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Abstract

This thesis applies the stochastic control approach to study the optimal insurance strategy
for three problems. The first problem studies the optimal non-life insurance for an indi-
vidual exhibiting internal habit formation in a life-cycle model. We show that the optimal
indemnity is deductible under the expected premium principle. Under the additional as-
sumption of exponential utility functions, we obtain the optimal strategies explicitly and
find that habit formation reduces insurance coverage. Our model offers a potential explana-
tion for the global underinsurance phenomenon. Some numerical examples and sensitivity
analysis are presented to highlight our theoretical results.

The second problem analyzes the optimal defined-contribution (DC) pension manage-
ment under stochastic interest rates and expected inflation. Besides financial risk, we
consider the mortality risk before retirement and introduce life insurance to the pension
portfolio. We formulate this pension management problem by a Hamilton-Jacobi-Bellman
(HJB) equation, derive its explicit solution, show the explicit solution’s global existence,
and prove the verification theorem. Our numerical research reveals that the pension mem-
ber’s demand for life insurance exhibits a hump shape with age and a “double top” pattern
for the real short rates and expected inflation (high demand when the real short rates and
expected inflation are both high or both low). These demand patterns are caused by the
combined effects of the components in the optimal insurance strategy.

The third problem is constrained portfolio optimization in a generalized life-cycle model.
The individual with a stochastic income manages a portfolio consisting of stocks, a bond,
and life insurance to maximize his or her consumption level, death benefit, and terminal
wealth. Meanwhile, the individual faces a convex-set trading constraint, of which the non-
tradeable asset constraint, no short-selling constraint, and no borrowing constraint are
special cases. Following Cuoco (1997), we build the artificial markets to derive the dual
problem and prove the existence of the original problem. With additional discussions, we
extend his uniformly bounded assumption on the interest rate to an almost surely finite
expectation condition and enlarge his uniformly bounded assumption on the income process
to a bounded expectation condition. Moreover, we propose a dual control neural network
approach to compute tight lower and upper bounds for the original problem, which can be
utilized in more general cases than the simulation of artificial markets strategies (SAMS)
approach in Bick et al. (2013). Finally, we conclude that when considering the trading
constraints, the individual will reduce his or her demand for life insurance.
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Chapter 1

Introduction

“The essence of finance is the value exchange crossing time and space.”

This is a brief definition provided by Professor Zhiwu Chen in his book “The Logic of
Finance” Chen (2009), which reveals the nature of financial practices.

Among all the financial practices, insurance is unique for its protection purpose. In a
typical insuring procedure, the individual pays a reasonable premium in exchange for the
protection of the future loss. The compensation can really smooth big losses as in people’s
lives and help individuals out of hopeless situations. However, choosing insurance unwisely
could lead to serious results, such as over-insurance (insurance amount is in excess of
insured object’s fair value) and under-insurance (insurance amount is not enough to cover
the risk). According to Lloyd’s (2018), in 2018, the insurance gap for developed countries
and emerging nations are, respectively, the US $2.5 billion and US $160 billion. Therefore,
it is of great importance to study the optimal insurance strategy for different contracts.

Generally speaking, insurance contracts can fall into two categories: short-term insur-
ance and long-term insurance. A short-term insurance contract refers to a contract with a
period of one year or less. It includes non-life insurance (e.g., automobile insurance, home-
owners insurance, etc.) and health insurance (e.g., medical insurance, dental insurance,
etc.). A long-term insurance contract is a contract with a period of more than one year.
It covers life insurance, annuities, and pension plan.

In the field of short-term insurance, one popular research topic is the optimal choice of
the non-life insurance contract. The problem is to determine the indemnity function, which
measures the amount of money paid to the individual when the loss occurs. Early work
has shown that the optimal indemnity is deductible insurance under the expected premium

1



principle in the single-period setting (see Arrow, 1963; Mossin, 1968; Raviv, 1979). This
result has been well extended to the dynamic case under various settings (see Moore and
Young, 2006; Perera, 2010, 2013; Steffensen and Thøgersen, 2019; Touzi, 2000; Zou and
Cadenillas, 2014). However, most of this literature assumes that the individual’s preference
follows an additively time-separable utility. In practice, this assumption is not realistic.
The individual’s preference may not only depend on instantaneous consumption but also
be correlated with past habits. Therefore, it is of great interest to study the impact of
previous consumption on the individual’s insurance strategy.

Chapter 2 aims to study optimal insurance when considering past consumption in dy-
namic settings. We assume an individual allocates his or her wealth between consumption,
saving, and insurance to hedge property losses throughout their lifetime. Habit formation
is introduced to measure the previous consumption and relax the time separability of the
individual’s preference. Most financial literature has shown that the individual will reduce
their investment in the risky asset to maintain a reasonable habit level (see Constantinides,
1990; Munk, 2008; Polkovnichenko, 2006; Sundaresan, 1989). However, the effect on the
insurance strategy has not been clearly studied in the actuarial field. We introduce habit
formation and derive that the optimal insurance is still a deductible under the expected
premium principle in a general sense. Then, under the exponential utility, the explicit
solution is derived if consumption utility is defined as a function of the difference between
current consumption and habit formation. Some interesting corollaries are derived with
the solution. First, the optimal deductible is decreasing throughout the time, implying
that the individual would purchase more insurance if he or she ages. Second, the insurance
demand is reduced after considering habit formation, which shows a similar phenomenon
to the risky-asset demand in financial literature. Finally, a rigorous verification theorem is
proved to guarantee the optimality of the candidate solution and strategies.

Motivated by the popularity of proportional insurance, we also study the demand of
this contract under habit formation. More comprehensive results are derived in this case.
First, the demand for proportional insurance increases with age. Second, the habit for-
mation reduces the optimal proportion of loss insured. Third, the individual would buy
no proportional insurance in the early years under some conditions (e.g., the insurance is
too expensive or the loss is not severe). Compared with deductible insurance, proportional
insurance is only a sub-optimal solution under the expected premium principle. A natural
question is to examine the welfare loss from choosing the sub-optimal solution. We define
the welfare loss as the minimum wealth compensated so that the individual is willing to
choose the sub-optimal solution. After rigorous analysis, we find the welfare loss from
proportional insurance is relatively small compared to that from no insurance.

Chapter 2 draws a conclusion in sharp contrast to that of Ben-Arab et al. (1996), who
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also study the optimal insurance demand under habit formation. We show that insurance
demand is reduced when considering habit formation, while they obtain the opposite re-
sult. After close comparison, it turns out that the choice of utility function contributes
to the conflicting result. Our result is highly consistent with the global under-insurance
phenomenon, and thus habit formation could potentially offer a plausible explanation for
the insurance gap worldwide.

In the realm of long-term insurance, one of the major challenges is the pension man-
agement problem. Most pension funds can be classified into two schemes: defined-benefit
(DB) pension schemes and defined-contribution (DC) pension schemes. Generally speak-
ing, a DB pension plan provides the individual with a guaranteed retirement benefit based
on his or her earnings history, tenure of service, and age; the DC pension plan collects a
predetermined contribution in the accumulation period and returns the retirement benefit
related to the investment earnings. There has been a global shift from DB pension plans to
DC pension plans. According to the OECD report, in 2019, less than 50% of pension assets
are managed in DB schemes in 28 out of 33 reporting jurisdictions (see OECD, 2020).

Compared with other funds, the long-term horizon is one of the key features of DC
pension management. The accumulation period of a DC pension usually lasts for 20-40
years, and the individual is exposed to various risks before retirement age. In general, the
risk to the DC participant can be classified into two categories: financial risk and mortality
risk. Financial risk is the risk caused by the changing economic indicators and financial
environment. There is a large amount of literature studying optimal DC management
under financial risk. The results show that a failure to hedge the time-varying interest
rate and inflation rate could lead to a large loss of individual’s purchasing power after
retirement (see Battocchio and Menoncin, 2004; Boulier et al., 2001; Chen et al., 2017;
Han and Hung, 2012). The mortality risk is the risk that an individual may die before
the retirement age. According to the latest life tables, the probability of a 22-year old
dies before age 65 is respectively 15.23% in the United States and 9.52% in Canada, which
is not negligible to the pension managers. The current literature focuses on two types of
pre-mature death benefit clauses: the return of premiums (see Bian et al., 2018; He and
Liang, 2013; Li et al., 2017; Sun et al., 2016) and the return of account value (see Blake
et al., 2008; Konicz and Mulvey, 2015; Wu and Zeng, 2015; Yao et al., 2014). In practice,
most DC pension plans would return the account value to the pre-mature dead individuals
since the investment revenue in DC plan is also the inheritable estate (see Publication 575
IRS (2019) of 401(k) plan in the United States and other examples in Canada (RBC, 2020;
Sun Life Financial, 2017)).

Chapter 3 considers a DC pension management problem in a complete market. The
financial market follows a two-factor model proposed by Koijen et al. (2011), which permits
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time variation in real interest rates, inflation rates, and risk premiums. The pension
participant allocates his or her wealth among a stock index, nominal and inflation-linked
bonds, and a nominal cash account. Besides financial instruments, the individual can also
buy life insurance to hedge his or her mortality risk before retirement. The pre-mature
death benefit consists of the DC account value and the payment from life insurance.

We formulate this pension management problem as a utility maximization problem and
derive the corresponding Hamilton-Jacobi-Bellman (HJB) equation. An explicit solution
is derived under the constant relative risk aversion (CRRA) utility, and its global existence
can be proved based on the related matrix Riccati equation. Furthermore, rigorous ver-
ification theorems are provided in different ranges of utility’s risk-aversion coefficient. In
the numerical research, we estimate the model parameters by the Kalman filter method
and acquire rich conclusions on individual’s insurance demand. More specifically, in the
dynamic analysis, we find that the pension plan member’s demand for life insurance follows
a hump shape, and peaks in old age. In the static analysis, we find the individual’s de-
mand for life insurance exhibits a “double top” shape for the real short rate and expected
inflation. In general, Chapter 3 constructs a DC account resembling the variable annuity
with endogenously determined time-varying death benefits. It relaxes the limitations on
the variable annuity’s death benefits and can inspire more innovations in designing the new
actuarial products.

The other hot topic in long-term insurance is the individual’s demand for life insurance
under trading constraints. In the real market, the individual faces many trading restric-
tions from stock brokers and exchanges. These trading constraints influence individuals’
investment behavior and affect their earnings and insurance demand.

The existing literature formulates this problem into the constrained portfolio optimiza-
tion problem. It considers the trading constraints, such as non-tradable assets (incomplete
market), no short-selling constraint, no borrowing constraint, etc., and adjusts the ideal
model to a more realistic market model. Some seminal papers solve this problem by dual
control approach (see Cvitanić and Karatzas, 1992; Karatzas et al., 1991). They build
a group of artificial markets and fulfill the trading constraints by manipulating the drift
terms of bonds and stocks. He and Pages (1993) add the labor income to the problem and
consider the investment with no borrowing constraint. Cuoco (1997) extends Cvitanić and
Karatzas (1992) to the case with stochastic income and absorbs He and Pages (1993)’s
work (no-borrowing constraint) as special cases. For more recent works and research, we
refer to Bick et al. (2013); Chabakauri (2013); Haugh et al. (2006); Jin and Zhang (2013);
Kamma and Pelsser (2022); Larsen and Žitković (2013); Mostovyi and Ŝırbu (2020). In
the actuarial science field. Zeng et al. (2016) extend He and Pages (1993)’s work and
study the wealth-constraint effect on the individual’s demand for life insurance. Dong and
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Zheng (2019) study the optimal defined contribution pension management under short-
selling constraints and portfolio insurance. Hambel et al. (2022) build a group of artificial
insurance markets to solve a life-cycle model with unhedgeable biometric shocks. However,
most existing actuarial literature only focuses on one or two trading constraints, and a
general framework is lacking in studies of life-cycle investment.

Chapter 4 studies the constrained portfolio optimization problem in a generalized life
cycle model. The individual has a stochastic income and aims to find the optimal trad-
ing and insurance strategies to maximize their consumption, bequest, and terminal wealth
levels. Inspired by Cuoco (1997)’s framework, we use a non-empty, closed, and convex
set to describe the trading strategy, which contains non-tradeable assets, no short-selling
constraint, and no borrowing constraint as special cases. Furthermore, we use the “relax-
ation projection” technique in Levin (1976) to prove the existence of the primal problem.
Compared to the Cuoco (1997)’s framework, we relax his uniformly bounded assumptions
on the interest rate and income process. In Chapter 4, we only assume the expected expo-
nential integral of the interest rate’s absolute value is finite and derive a weaker condition
for the income process.

In the numerical research, we propose a dual control neural network approach and
compare it with the simulation of artificial markets strategies (SAMS) approach from Bick
et al. (2013). We find that the two approaches perform closely when the risk-free interest
rate, stock appreciation rate, and volatility are all constant. If the stock appreciation
rate follows a perturbation in time, then the SAMS approach is inadequate to solve the
problem, but the dual control neural network approach still works well. Lastly, according to
the numerical study, both approaches show that the individual will reduce their demand
for life insurance in the presence of trading constraints. To the best of our knowledge,
this is the first application of the neural network to compute the constrained portfolio
optimization problem. It can inspire future work using the neural network to study the
optimal investment under realistic market situations.
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Chapter 2

Demand for non-life insurance under
habit formation

2.1 Introduction

An important problem in actuarial science and insurance economics is to examine the opti-
mal design of insurance. The problem is to determine the so-called indemnity function, i.e.,
the amount of monetary compensation as a function of the loss, to maximize the insured’s
utility. It has been well established in the single-period setting that the optimal indemnity
is deductible if the expected premium principle is used in the insurance pricing; see the
seminal papers by Arrow (1963); Mossin (1968); Raviv (1979). The optimal insurance
problem has also been extended to the dynamic setting, see, for example, Briys (1986);
Moore and Young (2006); Perera (2010, 2013); Steffensen and Thøgersen (2019); Touzi
(2000); Zou and Cadenillas (2014) among others, which show the optimality of certain
insurance contracts, mostly deductibles, in various settings. Most of these papers assume
that the economic agent’s preference is described by an additively time-separable utility
function. While this assumption simplifies the analysis, it is not realistic as it assumes that
instantaneous satisfaction depends on only instantaneous consumption. In practice, it is
conceivable that the economic agent’s past consumption can be important. To reflect the
past consumption habit, an alternative model is habit formation, which relaxes the time
separability of preferences and thus allows the economic agent’s current utility to depend
on past consumption.

The theory of habit formation has been widely used in finance. Sundaresan (1989)
establishes a model where a consumer’s utility depends on their consumption history.
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He finds the fraction of the wealth invested in the risky asset is no longer a constant
but an increasing concave function of wealth, lower than the fraction in Merton (1971).
Constantinides (1990) shows that habit formation drives a wedge between the coefficients
of relative risk aversion, and the individual will have less risky investment when considering
habit formation. Polkovnichenko (2006) constructs a discrete-time life-cycle model with
stochastic uninsurable labor income and finds that the allocation to stocks declines with
habit because higher habit is harder to maintain. Munk (2008) studies the optimal behavior
under a general, possibly non-Markov market price process and concludes that bonds and
cash are better investment objects than stocks when the individual needs to ensure a habit
level. In particular, habit formation has been successfully used in analyzing asset prices
(Abel, 1990; Constantinides, 1990; Detemple and Zapatero, 1991; Sundaresan, 1989).

This chapter contributes to the optimal insurance design problem in the dynamic con-
text under habit formation. We propose a life-cycle model incorporating internal habit
formation in the preference to study the economic agent’s optimal consumption, saving,
and demand for insurance. In particular, we assume that the economic agent’s instan-
taneous utility function depends on not only instantaneous consumption but also a con-
sumption habit defined by the weighted average of past consumption. We show that the
optimal indemnity is still deductible insurance if the expected premium principle is used.
We further make simplifying assumptions that the economic agent derives utility from the
difference between consumption and habit and that the utility function is of the exponen-
tial type. We obtain optimal strategies in closed-form and find that the optimal deductible
is decreasing in age, implying that the individual gradually increases his or her insurance
coverage. Moreover, the presence of habit formation reduces the insurance coverage.

Motivated by the fact that proportional insurance is prevalent in the market and a com-
monly imposed condition in the study of dynamic optimal insurance, we provide additional
analysis assuming an individual can only purchase proportional insurance. Under the more
restrictive model setting, we conclude the following: First, the optimal proportional insur-
ance coverage increases with age. Second, habit formation reduces the optimal proportion
of losses insured. Third, economic agent may completely opt out of the insurance market
and optimally choose to self-insure, especially during early ages.

In our model, the expected premium principle is used in insurance pricing and thus the
optimal insurance is deductible insurance. This motivates us to quantify the welfare loss
from suboptimal strategies such as no insurance coverage or proportional insurance. We
define the welfare loss as the additional wealth that an individual who follows a suboptimal
strategy needs to hold, in order to yield the same level of expected utility of the optimal
strategy. We find that the welfare loss from proportional insurance is relatively small
compared to that from no insurance coverage.
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Our result is closely related to Ben-Arab et al. (1996) who also study optimal insurance
demand under habit formation. Our model differs from Ben-Arab et al. (1996) in many
aspects. First, Ben-Arab et al. (1996) assume that the loss size is given by the total wealth
at the time of the loss, while we model the individual risk as a compound Poisson process
which is independent of the wealth. Second, Ben-Arab et al. (1996) focus on proportional
insurance under the expected premium principle while we allow the economic agent to
choose from a general class of indemnity functions. In fact, we show that the optimal
strategy is deductible. Third, Ben-Arab et al. (1996) use power utility while our explicit
solutions are obtained under exponential utility which allows us to abstract away from the
wealth effect. The differences in the assumptions lead to totally different results. Ben-
Arab et al. (1996) show that habit formation increases proportional insurance coverage.
In contrast, we show that the insurance coverage of the individual, either deductible or
proportional insurance, is reduced by habit formation. This phenomenon is of particular
interest in that it is more consistent with empirical evidence. The recent report by Lloyd’s
(2018) indicates that there exists an insurance gap worldwide. For example, in 2018 the
insurance gap for developed countries and emerging nations are, respectively, US $2.5
billion and US $160 billion. Our results suggest that habit formation in our proposed
life-cycle model offers a potential explanation for the global underinsurance phenomenon.

The rest of the chapter is organized as follows. Section 2.2 introduces the economic
setting and Section 2.3 formulates the general optimization problem. Section 2.4 solves the
model analytically under the exponential utility. Section 2.5 quantifies welfare losses from
suboptimal strategies. Section 2.6 presents numerical examples and Section 2.7 concludes
the chapter. All proofs are relegated to Appendix A.

2.2 Model

We consider a finite horizon life-cycle model similar to those in Ben-Arab et al. (1996);
Moore and Young (2006); Steffensen and Thøgersen (2019). We assume there is an eco-
nomic agent endowed with initial wealth x0. He or she consumes at the rate {ct}0≤t≤T and
invests the remaining wealth into a risk-free asset that earns an interest rate r.

Following Moore and Young (2006); Steffensen and Thøgersen (2019), we assume the
individual is exposed to a risk which is modeled by a compound Poisson process

At =
Nt∑
i=1

Yi, (2.1)
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where {Nt}0≤t≤T is a Poisson process with intensity λ representing the number of losses up
to time t and the Yis are loss sizes. It is assumed that Yis are independent and identically
distributed with distribution F on (0,∞), and that they are independent of {Nt}0≤t≤T .
This formulation is slightly different from that in Ben-Arab et al. (1996) where the loss
size is assumed to be equal to the total wealth.

As in Moore and Young (2006), the individual can purchase per-claim insurance to
reduce the risk exposure. Denoting by It the individual’s indemnity at time t, the insurance
pays It(Y ) if the individual suffers a loss of Y at time t. We assume 0 ≤ It(Y ) ≤ Y to
exclude over-insurance. Assume that the insurance premium is payable continuously at
the rate λ(1+θ)E[It(Y )], where the insurer prices the insurance risk by the expected value
principle and θ is the safety loading. Then, the wealth of the individual evolves according
to

dXt = rXtdt− ctdt− λ(1 + θ)E[It(Y )]dt−Rt(Y )dNt, X0 = x0, (2.2)

where Rt(Y ) = Y − It(Y ) is the retention function. Our focus is the impact of habit
formation on the individual’s demand for non-life insurance and thus we abstract from
other factors such as stock investment that may complicate the analysis. There is no
essential difficulty to carry out the analysis to include equity investment.

In contrast to Steffensen and Thøgersen (2019) who assume the time-horizon is infinite
and thus the indemnity is time-invariant, we consider a finite-horizon problem and assume
that the economic agent can adjust the indemnity continuously. This assumption is com-
mon in practice as consumer’s insurance coverage varies according to the age and that an
individual typically renews the policy, say, on an annual basis. Our formulation also allows
us to examine the time pattern of the individual’s coverage and how habit formation can
change the time pattern.

Our model also differs from that in Ben-Arab et al. (1996) who assume that the eco-
nomic agent can only purchase proportional insurance. In contrast, we assume that the
insured can choose the optimal insurance strategy from a large class of indemnity functions.
This allows us to investigate the optimal design of the personal non-life insurance.
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2.3 Optimization problem

Following Ben-Arab et al. (1996); Boyle et al. (2022); Constantinides (1990); Kraft et al.
(2017); Sundaresan (1989), we assume the economic agent’s preference exhibits internal
habit formation. Define the habit level at time t as

ht = h0e
−βt + α

∫ t

0

e−β(t−s)csds,

or, equivalently,
dht = (αct − βht)dt, (2.3)

where h0, α and β are non-negative constants, and h0 is the initial habit level. The habit
level is a multiple of the weighted average of past consumption rates with the weights being
exponentially decreasing so that the recent consumption rates have greater emphasis. β
measures the persistence of past consumption and low β implies high persistence. α is a
scaling parameter that measures the intensity of consumption habits. As α increases, the
habit places more emphasis on the history of consumption. It is assumed that β > α to
ensure that the habit level will decline when the investor consumes at the habit level.

The individual chooses {ct, It}0≤t≤T to maximize his or her discounted expected utility
of consumption and terminal wealth (bequest)

sup
c,I

E

[∫ T

0

e−δtU1(ct, ht)dt+ e−δTU2(XT )

]
,

where δ is the subjective discount rate, U1(c, h) is the utility function of instantaneous
consumption, and U2(x) is the utility function of bequest. We assume that ∂U1/∂c > 0,
∂2U1/∂c

2 < 0, ∂U1/∂h < 0, ∂U2/∂x > 0, and ∂2U2/∂x
2 < 0. Similarly to Polkovnichenko

(2006), we posit that the utility of bequest does not depend on the consumption habit.
Naturally, this means at the terminal time, only the bequest of the wealth takes place.

We use dynamic programming to solve the individual’s optimization problem. Denote
by V the indirect utility function (value function)

V (t, x, h) = sup
c,I

E

[∫ T

t

e−δ(s−t)U1(cs, hs)ds+ e−δ(T−t)U2(XT )
∣∣∣Xt = x, ht = h

]
.

V solves the following Hamilton-Jacobi-Bellman (HJB) equation

Vt − (λ+ δ)V + rxVx − βhVh + sup
c
{U1(c, h)− cVx + αcVh}

+ sup
I
{−λ(1 + θ)E[It(Y )]Vx + λE[V (t, x− Y + It(Y ), h)]} = 0

(2.4)
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with the boundary condition V (T, x, h) = U2(x).

The first-order conditions with respect to (w.r.t.) c and I lead to, respectively,

∂U1(c, h)

∂c
− Vx + αVh = 0,

and
(1 + θ)Vx = Vx(t, x− Y + I(Y ), h).

In view of the “no overinsurance” condition 0 ≤ I(Y ) ≤ Y , we hypothesize that the
optimal indemnity is given by

I∗t (Y ) = [Y − (x− V −1
x (t, (1 + θ)Vx, h))]+,

where [x]+ = max(x, 0) and V −1
x (t, y, h) is the inverse function of Vx(t, x, h) w.r.t. x.

The following proposition summarizes the above results.

Proposition 2.3.1. Suppose that V (t, x, h) ∈ C1,1,1 solves the HJB equation (2.4).
The optimal consumption c∗t satisfies

∂U1(c∗t , h)

∂c
− Vx + αVh = 0, (2.5)

and the optimal indemnity is given by

I∗t (Y ) = [Y − (x− V −1
x (t, (1 + θ)Vx(t, x, h), h))]+. (2.6)

Proposition 2.3.1 states that the optimal insurance in the presence of habit formation is
deductible under the expected value principle. In the early years, many papers derive this
result in the static sense (see Arrow, 1963; Borch, 1975; Mossin, 1968; Raviv, 1979) and
Moore and Young (2006) extends the idea to the continuous time model under the per-
claim insurance setting. The optimality of deductible insurance is established in Moore and
Young (2006) in the absence of habit formation. Therefore, Proposition 2.3.1 generalizes
the results in Moore and Young (2006) to the case of habit formation.
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2.4 Optimal Insurance under Exponential Utility

Proposition 2.3.1 in the preceding section establishes the optimality of deductible insurance
under habit formation. By assuming that the individual’s utility function is given by the
exponential utility function, in this section, we derive the optimal demand for insurance
explicitly. This, in turn, provides additional insights into the demand for insurance.

Inspired by Sundaresan (1989), we assume

U1(c, h) = −1

γ
e−γ(c−h), U2(x) = −ω

γ
e−γx, (2.7)

where γ > 0 is the Arrow-Pratt coefficient of absolute risk aversion (Pratt, 1964) and
ω > 0 measures the strength of the bequest.1 We emphasize that the exponential utility
is a utility which exhibits a constant absolute risk aversion (CARA) and that such utility
has been widely used in the life-cycle literature, see, for example, Merton (1971), Caballero
(1991), Wang (2006), and Wang (2009), among others. In particular, Sundaresan (1989)
and Angelini (2009) study optimal consumption under habit formation and CARA utility.
Moore and Young (2006) and Steffensen and Thøgersen (2019) analyze optimal insurance
choice under CARA utility but without habit formation.

2.4.1 Optimal policies

The following proposition presents the optimal consumption and insurance strategies in
the presence of habit formation.

Proposition 2.4.1. Suppose that the utility functions are given by (2.7). The candidate
solution to (2.4) is given by

φ(t, x, h) = −1

γ
e−γ(a(t)x+b(t)h+g(t)), (2.8)

the optimal indemnity is
I∗t (Y ) =

[
Y − d(t)

]+
, (2.9)

and the optimal consumption is

c∗t = −1

γ
ln[a(t)− αb(t)] + a(t)X∗t + (b(t) + 1)h∗t + g(t), (2.10)

1The utility of bequest is necessary to prevent terminal wealth from dropping to negative infinity when
CARA utility functions are employed and the time horizon is finite.
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where X∗t is the optimal wealth process in the presence of habit formation and h∗t is the
optimal consumption habit process.
Here,

a(t) = 1/J(t),

b(t) = G(t)/J(t),

G(t) = (e−(r+β−α)(T−t) − 1)/(r + β − α),

J(t) =

∫ T

t

(1− αG(s))e−r(s−t)ds+ e−r(T−t)

=
r + β

(r + β − α)r
+

(
1− r + β

(r + β − α)r
− α

(r + β − α)(β − α)

)
e−r(T−t)

+
α

(r + β − α)(β − α)
e−(r+β−α)(T−t),

d(t) =
ln(1 + θ)

γa(t)
=

ln(1 + θ)

γ
J(t),

and

g(t) = − lnw

γ
e−

∫ T
t a(s)−αb(s)ds

+

∫ T

t

e−
∫ u
t a(s)−αb(s)ds

{
λ+ δ

γ
+ [ln(a(u)− αb(u))− 1]

a(u)− αb(u)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(u)

ydF (y)− ln(1 + θ)

γa(u)
F

(
ln(1 + θ)

γa(u)

)]
a(u)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(u)

)
+

∫ ln(1+θ)
γa(u)

0

eγa(u)ydF (y)

]}
du, (2.11)

where F = 1− F is the tail distribution function of Y .

Before proving the verification theorem, we first give the following definition of the
admissible set A.

Definition 2.4.1. We say that a strategy (c, I) belongs to the admissible set A if

1. (2.2) has a unique strong solution Xt;

2. The indemnity It(Y ) satisfies 0 ≤ It(Y ) ≤ Y ;
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3. E[exp{C1Xt + C2ht + C3ct}] <∞, for any bounded constants C1, C2, and C3.

4. E[X2
t + h2

t + c2
t ] <∞

Then inspired by the Theorem 3.1. in Øksendal and Sulem (2007), we have the following
verification theorem.

Theorem 2.4.1. The candidate solution given by (2.8) satisfies

φ(t, x, h) = V (t, x, h) for all (t, x, h) ∈ [0, T ]× R2, (2.12)

and the strategy (c∗, I∗) given by (2.10) and (2.9) is the optimal consumption and insurance
strategy.

Proposition 2.4.1 states that the optimal consumption depends on not only wealth but
also consumption habit; in contrast, the optimal insurance is deductible but the deductible
level d(t) is a deterministic function of t. The optimal deductible is independent of wealth
as the exponential utility exhibits CARA and the loss process is not related to wealth. This
independence has been widely observed under exponential utility, see, for instance, Moore
and Young (2006) and Steffensen and Thøgersen (2019). Moreover, the optimal deductible
d(t) is decreasing in risk aversion γ and increasing in the safety loading (premium loading).
In other words, the economic agent increases their insurance coverage as he or she becomes
more risk-averse, but reduces the coverage when the insurance becomes more expensive.

It is also of interest to investigate how the optimal deductible varies according to time.
As shown in the following corollary, the optimal deductible is decreasing in age. In other
words, the individual gradually increases the insurance coverage as time approaches the
planning horizon. This implies that the individual is becoming increasingly more risk-averse
towards the insurable risk as he or she ages. We will provide an explanation through the
Arrow-Pratt absolute risk aversion in the next subsection.

Corollary 2.4.1. Assume that β > α ≥ 0 and 0 < r < 1. The optimal deductible d(t)
is strictly decreasing in [0, T ].

We next consider the optimal consumption and insurance for an individual without
habit formation. This model serves as a benchmark and allows for a better comparison
with optimal deductible obtained in models with and without habit formation.

Proposition 2.4.2. Suppose that the utility functions are given by (2.7) and α = β =
h0 = 0. For the “no habit” agent, the optimal value function is

Ṽ (t, x) = −1

γ
e−γ(ã(t)x+g̃(t)),
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the optimal indemnity is

Ĩt(Y ) =

[
Y − d̃(t)

]+

,

and the optimal consumption is

c̃t = − ln(ã(t))

γ
+ ã(t)X̃t + g̃(t),

where X̃t is the optimal wealth process in the absence of habit formation.
Here,

ã(t) = 1/J̃(t),

J̃(t) = e−r(T−t)
r − 1

r
+

1

r
,

d̃(t) =
ln(1 + θ)

γã(t)
,

g̃(t) = − lnw

γ
e−

∫ T
t ã(s)ds

+

∫ T

t

e−
∫ u
t ã(s)ds

{
λ+ δ

γ
+ [ln(ã(u))− 1]

ã(u)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γã(u)

ydF (y)− ln(1 + θ)

γã(u)
F

(
ln(1 + θ)

γã(u)

)]
ã(u)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γã(u)

)
+

∫ ln(1+θ)
γã(u)

0

eγã(u)ydF (y)

]}
du. (2.13)

The following corollary presents the properties of the “no habit” agent’s optimal de-
ductible.

Corollary 2.4.2. For the “no habit” agent, the optimal deductible d̃(t) is strictly de-

creasing in [0, T ). Moreover, d̃(t) < d(t) for t ∈ [0, T ) and d̃(T ) = d(T ) = ln(1+θ)
γ

, where

d(t) is the optimal deductible in the presence of habit formation.

This corollary attests that the individual gradually increases their insurance coverage
even in the absence of habit formation. Moreover, the “no habit” agent optimally chooses a
lower level of deductible than the individual with habit formation at each point in time. In
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other words, the presence of habit formation reduces the individual’s insurance coverage.
We point out that this result is in sharp contrast to Ben-Arab et al. (1996) who show that
the level of (proportional) insurance purchased is higher with habit formation than without
habit formation. In the next subsection, we will provide a formal explanation accounting
for the puzzling phenomenon. It can be shown that even if we consider consumption habit
in the bequest utility (which follows the general setting in Boyle et al. (2022)), a similar
phenomenon still presents. This implies that the “no consumption habit” in the bequest
utility is not the contributing factor for this phenomenon.

To conclude this subsection, we emphasize that the usefulness of our model can be
further highlighted by its potential ability to explain the prevailing underinsurance phe-
nomenon as pointed out in (Lloyd’s, 2018). Some well-known explanations include afford-
ability, education of risk, significant economic growth, and changing risk landscape. Our
results suggest that habit formation may be another contributing factor.

2.4.2 Optimal proportional insurance

We have shown that the optimal insurance must be deductible insurance under the expected
premium principle. Because proportional insurance is also common in the market, we
re-examine the optimal insurance problem but assuming the individual is restricted to
purchase only proportional insurance. In other words, the economic agent now chooses the
proportion of the loss insured instead of the indemnity function. This formulation allows
us to better contrast our results with those in Ben-Arab et al. (1996).

Proposition 2.4.3. Suppose that the individual can only purchase proportional insur-
ance, i.e. It(Y ) = p(t)Y , where p(t) ∈ [0, 1] is the proportion of loss covered by the insurer
at time t, should a loss incur at that time, and that the utility functions are given by (2.7).
The optimal value function is

V p(t, x, h) = −1

γ
e−γ(a(t)x+b(t)h+gp(t)),

the optimal consumption is

cpt = −1

γ
ln[a(t)− αb(t)] + a(t)Xp

t + (b(t) + 1)hpt + gp(t),

where Xp
t is the optimal wealth process of the proportional insurance in the presence of

habit formation and hpt is the optimal consumption habit process.
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The optimal proportion p∗(t) is the unique solution to

E[eγa(t)(1−p∗(t))Y Y ] = (1 + θ)E[Y ], if E[eγa(t)Y Y ] > (1 + θ)E[Y ],

and p∗(t) = 0 otherwise.

The functions a(t) and b(t) are as in Proposition 2.4.1, and gp(t) takes the following
form

gp(t) = − lnw

γ
e−

∫ T
t a(s)−αb(s)ds

+

∫ T

t

e−
∫ u
t a(s)−αb(s)ds

{
λ+ δ

γ
+ [ln(a(u)− αb(u))− 1]

a(u)− αb(u)

γ

−λ(1 + θ)p∗(u)E[Y ]a(u)− λ

γ
E[eγa(u)(1−p∗(u))Y ]

}
du. (2.14)

Similarly to the case of deductible insurance, the optimal proportion of loss insured
is increasing in risk aversion γ and decreasing in the safety loading (premium loading) as
long as the individual purchases the proportional insurance.

The following corollary concerns the time pattern of the optimal proportion.

Corollary 2.4.3. Assume that β > α ≥ 0 and 0 < r < 1. There are three cases.

1. If E[eγa(0)Y Y ] > (1 + θ)E[Y ], p∗(t) is positive and strictly increasing in [0, T ].

2. If E[eγa(0)Y Y ] ≤ (1 + θ)E[Y ] and E[eγa(T )Y Y ] > (1 + θ)E[Y ], then there exists a
unique t0 ∈ [0, T ) such that E[eγa(t0)Y Y ] = (1 + θ)E[Y ]. For t ∈ [0, t0], p∗(t) = 0.
For t ∈ (t0, T ], p∗(t) is positive and strictly increasing in [0, T ].

3. If E[eγa(T )Y Y ] ≤ (1 + θ)E[Y ], p∗(t) = 0 for all t ∈ [0, T ].

Similarly to the case of deductible insurance, the optimal proportion p∗(t) is non-
decreasing in age and the individual becomes increasingly risk-averse towards the insurable
risk. However, when the individual is restricted to proportional insurance, it is sometimes
optimal for the young not to buy any insurance. If an individual chooses not to buy
any insurance at an early age, then he or she will purchase insurance only if he or she
is old enough. In the extreme case, the individual will find it optimal not to purchase
any insurance throughout life. In particular, when θ, the safety loading in the premium
principle, is large enough, the economic agent finds the insurance is too costly and prefers
to self-insure.
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To better illustrate the effects of habit formation on the economic agent’s demand for
proportional insurance, we next consider the optimization problem without habit forma-
tion.

Proposition 2.4.4. Suppose that the individual can only purchase proportional insur-
ance, i.e. It(Y ) = p(t)Y , where p(t) ∈ [0, 1] is the proportion of the loss covered by the
insurer at time t, should a loss incur at that time, and that the utility functions are given
by (2.7) and α = β = h0 = 0. For the “no habit” agent, the optimal value function is

Ṽ p(t, x) = −1

γ
e−γ(ã(t)x+g̃p(t)),

the optimal consumption is

c̃pt = − ln(ã(t))

γ
+ ã(t)X̃p

t + g̃p(t),

where X̃p
t is the optimal wealth process of the proportional insurance in the absence of habit

formation.
The optimal indemnity proportion p̃∗(t) is the unique solution to

E[eγã(t)(1−p̃∗(t))Y Y ] = (1 + θ)E[Y ], if E[eγã(t)Y Y ] > (1 + θ)E[Y ], (2.15)

and p̃∗(t) = 0 otherwise.

The functions ã(t) is as in Proposition 2.4.2 and g̃p(t) takes the following form

g̃p(t) = − lnw

γ
e−

∫ T
t ã(s)ds

+

∫ T

t

e−
∫ u
t ã(s)ds

{
λ+ δ

γ
+ [ln(ã(u))− 1]

ã(u)

γ

−λ(1 + θ)p̃∗(u)E[Y ]ã(u)− λ

γ
E[eγã(u)(1−p̃∗(u))Y ]

}
du, (2.16)

The following corollary presents the properties of the “no habit” agent’s optimal pro-
portional insurance.

Corollary 2.4.4. Assume that 0 < r < 1. p̃∗(t) is non-decreasing and there are three
cases.

1. If E[eγã(0)Y Y ] > (1 + θ)E[Y ], p̃∗(t) is positive and strictly increasing in [0, T ].
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2. If E[eγã(0)Y Y ] ≤ (1 + θ)E[Y ] and E[eγã(T )Y Y ] > (1 + θ)E[Y ], then there exists a

unique t̃0 ∈ [0, T ) such that E[eγã(t̃0)Y Y ] = (1 + θ)E[Y ]. For t ∈ [0, t̃0], p̃∗(t) = 0.
For t ∈ (t̃0, T ], p̃∗(t) is positive and strictly increasing in [0, T ].

3. If E[eγã(T )Y Y ] ≤ (1 + θ)E[Y ], p̃∗(t) = 0 for all t ∈ [0, T ].

Moreover, p̃∗(T ) = p∗(T ). For t ∈ [0, T ), p̃∗(t) ≥ p∗(t) and the inequality is strict whenever
p̃∗(t) > 0 or equivalently E[eγã(t)Y Y ] > (1 + θ)E[Y ].

There are several interesting observations in Corollary 2.4.4. First, the individual grad-
ually increases the proportional insurance coverage even in the absence of habit formation,
which is consistent with the setting of deductible insurance. Second, the “no habit” agent
may also optimally not purchase any insurance if he or she is constrained to proportional
insurance. Third, the “no habit” agent’s proportional insurance coverage is no less than
that with habit formation. Moreover, habit formation strictly reduces the individual’s
proportional insurance coverage whenever he or she would have engaged in proportional
insurance without habit formation. This result is in sharp contrast to Ben-Arab et al.
(1996) as previously observed for the deductible case. We now formally address this puz-
zling phenomenon.

Recall that there are some material differences (in terms of problem formulation and
model setup) between the model of Ben-Arab et al. (1996) and the present chapter. Some
of these differences include the assumptions on the form of insurance, loss modeling, utility
function, and objective function with or without bequest. It turns out that a possible
reason accounting for the conflicting insurance demand phenomenon for an agent with and
without habit formation lies in the choice of the utility function. This can be explained
via the Arrow-Pratt measure of risk aversion.

For exponential utility under the optimal deductible insurance, the Arrow-Pratt abso-
lute risk aversion for the value functions (the indirect utility functions) from Propositions
2.4.1 and 2.4.2 can be shown to have the following representations:

A(x) = −Vxx
Vx

= γa(t),

Ã(x) = − Ṽxx
Ṽx

= γã(t).

From Corollaries 2.4.1 and 2.4.2, we know a(t) and ã(t) are increasing w.r.t. time since J(t)
is decreasing w.r.t. time and a(t) = 1/J(t) (similar reasoning for ã(t)). Together with the
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assumption that γ > 0, the increasing property of the Arrow-Pratt absolute risk aversion
implies that the individual will need more insurance coverage as he or she ages. Moreover,
the relation a(t) < ã(t) from Corollary 2.4.2 leads to A(x) < Ã(x), i.e. compared to the
“no habit” agent, the agent with habit formation exhibits lower risk aversion, which in turn
translates to lower insurance coverage. Similar results hold for the proportional insurance.

For the model of Ben-Arab et al. (1996) with power utility functions, the authors
derive an explicit representation for the Arrow-Pratt relative risk aversion of the indirect
utility function (see Ben-Arab et al., 1996, Equation (17)). In this case, the Arrow-Pratt
relative risk aversion under habit formation is increasing over time and is higher than the
corresponding Arrow-Pratt relative risk aversion for the “no habit” agent. These properties
justify that the agent becomes more risk averse as he or she ages, and more importantly, the
higher Arrow-Pratt relative risk aversion for the habit formation agent, as compared to the
“no habit” agent, induces greater insurance coverage, thereby reconciling the conflicting
results of the model of Ben-Arab et al. (1996) and the model in this chapter.

To conclude this section, we would like to relate our results to the prevailing global
underinsurance documented in Lloyd’s (2018). We have shown in Corollary 2.4.2 that
the presence of habit formation reduces insurance coverage when the economic agent is
free to choose the form of the indemnity. Corollary 2.4.4 indicates that this result still
holds even if the economic agent is confined to only proportional insurance. A comparison
between Corollaries 2.4.1, 2.4.2 and Corollaries 2.4.3, 2.4.4 reveals another interesting fact.
The individual who purchases only proportional insurance may optimally choose not to
maintain any insurance coverage while he or she would maintain at least some level of
coverage in a complete insurance market in which any form of insurance contract can be
offered. Therefore, the inability of consumers to choose customized insurance contracts
due to the incompleteness of the insurance market or the lack of bargaining power may be
another contributing factor to global underinsurance, especially in the developing countries.

2.5 Welfare loss from suboptimal strategies

We have shown that the optimal insurance contract is deductible insurance if customization
is allowed and the expected premium principle is used. Therefore, any individual who
chooses non-deductible insurance, such as proportional insurance or no insurance coverage,
will have a lower level of utility and suffers a welfare loss from suboptimal strategies. In
this section, we quantify such welfare losses.
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2.5.1 Loss from proportional insurance

Under habit formation, the value function of the economic agent who chooses a deductible
contract is V (t, x, h), which is the maximum utility he or she could achieve. If the indi-
vidual is restricted to proportional insurance, the maximum utility is V p(t, x, h). Clearly,
V (t, x, h) ≥ V p(t, x, h). Calculating the difference of value functions V p(t, x, h)−V (t, x, h)
provides one way of quantifying the utility loss from using proportional insurance. In this
chapter, we consider another way of analyzing the welfare loss. We do this via the principle
of certainty equivalence as in Liu and Pan (2003), Larsen and Munk (2012), Xue et al.
(2019), and Tan et al. (2020).

Let zp be the certainty-equivalent wealth of welfare loss that satisfies the following
equation:

V (t, x, h) = V p(t, x+ zp, h). (2.17)

In other words, zp is the additional wealth that the individual who relies only on propor-
tional insurance needs to hold, in order to yield the same level of expected utility as the
individual who purchases deductible insurance, with the same age, wealth and consumption
habit. Therefore, the incremental value zp can be interpreted as the “value” of deductible
insurance over proportional insurance. In general, the welfare loss zp should depend on
(t, x, h) as people with different ages, levels of wealth and consumption habit could have
different losses. However, Proposition 2.5.1 below asserts that zp is a function of t and does
not depend on wealth or habit. This is a consequence of using exponential utility which
ignores the wealth effect.

Proposition 2.5.1.

zp(t) =
1

a(t)

∫ T

t

e−
∫ u
t a(s)−αb(s)ds

{
λ(1 + θ)p(u)E[Y ]a(u) +

λ

γ
E[eγa(u)(1−p(u))Y ]

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(u)

dF (y)− ln(1 + θ)

γa(u)
F

(
ln(1 + θ)

γa(u)

)]
a(u)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(u)

)
+

∫ ln(1+θ)
γa(u)

0

eγa(u)ydF (y)

]}
du, (2.18)

where a(t) is given by (A.10).

Steffensen and Thøgersen (2019) define the welfare loss zp through

V (t, x− zp, h) = V p(t, x, h).
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Due to the absence of the wealth effect, it is easy to see that this definition is actually
identical to (2.17).

Given the complex structure of (2.18), we will not attempt to illustrate here how the
welfare loss depends on various parameters. Instead, we provide numerical illustrations in
Section 2.6.

2.5.2 Loss from no insurance

We are also interested in the welfare loss if the individual does not have access to the
insurance market. To this end, we need to solve the individual’s optimization problem
assuming I(Y ) ≡ 0.

Proposition 2.5.2. Suppose that the individual does not have access to the insurance
market, i.e. It(Y ) ≡ 0, and that the utility functions are given by (2.7). The optimal value
function is

V 0(t, x, h) = −1

γ
e−γ(a(t)x+b(t)h+g0(t)),

and the optimal consumption is

c0
t = −1

γ
ln[a(t)− αb(t)] + a(t)X0

t + (b(t) + 1)h0
t + g0(t),

where the functions a(t) and b(t) are as in Proposition 2.4.1, and g0(t) takes the form

g0(t) = − lnw

γ
e−

∫ T
t a(s)−αb(s)ds

+

∫ T

t

e−
∫ u
t a(s)−αb(s)ds

{
λ+ δ

γ
+ [ln(a(u)− αb(u))− 1]

a(u)− αb(u)

γ

−λ
γ

∫ ∞
0

eγa(u)ydF (y)

}
du, . (2.19)

It is obvious that V (t, x, h) ≥ V p(t, x, h) ≥ V 0(t, x, h). Let z0 be the certainty-
equivalent wealth of welfare loss that satisfies the following equation:

V (t, x, h) = V 0(t, x+ z0, h). (2.20)

In other words, z0 is the additional wealth the individual without access to the insurance
market needs to hold, in order to yield the same level of expected utility of the individual in
a complete insurance market, with the same age, wealth and consumption habit. Therefore,
the incremental value z0 measures the “value” of deductible over no insurance coverage.
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Proposition 2.5.3.

z0(t) =
1

a(t)

∫ T

t

e−
∫ u
t a(s)−αb(s)ds

{
λ

γ

∫ ∞
0

eγa(u)ydF (y)

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(u)

ydF (y)− ln(1 + θ)

γa(u)
F

(
ln(1 + θ)

γa(u)

)]
a(u)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(u)

)
+

∫ ln(1+θ)
γa(u)

0

eγa(u)ydF (y)

]}
du. (2.21)

We claim that the linearity holds between the welfare losses with different decisions;
i.e. the difference between the welfare loss from proportional insurance and that from no
insurance is the welfare loss between the two decisions. From the definitions of our welfare
losses, we have

V (t, x, h) = V p(t, x+ zp, h) = V 0(t, x+ z0, h).

Denote x̄ = x+ zp, then x = x̄− zp and

V p(t, x̄, h) = V 0(t, x̄+ z0 − zp, h).

We see that the linearity of the welfare losses holds between optimal and suboptimal
decisions.

In the next section, we will illustrate the welfare losses through numerical examples.

2.6 Numerical illustrations

In this section, we present several numerical examples to highlight the findings of our
proposed life-cycled model. We divide this section into two parts. The first part focuses on
the effects of habit formation on the demand for insurance. We make comparisons between
the optimal deductible and proportional insurance with and without habit formation. In
the second part, we analyze welfare losses arising from suboptimal strategies. We also
perform a sensitivity analysis of welfare losses with respect to various parameters.

We assume that the loss size Y follows an exponential distribution with mean 1/η. We
set the parameters according to Table 2.1 unless otherwise stated. The parameters we have
assumed are similar to those in Kraft et al. (2017); Steffensen and Thøgersen (2019).
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Table 2.1: Parameters for the base scenario

Loss frequency λ 0.100 Subjective discount rate δ 0.100
Loss severity η 1.000 Risk aversion γ 0.500
Premium loading θ 0.250 Strength of bequest w 0.500
Habit intensity α 0.100 Risk free rate r 0.020
Habit persistence β 0.174 Terminal time T 40.000

2.6.1 Optimal deductible and optimal proportional insurance

Our first focus is on the demand for insurance. Figure 2.1 displays the optimal deductible
in various settings. Consistent with Corollaries 2.4.1 and 2.4.2, the optimal deductible is
decreasing in age, regardless of habit formation, and habit formation increases the level of
deductible. Moreover, the optimal deductible is increasing in α and decreasing in β. As
the interest rate increases from 0.02 to 0.1, the optimal deductible decreases.
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Figure 2.1: Optimal deductibles with and without consumption habit. d(t) (the solid line)
is the optimal deductible with consumption habit under α = 0.1, β = 0.174. d1(t) (the
dash-dot line) is the optimal deductible with consumption habit under α = 0.05, β = 0.174.
d2(t) (the dashed line) is the optimal deductible with consumption habit under α = 0.1,

β = 0.224. d̃(t) (the dotted line) is the optimal deductible without consumption habit.
The risk free rate r equals 0.02 in the left figure and 0.1 in the right figure.
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Figure 2.2: Optimal proportions with and without consumption habit. p∗(t) (the solid line)
is the optimal proportion with consumption habit α = 0.1, β = 0.174. p∗1(t) (the dash-
dot line) is the optimal proportion with consumption habit under α = 0.05, β = 0.174.
p∗2(t) (the dashed line) is the optimal proportion with consumption habit under α = 0.1,
β = 0.224. p̃∗(t) (the dotted line) is the optimal proportion without consumption habit.
η = 0.05, θ = 0.25 in the first figure. η = 0.2, θ = 0.25 in the second figure. And η = 0.05,
θ = 2.5 in the third figure.

25



Figure 2.2 compares the optimal proportional insurance in different scenarios. As pre-
dicted by Corollaries 2.4.3 and 2.4.4, both p∗(t) and p̃∗(t) are non-decreasing, and p∗(t)
is lower than p̃∗(t) before reaching the time horizon. Similarly to the case of deductible
insurance, the optimal proportion of losses insured is decreasing in α and increasing in β.
When the loss severity increases from 0.01 to 0.2, i.e., the expected loss size decreases, the
optimal proportion diminishes or totally disappears especially in the early years. In other
words, the individual’s willingness to purchase proportional insurance is positively corre-
lated with the expected loss size. As the safety loading θ increases from 0.25 to 2.5, the
insurance becomes much more expensive and the insurance demand decreases significantly.

These results suggest that economic agents may opt out of the (proportional) insurance
market if the expected loss size is small, or the insurance premium is high, thereby offering
potential explanations for global underinsurance.

2.6.2 The welfare loss

Our second focus is on the welfare losses from sub-optimal insurance strategies. Following
Steffensen and Thøgersen (2019), we define the relative welfare loss. The net premium
for full insurance of the non-life risk of the individual is ξ = λ/η, and relative to this,
the relative welfare losses are z0(t)/ξ and zp(t)/ξ. We plot the relative welfare losses
from no insurance and proportional insurance in Figure 2.3. There are several interesting
observations.

First, the relative welfare loss from no insurance coverage is generally much larger than
that from the proportional insurance which is typically small. This is because, when the
insurance demand is high, the individual with proportional insurance can still adjust its
risk exposure, although not in an ideal way, while the individual without access to the
insurance market has to bear the loss in full.

Second, both relative welfare losses are hump-shaped during the individual’s lifetime.
Recall that the welfare loss measures the cumulative utility cost of not implementing the
optimal insurance strategy until T . Therefore, there are two primary factors contributing
to the welfare loss. On the one hand, a larger deviation from the optimal strategy incurs
more losses. On the other hand, as the individual approaches the time horizon T , he or
she has less to lose from suboptimal strategies. In fact, such losses must be zero at the
terminal time. The overall effect is the hump-shape pattern. As illustrated in Figures 2.1
and 2.2, the insurance demand is increasing in age, and the discrepancy between optimal
and suboptimal strategies increases. Therefore, the welfare losses first increase with respect
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to age, reaching the maximum after around 35 years. In the later years, the time effect is
more pronounced and the welfare losses decrease rapidly to 0 at the terminal time.

Third, a comparison between the left and right panel of Figure 2.3 reveals the impact
of interest rate on the welfare losses. As the interest rate increases from 0.02 to 0.1, both
relative welfare losses from no insurance and proportional insurance decrease significantly.

The left panel of Figure 2.3 also illustrates that the welfare losses are relatively insensi-
tive to the habit formation parameters. These results suggest that maintaining appropriate
insurance coverage is critical to the welfare of individuals in mid-old ages, especially in an
economy with a low interest rate. Moreover, the welfare losses from proportional insurance
are relatively small.
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Figure 2.3: The relative welfare losses from no insurance and proportional insurance.
z0(t)/ξ (the solid line) is the relative welfare loss from no insurance. zp(t)/ξ (the dot-
ted line) is the relative welfare loss from proportional insurance. The risk free rate r equals
0.02 in the left figure and 0.1 in the right figure.

We next turn our attention to the effects of various parameters on the welfare losses.
Figure 2.4 plots z0(0)/ξ, the relative welfare loss from no insurance coverage at time 0
against γ, α, β and r, respectively. The welfare loss is increasing in risk aversion γ, which
is consistent with intuition. As the individual becomes more risk-averse, the insurance
demand rises, and thus the welfare loss from no insurance coverage increases. As confirmed
in Figure 2.4, the demand for deductible insurance is decreasing in α and increasing in β.
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Therefore, the welfare loss from no insurance is decreasing in α and increasing in β. Last,
the welfare loss against the interest rate exhibits a U-shaped relationship. The welfare
loss decreases initially as the interest rate increases and reaches its lowest value when the
interest rate is around 15%. The welfare loss starts to increase as the interest rate further
increases. It should be pointed out that such high interest rates are rather uncommon,
especially in the recent economy.

Figure 2.5 plots zp(0)/ξ, the relative welfare loss from proportional insurance at time
0 against γ, α, β and r, respectively. Similarly to z0(0)/ξ, zp(0)/ξ in increasing in γ,
decreasing in α, and increasing in β. However, as the risk-free rate r increases, the welfare
loss from proportional insurance first decreases, then increases, and finally decreases. While
the welfare loss exhibits a non-linear relationship with the interest rates, it is reasonable to
assume that practically the welfare loss will mostly be decreasing due to the low interest
rate environment.

A further comparison between Figures 2.4 and 2.5 reveals that the welfare loss from no
insurance coverage is much larger than that from proportional insurance. Moreover, both
welfare losses are more sensitive to risk aversion and interest rate than the habit formation
parameters.

These results suggest that individuals should maintain sufficient insurance coverage,
even if only proportional insurance is available, especially for high risk-averse individual
and low interest rate. Moreover, the welfare losses from suboptimal insurance strategies
are relatively insensitive to habit formation, although it has a large impact on the economic
agent’s insurance demand.
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Figure 2.4: The sensitivity of relative welfare loss z0(0)/ξ with respect to γ, α, β and r.
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Figure 2.5: The sensitivity of relative welfare loss zp(0)/ξ with respect to γ, α, β and r.
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2.7 Conclusion

In this chapter, we proposed and solved the optimal insurance problem for an individual
exhibiting internal habit formation. Under general utilities, we established that the optimal
per-claim insurance must be deductible, provided that the expected principle is used in
insurance pricing.

We obtained explicit solutions for individuals who can purchase deductible or propor-
tional insurance under the exponential utility. For both types of insurance, the individual
gradually increases insurance coverage as he or she ages. Moreover, the presence of habit
formation reduces insurance coverage and that an individual who is restricted to propor-
tional insurance may opt out of the insurance market, especially in early ages. These results
suggest that habit formation and incomplete insurance market (such that individuals can
only purchase proportional insurance) can partially contribute to explaining the prevailing
global underinsurance phenomenon, as documented in (Lloyd’s, 2018).

We further used numerical examples to investigate the impact of various parameters
on the insurance demand and the welfare losses from suboptimal strategies, such as the
individual cannot purchase any insurance or is restricted to only proportional insurance.
Although habit formation has a large impact on the demand for insurance, its effects on
welfare losses are negligible compared to age, risk-aversion, and the interest rate. Moreover,
maintaining enough insurance coverage, even if only proportional insurance is offered, is
more important to the welfare of individuals in mid-old ages, with high risk-aversion, and
in an economy with a low interest rate.
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Chapter 3

Optimal defined-contribution pension
management with financial and
mortality risks

3.1 Introduction

Due to the increasing population aging trend, pension management has become one of
the major challenges in the actuarial field in the past decades. Most pension funds can be
classified into two schemes: defined-benefit (DB) pension schemes and defined-contribution
(DC) pension schemes in different jurisdictions worldwide. Generally speaking, an indi-
vidual in a DB pension plan is provided with a guaranteed retirement benefit related to
his or her earnings history, tenure of service, and age. By contrast, the individual in a DC
pension plan contributes a predetermined amount during the fund’s accumulation period
and receives the retirement benefit based on the investment earnings. Over past decades,
DC pension plans have surpassed DB pension plans in many ways on both demand and
supply sides. On the demand side, modern industrial development increases the mobility
of workers between employers. Employees could earn less benefit from changing jobs based
on the benefit criteria in the DB schemes. On the supply side, individuals tend to live
longer with the enhancement of life quality, which adds great pressure to the DB plan
costs (see Broadbent et al., 2006). As a result, there has been a rapid shift from DB to
DC schemes worldwide. According to the latest OECD’s report, less than 50% of pension
assets are managed in the DB’s scheme in 28 out of 33 reporting jurisdictions in 2019, in
some countries (such as countries in Latin America and Central and Eastern Europe) DB
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plans do not even exist (see OECD, 2020).

Compared with other funds, the long-term horizon is one of the key features of pension
plan management. The accumulation period of a DC pension plan usually lasts for 20-40
years and thus heightens the pension manager’s concern with respect to time-variations
in interest rates and inflation rates. These long-term risks have been comprehensively
examined in the literature. Boulier et al. (2001) study a DC pension problem under the
Vasicek interest rate model and a minimal annuity guarantee. Battocchio and Menoncin
(2004) consider a utility maximization problem of a DC pension member under stochastic
interest rate, salary rate, and inflation rate. They highlight adding inflation rate changes
the riskless asset into a risky asset, and the lack of tools hedging the inflation risk would
lead to a more risky return. Zhang and Ewald (2010) investigate a DC pension management
problem under inflation risk where pension contributions can be allocated to a risk-free
bond, an index bond, and a stock. Han and Hung (2012) solve an optimal asset allocation
of a DC pension plan under the Cox-Ingersoll-Ross interest model and inflation risk. They
introduce an inflation indexed bond and find out that risk-averse pension participants
concentrate on the inflation bond while aggressive participants would short the inflation
bond in the early accumulation period. Some recent studies include Yao et al. (2013);
Guan and Liang (2014); Menoncin and Vigna (2017) and Chen et al. (2017).

Besides financial risks, mortality risk is another factor that should be considered in
the accumulation period of a DC pension plan. According to the latest life tables, the
probability of a 22-year old young adult not surviving to 65 is non-negligible in many
countries (see Table 3.1). Therefore, it is of great significance to study the effect of pension
member’s pre-mature death.

The current literature focuses on two types of death benefit clauses that protect the
benefits of DC pension participants. The first type is the return of premiums clause. The
pre-mature dead member can leave the beneficiary his or her contributed premium with
or without predetermined interest during the accumulation phase (see Bian et al., 2018;
He and Liang, 2013; Li et al., 2017; Sun et al., 2016). The other type is the return of
account value. The pre-mature dead member can leave the beneficiary his or her pension
account value (see Blake et al., 2008; Konicz and Mulvey, 2015; Wu and Zeng, 2015; Yao
et al., 2014). In practice, most DC pension plans would return the account value to
the individuals if they die before retirement, because the investment revenue is part of
the estate, which can be inherited by the designated beneficiary. In the United States,
according to Publication 575 (see IRS, 2019), if a 401(k) plan member dies before the
beginning date of distribution, the entire account must be distributed within five years or
in annual amounts over the lifetime of the designated beneficiary. A similar clause can also
be found in Canada (see RBC, 2020; Sun Life Financial, 2017).
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Table 3.1: Mortality rate from age 22 to age 65 in different countries

Country Arithmetic average Male Female
United States 15.23% 18.89% 11.56%
United Kingdom 10.32% 12.49% 8.14%
Canada 9.52% 11.75% 7.29%
Australia 8.82% 11.10% 6.54%
China 11.04% 14.88% 7.19%
Japan 7.99% 10.63% 5.35%
Korea 7.57% 10.62% 4.53%

The data for each country is based on “2016 Period Life Table for the Social Security area

population”, “National Life Tables: UK 2017-2019”, “Complete Life Tables for Canada

2017-2019”, “Life Tables for Australia 2017-2019”, “China Life Insurance Mortality Table

2010-2013”, “Japanese Life Table No. 22 (JLT22)”, “7th Standard Risk Death Rate”,

respectively.

In this chapter, we consider a DC pension plan management problem in a complete
market. The financial market is driven by a two-factor model proposed by Koijen et al.
(2011), which contains time-varying real interest rates, inflation rates, and risk premiums.
A pension participant is allowed to invest his or her wealth among a stock index, nominal
and inflation-linked bonds, and a nominal cash account. Besides financial instruments, the
individual is also provided a life insurance to hedge his or her mortality risk of pre-mature
death before retirement. If the individual passed away before the retirement age, the
beneficiary would receive a death benefit composed of the DC pension account value and
the life insurance payment. We formalize this pension problem to a utility maximization
problem and derive the corresponding Hamilton-Jacobi-Bellman (HJB) equation based on
the dynamic programming principle. The explicit solution is derived under the constant
relative risk aversion (CRRA) utility, which is closely related to a matrix Riccati equation.
Besides solving the problem, we also derive the conditions ensuring the solution’s global
existence in the different ranges of utility’s risk-aversion coefficient. Moreover, a rigorous
verification theorem is proved to guarantee the optimality of the candidate solution and
strategies.

We estimate the model parameters by the Kalman filter method and acquire rich con-
clusions in the numerical research. In the dynamic analysis, we find that the pension
member’s demand for life insurance follows a hump shape and peaks in old age. This
pattern is caused by the four components driving the insurance premiums: the surplus
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process, the force of mortality, the demand bequest ratio, and the future contributions.
The numerical research shows that the surplus process dominates the trend and pulls up
the demand for life insurance at an early age. Then, the increasing force of mortality,
the decreasing demand bequest ratio, and future contributions dominate the trend and
drag down the demand for life insurance. In the static analysis, we find the individual’s
demand for life insurance exhibits a “double top” shape for the real short rate and ex-
pected inflation. In other words, the pension member purchases more life insurance when
the real short rate and expected inflation are both extraordinarily high or both extremely
low. This phenomenon is caused by the combined effects of the demand bequest ratio and
future contributions. The numerical research shows that, among these two components,
the demand bequest ratio dominates the life insurance demand throughout the individual’s
lifetime.

To the best of our knowledge, our work in Chapter 3 is the first time to provide the
explicit solution to the optimal life insurance problem in the DC pension management.
We make three contributions to the existing literature: First, we first introduce the life
insurance to the DC pension portfolios and create a DC account that resembles a variable
annuity with endogenously determined time-varying death benefits. Like the DC pension
fund, the variable annuity provides the individual with a wide range of investment options.
However, its death benefit is exogenously determined as the maximum between the account
value and some guaranteed minimum, partially ignoring the individual’s bequest demand
(see SEC (2009)). This chapter builds up a variable-annuity like DC account with endoge-
nously determined time-varying death benefits. It relaxes the limitations on the variable
annuity’s death benefits and can inspire more innovations in designing the new actuarial
products. Second, we provide rigorous proofs to the explicit solution’s global existence and
verification theorem under CRRA utility. Due to the lack of global existence, the existing
literature under CRRA utility mainly focuses on the case that the risk-aversion coefficient
γ > 1 (see Wang and Li, 2018; Wang et al., 2021). In Chapter 3, we provide a sufficient
condition for the global existence of solution under 0 < γ < 1 (see Proposition 3.3.3).
Furthermore, inspired by Honda and Kamimura (2011), we prove the verification theorem
for our model under both γ > 1 and 0 < γ < 1. Third, we provide both dynamic and
static simulations to reveal the individual’s demand for life insurance under CRRA util-
ity. Specifically, our numerical research shows that the individual’s life insurance demand
exhibits a hump shape with age and a “double top” pattern for the real short rate and
expected inflation. It can be a potential guide for the DC pension member to hedge their
mortality risk at the old age or under extremely bad market scenarios.

The rest of the chapter is organized as follows. Section 3.2 introduces the economic set-
tings of the financial market and insurance market. Section 3.3 presents the whole process
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of setting the preference, solving the problem, deducing the solution’s global existence, and
proving the verification theorem. Section 3.4 estimates the model parameters from the real
market and conducts the numerical research of the solution. Section 3.5 concludes. All
proofs are relegated to Appendix B.

3.2 Economic setting

3.2.1 Financial market

Finding the common factors is the most efficient way to describe various economic variables
in the financial market. Therefore, motivated by Koijen et al. (2011), we use a two-factor
model to describe the time variations in five different economic variables. Specifically, they
are real short rates, expected inflation, stock appreciation rates, nominal short rates, and
risk premiums. Let (Ω,F ,P) be a filtered complete probability space. Then the financial
risk is described by Zt, a four-dimensional vector of independent Brownian motions, which
is adapted to the filtration F := {Ft}t∈[0,T ] and come from the real short rate, the expected
inflation, the commodity price index, and the equity index.

We assume that the real short rate is driven by a single factor, X1,

rt = δr +X1,t, δr > 0,

where δr is the long term average of real short rate. The expected inflation is affine in a
second factor, X2,

πet = δπe +X2,t, δπe > 0,

where δπe is the long term average of expected inflation. Furthermore, the two factors
satisfy the following Ornstein-Uhlenbeck process

dXt = −KXXtdt+ ΣXdZt, (3.1)

where Xt = (X1,t, X2,t)
>, KX = diag(κ1, κ2), κi > 0, i = 1, 2, ΣX = (σ1, σ2)>, σi ∈

R4, i = 1, 2.

Next, we assume that the realized inflation is given by

dΠt

Πt

= πetdt+ σ>ΠdZt, Π0 = 1,

where Πt denotes the level of the (commodity) price index at time t and σΠ ∈ R4.
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The equity index St satisfies the following dynamics

dSt
St

= µtdt+ σ>S dZt,

where µt = Rt+µ0 +µ>1 Xt is the stock appreciation rate and Rt denotes the instantaneous
nominal short rate that is derived in (3.4) below. For identification purposes, we assume
the volatility matrix (σ1, σ2, σΠ, σS)> is lower triangular.

We assume that the nominal state price density φ satisfies

dφt
φt

= −Rtdt− Λ>t dZt, φ0 = 1, (3.2)

in which the market prices of risk, Λt, are affine in the term-structure variables, i.e.,

Λt = Λ0 + Λ1Xt. (3.3)

Then, we follow Koijen et al. (2011) to impose restrictions on Λ0 and Λ1

Λ0 =


Λ0(1)

Λ0(2)

0
Λ0(4)

 , Λ1 =


Λ1(1,1) 0

0 Λ1(2,2)

0 0
Λ1(4,1) Λ1(4,2)

 ,

with σ>S Λ0 = µ>0 and σ>S Λ1 = µ>1 . The real state price density φRt = φtΠt then satisfies

dφRt
φRt

= −(Rt − πet + σ>ΠΛt)dt− (Λ>t − σ>Π)dZt

= −rtdt− (Λ>t − σ>Π)dZt, φ
R
0 = 1,

which implies for the instantaneous nominal short rate

Rt = δR + (ι>2 − σ>ΠΛ1)Xt, (3.4)

where δR = δr + δπe − σ>ΠΛ0 and ι2 = (1, 1)>.

Finally, we present the prices of nominal and inflation-linked bonds. The derivation is
standard in the literature (e.g. Duffie and Kan, 1996). The time-t price of a nominal bond
with maturity s is

P (Xt, t, s) = exp{A0(s− t) + [A1(s− t)]>Xt},
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where A0 and A1 satisfy the following ODE system

∂A0(τ)

∂τ
=

1

2
[A1(τ)]>ΣXΣ>XA1(τ)− [A1(τ)]>ΣXΛ0 − δR, A0(0) = 0, (3.5)

∂A1(τ)

∂τ
= −[K>X + Λ>1 Σ>X ]A1(τ)− ι2 + Λ>1 σΠ, A1(0) = 0. (3.6)

In addition, the dynamics of P (Xt, t, s) satisfy

dP (Xt, t, s)

P (Xt, t, s)
= {Rt + [A1(s− t)]>ΣXΛt}dt+ [A1(s− t)]>ΣXdZt.

Similarly, the time-t real price of an inflation-linked bond with maturity s is

PR(Xt, t, s) = exp{AR0 (s− t) + [AR1 (s− t)]>Xt},

where AR0 and AR1 satisfy the ODE system

∂AR0 (τ)

∂τ
=

1

2
[AR1 (τ)]>ΣXΣ>XA

R
1 (τ)− [AR1 (τ)]>ΣX(Λ0 − σΠ)− δr,

∂AR1 (τ)

∂τ
= −(K>X + Λ>1 Σ>X)AR1 (τ)− e1,

AR0 (0) = AR1 (0) = 0,

in which ei represents the i-th unit vector in R2. Then, the nominal price of the inflation-
linked bond ΠtP

R(Xt, t, s) satisfies

d(ΠtP
R(Xt, t, s))

ΠtPR(Xt, t, s)
= {Rt + [AR1 (s− t)]>ΣXΛt + σ>ΠΛt}dt+ {[AR1 (s− t)]>ΣX + σ>Π}dZt.

3.2.2 Mortality

In this subsection, we introduce mortality risk. Denote by Tx the future lifetime of an
individual aged x, a non-negative random variable independent of the financial market
(i.e., Tx is independent of the filtration F in the financial market). This independence
assumption helps us to simplify the analysis and obtain an explicit solution. However, the
relationship between the individual’s mortality and the financial market is complex in the
real world and still controversial in the existing literature. Some studies show that the
individual’s mortality rate has a pro-cyclical relationship with the business cycle, i.e., the
individual has a low mortality rate when the economy is in a depression (see Ballester et al.,
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2019; Cervini-Plá and Vall-Castelló, 2021; Haaland and Telle, 2015; Ruhm, 2000; Stevens
et al., 2015). By contrast, the other group of research reveals a counter-cyclical pattern
between the individual’s mortality rate with the business cycle (see Halliday, 2014; Lam
and Piérard, 2017; McInerney and Mellor, 2012; Ruhm, 2003; Stevens et al., 2015). There
is also a third group of empirical studies conclude that mortality rate is not significantly
related to the macro-economic situations (see Brüning and Thuilliez, 2019; Ruhm, 2015).
For future work, we recommend using a stochastic force of mortality model to describe the
business cycle effect on the individual’s mortality rate (see Huang et al., 2012; Qian et al.,
2010; Shen and Siu, 2013; Zhou et al., 2022).

With the independence assumption above, we define the following probabilities

tpx = P[Tx > t],

tqx = P[Tx ≤ t] = 1− tpx,

lim
t→∞ tpx = 0, lim

t→∞ tqx = 1,

where tpx is the probability that the individual alive at age x survives to at least age x+ t
and tqx is the probability that the individual dies before age x+ t. In actuarial science, it
is common to work with the instantaneous force of mortality (or hazard rate)

µx+t =
1

tpx

d

dt
tqx = − 1

tpx

d

dt
tpx,

and we have

tpx = exp

{
−
∫ t

0

µx+sds

}
,

tqx =

∫ t

0
spxµx+sds.

The probability density function of Tx is then given by

fTx(t) = tpxµx+t, for t > 0. (3.7)

3.2.3 Wealth process

The individual (pensioner) enters the DC pension plan at age x at time 0, and retires
at time T (so the retirement age is x + T ). Before retirement or death, the individual
contributes a fixed percentage of labor income continuously to the fund. Following Koijen
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et al. (2011), we assume that real labor income is deterministic. Thus, the real contribution
rate, Ct = C$

t Π−1
t , satisfies

dCt
Ct

= gRt dt, 0 ≤ t < T ∧ Tx, (3.8)

where ∧ means taking the minimum of two variables, C$
t is the nominal contribution rate

and gRt is the growth rate of the real contribution rate (which is also the growth rate of
labor income).

During the accumulation period, the individual allocates his or her wealth dynamically
to the stock index, two nominal bonds, and an inflation-linked bond. In particular, for the
purchase of bonds, the individual employs the “rolling bond” strategy proposed by Boulier
et al. (2001). Denote by αt the proportions of wealth invested in these assets at time t. The
rest of wealth is invested in the cash account. In addition to investment, the individual
can purchase life insurance in the DC account to manage the mortality risk. Suppose the
individual pays the insurance premium at a rate of I$

t (in nominal terms) continuously
to the insurer while alive. If the individual dies at time Tx = t prior to retirement, then
his or her beneficiary receives the death benefit (the face value of life insurance) I$

t /µx+t

in addition to the account balance. The individual’s DC account balance then evolves
according to the following equation

dWt = Wt(α
>
t ΣΛt +Rt)dt+ C$

t dt+Wtα
>
t ΣdZt − I$

t dt, 0 ≤ t < T ∧ Tx,

where W0 = 0 and Σ is the volatility matrix of the tradable assets. We assume the two
nominal bonds have maturities T1 and T2, and the inflation-linked bond has maturity T3.
Consequently,

Σ =


[A1(T1)]>ΣX

[A1(T2)]>ΣX

[AR1 (T3)]>ΣX + σ>Π
σ>S

 .

We can then derive the dynamics of the real wealth WR
t = Wt/Πt

dWR
t = WR

t [rt + (α>t Σ− σ>Π)(Λt − σΠ)]dt+ Ctdt+WR
t (α>t Σ− σ>Π)dZt − Itdt, (3.9)

where 0 ≤ t < T ∧ Tx, WR
0 = 0, and It = I$

t /Πt is the real insurance premium rate.

If the individual dies prior to retirement, then the death benefit is added to the account
balance

WR
t = WR

t− +
It
µx+t

, if Tx = t < T.
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In our model, the financial market is complete, which means any payoff can be replicated
by the products in this market. Specifically, we have four independent Brownian motions
Zt and four different products (two nominal bonds, one inflation-linked bond, and one
equity index). Then, any single Brownian motion in Zt can be replicated with these four
products, and so does any payoff. We need this complete market assumption to derive the
explicit solution and enhance the tractability of our analysis.

3.2.4 Preference

We assume the individual chooses investment and insurance strategies (α, I) to maximize
the expected utility of account balance at retirement or death, whichever is earlier, i.e.

sup
α,I

E[U(WR
T∧Tx)].

Because Tx is independent of financial risks, we can show

sup
α,I

E[U(WR
T∧Tx)]

= sup
α,I

E

[∫ T

0

fTx(t)U

(
WR
t +

It
µx+t

)
dt+

∫ ∞
T

fTx(t)U(WR
T )dt

]
= sup

α,I
E

[∫ T

0
tpxµx+tU

(
WR
t +

It
µx+t

)
dt+ TpxU(WR

T )

]
. (3.10)

3.3 Optimization problem

3.3.1 Dynamic programming

Following Deelstra et al. (2003), we introduce the surplus process W C̃
t to enhance the

tractability of our analysis

W C̃
t = WR

t + C̃(t,Xt), (3.11)

where C̃(t,Xt) is the accumulated discounted contribution rate

C̃(t,Xt) =

∫ T

t
s−tpx+tP

R(Xt, t, s)Csds. (3.12)
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Next, by Ito’s formula, we have

dC̃(t,Xt) = −Ctdt+ (rt + µx+t)C̃(t,Xt)dt+
∂C̃(t,Xt)

∂X
ΣX(Λt − σΠ)dt

+
∂C̃(t,Xt)

∂X
ΣXdZt. (3.13)

Assume that there exists a ξt such that

dC̃(t,Xt) = −Ctdt+ C̃(t,Xt)[rt + (ξ>t Σ− σ>Π)(Λt − σΠ)]dt+ µx+tC̃(t,Xt)dt

+C̃(t,Xt)(ξ
>
t Σ− σ>Π)dZt, (3.14)

then we obtain ξ by comparing the terms in (3.13) and (3.14)

ξt =
1

C̃(t,Xt)
(Σ>)−1Σ>X

∂C̃(t,Xt)

∂X>
+ (Σ>)−1σΠ. (3.15)

Furthermore, adding (3.9) and (3.14), we derive the SDE for surplus process

dW C̃
t = dWR

t + dC̃(t,Xt)

= W C̃
t {rt + (β>t Σ− σ>Π)(Λt − σΠ)}dt+W C̃

t (β>t Σ− σ>Π)dZt

+µx+tC̃(t,Xt)dt− Itdt, (3.16)

where 0 ≤ t < T ∧ Tx and β>t = [WR
t α
>
t + C̃(t,Xt)ξ

>
t ]/W C̃

t . The SDE (3.16) models
the investment in the financial market, and the purchase of life insurance with premium
−µx+tC̃(t,Xt) + It. When the individual dies before the retirement, the surplus process
has the following jump.

W C̃
t = W C̃

t− − C̃(t,Xt) +
It
µx+t

, if Tx = t < T. (3.17)

Then, by definition (3.11), and given that W C̃
T = WR

T at T , the objective function (3.10)
can be transformed to

sup
α,I

E

[ ∫ T

0
tpxµx+tU

(
WR
t +

It
µx+t

)
dt+ TpxU(WR

T )

]
= sup

β,I
E

[ ∫ T

0
tpxµx+tU

(
W C̃
t − C̃(t,Xt) +

It
µx+t

)
dt+ TpxU(W C̃

T )

]
.
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Define the value function

V (t, wC̃ , X) = sup
β,I

E

[ ∫ T

t
s−tpx+tµx+sU

(
W C̃
s − C̃(s,Xs) +

Is
µx+s

)
ds

+T−tpx+tU(W C̃
T )|W C̃

t = wC̃ , Xt = X

]
,

then by the dynamic programming principle and Ito’s formula, we can derive the following
HJB equation

sup
βt,It

{
µx+tU

(
wC̃ − C̃(t,X) +

It
µx+t

)
− µx+tV (t, wC̃ , X) +Dβ,IV (t, wC̃ , X)

}
= 0, (3.18)

where

Dβ,IV (t, wC̃ , X) =
∂V

∂t
+

∂V

∂wC̃
{wC̃ [rt + (β>t Σ− σ>Π)(Λt − σΠ)] + µx+tC̃(t,X)− It}

−∂V
∂X

KXX +
1

2

∂2V

(∂wC̃)2
(wC̃)2(β>t ΣΣ>βt − 2β>t ΣσΠ + σ>ΠσΠ)

+wC̃(β>t Σ− σ>Π)Σ>X
∂2V

∂wC̃∂X>
+

1

2
Tr

(
Σ>X

∂2V

∂X>∂X
Σ

)
.

Optimizing with respect to βt and It, we have

β∗t = − (Σ>)−1

wC̃ ∂2V

(∂wC̃)2

[
∂V

∂wC̃
(Λt − σΠ) + Σ>X

∂2V

∂wC̃∂X>

]
+ (ΣT )−1σΠ, (3.19)

I∗t = µx+t(U
′)−1

(
∂V

∂wC̃

)
− µx+t(W

C̃
t )∗ + µx+tC̃(t,Xt). (3.20)

Substituting (3.19) and (3.20) into (3.18), we simplify the HJB equation to the following
form

0 = µx+tU

(
(U ′)−1

(
∂V

∂wC̃

))
− µx+tV (t, wC̃ , X) +

∂V

∂t
− ∂V

∂X
KXX

+
∂V

∂wC̃

[
(rt + µx+t)w

C̃ − µx+t(U
′)−1

(
∂V

∂wC̃

)]
− 1

2 ∂2V

(∂wC̃)2

[
∂V

∂wC̃
(Λ>t − σ>Π) +

∂2V

∂wC̃∂X
ΣX

][
∂V

∂wC̃
(Λt − σΠ) + Σ>X

∂2V

∂wC̃∂X>

]
+

1

2
Tr

(
Σ>X

∂2V

∂X>∂X
ΣX

)
. (3.21)
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Before moving to the next subsection, we revisit the formulations ((3.16) and (3.17))
and find that the individual’s DC account resembles a variable annuity with endogenously
determined time-varying death benefits. It relaxes the limitation of the variable annuity’s
exogenously determined death benefits (defined as the maximum between the account value
and some guaranteed minimum) and cares more about the individual’s bequest demand.
Therefore, we can highlight the usefulness of our study by its potential ability to influence
new actuarial products hedging the individual’s mortality risk. For more details of variable
annuities, see SEC (2009).

3.3.2 Solution to the power utility

Inspired by Koijen et al. (2011), we solve the optimal problem under the power utility.

U(x) =
x1−γ

1− γ
,

where γ > 0 and γ 6= 1 is the Arrow-Pratt coefficient of relative risk aversion.

Proposition 3.3.1. The candidate solution G(t,W C̃
t , Xt) to the value function

V (t,W C̃
t , Xt) in (3.21) is given by

G(t,W C̃
t , Xt) =

1

1− γ
(W C̃

t )1−γf1(t,Xt)
γ, (3.22)

where

f1(t,Xt) =

∫ T

t
s−tpx+tµx+sf(Xt, s− t)ds+ T−tpx+tf(Xt, T − t), (3.23)

f(Xt, τ) = exp

[
Γ0(τ) + Γ>1 (τ)Xt +

1

2
X>t Γ2(τ)Xt

]
, τ ∈ [0, T − t]. (3.24)

Functions Γ0(τ) ∈ R, Γ1(τ) ∈ R2 and Γ2(τ) ∈ R2 × R2 are given by the following ODE
system

∂Γ2(τ)

∂τ
− Γ2(τ)Z2Γ2(τ)− Z>1 Γ2(τ)− Γ2(τ)Z1 − Z0 = 0, (3.25)

∂Γ1(τ)

∂τ
− Γ2(τ)B2Γ1(τ)− Γ2(τ)B11 −B12Γ1(τ)−B0 = 0, (3.26)

∂Γ0(τ)

∂τ
− Γ>1 (τ)D2Γ1(τ)− Γ>1 (τ)D1 −

1

2
Tr{Σ>XΓ2(τ)ΣX} −D0 = 0, (3.27)

Γ2(0) = Γ1(0) = Γ0(0) = 0.
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in which

Z2 = ΣXΣ>X , Z1 =
1− γ
γ

ΣXΛ1 −KX , Z0 =
1− γ
γ2

Λ>1 Λ1,

B2 = Z2, B11 =
1− γ
γ

ΣX(Λ0 − σΠ), B12 = Z>1 , B0 =
1− γ
γ2

Λ>1 (Λ0 − σΠ) +
1− γ
γ

e1,

D2 =
1

2
Z2, D1 = B11, D0 =

1− γ
γ

δr +
1− γ
2γ2

(Λ>0 − σ>Π)(Λ0 − σΠ).

The candidate strategies are given by

β∗t =
(Σ>)−1

γ
(Λt − σΠ) + (Σ>)−1Σ>X

1

f1(t,Xt)

∂f1(t,Xt)

∂X>
+ (Σ>)−1σΠ, (3.28)

I∗t = µx+t
(W C̃

t )∗

f1(t,Xt)
− µx+t(W

C̃
t )∗ + µx+tC̃(t,Xt). (3.29)

Next, we need to prove the candidate solution’s global existence and verification theo-
rem.

3.3.3 The global existence of candidate solution G(t,W C̃
t , Xt)

Among the ODEs determining the candidate solution, (3.26) and (3.27) are linear ODEs.
Their solutions are unique and exist globally (see Theorem 1.1.1. in Abou-Kandil et al.
(2012)). However, the ODE (3.25) is a Hermitian matrix Riccati differential equation
(HRDE), and we need a special treatment to prove its existence. HRDE (3.25) has the
following matrix representation

∂Γ2(τ)

∂τ
= (Ĩ2,Γ2(τ))JH(τ)

(
Ĩ2

Γ2(τ)

)
:= H(Γ2;H), τ ∈ [0, T ], (3.30)

where Ĩ2 is the 2nd-order identity matrix,

J :=

(
02×2 Ĩ2

−Ĩ2 02×2

)
∈ R2 × R2,

and

H :=

(
−Z1 −Z2

Z0 Z>1

)
∈ R2 × R2, (3.31)
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which is called Hamiltonian matrix.

The global existence of HRDE (3.30) largely depends on the relative risk aversion
coefficient γ. We divide the proof into two cases, γ > 1 and 0 < γ < 1. For γ > 1, we can
use the comparison theorem of HRDE to prove the following proposition.

Proposition 3.3.2. For γ > 1, if ΣXΣ>X > 0 and Λ>1 Λ1 > 0, then the solution to
(3.25) exists and stays negative definite in (0, T ]. Here, for matrix, “>” means positive
definite.

Since Γ2(τ) exists and Γ2(τ) < 0 for ∀τ ∈ (0, T ], the existence of (3.22) is a direct
result.

For 0 < γ < 1, we can prove the existence of (3.25) by Radon’s Lemma with additional
conditions. Denote (Q,P )> as a solution to the linear system of differential equations

d

dτ

(
Q(τ)
P (τ)

)
= H

(
Q(τ)
P (τ)

)
, Q(0) = Ĩ2, P (0) = Γ2(0)Q(0) = 0. (3.32)

By Radon’s Lemma (see Theorem 3.1.1. in Abou-Kandil et al. (2012)), we can represent
the solution to (3.25) as Γ2(τ) = P (τ)/Q(τ). Next, we only need Γ2(τ) < 0 to guarantee
the candidate solution’s global existence. For the tractability, we follow Abou-Kandil
et al. (2012) and assume H is diagonalizable, i.e. there exists a 4-dimensional basis of
eigenvectors

v1, ..., v4 ∈ C4,

where C4 denotes the complex vector space of 4×1 complex vectors, and the corresponding
eigenvalues are λ1, ..., λ4 sorted by their real parts

R(λ1) ≤ R(λ2) ≤ R(λ3) ≤ R(λ4).

Denote V = (v1, ..., v4) ∈ C4×4, in which C4×4 denotes the complex vector space of 4 × 4
complex matrices, then we have that the solution to (3.32) satisfies(

Q(τ)
P (τ)

)
= V e∆τV −1

(
Q(0)
P (0)

)
= V e∆τV −1

(
Ĩ2

0

)
, (3.33)

where ∆ := V −1HV = diag(λ1, ..., λ4).

Furthermore, define

fλ(λ) = |λĨ4 −H| = λ4 + bλ3 + cλ2 + dλ+ j, (3.34)

we can finally prove the following proposition.
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Proposition 3.3.3. For 0 < γ < 1, if

∆̃ > 0, q < 0, s <
q2

4
, (3.35)

det|Q(τ)| 6= 0 and P (τ)/Q(τ) < 0 for ∀τ ∈ (0, T ], (3.36)

then the solution to (3.25) exists and stays negative definite in (0, T ], where det| · | is the

determinant of a matrix. The expressions of ∆̃, q, and s are given in Appendix B.3.

Since Γ2(τ) exists and Γ2(τ) < 0 for ∀τ ∈ (0, T ], the existence of (3.22) is a direct
result.

3.3.4 The verification theorem

Korn and Kraft (2004) point out that the coefficients of the wealth process may not be
subject to the Lipschitz and linear growth condition in the stochastic opportunity set (such
as stochastic interest settings, stochastic volatility settings, and stochastic market price
of risk settings). Moreover, without checking sufficient conditions, solving the problem
directly by the stochastic control approach could lead to unreasonable results. Therefore,
we need to prove the verification theorem for the candidate solution.

Before moving forward, we first prove the following lemma, which will play a crucial
role in proving the verification theorem

Lemma 3.3.1. Assume a n-dimensional stochastic process X̃t is driven by a m-dimensional
Brownian motion Z̃

dX̃t = µ(t, X̃t)dt+ σ(t)dZ̃t,

X̃0 = x̃0,

where x̃0 is a constant n-dimensional vector, µ(t, X̃) is a Borel function and σ(t) a con-
tinuous function

µ(t, X̃) : (0,∞)× Rn → Rn,

σ(t) : (0,∞)→ Rn × Rm,

satisfying

||µ(t, X̃t)− µ(t, Ỹt)||2 ≤ k||X̃t − Ỹt||2,
||µ(·, 0)||2 + ||σ(·)||2 ∈ L2(0, T ;R),∀T > 0,
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where ||·||2 is the Euclidean norm and L2(0, T ;R) represents the set of Lebesgue measurable

functions ψ : [0, T ]→ R, such that
∫ T

0
|ψ(t)|2dt <∞.

If a stochastic process g̃(t, X̃t), g̃ : [0, T ] × Rn → Rn, grows linearly with respect to X̃t

(namely, ||g̃(t, X̃t)||2 ≤ c0 + c1||X̃t||2 for some positive constants c0 and c1), then we have

E[E(T, g̃)] = 1,

where

E(t, g̃) := exp

{∫ t

0

[g̃(s, X̃s)]
>dZ̃s −

1

2

∫ t

0

||g̃(s, X̃s)||22ds
}
.

Finally, after adequate preparations, we can prove the verification theorem following
the approach proposed by Honda and Kamimura (2011). We divide the proofs into two
cases 0 < γ < 1 and γ > 1.

Case 0 < γ < 1

Define the admissible set as

Aγ(0, T ) :=

{
(β, I) (β, I) such that W C̃

t > 0,
and SDE (3.16) has a unique strong solution.

}
, (3.37)

we can derive the following verification theorem.

Proposition 3.3.4. For 0 < γ < 1, under the parameters settings in Proposition
3.3.3, the candidate solution G(t,W C̃

t , Xt) exists in [0, T ] and satisfies G(t,W C̃
t , Xt) =

V (t,W C̃
t , Xt). The strategy (β∗, I∗) given by (3.28) and (3.29) is the optimal portfolio and

insurance strategy.

Case γ > 1

When γ > 1, the power utility is not bounded from below. Thus, we can not use Fatou’s
lemma in our proof. To prove the verification theorem, we restrict the admissible set as

Aγ(0, T ) :=


β(t,Xt) : [0, T ]× R2 → R4

(β, I) grows linearly with respect to Xt,
and SDE (3.16) has a unique strong solution.

 , (3.38)

then we can derive the following verification theorem.
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Proposition 3.3.5. For γ > 1, under the parameters settings in Propostion 3.3.2, the
candidate solution G(t,W C̃

t , Xt) exists in [0, T ] and satisfies G(t,W C̃
t , Xt) = V (t,W C̃

t , Xt).
The strategy (β∗, I∗) given by (3.28) and (3.29) is the optimal portfolio and insurance
strategy.

3.4 Numerical research

3.4.1 Model estimation and calibration

For the financial market, we use monthly U.S. data from June 1961 to December 2020 to
estimate the parameters. We use zero-coupon nominal yields from Gürkaynak et al. (2007)
with eight maturities: three months, six months, one year, two years, three years, five
years, seven years, and ten years. The realized inflation index is obtained from CRSP’s
Consumer Price Index for All Urban Consumers (CPI-U NSA index). The equity index is
based on the CRSP’s value-weighted NYSE/Amex/Nasdaq index, which includes dividend
payments.

We use a Kalman filter to estimate the parameters (see Appendix B.7 for details) and
present the results in Table 3.2, Figure 3.1, and Figure 3.2. Similarly to Koijen et al. (2011),
we have κ1 > κ2, which means that expected inflation is more persistent than the real short
rate. For the innovations, we capture the negative correlation between the real short rate
and expected inflation (σ2(1) < 0). For the equity index process, we find the risk premium
is decreasing with the real short rate and expected inflation (µ1(1), µ1(2) < 0). Moreover,
the unconditional price of risk, Λ0, is negative for the real short rate and expected inflation
but positive for the equity index. Finally, all the parameters in the conditional price of
risk, Λ1, are negative, which means the price of risk is decreasing with two factors Xt.

Figure 3.1 shows the estimated short rates and expected inflation. We see that expected
inflation increases rapidly in the 1970s, reaches a historical high during the 1980s, and
bounces back in the 1990s, which are the reflections of three oil crises. Then, it slowly
decreases in the new century, which has a trend to fall into deflation. For the estimated
nominal short rate, we observe that it rises before each financial crisis. The logic is that
when the market is booming, an expectation of aggressive tightening monetary policy will
be priced in the market, which causes considerable increases in the treasury yield rates.
Then, the Federal Reserve will raise the federal funds rate to ensure this expectation.
Inversely, when the financial crisis happens, the Federal Reserve will lower the federal
funds rate to protect the market. Under such a system, we see that the real short rate
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Table 3.2: Estimation results for the financial market

Parameters Estimate Standard Error t-statistics p-value
Average short rate & average expected inflation

δr 0.01256 0.00631 1.99170 0.04641
δR 0.05166 0.01336 3.86548 0.00011
δπe 0.03879 0.01351 2.87213 0.00408

Two-factor process
κ1 0.62591 0.12697 4.92944 0.00000
κ2 0.19710 0.06846 2.87895 0.00399
σ1(1) 0.02056 0.00167 12.30697 0.00000
σ2(1) -0.00665 0.00156 -4.26618 0.00002
σ2(2) 0.01476 0.00043 34.59594 0.00000

Realized inflation process
σΠ(1) 0.00033 0.00050 0.65170 0.51460
σΠ(2) 0.00181 0.00058 3.12965 0.00175
σΠ(3) 0.01286 0.00034 37.87790 0.00000

Equity index process
µ0 0.04660 0.03428 1.35949 0.17400
µ1(1) -1.97908 0.99525 -1.98852 0.04676
µ1(2) -1.41777 0.54581 -2.59754 0.00939
σS(1) -0.02016 0.00559 -3.60962 0.00031
σS(2) -0.01799 0.00643 -2.79609 0.00517
σS(3) -0.00799 0.00588 -1.35872 0.17424
σS(4) 0.15400 0.00301 51.22595 0.00000

Prices of risk of real short rate, inflation, and equity
Λ0(1) -0.00390 — — —
Λ0(2) -0.17056 0.08355 -2.04136 0.04122
Λ0(4) 0.28216 — — —

Λ1(1,1) -9.92622 6.97494 -1.42313 0.15470
Λ1(2,2) -9.98032 4.65404 -2.14444 0.03200
Λ1(4,1) -14.15060 — — —
Λ1(4,2) -10.37218 — — —

The parameters in the table are annualized. The ones with standard error are directly

estimated. The ones without standard error are obtained by solving three equations:

δR = δr + δπe − σ>ΠΛ0, σ>S Λ0 = µ0, σ>S Λ1 = µ1. More details can be found in Appendix B.7.
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is controlled in a range and exhibits a significantly mean-reverting pattern. For more
details of the monetary policy, we refer to Fed (2001); Fed (2008); and Fed (2020). Lastly,
during the pandemic period in 2020, we observe a large drop in the expected inflation due
to consumers’ shrinking demands. As a result, the real short rate rises even though the
nominal short rate is close to zero.

We plot the fitted yield curves for both 3-year and 10-year nominal bonds in Figure 3.2,
which are the two nominal bonds used in the later simulations. The max absolute error
between the actual and the fitted yield curves is 0.74% for 3-year nominal bonds and 0.76%
for 10-year nominal bonds. The results above reassure the accuracy of our Kalman-filter
estimation.
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Figure 3.1: Estimated short rate and expected inflation process. The solid line is the
estimated expected inflation πet . The dashed line is the estimated nominal short rate Rt.
The dash-dotted line is the estimated real short rate rt.

We assume that the pension member enters at age 22 and retires at age 66, which
means T = 44. The pension member allocates his or her wealth between the 3-year
nominal bonds, 10-year nominal bonds, 10-year inflation-linked bonds, the equity index,
and cash (T1 = 3, T2 = T3 = 10). Besides investing in the financial market, the pension
member also purchases life insurance and aims to maximize his or her expected utility at
the first time of death and retirement.

Similarly to Koijen et al. (2011), we suppose that the growth rate gRt in the real con-
tribution rate (3.8) follows

gRt = 0.1682− 0.00646(22 + t) + 0.00006(22 + t)2, (3.39)
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(a) Yield rate of 3-year nominal bonds
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(b) Yield rate of 10-year nominal bonds

Figure 3.2: Actual and fitted yield curves for 3-year and 10-year nominal bonds. The solid
line is the actual yield curve. The dashed line is the fitted yield curve. The max absolute
error between the actual and the fitted yield curves is 0.74% for 3-year nominal bonds and
0.76% for 10-year nominal bonds.
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which corresponds to an individual with a high school education in the estimates of Cocco
et al. (2005) and Munk and Sørensen (2010). The initial real contribution rate C0 is set to
be $1 k USD.

For the individual’s mortality rate, we use the U.S. data of males in “2017 Period Life
Table for the Social Security area population”. Following Forfar et al. (1988), we set the
force of mortality µx as a general form of Gompertz-Makeham approach

µx = GM s1,s2
a (x) =

s1∑
i=1

ai(x− 22)i−1 + exp

{
s1+s2∑
i=s1+1

ai(x− 22)i−s1−1

}
, 22 ≤ x ≤ 67,

where the change of location x−22 is used to improve the significance of parameters. After
some trials, we find a few parameters start to become insignificant when estimating GM4,0

a

or GM0,5
a . Therefore, we test all the combinations of s1 and s2 in 3 × 4 and pick up the

GM s1,s2
a model with the lowest Bayesian information criterion (BIC) with all parameters

are significant. Table 3.3 shows the estimation results for the force of mortality. We plot
the corresponding actual and fitted curves for the survival probability in Figure 3.3. The
max absolute error between two curves is 5.85× 10−4.

Table 3.3: Estimation results for the force of mortality

Model GM3,3
a (x) BIC 254255.08

Parameters a1 a2 a3

Values −1.196773× 10−3 −1.406588× 10−4 −1.568144× 10−5

Standard error 2.51× 10−5 1.72× 10−5 5.06× 10−7

t-statistics -47.72 -8.20 -30.98

Parameters a4 a5 a6

Values −5.956450× 100 9.006499× 10−2 −4.710629× 10−4

Standard error 2.18× 10−2 8.93× 10−4 1.40× 10−5

t-statistics -273.26 100.83 -33.73

3.4.2 The change of optimal strategies with age

In this section, we show how the individual’s optimal strategies change with age. We use
the Monte-Carlo method to do the numerical research, using 10,000,000 simulations and
a time-step is one year. We plot the expected annual optimal investment strategies E[β∗t ]
and insurance strategy E[I∗t ] in Figure 3.4 and Figure 3.5 .
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Figure 3.3: Actual and fitted survival probabilities for individual at age 22 (x=22). The
solid line is the actual survival probability curve. The dotted line is the fitted survival
probability curve. The max absolute error between two curves is 5.85× 10−4.

For the investment strategies, the first two graphs in Figure 3.4 illustrate that the
individual’s allocations on 3-year nominal bonds and 10-year nominal bonds are subject
to hump shapes. Specifically, the individual decreases the absolute exposure of these two
bonds around age 60. Then, up to retirement, the individual shorts 3-year nominal bonds
and holds more 10-year nominal bonds. For the other two financial instruments, the third
graph depicts that the individual holds a constant proportion of his or her wealth on 10-
year inflation-linked bonds. The individual makes such a decision due to the protection
feature of inflation-linked bonds. The fourth graph portrays that the individual holds a
smaller proportion of stocks compared with bonds, and his or her preference toward stocks
is insensitive to time. Furthermore, it should be mentioned that the third and fourth
graphs are based on the expectations, which does not mean individual’s allocations stay
constant in each path. The sensitivity analysis of the individual’s allocations can be found
in the next subsection.

For the insurance strategy, the first graph in Figure 3.5 shows the expected insurance
premium paid by the individual. It has a hump shape and reaches its peak at age 59.
The second graph displays the expected insurance face value E[I∗t ]/µx+t. We observe
that it also follows a hump shape and reaches its peak at age 50. The last four graphs

54



exhibit the four components in (3.29) that are highly related to the insurance premium’s

hump shape (the force of mortality µx+t, the optimal surplus process (W C̃
t )∗, the demand

bequest ratio 1/f1(t,Xt), and the future contributions C̃(t,Xt)). Specifically, the third

graph plots the increasing pattern of the expected optimal surplus process E[(W C̃
t )∗]. The

larger the surplus process, the larger the purchasing power of the life insurance. As a
result, an increasing expected optimal surplus process means an increasing purchase of life
insurance. The forth graph presents the increasing feature of the force of mortality µx+t.
Due to the life insurance payment It/µx+t, we see that the larger force of mortality µx+t,
the less attractive the life insurance. Therefore, an increasing force of mortality implies a
decreasing demand for life insurance with age. Before moving to the last two graphs, we
first recollect the terms in (3.29) and obtain

1

f1(t,Xt)
=

(WR
t )∗ + I∗t /µx+t

(WR
t )∗ + C̃(t,Xt)

,

where the right-hand side measures the individual’s bequest demand over the current
wealth level and future contributions. Therefore, we call 1/f1(t,Xt) the demand bequest
ratio. By the control variable method, we see that I∗t increases with 1/f1(t,Xt) when other
components are fixed. That is to say, the larger the demand bequest ratio, the greater
the purchase of life insurance. A similar result also applies to the future contributions
C̃(t,Xt). The optimal insurance premium I∗t increases with C̃(t,Xt) when other compo-
nents are fixed. Next, when we look back at the last two graphs, we see that the decreasing
expected demand bequest ratio E[1/f1(t,Xt)] and future contributions E[C̃(t,Xt)] are just
two forces reducing the life insurance purchase. From all the above, we can finally explain
the insurance premium’s hump shape in the following way. In the individual’s early age,
the increasing E[(W C̃

t )∗] dominates the trend. As a result, the increasing purchasing power
pulls up the demand for life insurance. In the individual’s old age, the increasing µx+t,
decreasing E[1/f1(t,Xt)], and decreasing E[C̃(t,Xt)] dominate the trend. Consequently,
these three components drag down the demand for life insurance. Moreover, we observe
that the insurance face value’s peak comes earlier than the insurance premium’s. This
early peak is caused by the large increment of the force of mortality µx+t in old age.

3.4.3 The change of optimal strategies following two factors Xt

This section conducts the static analysis of optimal strategies with two factors Xt. For all
the figures in this section, we set the range of X1 as [−0.0736, 0.0736] and the range of X2

as [−0.1032, 0.1032], which cover 8 standard deviations of X1,T and X2,T , respectively.
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(b) 10-year nominal bonds
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(c) 10-year inflation-linked bonds
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(d) Stocks

Figure 3.4: Expected annual optimal investment strategies. The risk-aversion coefficient
for the individual is γ = 5. The individual enters the DC pension plan at age 22 and retires
at 66. We use the Monte-Carlo method for simulations. The path number is 10,000,000,
and the time-step is one year.
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Figure 3.5: Expected annual optimal insurance strategy and its components. The risk-
aversion coefficient for the individual is γ = 5. The individual enters the DC pension plan
at age 22 and retires at 66. We use the Monte-Carlo method for simulations. The path
number is 10,000,000, and the time-step is one year.

57



First of all, we draw the real Sharpe ratios for different financial instruments concerning
two factors Xt in Figure 3.6. For 3-year nominal bonds, we see that its real Sharpe ratio
significantly increases with X1 and X2. For 10-year nominal bonds, its real Sharpe ratio
slightly increases with real short-rate factor X1 but sharply increases with inflation factor
X2. The comparison between above two nominal bonds shows that long-term nominal
bonds are more sensitive to the inflation risk than short-term nominal bonds. Contrary to
the nominal bonds, the real Sharpe ratio of 10-year inflation-linked bonds increases with
real short-rate factor X1 but stays constant with the inflation factor X2. This pattern is
due to the protection design of inflation-linked bonds. Finally, the real Sharpe ratio of
stocks decreases dramatically for both factors, which shows the erosion effects on stocks’
real risk premium from both the real short rate and expected inflation.

With such an overview of the real Sharpe ratio, we can look into the individual’s in-
vestment strategies. Figure 3.7 shows the pension member’s investment strategy on two
factors. Among all three kinds of bonds, we see that the individual set the 3-year nominal
bonds as his or her priority. The individual allocates a high ratio of wealth on 3-year
nominal bonds and significantly changes its proportion with respect to two factors. Specif-
ically, when the real short-rate factor X1 increases, the individual sells 10-year nominal
and 10-year inflation-linked bonds to purchase more 3-year nominal bonds. When the in-
flation factor X2 increases, the individual purchases more 3-year nominal bonds, buys a
few 10-year nominal bonds, and sells the inflation-linked bonds. Lastly, the individual sells
the stocks when the real short-rate factor X1 increases or the inflation factor X2 increases.
This decision is caused by the decrements of stocks’ real Sharpe ratio when two factors
increase.

Figure 3.8 reveals that the individual’s demand for life insurance follows a “double
top” pattern. In other words, the individual purchases more life insurance when the real
short rate and expected inflation are both extraordinarily high or both extremely low.
This phenomenon is due to the combined effects of the two components in the optimal
insurance strategy (3.29). One component is the demand bequest ratio 1/f1(t,Xt). Since
Γ2(τ) < 0 (guaranteed by Proposition 3.3.2 and 3.3.3), we have f(t,Xt) in f1(t,Xt) (see
(3.23) and (3.24)) follows a quadratic form opening downwards for Xt on the exponential.
Therefore, the demand bequest ratio 1/f1(t,Xt) exhibits a “double top” pattern. The

other component is the future contributions C̃(t,Xt). It decreases with the real short-rate
factor X1 and stays constant with the inflation factor X2. We plot the insurance premium
with these two components in three ages (22, 59, and 65) in Figure 3.8. At each age, the
optimal surplus process in the insurance premium (see expression (3.29)) is set to be the

expected surplus process E[(W C̃
t )∗], which is 48.42, 1462.00, and 2516.00 respectively. This

shows that the bequest effect dominates the insurance demand throughout the individual’s
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(a) 3-year nominal bonds (b) 10-year nominal bonds

(c) 10-year inflation-linked bonds (d) Stocks

Figure 3.6: Real Sharpe ratios for financial instruments with respect to two factors Xt. The
graphs take order in 3-year nominal bonds, 10-year nominal bonds, 10-year inflation-linked
bonds, and stocks.
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(a) 3-year nominal bonds (b) 10-year nominal bonds

(c) 10-year inflation-linked bonds (d) Stocks

Figure 3.7: Individual’s investment strategy at t = T/2 with respect to two factors Xt. The
graphs take order in 3-year nominal bonds, 10-year nominal bonds, 10-year inflation-linked
bonds, and stocks.
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lifetime when comparing E[(W C̃
t )∗]/f1(t,Xt) with C̃(t,Xt).

3.5 Conclusion

In Chapter 3, we consider a DC pension plan management problem under the two-factor
model proposed by Koijen et al. (2011). The financial market is assumed to be complete
and contains time-varying real interest rates, inflation rates, and risk premiums. A pension
member allocates his or her wealth among a stock index, nominal and inflation-liked bonds,
and a nominal cash account. In addition, the pension member can also purchase life
insurance to hedge the mortality risk before retirement.

We formulate this pension management problem by an HJB equation and derive its
explicit solution under the CRRA utility. To complete the analysis, we also prove the ex-
plicit solution’s global existence and verification theorem. Besides technical proofs, we use
the Kalman filter method to calibrate our model with the real market data. Finally, both
dynamic and static simulations are provided to study the pension member’s investment
strategy and insurance demand.

Our numerical research shows that the individual’s demand for life insurance exhibits
a hump shape with age and a “double top” pattern for two factors. To be specific, the
individual purchases more insurance in the old age before retirement or the extreme market
scenarios that the real short rate and expected inflation are both high or both low. These
behaviors are caused by the combined effects of the components in the optimal insurance
premium. Furthermore, our model builds a DC account that resembles a variable annuity
with endogenously determined time-varying death benefits. It relaxes the constraints on
variable annuity’s death benefits and can inspire more innovations in creating new actuarial
products.
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(a) Insurance premium (b) Demand bequest ratio (c) Future contributions

(d) Insurance premium (e) Demand bequest ratio (f) Future contributions

(g) Insurance premium (h) Demand bequest ratio (i) Future contributions

Figure 3.8: Individual’s optimal insurance with respect to two factors Xt. The figures
in the same row share the same age, 22, 59, and 65, respectively. In each row, the left
figure is the optimal insurance premium I∗t . The middle figure is the demand bequest ratio

1/f1(t,Xt). The right figure is the future contributions C̃(t,Xt).
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Chapter 4

Constrained portfolio optimization in
a life-cycle model

4.1 Introduction

The constrained portfolio optimization problem is an extension of the classical portfolio
allocation problem. It considers trading constraints, such as non-tradable assets (incom-
plete market), no short-selling constraint, no borrowing constraint, etc., and hence adjusts
the ideal model to a more realistic market model. Compared to the classical problem, the
constrained problem does not always have an explicit solution. The incompleteness caused
by the trading constraints removes the uniqueness of the martingale measure and leaves
the traditional martingale approach inadequate.

Several seminal papers generalize the martingale approach via the convex duality method.
Karatzas et al. (1991) propose a “fictitious completion” method to deal with the portfolio
optimization problem in the incomplete market. They introduce additional stocks and
build a “fictitious” complete market. By manipulating the drift term of these additional
stocks, they can guarantee that the individual will not invest in them in the original com-
plete market. Cvitanić and Karatzas (1992) study a general constrained portfolio problem
in which the proportion invested in risky asset π belongs to a non-empty, closed, and con-
vex set K. By a dual control method, they construct a group of artificial markets that can
invest without trading constraints, which provides the upper bounds of the primal problem.
Finally, they prove the optimal strategy under the smallest artificial market is the optimal
strategy feasible for the primal problem. Their framework contains an incomplete market,
no short-selling, and no-borrowing constraints as special cases. He and Pages (1993) add
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labor income to the constrained portfolio optimization problem. They use a dual control
approach and transform a no-borrowing problem into a variational inequality in the dual
space. Several examples of deterministic labor income have been studied in their paper.
Cuoco (1997) extends Cvitanić and Karatzas (1992) to the case with stochastic income.
He focuses on the optimal amount instead of the optimal proportion allocating among the
assets and includes He and Pages (1993)’s work (no-borrowing constraint) as special cases.
For more recent work, we refer to Bick et al. (2013); Chabakauri (2013); Haugh et al.
(2006); Jin and Zhang (2013); Kamma and Pelsser (2022); Larsen and Žitković (2013);
Mostovyi and Ŝırbu (2020).

In the actuarial science field, more and more researchers apply the constrained portfolio
optimization problem to deal with trading constraints and unhedgeable health shocks in
an individual’s lifetime investment. Zeng et al. (2016) extend He and Pages (1993)’s
work to the actuarial field and study the wealth-constraint effect on the life insurance
purchase. Dong and Zheng (2019) use a dual control method to study the optimal defined
contribution pension management under short-selling constraints and portfolio insurance.
Hambel et al. (2022) build a group of artificial insurance markets to solve a life-cycle
model with unhedgeable biometric shocks. However, most existing actuarial literature
only focuses on one or two trading constraints, and a general framework is lacking in the
content of studying the life-cycle investment.

This chapter considers a constrained portfolio optimization problem in a generalized
life cycle model. The individual has a stochastic income and aims to find the optimal
trading and insurance strategies to maximize his or her expected consumption utility plus
bequest utility and terminal wealth utility. Inspired by the existing literature, we restrict
the trading strategy to a non-empty, closed, and convex set, which contains many trading
constraints (non-tradeable asset constraint, no short-selling constraint, no borrowing con-
straint, portfolio mix constraint) as special cases. Following Cuoco (1997)’s framework, we
build a group of artificial markets by adding compensations to the drift terms of stocks and
bonds. Due to the lack of uniqueness of martingale measures under trading constraints, we
first derive a group of static budget constraints from the individual’s wealth process. Then,
a dual problem is obtained through the Lagrangian dual control method, which is an upper
bound for the primal problem. Furthermore, a one-to-one relationship is proved between
the optimal solutions of the primal problem and the dual problem. More specifically, once
the optimal solution exists for one problem, the optimal solution for the other problem
exists and can be obtained immediately. Lastly, due to the stochastic income process,
the dual problem is not convex, which causes great difficulty in proving the existence of
optimal strategies by the dual control approach. Fortunately, Levin (1976) uses the “re-
laxation projection” technique and proves the existence of solution under the non-reflexive
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spaces. To utilize their theorem, we only need to verify that our objective function is lower
semi-continuous and that the trading constraint set is convex, topologically closed, and
norm-bounded.

It seems that the dual problem does not play an essential role in proving the existence
of the optimal strategies. However, since it is a tight upper bound for the primal problem,
minimizing the dual problem provides an excellent approximation to the primal problem.
Bick et al. (2013) propose a simulation of artificial markets strategies (SAMS) method to
compute the lower and upper bounds of the primal problem. Their artificial market is
characterized by the adjustment of the drift terms of stocks and bonds, which is denoted
as v(t). They restrict v(t) to be affine in time and minimize the artificial market with
affine v(t) to get the lowest upper bound. Finally, a lower bound is obtained by deriving a
candidate strategy from the lowest upper bound and substituting the candidate strategy
into the wealth process. The deficiency of the SAMS method is apparent. The artificial
market is constrained to a subfamily of affine v(t), and the gap between the lower and
upper bounds always exists. To overcome this difficulty, we introduce a neural network to
study the best form of v(t). We find that when the risk-free interest rate, stock appreciation
rate, and volatility are all constant, the SAMS method and neural network performance
are very close. If the stock appreciation rate follows a perturbation in time, the SAMS
is inadequate to solve the problem, and the gap between the lower and upper bounds is
enormous. However, the neural network v(t) can learn the perturbation pattern very well
and provides tight lower and upper bounds with a small gap. Last but not least, both
methods show that when considering trading constraints, the individual will reduce his or
her demand for life insurance.

To the best of our knowledge, this is the first application of neural network to compute
the best trading and insurance strategies for a constrained portfolio optimization problem.
We make three contributions to the existing literature: First, we study the constrained
portfolio optimization problem in a life cycle model with stochastic income and insurance
provided. A general dual control framework is constructed, and the existence of the primal
problem is proved. Second, we relax the assumptions in Cuoco (1997) and extend their
work to a more general case. Cuoco (1997) assumes the interest rate process is uniformly
bounded, and the integral of discounted stochastic income is uniformly bounded. In our
work, we assume the expected exponential integral of the interest rate’s absolute value
is finite and gives a weaker condition on the income process, which contains the uniform
bounded income process as a special case. Third, we first propose a dual control neural
network approach to compute the constrained life cycle model and find that the individual
will reduce his or her demand for life insurance when considering the trading constraints.
Compared to Bick et al. (2013), our approach can solve more challenging cases, such as the
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stock return has a perturbation in time. It can inspire future work to use neural network
learning the best solution for the constrained portfolio optimization problem.

The rest of the chapter is organized in the following order: Section 4.2 introduces
our model settings of the financial market, insurance market, wealth process, preference,
and trading constraint set. Section 4.3 explains the construction of the artificial market
and derives the static budget constraint for the wealth process. Section 4.4 describes
the Lagrangian dual control approach and proves the one-to-one relationship between the
primal problem and the dual problem. Section 4.5 proves the existence of the primal
problem. Section 4.6 conducts the numerical simulation and compares our algorithm with
existing literature. Section 4.7 concludes. All proofs are relegated to Appendix C.

4.2 Model settings

We consider a constrained portfolio optimization problem in a generalized life cycle model.
The model contains three important dates, a random death time Tx (defined later), a
deterministic retirement time TR, and a deterministic time horizon of the family T . During
the decision period [0, T ∧ Tx), where T ∧ Tx = min(T, Tx), the individual is allowed to
purchase stocks, a bond, and life insurance to improve his or her consumption level, death
benefit, and the terminal wealth.

4.2.1 Financial market

Let (Ω,F ,P) be a filtered complete probability space. The financial risk is described by a
n-dimensional Brownian motion Zt adapted to the filtration F = {Ft}t∈[0,T ].

In the financial market, there are n + 1 assets. The first asset is the bond which is
locally risk free and pays no dividends. Its price process is given by

Bt = exp

(∫ t

0

rsds

)
, (4.1)

where rt is the interest rate process generated by Zt.

Assumption 4.2.1. The interest rate process rt satisfies

E

[
exp

(∫ T

0

|rt|dt
)]

<∞,

where | · | means the absolute value.
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Remark 4.2.1. Assumption 4.2.1 implies exp
(∫ T

0
|rt|dt

)
< ∞ almost every where. Be-

cause the expectation is finite, it implies that the random variable is finite almost every-
where. We directly use this corollary without mention in the appendixes’ proofs.

The price process of the risky assets are S = (S1, ..., Sn) with a cumulative dividend
process D = (D1, ..., Dn) satisfying the Ito process

St +Dt = S0 +

∫ t

0

IS,uµudu+

∫ t

0

IS,uσudZu,

where IS,t denotes the n× n diagonal matrix with element St and∫ T

0

|IS,tµt|dt+

∫ T

0

|IS,tσt|2dt <∞.

Assumption 4.2.2. The volatility matrix σt satisfies the nondegneracy condition

x>σtσ
>
t x ≥ ε|x|2,P-a.s.

for any (x, t) ∈ R2 × [0, T ] and ε > 0. Moreover, denote the market price of risk vector by

κ0,t = −σ−1
t (µt − rt1̄n),

where 1̄n = (1, ..., 1)> ∈ Rn, we assume a Novikov condition

E

[
exp

(
1

2

∫ T

0

|κ0,t|2dt
)]

<∞.

in order to ensure the existence of an equivalent martingale measure.

4.2.2 Mortality

Denote by Tx, the future life time of the individual aged x, which is a random variable
independent of the filtration F in the financial market. Then, we can introduce the following
actuarial notations

tpx = P[Tx > t],

tqx = P[Tx ≤ t] = 1− tpx,

lim
t→∞ tpx = 0, lim

t→∞ tqx = 1,
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where tpx is the probability that the individual alive at age x survives to at least age x+ t,

tqx is the probability that the individual aged x dies before x + t. Following actuarial
practice, we also define the force of mortality (hazard rate)

λx+t =
1

tpx

d

dt
tqx = − 1

tpx

d

dt
tpx. (4.2)

Then, the survival and death probabilities can be rewritten as

tpx = exp

{
−
∫ t

0

λx+sds

}
,

tqx =

∫ t

0
spxλx+sds.

The probability density function of Tx satisfies

fTx(t) = tpxλx+t, for t > 0.

4.2.3 Wealth process

At time 0, the individual at age x starts to manage portfolio until the first time of the death
time Tx and the family’s time horizon T . Denoted the retirement time as TR. Before death
time Tx and the retirement time TR < T , the individual receives a stochastic non-negative
income Yt generated by Zt.

Define the trading strategy (α, θ) under the price coefficients P(r, µ, σ), where α and
θk represent the money amounts invested at time t in the bond and k−th risky asset,
respectively. A trading strategy is called admissible if∫ T

0

|αtrt|dt+

∫ T

0

|θ>t µt|dt+

∫ T

0

|θ>t σt|2dt <∞. (4.3)

We use Θ to denote the admissible set of trading strategies. Before the individual’s death
or the family’s time horizon, the wealth process satisfies

Wt = αt +
n∑
k=1

θk,t, 0 ≤ t < min(Tx, T ), (4.4)

Wt = w0 +

∫ t

0

(αsrs + θ>s µs)ds+

∫ t

0

θ>s σsdZs −
∫ t

0

(cs + Is − Ys)ds− Ct, (4.5)

Wt ≥ −K, K ∈ R+, (4.6)

WT ≥ 0, (4.7)
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where ct is the consumption rate, It is the life insurance premium, and Ct is the free disposal
of wealth. Free disposal of wealth is the amount of money the individual chooses not to
reinvest up to time t. We show when this free disposal of wealth disappears in Corollary
4.3.1. Equation (4.5) is usually called the “dynamic budget constraint”. Equations (4.6)
and (4.7) show that the individual is allowed to borrow against the future income but
needs to pay the debt at the terminal time. Lastly, equation (4.6) admits a uniform lower
bound to eliminate the arbitrage opportunity, such as the doubling strategy in Harrison
and Kreps (1979). At the death time Tx, the individual’s wealth has a jump from the
insurance payment

WTx = WTx− +
ITx
λx+Tx

,

where λt is the force of mortality defined in (4.2).

4.2.4 Preference and feasibility

The individual’s objective is to choose an investment and insurance strategy (α, θ, I) to
optimize the expected utility of consumption when the individual is alive, the wealth level
at the death time, or the terminal wealth at the family’s time horizon,

sup
(α,θ)∈A,I

E

[∫ T

0

U1(ct, t)1{t<Tx}dt+ U2 (WTx , Tx)1{Tx<T} + U3(WT , T )1{Tx≥T}

]
,

where A is the portfolio constraint set in Rn+1, U1 is the consumption utility, U2 is the
bequest utility, and U3 is the terminal utility. We assume all the utilities satisfy the
following properties.

Definition 4.2.1. Utility functions Ui : (0,∞)× [0, T ]→ R, i = 1, 2, 3 are increasing,
strictly concave, and continuously differentiable in its first variable and continuous in the
second variable.

Since the individual’s time to death Tx is independent of the filtration F in the financial
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market, we have the equivalent preference

sup
(α,θ)∈A,I

E

[∫ T

0

U1(ct, t)1{t<Tx}dt+ U2 (WTx , Tx)1{Tx<T} + U3(WT , T )1{Tx≥T}

]
= sup

(α,θ)∈A,I
E

[∫ T

0
tpxU1(ct, t)dt+

∫ T

0

fTx(t)U2

(
Wt +

It
λx+t

, t

)
dt

+

∫ ∞
T

fTx(t)U3(WT , T )dt

]
= sup

(α,θ)∈A,I
E

[∫ T

0
tpxU1(ct, t)dt+

∫ T

0
tpxλx+tU2

(
Wt +

It
λx+t

, t

)
dt+ TpxU3(WT , T )

]
:= sup

(α,θ)∈A,I
E

[∫ T

0
tpxU1(ct, t)dt+

∫ T

0
tpxλx+tU2 (Mt, t) dt+ TpxU3(WT , T )

]
, (4.8)

where Mt = Wt + It
λx+t

.

Before moving to the feasibility of strategies, we first define the consumption and be-
quest set. Consider the set G

G :=

{
(c,M,WT ) : EQ0

[∫ T

0

|ct|+ |Mt| dt+ |WT |
]
<∞,P-a.s.

}
, (4.9)

where Q0 is the risk neutral measure such that dZ0,t = dZt − κ0,tdt is a Brownian motion
(see Assumption 4.2.2). Let G+ denote the orthant of (c,M,WT ) that ct ≥ 0, Mt ≥ 0, and
WT ≥ 0, then we can define the individual consumption and bequest set G∗+ as the plan
(c,M,WT ) ∈ G+ satisfying

min

(
E

[∫ T

0

U1(ct, t)
+dt

]
, E

[∫ T

0

U1(ct, t)
−dt

])
<∞,

min

(
E

[∫ T

0

U2(Mt, t)
+dt

]
, E

[∫ T

0

U2(Mt, t)
−dt

])
<∞,

and
min

(
E
[
U3(WT , T )+

]
, E
[
U3(WT , T )−

])
<∞.

Thus, the expectation of utility is well defined in [−∞,+∞].

Given price coefficients P = (r, µ, σ), a consumption and bequest plan (c,M,WT ) ∈ G∗+
is called “feasible” if there exists an admissible trading strategy (α, θ) ∈ Θ for ∀t ∈ [0, T ],
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and a non-negative increasing free disposal C satisfying the dynamic budget constraint
from (4.4) to (4.7). In addition, the plan (c,M,WT ) ∈ G∗+ is said to be “A-feasible” if
it is feasible and (α, θ) ∈ A for ∀t ∈ [0, T ]. In both cases, the trading strategy is said to
“finance” (c,M,WT ). We use B(P , A) to denote the set of A-feasible consumption and
bequest plan given the pricing coefficient P .

4.2.5 Portfolio constraint set

We assume that the agent’s portfolio (α, θ) is constrained to take values in a portfolio
constraint set A, which is a non-empty, closed, and convex subset of Rn+1. It can describe
various trading constraints such as short-sale prohibitions, non-tradeable asset, or minimal
capital requirement. For v = (v0, v−) ∈ R× Rn, define

δ(v) = sup
(α,θ)∈A

−(αv0 + θ>v−), (4.10)

which is the support function of −A. This function can easily reach +∞ and hence it is
important to define its effective domain as

Ã =
{
v ∈ Rn+1 : δ(v) <∞

}
.

In the convex analysis, it is well-known that δ is a positively homogeneous, lower semi-
continuous, and proper convex function on Rn+1 and Ã is a closed convex cone. We assume
the support function satisfies the following constraint

Assumption 4.2.3. The function δ is upper semi-continuous and bounded above on
Ã. Moreover, v0 ≥ 0 for all v ∈ Ã.

v0 ≥ 0 for all v ∈ Ã is immediately obtained if (α, 0) ∈ A for any α large enough, i.e., as
long as lending and investing nothing in the risky assets is admissible. Moreover, since δ is
positively homogeneous and Ã is a cone, the function δ bounded above on Ã is equivalent
to δ being non-positive on Ã. Specifically, if A is a cone, then δ ≡ 0 on Ã. Below, we
provide some examples of constraint sets A satisfying Assumption 4.2.3, together with the
associated support functions and dual sets.

(a) No constraints:

A = Rn+1,

Ã = {0},
δ(v) = 0 for ∀v ∈ Ã.
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This problem is well-studied in Karatzas et al. (1987), Cox and Huang (1989), and
Cox and Huang (1991).

(b) Nontradeable assets (incomplete market):

A = {(α, θ) ∈ Rn+1 : θk = 0, k = m+ 1, ..., n},
Ã = {v ∈ Rn+1 : vk = 0, k = 0, ...,m},
δ(v) = 0 for v ∈ Ã.

For the case without stochastic income, He and Pearson (1991) and Karatzas et al.
(1991) solve the problem using martingale techniques.

(c) Short-sale constraint

A = {(α, θ) ∈ Rn+1 : θk ≥ 0, k = m+ 1, ..., n},
Ã = {v ∈ Rn+1 : vk = 0, k = 1, ...,m; vk ≥ 0, k = m+ 1, ..., n},
δ(v) = 0 for v ∈ Ã.

Xu and Shreve (1992) study this problem without an income stream.

(d) Buying constraints

A = {(α, θ) ∈ Rn+1 : θk ≤ 0, k = m+ 1, ..., n},
Ã = {v ∈ Rn+1 : vk = 0, k = 1, ...,m; vk ≤ 0, k = m+ 1, ..., n},
δ(v) = 0 for v ∈ Ã.

(e) Portfolio-mix constraint

A =

{
(α, θ) ∈ Rn+1 : α +

n∑
k=1

θk ≥ 0, θ ∈ D

(
α +

n∑
k=1

θk

)}
,

where D is any nonempty, closed, convex subset of Rn containing the origin,

Ã = {v ∈ Rn+1 : v>(α, θ) ≥ 0, ∀(α, θ) ∈ A},
δ(v) = 0 for v ∈ Ã.

The problem without an income stream and hence a nonbinding nonnegativity con-
straint on wealth is examined in Cvitanić and Karatzas (1992).
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(f) Minimum capital requirement

A =

{
(α, θ) ∈ Rn+1 : α +

n∑
k=1

θk ≥ K

}
,

where K ≥ 0,

Ã = {k1̄n : k ≥ 0},
δ(v) = −Kv0 for v ∈ Ã.

This constraint covers the special cases such as the “borrowing constraint” which is
studied in He and Pages (1993) for K = 0 and “portfolio insurance constraint” which
is studied in Bardhan (1994) and Basak (1995) for K > 0.

(g) Collateral constraints

A =

{
(α, θ) ∈ Rn+1 : Ψ0α +

n∑
k=1

Ψkθk ≥ γ(Ψ0α
+ +

n∑
k=1

Ψkθ
+
k )

}
,

where Ψk ∈ [0, 1] for k = 0, 1, ..., n denotes the fraction of the amount of asset k can
be borrowed using the asset as collateral and γ ∈ [0, 1],

Ã = {v ∈ Rn+1 : v>(α, θ) ≥ 0, ∀(α, θ) ∈ A},
δ(v) = 0 for v ∈ Ã.

This constraint is introduced by Hindy (1995) who consider the viable pricing operator.
Hindy and Huang (1995) study the optimal investment problem in a discrete-time
setting in which γ = 0.

(h) Any combination of above constraints.
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4.3 Artificial market and static budget constraint

Following Cuoco (1997), we define the artificial market to solve the constrained portfolio

optimization. Given a constraint set A, let N denote the Ã valued process satisfying

E

[∫ T

0

|vt|2dt
]
<∞.

For each v ∈ N , the processes

βv,t = exp

(
−
∫ t

0

rs + v0,sds

)
,

κv,t = −σ−1
t (µt + v−,t − (rt + v0,t)1̄n),

ξv,t = exp

(∫ t

0

κ>v,sdZs −
1

2

∫ t

0

|κv,s|2ds
)
,

πv,t = βv,tξv,t, (4.11)

dZv,t = dZt − κv,tdt, (4.12)

define an artificial marketMv, where ξv is a strictly positive local martingale. We further
use N ∗ to denote the subset of elements v in N for which ξv is exactly a martingale. Note
that N ∗ is nonempty given the Novikov condition and the fact that Ã is a cone ensuring
that 0 ∈ N ∗. Then, each πv,t, v ∈ N ∗ can be interpreted as the unique state-price density
in a fictitious unconstrained market Mv with price coefficients P = (r + v0, µ + v−, σ).
With the adjustment of drift term by v = (v0, v−), the stocks can become more attractive
or less attractive compared to the bond. Then, “A-feasible” trading strategies can be built
by the change of individual’s preference between stocks and the bond. More generally, each
πv,t with v ∈ N ∗ constitutes an arbitrage-free state-price density in the original economy
when the portfolio policies are constrained to be in A, and that the fulfilment of a budget
constraint with respect to all of these state-price densities is sufficient to guarantee the
A-feasibility.

To satisfy the lower boundedness property (4.6) of wealth process Wt, we add the
following assumption to the income process Yt

Assumption 4.3.1.

sup
v∈N ∗

EQv

[∫ T

0

e−
∫ t
0 rs+λx+sdsYtdt

]
≤ Ky, (4.13)

for some positive constant Ky > 0.
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Assumption 4.3.1 includes the uniformly bounded income case studied in Cuoco (1997).

Next, we show the equivalent static budget constraint of the A-feasible dynamic con-
straint.

Theorem 4.3.1. A consumption and bequest plan (c,M,WT ) ∈ G∗+ is A-feasible if and
only if

EQv

[
βv,T e

−
∫ T
0 λx+tdtWT +

∫ T

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt+

∫ T

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
≤ w0 + EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
for ∀v ∈ N ∗. (4.14)

A direct corollary is when the free disposal will disappear.

Corollary 4.3.1. If there exists a process v∗ ∈ N such that

EQv

[
βv,T e

−
∫ T
0 λx+tdtWT +

∫ T

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt

+

∫ T

0

βv,te
−

∫ t
0 λx+sds(ct − Yt − δ(vt))dt

]
≤ EQv∗

[
βv∗,T e

−
∫ T
0 λx+tdtWT +

∫ T

0

λx+tβv∗,te
−

∫ t
0 λx+sdsMtdt

+

∫ T

0

βv∗,te
−

∫ t
0 λx+sds(ct − Yt − δ(v∗t ))dt

]
= w0

then (c,M,WT ) is feasible, the optimal wealth is given by

Wv∗,t = EQv∗

[∫ T

t

e−
∫ s
t ru+v∗0,u+λx+udu[cs − Ys + λx+sMs − δ(v∗s)]ds

+e−
∫ T
t rs+v∗0,s+λx+sdsWT |Ft

]
, (4.15)

and the optimal free disposal C∗t ≡ 0.
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4.4 Primal problem and dual problem

From Theorem 4.3.1, we can formulate the primal problem with the dynamic budget con-
straint (4.5) to a problem with static budget constraint (4.14).

sup
(c,M,WT )∈G∗+

J(c,M,WT )

s.t. EQv

[
βv,T e

−
∫ T
0 λx+sdsWT +

∫ T

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt (P)

+

∫ T

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
≤ w0 + EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
,

for ∀v ∈ N ∗, where

J(c,M,WT ) = E

[∫ T

0

e−
∫ t
0 λx+sdsU1(ct, t)dt+

∫ T

0

λx+te
−

∫ t
0 λx+sdsU2(Mt, t)dt

+e−
∫ T
0 λx+tdtU3(WT , T )

]
.

Since 0 ∈ N ∗, problem (P) can be considered as a convex optimization problem on a closed,
norm bounded subset of L1(λ̄×Q0), where λ̄ is the Lebesgue measure on [0, T ]. However,
L1 spaces are not reflexive so lack compactness. The existing literature circumvents this
difficulty using the Lagrangian dual control method. Because the set {πv : v ∈ N ∗} is
convex, this suggests the existence of pricing kernel πv∗ , a Lagrangian multiplier ψ∗ > 0
such that (c∗,M∗,W ∗

T , ψ
∗, v∗) is a saddle point of the Lagrangian

L(c,M,WT , ψ, v) =

E

[∫ T

0

e−
∫ t
0 λx+sdsU1(ct, t)dt+

∫ T

0

λx+te
−

∫ t
0 λx+sdsU2(Mt, t)dt+ e−

∫ T
0 λx+tdtU3(WT , T )

]
+ψ

{
w0 − E

[∫ T

0

πv,te
−

∫ t
0 λx+sds[ct + λtMt − Yt − δ(vt)]dt+ πv,T e

−
∫ T
0 λx+tdtWT

]}
.

Maximizing (c,M,WT ) and minimizing (ψ, v), we derive the dual problem

inf
(ψ,v)∈(0,∞)×N ∗

J̃(ψ, v)

= inf
(ψ,v)∈(0,∞)×N ∗

E

[∫ T

0

e−
∫ t
0 λx+sdsŨ1(ψπv,t, t)dt+

∫ T

0

λx+te
−

∫ t
0 λx+sdsŨ2(ψπv,t, t)dt (D)

+e−
∫ T
0 λx+tdtŨ3(ψπv,T , T ) + ψ

{
w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv,t[Yt + δ(vt)]dt

}]
,
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where dual utilities are given by

Ũ1(z, t) = sup
c>0
{U1(c, t)− zc} ,

Ũ2(z, t) = sup
M>0
{U2(M, t)− zM} ,

Ũ3(z, T ) = sup
W>0
{U3(W,T )− zW} ,

for z > 0 and each Ui, i = 1, 2, 3, satisfies the Inada condition

U ′i(0+, t) =∞, U ′i(∞, t) = 0+, for ∀t ∈ [0, T ], (4.16)

in which U ′i is the first order derivative with respect to the first variable.

For Ũ1(z, t), z > 0, by the concavity of U1, we have a c∗ such that

Ũ1(z, t) = U1(c∗, t)− zc∗, (4.17)

where U ′1(c∗, t) − z = 0, i.e. c∗ = U ′−1
1 (z, t), and U ′−1

1 (z, t) is the inverse of U ′(c, t) with
respect to the first variable. Next, take the first order derivative with z on both sides of
(4.17) and by U ′1(c∗, t)− z = 0, we have

∂Ũ1(z, t)

∂z
= U ′1(c∗, t)

∂c∗

∂z
− c∗ − z∂c

∗

∂z
= −c∗,

i.e.

c∗ = U ′−1
1 (z, t) = −∂Ũ1(z, t)

∂z
.

Define the function fi(z, t) = U ′−1
i (z, t) = − ∂

∂z
Ũi(z, t), i = 1, 2, 3, similarly to the argument

above, we have
c∗ = f1(z, t),M∗ = f2(z, t),W ∗ = f3(z, T ). (4.18)

Then, by Definition 4.2.1, we can derive the following properties for dual utility.

Lemma 4.4.1. The dual utilities Ũi(·, t) : (0,∞)→ R, i = 1, 2, 3 are strictly decreasing
and strictly convex with respect to the first variable. They have the explicit representations

Ũi(z, t) = Ui(fi(z, t), t)− zfi(z, t), where i = 1, 2, 3. (4.19)

and derivatives ∂
∂z
Ũi(z, t) = −fi(z, t) = −U ′−1

i (z, t). Furthermore,

Ũi(0+, t) = Ui(∞, t), Ũi(∞, t) = Ui(0+, t).
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Finally, we can prove the following relationship between Problem (P) and Problem (D).

Theorem 4.4.1. Assume that Ui, i = 1, 2, 3, satisfy the Inada conditions and the fol-
lowing constraint holds

βU ′i(x, t) ≥ U ′i(γx, t), ∀(x, t) ∈ (0,∞)× [0, T ], (4.20)

for some constants β ∈ (0, 1) and γ ∈ (0,∞). If there exists a solution (ψ∗, v∗) to the dual
problem (D) and

E

[∫ T

0

πv∗,te
−

∫ t
0 λx+sds(f1(ψ∗πv∗,t) + λx+tf2(ψ∗πv∗,t)− Yt − δ(v∗t ))dt

+πv∗,T e
−

∫ T
0 λx+tdtf3(ψ∗πv∗,T )

]
<∞, (4.21)

then there exists an A-feasible optimal (c∗,M∗,W ∗
T ) ∈ B(P , A) such that

∂U1

∂c
(c∗t , t) =

∂U2

∂M
(M∗

t , t) = ψ∗πv∗,t,
∂U3

∂W
(W ∗

T , T ) = ψ∗πv∗,T , (4.22)

for ∀t ∈ [0, T ] and some ψ∗ > 0. Moreover, the optimal solution (c∗,M∗,W ∗
T ) satisfies the

budget constraint

E

[∫ T

0

πv∗,te
−

∫ t
0 λx+sds(f1(ψ∗πv∗,t) + λx+tf2(ψ∗πv∗,t)− Yt − δ(v∗t ))dt

+πv∗,T e
−

∫ T
0 λx+tdtf3(ψ∗πv∗,T )

]
= w0. (4.23)

Conversely, if (4.22) and (4.23) hold for some (ψ∗, v∗) ∈ (0,∞)×N ∗ and some A-feasible
(c∗,M∗,W ∗

T ) ∈ B(P , A), then (ψ∗, v∗) solves the dual problem.

Furthermore, under each artificial marketMv, we can derive the following corollary for
the dual problem (D).

Corollary 4.4.1. For an arbitrary v ∈ N ∗, there exists a unique optimal ψv minimizing
J̃(ψ, v) such that

∂J̃(ψv, v)

∂ψ
= 0.

In addition, the optimal wealth under (ψv, v) is given by

Wv,t = EQv

[∫ T

t

e−
∫ s
t ru+v0,u+λx+udu[f1(ψvπv,s, s)− Ys + λx+sf2(ψvπv,s, s)− δ(vs)]ds

+e−
∫ T
t rs+v0,s+λx+sdsf3(ψvπv,T , T )|Ft

]
, (4.24)

and the optimal free disposal C∗v,t ≡ 0 under (ψv, v).
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4.5 The existence of primal problem

For the dual problem (D), the difficulty in applying dual control method is that J̃(ψ, v)
is not convex with respect to vt unless Yt ≡ 0, δ(vt) ≡ 0, and the Arrow-Pratt coefficient
of risk-aversion is strictly less than 1. If these rather restrictive assumptions are satisfied,
the problem can be relaxed by looking for a solution in (0,∞) × N (i.e., by allowing the
density process to be a local martingale instead of a martingale), and the existence of a
solution to Problem (D) can then be shown using the technique of Cvitanić and Karatzas
(1992).

Fortunately, Levin (1976) proves the existence of solution under non-reflexive spaces,
which can be applied to deal with the lack of compactness in the set of feasible plan
(c,M,WT ) ∈ G∗+. Next, we prove the existence of the primal problem.

Theorem 4.5.1. Suppose that

1. There exists a (c,M,WT ) ∈ B(P , A) with J(c,M,WT ) > −∞.

2. Either Ui, i = 1, 2, 3, are bounded above on (0,∞) × [0, T ], or there exist constants
ki ≥ 0, bi ∈ (0, 1), and pi > 1 such that

Ui(x, t) ≤ ki(1 + x1−bi), ∀(x, t) ∈ (0,∞)× [0, T ], (4.25)

and
ξ−1

0 ∈ Lmax(p1/b1, p2/b2, p3/b3)(λ̄×Q0). (4.26)

Then the solution to the primal problem (P) exists.

4.6 Numerical Analysis

Following the parameter settings in Huang et al. (2008), we assume that an individual
is 45 years old at the initial time, retires at the age of 65, and the family stops making
investment decisions at the individual’s age of 95, so TR = 20 and T = 50. The individual’s
force of mortality follows the Gompertz law

λx+t =
1

9.5
e
x+t−86.3

9.5 , x = 45.
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Before the first time of the family decision horizon T and death time Tx, the individual
is allowed to invest in a bond and a stock

Bt = exp

(∫ t

0

r(u)du

)
,

St +Dt = S0 +

∫ t

0

µ(u)Sudu+

∫ t

0

σ(u)SudZu,

where r(t), µ(t), σ(t) are continuous functions of t , σ(t) > 0 for t ∈ [0, T ], and Zt is
a one-dimensional Brownian motion. Moreover, the individual’s income process has no
idiosyncratic risk (only has Brownian motion from the financial market){

Yt = Y0 + µY
∫ t

0
Yudu+ σY

∫ t
0
YudZu, 0 ≤ t < min(Tx, TR),

Yt = 0, min(Tx, TR) ≤ t ≤ T,
(4.27)

where µY and σY are two constants. We consider the portfolio-mix constraint (Part 4.2.5

(e)) with D = [0, 1], then the portfolio constraint set A and its effective domain Ã are
given by

A =
{

(α, θ) ∈ R2 : α + θ ≥ 0, θ ∈ [0, α + θ]
}

(4.28)

=
{

(α, θ) ∈ R2 : α ≥ 0, θ ≥ 0
}
,

Ã =
{

(v0, v−) : (α, θ)(v0, v−)> ≥ 0,∀(α, θ) ∈ A
}

= {(v0, v−) : v0 ≥ 0, v− ≥ 0} . (4.29)

As a result, the individual’s wealth process (4.4) has the following equivalent form

Wt = W0 +

∫ t

0

[(r(s) + λx+s)Ws + (µ(s)− r(s))θs]ds+

∫ t

0

σ(s)θsdZs

−
∫ t

0

(cs + λx+sMs − Ys)ds− Ct, (4.30)

where 0 ≤ t ≤ min(Tx, T ) and Mt = Wt + It
λx+t

.

Inspired by Huang et al. (2008), we set the base model parameters as

δ̃ = 0.02, µY = 0.01, σY = 0.05,

W0 = 200.00, Y0 = 50.00, γ1 = γ2 = γ3 = γ = 1.50, (4.31)
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and restrict utility into power utility
U1(ct, t) = e−δ̃t

c1−γt

1−γ ,

U2(Mt, t) = e−δ̃tVB(t,Mt),

U3(WT , T ) = e−δ̃T
W 1−γ
T

1−γ ,

where VB(t,Mt) is the value function of family investment after the individual dies and the
subscript “B” is short for bequest. The same setting for bequest utility can be found in
Zeng et al. (2016) and Boyle et al. (2022).

We assume there is no trading constraint after the individual dies, so we can make fair
comparisons between the cases with and without constraint when the individual is alive.
Thus, the wealth process after individual dies at time t ∈ [0, T ] is

dWs = [r(s)Ws + (µ(s)− r(s))θs]ds+ σ(s)θsdZs − csds, s ∈ [t, T ], (4.32)

Wt = Mt.

Furthermore, the value function of family investment after individual dies follows

VB(t,Wt) = sup
θ,c

Et

[∫ T

t

e−δ̃(s−t)
c1−γ
t

1− γ
ds+ e−δ̃(T−t)

W 1−γ
T

1− γ

]
, (4.33)

where Et[·] means the conditional expectation on the filtration Ft. Then, under the dy-
namic programming principle, we can derive the following lemma

Lemma 4.6.1. The explicit solution of VB(t,Mt) is given by

VB(t,Wt) =
1

1− γ
W 1−γ
t g(t)γ, (4.34)

where

g(t) =

∫ T

t

e−
δ̃
γ

(s−t)FB(s− t, s)ds+ e−
δ̃
γ

(T−t)FB(T − t, T ), (4.35)

FB(τ, s) = e
−

∫ τ
0
γ−1
γ
r(s−u)du− 1

2
γ−1

γ2

∫ τ
0 κ20,s−udu.

Next, we compute the following methods to make comparisons.

� Method 1: SAMS approach
Benchmark from Bick et al. (2013), assume vt is affine in t, minimize the upper bound,
and then compute the lower bound under v∗t , where v∗t is the optimal vt minimizing
the upper bound.
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� Method 2: Dual control neural network approach
Restrict vt = v(t) as a neural network of time t, minimize the upper bound, and then
compute the lower bound under v∗t , where v∗t is the optimal vt minimizing the upper
bound.

Denote (αv, θv, cv, Iv) as the general strategy and ((αv)
∗, (θv)

∗, (cv)
∗, (Iv)

∗) as the opti-
mal strategy under the artificial market Mv, then we derive the lower and upper bounds
in each method.

• Explicit upper bound for Method 1 and Method 2

When vt = v(t), i.e., vt is a function of t, we can derive the explicit solution of the
upper bound for primal problem (P).

Proposition 4.6.1. Suppose that vt = v(t) and t ∈ [TR, T ], then the upper bound of
the primal problem (P) is given by

VR(t,Wv,t; v) =
1

1− γ
F̃1(t,Wv,t)

1−γF̃2(t)γ, (4.36)

where

F̃1(t,Wv,t) = Wv,t +

∫ T

t

e−
∫ s
t λx+uduδ(vs)F2(s− t, s)ds,

F̃2(t) =

∫ T

t

e−
∫ s
t λx+udu−

δ̃
γ

(s−t)(1 + λx+sg(s))F3(s− t, s)ds

+e−
∫ T
t λx+udu− δ̃γ (T−t)F3(T − t, T ),

F2(τ, s) = e−
∫ τ
0 r(s−u)+v0(s−u)du,

F3(τ, s) = e
−

∫ τ
0
γ−1
γ

(r(s−u)+v0(s−u))du− 1
2
γ−1

γ2

∫ τ
0 κ2v,s−udu,

and g(s) follows (4.35). Moreover, the optimal strategies are

(θv,t)
∗ = min

{
max

{
− 1

γσ(t)
F̃1(t,Wv,t)κv,t, 0

}
,Wv,t

}
, (4.37)

(cv,t)
∗ = F̃1(t,Wv,t)/F̃2(t), (Mv,t)

∗ = [F̃1(t,Wv,t)g(t)]/F̃2(t). (4.38)

Proposition 4.6.2. Suppose that vt = v(t) and t ∈ [0, TR], then the upper bound of the
primal problem (P) is given by

J̃(t,Wv,t, Yt; v) =
1

1− γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ, (4.39)
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where

F̃3(t,Wv,t, Yt) = Wv,t + Yt

∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds

+

∫ T

t

e−
∫ s
t λx+uduδ(v(s))F2(s− t, s)ds,

F̃2(t) =

∫ T

t

e−
∫ s
t λx+udu−

δ̃
γ

(s−t)(1 + λx+sg(s))F3(s− t, s)ds

+e−
∫ T
t λx+udu− δ̃γ (T−t)F3(T − t, T ),

F1(τ, s) = eµY τ+
∫ τ
0 −[r(s−u)+v0(s−u)]+κv,s−uσY du,

F2(τ, s) = e−
∫ τ
0 r(s−u)+v0(s−u)du,

F3(τ, s) = e
−

∫ τ
0
γ−1
γ

(r(s−u)+v0(s−u))du− 1
2
γ−1

γ2

∫ τ
0 κ2v,s−udu,

and g(s) follows (4.35). Moreover, the optimal strategies are

(θv,t)
∗ = min

{
max

{
− 1

γσ(t)
F̃3(t,Wv,t, Yt)κv,t

− σY
σ(t)

Yt

∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds, 0

}
,Wv,t

}
, (4.40)

(cv,t)
∗ = F̃3(t,Wv,t, Yt)/F̃2(t), (Mv,t)

∗ = [F̃3(t,Wv,t, Yt)g(t)]/F̃2(t) (4.41)

For Method 1, follow Bick et al. (2013), we separate vt at the retirement time TR, i.e.

vt = v(t) =

{
vw(t) = (vw0 (t), vw−(t)) = ((a1 + a2t)+, (a3 + a4t)+), 0 ≤ t < TR,
vR(t) = (vR0 (t), vR−(t)) = ((a5 + a6t)+, (a7 + a8t)+), TR ≤ t ≤ T,

(4.42)

where superscript w is short for “working”, superscript R is short for “retirement”, and
(·)+ is the positive part of a function.

For Method 2, we use one neural network (v0, v−) with state variable time t to describe
vt. We let the neural network learn the retirement time TR by itself and therefore do not
separate vt at TR.

vt = v(t) = (v0(t), v−(t)), 0 ≤ t ≤ T, (4.43)

After minimizing the upper bound J̃(0,Wv,0, Y0; v), we obtain the optimal v∗t . Then,
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we can define the candidate value function J(t,W v∗,t, Yt; v
∗) as

J(t,W v∗,t, Yt; v
∗) = Et

[∫ T

t

e−
∫ s
t λx+udu−δ̃(s−t)

((cv∗,s)
∗)1−γ

1− γ
ds

+

∫ T

t

λx+se
−

∫ s
t λx+udu−δ̃(s−t)

((Mv∗,s)
∗)1−γ

1− γ
g(s)γds+ e−

∫ T
t λx+sds−δ̃(T−t) ((W v∗,T )∗)1−γ

1− γ

]
,

where the candidate wealth process W v∗,t is driven by the optimal strategies (4.37), (4.38),
(4.40), and (4.41)

dW v∗,t = {[r(t) + λx+t]W v∗,t + (θv∗,t)
∗[µ(t)− r(t)]}dt+ (θv∗,t)

∗σ(t)dZt

−[(cv∗,t)
∗ + λx+t(Mv∗,t)

∗ − Yt]dt, (4.44)

W v∗,0 = w0.

The candidate value function J(t,W v∗,t, Yt; v
∗) provides a lower bound for the primal Prob-

lem (P) because θv∗,t satisfies the portfolio constraint set (4.28) and Ct ≡ 0 is a sub-strategy
for free disposal in (4.30). From all things above, we obtain the tight lower and upper
bounds for the primal Problem (P)

J(0,W v∗,0, Y0; v∗) ≤ J(c,M,WT ) ≤ J̃(0,Wv∗,0, Y0; v∗).

Remark 4.6.1. To avoid the arbitrage opportunity for doubling strategy, we need Yt to
satisfy Assumption 4.3.1 to ensure (4.6). By Ito’s formula, we derive

d(πv,tYt) = πv,tYt[−(r(t) + v0,t) + µY + σY κv,t]dt+ πv,tYt(κv,t + σY )dZt. (4.45)

Furthermore, we assume that

σY ≤ σ(t), (4.46)

µY
σY
≤ µ(t)

σ(t)
. (4.47)

Together with (4.29), we have the drift term of (4.45)

−(r(t) + v0,t) + µY + σY κv,t

= −(r(t) + v0,t) + µY −
σY
σ

(µ+ v−,t − (r + v0,t))

=
(σY
σ
− 1
)

(r + v0,t) + µY −
σY
σ

(µ+ v−,t)

≤ 0.
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Thus, πv,tYt is a non-negative local super-martingale, which is also a super-martingale by
Fatou’s lemma. Therefore,

E[πv,tYt] ≤ Y0, (4.48)

for arbitrary v ∈ N ∗ and t ∈ [0, T ]. Finally, Assumption 4.3.1 is a direct result from (4.48).
In the numerical examples, we set all the parameters to follow the constraints (4.46) and
(4.47).

Furthermore, we also need to check the conditions in Theorem 4.5.1 to guarantee the
primal problem’s existence. For the power utility with risk aversion coefficient γ > 1, we
have the utility bounded above by 0. Thus, the second condition in Theorem 4.5.1 is satisfied
automatically. For the first condition, under γ > 1, we only need to find a pair of positive
A-feasible (c,M,WT ) to avoid J(c,M,WT ) going to negative infinity. Let θt ≡ 0 ∈ A,
r(t) = r > 0, and Ct ≡ 0, we can rewrite the wealth process (4.30) as

dWt

Wt

=

[
r + λx+t +

Yt
Wt

− ct
Wt

− λx+t
Mt

Wt

]
dt,W0 > 0

By choosing

ct = Mt =
1

2(1 + λx+t)
{[r + λx+t]Wt + Yt} > 0,

we obtain
dWt

Wt

= 0.5

[
r + λx+t +

Yt
Wt

]
dt > 0,W0 > 0.

Therefore, we find a positive A-feasible strategy (c,M,WT ) (this strategy is A-feasible be-
cause θt ≡ 0 ∈ A) such that J(c,M,WT ) > −∞. Finally, by Theorem 4.5.1, the primal
problem’s existence is guaranteed.

Example 4.6.1. In this example, we study the case when the risk-free interest rate,
stock appreciation rate, and volatility are all constant, i.e., µ(t) = 0.07, r(t) = 0.02, and
σ(t) = 0.2.

Table 4.1 shows the lower and upper bounds for each method. We use the default
“interior-point” algorithm provided in the Matlab package “fmincon” to minimize the
upper bounds in each method.

Method 1 and 2 share a similar explicit upper bound. We use the Trapezoidal rule
to compute the double integral in this explicit upper bound, and the number of the time
interval is set as 100. Moreover, we apply the quasi-Monte Carlo method to compute the
lower bound. The Sobol sequence with the first 4,000 numbers skipped is used to generate
the normal random variables. To make fair comparisons, we set all the lower bounds
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Figure 4.1: Neural network with structure “1-10-2”.

with the same path number, 20,000, and the same time interval of 1,000. In addition,
we add liquidity constraint that when W v∗,t = 0, (cv∗,t)

∗ is truncated by Yt
1+λx+tg(t)

, then

−[(cv∗,t)
∗+λx+t(Mv∗,t)

∗−Yt] = −[1+λx+tg(t)](cv∗,t)
∗+Yt ≥ 0 in the wealth process (4.44).

In other words, when the wealth equals zero, the consumption and death benefit should
not be bigger than the income Yt.

For Method 1, we randomly choose the initial values for the parameters in (4.42). We
sample the initial values for 30 groups, and in each group, we train the affine structure 50
times. Finally, we choose the lowest upper bound among the 30 groups.

For Method 2, we set the structure of neural network vt as “1-10-2”, which means one
node (time t) in the input layer, ten nodes in one hidden layer, and two nodes (v0 and v−)
in the output layer. More specifically, we show the structure of neural network in Figure
4.1. The value of a hidden node is Hi = fa(wit+ bi), i = 1, 2, ..., 10, where the fa(·) is the
activation function, wi is the weight parameter for edge connecting to Hi, and bi is the
bias at the node Hi. In this example, we choose the rectified linear unit (ReLU) function
as the activation function, i.e., fa(x) = max(0, x). The values of the two output nodes are
v0 = (

∑10
i=1wi+10Hi + b11)+ and v− = (

∑10
i=1wi+20Hi + b12)+, where wi+10 is the weight

parameter for the edge connecting to node v0, b11 is the bias for the node v0, wi+20 is the
weight parameter for the edge connecting to node v−, and b12 is the bias for the node v−.
There are 30 edges and 12 biases, and hence 42 parameters wait to be optimized. Similarly
to Method 1, we randomly choose the initial values for the weights and bias of neural
network (4.43) from a normal distribution with mean 0 and standard deviation 10−4. We
sample the initial values for 30 groups, and in each group, we train the neural network 50
times. Finally, we choose the lowest upper bound among the 30 groups.
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In Table 4.1, we design three quantities to compare the two methods. The first is the
“duality gap”. It is defined as the absolute difference between the lower and upper bounds.
The second is the “relative gap”. It is defined as the absolute ratio of the “duality gap”
over the lower bound. The third is “welfare loss”. Following Bick et al. (2013), we define
the “welfare loss” as the upper bound of the fraction of wealth that an individual would
like to through away to get access to an optimal strategy. More specifically, under the
market Mv∗ , it is the proportion L such that the following equation holds for the lower
and upper bounds of the value function.

J(0,W v∗,0, Y0; v∗) = J̃(0,Wv∗,0[1− L], Y0[1− L]; v∗).

From Proposition 4.6.2 and δ(v) = 0 under portfolio-mix constraint, we have

J̃(0,Wv∗,0[1− L], Y0[1− L]; v∗) = (1− L)1−γJ̃(0,Wv∗,0, Y0; v∗).

Therefore, the upper bound of welfare loss is

L = 1−

(
J(0,W v∗,0, Y0; v∗)

J̃(0,Wv∗,0, Y0; v∗)

) 1
1−γ

. (4.49)

From Table 4.1, we see Method 2 slightly beats Method 1 in every aspect: smaller upper
bound, bigger lower bound, smaller duality gap, smaller relative gap, and smaller welfare
loss. The relative gaps of these two methods are very low, only around 0.2%. Moreover,
the welfare losses for both methods are also low at a level of 0.5%.

Figure 4.2 shows the change of the upper bound in each training iteration. We find
that the upper bound of Method 2 decreases faster but finally stays at the level close to
Method 1. Figure 4.3 reveals that the neural network (4.43) of Method 2 learns a similar
result as Method 1. It turns out there is no big difference between the affine structure and
the neural network when µ(t), σ(t), r(t) are all constant. Therefore, the results of the two
methods in Table 4.1 are quite similar. Figure 4.4 illustrates that when considering the
trading constraint, the individual reduces their demand for life insurance. Moreover, the
individual’s demand for life insurance performs a “spoon shape”. Specifically, the expected
optimal face value is positive initially because the individual has a large future income to
protect. Then, the optimal face value decreases with time t and becomes negative a little
earlier than the retirement time TR = 20. This is because the increasing force of mortality
makes life insurance less attractive than stocks and bonds (the face value of life insurance
is It/λx+t). Finally, the optimal face value increases to 0 at the terminal time.
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Table 4.1: Lower and upper bounds for Example 4.6.1

Method 1 Method 2
Structure Affine (1-10-2)

Activation function None ReLU
Upper bound -8.4850600 -8.4853506
Lower bound -8.5064352 -8.5061158
Duality gap 0.0213752 0.0207652
Relative gap 0.2513% 0.2441%
Welfare loss 0.5019% 0.4876%

Time elapsed 7.43 hours 8.31 hours

For the upper bounds of Method 1 and Method 2, the number of time intervals is 100 for
the numerical double integral. For the quasi-Monte Carlo simulation of the lower bound
in each method, the number of paths is 20,000, and the number of time intervals is 1,000.
The structure “(1-10-2)” means that the neural network is chosen as one node (time t) in
the input layer, ten nodes in one hidden layer, and two nodes (v0 and v−) in the output
layer. The “Duality gap” is defined as the absolute difference between the lower and
upper bounds. The “Relative gap” is defined as the absolute ratio of the “Duality gap”
over the “Lower bound”. The “Welfare loss” is defined by (4.49).
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Figure 4.2: Change of upper bound in each training iteration for Example 4.6.1
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Figure 4.3: Optimal v∗ for each method in Example 4.6.1
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Figure 4.4: Optimal face-value E[I∗t ]/λx+t for each method in Example 4.6.1
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Example 4.6.2. In this example, we study the case when the stock appreciation rate
has a perturbation, and the risk-free interest rate and volatility are both constant, i.e.,
µ(t) = 0.07 + 0.03 sin(t/2), r(t) = 0.02, and σ(t) = 0.2.

Table 4.2 shows the lower and upper bounds for each method. We use the default
“interior-point” algorithm provided in the Matlab package “fmincon” to minimize the
upper bounds in each method. We use the same accuracy and initial value sampling
design for numerical settings as in Example 4.6.1.

From Table 4.2, we see that Method 1 generates a big duality gap of 0.1663950, a
relative gap of 1.9828%, and suffers from a large welfare loss of 3.9263%. When we apply
Method 2 with “(1-10-2)” structure under the ReLU activation function, the duality gap
is slightly improved to 0.0828014, the relative gap decreases to 0.9921%, and the welfare
loss falls down to 1.9743%. Lastly, we apply the snake function,

Snakea := x+
1

a
sin2(ax), (4.50)

which is an activation function designed to learn the periodic function (see Ziyin et al.
(2020)). In the numerical example, we choose a = 10. With the same initial values sam-
pling and training iteration following Example 4.6.1, we observe that the snake activation
function greatly reduces the duality gap and provides much tighter lower and upper bounds.
More specifically, the duality gap shrinks from 0.1663950 to only 0.0230592, the relative
gap reduces from 1.9828% to 0.2762%, and the welfare loss decreases from 3.9263% to
0.5516%.

Figure 4.5 shows the change of the upper bound with the training iteration. We see
that the three methods decrease at the same rate, but Method 2, with the snake activation
function stays lower than the other methods. Figure 4.6 displays each method’s learning
result, v∗. We observe that Method 1 can not identify the perturbation pattern of drift µ(t)
but only learns v(t) as zig-zag lines. Method 2 with ReLU activation function (max(0, x))
under the structure “(1-10-2)” can identify the first period of µ(t)’s perturbation, but not
other periods. Finally, Method 2 with Snake activation function (4.50) under structure
“(1-10-2)” not only perfectly identifies the perturbation pattern of µ(t), but also learns the
decreasing trend before the retirement time TR = 20. This is the reason why “Method 2
Snake (1-10-2)” outperforms the other methods. Similarly to Figure 4.4, Figure 4.7 also
shows that when considering the trading constraint, the individual reduces their demand
for life insurance. Moreover, the individual’s demand for life insurance also forms a “spoon
shape” but has some perturbations after the retirement time TR = 20.
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Table 4.2: Lower and upper bounds for Example 4.6.2

Method 1 Method 2 Method 2
Structure Affine (1-10-2) (1-10-2)

Activation function None ReLU Snake
Upper bound -8.2255790 -8.2633075 -8.3259363
Lower bound -8.3919740 -8.3461089 -8.3489955
Duality gap 0.1663950 0.0828014 0.0230592
Relative gap 1.9828% 0.9921% 0.2762%
Welfare loss 3.9263% 1.9743% 0.5516%

Time elapsed 7.59 hours 8.82 hours 10.79 hours

The simulation accuracy and terms in this table are the same as those in Table 4.1.
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Figure 4.5: Change of upper bound in each training iteration for Example 4.6.2
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Figure 4.6: Optimal v∗ for each method in Example 4.6.2
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4.7 Conclusion

This chapter studies the constrained portfolio optimization problem in a generalized life
cycle model. The individual has a stochastic income and allocates his or her wealth among
stocks, a bond, and life insurance to optimize consumption, death benefits, and termi-
nal wealth. In addition, the individual’s trading strategy is restricted to a non-empty,
closed convex set, which contains non-tradeable assets, no short-selling, and no borrowing
constraints as special cases.

Following the framework of Cuoco (1997), we first define the artificial markets and
change the dynamic budget constraint in the primal problem to a group of static budget
constraints in the artificial markets. Then, through the Lagrangian dual control approach,
we transfer the primal problem to the dual problem and prove a one-to-one relationship
between the optimal solutions of the primal problem and the dual problem. Finally, we
use the “relaxation projection” technique (see Levin (1976)) to prove the existence of the
primal problem. In Cuoco (1997), the interest rate and income process are both assumed to
be uniformly bounded. We extend the interest rate to satisfy a finite expectation constraint
and enlarge the income process assumption to a condition containing uniformly bounded
case.

To the best of our knowledge, this is the first application of neural networks to the
constrained portfolio optimization problem in the life cycle model. We find that when
considering the trading constraint, the individual will reduce his or her demand for life
insurance. Furthermore, compared with the SAMS approach in Bick et al. (2013), we find
that both approaches have a similar performance when interest rate, stock appreciation
rate, and volatility are all constant. When the underlying model is more complex (e.g., the
stock appreciation rate has a perturbation in time), the SAMS approach is inadequate to
provide a tight lower and upper bound, but the neural network approach still works very
well. In general, the dual control neural network approach, overcomes the defects of the
SAMS approach and can inspire further future work on applying neural networks to study
the constrained portfolio optimization problem.
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Chapter 5

Conclusions and Future work

This thesis studies optimal insurance strategies for the individual using stochastic control
approach. In general, Chapter 2 studies the optimal insurance design for non-life insur-
ance. The individual’s loss is described by the compound Poisson process. The topics for
Chapter 3 and Chapter 4 are closely related and they study the individual’s demand for life
insurance. The markets in these two chapters include not only the financial risk generated
by Brownian motions but also the individual’s mortality risk.

Specifically, in Chapter 2, we propose and solve the optimal insurance problem for
an individual exhibiting internal habit formation. Under general utilities, we establish
that the optimal per-claim insurance must be deductible insurance, provided that the
expected value principle is used in insurance pricing. Under exponential utility, we obtain
explicit solutions for individuals who can purchase deductible or proportional insurance.
For both types of insurance, the individual gradually increases insurance coverage as he
or she ages. Moreover, the presence of habit formation reduces insurance coverage such
that an individual who is restricted to proportional insurance may opt out of the insurance
market, especially at early ages. These results suggest that habit formation and incomplete
insurance markets (such that individuals can only purchase proportional insurance) can
partially contribute to explaining the prevailing global underinsurance phenomenon, as
documented in (Lloyd’s, 2018).

Chapter 3 considers a DC pension plan management problem under the two-factor
model proposed by Koijen et al. (2011). We find that an individual’s demand for life
insurance exhibits a hump shape with age and a “double top” pattern for the two factors.
To be specific, the individual purchases more insurance at the old ages before retirement,
or in extreme market scenarios in which real short rate and expected inflation are both high
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or both low. These behaviors are caused by the combined effects of the components in the
optimal insurance premium. Furthermore, our model builds a DC account that resembles
a variable annuity with endogenously determined time-varying death benefits. It relaxes
the constraints on variable annuity’s death benefits and can inspire new and innovative
actuarial products.

Chapter 4 studies the constrained portfolio optimization problem in a generalized life
cycle model. We first propose the dual control neural network approach to study this
problem and find that when considering the trading constraint, the individual will reduce
his or her demand for life insurance. Compared with the SAMS approach in Bick et al.
(2013), we find that the two approaches have a similar performance when interest rate, stock
appreciation rate, and volatility are all constant. When things come to a more complex
case (e.g., stock appreciation rate has a perturbation in time), the SAMS approach is
inadequate to provide a tight lower and upper bound, but the neural network approach
still works very well. In general, our pioneering work, the dual control neural network
approach, implements the defects of the SAMS approach and can inspire more further
future work on applying neural networks to study the constrained portfolio optimization
problem.

Lastly, we consider the following future work for the three chapters. First, in Chapter
2, we only study the habit formation effect on the optimal insurance strategy under the
expected premium principle. The optimal insurance strategy and the influence of habit
formation under other premium principles (such as the variance premium principle, value-
at-risk premium principle, Wang’s premium principle, etc.) are not known and are worth
studying. Meanwhile, for empirical work, we can estimate the parameters for individual
consumption habits in different countries and determine whether historical consumption
plays a significant role in explaining countries’ insurance gaps.

Second, in Chapter 3, we consider the DC pension management without trading con-
straint. We can use the techniques from Chapter 4 and add the trading constraint (such
as no short-selling constraint, no borrowing constraint, and non-negative constraint of life
insurance) to formulate a model in a more realistic way. Moreover, we can also use the
market data to see whether the insurance sales follow a “hump” shape pattern in time and
a “double-top” pattern when the interest rate and expected inflation are both very low or
very high.

Third, for Chapter 4, we plan to apply our dual control neural network approach to
other classical financial models (such as the regime-switching model, factor model, constant
elasticity variance (CEV) model, Heston model, etc.), improve its efficiency, and make it a
more reliable algorithm for financial practice. Furthermore, we can also study whether the
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trading constraints reduce the individual’s insurance demand empirically. For example, in
the insurance economics, we have an indicator called the insurance penetration rate. It is a
quantity measuring a country’s insurance sector’s development and defined as the ratio of
the total insurance premium over the gross domestic product (GDP) in a given year. We
can set the insurance penetration rate as the dependent variable and trading constraints
as latent variables to study whether a free financial market (with less trading constraints)
can boom the insurance market.
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recession on regional mortality trends in europe. Nature Communications, 10(1):679.

Bardhan, I. (1994). Consumption and investment under constraints. Journal of Economic
Dynamics and Control, 18(5):909–929.

Basak, S. (1995). A general equilibrium model of portfolio insurance. The Review of
Financial Studies, 8(4):1059–1090.

Battocchio, P. and Menoncin, F. (2004). Optimal pension management in a stochastic
framework. Insurance: Mathematics and Economics, 34(1):79–95.

Ben-Arab, M., Briys, E., and Schlesinger, H. (1996). Habit formation and the demand for
insurance. Journal of Risk and Insurance, pages 111–119.

Bensoussan, A. (2004). Stochastic Control of Partially Observable Systems. Cambridge
University Press.

98



Bian, L., Li, Z., and Yao, H. (2018). Pre-commitment and equilibrium investment strate-
gies for the DC pension plan with regime switching and a return of premiums clause.
Insurance: Mathematics and Economics, 81:78–94.

Bick, B., Kraft, H., and Munk, C. (2013). Solving constrained consumption–investment
problems by simulation of artificial market strategies. Management Science, 59(2):485–
503.

Blake, D., Wright, I., and Zhang, Y. (2008). Optimal funding and investment strategies in
defined contribution pension plans under Epstein-Zin utility (actuarial research paper
no. 186). Faculty of Actuarial Science & Insurance, City University London.

Borch, K. (1975). Optimal insurance arrangements. ASTIN Bulletin: The Journal of the
IAA, 8(3):284–290.

Boulier, J.-F., Huang, S., and Taillard, G. (2001). Optimal management under stochastic
interest rates: the case of a protected defined contribution pension fund. Insurance:
Mathematics and Economics, 28(2):173–189.

Boyle, P., Tan, K. S., Wei, P., and Zhuang, S. C. (2022). Annuity and insurance choice
under habit formation. Insurance: Mathematics and Economics, 105:211–237.

Briys, E. (1986). Insurance and consumption: The continuous time case. The Journal of
Risk and Insurance, 53(4):718–723.

Broadbent, J., Palumbo, M., and Woodman, E. (2006). The shift from defined benefit
to defined contribution pension plans–implications for asset allocation and risk manage-
ment. Reserve Bank of Australia, Board of Governors of the Federal Reserve System
and Bank of Canada, pages 1–54.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Proposition 2.4.1

We conjecture that

φ(t, x, h) = −1

γ
e−γ(a(t)x+b(t)h+g(t)). (A.1)

Because φ(T, x, h) = U2(x) = −ω
γ
e−γx, we have the following boundary condition

a(T ) = 1, b(T ) = 0, g(T ) = − ln(w)

γ
.

Suppose φx(t, x, h) = y, then the inverse function of φx w.r.t. x is given by

φ−1
x (t, y, h) = − 1

γa(t)
ln

(
y

a(t)

)
− b(t)

a(t)
h− g(t)

a(t)
.

In view of (2.6), the optimal indemnity is given by

I∗t (Y ) =

[
Y − ln(1 + θ)

γa(t)

]+

,

Plugging (A.1) into (2.5), we have

e−γ(c−h) = [a(t)− αb(t)]e−γ(a(t)x+b(t)h+g(t)),
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and the optimal consumption is given by

c∗t = −1

γ
ln[a(t)− αb(t)] + a(t)X∗t + (b(t) + 1)h∗t + g(t). (A.2)

Assume the random loss Y has pdf f and tail distribution function F = 1−F , we have

E[I∗t (Y )] =

∫ ∞
ln(1+θ)
γa(t)

(
y − ln(1 + θ)

γa(t)

)
f(y)dy

=

∫ ∞
ln(1+θ)
γa(t)

yf(y)dy − ln(1 + θ)

γa(t)
F

(
ln(1 + θ)

γa(t)

)
(A.3)

E[φ(t, x− Y + I∗t (Y ), h)] = E

[
− 1

γ
e−γ
[
a(t)
(
x−Y+

(
Y− ln(1+θ)

γa(t)

)+)
+b(t)h+g(t)

]]

= −1

γ
e−γ
[
a(t)
(
x− ln(1+θ)

γa(t)

)
+b(t)h+g(t)

]
F

(
ln(1 + θ)

γa(t)

)

−1

γ
e−γ
[
a(t)x+b(t)h+g(t)

] ∫ ln(1+θ)
γa(t)

0

eγa(t)yf(y)dy. (A.4)

Substituting (A.1), (A.2), (A.3) and (A.4) into the HJB equation (2.4), we have

0 = x[a′(t) + ra(t)− (a(t)− αb(t))a(t)]

+h[b′(t)− βb(t)− (a(t)− αb(t))(b(t) + 1)]

+g′(t)− (a(t)− αb(t))g(t) +
λ+ δ

γ
+ {ln[a(t)− αb(t)]− 1}a(t)− αb(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(t)

yf(y)dy − ln(1 + θ)

γa(t)
F

(
ln(1 + θ)

γa(t)

)]
a(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(t)

)
+

∫ ln(1+θ)
γa(t)

0

eγa(t)yf(y)dy

]
.
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By separation of variables, we arrive at the following ODE system

a′(t) + ra(t)− (a(t)− αb(t))a(t) = 0, a(T ) = 1, (A.5)

b′(t)− βb(t)− (a(t)− αb(t))(b(t) + 1) = 0, b(T ) = 0, (A.6)

g′(t)− (a(t)− αb(t))g(t) +
λ+ δ

γ
+ {ln[a(t)− αb(t)]− 1}a(t)− αb(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(t)

yf(y)dy − ln(1 + θ)

γa(t)
F

(
ln(1 + θ)

γa(t)

)]
a(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(t)

)
+

∫ ln(1+θ)
γa(t)

0

eγa(t)yf(y)dy

]
= 0, g(T ) = − ln(w)

γ
. (A.7)

Note that (A.5) and (A.6) form a second-order coupled ODE system, whose solution is
not readily available. The following lemma presents explicit solution to (A.5) and (A.6).

Lemma A.1.1. The solution to the ODE system

a′(t) + ra(t)− (a(t)− αb(t))a(t) = 0, a(T ) = 1, (A.8)

b′(t)− βb(t)− (a(t)− αb(t))(b(t) + 1) = 0, b(T ) = 0, (A.9)

is given by

a(t) = 1/J(t), (A.10)

b(t) = G(t)/J(t),

G(t) = (e−(r+β−α)(T−t) − 1)/(r + β − α),

J(t) =

∫ T

t

(1− αG(s))e−r(s−t)ds+ e−r(T−t)

=
r + β

(r + β − α)r
+

(
1− r + β

(r + β − α)r
− α

(r + β − α)(β − α)

)
e−r(T−t)

+
α

(r + β − α)(β − α)
e−(r+β−α)(T−t),

Proof. Suppose that b(t) = G(t)a(t) for a deterministic function G(t). Substituting it into
(A.8) and (A.9), we have

a′(t) + (αG(t)− 1)a2(t) + ra(t) = 0, a(T ) = 1, (A.11)

111



and

G′(t)a(t)+G(t)a′(t)−βG(t)a(t)−a2(t)G(t)−a(t)+αG2(t)a2(t)+αG(t)a(t) = 0, G(T ) = 0.
(A.12)

Multiplying (A.11) by G(t) and plugging it into (A.12), we have

G′(t) + (α− β − r)G(t) = 1,

and
G(t) = (e−(r+β−α)(T−t) − 1)/(r + β − α).

To solve (A.11), we make the transformation a(t) = 1/J(t). We have

− J
′(t)

J2(t)
+ (αG(t)− 1)

1

J2(t)
+

r

J(t)
= 0, J(T ) = 1.

Multiply J2(t) on both hands sides, we have

J ′(t)− rJ(t) = αG(t)− 1,

and

J(t) =

∫ T

t

e−r(s−t)(1− αG(s))ds+ e−r(T−t).

We now solve the ODE (A.7). We have

d(e
∫ T
t a(s)−αb(s)dsg(t))

= −e
∫ T
t a(s)−αb(s)ds

{
λ+ δ

γ
+ {ln[a(t)− αb(t)]− 1}a(t)− αb(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γa(t)

yf(y)dy − ln(1 + θ)

γa(t)
F

(
ln(1 + θ)

γa(t)

)]
a(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γa(t)

)
+

∫ ln(1+θ)
γa(t)

0

eγa(t)yf(y)dy

]}
,

and g(t) is given by (2.11).

Finally, it is a simple exercise to show that the technical conditions in Theorem 2.3.1
are indeed satisfied, thereby proving the optimality.
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A.2 Proof of Theorem 2.4.1

Proof. We divide the verification proof into three steps:

Step 1: Verify the optimal strategy (c∗, I∗) belongs to the admissible set A.

First, we verify condition 1 in Definite 2.4.1.

Plug (2.10) and (2.9) into (2.2) and (2.3), we have

d

(
X∗t
h∗t

)
=

(
r − a(t) −[b(t) + 1]
αa(t) α[b(t) + 1]− β

)(
X∗t
h∗t

)
dt

+

 1
γ

ln[a(t)− αb(t)]− g(t)− λ(1 + θ)
∞∫
d(t)

F̄Y (y)dy

αg(t)− α
γ

ln[a(t)− αb(t)]

 dt

−
(

min(Y, d(t)) 0
0 0

)(
dNt

dÑt

)
, (A.13)

where Nt and Ñt are independent Poisson processes with intensity λ and λ̃. Denote
Z∗

t = (X∗t , h
∗
t )
>, N̄t = (Nt, Ñt)

>, where (·)> means the transpose of vector and
matrix, we can rewrite the (A.13) in the new notations

dZ∗
t = BtZ

∗
t dt+ f1(t)dt− f2(t, Y )dN̄t. (A.14)

For the compound poisson process (2.1), denote ∆At = At − At− the jump of At,
we can define its random measure for any Borel set U ∈ R

ηAt(t, U) := ηAt(t, U, ω̃) =
∑

0<s≤t

1{∆As ∈ U},

where ω̃ is a sample in the filtration F generated by compound Poisson process
At. Similarly, we can define random measure ηÑt(t, U) for the Poisson process Ñt.
Then, the equation (A.14) has the following equivalent form

dZ∗
t = BtZ

∗
t dt+ f1(t)dt−

∫ ∞
0

f2(t, Y )

(
ηAt(dt, dy)
ηÑt(dt, dy)

)
= BtZ

∗
t dt+ f1(t)dt−

∫ ∞
0

f2(t, Y )

(
ν(dy)dt
ν̃(dy)dt

)
−
∫ ∞

0

f2(t, Y )

(
ηAt(dt, dy)− ν(dy)dt
ηÑt(dt, dy)− ν̃(dy)dt

)
, (A.15)
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where ν is the Levy measure of At =
∑Nt

i=1 Yi and ν̃ the Levy measure for Ñt. For
compound Poisson process At, we have ν(U) = λµY (U) for each Borel subset U of

R, where the distribution measure µY (U) = P{Y ∈ U}. For Poisson process Ñt

with intensity λ̃, we have ν̃(U) = λ̃ (see Theorem 1.5 and Example 1.6 in Øksendal
and Sulem (2007)).

For (A.15), we can obtain it has linear growth∣∣∣∣∣∣∣∣BtZ
∗
t + f1(t)−

∫ ∞
0

f2(t, Y )

(
ν(dy)
ν̃(dy)

) ∣∣∣∣∣∣∣∣2
2

+

∫ ∞
0

[min(Y, d(t))]2ν(dy)

=

∣∣∣∣∣∣∣∣BtZ
∗
t + f1(t)−

(
λE[min(Y, d(t))]

0

) ∣∣∣∣∣∣∣∣2
2

+

∫ ∞
0

[min(Y, d(t))]2ν(dy)

≤ C0(1 + ||Z∗
t ||22) +

∫ ∞
0

[min(Y, d(t))]2λµY (dy)

≤ C0(1 + ||Z∗
t ||22) + λd2(t)

∫ ∞
0

µY (dy)

≤ C1(1 + ||Z∗
t ||22),

where || · ||2 is the Euclidean norm, and C0 and C1 are finite constants. The first
inequality is due to the Minkowski inequality and the continuity of a(t), b(t), d(t),
and g(t) in [0, T ]. The third inequality is based on the continuity of d(t) in [0, T ].

In addition, we can prove the Lipschitz continuity of (A.15)∣∣∣∣∣∣∣∣ [BtZ
∗
2,t + f1(t)−

∫ ∞
0

f2(t, Y )

(
ν(dy)
ν̃(dy)

)]
−
[
BtZ

∗
1,t + f1(t)−

∫ ∞
0

f2(t, Y )

(
ν(dy)
ν̃(dy)

)] ∣∣∣∣∣∣∣∣2
2

+

∫ ∞
0

|[min(Y, d(t))]2 − [min(Y, d(t))]2|2λµY (dy)

= ||BtZ
∗
2,t −BtZ

∗
1,t||22

≤ C2||Z∗
2,t −Z∗

1,t||22.

The first inequality follows from the submultiplicative of induced matrix norm in
Euclidean space. Then, by Theorem 1.19 in Øksendal and Sulem (2007), there
exists a unique cadlag adapted solution Z∗t such that

E[||Z∗t ||22] <∞, for all t. (A.16)

114



Second, it is obvious that (2.9) satisfies 0 ≤
[
Y − d(t)

]+ ≤ Y , i.e. It(Y ) satisfies
the condition 2 in Definite 2.4.1,.

Third, we verify the condition 3 in Definite 2.4.1. The solution to (A.14) is given
by

Z∗t = e
∫ t
0 BsdsZ0 + e

∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf1(s)ds

−e
∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf2(s, Y )dN̄s. (A.17)

Before moving forward, we prove the norm boundedness of the matrix exponentials
e
∫ t
0 Bsds and e−

∫ t
0 Bsds.

Lemma A.2.1. ||e
∫ t
0 Bsds||2 and ||e−

∫ t
0 Bsds||2 are uniformly bounded for any

t ∈ [0, T ]

Proof. First, we extend the continual domain of a(t) and b(t). From Proposition
2.4.1, we have J(T ) = 1. By the continuity of function J(t), there exists a small
ε > 0 such that J(T + ε) > 0. Then, a(t) = 1/J(t) and b(t) = G(t)/J(t) exist and
are continuous for t ∈ (−1, T + ε), so does Bt.

Therefore, due to the Theorem 2.4 in Chicone (2006), we have ||e
∫ t
0 Bsds||2 and

||e−
∫ t
0 Bsds||2 are uniformly bounded for any t ∈ [0, T ].

Then, for any bounded constants C1, C2, we have

E[exp{C1X
∗
t + C2h

∗
t + C3c

∗
t}]

= E

[
exp

{
(C1 + C3a(t), C2 + C3[b(t) + 1])Z∗t + g(t)− 1

γ
ln[a(t)− αb(t)]

}]
≤ C4E[exp{(C5, C6)Z∗t }]

≤ C4E

[
exp

{∣∣∣∣(C5, C6)

(
e
∫ t
0 BsdsZ0 + e

∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf1(s)ds

) ∣∣∣∣
+

∣∣∣∣(C5, C6)e
∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf2(s, Y )dN̄s

∣∣∣∣}]
≤ C4E

[
exp

{
||(C5, C6)||2

(
||e

∫ t
0 Bsds||2||Z0||2 + ||e

∫ t
0 Bsds||2

∫ t

0

||e−
∫ s
0 Budu||2

||f1(s)||2ds) +

∣∣∣∣(C5, C6)e
∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf2(s, Y )dN̄s

∣∣∣∣}]
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≤ C7E

[
exp

{∣∣∣∣(C5, C6)e
∫ t
0 Bsds

∫ t

0

e−
∫ s
0 Buduf2(s, Y )dN̄s

∣∣∣∣}]
= C7E

[
exp

{∣∣∣∣(C5, C6)e
∫ t
0 Bsds

[
Nt∑
i=1

e−
∫ τi
0 Buduf2(τi, Y )

(
1
0

)
Ñt∑
j=1

e−
∫ τ̃j
0 Buduf2(τ̃j, Y )

(
0
1

) ∣∣∣∣



= C7E

[
exp

{∣∣∣∣(C5, C6)e
∫ t
0 Bsds

Nt∑
i=1

e−
∫ τi
0 Buduf2(τi, Y )

(
1
0

) ∣∣∣∣
}]

≤ C7E

[
exp

{
||(C5, C6)||2||e

∫ t
0 Bsds||2

Nt∑
i=1

||e−
∫ τi
0 Budu||2||f2(τi, Y )||2

}]

≤ C7E

[
exp

{
C8

Nt∑
i=1

min(Y, d(τi))

}]
≤ C7E [exp {C8Ntd(T )}]
≤ C7E [exp {C9Nt}] <∞,

where τi and τ̃i are the i-th jump times for Nt and Ñt, respectively.

The first equality follows from the substitution of (2.10). The first inequality is
due to the continuity of a(t), b(t), and g(t) in [0, T ]. The second inequality follows
from the substitution of (A.17). The third inequality is based on the Cauchy-
Schwarz inequality and Minkowski inequality. The forth inequality follows the
Lemma A.2.1 and the continuity of f1(t) in [0, T ]. The fifth inequality is due to
the Cauchy-Schwarz inequality and the Minkowski inequality. The sixth inequality
is due to the definition of f2(t) and the induced matrix norm in Euclidean space.
The seventh and eighth inequalities are based on the continuity of d(t) in [0, T ].
The final finite inequality is based on the existence of moment generating function
of Poisson process at each time t.

Forth, we prove the condition 4 in Definite 2.4.1.

E[(X∗t )2 + (h∗t )
2 + (c∗t )

2]

= E

[
||Z∗t ||22 +

∣∣∣∣(a(t), b(t) + 1)Z∗t + g(t)− 1

γ
ln[a(t)− αb(t)]

∣∣∣∣2
]

≤ E[||Z∗t ||22] + C9E[1 + |(a(t), b(t) + 1)Z∗t |2]
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≤ E[||Z∗t ||22] + C9E[1 + ||(a(t), b(t) + 1)||22||Z∗t ||22] <∞.

The first equality is follows from substitution of (2.10) into. The first inequality
is due to the continuity of g(t) and ln[a(t) − αb(t)] in [0, T ] and the inequality
(C10 + x)2 ≤ C11(1 + x2) for some constant C11. The last finite inequality is based
on (A.16).

Finally, we claim that the optimal strategy (c∗, I∗) belongs to the admissible set
A.

Step 2: Verify V (t,Xt, ht) ≤ φ(t,Xt, ht) for any (c, I) ∈ A.

Define the generator

Lc,Iφ(t, x, h) = φt − (λ+ δ)φ+ rxφx − βhφh − cφx + αcφh

−λ(1 + θ)E[It(Y )]φx + λE[φ(t, x− Y + It(Y ), h)]. (A.18)

We first prove the properties for φ(t,Xt, ht).

Lemma A.2.2. φ(t,Xt, ht) has the following properties for any (c, I) ∈ A

(a)
Lc,Iφ(t, x, h) + U1(c, h) ≤ 0, (A.19)

for all (t, x, h) ∈ [0, T ]× R2 and (c, I) ∈ A,

(b)
φ(T, x, h) ≥ U2(x) for (x, h) ∈ R2, (A.20)

(c)

E

[
e−δT |φ(T,XT , hT )|+

∫ T

0

e−δt|Lc,Iφ(t, xt, ht)|dt
]

+

∫ T

0

∫ ∞
0

e−δt|φ(t,Xt − Y + It(Y ), ht)− φ(t,Xt, ht)|2ν(dy)dt <∞,

for all (c, I) ∈ A, where the Levy measure ν(dy) = λµY (dy) for compound
Poisson process and the distribution measure µY (U) = P{Y ∈ U} or each
Borel subset U of R.

Proof. Properties (a) and (b) are the direct results of the fact that φ(t, x, h) satisfies
(2.4) with the boundary condition.
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With regard to property (c), we divide the proof into three terms. For the first
term,

E[e−δT |φ(T,XT , hT )|] = E

[
e−δT

∣∣∣∣− 1

γ
e−γ(a(t)Xt+b(t)ht+g(t))

∣∣∣∣]
≤ C0E[eC1Xt+C2ht ],

where C0, C1, and C2 are some bounded constants. The first inequality is based
on the continuity of a(t), b(t), and g(t) in [0, T ]. For the second term,

E

[∫ T

0

e−δt|Lc,Iφ(t, xt, ht)|dt
]

=

∫ T

0

e−δtE[|Lc,Iφ(t, xt, ht)|]dt

=

∫ T

0

e−δtE

[∣∣∣∣e−γ[a(t)Xt+b(t)ht+g(t)]f3(t,Xt, ht)

−E
[
λ

γ
e−γ{a(t)[Xt−Y+It(Y )]+b(t)ht+g(t)}

] ∣∣∣∣] dt
≤

∫ T

0

e−δt
{
E
[
e−γ[a(t)Xt+b(t)ht+g(t)]|f3(t,Xt, ht)|

]
+E

[
λ

γ
e−γ{a(t)[Xt−Y+It(Y )]+b(t)ht+g(t)}

]}
dt

≤
∫ T

0

e−δt
{
E
[
e−2γ[a(t)Xt+b(t)ht+g(t)]

]
E
[
f 2

3 (t,Xt, ht)
]

+
λ

γ
E
[
e−2γ{a(t)Xt+b(t)ht+g(t)}

]
E
[
e2γa(t)[Y−It(Y )]

]}
dt

≤
∫ T

0

e−δt
{
C0E

[
eC1Xt+C2ht

]
E
[
f 2

3 (t,Xt, ht)
]

+
λ

γ
C0E

[
eC1Xt+C2ht

]
E
[
eC3 min(Y,d(t))

]}
dt

≤
∫ T

0

e−δt
{
C4E

[
f 2

3 (t,Xt, ht)
]

+ C5

}
dt

≤
∫ T

0

e−δt
{
C4E

[
[a′(t) + ra(t)]2X2

t + [b′(t)− βb(t)]2h2
t

+[−a(t) + αb(t)]2c2
t + C2

6

]
+ C5

}
dt

≤
∫ T

0

e−δt
{
C7E

[
X2
t + h2

t + c2
t

]
+ C4C

2
6 + C5

}
dt

< ∞,
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where f3(t,Xt, ht) is give by

f3(t,Xt, ht) := [a′(t) + ra(t)]Xt + [b′(t)− βb(t)]ht + [αb(t)− a(t)]ct

+g′(t) +
λ+ δ

γ
− λ(1 + θ)E[It(Y )]a(t).

The second inequality is due to the Cauchy-Schwarz inequality. The third inequal-
ity is owing to the continuity of a(t), b(t), and g(t) in [0, T ] and the condition 2 in
in Definition 2.4.1. The forth inequality is based on the condition 3 in Definition
2.4.1 and the continuity of d(t). The fifth inequality is the result of the inequality
that (a1 + a2 + a3 + a4)2 ≤ 4(a2

1 + a2
2 + a2

3 + a2
4) for any a1, a2, a3, a4 ∈ R. The sixth

inequality comes from the fact that a(t) and b(t) are the C1 functions in [0, T ]
(see Lemma A.1.1). The last finite inequality is determined by the condition 4 in
Definition 2.4.1.

For the third term, we have∫ T

0

∫ ∞
0

e−δt|φ(t,Xt − Y + It(Y ), ht)− φ(t,Xt, ht)|2ν(dy)dt

=

∫ T

0

∫ ∞
0

e−δt|φ(t,Xt − Y + It(Y ), ht)− φ(t,Xt, ht)|2λµY (dy)dt

≤
∫ T

0

C0E[e−2γ[a(t)(Xt−Y+It(Y ))+b(t)ht+g(t)]]dt

≤
∫ T

0

C0E[e−4γ[a(t)Xt+b(t)ht+g(t)]]E[e4γ(Y−It(Y ))]dt

≤
∫ T

0

C1E[eC2Xt+C3ht ]E[e4γmin(Y,d(t))]dt

< ∞.

The first equality is due to the definition of Levy measure for the compound Poisson
process. The first inequality is based on the fact that φ(t,Xt − Y + It(Y ), ht) ≤
φ(t,Xt, ht) ≤ 0, then |φ(t,Xt − Y + It(Y ), ht) − φ(t,Xt, ht)| < |φ(t,Xt − Y +
It(Y ), ht)|. The second inequality holds because of the Cauchy-Schwarz inequality.
The third inequality is based on the continuity of a(t), b(t), and g(t) in [0, T ]
and the condition 2 in in Definition 2.4.1. The last finite inequality holds by the
condition 3 in Definition 2.4.1 and the continuity of d(t).

This completes the proof of Lemma A.2.2.

Moreover, for any (c, I) ∈ A, we have the following property
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Lemma A.2.3.

E

[∫ T

0

e−δu|U1(cu, hu)|du+ e−δT |U2(XT )|
]
<∞, for ∀(c, I) ∈ A.

Proof.

E

[∫ T

0

e−δu|U1(cu, hu)|du+ e−δT |U2(XT )|
]

=

∫ T

0

e−δuE[|U1(cu, hu)|]du+ e−δTE[|U2(XT )|]

=

∫ T

0

e−δu
1

γ
E[exp{−γcu + γhu}]du+ e−δT

ω

γ
E[exp{−γXT}]

< ∞

The last finite inequality comes from the condition 3 in Definition 2.4.1.

Let (c, I) ∈ A, then by the property (c) in Lemma A.2.2, we can use Dynkin
formula (see Theorem 1.24 in Øksendal and Sulem (2007))

Et[e
−δ(T−t)φ(T,XT , hT )] = φ(t, x, h) + Et

[ T∫
t

e−δ(u−t)Lc,Iφ(u,Xu, hu)du

]
,

where Et[·] denotes the conditional expectation E[·|Xt = x, ht = h]. Together with
the inequalities (A.19) and (A.20), we have

φ(t, x, h) ≥ Et

[ T∫
t

e−δ(u−t)U1(cu, hu)du

]
+ Et[e

−δ(T−t)φ(T,XT , hT )]

≥ Et

[∫ T

t

e−δ(u−t)U1(cu, hu)du+ e−δ(T−t)U2(XT )

]
. (A.21)

The finiteness of (A.21)’s R.H.S. is given by Lemma A.2.3. Taking the supreme
w.r.t (c, I) of the right hand side of the inequality, we have

φ(t, x, h) ≥ V (t, x, h) for all (t, x, h) ∈ [0, T ]× R2. (A.22)

This completes the proof of Step 2.
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Step 3: Verify V (t,Xt, ht) = φ(t,Xt, ht) for the optimal strategy (c∗, I∗).

Under the strategy (c∗, I∗), we have a direct result from Proposition 2.4.1

Lc∗,I∗φ(t, x, h) + U1(c, h) = 0. (A.23)

Then, (A.21) becomes

φ(t, x, h) = Et

[∫ T

t

e−δ(u−t)U1(c∗u, h
∗
u)du+ e−δ(T−t)U2(X∗T )

]
≤ V (t, x, h) (A.24)

for all (t, x, h) ∈ [0, T ] × R2. Combining (A.22) and (A.24), we arrive at (2.12).
Moreover, (c∗, I∗) given by (2.10) and (2.9) is the optimal consumption and insur-
ance strategy.

A.3 Proof of Corollary 2.4.1

The first-order derivative of J(t) is

J ′(t) =

(
− r + β

r + β − α
− αr

(r + β − α)(β − α)
+ r

)
e−r(T−t) +

α

β − α
e−(r+β−α)(T−t).

J ′(t) < 0 is equivalent to

− r + β

r + β − α
− αr

(r + β − α)(β − α)
+ r +

α

β − α
e−(β−α)(T−t) < 0.

Because β > α and 0 < r < 1, we have

(β − α)(r − 1)(r + β − α) < 0,

or equivalently

− r + β

r + β − α
− αr

(r + β − α)(β − α)
+ r +

α

β − α
< 0.

We then have

− r + β

r + β − α
− αr

(r + β − α)(β − α)
+ r +

α

β − α
e−(β−α)(T−t) < 0,

and consequently J ′(t) < 0 for any t ∈ [0, T ].
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A.4 Proof of Propostion 2.4.2

Setting α = β = h0 = 0 in (2.4), we have the HJB equation for the “no habit” agent

Ṽt − (λ+ δ)Ṽ + rxṼx + sup
c
{U1(c, 0)− cṼx}

+ sup
I
{−λ(1 + θ)E[It(Y )]Ṽx + λE[Ṽ (t, x− Y + It(Y ))]} = 0,

(A.25)

with the boundary condition

Ṽ (T, x) = U2(x) = −ω
γ
e−γx.

Note that α = β = h0 = 0 implies that ht = 0 for any t ∈ [0, T ], and thus the “no habit”
agent’s value function does not depend on h.

We make the ansatz

Ṽ (t, x) = −1

γ
e−γ(ã(t)x+g̃(t)). (A.26)

We immediately have

ã(T ) = 1, b̃(T ) = 0, g̃(T ) = − ln(w)

γ
.

The first-order condition with respect to c gives

∂U1(c̃, 0)

∂c
− Ṽx = 0. (A.27)

Plugging (A.26) into (A.27), we arrive at the optimal consumption

c̃t = − ln(ã(t))

γ
+ ã(t)X̃t + g̃(t). (A.28)

The first-order condition with respect to I implies that

(1 + θ)Ṽx(t, x) = Ṽx(t, x− Y + I(Y )).

Because it is required that 0 ≤ I(Y ) ≤ Y , the optimal indemnity follows

Ĩt(Y ) = [Y − (x− Ṽ −1
x (t, (1 + θ)Ṽx(t, x)))]+, (A.29)
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where Ṽ −1
x (t, y) is the inverse function of Ṽx(t, x) w.r.t. x.

Plugging (A.26) into (A.29), we arrive at the optimal indemnity

Ĩt(Y ) =

[
Y − ln(1 + θ)

γã(t)

]+

. (A.30)

Substituting (A.26), (A.28) and (A.30) into (A.25), we have

0 = x[(ã(t))′ + rã(t)− (ã(t))2]

+(g̃(t))′ − ã(t)g̃(t) +
λ+ δ

γ
+ {ln[ã(t)]− 1} ã(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γã(t)

yf(y)dy − ln(1 + θ)

γã(t)
F

(
ln(1 + θ)

γã(t)

)]
ã(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γã(t)

)
+

∫ ln(1+θ)
γã(t)

0

eγã(t)yf(y)dy

]
.

By separation of variables, we have the following ODE system

(ã(t))′ + rã(t)− (ã(t))2 = 0, ã(T ) = 1, (A.31)

(g̃(t))′ − ã(t)g̃(t) +
λ+ δ

γ
+ {ln[ã(t)]− 1} ã(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γã(t)

yf(y)dy − ln(1 + θ)

γã(t)
F

(
ln(1 + θ)

γã(t)

)]
ã(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γã(t)

)
+

∫ ln(1+θ)
γã(t)

0

eγã(t)yf(y)dy

]
= 0, g̃(T ) = − ln(w)

γ
.(A.32)

Assuming ã(t) = 1/J̃(t) and substituting it into (A.31), we have

(J̃(t))′ = rJ̃(t)− 1,

and

J̃(t) = e−r(T−t)
r − 1

r
+

1

r
.
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For the ODE (A.32), we have

d(e
∫ T
t ã(s)dsg̃(t))

= −e
∫ T
t ã(s)ds

{
λ+ δ

γ
+ {ln[ã(t)]− 1} ã(t)

γ

−λ(1 + θ)

[∫ ∞
ln(1+θ)
γã(t)

yf(y)dy − ln(1 + θ)

γã(t)
F

(
ln(1 + θ)

γã(t)

)]
ã(t)

−λ
γ

[
(1 + θ)F

( ln(1 + θ)

γã(t)

)
+

∫ ln(1+θ)
γã(t)

0

eγã(t)yf(y)dy

]}
,

whose solution is given by (2.13).

A.5 Proof of Corollary 2.4.2

The first claim follows from

(d̃(t))′ =
ln(1 + θ)

γ
e−r(T−t)(r − 1) < 0,

for all t ∈ [0, T ].

For the second claim, we want to compare d̃(t) with d(t). At initial time, we have

d(0)− d̃(0) =
ln(1 + θ)

γ
(J(0)− J̃(0))

=
ln(1 + θ)

γ

{
r + β

(r + β − α)r
+

(
− r + β

(r + β − α)r
− α

(r + β − α)(β − α)

+1

)
e−rT +

α

(r + β − α)(β − α)
e−(r+β−α)T − r − 1

r
e−rT − 1

r

}
=

ln(1 + θ)

γ

{
α

(r + β − α)r
− α

r(β − α)
e−rT +

α

(r + β − α)(β − α)

e−(r+β−α)T
}

To prove d(0)− d̃(0) > 0, it is equivalent to show

α

(r + β − α)r
− α

r(β − α)
e−rT +

α

(r + β − α)(β − α)
e−(r+β−α)T > 0,

β − α− (r + β − α)e−rT + re−(r+β−α)T > 0,
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where we have used the fact that β > α ≥ 0 and 0 < r < 1.

Define fr(r) := β − α− (r + β − α)e−rT + re−(r+β−α)T . It is easy to see

fr(0) = β − α− (β − α) = 0

f ′r(r) = −e−rT + (r + β − α)Te−rT + e−(r+β−α)T − rTe−(r+β−α)T

= [(r + β − α)T − 1]e−rT + (1− rT )e−(r+β−α)T

= e−rT [(r + β − α)T − 1 + (1− rT )e−(β−α)T ]

= e−rT [(β − α)T − 1 + e−(β−α)T + rT (1− e−(β−α)T )]

> e−rT rT (1− e−(β−α)T )

> 0,

where we have used the inequality e−x > 1 − x for x > 0. Thus, we have fr(r) > 0 for

r ∈ [0, 1). i.e. d(0)− d̃(0) > 0 for β > α ≥ 0 and 0 < r < 1.

Moreover, at the terminal time, we have

d(T )− d̃(T ) =
ln(1 + θ)

γ
(J(T )− J0(T ))

=
ln(1 + θ)

γ
(1− 1)

= 0.

We now compare the first order derivatives. We have

d′(t)− (d̃(t))′

=
ln(1 + θ)

γ
(J ′(t)− (J̃(t))′)

=
ln(1 + θ)

γ

{(
− r + β

r + β − α
− αr

(r + β − α)(β − α)
+ r

)
e−r(T−t)

+
α

β − α
e−(r+β−α)(T−t) − (r − 1)e−r(T−t)

}
=

ln(1 + θ)

γ

{(
− α

r + β − α
− αr

(r + β − α)(β − α)

)
e−r(T−t) +

α

β − α
e−(r+β−α)(T−t)

}
.

To show d′(t)− (d̃(t))′ < 0, it is equivalent to prove

−α(β − α)− αr + α(r + β − α)e−(β−α)(T−t) < 0,
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or
α(r + β − α)(e−(β−α)(T−t) − 1) < 0,

which is indeed satisfied for t ∈ [0, T ).

Therefore, d′(t) − (d̃(t))′ < 0 for t ∈ [0, T ), and d′(T ) − (d̃(T ))′ = 0. The rest of the

proof follows from d(0)− d̃(0) > 0 and d(T )− d̃(T ) = 0.

A.6 Proof of Proposition 2.4.3

Substituting I(Y ) = pY into (2.4), we have

V p
t − (λ+ δ)V p + rxV p

x − βhV
p
h + sup

c
{U1(c, h)− cV p

x + αcV p
h }

+ sup
p
{−λ(1 + θ)pE[Y ]V p

x + λE[V p(t, x− (1− p)Y, h)]} = 0,
(A.33)

with the boundary condition

V p(T, x, h) = U2(x) = −ω
γ
e−γx.

We make the ansatz

V p(t, x, h) = −1

γ
e−γ(ap(t)x+bp(t)h+gp(t)). (A.34)

We immediately have

ap(T ) = 1, bp(T ) = 0, gp(T ) = − ln(w)

γ
.

The first-order condition with respect to c implies that

∂U1(c, h)

∂c
− V p

x + αV p
h = 0. (A.35)

Plugging (A.34) into (A.35), we have

cpt = −1

γ
ln[ap(t)− αbp(t)] + ap(t)Xp

t + (bp(t) + 1)hpt + gp(t). (A.36)
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Substituting (A.34) into (A.33), we have the following optimization problem for p

sup
p

{
− λ(1 + θ)pE[Y ]e−γ(ap(t)x+bp(t)h+gp(t))ap(t)− λ

γ
E[e−γ(ap(t)(x−(1−p)Y )+bp(t)h+gp(t))]

}
,

which is equivalent to

sup
p

{
− λ(1 + θ)pE[Y ]ap(t)− λ

γ
E[eγa

p(t)(1−p)Y ]

}
.

Define fp(p) = −λ(1 + θ)pE[Y ]ap(t)− λ
γ
E[eγa

p(t)(1−p)Y ]. We have

f ′p(p) = λap(t){E[Y eγa
p(t)(1−p)Y ]− (1 + θ)E[Y ]},

f ′′p (p) = −λγ(ap(t))2E[Y 2eγa
p(t)(1−p)Y ] < 0,

and

f ′p(0) = λap(t){E[Y eγa
p(t)Y ]− (1 + θ)E[Y ]},

f ′p(1) = −λθap(t)E[Y ] < 0.

Because f ′′p (p) < 0, ∀p, f ′p(p) is a decreasing function. Moreover, f ′p(1) = λap(t){E[Y ]−
(1 + θ)E[Y ]} < 0 and the monotonicity of fp(p) only depends on the sign of f ′p(0). If
f ′p(0) > 0, f ′p(p) decreases from a positive number to a negative number in [0, 1], and there
exists a unique p∗ ∈ [0, 1] such that f ′p(p

∗) = 0. If f ′p(0) ≤ 0, f ′p(p) is always negative for
p ∈ (0,∞] and fp(p) attains its maximum at p = 0. Therefore, if f ′p(0) > 0, we have the
unique optimal solution p∗(t) satisfying

E[eγa(t)(1−p∗(t))Y Y ] = (1 + θ)E[Y ]. (A.37)

Otherwise, we have p∗ = 0.

Plugging (A.36) and (A.34) into (A.33), we have

0 = x[(ap(t))′ + rap(t)− (ap(t)− αbp(t))ap(t)]
+h[(bp(t))′ − βbp(t)− (ap(t)− αbp(t))(bp(t) + 1)]

+(gp(t))′ − (ap(t)− αbp(t))gp(t) +
λ+ δ

γ
+ {ln[ap(t)− αbp(t)]− 1}a

p(t)− αbp(t)
γ

−λ(1 + θ)p∗(t)E[Y ]ap(t)− λ

γ
E[eγa

p(t)(1−p∗(t))Y ].
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From separation of variables, we arrive at the following ODE system

(ap(t))′ + rap(t)− (ap(t)− αbp(t))ap(t) = 0, ap(T ) = 1,

(bp(t))′ − βbp(t)− (ap(t)− αbp(t))(bp(t) + 1) = 0, bp(T ) = 0,

(gp(t))′ − (ap(t)− αbp(t))gp(t) +
λ+ δ

γ
+ {ln[ap(t)− αbp(t)]− 1}a

p(t)− αbp(t)
γ

−λ(1 + θ)p∗(t)E[Y ]ap(t)− λ

γ
E[eγa

p(t)(1−p∗(t))Y ], gp(T ) = − ln(w)

γ
. (A.38)

Note that ap(t) and bp(t) satisfy the same ODEs as (A.5) and (A.6), we claim that
ap(t) = a(t) and bp(t) = b(t) for all t ∈ [0, T ]. We only need to solve the ODE (A.38) for
gp(t). After simplifying, we have

d(e
∫ T
t ap(s)−αbp(s)dsgp(t)) = −e

∫ T
t ap(s)−αbp(s)ds

{
λ+ δ

γ
+ {ln[ap(t)− αbp(t)]− 1}a

p(t)− αbp(t)
γ

−λ(1 + θ)p∗(t)E[Y ]ap(t)− λ

γ
E[eγa

p(t)(1−p∗(t))Y ]

}
,

whose solution is given by (2.14).

A.7 Proof of Corollary 2.4.3

From the Proof of Corollary 2.4.1, J(t) is positive and strictly decreasing and thus a(t) =
1/J(t) is strictly increasing in [0, T ]. Moreover, E[eγa(t)Y Y ] is strictly increasing in [0, T ].
There are three cases.

1. If E[eγa(0)Y Y ] > (1 + θ)E[Y ], then E[eγa(t)Y Y ] > (1 + θ)E[Y ] for any t ∈ [0, T ].
Therefore, there is always a unique positive solution p∗(t) to the equation (A.37).
Because the right hand side of (A.37) is constant, a(t)(1−p∗(t)) is constant. Together
with the fact that a(t) is strictly increasing, we have p∗(t) is positive and strictly
increasing in [0, T ].

2. If E[eγa(0)Y Y ] ≤ (1 + θ)E[Y ] and E[eγa(T )Y Y ] > (1 + θ)E[Y ], then there exists a
unique t0 ∈ [0, T ) such that E[eγa(t0)Y Y ] = (1 + θ)E[Y ]. For t ∈ [0, t0], E[eγa(t)Y Y ] ≤
(1 + θ)E[Y ] and p∗(t) = 0. For t ∈ (t0, T ], E[eγa(t)Y Y ] > (1 + θ)E[Y ] and p∗(t) is
positive and strictly increasing in [0, T ]. Moreover, p∗(t) is continuous at time t0.

3. If E[eγa(T )Y Y ] ≤ (1 + θ)E[Y ], then E[eγa(t)Y Y ] ≤ (1 + θ)E[Y ] and p∗(t) = 0 for all
t ∈ [0, T ].
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A.8 Proof of Proposition 2.4.4

Setting α = β = h0 = 0 and I(Y ) = pY in the HJB equation (2.4), we have

Ṽ p
t − (λ+ δ)Ṽ p + rxṼ p

x + sup
c
{U1(c, 0)− cṼ p

x }

+ sup
p
{−λ(1 + θ)pE[Y ]Ṽ p

x + λE[Ṽ p(t, x− (1− p)Y )]} = 0,
(A.39)

with the boundary condition

Ṽ p(T, x) = U2(x) = −ω
γ
e−γx.

We make the ansatz

Ṽ p(t, x) = −1

γ
e−γ(ãp(t)x+g̃p(t)). (A.40)

We immediately have

ãp(T ) = 1, b̃p(T ) = 0, g̃p(T ) = − ln(w)

γ
.

The first-order condition with respect to c gives

∂U1(c̃p, 0)

∂c
− Ṽ p

x = 0. (A.41)

Plugging (A.40) into (A.41), we arrive at the optimal consumption

c̃pt = − ln(ãp(t))

γ
+ ãp(t)X̃p

t + g̃p(t). (A.42)

Substituting (A.40) into (A.39), we have the following optimization for p

sup
p

{
− λ(1 + θ)pE[Y ]e−γ(ãp(t)x+b̃p(t)h+g̃p(t))ãp(t)− λ

γ
E[e−γ(ãp(t)(x−(1−p)Y )+b̃p(t)h+g̃p(t))]

}
,

which is equivalent to

sup
p

{
− λ(1 + θ)pE[Y ]ãp(t)− λ

γ
E[eγã

p(t)(1−p)Y ]

}
.
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Define fp̃(p) = −λ(1 + θ)pE[Y ]ãp(t) − λ
γ
E[eγã

p(t)(1−p)Y ]. Following the similar argument

for fp(p) as in Proposition 2.4.3, we have that if f ′p̃(0) > 0, then the unique solution p̃∗

satisfies (2.15), and p̃∗ = 0 otherwise.

Plugging (A.42) and(A.40) into (A.39), we have

0 = x[(ãp(t))′ + rãp(t)− (ãp(t))2]

+(g̃p(t))′ − ãp(t)g̃p(t) +
λ+ δ

γ
+ {ln[ãp(t)]− 1} ã

p(t)

γ

−λ(1 + θ)p̃∗E[Y ]ãp(t)− λ

γ
E[eγã

p(t)(1−p̃∗)Y ].

By separation of variables, we have the following ODE system

(ãp(t))′ + rãp(t)− (ãp(t))2 = 0, ãp(T ) = 1,

(g̃p(t))′ − ãp(t)g̃p(t) +
λ+ δ

γ
+ {ln[ãp(t)]− 1} ã

p(t)

γ

−λ(1 + θ)p̃∗(t)E[Y ]ãp(t)− λ

γ
E[eγã

p(t)(1−p̃∗(t))Y ], g̃p(T ) = − ln(w)

γ
. (A.43)

Note that ãp(t) satisfies the same ODE as (A.31), we claim that ãp(t) = ã(t) for all
t ∈ [0, T ]. We only need to solve the ODE (A.43) for g̃p(t). We have

d(e
∫ T
t ãp(s)dsg̃p(t)) = −e

∫ T
t ãp(s)ds

{
λ+ δ

γ
+ {ln[ãp(t)]− 1} ã

p(t)

γ

−λ(1 + θ)p̃∗(t)E[Y ]ãp(t)− λ

γ
E[eγã

p(t)(1−p̃∗(t))Y ]

}
,

whose solution is given by (2.16).

A.9 Proof of Corollary 2.4.4

From the proof of Corollary 2.4.2, we know that ã(t) = 1/J̃(t) is strictly increasing in
[0, T ]. The proof for the monotonicity of p̃∗(t) is similar to that of Corollary 2.4.3.

In the following part, we compare the p̃∗(t) with p∗(t). Because ã(T ) = a(T ) = 1, we
have p̃∗(T ) = p∗(T ).

For t ∈ [0, T ), because J(t) > J̃(t) due to Proposition 2.4.2, we have a(t) = 1/J(t) <

1/J̃(t) = ã(t). Therefore, E[eγa(t)Y Y ] < E[eγã(t)Y Y ] for any t ∈ [0, T ]. There are three
cases.
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1. If (1 + θ)E[Y ] < E[eγa(t)Y Y ] < E[eγã(t)Y Y ], then

E[eγa(t)(1−p∗(t))Y Y ] = (1 + θ)E[Y ] = E[eγã(t)(1−p̃∗(t))Y Y ].

Because a(t) < ã(t), 0 < p∗(t) < p̃∗(t).

2. If E[eγa(t)Y Y ] ≤ (1 + θ)E[Y ] < E[eγã(t)Y Y ], then p∗(t) = 0 < p̃∗(t).

3. If E[eγa(t)Y Y ] < E[eγã(t)Y Y ] ≤ (1 + θ)E[Y ], then p∗(t) = p̃∗(t) = 0.

A.10 Proof of Proposition 2.5.1

From (2.17), we have

−1

γ
e−γ(a(t)x+b(t)h+g(t)) = −1

γ
e−γ(a(t)(x+zp)+b(t)h+gp(t)).

Solving for zp, we have

zp(t) =
g(t)− gp(t)

a(t)
.

Substituting g(t) and gp(t), we have zp(t) follows (2.18).

A.11 Proof of Proposition 2.5.2

Substituting I(Y ) = 0 into (2.4), we have

V 0
t − (λ+ δ)V 0 + rxV 0

x − βhV 0
h

+ sup
c
{U1(c, h)− cV 0

x + αcV 0
h }+ λE[V 0(t, x− Y, h)] = 0, (A.44)

with the boundary condition

V 0(T, x, h) = U2(x) = −ω
γ
e−γx.

We make the ansatz

V 0(t, x, h) = −1

γ
e−γ(a0(t)x+b0(t)h+g0(t)). (A.45)
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We immediately have

a0(T ) = 1, b0(T ) = 0, g0(T ) = − ln(w)

γ
.

The first-order condition with respect to c gives

∂U1(c0, h)

∂c
− V 0

x + αV 0
h = 0,

and we have

c0
t = −1

γ
ln[a0(t)− αb0(t)] + a0(t)X0

t + (b0(t) + 1)h0
t + g0(t). (A.46)

Substituting (A.45) and (A.46) into (A.44), we have

0 = x[(a0(t))′ + ra0(t)− (a0(t)− αb0(t))a0(t)]

+h[(b0(t))′ − βb0(t)− (a0(t)− αb0(t))(b0(t) + 1)]

+(g0(t))′ − (a0(t)− αb0(t))g0(t) +
λ+ δ

γ
+ {ln[a0(t)− αb0(t)]− 1}a

0(t)− αb0(t)

γ

−λ
γ

∫ ∞
0

eγa
0(t)ydF (y).

By separation of variables, we have the following ODE system

(a0(t))′ + ra0(t)− (a0(t)− αb0(t))a0(t) = 0, a0(T ) = 1,

(b0(t))′ − βb0(t)− (a0(t)− αb0(t))(b0(t) + 1) = 0, b0(T ) = 0,

(g0(t))′ − (a0(t)− αb0(t))g0(t) +
λ+ δ

γ
+ {ln[a0(t)− αb0(t)]− 1}a

0(t)− αb0(t)

γ

−λ
γ

∫ ∞
0

eγa
0(t)yf(y)dy = 0, g0(T ) = − ln(w)

γ
. (A.47)

Note that a0(t) and b0(t) satisfy the same ODEs as (A.5) and (A.6), we claim that
a0(t) = a(t) and b0(t) = b(t) for all t ∈ [0, T ]. We only need to solve the ODE (A.47) for
g0(t). After simplifying, we have

d(e
∫ T
t a0(s)−αb0(s)dsg0(t))

= −e
∫ T
t a0(s)−αb0(s)ds

{
λ+ δ

γ
+ {ln[a0(t)− αb0(t)]− 1}a

0(t)− αb0(t)

γ

−λ
γ

∫ ∞
0

eγa
0(t)yf(y)dy

}
,

whose solution is given by (2.19).
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A.12 Proof of Proposition 2.5.3

From (2.20), we have

−1

γ
e−γ(a(t)x+b(t)h+g(t)) = −1

γ
e−γ(a(t)(x+z0)+b(t)h+g0(t)).

Solving for z0, we have

z0(t) =
g(t)− g0(t)

a0(t)
.

Substituting g(t) and g0(t), we have z0(t) follows (2.21).
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Appendix B

Proofs for Chapter 3

B.1 Proof of Proposition 3.3.1

Proof. We substitute the candidate solution G(t,W C̃
t , Xt) into HJB equation (3.21) to

verify the result. The derivatives of candidate solution are given by

∂G

∂t
=

γ

1− γ

(
f1

W C̃
t

)γ−1
∂f1

∂t
,

∂G

∂wC̃
=

(
f1

W C̃
t

)γ
,

∂G

∂X>
=

γ

1− γ

(
f1

W C̃
t

)γ−1
∂f1

∂X>
,

∂2G

(∂wC̃)2
= −γ(W C̃

t )−γ−1fγ1 ,

∂2G

∂wC̃∂X>
= γ(W C̃

t )−γfγ−1
1

∂f1

∂X>
,

∂2G

∂X>∂X
= −γ(wC̃)1−γfγ−2

1

∂f1

∂X>
∂f1

∂X
+

γ

1− γ
(wC̃)1−γfγ−1

1

∂2f1

∂X>∂X
.

Plug these derivatives into the right-hand side of (3.21), we have

(W C̃
t )1−γfγ−1

1

{
µx+tγ

1− γ
(1− f1) +

γ

1− γ
∂f1

∂t
+ (δr + e>1 Xt)f1 −

γ

1− γ
∂f1

∂X
KXXt
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+
1

2γ

[
f1(Λ>0 +X>t Λ>1 − σ>Π)(Λ0 + Λ1Xt − σΠ) + 2γ

∂f1

∂X
ΣX(Λ0 + Λ1Xt − σΠ)

]
+

1

2

γ

1− γ
Tr

(
Σ>X

∂2f1

∂X>∂X
ΣX

)}
. (B.1)

After some tedious calculation, we simplify (B.1) to the following form

− γ

1− γ
(W C̃

t )1−γfγ−1
1

{∫ T
t
e−

∫ s
t µx+uduµx+sf(Xt, s− t)f2(Xt, s− t)ds

+e−
∫ T
t µx+sdsf(Xt, T − t)f2(Xt, T − t)

}
, (B.2)

where

f2(Xt, τ) =
∂Γ0(τ)

∂τ
− 1

2
[Γ1(τ)]>ΣXΣ>XΓ1(τ)− 1− γ

γ
[Γ1(τ)]>ΣX(Λ0 − σΠ)

−1

2
Tr{Σ>XΓ2(τ)ΣX} −

1− γ
γ

δr −
1− γ
2γ2

(Λ>0 − σ>Π)(Λ0 − σΠ)

+X>t

{
∂Γ1(τ)

∂τ
− Γ2(τ)ΣXΣ>XΓ1(τ)−

[
1− γ
γ

Λ>1 Σ>X −K>X
]
Γ1(τ)

−1− γ
γ

Γ2(τ)ΣX(Λ0 − σΠ)− 1− γ
γ2

Λ>1 (Λ0 − σΠ)− 1− γ
γ

e1

}
+

1

2
X>t

{
∂Γ2(τ)

∂τ
− Γ2(τ)

[
1− γ
γ

ΣXΛ1 −KX

]
−
[

1− γ
γ

Λ>1 Σ>X −K>X
]
Γ2(τ)− Γ2(τ)ΣXΣ>XΓ2(τ)− 1− γ

γ2
Λ>1 Λ1

}
Xt.

Substitute ODEs (3.25)-(3.27) into (B.2), we have (B.2) equals zero. Therefore, G(t,WR
t , Xt)

is the candidate solution to HJB (3.21). Finally, plug G(t,WR
t , Xt) into (3.19) and (3.20),

we can derive the optimal strategies (3.28) and (3.29).
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B.2 Proof of Proposition 3.3.2

We extend the methods in Theorem 4.1.4. and Theorem 4.1.6. of Abou-Kandil et al.
(2012) from their backward HRDE with the terminal value to our forward HRDE case
with the initial value. Moreover, we restrict their comparison theorem from a semi-definite
matrix case to a definite matrix case.

To begin with, we prove the following lemmas to deduce the comparison theorem.

Lemma B.2.1. ∂Y (t)
∂t
≥ (or >) 0 for Y ∈ Cn×n and t ∈ [t1, t2], implies Y (t2) ≥ (or >

) Y (t1).

Proof. With h(t, y) = y>Y (t)y for (t, y) ∈ [t1, t2]× Cn, we have

∂h(t, y)

∂t
≥ (or >)0,

for t ∈ [t1, t2] and y 6= 0. Then, the mean value theorem shows

0 ≤ (or < 0)h(t2, y)− h(t1, y) = y>[Y (t2)− Y (t1)]y,

for y 6= 0, which proves the lemma.

Lemma B.2.2. If Y is a Hermitian solution of the Lyapunov differential inequality

∂Y

∂t
> A(t)Y + Y A>(t), t ∈ [0, T ], (B.3)

then Y (0) ≥ 0 implies Y (t) > 0 on (0, T ].

Proof. Define Φ−A> , the fundamental matrix of −A>, by property (see Theorem 1.1.1. in
Abou-Kandil et al. (2012)), we have

∂

∂t
Φ−A>(t, τ) = −A>(t)Φ−A>(t, τ),

and
∂

∂t
Φ>−A>(t, τ) = −Φ>−A>(t, τ)A(t),

where Φ−A>(t, t) = Ĩn, t, τ ∈ [0, T ], 0 ≤ t ≤ τ ≤ T .
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Let P (t, τ) := Φ>−A>(t, τ)Y (t)Φ−A>(t, τ), then we infer from Y (0) ≥ 0 that

P (0, τ) ≥ 0, for t ≤ τ.

Fix t ≤ τ , we have

∂P (t, τ)

∂t
= Φ>−A>(t, τ)

{
− A(t)Y (t) +

∂Y (t)

∂t
− Y (t)A>(t)

}
Φ−A>(t, τ) > 0,

then by (B.3) and Lemma B.2.1, we have P (t, τ) is strictly increasing from 0 to τ with
respect to t. Since P (0, τ) ≥ 0, we have

P (t, τ) > 0, for 0 < t ≤ τ ≤ T.

Let τ move to t, we have

Y (t) = P (t, t) > 0, for t ∈ (0, T ],

which completes the proof.

Consider two Hamiltonian matrices

Hi(t) =

(
−Ãi(t) S̃i(t)

Q̃i(t) Ã>i (t)

)
, i = 1, 2,

where Ãi, S̃i, Q̃i : R→ Cn×n, S̃i(t) = S̃>i (t) and Q̃i(t) = Q̃>i (t). Define

J(t) =

(
0 Ĩn
−Ĩn 0,

)
,

where Ĩn is the n-th order identity matrix.

Then, we have two Hermitian Riccati differential equations can be written as

∂Yi(t)

∂t
= Ã>i (t)Y (t) + Y (t)Ãi(t) + Q̃i(t)− Y (t)S̃i(t)Y (t)

= (Ĩn, Y )JHi(t)

(
Ĩn
Y

)
= H(Y ;Hi).
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Lemma B.2.3. (Comparison theorem for HRDEs) Suppose that the matrix func-
tions Hi, i = 1, 2 be piecewise continuous and locally bounded on [0, T ]. If Yi, i = 1, 2 are
on [0, T ] the solutions of

∂Yi(t)

∂t
= Ã>i (t)Yi(t) + Yi(t)Ãi(t) + Q̃i(t)− Yi(t)S̃i(t)Yi(t),

with

Y1(0) ≤ Y2(0),

JH1(t) < JH2(t), for t ∈ [0, T ],

then Y1(t) < Y2(t) for t ∈ (0, T ].

Proof. Denote Ȳ = Y2 − Y1, then

∂Ȳ

∂t
= Ã>2 Y2 + Y2Ã2 + Q̃2 − Y2S̃2Y2

−Ã>1 Y1 − Y1Ã1 − Q̃1 + Y1S̃1Y1

= −(Y2 − Y1)S̃2(Y2 − Y1)− Y1S̃2(Y2 − Y1)− (Y2 − Y1)S̃2Y1 + Ã>2 (Y2 − Y1)

+(Y2 − Y1)Ã2 + [(Ã2 − Ã1)>Y1 + Y1(Ã2 − Ã1) + (Q̃2 − Q̃1)− Y1(S̃2 − S̃1)Y1]

= ÃȲ + Ȳ Ã> +H(Y1;H2 −H1),

with Ã = −1
2
Ȳ S̃2−Y1S̃2 + Ã>2 . Since JH1(t) < JH2(t), we have H(Y1;H2−H1) > 0, then

∂Ȳ (t)

∂t
> ÃȲ + Ȳ Ã, Ȳ (0) ≥ 0.

By Lemma B.2.2, we have Ȳ (t) := Y2(t) − Y1(t) > 0 for t ∈ (0, T ], which completes the
proof.

Lemma B.2.4. Suppose that the HRDE

∂Y

∂t
= Ã>(t)Y + Y Ã+ Q̃(t)− Y S̃(t)Y, Y (0) = 0,

has piecewise continuous and locally bounded coefficients, if S̃(t), Q̃(t) < 0 for t ∈ [0, T ],
then the unique solution Y exists for t ∈ [0, T ] and

Ỹ (t) < Y (t) < 0, for t ∈ (0, T ].

Here, Ỹ is the solution of

∂Ỹ

∂t
= Ã>(t)Ỹ + Ỹ Ã(t) + 2Q̃(t), Ỹ (0) = 0.
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Proof. Define the 3rd HRDE with respect to Y0(t)

∂Y0

∂t
= Ã>(t)Y0 + Y0Ã(t)− 2Y0S̃(t)Y0, Y0(0) = 0.

For Y (t), Ỹ (t) and Y0(t), we have the following matrices respectively

JH(t) =

(
Q̃(t) Ã>(t)

Ã(t) −S̃(t)

)
, JH̃(t) =

(
2Q̃(t) Ã>(t)

Ã(t) 0

)
, JH0(t) =

(
0 Ã>(t)

Ã(t) −2S̃(t)

)
,

Since S̃(t), Q̃(t) < 0 for t ∈ [0, T ], we have

Ỹ (0) = Y (0), JH̃ < JH.

Then, by Lemma B.2.3, we obtain Ỹ (t) < Y (t) for t ∈ (0, T ]. Similarly, between Y (t) and
Y0(t), we have Y (0) = Y0(0) and JH < JH0. Therefore, Y (t) < Y0(t) = 0 for t ∈ (0, T ].

In general,
Ỹ (t) < Y (t) < 0 for t ∈ (0, T ].

Since Ỹ (t) satisfies a linear ODE, the boundness of Y (t) is guaranteed.

Due to γ > 1, ΣXΣ>X > 0, and Λ>1 Λ1 > 0, we have Z0 < 0 and −Z2 < 0 for any
t ∈ [0, T ]. By Lemma B.2.4, the solution to ODE (3.30) exists in [0, T ], so does ODE
(3.25).

B.3 Proof of Proposition 3.3.3

Substituting y = λ− b
4

into (3.34), we derive the reduced form

fy(y) = y4 + qy2 + ry + s,

where

q =
8c− 3b2

8
,

r =
b3 − 4bc+ 8d

8
,

s =
−3b4 + 256j − 64bd+ 16b2c

256
.
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Moreover, the discriminant of fy(y) is given by

∆̃ = −4q3r2 − 27r4 + 256s3 + 16q4s+ 144qr2s− 128q2s2.

According to Rees (1922), once conditions (3.35) satisfied, (3.34) has 4 distinct real roots,
i.e. the Hamiltonian matrix H has 4 different real eigen-values, which guarantees its
diagonalizability and the full rank of its eigen-vector matrix V .

Finally, by Radon’s lemma (see Theorem 3.1.1. in Abou-Kandil et al. (2012)), we have
Γ2(τ) = P (τ)/Q(τ) and the existence and negative definiteness of Γ2(τ) from (3.36).

B.4 Proof of Lemma 3.3.1

Proof. Inspired by the Lemma 4.1.1. in Bensoussan (2004), we extend their result to the

case where X̃t and E(t, g̃) share the same Brownian motion.

First, we prove the following bounded result

E[E(t, g̃)||X̃t||22] <∞. (B.4)

By Ito’s formula, we have

d||X̃t||22 = d(X̃>t X̃t)

= 2X̃>t σ(t)dZ̃t + {2X̃>t µ(t, X̃t) + Tr[σ>(t)σ(t)]}dt,
d(E(t, g̃)||X̃t||22) = ||X̃t||22E(t, g̃)g̃>(t, X̃t)dZ̃t + 2E(t, g̃)X̃>t σ(t)dZ̃t

+E(t, g̃){2X̃>t µ(t, X̃t) + Tr[σ>(t)σ(t)] + 2X̃>t σ(t)g̃(t, X̃t)}dt.

Then, for
E(t,g̃)||X̃t||22

1+εE(t,g̃)||X̃t||22
, ε ≥ 0, we can derive its differential

d

(
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

)
=

d(E(t, g̃)||X̃t||22)

[1 + εE(t, g̃)||X̃t||22]2
− εd(E(t, g̃)||X̃t||22)d(E(t, g̃)||X̃t||22)

[1 + εE(t, g̃)||X̃t||22]3
.

Thus,

d

(
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

)
≤ d(E(t, g̃)||X̃t||22)

1 + εE(t, g̃)||X̃t||22
. (B.5)
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Integrate both sides of (B.5) over (0, t), take expectation and then take the first-order
derivative with respect to t, we have

d

dt
E

[
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

]
≤ E

{
E(t, g̃)

1 + εE(t, g̃)||X̃t||22

[
2X̃>t µ(t, X̃t) + Tr[σ>(t)σ(t)]

+2X̃>t σ(t)g̃(t, X̃t)
]}

. (B.6)

For each term in (B.6), we can derive the following estimates

2X̃>t µ(t, X̃t) ≤ 2|X̃>t µ(t, X̃t)|
≤ 2||X̃t||2||µ(t, X̃t)||2
≤ 2||X̃t||2(c0 + c1||X̃t||2)

≤ c2 + c3||X̃t||22,
Tr[σ>(t)σ(t)] ≤ c4,

2X̃>t σ(t)g̃(t, X̃t) ≤ 2|X̃>t σ(t)g̃(t, X̃t)|
≤ 2||X̃>t ||2||σ(t)||2||g̃(t, X̃t)||2
≤ 2||X̃t||2(c5 + c6||X̃t||2)

≤ c7 + c8||X̃t||22,

where c0 to c8 are some constants, and the boundedness of Tr[σ>(t)σ(t)] is due to the
continuity of σ(t) over [0, T ]. Therefore, (B.6) is bounded by

d

dt
E

[
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

]
≤ E

{
E(t, g̃)(c9 + c10||X̃t||22)

1 + εE(t, g̃)||X̃t||22

}

≤ c10E

{
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

}
+ c9E {E(t, g̃)}

≤ c10E

{
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

}
+ c9, (B.7)

where c9 and c10 are some constants. The third inequality holds because E(t, g̃) is a
super-martingale such that E {E(t, g̃)} ≤ 1. And by Gronwall inequality, we derive the

boundedness of E

[
E(t,g̃)||X̃t||22

1+εE(t,g̃)||X̃t||22

]
. Finally, since

E(t,g̃)||X̃t||22
1+εE(t,g̃)||X̃t||22

≥ 0 and ε ≥ 0 , we can derive
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(B.4) by Fatou’s lemma

E[E(t, g̃)||X̃t||22] ≤ lim
ε→0

E

[
E(t, g̃)||X̃t||22

1 + εE(t, g̃)||X̃t||22

]
<∞.

Next, we construct the structure E(t,g̃)
1+εE(t,g̃)

, ε ≥ 0, and take its differential

d
E(t, g̃)

1 + εE(t, g̃)
=

d(E(t, g̃))

[1 + εE(t, g̃)]2
− εE2(t, g̃)

[1 + εE(t, g̃)]3
g̃>(t, X̃t)g̃(t, X̃t)dt. (B.8)

Integrate (B.8) from 0 to t and take expectation, we have

E

[
E(t, g̃)

1 + εE(t, g̃)

]
=

1

1 + ε
− E

[ ∫ t

0

εE2(s, g̃)

[1 + εE(s, g̃)]3
g̃>(s, X̃s)g̃(s, X̃s)ds

]
, ε ≥ 0.(B.9)

For the integrand in the right-hand side of (B.9), we can control it by

εE2(s, g̃)

[1 + εE(s, g̃)]3
g̃>(s, X̃s)g̃(s, X̃s) =

εE(s, g̃)

1 + εE(s, g̃)

1

[1 + εE(s, g̃)]2
E(s, g̃)g̃>(s, X̃s)g̃(s, X̃s)

≤ E(s, g̃)g̃>(s, X̃s)g̃(s, X̃s)

≤ E(s, g̃)(c11 + c12||X̃s||2)2

≤ E(s, g̃)[c13 + c14||X̃s||22],

where c11 to c14 are some constants. Then, from (B.4) and E {E(s, g̃)} ≤ 1, we obtain

E{E(s, g̃)[c13 + c14||X̃s||22]} <∞.

Finally, we can use Lebesgue’s dominated convergence theorem to the right-hand side of
(B.9) when ε → 0. Moreover, E(t,g̃)

1+εE(t,g̃)
is increasing as ε → 0, the monotone convergence

theorem can be applied to the left-hand side of (B.9).

In general, when ε→ 0, (B.9) implies E {E(t, g̃)} = 1, which completes the proof.
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B.5 Proof of Proposition 3.3.4

Proof. The parameter settings in Proposition 3.3.3 guarantees the global existence of
HRDE (3.25), and thus ensures the global existence of G(t,W C̃

t , Xt) in (3.22). Then,
we make the following preparations before the proof of verification theorem.

To begin with, for any (βt, It) ∈ Aγ(0, T ), we define the value process

gβ,I(s,W C̃
s , Xs) :=

∫ s

t
u−tpx+tµx+uU

(
W C̃
u − C̃(u,Xu) +

Iu
µx+u

)
du

+s−tpx+tG(s,W C̃
s , Xs), s ∈ [t, T ]. (B.10)

By Ito’s formula, we have

dgβ,I(s,W C̃
s , Xs) = s−tpx+t

{
µx+sU

(
W C̃
s − C̃(s,Xs) +

Is
µx+s

)
− µx+sG(s,W C̃

s , Xs)

+Dβ,IG(s,W C̃
s , Xs)

}
ds+ gβ,I(s,W C̃

s , Xs)h
β,I(s,W C̃

s , Xs)dZs,(B.11)

where

Dβ,IG(s,W C̃
s , Xs) =

∂G

∂s
+

∂G

∂W C̃
{W C̃

s [rs + (β>s Σ− σ>Π)(Λs − σΠ)] + µx+sC̃(s,Xs)− Is}

− ∂G
∂X

KXXs +
1

2

∂2G

∂(W C̃)2
(W C̃

s )2(β>s Σ− σ>Π)(Σ>βs − σΠ)

+W C̃
s

∂2G

∂X∂W C̃
ΣX(Σ>βs − σΠ) +

1

2
Tr

(
Σ>X

∂2G

∂X>∂X
ΣX

)
,

hβ,I(s,W C̃
s , Xs) =

s−tpx+tG(s,W C̃
s , Xs)

gβ,I(s,W C̃
s , Xs)

[
(1− γ)(β>s Σ− σ>Π) + γ

1

f1

∂f1

∂X
ΣX

]
. (B.12)

Next, fix (t, wR, X) ∈ [0, T ] × [0,∞) × R2 and denote the conditional expectation of
the value process as

J(t, wC̃ , X) :=

Et,wC̃ ,X

[ ∫ T

t
s−tpx+tµx+sU

(
W C̃
s − C̃(s,Xs) +

Is
µx+s

)
ds+ T−tpx+tU(W C̃

T )

]
,(B.13)

where Et,wC̃ ,X [·] is short for E[·|W C̃
t = wC̃ , Xt = X]. Then, we have

V (t,W C̃
t , Xt) = sup

(β,I)∈Aγ(0,T )

J(t,W C̃
t , Xt). (B.14)
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Finally, we can prove the verification theorem by the following three steps:

Step 1: Verify the optimal strategy (β∗, I∗) belongs to the admissible set Aγ(0, T ).

Substitute (3.28) and (3.29) into (3.16), we have

d(W C̃
t )∗ = (W C̃

t )∗
{
rt+µx+t

(
1− 1

f1(t,Xt)

)
+(ηt)

>(Λt−σΠ)

}
dt+(W C̃

t )∗(ηt)
>dZt,

(B.15)
where (ηt)

> = 1
γ
(Λ>t − σ>Π) + 1

f1

∂f1
∂X

ΣX . Then

(W C̃
t )∗ = W C̃

0 exp

{∫ t

0

[
rs + µx+s

(
1− 1

f1(s,Xs)

)
+ η>s (Λs − σΠ)

−1

2
η>s ηs

]
ds+

∫ t

0

η>s dZs

}
> 0. (B.16)

Since the drift term and volatility term of SDE (B.15) are almost surely sample
continuous, then on any bounded interval [0, t], t ∈ [0, T ], we have

∫ t
0

∣∣∣rs + µx+s

(
1− 1

f1(s,Xs)

)
+ (ηs)

>(Λs − σΠ)
∣∣∣ds <∞,∫ t

0
(ηs)

>ηsds <∞.

By Proposition 1.1 in Kraft (2004), we derive SDE (3.16) has a unique strong
solution under (β∗, I∗).
From all things above, we show that (β∗t , I

∗
t ) ∈ Aγ(0, T ).

Step 2: Verify J(t,W C̃
t , Xt) ≤ G(t,W C̃

t , Xt) for any (β, I) ∈ Aγ(0, T ).

Define

Ψ(s) :=

∫ s

t

||gβ,I(u,W C̃
u , Xu)h

β,I(u,W C̃
u , Xu)||22du,

and τn := T∧inf{s ∈ [t, T ]|Ψ(s) ≥ n}, n ∈ N. For s ∈ [t, τn], we have the stochastic

integral
∫ s
t
gβ,I(u,W C̃

u , Xu)h
β,I(u,W C̃

u , Xu)dZ(u) is a martingale.

Then, following (3.18) and (B.11), we have

gβ,I(τn,W
C̃
τn , Xτn) ≤ gβ,I(t,W C̃

t , Xt)

+

∫ τn

t

gβ,I(s,W C̃
s , Xs)h

β,I(s,W C̃
s , Xs)dZs. (B.17)
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Since lim
n→∞

τn = T and gβ,I(t,W C̃
t , Xt) ≥ 0 for any t ∈ [0, T ] under 0 < γ < 1, we

can use the Fatou’s lemma and derive the following inequality

J(t, wC̃ , X)

= Et,wC̃ ,X

[ ∫ T

t
s−tpx+tµx+sU

(
W C̃
s − C̃(s,Xs) +

Is
µx+s

)
ds+ T−tpx+tU(W C̃

T )

]
= Et,wC̃ ,X [gβ,I(T,W C̃

T , XT )]

≤ lim
n→∞

Et,wC̃ ,X [gβ,I(τn,W
C̃
τn , Xτn)]

≤ gβ,I(t, wC̃ , X)

= G(t, wC̃ , X), for ∀(β, I) ∈ Aγ(0, T ), (B.18)

where the first inequality is by the Fatou’s lemma, the second inequality is deduced
by taking conditional expectation on both sides of (B.17), and the last equality
holds by the definition of value process (B.10).

Step 3: Verify V (t,W C̃
t , Xt) = G(t,W C̃

t , Xt) under the optimal strategy (β∗, I∗).

Since (β∗t , I
∗
t ) maximizes the HJB (3.18) and G(t,W C̃

t , Xt) is the solution to (3.18),
we have

dgβ
∗,I∗(s, (W C̃

s )∗, Xs) = gβ
∗,I∗(s, (W C̃

s )∗, Xs)h
β∗,I∗(s, (W C̃

s )∗, Xs)
>dZs, s ∈ [t, T ],

where

hβ
∗,I∗(s, (W C̃

s )∗, Xs) =
s−tpx+tG(s, (W C̃

s )∗, Xs)

gβ∗,I∗(s, (W C̃
s )∗, Xs)

[
1− γ
γ

(Λ>s − σ>Π) +
1

f1

∂f1

∂X
ΣX

]
.

(B.19)
Solving it by Ito’s formula, we have the optimal value process

gβ
∗,I∗(s′, (W C̃

s′ )
∗, Xs′) = gβ

∗,I∗(s, (W C̃
s )∗, Xs)

E(s′, hβ
∗,I∗)

E(s, hβ∗,I∗)
, s′ ∈ [s, T ], (B.20)

where

E(t, h) := exp

{∫ t

0

h(s, (W C̃
s )∗, Xs)

>dZs −
1

2

∫ t

0

||h(s, (W C̃
s )∗, Xs)||22ds

}
.

If hβ
∗,I∗ satisfies the linear growth condition, we can use Lemma 3.3.1 to prove

E[E(t, h)] = 1 and thus E(t, h) is a martingale. We split (B.19) into the following
parts to prove it satisfies linear growth when 0 < γ < 1.
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(a) Under 0 < γ < 1, we have G(s, (W C̃
s )∗, Xs) > 0 for ∀s ∈ [t, T ]. Since U ′(0) =

+∞, 0 < γ < 1, we obtain (W C̃
u )∗ − C̃(u,Xu) + I∗u

µx+u
> 0 and U

(
(W C̃

u )∗ −

C̃(u,Xu) + I∗u
µx+u

)
> 0 for ∀u ∈ [t, s]. Then, the following inequality holds by

the definition of the value process (B.10)∣∣∣∣ s−tpx+tG(s, (W C̃
s )∗, Xs)

gβ∗,I∗(s, (W C̃
s )∗, Xs)

∣∣∣∣ ≤ 1, for ∀s ∈ [t, T ].

(b) Since Λs = Λ0 + Λ1Xs, a direct result is∣∣∣∣∣∣∣∣1− γγ (Λ>s − σ>Π)

∣∣∣∣∣∣∣∣
2

≤ c0(1 + ||Xs||2),∀s ∈ [t, T ],

for some constant c0

(c) For 1
f1

∂f1
∂X

ΣX term, we have

∂f1(s,Xs)

∂X
=

∫ T

s
u−spx+sµx+uf(Xs, u− s)[Γ>1 (u− s) +X>s Γ2(u− s)]du

+T−spx+sf(Xs, T − s)[Γ>1 (T − s) +X>s Γ2(T − s)].

Under 0 < γ < 1, once Γ1(τ) and Γ2(τ) exist in [0, T ], i.e. under the setting
of Proposition 3.3.3, we can obtain∣∣∣∣∣∣∣∣∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ f1c1(1 + ||Xs||2),

for some constant c1. Then∣∣∣∣∣∣∣∣ 1

f1

∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ 1

f1

∣∣∣∣∣∣∣∣∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ c1(1 + ||Xs||2).

In general, we have proved hβ
∗,I∗(s, (W C̃

s )∗, Xs) is subject to linear growth with
respect to Xt. Therefore, by Lemma 3.3.1, E(t, h) is a martingale. Then, by
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(B.20), we have the inequality for G(t, wC̃ , X)

V (t, wC̃ , X)

≥ Et,wC̃ ,X

[ ∫ T

t
s−tpx+tµx+sU

(
(W C̃

s )∗ − C̃(s,Xs) +
I∗s
µx+s

)
ds

+T−tpx+tU((W C̃
T )∗)

]
= Et,wC̃ ,X [gβ

∗,I∗(T, (W C̃
T )∗, XT )]

= Et,wC̃ ,X

[
gβ
∗,I∗(t, wC̃ , X)

E(T, hβ
∗,I∗)

E(t, hβ∗,I∗)

]
= G(t, wC̃ , X). (B.21)

Combining (B.18), (B.21), and (B.14), we show that G(t,W C̃
t , Xt) = V (t,W C̃

t , Xt),
and (β∗, I∗) given by (3.28) and (3.29) is the optimal portfolio and insurance
strategy.

B.6 Proof of Proposition 3.3.5

Proof. For γ > 1, Proposition 3.3.2 guarantees the global existence of HRDE (3.25), and

thus ensures the global existence of G(t,W C̃
t , Xt) in (3.22). Then, similarly to Appendix

B.5, we follow three steps to prove the verification theorem.

Step 1: Verify the optimal strategy (β∗, I∗) belongs to the admissible set Aγ(0, T ).

Recall from (3.28)

β∗t =
(Σ>)−1

γ
(Λt − σΠ) + (Σ>)−1Σ>X

1

f1

∂f1

∂X>
+ (Σ>)−1σΠ.

The terms (Λt − σΠ) and 1
f1

∂f1
∂X>

satisfy linear growth according to the proofs in

Step 3: (b) and (c) of Appendix B.5. Moreover, similar to the Step 1 in Appendix
B.5, we can show that SDE (3.16) has a unique strong solution under (β∗, I∗).
From all things above, we have (β∗t , I

∗
t ) ∈ Aγ(0, T ).
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Step 2: Verify J(t,W C̃
t , Xt) ≤ G(t,W C̃

t , Xt) for any (β, I) ∈ Aγ(0, T ), where J(t,W C̃
t , Xt)

is given by (B.13).

Following (3.18) and (B.11), we have

gβ,I(T,W C̃
T , XT ) ≤ gβ,I(t,W C̃

t , Xt)
E(T, hβ,I)

E(t, hβ,I)
, (B.22)

Recall from (B.12), hβ,I(s,W C̃
s , Xs), s ∈ [t, T ] is given by

hβ,I(s,W C̃
s , Xs) =

s−tpx+tG(s,W C̃
s , Xs)

gβ,I(s,W C̃
s , Xs)

[
(1− γ)(β>s Σ− σ>Π) + γ

1

f1

∂f1

∂X
ΣX

]
.

We split (B.12) into the following parts to prove it satisfies linear growth with
respect to Xt when γ > 1.

(a) Under γ > 1, we have G(s,W C̃
s , Xs) < 0 for ∀s ∈ [t, T ]. Since U ′(0) =

+∞, for a reasonable individual, we have W C̃
u − C̃(u,Xu) + Iu

µx+u
> 0 and

U

(
W C̃
u − C̃(u,Xu) + Iu

µx+u

)
< 0 for ∀u ∈ [t, s]. Then, the following inequality

holds by the definition of the value process (B.10)∣∣∣∣ s−tpx+tG(s,W C̃
s , Xs)

gβ,I(s,W C̃
s , Xs)

∣∣∣∣ ≤ 1, for ∀s ∈ [t, T ].

(b) Since (βt, It) ∈ Aγ(0, T ), by the definition of Aγ(0, T ), we have (1−γ)(β>s Σ−
σ>Π) follows a linear growth with respect to Xt.

(c) For 1
f1

∂f1
∂X

ΣX term, we have

∂f1(s,Xs)

∂X
=

∫ T

s
u−spx+sµx+uf(Xs, u− s)[Γ>1 (u− s) +X>s Γ2(u− s)]du

+T−spx+sf(Xs, T − s)[Γ>1 (T − s) +X>s Γ2(T − s)].

Under γ > 1, once Γ1(τ) and Γ2(τ) exist in [0, T ], i.e. under the setting of
Proposition 3.3.3, we can obtain∣∣∣∣∣∣∣∣∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ f1c0(1 + ||Xs||2),

for some constant c0. Then∣∣∣∣∣∣∣∣ 1

f1

∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ 1

f1

∣∣∣∣∣∣∣∣∂f1

∂X

∣∣∣∣∣∣∣∣
2

≤ c0(1 + ||Xs||2).
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In general, we have proved hβ,I(s,W C̃
s , Xs) is subject to linear growth with respect

to Xt. Therefore, by Lemma 3.3.1, E(t, h) is a martingale. Hence,

J(t, wC̃ , X)

= Et,wC̃ ,X

[ ∫ T

t
s−tpx+tµx+sU

(
W C̃
s − C̃(s,Xs) +

Is
µx+s

)
ds+ T−tpx+tU(W C̃

T )

]
= Et,wC̃ ,X [gβ,I(T,W C̃

T , XT )]

≤ Et,wC̃ ,X

[
gβ,I(t, wC̃ , X)

E(T, hβ,I)

E(t, hβ,I)

]
= G(t, wC̃ , X), for ∀(β, I) ∈ Aγ(0, T ). (B.23)

Step 3: Verify V (t,W C̃
t , Xt) = G(t,W C̃

t , Xt) under the optimal strategy (β∗, I∗).

The proof of this step is the same as that in Step 3 of Appendix B.5 except for
part (a): Under γ > 1, we have G(s, (W C̃

s )∗, Xs) < 0 for ∀s ∈ [t, T ]. Since

U ′(0) = +∞, γ > 1, we have (W C̃
u )∗ − C̃(u,Xu) + I∗u

µx+u
> 0 and U

(
(W C̃

u )∗ −

C̃(u,Xu) + I∗u
µx+u

)
< 0 for ∀u ∈ [t, s]. Then, the following inequality holds by the

definition of the value process (B.10)∣∣∣∣ s−tpx+tG(s, (W C̃
s )∗, Xs)

gβ∗,I∗(s, (W C̃
s )∗, Xs)

∣∣∣∣ ≤ 1, for ∀s ∈ [t, T ].

These complete the proof.

B.7 Estimation details for financial market

Denote Kt = (X1,t, X2,t, log Πt, logSt)
>, then the underlying states in the financial market

are given by
dKt = (θ0 + θ1Kt)dt+ ΣKdZt,

where

θ0 =

 02×1

δπe − 1
2
σ>ΠσΠ

δR + µ0 − 1
2
σ>S σS

 , θ1 =

 −KX 02×2

e>2 01×2

ι>2 − σ>ΠΛ1 + µ>1 01×2

 ,ΣK =

ΣX

σ>Π
σ>S

 ,
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ei represents the i-th unit vector in R2 and ι2 = (1, 1)>. By Ito’s formula, the transition
equation for states follows

Kt+∆t = Υ1 + Ψ1Kt + εt+∆t, εt+∆t
i.i.d.∼ N(04×1,Σε), (B.24)

where

Υ1 =

∫ ∆t

0

eθ1(∆t−s)θ0ds, Ψ1 = eθ1∆t, Σε =

∫ ∆t

0

eθ1(∆t−s)ΣKΣ>K(eθ1(∆t−s))>ds.

For monthly data, we set ∆t = 1
12

. Every month, there are 10 observations in the
financial market: inflation index, equity index, and yield rate of nominal zero-coupon
bonds with 8 maturities. Following Koijen et al. (2011), we also assume that the yield
rates are observed with independent errors. Let RY (t, τi), i = 1, 2, ..., 8 denote the yield
rates of nominal zero-coupon bonds at time t with maturity τi, i = 1, 2, ..., 8, then we have
the measurement equation for the states

Lt = Υ2 + Ψ2Kt + ηt, ηt
i.i.d.∼ N(010×1,Ση), (B.25)

where Lt = (RY (t, τi)i=1,2,...,8, log Πt, logSt)
> is the observation vector. Moreover, the co-

efficients in (B.25) are

Υ2 =


−A0(τ1)/τ1

...
−A0(τ8)/τ8

02×1

 , Ψ2 =


−A>1 (τ1)/τ1 01×2

...
...

−A>1 (τ8)/τ8 01×2

02×2 Ĩ2

 , Ση =


χ1

. . .

χ8

0
0

 ,

where A0 and A1 are given by (3.5) and (3.6) respectively, Ĩ2 is the 2nd-order identity
matrix, and χi, i = 1, 2, ..., 8 are the constants to be estimated. Finally, with the transition
equation (B.24) and the measurement equation (B.25), we can use the Kalman filter method
to estimate the parameters. For more details, we refer to Babbs and Nowman (1999) and
Harvey (1990).
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Appendix C

Proofs for Chapter 4

C.1 Proof of Theorem 4.3.1

Proof. “Only if” part: “⇒”
By Ito’s formula and equation (4.5), we have

d(βv,te
−

∫ t
0 λx+sdsWt)

= βv,te
−

∫ t
0 λx+sds(−v0,tαtdt− θ>t v−,tdt+ θ>t σtdZv,t − ctdt− λx+tMtdt+ Ytdt− dCt).

Integrate on both hands sides, we obtain the inequality

βv,te
−

∫ t
0 λx+sdsWt − w0 +

∫ t

0

λx+sβv,se
−

∫ t
0 λx+sdsMsds+

∫ t

0

βv,se
−

∫ t
0 λx+sds(cs − Ys)ds

≤
∫ t

0

βv,se
−

∫ s
0 λx+udu

[
−(αs, θ

>
s )

(
v0,s

v−,s

)]
ds+

∫ t

0

βv,se
−

∫ s
0 λx+uduθ>s σsdZv,s. (C.1)

Moreover, by the definition of supporting function (4.10), together with the inequality
(C.1), we arrive at the following inequality

βv,te
−

∫ t
0 λx+sdsWt − w0 +

∫ t

0

λx+sβv,se
−

∫ t
0 λx+sdsMsds+

∫ t

0

βv,se
−

∫ t
0 λx+sds(cs − Ys)ds

≤
∫ t

0

βv,se
−

∫ s
0 λx+uduδ(vs)ds+

∫ t

0

βv,se
−

∫ s
0 λx+uduθ>s σsdZv,s. (C.2)
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Define the stopping time τn = T ∧ inf{t ∈ [0, T ] :
∫ t

0
|θ>s σs|2ds ≥ n} for n ∈ N+ and

inf(∅) =∞. Since the stochastic integral in (C.2) is a Qv martingale in [0, τn], we have

EQv

[
βv,τne

−
∫ τn
0 λx+sdsWτn +

∫ τn

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt+

∫ τn

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
≤ w0 + EQv

[∫ τn

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
. (C.3)

By the definition of admissible strategy (4.3), we have τn ↗ T when n → ∞. Because of
v0 ≥ 0 in Assumption 4.2.3 and (4.13), we have the boundedness of the income process

EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sdsYtdt

]
≤ EQv

[∫ T

0

β0,te
−

∫ t
0 λx+sdsYtdt

]
≤ Ky.

Therefore, the following equality holds by the monotone convergence theorem

lim
n→∞

EQv

[∫ τn

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
= EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
.

According to Assumption 4.2.3, δ(v) is bounded above. Then, by the monotone convergence
theorem, we have

lim
n→∞

EQv

[∫ τn

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
= EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
.

As for the wealth term in (C.3), we derive from (4.6) and Assumption 4.2.1

(βv,τne
−

∫ τn
0 λx+sdsWτn)− ≤ (β0,τne

−
∫ τn
0 λx+sdsWτn)− ≤ K exp

(∫ T

0

r−t dt

)
<∞, P-a.s.

for all n. Then, by Assumption 4.2.1 , we can use Fatou’s lemma to show

lim inf
n→∞

EQv [βv,τne
−

∫ τn
0 λx+sdsWτn ] ≥ EQv [βv,T e

−
∫ T
0 λx+sdsWT ] ≥ 0.
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Finally, we derive

EQv

[
βv,T e

−
∫ T
0 λx+tdtWT +

∫ T

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt+

∫ T

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
≤ lim inf

n→∞
EQv

[
βv,τne

−
∫ τn
0 λx+tdtWτn +

∫ τn

0

λx+tβv,te
−

∫ t
0 λx+sdsMtdt

+

∫ τn

0

βv,te
−

∫ t
0 λx+sds(ct − Yt)dt

]
≤ w0 + lim inf

n→∞
EQv

[∫ τn

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
= w0 + EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sdsδ(vt)dt

]
,

where the second inequality comes from inequality (C.3). This completes the proof of “only
if” part.

Next, we prove the “if” part: “⇐”
To show the inverse, we use T to denote the set of stopping times τ with τ ≤ T , and for
∀τ ∈ T , define

Ŵτ = sup
v∈N ∗

EQv

[∫ T

τ

e−
∫ t
τ rs+v0,s+λx+sds[ct − Yt + λx+tMt − δ(vt)]dt

+e−
∫ T
τ rs+v0,s+λx+sdsWT |Fτ

]
. (C.4)

Since (c,M,WT ) ∈ G∗+, Assumption 4.2.3, and Assumption 4.3.1, we have

Ŵτ ≥ − sup
v∈N ∗

EQv

[∫ T

τ

e−
∫ t
τ rs+v0,s+λx+sdsYtdt

∣∣∣∣Fτ] ≥ −Ky, (C.5)

which satisfies lower boundedness condition (4.6) of wealth process. Follow the same

discussion in Cvitanić and Karatzas (1993), we have Ŵt satisfies the dynamic programming
principle

Ŵτ1 = sup
v∈N ∗

EQv

[∫ τ2

τ1

e
−

∫ t
τ1
rs+v0,s+λx+sds[ct − Yt + λx+tMt − δ(vt)]dt

+e
−

∫ τ2
τ1

rs+v0,s+λx+sdsŴτ2

∣∣∣∣Fτ1] , (C.6)
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for all τ1 ≤ τ2, τ1, τ2 ∈ T . Setting τ1 = t, τ2 = T , and cancel out the supreme operator in
(C.6), we derive

Hv,t = βv,te
−

∫ t
0 λx+sdsŴt +

∫ t

0

βv,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(vs)]ds (C.7)

is a Qv-supermartingale for all v ∈ N ∗. By the Doob decomposition (see Theorem VII.12
in Dellacherie and Meyer (2011)) and the martingale representation theorem, for each
v ∈ N ∗ there exists an increasing real valued process Av and a Rn-valued process Ψv with∫ T

0
|Ψv,t|2dt <∞ such that

Hv,t = Ŵ0 +

∫ t

0

Ψ>v,sdZv,s − Av,t. (C.8)

By the definition of Hv,t (C.7), we have

β−1
v,t e

∫ t
0 λx+sds

(
Hv,t −

∫ t

0

βv,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(vs)]ds

)
= Ŵt = β−1

0,t e
∫ t
0 λx+sds

(
H0,t −

∫ t

0

β0,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs]ds

)
.

Then using Ito’s formula and change of measure (4.12), we drive

dŴt = d

[
β−1
v,t e

∫ t
0 λx+sds

(
Hv,t −

∫ t

0

βv,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(vs)]ds

)]
= (rt + v0,t + λx+t)Ŵtdt+ β−1

v,t e
∫ t
0 λx+sdsΨ>v,t[dZt + σ−1

t (µt + v−,t − (rt + v0,t)1̄n)dt]

−β−1
v,t e

∫ t
0 λx+sdsdAv,t − [ct − Yt + λx+tMt − δ(vt)]dt, (C.9)

and

dŴt = d

[
β−1

0,t e
∫ t
0 λx+sds

(
H0,t −

∫ t

0

β0,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs]ds

)]
= (rt + λx+t)Ŵtdt+ β−1

0,t e
∫ t
0 λx+sdsΨ>0,t[dZt + σ−1

t (µt − rt1̄n)dt]

−β−1
0,t e

∫ t
0 λx+sdsdA0,t − [ct − Yt + λx+tMt]dt. (C.10)

Compare (C.9) and (C.10), we have

β−1
v,tΨ

>
v,t = β−1

0,t Ψ
>
0,t, (C.11)∫ t

0

{v0,sŴs + β−1
v,se

∫ s
0 λx+uduΨ>v,sσ

−1
s [v−,s − v0,s1̄n] + δ(vs)}ds

−
∫ t

0

β−1
v,se

∫ s
0 λx+ududAv,s = −

∫ t

0

β−1
0,se

∫ s
0 λx+ududA0,s, (C.12)
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for all v ∈ N ∗ and all t ∈ [0, T ]. Let

θ>t = β−1
0,t e

∫ t
0 λx+sdsΨ>0,tσ

−1
t , αt = Ŵt − θ>t 1̄n (C.13)

Substitute them into (C.10) and integrate, we derive

Ŵt = w0 +

∫ t

0

(αsrs + θ>s µs)ds+

∫ t

0

θ>s σsdZs −
∫ t

0

(cs + Is − Ys)ds

−(w0 − Ŵ0 +

∫ t

0

e
∫ s
0 ru+λx+ududA0,s)

:= w0 +

∫ t

0

(αsrs + θ>s µs)ds+

∫ t

0

θ>s σsdZs −
∫ t

0

(cs + Is − Ys)ds− Ct,

which is the same as the dynamic budget constraint (4.5) and Ct is the free disposal equals

Ct = w0 − Ŵ0 +

∫ t

0

e
∫ s
0 ru+λx+ududA0,s.

Finally, we only need to prove (α, θ) ∈ A for the trading strategy (C.13). Substituting

Ŵt = αt + θ>t 1̄n into (C.12), we can derive∫ t

0

αsv0,s + θ>s v−,s + δ(vs)ds+

∫ t

0

β−1
0,t dA0,s =

∫ t

0

β−1
v,se

∫ s
0 λx+ududAv,s ≥ 0.

Since v ∈ N ∗ is arbitrage, Ã is a convex cone, and δ is positive homogeneous, if there
exists some (v0, v−) such that αsv0,s + θ>s v−,s + δ(vs) < 0, then αsbv0,s + θ>s bv−,s + δ(bvs)
can be any negative number for b > 0, which contradicts∫ t

0

αsv0,s + θ>s v−,s + δ(vs)ds+

∫ t

0

β−1
0,t dA0,s ≥ 0.

Therefore, there exists a set E having full (λ̄× P ) measure (where (λ̄× P ) is product
measure on [0, T ]× Ω) such that

δ(v) + α(t, ω)v0 + θ(t, ω)>v− ≥ 0,∀(t, ω) ∈ E, v ∈ Ã.

(see Step 3 of Theorem 9.1 in Cvitanić and Karatzas (1992)). By Theorem 13.1 in Rock-
afellar (1970), we derive (α, θ) ∈ A, (λ̄× P )-a.s.
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C.2 Proof of Corollary 4.3.1

Proof. The proof is similar to the “⇐” part of Appendix C.1. According to the formula of
Wv∗,t in (4.15), we obtain

Hv∗,t = βv∗,te
−

∫ t
0 λx+sdsWv∗,t +

∫ t

0

βv∗,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(v∗s)]ds (C.14)

is a Qv-martingale for v∗ ∈ N ∗. Then by martingale presentation theorem, there exists a
Rn-valued process Ψv with

∫ T
0
|Ψv,t|2dt <∞, such that

Hv∗,t = Wv∗,0 +

∫ t

0

Ψ>v∗,sdZv∗,s. (C.15)

Substitute (C.15) into (C.14), we derive

Wv∗,t = β−1
v∗,te

∫ t
0 λx+sds

{
Hv∗,t −

∫ t

0

βv∗,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(v∗s)]ds

}
= β−1

v∗,te
∫ t
0 λx+sds

{
Wv∗,0 +

∫ t

0

Ψ>v∗,sdZv∗,s

−
∫ t

0

βv∗,se
−

∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(v∗s)]ds

}
.

By Ito’s formula and change of measure (4.12), we obtain

dWv∗,t = (rt + v∗0,t + λx+t)Wv∗,tdt

+β−1
v∗,te

∫ t
0 λx+sdsΨ>v∗,t[dZt + σ−1

t (µt + v∗−,t − (rt + v∗0,t)1̄n)dt]

−[ct − Yt + λx+tMt − δ(v∗t )]dt. (C.16)

Since Ψ>v∗,t = βv∗,te
−

∫ t
0 λx+sdsθ>t σt and Mt = Wt + It

λx+t
, (C.16) can be simplified to

dWv∗,t = (rtαt + θ>t µt)dt+ [αtv
∗
0,t + θ>t v

∗
−,t + δ(v∗t )]dt+ θ>t σtdZt − (ct + It − Yt)dt,

which has no free disposal. Next, we only need to prove

1. (αt, θt) ∈ A.

2. αtv
∗
0,t + θ>t v

∗
−,t + δ(v∗t ) = 0, λ̄× P -a.s.
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Before moving forward, we first fix an arbitrary v ∈ N and define

ζt =

∫ t

0

(v∗0,s − v0,s)ds+

∫ t

0

(v∗−,s − v−,s − (v∗0,s − v0,s)1̄n)>σ−1
s dZv∗,s,

also the sequence of stopping times

τn = T ∧ inf {t ∈ [0, T ] : |ζt|+ |πv∗,t|+ |Wv∗,t| ≥ n,

or

∫ t

0

|θ>s σs|2ds ≥ n,

or

∫ t

0

|v∗0,s − v0,s|ds ≥ n,

or

∫ t

0

|σ−1
s (v∗−,s − v−,s − (v∗0,s − v0,s)1̄n)|2ds ≥ n

}
.

Then τn ↗ T almost everywhere. To conduct the calculus of variations, we add a pertur-
bation vt ∈ N to the optimal v∗t and define

vε,n,t = v∗t + ε(vt − v∗t )1{t≤τn} for ε ∈ (0, 1).

By the convexity of Ã, we have vε,n ∈ N , and the pricing kernel under vε,n,t is given by

πvε,n,t = πv∗,t exp

(
εζt∧τn −

ε2

2

∫ t∧τn

0

|σ−1
s (v∗−,s − v−,s − (v∗0,s − v0,s)1̄n)|2ds

)
:= πv∗,t exp

(
εζt∧τn −

ε2

2

∫ t∧τn

0

K2
sds

)
.

Together with the definition of stopping times τn, we have

e−2εnπv∗,t ≤ πvε,n,t ≤ e2εnπv∗,t, (C.17)

e−3εnξv∗,t ≤ ξvε,n,t ≤ e3εnξv∗,t.

Therefore, ξvε,n is of class D, and hence vε,n ∈ N ∗ (see Proposition I.1.47 in Jacod and
Shiryaev (2013)). Define two wealth processes

Wn(ε) = E

[∫ T

0

e−
∫ t
0 λx+sdsπvε,n,t[ct − Yt + λx+tMt − δ(vε,n,t)]dt+ e−

∫ T
0 λx+sdsπvε,n,TWT

]
Wn(0) = E

[∫ T

0

e−
∫ t
0 λx+sdsπv∗,t[ct − Yt + λx+tMt − δ(v∗t )]dt+ e−

∫ T
0 λx+sdsπv∗,TWT

]
.
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From inequality (C.17), we derive∣∣∣∣e− ∫ t
0 λx+sds

πvε,n,t − πv∗,t
ε

(ct − Yt + λx+tMt − δ(v∗t ))
∣∣∣∣

≤ K̄nπv∗,t(ct + Yt + λx+tMt − δ(v∗t )),

e−
∫ T
0 λx+sdsWT

∣∣∣∣πvε,n,T − πv∗,Tε

∣∣∣∣ ≤ K̄nπv∗,TWT ,

where

K̄n = sup
ε∈(0,1)

e2εn − 1

ε
<∞.

Moreover, for the supporting function, we have

πvε,n,t[δ(v
∗
t )− δ(vt)]− ≤ −e2nπv∗,tδ(v

∗
t ).

Then by Lebesgue’s dominated convergence theorem, convexity of δ(v), and Fatou’s lemma,
we have

lim
ε↘0

Wn(ε)−Wn(0)

ε

= lim
ε↘0

E

[∫ T

0

e−
∫ t
0 λx+sds

πvε,n,t − πv∗,t
ε

(ct − Yt + λx+tMt)dt

+

∫ T

0

e−
∫ t
0 λx+sds

−πvε,n,tδ(vε,n,t) + πv∗,tδ(v
∗
t )

ε
dt+ e−

∫ T
0 λx+tdtWT

πvε,n,T − πv∗,T
ε

]
= lim

ε↘0
E

[∫ T

0

e−
∫ t
0 λx+sds

1

ε

{
(πvε,n,t − πv∗,t)(ct − Yt + λx+tMt)

+πv∗,tδ(v
∗
t )− πvε,n,tδ(v∗t ) + πvε,n,tδ(v

∗
t )− πvε,n,tδ(vε,n,t)

}
dt

+e−
∫ T
0 λx+sdsWT

πvε,n,T − πv∗,T
ε

]
= lim

ε↘0
E

[∫ T

0

e−
∫ t
0 λx+sds

1

ε
(πvε,n,t − πv∗,t)(ct − Yt + λx+tMt − δ(v∗t ))dt

+e−
∫ T
0 λx+sdsWT

πvε,n,T − πv∗,T
ε

]
+ lim

ε↘0
E

[∫ T

0

1

ε
e−

∫ t
0 λx+sdsπvε,n,t{δ(v∗t )− δ(v∗t + ε(vt − v∗t )1{t≤τn})}dt

]
≥ lim

ε↘0
E

[∫ T

0

e−
∫ t
0 λx+sdsπv∗,t(ct − Yt + λx+tMt − δ(v∗t ))

1

ε

(
eεζt∧τn−

ε2

2

∫ t∧τn
0 |Ks|2ds − 1

)
dt

158



+e−
∫ T
0 λx+tdtπv∗,TWT

1

ε

(
eεζT∧τn−

ε2

2

∫ T∧τn
0 |Ks|2ds − 1

)]
+ lim

ε↘0
E

[∫ τn

0

1

ε
e−

∫ t
0 λx+sdsπvε,n,t{δ(v∗t )− (1− ε)δ(v∗t )− εδ(vt)}dt

]
= E

[∫ T

0

e−
∫ t
0 λx+sds(ct − Yt + λx+tMt − δ(v∗t ))πv∗,tζt∧τndt

+e−
∫ T
0 λx+tdtWTπv∗,T ζT∧τn

]
+ E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[δ(v

∗
t )− δ(vt)]dt

]
= E

[∫ τn

0

e−
∫ t
0 λx+sds(ct − Yt + λx+tMt − δ(v∗t ))πv∗,tζtdt

+

∫ T

τn

e−
∫ t
0 λx+sds(ct − Yt + λx+tMt − δ(v∗t ))πv∗,tdtζτn + ζτne

−
∫ T
0 λx+sdsπv∗,TWT

]
+E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[δ(v

∗
t )− δ(vt)]dt

]
= E

[∫ τn

0

e−
∫ t
0 λx+sds(ct − Yt + λx+tMt − δ(v∗t ))πv∗,tζtdt

+ζτnπv∗,τne
−

∫ τn
0 λx+sdsWv∗,τn

]
+ E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[δ(v

∗
t )− δ(vt)]dt

]
. (C.18)

For t ≤ τn, by Ito’s formula, we have

βv∗,tζte
−

∫ t
0 λx+sdsWt +

∫ t

0

e−
∫ s
0 λx+udu[cs − Ys + λx+sMs − δ(v∗s)]βv∗,sζsds

=

∫ t

0

βv∗,se
−

∫ s
0 λx+udu[αs(v

∗
0,s − v0,s) + θ>s (v∗−,s − v−,s)]ds

+

∫ t

0

βv∗,se
−

∫ s
0 λx+udu

[
ζsθ
>
s σs

+Wv∗,s(v
∗
−,s − v−,s − (v∗0,s − v0,s)1̄n)>σ−1

s

]
dZv∗,s. (C.19)

Plug (C.19) into (C.18), we drive

lim
ε↘0

Wn(ε)−Wn(0)

ε

≥ E

[∫ τn

0

e−
∫ t
0 λx+sds(ct − Yt + λx+tMt − δ(v∗t ))πv∗,tζtdt

+ζτnπv∗,τne
−

∫ τn
0 λx+sdsWv∗,τn

]
+ E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[δ(v

∗
t )− δ(vt)]dt

]
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= E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t{αt(v∗0,t − v0,t) + θ>t (v∗−,t − v−,t) + δ(v∗t )− δ(vt)}dt

]
.(C.20)

Let v = v∗ + ρ, ρ ∈ N , since Ã is a convex cone, we have v ∈ N . Substitute v = v∗ + ρ
into (C.20), we have

E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[αtρ0,t + θ>t ρ−,t + δ(ρt)]dt

]
≥ 0.

Since ρ ∈ N is arbitrage, this implies the existence of a set D having full (λ̄×P ) measure
that

α(t, ω)v0 + θ>(t, ω)v− + δ(v) ≥ 0, ∀(t, ω) ∈ D, v ∈ Ã. (C.21)

From Theorem 13.1 in Rockafellar (1970), it implies

(αt, θt) ∈ A, (λ̄× P )-a.s.

Let v ≡ 0, we have

0 ≥ E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[αtv

∗
0,t + θ>t v

∗
−,t + δ(v∗t )]dt

]
,

together with (C.21), we have

αtv
∗
0,t + θ>t v

∗
−,t + δ(v∗t ) = 0, λ̄× P -a.s.

Finally, since (c,M,WT ) ∈ G∗+, income constraint (4.13), and Assumption 4.2.3, we
have Wv∗,t bounded below. Moreover, the optimal wealth Wv∗,t satisfies Wv∗,0 = w0 and
Wv∗,T = WT .

From all things above, we have proved that (c,M,WT ) is feasible, which completes the
proof.
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C.3 Proof of Lemma 4.4.1

Proof. By the definition of Ũ1, we have

Ũ1(z, t) = sup
c≥0
{U1(c, t)− zc} = U1(c∗, t)− zc∗, z > 0

where c∗ is the optimal consumption satisfying

U ′1(c∗, t)− z = 0, z > 0. (C.22)

Then, we have c∗ > 0 because U1 satisfies Inada condition (4.16), U1 is strictly concave
with the first variable by Definition 4.2.1, and z > 0. Moreover, by (C.22), we have the
optimal c∗ is a function of z. Next, by the law of implicit differentiation, we can derive the
first-order and second-order partial derivatives of Ũ1 with respect to z

∂Ũ1(z, t)

∂z
= U ′1(c∗, t)

∂c∗

∂z
− c∗ − z∂c

∗

∂z
= −c∗ < 0, (C.23)

∂2Ũ1(z, t)

∂z2
= −∂c

∗

∂z
= −∂U

′−1
1 (z, t)

∂z
= − 1

U
′′
1 (U ′−1

1 (z, t), t)
= − 1

U
′′
1 (c∗, t)

> 0.(C.24)

Therefore, Ũ1(z, t) is strictly decreasing and strictly convex in its first variable. The same

arguments can be applied to Ũ2 and Ũ3.

The representation (4.19) is a direct result by substituting c∗ in (4.18) into (4.17). The

same arguments are for Ũ2 and Ũ3.

For i = 1, 2, 3, by the Inada condition (4.16)

U ′i(0+, t) =∞, U ′i(∞, t) = 0+, for ∀t ∈ [0, T ],

we have
U ′−1
i (0+, t) =∞, U ′−1

i (∞, t) = 0+, for ∀t ∈ [0, T ].

i.e.
fi(0+, t) =∞, fi(∞, t) = 0+, for ∀t ∈ [0, T ].

When z goes to infinity, we have

Ũi(∞, t) ≤ Ui(fi(∞, t), t) = Ui(0+, t)

Ũi(∞, t) ≥ lim
z→∞

[
U
( ε
z
, t
)
− ε
]

= Ui(0+, t)− ε,∀ε > 0.
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Therefore, Ũi(∞, t) = Ui(0+, t).
The inverse transform from the dual utility to the primal utility is

Ui(x, t) = inf
y>0

[Ũi(y, t) + xy] = Ũi(U
′
i(x, t), t) + xU ′i(x, t).

Next, we can derive

Ui(∞, t) ≥ Ũi(U
′
i(∞, t), t) = Ũi(0+, t)

Ui(∞, t) ≤ lim
x→∞

[
Ũi

( ε
x
, t
)

+ ε
]

= Ũi(0+, t) + ε, ∀ε > 0.

Thus, Ũi(0+, t) = Ui(∞, t), which completes the proof.

C.4 Proof of Theorem 4.4.1

Proof. Assume that (ψ∗, v∗) ∈ (0,∞)×N ∗ solves Problem (D) and constraint (4.20) holds.
To prove (c∗,M∗,W ∗

T ) in (4.21) is A-feasible optimal, we need to check two things:

1. J(c∗,M∗,W ∗
T ) ≥ J(c,M,WT ) for ∀(c,M,WT ) ∈ B(P , A),

2. (c∗,M∗,W ∗
T ) ∈ B(P , A).

We divide the proof into three steps.

Step 1: Applying fi(·, t) on both hands sides of (4.20), we have for ∀β ∈ (0,∞),
γ ∈ (0,∞),

fi(βy, t) ≤ γfi(y, t), i = 1, 2, 3, ∀(y, t) ∈ (0,∞)× [0, T ]. (C.25)

By Assumption 4.2.3, supporting function δ is bounded above on Ã, then (C.25) and (4.21)

162



imply

E

[∫ T

0

πv∗,te
−

∫ t
0 λx+sds(f1(ψπv∗,t) + λx+tf2(ψπv∗,t))dt

+πv∗,T e
−

∫ T
0 λx+tdtf3(ψπv∗,T )

]
≤ E

[∫ T

0

πv∗,te
−

∫ t
0 λx+sds

[
f1

(
ψ

ψ∗
ψ∗πv∗,t

)
+ λx+tf2

(
ψ

ψ∗
ψ∗πv∗,t

)]
dt

+πv∗,T e
−

∫ T
0 λx+tdtf3

(
ψ

ψ∗
ψ∗πv∗,T

)]
≤ c0E

[∫ T

0

πv∗,te
−

∫ t
0 λx+sds [f1 (ψ∗πv∗,t) + λx+tf2 (ψ∗πv∗,t)] dt

+πv∗,T e
−

∫ T
0 λx+tdtf3 (ψ∗πv∗,T )

]
<∞,

for a constant c0 ∈ (0,∞) and ∀ψ ∈ (0,∞). By the optimality of ψ∗, we have

0 = lim
ε→0

J̃(ψ∗ + ε, v∗)− J̃(ψ∗, v∗)

ε

= E

{∫ T

0

e−
∫ t
0 λx+sds lim

ε→0

{
Ũ1((ψ∗ + ε)πv∗,t, t)− Ũ1(ψ∗πv∗,t, t)

ε

+λx+t

[
Ũ2((ψ∗ + ε)πv∗,t, t)− Ũ2(ψ∗πv∗,t, t)

ε

]}
dt

e−
∫ T
0 λx+tdt lim

ε→0

Ũ3((ψ∗ + ε)πv∗,T , T )− Ũ3(ψ∗πv∗,T , T )

ε

+w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv∗,t[Yt + δ(vt)]dt

}
= w0 − E

[∫ T

0

e−
∫ t
0 λx+sdsπv∗,t(c

∗
t + λx+tM

∗
t − Yt − δ(v∗t ))dt

+e−
∫ T
0 λx+tdtW ∗

T

]
. (C.26)

The second equality comes from Lebesgue’s dominated convergence theorem, where∣∣∣∣∣ Ũi((ψ∗ + ε)πv∗,t, t)− Ũi(ψ∗πv∗,t, t)
ε

∣∣∣∣∣
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≤ Ũi((ψ
∗ − |ε|)πv∗,t, t)− Ũi(ψ∗πv∗,t)

|ε|
≤ πv∗,tf((ψ∗ − |ε|)πv∗,t, t)
≤ πv∗,tf((ψ∗/2)πv∗,t, t),

for |ε| < ψ∗

2
. These inequalities are based on the fact that Ũi is decreasing and convex,

hence f(z, t) = −∂Ũi
∂z

is also decreasing. By the concavity of Ui, i = 1, 2, 3, we have

Ui(fi(z, t), t)− Ui(c, t) ≥ z[fi(z, t)− c], ∀c > 0, z > 0,

together with the static budget constraint (4.14) and (C.26), the following equality holds

J(c∗,M∗,W ∗
T )− J(c,M,WT )

= ψ∗E

[∫ T

0

e−
∫ t
0 λx+sdsπv∗,t[c

∗
t − ct + λx+t(M

∗
t −Mt)]dt

+e−
∫ T
0 λx+tdtπv∗,T (W ∗

T −WT )
]
≥ 0.

Then, the optimality of (c∗,M∗,W ∗
T ) is proved.

Step 2: By the continuity of fi and πv∗,t, it is clear that∫ T

0

c∗t +M∗
t dt+W ∗

T <∞,P-a.s.

Moreover, from the inequality

U1(1, t)− z ≤ max
c≥0
{U1(c, t)− zc} = U1(f1(z, t), t)− zf1(z, t),

we have

E

[∫ T

0

U1(c∗t , t)
−dt

]
≤
∫ T

0

U1(1, t)−dt+ ψ∗E

[∫ T

0

πv∗,tdt

]
<∞.

Similar to U2(M∗
t , t)

− and U2(W ∗
T , T )−. Therefore, (c∗,M∗,W ∗

T ) ∈ G∗+. Next, we only need
to show there exists a (α, θ) ∈ A financing (c∗,M∗,W ∗

T ).

Define the wealth process Wt by

Wt = (πv∗,t · tpx)−1E

[∫ T

t

πv∗,s · spx[c∗s + λx+sM
∗
s − Ys − δ(v∗s)]ds

+πv∗,T · TpxW ∗
T |Ft]

= (βv∗,t · tpx)−1EQv

[∫ T

t

βv∗,s · spx[c∗s + λx+sM
∗
s − Ys − δ(v∗s)]ds

+βv∗,T · TpxW ∗
T |Ft] ,
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then by (4.13) and (4.21), we have the expectation in Wt is finite. Moreover, WT = W ∗
T ,

Wt is bounded below by (4.13) and Assumption 4.2.3, and W0 = w0 by (C.26). Next, by

using martingale representation theorem, there exists a process Ψ with
∫ T

0
|Ψt|2dt < ∞

a.s. such that

βv∗,t · tpxWt +

∫ t

0

βv∗,s · spx[c∗s + λx+sM
∗
s − Ys − δ(v∗s)]ds = w0 +

∫ t

0

Ψ>s dZv∗,s. (C.27)

Define the trading strategy (α, θ) ∈ Θ by

θ>t = (βv∗,t · tpx)−1Ψ>t σ
−1
t , αt = Wt − θ>t 1̄n.

Using (C.27), we derive

Wt = (βv∗,t · tpx)−1

[
w0 +

∫ t

0

Ψ>s dZv∗,s −
∫ t

0

βv∗,s · spx(c∗s + λx+sM
∗
s − Ys − δ(v∗s))ds

]
By Ito’s formula, Wt satisfies following SDE

dWt = (rtαt + θ>t µt)dt+ [v∗0,tαt + θ>t v
∗
−,t + δ(v∗t )]dt+ θ>t σtdZt − (c∗t + I∗t − Yt)dt (C.28)

Comparing (C.28) with (4.5), we only need to verify

1.
(αt, θt) ∈ A, (λ̄× P )-a.s. (C.29)

2.
αtv

∗
0,t + θ>t v

∗
−,t + δ(v∗t ) = 0, (λ̄× P )-a.s. (C.30)

Fix an arbitrary v ∈ N and define the process

ζt =

∫ t

0

(v∗0,s − v0,s)ds+

∫ t

0

[v∗−,s − v−,s − (v∗0,s − v0,s)1̄n]>σ−1
s dZv∗,s, (C.31)

and the sequence of stopping times

τn = T ∧ inf {t ∈ [0, T ] : |ζt|+ |πv∗,t|+ |Wt| ≥ n,

or

∫ t

0

|θ>s σs|2ds ≥ n,

or

∫ t

0

|v∗0,s − v0,s|ds ≥ n,

or

∫ t

0

|σ−1
s [v∗−,s − v−,s − (v∗0,s − v0,s)1̄n]|2ds ≥ n

}
.
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Then τn ↗ T almost surely. Next, define

vε,n,t = v∗t + ε(vt − v∗t )1{t≤τn} for ε ∈ (0, 1),

then by the convexity of Ã, vε,n ∈ N . Furthermore, the pricing kernel under vε,n is given
by

πvε,n,t = πv∗,t exp

(
εζt∧τn −

ε2

2

∫ t∧τn

0

|σ−1
s [v∗−,s − v−,s − (v∗0,s − v0,s)1̄n]|2ds

)
.

Then, by the definition of stopping times τn, we have

e−2εnπv∗,t ≤ πvε,n,t ≤ e2εnπv∗,t,

e−3εnξv∗,t ≤ ξvε,n,t ≤ e3εnξv∗,t.

Therefore, ξvε,n is of class D and hence vε,n ∈ N ∗ by Proposition I.1.47 in Jacod and
Shiryaev (2013). Before moving forward, we first claim the following lemma

Lemma C.4.1. For ∀v ∈ N ,

lim
ε↘0

J̃(ψ∗, v∗)− J̃(ψ∗, vε,n)

ε
≥

ψ∗E

[∫ τn

0

πv∗,t · tpx[αt(v∗0,t − v0,t) + θ>t (v∗−,t − v−,t) + δ(v∗t )− δ(vt)]dt
]
. (C.32)

Proof. First, we can derive∣∣∣∣∣ Ũ1(ψ∗πv∗,t, t)− Ũ1(ψ∗πvε,n,t, t)

ε
+
Ũ2(ψ∗πv∗,t, t)− Ũ2(ψ∗πvε,n,t, t)

ε

+
Ũ3(ψ∗πv∗,T , T )− Ũ3(ψ∗πvε,n,T , T )

ε
+ ψ∗[Yt + δ(v∗t )]

πv∗,t − πvε,n,t
ε

∣∣∣∣∣
≤ 1

ε
[f1(ψ∗e−2εnπv∗,t) + f2(ψ∗e−2εnπv∗,t) + f3(ψ∗e−2εnπv∗,T )]ψ∗|πv∗,t − πvε,n,t|

+ψ∗πv∗,t
Yt − δ(v∗t )

ε

∣∣∣∣πvε,n,tπv∗,t
− 1

∣∣∣∣
=
ψ∗πv∗,t
ε

[f1(ψ∗e−2εnπv∗,t) + f2(ψ∗e−2εnπv∗,t) + f3(ψ∗e−2εnπv∗,T )

+Yt − δ(v∗t )]
∣∣∣∣πvε,n,tπv∗,t

− 1

∣∣∣∣
≤ ψ∗K̄nπv∗,t[f1(ψ∗e−2εnπv∗,t) + f2(ψ∗e−2εnπv∗,t) + f3(ψ∗e−2εnπv∗,T )

+Yt − δ(v∗t )],
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where K̄n = sup
ε∈(0,1)

e2εn−1
ε

<∞. Moreover,

πvε,n,t(δ(v
∗
t )− δ(vt))− ≤ −e2nπv∗,tδ(v

∗
t ).

Then, by (4.21), (4.23), mean value theorem, Lebesgue’s dominated convergence theorem,
the convexity of supporting function δ, and Fatou’s Lemma, we derive

lim
ε↘0

J̃(ψ∗, v∗)− J̃(ψ∗, vε,n)

ε

= lim
ε↘0

E

{∫ T

0

e−
∫ t
0 λx+sds

Ũ1(ψ∗πv∗,t, t)− Ũ1(ψ∗πvε,n,t, t)

ε
dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sds

Ũ2(ψ∗πv∗,t, t)− Ũ2(ψ∗πvε,n,t, t)

ε
dt

+e−
∫ T
0 λx+tdt

Ũ3(ψ∗πv∗,T , T )− Ũ3(ψ∗πvε,n,T , T )

ε

+ψ∗
∫ T

0

e−
∫ t
0 λx+sds[Yt + δ(v∗t )]

πv∗,t − πvε,n,t
ε

dt

+ψ∗
∫ T

0

e−
∫ t
0 λx+sdsπvε,n,t

δ(v∗t )− δ(vε,n,t)
ε

dt

}
= lim

ε↘0
E

[∫ T

0

e−
∫ t
0 λx+sdsf1(ψ∗π̃t, t)ψ

∗πvε,n,t − πv∗,t
ε

dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sdsf2(ψ∗π̃t, t)ψ

∗πvε,n,t − πv∗,t
ε

dt

+e−
∫ T
0 λx+tdtf3(ψ∗π̃T , T )ψ∗

πvε,n,T − πv∗,T
ε

−ψ∗
∫ T

0

e−
∫ t
0 λx+sds[Yt + δ(v∗t )]

πv∗,t − πvε,n,t
ε

dt

+ψ∗
∫ T

0

e−
∫ t
0 λx+sdsπvε,n,t

δ(v∗t )− δ(vε,n,t)
ε

dt

]
= lim

ε↘0
ψ∗E

[∫ T

0

e−
∫ t
0 λx+sds[f1(ψ∗π̃t, t) + λx+tf2(ψ∗π̃t, t)− [Yt + δ(v∗t )]]πv∗,t

eεζt∧τn−
ε2

2

∫ t∧τn
0 |Ks|2ds − 1

ε
dt

167



+e−
∫ T
0 λx+tdtf3(ψ∗π̃T , T )πv∗,T

eεζT∧τn−
ε2

2

∫ T∧τn
0 |Ks|2ds − 1

ε

]

+ lim
ε↘0

ψ∗E

[∫ T

0

e−
∫ t
0 λx+sdsπvε,n,t

δ(v∗t )− δ(vε,n,t)
ε

dt

]
= ψ∗E

[∫ T

0

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]πv∗,tζt∧τndt

+e−
∫ T
0 λx+tdtW ∗

Tπv∗,T ζT∧τn

]
+ lim

ε↘0
ψ∗E

[∫ T

0

e−
∫ t
0 λx+sdsπvε,n,t

δ(v∗t )− δ(v∗t + ε(vt − v∗t )1{t≤τn})
ε

dt

]
≥ ψ∗E

[∫ τn

0

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]πv∗,tζtdt

+

∫ T

τn

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]πv∗,tζτndt

+e−
∫ T
0 λx+sdsW ∗

Tπvv∗,T ζτn

]
+ lim

ε↘0
ψ∗E

[∫ τn

0

e−
∫ t
0 λx+sdsπvε,n,t

δ(v∗t )− εδ(vt)− (1− ε)δ(v∗t )
ε

dt

]
= ψ∗E

[∫ τn

0

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]πv∗,tζtdt

+πv∗,τnζτne
−

∫ τn
0 λx+sdsWτn

]
+ψ∗E

[∫ τn

0

e−
∫ t
0 λx+sdsπv∗,t[δ(v

∗
t )− δ(vt)]dt

]
, (C.33)

where the second equality comes from mean value theorem and

π̃t ∈ [min(πvε,n,t, πv∗,t),max(πvε,n,t, πv∗,t)].

By (C.31) and Ito’s formula, the first term in (C.33) satisfies the following SDE for t ∈ [0, τn]

d

(∫ t

0

e−
∫ s
0 λx+udu[c∗s + λx+sM

∗
s − Ys − δ(v∗s)]βv∗,sζsds+ βv∗,tζte

−
∫ t
0 λx+sdsWt

)
= βv∗,te

−
∫ t
0 λx+sds{Wt[v

∗
−,t − v−,t − (v∗0,t − v0,t)1̄n]>σ−1

t + ζtθ
>
t σt}dZv∗,t

+βv∗,te
−

∫ t
0 λx+sds[αt(v

∗
0,t − v0,t) + θ>t (v∗−,t − v−,t)]dt, (C.34)
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which has the integral form∫ τn

0

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]βv∗,tζtdt+ βv∗,τnζτne

−
∫ τn
0 λx+tdtWτn

=

∫ τn

0

βv∗,te
−

∫ t
0 λx+sds{Wt[v

∗
−,t − v−,t − (v∗0,t − v0,t)1̄n]>σ−1

t + ζtθ
>
t σt}dZv∗,t

+

∫ τn

0

βv∗,te
−

∫ t
0 λx+sds{αt(v∗0,t − v0,t) + θ>t (v∗−,t − v−,t)}dt. (C.35)

Recall the definition of τn, the stochastic integral in (C.35) is a Qv∗ martingale, then we
have

E

[∫ τn

0

e−
∫ t
0 λx+sds[c∗t + λx+tM

∗
t − Yt − δ(v∗t )]πv∗,tζtdt+ πv∗,τnζτne

−
∫ τn
0 λx+sdsWτn

]
= E

[∫ τn

0

πv∗,te
−

∫ t
0 λx+sds[αt(v

∗
0,t − v0,t) + θ>t (v∗−,t − v−,t)]dt

]
(C.36)

Substitute (C.36) into (C.33), we finish proving (C.32).

In Lemma C.4.1, the left hand side of (C.32) is non-positive, so is the right hand side.

Let v = v∗+ ρ, ρ ∈ N , since Ã is a convex cone, then v ∈ N . Substitute v into (C.32), we
have

0 ≥ E

[∫ τn

0

πv∗,te
−

∫ t
0 λx+sds[−αtρ0,t − θ>t ρ−,t + δ(v∗t )− δ(v∗t + ρt)]dt

]
≥ E

[∫ τn

0

πv∗,te
−

∫ t
0 λx+sds[−αtρ0,t − θ>t ρ−,t − δ(ρt)]dt

]
. (C.37)

where the second inequality comes from the sub-additivity of δ(v). Therefore, we obtain

αtρ0,t + θ>t ρ−,t + δ(ρt) ≥ 0, λ̄× P -a.s. (C.38)

Inequality (C.38) implies for every v ∈ Ã,

αtv0 + θ>t v− + δ(v) ≥ 0, ∀(t, ω) ∈ Dv,

where Dv ⊂ [0, T ] × Ω is a set of full product measure, so is D ,
⋂

v∈Ã
⋂

Qn+1

Dv that the

following inequality holds

αtv0 + θ>t v− + δ(v) ≥ 0, ∀(t, ω) ∈ D, v ∈ Ã.
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By Theorem 13.1 in Rockafellar (1970), we have proved (C.29).

Moreover, set v ≡ 0, (C.32) implies

E

[∫ τn

0

πv∗,te
−

∫ t
0 λx+sds[αtv

∗
0,t + θ>t v

∗
−,t + δ(v∗t )]dt

]
≤ 0. (C.39)

Set ρ = v∗ in (C.37), we have

E

[∫ τn

0

πv∗,te
−

∫ t
0 λx+sds[αtv

∗
0,t + θ>t v

∗
−,t + δ(v∗t )]dt

]
≥ 0. (C.40)

Finally, we can conclude from (C.39) and (C.40) that

αtv
∗
0,t + θ>t v

∗
−,t + δ(v∗t ) = 0, (λ̄× P )-a.s.,

i.e. (C.30) is verified. This completes the proof of one direction.

Conversely, due to the convexity of Ũi, we have

Ũi(z, t) ≥ Ũi(x, t) + fi(x, t)(x− z), i = 1, 2, 3. (C.41)

Then, the dual problem, J̃(ψ, v) satisfies

J̃(ψ, v) = E

{∫ T

0

e−
∫ t
0 λx+sdsŨ1(ψπv,t, t)dt+

∫ T

0

λx+te
−

∫ t
0 λx+sdsŨ2(ψπv,t, t)dt

+e−
∫ T
0 λx+tdtŨ3(ψπv,T , T )

+ψ

[
w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv,t[Yt + δ(vt)]dt

]}
≥ E

{∫ T

0

e−
∫ t
0 λx+sds[Ũ1(ψ∗πv∗,t, t) + c∗t (ψ

∗πv∗,t − ψπv,t)]dt∫ T

0

λx+te
−

∫ t
0 λx+sds[Ũ2(ψ∗πv∗,t, t) +M∗

t (ψ∗πv∗,t − ψπv,t)]dt

+ +e−
∫ T
0 λx+tdt[Ũ3(ψ∗πv∗,T , T ) +W ∗

T (ψ∗πv∗,T − ψπv,T )]

+ψ

{
w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv,t[Yt + δ(vt)]dt

}}
= E

{∫ T

0

e−
∫ t
0 λx+sds[Ũ1(ψ∗πv∗,t, t) + c∗tψ

∗πv∗,t]dt
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+

∫ T

0

λx+te
−

∫ t
0 λx+sds[Ũ2(ψ∗πv∗,t, t) +M∗

t ψ
∗πv∗,t]dt

+e−
∫ T
0 λx+tdt[Ũ3(ψ∗πv∗,T , T ) +W ∗

Tψ
∗πv∗,T ]

+ψ

{
w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv,t[Yt + δ(vt)− c∗t − λx+tM

∗
t ]dt

−e−
∫ T
0 λx+tdtπv,TW

∗
T

}}
≥ E

{∫ T

0

e−
∫ t
0 λx+sds[Ũ1(ψ∗πv∗,t, t) + c∗tψ

∗πv∗,t]dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sds[Ũ2(ψ∗πv∗,t, t) +M∗

t ψ
∗πv∗,t]dt

+e−
∫ T
0 λx+tdt[Ũ3(ψ∗πv∗,T , T ) +W ∗

Tψ
∗πv∗,T ]

}
= E

{∫ T

0

e−
∫ t
0 λx+sds[Ũ1(ψ∗πv∗,t, t) + λx+tŨ2(ψ∗πv∗,t, t)]dt

+e−
∫ T
0 λx+tdtŨ3(ψ∗πv∗,T , T )

+ψ∗
[∫ T

0

e−
∫ t
0 λx+sdsπv∗,t(c

∗
t + λx+tM

∗
t )dt+ e−

∫ T
0 λx+tdtπv∗,TW

∗
T

]}
= E

{∫ T

0

e−
∫ t
0 λx+sds[Ũ1(ψ∗πv∗,t, t) + λx+tŨ2(ψ∗πv∗,t, t)]dt

+e−
∫ T
0 λx+tdtŨ3(ψ∗πv∗,T , T )

+ψ∗
[
w0 +

∫ T

0

e−
∫ t
0 λx+sdsπv∗,t[Yt + δ(v∗t )]dt

]}
= J̃(ψ∗, v∗),

where the first inequality is based on the inequality (C.41), the second inequality holds
true because of static budget constraint (4.14). The above inequality shows (ψ∗, v∗) is the
solution to Problem (D), which completes the whole proof of the current theorem.
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C.5 Proof of Corollary 4.4.1

Proof. From the dual problem (D), we can obtain the following first-order partial derivative

∂J̃(ψ, v)

∂ψ
= E

[∫ T

0

e−
∫ t
0 λx+sdsŨ ′1(ψπv,t, t)πv,tdt+

∫ T

0

λx+te
−

∫ t
0 λx+sdsŨ ′2(ψπv,t, t)πv,tdt

+e−
∫ T
0 λx+tdtŨ ′3(ψπv,T , T )πv,T

]
+

{
w0 + E

[∫ T

0

e−
∫ t
0 λx+sdsπv,t[Yt + δ(vt)]dt

]}
,

where Ũ ′i(z, t), i = 1, 2, 3, are the first-order partial derivatives of dual utilities in its first
variables.

For dual utility Ũ1(z, t), based on (C.22) and (C.23), we derive

∂Ũ1(z, t)

∂z
= −c∗ = −U ′−1

1 (z, t). (C.42)

Together with the Inada condition (4.16), we obtain

Ũ ′1(0+, t) = −∞, Ũ ′1(∞, t) = 0, for ∀t ∈ [0, T ].

In addition, by (C.24), we have Ũ ′1(z, t) increase from −∞ to 0 when z moves from 0+ to

∞. The same arguments can be applied to Ũ ′2(z, t) and Ũ ′3(z, t).

In addition, since πv,t > 0 and w0 + E
[∫ T

0
e−

∫ t
0 λx+sdsπv,t[Yt + δ(vt)]dt

]
> 0, we can

always find a unique ψv > 0 such that

∂J̃(ψv, v)

∂ψ
= 0. (C.43)

Finally, because J̃(ψ, v) is convex in ψ, the zero point ψv of ∂J̃(ψ,v)
∂ψ

minimizes J̃(ψ, v) under

a given v. Lastly, by (4.18) and (C.43), we find the optimal strategy under (ψv, v) satisfies
the following static budget constraint

E

[∫ T

0

πv,te
−

∫ t
0 λx+sds[f1(ψvπv,t) + λx+tf2(ψvπv,t)]dt

+πv,T e
−

∫ T
0 λx+tdtf3(ψvπv,T )

]
= w0 + E

[∫ T

0

πv,t[Yt + δ(vt)]dt

]
.

From this static budget constraint, we can define the optimal wealth following (4.24), which
is a martingale. Therefore, the optimal free disposal equals zero.
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C.6 Proof of Theorem 4.5.1

Proof. Due to the result from Levin (1976), we have the following lemma

Lemma C.6.1. Let F : L1(S,Σ, µ;X) → R
⋃
{+∞} be a convex functional where

(S,Σ, µ) is a measure space with µ finite and non-negative, Σ complete, X is a reflexive
Banach space, and L1(S,Σ, µ;X) denotes the set of Lebesgue measure functions: Ψ : S →
X, such that

∫
S
|Ψ|dµ <∞. If F is lower semi-continuous in the topology τ of convergence

in measure, then it attains a minimum on any convex set K ⊂ L1(S,Σ, µ;X) that is τ -
closed and norm-bounded.

Proof. See Theorem 1 in Levin (1976).

Before going to the final proof, we make the following preparations. Let D denotes
the σ-field generated by the progressively measurable processes, L∗ denotes the class of
(λ̄ × Q0)-null sets in B([0, T ]) × F , and D∗ = σ(D

⋃
L∗) denotes the smallest σ-field

containing D and L∗. Then, we have the following lemma

Lemma C.6.2. 1. D∗ = {A ∈ B([0, T ])×F : ∃B ∈ D s.t. A∆B ∈ L∗}, where A∆B
denotes the symmetric difference of A and B, defined by A∆B = (A \B)

⋃
(B \ A).

2. Suppose Y : [0, T ]×Ω→ Rn is (B([0, T ])×F)-measurable. Then Y is D∗-measurable

if and only if there exists a progressive process Ỹ such that Y = Ỹ , (λ̄×Q0)-a.s.

Proof. See Page 59-60 in Chung (2013).

The first part of Lemma C.6.2 implies D∗ is complete. Using L1(λ̄ × Q0;Rn) =
L1([0, T ] × Ω,D∗, λ̄ × Q0;Rn) to denote the set of D∗-measurable integrable process, the
second part of Lemma C.6.2 implies if (c,M,WT ) ∈ L1(λ̄ × Q0;R3), then there exists
equivalent version of (c,M,WT ) ∈ L1(λ̄×Q0;R3) that is progressive measurable.

Denote the discounted control variables c̃t = e−
∫ t
0 r

+
s dsct, M̃t = e−

∫ t
0 r

+
s dsMt, and W̃T =

e−
∫ T
0 r+t dtWT , where r+

t denotes the positive part of interest rate, then we can rewrite the
consumption and bequest set (4.9) as

G̃ :=

{
(c̃, M̃ , W̃T ) : EQ0

[∫ T

0

∣∣∣e∫ t0 r+s dsc̃t∣∣∣+
∣∣∣e∫ t0 r+s dsM̃t

∣∣∣ dt+
∣∣∣e∫ T0 r+t dtW̃T

∣∣∣] <∞} . (C.44)
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By the definition of (C.44), once (c̃, M̃ , W̃T ) ∈ G̃, then (c̃, M̃ , W̃T ) ∈ L1(λ̄×Q0;R3). Denote

the non-negative orthant of G̃ as G̃+, then we use G̃∗+ to represent (c̃, M̃ , W̃T ) ∈ G̃+ such
that

min

{
E

[∫ T

0

U1

(
e
∫ t
0 r

+
s dsc̃t, t

)+

dt

]
, E

[∫ T

0

U1

(
e
∫ t
0 r

+
s dsc̃t, t

)−
dt

]}
<∞, (C.45)

min

{
E

[∫ T

0

U2

(
e
∫ t
0 r

+
s dsM̃t, t

)+

dt

]
, E

[∫ T

0

U2

(
e
∫ t
0 r

+
s dsM̃t, t

)−
dt

]}
<∞,(C.46)

and

min

{
E

[
U3

(
e
∫ T
0 r+t dtW̃T , T

)+
]
, E

[
U3

(
e
∫ T
0 r+t dtW̃T , T

)−]}
<∞. (C.47)

Moreover, for the discounted wealth, we haveWT e
−

∫ T
0 rsds = WT e

−
∫ T
0 r+s −r−s ds = W̃T e

∫ T
0 r−s ds,

similar to Mte
−

∫ t
0 rsds and cte

−
∫ t
0 rsds. Then, the primal problem (P) can be rewritten as

sup
(c̃,M̃ ,W̃T )∈G̃∗+

J1(c̃, M̃ , W̃T )

s.t. EQv

[
e−

∫ T
0 v0,s+λx+sdsW̃T e

∫ T
0 r−s ds +

∫ T

0

λx+te
−

∫ t
0 v0,s+λx+sdsM̃te

∫ t
0 r
−
s dsdt (P1)

+

∫ T

0

e−
∫ t
0 v0,s+λx+sdsc̃te

∫ t
0 r
−
s dsdt

]
≤ w0 + EQv

[∫ T

0

βv,te
−

∫ t
0 λx+sds[Yt + δ(vt)]dt

]
,

for ∀v ∈ N ∗, where

J1(c̃, M̃ , W̃T ) = E

[∫ T

0

e−
∫ t
0 λx+sdsU1(e

∫ t
0 r

+
s dsc̃t, t)dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sdsU2(e

∫ t
0 r

+
s dsM̃t, t)dt

+e−
∫ T
0 λx+tdtU3(e

∫ T
0 r+s dsW̃T , T )

]
.

Since 0 ∈ N ∗, we can restrict the existence proof of the problem (P1) to the existence
proof of the following problem
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sup
(c̃,M̃ ,W̃T )∈K

J1(c̃, M̃ , W̃T )

s.t. K =

{
(c̃, M̃ , W̃T ) ∈ G̃∗+ : EQ0

[
e−

∫ T
0 λx+sdsW̃T e

∫ T
0 r−s ds +

∫ T

0

λx+te
−

∫ t
0 λx+sdsM̃te

∫ t
0 r
−
s dsdt

(P2)

+

∫ T

0

e−
∫ t
0 λx+sdsc̃te

∫ t
0 r
−
s dsdt

]
≤ w0 + EQ0

[∫ T

0

e−
∫ t
0 rs+λx+sdsYtdt

]}
.

e−
∫ t
0 r

+
s ds ≤ e−

∫ t
0 rsds

Lemma C.6.3. Under the assumptions of Theorem 4.5.1, K is a convex and norm
bounded subset of L1(λ̄×Q0;R3), and topological closed in (λ̄×Q0)-measure.

Proof. First, since e
∫ T
0 r−s ds > 1 and the definition of K, we have (c̃, M̃ , W̃T ) ∈ L1(λ̄ ×

Q0;R3).

Second, we prove that K is a convex set.

Specifically, for arbitrary (c̃1,t, M̃1,t, W̃1,T ) ∈ K and (c̃2,t, M̃2,t, W̃2,T ) ∈ K, we need to

prove (λc̃1,t + (1− λ)c̃2,t, λM̃1,t + (1− λ)M̃2,t, λW̃1,T + (1− λ)W̃2,T ), λ ∈ [0, 1] satisfies the

static budget constraint under Q0 and belongs to G̃∗+. The static budget constraint is easy
to verify

EQ0

[∫ T

0

[λe−
∫ t
0 λx+sdsc̃1,te

∫ t
0 r
−
s ds + (1− λ)e−

∫ t
0 λx+sdsc̃2,te

∫ t
0 r
−
s ds]

+[λλx+te
−

∫ t
0 λx+sdsM̃1,te

∫ t
0 r
−
s ds + (1− λ)λx+te

−
∫ t
0 λx+sdsM̃2,te

∫ t
0 r
−
s ds]dt

+λe−
∫ T
0 λx+sdsW̃1,T e

∫ T
0 r−s ds + (1− λ)e−

∫ T
0 λx+sdsW̃2,T e

∫ T
0 r−s ds

]
≤ [λ+ (1− λ)]

{
w0 + EQ0

[∫ T

0

e−
∫ t
0 rs+λx+sdsYtdt

]}
.
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Next, we check (λc̃1,t + (1− λ)c̃2,t, λM̃1,t + (1− λ)M̃2,t, λW̃1,T + (1− λ)W̃2,T ) ∈ G̃.

EQ0

[∫ T

0

e
∫ t
0 r

+
s ds |λc̃1,t + (1− λ)c̃2,t|+ e

∫ t
0 r

+
s ds
∣∣∣λM̃1,t + (1− λ)M̃2,t

∣∣∣ dt
+e

∫ T
0 r+s ds

∣∣∣λW̃1,T + (1− λ)W̃2,T

∣∣∣]
≤ λEQ0

[∫ T

0

e
∫ t
0 r

+
s dsc̃1,t + e

∫ t
0 r

+
s dsM̃1,tdt+ e

∫ T
0 r+s dsW̃1,T

]
+(1− λ)EQ0

[∫ T

0

e
∫ t
0 r

+
s dsc̃2,t + e

∫ t
0 r

+
s dsM̃2,tdt+ e

∫ T
0 r+s dsW̃2,T

]
<∞.

The last inequality holds true because (c̃1,t, M̃1,t, W̃1,T ) ∈ K and (c̃2,t, M̃2,t, W̃2,T ) ∈ K.

Finally, we prove (λc̃1,t + (1− λ)c̃2,t, λM̃1,t + (1− λ)M̃2,t, λW̃1,T + (1− λ)W̃2,T ) ∈ G̃∗+. For
the consumption process, we have

E

[∫ T

0

U1(e
∫ t
0 r

+
s ds(λc̃1,t + (1− λ)c̃2,t), t)

+dt

]
≤ kE

{∫ T

0

[
1 +

(
λe

∫ t
0 r

+
s dsc̃1,t + (1− λ)e

∫ t
0 r

+
s dsc̃2,t

)1−b1
]
dt

}
= kT + kEQ0

[∫ T

0

ξ−1
0,t

(
λe

∫ t
0 r

+
s dsc̃1,t + (1− λ)e

∫ t
0 r

+
s dsc̃2,t

)1−b1
dt

]
≤ kT + k

{
EQ0

[∫ T

0

ξ
−1/b1
0,t dt

]}b1 {
EQ0

[∫ T

0

λe
∫ t
0 r

+
s dsc̃1,t + (1− λ)e

∫ t
0 r

+
s dsc̃2,tdt

]}1−b1

<∞.

The first inequality comes from (4.25). The second inequality is due to the Holder’s in-

equality. The last inequality is because c̃1,t ∈ G̃, c̃2,t ∈ G̃, and (4.26). Similar proofs for

U2(e
∫ t
0 r

+
s dsM̃t, t) and U3(e

∫ T
0 r+t dtW̃T , T ). Therefore, K is a convex set.

Second, we verify K is norm bounded in L1(λ̄×Q0;R3).

Due to the continuity of the deterministic force of mortality λx+t, Assumption 4.3.1,

e
∫ T
0 r−s ds > 1, and the static budget constraint in K, we derive

EQ0

[
W̃T +

∫ T

0

M̃tdt+

∫ T

0

c̃tdt

]
≤ K0,
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where K0 is some positive constant.

Third, we check set K is topological closed in (λ̄×Q0)-measure.

To be specific, we need to prove if an arbitrary sequence (c̃n,t, M̃n,t, W̃n,T ) ∈ K converges

to (c̃∞,t, M̃∞,t, W̃∞,T ), then (c̃∞,t, M̃∞,t, W̃∞,T ) ∈ K.

First, we check (c̃∞,t, M̃∞,t, W̃∞,T ) satisfy the static budget constraint in K. Since the
non-negative orthant of (c,M,WT ) is closed, then by Fatou’s lemma, we obtain

EQ0

[
e−

∫ T
0 λx+tdtW̃∞,T e

∫ T
0 r−s ds +

∫ T

0

λx+te
−

∫ t
0 λx+sdsM̃∞,te

∫ t
0 r
−
s dsdt

+

∫ T

0

e−
∫ t
0 λx+sdsc̃∞,te

∫ t
0 r
−
s dsdt

]
≤ lim

n→∞
EQ0

[
e−

∫ T
0 λx+tdtW̃n,T e

∫ T
0 r−s ds +

∫ T

0

λx+te
−

∫ t
0 λx+sdsM̃n,te

∫ t
0 r
−
s dsdt

+

∫ T

0

e−
∫ t
0 λx+sdsc̃n,te

∫ t
0 r
−
s dsdt

]
≤ w0 + EQ0

[∫ T

0

e−
∫ t
0 rs+λx+sdsYtdt

]
≤ K1,

whereK1 is some positive constant. The first inequality is based on the Fatou’s lemma. The
second inequality is because (c̃n,t, M̃n,t, W̃n,T ) ∈ K. The third inequality is by Assumption
4.3.1.

Second, we claim that (c̃∞,t, M̃∞,t, W̃∞,T ) ∈ G̃, i.e.

EQ0

[∫ T

0

∣∣∣e∫ t0 r+s dsc̃∞,t∣∣∣+
∣∣∣e∫ t0 r+s dsM̃∞,t∣∣∣ dt+

∣∣∣e∫ T0 r+t dtW̃∞,T

∣∣∣] <∞.
This is because(

e
∫ t
0 r

+
s dsc̃n,t, e

∫ t
0 r

+
s dsM̃n,t, e

∫ T
0 r+t dtW̃n,T

)
∈ L1

+(λ̄×Q0;R3),

and the completeness of L1
+(λ̄×Q0;R3).
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Third, we verify that (c̃∞,t, M̃∞,t, W̃∞,T ) ∈ G̃∗+. Since
(
e
∫ t
0 r

+
s dsc̃∞,t

)
∈ L1

+(λ̄ × Q0), we

have

E

[∫ T

0

U1

(
e
∫ t
0 r

+
s dsc̃∞,t, t

)+

dt

]
≤ kE

[∫ T

0

(
1 + e(1−b1)

∫ t
0 r

+
s dsc̃1−b1

∞,t

)
dt

]
≤ kT + kEQ0

[∫ T

0

ξ−1
0,t e

(1−b1)
∫ t
0 r

+
s dsc̃1−b1

∞,t dt

]
≤ kT + k

{
EQ0

[∫ T

0

ξ
−1/b1
0,t dt

]}b1 {
EQ0

[∫ T

0

e
∫ t
0 r

+
s dsc̃∞,tdt

]}1−b1

<∞. (C.48)

Similar proofs for U2(e
∫ t
0 r

+
s dsM̃t, t) and U3(e

∫ T
0 r+t dtW̃T , T ). Therefore, K is topological closed

in (λ̄×Q0)-measure. This completes the whole proof of Lemma C.6.3.

Lemma C.6.4. Under the assumptions of Theorem 4.5.1, J1 is bounded above on K
and upper semicontinuous with respect to convergence in λ̄×Q0-measure, which means for
any {(c̃n, M̃n, W̃T,n)} ∈ K and (c̃, M̃ , W̃T ) ∈ L1(λ̄×Q0;R3), if (c̃n, M̃n, W̃T,n)→ (c̃, M̃ , W̃T )
in measure, then

J1(c̃, M̃ , W̃T ) ≥ lim sup
n→∞

J1(c̃n, M̃n, W̃T,n)

Proof. By the definition of K, we have J1 bounded above on K from (C.48) for any(
e
∫ t
0 r

+
s dsc̃t, e

∫ t
0 r

+
s dsM̃t, e

∫ T
0 r+t dtW̃T

)
∈ L1

+(λ̄ × Q0;R3), and the fact that K is bounded in

L1(λ̄×Q0)-norm. Next, we assume that J1(c̃, M̃ , W̃T ) is not upper semi-continuous on K.
Then, there exists a constant α such that

J1(c̃, M̃ , W̃T ) < α ≤ J1(c̃n, M̃n, W̃T,n) for all n, (C.49)

where {(c̃n, M̃n, W̃T,n)} ⊂ K and (c̃, M̃ , W̃T ) ⊂ K, and (c̃n, M̃n, W̃T,n) → (c̃, M̃ , W̃T ) in

measure. Taking a subsequence, we can assume (c̃n, M̃n, W̃T,n) → (c̃, M̃ , W̃T ) almost ev-
erywhere. Then, we prove that the family{

e−
∫ t
0 λx+sdsξ−1

0,tU1

(
e
∫ t
0 r

+
s dsc̃n,t, t

)+

, λx+te
−

∫ t
0 λx+sdsξ−1

0,tU2

(
e
∫ t
0 r

+
s dsM̃n,t, t

)+

,

e−
∫ T
0 λx+tdtξ−1

0,TU3

(
e
∫ T
0 r+t dtW̃n,T , T

)+
}
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is uniformly integrable. For {e−
∫ t
0 λx+sdsξ−1

0,tU1(e
∫ t
0 r

+
s dsc̃n,t, t)

+}, since U1(e
∫ t
0 r

+
s dsc̃n,t, t)

+ ≤
k1[1 + (e

∫ t
0 r

+
s dsc̃n,t)

1−b1 ], we only need to prove

sup
n
EQ0

[∫ T

0

(ξ−1
0,t (e

∫ t
0 r

+
s dsc̃n,t)

1−b1)p̂1dt

]
<∞, for some p̂1 > 1. (C.50)

Taking p̂1 = p1
b1+p1(1−b1)

, where b1 ∈ (0, 1), p1 > 1, then by Holder’s inequality, we have

EQ0

[∫ T

0

ξ−p̂10,t (e
∫ t
0 r

+
s dsc̃n,t)

p̂1(1−b1)dt

]
≤
{
EQ0

[∫ T

0

ξ
−p̂1/(1−p̂1(1−b1))
0,t dt

]}1−p̂1(1−b1){
EQ0

[∫ T

0

e
∫ t
0 r

+
s dsc̃n,tdt

]}p̂1(1−b1)

=

{
EQ0

[∫ T

0

ξ
−p1/b1
0,t dt

]}1−p̂1(1−b1){
EQ0

[∫ T

0

e
∫ t
0 r

+
s dsc̃n,tdt

]}p̂1(1−b1)

<∞.

The first inequality comes from Holder’s inequality. The second inequality is due to (4.26),
and c̃n,t ∈ K so that c̃n,t satisfies (C.44). Similar proofs for

λx+te
−

∫ t
0 λx+sdsξ−1

0,tU2(e
∫ t
0 r

+
s dsM̃n,t, t)

+ and e−
∫ T
0 λx+tdtξ−1

0,TU3(e
∫ T
0 r+t dtW̃n,T , T )+. Since J1 is

bounded above (see Lemma C.6.4), following Fatou’s lemma, we obtain

J1(c̃, M̃ , W̃T ) = EQ0

[∫ T

0

e−
∫ t
0 λx+sdsξ−1

0,tU1

(
e
∫ t
0 r

+
s dsc̃t, t

)
dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sdsξ−1

0,tU2

(
e
∫ t
0 r

+
s dsM̃t, t

)
dt

+e−
∫ T
0 λx+tdtξ−1

0,TU3(e
∫ T
0 r+t dtW̃T , T )

]
≥ lim sup

n→∞
EQ0

[∫ T

0

e−
∫ t
0 λx+sdsξ−1

0,tU1

(
e
∫ t
0 r

+
s dsc̃n,t, t

)
dt

+

∫ T

0

λx+te
−

∫ t
0 λx+sdsξ−1

0,tU2

(
e
∫ t
0 r

+
s dsM̃n,t, t

)
dt

+e−
∫ T
0 λx+tdtξ−1

0,TU3(e
∫ T
0 r+t dtW̃n,T , T )

]
= lim sup

n→∞
J1(c̃n, M̃n, W̃n,T ), (C.51)

which contradicts (C.49). Therefore, J1(c̃, M̃ , W̃T ) is upper semi-continuous.
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With all the lemmas above, we can finally prove Theorem 4.5.1. Define the map J2 :
L1(λ̄×Q0;R3)→ R ∪ {+∞} as

J2(c̃, M̃ , W̃T ) =

{
−J1(c̃, M̃ , W̃T ), if (c̃, M̃ , W̃T ) ∈ K;
+∞, otherwise.

Then, Lemma C.6.4 and concavity of J1 prove J2 is convex and lower semi-continuous in
measure. Lemma C.6.3 shows K is a convex and norm bounded subset of L1(λ̄×Q0;R3),
and topological closed in (λ̄×Q0)-measure. Moreover, R3 is a reflexive Banach space.

Finally, following Lemma C.6.1 and the fact J2(c̃, M̃ , W̃T ) <∞ for some (c̃, M̃ , W̃T ) ∈
K, there exists a (c̃∗, M̃∗, W̃ ∗

T ) ∈ K such that J2(c̃∗, M̃∗, W̃ ∗
T ) ≤ J2(c̃, M̃ , W̃T ) for

∀(c̃, M̃ , W̃T ) ∈ L1(λ̄×Q0;R3). This shows (c̃∗, M̃∗, W̃ ∗
T ) solves the primal problem.

C.7 Proof of Lemma 4.6.1

By the definitions (4.32) and (4.33), we can apply dynamic programming principle to derive
the following Hamilton–Jacobi–Bellman(HJB) equation

0 = −δ̃VB(t,Wt) +
∂VB
∂t

+
∂VB
∂W

r(t)Wt −
1

2
κ2

0,t

(
∂VB
∂W

)2

/
∂2VB
∂W 2

+
γ

1− γ

(
∂VB
∂W

)− 1−γ
γ

.(C.52)

From (4.34), we can derive the following derivatives

∂VB
∂t

= − γ

1− γ
W 1−γ
t FB(t)γ−1

+
γ

1− γ
W 1−γ
t FB(t)γ

{
δ̃

γ
+
γ − 1

γ
r(t) +

1

2

γ − 1

γ2
κ2

0,t

}
∂VB
∂W

= W−γ
t FB(t)γ

∂2VB
∂W 2

= −γW−γ−1
t FB(t)γ
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Substitute these derivatives into (C.52), we have

− δ̃

1− γ
W 1−γ
t FB(t)γ − γ

1− γ
W 1−γ
t FB(t)γ−1

+
γ

1− γ
W 1−γ
t FB(t)γ

[
δ̃

γ
+
γ − 1

γ
r(t) +

1

2

γ − 1

γ2
2

κ2
0,t

]
+W−γ

t FB(t)γr(t)Wt +
1

2γ
W 1−γ
t FB(t)γκ2

0,t +
γ

1− γ
W 1−γ
t FB(t)γ−1,

which equals zero. Therefore, (4.34) is the explicit solution to (C.52).

C.8 Proof of Proposition 4.6.1

Proof. First, we denote (αv, θv, cv, Iv) as the general strategy and ((αv)
∗, (θv)

∗, (cv)
∗, (Iv)

∗)
as the optimal strategy under artificial marketMv. Then, according to the optimal wealth
Wv,t in (4.24), we can restrict the static budget constraint to the following form

Wv,t = EQv

[∫ T

t

e−
∫ s
t r(u)+v0(u)+λx+udu[cv,s − Ys + λx+sMv,s − δ(v(s))]ds

+e−
∫ T
t r(s)+v0(s)+λx+sdsWv,T |Ft

]
.

Therefore,

Hv,t = βv,te
−

∫ t
0 λx+sdsWv,t +

∫ t

0

βv,se
−

∫ s
0 λx+udu[cv,s − Ys + λx+sMv,s − δ(v(s))]ds (C.53)

is a Qv-martingale for v ∈ N ∗. Next, by martingale presentation theorem, there exists a
R-valued process Ψv with

∫ T
0
|Ψv,t|2dt <∞, such that

Hv,t = Wv,0 +

∫ t

0

Ψv,sdZv,s. (C.54)

Substitute (C.54) into (C.53), we derive

Wv,t = β−1
v,t e

∫ t
0 λx+sds

{
Hv,t −

∫ t

0

βv,se
−

∫ s
0 λx+udu[cv,s − Ys + λx+sMv,s − δ(v(s))]ds

}
= β−1

v,t e
∫ t
0 λx+sds

{
Wv,0 +

∫ t

0

Ψv,sdZv,s

−
∫ t

0

βv,se
−

∫ s
0 λx+udu[cv,s − Ys + λx+sMv,s − δ(v(s))]ds

}
.
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By Ito’s formula and change of measure (4.12), we obtain

dWv,t = (r(t) + v0(t) + λx+t)Wv,tdt

+β−1
v,t e

∫ t
0 λx+sdsΨv,t[dZt + σ−1(t)(µ(t) + v−(t)− (r(t) + v0(t)))dt]

−[cv,t − Yt + λx+tMv,t − δ(v(t))]dt. (C.55)

If we choose Ψv,t = βv,te
−

∫ t
0 λx+sdsσ(t)θv,t and rewrite Mv,t = Wv,t + Iv,t

λx+t
, then (C.55) can

be simplified to

dWv,t = [r(t)αv,t + θv,tµ(t)]dt+ [αv,tv0(t) + θv,tv−(t) + δ(v(t))]dt (C.56)

+σ(t)θv,tdZt − (cv,t + Iv,t − Yt)dt,
Wv,0 = w0, (αv, θv) ∈ R2.

which has no free disposal. Here, we enlarge the domain of (αv, θv) to R2 because (αv, θv) ∈
A (see (4.28)) is not guaranteed. By the definition (4.10), we have v0(t)αv,t + v−(t)θv,t +
δ(v(t)) ≥ 0 for (αv, θv) ∈ A. Therefore, the wealth process (C.56) is bigger and equal
to the wealth process (4.30) almost surely for (αv, θv) ∈ A. Moreover, since A ⊂ R2,
optimizing the objective function J(cv,Mv,Wv,T ) under the wealth process (C.56) with
(αv, θv) ∈ R2 provides an upper bound for the optimal objective function J(cv,Mv,Wv,T )
under the wealth process (4.30) with (αv, θv) ∈ A. In other words, the expected utility of
an individual who invests freely following (C.56) under artificial market Mv provides an
upper bound for the primal problem. That is how we find the upper bound. For t ∈ [TR, T ],
SDE (C.56) equals

dWv,t = {αv,t[r(t) + v0(t)] + θv,t[µ(t) + v−(t)]}dt+ σ(t)θv,tdZt − (cv,t + Iv,t − δ(v(t)))dt

= {[r(t) + λx+t + v0(t)]Wv,t + θv,t[µ(t) + v−(t)− (r(t) + v0(t))]}dt+ θv,tσ(t)dZt

−[cv,t + λx+tMv,t − δ(v(t))]dt.

Define the value function J̃R(t,Wv,t; v) as

J̃R(t,Wv,t; v) = sup
θv ,cv ,Mv

Et

[∫ T

t

e−
∫ s
t λx+udu−δ̃(s−t)

(cv,s)
1−γ

1− γ
ds

+

∫ T

t

λx+se
−

∫ s
t λx+udu−δ̃(s−t)

(Mv,s)
1−γ

1− γ
g(s)γds

+e−
∫ T
t λx+udu−δ̃(T−t) (Wv,T )1−γ

1− γ

]
.
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By the dynamic programming principal, we derive the HJB equation

0 = −(λx+t + δ̃)J̃R(t,Wv,t; v) +
∂J̃R
∂t

+
∂J̃R
∂Wv

[(r(t) + λx+t + v0(t))Wv,t + δ(v(t))]

− 1

2[σ(t)]2 ∂2J̃R
∂(Wv)2

(
∂J̃R
∂Wv

)2

[µ(t) + v−(t)− (r(t) + v0(t))]2

+
γ

1− γ
[1 + λx+tg(t)]

(
∂J̃R
∂Wv

) γ−1
γ

, (C.57)

together with the optimal strategies

(θv,t)
∗ = min

max

 κv,t

σ(t) ∂2J̃R
∂(Wv)2

∂J̃R
∂Wv

, 0

 ,Wv,t

 , (C.58)

(cv,t)
∗ =

(
∂J̃R
∂Wv

)− 1
γ

, (Mv,t)
∗ =

(
∂J̃R
∂Wv

)− 1
γ

g(t). (C.59)

For (4.36), we can derive the following derivatives

∂J̃R
∂t

= F̃1(t,Wv,t)
−γ {−δ(v(t))

+[r(t) + v0(t) + λx+t]

∫ T

t

e−
∫ s
t λx+uduδ(v(s))F2(s− t, s)ds

}
F̃2(t)γ

+
γ

1− γ
F̃1(t,Wv,t)

1−γF̃2(t)γ−1 {−[1 + λx+tg(t)]

+

[
λx+t +

δ̃

γ
+
γ − 1

γ
(r(t) + v0(t)) +

1

2

γ − 1

γ2
κ2
v,t

]
F̃2(t)

}
,

∂J̃R
∂Wv

= F̃1(t,Wv,t)
−γF̃2(t)γ

∂2J̃R
∂(Wv)2

= −γF̃1(t,Wv,t)
−γ−1F̃2(t)γ.

Plug these derivatives into the equation (C.57), we have

−(λx+t + δ̃)
1

1− γ
F̃1(t,Wv,t)

1−γF̃2(t)γ
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+F̃1(t,Wv,t)
−γ {−δ(v(t))

+[r(t) + v0(t) + λx+t]

∫ T

t

e−
∫ s
t λx+uduδ(v(s))F2(s− t, s)ds

}
F̃2(t)γ

+
γ

1− γ
F̃1(t,Wv,t)

1−γF̃2(t)γ−1

{
−[1 + λx+tg(t)] +

[
λx+t +

δ̃

γ
+
γ − 1

γ
(r(t) + v0(t))

+
1

2

γ − 1

γ2
κ2
v,t

]
F̃2(t)

}
+ F̃1(t,Wv,t)

−γF̃2(t)γ[(r(t) + λx+t + v0(t))Wv,t + δ(v(t))]

+
1

2γ[σ(t)]2F̃1(t,Wv,t)−γ−1F̃2(t)γ
F̃1(t,Wv,t)

−2γF̃2(t)2γ[µ(t) + v−(t)− (r(t) + v0(t))]2

+
γ

1− γ
F̃1(t,Wv,t)

1−γF̃2(t)γ−1(1 + λx+t). (C.60)

After tedious calculation, we simplify (C.60) to the following form

F̃1(t,Wv,t)
1−γF̃2(t)γ

{
− 1

1− γ
(λx+t + δ̃) +

γ

1− γ
λx+t +

δ̃

1− γ
− [r(t) + v0(t)]

− 1

2γ
κ2
v,t +

1

2γ
κ2
v,t + r(t) + v0(t) + λx+t

}
,

which equals zero. Therefore, the value function J̃R(t,Wv,t; v) is the solution to (C.57).
Moreover, substitute (4.36) into the optimal strategies (C.58) and (C.59), we obtain (4.37)
and (4.38).

C.9 Proof of Proposition 4.6.2

Proof. For t ∈ [0, TR], SDE (C.56) equals

dWv,t = [αv,t(r(t) + v0(t)) + θv,t(µ(t) + v−(t))]dt+ σ(t)θv,tdZt

−[cv,t + Iv,t − Yt − δ(v(t))]dt

= {(r(t) + λx+t + v0(t))Wv,t + θv,t[µ(t) + v−(t)− (r(t) + v0(t))]}dt+ θv,tσ(t)dZt

−[cv,t + λx+tMv,t − Yt − δ(v(t))]dt.
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Define the value function J̃(t,Wv,t, Yt; v) as

J̃(t,Wv,t, Yt; v) = sup
θv ,cv ,Mv

Et

[∫ TR

t

e−
∫ s
t λx+udu−δ̃(s−t)

(cv,s)
1−γ

1− γ
ds

+

∫ TR

t

λx+se
−

∫ s
t λx+udu−δ̃(s−t)

(Mv,s)
1−γ

1− γ
g(s)ds

+e−
∫ TR
t λx+udu−δ̃(TR−t)JR(TR,Wv,TR ; v)

]
.

By the dynamic programming principal, we derive the HJB equation

0 = −(λx+t + δ̃)J̃(t,Wv,t, Yt; v) +
∂J̃

∂t
+

∂J̃

∂Wv

[(r(t) + λx+t + v0(t))Wv,t + Yt + δ(v(t))]

+
∂J̃

∂Y
µY Yt +

1

2

∂2J̃

∂Y 2
σ2
Y Y

2
t −

1

2 ∂2J̃
∂(Wv)2

(
∂J̃

∂Wv

κv,t −
∂2J̃

∂Wv∂Y
σY Yt

)2

+
γ

1− γ
[1 + λx+tg(t)]

(
∂J̃

∂Wv

) γ−1
γ

, (C.61)

J̃(TR,Wv,TR , YTR ; v) = J̃R(TR,Wv,TR ; v),

together with the optimal strategies

(θv,t)
∗ = min

max

 1

σ(t) ∂2J̃
∂(Wv)2

(
∂J̃

∂Wv

κv,t −
∂2J̃

∂Wv∂Y
σY Yt

)
, 0

 ,Wv,t

 , (C.62)

(cv,t)
∗ =

(
∂J̃

∂Wv

)− 1
γ

, (Mv,t)
∗ =

(
∂J̃

∂Wv

)− 1
γ

g(t). (C.63)

For (4.39), we can obtain the following derivatives

∂J̃

∂t
= F̃3(t,Wv,t, Yt)

−γF̃2(t)γ {−Yt − δ(v(t))

−Yt(µY + κv,tσY )

∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds

+(r(t) + v0(t) + λx+t)(F̃3(t,Wv,t, Yt)−Wv,t)
}

+
γ

1− γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ−1 {−(1 + λx+tg(t))
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+F̃2(t)

[
λx+t +

δ̃

γ
+
γ − 1

γ
(r(t) + v0(t))

+
1

2

γ − 1

γ2
κ2
v,t

]}
,

∂J̃

∂Wv

= F̃3(t,Wv,t, Yt)
−γF̃2(t)γ,

∂2J̃

∂(Wv)2
= −γF̃3(t,Wv,t, Yt)

−γ−1F̃2(t)γ,

∂J̃

∂Y
= F̃3(t,Wv,t, Yt)

−γF̃2(t)γ
∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds,

∂2J̃

∂Y 2
= −γF̃3(t,Wv,t, Yt)

−γ−1F̃2(t)γ
(∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds

)2

,

∂2J̃

∂Wv∂Y
= −γF̃3(t,Wv,t, Yt)

−γ−1F̃2(t)γ
∫ TR

t

e−
∫ s
t λx+uduF1(s− t, s)ds.

Plug these derivatives into the HJB equation (C.61) and simplify it, we have

−(λx+t + δ̃)
1

1− γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ + F̃3(t,Wv,t, Yt)
1−γF̃2(t)γ(r(t) + v0(t) + λx+t)

− γ

1− γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ−1[1 + λx+tg(t)]

+
γ

1− γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ

[
λx+t +

δ̃

γ
+
γ − 1

γ
(r(t) + v0(t)) +

1

2

γ − 1

γ2
κ2
v,t

]
+

1

2γ
F̃3(t,Wv,t, Yt)

1−γF̃2(t)γκ2
v,t +

γ

1− γ
[1 + λx+tg(t)]F̃3(t,Wv,t, Yt)

1−γF̃2(t)γ−1,

which equals zero. Therefore, the value function J(t,Wv,t, Yt; v) is the solution to (C.61).
Moreover, substitute (4.39) into (C.62) and (C.63), we obtain the optimal strategies (4.40)
and (4.41).
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