
Systems and Algorithms for Dynamic
Graph Processing

by

Khaled Ammar

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Khaled Ammar 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Vasiliki Kalavri
Assistant Professor, Department of Computer Science,
Boston University

Supervisor(s): M. Tamer Özsu
University Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Semih Salihoglu
Associate Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Internal Members: Grant Weddell
Associate Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Jimmy Lin
Professor, David R. Cheriton School of Computer Science,
University of Waterloo

Internal-External Member: Patrick Lam
Associate Professor, Electrical and Computer Engineering,
University of Waterloo

ii

Author’s Declaration

This thesis consists of material, all of which I authored or co-authored: see the Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

This thesis is based on the peer-reviewed joint work [9, 10] supervised by Prof. Semih
Salihoglu and Prof. M. Tamer Özsu, in which I am the first author.

iv

Abstract

Data generated from human and systems interactions could be naturally represented
as graph data. Several emerging applications rely on graph data, such as the semantic
web, social networks, bioinformatics, finance, and trading among others. These applica-
tions require graph querying capabilities which are often implemented in graph database
management systems (GDBMS). Many GDBMSs have capabilities to evaluate one-time
versions of recursive or subgraph queries over static graphs – graphs that do not change
or a single snapshot of a changing graph. They generally do not support incrementally
maintaining queries as graphs change. However, most applications that employ graphs
are dynamic in nature resulting in graphs that change over time, also known as dynamic
graphs.

This thesis investigates how to build a generic and scalable incremental computation
solution that is oblivious to graph workloads. It focuses on two fundamental computations
performed by many applications: recursive queries and subgraph queries. Specifically, for
subgraph queries, this thesis presents the first approach that (i) performs joins with worst-
case optimal computation and communication costs; and (ii) maintains a total memory
footprint almost linear in the number of input edges. For recursive queries, this thesis
studies optimizations for using differential computation (DC). DC is a general incremen-
tal computation that can maintain the output of a recursive dataflow computation upon
changes. However, it requires a prohibitively large amount of memory because it main-
tains differences that track changes in queries input/output. The thesis proposes a suite of
optimizations that are based on reducing the number of these differences and recomputing
them when necessary. The techniques and optimizations in this thesis, for subgraph and
recursive computations, represent a proposal for how to build a state-of-the-art generic and
scalable GDBMS for dynamic graph data management.

v

Acknowledgements

All praise and thanks are to the one true God, Allah the Almighty, the most merciful
and the most knowledgeable. Without Allah’s help, this thesis could not be possible.
Prophet Mohammed PBUH said, “He who does not thank people does not thank God”;
the following is an attempt to thank all those who made this thesis possible and supported
me during my long journey.

I am deeply grateful to my supervisor, Prof. Tamer Özsu, for his support during my
Ph.D. and for teaching me many things on the personal, professional, and academic levels.
When I proposed the idea of Dynamic Graphs, I did not know much about the topic,
but I was interested to learn. Prof. Özsu supported me in this journey and shared his
experience and knowledge with me until I could develop my own ideas and could even
argue with him sometime. When a course project had the potential to become a funded
startup, he supported me and asked me to choose freely if I wanted to exercise this option.
When a full-time job opportunity showed up, he supported me and let me choose what was
best for myself and my family. He taught me to be knowledgeable, diligent, innovative,
humble, and kind to everyone around me. I am indebted to his support and honoured to
be his student.

I want to thank my co-supervisor, Dr. Semih Salihoglou, whom I consider a friend and
a colleague. Since he joined the University of Waterloo, I have learned many theoretical
and engineering concepts from him. Semih introduced me to the theory behind WCOJ,
which became a significant part of my thesis. We participated in several pair programming
and whiteboard brainstorming sessions that benefited me. I feel privileged to have worked
with Tamer and Semih, and I will always be grateful for their contributions to my academic
and professional growth.

Thanks to my thesis committee members, prof. Jimmy Lin, Prof. Grant Weddell, Prof.
Vasiliki Kalavri, and Prof. Patrick Lam, for their great feedback and comments. I am
especially grateful for their time and effort in reviewing my work. Their insightful and
constructive criticism has been instrumental in shaping my thesis.

I want to thank all faculty members at the Data Systems Group. They created an
environment where students can learn, grow, and make lifetime friends. I appreciate many
discussions with Khuzaima about distributed systems. Ken Salem was a great mentor
when I participated in organizing the SIGMOD programming contest and was an amazing
hiking partner at the Golden Gate national recreational area. Ihab Ilyas and Jimmy Lin
have been great mentors with whom I like discussing new ideas and career choices. I also
thank Charlie Clarck, Ashraf Abounaga, Lukas Golab, Grant Weddell, and David Toman
for many interesting discussions.

vi

Late Prof Kamel was a great support for me. He was a visionary leader in the field of
AI and pattern recognition. He believed in my potential and provided me opportunities to
succeed in this field. While working with his team, I had the first opportunity to build a
real distributed cluster for machine learning applications.

I am deeply grateful to IBM for sponsoring the first few years of my Ph.D. through
the IBM Ph.D. CAS Fellowship. During this fellowship, I worked at the IBM Center of
Advanced Studies in Canada under Calisto Zuzarte’s supervision to build a distributed
version of DB2’s RDF engine. I also had a great internship with Mauricio Hernandez
and Rajasekar Krishnamurthy at the IBM Almaden research center in California. Thanks
to all the friends I met during this time: Christina Christodoulakis, Eva Sitaridi, Nikos
Katsipoulakis, Siddhartha Banerjee, Ricardo Santana Pineda, Geli Fei, Alan Akbik, Ashraf
Bah, Jose Lugo-Martinez and many more.

Many friends made this journey more enjoyable. Mohamed Feteiha was a great help in
finding housing before I came to Waterloo and hosted my family and me on our first night
at Waterloo. I hope I do not forget anyone, but many thanks to Mohamed Sabri, Abdullah
Rashwan, Abdullah el-Sayed, Mohamed Sadek, Hytham Atia, Yasser Atwa, Amine Mhed-
hbi, Anil Pacaci, Gunes Aluc, Iman Elghandour, Ahmed Farahat, Siddhartha Sahu, Mina
Farid, Mustafa Korkmaz, Zeynep Korkmaz, Michael Joseph Mior, Muhammad Badrah,
Hani Kashef, Ahmed Elroby.

I am grateful to my parents and siblings, Samia, Waleed and Walaa, for their uncon-
ditional love and support. Their encouragement and belief in me have been a constant
source of motivation throughout this entire journey. They had always offered wisdom and
support when I needed it most. Their guidance and advice have been invaluable, helping
me navigate through life’s challenges and obstacles with grace and resilience.

Finally, I want to express my appreciation to my wife, Doaa, and our kids, Hamza
and Razan. They witnessed all the ups and downs of this journey and supported me the
most. Doaa always offered her continuous love and encouragement even when life was
tough. Her patience and understanding helped me to stay focused and motivated, even in
the face of adversity. She has been my biggest cheerleader, and we have celebrated every
milestone together. I am truly blessed to have such an amazing partner, and I could not
have accomplished this without her.

vii

Dedication

This thesis is dedicated to my parents, wife, and kids!

viii

Table of Contents

List of Figures xii

List of Tables xv

1 Introduction 1

1.1 Graph and Query Model . 3

1.1.1 Recursive Queries . 3

1.1.2 Multiway join Queries . 4

1.2 Thesis Scope . 4

1.2.1 Differential Computation for Recursive Queries 5

1.2.2 Worst-Case Optimal Joins for Subgraph Queries 6

1.3 Thesis Contribution . 7

1.4 Thesis Structure . 8

2 Optimizing Recursive Query Execution 10

2.1 Related Work . 12

2.1.1 Iterative Frontier Expansion (IFE) 12

2.1.2 Differential Computation (DC) . 13

2.1.3 Generic Techniques and Systems for Computations on Dynamic Graphs 16

2.1.4 Specialized Techniques and Systems for Computations on Dynamic
Graphs . 18

ix

2.2 Complete Difference Dropping: Join-On-Demand 19

2.2.1 Naive JOD . 20

2.2.2 Eager-Merging . 23

2.3 Partial Difference Dropping (PDD) . 25

2.3.1 Dropped Difference Maintenance 26

2.3.2 Selecting the Differences To Drop 28

2.4 Implementation . 29

2.5 Evaluation . 30

2.5.1 Experimental Setup . 30

2.5.2 Baseline Evaluation . 33

2.5.3 Join-On-Demand . 36

2.5.4 Selecting the Differences To Drop 40

2.5.5 Difference Maintenance . 41

2.5.6 Further Applications of Diff-IFE . 44

2.6 Conclusions . 45

3 Optimizing Fixed-Length Subgraph Query Execution 48

3.1 Related Work . 50

3.1.1 Generic Join (GJ) . 50

3.1.2 Massively Parallel Computation Model 52

3.1.3 Timely Dataflow (TD) . 53

3.1.4 Distributed Subgraph Queries Algorithms 54

3.1.5 One-time Subgraph Queries . 55

3.1.6 Continuous Subgraph Queries . 56

3.2 BigJoin Algorithm . 57

3.2.1 Dataflow Primitive . 58

3.2.2 BigJoin: Joins on Static Relations 60

3.3 BigJoin-S: A Skew Resilient BigJoin . 62

x

3.4 Delta-GJ Algorithm: Joins on Dynamic Relations 63

3.4.1 Delta Join Queries . 64

3.4.2 Delta-BigJoin: Distributed Delta-GJ 68

3.5 Implementation . 69

3.5.1 Prefix Extension in Timely Dataflow 69

3.5.2 The BiGJoin Dataflow . 71

3.5.3 The Delta-BigJoin Dataflow . 71

3.6 Evaluation . 72

3.6.1 Experimental Setup . 73

3.6.2 Baseline measurements . 74

3.6.3 Capacity and Scaling . 77

3.6.4 Generality and Specializations . 82

3.6.5 Senitivity to Batch Size . 84

3.7 Conclusion . 84

4 Conclusions and Future Work 86

4.1 Future Work . 87

4.1.1 Recursive Queries . 88

4.1.2 Subgraph Queries . 89

References 90

xi

List of Figures

2.1 Template IFE dataflow and a specific Bellman-Ford algorithm’s dataflow
implementation. 13

2.2 A dynamic graph with two updates: (i) a→d from 20 to 100 in G1; and (ii)
b→c changes from 10 to 100 in G2. 15

2.3 Degree-Drop Strategy for dropping differences 27

2.4 Comparison between Scratch, DD, VDC, and join-on-demand (JOD). . 34

2.5 Comparison between Scratch implementation (Scratch), Differential Dataflow
(DD), vanilla DC implementation on top of Graphflow (VDC), and join-
on-demand (JOD) using different ratios of edge deletions. 35

2.6 Changing the probability of deleting batches while running different queries
on the LiveJournal dataset. 36

2.7 Comparison of VDC and JOD when running RPQ-Q1, K-hop, and SPSP
as the average vertex degree is increased in the Knows subgraph of LDBC.
Numbers on top of the are the average number of differences in δD per vertex. 37

2.8 Comparison of Random and Degree-based difference dropping when run-
ning 10 K-hop queries. 39

2.9 Number of queries maintained by Scratch, DC, JOD, Det-Drop, and
Prob-Drop under a limited memory budget of 10GB. The large dot in the
bottom left of each figure is DC. 42

2.10 Comparison of Det-Drop and Prob-Drop when running PageRank and
WCC on LJ under limited memory. The probabilities on top of each bar
represent the lowest drop probabilities at which a budget of 2.75GB for PR
and a budget of 2GB for WCC are enough for query execution. 44

xii

2.11 Comparing Scratch vs. Scratch-landmark on 100 queries and 100 batches
of updates. Numbers on orange bars are the runtime improvements of
Scratch-landmark. 46

3.1 Pseudo-code of GJ. 50

3.2 Example input graph. 53

3.3 Dataflow Primitive. 60

3.4 BiGJoin Dataflow. 62

3.5 Input graph to Delta-GJ . 66

3.6 Example input graph and its edge table. 66

3.7 BiGJoin and Delta-BiGJoin counting triangles in the Twitter graph, plotted
with the time it takes our single-threaded implementation. Both approaches
outperform the single-threaded implementation with small number of cores,
and continue to improve from there. The Delta-BiGJoin performance lags
slightly behind, as it uses more complex data structures to support updates. 75

3.8 Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated
fraction of the CC dataset, and then performs 20 rounds of 1M input edge
updates for a triangle-finding query. This figure shows the execution time.
Data points are average times to perform twenty batches of one million
updates. The numbers by each data point report the number of output
changes per second (triangles changed). The computation processes roughly
1M updates per-second, reporting between 10M and 100M changed triangles
per second. 79

3.9 Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated
fraction of the CC dataset, and then performs 20 rounds of 1M input edge
updates for a triangle-finding query. This figure shows maximum mem-
ory, in gigabytes per machine. The peak occurs in initial index building
rather than steady-state execution. The maximum does increase as the
workers and input size are doubled, but this appears to be due to skew in
data loading. 80

xiii

3.10 Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated
fraction of the CC dataset, and then performs 20 rounds of 1M input edge
updates for a triangle-finding query. This figure shows the maximum in-
dex size per machine, in total index tuples per machine. Index size
decrease roughly linearly with additional machines at each scale. 81

3.11 Effects of batch size. Note that the maximum memory usage in small batches
is very close to the index size (25.1 GB). 85

4.1 High-level architecture of a modern GDBMS supporting recursive and sub-
graph queries . 88

xiv

List of Tables

1.1 Execution time (in seconds) for an SPSP workload, on Skitter dataset, using
a scratch algorithm, which re-executes a standard non-incremental Bellman-
Ford algorithm, vs. a DC version, which keeps track of changes. DC is more
than five orders of magnitude faster but fails with out-of-memory when the
number of queries increases. 6

1.2 Query workloads represented with join operations (◦). Note that R, S, T, U
are replicas of the edge table. 7

2.1 Full trace of differences in the SPSP example from Figure 2.2 17

2.2 Differences in D on our running example with eager-merging when main-
taining the computation for ⟨G2, 2⟩. 24

2.3 Datasets . 31

3.1 Graph datasets used in our experiments. 74

3.2 Comparison against EmptyHeaded. “(R)” and “(I)” indicate runtime and
index size, respectively. EmptyHeaded’s absolute performance is better on
a single machine. However, the index building time can be non-trivial. . . . 76

3.3 Comparison against Arabesque. BigJoin-T is faster and considers fewer
candidate subgraphs than Arabesque. 77

3.4 Common Crawl experiments. Sixteen machines load 64 billion edges, index
them, and track motifs in 20 batches of 10K random edge changes. Although
the input throughput is much lower than for triangles, the output throughput
remains relatively high at tens of millions of observed subgraph changes per
second. 79

xv

3.5 Comparison with SEED, against three BigJoin-T variants including several
optimizations: breaking symmetry by renaming vertices by degree (-SYM)
and then re-using pre-computed triangles (-TR). BigJoin-T’s absolute per-
formance is comparable to optimized approaches, and improves as optimiza-
tions are applied. 83

xvi

Chapter 1

Introduction

Large volumes of data generated from human interaction with software systems that sup-
port daily applications in areas such as commerce, entertainment and social networking
have given rise to what is commonly referred to as the “Big Data Problem”. Most of this
data can be represented as graphs which represent the relationships between two entities.
Applications that rely on graph data include the semantic web (i.e., RDF), bioinformatics,
finance and trading, and social networks, among others. Graphs naturally model com-
plicated structures, such as protein interaction networks, product purchasing, business
transactions, relationships and interactions in social or computer networks, and web page
connections. The size and complexity of these graphs raise significant data management
and data analysis challenges.

Much of the existing literature focuses on static graphs – graphs that do not change
or a single snapshot of a changing graph. However, most applications employ graphs that
are dynamic in nature. These graphs change over time and are known as dynamic graphs.
For example:

• Twitter users write 500 million tweets per day1. Every tweet updates graphs that
model relationships between users, posts, interests, and locations, among others.

• Facebook has about 2.89 billion monthly active users in 20222. Collectively, these
users generate many terabytes of logs every day.

1https://www.internetlivestats.com/twitter-statistics/
2https://sproutsocial.com/insights/facebook-stats-for-marketers/

1

https://www.internetlivestats.com/twitter-statistics/
https://sproutsocial.com/insights/facebook-stats-for-marketers/

• The web graph has more than 190 million websites, and 250 thousand new websites
are created every day3.

• Business transaction graphs for several online or retail stores have billions of trans-
actions per year.

Software systems that can manage large graphs, called Graph Database Management
Systems (DGBMS), are designed to process a variety of workloads. Two of the impor-
tant workloads tackled in this thesis are recursive navigation queries and subgraph queries.
A recursive query initializes vertices with an initial value. Then each vertex collects in-
formation for its in-neighbour, computes a new value, then distributes this value to its
out-neighbours. This process continues until a stopping condition is satisfied. An example
is a single source shortest path query that computes the distance from a specific vertex
in the graph to every other vertex and a single pair shortest path query which finds the
minimum distance between two specific vertices in a graph. A subgraph query finds all
instances of a specific subgraph pattern query in the input graph. An example is finding
all triangles or all 4-clique instances in a graph.

Many GDBMSs have the capabilities to evaluate recursive and subgraph queries over
static graphs. As noted earlier, many real-life graphs are dynamic, and in those cases,
the systems resort to re-executing the query, which has unacceptable performance. This
thesis addresses the following question: How should a modern DGBMS query processor be
designed to efficiently evaluate recursive and subgraph queries over dynamic graphs?

The thesis makes two claims. First, the query processor should evaluate queries over
dynamic graphs incrementally. Without incremental graph processing, a query processor
would process a query from scratch after every change or at a slower frequency. Process-
ing queries from scratch can be very slow, and it is unrealistic to keep the query answer
up-to-date with graph changes in most applications. Second, the query processor should
incorporate differential computation (DC) and incremental versions of worst-case optimal
multiway join algorithms for effective incremental evaluation. DC is a new incremental
maintenance technique that is generic and offers several orders of magnitude faster ex-
ecution than running queries from scratch. On the other hand, worst-case optimal join
algorithms can guarantee that the search space will never grow more than the maximum
query size. For cyclic subgraph queries, this can increase the speed of a query processor
by an order of magnitude and reduce its memory overhead by several orders of magnitude.
The thesis addresses several technical problems arising from these claims, as discussed in
the next section.

3https://siteefy.com/how-many-websites-are-there/

2

https://siteefy.com/how-many-websites-are-there/

1.1 Graph and Query Model

In property graphs, vertices and edges can have attributes. Formally, a graph G is defined
as a four-tuple G = (V,E, PV , PE), where V is the set of vertices, E is the set of directed
edges, PV is the set of properties over vertices, and PE is the set of properties over edges.
A graph query is continuous when the answer to this query needs to be updated frequently
as the graph changes, which means that the query engine should continuously answer
this query. Continuous queries compute properties of vertices, which are referred to as
their states. States will not be modelled explicitly, but these can be considered temporary
properties in PV . For an edge e, two properties are maintained: label(e), and weight(e).
If G is unweighted, the weights of each edge are set to 1.

In a dynamic graph setting, an initial input graph G0 may receive several batches of up-
dates. Each batch is defined as a list of edge insertions or deletions δE = [(u, v, label, weight,
+/−)], which includes an edge, and its label / weight, and a +/- to indicate, respectively,
an insertion or deletion (updates appear as one deletion and one insertion). Vertex inser-
tions or deletions are not considered because these could implicitly occur in the proposed
algorithms through explicit edge insertions and deletions. Gk refers to the actual set of
edges in a graph G after G receives its k’th batch of updates δEk (so the union of G0 and
the k batches of updates).

Many graph queries in practice are join-heavy, so they could be expressed as relational
algebra expressions that primarily use the join operator. Therefore, this thesis will adopt
the relational view of graph queries when discussing optimizations. This thesis discusses
two broad query types: recursive and subgraph queries.

1.1.1 Recursive Queries

Many graph queries are recursive in nature, such as single pair shortest path (SPSP), single
source shortest path (SSSP), variable-length join queries, or regular path queries (RPQ).
Each one of these queries can interact with different parts of the graph model referenced
in Section 1.1. The edge properties that a recursive query needs to access and the vertex
states for this computation will be clear from the context.

Recursive queries are often supported in the query languages of GDBMSs [70]. However,
existing GDBMS do not have the capabilities to maintain them incrementally. As such,
in dynamic graphs, existing systems require rerunning these queries from scratch when
updates occur. A GDBMS that can incrementally maintain recursive queries would lead
to more accessible and efficient application development.

3

The problem of incremental maintenance of a recursive query Q is to report the changes
to the output vertex states of Q after every batch of updates. These batches can be thought
of as output in the form of (v, state(v),+/−), for a vertex v and a new vertex state state(v)
and +/- indicating addition or removal of a state.

1.1.2 Multiway join Queries

A subgraph query can be seen as a multiway join on replicas of an edge table of the input
graph. Subgraph queries, i.e., finding instances of a given subgraph in a larger graph,
are fundamental computations performed by many applications and supported by many
software systems that process graphs. Example applications include finding triangles and
larger clique-like structures for detecting related pages in the World Wide Web [29] and
finding diamonds for recommendation algorithms in social networks [35]. In addition to
GDBMSs [56, 78], multiway joins are supported by RDF engines [57, 89], as well as many
other specialized graph processing systems [3, 49, 75].

The problem of incremental maintenance of a subgraph query Q is to report the newly
created/deleted subgraphs after every batch of updates. These subgraphs can be thought
of as output in the form of ([V],+/−), for a sorted list of vertices V that conform to the
subgraph query Q and +/- indicating addition or removal of a subgraph.

1.2 Thesis Scope

This thesis proposes optimizations for algorithms and systems that maintain subgraph
and recursive graph queries over dynamic graphs. As mentioned above, the computations
to evaluate these queries can be modeled as executing multiway or recursive join-heavy
queries. The algorithm/system, in this context, receives the complete input graph before it
starts executing, and the graph sees updates to its structure over time. Dynamic algorithms
continuously and incrementally update the answer as the input dataset changes rather than
computing it from scratch after every change. In this thesis, the input graph is represented
by an edge and a vertex relation; the graph query is modelled as a join query over these
relations. The fundamental challenge is incrementally executing these join queries in a
graph database.

Several proposed algorithms and system optimizations for dynamic graph processing are
proposed in this thesis. They are described briefly below and more fully in the individual
chapters dedicated to each topic.

4

1.2.1 Differential Computation for Recursive Queries

Many popular traversal workloads are recursive queries, such as SPSP, SSSP, and RPQ.
In recursive queries, each vertex iteratively aggregates its neighbours’ values, computes its
own (new) value, then propagates the new value to neighbours until a stopping condition,
such as a fixed point, is reached. These queries are commonly solved by a subroutine
that consists of the Join operator and an aggregation operator, e.g., a Min operator,
and has been given different terms in literature, such as propagateAndAggregate [70] or
iterative matrix-vector multiplication [40]. This subroutine is referred to as iterative frontier
expansion (IFE) in this thesis and will be reviewed in Section 2.1.1.

Maintaining IFE over dynamic graphs is similar to maintaining materialized views in
relational database systems. There is a vast body of work on incrementally maintaining
views that contain selection, projection, and joins [64]. Traditional incremental view main-
tenance (IVM) techniques for recursive SQL and Datalog queries have focused on variants
of incremental maintenance approaches [33] such as Delete-and-Rederive [34], which con-
sists of a set of delta-rules that can produce the changes in the outputs of queries upon
changes to the base relations. These rules can be highly inefficient as they first delete all
derivations of updated/removed facts and then rederive them using the updated facts, only
to finally detect whether any deletions and/or additions affect the final query result.

The approach taken in this thesis is to use dataflows that contain recursive join oper-
ators, and maintain these dataflows using Differential Computation (DC) [51], a new in-
cremental maintenance technique, to maintain the results of recursive queries in GDBMSs.
DC is designed to maintain arbitrarily recursive dataflow programs [51, 55]. Unlike using
a specialized incremental derivation rule, DC starts from a dataflow program that evalu-
ates the one-time version of the query. By keeping track of the differences in the inputs
and outputs of the operators across different iterations, DC maintains and propagates
the changes between operators as the original inputs to the data flow are updated. This
makes DC more general than other techniques, as it is agnostic to the underlying dataflow
computation.

However, DC can have significant memory overhead [44], as it may need to monitor a
high number of input and output differences between operators. For example, Table 1.1
shows the performance and memory overhead of the DC implementation of the standard
Bellman-Ford algorithm for maintaining the results of SSSP queries on the Skitter in-
ternet topology dataset [46]. This experiment modifies the graph with 100 batches of 1
random edge insertion each and provides the system with 10GB memory to store the gen-
erated differences. The table also shows the performance of a baseline that re-executes the
Bellman-Ford algorithm from scratch after each update, thus not requiring any memory for

5

Table 1.1: Execution time (in seconds) for an SPSP workload, on Skitter dataset, using a
scratch algorithm, which re-executes a standard non-incremental Bellman-Ford algorithm,
vs. a DC version, which keeps track of changes. DC is more than five orders of magnitude
faster but fails with out-of-memory when the number of queries increases.

Number of Queries 10 20 30 40
Scratch 6.1K 13.6K 20.7K 28.3K
Differential Computation 0.2 OOM OOM OOM

maintaining these queries. Although the differential version of the algorithm is about five
orders of magnitude faster, it cannot maintain more than 10 concurrent queries due to its
large memory requirement. This limits the scalability of systems that adopt DC. Several
optimizations have been proposed in Chapter 2 to increase DC’s scalability measured by
the number of maintained recursive queries up to 20×.

1.2.2 Worst-Case Optimal Joins for Subgraph Queries

Join is a fundamental operator that appears in every subgraph query at Table 1.2. Com-
puting joins is considered worst-case optimal for a query Q if its computation and memory
cost is not asymptotically larger than the maximum possible output size for the given size
of the relations in Q; this quantity is called AGM bound [11] and referred to as MaxOutQ
in this thesis. Traversal queries could be computed optimally using the typical Binary
Join [84] (BJ) algorithm (also known as edge-at-a-time computation) that performs a se-
ries of pairwise joins. BJ has been adopted in most existing relational database systems.
However, BJ is not optimal for subgraph queries like finding all occurrences of triangles
(Triangle query). For example, BJ will do O(N2) computations in the worst-case, to
compute open-tri, which is worse than the MaxOutQ quantity of N3/2 for a Triangle
query:

open-tri(x, y, z):= R(x, y) ◦ S(y, z)
Triangle(x, y, z):= open-tri(x, y, z)◦T (x, z)

The approach proposed in this thesis for multiway join queries, such as subgraph work-
loads, is to design algorithms inspired by a family of worst-case join algorithms called
Generic Join (GJ) [58, 59, 80]. Specifically, a new algorithm called Delta-GJ is proposed
by this thesis. Delta-GJ is based on the incremental view maintenance (IVM) techniques

6

Table 1.2: Query workloads represented with join operations (◦). Note that R, S, T, U
are replicas of the edge table.

Workload Syntax
Triangle Triangle(x, y, z) := R(x, y) ◦ S(y, z) ◦ T (x, z).
Diamond Diamond(x, y, z, w) := R(x, y) ◦ S(y, z) ◦ T (x,w) ◦ U(w, z).
SSSP SSSP(x; y : int) := R(start, x); y = 1.

SSSP(x; y : int)* := S(w, x)◦ SSSP(w); y = ⟨MIN(w)⟩+ 1.

[14, 34], which derive a set of delta queries dQ1, ..., dQn (originally referred to as delta
rules [34]) for Q and evaluate each dQi as the input tables change to maintain the result
of Q.

Note that although the idea of delta queries is not new, the evaluation of dQi using a
worst-case join algorithm (GJ) is novel and has theoretical implications that do not exist for
existing incremental view maintenance algorithms [14, 34]. Specifically, Chapter 3 presents
proof that under insertion-only workloads, if the delta queries are evaluated using the worst-
case optimal GJ algorithm with specific attribute orderings, the total computation done to
maintain the original join query incrementally is worst-case optimal up to constants that
depend on Q.

Existing literature has focused on implementations and optimization of GJ in the single
node setting [59]. The challenges of developing distributed versions of GJ and of Delta-GJ
are much less understood. To fill this gap, Chapter 3 focuses on the distributed implemen-
tation of GJ and Delta-GJ. This contrasts with the treatment of DC in Chapter 2. Note
that while DC was originally developed assuming a distributed setting, the implementa-
tions and optimizations in Chapter 2 are based on a single-node implementation. However,
many of these optimizations directly apply to the distributed implementations of DC.

Chapter 3 proposes the BigJoin and Delta-BigJoin algorithms to process multiway
join in static and dynamic in distributed settings. Together, they can find complex sub-
graphs very efficiently on dynamic graphs with up to 64B edges on a cluster of 16 machines
with minimum memory overhead and linear performance scalability.

1.3 Thesis Contribution

The contributions of this thesis are as follows. First, the thesis proposes two distributed
multiway join algorithms for subgraph queries. The following algorithms are implemented
on Timely Dataflow system:

7

• BigJoin algorithm expands GJ to run in distributed share-nothing environments
and expands the definition of worst-case optimal to include network communication.
Using batching and pipelining, the proposed algorithm can balance the workload to
all machines in the cluster. Section 3.6.2 shows that the costs per worker decrease
linearly as additional workers are introduced.

• Delta-BigJoin, which uses BigJoin instead of GJ, is the first algorithm that (i)
performs worst-case optimal computation and communication, (ii) maintains a total
memory footprint linear in the number of input edges, and (iii) reduces per-worker
computation, communication, and memory requirements linearly as the number of
workers increases. Note that it can also be easily used in both existing distributed
bulk synchronous parallel systems, such as MapReduce [21] and Spark [86], as well
as streaming systems, such as Storm [79] and Apache Flink [17].

Second, this thesis proposes several optimizations to increase DC’s scalability, and
reduce its memory overhead by dropping some of the maintained differences. These algo-
rithms are:

• Complete Difference Dropping (CDD) optimization increases the efficiency of a typ-
ical differential computing system to maintain 7x more queries. CDD has two main
components: Join-on-demand (JOD), which avoids materializing the output of the
Join operator and early merging which is an implementation optimization. JOD
leads to fundamental changes in how differential computation should be processed.
Theorem 2.2.1 and its proof shows that the new algorithm is correct.

• Partial Difference Dropping (PDD) optimization increases the efficiency of a typical
differential computation up to 20X. This optimization has a knob that allows devel-
opers to balance the trade-off of reducing a query’s memory overhead at the expense
of its performance. It uses the properties of real graphs to decide which differences to
drop and uses a deterministic/probabilistic data structure to store which difference
has been dropped.

1.4 Thesis Structure

The rest of the thesis is structured as follows:

• Chapter 2 proposes algorithms and data structures that reduce the overhead of DC
during the execution of traversal, and more generally recursive, queries.

8

• Chapter 3 proposes an algorithm (Delta-GJ) that extends the GJ algorithm to
process dynamic graphs with worst-case guarantees. It also expands the worst-case
definition in GJ to include network communication, then introduces BigJoin. After
that, it introduces a new distributed version of Delta-GJ (called Delta-BigJoin).

• Chapter 4 concludes the thesis, explains its limitations and describes possible future
work.

9

Chapter 2

Optimizing Recursive Query Execution1

Graph queries that are recursive in nature, such as single pair shortest path (SPSP), single
source shortest path (SSSP), variable-length join queries, or regular path queries (RPQ),
are prevalent across applications that are developed on GDBMS. Many of these applica-
tions require maintaining query results incrementally, as the graphs stored in GDBMSs
are dynamic and evolve over time. Many GDBMSs have capabilities to evaluate one-time
versions of recursive queries over static graphs, but generally do not support incrementally
maintaining them. As such, in dynamic graphs, existing systems require rerunning these
queries from scratch at the application layer. A GDBMS that can incrementally main-
tain recursive queries inside the system would lead to easier and more efficient application
development. This chapter investigates the use of differential computation (DC) [51] to
maintain the results of recursive queries in GDBMSs. DC is a general incremental compu-
tation approach for arbitrary recursive dataflow programs [51, 55]. Section 2.1.2 presents
a technical overview of DC.

Unlike using a specialized incremental derivation rule, DC starts from a dataflow pro-
gram that evaluates the one-time version of the query. By keeping track of the differences in
the inputs and outputs of the operators across different iterations, called timestamps in DC
terminology, DC maintains and propagates the changes between operators as the original
inputs to the dataflow are updated. This makes DC more general than other techniques,
as it is agnostic to the underlying dataflow computation. However, this generality comes
with a significant memory overhead that limits its ability to scale in maintaining multiple
queries. For example, as shown in Table 1.1, the differential version of the algorithm is
about five orders of magnitude faster but it cannot maintain more than 10 concurrent

1This work has been published as [10].

10

queries due to its large memory requirement.

This chapter studies techniques for reducing the memory overhead of DC to increase
its scalability when maintaining the popular classes of recursive queries mentioned above.
These optimizations are broadly based on dropping differences, i.e., avoiding explicitly
keeping track of all changes to inputs of operators, and instead recomputing some of them
from scratch when necessary. The focus is on optimizing the differential version of a com-
mon subroutine that is called Iterative Frontier Expansion (IFE). In IFE, each vertex
iteratively aggregates its neighbours’ values, computes its own value, then propagates it to
neighbours until a stopping condition, such as a fixed point, is reached. Section 2.1.1 dis-
cusses IFE and shows that this subroutine consists of a Join operator and an aggregation
operator, e.g, a Min operator.

Two optimization categories have been proposed to reduce the memory overhead of DC
while computing queries represented as IFE: First, Join-On-Demand (JOD) (Section 2.2)
that completely drops the output differences of the Join operator of the IFE dataflow
and only computes these differences when DC needs to inspect them; and second is partial
difference dropping optimization (Section 2.3) that drops some of the differences in the
output of the aggregation operator in IFE.

Partial difference dropping optimization offers developers a knob to drop a certain per-
centage of the system’s differences. To re-compute these differences when necessary, the
system needs to know for which key/vertex and timestamp a difference was dropped. There
are two approaches proposed to achieve this: (1) a deterministic approach (Det-Drop)
that explicitly keeps track of the vertex and timestamp of each dropped difference; and
(2) a probabilistic approach (Prob-Drop) that addresses this shortcoming by leveraging
a probabilistic data structure, specifically a Bloom filter. Det-Drop reduces the mem-
ory consumption of a system, but it also has inherent limitations in terms of scalability
improvements, as the additional state it keeps is proportional to the number of differ-
ences it drops. Prob-Drop may attempt to reconstruct a non-existing difference due to
false negatives but it more effectively reduces the memory consumption, so a system using
Prob-Drop needs to drop fewer differences to achieve the same amount of memory as
Det-Drop. Finally, there is an optimization that uses the degree information of each
vertex to choose which differences to drop as opposed to dropping them randomly.

The rest of this chapter is structured as follows. Section 2.1.1 introduces Iterative
Frontier Expansion (IFE), and Section 2.1.2 reviews the technical details of differential
computation (DC). Then, Section 2.2 and Section 2.3 explain the complete dropping and
partial dropping optimizations. Section 2.4 reviews the implementation details. Finally,
a suite of experiments are conducted to study the effectiveness and trade-offs of all opti-

11

mizations in Section 2.5. These demonstrate the following:

• JOD reduces the number of differences up to 8.2× in comparison to vanilla DC
implementations.

• Exploiting the degree information to select the differences to drop can improve the
performance of partial dropping optimizations (Det-Drop or Prob-Drop) by sev-
eral orders of magnitude.

• Prob-Drop achieves up to 1.5× scalability relative to Det-Drop when selecting
the differences to drop based on degrees.

• This suite of optimizations can increase the scalability of our differential algorithms
by up to 20× in comparison to DD, while still outperforming a baseline that reruns
computations from scratch by several orders of magnitude.

2.1 Related Work

This section starts by introducing Iterative Frontier Expansion (IFE) which represents
the standard subroutine in the thesis for implementing recursive graph queries. Then,
it describes Differential Computation (DC) which is a general technique to maintain the
outputs of dataflow programs.

There are two approaches to maintaining the results of computations over a dynamic
graph: (i) using a generic incremental computation/view maintenance solution that is
oblivious to the actual computation, at least for some class of computations; or (ii) using a
computation-specific specialized solution. DC falls under the second category. This section
reviews both approaches for recursive queries.

2.1.1 Iterative Frontier Expansion (IFE)

Iterative Frontier Expansion (IFE) is a standard subroutine for implementing many graph
algorithms used in various computational problems, including graph traversal queries like
SPSP, SSSP, RPQ, which are often supported in the query languages of GDBMSs [70].
At a high-level, the computation takes as input the edges (possibly with properties) of a
graph G and an initial set of vertex states, and, iteratively, aggregates for each vertex the
states of its neighbours to compute a new vertex state, and propagates this state to its

12

(a) High-level IFE dataflow. (b) Specific IFE dataflow for SSSP

Figure 2.1: Template IFE dataflow and a specific Bellman-Ford algorithm’s dataflow im-
plementation.

neighbours. Those vertices that receive data from their neighbours form the frontier for
the next iteration. These iterations continue until some stopping criterion is met, e.g., a
fixed point is reached and the vertex states converge. Figure 2.1a shows the template IFE
dataflow that consists of two operators, ExpandFrontier, which expands the frontiers, and
Stop, which determines when to stop the query execution.

This chapter uses and optimizes variants of this basic IFE dataflow to evaluate recursive
queries. As an example, Figure 2.1b shows a specific instance of the IFE dataflow imple-
menting the standard Belman-Ford algorithm for evaluating an SSSP query where vertex
states are the latest distances from a source vertex s. The ExpandFrontier operator is
implemented with two operators, Join and Min. For each vertex v in the frontier, Join
sends possible new distances to v’s outgoing neighbours (considering v’s latest distance
and possible weights on the edges). For each vertex u of v’s outgoing neighbours, the new
value is computed with a Min operator that computes the smallest received distance for u
considering u’s latest known distance. For different variants of shortest-path queries, RPQs,
and variable-length join queries, this IFE template dataflow is always used with the same
Join operator, but possibly different aggregator implementations to compute new vertex
states and different stop conditions (e.g., variable-length K-hop queries stop the dataflow
after k many iterations and not when a fixed point is reached).

2.1.2 Differential Computation (DC)

Differential Computation (DC) [51] is a general technique to maintain the outputs of arbi-
trarily nested dataflow programs as the base input collections change. Dataflow programs
consist of operators, such as Join or Min in Figure 2.1b, that take input and produce
output data collections, which are tables storing tuples. For example, in the IFE dataflow,
the edges in an input graph are stored as (src, dst) tuples in the Edges (E) data collec-
tion. Data collections, such as E, that are input to the dataflow are referred to as base

13

collections, and other collections that are outputs of an operator (possibly the final output
of the dataflow) are referred to as intermediate collections.

Consider the IFE instance from Figure 2.1b implementing the Bellman-Ford algorithm
and running this IFE on the input graph shown in Figure 2.2 from a source vertex a. Given
this iterative dataflow computation, DC computes the input and output data collections of
each operator as partially ordered timestamped difference sets and maintains these difference
sets as the original input collections to the entire dataflow (in this case Edges (E) and
Distances (D)) change. Timestamps can be multi-dimensional. For example, in the
above computation, the timestamps are two dimensional, the first is graph-version and the
second is Bellman-Ford iteration, later on referred to as IFE iteration, represented as a
⟨Gk, i⟩ pair. Collections, e.g., D, can change for two separate reasons: (1) changes in the
graph (E), such as adding, deleting, or updating an edge, or (2) changes in distances (D)
during the computation of IFE iterations.

More generally, for each data collection C, let Ct represent the contents of C at a
particular timestamp t, and let δCt be the difference set that stores the “difference tuples”
(differences for short) for C at t. Differences are extended tuples with + or − multiplicities.
For base data collections, such as Edges in IFE, + and − indicate insertions or deletions to
the base data collections. For intermediate data collections that are generated by operators,
these may not have as clear an interpretation, at least for dataflows with multi dimensional
timestamps. Instead, the + or −’s are assigned to tuples to ensure that summing all the
δCt prior to a particular timestamp t gives exactly Ct. Sum of two difference sets adds the
multiplicities for the differences with the same tuple values. If a sum equals 0, then the
tuple is removed from the collection. Consider an operator with one input and one output
collections, I and O, respectively. DC ensures that for each collection and operator the
following equations hold:

It =
∑
s≤t

δIs ⇒ δIt = It −
∑
s<t

δIs (2.1)

Ot = Op(
∑
s≤t

δIs) ⇒ δOt = Op(
∑
s≤t

δIs)−
∑
s<t

δOs (2.2)

DC uses Equations 2.1 and 2.2 to compute which differences to store in δIt and δOt

for each timestamp. Then, DC uses these difference sets to reassemble correct contents of
It and Ot at each timestamp when needed (specifically during its maintenance procedure,
which will be explained momentarily).

Suppose a system has maintained the Bellman-Ford dataflow differentially for k many

14

Figure 2.2: A dynamic graph with two updates: (i) a→d from 20 to 100 in G1; and (ii)
b→c changes from 10 to 100 in G2.

updates to its base collection Edges; that is, the system has computed the differences for
each base or intermediate collection for timestamps ⟨G0, 0⟩, . . . , ⟨Gk,max⟩, where max is
the maximum number of iterations that the dataflow ran on any of G0, ..., Gk. Given a
new, k + 1’st set of updates to the base collections, DC maintains the dataflow’s com-
putation by computing a new set of differences for collections at some of the timestamps
t = ⟨Gk+1, i⟩ | i ∈ {0...max} by rerunning some of the operators at these timestamps. If
on Gk+1, the Bellman-Ford dataflow computation requires more than max iterations to
converge, then the system generates difference sets for timestamps ⟨Gk+1, i⟩ | i > max.

DC’s maintenance procedure is as follows. Suppose that the operators work on parti-
tions of collections, as in many dataflow systems. In the above example, the partitioning of
the collections would be by vertex IDs and each operator would perform some computation
per a vertex ID. Let Cv

t indicate the contents of Ct’s partition for key v. DC reruns an
operator Op at different timestamp τ according two rules:

1. Direct rerunning rule: If Op’s input I has a difference at τ for a particular key v,
i.e., δIvτ is non-empty, DC first reruns Op (on key v) at timestamp τ . That is DC
first reassembles Ivτ =

∑
t≤τ δI

v
t . Then executes Op on Ivτ , which computes a new Ov

τ .
Finally, it computes the difference set δOv

τ as δOv
τ = Ov

τ −
∑

t<τ δO
v
t .

2. Upper bound rule: For correctness, Op may need to be executed on later timestamps
than τ for v, too even if there are no immediate differences in I at those timestamps.
Specifically, DC finds every timestamp tf | tf ≥ τ in which Op’s input has differences
for key v and reruns Op on all timestamps that are more than, upper bound for, tf
and τ .

15

Abadi et al. [1] formally prove that applying this simple rule to decide which operators
to rerun correctly maintains any dataflow computation, establishing that DC is a very
generic incremental computation maintenance technique.

Importantly, if no difference is detected to vertex v’s partitions of inputs of an operator
for timestamps from ⟨Gk+1, 0⟩ to ⟨Gk+1,max⟩, no operator needs to rerun on v. For
many dataflow computations, the effects of many updates in graphs can be localized to
small neighbourhoods, and DC automatically detects the vertices in this neighbourhood on
which operators need to rerun. As an example, Table 2.1 shows the full difference trace for
each collection in the IFE dataflow implementing Bellman-Ford algorithm in the example
dynamic graph in Figure 2.2 that has two updates.

Each raw in Table 2.1 represents IFE iteration, while columns represent graph versions.
Initially, at graph version G0 and iteration 0, collection δE adds differences that represent
all edges in the graph and collection δD adds a difference to represent the initial source
vertex, a, with distance 0 and distance ∞ for all remaining vertices. As iterations progress
and graph version change, more differences are added/removed as described in Equation 2.1
and 2.2.

2.1.3 Generic Techniques and Systems for Computations on Dy-
namic Graphs

When an input graph is modelled as a set of relations and a graph algorithm is modelled as a
query over these relations, maintaining graph computation can be modelled as incremental
view maintenance, where the view is the final output of the query. Traditional incremental
view maintenance (IVM) techniques for recursive SQL and Datalog queries have focused on
variants of incremental maintenance approaches [33] such as Delete-and-Rederive, which
consists of a set of delta-rules that can produce the changes in the outputs of queries
upon changes to the base relations. These rules can be highly inefficient as they first
delete all derivations of updated/removed facts and then re-drive them again using the
updated facts, only to finally detect whether any deletions and/or additions affect the
final result. This contrasts with DC because it does not store intermediate computations
to speed up processing. Interestingly, the only available incremental open-source Datalog
implementation does not use the Delete-Rederive maintenance algorithm but uses DC [68].
This work compiles Datalog programs into DD programs, so it ultimately uses vanilla DD,
which this thesis optimizes and uses as a baseline.

Tegra [38] is a system developed on top of Apache Spark [86], that is designed to per-
form ad-hoc window-based analytics on a dynamic graph. Tegra allows the creation of

16

Graph Updates

G0 G1 G2

IF
E

it
er

at
io

n
s

0
δE

+(a, b, 30), +(b, c, 10),
+(c, d, 10),+(a, d, 20),
+(d, e, 10),+(a, e, 10), +(d, c, 20)

−(a, d, 20), +(a, d, 100) −(b, c, 10), +(b, c, 100)

δJ
+(a, 0),+(b,∞),+(c,∞),
+(d,∞),+(e,∞)

∅ ∅

δD
+(a, 0),+(b,∞),+(c,∞),
+(d,∞),+(e,∞)

∅ ∅

1
δE ∅ ∅ ∅

δJ
−(b,∞),+(b, 30), −(d,∞),
+(d, 20), −(e,∞), +(e, 10)

−(d, 20), +(d, 100) ∅

δD
−(b,∞),+(b, 30), −(d,∞),
+(d, 20), −(e,∞), +(e, 10)

−(d, 20), +(d, 100) ∅

2
δE ∅ ∅ ∅

δJ −(c,∞), +(c, 40), +(c, 40), +(e, 30)
−(c, 40), +(c, 120), −(e, 30),
+(e, 110)

−(c, 40), +(c, 130)

δD −(c,∞), +(c, 40) ∅ −(c, 40), +(c, 120)

3
δE ∅ ∅ ∅
δJ +(d, 50) ∅ −(d, 50), +(d, 130)

δD ∅ −(d, 100), +(d, 50) −(d, 50), +(d, 100)

4
δE ∅ ∅ ∅

δJ ∅ −(c, 120), +(c, 70), −(e, 110),
+(e, 60)

−(c, 70), +(c, 120), −(e, 60),
+(e, 110)

δD ∅ ∅ ∅

Table 2.1: Full trace of differences in the SPSP example from Figure 2.2

17

arbitrary snapshots of graphs and executes computations on these snapshots. The system
has a technique for sharing arbitrary computation across snapshots through a computation
maintenance logic similar to DC. However, the system is optimized for retrieving arbitrary
snapshots quickly instead of sharing computation across snapshots efficiently. A perfor-
mance comparison [38] of Tegra versus DD reports Tegra’s performance to be significantly
slower than DD for incrementally maintained streaming computations.

There have been several systems work that uses the generic incremental maintenance ca-
pabilities of DC. GraphSurge [69] is a distributed graph analytics system that lets users cre-
ate multiple arbitrary views of a graph organized into a view collection using a declarative
view definition language. Users can then run arbitrary computations on these views using a
general programming API that uses DD as its execution engine, which allows Graphsurge
to share computation when running across multiple views automatically. Stuecklberger [72]
implement a DC-based software-defined network controller, which represents the routing
logic of a network as a dataflow graph. DD allows the system to incrementally update the
routing logic as the underlying physical layer changes. Similarly, RealConfig [88] is a net-
work configuration verifier that is used to detect if changes to a network configuration could
lead to a potential network outage. RealConfig uses DD to incrementally verify updates
to a network configuration without having to restart from scratch after every change.

2.1.4 Specialized Techniques and Systems for Computations on
Dynamic Graphs

There is extensive literature dating back to the 1960s on developing specialized incremental
versions of (aka dynamic) graph algorithms that maintain their outputs as input graph
changes. Many of the earlier work focuses on versions of shortest path algorithms, in
particular all pairs shortest paths computation [22, 66, 23, 19, 18, 65]. These works aim
at developing fast algorithms that can, in worst-case time, be faster than recomputing
shortest paths upon a single update, e.g., when the edge weights are integer values. Fan
et al. [28] present theoretical results on the foundations of such algorithms. Specifically,
they show that the cost of performing six specific incremental graph computations, such as
regular path queries and strongly connected components algorithms, cannot be bounded by
only the size of the changes in the input and output. Then, they develop algorithms that
have bounded guarantees in terms of the work performed to maintain the computation.

On the systems side, there are several graph analytics systems that enable users to
develop incremental versions of a graph algorithm. GraphBolt [50] is a shared-memory
parallel streaming system that can maintain dynamic versions of graph algorithms. Graph-

18

Bolt requires users to write explicit maintenance code in functions such as retract or
propagateDelta that generic systems such as DD do not require. As graph updates ar-
rive, the system executes these functions, and if a user has provided a dynamic algorithm
with provable convergence guarantees, the system will correctly maintain the results.

Another system is iTurboGraph [44] which focuses on incremental neighbour-centric
graph analytics with an objective to reduce the overhead of large in-memory intermedi-
ate results in systems like GraphBolt and DD. iTurboGraph keeps graph data on disk as
streams and models the graph traversal as an enumeration of walks to avoid maintaining
large intermediate results in memory. They avoid expensive random disk access by adopt-
ing the nested graph windows approach [43]. Instead, our proposed solutions keep the
intermediate results in memory and drop these differences to reduce memory overhead.

Broadly, programming specialized algorithms or GraphBolt-like specialized systems can
be more challenging for users than programming a generic solution such as DD as users
need to design and write dynamic versions of algorithms. At the same time, as is expected,
such systems can be more efficient than generic solutions. For example, several references
have demonstrated this difference between DD and GraphBolt [50, 69]. In contrast, generic
solutions such as DD, which is used as an example of the standard DC implementation, are
fundamentally different. They have the advantage that users can program arbitrary static
versions of their algorithms, and the system can automatically maintain them. Therefore
these systems are suitable as core incremental view maintenance techniques to integrate
into general data management systems, such as GDBMSs in our context, that aim to
support large classes of queries.

2.2 Complete Difference Dropping: Join-On-Demand

When maintaining IFE with DC, the memory overheads of storing the difference sets for
the output of the Join operator (J) is generally much larger than those for the output of the
following aggregation operator (D). Consider the IFE implementation of SPSP, where edges
have weights and vertex states represent shortest distances to a source vertex. Suppose at
a particular iteration i of the IFE at a specific graph version Gk, a vertex v’s state is (v, dv)
and v has deg(v) many outgoing edges, e.g., (u1, w1), . . . (udeg(v), wdeg(v)). Then the output
of the Join operator (J) would include a possible new shortest distances to its outgoing
neighbours. It would contain deg(v) many tuples at timestamp ⟨Gk, i⟩: (u1, dv + w1), ...,
(udeg(v), dv + wdeg(v)). Similarly, the partition Ju of J contains one tuple for each of u’s
incoming neighbours. When maintaining IFE differentially, J’s size is commensurate with

19

the number of edges in G, which can be much larger than D, whose size is commensurate
with the number of vertices in G.

Example 1. Observe that in Table 2.1, δD has two differences for vertex d at timestamp
⟨G1, 1⟩, −(d, 20) and +(d, 100). These changes lead to four differences in δJ because d has
two outgoing edges, one to c and the other to e.

The goal of JOD is to avoid storing any difference sets for J, i.e., to completely drop
δJ , and regenerate Ju for any u on demand when DC requires running the aggregation
operator (in our example Min) on u at a particular timestamp. This section starts by
describing a naive version of JOD, then describes a useful implementation optimization
called eager merging that reduces the timestamps to regenerate Ju, which is the optimized
JOD used in the rest of this chapter.

2.2.1 Naive JOD

Recall that DC reruns Min on a vertex u at timestamp t = ⟨Gk+1, i⟩ if:

1. δDu
t or δJu

t are non-empty (direct rule)

2. t is an upper bound of τ1 and τ2 that satisfy the following conditions (upper bound
rule):

(a) τ1 ∈ T1 = {⟨Gk+1, i
′⟩|i′ < i} and δDu

τ1
and/or δJu

τ1
are non-empty; and

(b) τ2 ∈ T2 = {⟨Gk′ , i⟩|k′ < k + 1} and δDu
τ2

and/or δJu
τ2

are non-empty.

If δJ are dropped, how can DC correctly decides when to rerun Min and to recompute
the needed dropped δJ for these reruns to ensure it correctly differentially maintains IFE?
DCJOD is the modified version of DC maintenance subroutine that has this guarantee,
which works as follows. In the below description, when Min reruns on u at timestamp
t, Jv

t is constructed by inspecting for each incoming neighbour w of u, Dw
t and Ew

t and
performing the join. Note that DCJOD does not drop the differences related to D and E.

DCJOD:

• δE Direct Rule: For each (u, v, l, p,+/−) ∈ δEk+1, since there is a difference in
δEu

⟨Gk+1,0⟩, there is also a difference in δJv
⟨Gk+1,0⟩. So Min reruns on v in ⟨Gk+1, 0⟩

(direct rule).

20

• δD Direct Rule: Each time Min reruns on u at a timestamp ⟨Gk+1, i⟩, DCJOD checks if
this run generates a difference for δDu

⟨Gk+1,i+1⟩. If so, this implies there is a difference
in δJv

⟨Gk+1,i+1⟩ for each outgoing neighbour v of u. Therefore DCJOD schedules to
rerun Min on v at timestamp ⟨Gk+1, i+ 1⟩ (direct rule).

• Upper Bound Rule: Each time DCJOD schedules to rerun Min on a vertex v, either
by δE or δd Direct Rule at timestamp ⟨Gk+1, i+1⟩, by the upper bound rule, DCJOD

schedules to rerun Min on v at timestamp ⟨Gk+1, j⟩ s.t. j > i + 1 if either of these
two conditions are satisfied: (i) there is a non-empty δDv

⟨Gh,j⟩ s.t h < k + 1; and (ii)
there is an incoming neighbour w of v with a non-empty δDw

⟨Gh,j⟩ s.t., h < k + 1.

The next theorem shows that DCJOD correctly maintains the IFE dataflow. Starting
from ⟨Gk+1, 0⟩ to ⟨Gk+1,max⟩, it shows that the above procedure reruns Min on every vertex
v in the timestamps that vanilla DC would rerun and produces the correct differences for
D.

Theorem 2.2.1. The subset of timestamps that DCJOD re-computes Min on any key/vertex
ID subsumes the timestamps that DC re-computes Min and correctly generates the same set
of differences for D.

Proof. Assume for simplicity that there is a global max iteration on which the IFE compu-
tations run. By induction on timestamps t, and taking the base cases ⟨G0, 0⟩ to ⟨G0,max⟩,
the behaviour of DCJOD simply follows DC. This directly follows the computation that
is performed when running a static version of IFE on an input graph. In this case, the
behaviour is that Min runs on all vertices in ⟨G0, 0⟩ and then for each vertex v at ⟨G0, 0⟩
if one of its incoming neighbour’s states change.

As induction hypothesis, assume that for each vertex v, DCJOD runs Min on a larger sub-
set of timestamps and correctly generates the same set of differences for the data collection
D (and E, whose maintenance is independent of the JOD optimization) until ⟨Gk,max⟩.
This proof shows that for each key v, if DC runs Min in timestamp ⟨Gk+1, i⟩, so does
DCJOD. Note that for t0 = ⟨Gk+1, 0⟩, this is true because if v is re-computed by DC in t0
it is because there is change in δJv

t0
, which can only occur if there is an edge (u, v) in δEt0 ,

i.e., one of v’s incoming edges must have had an edge update that triggered DC to rerun
Join which must trigger a difference in δJv

t0
. The first step of DCJOD ensures that for each

edge (u, v) in δEt0 , Min is re-computed for v in t0. This is used as a base case, then, by
induction only on the second component of the timestamps in ⟨Gk+1, i⟩. This assumes that
from ⟨Gk+1, 0⟩ to ⟨Gk+1, i⟩, the theorem is true and proven for ⟨Gk+1, i+ 1⟩.

21

Now consider ti+1 = ⟨Gk+1, i + 1⟩ to prove the contraposition of the claim: if DCJOD

does not re-compute Min on u, then neither will DC. Note that DCJOD does not run on
u if two conditions are satisfied: (1) none of u’s incoming neighbours v had a non-empty
δDu

⟨Gk+1,i⟩. If there was then it schedules u to re-compute, which means DC cannot execute
Min on v as an application of the direct rule. (2) none of u’s incoming neighbours w1, ...,
w2 has a non-empty δDw

⟨Gh,j⟩ s.t., h < k+1. Next, the proof shows that if this condition is
true, then all such δJu

⟨Gh,j⟩ are non-empty, so DC cannot have triggered the upper bound
rule either.

Finally, to prove this, a third induction starting from δJu
⟨G0,j⟩ to δJu

⟨Gk,j⟩ is used. For
the base case of δJu

⟨G0,j⟩, observe that:

δJu
⟨G0,j⟩ = Ju

⟨G0,j⟩ − Ju
⟨G0,j−1⟩ = ∅

This is true because this is a 1 dimensional case and Ju
⟨G0,j⟩ and Ju

⟨G0,j−1⟩ are computed buy
the Join operator using the same of incoming neighbour states (recall that our assumption
is that all δDw

⟨G0,j⟩ are empty). Suppose now that δJu
⟨G0,j⟩ up to δJu

⟨Gh,j⟩ are empty. The
proof shows that δJu

⟨Gh+1,j⟩ is empty:

δJu
⟨Gh+1,j⟩ = Ju

⟨Gh+1,j⟩ − Ju
⟨Gh+1,j−1⟩ −

∑
ℓ=0,...,h

δJu
⟨Gℓ,j⟩

By induction hypothesis the last summation is non-empty. Note further that Ju
⟨Gh+1,j⟩

and Ju
⟨Gh+1,j−1⟩ are the same set because they are computed by the Join operator using the

same of incoming neighbour states for u, since it is assumed that all δDw
⟨Gh,j⟩ are empty for

each incoming neighbour w of u, completing the proof.

Note that there can be timestamps in which DCJOD unnecessarily re-compute Min, but
by the correctness argument of DC in Abadi et al. [1], any timestamp that DC avoids
rerunning a computation is guaranteed to produce empty differences, so these spurious re-
computations cannot affect the correctness of DCJOD, so as a corollary of Theorem 2.2.1,
DCJOD correctly maintains the IFE dataflow. A simple example of spurious rerun is the
simple case in the SPSP example is when a vertex u has two incoming edges, say from w1

to w2. Suppose for purpose of demonstration w1 and w2 start with states 0 initially (so at
a timestamp ⟨G0, 0⟩), and suppose further that edges (w1, u) has a weight of 10 and (w2, u)
has a weight of 2. In this case, the Ju

⟨G0,1⟩ would contain (u, 10,+) and (u, 20,+). Suppose
in G1, the weights of these edges are swapped. The original DC would not re-compute Min
at timestamp ⟨G1, 1⟩ on u, because there is no difference directly to u’s input (nor through

22

an upper bound rule), where as DCJOD would. This is because DCJOD would immediately
schedule Min to execute on u because w1 (or w2’s) states changed at ⟨G1, 0⟩ and u is an
outgoing neighbour of w1.

Example 2. This example demonstrates an application of JOD’s rerunning rules on this
chapter’s running example. Consider the first update in the running example at timestamp
⟨G1, 0⟩, which updates the weight of edge (a, d) from 20 to 100. By the Direct Rule of
JOD, DCJOD reruns Min on d at timestamp ⟨G1, 0⟩. Further by JOD’s Upper Bound Rule,
DCJOD also schedule to run d at timestamp ⟨G1, 2⟩ because δDc

⟨G0,2⟩ is non-empty and c is
an incoming neighbour of d (condition (ii)). Note that rerunning Min on d at timestamp
⟨G1, 0⟩ creates a difference for δDd

⟨G1,1⟩. By the δD Direct Rule, DCJOD further schedules
to rerun Min on c and e, which are the outgoing neighbours of d, at timestamp ⟨G1, 1⟩.

2.2.2 Eager-Merging

The naive implementation of DCJOD can be expensive because the number of possible
timestamps ⟨Gh, i⟩ to inspect, where h < k + 1, can grow unboundedly large as batches of
edge updates continue to arrive. The eager merging optimization extends a periodic merg-
ing optimization of the DD system (explained momentarily), which reduces the number of
these timestamps.

Consider the point at which a new set of updates to graph version Gk has arrived
and the system has finished maintaining the computation for Gk. So there are k × max
many different timestamps in the computation so far. It is possible to think of these
timestamps in a 2D grid with columns as graph version indices and rows as IFE iterations
as in Table 2.1.

Observe that as more updates arrive to the system, the timestamps will increase in the
graph version dimension to Gk+1, Gk+2, etc, so more columns will be added to this grid.
Consider reassembling the contents of some collection C at timestamp ⟨Gk+1, 0⟩. To do
so, DD has to sum the differences in δCRow0 = {δC⟨G0,0⟩, ..., δC⟨Gk,0⟩}. To reassemble C at
timestamp ⟨Gk+1, 1⟩, DD has to sum the difference sets in δCRow0 and δCRow1 = {δC⟨G0,1⟩,
..., δC⟨Gk,1⟩}, etc. Observe that once the (k+1)’st graph updates have arrived, the system
will never have to re-execute an operator at timestamps ⟨Gh, i⟩ where h < k + 1. Instead
of computing δCRowj

multiple times for each possible {C⟨Gk+1,j⟩|j > i}, the original DD
periodically unions the individual difference sets in δCRowj

into a single difference set
δC⟨Gk+1,j⟩. This allows DD to reassemble collections faster and store the difference sets
more compactly.

23

Graph Updates

G0 G1 G2

IE
F

it
er

at
io

n
s 0 +(a, 0),+(b,∞),+(c,∞),

+(d,∞),+(e,∞)

1
+(b, 30),+(d, 100),+(e, 10)

2 +(c, 40)

3 +(d, 50)

Table 2.2: Differences in D on our running example with eager-merging when maintain-
ing the computation for ⟨G2, 2⟩.

Instead of periodic merging, DCJOD eagerly merges the differences along the graph-version
dimension as DCJOD runs DC’s maintenance procedure for ⟨Gk+1, 0⟩ to ⟨Gk+1,max⟩. That
is, as soon as DCJOD finishes maintaining ⟨Gk+1, i⟩, DCJOD merges the difference sets for
D for timestamps ⟨Gk, i⟩ and ⟨Gk+1, i⟩. This guarantees that for any vertex, DCJOD only
needs to keep one-dimensional timestamps, i.e., only for IFE iteration. Table 2.2 shows
the states of the differences stored in the system with eagerly merging differences and the
DC algorithm is in the process of maintaining the computation at timestamp ⟨G2, 2⟩. Dif-
ferences at grey cells have been merged to the right most cell on the row. In presence of
eager merging, whenever DCJOD needs to investigate if δD⟨Gh,i⟩ | h < k + 1 is non-empty
for any vertex, DCJOD needs to inspect timestamps with h = k.

There is one more benefit of eager merging. Eager merging allows dropping all dif-
ferences with negative multiplicities in the difference sets for D. This is because in the
considered algorithms, vertices take one unique state at each iteration of IFE. Therefore
in one-dimensional timestamps, the change in the state of a vertex from s to s′ at itera-
tion i, is always represented with two differences: (i) one with positive multiplicity with
s′; and (ii) one with negative multiplicity for s. For example, once DCJOD with eager
merging finishes maintaining the computation for all timestamps for graph version G2,
the distances stored for vertex d will be {(1, 100,+),(3, 100,−),(3, 50,+)}, where the first
values in these tuples are the timestamps, which are represented only with an IFEiteration
number. These differences can be stored as {(1, 100), (3, 50)}, and the (3, 100,−) would be
implied. In absence of negative multiplicities, it is possible to avoid doing any summations
when computing the state of a vertex at timestamp i, i.e., Dv

i . Instead it is possible to find
the latest iteration i∗ ≤ i in which vertex v has a (positive) difference and return it.

24

2.3 Partial Difference Dropping (PDD)

This section investigates optimizations that partially drop the distance differences in col-
lection D at an IFE subroutine. When applying the JOD optimization, D is the only data
collection for which DCJOD stores differences, except for the original edges in the graph.
Partial dropping the differences in D allows trading off scalability with query performance.
Specifically, the memory overhead to store D decreases, yet it also decreases performance
because when DC needs to reassemble the contents of D at a timestamp t, the dropped
differences need to be recomputed. This section describes partial dropping optimizations
with different scalability/performance trade offs. Note that throughout the rest of this
chapter, it is assumed that DCJOD+PDD runs JOD optimization with eager merging and
uses a single dimensional timestamp to refer to data collections, such as Di, instead of
D⟨Gk,i⟩. It also uses PDD optimization to reduce the size of collection D.

A partial dropping optimization has two key components:

• Dropped Difference Maintenance: When DCJOD+PDD accesses Dv
i , the system needs

to identify if a difference was dropped with key/vertex ID v at timestamp i. There-
fore, the system needs to maintain the dropped vertex ID-timestamp pair informa-
tion.

• Selecting the Differences to Drop: The system also needs to decide which differences
to drop and which ones to keep.

This section describes alternative approaches to both components.

A third important decision is to choose how many differences to drop given a memory
constraint. At a high-level, the answer to this question is clear: drop as little as possible
without violating the memory constraint. In practice however estimating this amount may
be challenging because each update to the graph changes the amount of differences needed
to maintain registered queries. Further, a system needs to estimate and plan for newly
registered or unregistered queries. In such dynamic scenarios, systems can adopt adaptive
techniques that determine how many differences to drop from each query by observing the
stored differences. This topic is discussed as part of future work. Based on the context of
this chapter, there is a user-define probability p that drops each difference with probability
p as discussed in Section 2.3.2.

25

2.3.1 Dropped Difference Maintenance

One natural approach to maintaining the dropped VertexID/timestamp pairs (VT pairs for
short) is to store them explicitly in a separate data structure called DroppedVT. There are
two possible designs for this data structure. A straightforward deterministic data struc-
ture is a hash table. This section starts by discussing its scalability bottlenecks. Then, it
proposes a probabilistic data structure, which can address this scalability bottleneck but
possibly leading to wasted re-computations of differences that do not exist. The evaluation
section shows that, despite this possible performance disadvantage, the probabilistic ap-
proach can still perform better than the deterministic one because probabilistic can drop
fewer differences than deterministic approach under limited memory settings.

Deterministic Difference Maintenance (Det-Drop)

Det-Drop uses a hash table to implement DroppedVT. During DCJOD+PDD, when Dv
i

is needed, it performs the following AccessDvi WithDrops procedure. Before describing the
procedure, recall from Section 2.2.2 that DCJOD does not store differences with negative
multiplicities for D when differences are merged eagerly, so it does not need to do any
summation to compute Dv

i . DCJOD only needs to find and returns the latest iteration
i∗ ≤ i for which there is a difference for v.

AccessDvi WithDrops:

1. Let δD be the index that stores the difference sets for D. δD is checked for the latest
iteration g∗ ≤ i, if any, for which the system has stored a difference for v.

2. Check DroppedVT for the latest iteration d∗ ≤ i, if any, for which the system has
dropped a difference for vertex v.

3. If a d∗ > g∗ exists, recompute the stored difference at d∗ and return this value.
Otherwise, return the value at δD at g∗.

Note that to recompute a dropped difference at timestamp d∗ in step 3 DCJOD+PDD reruns
the aggregation operation, e.g., Min, for vertex v at iteration d∗ − 1. This procedure is
similar to how DCJOD reruns Min operator for vertices at different timestamps. Then using
Jv
d∗−1 and Dv

d∗−1 DCJOD+PDD reruns Min and compute Dv
d∗ . However when it accesses

Dv
d∗−1, it recursively call AccessDvi WithDrops, as there may be dropped differences for v or

one of its incoming neighbours w at timestamp d∗ − 1. Therefore, this may lead to further
recomputations, which may further cascade.

26

τmin τmax

Figure 2.3: Degree-Drop Strategy for dropping differences

Example 3. Consider the running example. Suppose that after the first update, the system
decides to drop the difference +(b, 30) at iteration 1. Consider now the arrival of the second
update where the weight of (b, c) changes from 10 to 100. To maintain the computation
differentially, Min is rerun on c at ⟨G2, 1⟩ (due to δE Direct Rule) and then due to the
Upper Bound Rule on every timestamp in which c has a difference. Note that c already
has a difference that is not dropped at iteration 2, so c is scheduled to rerun at iteration 2.
DCJOD+PDD further checks if c has any dropped differences at iterations 3 and 4. Since
it does not, DCJOD+PDD does not schedule c to rerun at these differences. Then when
rerunning c at 2, DCJOD+PDD needs both b’s and d’s distances at iteration 1 and check if
they have any differences. DCJOD+PDD sees that d has stored difference but b does not,
so DCJOD+PDD checks if b has a dropped difference at 1. Since it does, DCJOD+PDD

recomputes that difference by rerunning b at iteration 1.

Explicitly keeping track of all dropped VT pairs requires keeping an additional state
that is proportional to the number of differences that are dropped, which limits Det-Drop
scalability. Note that a difference is simply a triple that consists of a VT pair plus a vertex
state (e.g., distance). Suppose Det-Drop needs d bytes to store VT pairs and s bytes to
store the actual state in a difference. Then, for each dropped d+ s bytes, Det-Drop has
to keep d bytes in DroppedVT. This means that even if Det-Drop partially dropped 100%
of differences, there is a hard limit of d

d+s
on the scalability benefits Det-Drop can obtain

from dropping differences. The next optimization overcomes this limitation by using a
probabilistic data structure.

Probabilistic Difference Maintenance (Prob-Drop)

Prob-Drop drops the entire difference, i.e., both the VT pair and the state, then uses a
probabilistic data structure to maintain the dropped VT pairs. Probabilistic data struc-
tures, such as Bloom [15] or Cuckoo filters [27], have the advantage that their sizes can
remain much smaller than the amount of data they store. Prob-Drop requires a proba-
bilistic data structure that never returns false negatives because if a VT pair was dropped
and the structure returns false when queried, DCJOD+PDD may ignore this difference and

27

reassemble incorrect states for vertices during execution. However, the structure can return
false positives, because false positives can only lead to unnecessarily recomputing a vertex
state, but the recomputed vertex state will still be correct.

This chapter uses a Bloom filter2, into which DCJOD+PDD inserts the dropped VT pairs.
Using a Bloom filter requires minor modifications to the AccessDvi WithDrops procedure
from Section 2.3.1. Specifically, in the second step, the procedure needs to check the Bloom
filter for each potentially dropped difference at iteration d ∈ (g∗, i] starting from i to see if a
VT pair for (v, d) was dropped. If the answer is negative, then processing moves to the next
d until DCJOD+PDD arrives at g∗. In this case, the value from D for iteration g∗ (obtained
from step 1) is the correct value of v at iteration i. If the answer is positive for an iteration
d∗ ∈ (g∗, i], then the value of pair (v, d∗) is recomputed. Note that DCJOD+PDD does not
need to verify whether the returned d∗ was a true or false positive because regardless of
the reason, the re-computed result is the correct value of v at iteration d∗ (and also at
iteration i).

The evaluation section (Section 2.5) shows that Prob-Drop can increase the scalability
of a GDBMS more than Det-Drop because its size does not grow as the system drops
more differences. Furthermore, in some settings, the system does not need to drop as many
differences in Prob-Drop as in Det-Drop to reach a certain scalability level (represented
as the number of concurrent queries in the evaluation section).

2.3.2 Selecting the Differences To Drop

The second component of a PDD optimization is to decide which differences to drop. A
baseline heuristic is to drop each difference uniformly at random. This section proposes
a more optimized technique that uses the degree information of vertices to select the
differences to drop.

Degree-based Difference Dropping

A GDBMS using DC to maintain continuously running recursive queries can exploit the
fact that the dataset is a graph, therefore partitioning keys are vertex IDs. Intuitively, when
executing the recursive algorithms considered in this chapter, high degree vertices are used
frequently when computing the states of other vertices, i.e., they will be accessed more
by DC when maintaining the input IFE dataflow. Therefore, dropping their differences

2A Bloom filter implementation from https://github.com/lemire/bloofi

28

https://github.com/lemire/bloofi

can lead to frequent vertex state re-computations. Similarly, vertices with low-degrees are
relatively less frequently accessed by DC. Based on this intuition, the proposed heuristic
takes two thresholds τmin and τmax, for minimum and maximum degrees, respectively, and
a probability parameter p. Then, DCJOD+PDD performs the following for a difference with
a VT pair ⟨vertex, iteration⟩ pair (⟨v, i⟩) assuming that deg(v) is the degree of vertex v
(Figure 2.3):

• If deg(v) < τmin, drop the difference.

• If deg(v) > τmax, do not drop the difference.

• Otherwise drop the difference with probability p.

Empirical studies showed that setting τmin as 2 and τmax as the top 80th-degree percentile
of the input graph is reasonable for the graphs used in the evaluation section. More
sophisticated properties, such as the betweenness centrality of vertices, can also be used
to decide the differences to drop. A practical advantage of using degrees is that degree
information is readily available in adjacency list indices, which are ubiquitously used in
GDBMSs.

2.4 Implementation

Upon an update δEk+1 to the graph, the implementation of DC, DCJOD, and DCJOD+PDD

keeps track of a “frontier”, which is the list of vertices and iteration numbers during which
the aggregation operator should be re-computed. These are stored as an array of hash
sets, to remove duplicate additions of a vertex into this set, where there is a set for each
IFE iteration until max. Recall that max is the maximum number of iterations IFE has
executed in any of the graph versions. Since DCJOD and DCJOD+PDD do eager merging, in
this case max is the maximum IFE iteration for Gk.

These implementations store the differences in vertex states (i.e., the output of the
aggregation operator) also in a hash table where the keys are vertex IDs and the value is a
list of pairs ⟨i, siv⟩ that is sorted by i, where siv is the new state of vertex v in IFE iteration
i. Recall again that because of eager merging, timestamps are one dimensional. To check
for the state of a vertex v at iteration i, DCJOD find the latest available iteration i∗ ≤ i in
v’s sorted list using binary search.

29

For PDD approaches discussed in Section 2.3, DCJOD+PDD uses a separate data struc-
ture (DroppedVT) to store the dropped vertex-timestamp pairs. Det-Drop uses a hash
table, such that the key is vertex-id and the value is a sorted list of dropped iterations.
When DCJOD+PDD needs to check if a pair (⟨v, i⟩) exists in DroppedVT, it finds the list of
iterations using the vertex-id (v) and then search for the latest dropped iteration d∗ ≤ i
in the list. For Prob-Drop the hash table is replaced by a Bloom filter. Each object
in this Bloom filter is 8-bytes object and is constructed by concatenating vertex-id and
iteration number together using binary operations. Searching in the Bloom filter requires
constructing a search object first, using binary operations, and then check if the Bloom
filter contains this object.

2.5 Evaluation

2.5.1 Experimental Setup

All experiments are run on a Linux server with 12 cores and 32 GB memory. Each ex-
periment reports the total time, in single-threaded execution, needed to update the graph
and the query answer after applying a batch of updates. For each dataset, the edges are
shuffled, then the dataset is split so that 90% of the data is used as an initial graph, while
the remaining 10% models the dynamism in the graph consisting of the update to the
graph. The 90% ratio is helpful to ensure that the input graph has enough edges that
represent its properties which might change over time, such as densification and shrinking
diameter [47].

The default batch size is 1, because differential computation is more suitable for near
real-time dynamic graph updates than for infrequent updates. An evaluation of the effects
of batch sizes on the performance of DC is available in Ammar et al. [10]. It shows that as
the batch size increases, the benefits of DC decreases until a certain point when Scratch
could be faster. Note that all experiments, by default, use insertion-only workloads. The
only exception is Section 2.5.2, which presents experiments that use workloads with dif-
ferent amounts of deletions and show that the effect of deleting edges is minimal in the
proposed optimizations.

30

Datasets

This evaluation section uses a combination of real and synthetic graphs that are summa-
rized in Table 2.33. The four real graphs are Skitter, LiveJournal, Patents, and Orkut,
all obtained from [46]. Skitter represents an internet topology from several scattered
sources to millions of destinations on the internet and its vertices are strongly connected.
LiveJournal and Orkut [46] represent social network interactions with a vertex degree
distribution that follows power law. Patent [46] represents a citation graph for all util-
ity patents granted between 1975 and 1999. In order to experiment with weighted SPSP
queries, weighted versions of real graphs have been created by adding a random integer
weight between 1 and 10 uniformly at random to each edge. LDBC SNB [25] is a syn-
thetic graph that models dynamic interactions in social network applications. This graph
has edge labels that are used in RPQ queries. LDBC SNB includes several types of entities,
such as persons or forums. Each edge has a label such as Knows or ReplyOf. This version
has a scale factor of 10 which generates a graph of 7.2M vertices and 77.6M edges.

Name |E| |V | Max. Avg. Avg.
Degree Degree In-Degree

LiveJournal (LJ) 69M 4.8M 4K 8.5 14.2
Skitter (SK) 11M 1.7M 35K 8.2 12.6
Patents 16.5M 3.8M 704 2.3 4.7
Orkut 117.2M 3M 29.6K 17.7 34.4
LDBC SNB 77.6M 7.2M 20.8K 7.3 9.8

Table 2.3: Datasets

Workloads

The main workload queries are SPSP, Khop, and several popular RPQ queries. SPSP and
Khop run on the weighted and unweighted versions of the real datasets, respectively. For
each SPSP query generation, a random pair of vertices in the graph have been selected.
For Khop, a random set of vertices have been selected, and the value of maximum hops K
is 5 to make it a 5-hop query.

RPQ queries require edge labels, so RPQ experiments are conducted only on the LDBC
dataset. These queries leverage RPQ templates that have been frequently used in real-
world workloads as defined in Bonifati et al. [16] which were used to study streaming RPQ

3Reported degrees are for the initially loaded graphs in the experiments.

31

evaluation in Pacaci et al. [61]. There are only two self-relationships in LDBC SNB: Knows
and ReplyOf. Self-relationships here refer to an edge label that can exist consecutively in
an arbitrary path. Therefore, some templates that expect more than two self-relationships
cannot be used in LDBC SNB. The following RPQ query templates are used:

• Q1 = a∗

• Q2 = a ◦ b∗

• Q3 = a ◦ b ◦ c ◦ d ◦ e

In these queries, Likes, Knows, ReplyOf, and hasCreator, are used to construct queries from
these templates in the LDBC SNB dataset.

SPSP, Khop, and RPQ are queries that can be supported in high-level languages of
GDBMSs. Although these are the main queries that motivate this chapter, the proposed
optimizations are applicable to other computations based on IFE. To demonstrate this, dif-
ferential versions of the standard weakly connected components (WCC) algorithm, which is
based on iteratively propagating and keeping track of minimum vertex IDs, and PageRank
(PR) (ran a fixed 10 number of iterations) have been implemented.

Baselines and Different GraphflowDB Configurations

All optimizations have been implemented inside the continuous query processor (CQP) of
GraphflowDB [41], which is a shared memory GDBMS. This CQP has been extended to
implement a baseline DC and all proposed optimizations to maintain the recursive queries
investigated in this chapter. During this section, the following GraphflowDB versions for
different configurations of DC are used: VDC, JOD, Det-Drop, or Prob-Drop.

All proposed optimizations have been compared with three baselines: DD, Scratch,
and VDC. DD is an implementation of all workloads in the Differential Dataflow sys-
tem [24], which is the reference implementation of differential computation. Scratch is
a baseline extension of GraphflowDB’s CQP to support queries by simply executing each
query from scratch after every batch of changes. Scratch represents a baseline GDBMS’s
performance that does not support continuous queries. For all queries, an IFE-like label
propagation algorithm is used. Note that this algorithm is identical to what is referred
to as the “incremental” fixed point algorithm in the original Differential Dataflow [51] (see
Figure 1 in the reference). This term is used to indicate that only the vertices whose values

32

are updated in a particular iteration propagate their labels in that iteration (as opposed
to all vertices).

VDC is the vanilla differential computation implementation in GraphflowDB. The dif-
ference between VDC and DD is that the former is a single-machine implementation using
Java while the latter is a distributed system implemented in Rust. Note that both im-
plementations are not part of this thesis’s contribution. Section 2.5.2 verifies that VDC
behaves similarly to DD (and even outperforms it in terms of runtime); therefore, VDC
is used as the main baseline for all optimizations that are implemented inside the same
GDBMS. VDC ingests and stores the input graph in the same way, uses a similar data
structure to store the differences, and the same programming language as the following
GraphflowDB configurations:

1. JOD: A DC version that implements join-on-demand optimization from Section 2.2;

2. Det-Drop: Integrates deterministic partial dropping optimization on top of JOD
as discussed in Section 2.3.1;

3. Prob-Drop: Integrates probabilistic partial dropping optimization on top of JOD
as discussed in Section 2.3.1.

There is also a comparison between different versions of Det-Drop and Prob-Drop to
evaluate the degree-based difference dropping optimization.

2.5.2 Baseline Evaluation

The first set of experiments measures the performances of Scratch, DD, and VDC. There
are two goals: (i) to obtain baseline measurements for the proposed DC optimizations;
and (ii) to validate that VDC is competitive with DD to justify its use as a more suitable
baseline than DD for all optimizations. This experiment ran SPSP, K-hop queries, WCC
and PR on Skitter, LiveJournal, Patents, and Orkut datasets, and all three RPQ queries on
the LDBC dataset. For SPSP, K-hop and RPQ workloads, there are 10 registered queries to
be monitored. Each experiment simulates dynamism by using 100 insertion-only batches,
with 1 edge in each batch.

Results are shown in Figure 2.4 (ignore the JOD charts for now). As shown in figure
Scratch, as expected, is several orders of magnitude slower than VDC and DD but also
has the smallest memory overheads. Scratch is most competitive with VDC and DD

33

(a) Total Batch Time (ms)

(b) Memory (GB)

Figure 2.4: Comparison between Scratch, DD, VDC, and join-on-demand (JOD).

in PR, though still over an order of magnitude slower. This is expected because as also
observed in prior work [69], during differential maintenance, the changes in PR are harder
to localize to small neighbourhoods as in other computations, i.e., small changes are more
likely to change the PR values of a larger number of vertices. VDC is slightly faster than
DD while using comparable memory because DD assumes a distributed setting where, by
default, all messaging and communication between IFE operators involves network over-
head. In contrast, VDC assumes a shared memory setting, avoiding such communication
overhead.

The following section repeats these experiments with two different update workloads
that include deletions: (i) where 25 of the batches are deletions; and (ii) where 50 of the
batches are deletions. The performance trade-offs offered by the proposed optimizations
offer are broadly similar across these different update workloads. Note that this is expected
as the amount of ingested updates is relatively minor compared to the number of edges we
start with, which recall comprise 90% of all edges in each dataset. Overall these results
confirm that VDC is a more suitable baseline for analyzing the effects of the proposed
optimizations than DD. In the rest of this chapter, VDC and Scratch will be used as
the main baselines to evaluate all proposed optimizations on top of VDC.

34

(a) Total Batch Time (ms) with 25% batches

(b) Total Batch Time (ms) with 50% batches

Figure 2.5: Comparison between Scratch implementation (Scratch), Differential
Dataflow (DD), vanilla DC implementation on top of Graphflow (VDC), and join-on-
demand (JOD) using different ratios of edge deletions.

Impact of delete batches on DC optimizations

All experiments, so far, have assumed edge addition. This section evaluates the impact of
deleting batches. Figure 2.5 shows the baseline experiments when 25% and 50% of batches
are deleting edges. These figures are very similar to the original baseline figure (Figure 2.4),
where all batches are edge additions.

All workloads have been examined for further analysis with different probabilities of
delete batches (0%, 25%, 50%, 75%, 100%). Similar to previous experiments, different
queries ran with 100 batches, each with 1 edge. Figure 2.6 does not have “Scratch” because
it is several orders of magnitudes slower than other approaches. In general, changing
the ratio of batches with delete does not change the previously reported results regarding
JOD, Det-Drop, and Prob-Drop. An important observation, however, is that for SPSP
query VDC is getting slower as the delete probability increases while JOD, Det-Drop,
and Prob-Drop are getting faster. Note that SPSP is a weighted query and typically
has a large number of iterations and a large number of differences. Deleting edges have
the opposite impact for VDC, which does not use early-dropping, in comparison to the
remaining implementations. From one side, deleting edges in VDC leads to adding more
negative multiplicities, which then adds more overhead to be stored and maintained. On

35

(a) PagreRank (b) Connected Component

(c) K-hop query (d) SPSP query

Figure 2.6: Changing the probability of deleting batches while running different queries on
the LiveJournal dataset.

the other side, deleting edges with an implementation that uses early-dropping leads to
reducing the number of differences.

2.5.3 Join-On-Demand

The next set of experiments aims to study the performance and memory benefits and over-
heads of JOD. JOD is guaranteed to reduce the memory overhead of a system implement-
ing vanilla differential computation, e.g. DD or VDC. However, in terms of performance,
JOD has both overheads and benefits. On the one hand, using JOD reduces the work
done by vanilla differential computation for storing differences. On the other hand, as
updates arrive, JOD requires re-computing the join on demand by reading the states of
in-neighbours’ vertices at different timestamps to inspect if some δJ partitions are non-
empty. This should be slower than materializing δJ difference sets and inspecting them to
see if they are non-empty. The goal of this experiment is to answer: What is the net effect
of these performance benefits and costs? and What governs this net effect?

The hypothesis is that JOD computation overhead increases proportionally with the
average degree of the input graph. This is because, given a vertex v, the overhead of

36

(a) SPSP on the Knows subgraph of LDBC. (b) K-hop on the Knows subgraph of LDBC.

(c) RPQ-Q1 on the Knows subgraph of LDBC.

Figure 2.7: Comparison of VDC and JOD when running RPQ-Q1, K-hop, and SPSP as
the average vertex degree is increased in the Knows subgraph of LDBC. Numbers on top
of the are the average number of differences in δD per vertex.

37

looping through v’s incoming neighbours to re-compute the join at timestamp t should
increase with the number of neighbours of v. At the same time, the benefits of JOD
from not storing the differences depend on how many differences are produced by the Join
operator. This depends partially on the average degree but also on the average number
of times the state of a vertex changes during a computation. For example, in the full
difference trace of the running example, Table 2.1, there is a new δJ difference only when
the state of a vertex changes. This number is quite small and does not necessarily grow as
the average degree increases. Therefore as the average degree increases, it is expected that
JOD’s overhead to increase faster than its benefits, and eventually VDC will outperform
JOD in terms of speed.

The first experiment reruns the baseline experiments from Section 2.5.2 with JOD. The
average in-degrees of Orkut, Skitter, LiveJournal, Patents, and LDBC (for the subgraph
containing Knows edges) are 34.4, 12.6, 14.2, 4.7, and 4.7 respectively. So it is expected
that VDC to be faster than JOD by larger margins on Orkut and Skitter and smaller
margins on Patents and LDBC. Results are shown in Figure 2.4. As expected, JOD uses
significantly less memory (between 1.2× to 5.5×) than VDC irrespective of the input graph
or query. In terms of performance, as expected, VDC is faster than JOD on Orkut (1.3x
on k-hop) and Skitter (4.6× on K-hop) but slower than JOD on Patents (2.4x on SPSP)
and on LDBC RPQs (by a factor of 1.2×).

Although the previous experiment supports the initial hypothesis, the degree differences
between the input graphs are still relatively close to each other, and it was not possible to
control the queries across different datasets. The following experiment is more controlled.
In this experiment, the Knows subgraph was extracted from the LDBC dataset. Then
several versions of this dataset were created by increasing the average degree from its
original value of 4.7, to 20, 100, 500, and 1000. SPSP, K-hop, and RPQ queries Q1 are
run on each version of these graphs. The average degree was increased by adding random
edges that connect vertices in this subgraph. Results are shown in Figure 2.7.

As expected, irrespective of the query, when the average degrees are small, 4.7 or 20,
JOD either outperforms or is competitive with VDC, but as the degrees get large, e.g.,
100 and above in this setting, VDC consistently outperforms JOD. The numbers on top
of the DC and JOD bars in Figure 2.7 are the average number of differences maintained
by the aggregation operation in vertices with non-zero differences. Note that this number
does not even necessarily increase as the degree increases and remains small relative to the
average degree. It can even decrease in SPSP, primarily because SPSP converges faster
when the degrees are larger, i.e., the number of SPSP iterations decreases, so the number
of different differences vertices get can decrease.

38

(a) Performance of difference selection policies.

(b) Average number of dropped differences re-computed per vertex.

Figure 2.8: Comparison of Random and Degree-based difference dropping when running
10 K-hop queries.

39

2.5.4 Selecting the Differences To Drop

Next is the evaluation of the effectiveness of the two strategies proposed in Section 2.3.2
for selecting which differences to drop in PDD optimizations, which are:

1. Random, which randomly selects the differences with probability p;

2. Degree drops differences based on vertex degrees.

As mentioned in Section 2.3.2, it is expected that Degree to outperform Random.

This experiment runs 10 Khop queries over Skitter with 100 insertion-only batches
of size 1 using Det-Drop and Prob-Drop with both Random and Degree selection
strategies. In total, there are 4 system configurations. For Degree, τmin is set to 2 and
τmax to the 80th percentile of the vertex degrees in the input graph. The drop probability
p for Det-Drop and Prob-Drop has, then, been increased from 0% to 100%. The
experiment then plots the total number of dropped differences on the x-axis and the runtime
on the y-axis in Figure 2.8. There are two important observations.

First, all of the lines in the figure go up, i.e., as more differences are dropped, the
performance of each system configuration gets slower. This is expected because PDD
optimization has to store and maintain auxiliary data structures to maintain the dropped
differences. Therefore, dropping differences primarily has a performance cost, as it can
lead the system to recompute those dropped differences. Note that this is not the case
with JOD, where storing fewer differences potentially leads to a performance advantage
because fewer differences are maintained.

Second, configurations with Degree (the two bottom lines), irrespective of using Det-
Drop and Prob-Drop, are between 3 to 5 orders of magnitudes faster than the configura-
tions with Random (two top lines). Note that the lines with Random have a bigger span
on x-axis because there are limits to the minimum and the maximum number of differences
that configurations with Degree can drop. For example, at the minimum when p = 0%,
the configurations with Degree still drop all differences of vertices with degree < τmin,
whereas Random can drop as few as 0 differences.

Further analysis using a micro-benchmark is conducted to explain better the reason
for the performance difference between Random and Degree. This analysis used a
configuration that uses Det-Drop with Random selection policy, a fixed drop probability
p (= 10%), a workload (10 Khop queries) and a dataset (Skitter with 100 batches of 1 edge
insertions). For each vertex v the number of times Det-Drop re-computed a dropped
difference with key (vertex-id) v is recorded, i.e., how many times Det-Drop has accessed

40

Dv at some point, but v’s state had to be re-computed because a difference was dropped
and then recorded in DroppedVT. Then, vertices were bucketed by their degree, where for
each degree bucket (e.g., [1−10)) Figure 2.8b plot the average number of re-computations
for each vertex in that bucket. Note that the bar charts use the left y-axes and represent
the average number of re-computations for vertices with different degree buckets, where
a tick in the x-axes represents a bucket with the next tick. The line chart uses the right
y-axes and plots the vertex degree distribution in the graph.

As shown in Figure 2.8b, the degree distribution follows a power-law distribution, as is
commonly the case in real-world graphs [26, 47]. The average number of re-computations
per vertex follows the opposite trend where vertices with smaller degrees on average lead
to fewer re-computations, e.g., vertices with degrees more than 2000 lead to more than
1000 re-computations on average, while those with degrees [1, 10) lead to fewer than 1 re-
computations. Since the memory saving of dropping 1 difference is the same regardless of
the vertex degree, the Degree strategy is more efficient because it drops more differences
from vertices with smaller degrees.

2.5.5 Difference Maintenance

The next set of experiments focus on evaluating Det-Drop and Prob-Drop. Figure 2.8a
shows the performance of Det-Drop and Prob-Drop when both drop exactly the same
number of differences using Degree and Random selection policies. They behave sim-
ilarly when using the same selection strategy, with Det-Drop slightly faster, which is
expected because Prob-Drop may perform unnecessary re-computations due to false
positives. However, Det-Drop and Prob-Drop do not have similar memory footprints
when they drop the same number of differences: Prob-Drop’s approach is more memory
efficient than Det-Drop. Next is a more systematic evaluation of the scalability and
performance trade-offs of these techniques under the Degree policy, which outperforms
Random.

The following experiment (Figure 2.9) analyzes how much Det-Drop and Prob-Drop
increase the system scalability in terms of the number of concurrently maintained queries
relative to VDC for a given memory budget for SSSP, K-hop, and RPQ queries. Note that
PageRank and WCC queries have been omitted from these experiments because these are
batch computations and there is only one possible query/result for each graph. For com-
pleteness Scratch and JOD are also represented in this experiment. To simulate a fixed
memory budget environment, this experiment assumes a system with a maximum mem-
ory of 10GB. This memory could be used for storing the graph data structure, differences

41

(a) K-hop query in SK dataset (b) SPSP query in SK dataset

(c) K-hop query in LJ dataset (d) SPSP query in LJ dataset

(e) K-hop query in PA dataset (f) SPSP query in PA dataset

(g) K-hop query in OR dataset (h) SPSP query in OR dataset

(i) RPQ-Q1 (j) RPQ-Q2

(k) RPQ-Q3

Figure 2.9: Number of queries maintained by Scratch, DC, JOD, Det-Drop, and
Prob-Drop under a limited memory budget of 10GB. The large dot in the bottom left of
each figure is DC.

42

and/or additional data structures, e.g., to manage dropped VT pairs. For consistency, this
experiment uses the same queries, datasets, and batches from Section 2.5.2. However, the
number of queries systematically increases until the system runs out of memory.

Figure 2.9 uses the maximum scalability level of VDC, which is the maximum number
of queries that can fit in the memory budget (10GB), as the lowest number of queries, and
then increases the number of queries in the system from this point on. That is why VDC
appears as a single grey point in all charts. For Det-Drop and Prob-Drop, for each
number of queries q, this experiment finds the lowest dropping probability pdet for Det-
Drop and pprob for Prob-Drop that can support q queries and report their performances
with these levels. Note that there is an assumption of an ideal setting, such that there is a
system that is able to find this lowest dropping probability. This system is used to evaluate
the most performant versions of Det-Drop and Prob-Drop for the given query level.
In practice, finding this probability is challenging and left as future work. In Figure 2.9
pdet that is used for Det-Drop is reported under the Det-Drop line, and the pprob that
is used for Prob-Drop is reported above the Prob-Drop line.

This experiment leads to a few critical observations. First, as in Figure 2.4, JOD can
increase the number of queries that could be concurrently run by 2.3×−10× over VDC.
Second, increasing the number of queries with partial dropping optimizations typically
increases the run time super-linearly beyond a particular point. After this point, increasing
scalability requires increasing the dropping probability, which leads to more differences to
be re-computed. However, PDD can increase the number of concurrent queries by up to
20× relative to VDC while still outperforming Scratch by several orders of magnitude.
Third, the advantage and disadvantages of Det-Drop and Prob-Drop overall balance
out for the scalability levels both Det-Drop and Prob-Drop can handle, i.e., they
perform similarly at these scalability levels. However, Prob-Drop can consistently scale
to higher levels than Det-Drop (up to 1.5×). That is because, as mentioned earlier,
Det-Drop does not incur any unnecessary re-computations due to false positives but has
to drop more differences than Prob-Drop to scale to more queries (as it has a higher
memory overhead for storing the dropped VT pairs).

The last experiment in this section uses PR and WCC workloads, for which there is
only one possible “query”, using the LJ dataset. The memory budget for PR is 2.75GB, and
the memory budget for WCC is only 2GB. Figure 2.10 shows the lowest drop probabilities
at which these budgets were enough for Det-Drop and Prob-Drop, with the necessary
drop percentages presented on top of the bars. Note that for PR, Det-Drop requires 100%
dropping rate and takes 369 seconds to complete while Prob-Drop requires 90% dropping

43

Figure 2.10: Comparison of Det-Drop and Prob-Drop when running PageRank and
WCC on LJ under limited memory. The probabilities on top of each bar represent the
lowest drop probabilities at which a budget of 2.75GB for PR and a budget of 2GB for
WCC are enough for query execution.

rate and takes 268 seconds to complete4. On WCC, Det-Drop requires 90% dropping
rate and takes 11.9 seconds to complete, while Prob-Drop requires 70% dropping rate
and takes 11.5 seconds to complete. Overall, similar to previous experiments, Prob-Drop
needs to drop fewer differences to successfully complete the experiment, which sometimes
leads to better performance.

2.5.6 Further Applications of Diff-IFE

The previous experiments have focused on demonstrating the performance tradeoffs that
the JOD, Det-Drop, and Prob-Drop optimizations offer when evaluating continuous
recursive queries using IFE module. This section aims to demonstrate further applica-
tions of IFE in general systems. Specifically, it shows that it is possible to improve the

4Recall that 100% dropping rate does not mean all differences are dropped. The Degree approach
does not drop any differences for vertices with a degree over 13 in the LJ dataset.

44

performance of Scratch baseline for SPSP queries through using and differentially main-
taining a popular shortest path index, called landmark indices [32, 63]. A landmark index
is a single-source shortest distance index, i.e., it stores the shortest path distance from a
“landmark” vertex to the rest of the vertices.

In this section, landmark indices are used to prune the search space of Scratch.
Specifically, in the shortest path query from s to d, the sum of the distances of s to l and
l to d gives an upper bound ℓu on the shortest distance between s and d. Similarly, the
difference between the v to l distance and l to d distance gives a lower bound ℓb on the
distance from v to d. If v is visited at distance k in the Bellman-Ford algorithm, and k+ ℓb
is greater than ℓu, then the algorithm can avoid traversing v as it cannot be on the shortest
path from s to d.

This experiment uses all datasets except LDBC and picks the 10 highest-degree nodes as
landmarks. It uses an optimized version of Scratch which is called Scratch-landmark.
In this optimization, as updates arrive at the graph, the system first maintains these 10
landmark indices using JOD and then run each registered query using the landmark-
enhanced Scratch.

Figure 2.11 compares Scratch and Scratch-landmark using 100 SPSP queries and
measured the end-to-end time of 100 batches of single-edge insertions. The reported
times for Scratch-landmark include both the time to maintain the index and then (non-
differentially) evaluate each query. As shown in the figure, by using and differentially main-
taining landmark indices, Scratch-landmark can reduce Scratch time between 43% to
83% (albeit now using additional memory to store both the index and the differences to
differentially maintain the index).

2.6 Conclusions

Differential computation is a highly generic novel technique to maintain arbitrary dataflow
computations, particularly iterative ones that can implement recursive subroutines. As
such, it is a promising technique to integrate into data management systems that aim to
support continuous queries that require recursive computations. Differential computation
is based on a simple computation maintenance procedure that stores the input and output
differences of operators in partially ordered timestamps and reruns these operators at
different timestamps when changes to their inputs are detected. Although its simple routine
makes it very generic and highly efficient, the amount of storage required by differential
computation can be very large for some queries, limiting its scalability.

45

Figure 2.11: Comparing Scratch vs. Scratch-landmark on 100 queries and 100 batches
of updates. Numbers on orange bars are the runtime improvements of Scratch-landmark.

This chapter studied the problem of how to increase the scalability of differential com-
putation, focusing on a standard dataflow subroutine whose variants can evaluate many
recursive graph queries, as supported in the query languages of GDBMSs. The proposed
optimizations (complete dropping and partial dropping) are generally based on dropping
differences either completely or partially. They are best suited for applications for which
updates are relatively small, and evaluation of the query upon each update is critical.
As in any materialized view maintenance application, applications that do not require
getting updates on the query results may choose to rerun the query periodically instead.
Rerunning the query periodically from scratch can be done by the application or sup-
ported and delegated to the system and could indeed outperform methods, including dif-
ferential computation-based methods described in this chapter, if the frequency of query
re-computation is low enough and updates are very infrequent.

The scalability and performance trade-offs of these optimizations have been studied.
This chapter showed that these optimizations can increase the scalability of vanilla differ-
ential computation by more than an order of magnitude while still outperforming a baseline
that reruns queries from scratch.

Complete dropping optimization, a.k.a. JOD, avoids storing any difference sets for J
in IFE. This means JOD completely drops δJ , and regenerates Ju for any vertex u on de-
mand when DC requires running the aggregation operator (in our example Min) on u at a
particular timestamp. Eager merging implementation helps JOD by guaranteeing that for

46

any vertex, there are only one-dimensional timestamps, i.e., only for IFE iteration instead
of two dimensions (Graph version,IFE iteration). Furthermore, eager merging allows drop-
ping all differences with negative multiplicities in the difference sets for D because vertices
take one unique state at each iteration of IFE. The experimental results show that JOD
uses significantly less memory (between 1.2× to 5.5×) than VDC irrespective of the input
graph or query. In terms of performance, JOD and VDC could be faster based on the
graph degree. When the average degrees are small, 4.7 or 20, JOD either outperforms or
is competitive with VDC, but as the degrees get large, e.g., 100 and above in this setting,
VDC consistently outperforms JOD.

Partial dropping, PDD, partially drops some differences from J in IFE by keeping track
of their keys and timestamps but not the actual difference values and recomputes these
differences when differential computation’s maintenance procedure needs them. Instead of
selecting random differences to drop, the chapter proposes a degree-based approach which
leads to several orders of magnitude faster execution than the random approach. The
Det-Drop and Prob-Drop approaches keep track of differences in timestamps using a
deterministic data structure, e.g. hash table, or probabilistic data structure, e.g. bloom
filter, respectively. Together, JOD and PDD increase the scalability of vanilla differential
computation up to 20× while being several orders of magnitude faster than Scratch.

47

Chapter 3

Optimizing Fixed-Length Subgraph
Query Execution1

Subgraph queries, i.e., finding instances of a given subgraph in a larger graph, are a fun-
damental computation performed by many applications and supported by many software
systems that process graphs. Example applications include finding triangles and larger
clique-like structures for detecting related pages in the World Wide Web [29] and finding
diamonds for recommendation algorithms in social networks [35]. Example systems include
graph databases [56, 78], Resource Description Framework (RDF) engines [57, 89], as well
as many other specialized graph processing systems [3, 49, 75]. As the scale of real-world
graphs and the speed at which they evolve increase, applications need to evaluate sub-
graph queries efficiently both offline and in real time. Variable length subgraph queries,
like Regular Path Queries (RPQ), could be answered using the approaches discussed in the
previous chapter. This chapter focuses on fixed-length subgraph queries.

Recall that this thesis adopts the relational view of graph queries, in which any subgraph
query can be seen as a multiway join on replicas of an edge table of the input graph. Also,
recall that a join algorithm is worst-case optimal for a query Q if its computation cost
is not asymptotically higher than the AGM bound (referred to as MaxOutQ) of Q [11],
which is the maximum possibly output size for the given size of the relations in Q.

This chapter proposes a new version of Generic Join (GJ) [58], called Delta-GJ, that
supports dynamic graphs. Delta-GJ requires memory that is linear in the size of the
changes to the graph and is worst-case optimal for insertion-only workloads in terms of

1This work has been published as [9]

48

computation costs. Section 3.4.1 has proof that under insertion-only workloads, Delta-GJ
is worst-case optimal.

This chapter also explores distributed implementation of GJ because, unlike BJ which
is used in recursive queries, the previous work on GJ has already provided several single-
node implementations of WCOJ algorithms [3, 41]. Distributed GJ (called BigJoin)
expands GJ to run in distributed share-nothing environments and also expands the def-
inition of worst-case optimal to include network communication. Specifically, it shows
optimizations to balance the workload of the machines in the cluster and make algorithms
provably skew-resilient, i.e., guarantee that the costs per worker decrease linearly as ad-
ditional workers are introduced. Recall that in a single-node setting, a join algorithm is
worst-case optimal for a query Q if its computation and memory cost is not asymptotically
larger than the AGM bound (referred to as MaxOutQ) of Q [11], which is the maximum
possible output size for the given size of the relations in Q. To expand this definition for
distributed settings, this chapter expands the worst-case optimal definition to include com-
munication costs. Indeed, a naive “distributed” algorithm can send all of the input to one
worker w∗ and use a sequential worst-case join algorithm. This algorithm would achieve all
of the optimality guarantees but without balancing the workload in the cluster. Instead,
this chapter shows optimizations to balance the workload of the cluster workers and make
these algorithms provably skew-resilient, i.e., guarantee that the costs per worker decrease
linearly as additional workers are introduced.

The rest of this chapter is organized as follows. Section 3.1 reviews the required prelimi-
naries, and related work for this chapter, including GJ, existing distributed subgraph algo-
rithms, Massively Parallel Computation (MPC) model [13, 12, 45], and Timely Dataflow.
Section 3.2 uses the MPC model to introduce BigJoin for static graphs that achieve the
expected theoretical guarantees based on worst-case optimal definition. BigJoin achieves
cumulative worst-case optimality and, in real-world data sets and queries, achieves good
workload-balance and low per-worker memory (Section 3.2). However, on adversarial in-
puts, it can lead to a single worker performing most of the work. This theoretical shortcom-
ing is resolved in another algorithm called BigJoin-S (Section 3.3). Specifically, BigJoin-S
is the first distributed join algorithm that has worst-case communication and computation
costs and achieves workload balance across workers on every query. In addition, BigJoin-
S achieves these guarantees with as low as O(IN

w
) memory per worker where IN is the

input size and w is the number of workers. After that, Section 3.4 introduces Delta-
GJ with a running example and then proposes a distributed version of Delta-GJcalled
Delta-BigJoin.

Finally, Section 3.5 presents how BigJoin and Delta-BigJoin algorithms are im-
plemented in Timely Dataflow. Then, Section 3.6 summarizes the evaluation of the pro-

49

P0={}
for (j = 1... m):
Pj={}
for (p ∈ Pj−1):

// ∩ below is performed starting from smallestE Extij(p)
extp = ∩Extij(p)
Pj = Pj ∪ extp

Figure 3.1: Pseudo-code of GJ.

posed algorithms. Algorithms evaluations include comparisons against an optimized single-
threaded algorithm, an existing shared-parallel system, and two existing distributed sys-
tems specialized for evaluating subgraph queries. Evaluations show that Delta-BigJoin
can monitor complex cyclic subgraphs very efficiently on graphs with up to 64B edges on
a cluster of 16 machines using very low memory.

3.1 Related Work

3.1.1 Generic Join (GJ)

Ngo et al. [59] and Veldhuizen [80] proposed worst-case optimal join algorithms for equi-join
queries called, respectively, NPRR and Leapfrog TrieJoin. These algorithms are instances
of a more general algorithm called Generic Join [58] (GJ). As applied to subgraph queries,
these algorithms adopt a vertex-at-a-time evaluation technique. Specifically, on a query
that involves {v1, ..., vm} query vertices, these algorithms first find all of the (v1) answer
vertices that can end up in the output. Then they find all sets of (v1, v2) vertices that can
end up in the output and so on until the final output is constructed. When extending a
partial subgraph to a new vertex vi, all of the edges that are incident on vi are considered
and intersected. For example, on the Triangle query (x, y, z), these algorithms would
first find all x vertices and then (x, y) edges that can possibly be part of a triangle. Then
the algorithms extend these edges to (x, y, z) triangles by intersecting x’s incoming and y’s
outgoing edges. Compared to Binary Join [84] (BJ) algorithm (also known as edge-at-a-
time), which finds matching edges in the query one at a time, these algorithms will never
generate intermediate data larger MaxOutQ.

Figure 3.1 shows the pseudo-code of GJ using relational tables notations. Given a

50

query Q(v1, . . . , vm) with m attributes and n relations (R1, . . . ,Rn), GJ consists of the
following three high-level steps:

1. Global Attribute Ordering: GJ first orders the query attributes. For simplicity,
one can assume the order is v1, .., vm. Everything that follows remains correct if the
attributes are arbitrarily ordered.

2. Extensions Indices: Let a prefix j-tuple be any fixed values of the first j < m
attributes. For each table replica Ri and j-tuple p only some values for attribute
vj+1 exist in Ri. Let the extension index Extij map each j-tuple p to values of vj+1

matching p in Ri:
Extij : (p = (v1, .., vj)) → {vj+1} .

Extension indices need three properties for the theoretical bounds of GJ. For a given
p, the algorithm must be able to:

• retrieve the size |Extij(p)| in constant time;

• retrieve the contents of Extij(p) in time linear in its size

• check that a value e of attribute vj+1 exists in Extij(p) in constant time.

Throughout this chapter, Extij(p • e) refers to the operation of checking of value e in
Extij(p). Many data structures, such as hash tables, satisfy these properties.

3. Prefix Extension Stages: GJ iteratively computes intermediate results P1 . . . Pm,
where Pj is the result of Q when each relation is restricted to the first j attributes in
the common global order. GJ starts from the singleton relation P0 with no attributes,
determines Pj+1 from Pj using the extension indices, and ultimately arrives at Pm =
Q. Specifically, for each prefix j-tuple p ∈ Pj, GJ determines the (possibly empty)
set of (j + 1)-tuples extending p as follows:

(a) identify the size of Extij(p) of each relation Ri containing vj+1;

(b) sort all extension sets (Extij(p)) based on their size;

(c) intersect all Extij(p) ordered by size; starting from the smallest set. In general
performing this intersection in time proportional to the size of the smallest set
ensures worst-case optimal run-time.

The following is a theorem from [58] expressed using the notations adopted in this
thesis:

51

Theorem 3.1.1. [58] For any query Q comprising relations R1 . . . Rn and attributes
v1 . . . vm, and any ordering of attributes, if Extij indices satisfy the three properties discussed
earlier, GJ runs in time O(mnMaxOutQ).

The proof of this theorem can be found in Ngo et al. [58]. Note that the m× n factor
in front of MaxOutQ is a constant that depends only on the number of relations and
attributes in the query but not the number of tuples in the relation. The following is an
example that shows how to execute GJ when evaluating a subgraph query like Triangle.

Example 4. Consider evaluating the triangle query Q(v1, v2, v3) := R1(v1, v2), R2(v2, v3),
R3(v3, v1), where each Ri is an exact replica of the edges in the input graph in Figure 3.2.
GJ executes as follows starting from P0 = {ϵ}:

1. P1: GJ extends {ϵ} to P1 = ϵ× (Ext11[ϵ] = {1, 2, 3, 4, 5, 6, 7} ∩Ext31[ϵ] = {1, 6, 7, 8, 9,
10, 11}). Ext11 and Ext31 correspond to indices over R1 and R3, respectively. In this
case, neither set is smaller than the other and GJ is free to choose arbitrarily. This
intersection produces P1 = {(1), (6), (7)}.

2. P2: GJ extends each prefix p in P1 with valid v2 producing p×(Ext12[p]∩Ext22[p]). This
is done by considering the sizes of Ext12[p] and Ext22[p], which for (1) are Ext12[(1)] =
{6} and Ext22[(1)] = {1, 2, 3, 4, 5, 6, 7}. The former index is smaller, and so GJ starts
from the set {6} and intersects it with Ext22[(1)], producing (1, 6). Other extensions
in P2 are (6, 7) and (7, 1).

3. P3: Finally, GJ extends each of these three prefixes using Ext23 and Ext33, again
starting from the smaller of the candidate extensions for each prefix. For example,
when extending (1, 6), Ext23 = {7, 8, 9, 10, 11} is intersected with Ext33 = {7} giving
the triangle (1, 6, 7). Similarly (6, 7) and (7, 1) give the outputs (6, 7, 1) and (7, 1, 6),
respectively.

3.1.2 Massively Parallel Computation Model

Massively Parallel Computation (MPC) [13, 12, 45] is an abstract model of distributed
bulk synchronous parallel systems. It has been previously used to understand and analyze
the performance of distributed multiway join queries [13, 12, 45]. In this model, there are w
workers (or machines) in a cluster and the input data is assumed to be equally distributed
among the workers arbitrarily. The computation is broken down into a series of rounds,

52

Figure 3.2: Example input graph.

where in each round the workers first perform some local computation and then send each
other messages. The complexity of algorithms are measured in terms of three parameters:
(1) r: the number of rounds; (2) L: the maximum load or messages any of the workers
receives in any of the rounds; and (3) C: the total communication, i.e., sum of the loads
across all rounds.

To evaluate algorithms balance between workers, this chapter extends typical MPC with
a fourth parameter M that measures the memory that an algorithm uses. Let M t

k be the
local memory that worker k requires in round t, excluding the output tuples. In this setting,
M t

k represents the load L of worker k in round t and the amount of input data worker k has
indexed. M is then the the maximum cumulative memory the algorithm requires in any
round: maxt=1,...,r Σk=1,...,wM

t
k. This model assumes output tuples are written to a storage

outside the cluster and do not stay in memories of workers. This is because any correct
algorithm incurs this cost.

For simplicity, similar to prior work [6, 13, 45] the unit of communication and memory
will be tuples and prefixes, instead of bits, assuming that tuples and prefixes are all the
same size.

3.1.3 Timely Dataflow (TD)

Timely Dataflow [55, 77] is a distributed data-parallel dataflow system, in which one con-
nects dataflow operators describing computation using dataflow edges describing commu-
nication. The operators are data-parallel, meaning that their input streams may be par-
titioned by a provided key, and their implementations may be distributed across multiple
workers. All operators are distributed across all workers, and each worker is responsible

53

for the execution of some fraction of each operator, which allows our algorithms to share
indices (of the underlying relations) between operators.

TD is a dataflow system in the sense that computation occurs in response to the avail-
ability of data, rather than through centralized control. The timely modifier corresponds
to the extension of each operator with information about logical progress through the in-
put streams, roughly corresponding to punctuation or watermarks in traditional stream
processing systems. Note that operators can delay processing inputs with some times-
tamps until others have finished, which can be used to synchronize the workers and ensure
that the work queues of downstream operators have drained, an important component of
ensuring a bounded memory footprint.

3.1.4 Distributed Subgraph Queries Algorithms

Existing distributed approaches that can be used to evaluate general subgraph queries
can be broadly grouped into two classes of algorithms. The first group consists of edge-
at-a-time approaches [20, 30, 37, 57, 74, 75, 87] that correspond to binary join plans in
relational terms. As discussed earlier (Section 3.1.1), this approach is provably suboptimal
for subgraph queries.

The second group includes approaches that use variants of the Shares [5] or Hyper-
cube [13, 12, 45] algorithm. Consider a distributed cluster with w workers and a query
with n relations and m attributes, i.e., n is the number of edges, and m is the number of
vertices in the query. Shares divides the m-dimensional output space equally over the w
workers and replicate each tuple t of each relation to every worker that can produce an
output that depends on t. Finally, each worker runs any local join algorithm on the inputs
it receives to produce the outputs that belong to the worker’s partition.

There are several advantages of Shares. For most queries and parallelism levels w (but
not all), Shares’ communication cost is less than the MaxOutQ. In addition, in distributed
bulk synchronous parallel systems, in which the computation is broken down into a series
of rounds, Shares requires a very small number of rounds. However, Shares’ cumulative
memory requirement is O(w1−ϵIN) and its memory requirement per worker is O(IN

wϵ). Note
that IN is the size of the input, and ϵ ∈ [0, 1] is a query-dependent parameter. This implies
a super-linear cumulative memory growth and sub-linear scaling of per-worker memory
(and workload) as w increases. For example, for the Triangle query, ϵ = 1/2. Often ϵ
is much smaller, and scaling becomes an increasingly resource-inefficient way to improve
performance.

54

Hu et al. [36] proposed an algorithm for queries that involve only two relations based on
sorting the relations on their join attributes. This contrasts with the hashing approach of
Shares. The algorithm runs for a small number of rounds. It requires cumulative memory
and communication as large as the actual output but does not generalize to more complex
joins, e.g., involving three relations.

Afrati et al. [7] has introduced a multiround join algorithm called GYM, which takes as
input a generalized hypertree decomposition (GHD) D of Q. The algorithm first computes
several intermediate relations based on D in one round using Shares. Then the algorithm
runs a distributed version of Yannakakis [84]’s algorithm for acyclic queries. Overall the
algorithm runs for O(n) rounds and incurs a communication and cumulative memory cost
of O(INw), where w ≥ 1 is called the width of the GHD D. This amount of communication
cost is always O(MaxOutQ) for acyclic queries because w is only 1. For any cyclic query,
the memory requirements of GYM are superlinear in IN.

Finally, Joglekar and Ré [39] introduces DBP algorithm. DBP uses 3 rounds and takes
O(LINDBP (L)), where L is a free parameter that indicates load per machine and DBP (L)
is a query-related parameter that is called the degree-based packing bound of the query
for load L. Similar to GYM, for any L, DBP’s communication is always O(MaxOutQ).
Still, the algorithm can require a cluster memory that is superlinear in IN as it computes
intermediate relations that can be large in size.

3.1.5 One-time Subgraph Queries

Most existing systems that evaluate general subgraph queries are based on the edge-at-a-
time strategy, unlike BigJoin’s vertex-at-a-time strategy.

EmptyHeaded [3] (EH) is a highly-optimized shared-memory parallel system evaluat-
ing subgraph queries on static graphs using GJ. EH evaluates queries using a mixture of
GJ and binary join (BJ) plans. The EH optimizer considers generalized hypertree decom-
positions of the query, which join multiple subsets of the relations using GJ which are
then joined using BJ. EH is highly optimized for evaluating queries on static graphs and
spends a non-trivial amount of time preparing its indices, which vary their representation
in response to the structural properties of the underlying data. Section 3.6.2 evaluates EH
against BigJoin.

SEED [48] is a scalable sub-graph enumeration approach with several optimizations for
evaluating undirected subgraph queries in the distributed setting. Section 3.6.4 discusses
the implementation details of these optimizations and shows that they can improve the
performance of BigJoin.

55

Arabesque [75] is a distributed system specialized for finding subgraphs in large graphs.
In Arabesque, each distributed worker gets an entire copy of the graph and starts extending
a partition of the vertices to form larger and larger subgraphs that are called embeddings,
equivalent to prefixes in GJ’s terminology. In Arabesque, prefixes are extended by consid-
ering the neighbours of individual vertices, rather than by intersecting the neighbourhoods
of multiple vertices as GJ does. Unlike BigJoin, Arabesque is using the edge-at-a-time
strategy discussed at the beginning of this chapter. Section 3.6.2 evaluates Arabesque’s
version (1.0.1-BETA), which runs on Giraph [31] against BigJoin.

PSgL [71] is another distributed subgraph enumeration system that is built on top
of Giraph [31]. PSgL picks an order of the vertices (i.e., attributes), say a1, ..., am in Q,
called a traversal order. It starts with candidate partial matches Gpsi for a1, then extends
each Gpsi to all neighbours of a1 in Q (not just a2). When matching aj, the existence of
edges (ai, aj) edges for i < j will be checked, and if they exist, aj will be extended to all
neighbours ak > aj. This is similar to Arabesque’s VertexInducedEmbeddings and is an
edge-at-a-time strategy. Shao et al. [71] discussed techniques for picking good traversal
orders, balancing workload among workers, and breaking internal symmetries in queries
over undirected graphs, which can complement BigJoin on undirected graphs as well.

SPARQL [62] queries can express any subgraph query. TrinityRDF [87] and Spartex [2]
are two distributed RDF engines that can evaluate any SPARQL query. The optimizers of
both systems use edge-at-a-time strategies, which are provably not optimal in comparison
to vertex-at-a-time strategies used in BigJoin.

3.1.6 Continuous Subgraph Queries

There is a vast body of work on incrementally maintaining views that contain selection,
projection, joins, and group-by-aggregates, among others; Rada Chirkova and Jun Yang
[64] is a survey of these techniques. Delta-BigJoin falls under the algebraic technique
of representing updates to tables as delta relations and maintaining views through a set
of relational algebraic queries. This approach has been extensively studied in previous
work. Prior work on algebraic techniques ranges from addressing limitations of delta query-
based techniques, e.g., when evaluating a top-k query [85], to techniques using higher-
delta queries [8], e.g., delta queries of a query. When evaluating subgraph queries, these
techniques do not yield theoretically optimal results and require materializing very large
intermediate results.

Recently, a few surveys [73, 82] studied algorithms that monitor subgraph queries
on dynamic graphs. There are two categories of incremental view maintenance (IVM)

56

algorithms that process continuous subgraph queries. The first category incrementally
updates the query answer from changes in ∆G, similar to Delta-GJ. The second category
uses an index I, and then computes ∆I from ∆G to answer the subgraph query.

The first category includes Delta-BigJoin and inc-LFTJ [81]. Similar to Delta-
BigJoin, inc-LFTJ is based on the Leapfrog TrieJoin (LFTJ) worst-case optimal join
algorithm [80]. Similar to GJ, LFTJ is based on doing intersections of multiple extension
sets in time proportional to the size of the minimum-size set. Unlike our description of
GJ, which uses hash-based indices, LFTJ uses tries to index the prefixes of the tuples in
each input relation.

Algorithms in the second category create an auxiliary data structure and maintain it.
SJ-Tree [20] divides a subgraph query into smaller sub-queries in a deep left tree and then
joins them using BJ. This tree is considered a cache for the query answer, but it grows
exponentially and limits SJ-Tree’s ability to scale. Changes in the graph impact relations
in the SJ-Tree in a bottom-up direction until the final result is updated. TurboFlux [42]
uses a spanning tree of the query as an index which grows linearly with the query and
graph size, making it significantly more efficient than SJ-Tree. Finally, SymBi [54] uses an
auxiliary data structure based on a directed acyclic graph instead of a spanning tree. This
data structure has a better pruning power than TurboFlux’s data structure leading to a
significant improvement in performance.

3.2 BigJoin Algorithm

Recall from Section 3.1.1 that the main process in GJ is extending prefixes Pj to Pj+1.
Informally, the BigJoin algorithm follows the spirit of GJ, starting from the singleton
relation P0 and deriving relations Pj and ultimately Pm = Q. For each Pj, responsibility
for the prefixes is partitioned across the workers by hashing the prefixes, ensuring an
approximately balanced distribution. At this point, each prefix follows the course of the
GJ algorithm, encountering each of the relevant extension indices Extij, whose elements
are also distributed among the workers using a hash of their keys (the restrictions of tuples
in Ri to the first i attributes in the global order). This section starts by describing a naive
version of a core dataflow primitive, Figure 3.3, then uses it to develop BigJoin.

57

3.2.1 Dataflow Primitive

The core dataflow primitive starts from a collection of Pj tuples stored across w workers,
and produces the Pj+1 tuples across the same workers. Initially, this core primitive will
closely tracks the GJ algorithm behaviour, starting from the full collection Pj and produc-
ing the full collection Pj+1. Then, this primitive will be modified to achieve both memory
limits and workload balance across workers to achieve our theoretical bounds.

In bulk synchronous parallel (BSP) computation, a dataflow is described as a sequence
of steps, where workers execute each step to completion and synchronize between steps
(corresponding to a round in BSP terms). Naive execution of these steps may produce
very large amounts of data between steps and require very large memory in the workers.
Note that this process is similar to the GJ algorithm described in Section 3.1.1, where
prefixes are extended using the extension index proposing the fewest candidates, followed
by intersection with the extension indices of other relations.

Figure 3.3 shows the operators implementing this dataflow primitive. In the figure, the
vertical lines annotated with s indicate synchronization points. The Count, Proposal,
and Intersect are the dataflow operators implementing the steps above. These steps,
executed in sequence would be a synchronous BSP implementation of the extension of Pj

to Pj+1, which could be repeated until the algorithm arrives at Pm = Q. Specifically, the
extending Pj to Pj+1 follow these steps:

• Initially: The tuples of Pj are distributed among the w workers arbitrarily. Each pre-
fix p is transformed into a triple (p,∞,⊥) capturing the prefix, the currently smallest
candidate set size, and the index of the relation with that number of candidates.

• Count minimization: For each Ri binding attribute aj+1, in order, workers exchange
the triples by the hash of p’s attributes bound by Ri, placing each triple at the
worker with access to Extij[p]. Each worker updates each triple with the smallest
count and introduces its own index if |Extij[p]| is smaller than the recorded smallest
count. Eventually, each triple is then output as input of the count minimization for
the next relation. In the end, the dataflow has a collection of triples (p,min-c,min-i)
indicating for each prefix the relation with the fewest extensions.

• Candidate Proposal: Each worker exchanges triples using a hash of p’s attributes
bound by Rmin-i. Each worker now produces for each triple (p,min-c,min-i) it has,
and each extension e of p in Extmin-i

j [p], a candidate (j + 1)-tuple (p • e).

58

• Intersection: For each relation Ri binding attribute aj+1, in order: Workers exchange
the candidate (p • e) tuples by the hash of (p • e)’s attributes bound by Ri. Each
worker consults Extij[p]. If e exists (p • e) is produced as output otherwise it is
discarded.

The random access working set of these operators are only the extension indices; all
inputs and outputs are processed sequentially. Nonetheless, the sizes of the inputs and
intermediate outputs to operators could be quite large requiring large memory/storage;
the following two approaches are used to address this issue.

A batching optimization to reduce memory

Notice that the Proposal operator is the only operator that may produce more output
than it consumes as input; it can increase the memory usage of the system. This issue could
be fixed with a simple batching optimization. Instead of producing all of the proposals for
each Pj prefix they have, each Proposal operator produces its candidate extensions in
batches of B′. The remaining extensions are produced in the subsequent invocations. This
may leave some prefixes only partially extended. To keep track of these partial extensions,
the algorithm has to store (p,min-c,min-i, rem-ext) quadruples where rem-ext is the re-
maining extensions metadata. Assuming B = wB′ ensures that the dataflow has at most B
queued elements at any time across the workers, as the B proposals created by Proposal
operators are retired before any more are produced. The Count and Intersect steps
remain unchanged.

A streaming implementation

The above optimization leads us to a streaming implementation, in which the algorithm
only executes Proposal steps when their output queues are empty, and only produce at most
B′ outputs when it does so. The Count and Intersect operators are run whenever their
inputs are non-empty, completely draining the output of Proposal before it can produce
more output. This ensures that the dataflow has at most B′ queued elements at any time,
as the B′ proposals created by Proposal are retired before any more are produced. In
practice, this streaming implementation can improve performance.

59

Figure 3.3: Dataflow Primitive.

3.2.2 BigJoin: Joins on Static Relations

Using the above dataflow primitive, it is possible to build a distributed algorithm that
evaluates queries on static graphs, which is referred to as BigJoin, as follows. First,
similar to GJ, query attributes are ordered arbitrarily and indices over each relation are
built for each prefix of its attributes in the global order. Next, the dataflow extends each
Pj to Pj+1 for each attribute aj, so that starting from an empty input tuple it produces
streams of prefixes Pj, and eventually, Pm = Q. Finally, an empty tuple is used to start the
computation, producing the stream of records from Q as output. The batching optimization
described above is used, and when deciding which batch of Pj to Pj+1 extensions to invoke
next, the algorithm picks the largest j value such that at least one worker has B′ prefixes
to propose. The next observation analyses the costs of BiGJoin:

Observation 1. Given a query Q over m attributes and n relations, the communication
and computation cost of BigJoin equals that of computation of GJ and is O(mnMaxOutQ).
Let B′ be a batching parameter and let B = wB′, the cumulative memory BigJoin re-
quires is O(mIN + mB), and the number of rounds of computation BigJoin takes is
O(

mnMaxOutQ
B′).

Proof. Recall that each Proposal operator stores (p, c, i, rem-ext) quadruples, where
rem-ext is the metadata the operator keeps for prefix p to track the remaining amount of
candidate extensions the operator has to do for p. This metadata is called the remaining
intersection work for p. Assume each Proposal operator, for each Pj keeps track of the
cumulative intersection work it has to do for the set of prefixes it has in Pj. Figure 3.4
shows the stages of BiGJoin’s dataflow. Unlike Figure 3.3, it starts each dataflow from the
Proposal operator and omit the dataflow extending P0 to P1. As discussed in Section 3.2,
BiGJoin picks a Pj to extend to Pj+1 prefixes, where each operator extends a subset
of its prefixes up to at most B′ extensions. Recall that BiGJoin picks the Pj with the
largest j value (where j is from 1 to m − 1) such that at least one Proposal operator
has B′ cumulative intersection work to do. Let Pj∗ be the prefix set BiGJoin picks. If
j∗ < m−1 then the algorithm generates a batch of Pj∗+1 prefixes. Otherwise if j∗ = m−1,
it produces and writes a batch of outputs. Assume throughout our analyses that the

60

operators of the dataflow run across different workers and use the terms operator and
worker interchangeably. Moreover there is a synchronization between any two operators
(not only the Proposal but also Count and Intersect) in the dataflow consisting of
a round in MPC terms. This is actually needed in order to analyze our dataflow in MPC
because in a single round of MPC, workers cannot perform computations on the data they
receive. Therefore it is possible to assume there is a synchronization barrier between each
arrow in Figure 3.4.

Observe that BiGJoin maintains two invariants: (1) At any point in time, each Proposal
operator has at most 2B′ prefixes (not candidate extensions) from each Pj; and (2) at each
round of computation the amount of intermediate data due to candidate extensions being
intersected is at most O(wB′). Initially both invariants hold because only one Proposal
operator has the P0 = {(ϵ)} prefix and its quadruple and other workers do not hold any
prefixes.

At any point in time, since each Proposal operator extends at most B′ candidates,
and that the Count and Intersect operators do not generate more data than their
inputs, and that there are w workers, the amount of intermediate data is bounded by wB′,
so the second invariant is satisfied. Note that the first invariant is also maintained because
each Proposal operator wi generates at most B′ new Pj∗+1 prefixes for itself. However,
note that wi must have less than B′ Pj∗+1 prefixes, because otherwise BiGJoin would have
decided to extend Pj∗+1 prefixes instead of extending Pj∗ prefixes. This proves that the
cumulative memory BiGJoin needs to store all of the Pj’s is O(mwB′).

For BiGJoin’s communication and computation costs, note that cumulatively BiGJoin
performs exactly the same amount of computation as GJ. To see this, first note that the
constant counting and test membership assumptions hold when Intersect, Proposal
and Count operators perform appropriate operations on the Extij indices. Second, similar
to GJ, for each prefix p, BiGJoin starts its intersections from the relation that has the
minimum number of extensions. Even though BiGJoin can intersect the extensions of each
prefix p in multiple batches, effectively each of the possible extensions gets intersected
with at most n different relations incurring a computation cost of at most n. GJ similarly
perform exactly same number of intersections for each of the candidate extensions of p.
In addition, BiGJoin incurs an equivalent amount of communication cost when doing the
intersections of each of the candidate extensions. This is because for each intersection the
candidate extension is sent to another operator. Therefore, the cumulative computation
and communication cost of BiGJoin is the same as the computation cost of GJ, which
is O(mnMaxOutQ). For memory consumption, the two invariants above are satisfied.
Therefore, beside the indexing cost, each worker holds at most 2B′ Pj prefixes for each j.
Therefore, the cumulative memory needed to store all of the Pj’s is O(mwB′) = O(mB).

61

Figure 3.4: BiGJoin Dataflow.

The final part of this proof is to analyze the number of rounds of computation BiGJoin
takes in MPC terms. There are at most 2n + 1 operators in each dataflow primitive ex-
tending Pj to Pj+1, as there are at most n Intersect and n Count operators. Therefore
an iteration of extending B′ prefixes from one of the m Pj sets takes at most 2n+1 rounds.
Note that by the AGM bound, the size of each Pj set is at most MaxOutQ. Therefore the
number of rounds of computation is O(

mnMaxOutQ
B′), completing the proof.

The proof of this observation is based on the fact that each operation that BigJoin
does on each tuple corresponds to an operation in the serial execution of GJ and small
enough batches can keep the memory footprint very low. In essence, BigJoin inherits
its computation and communication optimality from GJ. Moreover, as demonstrated in
Section 3.6, in practice BigJoin also achieves good workload-balance across the workers
in the cluster. However, on adversarial inputs BigJoin cannot guarantee workload balance
in theory, which will be addressed in the following section.

3.3 BigJoin-S: A Skew Resilient BigJoin

Although BigJoin is worst-case optimal in terms of its cumulative computation and com-
munication costs and requires small cumulative memory, it can generate imbalances in
terms of how these costs are distributed across the machines in the cluster. Therefore,
it has an important theoretical shortcoming. Specifically, it does not guarantee that the
workloads of the workers are balanced. Indeed, it is easy to construct skewed inputs where

62

most of the work could be performed by a single worker. Specifically, there are three
sources of imbalance in BigJoin:

1. Sizes of extension indices: Recall that Extij are distributed randomly yet for each
prefix p, a single worker stores the entire Extij(p) (the aj+1 extensions of p). In graph
terms, this corresponds to a single worker storing the entire adjacency list of a vertex.
On skewed inputs, this may generate imbalances in the amount of data indexed at
each worker.

2. Number of Proposals: After count minimization, each worker gets a set of (p,min-c,
min-i, rem-ext = min-c) quadruples where p is a Pj prefix to extend. Even if each
worker has to extend the same number of prefixes, each worker might have to do
imbalanced amount of proposals of (p • e) candidate extensions because the counts
might be very different.

3. Number of Index Lookups: When minimizing the counts of a Pj prefix p, producing
the candidate proposals, or intersecting the (p • e) candidate extensions with Extij,
prefixes and candidate extensions are routed to the worker that holds Extij(p) based
on the hash of p’s attributes that are bound by Ri. If there are many prefixes whose
bound attributes are the same, there may be an imbalance in the number of prefixes
and extensions each worker receives. For example, consider a triangle query where
all triangles involve some specific vertex v∗, then every Pj prefixes could be routed
to a single worker to access v∗’s count.

Ammar et al. [9] modifies BigJoin, and proposes BigJoin-S, to ensure workload bal-
ance across workers2. Note that these modifications are only interesting for theoretical
guarantees but do not lead to good performance in real-world graphs.

3.4 Delta-GJ Algorithm: Joins on Dynamic Relations

Since most real graphs are dynamic in nature, it is valuable to find newly emerged or
deleted subgraphs based on graph changes. Since subgraph query Q can be expressed as
multiway joins of the edges table of an input graph G, it is possible to use incremental
view maintenance (IVM) techniques for join views, i.e., views corresponding to joins of
multiple tables, to continuously detect changes to the output of Q. Doing so would detect
the emerged and deleted subgraphs that match Q in G.

2The BigJoin-S algorithm is not part of this thesis.

63

As discussed in Section 3.1.1, Binary Join BJ has several inefficiencies when it is used
to solve subgraph queries, specifically the cyclic ones, such as Triangle. Therefore, this
section looks at using GJ or a similar algorithm to design an IVM-like algorithm that
detects subgraph instances as they appear (or disappear) based on graph updates.

This section proposes Delta-GJ which extends GJ to evaluate continuous subgraph
queries. Delta-GJ is based on IVM techniques from Blakeley et al. [14] and Gupta et al.
[34] which derive a set of delta queries dQ1, ..., dQn (originally referred to as delta rules [34])
for Q and evaluate each dQi as the input tables change to maintain the result of Q.

Although the idea of delta queries is not new, the evaluation of dQi using a worst-case
join algorithm has theoretical implications that do not exist for typical incremental view
maintenance algorithms that use delta queries, such as [14, 34]. Specifically, it is possible
to show that under insertion-only workloads, if the delta queries are evaluated using the
worst-case optimal GJ algorithm with specific attribute orderings, the total computation
done to incrementally maintain the original join query is worst-case optimal up to constants
that depend on the query Q.

This section starts by reviewing the technique of delta queries, and then describe the
proposed Delta-GJ algorithm, which evaluates these delta queries using the worst-case
GJ algorithm.

3.4.1 Delta Join Queries

Let Q be a multiway join query and assume that one or more of the base tables are going
to be updated at a particular point in time. Let ∆Ri, for each i, be a set of insertions or
deleted tuples to relation Ri in this update. Assume that tuples in each ∆Ri are labeled
such that we can tell the inserted tuples apart from the deleted ones. Let R′

i be Ri ∪∆Ri,
where the union operation removes a tuple t in Ri if ∆Ri contains a deletion of t. Let Out
and Out′ be the output of Q before and after the updates to the base relations, respectively.
Then consider the following n delta queries:

dQ1 := ∆R1, R2, R3, ..., Rn

dQ2 := R′
1,∆R2, R3, ..., Rn

dQ3 := R′
1, R

′
2,∆R3, R4, ..., Rn

...

dQn := R′
1, R

′
2, R

′
3, ...,∆Rn

64

When evaluating each dQi if a deleted tuple from ∆Ri joins with tuples from the other
n− 1 relations and forms an output, dQi contains an output tuple that will be labelled as
deleted. It can be shown [14, 34] that Q′\Q = dQ1∪dQ2∪...∪dQn. That is, evaluating the
union of the n queries above gives exactly the changes to the output of Q. The following
example shows how this approach works.

Example 5. Consider continuously evaluating the Triangle query from Section 3.1.1.
Suppose initially the graph is as in Figure 3.2 with an extra edge (2, 8) (as shown in
Figure 3.5a). This graph already has two groups of three symmetric (and directed) triangles
(1, 6, 7), (6, 7, 1), (7, 1, 6) and (2, 6, 8), (6, 8, 2), (8, 2, 6). Consider adding edges (10,
4), (11, 5) and deleting the edges (6, 11) and (7, 1) from this graph. Figure 3.5b shows
the new graph that forms after this update. In the figure, old edges are drawn in black
colour, new edges are drawn in green colour, and the deleted edges are drawn in red colour
with dashes. Note that in the new graph, there are again two groups of three symmetric
triangles: (2, 6, 8), (6, 8, 2), (8, 2, 6), which already existed and (4, 6, 10), (6, 10, 4), (10,
4, 6), which emerged after the update. In Figure 3.5b, the edges of the emerged triangles
are drawn thicker. It is expected to detect as part of the update three deleted triangles (1,
6, 7), (6, 7, 1), (7, 1, 6) and three newly emerged triangles (4, 6, 10), (6, 10, 4), (10, 4,
6).

Figure 3.6 shows the edges, ∆ edges, and edges’ tables. Now consider executing the
three delta queries that would correspond to the triangle query. Since each table in our
example has the same name, we name the delta queries as dQ1, dQ2, and dQ3.

• dQ1(v1, v2, v3) : −∆edges(v1, v2), edges(v2, v3), edges(v3, v1): The output of dQ1 is
{(7, 1, 6)-, (10, 4, 6)+, (11, 5, 6)+}, where +/- indicate whether the output tuple
is inserted or deleted, corresponding to whether the triangle has emerged or has been
deleted. Notice that (11, 5, 6) is actually not a triangle that actually has emerged.
dQ3 will have the (11, 5, 6)- output, so when the union of dQ1 and dQ3 outputs will
not include the (11, 5, 6) tuple in the final changes to the output.

• dQ2(v1, v2, v3) : −edges′(v1, v2),∆edges(v2, v3), edges(v3, v1): The output of dQ2 is
{(6, 7, 1)-, (6, 10, 4)+}.

• dQ3(v1, v2, v3) : −edges′(v1, v2), edges
′(v2, v3),∆edges(v3, v1): The output of dQ2 is

{(1, 6, 7)-, (4, 6, 10)+, (11, 5, 6)-}.

The union of the outputs of dQ1, dQ2, and dQ3 gives exactly { (1, 6, 7)-, (6, 7, 1)-, (7,
1, 6)-, (4, 6, 10)+, (6, 10, 4)+, (10, 4, 6)+} as expected.

65

(a) Graph before updates (b) Graph after updates

Figure 3.5: Input graph to Delta-GJ

(a) ∆edges table (b) edges table. (c) edges’ table.

Figure 3.6: Example input graph and its edge table.

Cost Analysis

This section shows a theoretical evaluation for Delta-GJ using a theorem and its proof.
The next chapter will present an empirical evaluation for the parallel implementation of GJ
(called BigJoin) and the parallel implementation of Delta-GJ (Called Delta-BigJoin).

Under insertion-only workloads, Delta-GJ’s cumulative computation cost at any point
in time is worst-case optimal up to constants that depend on the query. The following
notations are important for the theorem and proof. Consider a query Q and consider a
series of updates, ∆(1),∆(2), ..., that modify the input relations Ri of Q. ∆Ri(z) is the

66

set of updates to Ri in ∆(z). Ri(z) is the state of relation Ri after incorporating all of the
updates until and including ∆Ri(z), i.e., Ri(z) = ∆Ri(1) ∪ ∆Ri(2) ∪ ... ∪ ∆Ri(z). This
leads to the following theorem.

Theorem 3.4.1. Consider a query Q and a series of z updates that only consist of insert-
ing tuples to the input relations of Q. Then the total computation cost of Delta-GJ is
O(mn2MaxOutQ), where MaxOutQ is the AGM bound of Q on Ri(z).

Proof. Delta-GJ evaluates each dQi z times, one for each update. For each dQi it is
possible to show that the cumulative cost of these z evaluations is less than running GJ
on Ri(z) with the same attribute ordering Delta-GJ uses for dQi. Let the query that GJ
evaluates on the final relations be Q(z) := R1(z), ..., Rn(z). Note that by Theorem 3.1.1,
the cost of running GJ with any attribute ordering is O(mnMaxOutQ). The claim of the
theorem then follows from the fact that there are n delta queries. The three Delta-GJ
cost factors when evaluating dQi z times are:

1. cost of indexing,

2. cost of computing Pri tuples, and

3. cost of computing the rest of Pri+1, ..., Pm.

For cost (1), note that the cost of indexing each tuple t in ∆Ri(1), ...,∆Ri(z) first into
ri ∆-Extivxik

and then into ri Extivxik
indices does not asymptotically change the indexing

cost of running GJ when evaluating Q on Ri(z) (it only doubles the cost).

For cost (3), note that once Pri have been computed, the cost of Delta-GJ for ex-
tending any tuple t ∈ Pri to Pj for ri < j ≤ m is clearly less than the cost that GJ incurs
when extending t when GJ fixes the same global attribute ordering as Delta-GJ. This is
because by definition, dQi := R1(z), R2(z), ..., dRi, Ri(z−1), ..., Rn(z−1) and each relation
in dQi is a subset of its corresponding relation in Q(z)

Finally for cost (2). Recall that Delta-GJ incurs a cost of O(mn) for each tuple
t ∈ ∆Ri to verify whether t is in Pri or not. Cumulatively across all of the z updates,
these checks incur an extra cost of O(mn|Ri(z)|). Moreover, cumulatively across all of the
dRi, this cost is O(mnIN). We note that in the best case MaxOutQ is Ω(IN

n
), since the

largest relation is of size at least IN
n

and the worst-case output of any query is at least the
size of its largest relation. Therefore mn2MaxOutQ is at least mnIN, which implies that
O(mnIN) is a cost that is subsumed by O(mn2MaxOutQ), completing the proof.

67

Finally, note that the meaning of worst-case optimality is not well defined when con-
sidering deletions. That is because if ∆(1) inserts a large number of tuples to each relation
Ri. Then, ∆(2) removes all of these tuples. Then since the input relations will be empty,
MaxOutQ after updating 2 will be ϕ, yet clearly, any IVM algorithm needs to detect the
emergence and deletions of all of the tuples at the end of the first update. Therefore, the
theoretical analysis of Delta-GJ under general workloads that consist of both insertions
and deletions is omitted. However, if the definition of worst-case optimality for general
workloads is evaluated for each update independently, and the target is to detect the emer-
gence or deletions of subgraphs in the query output, then the above theory and proof suffice
to show Delta-GJ worst-case optimality guarantees on general workloads.

3.4.2 Delta-BigJoin: Distributed Delta-GJ

To create a distributed version of Delta-GJ, Delta-BigJoin has a separate dataflow
for each dQi that is a dQi-specific variation of the BigJoin dataflow from Section 3.2.2.
By ordering the attributes of dQi starting with the attributes of Ri, we can seed the
computation with the elements of ∆Ri, which is expected to be much smaller than the
other relations in dQi. The remaining attributes are ordered arbitrarily.

Since there is an independent dataflow for each dQi, changes to any relation can be
routed to the appropriate delta query dataflow. Note that Delta-BigJoin only needs to
maintain the indices as changes occur, rather than fully rebuilding them. The resulting
cost is proportional to the number of changes (for rebuilding indices) and the number of
prefixes in the delta queries. Furthermore, for each tuple t, in parallel, in ∆Ri, the lookups
in the extension indices to verify whether t is in Pri are replaced by distributed lookups,
incurring at most O(mn) communication, computation, and rounds. The following theorem
and proof describe Delta-BigJoin’s costs.

Theorem 3.4.2. Consider a query Q and a series of z insertion-only updates to the input
relations of Q. Let IN(z) denote

∑
i |Ri(z)|. Then, given a batch size B′ on w workers

such that B = wB′:

• Delta-BigJoin’s communication and computation cost under insertion-only work-
loads is O(mn2MaxOutQ);

• Delta-BigJoin’s cumulative memory is O(mnIN(z) +mB);

• The number of rounds of computation Delta-BigJoin takes is O(mn2MaxOutQ
B′ +

zmn2).

68

Proof. Note that by Thereom 3.1.1 BigJoin’s communication and computation cost on
any query Q is asymptotically same as the computation cost of running GJ on Q, which
is O(mnMaxOutQ). By the same arguments in Theorem 3.4.1’s proof, the communication
and computation cost of Delta-BigJoin is therefore O(mn2MaxOutQ).

The cumulative memory cost of Delta-BigJoin is never larger than the memory cost
of running BigJoin on Q(z) which is O(mnIN(z) +mB). This is because at any point in
time, the indices that Delta-BigJoin uses is at most as large as the indices that BigJoin
uses on Q(z). Similarly, the intermediate data that Delta-BigJoin generates on any dQi

query is at most as large the intermediate data that BigJoin generates on Q(z).

For the number of rounds, note that after each update, Delta-BigJoin runs an extra
O(mn) rounds of computation to compute Pri for each update, making a total of extra
O(zmn). The algorithm will extend prefixes and perform intersections using the same batch
size of B′ as BigJoin does. This means that Delta-BigJoin, for each dQi, computes the
same Pri as BigJoin does on Q(z). Therefore, for each dQi, cumulatively across all of the
z updates, Delta-BigJoin runs the same number of rounds as BigJoin does, which is
mnMaxOutQ

B′ , and an additional O(zmn) rounds. Since there are n delta queries, the total
number of rounds of computation is O(mn2MaxOutQ

B′ + zmn2), completing the proof.

3.5 Implementation

This section describes the implementations of BigJoin and Delta-BigJoin in Timely
Dataflow. Although these implementations are tailored for evaluating subgraph queries,
and the input relations are the same and consist of the edges of an input graph, which are
represented as a binary relation, the underlying machinery nonetheless is suitable for more
general queries. This section starts by developing the prefix extension dataflow primitive
as a Timely fragment.

3.5.1 Prefix Extension in Timely Dataflow

The approach to prefix extension follows the primitive from Section 3.2.1: it will assemble
a dataflow fragment that starts from a stream of prefixes of some number j of attributes,
and produces as output the corresponding stream of prefixes resulting from the extension
of each input prefix by the relations constraining the attribute aj+1 in terms of the first j
attributes. As explained in Section 3.5.3, regarding Delta-BigJoin implementation, the

69

prefixes are tagged with a timestamp and a signed integer, reflecting the time of change
and whether it is an addition or deletion, respectively.

Prefix extension happens through three methods acting on streams, corresponding to
the three steps described in Section 3.2.1: count minimization, candidate proposal, and
intersection. Each of these steps is implemented as a sequence of operators, each of which
corresponds to one of the relations constraining attribute aj+1. Each operator will consult
some indexed form of the relation it represents, and requires the prefixes in its input stream
to be shuffled by the corresponding attribute, so that prefixes arrive at the worker that
store the appropriate fragment of the index. Importantly, the same partitioning is used for
each relation and attribute in that relation, so that any number of uses of the relation in
the query require only one physical instance of each index. In the case of graph processing,
this means it only keeps a forward and reverse index, storing respectively the outgoing and
incoming neighbours of each vertex.

Count Minimization

The implementation of this step is straightforward and follows the description in Sec-
tion 3.2.1 directly. There is a sequence of operators and each one represents one relation
Ri(aj+1, ak) or Ri(ak, aj+1), where k ≤ j. The operator takes (p, c, i) triples as input. Let
v∗ = Πakp. The operator updates the count c if the size of v∗’s outgoing neighbours (if
Ri = Ri(aj+1, ak)), or incoming neighbours (if Ri = Ri(ak, aj+1)), is less than c. At the
end the (p,min-c,min-i) triples have been identified but then send only p to a stream for
Ri (explained next).

Candidate Proposal

This step is implemented by a single operator that divides its stream of input prefixes
into one stream for each relation Ri, by the min-i index identified in the previous stage.
Suppose Ri = Ri(aj+1, ak). Then an input p whose min-i was i, where v∗ = Πakp, will
be part of the stream for Ri and be extended to a tuple (p • {e1, ..., ec}) containing the
set of candidate extensions, which are v∗’s outgoing neighbours. When Ri = Ri(ak, aj+1),
the incoming neighbours of v∗ are used instead. This slightly deviates from the original
description that flattened this tuple for simplicity of explanation and had c separate (p• e)
candidate extensions. These extensions are sent through a single output stream for the
next stage.

70

Intersection

The stream of pairs of prefix and candidate extensions go through a sequence of operators,
one for each involved relation Ri′ , each of which intersects the set of candidate extensions
with an appropriate neighbour list of a vertex and removes those extensions that do not
intersect. The result is a stream of pairs of prefix and valid extensions, successfully inter-
sected by all relations. The extensions are flattened to a list of prefixes for the next stage
except if they are the final outputs, they are output in their compact representation.

3.5.2 The BiGJoin Dataflow

The dataflow for enumerating subgraphs in a static graph applies a sequence of prefix
extension stages, each corresponding to an attribute in the global attribute order. For
simplicity, the global order is fixed so that the first two attributes are connected by an
edge, which allows the algorithm to seed the stream of prefixes with length-two prefixes
read from the edges themselves. This is equivalent to starting the extensions from P2

instead of the empty tuple () ∈ P0. All other attributes are extended using the prefix
extension dataflow fragment described above.

The indices used by the workers are static, and is simply memory-maped in a pre-built
index. For simplicity the whole graph is used, which means it is possible to easily vary the
number of workers without changing the used index. One could alternately partition the
graph and provide each worker with its own index, but the graphs used in the evaluation
section for static computations are rather small. For larger graphs, such as those considered
with Delta-BigJoin, the indices are built as part of the computation, distributing the
data to only the workers that require it.

The execution of the BigJoin dataflow happens in batches, where some number of
prefixes are fed into the dataflow and await their results before introducing more prefixes.
As discussed in Section 3.2.1, this batching allows some control over the peak memory
requirements.

3.5.3 The Delta-BigJoin Dataflow

The dataflow for finding subgraphs in a dynamically changing graph is more complex than
for a static graph, along a few dimensions. First, as described in Section 3.4.2, it has
an independent dataflows for each dQi. Each dataflow is responsible for changes to each

71

logical relation Ri in the query, i.e., one for each of the edges in the subgraph query. Sec-
ond, although these dataflows may execute concurrently, the implementation will logically
sequence them so that each dataflow computes the delta query as if it was executed in se-
quence (to resolve simultaneous updates correctly). Third, the index implementation will
be more complicated, as it must support changes as well as the multi-versioned interaction
required by the logical sequencing above.

There is a dataflow for each dQi, each of which use a different global attribute order
as described in Section 3.4.2. Although there are several dataflows with different attribute
orders, each operator only requires access to either the forward or reverse edge index.

Each delta query dataflow dQi computes changes in the outputs made to relation Ri

with respect to the other relations. Recall that dQi uses the “new” versions R′
i = Ri+∆Ri

for i < j and the “old” versions Ri for i > j. This has the effect of logically sequencing the
update rules, so that they are correct even if there are simultaneous updates to the input
relations, something that is expected in graph queries where the single underlying edges
relation is re-used often. This use of new and old versions of the same index requires the
implementation to be multi-versioned, in order to have a single copy of each index.

The index implementation is a multi-version index, which tracks the accumulation of
(src, dst) pairs at various times and with various integer weights. The index can respond
to queries about the outgoing and incoming neighbours for a given key v and a given
timestamp. Updates at a particular timestamp τ are “finalized” when all tuples in the
system have a timestamp greater than τ . This means these updates will participate in
all future accumulations for v; this information comes from Timely Dataflow’s progress
tracking infrastructure.

The execution of the Delta-BigJoin dataflow proceeds with the stream of batches
of updates to the graph supplied as an input. Each of the tuples moving through a delta
query dataflow has both a logical timestamp and a signed integer weight. The former
allows the algorithm to work with multiple logical times concurrently, and to remain clear
on which version of an index the prefix should be matched against. The integer weight
allows the index to represent both additions and deletions from the underlying relations.

3.6 Evaluation

This section shows an empirical performance study of the Timely Dataflow implementations
of BigJoin (BigJoin-T) and Delta-BigJoin (Delta-BigJoin-T) using a variety of

72

subgraph queries and large-scale static and dynamic input graphs. After describing the
experimental setup, this section is organized as follows:

• Section 3.6.2 evaluates a reference computation (triangle finding) on several stan-
dard graphs using a few different systems, to establish a baseline for running time.
For all systems, the capacity limitation has been discovered; they struggle to load
graphs at the larger end of the spectrum.

• Section 3.6.3 studies the scalability of BigJoin and Delta-BigJoin while increas-
ing the number of workers both within a single machine as well as across multiple
machines on a 64 billion-edge graph.

• Section 3.6.4 demonstrates that several efficient optimizations that have been intro-
duced in prior work can also be integrated into the proposed algorithms to improve
their performance.

• Section 3.6.5 studies the effects of the batch size on performance and memory usage.
Unless specified explicitly, the default batch size in all experiments is 100, 000.

3.6.1 Experimental Setup

Table 3.1 reports statistics of the graphs used for evaluation. The sizes range from the
relatively small but popular LiveJournal graph, with 68 million edges, up three orders
of magnitude to the relatively large Common Crawl graph, with 64 billion edges. The
abbreviations used for the datasets are given in parentheses in Table 3.1. There are five
queries used in this evaluation:

• triangle:= e(a1,a2),e(a1,a3),e(a2,a3)

• 4-clique:= e(a1,a2),e(a1,a3),e(a1,a4),e(a2,a3),e(a2,a4),e(a3,a4)

• diamond:= e(a1,a2), e(a2,a3),e(a4,a1), e(a4,a3)

• house:= e(a1,a2),e(a1,a3),e(a1,a4),e(a2,a3),e(a2,a4),e(a3,a4), e(a2,a5),e(a3,a5)3

• 5-clique:= e(a1,a2),e(a1,a3),e(a1,a4),e(a1,a5),e(a2,a3),e(a2,a4), e(a2,a5),e(a3,a4),
e(a3,a5),e(a4,a5)

3This is query q6 from the SEED [48] and is a 5-clique with two missing edges from one node.

73

Name Vertices Edges
LiveJournal (LJ) [46] 4.8M 68.9M
Twitter (TW) [76] 42M 1.5B
UK-2007 (UK) [76] 106M 3.7B
Common Crawl (CC) [83] 1.7B 64B

Table 3.1: Graph datasets used in our experiments.

Note that the Common Crawl dataset has prohibitively large number of instances of
each query. For example, there are approximately more than 2.36 × 1016 diamonds in
Common Crawl, and enumerating all of them explicitly would take a prohibitively long
time for any correct system. Instead, the focus is on incremental maintenance of these
queries, which can fortunately be performed without the initial computation of all answers.

For all experiments except one a local cluster of up to 16 machines is used. All machines
have 2x Intel E5-2670 @2.6GHz CPU with 16 physical cores in total. Most machines have
256 GB memory, but a machine with 512 GB memory to accommodate single-machine
experiments was occasionally used. Each machine has 10 Gigabit network interface. For
experiments using EmptyHeaded (see Section 3.6.2), an AWS machine similar to the local
cluster machines (r3.8xlarge) was used along with another machine with 1TB memory
(x1.16xlarge) to accommodate EmptyHeaded triangle query on the TW graph.

In all experiments, each Timely worker was assigned to one CPU core. The descrip-
tion of each experiment explicitly states how the workers are located, i.e., within a single
machine, across machines, or both.

3.6.2 Baseline measurements

The goal of this section is to assess whether BigJoin-T has relatively good absolute per-
formance when evaluating queries in static graphs. There are three possible baselines
considered: (1) a single threaded implementation (Section 3.6.2); (2) a shared-memory
parallel system, EmptyHeaded, (Section 3.6.2); and (3) a distributed system, Arabesque,
(Section 3.6.2). All of these implementations operate only on static graphs. None of
these implementations are capable of working with the largest graph, and not all of them
can evaluate our smaller graphs either. Note that there is no baseline comparison with
Shares [5] because Shares-like algorithms have been designed primarily for theoretical anal-
ysis. There is no baseline available system that could be used as a baseline, implementing
the Shares algorithm.

74

Figure 3.7: BiGJoin and Delta-BiGJoin counting triangles in the Twitter graph, plotted
with the time it takes our single-threaded implementation. Both approaches outperform
the single-threaded implementation with small number of cores, and continue to improve
from there. The Delta-BiGJoin performance lags slightly behind, as it uses more complex
data structures to support updates.

COST

Configuration that Outperforms a Single Thread (COST [52]) is a metric to evaluate the
parallelism overheads of an algorithm or a system. Specifically, COST of a parallel algo-
rithm A solving a problem P is the number of cores that the algorithm needs to outperform
an optimized single-threaded algorithm solving P . A small COST indicates that the system
itself introduces little overhead, and the benefits of scaling are immediately realized.

To measure the COST of BigJoin while solving the Triangle query, an optimized
single-threaded triangle enumeration algorithm, based on GJ in Rust [67], is used. Fig-
ure 3.7 shows the single-threaded GJ, BigJoin-T, and Delta-BigJoin-T for the Triangle
query. Note that Delta-BigJoin-T can find all triangles in a static graph, starting from
an empty graph and then considering all graph edges as updates to the Delta-BigJoin-
T. However, a dynamic algorithm is expected to be slower than loading the whole graph
first and then finding triangles. The COST of the two implementations is 2 and 4 cores,
respectively.

75

Query EH (R) EH (I) BigJoin-T (R) BigJoin-T (I)
Triangle-LJ 1.2s 150.3s 6.5s 1.9s
Diamond-LJ 31.7s 150.3s 712.3s 1.9s
Triangle-TW 213.8s 4155s 588s 34.4s

Table 3.2: Comparison against EmptyHeaded. “(R)” and “(I)” indicate runtime and index
size, respectively. EmptyHeaded’s absolute performance is better on a single machine.
However, the index building time can be non-trivial.

EmptyHeaded

EmptyHeaded’s technical details was discussed in Section 3.1.5. As mentioned before, its
optimizer uses generalized hypertree decompositions of the query to join multiple subsets
of the relations using GJ and then join these subsets using BJ. However, for the queries
studied in this paper, EH uses a pure GJ plan like BigJoin based simply on attribute
ordering.

To guarantee a fair comparison with EH, this experiment runs using the AMI machine
provided by EH team. An initial experiment was performed using a machine with a similar
configuration as our cluster machines4, however, EH ran out of memory when running the
triangle query on TW. Therefore, this experiment ran using an x1.16xlarge AWS machine
with 64 cores and 976 GB memory. The TW and LJ datasets and the triangle and diamond
queries were used. Unfortunately, EH ran out of memory on the diamond query on TW.
Table 3.2 reports two metrics for EH and BigJoin-T: (1) the runtime; and (2) the time
to index the input data.

Note that the goal of this experiment is to evaluate EH as a high-quality reference
implementation. It is expected that BigJoin-T performs worse than EH due to lack of
specific optimizations for static datasets, such as compacting dense extension lists into
bit vectors. In exchange, BigJoin-T is able to distribute across multiple machines and
respond to changes in input, but this generality comes at a price. This experiment also
evaluates EH’s index build time and memory footprint, something EH is explicitly not
optimized for, which combined with a lack of distribution limits EH evaluation on larger
datasets.

4An r3.8xlarge AWS machine with 244 GB memory and 32 cores.

76

Query Arabesque (R) Arabesque (I). BigJoin-T (R) BigJoin-T (I)
Triangle 69.0s 1.46B 3.4s 38M
4-clique 273.7s 18.7B 21.8s 350M

Table 3.3: Comparison against Arabesque. BigJoin-T is faster and considers fewer can-
didate subgraphs than Arabesque.

Arabesque

Arabesque has been discussed in Section 3.1.5. This experiment was run using Arabesque’s
version (1.0.1-BETA) which runs on Giraph. On the local cluster, Arabesque was only
able to load the LJ dataset and ran out of memory on other datasets. Throughout this
experiment, the triangle and 4-clique queries were used with 8 machines, each running
one Arabesque worker, and each worker using 16 cores. Both run-time and intermediate
prefixes were measured. The code for triangle and 4-clique queries was provided by the
authors of the system but was amended to not output any intermediate prefixes or final
output5.

Table 3.3 reports the running times, in comparison to BigJoin-T, as well as the number
of intermediate results considered, which partly explain the running times. Arabesque
considers roughly 30× more prefixes than BigJoin-T, which manifests as between 10x
and 20x higher running times.

3.6.3 Capacity and Scaling

When a graph fits in the memory of a single machine, the straightforward parallelization
strategy of replicating the graph to each machine should work very well in practice. That
is why one of BigJoin’s primary goals is to scale to graphs (and datasets) whose collected
indices does not fit in the memory of a single machine.

Very large graphs can contain prohibitively many instances for even the simplest queries.
For example, it is estimated that there are over 9 trillion triangles and 23 quadrillion
(2.3× 1016) diamonds in Common Crawl6. The goal is therefore not to evaluate BigJoin
when computing all subgraph instances, but Delta-BigJoin’s throughput and capacity

5Note that this code used VertexInducedEmbeddings of Arabesque, which extend prefixes by one vertex
but internally by considering each edge separately.

6These estimates are based on the number of triangles and diamonds found per edge in the incremental
experiments, which are 143 and over 368K, respectively.

77

when maintaining these queries under updates. Note that Delta-BigJoindoes not require
that BigJoin runs first on the initial dataset; it only requires to index the initial dataset
and can immediately start reporting changes in subgraph query matches as a function of
changes to the source dataset.

For this experiment, the Triangle query and the Common Crawl dataset were used.
This dataset has 64B edges and is roughly 1,000x larger than LJ, 50x larger than TW, and
20x larger than UK. Note that when each node ID requires 4 bytes, the graph requires
≈512GB written as a list of edges (u, v), and ≈ 256GB as an adjacency list. Delta-
BigJoin indexes edges in both directions, therefore, it requires ≈512GB.

In this experiment, various fractions of the edges in the graph are initially loaded,
ranging from one-sixteenth to the full graph, and evaluate Delta-BigJoin-T on a range
of one to sixteen machines, each machine uses 14 workers only. The total number of
cores/workers range from 14 to 224. Each subset of the graph results in a scaling curve
as the number of machines increases. Note that Delta-BigJoin-T requires an increasing
number of machines to start the experiment as the size of the subsets grow. The number of
edges indexed on each machine, the peak memory required, and the throughput of changes
(both input and output) are tracked for each configuration.

Figures 3.8, 3.9, 3.10 show the scaling results on this large graph. For each fixed subset
of the graph, additional workers both improve the throughput and reduce the per-machine
index size and memory requirements. The plot of maximum index size (across all machines)
indicates that as the amount of data and number of workers are doubled, the maximum size
stays roughly fixed and at 8 billion, which is roughly sizes of the total tuples divided by the
number of machines. This indicates effective balance despite some vertices with very high
degree (the largest out-degree is ≈45 million). With the exception of the smallest dataset
on the largest number of machines, throughput increases and peak memory requirements
decrease with further machines; however, as the work gets progressively more thin (one
sixteenth of the graph spread across 224 workers) system overheads do begin to emerge.

Table 3.4 also reports the throughput and the peak memory required when running the
diamond and 4-clique queries when loading the full graph and using 224 workers. Note that
there is a substantially lower throughput of input changes, but a relatively similar through-
put for output changes. That is, each input edge changed results in substantially more
subgraph matches changed, and it is the volume of output that limits Delta-BigJoin-T
throughput.

78

Figure 3.8: Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated fraction of the
CC dataset, and then performs 20 rounds of 1M input edge updates for a triangle-finding
query. This figure shows the execution time. Data points are average times to perform
twenty batches of one million updates. The numbers by each data point report the number
of output changes per second (triangles changed). The computation processes roughly 1M
updates per-second, reporting between 10M and 100M changed triangles per second.

Query Average Time Output Throughput Max. Mem.
4-clique 226.378 s 46, 517, 875 /s 108.4 GB
Diamond 276.587 s 26, 681, 430 /s 92.6 GB

Table 3.4: Common Crawl experiments. Sixteen machines load 64 billion edges, index
them, and track motifs in 20 batches of 10K random edge changes. Although the input
throughput is much lower than for triangles, the output throughput remains relatively high
at tens of millions of observed subgraph changes per second.

79

Figure 3.9: Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated fraction of the
CC dataset, and then performs 20 rounds of 1M input edge updates for a triangle-finding
query. This figure shows maximum memory, in gigabytes per machine. The peak occurs
in initial index building rather than steady-state execution. The maximum does increase
as the workers and input size are doubled, but this appears to be due to skew in data
loading.

80

Figure 3.10: Scaling while increasing machines (and workers) and the initial graph input.
Each line represents an experiment where the system pre-load an indicated fraction of the
CC dataset, and then performs 20 rounds of 1M input edge updates for a triangle-finding
query. This figure shows the maximum index size per machine, in total index tuples
per machine. Index size decrease roughly linearly with additional machines at each scale.

81

3.6.4 Generality and Specializations

This section shows that BigJoin-T and Delta-BigJoin-T can employ existing optimiza-
tions from subgraph queries and multiway joins literature. The goal is two-fold: First, to
compare these algorithms to a similar implementation in the literature known as SEED [48],
which develops efficient optimizations for evaluating in undirected subgraph queries in the
distributed setting. Second, implementing one of their optimizations demonstrates that
the BigJoin approach can take as input general relations instead of the binary edge(ai,
aj) relations that have been used so far. The following three optimizations have been
implemented:

• Symmetry Breaking: SEED imposes constraints on vertex IDs to break symme-
tries. For example, the 4-clique query might be constrained such that a1 < a2 <
a3 < a4. One can be more efficient by first ordering by degree, and then by ID if there
are ties. This allows finding each undirected four-clique once instead of 24 times, for
each permutation of the vertices in the clique. This is commonly accomplished by
giving new IDs to the vertices so that they are ordered by degree, and edges point
from vertices with lower ID to higher ID. This optimization has been incorporated
by transforming the input dataset, and supporting inequality constraints (which are
just filters applied to intermediate prefixes).

• Triangle Indexing: SEED builds index structures over small non-trivial subgraphs,
such as triangles. These indices provide more direct access to relevant vertex IDs re-
flecting multiple constraints already imposed. The ideas are similar to the recent FAQ
work [4], which identifies some common subqueries in larger queries (for example, tri-
angles in a four-clique query) and materializes these subqueries. This optimization
has been incorporated by first finding all the triangles in the graph and then writing
these as a ternary relation tri(ai, aj, ak). Since BigJoin-T supports general rela-
tional queries and can index general relations, it is possible to index tri(ai, aj, ak)
by (ai, aj) and provide efficient random access to vertices ak that complete a triangle
with (ai, aj). Using the tri relation, 4-clique query simplifies to:

tri(a1, a2, a3), tri(a1, a2, a4), tri(a1, a3, a4).

This rewriting reduces the complexity of the query, and results in fewer intermediate
prefixes explored. It is important to note that this is not precisely the same optimiza-
tion SEED does. SEED indexes triangles by a1 so that full neighbourhoods of each
vertex is available, revealing large cliques at once. The implemented optimization is

82

Query SEED-O BigJoin-T BigJoin-T-SYM BigJoin-T-SYM-TR
4-clique 60s 54.0s 43.4s 13.3s
house 1013s 370.0s 294.3s 74.1s
5-clique 1206s 2861.1s 2153.2s 315.7s

Table 3.5: Comparison with SEED, against three BigJoin-T variants including several
optimizations: breaking symmetry by renaming vertices by degree (-SYM) and then re-
using pre-computed triangles (-TR). BigJoin-T’s absolute performance is comparable to
optimized approaches, and improves as optimizations are applied.

closer in spirit to the FAQ work, but demonstrates the utility of supporting general
relations in evaluating subgraph queries.

• Factorization: The house query is amenable to a technique called factorization [60],
which expresses parts of the query results as Cartesian products. In the house
query, (a2, a3, a4, a5) form a clique and the missing edges are (a1, a4) and (a1, a5). A
system can first computes the triangle (a2, a3, a4) and then perform two independent
extensions to the lists of a1 and a5 values. As these two variables do not constrain
each other, they can be left as lists rather than flattened into the list of their cartesian
product. SEED proposes a similar optimization (named SEED+O) in which large
cliques are kept as cliques, rather than explicitly enumerating all bindings to variables.
This optimization can only be utilized for the house query.

Table 3.5 compares SEED+O (SEED with clique optimizations) measurements taken
from their paper with three variations of BigJoin: (i) vanilla BigJoin-T, (ii) BigJoin-T
with symmetry breaking (BigJoin-T-SYM), and (iii) BigJoin-T with symmetry break-
ing and triangle indexing (BigJoin-T-SYM-TR). All of house query measurements also
contain the factorization optimization. This experiment used 10 machines with 16 cores,
which is a cluster setup similar to the one used in the SEED paper. Table 3.5 demonstrates
two things: (1) BigJoin’s algorithm implementations have the flexibility to employ several
optimizations from prior work to become more efficient; and (2) The results of the 4-clique
and 5-clique queries demonstrate that these implementations are initially competitive with
SEED using the same resources, and when incorporating some of their optimizations, they
can even outperform it.

83

3.6.5 Senitivity to Batch Size

This section evaluates the effects of the batch size on BigJoin and Delta-BigJoin.
Batch size affects two aspects of these algorithms. First, very small batch sizes can impede
parallelism. As an extreme example, consider finding all instances of a subgraph in a graph
with a batch size of 1. Then at least initially only one worker in the cluster will do count
minimization, candidate proposals, and intersections. Second, with larger batch sizes, the
algorithm is expected to use more cluster memory. Therefore it is expected that as batch
sizes get larger, runtime improves because the algorithm can parallelize better but after
reaching a large enough batch size, it is expected the algorithm reaches a stable runtime
but uses more memory.

To test this, the triangle query has been used and while running Delta-BigJoin-T
on the UK graph using 16 workers on 1 machine and using batch sizes of 10, 100, 1K,
10K, 100K, 1M, and 10M. The experiment starts by loading the dataset, then ran Delta-
BigJoin-T using a total of 10M edges and different batch size. The results are shown in
Figure 3.11. The numbers on top of the points indicate the maximum memory usage7. As
shown in the figure, indeed as batch size increases the runtime initially improves and then
remains the same around after batch size of 10K. As expected, larger batch sizes lead to
more cluster memory usage. Note that the increase in the memory usage is very small for
batch sizes less than or equal to 100K because the intermediate data that the algorithm
generates with these batch sizes is insignificant compared to the size of the input graph.
Batch size is a useful parameter to balance memory usage and speedup.

3.7 Conclusion

Subgraph queries, i.e., finding instances of a given subgraph in a larger graph, are a funda-
mental computation performed by many applications and supported by many software sys-
tems that process graphs. This chapter proposes an efficient approach (Delta-BigJoin)
to monitor changes in subgraph queries as the graph changes. It also has several theoretical
and implementation contributions. From a theoretical perspective: (1) it expands the def-
inition of AGM bound and the definition of worst-case optimal to include communication
costs in distributed systems; (2) it proposes a new distributed algorithm, BigJoin, which
meets the new worst-case optimal definition; (3) it proposes a new algorithm BigJoin-S,

7Memory has been measured using an operating system tool which reports a snapshot of memory usage
every second instead of the average memory usage every second. This explains the small approximation
and inaccuracy in the reported memory size.

84

Figure 3.11: Effects of batch size. Note that the maximum memory usage in small batches
is very close to the index size (25.1 GB).

which handles potential possible imbalance between machines in the case of skewed input
datasets.

From an implementation perspective, it shows how to implement Delta-BigJoin us-
ing Timely Dataflow to dynamically find subgraph queries in large dynamic graphs. The
evaluation section shows that BigJoin and Delta-BigJoin are significantly faster than
existing distributed systems and require cluster memory that is linear in the size of the in-
puts. The concluding experiment, Table3.4 shows that Delta-BigJoin, with 16 machines
can have a throughput up of 46 million 4-cliques per second in a common crawl graph.

85

Chapter 4

Conclusions and Future Work

Graph data has been growing rapidly. Most existing GDBMSs can support shortest path
queries, regular path queries, and subgraph matching queries. However, as an input graph
changes, these systems typically need to run these queries from scratch to update their
answer repeatedly. This thesis addresses the following question: how should the modern
GDBMS be designed to have an efficient query processor for evaluating queries on dynamic
graphs?

More specifically, this thesis looks at two challenging query types: recursive queries
and subgraph queries. Recursive queries, such as single pair shortest path (SPSP), single
source shortest path (SSSP), variable-length join queries, or regular path queries (RPQ)
are challenging to maintain on dynamic graphs. Subgraph queries find instances of a given
subgraph in a larger graph. These are fundamental computations performed by many
applications and supported by many software systems that process graphs.

This thesis proposes a solution for each query type. For recursive queries, Chapter 2
shows how to use DC to maintain recursive queries efficiently, up to 5 orders of magni-
tude faster, while minimizing its memory overhead using complete and partial difference
dropping approaches. For subgraph queries, Chapter 3 shows an implementation of worst-
case optimum join algorithms that can process static and dynamic graphs in distributed
environments.

Chapter 2 demonstrates how to integrate DC into a prototype single-node GDBMS,
and discusses the issues that arise from this. A vanilla implementation of DC is 5 orders
of magnitude faster than running queries from scratch. However, it quickly fails with out-
of-memory errors when maintaining a small number of queries. There are two proposed
optimizations to reduce the memory overhead of DC. The first proposed optimization is

86

complete difference dropping (Section 2.2) which avoids explicitly storing Join results and
compute them on demand when needed. Experiments on several real and synthetic data
sets show that complete dropping uses up to 5× less memory in comparison to vanilla DC.
The second optimization is partial difference dropping (Section 2.3) which chooses certain
differences to drop. Partial dropping, together with complete dropping, can increase the
scalability of a vanilla DC implementation up to 20× more maintained queries.

Chapter 3 addresses implementing worst-case-optimum-join (GJ) algorithms for dy-
namic graphs and in distributed settings. GJ have been implemented in single node
systems for static graphs only. Section 3.2 demonstrates how to expand the definition of
worst-case optimal for distributed settings to include communication costs and memory dis-
tribution among workers. The quantitative evaluation shows that BigJoin is competitive
but slightly worse than a single-node GJ system (EmptyHeaded). This is because BigJoin
lacks specific optimizations for static datasets, such as compacting dense extension lists
into bit vectors, that exist in EmptyHeaded. Section 3.4.2 shows how to use BigJoin to
process dynamic graphs in a distributed environment; with 16 machines Delta-BigJoin
can have a throughput up to 46 millions 4-cliques per second when processing updates to
the common crawl graph.

4.1 Future Work

Although this is not executed within the scope of this thesis, TD and DD infrastructure
is ideal for developing a modern distributed GDBMS for dynamic graphs. Building an
end-to-end system on top of TD and DD is a major engineering undertaking, but an
interesting line of investigation. The result can be a state-of-the-art scalable system for
dynamic graph data management. Materialize1 is an example of how this system may look
like for an SQL engine.

Figure 4.1 shows how the proposed algorithms and optimizations may fit in this system.
The base component in this query engine is TD (Section 3.1.3). Both Delta-BigJoin
and DD are built on top of TD. The partial differential drop (PDD) optimization, can
be easily extended to support a distributed system. However, the complete differential
dropping (CDD) optimization for DC has been implemented, assuming a single node and
shared memory settings. More specifically, it assumes full access to the DC indices. An
interesting future work direction is to use an efficient distributed index without adding
significant overhead to CDD.

1https://materialize.com/docs/overview/

87

Figure 4.1: High-level architecture of a modern GDBMS supporting recursive and subgraph
queries

A query optimizer should be able to (1) decide which approach to use, and (2) divide
one query into several sub-queries and then decides to either use the Delta-BigJoin
algorithm or the IFE abstraction with DD to monitor each sub-query. As discussed in
Section 3.1, there are a few proposals in the literature to achieve this [3, 53].

Aside from building a distributed system, there are several directions that could repre-
sent exciting future work as described below.

4.1.1 Recursive Queries

There are three future work directions related to maintaining recursive queries:

1. System Optimizations: The proposed optimizations have several configurations. These
could be either estimated using heuristics, such as the minimum/maximum threshold
for the degree-based dropping approach in Figure 2.3, or manually optimized, such
as the size of bloom filters. Optimizing these parameters can add significant value to
the proposed approach.

2. Self-Managed System: In partial dropping, a system user has to do an exhaustive
search to find the minimum dropping probability to accommodate a certain number
of queries. There is a good opportunity to use regression models to estimate this
probability using graph properties, query properties, and the system configuration
as features.

88

3. DC with Indexes: Section 2.5.6 demonstrated how Diff-IFE could be used to maintain
landmark indices. However, this algorithm only enhanced the Scratch baseline
algorithm with an index that is maintained deferentially. This proposed algorithm
does not evaluate the queries differentially. It is less clear how to design a differential
shortest path algorithm that uses an index that also needs to be updated as updates
arrive at the system. There is no prior work that has proposed such an algorithm,
and developing it is an important research topic.

4.1.2 Subgraph Queries

There are three future work directions related to maintaining subgraph queries:

1. BigJoin-S algorithm is theoretically skew-resilient, but the initial experiments showed
that its overhead exceeds its benefits. The first future work direction is to study the
possible imbalance in real-world graphs and design more efficient workload-balanced
versions of BigJoin and Delta-BigJoin with proper guards against data skew.

2. Some subgraph queries can have internal symmetries. For example, when evaluating
the 4-clique query, some delta queries, e.g., dQ2 and dQ3, may compute the same
prefixes due to the internal symmetry of the query. An interesting future direction
is to automatically exploit such symmetries to share computations across multiple
dataflows of delta queries.

3. Proposed algorithms assume monitoring one subgraph query, but in many cases, there
is a need to monitor multiple subgraph queries. When processing multiple queries,
there could be opportunities to find common sub-queries that should be evaluated
once instead of evaluating them multiple times with each query. Identifying these
common subqueries and implementing a system to execute multiple queries efficiently
is an interesting future direction.

89

References

[1] Martín Abadi, Frank McSherry, and Gordon D Plotkin. Foundations of Differential
Dataflow. In Andrew Pitts, editor, Foundations of Software Science and Computation
Structures, pages 71–83, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

[2] Ibrahim Abdelaziz, Razen Harbi, Semih Salihoglu, Panos Kalnis, and Nikos Mamoulis.
SPARTex: A Vertex-Centric Framework for RDF Data Analytics (Demonstration).
Proc. VLDB Endowment, 8(12), 2015.

[3] Christopher R. Aberger, Susan Tu, Kunle Olukotun, and Christopher Ré. Empty-
Headed: A Relational Engine for Graph Processing. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 431–446, 2016.

[4] Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. Faq: Questions asked fre-
quently. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 13–28, 2016.

[5] F. N. Afrati and J. D. Ullman. Optimizing Multiway Joins in a Map-Reduce Envi-
ronment. IEEE Trans. Knowl. and Data Eng., 23(9):1282–1298, 2011.

[6] F. N. Afrati, A. D. Sarma, S. Salihoglu, and J. D. Ullman. Upper and Lower Bounds
on the Cost of a Map-Reduce Computation. Proc. VLDB Endowment, 6(4), 2013.

[7] Foto N. Afrati, Manas R. Joglekar, Christopher Ré, Semih Salihoglu, and Jeffrey D.
Ullman. GYM: A multiround distributed join algorithm. In Proc. 20th Int. Conf. on
Database Theory, 2017.

[8] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. DBToaster:
Higher-order Delta Processing for Dynamic, Frequently Fresh Views. Proc. VLDB
Endowment, 5(10), 2012.

90

[9] Khaled Ammar, Frank McSherry, Semih Salihoglu, and Manas Joglekar. Distributed
evaluation of subgraph queries using worst-case optimal and low-memory dataflows.
Proc. VLDB Endowment, 11(6):691–704, 2018.

[10] Khaled Ammar, Siddhartha Sahu, Semih Salihoglu, and M. Tamer Özsu. Optimizing
differentially-maintained recursive queries on dynamic graphs. Proc. VLDB Endow-
ment, 15(11):3186–3198, 2022.

[11] A. Atserias, M. Grohe, and D. Marx. Size Bounds and Query Plans for Relational
Joins. SIAM Journal on Computing, pages 739–748, 2013.

[12] P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query Processing. In Proc.
ACM SIGACT-SIGMOD Symp. on Principles of Database Systems, pages 212–223,
2014.

[13] Paul Beame, Paraschos Koutris, and Dan Suciu. Communication steps for parallel
query processing. J. ACM, 64(6):1–58, 2017.

[14] Jose A. Blakeley, Per-Ake Larson, and Frank Wm Tompa. Efficiently Updating Ma-
terialized Views. ACM SIGMOD Rec., 15(2):61–71, June 1986.

[15] Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Com-
munications of the ACM, 13(7):422–426, 1970.

[16] Angela Bonifati, Wim Martens, and Thomas Timm. Navigating the maze of wikidata
query logs. In Proc. 28th Int. World Wide Web Conf., pages 127–138, 2019.

[17] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and
Kostas Tzoumas. Apache FlinkTM: Stream and Batch Processing in a Single Engine.
IEEE Data Engineering Bulletin, 38:28–38, 2015.

[18] Timothy M. Chan. All-pairs shortest paths for unweighted undirected graphs in o(mn)
time. ACM Trans. Algorithms, 8(4):34:1–34:17, 2012.

[19] TimothyM. Chan. All-pairs shortest paths with real weights in o(n 3/log n) time. In
Frank Dehne, Alejandro López-Ortiz, and Jörg-Rüdiger Sack, editors, Algorithms and
Data Structures, volume 3608 of Lecture Notes in Computer Science, pages 318–324.
Springer, 2005.

[20] Sutanay Choudhury, Lawrence B. Holder, George Chin Jr., Khushbu Agarwal, and
John Feo. A Selectivity based approach to Continuous Pattern Detection in Streaming
Graphs. In Proc. 18th Int. Conf. on Extending Database Technology, 2015.

91

[21] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008.

[22] Camil Demetrescu and Giuseppe F Italiano. Fully dynamic all pairs shortest paths
with real edge weights. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pages 260–267. IEEE, 2001.

[23] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs
shortest paths. J. ACM, 51(6):968–992, 2004.

[24] Differential Dataflow. https://github.com/frankmcsherry/differential-
dataflow. Last accessed: 2022-08-01.

[25] Orri Erling, Alex Averbuch, Josep Larriba-Pey, Hassan Chafi, Andrey Gubichev, Ar-
nau Prat, Minh-Duc Pham, and Peter Boncz. The LDBC social network benchmark:
Interactive workload. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 619–630, 2015.

[26] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law relation-
ships of the internet topology. SIGCOMM Comput. Commun. Rev., 29(4):251–262,
August 1999.

[27] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher. Cuckoo
filter: Practically better than bloom. In Proceedings of the 10th ACM International
on Conference on emerging Networking Experiments and Technologies, pages 75–88,
2014.

[28] Wenfei Fan, Chunming Hu, and Chao Tian. Incremental graph computations: Doable
and undoable. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
155–169, 2017.

[29] Gary William Flake, Steve Lawrence, C. Lee Giles, and Frans M. Coetzee. Self-
Organization and Identification of Web Communities. Computer, 35(3):66–70, March
2002.

[30] Jun Gao, Chang Zhou, Jiashuai Zhou, and Jeffrey Xu Yu. Continuous Pattern Detec-
tion Over Billion-edge Graph Using Distributed Framework. In Proc. 30th Int. Conf.
on Data Engineering, 2014.

[31] Giraph. http://giraph.apache.org. Last accessed: 2022-08-01.

92

https://github.com/frankmcsherry/differential-dataflow
https://github.com/frankmcsherry/differential-dataflow
http://giraph.apache.org

[32] Andrew V Goldberg and Chris Harrelson. Computing the shortest path: A search
meets graph theory. In Proc. 16th Annual ACM-SIAM Symp. on Discrete Algorithms,
pages 156–165, 2005.

[33] Todd J Green, Shan Shan Huang, Boon Thau Loo, Wenchao Zhou, et al. Datalog and
recursive query processing. Foundations and Trends in Databases, 2013.

[34] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining Views
Incrementally. ACM SIGMOD Rec., 22(2):157–166, 1993.

[35] Gupta, Pankaj and Satuluri, Venu and Grewal, Ajeet and Gurumurthy, Siva and
Zhabiuk, Volodymyr and Li, Quannan and Lin, Jimmy. Real-time Twitter Recommen-
dation: Online Motif Detection in Large Dynamic Graphs. Proc. VLDB Endowment,
7(13):1379–1380, August 2014.

[36] Xiao Hu, Yufei Tao, and Ke Yi. Output-optimal Parallel Algorithms for Similarity
Joins. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
2017.

[37] Mohammad Husain, James McGlothlin, Mohammad M. Masud, Latifur Khan, and
Bhavani M. Thuraisingham. Heuristics-Based Query Processing for Large RDF
Graphs Using Cloud Computing. IEEE Trans. Knowl. and Data Eng., 23(9), 2011.

[38] Anand Padmanabha Iyer, Qifan Pu, Kishan Patel, Joseph E. Gonzalez, and Ion Stoica.
TEGRA: efficient ad-hoc analytics on evolving graphs. In NSDI, pages 337–355, 2021.

[39] Manas Joglekar and Christopher Ré. It’s all a matter of degree: Using degree in-
formation to optimize multiway joins. In Proc. 19th Int. Conf. on Database Theory,
2016.

[40] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. PEGASUS: A Peta-
Scale Graph Mining System Implementation and Observations. In Proc. 9th IEEE
Int. Conf. on Data Mining, pages 229–238, 2009.

[41] Chathura Kankanamge, Siddhartha Sahu, Amine Mhedbhi, Jeremy Chen, and Semih
Salihoglu. Graphflow: An active graph database. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, page 1695–1698, 2017.

[42] Kyoungmin Kim, In Seo, Wook-Shin Han, Jeong-Hoon Lee, Sungpack Hong, Hassan
Chafi, Hyungyu Shin, and Geonhwa Jeong. Turboflux: A fast continuous subgraph
matching system for streaming graph data. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, page 411–426, 2018.

93

[43] Seongyun Ko and Wook-Shin Han. Turbograph++ a scalable and fast graph analytics
system. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 395–410,
2018.

[44] Seongyun Ko, Taesung Lee, Kijae Hong, Wonseok Lee, In Seo, Jiwon Seo, and Wook-
Shin Han. iturbograph: Scaling and automating incremental graph analytics. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 977–990, 2021.

[45] Paraschos Koutris, Paul Beame, and Dan Suciu. Worst-Case Optimal Algorithms
for Parallel Query Processing. In Proc. 19th Int. Conf. on Database Theory, pages
8:1–8:18, 2016.

[46] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[47] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: Densification
laws, shrinking diameters and possible explanations. In Proc. 11th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 177–187, 2005.

[48] Longbin Lai and Lu Qin and Xuemin Lin and Ying Zhang and Lijun Chang. Scalable
distributed subgraph enumeration. Proc. VLDB Endowment, 10(3):217–228, 2016.

[49] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph
Processing. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 135–
146, 2010.

[50] Mugilan Mariappan and Keval Vora. Graphbolt: Dependency-driven synchronous
processing of streaming graphs. In Proceedings of the Fourteenth EuroSys Conference,
2019.

[51] Frank McSherry, Derek Murray, Rebecca Isaacs, and Michael Isard. Differential
Dataflow. In Proc. 6th Biennial Conf. on Innovative Data Systems Research, 2013.

[52] Frank McSherry, Michael Isard, and Derek G. Murray. Scalability! But at What Cost?
In Proc. 15th Workshop on Hot Topics in Operating Systems, 2015.

[53] Amine Mhedhbi and Semih Salihoglu. Optimizing subgraph queries by combining
binary and worst-case optimal joins. Proc. VLDB Endowment, 12(11):1692–1704,
2019.

94

http://snap.stanford.edu/data

[54] Seunghwan Min, Sung Gwan Park, Kunsoo Park, Dora Giammarresi, Giuseppe F.
Italiano, and Wook-Shin Han. Symmetric continuous subgraph matching with bidi-
rectional dynamic programming. Proc. VLDB Endowment, 14:1298–1310, 2021.

[55] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham, and
Martín Abadi. Naiad: A timely dataflow system. In Proc. 24th ACM Symp. on
Operating System Principles, pages 439–455, 2013.

[56] Neo4j. http://neo4j.com. Last accessed: 2022-08-01.

[57] Thomas Neumann and Gerhard Weikum. The RDF-3X Engine for Scalable Manage-
ment of RDF Data. Proc. VLDB Endowment, 19(1):91–113, 2010.

[58] H. Ngo, C. Ré, and A. Rudra. Skew Strikes Back: New Developments in the Theory
of Join Algorithms. ACM SIGMOD Rec., 42(4):5–16, 2014.

[59] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case Optimal Join
Algorithms. In Proc. ACM SIGACT-SIGMOD Symp. on Principles of Database Sys-
tems, pages 111–124, 2012.

[60] Dan Olteanu and Maximilian Schleich. Factorized databases. ACM SIGMOD Rec.,
45(2):5–16, September 2016.

[61] Anil Pacaci, Angela Bonifati, and M. Tamer Özsu. Regular path query evaluation on
streaming graphs. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
1415–1430, 2020.

[62] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
sparql. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[63] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gionis. Fast
shortest path distance estimation in large networks. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management, page 867–876, 2009.

[64] Rada Chirkova and Jun Yang. Materialized Views. Foundations and Trends in
Databases, 2012.

[65] VV Rodionov. The parametric problem of shortest distances. USSR Computational
Mathematics and Mathematical Physics, 8(5):336–343, 1968.

[66] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61
(2):389–401, 2011.

95

http://neo4j.com

[67] Rust. https://www.rust-lang.org. Last accessed: 2022-08-01.

[68] Leonid Ryzhyk and Mihai Budiu. Differential datalog. In Proc. 3rd International
Workshop on the Resurgence of Datalog in Academia and Industry, pages 56–67, 2019.

[69] Siddhartha Sahu and Semih Salihoglu. Graphsurge: Graph analytics on view collec-
tions using differential computation. In Proc. ACM SIGMOD Int. Conf. on Manage-
ment of Data, pages 1518–1530, 2021.

[70] Semih Salihoglu and Jennifer Widom. Help: High-level primitives for large-scale
graph processing. In Proc. of Workshop on Graph Data Management Experiences
and Systems, pages 1–6, 2014.

[71] Yingxia Shao, Bin Cui, Lei Chen, Lin Ma, Junjie Yao, and Ning Xu. Parallel Subgraph
Listing in a Large-scale Graph. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, 2014.

[72] Christian Stuecklberger. Expressing the Routing Logic of a SDN Controller as a
Differential Dataflow. Master’s thesis, ETH Zürich, 2016.

[73] Xibo Sun, Shixuan Sun, Qiong Luo, and Bingsheng He. An in-depth study of contin-
uous subgraph matching. Proc. VLDB Endowment, 15(7):1403–1416, 2022.

[74] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient
Subgraph Matching on Billion Node Graphs. Proc. VLDB Endowment, 5(9):788–799,
2012.

[75] Carlos H. C. Teixeira, Alexandre J. Fonseca, Marco Serafini, Georgos Siganos, Mo-
hammed J. Zaki, and Ashraf Aboulnaga. Arabesque: A System for Distributed Graph
Mining. In Proc. 26th ACM Symp. on Operating System Principles, pages 425–440,
2015.

[76] The Laboratory for Web Algorithmics. https://law.di.unimi.it/datasets.php.
Last accessed: 2022-08-01.

[77] Timely Dataflow. https://github.com/frankmcsherry/timely-dataflow. Last ac-
cessed: 2022-08-01.

[78] Titan: Distributed Graph Database. http://thinkaurelius.github.io/titan.
Last accessed: 2022-08-01.

96

https://www.rust-lang.org
https://law.di.unimi.it/datasets.php
https://github.com/frankmcsherry/timely-dataflow
http://thinkaurelius.github.io/titan

[79] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M. Pa-
tel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. Storm@Twitter. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 147–156, 2014.

[80] Todd L. Veldhuizen. Leapfrog Triejoin: a worst-case optimal join algorithm. CoRR,
abs/1210.0481, 2012.

[81] Todd L. Veldhuizen. Incremental Maintenance for Leapfrog Triejoin. CoRR,
abs/1303.5313, 2013.

[82] Xi Wang, Qianzhen Zhang, Deke Guo, and Xiang Zhao. A survey of continuous
subgraph matching for dynamic graphs. Knowledge and Information Systems, pages
1–45, 2022.

[83] Web Data Commons. http://www.webdatacommons.org/hyperlinkgraph. Last ac-
cessed: 2022-08-01.

[84] Mihalis Yannakakis. Algorithms for Acyclic Database Schemes. Proc. VLDB Endow-
ment, 1981.

[85] Ke Yi, Hai Yu, Jun Yang, Gangqiang Xia, and Yuguo Chen. Efficient Maintenance
of Materialized Top-k Views. In Proc. 19th Int. Conf. on Data Engineering, pages
189–200, 2003.

[86] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion Sto-
ica. Spark: Cluster Computing with Working Sets. In Proc. 2nd USENIX Workshop
on Hot Topics in Cloud Computing, 2010.

[87] Zeng, Kai and Yang, Jiacheng and Wang, Haixun and Shao, Bin and Wang,
Zhongyuan. A Distributed Graph Engine for Web Scale RDF Data. Proc. VLDB
Endowment, 6(4):265–276, 2013.

[88] Peng Zhang, Yuhao Huang, Aaron Gember-Jacobson, Wenbo Shi, Xu Liu, Hongkun
Yang, and Zhiqiang Zuo. Incremental network configuration verification. In Proc. of
the 19th ACM Workshop on Hot Topics in Networks, pages 81–87, 2020.

[89] Lei Zou, Jinghui Mo, Lei Chen, M. Tamer Özsu, and Dongyan Zhao. gStore: An-
swering SPARQL Queries via Subgraph Matching. Proc. VLDB Endowment, 4(8):
482–493, 2011.

97

http://www.webdatacommons.org/hyperlinkgraph

	List of Figures
	List of Tables
	Introduction
	Graph and Query Model
	Recursive Queries
	Multiway join Queries

	Thesis Scope
	Differential Computation for Recursive Queries
	Worst-Case Optimal Joins for Subgraph Queries

	Thesis Contribution
	Thesis Structure

	Optimizing Recursive Query Execution
	Related Work
	Iterative Frontier Expansion (IFE)
	Differential Computation (DC)
	Generic Techniques and Systems for Computations on Dynamic Graphs
	Specialized Techniques and Systems for Computations on Dynamic Graphs

	Complete Difference Dropping: Join-On-Demand
	Naive JOD
	Eager-Merging

	Partial Difference Dropping (PDD)
	Dropped Difference Maintenance
	Selecting the Differences To Drop

	Implementation
	Evaluation
	Experimental Setup
	Baseline Evaluation
	Join-On-Demand
	Selecting the Differences To Drop
	Difference Maintenance
	Further Applications of Diff-IFE

	Conclusions

	Optimizing Fixed-Length Subgraph Query Execution
	Related Work
	Generic Join (GJ)
	Massively Parallel Computation Model
	Timely Dataflow (TD)
	Distributed Subgraph Queries Algorithms
	One-time Subgraph Queries
	Continuous Subgraph Queries

	BigJoin Algorithm
	Dataflow Primitive
	BigJoin: Joins on Static Relations

	BigJoin-S: A Skew Resilient BigJoin
	Delta-GJ Algorithm: Joins on Dynamic Relations
	Delta Join Queries
	Delta-BigJoin: Distributed Delta-GJ

	Implementation
	Prefix Extension in Timely Dataflow
	The BiGJoin Dataflow
	The Delta-BigJoin Dataflow

	Evaluation
	Experimental Setup
	Baseline measurements
	Capacity and Scaling
	Generality and Specializations
	Senitivity to Batch Size

	Conclusion

	Conclusions and Future Work
	Future Work
	Recursive Queries
	Subgraph Queries

	References

