rate, combined with

bit allocation methods plays a key role in rate control of modern video encoders such as

VVC, HEVC and H264 and has gained popularity due to its ability in controlling the final

encoded video’s bitrate in a simple way. However, quality control, aiming for finding the

most suitable encoding parameters for a specific quality level, has not been paid much
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attention in the research field. It seems an easy solution to replicate the rate control

models by constructing an exponential or hyperbolic function between quality and encoding

parameters [43]. However, it is impossible to re-allocate the quality across frames as rate

allocation method does. It is also problematic to take the average quality across all frames

and treat it as the final quality score for the video due to the complication of human

observer’s sensitivity to quality variation[96]. Moreover, it is common to see modelling

between QP and data-rate fail for some specific contents due to extremely low/high bitrate

requirement, where the bit allocation algorithms compensate the bits by discarding frames

or padding meaningless bits in the encoded bitstream. The same philosophy of reallocating

or compensating bits cannot be applied if we expect the quality of the encoded video

to be constant on a specific quality level. Constant rate factor (CRF) encoding mode

implemented in x264/x265 video encoders is one of the few efforts targeting a constant

quality level for the encoded videos. [51, 36] However, according to the studies of CRF

and video encoder comparison [47, 44, 97], even though the quality is seemingly closer to

a constant level throughout the whole video sequence, the actual quality level in terms of

human vision perception driven metrics such as SSIM [98], SSIMplus [8] or VMAF [99] can

vary drastically for different content at the same CRF value. The video encoders’ CRF

method often fail the task of constant quality when measured by human perceptual visual

quality.

On the other hand, in recent successful learning based E2E image compression mod-

els [88, 89, 53, 90, 91], researchers focus on achieving better rate-distortion performance

while neglecting the rate/quality control targeting tasks for real world applications. The

established vision encoding methods on rate/quality control, which are mostly based on

heuristic models such as exponential or hyperbolic functions and hand-tuned parameters[43],

would fail due to the totally different learning based frameworks where a single hyper-

parameter λ in cost function may be used to control the trade-off between rate and quality.

Therefore, without an accurate mapping between human perceived quality and encoding

parameters, such as QP in video coding and λ in E2E image coding, the final human

perceived quality of encoded video/image for a specific content is uncontrollable.

Inspired by previous work in modeling generalized rate distortion (GRD) functions [1],

we propose an eigen analysis approach of generalized quality parameter (GQP) model in
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tackling the problem of quality and encoding parameter relationship modelling. Firstly the

theoretical functional space W of the GQP function is defined by analyzing its mathemat-

ical properties, which is lacking in the current video/image encoding research area. It can

be shown that with the monotonic relationship between quality and controlling parameter,

W is a convex set in a Hilbert space, inspiring a computational model of the GQP function,

and a method of estimating model parameters from sparse measurements. To demonstrate

the feasibility of the idea, a large-scale database of real-world video GQP functions is col-

lected, which turns out to live in a low-dimensional subspace of W . Combining the GQP

reconstruction framework and the learned low-dimensional space, a low-parameter eigen

GQP method is create to accurately estimate the GQP function of a source video content

from only a few samples. Experimental results on the database show that the learned GQP

method significantly outperforms widely used empirical estimation methods both in terms

of accuracy and efficiency. Lastly, we demonstrate the promise of the proposed model

in E2E image quality control parameter modeling and x265 video Human Visual System

(HVS) quality control.

The chapter is organized in the following order. In section 4.2, the theoretical space

of the encoding parameter and quality will be established by showing the mathematical

properties of the GQP functions and concluding with the convexity of the space W . In

section 4.3, the approximation framework for GQP functions in functional space W is

discussed in detail. In section 4.4, the database collection and the eigen GQP (eGQP)

model for the collected GQP functions will be discussed. In section 4.5, the effectiveness

of the proposed eGQP model will be demonstrated in quality control using x265 video

encoder [51]. In section 4.6, the application of eGQP with E2E image compression [88]

quality control will be demonstrated. In section 4.7, conclusions will be drawn.

4.2 Theoretical Space of GQP Functions

Defining the theoretical space of GQP functions help us better understand the model

of these functions. Guided by the defined theoretical space, the form of the model are

obtained, together with the constraints these functions must satisfy. The analysis begins
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by stating the assumptions of the desired GQP functions.

The first assumption is that the domain of the GQP functions is a compact set Ω.

The closed and bounded interval in parameter space is a typical setting of Ω, i.e., x ∈
Ω = [xmin, xmax], where x is the encoding parameter that can represent the quantization

step in video encoders or hyper-parameter λ in E2E image encoders. Based on the type

of practical applications, xmin and xmax can be easily determined. For example, in the

following video encoder experiment, the maximum QP value 51 and minimum QP value

0 are taken as the maximum and minimum. When QP equals to 0, the video is losslessly

encoded, which means f(0) = zmax, where zmax denotes the best quality in terms of the

quality metric. When QP equals to 51, the encoded video is most degraded, which means

f(51) = zmin, where zmin denotes the worst quality the encoder can achieve for the specific

content in terms of the quality metric. Without loss of generality, we normalize the range

of GQP functions such that zmin = 0 and zmax = 100 [75, 100]. It is worth noting that for

video encoding application, in order to make the quality score normalized within the the

range of [zmin, zmax], where zmin = 0, one extra pseudo parameter is added that will make

zmin = 0, which means QP = 52 is set as the xmax for zmin = 0.

The second assumption is that the GQP functions are continuous, i.e., f ∈ C(Ω). Even
though the quantization steps are discretized in real world applications such as HEVC and

H264, it can always be observed that successive change in quantization steps of video en-

coders leads to the gradual transitions in perceptual quality in many subjective user stud-

ies [101, 102, 103]. Moreover, the gradual changes of Lagrangian multiplier in E2E image

encoders results in the changes of rate-quality trade-off. Thus the continuous assumption

holds for both scenarios. Some sample GQP functions for video and image applications

are shown in Fig.4.1 and Fig.4.2, where the continuous trend can be observed.

The third assumption is that the GQP functions are monotonic. In video encoders,

some of the key tuning parameters such as QP or CRF are designed to strictly follow the

monotonic relationship against the perceived quality of the encoded video [47, 44]. For

example in HEVC video encoder, with QP getting larger, the quantization step increases

until the QP value reaches maximum, corresponding to the largest quantization step, leads

to the worst quality of encoded video. Moreover, according to RD theory, the second order

relationship of quality vs. rate brings a monotonic relationship of controlling parameter λ
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against quality. Therefore, the monotonic GQP functions assumption applies to E2E image

compression models as well. The sample QP-Quality curves as well as λ-Quality curves

shown in Fig.4.1 and Fig.4.2 demonstrate the monotonic relationship between quality and

encoding parameters. Without loss of generality, we assume f increases monotonically with

the increase of encoder control parameter. If f is monotonically decreasing, such as the

case of QP and CRF in video encoders, the function can be simply replaced with zmax− f ,
where zmax is the maximum value of the quality metric.

Under the aforementioned assumptions, the space of GQP functions is defined as:

W :={f : R 7→ R|f ∈ C(Ω); f(xmax) = 100;

f(xmin) = 0 and f(xa) ≤ f(xb),∀xa ≤ xb}. (4.1)

The two equality constraints in W form an affine space H1, which can be described as a

linear subspace

H0 :={f : R 7→ R|f ∈ C(Ω);
f(xmin) = 0} (4.2)

translated by any function f0 ∈ H1. Formally, we may express the relationship between

H1 and H0 by

H1 = f0 +H0,∀f0 ∈ H1. (4.3)

The inequality constraints form a convex cone

V :={f : R 7→ R|f(xa) ≤ f(xb),∀xa < xb},

where it can be shown that ∀α, β ≥ 0 and v0, v1 ∈ V , αv0 + βv1 ∈ V .

Finally, it can be concluded that the theoretical space W can be described as the

intersection of the affine space H1 and the convex cone V :

W = H1 ∩ V . (4.4)

Thanks to the convexity of H1 and V , it can be readily shown that W is a convex set.
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(a) (b) (c)

Figure 4.1: Samples of GQP curves for different video content compressed by x265 video

encoder.

4.3 GQP Function Approximation Framework

With the relations H1 = f0 + H0 and W = H1 ∩ V at hand, the infinite-dimensional

space W can be parameterized. Firstly, it can be concluded that ∀h ∈ H0, and h is

square-integrable because h is a continuous function defined over a compact set shown by

Eq. (4.2). Therefore, the inner product of space H0 is

⟨h, g⟩ :=
∫
Ω

h(x)g(x)dx,∀h, g ∈ H0, (4.5)

and an induced metric can be defined as

d2(h, g) :=

[∫
Ω

|h(x)− g(x)|2dx
] 1

2

,∀h, g ∈ H0.

With metric d2 defined and including the limits of all Cauchy sequences that belong to

the functional space, H0 is completed. Since the space of all square-integrable functions

defined on Ω, denoted as L2(Ω), is a Hilbert space with Eq. (4.5) being the inner product

operation, H0 is a dense subset of L2(Ω) [104].

Then we can know H0 is separable, as polynomial functions form a dense countable

subset of H0 [104]. It can be concluded that an orthonormal basis {hn, n = 1, 2, 3, · · · } ⊂
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(a) (b) (c)

Figure 4.2: Samples of GQP curves for different image content compressed by E2E models.

H0 exists and spans L2(Ω):

h =
∞∑
n=1

cnhn, ∀h ∈ L2(Ω) (4.6)

As a result, any GQP function f ∈ W can be expressed as a linear combination of {hn}:

∃{cn}, such that f = f0 +
∞∑
n=1

cnhn,∀f ∈ W . (4.7)

The parameterization in Eq. (4.7) is equivalent of a series of approximation models such

as the N -th order approximation model:

f̃ = f0 +
N∑

n=1

cnhn, (4.8)

Better approximations may be achieved using larger values of N . A systematic way of

estimating a GQP function from samples is described as below:

Following the N -th order model in Eq. (4.8), an N -dimensional approximation of W
can be defined as:

W̃N :=

{
f

∣∣∣∣f = f0 +
N∑

n=1

cnhn, f ∈ V

}
. (4.9)

The approximation space W̃N is a subset of W as {hn} ⊂ H0, meaning that any element

in W̃N is a valid GQP function. Therefore, estimating a GQP function is equivalent to
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finding the optimal element in W̃N that best fits given samples. Because of W̃N is a closed

convex set, we can formulate GQP function estimation as a projections-onto-convex-sets

(POCS) problem. Given a set of quality-parameter pairs {f(xi) = zi, i ∈ I}, where I
denotes the index set, we aim to solve

argmin
{cn}

∑
i∈I

|zi − f0(xi)−
N∑

n=1

cnhn(xi)|2

s.t. f0 +
N∑

n=1

cnhn ∈ V .

(4.10)

Then optimal coefficients {c∗n} can be plugged into Eq. (4.8) to obtain the estimated GQP

function.

4.4 eGQP Model

Thanks to the GQP function approximation framework, arbitrary orthonormal basis can

be chosen to approximate the GQP functions. For example, hn can be chosen to be a

second or third degree polynomial basis or trigonometric basis such as half-sine which is

orthonormal in nature. However, the predefined basis are not adaptive that they may not

capture the large variation in data manifold and therefore result in a large number of basis

functions to achieve acceptable accuracy. In order to find an efficient set of basis, the

eigen basis is proposed which is constructed based on principal component analysis. In

this section, the data driven eigen basis is introduced following the description of the large

scale GQP function database constructed through x265 video encoder. The method makes

it possible to reconstruct GQP function through only a few data adaptive eigen basis with

a satisfactory approximation accuracy using only a few sparse samples.

4.4.1 Optimal Basis of Real-World GQP Functions

GQP Function Database

A large scale GQP function database is necessary in two ways:
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• The data-adaptive eigen basis can be obtained through a principal component anal-

ysis process of the GQP function database that contains a set of parameter-quality

curves, for example, QP-SSIM curves in our video quality control experiment.

• The database can also be used as a test bed for comparing the performance of different

basis used under the approximation framework described in Section III.

Thanks to the great effort paid in constructing the video database described in [1], the

1000 1920x1080 resolution pristine source videos are utilized as video database to construct

the GQP function database. As shown in Fig 4.3, the video database covers a broad range

of contents. The processing of source videos is as follows. Firstly, due to the fact that

content varies little during the playback of each source video, first one second of each

source content is extract from the original ten-second video. Then the 1000 one-second

videos are encoded with the main profile of x265 using the constant QP mode that range

from QP = 0 to QP = 51. In the end, 52000 encoded one-second video clips are obtained

in total. Secondly, the frame-level SSIM score is computed for each of the encoded video

clips and a GQP function curve for the same content frame is obtained. The total number

of GQP curves for the video database is over 1.5 million.

It should be noted that other perceptual quality metrics can also be used, the reason

SSIM is selected is due to its wide accessibility as many modern video encoders have the

built-in SSIM module. As mentioned in previous sections, due to the complexity of the

source contents, the lowest achievable quality varies across different contents when the QP

value is maximum at 51. Therefore, one extra value pair of QP-quality of (52, 0) is padded

so that the the lowest quality and highest quality, which are achieved at QP = 52 and

QP = 0, respectively, are aligned for each source content and the condition in Eq. (4.1) is

met.

Eigen Basis for Real-World GQP Functions

Since the goal is to find the optimal set of basis that approximates the real-world GQP

functions, the approximated function can be firstly defined for a specific real-world GQP
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Human Animal Plant Landscape

Cityscape Still Life Transportation Computer Synthesized

Figure 4.3: Sample frames of source videos in the Waterloo GRD database. All images are

cropped for neat presentation.[1]
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function fm using Eq. (4.8) as:

f̃m := f0 +
N∑

n=1

⟨fm − f0,hn⟩hn,

where m denotes the m-th function and it is approximated by N of the optimal basis.

Therefore, the approximation error is given by

E [fm] :=

∣∣∣∣∣fm −
(
f0 +

N∑
n=1

⟨fm − f0,hn⟩hn

)∣∣∣∣∣
2

, (4.11)

which is a Euclidean norm of a vector. It should be noted that a discrete version of

the basis function is used as hn of the hn defined in Eq. (4.8). With M empirical GQP

functions in the video GQP database, the optimal orthonormal basis is therefore obtained

by minimizing the average approximation error:

argmin
f0,{hn}

1

M

M∑
m=1

∣∣∣∣∣fm − f0 −
N∑

n=1

⟨fm − f0,hn⟩hn

∣∣∣∣∣
2

2

,

s.t. |hn|22 = 1, n = 1, · · · , N,

⟨hn,hn′⟩ = 0, n, n′ ∈ {1, · · · , N}, n ̸= n′.

(4.12)

It can be easily shown that the optimal f∗0 equals to the mean of M GQP functions when

N = 0, which can be proved by the convexity ofW . It can also be proved that the problem

(4.12) is essentially the principal component analysis (PCA) as N goes above 0. According

to the definition of PCA, the n-th optimal component h∗
n is the eigenvector associated with

the n-th largest eigenvalue of the empirical covariance matrix of fm. The spaceW ’s optimal

N -dimensional approximation can be achieved by the span of the first N eigenvectors and

f0 as well.

In order to demonstrate the effectiveness of the principal components in explaining

the space W , the plot of the cumulative energy with respect to number of components is

shown in Fig 4.4 on the video GQP database. With only 3 components, over 99.5% of the

energy is covered, which suggests that most real-world GQP functions lie in a much lower

dimensional space and that the eGQP models with only a few parameters would work well.

The f∗0 plus the first 7 components are plotted in Fig 4.5 to help gain a better understanding
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Figure 4.4: The percentage of the energy explained by the span of the first 6 principal

components.

about the shapes of the eigen GQP functions. Two observations can be concluded from

the figure. Firstly, the f∗0 is the smoothest, while the second to the fourth component are

increasingly oscillatory. This implies that the perceptual quality of a video representation

is positively correlated with its neighboring representations in general. Second, all the

principal components exhibit the greatest magnitudes in regions with high QP, indicating

the perceptual quality varies drastically across different contents with the same parameter

settings in low quality region.

4.4.2 eGQP Model Estimation from Sparse Samples

Since over 99.5% of the energy can be efficiently represented by the subspace of the first

3 components, the parameters of the eGQP model can be accurately estimated through

inserting the learned mean component f∗0 and the principal components {h∗
n} into the

POCS problem. Constraints can be approximated as a set of linear inequalities, which
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Figure 4.5: The mean and first seven principal components of the real-world x265 GQP

functions.

makes the Problem (4.10) practically solvable. The Eq. (4.8) can be rewritten in matrix

form as:

f̃ = f0 +H∗
Nc, (4.13)

in which H∗
N := [h∗

1,h
∗
2, · · · ,h∗

N ] and c := [c1, c2, · · · , cN ]T . The inequality constraint can

be translated as the discrete form of

Dx f̃ ≥ 0. (4.14)

where Dx is the first order difference along the x-axis. Then (4.13) can be substituted

into (4.14) and the following can be obtained

− Dx H∗
Nc ≤ Dx f0, (4.15)

which imposes a linear constraint on the coefficients c. Therefore, finding optimal c∗ is

equivalent to a quadratic programming problem, which can be solved by convex optimiza-

tion tools, such as OSQP [105]. In the end, by substituting c∗ into Eq. (4.8), the best

eGQP model is obtained that fits known samples with the least squared errors.
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4.5 Experiments

The first round of experiments are based on the constructed video GQP database. In this

section, firstly the approximation capability of the GQP framework is demonstrated by

quantitatively comparing the accuracy of restoring GQP functions using different numbers

of basis functions. The performance of three different basis functions namely, polynomial,

trigonometric and eigen basis will also be compared. The second experiment demonstrates

the proposed framework’s capability of GQP function reconstruction from sparse samples.

Since only a few number of eigen basis recovers over 99.5% of the GQP space energy, a

GQP function can be easily recovered with only a few samples of the actual GQP func-

tion, therefore making it possible for real world application of constant perceptual quality

control. Following the sparse sampling experiment, a quantitative analysis is done on the

question of how many samples/basis will be good enough for a acceptable recovery of GQP

function. Then effectiveness of the monotonicity constraints assumption on preventing the

over-fitting problem will be shown. The effectiveness of proposed eGQP framework on

another video quality metric is also demonstrated using VMAF as the quality metric with

x265 encoded videos. Lastly a real world application using x265 video encoder for constant

visual quality control is conducted.

4.5.1 Approximation Capability Comparison

In Table 4.1, we show the approximation capability of the eGQP functions when the number

of basis increases by using the root mean square error (RMSE) and l∞ norm as the two

metrics. The RMSE is used for measuring the average error across the data points for GQP

curves. The l∞ norm is used for measuring the extreme irregularity of the reconstructed

function against the original GQP curves. Moreover, the worst case scenario for the two

metrics are included in the table. The eGQP basis are obtained using the PCA method

on training split of the constructed video database. The training and testing ratio is

8:2. The proposed method’s approximation capability is demonstrated in Table 4.1. Since

the purpose is to show the reconstruction capability, the results obtained from the training

database are used. It should be noted that the SSIM quality metric used in the experiment
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is scaled to [0, 100] range from [0, 1] for comparison convenience.

Table 4.1: Mean and worst performance of eGQP on the training set with different numbers

of basis functions

N
RMSE l∞ error

Mean Worst Mean Worst

0 4.41 21.27 11.40 53.54

1 0.66 7.03 1.75 13.27

2 0.21 1.50 0.54 5.15

3 0.10 0.73 0.24 2.12

4 0.06 0.38 0.18 1.24

As discussed in Section II, the GQP approximation framework can choose any linear

basis such as polynomial or trigonometric functions. Therefore, in Table 4.2 we compare

the two aforementioned bases against the proposed eigen basis using an increasing number

of basis until 4, for which the eigen basis covers over 99.9% of the energy for GQP space

basis. As shown in the table, when compared with the other two basis, the eigen basis

gain the largest accuracy improvement by increasing the number of basis in terms of l∞,

which compares the largest deviation for a specific GQP function. It can also be observed

that as the number of basis increases, the other two basis’s accuracy only increases slowly.

The phenomena can be explained by the data-driven nature of the eigen basis, which

efficiently captures information needed to explain the GQP space. It is worth noting that

the worst case performance for polynomial and trigonometric basis doesn’t change at all,

which is drastically different from its counterpart of eigen basis. This implies that the

predefined basis functions deviate from real world GQP functions by a large margin and

the data-driven eigen basis well captures the characteristics of real world GQP functions.

4.5.2 GQP Function Reconstruction from Sparse Samples

An accurate modelling of the encoding parameter against quality would guide the selection

of encoding parameters so that the target constant quality can be achieved. With a given
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Table 4.2: l∞ error of GQP models with different basis functions on the test set

N
Polynomial Trigonometric Eigen

Mean Worst Mean Worst Mean Worst

0 11.047 36.783 11.047 36.783 11.047 36.783

1 11.003 36.783 11.007 36.783 1.696 9.861

2 10.964 36.783 10.961 36.783 0.555 2.454

3 10.892 36.783 10.892 36.783 0.235 0.936

4 10.889 36.783 10.891 36.783 0.173 0.722

model, the more samples obtained, the more accurate of the reconstruction results will

be. For most encoding parameter relationship models currently used, such as exponential

or hyperbolic models[43], the accuracy improvement comes at the expense of obtaining

parameter-quality sampling points through multi-pass encoding, which often brings unaf-

fordable complexity burden to the encoding pipelines that are time-critical. Therefore it

is desirable for the encoding parameter to be selected in a time efficient manner. Most

importantly, the number of samples needed to achieve the best compromise between accu-

racy and cost has never been analyzed. In this section, we conduct an analysis experiment

on GQP function reconstruction from sparse samples. In addition to the proposed eGQP

framework, the models we used for comparison include hyperbolic model and exponential

model, which are common in x265 and x264 video encoders. In order to maximize the

accuracy of the reconstructed functions, the sampling strategy plays an essential role. In

this work, we select an information-theoretic sampling method[9], which minimizes the

uncertainty of the function by generating a fixed sample sequence.

A total of 3 GQP functions are tested including the two widely used models, exponen-

tial and hyperbolic[43], and the GQP frameworks with eigen basis. The results shown in

the Table 4.3 are tested using the testing set of GQP database. The training set, which

takes 80% of the whole dataset, is used for training the eigen basis. In order to conduct

a fair comparison, the number of basis for eGQP framework used is 2, which is equal to

the number of free parameters of exponential and hyperbolic functions. In Table 4.3, it is

obvious that the eGQP method outperforms the exponential and hyperbolic function by a
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Table 4.3: RMSE of GQP models with different sample numbers

S
Hyperbolic [43] Exponential [43] eGQP

Mean Worst Mean Worst Average Worst

2 6.63 100.80 4.19 23.52 0.28 2.11

4 3.70 29.35 2.47 11.40 0.23 1.74

8 2.99 20.71 2.13 9.29 0.22 1.66

20 2.27 12.99 1.82 7.85 0.21 1.68

40 1.88 9.93 1.61 7.05 0.20 1.56

large margin. This is because the competing methods presume a fixed function form that

fail to explain the GQP space accurately. Moreover, in the case of only two samples, the

eGQP method can recover the original function with the lowest error, which builds the

foundation towards accurate encoding parameter selection for constant perceptual quality

control. The error of the eGQP method is so low that the subjective quality difference

can be ignored [75] according to previous studies [106, 107], which are often regarded as

indistinguishable to human observer in subjective studies. Because the number of sam-

ples required is limited, which is only 4 in the previous experiments, the proposed eGQP

framework offers a great option to achieve the balance between time efficiency and pre-

diction accuracy. In real world applications, the sampling process can be implemented

concurrently and the time efficiency is achieved.

4.5.3 Influence of Varying Number of Bases on eGQP

For experiments conducted in previous section, the number of basis functions is fixed

to 2 and the number of samples used vary between 2 and 40. In order to evaluate the

contribution of varying number of bases to the accuracy, we conduct the experiment of

varying number of both bases and sparse samples. The results are shown in Table VI.

It can be seen that by increasing the number of bases with the number of samples, the

performance of eGQP can further improve, which is supported by the fact that each basis

function explains the GQP space further more. The results shown in the following sections
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are all obtained using variable numbers of samples and basis.

Table 4.4: Mean and worst performance of eGQP when the number of basis vectors is

equal to the number of samples

N/S
RMSE l∞ error

Mean Worst Mean Worst

1 0.70 6.90 1.98 13.69

3 0.19 0.90 0.40 1.98

5 0.06 0.36 0.24 2.06

8 0.03 0.18 0.18 1.24

30 0.01 0.07 0.17 0.71

4.5.4 Importance of Monotonicity Constraint

One of the most important assumptions of the GQP framework is the monotonicity of

encoding parameter against the quality of image/video. In order to demonstrate the im-

portance of the constraint, we show the accuracy of eGQP without monotonicity constraint

in Table VII. It can be seen that even though it has similar accuracy when the number of

samples is low, the average error increases when the number of samples increases, which

means the eGQP without monotonicity constraint is prone to over-fitting when the number

of samples/basis increases. The monotonicity assumption works as a prior knowledge in

the proposed framework so that over-fitting can be avoided.

4.5.5 eGQP with Different Quality Metrics

The quality metric SSIM is used for experiments conducted so far due to the ease of access

for most video encoders, which comes as built-in feature in most popular and publicly

available video encoders. Since VMAF [99] is a quality metric that are designed specifically

for VQA tasks and is open source, we use VMAF in this experiment to demonstrate the

generalization capability of proposed eGQP framework on different VQA metrics. The
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Table 4.5: Mean and worst performance of eGQP without monotonicity constraints

N/S
RMSE l∞ error

Mean Worst Mean Worst

1 0.70 6.90 1.98 13.69

3 0.19 0.90 0.40 1.98

5 0.06 0.36 0.24 2.06

8 0.04 0.30 0.18 1.24

30 0.04 0.18 0.23 1.05

Figure 4.6: Sample frames of source videos for eGQP target constant quality experiment

results are obtained from the same testing set with the uncertainty sampling strategy

introduced in previous section. Three observations should be noted in Table 4.6. First it

can be seen that eGQP enjoys the same trend of accuracy gain similar to the SSIM results

in Table 4.4 as the number of samples/basis increases. Secondly for the same number of

samples/basis, VMAF’s RMSE and l∞ error are larger than that of SSIM, which is due

to the fact the range of [90, 100] is the effective range of SSIM for most of the contents

while the VMAF occupies the range of [0, 100] for video contents. Thirdly, the low RMSE

and l∞ error enables the video encoders to achieve the target constant quality in terms of

VMAF video quality metric.
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Table 4.6: Mean and worst performance of eGQP on GQP functions measured by VMAF

N/S
RMSE l∞ error

Mean Worst Mean Worst

1 1.24 17.33 3.24 22.12

3 0.59 2.13 1.54 5.34

5 0.36 1.57 1.48 7.08

8 0.23 1.13 1.15 6.89

30 0.08 0.40 0.86 6.43

4.5.6 Real World Application with x265

In order to demonstrate the feasibility of achieving target constant quality using the pro-

posed framework, we make use of the real-world encoder x265 and incorporate the constant

quality control algorithm in the video encoder utilizing eGQP model. As discussed in the

introduction section, one of the usage of GQP accurate modelling is to enable video en-

coders to choose appropriate encoding parameters so that the target constant video quality

in terms of human visual perception is achieved. In Algorithm.1, the first input is the source

video v with a total of M frames, where the i-th frame is represented as fi. The other

input is the target quality level represented as q in any video quality metric. S is used for

representing the number of samples used for reconstructing the GQP curves, which is equal

to 3 in this experiment. In the end, an encoded video with constant quality q is expected

to be the output of the algorithm. 10 video clips of 6 frames in length from the test video

dataset are selected for the experiment and demonstration. The encoding presets for the

x265 encoder are described in Table.4.7 where I, P and B frames are all included in the

final encoded video. The encoding order of the 6 frames of each video sequence is IBBBBP.

The purpose of including I, P and B frames types in the encoded video is to show the gen-

eralization ability of the proposed framework for real world applications on different frame

types. After sampling and analyzing the quality-QP data pair of each frame, the final de-

cision for each frame is written in the QPFILE as described in the encoding command so

that the final encoded video with the target constant quality is obtained. Fig.4.6 shows the
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screen cuts for the 10 video clips, which covers a range of contents from humans, animals

to natural scenes etc.. We make use of 3 basis/samples in the GQP function reconstruction

part, which is represented as S in the algorithm. The target quality levels selected are 93,

96 and 99 in terms of the scaled SSIM, which in the range of [0, 100]. The selected quality

levels cover the range of low, medium and high quality in terms of SSIM.

input : Source video v with M frames represented as f ; Target quality level q

output: Encoded video in the target constant quality level

for i← 1 to M do

for k ← 1 to S do

fi,k ← Encode fi with encoder at xk;

zi,k ← VQA(fi,k);

end

Fit the quality-parameter (QP) function Qi from {(xi,k, zi,k)}Sk=1;

Select xi,j ← min |zi,j − q|;
end

Algorithm 1: General Framework for Video Constant Quality Control

Table 4.7: Encoder Configurations

x265 x265 –input INPUT –keyint 50 –min-keyint 50 –no-open-

gop –no-scenecut –b-adapt 0 –ipratio 1.0 –pbratio 1.0 –

output OUTPUT –qpfile QPFILE

The frame level quality variation of the algorithm is shown in Fig.4.7. It can be seen

that with only three samples for each frame, the target quality can be achieved with little

variation for each frame of the video sequence. The per-frame quality variation curves

demonstrate the accurate guidance of Algorithm.1 in achieving video quality on different

quality levels.

The proposed approach provides a replacement of the current CRF method which

doesn’t consider the per-content quality consistency and therefore leads to significantly

varying quality levels for the same CRF value across different source video content. In terms
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Figure 4.7: Frame Level Quality Variation Plot for Corresponding Source Contents

of time complexity, it should be noted that in the current implementation the sampling

process of three samples per-frame is sequential, which is time consuming in terms of

computational complexity. The algorithm can be easily adapted to concurrent sampling

algorithm which takes much less time.

4.6 E2E Image Compression Quality Control with eGQP

One factor that hinders the broad application of E2E learning based image compression

method is the lack of accurate quality control mechanism to guide the image encoder

to select the appropriate model for a specific λ value. Without knowledge of λ-quality

modeling, aligned quality levels across encoded images is not feasible since the source

image complexity varies across different content.

The eGQP framework not only helps video encoders to select the best set of parameters

for a target constant quality level measured by human perception driven video quality

metrics such as SSIM and VMAF, but it can also help recent learning based E2E image
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compression method to select the controlling parameter for a target quality level. In this

section, we will make use of the E2E method [88] for a demonstration. Firstly we will

discuss the experiment setup and the general framework of how eGQP works in this task.

Then we will show the effectiveness of eGQP method in selecting the hyper-parameter λ

optimized for the neural network model.

4.6.1 Experiment Setup and eGQP Framework

Based on the description of the E2E model by Ballé et al.[88], different levels of rate-

distortion trade-offs are achieved by training the neural network model using different λ

values of the final optimization function. Therefore, firstly in the experiment, we train

50 models with 50 λ values evenly separated in the range of [0.0001, 1] in the log scale.

The database we use for training the models is CVPR image compression competition

database [108]. 80% of the database is used for training E2E models and the same split

is used for training the eigen basis for the eGQP framework. The rest 20% of the image

database is used for testing the Algorithm.2 described in Fig.2. Secondly, by using the

optimized models obtained from the first step, a quality-λ database is constructed, where

the quality metric is SSIM and the encoding parameter is λ. In this experiment, the

relationship between λ and quality is monotonic and meets the monotonic requirement of

eGQP framework.

(a) (b) (c)

Figure 4.8: Samples of GQP curves for different image content compressed by E2E models.
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In Algorithm.2, we elaborate the framework of selecting the appropriate λ optimized

model for target quality q, which incorporates the proposed eGQP framework. In the

algorithm, the samples are obtained through pre-determined optimized models according

to the information theoretic uncertainty sampling introduced in [9]. After each sampling

step, the image quality score is calculated using the selected IQA method, which is SSIM in

this experiment. Finally, the quality-λ function is reconstructed using the eGQP framework

and the appropriate λ that compress the source image to the target quality are selected.

In Fig.4.8, we show three sample quality-λ curves with three source images. By marking

the quality level 90 and 95, their corresponding λ values vary drastically, which proves

the necessity of selecting different λ values across different contents to achieve the target

quality. It should be noted that in Algorithm.2, the sampling process is sequential, while in

real world applications, the sampling process can be easily adapted to a concurrent process,

which would be much faster due to the independence relationship of each sampling process.

input : Source image I; Target quality level q

output: Encoded image in the target quality level

for k ← 1 to S do

fk ← Encode I with E2E model at λk;

zk ← IQA(fk);

end

Fit the quality-λ function Q from {(λk, zk)}Sk=1 with eGQP modelling;

Select λj ← min |zj − q|;
Algorithm 2: Control Parameter Selection for E2E Image Compression Quality Con-

trol

4.6.2 Performance of eGQP Framework on E2E Compression

Quality Control

In Table.4.8, we show the average accuracy of quality control algorithm using RMSE and

l∞ as the two metrics with different number of sample/basis. It can be seen from the

results that the average accuracy is reasonably good when the number of bases equals to
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5, beyond which the quality improvement may be considered negligible [75]. Moreover,

for the worst case scenario of RMSE and l∞ metric, the quality level selection framework

works as expected and successfully maintains the quality at an acceptable error range.

Table 4.8: Mean and worst performance of eGQP when the number of basis vectors is

equal to the number of samples

N/S
RMSE l∞ error

Mean Worst Mean Worst

1 2.81 16.68 7.01 33.73

3 0.39 1.79 1.45 9.42

5 0.23 0.77 0.80 5.24

8 0.15 0.52 0.70 2.56

10 0.14 0.45 0.61 2.03

Moreover, we conduct the experiment using Algorithm.2 on the testing split of the

image GQP database with target SSIM quality levels 93, 96 and 99. In Table.4.9, the

RMSE between the target quality and the actual quality across all the testing images

are shown. As the number of samples/basis increases, the accuracy of the actual quality

against target quality increases. When the number of basis samples/basis reaches 3, the

quality RMSE, which is around 0.4, reaches a negligible level [75].

Table 4.9: RMSE of quality control algorithm at different quality levels

N/S
SSIM

93 96 99

1 3.05 1.55 0.36

3 0.47 0.43 0.26

5 0.31 0.17 0.12

8 0.26 0.16 0.07

10 0.24 0.15 0.06
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4.7 Conclusion

Accurate, robust and computationally efficient models for video/image encoder control

has always been the ultimate goal for researchers working in the area of data compression.

With the advancement of machine learning methodologies, many encoder control models

based on neural networks have been proposed in recent years [109, 110, 111, 112]. How-

ever, given the current robustness and computational complexity requirements of modern

video/image encoders, most neural network based models are still steps away from real

world applications. In this work, we provide a mathematical framework to analyze the re-

lationship between image/video quality and encoder parameters and propose a data driven

eGQP framework which is capable of reconstructing GQP functions accurately. The eGQP

model connects the perceptual quality with encoding parameter in a more concrete and

precise way than the currently widely used models with fixed empirical function forms.

Unlike bitrate control, quality control has been paid less attention in the video compres-

sion research area due to the lack of concrete modelling between quality and encoding

parameters. Targeting at a better perceptual quality control for both video encoders such

as x265 and image encoders such as recently proposed E2E methods, the proposed eGQP

framework makes it possible for encoders to choose the appropriate encoding parameters

so that image/video can achieve desired perceptual quality with only a few samples that

may be obtained concurrently. The effectiveness of eGQP framework is shown through two

experiments inspired by practical scenarios, one for x265 video encoder and the other for

E2E image encoder. Highly promising results are obtained in both experiments.
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Chapter 5

Source Content Characterization and

Selection by RD Domain

Submodularity

The space of visual image content is extremely high dimensional if we regard the value of

each pixel as a single dimension. With such a high dimensional data space at hand, it is

impossible to exhaustively scrutinize each content for visual processing related tasks such

as compression and visual quality assessment. The practical approach is to select several

representative contents from the data space so that models for specific vision tasks may be

trained, validated and tested. Therefore, selecting the representative visual source content

is crucial. This chapter focuses on solving the problem of representative source content

selection for image compression and related quality assessment applications. Nowadays,

the source contents for compression and quality assessment applications are still hand-

picked by researchers based on a few features such as content type, Colourfulness (CF),

Spatial Information (SI), which are intuitively sensible but purely empirical measures with

no justification on their diversity or representativeness of the visual image space. With the

proposed visual content characterization method in the thesis, encoding Rate-Distortion

(RD) analysis, which is capable of describing visual content using image encoders as an-

alyzers, makes it possible to conduct source image selection for compression and related
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quality assessment tasks since RD statistic is the direct result of lossy image compression.

With the compression related characteristic at hand, we frame the source content selection

problem as a subset selection process, where the representativeness can be modelled as

a submodular set function. To the best of our knowledge, our work is the first effort to

systematically address the source content selection problem for image compression applica-

tions. Through the experiments on deep neural network (DNN) based End-to-End (E2E)

image compression method, we show that the source contents selected by our method

are more representative as evidenced by their capability in boosting the performance of

learning based image compression models.

5.1 Background

Visual data such as image contains lifelike information. Modern digital image contains

millions of pixels, each at least represented by a scalar value (often quantized to a 8-bit

unsigned integer). Since each pixel of digital image can be treated as one dimension of the

data space, the dimensionality of the image space is extremely large. With the countless

possible pixel combinations, it is a general belief that natural images watched by human

visual system only span an extremely tiny cluster within the image space [113]. However,

the number of contents in such a tiny cluster is still so large that one viewer cannot watch

a small fraction of them in his/her lifetime. According to the online survey of [114], up

to three billion images are shared online everyday in the year of 2022 and the number of

photos taken is expected to reach more than one trillion by 2022. In contrast to the almost

countless number of compressed digital images, the number of contents in compression

quality related dataset only takes a tiny fraction which would be only a few thousand at

most. What is more, since the image quality dataset usually requires subjective quality

ratings, the time budget and the number of human participants limit the number of source

contents that can be selected. Therefore, representative source contents need to be selected

for a compression or related quality assessment dataset.

Even though representative source content selection is becoming increasingly important

for compression applications given the proliferation of online image contents nowadays, the
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number of studies on this topic is still limited. There may be two reasons behind the limited

attention on it. The first one is the lack of reliable and commonly accepted compression

quality related visual content characteristics. The second is the lack of reliable source

content selection framework based on the visual content characteristics.

The first factor, i.e., visual content characterization, is still far from perfect. For exam-

ple, as one of the responsibility of the video quality expert group (VQEG) is to produce

visual content databases for compression related tasks [115], the VQEG group has proposed

several visual quality databases for compression applications such as encoder performance

comparison and quality metric validation. However, it is a common practice for them to

select source contents based purely on artificially pre-determined content types such as nat-

ural scene, human, indoor, and outdoor etc. for selecting representative source contents.

Since the compression task is believed to be a low-level vision task which involves the

manipulations of visual frequencies and color etc., content types based on image semantic

meaning can hardly be a reliable visual characteristic for compression applications. As

shown in Fig.5.1, the Waterloo exploration image quality database [116] contains different

content types ranging from human, animal, to landscape etc. Likewise, the HEVC video

compression benchmark dataset contains video contents ranging from natural scenes, hu-

mans to animals etc [117]. Some intuitive and heuristic measures have been proposed with

the belief that they are suitable for compression applications. In [3], SI using filter based

method is proposed. The paper assumes that edge information plays a key role in deter-

mining the complexity of image contents and therefore affecting the level of difficulties for

image compression. In ITU standard [4], the aforementioned concept is further modified

and utilized to characterize video source content SI in order to build a representative video

compression quality database. Many image and video compression datasets utilized SI

on demonstrating the representativeness of their proposed dataset. [68, 44, 18] Moreover,

with the increasingly focus on the High Dynamic Range (HDR) content, CF has often been

used as another metric to characterize the image content from color perspective. The CF

is based on the differences among red, green and blue channels [22]. In image compression

quality dataset Waterloo Exploration II [2], the two aforementioned metrics SI and CF are

used as proxies for demonstrating the good coverage and representativeness of the selected

source contents. The scatter plots with convex hull are drawn for the proposed database
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Figure 5.1: Waterloo exploration dataset content types

together with other 9 popular subjectively rated image quality databases, which are shown

in Fig.5.2. However, there are several problems with such purely heuristic visual traits.

Firstly, there is a lack of solid proof of the relationship between such visual traits and the

compressibility of the image source content. Secondly, since image contents are complex

and the research on Human Visual System (HVS) characteristics is still in progress, the

practice of only counting on those limited number of visual traits is unreliable for describ-

ing images for compression applications. Lastly, the effectiveness of these over-simplified

measures on capturing source content characteristics for compression applications is ques-

tionable. Notice that the original designs of such visual traits often take computational

convenience as a major consideration.

For the second factor, the source content selection, Fig.5.3 shows a typical workflow of

database construction for quality related tasks. Firstly, a large number of source contents

are collected from the Internet or real-world photographs as the base data pool, for which

the number could be large up to several millions. Then after keeping the pristine contents

during the first round of visually filtering, a subset of the contents need to be selected based
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Figure 5.2: Scatter plots with convex hull for SI and CF in original Waterloo Exploration

II image quality database paper. [2]

on the target task, for example, image compression or image quality assessment. Since the

computational resources and the human participants for subjective experiment are limited,

the contents in the subset can only be a fraction of the original image data pool. Therefore,

a natural question is how to select representative source contents that is optimal for the

subsequent tasks? It is a common practice in both image and video research area to count

on “expert experience” to judge if the content is representative enough. It is obvious that

this approach is not ideal. Firstly and most obviously, researchers’ time is precious. One

needs to watch every content in the data pool before determining which source contents

are representative, not to mention the need of memorizing all visually checked contents.

Given the reality of the explosive number of online images nowadays, the representative-

ness judgement through “expert experience” is an impossible mission. Secondly, humans

have biases. Since humans have different visual preference and taste, the source contents

subset selected by different image experts would differ from each other, which would be an

inevitable factor that results in instability in the subsequent research tasks. Therefore, “ex-

pert experience” is not a scientific approach for image source content selection. Given that

“expert experience” is unreliable, why not use random selection? Random selection has its

drawbacks as well, especially when the subset only takes a tiny fraction of the original data

pool. As mentioned in the description of Fig.5.3, the tight resources available in quality
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related tasks cast a limitation on the number of source contents that can be selected. If the

subset is randomly selected, the variations would be large and therefore wildly affect the

outcome and reproducibility of the subsequent tasks. The second drawback is the possible

lack of representativeness. Even though in theory random selection will asymptotically

approximate the real distribution of the data, when the number of the selected samples is

very limited, the samples are often incapable of offering a fair representation of the real

data, especially, for example, when the distribution is heavy-tailed. Moreover, the best

subset may be application dependent. For example, the compression and related quality

assessment are the target tasks in mind, then it would be meaningful to select the source

contents based on source content compression related characteristics.

Just like other research areas, database is the fundamental building block for compres-

sion quality research. Due to the limitations such as computing resources, time, and human

participation, the number of source contents has to be limited. The lack of compression

related visual characterization measures and the absence of systematic scientific source

content selection approach lead to the limited progress made in the research area. There-

fore, in this work, we aim to propose a mathematically sound and practically tractable

method, for source content selection based on RD domain submodular optimization.

5.2 Motivations

5.2.1 Encoding RD Analysis

In order to address the first problem of lacking task related visual content characteristics,

we propose to use encoding RD analysis.

In this thesis, we have demonstrated the usefulness of encoding RD analysis on pre-

cise encoder quality control, which demonstrates that it is capable of capturing visual

content characteristics from compression perspective. Moreover, as described in the work

of [1, 9], many multimedia applications require RD functions to characterize source sig-

nals and maximize Quality of Experience (QoE). Examples of applications that explicitly

use RD measurements include but are not limited to codec evaluation [118], rate-distortion
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Figure 5.3: Quality database construction process
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optimization [7], video quality assessment (VQA) [119], encoding representation recommen-

dation [120, 121], and QoE optimization of streaming videos [122, 123]. The RD statistic

is a natural fit for visual content characterization of compression applications. Firstly it is

obtained from visual compressors, which is a system that aiming for describe the source

signal in an efficient way. As shown in Fig.5.4, different content has drastically different

RD behaviours. Secondly, unlike other established visual content characteristics that is

only represented by a single number, the RD statistic is a progressive descriptor of source

content in that the encoded signal’s quality or distortion increases with the increment of

bits used to describe them. In practice, it is less likely to find two source contents sharing

the same RD curve while it is common to see two different content with the same single

number descriptor value, as shown in Fig.5.5. The two images share the same SI value of

68 while their RD curves behave differently. The two curves are obtained by lossy encoding

the two images into 25 different quality levels using JPEG image encoder. Their SI values

are evaluated using the original source images shown in the RD plots.

Figure 5.4: Different contents behave differently in RD domain
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(a) (b)

Figure 5.5: Samples of RD curves for different image content with the same SI

5.2.2 Submodularity

Submodularity is defined in the context of set function whose domain is a family of subsets

of a given set, called ground set, that usually takes its value as a real number. The set

functions are discrete functions that find their application in combinitorial problems. By

assigning values to the subset, it is possible to mathematically find the optimal set given

some conditions.

There is a special type of set function called submodular set function, which has the

diminishing return property. Mathematically speaking, if Ω represents the ground set, and

the set function f : 2Ω → R is submodular, then we have:

For every X, Y ⊆ Ω with X ⊆ Y and every x ∈ Ω \ Y , where 2Ω denotes the power set

of Ω:

f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ) (5.1)

The definition above illustrate the “diminishing return” property that is common for

many real world problems. For example, for the source content selection problem in this
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study, the representativeness naturally has the “diminishing return” property. Assume

representativeness is denoted by set function R with a value range of [0, 1], the value of R

for the ground set would be maximum when all contents are selected and minimum when

there is no content selected. Since in each selecting step, the most representative source

content can be selected from the unselected ones, each following selected contents’ value R

would be less than their previous one until all contents in the ground set are selected. In

Fig.5.6, the diminishing increment of R for the optimal selection procedure is demonstrated

in a continuous way.

Representativeness

# of Contents

R3

R2

R1

X1 X2 X3

Figure 5.6: Diminishing Return Property of Representativeness

In this work, we use the facility location function for measuring the selected contents’

representativeness in RD domain. Facility-Location function [124] attempts to model

representation, as it tries to find a representative subset of items from the ground set,

which are denoted as X and V , respectively in Eq.5.2. The function ϕ can be a measure of

similarity. In this study, we use the inverse of Euclidean distance as the similarity measure.

R(X, V ) =
∑
v∈V

max
x∈X

ϕ(x, v) (5.2)
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The facility location function is a submodular function. For this function, every element

v ∈ V must have a representative within the set V and the representative for each v ∈ V is

chosen to be the element x ∈ X most similar to v. This function is also a form of dispersion

or diversity function because, in order to maximize it, every element v ∈ V must have some

element similar to it in X. The overall score is then the sum of the similarity between each

element v ∈ V and v’s representative. [11]

Thanks to the wide availability of submodular optimization toolbox such as Apri-

cot [125], the source content selection problem can be conveniently modeled using the

Eq.5.2 and optimally solved.

5.3 Source Content Selection Procedure

Fig.5.7 shows the framework for the proposed source content selection procedure. The

following is a description of each step:

1. The selection procedure starts with the collection of source pristine images. In our

work, we assume that the source images have gone through a visually check step for their

pristineness.

2. In the second step, RD information is collected from the ground set images using

an image encoder. Since modern image encoders usually provide users with the flexibility

to adjust the bitrate or quality for the encoded images in lossy compression mode, the RD

analysis step can be easily conducted. It should be noted that any lossy image compressor

can be used in this step for RD analysis. In the experiment section we will prove the choice

of lossy image compressor has limited effect on the final compression applications.

3. In the third step, submodular optimization is conducted using the facility location

function, which takes the RD statistics as the input. The subset is obtained after the

submodular optimization. The Apricot submodular optimization toolbox [125] is utilized

in this step.

4. Lastly, the database are constructed based on the selected subset for compression

applications.
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5.4 Experiment

In order to verify that the proposed framework effectively captures the representative

contents, we conduct an experiment using an E2E learning based image encoder [12]. Since

the E2E image compression model is a learning based model, the representativeness of

training database predominantly affects its compression performance. Therefore, training

learning-based image encoder offers an ideal testbed for approve or disapprove the proposed

framework.

5.4.1 Image Encoders for Encoding RD Analysis

We select five widely used lossy image encoders, JPEG [126], JPEG2000 [127], AVIF [128],

HEIF [129], and WEBP [130] for encoding RD analysis. Below is a brief description of the

five encoders:

1. JPEG image encoder is proposed by Joint Photographic Experts Group (JPEG),

which is widely adopted and supported by most image platforms. The JPEG encoder is

designed using the discrete cosine transform.

2. JPEG2000 is proposed by the JPEG group using the discrete wavelet transform, with

the design goal of more functionality and better RD performance compared with JPEG.

3. High Efficiency Image File Format (HEIF) is a container format for storing individual

digital images and image sequences. It supports high quality image encoding using High

Efficiency Video Coding (HEVC) intra encoding mode.

4. AV1 Image File Format (AVIF) is an image file format specification for storing

images or image sequences compressed with the recent video coding standard AOMedia

Video 1 (AV1) using its intra coding tool.

5. WebP is developed by Google in 2010 as an open-source standard for web-based

true color graphic images. It is claimed to maintain JPEG image quality with a smaller

file size.
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5.4.2 RD Domain Selection and Training Procedure

The Waterloo Exploration Database [116] is used in this work. The image dataset contains

4,744 pristine natural images and 94,880 distorted images created from them. The database

is split into 80-20 training-testing partitions. For our work, we make use of the 80 percent

training part images as the ground set for image training subset selection. The evaluation

is conducted using the testing partition.

Firstly, all images from the training partition of Waterloo exploration database [116]

are lossy compressed using the five image encoders into multiple compression levels, from

which the RD domain statistics for each content are obtained. The rate measured in bits

per pixel and quality measured in SSIM [131] are recorded for each content per encoder.

Secondly, 5%, 10%, 20%, 30%, and 40% training images are selected from the training

partition using the proposed submodular method based on the RD domain statistics. The

selected images are used for training the E2E image encoder. As a comparison set, another

sets of randomly selected 5%, 10%, 20%, 30%, and 40% images are generated from the

training partition. Lastly, multiple E2E image compression models are trained separately

using the source contents selected by the proposed method and randomly selected source

contents. We perform random selection five times for each subset percentage in order to

prove the proposed method is constantly better than random selection. The E2E image

encoders are trained using the same setting according to the original paper of E2E image

compression method [12]. For convenience, the encoding models trained using submodular

selected images are called ss models and the encoding models trained using randomly

selected images are called rs models.

5.4.3 Encoding Performance Comparison

The performance is compared between the ss models and rd models on the testing parti-

tion. In order to quantify the coding gain or rate savings achieved by the ss models com-

pared against rs models, we choose to use the Bjøntegaard Delta (BD) method [57, 58],

which is widely used in the visual compression field to evaluate the relative coding effi-

ciency of one codec against a reference codec [132] over a range of quality-bit rate data
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Figure 5.8: Sample RD curve comparison and BD-rate computation.
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points. Given two RD curves produced by two encoding models, ss models and rd models,

we compute the BD-rate metric, which estimates the average bit rate savings for the same

quality (in terms of SSIM). The bit rate saving for a given level of quality is calculated as

∆R(Q) =
RB(Q)−RA(Q)

RA(Q)
(5.3)

where RA(Q) and RB(Q) are the bitrates for quality level Q on the reference and test RD

curves, respectively. Since the logarithmic scale r = logR is used in the BD model on the

bit rate axis, the bitrate saving can be expressed as

∆R(Q) = 10rB(Q)−rA(Q) − 1 (5.4)

Considering both the actual RD points and the fitted RD curves r̂(Q), the BD-rate can be

approximated by

∆ROverall ≈ 10
1

QH−QL

∫QH
QL

[r̂B(Q)−r̂A(Q)]dQ − 1 (5.5)

where QH is the maximum of the minimum quality that the two curves could reach, and

QL is the minimum of the maximum quality that the two curves could reach. The region

of integration is exemplified as the blue region in Fig. 5.8.

In Fig. 2.12, we showed a bar plot for rate-savings of the ss model compared against

rs model using different RD analysis encoders and under different training subset fractions.

We have several observations:

1. The ss models are better than rs models in terms of average rate-saving for the

testing partition. The numbers on the bar plot show the average rate-saving percentage

while the “T” bars show the standard deviation of the rate-savings. It should be mentioned

that rate saving performance gain rarely goes beyond 5 percent without major architecture

changes made to the encoder. Therefore, the 3 percent rate saving performance increase

purely by changing training sets is a significant boost.

2. The ss models trained on different image encoders are color-coded in Fig. 2.12. It

can be seen that the proposed RD domain selection method is robust in terms of different

encoders’ RD characteristics, which further validate that encoding RD analysis is a useful

visual content characterization method.
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Figure 5.9: Performance comparison of submodular trained model using different encoder’s

encoding RD analysis against the random selection measured by rate-saving percentage,

the standard deviation bars are obtained based on the comparison of selected subset against

the five times random selection for each subset percentage per encoder.
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Figure 5.10: Submodular RD Domain Selection VS. Random Selection

3. The 5% subset rate-saving is the least compared to other cases. Since the 5% image

subset only contains about 180 images for each encoders’ RD domain selection, the training

model is prone to over-fitting. Therefore, the rd-saving gain of ss models is not as strong

when compared with the cases of larger subsets.

In Fig.5.10 we show a RD domain scatter plots comparing the submodular selection and

random selection. For the convenience of visualization, we showed the first two Principal

Component Analysis (PCA) components on the RD curves of AVIF image encoder, which

explain over 90% of the original data’s variation energy. As can be seen in the figure,

when compared to random selection, submodular optimization method selects more widely

spread data uncovered by the randomly selected points, which leads to much better rd-

saving boost in those under represented RD domain. For example, for the test image shown

in Fig.5.11, the rate saving is over 10 percent. The example content’s RD domain data

point is marked as black in the scatter examples shown in Fig.5.11 and Fig.5.12. For both

examples, as can be seen in the scatter plots on the right, there are not many randomly

selected data points around the test image in the RD domain, but since there are points
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Figure 5.11: Sample Content for Submodular RD Domain Selection VS. Random Selection

Figure 5.12: Sample Content for Submodular RD Domain Selection VS. Random Selection
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around it selected by the proposed method, there is a rate saving of over 10%. Moreover, we

can observe that even though there are fewer samples selected by the proposed method in

the area most densely sampled by random selection, the ss models rd-saving performance

is still better on average. These observations suggest that the proposed method avoids

over-sampling or duplicated sampling at the well represented regions in RD domain, and

thus leave space for more samples in the under represented RD regions, where the most

coding gain is obtained.

Figure 5.13: Performance comparison of submodular optimized model based on source

images’ SI and CF selection against the random selection measured by rate-saving per-

centage. The standard deviation bars are obtained based on the comparison of selected

subset against the five trials of random selections for each subset percentage.
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5.4.4 Visual Characteristics Comparison

In order to validate the effectiveness of RD characteristics against the traditional visual

features widely used in the literature, we compare the features selected in RD domain with

those of SI and CF. For fair comparison, the same submodular optimization is applied in

both cases. Specifically, we perform a PCA analysis on the RD statistics and use the first

two components to rerun the RD domain source content selection experiment. In order to

make a controlled comparison, SI-CF domain selection follows exactly the same procedure

as RD domain selection described in previous sections.

Fig.5.13 shows a bar plot for rate-savings of SI-CF domain selection compared to ran-

dom selection, together with the new RD domain selection results for different image

encoders. For convenience, the encoding models trained using submodular selected images

based on SI and CF are called ss sicf models while encoding models trained using sub-

modular selected images based on RD are called ss rd models. Based on the bar plot, it

can be observed that the performance boost based on SI-CF is negligible compared to the

RD domain selection. On average, the rate saving across the five subset percentages are

only around 0.03 for SI-CF domain selections. Moreover, in order to verify the observation

is statistically significant, we perform t-tests on the rate-savings of ss sicf models against

ss rd models. The null hypothesis for all the t-tests is that the difference between rate-

savings of SI-CF selection and RD selection is zero. Since there are five image encoders

available, we conduct t-tests for each of them with the corresponding ss sicf model at the

five different subset percentages. The p-values and t-statistics are shown in Table.5.1 and

Table.5.2 respectively. It can be seen that the p-values are all below 0.05, and thus the

null hypothesis is rejected, which means that the performance boost of using RD against

traditional method SI-CF is statistically significant.

More insights may be obtained from Fig.5.14, which shows the SI-CF domain scat-

ter plot that compares the submodular selection and random selection. Similar to the

scatter plot of Fig.5.10 for RD domain selection, submodular optimization method selects

more widely spread data uncovered by the randomly selected points suggesting that the

submodular optimization process is working properly. An important and perhaps more

interesting observation is that the SI and CF are positively correlated, with a significant
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Table 5.1: T-Test Results (P-Values) for RD Domain Selection vs. SI-CF Domain Selection

Selection Percentage
P-Values for RD vs. SI-CF Selection

AVIF HEIF WebP JPEG JPEG2000

5% 0.012 0.020 0.001 0.012 0.003

10% 0.001 0.001 0.001 0.043 0.010

20% 0.002 0.001 0.001 0.001 0.001

30% 0.001 0.016 0.002 0.001 0.001

40% 0.003 0.001 0.001 0.001 0.021

Table 5.2: T-Test Results (T-Statistics) for RD Domain Selection vs. SI-CF Domain

Selection

Selection Percentage
T-Statistics for RD vs. SI-CF Selection

AVIF HEIF WebP JPEG JPEG2000

5% 3.22 2.89 4.71 3.22 4.12

10% 4.95 5.06 5.35 2.41 3.36

20% 4.43 6.37 10.26 5.12 7.70

30% 5.87 3.04 5.49 6.19 8.12

40% 4.07 8.59 5.89 7.76 2.86

Pearson correlation coefficient of 0.68. By contrast, the RD domain features are linearly

uncorrelated by design. This notable difference may explain why the previously widely

used visual characteristics such as SI and CF are not efficient visual characteristics, since

they do not capture independent information of the source contents. The correlation be-

tween SI and CF leads to the two-dimensional measures working in a somewhat redundant

fashion while the eigen-RD modelling captures linearly independent principal components

of RD statistics.
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5% Selection

Figure 5.14: Submodular SI-CF Domain Selection VS. Random Selection

5.5 Conclusion

The selection of training and testing databases is a fundamental building block in the de-

velopment of learning based visual applications. Specifically, for compression tasks, due

to the limited time and computational resources, a dataset can only contain a very small

set of visual content. On the other hand, due to the ambiguous relationship between

the source content compressibility and widely recognized visual traits such as SI and CF,

those traits have been found to be unreliable visual characterization methods in the pro-

cess of database construction. Instead, “expert experience” is widely used when judging

the representativeness for a specific content, which is subjective, inconsistent and again,

unreliable.

In this work, we propose to use encoding RD analysis as a compression oriented visual
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content characterization method. Combining it with the submodular optimization frame-

work using a specific set function measuring the selected subset’s representativeness, we

make the first effort to solve the problem scientifically. Our proposed approach is easy to

use and provides robust selection result when compared against random selection. The

effectiveness of our method is demonstrated utilizing a learning based image compression

method [12]. By comparing the trained model using source content selected based on the

proposed method and random selection, we show our method is better in terms of aver-

age rate saving. Close observation suggests that the most significant savings come from

the source content that is under represented by the random selection method, which in

turn indicating a better representativeness of the source content selected by the proposed

method.

The philosophy of maximizing representativeness provides novel insights on data se-

lection for machine learning problems. Traditionally, matching distribution has been the

golden standard of machine learning, especially for classification problems aiming to reduce

mis-classification rates or regression problems targeting at lower mean regression errors.

Both cases favor randomly selecting the training set or testing set. The assumption is that

matching the source data distribution would lead to the optimal results on testing set since

the testing and training sets share the same distribution. However, based on our inves-

tigation we found out the assumption may not always hold for some cases such as visual

compression and quality related tasks. Our finding suggests the reason may be different

source contents may carry different weights in the final evaluation because they may lead

to different levels of performance boost or drop. There needs a balance between matching

the distribution and maximizing the diversity of the source contents especially when the

selected data is so limited compared to the available source data that can be selected from.

Potentially, matching source distribution and maximizing diversity could lead to dras-

tically different source content selection. For example maximizing diversity would result

in the selected contents to stay as far apart as possible in the feature space, the problem

would be severe if the data distribution is long-tailed. On the other hand by matching the

source distribution, the selected points would be clustered together sharing similar visual

characteristics, which would negatively affect the learned encoders’ performance since there

is a lack of different visual contents with diverse characteristics, leaving uncovered content
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types in the training data that the encoder performance is highly sensitive to. By con-

trast, the proposed method attempts to maximize representativeness and provides a way

to balance between matching source distribution and maximizing diversity. As such, each

selected content is a good representation of the data points surrounding it and each data

point in the large data collection can have a representative point nearby in the selected

subset.
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Chapter 6

Conclusions and Future Perspectives

6.1 Conclusions

The thesis tackles the visual content characterization problem from Rate-Distortion (RD)

analysis perspective. In the literature, for compression and related quality assessment

tasks, a thorough investigation of the content characterization problem is lacking. Though

several heuristic visual traits are used to describe visual characteristics, little theoretical or

empirical justification has ever been provided and their reliability is found to be poor in real

world applications. Inspired by the fact that RD analysis’ content adaptation capability in

compression related tasks and its extensive utilization for visual quality related tasks, we

propose to use it as a measure of visual content characterization for compression and related

applications. Moreover, we reviewed the process of source content selection procedure for

several visual quality related databases. Due to the absence of a systematic approach on

representative source content selection, purely empirical “expert experience” selection is

still widely used nowadays. Scientifically sound methods are largely lacking in practice.

Through the 3840× 2160 or 4096× 2160 pixel resolution (4K) video encoder compar-

ison project, the necessity of compression task oriented visual content characterization is

revealed in the database construction step, in which source video contents are selected

based on the content types. Moreover, because there is no suitable measure of source
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contents’ representativeness, selecting representative source contents has always been a

subjective task where utilizing “expert-experience” is still a common practice. Further-

more, the encoder performance analysis using encoding RD analysis indicates that it is

highly desirable to develop an accurate encoding parameter model against quality. In the

subsequent chapters, all the aforementioned problems are addressed using encoding RD

analysis as a visual content characterization method.

The effectiveness of RD analysis is demonstrated through an encoding RD analysis

inspired visual signal compression quality control work. Inspired by the work of [1], the

video encoders’ quality parameter functions are reconstructed precisely through an eigen

analysis approach with just a few samples, which outperforms the current widely used

models that utilizes edge detection based visual trait Spatial Information (SI). With the

proposed method, it is possible to control the encoded video’s quality measured by Human

Visual System (HVS) driven quality metric. Moreover, the proposed RD domain eigen-

analysis based precise quality control framework makes it possible to control the encoded

image’s quality for image compression model driven by End-to-End (E2E) neural network.

As such, we make the first effort to design encoder control mechanism for E2E image

encoders without sacrificing compression efficiency.

Furthermore, the visual content characterization problem is addressed with the encod-

ing RD analysis and submodular subset selection framework. Using the proposed char-

acterization method, encoding RD analysis, which is capable of describing visual content

using image encoders as analyzers, makes it possible to conduct source image selection for

compression related tasks since RD statistic is the direct result of lossy image compression.

With the compression related characteristic at hand, we frame the source content selection

problem as a subset optimization process, where the representativeness can be modelled as

a submodular set function. Our work is the first effort to systematically address the source

content selection problem for image compression applications. Through the experiments

on deep neural network (DNN) based E2E image compression method, we show that the

source contents selected by our method are effective in boosting the performance of learn-

ing based compression model and demonstrates better representativeness of the selected

content in RD domain.
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6.2 Future Perspectives

The results in the thesis demonstrate the potential of applying encoding RD analysis on

visual content characterization for compression and quality related applications. The thesis

mainly focuses on applying RD characterization on two aspects, namely, precise quality

control for visual encoders, and maximum-representativeness source content selection for

database construction. Besides the two compression based applications, we believe the RD

characterization philosophy has a vast potential for applications in other areas. Moreover,

the representative source content selection for compression image database provides novel

insights on data selection for quality related tasks, especially when the data points are

abundant while not all of them can be utilized due to resource limitations in the labelling

and training process. In this section, several possible future perspectives initiated from the

ideas proposed in the thesis will be discussed.

6.2.1 RD Encoding Analysis for Quality Enhancement

One possible application of the RD encoding analysis is artifact detection for fast video

content quality enhancement. Video quality enhancement can be divided into two separate

sub-tasks, which are the artifact detection task and the quality enhancement task. The

artifact detection task may utilize pattern recognition techniques to locate regions con-

taining quality degradation either inside a single image or across multiple video frames.

Current popular methods either utilize convolutional neural network (CNN) to take the

whole image directly as input for analysis and enhancement as the end-to-end solution

or rely on some ad-hoc features calculated based on the video frames for the detection

task [133, 134, 135]. However, given the heavy computational burden of the CNN methods

and the heuristic nature of the unjustified empirical features, the existing methods are both

slow and unreliable to meet the need of time-critical tasks such as live video broadcasting.

The RD characteristics, which are the direct results of encoding and have the proved ca-

pability on characterizing source contents, may be utilized for the artifact detection task

in the video trans-coding step, which is a common and necessary video processing step in

the video content delivery pipeline. Thanks to the block-based nature of modern visual
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encoders, each Coding Tree Unit (CTU) can be encoded independently and carry corre-

sponding RD statistics as its metadata. If RD statistics can be collected and recorded

for each block or frame, which is almost effortless in terms of computational burden when

compared to most CNN solutions, efficient detection methods based on RD characteristics

can be achieved for time-critical video enhancement applications.

Source Visual 
Content

Block-based 
Compression

RD Statistics 
Collection

RD-based 
Artifact Analysis

Encoded Bitstream 
with Metadata

Encoding Pipeline

Decoding Pipeline

Bitstream 
Decoding

Artifact Metadata 
Analysis

Video Reconstruction with 
Quality Enhancement

Quality-Enhanced 
Decoded Video

Figure 6.1: Video Quality Enhancement with RD Encoding Analysis Workflow

One possible workflow of applying RD analysis on encoding quality enhancement is

shown in Fig.6.1. The two quality enhancement sub-tasks, artifact detection and quality

enhancement, are deployed in the video encoding and decoding pipeline respectively. At

the encoding side, RD statistics can be collected for each coding unit of the source visual

content, which can be analyzed later in the RD-based artifact analysis module deployed on

the encoder side. At the decoder side, the metadata containing artifact information will be

decoded and analyzed so that a proper quality enhancement method can be chosen in the

quality enhancement module deployed in the decoding pipeline. The direct integration of

RD-based artifact analysis module and quality enhancement module in the visual content

encoding-decoding pipeline would achieve efficient quality enhancement because RD infor-

mation is easily accessible during the encoding and decoding process in the video delivery
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pipeline.

In summary, RD characterization may provide a computational efficient and reliable

solution when compared against the computationally expensive CNN based methods and

the methods relying on unverified ad-hoc visual content features.

6.2.2 RD Encoding Analysis Extended to Other Signal Types

RD characterization philosophy can be further extend to the analysis of emerging visual

content types such as 3D visual content, visual-reality content, and point-cloud visual con-

tent. The emerging visual content display technologies not only bring better immersive

viewing experiences to consumers, but also create new challenges on building representa-

tive database because of limited content availability and high cost of content displaying

and capturing devices. Thanks to the fact that most emerging visual content compression

technologies are based on the established video encoders such as AOMedia Video 1 (AV1)

or High Efficiency Video Coding (HEVC), the proposed RD analysis and modelling frame-

work can be applied following the same procedure as discussed in the thesis without vast

modifications. The RD analysis may shed light on the automated analysis on emerging

visual content types so that researchers’ burden of source content selection and generation

would be alleviated because the RD analysis is totally based on the encoded contents’

encoding statistics that are objective, automated, and can be obtained without human

judgement involved.

With the success of applying RD analysis for visual content characterization, a more

general application of using RD analysis for precise encoding quality control on more signal

types is possible. Besides visual signals, the RD information of signals such as sound and

haptic, may also be obtained by using their lossy compressors, which are widely accessible

since the signals are intended to be transmitted under the limited bandwidth. Therefore,

the generalized “compressor as analyzer” philosophy may be applied to a wide variety of

lossy signal compressors for characterizing a broad range of signal modalities. In Fig.6.2,

a general workflow of applying RD characterization is shown with several possible source

signal types, such as audio, video, haptic, and 3D image. The RD statistics can be either

utilized as features for downstream tasks such as pattern recognition or as signal database
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source selection measures. On the other hand, proper modelling of the RD statistics may

also create opportunities for developing precise signal quality control methods and quality

enhancement methods for the lossy compressors of more signal types.
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Figure 6.2: A General Workflow of Source Signal RD Characterization

It should be noted that different types of signals have different quality measurement

methods. Cares should be taken for the selection of signal quality metrics due to different

quality assessment procedures. In other words, theD term in RD analysis could be adapted

to the specific signal types or the specific tasks. In summary, the RD characterization idea

is highly extensible both in terms of applications and source signal types. Researchers

may take the compression related RD statistics into consideration when working with data

characterization related problems in the future.

6.2.3 Maximum-Representativeness Source Content Selection for

Quality Related Tasks

The maximum-representativeness source content selection methodology has demonstrated

its potential on boosting the performance of learning based image compressor. The method-

ology provides a practical solution on handling problems with abundant data while the
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allowed training data for specific application is limited due to resource limitations such as

high data labeling or computational cost.

Besides the compression tasks, another type of applications with great potentials are

those that involve human labeling, such as subjective quality assessment. The target

of subjective quality experiment is to obtain human opinions on the quality of visual

contents affected by factors that would either enhance or degrade the visual quality with the

belief that human perception is the ultimate standard. Since the human reviewing process

usually comes with high financial cost and is time-consuming, the source contents allowed

in subjective experiments are often extremely limited. Therefore, it is highly desirable that

the selection of source content candidates are representative in terms of human viewing

experience. Video quality expert group [115] has been the organization producing video

content databases for the subjective experiments serving compression quality purpose. The

source contents of those databases are selected based on the so called “expert experience”

by experts to cover different types of content based merely on several experts’ personal

judgment. However, with the limited number of source contents selected with personal

bias, the representativeness of the content selected remains unchecked, and the resulting

uncertain impact on the subjective testing results and subsequent learning and testing

experiments is unmanageable.

It can be observed that the best matches of the proposed maximum representative-

ness content selection methodology are those applications where abundant data are easily

accessible but in need of human judgement on the data selection process. Beyond the sub-

jective experiment for visual quality, there are many opportunities in other research areas

that are in need of representative selection. One example is visual aesthetic assessment for

images, which has a similar situation to image or video quality assessment. The available

visual contents online for aesthetic assessment are countless, while human selection may

result in selection bias, leading to less representative subjective experiment results. The

maximum-representativeness selection methodology may also find applications in research

area beyond the signal processing field. For example, online reviews are common nowa-

days. For some popular products, the number of customer reviews may be so large that

are almost impossible for a single consumer to go through all of them before the consumer

can obtain a general idea of the customer feedback on the product. The proposed repre-
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sentative selection may provide a solution on helping consumers to find reviews that are

most representative and useful in comparing the products they intend to purchase.
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Figure 6.3: Examples of Potential Tasks for Representative Selection

In Fig.6.3, a general workflow of representative selection for the aforementioned candi-

date tasks is shown. Based on the nature of different applications, the application related

features should be collected from the large data collection available. An example of such

application related features is the RD statistic from source visual content for compression

task. In the space of these features, representative selection can be conducted using the

submodular optimization method described in the thesis. In the end, the selected repre-

sentative data points can be utilized in the aforementioned downstream tasks. It should be

noted that efforts need to be made on validating the method’s effectiveness for subjective

experiment. Unlike the learning based task in the thesis, the effectiveness of submodular

representative selection on subjective experiments cannot be proved without human par-
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ticipation. In order to prove its effectiveness, one possible solution is to utilize a much

larger scale subjective experiment as the ground-truth to see if its final result correlates

well with the small scale submodular based subjective experiment. In case it is difficult to

accommodate the large scale subjective experiment in lab-setting, crowd-sourcing may be

an alternative for the validation experiment.

In summary, the proposed methodology in the thesis provides a novel approach to

measure representativeness expressed in a target optimization function for the submodular

selection procedure and therefore interpret the corresponding problem as a combinatorial

discrete optimization problem. The philosophy of maximum representativeness selection

proposed in the thesis has broad future perspectives not only for visual quality related

tasks, but also for other signal processing tasks and beyond. I hope the study in this thesis

can facilitate future research on the topic, and help address the long standing problem on

how to improve the representativeness in data selection that facilitates various learning-

based but data-hungry signal processing applications.
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[12] J. Ballé, V. Laparra, and E. P. Simoncelli, “End-to-end optimized image compres-

sion,” in Int’l Conf on Learning Representations (ICLR), Toulon, France, April 2017.

[13] I. I. Groen, E. H. Silson, and C. I. Baker, “Contributions of low-and high-level prop-

erties to neural processing of visual scenes in the human brain,” Philosophical Trans-

actions of the Royal Society B: Biological Sciences, vol. 372, no. 1714, p. 20160102,

2017.

[14] R. I.-R. BT et al., “Studio encoding parameters of digital television for standard

4: 3 and wide-screen 16: 9 aspect ratios,” Int. Radio Consultative Committee Int.

Telecommun. Union, Switzerland, CCIR Rep, pp. 624–4, 2011.

[15] T. Virtanen, M. Nuutinen, M. Vaahteranoksa, P. Oittinen, and J. Häkkinen,
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