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Abstract

In this thesis, new templates and formulas of blending functions, schemes, and algo-
rithms are derived for solving the scattered data interpolation problem. The resulting
data fitting scheme interpolates the positions and derivatives of a triangular mesh, and
for each triangle of the mesh blends three triangular sub-surfaces, and creates a triangular
patch. Similar to some existing schemes, the resulting surface inherits the derivatives of
the sub-surfaces on the boundaries. In contrast with existing schemes, the new scheme
has additional properties: The order of interpolated derivatives is extended to arbitrary
values, and the restrictions of the sub-surfaces are relaxed. Then based on the properties
of the new blending functions, an algorithm for constructing smooth triangular surfaces
with global geometric continuity is described. The new blending functions and the scheme
are then extended to multi-sided faces. The algorithm using these new blending functions
accepts data sites formed by multi-sided polygons.
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Chapter 1

Introduction

The scattered data interpolation problem is to design methods to construct smooth surfaces
that interpolate the locations and normals of vertices from data meshes. The data mesh
is a combination of vertices assigned with locations and normals, as well as the edges and
faces formed by these vertices. Data meshes can be constructed by sampling from specific
surfaces, or generated manually with modelling software. The interpolation techniques are
used to construct new surfaces that approximate the original surface, or construct surfaces
of desired shapes controlled by the data meshes.

In general, the surfaces constructed for the scattered data interpolation problem are
required to achieve a specific order of continuity. First order continuity is always required
to ensure that the surfaces are visually smooth. Second order continuity is needed in the
automotive industry to avoid kinks in reflection lines. Furthermore in some applications,
third order continuity is needed to avoid sharp changes in jerk [10, 13].

Often the faces of the data meshes are triangular, and spline construction schemes
with triangular Bézier patches are used. Triangular Bézier patches are specified by a finite
number of points called control points that can be used as geometric shape handles. More
specifically, a degree n triangular Bézier patch is∑

PijkB
n
ijk(u, v, w) (1.1)

where the Pijk are the control points and the

Bn
ijk(u, v, w) =

n!

i!j!k!
uivjwk (1.2)
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are the multivariate Bernstein polynomials [3]. To construct a smooth surface, adjacent
patches are required to meet with a specified order of continuity. These continuity con-
straints are met by forcing the control points from each patch to satisfy some geometric
conditions. Such an approach has two major disadvantages. The first disadvantage is that
when the continuity order gets higher, more control points (and higher degree patches) are
required to build the patches. The second disadvantage is that these continuity conditions
cause problems when control points are included in multiples conditions for different con-
tinuities of different boundaries. In this case the cross-boundary continuity conditions for
all the boundaries surrounding a vertex creates a cycle of constraints that has no solution.
This problem is known as the vertex consistency problem. Such problems add additional
complexity to these schemes [19].

To avoid these disadvantages of the polynomial schemes, surface blending schemes were
introduced. Surface blending schemes construct surfaces by blending multiple candidate
patches into a new patch using specific weights. With appropriate weights, the resulting
surface patch will have the same value and derivatives as the candidate patches in certain
areas. The effect of the blending is to divide the task of establishing continuity across
multiple boundaries and corners of the faces into several sub-tasks. A typical example is
Nielson’s method, which is applied to triangular faces, and blends three triangular surfaces
into one. Each boundary of the result constructed by Nielson’s method inherits the tangent
field on a boundary of one of the blended surfaces. Details on Nielson’s scheme are given
in Section 2.6.1.

In this dissertation, I present a generalized template to construct the blending schemes,
give typical examples of the triangular and binary blending schemes, and design the algo-
rithms for solving the scattered data interpolation problem. More specifically, in Chapter 3,
I give the generalized method to construct the blending functions with respect to the de-
sired number of sub-surfaces, order of continuity, and weights that affect the shape. The
term sub-surfaces is used to denote the functions to be blended since most of the time
the blended functions are surfaces. In some settings the term sub-function may be used.
In Chapter 4, I use my blending functions with three sub-surfaces to design a triangu-
lar surface blending scheme and compare my new scheme to Nielson’s method. My new
scheme has fewer restrictions than Nielson’s method, and allows new interpolation algo-
rithms to solve a more general scattered data interpolation problem. Furthermore, several
binary blending schemes are used in the following discussions. All of these binary blending
schemes have two sub-surfaces or sub-functions. These binary schemes focus on the value
and derivatives only at two points, so they have fewer restrictions than the schemes having
three or more sub-functions and inheritance indicators with larger and overlapped zero
areas (for example the triangular blending scheme given above).
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In Chapter 5, I design an interpolation algorithm for solving the scattered data in-
terpolation problem of triangular data meshes. The algorithm constructs a surface for
each element (vertex, edge, and face) of the data mesh. So there are two major tasks:
constructing surfaces for elements and transferring the surface data to other elements.
The first task requires constructing local coordinate systems for the elements, and the
second task requires constructing reparameterization functions among the local coordinate
systems. The resulting surfaces of the basic algorithm constructed in this chapter have con-
tinuous normals or curvatures. In Chapter 6, I modify the reparameterization functions
between the edges and faces, and show that the new algorithm constructs surfaces that
are parametrically continuous everywhere with respect to the corresponding coordinate
systems constructed for elements in the algorithm.

In Chapter 7, I extend all previous work to the multi-sided case by increasing the num-
ber of elements that are blended with the generalized scheme, and updating the triangular
surface construction algorithms to multi-sided versions. The extended algorithms fit sur-
faces to faces with more than three edges, and constructs surface with the same properties
as the triangular algorithms.
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Chapter 2

Background

In this chapter, the scattered data interpolation problem and necessary background knowl-
edge are stated, and the method of Nielson is reviewed. In particular Nielson’s blending
functions and corresponding scheme will be stated, since a large part of the work in this
dissertation is a generalization of these blending functions and scheme.

2.1 Scattered Data Interpolation Problem

The scattered data interpolation problem takes a data mesh as input, and constructs a
smooth surface that interpolates the vertices of the data mesh as the output. I will use
the terms vertex, edge, and face to describe the elements of the data mesh, and the terms
point/corner, boundary, and triangle/quadrilateral/polygon to describe the elements of the
surface and the domain.

Initially the case when the data mesh faces are all triangular is considered. The data
mesh is given as a list of vertices and faces. All vertices are given in a sequence and each
vertex has a position and a normal. Then each face is formed by three vertices. The vertices
of a face are ordered so that the outside of the data mesh is on the counter-clockwise side
of the triangle. The edges are not explicitly specified but are implicitly formed by two
consecutive vertices in a triangle. The two vertices of an edge are not ordered, but for
convenience it is assumed that one of them is the head of the edge, and another one is the
tail. Finally I assume that the data mesh forms a closed manifold, so each vertex appears
in at least two edges and two faces, and each edge appears in exactly two faces. With these
assumptions, the formal definition of the triangular data mesh used in this dissertation is
given in Definition 2.1.
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Definition 2.1. A triangular data mesh is a set {V,E,F}, where

� V is a set of vertices.

� E is a set of edges, each element E ∈ E is formed by two vertices:

E = {V0, V1} ⊂ V, (2.1)

where V0 and V1 are distinct.

� F is a set of faces, each element F ∈ F is formed by three vertices:

F = {V0, V1, V2} ⊂ V, (2.2)

where V0, V1, and V2 are distinct, and the subsets of F {V0, V1}, {V1, V2}, and {V2, V0}
are elements of E.

� For each V ∈ V, there exist E ∈ E and F ∈ F such that V ∈ E and V ∈ F .

� For each E ∈ E, there exist exactly two faces F1, F2 ∈ F such that E ⊂ F1 and
E ⊂ F2.

The number of vertices in a face can be extended to values larger than three. In that
case the data mesh is called multi-sided. One additional condition for the multi-sided case
is that in a face, only the adjacent pairs of vertices form edges. The formal definition of
the multi-sided data mesh is given in Definition 2.2.

Definition 2.2. A multi-sided data mesh is a set {V,E,F}, where

� V is a set of vertices.

� E is a set of edges, each element E ∈ E is formed by two vertices:

E = {V0, V1} ⊂ V, (2.3)

where V0 and V1 are distinct.

� F is a set of faces, each element F ∈ F is formed by n ≥ 3 vertices:

F = {V0, V1, . . . , Vn−1} ⊂ V, (2.4)

where n is the number of vertices in F , V0, V1, . . ., Vn−1 are distinct, the subsets of F
{V0, V1}, {V1, V2}, . . ., {Vn−1, V0} are elements of E, and all other 2-element subsets
of F are not elements of E.
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� For each V ∈ V, there exist E ∈ E and F ∈ F such that V ∈ E and V ∈ F .

� For each E ∈ E, there exist exactly two faces F1, F2 ∈ F such that E ⊂ F1 and
E ⊂ F2.

In this dissertation it is assumed that all multi-sided faces of the data mesh are convex
if projected to a certain plane. This property ensures that the algorithm for the multi-sided
case always works. The concave case is discussed further in Section 9.1 of this dissertation.

These definitions are used in this dissertation. However manifolds with boundaries are
also acceptable for my surface construction algorithms. Details on surfaces constructed for
manifolds with boundaries are not discussed in this thesis, although one of the examples
is for a manifold with a boundary.

Furthermore, there are two types of data interpolation: functional interpolation and
parametric interpolation. A functional surface is one that can be written as z = f(x, y),
and a parametric surface has a bivariate parametric domain and three functions continuous
x(u, v), y(u, v), and z(u, v). The focus of this dissertation is on parametric interpolation,
although at times reference will be made to functional interpolation.

2.2 Normal and Curvature

The normal of a surface at a point is the direction that is perpendicular to the surface at
the point. Parametrically the normal is a vector that can be calculated by taking the cross
product of the two partial derivatives of the surface. While at times normals are restricted
to be unit length, in this dissertation I will only consider the direction.

The curvature of a curve at a point on the curve is a measure of how much the curve
deviates from a straight line, or how much a surface deviates from a plane. For a plane
curve, the curvature of the curve at a point is the inverse of the radius of the osculating
circle. The osculating circle is the circle that best approximates the curve at a point. More
specifically, given a point P on the curve, and two other points P0 and P1 on the curve
and close to P , a circle can be uniquely determined (when the three points are co-linear,
the straight line can be considered as a circle with infinite radius). The osculating circle is
the limit of this circle when P0 and P1 approach P .

For a surface, there are two major types of curvature: Gaussian curvature and mean
curvature. Both Gaussian and mean curvature are calculated from the principal curvatures.
For a given point P on the surface, a normal plane of P is a plane that contains P and

6



the normal vector of P . The intersection of the surface and a normal plane is a plane
curve, and that curve has a curvature at P . Such curvature may vary for different normal
planes of P . The two principal curvatures are the maximum and minimum values of these
curvatures. The Gaussian curvature is the product of the two principal curvatures, and
the mean curvature is the average of the two principal curvatures.

More formal definitions of the normal and the curvatures can be found in any book of
elementary differential geometry [18].

By the definition of the normal and of the curvature, their values are determined by
the surface itself. The normal and curvature may be calculated by a particular parame-
terization, but the normal and curvature do not change if the surface is reparameterized.
More specifically, curve curvature and mean curvature can change sign based on the pa-
rameterization, but Gaussian curvature has the same sign for any parameterization. So in
this dissertation I call the location, the normal, and the Gaussian curvature of a point on
a surface as the geometric values of a surface, since they have the following properties:

� If the derivatives of a surface are uniquely determined, then its geometric values are
also uniquely determined.

� The geometric value of a surface is independent from the parameterization of the
surface.

� The geometric value may exist even when the derivatives do not exist.

These properties are used in the proofs of the continuity of geometric values in Chapter 4.
Currently I only discussed the location, the normal, and the curvature. However if any
other values satisfy these properties, similar theorems should exist.

Curvature plots of simple surfaces are used to illustrate Gaussian curvature. In the
curvature plots, green denotes zero Gaussian curvature (where the surface curvature is flat
in one direction), red denotes positive Gaussian curvature (at peaks and cups), and blue
denotes negative Gaussian curvature (in regions of saddle points). Notice that for positive
curvature the color varies from green to yellow then to red as the curvature increases, and
for negative curvature the color varies from green to cyan then to blue as the curvature
decreases. The Gaussian curvatures in this chapter are calculated numerically, and the size
of the mesh and curvature bound of each example may vary.

As shown in Figure 2.1, the curvature plots of the cone and the cylinder are green
everywhere since for each point on the surface one of the principal curvatures is zero, and
thus the Gaussian curvature is zero. The curvature plot of the sphere is a constant shade
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of red since all principal curvatures as well as the Gaussian curvature are constant for all
points on the sphere. For the torus, the surface has both positive (in the region close to
the outer ring) and negative (in the region close to the inner ring) Gaussian curvature, as
well as zero curvature along the top and bottom circles of the torus.

2.3 Isophotes

Isophotes are a tool to evaluate the quality of a surface. For a point P on the surface with
normal n, define the “brightness” of the surface at P as the inner product of n with the
normalized vector from the eye-point to P . Then an isophote is a curve formed by the
surface points on the surface with certain value of brightness.

The continuity of the isophotes is dependent on the continuity of the surface. The order
of continuity of the isophotes is always one less than the order of continuity of the surface.
So for a C0 surface its isophotes are disconnected, for a C1 surface its isophotes are only
C0 and thus have kinks, and for a C2 surface its isophotes are C1. In Chapter 8 curvature
and isophotes are both used to show the continuity of the resulting surfaces.

Figure 2.2 is a simple example illustrating isophotes. In the figure, the surface is two
cylinder pieces of different radii joined with C1 continuity along a common line. An eye-
point close to the surface is chosen to make the kinks of the isophotes obvious. On this
surface the isophotes are smooth on each cylinder piece. However the isophotes are not
smooth across the boundary of two pieces since the surface is C1- but not C2-continuous
along the common line.

2.4 Smoothness and Continuity

We want to construct smooth surfaces to solve the scattered data interpolation problem.
I define “smooth” to mean adjacent surface patches meet with some level of continuity. In
this dissertation two types of continuity are discussed:

� The continuity of geometric values.

� Local parametric continuity and global geometric continuity.

The meaning of geometric values is discussed in Section 2.2. The continuity of the
geometric values can be proven by showing the equality of the derivatives. Then the
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(a) (b)

(c) (d)

Figure 2.1: Four different geometric primitives shaded by the Gaussian curvature; (a) cone;
(b) cylinder; (c) sphere; (d) torus.
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Figure 2.2: The isophotes of a C1-continuous surface.

equality of the geometric values can be passed to different surfaces even with different
parameterizations. In this dissertation only three types of geometric values are discussed:
the locations for zero-th order continuity, normals for first order continuity, and curvatures
for second order continuity.

For the second type of continuity, the term “parametric continuity” needs to be dis-
cussed with the surface parameterization. For the scattered data interpolation problem,
most of the time the surface cannot be constructed using a single coordinate system. So
the continuity needs to be considered locally. For a point P on a surface S, the surface
S is called parametrically continuous at P if there exists a parameterization of S where
the derivatives of S are continuous at P . Furthermore, if a surface S is parametrically
continuous everywhere (possibly with different local parameterizations at different points
on S), then S is said to be geometrically continuous.

2.5 Barycentric Coordinates

In this dissertation, surfaces interpolating triangular faces of the data mesh are defined
over barycentric coordinate systems. For an arbitrary triangle, each point on the plane of
the triangle can be considered as an affine combination with respect to the three corners
of the triangle (an affine combination is a linear combination where the weights sum to 1).
The barycentric coordinates of this point with respect to the triangle are the weights of
that affine combination. The barycentric coordinates are usually represented by (u, v, w).
Since the barycentric coordinates are the weights of an affine combination, the sum of u,
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v, and w is always 1. Also

� If the point is located inside the triangle, then each of u, v, and w are greater than
0 and less than 1.

� If the point is located on a boundary (excluding the endpoints) of the triangle, then
one of u, v, and w is 0, and the sum of the other two is 1.

� If the point is located at a corner of the triangle, then one of u, v, and w is 1, and
the other two are 0.

Since the sum of the parameters of the barycentric coordinates is always 1, there are
two independent degrees of freedom instead of three.

In this dissertation, all surfaces not defined over the barycentric coordinate system are
defined over a Cartesian coordinate system. Since I use many Cartesian coordinate systems
with different origins and basis vectors, I also refer to these as local coordinate systems.

2.6 Surface Blending Schemes

Surface blending schemes are the methods that create a surface by combining multiple
sub-surfaces. For each point in the domain, the value of the resulting surface is obtained
by combining corresponding values from the sub-surfaces with weights. The weights are
functions that have the same domain as that of the surfaces, and are called blending
functions. The sum of the blending functions is required to be 1, so the sum of a set of
points weighted by the blending functions is an affine combination.

My schemes presented in this dissertation can be considered as transfinite schemes.
Transfinite interpolation is a concept in numerical analysis that constructs functions over
a planar domain in such a way that they match a given function on the boundary. This
method is applied in geometric modelling, similar to the way I use it in this dissertation.
Although my method can be considered as a transfinite scheme, in this dissertation I use
the term “blending” since the focus of my work is on the functions used to combine the
sub-surfaces. Some transfinite examples can be found in [23, 22, 4], for both triangular and
multi-sided cases. Notice that these methods are transfinite, but may not be considered as
the blending schemes.
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2.6.1 Nielson’s Blending Scheme

An example of a surface blending scheme is Nielson’s method [17]. Nielson’s method is
designed for constructing first order smooth, piecewise triangular surface patches and uses
a barycentric coordinate system as the domain for each triangular patch. Nielson’s blending
functions are given in Definition 2.3.

Definition 2.3. For a point (u, v, w) in barycentric coordinates, Nielson’s blending func-
tions are defined as

fNielson
0 (u, v, w) =

vw

uv + vw + wu
,

fNielson
1 (u, v, w) =

wu

uv + vw + wu
,

fNielson
2 (u, v, w) =

uv

uv + vw + wu
.

(2.5)

Nielson’s method is as follows. Assume three vertices V0, V1, and V2 and their normals
are given, as well as three parametric surfaces S0(u, v, w), S1(u, v, w), and S2(u, v, w) that
satisfy the following conditions.

Condition 2.1. For three vertices V0, V1, and V2 and three surfaces S0, S1, and S2,

� S0, S1, and S2 interpolate the locations of V0, V1, and V2,

V0 = S0(1, 0, 0) = S1(1, 0, 0) = S2(1, 0, 0),
V1 = S0(0, 1, 0) = S1(0, 1, 0) = S2(0, 1, 0),
V2 = S0(0, 0, 1) = S1(0, 0, 1) = S2(0, 0, 1).

(2.6)

� S0, S1, and S2 share the same boundaries,

S0(u, v, 0) = S1(u, v, 0) = S2(u, v, 0), for 0 < u, v < 1 and u+ v = 1,
S0(0, v, w) = S1(0, v, w) = S2(0, v, w), for 0 < v,w < 1 and v + w = 1,
S0(u, 0, w) = S1(u, 0, w) = S2(u, 0, w), for 0 < w, u < 1 and w + u = 1.

(2.7)

� S0 interpolates the normals of V1 and V2.

� S1 interpolates the normals of V2 and V0.

� S2 interpolates the normals of V0 and V1.
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fNielson
0

fNielson
1

fNielson
2

S0

S1

S2

SNielson

V0

V1

V2

Figure 2.3: The process of Nielson’s scheme.

The surfaces S0, S1, and S2 are called sub-surfaces. Then the blended result is

SNielson(u, v, w) =
2∑

i=0

[
fNielson
i (u, v, w)Si(u, v, w)

]
. (2.8)

The process of Nielson’s scheme is shown in Figure 2.3.

Nielson proved that the boundaries of S inherit the tangent plane field of one of each
sub-surface. More specifically, S and S0 have the same tangent plane field along the
boundary V1V2, S and S1 have the same tangent plane field along the boundary V2V0,
and S and S2 have the same tangent plane field along the boundary V0V1. Also, Nielson
provided a corresponding algorithm to solve the scattered data interpolation problem with
continuous normals.

Notice that these blending functions contain a common denominator uv + vw + wu.
When two of u, v, and w are zero (at the corners of the triangular domain), the denominator
is zero, and Nielson’s blending functions are not well defined. However since the limit of
the sum of the blending functions is always 1, the limit of S at a corner exists when the
three sub-surfaces share the same value at that corner. This issue at the corners is why the
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three sub-surfaces are required to interpolate all three data vertices. This interpolation of
common data also applies to higher order derivatives. Since the normals are matched at
the corners, the normals of the blended result exist geometrically. However, with Nielson’s
scheme, derivatives of order greater than one do not exist at the corners.

In this dissertation my work can be considered as an extension of Nielson’s method with
different blending function. My extension includes generalizing the blending functions
to avoid the issue at the corners, allowing for higher continuity between patches, and
generalizing to multi-sided patches.

2.6.2 Other Blending Schemes

Hagen and Pottmann [8] extended Nielson’s method to second order continuity. Hagen
and Pottmann’s blending functions are

fHagenPottmann
0 (u, v, w) =

v2w2

u2v2 + v2w2 + w2u2
,

fHagenPottmann
1 (u, v, w) =

w2u2

u2v2 + v2w2 + w2u2
,

fHagenPottmann
2 (u, v, w) =

u2v2

u2v2 + v2w2 + w2u2
.

(2.9)

Hagen and Pottmann then used these blending functions to blend three patches, with the
resulting surface having the same position, normals, and curvature along each boundary
as one of the blended patches. The scheme provides the same locations and directions of
the continuity as Nielson’s scheme, but with the second order.

For surface blending schemes, if all of the sub-surfaces are triangular Bézier patches of
the same degree, the result of the blending scheme can be considered as a type of triangular
Bézier patch, with some or all of the control points “split” by the blending functions, with
each split control point being replaced with multiple points, one for each blending function
per split control point. In this case the surface patch is also called a hybrid patch, and the
blending functions are called dividing functions. Many surface patches for the scattered
data problem can be considered as being constructed in this way.

The hybrid cubic triangle Bézier patch provided by Foley and Opitz [5] can be con-
structed by splitting the center control point of a cubic triangular Bézier patch into three
with Nielson’s blending functions in Definition 2.3 as dividing functions.

The Triangular Gregory patch provided by Gregory [6] can be constructed by splitting
each of the three center control points of a quartic triangular Bézier patch into two with
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the dividing functions, and used with the exterior control points of a cubic triangular
Bézier patch. For each boundary there exists a pair of dividing functions. For example,
for barycentric coordinates (u, v, w), Gregory’s dividing functions for the boundary where
u = 0 are

fGregory
0 (u, v, w) =

v(1− w)

v(1− w) + w(1− v)
,

fGregory
1 (u, v, w) =

w(1− v)

v(1− w) + w(1− v)
.

(2.10)

The Gregory patch can also be extended to multi-sided generalisations [12]. Similarly, the
dividing functions

fHybrid
0 (u, v, w) =

(1− u)v2

(1− u)v2 + (1− v)u2
,

fHybrid
1 (u, v, w) =

(1− v)u2

(1− u)v2 + (1− v)u2

(2.11)

are used to construct a triangular, parametric, and hybrid patch/scheme [15].

The following schemes have different blending/dividing functions and control point
layouts. They do not satisfy the conditions of the blending schemes. However the ideas
of these schemes are similar to the blending schemes. So they can be treated as hybrid
schemes.

The PNG1 triangle patch provided by Christoph, Kerstin, Dianne, and Gerald [2] can
be constructed by splitting the center control point of a cubic triangular Bézier patch into
six, and splitting each of the six control point on the boundaries into two.

Herron’s patch [11] can be constructed by using the interior control points of a quartic
triangular Bézier patch and the exterior control points of a cubic triangular Bézier patch
together. The result of this patch can be considered as blending the surfaces of three quartic
triangular Bézier patch into one with with Nielson’s blending functions in Definition 2.3,
as indicated in [16].

Gregory and Charrot’s scheme [7] blends three patches with Nielson’s blending func-
tions. Each of the three patches is a “two-sided interpolant” that interpolates the cross-
boundary information along two boundaries constructed by a method called boolean sum.

Some of the dividing functions have similar properties as my new blending functions,
and variations on these schemes using the generalized blending functions in this dissertation
can be devised. It is also possible to construct new hybrid patches with the new results. For
these schemes with the blending/dividing functions replaced by the new blending function
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provided in this dissertation, it is unclear if the resulting scheme will have any additional
properties. However all of these modified schemes would keep their original properties
(such as interpolation of position and derivatives along particular boundaries).

2.6.3 Usage of Blending Schemes

The idea of the blending schemes is to divide the task of satisfying the continuity con-
ditions across three or more boundaries of a single surface into satisfying the continuity
condition across a single boundary of three or more sub-surfaces. This division makes the
construction of the surfaces more flexible. For example, when constructing surfaces with
cubic triangular Bézier patches, there are not enough degrees of freedom for the control
points to meet the C1 continuity conditions across all three boundaries. However with
surface blending, it is possible to construct three sub-patches, with each patch meeting the
continuity conditions across one boundary. Then blending these three sub-patches with
the correct blending functions yields a blended result that meets the continuity conditions
across all three boundaries.

It is this property of separating the continuity requirements along all three boundaries
of the patch into three, separate problems that I am pursuing in my work. My main
contributions are to relax the conditions on the sub-patches and more importantly to
generalize the method to arbitrary orders of continuity along the boundaries.
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Chapter 3

Generalized Blending Scheme

In this chapter, in Definition 3.3 I present a template for constructing new blending func-
tions, and in Definition 3.4 I present new blending functions that can be used to interpolate
an arbitrary order of derivatives on the locations specified by certain helper functions. The
bulk of this chapter is devoted to proving mathematical properties of these blending func-
tions and the resulting functions derived from them, including derivative inheritance and
showing when these blending functions are well-defined. In Chapter 4, I will use these
blending functions to develop data interpolation schemes for triangular data meshes. Fur-
thermore I also extend the triangular scheme to the multi-sided faces in Chapter 7.

3.1 Definitions

Recall that a blending scheme takes multiple functions as inputs and blends them into a
new function as the output using specific weights. With respect to the blending scheme, the
inputs are sub-functions, the weights used in the blending process are blending functions,
and the output function is the blended result.

The purpose of the blending scheme is to construct a new function that has the same
derivatives as the input functions at the desired boundaries or points. For example, for
the surface blending in Chapter 4, the new surface has the same derivatives along the
boundaries of the triangle. I refer to this property as inheritance in this thesis. There are
three terms that specify the properties of the blending scheme and the inheritance:

� The blended terms: the number of sub-functions to be blended.
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� The blending order: the desired order of derivatives that the blended result is sup-
posed to inherit.

� The locations of the inheritance points and which corresponding sub-functions should
be inherited.

The third term is specified by a set of functions called the inheritance indicators. Each
sub-function has a corresponding inheritance indicator, and when an inheritance indicator
is 0 at a point, then the derivatives of its corresponding sub-function are inherited at that
point. To ensure that the blended result is continuous, all inheritance indicators should be
in the same order of continuity. Furthermore, with respect to inheritance indicators, the
inherited terms is the number of sub-functions that the derivatives will be inherited from
at certain points.

The following symbols are used in the analyses of this chapter:

� Let n denote the blended terms.

� Let d denote the blending order.

� Let pi denote the inheritance indicators.

� Let qp denote the inherited terms.

� Let Si denote the sub-functions.

� Let fn,d,p
i denote the blending functions.

� Let Sn,d,p denote the blended result.

3.2 Generalized Blending Functions

In this section, I present my generalized blending functions. I give the definition of a set
of intermediate helper functions in Definition 3.3. Using the intermediate functions as the
templates and combining them with a set of specific approaches, I also give the definition of
my generalized blending functions in Definition 3.4, and the formula of the blended result
in Definition 3.5.

Assume that the blended terms (a positive integer n) and the blending order (a non-
negative integer d) are given. Let N denote the index set {0, 1, . . . , n − 1}. Without loss
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of generality, assume that all inheritance indicators and sub-functions are defined over a
vector space of degree two. Let I denote a common domain of inheritance indicators and
sub-functions. The formal definition of the inheritance indicators is given in Definition 3.1.

Definition 3.1. For n > 0 and d ≥ 0, the inheritance indicators {pi : I → R}i∈N is a set
of functions that satisfy the following conditions:

� All pi are Cd-continuous.

� For each pair of distinct i, j ∈ N and any point (x, y) ∈ I, if pi(x, y) + pj(x, y) = 0,
then pi(x, y) = pj(x, y) = 0.

The first condition guarantees that the blending functions and the blended result defined
below are also Cd-continuous, and the second condition is set to avoid zero denominators
in the blending functions when the inheritance indicators are all non-zero.

Let p denote the set of the inheritance indicators. In this thesis, the symbols {pi}i∈N
and p are used to denote arbitrary inheritance indicators, although I will use different
symbols for specific cases. For example the symbol t is used to denote the inheritance
indicators of the triangular surface blending scheme in Chapter 4, and the symbol b is used
to denote the inheritance indicators of the binary case. The inherited terms qp is defined
in Definition 3.2.

Definition 3.2. With respect to a set of given inheritance indicators p, for each point
(x, y) ∈ I, the inherited terms qp : I → N (denoted qp(x, y)) is the number of zero entries
in p at (x, y).

The intermediate functions {gn,di }i∈N defined in Definition 3.3 below are determined
by the blended terms n and the blending order d. The parameters of the gi will be the
values of the inheritance indicators at a certain point. These intermediate functions will
not be used directly in the blending scheme, but can be considered as the templates for
constructing blending functions with the given inheritance indicators.

Definition 3.3. For n > 0 and d ≥ 0, the intermediate functions {gn,di : Rn → R}i∈N are
defined as

gn,di (v) =
( ∏

j∈N\{i}

wj

)( ∑
j∈N\{i}

1

wi + wj

)
/
( ∑

j,k∈N,j ̸=k

∏
l∈N\{j,k}

wl

)
, (3.1)

where v = (v0, v1, . . . , vn−1) and wi = vd+1
i for each i ∈ N .
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The blending functions {fn,d,p
i }i∈N defined in Definition 3.4 below are constructed by

merging the intermediate functions {gn,di }i∈N and the inheritance indicators p together.
Each fn,d,p

i can also be considered as the output of the intermediate function gn,di with
respect to certain inheritance indicators p.

Definition 3.4. For n > 0 and d ≥ 0, with respect to a set of given inheritance indicators
p, the blending functions {fn,d,p

i : I → R}i∈N are defined as

fn,d,p
i (x, y) = lim

(x′,y′)→(x,y)
gn,di (p0(x

′, y′), p1(x
′, y′), . . . , pn−1(x

′, y′)). (3.2)

A typical example of the blending functions can be found in Definition 4.3.

At last, the blended result Sn,d,p is defined in Definition 3.5, with respect to the blending
functions fn,d,p

i and the sub-functions Si.

Definition 3.5. For n > 0 and d ≥ 0, with respect to a set of given inheritance indicators
p, the blended result Sn,d,p is defined as

Sn,d,p(x, y) =
∑
i∈N

[
fn,d,p
i (x, y)Si(x, y)

]
, (3.3)

where Si are Cd-continuous functions defined over I.

3.3 Inheritance Propositions

Recall that the inheritance is the property of the blending scheme that the blended result
Sn,d,p shares the same derivatives as the sub-functions Si at certain points, and the inheri-
tance indicators p show the locations of these points and which corresponding sub-functions
should be inherited. In the following sections the relationships between the inheritance in-
dicators p and the blended result Sn,d,p are specified and proven. In general, for a certain
point (x, y) ∈ I, the blending scheme works with respect to the following rules:

� If the inherited terms qp(x, y) = 0, then the blending functions {fn,d,p
i }i∈N and the

blended result Sn,d,p are well-defined, and Sn,d,p does not inherit derivatives from any
sub-functions.

� If the inherited terms qp(x, y) = 1 and the inheritance indicator pi(x, y) = 0, then
the blending functions {fn,d,p

i }i∈N and the blended result Sn,d,p are well-defined, and
Sn,d,p inherits derivatives from the sub-function Si.
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� If the inherited terms qp(x, y) = 2 and the inheritance indicators pi(x, y) = pj(x, y) =

0 with i ̸= j, then the blending functions {fn,d,p
i }i∈N and the blended result Sn,d,p

are well-defined if the sub-functions Si and Sj satisfy some extra conditions, and in
that case Sn,d,p inherits derivatives from both Si and Sj.

� If the inherited terms qp(x, y) > 2, then the blending functions {fn,d,p
i }i∈N and the

blended result Sn,d,p are not well-defined.

As shown in Proposition 3.1 below, in the first case the blended result is always well-
defined, and no inheritance exists. Also the last case should be avoided in the blending
scheme since the blended result is always not well-defined. So the following analyses focus
on the second and the third cases.

Proposition 3.1. If the inherited terms qp(x, y) = 0, then for each i ∈ N , the blending
function fn,d,p

i is well-defined at (x, y).

Proof. By Definition 3.1, all denominators of fn,d,p
i (x, y) are non-zero since none of the

inheritance indicators are zero at (x, y). Thus fn,d,p
i is well-defined at (x, y).

Before analysing each of the second and third cases, I give two propositions that will
be used in the following sections. Proposition 3.2 shows that the sum of {gn,di }i∈N is 1.

Proposition 3.2. For each point v ∈ Rn,

lim
v′→v

∑
i∈N

gn,di (v′) = 1. (3.4)

Proof.

lim
v′→v

n−1∑
i=0

gn,di (v′)

= lim
v′→v

{∑
i∈N

[( ∏
j∈N\{i}

w′
j

)( ∑
j∈N\{i}

1

w′
i + w′

j

)]
/
( ∑

j,k∈N,j ̸=k

∏
l∈N\{j,k}

w′
l

)}
= lim

v′→v

{(∑
i∈N

∑
j∈N\{i}

∏
k∈N\{i}w

′
k

w′
i + w′

j

)
/
( ∑

j,k∈N,j ̸=k

∏
l∈N\{j,k}

w′
l

)}
= lim

v′→v

{( ∑
i,j∈N,i̸=j

∏
k∈N\{i}w

′
k +

∏
k∈N\{j}w

′
k

w′
i + w′

j

)
/
( ∑

j,k∈N,j ̸=k

∏
l∈N\{j,k}

w′
l

)}
= lim

v′→v

{( ∑
i,j∈N,i̸=j

∏
k∈N\{i,j}

w′
k

)
/
( ∑

j,k∈N,j ̸=k

∏
l∈N\{j,k}

w′
l

)}
= 1,

(3.5)
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where w′
i = (v′i)

d+1 for each i ∈ N .

Proposition 3.3 shows that the sum of the blending functions {fn,d,p
i }i∈N is 1.

Proposition 3.3. For each point (x, y) ∈ I,∑
i∈N

fn,d,p
i (x, y) = 1. (3.6)

Proof. By Proposition 3.2,∑
i∈N

fn,d,p
i (x, y) = lim

(x′,y′)→(x,y)

∑
i∈N

gn,di (p(x′, y′))

= lim
v′→p(x,y)

∑
i∈N

gn,di (v′)

= 1.

(3.7)

3.3.1 Singular Inheritance

In this section I show that the blended result inherits derivatives from a single sub-function
when the inherited terms qp is 1. For all propositions in this section, it is assumed that
the following conditions are satisfied. Notice that the index i is used to denote a certain
value and the index j is used to denote a general value in I.

Condition 3.1. For a point (x, y) ∈ I and an index i,

� For each j ∈ N , pj and Sj are d-th differentiable at (x, y).

� pi(x, y) = 0.

� qp(x, y) = 1.

Proposition 3.4 shows that the blending functions fn,d,p
j are well-defined at the point

(x, y).

Proposition 3.4. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1, for
each j ∈ N , fn,d,p

j is well-defined at (x, y).
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Proof. By Definition 3.1, all denominators of fn,d,p
j (x, y) are non-zero since there is only

one inheritance indicator that is zero at (x, y). Thus fn,d,p
j is well-defined at (x, y).

Proposition 3.5 shows that the value and derivatives of order less than or equal to d of
the blending functions fn,d,p

j are all zero at the point (x, y) if i ̸= j.

Proposition 3.5. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1, for
each j ∈ N \ {i} and all integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
fn,d,p
j (x, y) = 0. (3.8)

Proof. Since fn,d,p
j contains a multiplier pd+1

i , all terms of the directional derivatives of

fn,d,p
j of order less than or equal to d contain a multiplier pi with power at least 1. Then
since pi(x, y) = 0, these directional derivatives are all zero at (x, y).

Proposition 3.6 shows that the value of the blending function fn,d,p
i is 1 at the point

(x, y).

Proposition 3.6. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1,

fn,d,p
i (x, y) = 1. (3.9)

Proof. By Proposition 3.5, for each j ∈ N \ {i},

fn,d,p
j (x, y) = 0. (3.10)

Then by Proposition 3.3,

fn,d,p
i (x, y) =

∑
j∈N

fn,d,p
j (x, y)−

∑
j∈N\{i}

fn,d,p
j (x, y)

= 1−
∑

j∈N\{i}

fn,d,p
j (x, y)

= 1.

(3.11)

Proposition 3.7 shows that the derivatives of order greater than zero and less than or
equal to d of the blending function fn,d,p

i are all zero at the point (x, y).
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Proposition 3.7. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1, for all
integers 1 ≤ a+ b ≤ d,

da+b

dxadyb
fn,d,p
i (x, y) = 0. (3.12)

Proof. By Proposition 3.3 and Proposition 3.5,

da+b

dxadyb
fn,d,p
i (x, y) =

da+b

dxadyb

[∑
j∈N

fn,d,p
j (x, y)−

∑
j∈N\{i}

fn,d,p
j (x, y)

]
=

da+b

dxadyb

[
1−

∑
j∈N\{i}

fn,d,p
j (x, y)

]
= −

∑
j∈N\{i}

da+b

dxadyb
fn,d,p
j (x, y)

= 0.

(3.13)

Proposition 3.8 shows that the blended result Sn,d,p is well-defined at the point (x, y).

Proposition 3.8. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1, Sn,d,p

is well-defined at (x, y).

Proof. The result follows from Proposition 3.4.

Proposition 3.9 shows that the blended result Sn,d,p has the same value and derivatives
of order less than or equal to d as Si at the point (x, y). In other words, the proposition
shows the inheritance of Sn,d,p from the sub-functions Si.

Proposition 3.9. For a point (x, y) ∈ I and an index i that satisfy Condition 3.1, for all
integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
Sn,d,p(x, y) =

da+b

dxadyb
Si(x, y). (3.14)
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Proof. By Proposition 3.5, Proposition 3.6, and Proposition 3.7,

da+b

dxadyb
Sn,d,p(x, y) =

∑
j∈N

[ da+b

dxadyb
(fn,d,p

j Sj)(x, y)
]

=
∑
j∈N

a∑
α=0

b∑
β=0

[
h(α, β)(

dα+β

dxαdyβ
fn,d,p
j )(x, y)(

da+b−α−β

dxa−αdyb−β
Sj)(x, y)

]
=

a∑
α=0

b∑
β=0

[
h(α, β)(

dα+β

dxαdyβ
fn,d,p
i )(x, y)(

da+b−α−β

dxa−αdyb−β
Si)(x, y)

]
= h(0, 0)

da+b

dxadyb
Si(x, y)

=
da+b

dxadyb
Si(x, y),

(3.15)
where h(α, β) is the number of time the mixed derivative repeats in the sum.

3.3.2 Binary Inheritance

In this section I show that if some extra conditions are met, the blended result inherits
derivatives from two sub-functions when the inherited terms qp is two. For all propositions
in this section, it is assumed that the following conditions are satisfied. Notice that the
indices i and j are used to denote certain values and the index k is used to denote a general
value in I.

Condition 3.2. For a point (x, y) ∈ I and two distinct indices i and j,

� For each k ∈ N , pk and Sk are d-th differentiable at (x, y).

� pi(x, y) = 0.

� pj(x, y) = 0.

� qp(x, y) = 2.

Proposition 3.10 shows that the blending function fn,d,p
k is well defined at the point

(x, y) when i ̸= k and j ̸= k.

Proposition 3.10. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, for each k ∈ N \ {i, j}, fn,d,p

k is well-defined at (x, y).
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Proof. By Definition 3.1, all denominators of fn,d,p
k (x, y) are non-zero since there are only

two inheritance indicators pi and pj that are zero at (x, y) and pi(x, y) + pj(x, y) is not

included in the denominators of fn,d,p
k (x, y). Thus fn,d,p

j is well-defined at (x, y).

Proposition 3.11 shows that the sum of two blending functions fn,d,p
i and fn,d,p

j is well
defined at the point (x, y).

Proposition 3.11. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, fn,d,p

i + fn,d,p
j is well-defined at (x, y).
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Proof.

(fn,d,p
i + fn,d,p

j )(x, y)

= lim
(x′,y′)→(x,y)

[
gn,di (p(x′, y′)) + gn,dj (p(x′, y′))

]
= lim

(x′,y′)→(x,y)

[( ∏
k∈N\{i}

pk(x
′, y′)

)( ∑
k∈N\{i}

1

pi(x′, y′) + pk(x′, y′)

)
+
( ∏

k∈N\{j}

pk(x
′, y′)

)( ∑
k∈N\{j}

1

pj(x′, y′) + pk(x′, y′)

)]
/
( ∑

k,l∈N,k ̸=l

∏
m∈N\{k,l}

pm(x, y)
)

= lim
(x′,y′)→(x,y)

[( ∏
k∈N\{i}

pk(x
′, y′)

)( ∑
k∈N\{i,j}

1

pi(x′, y′) + pk(x′, y′)

)
+
( ∏

k∈N\{j}

pk(x
′, y′)

)( ∑
k∈N\{i,j}

1

pj(x′, y′) + pk(x′, y′)

)
+

∏
k∈N\{i,j}

pk(x
′, y′)

( pj(x
′, y′)

pi(x′, y′) + pj(x′, y′)
+

pi(x
′, y′)

pj(x′, y′) + pi(x′, y′)

)]
/
( ∑

k,l∈N,k ̸=l

∏
m∈N\{k,l}

pm(x, y)
)

= lim
(x′,y′)→(x,y)

[( ∏
k∈N\{i}

pk(x
′, y′)

)( ∑
k∈N\{i,j}

1

pi(x′, y′) + pk(x′, y′)

)
+
( ∏

k∈N\{j}

pk(x
′, y′)

)( ∑
k∈N\{i,j}

1

pj(x′, y′) + pk(x′, y′)

)
+

∏
k∈N\{i,j}

pk(x
′, y′)

]
/
( ∑

k,l∈N,k ̸=l

∏
m∈N\{k,l}

pm(x, y)
)

=
[( ∏

k∈N\{i}

pk(x, y)
)( ∑

k∈N\{i,j}

1

pi(x, y) + pk(x, y)

)
+
( ∏

k∈N\{j}

pk(x, y)
)( ∑

k∈N\{i,j}

1

pj(x′, y′) + pk(x, y)

)
+

∏
k∈N\{i,j}

pk(x, y)
]
/
( ∑

k,l∈N,k ̸=l

∏
m∈N\{k,l}

pm(x, y)
)
.

(3.16)

All denominators of (fn,d,p
i +fn,d,p

j )(x, y) are non-zero, and thus fn,d,p
i +fn,d,p

j is well-defined
at (x, y).
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Proposition 3.12 shows that the value and derivatives of order less than or equal to d
of the blending function fn,d,p

k are all zero at the point (x, y) if i ̸= k and j ̸= k.

Proposition 3.12. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, for each k ∈ N \ {i, j} and all integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
fn,d,p
k (x, y) = 0. (3.17)

Proof. The result holds by the same method as in Proposition 3.5.

Proposition 3.13 shows that the sum of two blending functions fn,d,p
i and fn,d,p

j is 1 at
the point (x, y).

Proposition 3.13. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2,

(fn,d,p
i + fn,d,p

j )(x, y) = 1. (3.18)

Proof. By Proposition 3.12, for each k ∈ N \ {i, j},

fn,d,p
k (x, y) = 0. (3.19)

Then by Proposition 3.3,

(fn,d,p
i + fn,d,p

j )(x, y) =
∑
k∈N

fn,d,p
k (x, y)−

∑
k∈N\{i,j}

fn,d,p
k (x, y)

= 1−
∑

k∈N\{i,j}

fn,d,p
k (x, y)

= 1.

(3.20)

Proposition 3.14 shows that the derivatives of order greater than zero and less than or
equal to d of the sum of two blending functions fn,d,p

i and fn,d,p
j are all zero at the point

(x, y).

Proposition 3.14. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, for all integers 1 ≤ a+ b ≤ d,

da+b

dxadyb
(fn,d,p

i + fn,d,p
j )(x, y) = 0. (3.21)
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Proof. By Proposition 3.3 and Proposition 3.12,

da+b

dxadyb
(fn,d,p

i + fn,d,p
j )(x, y) =

da+b

dxadyb

[∑
k∈N

fn,d,p
k (x, y)−

∑
k∈N\{i,j}

fn,d,p
k (x, y)

]
=

da+b

dxadyb

[
1−

∑
k∈N\{i,j}

fn,d,p
k (x, y)

]
= −

∑
k∈N\{i,j}

da+b

dxadyb
fn,d,p
k (x, y)

= 0.

(3.22)

Proposition 3.15 shows that the blended result Sn,d,p is well-defined at the point (x, y)
if an extra condition is satisfied.

Proposition 3.15. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, if Si(x, y) = Sj(x, y), then Sn,d,p is well-defined at (x, y).

Proof. By Proposition 3.12 and Proposition 3.13,

Sn,d,p(x, y) =
∑
k∈N

[
fn,d,p
k (x, y)Sk(x, y)

]
= fn,d,p

i (x, y)Si(x, y) + fn,d,p
j (x, y)Sj(x, y)

= (fn,d,p
i + fn,d,p

j )(x, y)Si(x, y)
= Si(x, y).

(3.23)

Then Sn,d,p is well-defined at (x, y).

Proposition 3.16 shows that the blended result Sn,d,p has the same value and derivatives
of order less than or equal to d as both Si and Sj when they share the same value and
derivatives at the point (x, y). In other words, the proposition shows the inheritance of
Sn,d,p from the sub-functions Si and Sj.

Proposition 3.16. For a point (x, y) ∈ I and two distinct indices i and j that satisfy
Condition 3.2, if for all integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
Si(x, y) =

da+b

dxadyb
Sj(x, y), (3.24)

then
da+b

dxadyb
Sn,d,p(x, y) =

da+b

dxadyb
Si(x, y) =

da+b

dxadyb
Sj(x, y). (3.25)
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Proof. By Proposition 3.12, Proposition 3.13, and Proposition 3.14,

da+b

dxadyb
Sn,d,p(x, y)

=
∑
k∈N

[ da+b

dxadyb
(fn,d,p

k Sk)(x, y)
]

=
∑
k∈N

a∑
α=0

b∑
β=0

{
h1(α, β)[

(
dα+β

dxαdyβ
fn,d,p
k )(x, y)(

da+b−α−β

dxa−αdyb−β
Sk)(x, y)

]}
=

a∑
α=0

b∑
β=0

{
h1(α, β)[

(
dα+β

dxαdyβ
fn,d,p
i )(x, y)(

da+b−α−β

dxa−αdyb−β
Si)(x, y)

+(
dα+β

dxαdyβ
fn,d,p
j )(x, y)(

da+b−α−β

dxa−αdyb−β
Sj)(x, y)

]}
=

a∑
α=0

b∑
β=0

{
h1(α, β)[

(
dα+β

dxαdyβ
fn,d,p
i )(x, y)(

da+b−α−β

dxa−αdyb−β
Si)(x, y)

+(
dα+β

dxαdyβ
fn,d,p
j )(x, y)(

da+b−α−β

dxa−αdyb−β
Sj)(x, y)

]}
=

a∑
α=0

b∑
β=0

{
h1(α, β)h2(α, β)[

(
dα+β

dxαdyβ
fn,d,p
i )(x, y) + (

dα+β

dxαdyβ
fn,d,p
j )(x, y)

]}
=

a∑
α=0

b∑
β=0

{
h1(α, β)h2(α, β)

[ dα+β

dxαdyβ
(fn,d,p

i + fn,d,p
j )(x, y)

]}
= h1(0, 0)h2(0, 0)

=
da+b

dxadyb
Si(x, y),

(3.26)

where h1(α, β) is the number of time the mixed derivative repeats in the sum, and

h2(α, β) = (
da+b−α−β

dxa−αdyb−β
Si)(x, y) = (

da+b−α−β

dxa−αdyb−β
Sj)(x, y). (3.27)
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Then
da+b

dxadyb
Sn,d,p(x, y) =

da+b

dxadyb
Si(x, y) =

da+b

dxadyb
Sj(x, y). (3.28)

3.4 Summary

In this chapter, I defined new blending functions in Definition 3.4 and the blended result
in Definition 3.5. I then showed that the blended result inherits the derivatives from the
sub-functions based on the distributions of zero values of the inheritance indicators. These
results are used in this dissertation multiple times.

� In Chapter 4, I will give typical inheritance indicators and use these blending func-
tions to construct a triangular surface blending scheme, and compare my new scheme
with Nielson’s scheme.

� In Chapter 5, I will use both triangular and binary schemes to design an interpolation
algorithm to solving the triangular scattered data interpolation problem.

� In Chapter 7, I will extend the triangular surface blending scheme to the multi-sided
version, and give the updated algorithm.
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Chapter 4

Triangular Blending Scheme

In this chapter, I will present a triangular surface blending scheme using the blending
functions generating templates defined in Chapter 3, and present the typical definitions
and propositions with respect to the triangular case.

4.1 Definitions

Most of the variables and functions used in this chapter have the same symbols as given
in Section 3.1. In this chapter these variables and functions are now used in a specific
blending scheme, which sets the values and names of some of the variables and functions
as follows:

� For the triangular case, n = 3.

� The symbol t = (t0, t1, t2) will be used to denote the triangular inheritance indicators.

� S0, S1, and S2 are the sub-functions. In this chapter they are surfaces, so they are
also called the sub-surfaces.

� qt is the inherited terms with respect to the triangular inheritance indicators t.

� f 3,d,t
0 , f 3,d,t

1 , and f 3,d,t
2 are the triangular blending functions.

� S3,d,t is the blended result of the triangular surface blending scheme.
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P2

P0

P1

B0

B1

B2

T

Figure 4.1: The layout of the blending domain T .

For the blending scheme with respect to the surfaces, the portion of the blended result
that is formed by the interpolated points and boundaries should be considered since the
continuity conditions are established with respect to its boundaries and corners. The
corresponding subset of its domain is called a blending domain. For the triangular case,
the corresponding blending domain is defined in Definition 4.1.

Definition 4.1. A triangular blending domain T is a closed subset of the vector space
on which the inheritance indicators, blending functions, and the sub-surfaces are defined.
T is formed by three points P0, P1, and P2, and three boundaries B0, B1, and B2. The
two endpoints of B0 are P0 and P1, the two endpoints of B1 are P1 and P2, and the two
endpoints of B2 are P2 and P0.

Notice that the boundaries in Definition 4.1 are not restricted to be straight. However
in this chapter they are assumed to be straight. More specifically, the blending domain T
in this chapter is the interior part of the barycentric coordinate domain. Recall that the
barycentric coordinates of a point inside the triangular domain is usually represented by
(u, v, w) where u + v + w = 1. Without loss of generality, assume that P0 has barycen-
tric coordinates (1, 0, 0), P1 has barycentric coordinates (0, 1, 0), and P2 has barycentric
coordinates (0, 0, 1). The layout of T is shown in Figure 4.1.

Also notice that the blend result of the triangular surface blending scheme is always at
least Cd-continuous in the interior part of T . So all of the discussions and proofs focus on
the boundaries and corners.
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4.2 Triangular Blending Scheme

With respect to T , to fulfill the goal of the triangular blending scheme, a set of inheri-
tance indicators need to be designed with two conditions. The first condition is that the
inheritance indicators are defined over T and the second condition is that each inheritance
indicator is zero only on the corresponding boundary. The triangular inheritance indicator
t is defined in Defintion 4.2.

Definition 4.2. The triangular inheritance indicator t = (t0, t1, t2) is defined as

t0(u, v, w) = u,
t1(u, v, w) = v,
t2(u, v, w) = w.

(4.1)

Recall that as defined in Definition 3.2, the inherited terms qt is the function that
shows the number of zero inheritance indicators at certain points. Thus the values of qt

with respect to the locations of the points are determined.

Proposition 4.1. The value of the inherited terms qt in the blending domain T is

� qt(u, v, w) = 0 if (u, v, w) is located inside the interior part of T .

� qt(u, v, w) = 1 if (u, v, w) is located on a boundary (excluding the endpoints) of T .

� qt(u, v, w) = 2 if (u, v, w) is located at a corner of T .

Proof. The result follows from the definition of qt.

With the triangular inheritance indicators, the triangular blending functions can be
expanded from Definition 4.3:

Definition 4.3. The d-th triangular blending functions with respect to the triangular in-
heritance indicators t are

f 3,d,t
0 (u, v, w) = βγ

( 1

α + β
+

1

α + γ

)( 1

α + β + γ

)
,

f 3,d,t
1 (u, v, w) = γα

( 1

β + γ
+

1

β + α

)( 1

α + β + γ

)
,

f 3,d,t
2 (u, v, w) = αβ

( 1

γ + α
+

1

γ + β

)( 1

α + β + γ

)
,

(4.2)

where α = ud+1, β = vd+1, and γ = wd+1.
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I make the following two definitions that state the positions and derivatives are matched
at the corners. They are the two conditions that ensure the existence of the blended result
and its derivatives at the corners.

Definition 4.4. The sub-surfaces S0, S1 and S2 are value matched with respect to the
blending domain T if each pair of adjacent sub-surfaces share the same values at corre-
sponding corners:

S0(P1) = S1(P1),
S1(P2) = S2(P2),
S2(P0) = S0(P0).

(4.3)

Definition 4.5. The sub-surfaces S0, S1 and S2 are d-th matched with respect to the
blending domain T if each pair of adjacent sub-surfaces share the same derivatives of order
less than or equal to d at corresponding corners. More specifically, for all integers 0 ≤
a+ b ≤ d,

da+b

duadvbd
S0(P1) =

da+b

duadvb
S1(P1),

da+b

duadvbd
S1(P2) =

da+b

duadvb
S2(P2),

da+b

duadvbd
S2(P0) =

da+b

duadvb
S0(P0).

(4.4)

The blended result S3,d,t is then defined as in Definition 4.6.

Definition 4.6. With three sub-surfaces S0, S1, and S2 defined over the blending domain
T , the blended result of the d-th triangular blending scheme with respect to the triangular
inheritance indicators t is defined as

S3,d,t(u, v, w) =
2∑

i=0

[
f 3,d,t
i (u, v, w)Si(u, v, w)

]
. (4.5)

The following theorems are given based on the propositions in Chapter 3 with respect
to the surface blending. Theorem 4.1 shows that the blended result S3,d,t is well-defined if
the sub-surfaces are value matched with respect to the blending domain.

Theorem 4.1. If the sub-surfaces S0, S1, and S2 are value matched with respect to the
blending domain T , then the blended result S3,d,t is well-defined.

Proof. The result follows Proposition 3.8 and Proposition 3.15.
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Theorem 4.2 shows that the blended result inherits values on boundaries from corre-
sponding sub-surfaces.

Theorem 4.2. The blended result S3,d,t inherits the derivatives of order less than or equal
to d from a sub-surface on the corresponding boundary excluding the endpoints. More
specifically, for each i ∈ {0, 1, 2}, a non-corner point P ∈ Bi, and all integers 0 ≤ a+b ≤ d,

da+b

duadvb
S3,d,t(P ) =

da+b

duadvb
Si(P ). (4.6)

Proof. By Proposition 4.1, qt(P ) = 1. Then the result follows Proposition 3.9.

Theorem 4.3 shows that the blended result inherits values at the corners from cor-
responding adjacent pairs of sub-surfaces when the sub-surfaces are d-th matched with
respect to the blending domain.

Theorem 4.3. If the sub-surfaces S0, S1, and S2 are d-th matched with respect to the
blending domain T , then the blended result S3,d,t has well-defined derivatives of order less
than or equal to d in T , and inherits the derivatives of order less than or equal to d from
both adjacent sub-surfaces at the corresponding corner. More specifically, for all integers
0 ≤ a+ b ≤ d,

da+b

duadvb
S3,d,t(P1) =

da+b

duadvb
S0(P1) =

da+b

duadvb
S1(P1),

da+b

duadvb
S3,d,t(P2) =

da+b

duadvb
S1(P2) =

da+b

duadvb
S2(P2),

da+b

duadvb
S3,d,t(P0) =

da+b

duadvb
S2(P0) =

da+b

duadvb
S0(P0).

(4.7)

Proof. By Proposition 4.1, qt(P0) = qt(P1) = qt(P2) = 2. Then the result follows Proposi-
tion 3.16.

The previous theorems are given with respect to parametric properties. Furthermore,
some geometric properties are given. The following discussion is based on the concept of
“geometric value” in Section 2.2. Recall that the geometric values are the locations for the
zero-th order, the normals for the first order, and the curvatures for the second order. The
locations always exist when the blended result is well-defined. The following two theorems
state the geometric properties of the blended surfaces with respect to the normals and
curvatures.
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Theorem 4.4. Assume a blending order d ≥ 1 is given, and each pair of adjacent sub-
surfaces share the same normals at the corresponding corner. More specifically, assume

� The normals of the sub-surfaces S0 and S1 are same at the point P1.

� The normals of the sub-surfaces S1 and S2 are same at the point P2.

� The normals of the sub-surfaces S2 and S0 are same at the point P0.

Then the blended result S3,d,t has well-defined normals in the blending domain T , and
the normals of S3,d,t are continuous. S3,d,t inherits the normals at the corners from the
corresponding pair of adjacent sub-surfaces.

Proof. The blended result S3,d,t inherits the first order derivatives from a sub-surface on
the corresponding boundary, so it also inherits the normals from the sub-surface. For a
corner, the limit of its normal along the direction of a boundary is the normal at the corner
of the corresponding sub-surface. Then since the normals of the two adjacent sub-surfaces
at that corner are same, then the normal of the blended result exist at that corner, and it
is continuous. The value of the normal at that corner is inherited from the corresponding
pair of adjacent sub-surfaces.

Theorem 4.5. Assume a blending order d ≥ 2 is given, and each pair of adjacent sub-
surfaces share the same curvatures at the corresponding corner. More specifically, assume

� The curvatures of the sub-surfaces S0 and S1 are same at the point P1.

� The curvatures of the sub-surfaces S1 and S2 are same at the point P2.

� The curvatures of the sub-surfaces S2 and S0 are same at the point P0.

Then the blended result S3,d,t has well-defined curvatures in the blending domain T , and
the curvatures of S3,d,t are continuous. S3,d,t inherits the curvatures at the corners from
the corresponding pair of adjacent sub-surfaces.

Proof. The blended result S3,d,t inherits the first and second order derivatives from a sub-
surface on the corresponding boundary, so it also inherits the curvatures from the sub-
surface. For a corner, the limit of the curvature of the surface along the direction of a
boundary is the curvature at the corner of the corresponding sub-surface. Then since the
curvatures of the two adjacent sub-surfaces at that corner are same, then the curvature of
the blended result exists at that corner, and it is continuous. The value of the normal at
that corner is inherited from the corresponding pair of adjacent sub-surfaces.
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With these definitions and theorems, I can state the triangular surface blending scheme
here. With a given blending order d, the d-th triangular surface blending scheme accepts
three triangular sub-surfaces S0, S1, and S2 parameterized by the barycentric coordinates
(defined over T ) as inputs. It then construct a blended result S3,d,t in Definition 4.6 by
applying the triangular blending functions in Definition 4.3 as the output.

The output blended result surface S3,d,t has different properties for different conditions
that the input sub-surfaces meet.

� S3,d,t is well-defined in the barycentric coordinates except the corners.

� S3,d,t inherits the derivatives of order less than or equal to d from a sub-surface on
the corresponding boundary of the barycentric coordinates excluding the endpoints.

� If S0, S1, and S2 are value matched, then S3,d,t is well-defined at the corners of the
barycentric coordinates.

� If S0, S1, and S2 are d-th matched, then S3,d,t has well-defined derivatives of order
less than or equal to d in the barycentric coordinates, and inherits the derivatives of
order less than or equal to d from both adjacent sub-surfaces at the corresponding
corner.

With respect to the geometric values, the blended result S3,d,t also has the following prop-
erties:

� If d ≥ 1 and each pair of adjacent sub-surfaces share the same locations and normals
at the corresponding corner, then S3,d,t has well-defined normals in the barycentric
coordinates, and the normals of S3,d,t are continuous. S3,d,t inherits the normals at
the corners from the corresponding pair of adjacent sub-surfaces.

� If d ≥ 2 and each pair of adjacent sub-surfaces share the same locations, normals,
and curvatures at the corresponding corner, then S3,d,t has well-defined curvatures in
the barycentric coordinates, and the curvatures of S3,d,t are continuous. S3,d,t inherits
the curvatures at the corners from the corresponding pair of adjacent sub-surfaces.

4.3 Comparison to Nielson’s Scheme

In this section the new triangular surface blending scheme is compared with Nielson’s
method. For any d ≥ 1, the new triangular surface blending scheme constructs surfaces
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with the the normals inherited from the sub-surfaces. In that case the resulting surfaces
have the same properties as Nielson’s. The difference between them is the conditions of
the sub-surfaces. Recall that as in Condition 2.1, for three vertices V0, V1, and V2 as well
as three sub-surfaces S0, S1, and S2, the conditions for Nielson’s method are

� S0, S1, and S2 interpolate the locations of V0, V1, and V2.

� S0, S1, and S2 share the same boundaries.

� S0 interpolates the normals of V1 and V2.

� S1 interpolates the normals of V2 and V0.

� S2 interpolates the normals of V0 and V1.

The conditions for the new triangular surface blending scheme are

� S0 and S1 interpolate the location and normal of V1.

� S1 and S2 interpolate the location and normal of V2.

� S2 and S0 interpolate the location and normal of V0.

The new scheme has fewer restrictions on the sub-surfaces. The reason is that Nielson’s
blending functions contain denominators uv + vw + wu and a problem occurs when the
barycentric coordinates of a point has two zero entries when located at a corner of T . In
that case the values of the denominators are zero, and the blended result does not exist.
However, if all three sub-surfaces used in Nielson’s method share the same values at all three
corners, then the blended result is well-defined. For the new scheme, the denominators of
the new blending functions have the property that for any point in the blending domain, at
least of one of the blending functions does not have zero denominators. For example, at the
corner (1, 0, 0), all denominators α+β, α+γ, and α+β+γ of the blending function f 3,d,t

0 in
Definition 4.3 are non-zero. That leads to a result that the blended result exists when the
two corresponding sub-surfaces of the other two blending functions share the same values
at that corner. For the new scheme, the blended result is well-defined everywhere if the
sub-surfaces are value matched with respect to all three corners of T .

The reduced conditions lead to a possibility to construct the triangular blending algo-
rithm in Chapter 5. Consider two triangular faces from a data mesh shown in Figure 4.2,
formed by vertices V0V1V2 and V0V2V3. To construct a smooth surface for such a data
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V3
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Figure 4.2: Two adjacent faces from a data mesh.
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V1

V0

V3

V2

V1

(a) (b)

Figure 4.3: The differences between the requirements for the sub-surfaces; (a) Nielson’s
method; (b) new scheme.

mesh, the resulting surfaces for these two faces need to join smoothly, thus the two sub-
surfaces with respect the edge E = {V0, V2} also need to join smoothly. Figure 4.3 shows
the differences between the requirements of constructing sub-surfaces for Nielson’s scheme
and the new scheme.

As shown in Figure 4.3(a), the two sub-surfaces for the two faces with respect to their
common edge are shown by the red points and curves. According to the conditions for
Nielson’s method, the three sub-surfaces of a face share the same boundaries. Then all
red curves are restricted. At least two steps are required to construct these sub-surfaces:
determine the common boundaries interpolating the vertices first, then construct sub-
surfaces interpolating these boundaries and for each edge ensure the two sub-surfaces from
both side are joined smoothly. As a result, the two sub-surfaces are restricted by all four
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vertices and five edges. These vertices and edges also influence sub-surfaces of adjacent
faces.

Figure 4.3(b) shows the requirements for the new blending scheme. According to the
new conditions, the boundaries of the three sub-surfaces of a face do not need to match
and for each of them the number of vertices that need to be interpolated is reduced to two.
That leads to a result that only the boundaries and points coloured by red are restricted,
and the boundaries and points coloured by blue have extra degrees of freedom. Since the
red part only influences these two sub-surfaces, they can be constructed “independently”.

Furthermore their process of constructing can be reversed. It is possible to construct
a smooth surface interpolating the two vertices V0 and V2, then cut two joined triangular
pieces as the sub-surfaces from them, instead of constructing two triangular sub-surfaces
interpolating the vertices and ensure them to be joined smoothly. The algorithm presented
in Chapter 5 is constructed based on this idea. In the new algorithm the blending of three
triangular sub-surfaces can be considered as the blending of three larger surfaces that are
constructed with respect to each edge. They can be treated as three quadrangular surfaces.
Figure 4.4 shows this process of blending for a single triangular face. The red, green, and
blue surfaces are constructed over pairs of triangle faces, one for each corresponding edge.
The solid portions are the triangular surfaces that are actually blended for the triangular
face.

4.3.1 Blending Functions

Nielson’s blending function can be extended to increase the degree of continuity (an ex-
ample is the blending functions used by Hagen and Pottmann in Equation 2.9). For the
triangular case, the formula of the extended Nielson’s functions are

fNielson,d
0 (u, v, w) =

βγ

αβ + βγ + γα
,

fNielson,d
1 (u, v, w) =

γα

αβ + βγ + γα
,

fNielson,d
2 (u, v, w) =

αβ

αβ + βγ + γα
,

(4.8)

where α = ud+1, β = vd+1, and γ = wd+1. Note that a straightforward generalization of
Nielson’s blending functions would use α = ud, β = vd, and γ = wd. For use in my scheme,
the powers need to be one higher for the same order of continuity.

The extended Nielson’s blending functions satisfies the conditions in Chapter 4 (for
the triangular case, each one of them is well-defined at a corresponding corner). That
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Figure 4.4: The extended triangular surface blending scheme.

means the extended Nielson’s blending functions may also be used in place of my blending
functions in the algorithms introduced in the following chapters. I discuss this further in
Section 9.1.2.

The reason that I did not use the extended Nielson’s blending functions is that for
same cases, the blending functions may need to be extended again (for example the shape
adjusting in Section 9.1.3). The power of the parameters may be unbalanced. The functions

f0(u, v, w) =
v2w2

u2v4 + v2w2 + w4u2
,

f1(u, v, w) =
w4u2

u2v4 + v2w2 + w4u2
,

f2(u, v, w) =
u2v4

u2v4 + v2w2 + w4u2

(4.9)

with different powers are an example. At the corner where (u, v, w) = (1, 0, 0) all three
functions and their limits are not well-defined. However for the new triangular blending
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functions in this chapter, there exist variations

f0(u, v, w) = v2w2
( 1

u2 + v2
+

1

u2 + w2

)( 1

u2 + v4 + w4

)
,

f1(u, v, w) = w4u2
( 1

v4 + w4
+

1

v2w2 + u2w2

)( 1

u2 + v4 + w4

)
,

f2(u, v, w) = u2v4
( 1

w2v2 + u2v2
+

1

w4 + v4

)( 1

u2 + v4 + w4

)
,

(4.10)

and

f0(u, v, w) = v2w2
( w2

u2 + v2
+

v2

u2 + w2

)( 1

u2 + v4 + w4

)
,

f1(u, v, w) = w4u2
( 1

v4 + w4
+

1

v2 + u2

)( 1

u2 + v4 + w4

)
,

f2(u, v, w) = u2v4
( 1

w2 + u2
+

1

w4 + v4

)( 1

u2 + v4 + w4

)
.

(4.11)

Both sets of them always have one well-defined function or limit for each corner of the
domain. So my new blending functions always satisfy the requirement of having at least
one well-defined basis function at the corners, while some variations of the extended Nielson
blending functions to not have this property. That means the new blending functions are
more possible to be further extended. Such property is not a big advantage, but might be
useful in the future plan.
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Chapter 5

Triangular Blending Algorithm

In Section 4.2, I gave a method of constructing a triangular patch that interpolates position
and derivatives at the corners and boundaries of a triangle. In this chapter, I will extend
the method to solve the triangular scattered data interpolation problem, and show how to
construct a set of patches that interpolate the vertices of a mesh, where adjacent patches
meet smoothly. I call this algorithm the basic triangular blending algorithm.

The input of the algorithm is a triangular data mesh, and the output of the algorithm
is a surface that interpolates the vertices of the data mesh. The resulting surface of the
algorithm is a combination of a group of blended results, in which each blended result is
the output of a triangular surface blending scheme with respect to a face of the data mesh.
The continuity (of arbitrary order) across the boundaries of the adjacent pairs of blended
results and at the corners of the blended results is fulfilled by constructing and dividing
intermediate surfaces across the boundaries.

In Section 5.1 I give the definitions of the symbols used in the algorithm and the repa-
rameterization functions. Then in Section 5.2 I give the complete process of the algorithm.
At last in the Section 5.3 I show that the algorithm constructs surfaces with continuous
normals (with d ≥ 1), and surfaces with continuous curvatures (with d ≥ 2) everywhere.

5.1 Definitions

In the algorithm introduced in this chapter, each element (vertex, edge, or face) of the
data mesh has a corresponding coordinate system, and a surface constructed with respect
to it. These surfaces may need to be reparameterized by the coordinate systems of other
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elements. In this thesis, two elements are said to be parametrically adjacent if in the
algorithm there is reparameterization between their coordinate systems. More specifically,

� a vertex is parametrically adjacent to its neighbouring edges.

� an edge is parametrically adjacent to its neighbouring vertices and faces.

� a face is parametrically adjacent to its neighbouring edges.

The surface of an element may need to be reparameterized by the coordinate system
of another element, and these two elements may not be parametrically adjacent. For
example the surface of a face may need to be reparameterized by the coordinate system of
a neighbouring vertex. Such reparameterization cannot be done directly. The face surface
needs to be reparameterized by the coordinate system of a common neighbouring edge, then
by the coordinate systems of the vertex. The path of the reparameterization may contain
more than three elements. To describe these relationships, the following definitions are
given.

� Let FX denote the coordinate system of an element X.

� Let SX denote the surface of an element X.

� If two elements X and Y are parametrically adjacent, let SX
Y denote the surface of

X reparameterized by FY .

� If each pair of adjacent elements in the sequence X,Z0, Z1, . . . , Zn−1, Y are paramet-
rically adjacent, let SX

Z0,Z1,...,Zn−1,Y
denote the surface of X reparameterized via the

path X → Z0 → Z1 → · · · → Zn−1 → Y , at last reparameterized by FY .

Furthermore, in the algorithm all reparameterizations are bijective. Now the following
functions are defined with respect to the reparameterization methods used in the algorithm.

� If two elements X and Y are parametrically adjacent, let rX,Y denote the function
that maps the points in FX into FY .

� If each pair of adjacent elements in the sequence X,Z0, Z1, . . . , Zn−1, Y are paramet-
rically adjacent, let rX,Z0,Z1,...,Zn−1,Y denote the function that maps the points in FX

via the path X → Z0 → Z1 → · · · → Zn−1 → Y , at last into FY :

rX,Z0,Z1,...,Zn−1,Y = rZn−1,Y ◦ · · · ◦ rZ0,Z1 ◦ rX,Z0 . (5.1)
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From the definitions,

� If two elements X and Y are parametrically adjacent, then

SX
Y (x, y) = SX(rY,X(x, y)). (5.2)

� If each pair of adjacent elements in the sequence X,Z0, Z1, . . . , Zn−1, Y are paramet-
rically adjacent, then

SX
Z0,Z1,...,Zn−1,Y

(x, y) = SX(rY,Zn−1,...,Z1,Z0,X(x, y)). (5.3)

Notice that all of the definitions are given for the parametric interpolation. For a
functional interpolation all surfaces can be constructed with the coordinates with the same
plane and no reparameterization is required (except the reparameterization between the
local and barycentric coordinate systems).

5.2 The Algorithm

The idea of the algorithm is to construct the sub-surfaces of the triangular blending scheme
by splitting the surfaces constructed with respect to the edges, and construct the edge
surfaces by blending adjacent vertex surfaces. Thus the algorithm contains five steps:

1. For each vertex V , construct a local coordinate system FV and the surface SV .

2. For each edge E = {V0, V1}, construct a local coordinate system FE and reparame-
terize the surfaces SV0 and SV1 to obtain SV0

E and SV1
E .

3. For each edge E = {V0, V1}, construct the surface SE = S{V0,V1} by blending SV0
E and

SV1
E .

4. For each face F = {V0, V1, V2}, construct a barycentric coordinate system FF and

reparameterize the surfaces S{V0,V1}, S{V1,V2}, and S{V2,V0} to obtain S
{V0,V1}
F , S

{V1,V2}
F ,

and S
{V2,V0}
F .

5. For each face F = {V0, V1, V2}, construct the surface SF = S{V0,V1,V2} by blending

S
{V0,V1}
F , S

{V1,V2}
F , and S

{V2,V0}
F .
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S{V0,V1}V0
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Figure 5.1: The construction of an edge surface.

The construction process of the edge surfaces and face surfaces are illustrated in Fig-
ure 5.1 and Figure 5.2. In Figure 5.1, the edge labelled red is the edge that the surface
is constructed for, and the mesh on the left shows its two vertices and their neighbours.
The green and blue polygons are the vertex surfaces constructed for the two vertices of
the edge in the first step, and the darker portions are the surface pieces that are blended
in the next step. The construction of the edge surface is completed by blending these two
darker portions, giving the red quadrilateral on the right of Figure 5.1.

Now we combine three edge patches to obtain the surface patch for the triangle in the
mesh. Figure 5.2 shows the mesh triangle (in the center) and the three edge patches to be
blended, where the darker portions of the three edge patches are what get blended in step
5.

Then the output of the algorithm is the combination of all face surfaces SF . For each
step of the algorithm, there are multiple ways to construct surfaces or reparameterizations
that satisfy the conditions. In the following sections an example is provided for each step.

5.2.1 Vertex Surface Construction

The first step is to construct a surface for each vertex. To meet the minimal requirements
of the scattered data interpolation problem, the surface constructed in this step should
interpolate the location and the normal of the vertex. Additional requirements are im-
posed that the surface interpolates the locations of all neighbours of the vertex. Satisfying
this second condition is optional but improves the shape of the resulting surface of the
algorithm.
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Figure 5.2: The construction of a face surface.
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Figure 5.3: A vertex and its adjacent elements.
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Consider a vertex V and its neighbours shown in Figure 5.3. Let n be the number
of neighbours of V , and V0, V1, . . . , Vn−1 be the neighbours of V located counter-clockwise
around V with respect to the normal of V . The coordinate system FV of the vertex V is
constructed by the following steps.

� Let the location of V be the origin of FV .

� Let the direction of the normal of V be the direction of the z-axis of FV .

� Let the direction from V to the projection of V0 onto the xy-plane be the direction of
the x-axis of FV , and the direction of the y-axis of FV be the direction of the x-axis
rotated by 90 degrees counter-clockwise.

� Let the length between V and the projection of V0 be the unit length of FV .

Then FV is determined, and the locations and normals of the vertices with respect to
FV are known. To construct a surface that interpolates these vertices, the Polynomial
Least [1] [9] is used to build the surface SV (x, y). The Polynomial Least constructs a
surface functionally that interpolates positions and derivatives in an error minimizing way.
Here the Least is used to interpolate the positions of V and Vi and the normal at V all
specified relative to FV .

5.2.2 Vertex to Edge Reparameterization

The second step is to construct a local coordinate system for each edge, and reparameterize
the surfaces constructed in the first step by these coordinate systems. Consider an edge
E = {V0, V1} and its neighbours as shown in Figure 5.4. Without loss of generality, assume
that V0 is the head of E and V1 is the tail of E. Let V2 and V3 be their neighbours on each
side of E. With the method described in the first step, construct two surface SV0 and SV1

for the vertices V0 and V1.

The difference between the surfaces of the vertices and the surfaces of the edges is
that the vertex surfaces are constructed functionally, but the edge surfaces are constructed
parametrically. Thus the coordinate systems of the edges are not placed in the space of
the data mesh. So the only restrictions for the coordinate system of an edge E are:

� The origin (0, 0) is mapped to the head of the edge (V0).

� The point (0, 1) is mapped to the tail of the edge (V1).
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Figure 5.4: An edge and its adjacent elements.

Then the reparameterizations between the coordinate systems of the vertices and the edges
satisfy the following conditions.

� The projection of the edge in the coordinate system of the vertex is mapped to the
segment from (0, 0) to (0, 1) in the coordinate system of the edge.

� The reparameterization is linear.

For example, consider the vertex V0. Let (xhead, yhead) and (xtail, ytail) denote the loca-
tions of the head and the tail of the edge E in FV0 . Then

rE,V0(x, y) = (xhead + x(ytail − yhead) + y(xtail − xhead),
yhead + x(xhead − xtail) + y(ytail − yhead)),

(5.4)

and the reparameterized surface of V0 is

SV0
E (x, y) = SV0(rE,V0(x, y)). (5.5)

By the same method the surface SV1
E can be constructed.

5.2.3 Edge Surface Construction

The third step is to construct the surfaces of the edges. Consider the edge E shown in
Figure 5.4. The edge surface SE is constructed by blending with two sub-surfaces. With
SV0
E and SV1

E constructed in the second step, the surface SE is

SE(x, y) = f 2,d
0 (x, y)SV0

E (x, y) + f 2,d
1 (x, y)SV1

E (x, y), (5.6)
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Figure 5.5: A face and its adjacent elements.

where f 2,d
0 and f 2,d

1 are defined in Definition 3.4 with n = 2, and pi is

p0(x, y) = y,
p1(x, y) = 1− y.

(5.7)

5.2.4 Edge to Face Reparameterization

The fourth step is to construct a barycentric coordinate system for each face, and repa-
rameterize the surfaces constructed in the third step by these coordinate systems. Con-
sider a face F = {V0, V1, V2} and its neighbours as shown in Figure 5.5. E0 = {V0, V1},
E1 = {V1, V2}, and E2 = {V2, V0} are the edges of the face. With the method described in
the third step, construct three surfaces SE0 , SE1 , and SE2 for the edges E0, E1, and E2.

Without loss of generality, let the barycentric coordinate system satisfy the following
conditions.

� The point (1, 0, 0) is mapped to the vertex V0.

� The point (0, 1, 0) is mapped to the vertex V1.

� The point (0, 0, 1) is mapped to the vertex V2.

Then reparameterize the surface of each edge of E0, E1, and E2. For example, Figure 5.6
shows FE0 constructed in the second step. Choose a point V ′

2 such that the triangle
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Figure 5.6: The coordinate system of E0.

△V0V1V
′
2 in FE0 is similar to the triangle △V0V1V2 in the data mesh. Let (xV0 , yV0),

(xV1 , yV1), and(xV ′
2
, yV ′

2
) denote the locations of V0, V1, and V ′

2 in FE0 . Then

rF,E0(u, v) = (uxV0 + vxV1 + (1− u− v)xV ′
2
,

uyV0 + vyV1 + (1− u− v)yV ′
2
),

(5.8)

and the reparameterized surface of E0 is

SE0
F (u, v) = SE0(rF,E0(u, v)). (5.9)

By the same method the surface SE1
F and SE2

F can also be constructed.

5.2.5 Face Surface Construction

The last step is to construct the surfaces of the faces. Consider the face F shown in
Figure 5.5. The edge surface SE is constructed by a surface blending with three targets.
With SE0

F , SE1
F , and SE2

F constructed in the fourth step, the surface SF is

SF (u, v) =
2∑

i=0

f 3,d
i (u, v)SEi

F (u, v), (5.10)

where f 3,d
0 , f 3,d

1 , and f 3,d
2 are the triangular blending functions defined in Chapter 4.
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5.3 Surface Continuity

In this section the continuity of the resulting surface constructed by the algorithm described
in Section 5.2 is specified and the corresponding proofs are given.

The analyses are based on the location of the points on the surface. There are three
kinds of continuity to be discussed.

� Face continuity: the continuity at points located inside the triangles.

� Edge continuity: the continuity at points located on the boundaries.

� Vertex continuity: the continuity at points located at the corners.

5.3.1 Face Continuity

For the triangular blending scheme, the interior part of the blended result is Cd-continuous
if the three sub-surfaces are Cd-continuous. For the binary blending scheme, the blended
result is Cd-continuous if the two sub-surfaces are Cd-continuous. For each vertex, the
vertex surfaces are constructed by a polynomial interpolation scheme, and it is always C∞-
continuous. Thus the resulting surface of the algorithm is always at least Cd-continuous
inside the triangles.

5.3.2 Edge Continuity

For a point located on a boundary between two blended results, the resulting surface
is parametrically continuous at the point with respect to the coordinate system of the
corresponding edge.

Theorem 5.1. For each edge E of the data mesh, the resulting surface constructed by
the blending algorithm in Section 5.2 is Cd-continuous across the corresponding boundary
(excluding the endpoints) of E, with respect to FE.

Proof. Without loss of generality, consider the edge E0 and the face F shown in Figure 5.5.
By Section 5.2.5, the resulting surface with respect to F is

SF (u, v) =
2∑

i=0

f 3,d,t
i (u, v)SEi

F (u, v). (5.11)
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Reparametrize SF with respect to FE0 by the inverse function rE0,F of rF,E0 given in
Equation 5.8:

SF
E0
(x, y) =

2∑
i=0

f 3,d,t
i (rE0,F (x, y))SEi

F,E0
(x, y). (5.12)

Let t′i(x, y) = ti(r
E0,F (x, y)) and t′ = (t′0, t

′
1, t

′
2), then for i ∈ {0, 1, 2},

f 3,d,t
i (rE0,F (x, y)) = f 3,d,t′

i (x, y). (5.13)

Furthermore,

SF
E0
(x, y) =

2∑
i=0

f 3,d,t′

i (x, y)SEi
F,E0

(x, y). (5.14)

Thus the surface SF
E0

can be considered as a blended result of a d-th triangular blending
scheme with respect to the inheritance indicators t′. Since the reparameterization between
F and E0 interpolates the boundary of E0, then t′0(x, y) = 0 and qt

′
(x, y) = 1 when (x, y)

is located on that boundary excluding the endpoints. Then by Proposition 3.9, for all
integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
SF
E0
(x, y) =

da+b

dxadyb
SE0
F,E0

(x, y) =
da+b

dxadyb
SE0(x, y), (5.15)

for all (x, y) on the boundary of E0.

By the same method, the surface with respect to another adjacent face also has the same
d-th derivatives with respect to FE0 . Then the two surfaces are joined with Cd-continuity.
That result also holds for the other two edges of the face and the other faces.

Since the surface is Cd-continuous across the boundaries, then it is also known that
the surface has continuous normals (with d ≥ 1) and continuous curvatures (with d ≥ 2)
across the boundaries.

5.3.3 Vertex Continuity

The algorithm introduced in this chapter does not construct surfaces that have Cd-continuity
at the corners. However the normals and curvatures exist.
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Theorem 5.2. For each vertex V of the data mesh, the resulting surface constructed by the
blending algorithm in Section 5.2 has continuous normals at V if d ≥ 1, and has continuous
curvatures at V if d ≥ 2.

Proof. When d ≥ 1, the surface of an edge inherits the first order derivatives from two
vertex surfaces at two corners respectively, then the surface inherits the normals. Then
for the surfaces of faces, at a corner the two adjacent sub-surfaces share the same normals
since they inherit the normal from the same vertex. Thus the normal at that corner of the
face surface exists and it is equal to the normal of the corresponding vertex surface at the
vertex point. Furthermore all face surfaces around the vertex share the same normal, so
the normals are continuous at V .

By the same method, the result holds for curvatures when d ≥ 2.

5.4 Comparison to Nielson’s Results

To show the differences between the new triangular blending scheme and Nielson’s scheme,
I compared the results constructed by the new algorithm in this chapter and the algorithm
formed by Nielson’s scheme. The examples of the new algorithm are constructed with
different order of continuity (with d = 0, d = 1, and d = 2). The ellipsoid and perturbed
mesh shown in Figure 5.7 are used as the inputs.

For the ellipsoid mesh, Figure 5.8 and Figure 5.9 shows the surfaces constructed by
the four methods, and Figure 5.10 shows scaled views of them. While Nielson’s method
appears to have better shape, note that the curvature discontinuities are higher in Nielson’s
method than in the surface constructed with the G1 (d = 1) new algorithm.

For the perturbed mesh, Figure 5.11 and Figure 5.12 shows the surfaces constructed
by the four methods, and Figure 5.13 shows scaled views of them. For this example, the
surface constructed by the G1 (d = 1) new algorithm has both better shape and curvature
plots.

Notice that for the new algorithm with d = 1, the results constructed areG1-continuous,
and the isophotes are just C0-continuous. However with the new algorithm the G1 surface
is very close to be G2, so the kinks in the isophotes are hard to see in the figure. In the
scaled images shown in part (b) of Figure 5.10 and Figure 5.13, such kinks can be seen in
Nielson’s scheme, although they are still hard to see in the G1 new algorithm.

Further examples of surfaces constructed using my scheme and algorithm are given in
Chapter 8. Note that Nielson’s scheme is restricted to triangular meshes. As we will see
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(a) (b)

Figure 5.7: The input mesh for scheme comparison; (a) ellipsoid; (b) perturbed.

in Chapter 7 and Chapter 8, my scheme and algorithm can be generalized to multi-sided
faces.

5.5 Summary

In this chapter I presented the complete process of the triangular surface blending al-
gorithm, and show that the algorithm constructs surfaces with continuous normals and
curvature. Currently the order of continuity is limited to 2. Then I compared some exam-
ples provided by this algorithm with Nielson’s results. In the next chapter I will show that
the continuity can be improved to the parametric continuity with arbitrary order.
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(a) (b)

(c) (d)

Figure 5.8: The shaded images of the surfaces constructed for the ellipsoid mesh; (a)
improved algorithm with d = 0; (b) improved algorithm with d = 1; (c) improved algorithm
with d = 2; (d) Nielson’s algorithm.
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(a) (b)

(c) (d)

Figure 5.9: The curvature plots and isophotes of the surfaces constructed for the ellipsoid
mesh; (a) improved algorithm with d = 0; (b) improved algorithm with d = 1; (c) improved
algorithm with d = 2; (d) Nielson’s algorithm.
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(a) (b)

(c) (d)

Figure 5.10: The scaled views of the curvature plots and isophotes of the surfaces con-
structed for the ellipsoid mesh; (a) improved algorithm with d = 0; (b) improved algorithm
with d = 1; (c) improved algorithm with d = 2; (d) Nielson’s algorithm.
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(a) (b)

(c) (d)

Figure 5.11: The shaded images of the surfaces constructed for the perturbed mesh; (a)
improved algorithm with d = 0; (b) improved algorithm with d = 1; (c) improved algorithm
with d = 2; (d) Nielson’s algorithm.
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(a) (b)

(c) (d)

Figure 5.12: The curvature plots and isophotes of the surfaces constructed for the perturbed
mesh; (a) improved algorithm with d = 0; (b) improved algorithm with d = 1; (c) improved
algorithm with d = 2; (d) Nielson’s algorithm.
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(a) (b)

(c) (d)

Figure 5.13: The scaled views of the curvature plots and isophotes of the surfaces con-
structed for the perturbed mesh; (a) improved algorithm with d = 0; (b) improved algo-
rithm with d = 1; (c) improved algorithm with d = 2; (d) Nielson’s algorithm.
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Chapter 6

Parametric Continuity Improvement

The d-th triangular algorithm provided in Chapter 5 constructs surfaces only with contin-
uous normals when d ≥ 1 or curvatures when d ≥ 2 at the locations of the vertices. In
this chapter the conditions of parametric continuity and an extended algorithm are devel-
oped. The surfaces constructed by the extended algorithm are parametrically continuous
everywhere.

This chapter focuses on parametric interpolation, although the results hold for func-
tional interpolation without modification.

In Chapter 5, I proved that the surfaces constructed by the blending algorithm are
parametrically continuous on the edges. Also the continuity properties always hold in the
interior part of each blended result. What remains is to show the parametric continuity
at the vertices. The goal of this chapter is to show that the resulting surfaces are para-
metrically continuous at the vertices, with respect to the coordinate system of each vertex.
A major problem is that with the current reparameterization function in the algorithm,
the derivatives do not exist at the vertices, and the surface is not well-defined at other
locations, with respect to the coordinate system of vertices. So the first task is to update
the reparameterization functions.

Parametric continuity at the vertices is obtained in a way similar to Theorem 5.1. The
proof of this theorem shows that a piece of blended result reparameterized by the coordinate
system of a chosen element has the same derivatives with respect to that coordinate system.
Thus all adjacent blended results have the same derivatives and are joined with parametric
continuity. For a single piece of the blended result, the construction and proof of parametric
continuity contains three steps:

1. Choose an element from the data mesh as the base.
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V2

V0

V1

E0

E1

E2

F

Figure 6.1: The layout of a face and its neighbours.

2. Reparameterize the blended result and its sub-surfaces by the coordinate system of
the chosen element.

3. Show that the reparameterized sub-surfaces satisfy the conditions of the triangular
blending scheme. Then the reparameterized blended result inherits the derivatives
from one of sub-surfaces.

For the first step, the element chosen is the vertex itself. The second step is more involved,
since the vertices and faces are not parametrically adjacent. That means the surfaces
parameterized by the coordinate systems of the faces cannot be reparameterized by the
coordinate system of the vertices directly. An intermediate element is required to establish
that reparameterization. For a vertex and one of its adjacent faces, the possible interme-
diate elements are the two adjacent edges. The choice of the edge for each sub-surface
depends on the corresponding derivatives.

Consider the elements shown in Figure 6.1. In the following analyses the relationship
between the derivatives of the blended result with respect to the face F reparameterized
by FV0 and the surface of V0 are considered. Without loss of generality, assume that V0

is the head of both E0 and E2. Then Proposition 6.1 shows that the surface of an edge
reparameterized by the coordinate system of an adjacent vertex has the same derivatives
as the surface of that vertex.

Proposition 6.1. The surface SE of an edge E constructed in Section 5.2.3 has the same
derivatives of order less than or equal to d as the surface SV of an adjacent vertex V
constructed in Section 5.2.1 with respect to FV at the point of the vertex.
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Proof. Without loss of generality, consider the edge E0 in Figure 6.1. Constructing the
surface SE0(x, y) with the method in Section 5.2.3 gives

SE0(x, y) = f 2,d,b
0 (x, y)SV0

E0
(x, y) + f 2,d,b

1 (x, y)SV1
E0
(x, y). (6.1)

Reparameterizing SE0 by FV0 , the reparameterized surface is

SE0
V0
(x, y) = f 2,d,b

0 (rV0,E0(x, y))SV0(x, y) + f 2,d,b
1 (rV0,E0(x, y))SV1

E0,V0
(x, y). (6.2)

Let b′0(x, y) = b0(r
V0,E0(x, y)), b′1(x, y) = b1(r

V0,E0(x, y)), and b′ = (b′0, b
′
1), then

f 2,d,b
0 (rV0,E0(x, y)) = f 2,d,b′

0 (x, y),

f 2,d,b
1 (rV0,E0(x, y)) = f 2,d,b′

1 (x, y).
(6.3)

Furthermore,

SE0
V0
(x, y) = f 2,d,b′

0 (x, y)SV0(x, y) + f 2,d,b′

1 (x, y)SV1
E0,V0

(x, y). (6.4)

Thus the surface SE0
V0

is a blend of a d-th binary blending scheme with respect to the
inheritance indicators t′. Since the reparameterization between E0 and V interpolates the
point of V0, then b′0(V0) = 0 and qb

′
(V0) = 1. Then by Proposition 3.9, for all integers

0 ≤ a+ b ≤ d,
da+b

dxadyb
SE0
V0
(V0) =

da+b

dxadyb
SV0(V0). (6.5)

Then by Section 5.2.5, the blended result of F is

SF (u, v) =
2∑

i=0

f 3,d,t
i (u, v)SEi

F (u, v). (6.6)

Now reparameterize SF with respect to FV0 . Since V0 and F are not adjacent,

� reparametrize the sub-surface SE0
F via the path E0 → F → E0 → V0.

� reparametrize the sub-surface SE1
F via one of the paths E0 → F → E0 → V0 and

E2 → F → E2 → V0. Without loss of generality, choose E0 → F → E0 → V0.
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Figure 6.2: The elements inside the domain of V0.

� reparametrize the sub-surface SE2
F via the path E2 → F → E2 → V0.

Thus by Proposition 6.1, the reparametrized sub-surface SE0
V0

and SE2
V0

have the same deriva-
tives at V0.

da+b

dxadyb
SE0
V0
(V0) =

da+b

dxadyb
SV0(V0) =

da+b

dxadyb
SE2
V0
(V0). (6.7)

The two surfaces are d-th matched at this corner. However the blended result SF is
reparametrized by the triangular domain T of the face F . Thus, most of the time the
reparameterization functions rF,E0,V0 and rF,E2,V0 are not the same. That means the corre-
sponding triangular portions in the domain of V0 do not match.

Figure 6.2 shows the face F inside the domain of V0, as well as the two different repa-
rameterization results of the domain of F via different paths. With respect to Section 5.2.2
and Section 5.2.4, the triangular domain T of the face F is mapped to the green triangle
△V0V1V

′
2 by the reparameterization function rF,E0,V0 , and T is mapped to the red trian-

gle △V0V
′
1V2 by rF,E2,V0 . In that case the only point matched is the point of V0, and

the reparametrized blended result is well-defined only at that point, and the derivatives
are meaningless. To make the derivatives meaningful, the reparametrized blended result
should be well-defined at least in an open set that includes the point of V0.

To meet such a requirement, there are two possible methods:

� Choose a portion in the domain of V0 and do two additional reparameterizations from
that portion to both the green and red triangles.
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� Modify the reparameterization process to force the two mappings rF,E0,V0 and rF,E2,V0

to match in an open set that includes the point of V0.

The first method constructs resulting surfaces with parametric continuity only at the
location of the vertex (with respect to the coordinate system of the vertex). The second
method extends the continuous area to an open set containing the vertex.

6.1 Vertex Continuity Method

In this section the first reparameterization method is used. In Figure 6.2, the triangle
△V0V1V2 is chosen as the corresponding matched portion. However the reparameterizations
from the triangle △V0V1V2 to the green triangle △V0V1V

′
2 or the red triangle △V0V

′
1V2 do

not keep the derivatives at the point of V0. The reparameterization in Section 5.2.4 is
modified to solve the problem as detailed in Section 6.1.1.

The new algorithm provided in this section is called the improved triangular blending
algorithm with vertex continuity.

6.1.1 Modified Edge to Face Reparameterization

In this section an example of the reparameterization between the edge E2 and the face F
is given. Figure 6.3 shows FE2 constructed in the algorithm. The point V ′

1 is the point
obtained by mapping the location of V1 in FV0 to FE2 with the reparameterization function
rV0,E2 , and the point V ′′

1 is the point obtained by mapping the location of V1 in FV2 to FE2

with the reparameterization function rV2,E2 . Recall that most of the time V ′
1 and V ′′

1 are
not the same.

Notice that the triangle △V0V
′
1V2 is mapped to the blue triangle △V0V1V2 in Figure 6.2,

in FV0 . So if the domain T of the face F is mapped to △V0V
′
1V2 then it is also mapped

to the blue triangle △V0V1V2 in FV0 . Such a reparameterization satisfies the conditions
in FV0 , however it does not satisfy the corresponding conditions of V2. A reparameteri-
zation satisfying the conditions of both vertices V0 and V2 is required. To obtain such a
reparameterization, a binary blending is used.

Let (xV0 , yV0), (xV ′
1
, yV ′

1
), (xV ′′

1
, yV ′′

1
), and (xV2 , yV2) denote the locations of V0, V

′
1 , V

′′
1 ,

and V2 in FE2 . Then define two sub-functions rF,E2

V0
and rF,E2

V2
as

rF,E2

V0
(u, v) = (uxV0 + vxV ′

1
+ (1− u− v)xV2 ,

uyV0 + vyV ′
1
+ (1− u− v)yV2),

(6.8)
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Figure 6.3: The elements inside the domain of E2.

and
rF,E2

V2
(u, v) = (uxV0 + vxV ′′

1
+ (1− u− v)xV2 ,

uyV0 + vyV ′′
1
+ (1− u− v)yV2).

(6.9)

Then the modified reparameterization function rF,E2 is

rF,E2(u, v) = f 2,d,br

0 (u, v)rF,E2

V0
(u, v) + f 2,d,br

1 (u, v)rF,E2

V2
(u, v), (6.10)

where br = (br0, b
r
1), and br0 and br1 are defined as

br0(u, v) = 1− u− v

2
,

br1(u, v) = u+
v

2
.

(6.11)

Then by Proposition 3.9, rF,E2 inherits the derivatives of order less than or equal to d from
the sub-function rF,E2

V0
at the point of V0, and inherits the derivatives of order less than or

equal to d from the sub-function rF,E2

V2
at the point of V2.

Then in Figure 6.4, the red portion is the result of mapping the triangular domain T
of the face F by the modified rF,E2,V0 . The reparameterization from the red portion to the
blue triangle in Figure 6.2 does not change the derivatives at the point of V0.
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Figure 6.4: The elements inside the domain of V0.

6.1.2 Improved Vertex Continuity

With the modified reparameterization functions, for a point located at a corner of the
faces, the resulting surface is parametrically continuous at the point with respect to the
coordinate system of the corresponding vertex.

Theorem 6.1. For each vertex V of the data mesh, the resulting surface constructed by
the blending algorithm in Section 5.2 with the reparameterization function in Section 6.1.1
is Cd-continuous at the corresponding point of V , with respect to FV .

Proof. Without loss of generality, consider the vertex V0 and the face F shown in Figure 6.1,
and its image in the domain of V0 shown in Figure 6.2. By Section 5.2.5, the resulting
surface with respect to F is

SF (u, v) =
2∑

i=0

f 3,d,t
i (u, v)SEi

F (u, v). (6.12)

Reparameterize SF with respect to FV0 . Let rE0 denote the reparameterization from
the triangle of F to the modified green portion, and rE2 denote the reparameterization
from the blue triangle to the modified red portion. Let SF

∼V0
denote the reparametrized

blended result, then

SF
∼V0

(x, y) = f 3,d,t
0 (rV0,E0,F (rE0(x, y)))SE0

V0
(x, y)+

f 3,d,t
1 (rV0,E0,F (rE0(x, y)))SE1

F,E0,V0
(x, y)+

f 3,d,t
2 (rV0,E2,F (rE2(x, y)))SE2

V0
(x, y).

(6.13)
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A new inheritance indicator t′ is defined as

t′0(x, y) = t0(r
V0,E0,F (rE0(x, y))),

t′1(x, y) = t1(r
V0,E0,F (rE0(x, y))),

t′2(x, y) = t2(r
V0,E2,F (rE2(x, y))),

(6.14)

and t′ = (t′0, t
′
1, t

′
2), then

SF
∼V0

(x, y) = f 3,d,t′

0 (x, y)SE0
V0
(x, y)+

f 3,d,t′

1 (x, y)SE1
F,E0,V0

(x, y)+

f 3,d,t′

2 (x, y)SE2
V0
(x, y).

(6.15)

Thus the surface SF
∼V0

can be considered as a blended result of a d-th triangular blending
scheme with respect to the inheritance indicators t′. Since all reparameterizations interpo-
late the point of V0, then t′0(V0) = 0, t′2(V0) = 0, and qt

′
(V0) = 2. Then by Proposition 6.1,

da+b

dxadyb
SE0
V0
(V0) =

da+b

dxadyb
SV0(V0) =

da+b

dxadyb
SE2
V0
(V0). (6.16)

Then by Proposition 3.16, for all integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
SF
∼V0

(x, y) =
da+b

dxadyb
SV0(x, y). (6.17)

By the same method, the surface with respect to other adjacent faces also has the same
d-th derivatives with respect to FV0 . Then all surfaces are joined with Cd-continuity. This
continuity result holds for the other two vertices of the face and the other faces.

6.2 Open Set Method

In many analyses the local parametric continuity at a singular point is not sufficient.
Most of the time the continuity inside an open set around the point is desired. The
parametric continuity conditions of the vertices are extended in this section. The edge to
face reparameterization is updated once more, and for each vertex, the resulting surface is
parametrically continuous inside an open set around it.

The new algorithm provided in this section is called the improved triangular blending
algorithm with open set continuity.
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Figure 6.5: The layout of a face and its neighbours.

6.2.1 Modified Edge to Face Reparameterization

Consider the elements shown in Figure 6.1. In Section 6.1.1, the reparameterization guar-
antees that the derivatives of rV0,E0,F and rV0,E2,F match at the point of V0. In this section
the reparameterization makes rV0,E0,F and rV0,E2,F have the same values inside an open set
around the point of V0.

As shown in Figure 6.6, the meanings of V0, V
′
1 , V

′′
1 , and V2 are the same as in Fig-

ure 6.3. Then the points Va, Vb, Vc, and Vd are the three equal points of the segment
V0V

′
1 , V0V2, and V2V

′′
1 . The combination of the areas shaded by red, blue, and green is the

desired reparameterization image of the triangular domain T shown in Figure 6.5. The
shaded areas in T are mapped to the areas with the same colors. Particularly the red and
blues portions should be mapped uniformly to guarantee the equality of the two reparam-
eterization functions for each vertex. Furthermore the green portion should be joined with
the red and blue portions with Cd-continuity. This reparameterization can be constructed
with a binary blending scheme.

Let (xV0 , yV0), (xV ′
1
, yV ′

1
), (xV ′′

1
, yV ′′

1
), and (xV2 , yV2) denote the locations of V0, V

′
1 , V

′′
1 ,

and V2 in FE2 . Then define two sub-functions rF,E2

V0
and rF,E2

V2
as

rF,E2

V0
(u, v) = (uxV0 + vxV ′

1
+ (1− u− v)xV2 ,

uyV0 + vyV ′
1
+ (1− u− v)yV2),

(6.18)

and
rF,E2

V2
(u, v) = (uxV0 + vxV ′′

1
+ (1− u− v)xV2 ,

uyV0 + vyV ′′
1
+ (1− u− v)yV2).

(6.19)
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Figure 6.6: The elements inside the domain of E2.

Then the modified reparameterization function rF,E2 is

rF,E2(u, v) = rF,E2

V0
(u, v), if u+ v <

1

3
,

rF,E2(u, v) = rF,E2

V2
(u, v), if v >

2

3
,

rF,E2(u, v) = f 2,d,br

0 (u, v)rF,E2

V0
(u, v) + f 2,d,br

1 (u, v)rF,E2

V2
(u, v), otherwise.

(6.20)

where br = (br0, b
r
1), and br0 and br1 are defined as

br0(u, v) = u+ v − 1

3
,

br1(u, v) =
2

3
− v.

(6.21)

Then by Proposition 3.9, rF,E2 inherits the derivatives of order less than or equal to d from
the sub-function rF,E2

V0
at the point of V0, and inherits the derivatives of order less than or

equal to d from the sub-function rF,E2

V2
at the point of V2.

6.2.2 Improved Continuity Around the Vertex

The continuity inside the open set is shown in this section. If the surface piece is Cd-
continuous with respect to the face domain T , then it is also Cd-continuous with respect to
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the barycentric coordinate system of the vertex since that coordinate system is now well-
defined. Also the proof of parametric continuity at the vertex is the same as in Section 6.1.2,
as shown in Theorem 6.2.

Theorem 6.2. For each vertex V of the data mesh, the resulting surface constructed by
the blending algorithm in Section 5.2 with the reparameterization function in Section 6.2.1
is Cd-continuous at the corresponding point of V , with respect to FV .

Proof. Same as the proof of Theorem 6.1 in Section 6.1.2.

The last step is to show the result for the edges. This proof for the edges is similar to
the proof in Section 5.3.2.

Theorem 6.3. For each vertex V of the data mesh, the resulting surface constructed by
the blending algorithm in Section 5.2 with the reparameterization function in Section 6.2.1
is Cd-continuous on the boundaries of the edges adjacent to the vertex, with respect to FV .

Proof. Without loss of generality, consider the edge E0 and the face F shown in Figure 6.1.
By Section 5.2.5, the resulting surface with respect to F is

SF (u, v) =
2∑

i=0

f 3,d,t
i (u, v)SEi

F (u, v). (6.22)

Reparametrize SF with respect to FV0 by the function rV0,E0,F :

SF
E0,V0

(x, y) =
2∑

i=0

f 3,d,t
i (rV0,E0,F (x, y))SEi

F,E0,V0
(x, y). (6.23)

Let t′i(x, y) = ti(r
V0,E0,F (x, y)) and t′ = (t′0, t

′
1, t

′
2), then for i ∈ {0, 1, 2},

f 3,d,t
i (rV0,E0,F (x, y)) = f 3,d,t′

i (x, y). (6.24)

Furthermore,

SF
E0,V0

(x, y) =
2∑

i=0

f 3,d,t′

i (x, y)SEi
F,E0,V0

(x, y). (6.25)

Thus the surface SF
E0,V0

can be considered as a blended result of a d-th triangular
blending scheme with respect to the inheritance indicators t′. Since the reparameterization
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between F and E0 interpolates the boundary of E0, then t′0(x, y) = 0 and qt
′
(x, y) = 1 when

(x, y) is located on the that boundary excluding the endpoints. Then by Proposition 3.9,
for all integers 0 ≤ a+ b ≤ d,

da+b

dxadyb
SF
E0,V0

(x, y) =
da+b

dxadyb
SE0
F,E0,V0

(x, y) =
da+b

dxadyb
SE0
V0
(x, y), (6.26)

for all (x, y) on the boundary of E0.

By the same method, the surface with respect to another adjacent face also has the
same d-th derivatives with respect to FV0 . Then the two surfaces are joined with Cd-
continuity.

6.3 Summary

In this chapter I gave two methods to modify the reparameterization functions of the tri-
angular surface blending algorithm, and call these two modified algorithms the improved
triangular blending algorithm with vertex continuity and improved triangular blending al-
gorithm with open set continuity. Both methods construct surfaces that are parametrically
continuous at each point. The difference is that for a vertex of the input, the surfaces of
the first algorithm are parametrically continuous only at the vertex itself, but the surfaces
of the second algorithm are parametrically continuous inside an open set that includes the
vertex.
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Chapter 7

Multi-Sided Extension

In this chapter the scheme and algorithm for the case when the blended terms n is not
restricted to 3 is discussed. In that case the scheme and algorithm can be used to process
multi-sided inputs. The new results are still based on Chapter 3, so the behaviours of the
multi-sided scheme and algorithm are similar to the triangular ones. The differences are
listed in the following sections.

7.1 Multi-Sided Blending Scheme

For the multi-sided case, the blending domain T is defined with n ≥ 3 in Definition 7.1.

Definition 7.1. An n-sided blending domain T is a closed subset of the local coordinate
system that is formed by n points {P0, P1, . . . , Pn−1} and n boundaries {B0, B1, . . . , Bn−1}.
For each i ∈ {0, 1, . . . , n − 2}, the two endpoints of Bi are Pi and Pi+1, and the two
endpoints of Bn−1 are Pn−1 and P0.

Since the number of boundaries may be larger than three, the face domain cannot be
parameterized by a barycentric coordinate system. So for the multi-sided case, all surfaces
are parameterized by local coordinate systems.

Consider the face domain T inside the corresponding local coordinate system. In this
chapter it is assumed that the boundaries of T are all straight, and the polygon formed by
these boundaries is convex. (Although there is no such requirement for the data meshes,
and the vertices of a face do not even have to be co-planar. The only assumption is that
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Figure 7.1: An example of the multi-sided inheritance indicators.

the projection of the faces into some plane are convex). Thus a new set of inheritance
indicators can be defined by

Definition 7.2. The n-sided inheritance indicators m = (m0,m1, . . . ,mn−1) with respect
to T are defined as for each i ∈ N , mi(x, y) is the Euclidean distance from (x, y) to the
boundary Bi.

Figure 7.1 shows an example of the multi-sided inheritance indicators.

Then by Definition 3.2, for each point in T , the corresponding value of the inherited
terms qm is known, and the corresponding blending functions fn,d,m

i for i ∈ N are also
known by Definition 3.4. This leads to the following theorem.

Theorem 7.1. For n vertices V0, V1, . . . , Vn−1, if the sub-surfaces S0, S1, . . . , Sn−1 satisfy
the conditions

� S0 interpolates the locations and normals of V0 and V1.

� S1 interpolates the locations and normals of V1 and V2.

� S2 interpolates the locations and normals of V2 and V3.

� . . .

� Sn−2 interpolates the locations and normals of Vn−2 and Vn−1.

� Sn−1 interpolates the locations and normals of Vn−1 and V0.
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then the blended result S

Sn,d,m(x, y) =
∑
i∈N

fn,d,m
i (x, y)Si(x, y) (7.1)

is well-defined. Then on each edge E = {Vi, Vi+1} where i ∈ {0, 1, . . . , n − 2}, Sn,d,m has
the same location and normal as the sub-surface Si, and on the edge E = {Vn−1, V0}, Sn,d,m

has the same location and normal as the sub-surface Sn−1. At last at each vertex Vi where
i ∈ {1, 2, . . . , n− 1}, Sn,d,m has the same location and normal as the sub-surfaces Si−1 and
Si, and at the vertex V0, S

n,d,m has the same location and normal as the sub-surfaces Sn−1

and S0.

Proof. The result can be obtained by the methods used in the proofs of Theorem 4.2 and
Theorem 4.3.

7.2 Multi-Sided Algorithm

The multi-sided blending algorithm has the same five steps as for the triangular algorithm
given in Section 5.2. The first three steps are same as the triangular case, but the last two
steps need to be updated since the face surfaces are now parameterized by local coordinate
systems.

1. For each vertex V , construct a local coordinate system FV and the surface SV .

2. For each edge E = {V0, V1}, construct a local coordinate system FE and reparame-
terize the surfaces SV0 and SV1 to obtain SV0

E and SV1
E .

3. For each edge E = {V0, V1}, construct the surface SE = S{V0,V1} by blending SV0
E and

SV1
E .

4. For each face F = {V0, V1, . . . , Vn−1}, construct a local coordinate system FF and
reparameterize the surfaces S{V0,V1}, S{V1,V2}, . . . , S{Vn−2,Vn−1}, and S{Vn−1,V0} to ob-
tain S

{V0,V1}
F , S

{V1,V2}
F , . . . , S

{Vn−2,Vn−1}
F , and S

{Vn−1,V0}
F .

5. For each face F = {V0, V1, . . . , Vn−1}, construct the surface SF = S{V0,V1,...,Vn−1} by

blending S
{V0,V1}
F , S

{V1,V2}
F , . . . , S

{Vn−2,Vn−1}
F , and S

{Vn−1,V0}
F .
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Figure 7.2: The construction of an edge surface for the multi-sided case.

The construction process of the edge surfaces and faces surfaces are illustrated in Fig-
ure 7.2 and Figure 7.3. The construction is similar to the triangular case shown in Fig-
ure 5.1 and Figure 5.2. In Figure 7.2, the edge labelled red is the edge that the surface
is constructed for, and the mesh on the left shows its two vertices and their neighbours.
The green and blue polygons are the vertex surfaces constructed for the two vertices of
the edge in the first step, and the darker portions are the surface pieces that are blended
in the next step. The construction of the edge surface is completed by blending these two
darker portions, giving the red polygon on the right of Figure 7.2.

Now we need to combine multiple edge patches to obtain the surface patch for the face
in the mesh. Figure 7.3 shows the mesh face (in the center) and the edge patches to be
blended, where the darker portions of the edge patches are what get blended in step 5.

7.2.1 Edge to Face Reparameterization

A local coordinate system needs to be constructed for each face first. Consider a face
F shown in Figure 7.4. Let n be the number of adjacent vertices and edges of V , and
the vertices V0, V1, . . . , Vn−1 and the edges E0, E1, . . . , En−1 are located counter-clockwise
around F with respect to the normal of F . The coordinate system FF of the face F is
constructed by the following steps. Notice that the vertices V0, V1, . . . , Vn−1 are not required
to be co-planar.

� Let the location of the center of the vertices V0, V1, . . . , Vn−1 be the origin of FF .
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Figure 7.3: The construction of a face surface for the multi-sided case.

� Let the direction of the average of the normals of the vertices V0, V1, . . . , Vn−1 be the
direction of the z-axis of FF (it is assumed that the sum of the normals are not zero).

� Let the direction from V to the projection of V0 onto the xy-plane be the direction of
the x-axis of FF , and the direction of the y-axis of FF is the direction of the x-axis
rotated by 90 degrees counter-clockwise.

� Let the length between V and the projection of V0 be the unit length of FF .

Now reparameterize the surface of each edge. Similar to the reparameterizations be-
tween the surfaces of vertices and edges, only the edge being reparameterized needs to be
interpolated, and the reparameterization is linear. For example, consider the edge E0. Let
(xhead, yhead) and (xtail, ytail) denote the locations of the head and the tail of the edge E0

in FF . Then the vector vy = (xtail − xhead, ytail − yhead) is mapped to the y-unit vector of
FE0 , and vx = (ytail − yhead, xhead − xtail) is mapped to the x-unit vector of FE0 . For any
point (x, y) in FF , let v = (x− xhead, y − yhead), then

rF,E0(x, y) =
( v · vx
vx · vx

,
v · vy
vy · vy

)
. (7.2)
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Figure 7.4: A face and its edges.

and the reparameterized surface of E0 is

SE0
F (x, y) = SE0(rF,E0(x, y)). (7.3)

By the same method the surface of other edges can also be constructed. Then for any
i ∈ N ,

SEi
F (x, y) = SEi(rF,Ei(x, y)). (7.4)

7.2.2 Face Surface Construction

The last step is to construct the surfaces of the faces. Consider the face F shown in
Figure 7.4. The surface SF is constructed by a surface blending with n targets. With SE0

F ,

SE1
F , . . ., and S

En−1

F constructed with Equation 7.4, the surface SF is constructed by

SF (x, y) =
∑
i∈N

fn,d,m
i (x, y)SEi

F (x, y). (7.5)

7.3 Modified Edge to Face Reparameterization

This section discusses the multi-sided version of the edge to face reparameterization of
Section 6.1.1. Figure 7.5 shows the coordinate system FE that will be constructed for an
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Figure 7.5: The reparameterization from edge to face.

edge E and an adjacent face F . The point V ′
0 is the point obtained by mapping the location

of V0 in FVh to FE with the reparameterization function rVh,E, and the point V ′′
1 is the

point obtained by mapping the location of V1 in FVt to FE with the reparameterization
function rVt,E. Recall that most of the time V ′

1 and V ′′
1 are not the same.

Similar to the triangular case, two sub-reparameterizations need to be constructed. For
the first sub-reparameterization the triangle △VhV0Vt in FF should be mapped to △VhV

′
0Vt

in FE, and for the second sub-reparameterization the triangle △VtVhV1 in FF should be
mapped to △VtVhV

′
1 in FE. For any point (x, y) in FF , let (u0, v0, w0) and (u1, v1, w1)

denote its barycentric coordinates with respect the triangles △VhV0Vt and △VtVhV1 re-
spectively. Let (xVh

, yVh
), (xVt , yVt), (xV ′

0
, yV ′

0
), and (xV ′

1
, yV ′

1
) denote the locations of Vh, Vt,

V ′
0 , and V ′

1 in FE. Then define two sub-reparameterizations rF,EVh
and rF,EVt

as

rF,EVh
(x, y) = (u0xVh

+ v0xV ′
0
+ w0xVt ,

u0yVh
+ v0yV ′

0
+ w0yVt),

(7.6)

and
rF,EVt

(x, y) = (u1xVt + v1xVh
+ w1xVV ′

1
,

u1yVt + v1yVh
+ w1yVV ′

1
).

(7.7)
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Then the modified reparameterization function rF,E is

rF,E(x, y) = f 2,d,br

0 (x, y)rF,EVh
(x, y) + f 2,d,br

1 (x, y)rF,EVt
(x, y), (7.8)

where br = (br0, b
r
1), and br0(x, y) is the distance from Vh to (x, y) and br1(x, y) is the distance

from Vt to (x, y) in FF .

7.4 Summary

In this chapter I extended the surface blending scheme, the interpolation algorithm, and
the parametric modification to the multi-sided case. The surfaces constructed by the
multi-sided algorithm have the same order of continuity as the surfaces constructed by the
triangular algorithm of Section 5.2.
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Chapter 8

Examples

In Chapter 5, I gave some examples of my algorithm (more specifically, the improved
algorithm in Chapter 6) on triangular meshes to compare my scheme to Nielson’s scheme.
In this chapter I give examples of surfaces constructed by the basic algorithm in Chapter 5,
the improved algorithm in Chapter 6, and the multi-sided algorithm in Chapter 7. The
remaining examples shown in this chapter are constructed by the blending algorithm with
the blending order d = 2. With these examples I will show that the surfaces constructed
by the algorithms with d = 2 have continuous normals and curvatures. As indicated in the
chapter of the improved algorithms, the surfaces constructed by the improved algorithm
are also locally continuous. For both the triangular and the multi-sided algorithms, several
meshes as well as the corresponding shaded images, and the curvature plots as well as the
isophotes are given to show the overall shapes and the continuity of curvatures.

8.1 Basic and Improved Algorithms

When d = 2, both the basic and improved algorithms construct surfaces with continuous
curvature. The difference between these two algorithms is that the surfaces constructed
by the improved algorithm are locally parametrically continuous at the vertices. The
differences in the constructed surfaces are not obvious when the angles of the input mesh
are close to flat. On a data mesh with sharper angles, the differences between the normals
of vertices and the normals of adjacent faces are larger, and the advantages of the improved
algorithm become clear. For comparison two meshes shown in Figure 8.1 and Figure 8.3
with sharp angles are given for the triangular and multi-sided algorithms respectively.
Figure 8.2 and Figure 8.4 show the corresponding surfaces constructed by the basic and
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Figure 8.1: The triangular sharp mesh.

improved algorithms. Observe that the curvature plots of the improved algorithm do
not have the “gaps” toward the vertices. Also, the basic algorithm has a large area of
undesired negative curvature in Figure 8.4 that the improved algorithm does not have. For
the isophotes, the results of the improved algorithm have isophotes of better shapes.

Because of the superior performance of the improved algorithms, the remaining exam-
ples in this chapter will be shown using only the improved algorithms.

8.2 Examples of the Improved Algorithm

In this section examples for different meshes are presented. All examples are constructed
with the improved algorithm presented in Chapter 6 and Chapter 7 with the blending order
d = 2. Notice that all the constructed surfaces in these examples have continuous normals
and curvatures.

I start with a simple example. Figure 8.5 shows two simple triangulated grids, sampled
from the fourth Franke’s function [20]

f4(x, y) =
1

3
e−

81
16

((x− 1
2
)2+(y− 1

2
)2) (8.1)

with densities 4× 4 and 8× 8 in the region [0, 1]× [0, 1], and Figure 8.6 shows the shaded
images and the curvature plots as well as the isophotes of the resulting surfaces of two
densities constructed by the triangular improved algorithm. Observe that taking higher
density of sampling improves the shape of the resulting surface. However with the higher
sampling, while the curvature looks better, the isophotes suggest there may be other issues
with the surface quality.
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(a) (b)

(c) (d)

Figure 8.2: The surfaces constructed for the triangular sharp mesh by the basic and im-
proved algorithms; (a) shaded image of the basic algorithm; (b) shaded image of the
improved algorithm; (c) curvature plot and isophotes of the basic algorithm; (d) curvature
plot and isophotes of the improved algorithm.

Figure 8.3: The quadrangular sharp mesh.
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(a) (b)

(c) (d)

Figure 8.4: The surfaces constructed for the quadrangular sharp mesh by the basic and
improved algorithms; (a) shaded image of the basic algorithm; (b) shaded image of the
improved algorithm; (c) curvature plot and isophotes of the basic algorithm; (d) curvature
plot and isophotes of the improved algorithm.
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(a) (b)

Figure 8.5: The simple meshes; (a) simple mesh of a density 4 × 4; (b) simple mesh of a
density 8× 8.

(a) (b)

(c) (d)

Figure 8.6: The surfaces constructed for the simple meshes by the improved algorithm; (a)
shaded image of a density 4 × 4; (b) shaded image of a density 8 × 8; (c) curvature plot
and isophotes of a density 4× 4; (d) curvature plot and isophotes of a density 8× 8.
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Figure 8.7: The icosahedron mesh.

Figure 8.7 and Figure 8.8 show a icosahedral data mesh and the surface constructed by
the triangular algorithm for this mesh. The distance from each vertex to the center of the
icosahedron is 1. Note that the high curvature near the mesh vertices and the relatively
flat regions near the edges and centers of the triangles. The result shows that a regular
input provides an output with better shape.

Figure 8.9 and Figure 8.10 show the data mesh and the results of an ellipsoid. The
ellipsoid of Figure 8.9(b) is created by starting with a Pentakis icosidodecahedron of radius
1 (Figure 8.9(a)), and scaling it by a factor of 2 in one direction. The normals are then
recalculated with respect to the ellipsoid. The constructed surface in Figure 8.10 does
not have too extreme of curvature variation. Also since the ellipsoid mesh is convex, the
resulting surface does not have negative Gaussian curvatures.

Figure 8.11 and Figure 8.12 show a perturbed data mesh and its results. The perturbed
mesh is created by randomly shifting the vertices of a mesh of Pentakis icosidodecahedron
of radius 1.5. The normal of each vertex is calculated by taking the average of the normals
of its adjacent faces. The output become more non-uniform since the input is not close to
a regular shape.

Figure 8.13 and Figure 8.14 show the data mesh and the results of a triangulated torus.
The sampled torus has an outer radius 1.3 and an inner radius 0.7. The vertices are
sampled by taking 12 around the outer ring, and taking 6 around the tube. Unlike the
earlier data meshes, this data mesh has regions of both positive and negative Gaussian
curvature. While the curvature plot of the resulting surface is not as smooth as that of a
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(a) (b)

Figure 8.8: The surface constructed for the icosahedron mesh by the improved algorithm;
(a) shaded image; (b) curvature plot and isophotes.

(a) (b)

Figure 8.9: The input meshes; (a) pentakis icosidodecahedron mesh; (b) ellipsoid mesh.

89



(a) (b)

Figure 8.10: The surface constructed for the ellipsoid mesh by the improved algorithm; (a)
shaded image; (b) curvature plot and isophotes.

Figure 8.11: The perturbed mesh.
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(a) (b)

Figure 8.12: The surface constructed for the perturbed mesh by the improved algorithm;
(a) shaded image; (b) curvature plot and isophotes.

torus, this curvature plot does have the expected positive and negative curvature variation.

Figure 8.15 and Figure 8.16 show a dodecahedral data mesh and the surface constructed
by the multi-sided algorithm for this mesh. The distance from each vertex to the center
of the dodecahedron is 1.66. While there is some curvature concentration, notice the lack
of negative curvature in the example. This result shows that the multi-sided algorithm
provides similar output as the triangular algorithm for the regular input.

Figure 8.17 and Figure 8.18 show a randomly generated mesh (called a “mixed” mesh)
with a mix of 3- and 4-sided faces, where the vertices have been shifted off the surface of

Figure 8.13: The triangular torus mesh.
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(a) (b)

Figure 8.14: The surface constructed for the triangular torus mesh by the improved algo-
rithm; (a) shaded image; (b) curvature plot and isophotes.

Figure 8.15: The dodecahedron mesh.
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(a) (b)

Figure 8.16: The surface constructed for the dodecahedron mesh by the improved algo-
rithm; (a) shaded image; (b) curvature plot and isophotes.

a sphere, and its resulting surface. Similarly, notice the lack of negative curvature in the
example. This result shows that the multi-sided algorithm provides similar output as the
triangular algorithm for the irregular input.

Figure 8.19 and Figure 8.20 show a 4-sided mesh sampled from a torus and the result
of the multi-sided algorithm fit to this mesh. The sampled torus has an outer radius 1.25
and an inner radius 0.75. The vertices are sampled by taking 16 around the outer ring,
and taking 8 around the tube. This result shows the expected mix of positive and negative
curvatures, and also shows that the multi-sided algorithm provides similar output as the
triangular algorithm for the surface with negative Gaussian curvature.

Overall, while my algorithms are performed reasonably well on these data sets, the
constructed surfaces showed curvature concentration that is typical of this type of data
fitting scheme.
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Figure 8.17: The mixed mesh.

(a) (b)

Figure 8.18: The surface constructed for the mixed mesh by the improved algorithm; (a)
shaded image; (b) curvature plot and isophotes.

94



Figure 8.19: The quadrangular torus mesh.

(a) (b)

Figure 8.20: The surface constructed for the quadrangular torus mesh by the improved
algorithm; (a) shaded image; (b) curvature plot and isophotes.
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Chapter 9

Conclusions and Future Work

In this dissertation the ideas for solving the scattered data interpolation problem are dis-
cussed. Central to my work is the definition and the usage of the new blending functions
defined in Chapter 3. The base case can be considered as an extension of the blending
functions of Nielson’s method [17], so the properties of my blending functions are similar
to the properties of Nielson’s blending functions. The new blending functions work for tri-
angular interpolation, blend three triangular sub-surfaces, and provide a resulting surface
of the same shape. Similar to Nielson’s method, the resulting surface inherits the deriva-
tives of the sub-surfaces on the boundaries. More specifically, for each boundary there is
a corresponding sub-surface, and the derivatives of the resulting surface are equal to the
derivatives of the sub-surface on that boundary. Furthermore, the new scheme has extra
properties:

� Although I only constructed C2 surfaces, the order of derivatives is extended to
arbitrary values. That leads to a result that the scheme can provides surfaces that
are continuous of arbitrary order. Such value only affects the formulas of the new
blending functions, and does not cause any extra cost when constructing the surface.

� The restrictions of the sub-surfaces are relaxed. For Nielson’s method all of the
three sub-surfaces need to interpolate all of the three vertices of the triangular face.
However with the new blending functions, each sub-surface only need to interpolate
the two vertices of the corresponding edge. That property provides more flexibility
when constructing the sub-surface. For the minimal requirement, each sub-surface
can be constructed with respect to the edge, instead of the whole face. Furthermore,
the two sub-surfaces of the two adjacent faces with respect to the same edge can be
constructed together.
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The basic scheme of the new blending functions only provides the continuity inside
the triangles and across the boundaries. So based on the properties of the new blending
functions, an algorithm for constructing smooth triangular surfaces with globally geometric
continuity is described. The algorithm accepts any triangular data sites as input, and
provides surfaces that are geometric continuous of arbitrary order everywhere.

Then I extended the new blending functions and surface construction to the multi-
sided case. The formulas of an arbitrary number of new blending functions are given and
the corresponding scheme accepts the same number of sub-surfaces. The algorithm using
these new blending functions is also given. The new algorithm accepts data sites formed
by multi-sided polygons.

At last the discussion of parametric continuity of the resulting surfaces is given. It is
proven that for each point on the resulting surface, there exists a corresponding coordinate
system. The resulting surface is parametric continuous with respect to the coordinate
system. The order of parametric continuity is equal to the order of geometric continuity.

9.1 Future Work

This section discusses future work, which is divided into two categories: improving the
shape of the resulting surfaces, and updating the scheme and algorithm to accept more
possible inputs. These updates are presented with respect to the complete surface blend-
ing algorithm. Furthermore, the single blending scheme may also be applied to other
applications.

9.1.1 Functional Interpolation

The algorithms introduced in this thesis are constructed for parametric interpolation. The
reparameterization operations in the algorithm are necessary since each element of the
input data mesh has its own local coordinates, and most of the time it is impossible to
make them share the same coordinates. However for functional data (for example the
input meshes in Figure 8.5), all elements can share the same coordinates. In this case all
reparameterization operations are unnecessary. Furthermore the operations of parametric
improvement in Chapter 6 are not required, and the interpolation results always have the
properties of local parametric continuity. With this approach, the surfaces will likely have
better shape, and metrics like order of convergence could used to evaluate the method.
Investigating this variation of the method is an area of future work.
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9.1.2 Blending Functions

In this dissertation I used my blending functions to create new schemes and algorithms.
However such choice is not unique. In Section 4.3 I mentioned that the Nielson’s blending
functions can be extended to increase the degree of continuity. Consider the multi-sided
approach in Chapter 7, Nielson’s functions can also be extended to blending more than
three sub-surfaces. Combine these two directions, it provides a new set of intermediate
functions

gNielson,n,d
i (v) =

( ∏
j∈N\{i}

wj

)
/
(∑

j∈N

∏
k∈N\{j}

wk

)
, (9.1)

where v = (v0, v1, . . . , vn−1) and wi = vd+1
i for each i ∈ N . These functions are also called

special side blending functions [22].

If the numerator and denominator of the extended Nielson’s functions are both divided
by the product of all parameters

∏
i∈N

wi, the functions become

si(v) =
( 1

wi

)
/
(∑

j∈N

1

wj

)
, (9.2)

where v = (v0, v1, . . . , vn−1) and wi = vd+1
i for each i ∈ N . Thus, the extended Nielson’s

blending functions are the Shepard’s functions [21], an inverse distance weighting method to
solve multivariate interpolation problem. This shows that the Shepard’s functions might be
substituted into my algorithms and replace the roles of my blending functions. Validating
these possibilities of the substitution is an area of future work.

9.1.3 Surface Shape Improvement

For the surface blending algorithms presented in this dissertation, only the continuity of
the resulting surfaces are discussed. So the resulting surfaces may not have good shape.
As show in the examples in Figure 5.8 and Figure 5.11, the G1 surfaces do not visually
have better shape than Nielson’s results. (Although by some other criteria such as the
discontinuity of curvature and isophotes the shape may be quantified.) Note that Nielson
uses a side-vertex method to construct his sub-surfaces. In Figure 9.1, I constructed a sur-
face using Nielson’s scheme and I constructed a second surface using Nielson’s side-vertex
sub-surfaces but blended these sub-surfaces using the blending functions given by Equa-
tion 4.2 with d = 0. In this figure, the two surfaces are almost identical, suggesting that
the sub-surfaces that I used in my dissertation are suboptimal. Thus a major direction of
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Figure 9.1: The blending results of Nielson’s sub-surfaces; left: by Nielson’s blending
functions; right: by the new triangular functions with d = 0.

the future work is to improve the shape of the resulting surfaces. In the blending algorithm
presented in Chapter 5, the shape of the final resulting surface is mainly determined by
three points:

� The method to construct the vertex surfaces.

� The reparameterization functions between the coordinate systems of the adjacent
elements.

� The choice of the inheritance indicators.

For the vertex surface construction, currently the polynomial Least method is used to
construct the vertex surface. For now the vertex surface only interpolates the vertex itself
and its neighbours. Potentially, more data could be interpolated, and additional guidance
could be provided by the user. The algorithm should work not only the information carried
by the input data mesh, but also with customized shape parameters provided by the users.
Further, there are many shape parameters in the sub-surfaces. An obvious next step is to
use various techniques to improve the shape of the constructed surface.

Another possible method to improve the shapes of the resulting surfaces is to introduce
extra sub-surfaces to blend. These surfaces should affect the final shapes of the resulting
surface, but should not change the derivatives on the boundaries. There are two possible
methods to achieve this goal. The first method is to assign small but non-zero inheri-
tance indicators to these sub-surfaces. Another method is to directly modify the blending
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functions to avoid increasing the number of inheritance indicators. For example for the
triangular case, for an additional fourth sub-surface, the blending functions are changed to

f 3,d,t
0 (u, v, w) = βγ

( 1

α + β
+

1

α + γ

)( 1

α + β + γ + αβγ

)
,

f 3,d,t
1 (u, v, w) = γα

( 1

β + γ
+

1

β + α

)( 1

α + β + γ + αβγ

)
,

f 3,d,t
2 (u, v, w) = αβ

( 1

γ + α
+

1

γ + β

)( 1

α + β + γ + αβγ

)
,

f 3,d,t
3 (u, v, w) = αβγ

( 1

α + β + γ + αβγ

)
,

(9.3)

where α = ud+1, β = vd+1, and γ = wd+1. The blending function f 3,d,t
3 is the desired one

that affect the shape but not the derivatives. The idea is to use the first three blending
functions to achieve continuity, and to use f 3,d,t

3 to blend in a surface to improve the shape.

9.1.4 Input Extension

For the multi-sided blending algorithm, it is assumed that each face of the input data mesh
is projected into a convex polygon. The reason for this assumption is that the current
inheritance indicators for each face domain are constructed with simple distances. For
some special case such inheritance indicators cannot be applied. An example is shown in
Figure 9.2. Suppose that two edges E0 and E1 are co-planar, then they are also co-planar
on the face domain after projected. With current inheritance indicators, the blending
scheme always provides the same weight for two different edges E0 and E1. Such a result
is not acceptable since their corresponding sub-surfaces will conflict each other.

To avoid this problem, a new method to construct the inheritance indicators is required.
One method to explore is to construct a polar parameterization for each point inside the
polygon, then choose the lengths of the shortest paths from the point to the edges as the
values of the inheritance indicators.

9.1.5 Additional Applications

Various applications of my surface construction remain to be explored. One application
that stands out is filling holes around extraordinary points in subdivision surfaces. My n-
sided patch construction could blend the surfaces created by the subdivision scheme around
the n-sided hole, creating a patch that meets these surfaces with top order continuity. Since

100



E0

E1

Figure 9.2: A convex face with two edges co-planar.

schemes for filling such holes already exist, the main issues to explore would be those of
shape and a comparison to existing methods.

Finally, my method has potential applications where controlling jerk is important in
CNC machining and in computer animation, where at times C3 surfaces are required.
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Glossary

d-th matched The properties of the sub-surfaces that the adjacent pair of sub-surfaces
share the same d-th derivatives at the corner of the blending domain. 35

blended result The result provided by the blending schemes. 17

blended terms The number of sub-functions blended by a blending scheme. 17

blending domain A closed polygon formed by the zero domain of the inheritance indi-
cators. 33

blending function The weight used in the blending schemes. 17

blending order The order of derivative that the blended result inherits. 18

inheritance A property of the blending schemes that the blended result has the same
derivatives as the sub-functions on certain locations. 17

inheritance indicator A set of functions indicates the locations on which the derivatives
should be inherited. 18

inherited terms The number of sub-functions from which the derivatives are inherited
for certain locations. 18

parametrically adjacent The property of a pair of elements of the data mesh that there
exists reparameterization between their coordinate systems in the blending algorithm.
45

sub-function The the functions that blended by the blending schemes. 17

sub-surface The sub-functions which are also surfaces. 32
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triangular blending function The blending function for the triangular blending scheme.
34

triangular inheritance indicator The inheritance indicator for the triangular blending
scheme. 34

value matched The properties of the sub-surfaces that the adjacent pair of sub-surfaces
share the same location at the corner of the blending domain. 35
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