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Abstract

Inflammatory Bowel Disease (IBD) refers to a group of conditions that primarily affect
the gut and cause inflammation. In contrast, Hidradenitis Suppurativa (HS) is a chronic
immune-mediated condition characterized by boils in a person’s underarms, groyne, and/or
under their breasts. In recent years, the research on HS has been gaining a growing level
of interest in light of reliable recognition of these two diseases (i.e., IBD and HS) becoming
crucial in clinical settings.

In this study, multiple machine learning and data mining algorithms will be investigated
to shed light on HS versus IBD distinction, methods such as Decision Tree, Random For-
est, Naive Bayes, and k-Nearest Neighbor algorithms. These potential solution to recognize
HS-IBD boundaries are used to classify IBD and HS disease based on multiple features
such as age, illness history, and clinical observations. The thesis conducts a comparative
study on the various classification strategies which can be achieved through the use of ma-
chine learning in order to recognize these two diseases. These methods have been applied
to the IBD/HS dataset that was collected by the medical professionals at the Mayo clinic,
Rochester, MN, USA. The information consists of 198 data records and 52 attributes; how-
ever, data cleaning process was necessary before employing the machine learning. During
the evaluation, the performance of approaches were compared with respect to their accu-
racy as the commonly used metric. Based on the findings of the conducted comparisons, it
was discovered that the random forest approach performed the best, achieving an accuracy
of (93.8 %) for a reduced dataset that contained 20 features for each patient. The detailed
results analysis is supported by several visualization techniques such as t-SNE.

In addition, the thesis makes an effort to determine a precise set of criteria and identify
the features that are the most significant in separating these two diseases from one another.
The results of this study provide medical professionals with the opportunity to investigate
aspects that previously were assumed to not play a significant role in clinical practice. To
the best of author’s knowledge, this is the first applied study to utilize machine learning
and data mining techniques for the IBD and HS classification.
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Chapter 1

Overview

1.1 Motivation

There are various types of errors that can occur during a medical treatment procedure;
however, diagnostic errors are among the most costly, tragic, and prevalent [9]. According
to McKinsey, chronic disease treatment accounts for 80% of American healthcare spending,
and chronic disease affects 50% of the population [43]. In order to increase the chance that
a patient receives adequate care, a correct and timely medical diagnosis is an important
step within patient treatment process [9]. Unfortunately, making correct decisions in a
scenario such as a medical diagnosis can be difficult. Due to several factors, such as
the biologic and anatomic complexity and ambiguity of cases, interruptions, exhaustion
of human beings, and limitations of human perception and visual system, it is likely for
a physician to make an inaccurate diagnosis [16]. According to the Society to Improve
Diagnosis in Medicine report, more than 12 million Americans experience diagnostic errors
every year, with associated expenses exceeding $100 billion [2].

The clinical and financial expenses of misdiagnosing a disorder that may be easily
treated have significantly increased over time due to the advancement of more effective
and costly treatment options. Analysis of big data may provide insights into measuring
and eliminating diagnostic errors. Therefore, we may be able to minimize diagnostic errors
in some cases [53]. In this regard, machine learning and data mining approaches have
a significant role to play. One of the most essential and useful techniques for delivering
insights into very complicated medical data is the use of machine learning. With new
monitoring and data collection technologies in hospitals and large amounts of data being
generated on a daily basis, the need for machine learning and data mining methodologies to
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Figure 1.1: Crohn’s disease and ulcerative colitis are two kinds of IBD that cause inflam-
mation in the bowels. Any area of the gastrointestinal tract, including the mouth and
the anus, can be impacted by Crohn’s disease and any area of the large intestine can be
impacted by ulcerative colitis [7].

utilize this data and benefit the medical and healthcare sectors grows considerably [37,57].
To employ our experience in machine learning and data mining in a real-world dataset in
this research, we collaborated with medical professionals at the Mayo clinic to work on
the classification of two chronic diseases, namely Inflammatory Bowel Disease (IBD) and
Hidradenitis Suppurativa (HS).

IBD refers to two types of illnesses - Crohn’s disease and ulcerative colitis - charac-
terized by persistent (chronic) inflammation of digestive system tissues 1.1. IBD might
be a relatively minor condition for some people. But some patients have the potential
to develop problems that risk their lives [6]. Typical symptoms of IBD include diarrhea,
rectal bleeding, abdominal pain, exhaustion, and weight loss [3].

The fact that IBD affects the majority of the colon can make the patient more suscep-
tible to developing colon cancer [6].
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On the other hand, HS is a disorder that causes small painful lumps to grow under the
skin. These lumps can last for many years and get worse over time, significantly impacting
a person’s day-to-day life and mental and emotional well-being over this period [4].

The symptoms of HS range from moderate to severe. It creates painful inflammatory
nodules, abscesses, and fistulas in the skin, which leak pus. These symptoms commonly
manifest themselves in the groin and genitals, in the armpits, on the bottom and around the
anus, and in the perianal parts of the body [90]. An epidemiologic investigation found that
people with HS had a 50% higher risk of cancer than the general population [60]. Squamous-
cell carcinoma, buccal cancer, and hepatocellular cancer were among the malignancies
identified to develop more often in these patients [49].

The development of a solution to a problem that is present in the real-world is the
fundamental purpose of this thesis. IBD and HS are conditions that affect a considerable
number of people every year. As mentioned before, the severity of these disorders can
vary greatly, and they can have a significant impact on patients’ day-to-day lives. More
importantly, evidence suggests that in some patients, this leads to a more likely cancer
development [4, 6].

The primary objective of this thesis is to assist clinicians in resolving this issue by
leveraging machine learning and data mining techniques to find a more accurate and sta-
tistically relevant way of disease classification. On the other hand, in this thesis, an effort
is made to determine a specific set of criteria. This set helps clinicians to identify the
critical features that help to distinguish these two diseases from one another and separate
them in a more meaningful manner. In addition, medical professionals need to examine
aspects of clinical practice that were previously considered to be insignificant as part of
this study. This study provides them with the opportunity to do so.

1.2 Objective

The primary objective of this thesis is to suggest a classification approach that, on the one
hand, is capable of accurately classifying IBD and HS, and, on the other hand, it should be
interpretable for clinicians. In the end, all of the procedures and strategies should be tested
on the private dataset gathered by the medical specialists at the Mayo clinic, Rochester,
MN, USA.

To accomplish this objective, one needs to carry out a comparative study on many
different classification algorithms that can be used for the diagnosis of these two disorders.

3



On the other hand, an additional component of this thesis is the proposition of suitable
diagnostic criteria. Assisting clinicians in identifying essential characteristics other than
the most clinically significant, one could shed light on these disease diagnoses.

1.3 Proposal Outline

The structure of the thesis is outlined and summarized in the following outline: In the
chapter 2 background, the thesis will explore background material as well as various es-
sential concepts. Then, a survey of major research publications on different classification
techniques will be performed. In the next chapter 3, the thesis will outline the entire
investigation procedure that was used to for classifying IBD and HS disease and present
the results of preliminary trials. In the final chapter 4, the work will be summarized and
conclusions will be drawn.
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Chapter 2

Background and Related Works

The first section 2.1 of this chapter will provide a brief overview of IBD and HS diseases.
Section 2.2 is devoted to discussing the feature selection methods and presents some of
these which are essential to us and that we will use in our study. In the last section 2.3 we
will discuss the main concepts of classification as well as several types of classification.

2.1 Inflammatory Bowel Disease (IBD) and Hidradeni-

tis Suppurativa (HS)

In the perianal region, HS tunnels and Crohn’s disease (CD) fistula show a difficulty for
both diagnosis and management. It has been reported that the odds ratio of developing
CD in people with HS is as high as 9, which is much higher than the risk of CD among
healthy persons. In addition, eighty percent of patients diagnosed with HS and CD showed
signs of perianal involvement, which is a problem that frequently arises in diagnostic work.
As a result, diagnostic criteria are required so that these two illnesses can be differentiated
from one another.

The prevalence of HS ranges from 0.05 % to 1 %, and it is a painful, chronic in-
flammatory disorder that causes various inflammatory skin lesions. These lesions include
comedones, nodules, abscesses, and tunnels. HS can last for years. There are a num-
ber of additional medical disorders that have been linked to HS, including obesity and
IBD [42,93].

Both IBD and hypersalivation syndrome (HS) are chronic, recurring, and inflammatory
diseases of epithelia that include the presence of commensal flora. Although a precise

5



mechanistic understanding of the link between HS and IBD has not been identified, a
significant association between both illnesses has been shown by several investigations [77].
In addition to this, both HS and Crohn’s disease (CD) are distinguished by suppuration
and granulomatous inflammation, both of which can lead to the development of fistula and
tunnels.

It has been found that people who have a perianal fistula have an increased risk of
having extraintestinal signs of IBD. There is a median time of 4.5 years between the onset
of perianal CD and the onset of intestinal symptoms, which adds to the diagnostic issue
of determining whether or not this is perianal CD or HS preceding CD. Perianal CD can
occur in up to 45 % of individuals before intestinal symptoms appear [92]. The Mayo Clinic
conducted a population-based inception cohort study, which found that individuals with
IBD had approximately 9 times the risk of developing hyperparathyroidism (HS) than the
general population, with a female propensity [102].

In addition to this, the risk of CD in patients with HS was found to be three times
higher than in healthy controls, and the odds ratio of developing CD in patients with HS
was reported to be as high as 9 [36]. Patients who had HS were found to have an elevated
risk of both ulcerative colitis (UC) and CD, according to a recent cohort study that was
conducted across the country [91]. According to the findings of another study, individuals
with HS had a greater risk of IBD when compared with the controls, with CD being more
prevalent than UC [73]. The incidence of IBD that was found in patients with HS was 2 %,
which is more than six times greater than the prevalence that was reported for the general
population [41]. Despite the fact that pathogenic similarities have been described between
HS and CD, fistulae are a feature of CD, whereas tunnels without communication with the
bowel are typical of HS. In more advanced stages of the disease, however, severe ulcerations,
tunnelling, and adhesion can promote fistula formation, which can even result in contact
with the anal canal. This is recorded in up to 45 % of perianal instances of HS [51]. In
addition to this, the histology of both disorders may exhibit nonspecific inflammation as
well as the formation of granulomas.

There have been reports of both illnesses occurring together, which presents a diagnostic
issue when there is involvement of the perianal area. When individuals have solely perianal
involvement, without the development of HS in other locations, the diagnostic problem is
very prominent.

Even though these disorders may share overlapping cytokine signatures and microbial
impacts as well as responses to related targeted therapies, [36] the first choice of treatment
and the rationale for surgery will differ depending on the underlying problem. Many
patients with HS and CD who have perianal lesions are not effectively managed since there
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are not clear differential diagnostic criteria. This leads to various problems and improper
surgical treatments, including colostomy [87]. Therefore, there is a requirement that has
not yet been satisfied for the criteria that may be used as a reference in clinical practise to
discriminate between fistulizing perineal CD and perineal fistula syndrome (HS).

2.2 Feature Selection

Dimensionality reduction is one of the most prevalent strategies for removing irrelevant and
redundant features [55]. Techniques for dimension reduction can primarily be broken down
into two categories: feature extraction and feature selection. Approaches to feature ex-
traction project features into a new feature space that has lower dimensionality, and the
newly created features are typically combinations of the original features. Techniques such
as Principal Component Analysis (PCA) [13], and Linear Discriminant Analysis (LDA)
are examples of feature extraction methods. On the other hand, the goal of the feature
selection approaches is to select a limited set of features that increase relevance to the
target while reducing redundancy [95].

The feature selection process selects a subset of features from the original feature set
without making any changes to those features. This process preserves the physical mean-
ings of the original features. In this respect, feature selection is superior since it provides
higher readability and interpretability [63]. The significance of this trait may be seen in
a wide variety of practical applications, such as locating genes relevant to a particular
condition. It is also valuable for our application since it helps us find the most important
criteria in real life for classifying two diseases. In the context of the classification problem,
feature selection seeks to identify a subset of features that are highly discriminatory. In
other words, it chooses features that are able to differentiate between samples that come
from various classes. Due to the availability of label information, the importance of fea-
tures for the classification problem is evaluated based on their ability to distinguish across
classes. For instance, when two features are strongly correlated, a single feature suffices to
describe the data, therefore if a feature fi and a class cj have a strong correlation, then
feature fi is considered to be relevant to class cj [95].

Feature selection methods can be divided into three different categories according to
whether the training set contains labels or not: supervised [94,100], unsupervised [32,71],
and semi-supervised [101, 107]. The approach of supervised feature selection analyses the
importance of features based on the information provided by labels. Consequently, an
efficient selection requires a sufficient quantity of labelled data, which might be time-
consuming to collect. While unsupervised feature selection can be done with unlabeled
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data, evaluating the significance of the selected features is problematic [95]. On the other
hand, Collecting labelled data can be challenging in many real-world applications, yet
unlabeled data are widely available and simple to access. Consequently, there are large
amounts of unlabeled data and few labelled data in many real-world applications. To
address this issue, semi-supervised feature selection algorithms was created [107] that use
both labelled and unlabeled data for feature selection. Semi-supervised feature selection
techniques determine the significance of the selected features by analysing the label infor-
mation of labelled data as well as the local structure or data distribution of both labelled
and unlabeled data [45].

A feature selection method will often consist of four fundamental processes [65], which
are as follows: subset generation, subset evaluation, stopping criterion, and result vali-
dation. In the first phase of the process, a candidate feature subset will be selected on
the basis of a specific search strategy. This subset will then be transferred to the second
step, where it will be evaluated in accordance with a certain evaluation criterion. After
all of the candidates have been examined and the stopping criteria have been satisfied, the
subset of candidates that best meets the evaluation criterion will be selected as the winner.
Validation of the selected subset will take place in the very last phase, and either domain
knowledge or a validation set will be used.

2.2.1 Feature Selection for Classification

The vast majority of classification problems encountered in the real-world demand for su-
pervised learning since the underlying class probabilities and class-conditional probabilities
are not known, and each instance is connected with a class label [29].

In circumstances that occur in the real-world, we frequently have a limited understand-
ing of the relevant features. As a result, in an effort to more accurately reflect the domain,
a large number of candidate features have been included, which has led to the existence
of features that are irrelevant or redundant to the target notion. A feature is considered
relevant to a concept when it is neither irrelevant nor redundant to that concept [50]; a
feature is considered irrelevant when it is not directly associated with the target concept
but has an effect on the learning process, and a feature is considered redundant when it
does not contribute anything new to the target concept [29].

In most cases, while selecting features for classification, an attempt is made to choose
the smallest sized subset of features in accordance with the following criteria:

• The accuracy of classification does not decrease significantly.
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• The final class distribution, in which just the values for the chosen features are
considered, is as similar as possible to the initial class distribution, in which all
features were considered.

In an ideal scenario, feature selection algorithms would search through the various subsets
of features and attempt to discover the most optimal candidate subset out of the 2m (m
is the number of features) that are competing with one another based on some evaluation
functions [29]. However, since it seeks to identify the absolute best solution, this process
is exhaustive. Even for a feature set of a moderate scale, it could be prohibitively expensive
and costly to implement effectively. Other methods, such as heuristic or random search
methods, aim to lower the computing complexity while also reducing performance.

Filters, wrappers, and embedding techniques are the three primary classifications that
can be used to feature selection strategies [100]. Methods of filtering select groups of fea-
tures based on criterion functions, and this selection is made regardless of the final classifier
that will be used for classification. In contrast, both embedded and wrapper techniques
execute feature selection inside the framework of learning machines. In approaches that
are embedded, feature selection is an integral part of the learning algorithms and is typ-
ically unique to individual giving learning machines. Wrapper methods are implemented
around a specific learning algorithm, which is then used to evaluate the feature subsets
that have been picked based on the estimated classification errors, and to construct the
final classifier.

This thesis focuses on embedding feature selection methods in which it is assumed that
the features are independent. Embedded Models are models that embed the selection of
features with the construction of a classifier [22]. These models have a number of benefits,
including the fact that they include the interaction with the classification model and that
they require significantly less computational effort than other models [65, 66,88].

There are different categories of embedded methods. First, there are pruning strategies
that use all features to train a model and then seek to eliminate some features by setting the
associated coefficients to 0 while preserving model performance, such as recursive feature
elimination using support vector machine [44]. The second category consists of models
with an embedded feature selection process, such as ID3 [81] and C4.5 [82]. Following, we
will cover these feature selection approaches in more detail.

2.2.2 Decision Trees

Due to the fact that decision trees, such as C4.5 [82], naturally carry out feature selection
at each node, they are frequently utilised as embedded approaches. For the purpose of
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feature selection [34], single tree models were utilised; however, the quality of the selected
features may be reduced due to the fact that the precision of a single tree model may be
limited. On the other hand, it is expected that tree ensembles, which are made up of
several different trees, are substantially more accurate than a single tree [18].

2.2.3 Random Forest

Random Forest, unlike the vast majority of other classifiers, directly performs feature
selection while simultaneously building a classification rule [79]. In other word, Random
forest, when used as a classifier, does an implicit feature selection by only employing a small
group of ”strong variables” for the classification [19]. The Gini significance index and the
permutation importance index (PIM) [18] are the two metrics of variable importance that
are most frequently employed in Random Forest.

The Gini significance index can serve as a broad indicator of the relevance of the
features being considered. This feature relevance score gives a relative ranking of the
specific features and is technically a by-product of the training process for the random forest
classifier. It is as follows: The Gini impurity is a computationally efficient approximation
to the entropy. It measures how well a potential split is separating the samples of the two
classes in this particular node. The Gini impurity is used to search for the optimal split at
each node within the binary trees of the random forest [68].

Permutation importance measure (PIM) is likely the most often utilised measure of
variable importance in random forest. The random forest method does not utilise all
training data when building a single tree. This leaves a set of out of bag (OOB) samples,
which can be used to test the classification accuracy of the forest. To determine the
significance of a particular feature in the tree, permute the values of this feature in the
OOB samples and compare the classification accuracy of the intact OOB samples to that
of the OOB samples with the feature permuted [68].

2.2.4 Recursive Feature Elimination (RFE)

Recursive feature elimination (RFE) is a feature selection strategy for small sample classifi-
cation problems [44] among a variety of other feature selection methods. Recursive feature
elimination is initially applied to microarray-based cancer classification, where the number
of training samples is less than 100 and the number of features is in the tens of thousands,
and has evolved into an efficient method for small-sample feature selection. The goal of
recursive feature elimination is to improve the performance of generalisation by deleting
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the features that are considered to be of the least importance and whose removal will have
the least impact on the amount of training errors [23].

2.3 Classifications

One of the tasks that intelligent systems conducts the most frequently is supervised classifi-
cation. As a result, a significant number of methodologies founded on Artificial Intelligence
and Statistics have been established. In supervised learning, the objective is to construct
a concise model of the distribution of class labels in terms of predictive variables in order
to understand the data better. The resulting classifier is subsequently utilized in order
to assign class labels to the testing examples that include known values for the predictor
features but an unknown value for the class label [59].

2.3.1 Decision Trees

In the process of building classification models, decision-tree approaches have seen extensive
use. Each test in a decision tree compares a numeric attribute to a threshold value or a
nominal attribute to a set of possible values. Decision trees are sequential models that
logically combine a number of simple tests. The nodes of a decision tree each reflect a
feature of an instance that needs to be categorised, and the branches each represent a
possible value for the node to take on. The information gain concept is used to determine
which aspects of the attribute tree have a greater influence on the classification. These
aspects are located closer to the top of the tree. The classification of instances begins at
the root node, and the instances are then ordered according to the feature values they
possess.

A decision tree will label a data point as belonging to the partitioned region’s most
frequent class whenever that data point falls within one of the partitioned regions.

In decision tree classification, there are two primary processes. In the first step, we
create the tree based on a training set. This is often done by beginning with an empty
tree and selecting the suitable test attribute for each decision node with an attribute
selection measure. The basic idea is to pick the property that minimizes the mixing of
object classes across all of the training subsets generated by the test. This will make it
simpler to categorise objects into their appropriate groups. The process is repeated for
each sub decision tree until it reaches the leaves, at which point it fixes the classes that
are associated with those leaves.
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In the subsequent stage, we are able to make use of a new instance, which possesses
simply the values of all of its attributes. We begin at the base of the newly constructed
tree and go down the path that corresponds to the value of an attribute that has been seen
in one of the interior nodes of the tree. This procedure is repeated up to the point where
a leaf is found. In the end, we make use of the linked label in order to acquire the value of
the predicted class for the current instance [58,59].

On the other hand, the comprehensibility of decision trees is one of the properties that
contributes the most to their utility. People are able to quickly and easily comprehend the
rationale behind a decision tree’s assignment of a given instance to a particular class.

The comprehensibility of these classifiers is superior than that of black-box models
such as neural networks. When compared with the numerical weights of the connections
between the nodes in a neural network, the logical rules that are followed by a decision
tree are considerably simpler to interpret and understand. When making decisions, people
have a tendency to feel better at ease when using models that they can grasp [58,59].

In conclusion, decision trees are a trustworthy and efficient method for making decisions.
They offer a high degree of classification accuracy while maintaining a straightforward
representation of the information that has been acquired. Applications in the fields of
medicine and health care have made extensive use of decision trees for more than 20
years [78].

The root node of the tree would be the feature that best splits the training data. There
are several ways for determining which feature best splits the training data, including
information gain [48] and the gini index [20].

While nearsighted methods estimate each feature separately, the Relief algorithm [56]
evaluates them in relation to other features. The majority of studies, however, have con-
cluded that there is no one best method [72]. Individual technique comparison may still
be useful when determining the metric to utilise in a given dataset.

The same procedure is then repeated until the training data is broken down into subsets
of the same class, after which the same procedure is performed on each partition of the
divided data.

C4.5 [89] is considered to be one of the most well-known algorithms in the literature
for building decision trees. It is an extension of Quinlan’s earlier ID3 algorithm that was
introduced in 1979 [80]. Taking into account that decision trees are considered one of the
most important learning algorithms and they are compared with other learning algorithms
in a recent study [64], decision trees are considered to be one of the best learning algorithms.
In this study, it was shown that C4.5 is a very good combination of speed as well as error
rate in terms of performance.
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To sum up, one of the most useful characteristics of decision trees is their comprehensi-
bility. People can easily understand why a decision tree classifies an instance as belonging
to a specific class.

2.3.2 Random Forest Classifier

A random forest classifier is an example of an ensemble classifier that, like its name implies,
generates numerous decision trees by employing a subset of training examples and features
that are chosen at random [18].

The Random Forest classifier has been getting a lot of attention recently due to the
outstanding classification results obtained, the speed of processing, and the capacity to
deal with a huge attribute space [31,75,84].

As a result of these characteristics, random forests have found widespread use across
a variety of fields. There have been several studies carried out in real-world application
specially in the medical field that fall under the scope of our interests, and these studies
made use of random forests in the course of their work [15,38,47,54,61,62,103–105].

Research into machine learning has shown a significant amount of interest in ensemble
learning, which refers to systems that generate a large number of models and integrate
the outputs of these models. It is a widely held belief that the performance of a set of
numerous weak classifiers is typically superior to that of a single classifier when the same
quantity of train data is provided [85]. The wisdom of the crowds is the core idea that
supports these methods. This idea is deceptively straightforward but incredibly effective.
The performance of a large number of models acting as a committee will exceed that of
any of the individual constituent models [12].

Boosting [33], bagging [17], and more recently Random Forests [18] are three well-known
examples of ensemble approaches.

• Boosting

By iteratively reweighing the occurrences contained in the training set, the boosting
strategy generates multiple distinct base learners. At the outset, each instance is
given a weighting that is equivalent to the others. Each instance that was misclassified
by the previous base learner will receive a larger weight in the subsequent round in an
effort to correctly classify it. After computing the error, the weight of the instances
that were successfully classified is decreased, whilst the weight of the instances that
were not correctly classified is increased. Every single learner’s vote carries the same
amount of weight relative to their overall performance [33,99].
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• Bagging

In the bagging approach, also known as Bootstrap Aggregation, various training sub-
sets are randomly selected with replacement from the entire training set. Learners
at the base level get each training subset as an input. A vote by a majority of learn-
ers brings together all of the extracted learners. Bagging is able to build classifiers in
parallel, while boosting generates them one at a time in a sequential manner [17,74].

Rather than subdividing the training data into smaller chunks and training each tree
on a separate chunk, we use bagging to train the trees on a dataset of size N with
replacement. It means that if we have a sample that is size N, we will continue to
provide each tree with a training set that is of size N. However, rather than using
the initial set of training data, we will be using a random sample of size N with
replacement [12].

• Random Forest

Another type of ensemble approach is known as Random Forest, and it works by
first building a large number of decision trees, which are then used to classify a new
instance according to the votes cast by the majority of the trees [18, 74].

Decision trees are extremely sensitive to the data they are trained on; hence, even
slight modifications to the dataset used for training might result in dramatically dif-
ferent tree architectures. The random forest algorithm makes use of this property by
permitting each individual tree to randomly pick from the dataset with replacement,
so producing a variety of trees. This procedure is referred to as bagging. Random
forest takes advantage of this property. The randomization of the features inside a
random forest is another distinction that can be made between it and a decision tree
2.1. When it comes time to split a node in a typical decision tree, we take into account
all of the alternative features and select the one that creates the greatest amount of
differentiation between the observations included in the left node and those contained
in the right node. In contrast, only a random subset of characteristics are available
for selection by each individual tree in a random forest. This ultimately leads to
less correlation between the trees in the model, which allows for a greater degree of
diversification, and it forces even more variance among the trees in the model.

As a result of bagging, the random forest produces trees that are not only trained on
diverse sets of data, but also make decisions based on a variety of distinct features [12].

The random forest is a classification system composed of several uncorrelated decision
trees whose aggregated prediction is more accurate than that of any individual tree.
This characteristic, along with drawing observations with replacement and dividing
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Figure 2.1: In a random forest, the process of node splitting is determined by a subset of
random features applied to each tree [12].

nodes based on the optimal split among a random subset of features (instead of whole
features) selected at each node, minimises the risk of overfitting in random forest
models. In other words, by injecting randomness, random forest reduces overfitting
in comparison to decision tree.

Random Forest in Medical Domain

The primary objective of this study [15] is to detect and categorise curvilinear structure
in mammograms, as well as to determine whether or not this structure should be con-
sidered normal or abnormal. To accomplish their purpose, they employ random forest.
In this research, an automatic method for segmenting multiple sclerosis (MS) lesions in
three-dimensional magnetic resonance (MR) images was provided. The architecture for
this method is based on a discriminative random decision forest, and it offers a probabilis-
tic voxel-by-voxel categorization of the volume [38]. In order to accurately detect acute
appendicitis, they built models based on random forests, support vector machines, and
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artificial neural networks [47].

The purpose of this research [54] is to offer a method for the effective classification of
X-ray images in order to improve both the accuracy and performance. Random Forests is
used to perform classification tasks quickly and accurately. An effective strategy for the
retrieval of medical images based on keywords is presented in [61], and it involves the use
of image classification with Random Forests.

In real-time 3D echocardiography, the automatic delineation of the myocardium has the
potential to be employed as a diagnostic aid for a variety of cardiac conditions, including
ischaemia. In this study [62], the authors employ a random forests approach and handle the
problem at hand as a three-dimensional patch classification assignment with two classes.

In the paper [103], the authors build an automatic 3D Random Forests algorithm
that can be used to segment the foetal femur in 3D ultrasound images, and they suggest
a weighted voting mechanism as a way to generate a probabilistic class label from the
segmentation results.

Improvements to Random Forests for the purpose of segmenting three-dimensional ob-
jects in various types of three-dimensional medical imaging [104]. By strategically focusing
on the ”good” features and ignoring the unnecessary ones, it is possible to achieve a voxel
classification that is more accurate. This strategy also results in a more efficient learning
process. During the testing phase, it is suggested that assigning a weight to each individual
tree in the forest will produce a probabilistic judgement that is both objective and more
precise.

In this paper [105], a brand novel algorithm for the automatic segmentation and cate-
gorization of brain tissue derived from 3D MR data is given. It employs a discriminative
Random Decision Forest classification method and takes partial volume effects into con-
sideration.

2.3.3 Extra Tree Classifier

Extremely Randomized Tree, also known as Extra Tree, is an additional ensemble method
that can be used for supervised classification and regression issues. Essentially, what it
involves is significantly randomising the attribute choice as well as the cut-point choice
whenever one is splitting a tree node. In the most extreme scenario, it constructs trees
whose architectures are fully random and independent of the output values of the learning
sample [39].
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Figure 2.2: Algorithm for splitting Extra Trees [39].

It is similar to Random Forest in that it constructs numerous trees using the traditional
top-down procedure, but it differs in the manner in which randomization is injected during
the training process. Extra Trees is an alternative to Random Forest. Two of the most
important distinctions are that Extra tree does not bootstrap observations (which means
that it samples without replacement) and that nodes are split based on random splits
rather than the best splits. Algorithm for splitting Extra Trees shown in Figure 2.2. This
distinction indicates that the best split at a node is determined by analysing a subset of all
of the available features. A single threshold is chosen at random for each feature, as opposed
to initially searching for the optimal threshold that corresponds to each feature [40]. The
increased level of randomness that occurs during training results in the production of
more independent trees, which in return further reduces the variance. Because of this,
ExtraTrees typically produce outcomes that are marginally superior than those produced
by Random Decision Forests.

2.3.4 K Nearest Neighbors Classifier

Instance-based learning algorithms are lazy learning algorithms [70]. The k-nearest neigh-
bour classifier is the foundation of many lazy learning algorithms [28] since it maintains
the training set and delays classification decision making until problem solving [30].
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The difference between eager-learning algorithms (such as decision trees, neural and
Bayes nets) and lazy-learning algorithms is that lazy-learning approaches require more
computation time during the classification process but less during the training phase. The
closest neighbour approach is widely recognised as one of the easiest instance-based learning
algorithms to comprehend and apply.

The idea behind k-Nearest Neighbor, or kNN, is that instances within a dataset will
typically exist in close proximity to other instances that have similar properties and are
labelled with a classification label. If this is the case, then the value of the label of an
unclassified instance can be determined by observing the class of the instance’s nearest
neighbours [26].

The k-nearest neighbour algorithm finds the k instances that are the closest to the
query instance and determines the class of the query instance by finding the one class label
that occurs the most frequently.

In other words, when presented with a new instance to classify, the k-NN method finds
the k most similar cases and guesses the class to which the new instance could belong [30].

Instances can be thought of in a general sense as points that exist within an n-
dimensional instance space, where each of the n-dimensions corresponds to one of the
n-features that are used to characterise an instance. In other words, an instance space can
be thought of as having n+1 dimensions. It is less important to focus on the examples’
actual positions inside this space and more important to consider their relative distances
from one another. The utilisation of a distance measure allowed for the calculation of this
relative distance [58,59].

In an ideal world, the distance metric would reduce the distance that exists between
examples that are similarly classed while simultaneously increasing the distance that exists
between instances that belong to different classes. Many distinct metrics, such as the
Manhattan distance, the Euclidean distance, the Minkowski distance, and many others,
have been offered.

2.3.5 Support Vector Machine

Support Vector Machines are one of the most prevalent techniques for supervised machine
learning. SVMs are predicated on the concept of a margin, which refers to either side of
a hyperplane that divides two data classes. It has been demonstrated that increasing the
margin and so generating the biggest possible distance between the separating hyperplane
and the instances on either side of it can minimise an upper constraint on the expected
generalisation error.
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In the situation when the data can be separated linearly, once the optimal separating
hyperplane has been identified, the data points that lie on the margin of that hyperplane are
referred to as support vector points, and the solution is represented as a linear combination
of only these points. Other data points are not taken into consideration. Therefore, the
amount of features that are included in the training data does not have an impact on the
complexity of the model that an SVM uses (the number of support vectors selected by the
SVM learning algorithm is usually small). For this reason, support vector machines are
ideally suited to handle learning tasks in which the number of features is rather high in
comparison to the number of training examples. Even though the greatest margin enables
the SVM to choose between numerous candidate hyperplanes, the SVM may not be able to
locate any separating hyperplane at all for many datasets since the data contains instances
that were incorrectly classified. The issue can be resolved by employing a flexible margin
that allows for certain misclassifications of training examples [98].

Despite this, the vast majority of situations that arise in the actual world include non-
separable data for which there is no hyper-plane that can properly differentiate between
the positive and the negative instances in the training set. In order to solve the issue of
inseparability, one possible option is to map the data onto a space with a higher dimension
and then define a separating hyperplane in that space. This higher-dimensional space is
known as the feature space, as opposed to the training instances’ input space. With a
correctly designed feature space of adequate dimension, every consistent training set may
be separated [21,59].

2.3.6 Other Classifiers

• Passive Aggressive Classifier

The passive aggressive classifier is an algorithm used in machine learning for clas-
sification tasks. The traditional Perceptron algorithm has been altered to create
this new method. It is one of the few algorithms designed for online learning [27].
Passive-Aggressive algorithms are referred to as such because:

If the prediction is accurate, the model should be retained with no modifications. To
put that another way, the data presented in the example are insufficient to produce
any discernible shifts in the model.

Aggressive: If the prediction is inaccurate, modify the model. Therefore, a modifica-
tion to the model may be required to correct the issue.

• Perceptron Classifier The Perceptron [86] is a machine learning technique for
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binary classification tasks that is linear. It is regarded to be one of the earliest and
simplest types of artificial neural networks. It consists of a single node or neuron that
receives as input a row of data and predicts a class label. This can be accomplished
by computing a weighted sum of the inputs

• MultiLayer Perceptrons Classifier The multilayer perceptron is a type of model
that represents a nonlinear mapping between an input vector and an output vector.
It is formed of a system of basic neurons or nodes that are interconnected with one
another. The weights are a function of the sum of the inputs to the node, and
the output signals are functions that are modified by a simple nonlinear activation
function. Multilayer perceptrons are able to approximate nonlinear functions due to
the superposition of numerous basic nonlinear transfer functions [35].

• Ridge Classifier Ridge classification is a method that is utilised in the process of
analysing linear discriminant models. In this type of regularisation, model coefficients
are penalised in

• Gaussian Process Classifier The Gaussian Processes Classifier is a non-parametric
technique that can be utilised for binary classification applications. The Gaussian
probability distribution serves as the basis for Gaussian Processes, which are a more
generalised form of the distribution.

• Bernoulli Naive Bayes BernoulliNB is a classification algorithm that implements
the naive Bayes algorithm for use with data that is distributed in accordance with
multivariate Bernoulli distributions [10].

• Gaussian Naive Bayes GaussianNB is a classification algorithm that implements
the naive Bayes algorithm for use with data that is distributed in accordance with
Gaussian distributions [10].

• Label Propagation and Label Spreading classifiers The label propagation al-
gorithm is a semi-supervised form of machine learning that assigns labels to data
points that were not labelled in the beginning. At the beginning of the procedure,
only a subset of the data points (which is typically quite small) has labels (or clas-
sifications). During the course of the procedure, these labels are transferred to the
points that have not yet been given labels [108].

The Label Spreading method is quite comparable to the Label Propagation algo-
rithm, with just a few key distinctions between the two. For instance, the calcula-
tions performed by the Label Spreading algorithm utilize a symmetric normalised
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graph Laplacian matrix, whereas the calculations performed by the Label Propaga-
tion method employs a random walk normalised Laplacian.
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Chapter 3

Methodology

3.1 Introduction

As stated in Chapter 1, the purpose of this thesis is to investigate several machine learning
and data mining algorithms, such as Decision Tree, Random Forest, Naive Bayes, and K
Nearest Neighbor algorithms, in order to classify IBD and HS diseases. Specifically, the
goal of this investigation is to determine which of these algorithms is most effective at
identifying IBD and HS diseases. In addition, another objective of this research is to come
up with a set of criteria and select the features that are the most significant and decisive
in distinguishing between these two disorders.

In this chapter, we will walk through the essential steps for data cleaning and pre-
processing. The step-by-step instructions for this process can be found in the section 3.3.
Following that, the details of each classification approach will be explained. The results of
different classification systems are compared and displayed in Table 3.1. Next, the section
3.5.3 will discuss the procedures used in order to extract the most significant feature from
the dataset. These characteristics are especially essential for the clinician to consider while
searching for precise criteria to use in the classification of IBD and HS. Ultimately, all
classification techniques were applied to the newly reduced dataset, which only included
the most defining features. Tables 3.2, 3.1, 3.6, 3.5, 3.4, and 3.3 depict the outcome of a
comparison of several feature selection and categorization methods.
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3.2 Dataset

We have 60 features for each patient, which are divided into the following 6 category:

• Demographic information:
There are 6 features in this category: Gender, age, body mass index (BMI), race,
history of smoking, and digestive symptoms.

• Morphologic information about their perianal lesions:
There are 15 features in this category: Bilateral or unilateral lesion, presence or
absence of fistula, abscess, nodule, comedo, pustule, induration, plaques, ulcer, ery-
thema, anal tag, scar, tunnel/sinus tract, knife cut ulcers, and genital cutaneous
edema.

• Locations of extra perianal lesion:
There are 9 features in this category: Buttock, perineum, axilla, chest, groin, thigh,
scrotum, vulva, and back.

• Lab results:
There are 16 features in this category: White blood cell counts (min and max),
neutrophil counts (min and max), hemoglobin level (min and max), serum albumin
level (min and max), albumin (min and max), erythrocyte sedimentation rate (ESR)
(min and max), C-reactive protein (CRP) level (min and max), and fecal calprotectin
level (min and max).

• MRI findings about their perianal lesion:
There are 9 features in this category: Presence or absence of transsphincteric /In-
tersphincteric fistula, subcutaneous tunnels, abscess, inflammation of subcutaneous
+ skin, inflammation of fat + subcutaneous, inguinal lymphadenopathy, iliac lym-
phadenopathy, mesoractal lymphadenopathy, and rectal inflammation.

• Colonoscopy information:
There are 5 features in this category: Ulcer, erythema, stricture, fistula, and affected
mucosa.

3.3 Data Cleaning

For machine learning, data is the most valuable and indispensable resource. Nonetheless, a
flawed dataset may lead to incorrect conclusions. In data analytics, detecting and cleaning
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dirty data is a fundamental challenge, and failing to do so can result in incorrect analyses
and unreliable conclusions [25]. The act of finding parts of a dataset that are incorrect,
incomplete, improperly formatted, duplicate, inaccurate, or missing and afterward, de-
pending on the necessity, altering, replacing, or removing those parts of the dataset that
contain incorrect, incomplete, or so is what is known as data cleaning [83]. In this section,
several cleaning approaches were used to clean the dataset:.

Figure 3.1: A total of 198 records (rows) are included in this dataset. There are many
missing values in our dataset which need to be noted. For example, 177 out of 198 data
points in the fc.Min feature are empty, corresponding to about 89 % of all data points in
this feature.

• Missing values

When it comes to the data from the real-world, it is hard to find a dataset that is
complete and does not contain missing variables. Handling missing values is partic-
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Figure 3.2: Deleting the entire column (feature) is one of the method for dealing with
missing value. This strategy is utilized when more than 25 % or 30% of the data is
missing. By using this method we will remove some specific features. The highlighted
features in this table are those that were chosen to be eliminated.
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ularly crucial because the majority of algorithms will not accept missing values in
their inputs. As can be seen in Table 3.1, there are numerous missing values in our
data that required to be addressed.

When dealing with missing data, there are several methods that can be used. One
method is to delete the entire column (feature) [1]. This method is used when more
than 25 % or 30% of the data is missing [5]. However, in some circumstances, we
do not want to lose a specific feature, so we can delete the related row. In this case,
we will lose the entire data point associated with a certain patient. However, this
strategy is not appropriate when the majority of the cells in a column are empty. For
example, if we wish to use this approach for fc.Min, we must eliminate 177 rows out
of 198, which is not reasonable.

Another technique is to replace the missing value with another value, which could
be the mean or most frequent value, or it could come from field knowledge in some
circumstances [52]. However, we should proceed cautiously when employing this
method because it has the potential to mislead us.

As previously indicated, this dataset has 60 columns (features). During the initial
round of data cleaning, we asked medical professionals to eliminate any irrelevant
columns, which included the chest, thigh, back, wbc.Min, neut.Min, hb.Max, crp.Min,
and albumin.Max columns. We have 198 rows and 52 features after this procedure.

– Drop column
If the majority of a column’s values are missing (more than 25 to 30 percent),
that column (feature) should be removed; nevertheless, this will result in the
loss of information, thus more evaluation is required. Due to the fact that the
vast majority of fc.Min, fc.Max, esr.Max, and esr.Min features have been missed
(about more that 60 percent), we dropped these 4 columns that are displayed
in Table 3.2. At the end of this process, we have 198 rows and 48 features.

– Drop row
As previously said, we ought to think carefully before eliminating part of data.
Given that more than 25 percent of the data in the highlighted columns in Table
3.3 are missing, we should have deleted these columns. However, after discussing
with clinicians, we discovered that these columns are related to the results of
MRI images, which are important for this study; therefore, we have decided to
keep these features so that we can conduct further analysis. As a solution to the
problem of missing values, we remove the rows that correspond to those values;
as a consequence, some of the missing values of other features are also removed.
130 rows and 48 columns remain after some rows were removed.
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Figure 3.3: Sometimes only a small percentage of the data in a particular column is missing,
in which case it would not be appropriate to eliminate the entire column for those few data
points. Additionally, there are situations when we do not want to lose a certain feature.
In this case, eliminating a row is preferred. In this scenario, the entire data point related
to a certain patient will be lost.
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– Fill missing values
Filling in missing values based on other observations is an alternative method
for tackling the missing value problem; however, there is a risk of compromising
the data integrity, as you may be relying on assumptions rather than actual
observations. We are able to fill in the missing values with a variety of statistical
approaches, depending on our requirements. The process of filling in missing
values is performed differently for categorical data compared to numerical data.
We will utilize the statistical mean method to fill in missing values for numerical
data. On the other hand, we are able to use the most frequent group when
dealing with categorical data. We replaced the empty values for the numerical
features specified in Table 3.4 with the mean of each column. The number
of rows and columns, 130 rows and 48 columns, remains unchanged. On the
contrary, given that the highlight features in Table 3.5 contain categorical data,
we substitute the missing values with the value that occurred the most frequently
in that column.

At the end of this process, we deleted colonoscopy data as well since it was not in
the focus of this study, thus we removed 5 highlighted columns in Table 3.6 related
to colonoscopy data. Therefore, in the end, 130 rows and 43 features remain for
additional analysis.

• Data Normalization
One of the fundamental processes that must be completed before moving on to any
other attempt is known as data normalization. In our study, we intend to catego-
rize two diseases using distinct features from our dataset; however, these numerical
feature ranges (scale) may vary. For instance, the range of the feature albumin.Min
is between (1.8 and 4.8), yet the range of the feature age is between (16, 89). It is
possible that comparing these two variables using different scales will give us mislead-
ing results. In this circumstance, it is impossible for us to compare these features.
Therefore, in order to prevent this problem and ensure that all of our features are
treated with the same level of importance, our dataset needs to be normalised and
scaled to the same level.

We utilized Min-Max Normalization (i.e., re-scaling) in our experiments. Min-Max
Normalization is one of the most prevalent approaches to re-scale data into a desired
range. The data can be linearly transformed using this method while maintaining
their original range, and it implies that the relationship between the original data is
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Figure 3.4: Another method for handling missing data is to replace a different value for
the one that is missing. For categorical data as opposed to numerical data, the process
of filling in missing values is carried out differently. For the numerical data highlighted in
this table, we will use the statistical mean approach to fill in the missing values.
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Figure 3.5: As previously indicated, the procedure of filling in missing values for categorical
data differs from that of numerical data. When working with categorical data, we can fill
in the empty cells by using the most frequent value in each column.
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Figure 3.6: After employing all of the aforementioned approaches for dealing with missing
values, we come to the table below. After consulting with medical professionals at Mayo
Clinic, we decided to remove the entire highlighted columns to avoid losing any additional
patient data.
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maintained after min-max normalization.

xMinMax =
x− xmin

xmax − xmin

(3.1)

In other words, the minimum value of each feature is changed to a zero, the highest
value is changed to a one, and every other value is changed to a decimal between
zero and one. This process is repeated for each feature [76].

3.4 Evaluation

Evaluation is a critical stage of machine learning and data mining studies. In this section,
we will go over how to properly evaluate our model. There are several methods for splitting
data to avoid data leaks, overfitting, and underfitting that will be described. Following
that, we will discuss the evaluation metric that is critical for this study.

3.4.1 Split into Train, Validation and Test Datasets

One of the most significant aspects of evaluation is that we must evaluate performance
metrics based on unseen data. To accomplish this, we keep different fragments of data for
each purpose. In this case, we divided the data into train, validation, and test datasets.
Then, initially, the model is fit to the training dataset. Subsequently, the fitted model is
used to predict the responses for the data in the validation dataset. The test dataset is
utilised to provide an unbiased evaluation of the model’s final fit to the training dataset.
If the data in the test dataset have never been used for training, the test dataset is also
referred to as a holdout dataset.

The motivation for this technique is the concept of preventing data leaks. For this
reason, we must preserve a part of the data from the whole model selection and training
phase for the final evaluation [11].

3.4.2 k-Fold Cross-Validation

In the preceding approach for validating models, candidate models could only be evaluated
once. If we would like to test each model multiple times with various datasets, we may
use the k-fold approach to resample the same dataset multiple times by generating distinct
subsets. Due to the fact that we are evaluating the model, the model must be trained
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from scratch each time, without reusing previous training results. This is referred known
as cross-validation [11].

In truth, it is rather similar to the train/test split, but it is applied to a larger
number of subsets. In other words, we partition our data into k subsets to perform k
train/validate/test cycles.

3.4.3 Leave-One-Out Cross-Validation

Leave-one-out cross validation, also known as LOOCV, is a variation of k-fold cross valida-
tion in which the value of k is equal to the total number of samples in the dataset and all
test subsets consist of a single instance. In other words, a single observation is subjected
to testing. The model is assessed for each observation withheld. The ultimate result is
then computed by averaging all of the individual scores [8].

This technique overcomes the drawback of adopting limited training sets by fitting the
model to nearly all of the training data.

This technique is computationally demanding and should only be applied to small
datasets, as it would require a large number of training sets (equal to the number of
samples). This method is useful, however, when the most precise estimation of a classifier’s
error rate is necessary in light of scarce data availability.

When all of these methods are considered, the LOOCV strategy emerges as the most
reasonable solution for validating our solutions. On the one hand, our dataset is quite
limited, and on the other, we lay a strong emphasis on reaching high levels of accuracy.

3.4.4 Metric

One parameter for evaluating classification models is accuracy. Accuracy is the proportion
of correct predictions made by our model. Accuracy is defined as follows:

Accuracy = Number of Correct Predictions
Total Number of Predictions

3.5 Classification

There are several classification algorithms now in use in the medical field, each of which
holds the potential to improve both the accuracy and the level of confidence [14,69]. It is
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not difficult to choose a classifier based on the data, regardless of whether the classifier is
parametric or non-parametric [106].

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem.
Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec
ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus
placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.
Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla
tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue
a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit
amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem.
Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec
ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus
placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.
Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla
tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue
a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.
Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit
amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Due to the fact that tree-based approaches such as Decision Tree and Random Forest are
non-parametric classifiers, they are able to be applied to data with unknown distribution.
Since it is hard or unlikely to acquire normally distributed data in the medical field,
non-parametric approaches are virtually always helpful [24]. However, certain alternative
classifiers, such as MLP, naive bayes, and support vector machines, have also proven highly
popular in classifying diagnostic data [67]. These classifiers, however, hold assumptions to
simplify the learning process, which can sometimes result in a higher error rate. We have
utilized a set of different classification algorithms, such as decision trees, random forests,
naive Bayes, and KNN, within this particular instance. The objective is to determine the
optimal classification model for accurately classifying these two diseases.

3.5.1 Classification with 43 features

In this step, the cleaned data in the previous section 3.3 are utilized. As previously indi-
cated, 43 out of 52 features and 130 out of 198 patients remained following the cleaning.
Table 3.1 displays the results of all classifiers on these 43 features. All of the classifiers
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delivered solid results, with all of them scoring well above 80 % accuracy. Ridge, SVC,
Ridge CV, BernouliNB, NuSVC, and Random Forest are among the strongest classifiers,
according to the results shown in Table 3.1. However, because we are working with clini-
cians, it is crucial for us to develop a solution that is comprehensible and interpretable for
clinician and more conducive to the previous common diagnosis process. The classifiers in
Table 3.1 that are most compatible with clinical practise include Random Forest, Decision
Tree, and KNN. Figure 3.7 shows the interpretability of a decision tree. KNN and Decision
Tree, on the other hand, do not provide accuracy results as high as Random Forest. The
best classifier, according to this experiment, is random forest, which has a high accuracy
(very comparable and competitive with others) and strong interpretability.
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Table 3.1: The table below shows the accuracy of various classifiers applied to our cleaned
dataset. The dataset contained 130 rows and 43 characteristics. The Ridge classifier has
the best performance (91.5 %), SVC, Ridge CV, BernouliNB, and NuSVC are second with
90.8% accuracy, and Random Forest is third with 90.5%. A 0.3 difference, on the other
hand, is not statistically significant and could be due to randomness.

Classifier Accuracy

Extra Tree 89.3
Random Forest 90.5
XG Boosting 90.0

Gradient Boosting 87.6
KNN 86.9
SVC 90.8

Perceptron 87.7
Decision Tree 81.1

MLP 90.0
SGD 86.6

Ridge CV 90.8
Ridge 91.5

Passive Aggressive 87.4
Gaussian Process 86.9

Ada Boost 86.2
Bagging 85.9

BernoulliNB 90.8
Calibrated CV 88.5
GaussianNB 80.0

Label Propagation 84.6
Label Spreading 84.6

Linear Discriminant Analysis 88.5
Logistic Regression 89.2

NuSVC 90.8
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3.5.2 Classification with 28 clinically important features

Feature selection by expert is a profound way of feature selection. Despite the fact that
all of the classifiers in the previous section 3.5.1 performed well, using domain knowledge
is an essential part of data cleaning. Since this project is based on a real-world prob-
lem, it is critical that we incorporate medical knowledge into our own practise in order
to produce more reliable results. As a result, we consulted with the clinical professionals
at the Mayo Clinic to apply this knowledge, and after that we deleted several features
that were not clinically important. For instance, based on the recommendations of clinic
professionals, we deleted albumin features from the dataset. Only 28 of the 52 clini-
cally significant features were left after this process. The Ridge, Ridge CV, and Random
Forest classifiers performed better than other classifiers, same as in the previous section
3.5.1. However, there are some aspects to which we should pay particular attention. First
and foremost, we can see an improvement in the result compared to the previous sec-
tion 3.5.1 when we did not remove the non-clinically significant features. This outcome
demonstrates how using domain expertise aided us in enhancing our performance. An-
other aspect worth mentioning is that whereas linear discriminant analysis’ accuracy in
the previous section 3.5.1 was 88.5, it increased to 93.3 in this section. However, com-
pared to the preceding section 3.5.1, KNN and SVC performance drastically decreased.
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Table 3.2: The table below displays the accuracy of different classifiers used on our cleaned
dataset, which only contains clinically significant features. There were 130 rows in the
dataset, along with 28 features. Ridge and Ridge CV classifiers with a performance of
93.3% are the top classifiers, followed by Random Forest with a performance of 92.3%.
Contrary to the results of the prior experiment (See in Table 3.1), some classifiers in this
experiment perform poorly and have accuracy below 70 %.

Classifier Accuracy

Extra Tree 90.8
Random Forest 92.3
XG Boosting 90.0

Gradient Boosting 91.3
KNN 66.9
SVC 66.9

Perceptron 75.3
Decision Tree 82.4

MLP 84.7
SGD 77.6

Ridge CV 93.3
Ridge 93.3

Passive Aggressive 79.8
Gaussian Process 69.1

Ada Boost 91.0
Bagging 89.8

BernoulliNB 91.6
Calibrated CV 90.4
GaussianNB 88.8

Label Propagation 69.7
Label Spreading 69.7

Linear Discriminant Analysis 93.3
Logistic Regression 92.7

NuSVC 92.7
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3.5.3 Feature Selection

Techniques for feature selection have a capacity to identify the features that are most
important for classification. In this study, the classification performance is enhanced by
the feature selection.

For feature selection, we utilised four distinct methods:

• Random Forest (RF)

• Decision Tree (DT)

• XGBoosting (XGB)

• Recursive Feature Elimination (RFE)

Nonetheless, due to randomization, these methods produce a subset that differs from run-
time to runtime. As a result, for each feature selection approach, we conducted 100 itera-
tions of the experiment and calculated the most common features over all 100 iterations;
the most frequent features were chosen as the final subset.

3.5.4 Classification with 20 features

In this section, first we selected the 20 most important features from the 43 that were
cleaned in the section 3.3 section. After extracting the most important features, we trained
the classifier using the new dataset which only contain the 20 most important features.
The result of these classifiers on the extracted dataset reported in Table 3.3. Using the
exact same procedure, 20 features out of 28 clinically significant features presented in the
section 3.5.2 were extracted. The outcomes of all classifiers on these features are reported
in Table 3.4.
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Table 3.3: The classifier is displayed in the first column of this table, while the other
four columns each indicate a different feature selection technique. We can determine the
optimum feature selection method and classifier for our task by using the results of these
classifiers on various feature selection methods. According to the results, the SVC classifier
employing the XBG feature selection and Ridge CV classsifier using RFE feature selection
approaches achieved the highest result (93.1 %), which is still inferior to the result shown
in Table 3.2. However, it is noticeable that every outcome is higher than 80 %, which is
really noteworthy.

Classifier
20 features out of 43 entire

features

DT RF XGB RFE
KNN 85.4 89.2 87.7 90.8
Random Forest 87.7 91.5 91.5 92.3
SVC 88.5 90.8 93.1 89.2
Ridge 90.8 90.0 90.0 92.3
BernoulliNB 89.2 92.3 90.8 92.3
Gradient Boosting 84.6 89.2 90.0 89.2
MLP 88.5 90.8 91.5 92.8
Extra Tree 85.4 89.2 91.5 90.8
XG Boosting 89.2 93.1 92.3 90.0
Perceptron 86.9 90.0 85.4 90.0
Decision Tree 85.4 84.6 81.5 83.1
SGD 90.0 83.1 88.5 87.7
RidgeCV 91.5 90.0 90.8 93.1
Passive Aggressive 85.4 88.5 86.2 87.7
Gaussian Process 84.6 90.8 92.3 90.0
Ada Boost 89.2 89.2 90.0 86.2
Bagging 85.4 83.8 86.9 86.2
Calibrated CV 90.0 89.2 88.5 88.5
GaussianNB 88.5 87.7 87.7 90.0
Label Propagation 86.9 83.1 85.4 85.4
Label Spreading 87.7 83.1 86.2 85.4
LDA 91.5 91.5 90.8 90.0
Logistic Regression 89.2 90.0 90.8 92.3
NuSVC 89.2 90.0 92.3 91.5
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Table 3.4: In this table, the first column represents the classifier, and the remaining four
columns represent various feature selection methods. According to the results, the Ridge
CV classifier using the DT feature selection strategy produced the highest result (94.4
%), which is the best result thus far. In spite of the low accuracy in the results below
(which are similar to Table 3.2), it is noteworthy that every result in the RFE column
is higher than 80, and in most situations, the classifier’s best performance is in the RFE
selection technique. This demonstrates the reliability of the RFE method for choosing
critical features.

Classifier
20 features out of 28 clinically

important features

DT RF XGB RFE
KNN 69.1 69.7 69.1 86.0
Random Forest 92.7 91.6 93.8 91.0
SVC 66.9 66.9 66.9 90.4
Ridge 92.7 92.7 92.7 92.1
BernoulliNB 93.8 92.7 92.7 91.6
Gradient Boosting 91.6 89.9 90.4 89.3
MLP 83.1 83.7 84.3 91.6
Extra Tree 91.0 91.0 91.0 88.8
XG Boosting 92.1 92.1 89.9 88.8
Perceptron 68.0 68.5 74.7 91.0
Decision Tree 83.7 79.8 82.0 84.8
SGD 76.4 72.5 73.0 91.6
RidgeCV 94.4 92.7 92.7 92.1
Passive Aggressive 79.8 84.3 79.8 90.4
Gaussian Process 69.7 68.0 70.8 92.1
Ada Boost 91.6 89.9 91.6 90.4
Bagging 89.3 89.9 92.1 88.8
Calibrated CV 93.3 91.0 91.6 93.3
GaussianNB 92.7 90.4 91.0 90.4
Label Propagation 68.5 67.4 66.9 84.8
Label Spreading 68.5 66.9 66.9 85.4
LDA 92.7 92.7 92.7 92.1
Logistic Regression 92.1 92.1 92.1 93.8
NuSVC 92.7 92.7 91.6 92.7
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3.5.5 Classification with 10 features

This section is similar to the preceding section 3.5.4, with the exception that we have only
included the top 10 features here rather than 20. Reducing the number of features might
be advantageous in general, but in our situation it is especially crucial because collecting
medical data is a laborious task, and fewer features can reduce the amount of effort we
must do to obtain data.

In this part, at first we chose the 10 most important features ones from the 43 features
that were cleaned in the section 3.3. Then, we select 10 clinically significant features from
a total of 28 in section 3.5.2. In Table 3.5, and Table 3.6, the results of all classifiers
on these features are displayed. As stated in Table 3.6 the highest result (94.9 %) was
achieved by the BernouliNB classifier using the RFE feature selection approach. This
result demonstrates the value of employing domain knowledge when choosing features, as
well as demonstrates how having fewer features can be advantageous since it simplifies
the task of classification. Furthermore, having fewer features allows us to visualise data
more easily which is quite important. On the other hand, it is important for medical
professionals because collecting data is a time-consuming process.

42



Table 3.5: In the following table, the first column indicates the classifier, and the next four
columns reflect various methods of feature selection. Based on the results of this exper-
iment, the Gaussian Process classifier with the XGB feature selection method produced
the best results (94.6 %). Following that, the SVC classifier with RFE earned the best
performance in this experiment, with 93 % accuracy. In addition, as you can see, most of
the classifiers perform well on this data, indicating that the selected features are accurate
representations of the data and are capable of separating it.

Classifier
10 features out of 43 entire

features

DT RF XGB RFE
KNN 90.8 90.0 89.2 90.8
Random Forest 89.2 87.7 91.5 90.0
SVC 87.7 90.0 92.3 93.1
Ridge 87.7 89.2 90.0 90.0
BernoulliNB 90.8 90.0 92.3 91.5
Gradient Boosting 88.5 87.7 92.3 89.2
MLP 90.8 89.2 92.3 90.8
Extra Tree 87.7 87.7 90.0 90.0
XG Boosting 88.5 89.2 92.3 91.5
Perceptron 86.2 88.5 90.8 90.8
Decision Tree 86.9 83.8 89.2 89.2
SGD 83.8 87.7 88.5 89.2
RidgeCV 87.7 89.2 91.5 88.5
Passive Aggressive 84.6 86.9 86.2 86.2
Gaussian Process 90.0 90.0 94.6 92.3
Ada Boost 87.7 88.5 90.8 85.4
Bagging 82.3 88.5 89.2 83.8
Calibrated CV 86.9 89.2 91.5 90.8
GaussianNB 89.2 87.7 89.2 88.5
Label Propagation 90.8 86.2 90.0 90.8
Label Spreading 91.5 86.2 90.8 90.8
LDA 88.5 89.2 90.0 90.0
Logistic Regression 90.0 89.2 91.5 90.8
NuSVC 89.2 87.7 92.3 90.0

43



Table 3.6: The classifier is shown in the first column of the following table, and the feature
selection techniques are shown in the following four columns. Based on the outcomes of
this experiment, the best result (94.9 %), which is also the highest results so far, were
achieved by the BernouliNB classifier using the RFE feature selection approach. However,
we should keep in mind that the difference between this result and the one obtained in
Table 3.5 is not statically important. We may therefore continue with a classifier that
provides decent results and can be interpreted by clinical professionals.

Classifier
10 features out of 28 clinically

important features

DT RF XGB RFE
KNN 70.2 71.3 88.2 89.3
Random Forest 92.1 92.7 91.6 89.3
SVC 65.2 65.7 91.0 91.0
Ridge 90.4 91.6 92.1 93.3
BernoulliNB 92.7 93.3 94.4 94.9
Gradient Boosting 90.4 91.6 91.6 92.1
MLP 82.0 82.0 92.1 93.3
Extra Tree 89.9 91.0 90.4 88.8
XG Boosting 90.4 92.1 91.6 91.6
Perceptron 62.9 68.5 89.9 92.1
Decision Tree 83.1 82.0 88.2 87.1
SGD 66.9 72.5 90.4 88.8
RidgeCV 92.1 92.7 92.7 93.8
Passive Aggressive 71.3 79.2 89.9 92.7
Gaussian Process 69.1 68.5 92.7 93.8
Ada Boost 90.4 88.2 92.1 92.7
Bagging 87.6 88.2 87.6 90.4
Calibrated CV 90.4 93.3 92.1 92.7
GaussianNB 92.1 92.1 89.3 92.7
Label Propagation 66.3 68.0 91.0 89.9
Label Spreading 66.3 68.0 91.0 90.4
LDA 90.4 91.6 92.1 93.3
Logistic Regression 92.1 94.4 93.8 93.8
NuSVC 91.0 89.3 92.1 93.8
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3.6 Visualization

The visualisation of high-dimensional data is a critical subject in many different disciplines,
and it deals with data of various dimensionality. For example, in the dataset that we use
for IBD and HS classification, we often have more than 30 features.

We can use dimensionality reduction methods to visualise this dataset with such a
high dimension. These methods convert the high-dimensional dataset X = x1, x2, ..., xn to
two or three-dimensional data Y = y1, y2, ..., yn. The low dimensional Y represents as a
map, and each element of Y which are yi (y1, y2, ..., yn) represent the individual datapoints
presented in a scatterplot [97]. Several solutions to this problem have been presented,
each with a different type of structure preserved. Traditional methods for reducing dimen-
sionality such as Principal Components Analysis [46] and conventional multidimensional
scaling [96], are linear procedures that emphasise on maintaining dissimilar datapoints’
low-dimensional representations as far apart as possible. It is usually more critical for
high-dimensional data that lies on or near a low-dimensional, non-linear manifold to keep
the low-dimensional representations of extremely comparable datapoints close together,
which is normally not attainable with a linear mapping.

In this section, we desire to see how separable our dataset is, but due to its high
dimension, it is impossible for us to display it simply. To overcome this issue, we attempt
to reduce dimension so that the low-dimensional map retains as much of the significant
structure of the high-dimensional data as possible. We perform PCA and TSNE [97]
algorithms on our IBD/HS dataset, and the results are shown in Figures 3.8, 3.9, and 3.10.

We can plot TSNE and PCA visulization for the best feature selection approach in 10
features (Section 3.5.5) to ensure that our feature selection is advantageous. Figure 3.11
depicts the TSNE visualization outcome of selecting 10 features using RFE feature. Based
on the result in section 3.5.5 the best result was achieved by Bernouli NB classifier using
RFE feature selection.The PCA visualisation in Figure 3.12, like the TSNE visualisation,
confirms that our feature selection method was effective.
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Figure 3.8: The figure below depicts the outcome of applying TSNE to our dataset. The
blue dots represent IBD patients, while the red dots represent HS patients. As illustrated
in the figure below, the dataset is clearly separable, and we may draw a line to split these
two classes and achieve high classification accuracy. Indeed, this strategy assists us in
ensuring that our results which are presented in classification section 3.5 are acceptable.
However, there are several data points that appear to be outliers. For example, the blue
dot in the lower left corner of the figure (about (-10, -7.5)) is relatively distant from its own
group. This data point was shown to Mayo Clinic professionals for additional analysis.
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Figure 3.9: The results of using 2D PCA to analyse our dataset are shown in the figure
below. IBD patients are represented by blue dots, while HS patients are represented by
red dots. As seen in the figure below, the dataset is separable, but it is less separable when
compared to TSNE (See in Figure 3.8). This is because PCA applies a linear transfor-
mation, but TSNE performs a non-linear transformation and it can capture much of the
high-dimensional data’s local structure while also exposing global structure.
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Figure 3.10: The results of using 3D PCA to analyse our dataset are shown in the figure
below. IBD patients are represented by blue dots, while HS patients are represented
by red dots. There are situations when a dataset appears to be non-separable in two
dimensions but is actually separable in higher dimensions. We are able to notice that the
dataset appears to be more separable owing to the 3D visualisation. Therefore, in higher
dimensions, we may get more accuracy.
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Figure 3.11: The result of applying TSNE to the dataset with 10 important features selected
by RFE is depicted in the figure below. IBD patients are represented by blue dots, while
HS patients are represented by red dots. The dataset is clearly separable, as demonstrated
in the figure below, and we may draw a line to separate these two classes and achieve high
classification accuracy. It demonstrates that our feature selection strategy was effective.
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Figure 3.12: The figure below illustrates the outcome of applying PCA to the dataset with
10 important features chosen by RFE. Patients with IBD are shown by blue dots, whereas
those with HS are represented by red dots. This figure, indicates the effectiveness of our
feature selection technique.
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Chapter 4

Summary and Conclusion

4.1 Summary

The objective of this thesis was to use machine learning and data mining techniques to
classify two diseases, HS and IBD. Several algorithms were used in this work, including De-
cision Trees, Random Forest, and k nearest neighbours. To determine the most important
features, however, various feature selection strategies have been applied including both
computer-based and expert knowledge-based techniques. Feature selection is important
for lowering the dimensionality of the problem and making classification easier. It is also
useful for clinicians to determine the importance of different features.

Extensive experiments were conducted to determine the method with the best accuracy
and with the highest level of interpretability. Approximately 24 different classifiers were
trained in this thesis. Experiments started by training the classifiers on a dataset with
43 features. Then, classifiers were trained on a dataset including 29 clinically significant
features. Following that, four different feature selection methods were used to pick the 20
most important features and subsequently the 10 most important features. In total, over
240 different experiments were conducted to determine the best result.

Among all experiments, Bernouli NB with 10 selected features using RFE had the
highest accuracy (94.9 %); nevertheless, as previously indicated, there are other factors
that require our attention aside from accuracy. Explainability of a decision-making process
is an important aspect of machine decision making in the medical field. Physicians need
to know why a specific disease was chosen as a diagnosis, so the Random Forest technique
was used as our primary method since it is more similar to the clinician’s decision process.
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To the best of our knowledge, this was the first study to use machine learning and data
mining approaches to classify IBD and HS.

4.2 Conclusion

Among all experiments that used a Random Forest classifier, the Random Forest classifier
with 20 features using he XGB feature selection approach generated the highest accuracy
of 93.8 %. Overall, experiments on the IBD and HS dataset provided by medical specialists
at the Mayo Clinic indicated high accuracy in disease classification. Meanwhile, extensive
feature selection strategies have been used to assist the physician in finding the most
significant features. The combination of classification and feature selection seems to be the
most promising approach to establsih a computerized decision-making support system.

4.3 Future Works

As discussed previously in the chapter Methodology, a part of the data had been derived
from MR images. However, the clinician extracts these data based on visual inspection.
This means that the clinician will fill out a list of features based on what he or she observes
in the MR images. Nonetheless, some data may have been missed due to the subjective
nature of visual inspections. One obvious issue is that for some features, the clinician
only checks whether or not he or she observes that feature; nevertheless, by processing the
image itself, there are many additional aspects, such as slice thickness, that may need to be
considered. In addition to these kinds of characteristics, there may also exist a collection
of disguised characteristics that can aid in distinguishing between HS and IBD, visual
clues and subtleties that can be identified by machine learning. Working on MR images
to classify these two diseases is a promising technique that could yield new insights and
better results.
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