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Abstract 

In recent decades, the intensity and frequency of lake algal blooms have been increasing 

worldwide. In addition to potentially toxic effects for humans and wildlife, intense algal 

blooms negatively impact recreation and economy. Therefore, it is crucial to understand the 

underlying mechanisms controlling the blooms. Most algal bloom management programs 

focus on limiting nutrient input; however, other controlling factors such as solar radiation are 

often not considered in practice. This study examined time series of surface solar radiation 

(SSR), chlorophyll-a, temperature and other factors controlling algal growth since the 1990’s, 

using a combination of in situ and satellite data. A random forest regression model was used 

to qualitatively investigate the importance of different controlling factors on chlorophyll-a 

rates of increase during algal blooms. Results of the modelling support that temperature and 

SSR – both during and immediately before periods of rapid growth – were important predictive 

factors in seasonal chlorophyll-a rates overall. This study joins recent literature in successfully 

demonstrating the feasibility of using satellite data for global scale lake monitoring, using a 

widely applicable supervised machine learning tool. The results of this study, and further 

research taking advantage of satellite data for lake monitoring, will increase our understanding 

of factors controlling algal bloom intensification and improve our ability to evaluate best 

management practices. 
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1. Introduction 

1.1 Background  

In recent decades, algal blooms in lakes worldwide have been increasing in intensity, 

duration, and frequency (Ho et al., 2019; Kudela et al., 2015). One accepted criterion for measuring 

the intensity of algal blooms is the measurement of chlorophyll-a concentration in lake waters 

(Huot et al., 2007). Chlorophyll-a is the molecule used by photosynthetic primary producers to 

harness incoming light energy for carbon fixation (Melkozernov & Blankenship, 2007). 

Chlorophyll-a concentration, which is measurable in situ by fluorescent probes or remotely by 

optical satellites, is commonly used as a proxy for primary productivity in aquatic ecosystems (Ho 

et al., 2019; Huot et al., 2007).  

Primary productivity is the net rate of organic carbon fixation for biomass production 

conducted by primary producers (Ito, 2011). In most lake ecosystems, approximately half of 

primary productivity results from photosynthetic algae (Vadeboncoeur et al., 2002). Algal blooms 

occur when growth of algae occurs so suddenly and explosively that lake waters may become 

discolored, harmful toxins may be released, and light penetration may become limited (Anderson, 

2009). When the bloom is over, the subsequent die-off and aerobic decay of biomass may cause 

oxygen depletion in the lake (Anderson, 2009). In addition to potentially toxic effects for humans 

and wildlife, intense algal blooms negatively impact ecosystems, fishing, tourism, property values, 

and drinking water quality (Anderson, 2009; Kudela et al., 2015; Vadeboncoeur et al., 2002).  

The focus of algal bloom management programs is often on nutrient input reduction, due 

to a well-established connection between anthropogenic eutrophication of lakes and an increase in 

algal bloom occurrence (Heisler et al., 2008; Kudela et al., 2015). One example, Lake Erie, 

underwent a phosphorus loading reduction program from the 1960s to 1980s, and was touted as a 

North American binational success story for algal bloom management through nutrient input 

reduction (Makarewicz & Bertram, 1991).  
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However, the contemporary story of Lake Erie is one of re-eutrophication and increasing 

awareness of multivariate algal bloom drivers (Levy, 2017; Mohamed et al., 2019; Scavia et al., 

2014). Other lakes around the world have undergone similar re-eutrophication since the 1990s, 

such as Lake St. Clair in Canada, Lake Alexandrina in Australia, and Lake Khanka in China (Ho 

et al., 2019). Studies have shown that although nutrient input is a strong contributor, there are 

many complex factors which interact to trigger harmful algal blooms (Mohamed et al., 2019; 

Shuvo et al., 2021). Figure 1, below, summarizes algal bloom drivers considered in this study. 

 

One under-addressed factor that contributes to algal growth rates is UV radiation (Inomura 

et al., 2020). UV radiation, measured at the earth’s surface as surface solar radiation (SSR), is 

used directly by photosynthetic organisms for carbon fixation (Melkozernov & Blankenship, 

2007). SSR is also a strong control on lake water temperature (Jakkila et al., 2009) and ice breakup 

timing in seasonally ice-covered lakes  (Kirillin et al., 2012), both of which influence primary 

productivity in lakes. In turn, the global distribution of mean annual SSR is controlled by latitude 

Figure 1: Summary of factors contributing to algal blooms. 
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(Kirillin et al., 2012) but varies between regions, as well as over time due to atmospheric controls 

(Alpert & Kishcha, 2008; Cutforth & Judiesch, 2007; Wild, 2009).  

Decadal-scale increasing and decreasing trends in SSR have been coined in the literature 

as solar “brightening” and “dimming”, respectively (Wild, 2009). It is understood that these trends 

are likely caused by changes in atmospheric aerosol concentrations as well as cloud cover, and 

therefore vary regionally (Cutforth & Judiesch, 2007; Wild, 2009). For example, SSR in the 

Canadian Prairies has been undergoing a dimming trend (Cutforth & Judiesch, 2007) since the 

1990s, while the opposite trend appears to be occurring in most of Europe (Wild, 2009). Globally, 

urban areas may also be experiencing more dimming than rural areas due to higher aerosol 

production rates from the burning of fossil fuels (Alpert & Kishcha, 2008). It is important to note 

that, SSR is not related to or affected directly by the phenomenon of global warming (Kirillin et 

al., 2012), nor is it controlled by cycles in the sun’s energy output (Wild, 2009). Unfortunately, 

the sparsity or inaccessibility of continuous, long term monitoring networks outside of Western 

Europe and North America limits much of the study on historical SSR trends to these two regions. 

At the lake-basin-scale, a recent study by Tian et al. (2017) showed that SSR is an important 

predictor of growing-season chlorophyll-a concentrations in the Western Basin of Lake Erie. A 

recent paleolimnological study of Lake Tanganyika fishery productivity, also showed evidence for 

correlation between multi-centennial oscillations of higher SSR and increased diatom production, 

dating back to ~1000 CE (McGlue et al., 2020). However, the link between SSR and lake 

chlorophyll-a is less well-understood at a regional or global scale. This study aims to advance our 

understanding in this area by using satellite data to chlorophyll-a in lakes above 40°N.  

The comprehensive spatiotemporal coverage of satellite data makes it a useful tool in large 

scale lake monitoring. Taking advantage of this resource has allowed many studies in a variety of 

disciplines to investigate global scale phenomena, including increasingly in environmental and 

climate science fields (examples include Crespo Cuaresma et al., 2017; Ho et al., 2019; Kaufman 

et al., 2005; Liu et al., 2009; Pilla et al., 2020; Shuvo et al., 2021). However, appropriate tools and 

techniques must be used to interpret the large amount of data generated from long term satellite 

monitoring. This study applies one such tool, a machine learning model, to in situ and satellite data 
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to investigate the influence of growing season SSR on chlorophyll-a growth rates of temperate 

Northern Hemisphere lakes. The results of this study increase scientific understanding of the 

various factors that influence temperate lake algal blooms. This work joins several recent studies 

demonstrating the feasibility of using satellite data for global scale lake monitoring (examples 

include Chipman, 2019; Ho et al., 2019; Li & Li, 2004; Philipson et al., 2016; Pilla et al., 2020; 

Shuvo et al., 2021). 

 

1.2 Hypothesis 

The hypothesis behind this research is that SSR is an important factor contributing to 

seasonal lake algal growth. If all other controlling factors are constant, higher SSR will contribute 

to higher chlorophyll-a growth rates during the spring and fall seasonal periods of peak algal 

biomass growth (i.e., spring and fall algal blooms). It is also hypothesized that the effect of SSR 

can be differentiated by trophic status, being stronger in eutrophic > mesotrophic > oligotrophic 

lakes. This order also reflects the degree to which lake productivity is limited by nutrient 

availability.  

 

1.3 Research Objective 

To investigate relative contributions of SSR, and other environmental factors, on 

controlling chlorophyll-a growth rates during seasonal algal blooms in lakes above 40°N, by 

applying a machine learning random forest model.  

 

1.4 Research Approach 

This study aims to understand the drivers of algal blooms in lakes above 40°N. To account 

for the variability and interactions between the different controlling variables and their 

contributions to chlorophyll-a growth rates, a random forest regression modeling approach was 

used. This approach generates a quantitative model that can predict chlorophyll-a growth rates as 
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a function of changes in environmental variables, including SSR, water temperature, trophic status, 

and lake morphological characteristics. The model and its input variables are described in detail in 

Section 2.2. The results of the model output for in situ and remotely sensed data are compared. 

Many studies have previously demonstrated the role of SSR in controlling algal growth at 

a variety of spatial scales, including laboratory experiments, individual lake basins, and individual 

lakes (examples include Deng et al., 2019; Dubourg et al., 2015; Inomura et al., 2020; McGlue et 

al., 2020; Tian et al., 2017). However, only a few studies have examined the SSR-chlorophyll-a 

relationship at a global scale (e.g., Shuvo et al., 2021). Many studies that investigate chlorophyll-

a simplify time series data by calculating annual mean (Shuvo et al., 2021) or annual maximum 

(Ho et al., 2019) concentrations. Here, spring and fall growth windows of each year in each lake 

were isolated and the chlorophyll-a rates of increase were examined (as a proxy for algal growth 

rate) during these windows.  
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2. Methods 

2.1 Data collection and processing  

In situ chlorophyll-a and SSR time series from latitudes ≥ 40° N from 1950-2020 were 

collected from online, open-access, international, federal, and regional datasets to form a compiled 

database, as outlined in Appendix I. 

The restriction of the data to north of 40° N latitude partially controls the study for different 

mixing and ice cover regimes that dominate at different latitudes. At mid- to high- latitudes, lakes 

are more likely to be dimictic and have seasonal ice cover (Woolway & Merchant, 2019), while 

low-latitude lakes are more likely to be meromictic or polymictic, and do not often experience ice 

cover (except for those at high elevations). The relationship between lake chlorophyll-a and other 

environmental variables, including SSR, may be different in low-latitude lakes and the results 

described here may be irrelevant. 

In situ water samples for chlorophyll-a measurements were collected at various depths by 

lake monitoring agencies (summarized in Appendix I). To ensure consistency across sampling 

sites, only measurements taken at a depth of 3 meters or less were included. Since lake water 

temperature data were also required, chlorophyll-a measurements without contemporaneous water 

temperature measurements were removed from the compiled database.  

Because of the large variability in consistency and temporal coverage between SSR data 

from different sources, only records with 15 years of data or more from 1990 to the present were 

included. This criterion was set so that individual lake and SSR records would have greater 

temporal overlap when paired. Due to irregular periods of missing or incomplete data from some 

SSR records, years with more than 30% of SSR data missing were also removed from the compiled 

database. Figure 2 below shows the spatial distribution of SSR stations in the compiled database 

after these criteria were applied. 
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Satellite time series of chlorophyll-a, and lake surface water temperature were extracted 

from the European Space Agency’s Lakes_cci data products (Crétaux et al., 2020) for selected 

lake centroids. Lake centroids were calculated in QGIS by finding the coordinate of the central 

point of each lake shape polygon. The Lakes_cci data products are homogenized datasets from 

multiple instruments and satellites (Crétaux et al., 2020). Daily data is available from 1990-2020 

for temperature, and from 2002-2020 for chlorophyll-a.  

The coordinates chosen for satellite data extraction consisted of all lakes in the 

HydroLAKES database (Messager et al., 2016) with surface area ≥ 100 km2 and latitude ≥ 40° N, 

for which the centroid coordinates were calculated. Out of the 1.4 million lake polygons in the 

global HydroLAKES database, 1,034 lakes satisfied these conditions. The surface area cutoff was 

chosen as a compromise between spatial coverage of selected lakes, and computational expense of 

the satellite data extraction. 

Figure 2: Distribution of solar radiation in situ measurement stations in compiled project 

database 
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Z-scores (sometimes called normalized anomalies) were calculated for satellite 

chlorophyll-a data, where the Z-score for a datapoint represents the difference between the 

datapoint and the sample mean in units of standard deviation (Mendenhall & Sincich, 2007). From 

visual inspection, all points with a Z-score greater than 5 were identified as suspected outliers and 

removed. Although these points may have represented valid chlorophyll-a measurements, their 

removal was required to homogenize the data for the performance of the model.  

Even after the Z-score filtering was applied, the satellite chlorophyll-a data still contained 

some much higher values compared to the in situ measurements. The comparative homogeneity of 

the in situ data was likely due to the infrequency of water sampling relative to the daily temporal 

resolution of the satellite data. Sudden high-intensity bloom events over several days, which would 

be captured by satellite data, would likely be missed by in situ sampling. In situ chlorophyll-a 

measurements, while they may be affected by human measurement and analysis mistakes, are also 

not subject to optical sensor or imagery interpretation errors that may affect satellite data products. 

However, due to the pre-publication quality control processes undergone by the Lakes_cci product 

used here, these types of errors are assumed to be minimal. 

All data processing, visualization, and analysis for this project was done in Python (ver. 

3.7.6), using the modules NumPy (ver. 1.18.1) (Harris et al., 2020), pandas (ver. 1.0.1) (Mckinney, 

2010; The pandas development team, 2020), matplotlib (ver. 3.1.3) (Hunter, 2007), and scikit-

learn (ver. 0.23.2) (Pedregosa et al., 2011). Spatial data analysis and visualization were done using 

QGIS/PYQGIS (ver. 3.14) (QGIS.org, 2021).  

 

Representative radius of SSR point observations 

To examine the relationship between chlorophyll-a and SSR, satellite and in situ lake 

records were paired with a representative in situ SSR record. It is acknowledged in the literature 

(Schwarz et al., 2018) that in situ point measurements of SSR are generally considered spatially 

representative within a 1° radius. Therefore, in situ and satellite lake records were paired with the 

closest SSR station based on geodesic distance. A maximum radius of 1° was used for in situ data. 
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Maximum pairing radii of 1°, 2°, and 3° were used for the satellite data for a sensitivity analysis 

of the representative SSR radius. In total, four sets of paired lakes and SSR stations were generated 

(using in situ data at a 1° pairing radius, as well as using satellite data at 1°, 2°, and 3° pairing 

radii). The model, described below in Section 2.2, was run separately on all four datasets and the 

results were compared.  

 

2.2 Random forest model 

Random forest and cross validation 

Random forest is a type of supervised machine learning algorithm. The input to the algorithm 

is comprised of many instances (i.e., rows) of data. Each row is associated with a set of predictor 

parameters (i.e., columns) and one target parameter. The algorithm randomly subsamples the 

input dataset with replacement (i.e., bootstrap aggregation) and passes the subsampled data 

instances onto K number of decision trees (Liaw & Wiener, 2002). Each decision tree uses the 

predictor parameters to predict the target parameter independent of other trees (Breiman, 2001). 

The final model prediction is taken as an average of all decision tree predictions (Breiman, 2001). 

This process is illustrated in Figure 3. By testing the accuracy of predictions against actual target 

parameter values, the algorithm identifies the relative importance of each predictor parameter in 

governing the target parameter (Liaw & Wiener, 2002).  
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Figure 3: A graphical representation of a random forest algorithm. Figure adapted from 

Denisko & Hoffman (2018) and Li et al. (2017). 

 

A cross validation was used to evaluate the model performance. Model parameter ranges 

were first defined for the random forest regressor, such as the maximum allowed depth of an 

individual tree, minimum allowed number of samples per tree leaf, etc. A grid-search cross 

validation was applied, which exhaustively searches through all combinations of parameters to 

determine the estimator (the optimized parameters that return a model with the most accurate 

prediction) (scikit-learn developers, 2019).  

The cross validation applied here was 10-fold, meaning that the data was split into 10 groups. 

The data underwent 10 iterations of the random forest regressor utilizing all possible parameter 

combinations. Each iteration used 9 groups as a test set, and 1 group as a training set. With each 
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subsequent iteration, the group of data assigned for training rotated. Within each iteration and for 

each combination of parameters, a random forest of decision trees is generated. The optimized 

parameters are those which generate the most accurate prediction (scikit-learn developers, 2019).  

Code for the model can be found in Appendix II. 

Figure 4 summarizes the workflow from lake-SSR pairing to model input described 

throughout this section. 

 

 

Predictor parameter selection and collinearity testing 

Based on literature review and exploratory analysis of relationships between some 

environmental variables, the parameters in Table 1 were selected as target and input parameters 

for the random forest model.  

Figure 4: Workflow followed for compiling input datasets for random forest model. 
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Table 1: Target and predictor input parameters for random forest model 

 

1Crétaux et al., 2020 

2Carlson & Simpson, 1996 

3Messager et al., 2016 

4Danielson, J.J., Gesch, 2011  

 Description Data source 

Target parameter:   

Chlorophyll-a 
Growth window rate  

(µg L-1 day-1) 

Global open-access in situ databases 

and ESA Lakes_cci data1 

Predictor parameters:   

SSR 

During- and pre- growth 

window mean  

(W m-2) 

Global open-access in situ databases 

Water temperature 
During- and pre- growth 

window mean (°C) 
ESA Lakes_cci data1 

Trophic status 
Categorical (eutrophic, 

mesotrophic, oligotrophic) 
Calculated using NALMS guideline2 

Lake morphometry 
Mean depth (m) and 

volume (0.001 km3) 
HYDROLakes database3 

Elevation difference 
Between lake and paired 

SSR station (m) 
USGS GMTED2010 DEM4 

Distance 
Between lake and paired 

SSR station (km) 
Calculated using QGIS 

Lake latitude (°N) 
Global open-access in situ databases 

and HYDROLakes database3 

Growth window length (number of days) 
Calculated based on chlorophyll-a 

time series 
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  Using a chlorophyll-a rate of growth as the target parameter allowed direct investigation 

of the effects of various parameters on the growth, rather than the absolute amount, of algae. This 

parameter was also useful for direct comparison of values between different lakes. 

 In addition to SSR, lake surface water temperature was included as a predictor. This is due 

to the understanding that water temperature is closely related to algal growth (Singh & Singh, 

2015), as well as being partly influenced by SSR (Jakkila et al., 2009; Schmid & Köster, 2016; 

Zhong et al., 2016).  

 Trophic status was also included as a predictor. Trophic status was calculated based on the 

long-term mean chlorophyll-a concentration, one of three methods described in Carlson & 

Simpson (1996). In the absence of data on nutrient concentrations consistent across lakes in the 

compiled database, trophic status was used as a proxy measure for lake nutrient availability.  

Annual spring and fall “growth windows” were identified for each lake to focus our study 

on the periods of the year with algal bloom activity. In this study, the start of a spring growth 

window was defined as the day when the chlorophyll-a concentration rate of increase exceeded 

zero for the first time in a year. The end of the spring growth window was defined as the day when 

the rate of increase became negative for the first time in year. The fall growth windows were 

defined similarly, after data from spring growth windows were removed. For years where the rate 

of change fluctuated, only one growth window was calculated for that year and labelled as a 

“spring” growth window. These growth windows were defined as the first day of increasing 

chlorophyll-a growth rate until the maximum chlorophyll-a concentration in the year was reached. 

The length and timing of the calculated growth window for each lake therefore varies from year 

to year. An example of ideal spring and fall growth windows for two different years within the two 

basins of Lake Windermere in the UK is illustrated in Figure 5 below.  
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For parameters available as time series (SSR, water temperature, and chlorophyll-a), mean 

values within each growth window were calculated and included as predictor parameters for the 

model. The length of each growth window was also included as a predictor parameter to account 

for possible effects of extremely long or short calculated growth windows. 

 Mean lake surface water temperature and mean SSR during the one-week period prior to 

the start of the growth window were also calculated and included in the model. The inclusion of 

these predictor parameters allows the investigation of effects that temperature and radiation may 

have on the growth of algae before any detectable changes in chlorophyll-a concentrations appear. 

These parameters are referred to as the “pre-growth window” SSR and temperature. 

 The volume and mean depth of lakes, extracted from the HydroLAKES database (Messager 

et al., 2016) were included as indicators of mixing patterns (Fee et al., 1996). The elevation 

difference and distances between lakes and paired SSR stations were calculated using QGIS, and 

were included to account for potential effects of the spatial representativeness of the SSR point 

measurements (Schwarz et al., 2018). 

Figure 5: Ideal examples of calculated spring growth windows for North and South basins of Lake 

Windermere, UK, in a) 1964 and b) 2009. Figure created by Hannah Adams. 
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 Collinearity between predictor parameters was tested using Kendall non-parametric 

correlation testing, as data was not normally distributed. The absolute value of the Kendall 

correlation coefficient, |𝜏|, was found to be <0.7 for all predictor parameters, indicating an 

acceptable level of collinearity between all predictor parameters (Genuer et al., 2010). 

 

Assessment of model performance 

The coefficient of determination (R2) and root mean squared error (RMSE) are used to 

assess the accuracy of the model predictions. The R2 value represents the amount of variation in 

the data that is explained by the model (Neill & Hashemi, 2018). A higher R2 indicates that the 

model explains more of the variation in the observed data. The RMSE represents the difference 

between numerical predictions and observed values. RMSE is a commonly used measure of model 

accuracy, and a lower RMSE represents a higher model accuracy (Neill & Hashemi, 2018).  
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3. Results 

3.1 Data collection and processing 

Four model input dataset scenarios, labelled A through D, were generated from the random 

forest model using datasets summarized in Table 2. Figure 6 shows the global distribution of lakes 

included in each of the four input datasets. It is evident that by taking advantage of satellite data, 

the spatial representativeness of the study results is improved, compared to using only in situ data 

(Figure 6).  

 

Table 2: Summary of four input datasets for random forest model 

Scenario 

label 
Dataset 

SSR station 

pairing radius 

(degrees) 

Number of 

data instances 

Number of 

unique lakes 

Number of 

unique SSR 

stations 

A In situ 1 250 20 4 

B Satellite 1 589 47 14 

C Satellite 2 878 68 22 

D Satellite 3 922 72 24 



 

 25 Figure 6: Distribution of lakes included in model input dataset scenarios A-D. 
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3.2 Random forest model 

Assessment of model performance 

Figure 7 shows the chlorophyll-a rate predicted by the model plotted against the input 

chlorophyll-a values for the four input dataset scenarios. The red line represents the linear 

regression best fit line, with the shaded red region representing the 90% confidence interval of the 

linear regression. The R2 and RMSE values are shown on each plot for the random forest testing 

and training sets. The highest R2, as well as the lowest RMSE, for both training and testing sets, is 

seen in scenario B. Using this dataset, the implemented model explained about 50% of the 

variability in the chlorophyll-a data of the testing set (R2 = 0.504).  



 

 27 

 

 

Figure 7: Scatterplots comparing chlorophyll-a rate predicted by model with observed 

chlorophyll-a rates for model input dataset scenarios A-D. 
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Influence of predictor variables 

Figures 8 and 9 quantify the importance of each parameter in predicting the chlorophyll-a 

rate, as determined by the random forest model for the four input dataset scenarios. It is important 

to keep in mind when interpreting this set of figures that a low relative importance does not mean 

that a predictor parameter is “not important”. A low importance implies that given a certain input 

dataset and model setup, other parameters had more weight in predicting the target value. As such, 

machine learning models are highly sensitive to the data they are given and should be interpreted 

with an understanding of the limitations of the input data.  

There were noticeable differences in the model results for the satellite datasets (scenarios 

B-D, Figures 8b, 9c, and 9d) compared to the in situ dataset (scenario A, Figure 8a). Lake depth, 

pre-growth window temperature and during-growth window temperature made up the three most 

important predictors in scenario A, with a combined representation of ~60% of the model 

variability (Figure 8a). However, lake depth represented only <2% of the model variability in 

scenarios B-D (Figures 8b, 9c, and 9d). The three most important parameters for scenario B were 

instead during-growth window temperature, growth window length, and pre-growth window SSR, 

with a combined representation of ~54% of the model variability (Figure 8b). Previous studies 

(Jakkila et al., 2009; Long et al., 2011; Singh & Singh, 2015) have shown the strong influence of 

water temperature on chlorophyll-a concentrations or algal growth rates. 

In scenarios C and D (Figures 9c and 9d), the importance of parameters was dominated by 

the growth window length. The growth window length had a high relative importance for scenarios 

B-D, with a much lower relative importance for scenario A. In scenarios C and D, growth window 

length contributed ~40% to the model variability. In scenario B, the growth window length 

contributed ~17.5% to the model variability. Conversely in scenario A, the growth window length 

contributed only ~2.5% to the model variability. 

In scenario B, which had the highest model accuracy, pre-growth window SSR and during-

growth window SSR represented  ~17.5 % and ~11% of the model accuracy, respectively (Figure 

8b). The combined importance of these two SSR parameters, at ~28.5%, is comparable to the 

combined importance of pre- and during- growth window temperature, at ~29%.
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a) 

b) 

Figure 8: Relative feature importance determined by random forest model for two of four model input 

dataset scenarios, A and B. 
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c) 

d) 

Figure 9: Relative feature importance determined by random forest model for two of four model input 

dataset scenarios, C and D. 
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Partial dependence plots are shown below, in Figure 10, for selected important parameters 

in all four model input dataset scenarios. Partial dependence examines the individual influences of 

each predictor parameter on the model’s prediction of the target parameter. They are a useful tool 

for understanding the data-driven results of machine learning model predictions. The x-axis shows 

the range in values of each predictor parameter. The y-axis shows the partial dependence of the 

chlorophyll-a rate target parameter on each predictor parameter. A higher partial dependence 

indicates a higher likelihood of the model predicting a high chlorophyll-a rate for a given predictor 

value. 

In scenario A (Figure 10a), there is a relationship between higher during-growth window 

temperature, during-growth window SSR, pre-growth window temperature, and pre-growth 

window SSR with higher chlorophyll-a rate. In this scenario, it is also quite evident eutrophic lakes 

are linked to higher chlorophyll-a rates than oligotrophic or mesotrophic lakes. This is consistent 

with the definition of trophic status defined by Carlson & Simpson (1996). 

For scenarios B-D (Figures 10b-d), the relationship between during-growth window 

temperature and during-growth window SSR with chlorophyll-a rate is less clear, and at times 

appears to be the inverse of the relationship seen in scenario A. However, relationships are seen 

between higher pre-growth window temperature and pre-growth window SSR with higher 

chlorophyll-a rate. The unexpected relationships between during-growth window parameters and 

chlorophyll-a rates, as well as the strong relationship between short growth windows and high 

chlorophyll-a rates, may be legacies of the growth window length calculation. This is discussed in 

Section 4.2. 

In Figures 10 b-d, it is particularly interesting to note that the greatest response of 

chlorophyll-a rate to SSR occurs around a mean SSR value of ~200 W/m2. This “optimal SSR” 

behaviour supports the speculation that photoacclimation or photoinhibition may be taking place 

at higher SSR exposure. This behaviour is not observed in scenario A (Figure 10a) likely because 

of the lower temporal resolution of the scenario A in situ dataset. 
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Figure 10: Partial dependence plots for selected predictor parameters in model input dataset scenarios 

A-D. 
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Density distribution plots corresponding to the parameters shown in the partial dependence 

plots are in Figure 11. These plots illustrate the evenness of data distribution in each dataset, and 

any potential biases that may arise in partial dependence and relative feature importance as a result 

of uneven data distribution. For example, in the satellite dataset scenarios B-D (Figure 11 b-d), 

eutrophic lakes are over-represented compared to mesotrophic and oligotrophic lakes. This might 

result in the importance of trophic status as a predictor being under-estimated. The scenario B-D 

datasets also show a skew towards short growth windows in the  “growth window length” 

parameter.
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Figure 11: Density distribution plots for selected predictor parameters in model input dataset 

scenarios A-D. 
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4. Discussion 

4.1 Representative radius of SSR point observations 

Representative radii of 1°, 2°, and 3° for SSR point observations (scenarios B-D) were 

tested using satellite datasets. A radius larger than 1° (i.e., scenarios C and D) resulted in worse 

model performance based on both R2 and RMSE (Figure 7). This is in line with findings from 

Schwarz et al. (2018), who reported that point SSR observations are generally considered 

representative of a 1° radius or less. The greater distances between the lake and the measured SSR 

contributed to lower combined importance of SSR parameters (pre-growth window SSR and 

during-growth window SSR, Figures 8 and 9), as well as worse model performance in scenarios C 

and D compared to scenario B. 

 

4.2 Influence of predictor variables 

The length of each growth window is very highly weighted for the three satellite dataset 

scenarios B-D (Figures 8 and 9). Partial dependence plots (Figure 10) of the growth window length 

predictor parameter for the satellite datasets show that shorter growth window lengths result in 

higher predicted chlorophyll-a growth rates. This relationship is caused by the change in 

chlorophyll-a from the start to the end of the growth window being divided over the growth 

window length to calculate the growth rate. Very long or short calculated growth windows do not 

actually represent a period of rapid algal growth that would be traditionally defined as an “algal 

bloom”. The challenge of defining the start and end of the growth window is a drawback of the 

variable growth window length used in this study. 

In all three satellite data model scenarios B-D, pre-growth window SSR was weighted 

higher than mean SSR during the growth window (Figures 8b, 9c, and 9d). It is notable that this 

pre-growth window SSR, which is calculated for the relatively brief period prior to any detected 

increase in chlorophyll-a concentrations, plays a significant role in controlling the growth rate for 

the entire growing season overall. For all three satellite data model scenarios, the partial 
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dependence plots for pre-growth window SSR (Figures 10b-d) show a relationship between higher 

chlorophyll-a growth rate and higher pre-growth window SSR. It is possible that the comparatively 

low importance of the during-growth window mean SSR (Figure 8b, 9c, and 9d), as well as the 

unclear partial dependence relationship of chlorophyll-a rate on the during-growth window mean 

SSR (Figures 10b-d), resulted from inaccurately calculated growth window lengths.  

Although this study did not distinguish between the fall and spring growth windows in the 

model, the pre-growth window SSR may be an especially important factor in spring algal growth 

compared to that in the fall. Several studies (Shatwell & Köhler, 2019; Townsend et al., 1992) 

have found the driving factors, as well as the dominant algae species, to be distinct between spring 

and fall algae blooms. For example, spring blooms were found to be phosphorus limited and 

dominated by diatoms, while summer/fall blooms were found to be nitrogen limited and dominated 

by cyanobacteria (Kong et al., 2021; Shatwell & Köhler, 2019; Townsend et al., 1992). 

The spring growth period is of particular interest from a SSR perspective. Light limitation 

has been acknowledged in the literature as being an important control on productivity in stratified 

lakes, particularly in winter and spring (Sommer et al., 1986). More recently, and at a global scale, 

Shuvo et al. (2021) found that spring SSR was more important than that in the summer when 

predicting annual average lake chlorophyll-a concentrations. Tian et al. (2017) found similarly 

strong controls on SSR at a basin scale when predicting concurrent chlorophyll-a concentrations 

in the spring compared to other seasons. Additionally, Kirillin et al. (2012) found SSR to be an 

important factor in ice-break-up timing. They also point out that the timing and intensity of 

springtime algal blooms are heavily influenced by ice-break-up timing. Therefore, early-spring 

SSR may be an indirect as well as direct influence on spring algal blooms. The difference in the 

chlorophyll-a growth rate response to SSR (and other environmental factors) between the fall and 

spring growth periods is an area that warrants further study.  

The moderate to high relative importance of lake-SSR distance, even for a 1° lake-SSR 

pairing radius (Figure 8b), was a symptom of the imperfect lake-SSR pairing methodology used 

in this study. Schwarz et al. (2018) found that, in general, point SSR observations are 
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representative of a 1° radius. However, they add that the representative radius becomes much 

smaller in regions with mountainous terrain and near coastlines. Since these terrain effects were 

not included in the model, the distance between paired lakes and SSR stations may have been 

detrimental to identifying an SSR-to-chlorophyll-a relationship using the model.  

Using gridded SSR time series data products would allow us to estimate SSR exposure 

better collocated with the lakes in our study. Gridded SSR time series data products derived from 

reanalysis have been produced for specific regions of the world as well as globally. These products 

might also be applied to supplement, but not replace, in situ SSR measurements in regions where 

these records are sparse. Some examples of these data products include ERA-Interim (Simmons et 

al., 2007) and MERRA-2 (Gelaro et al., 2017) with global coverage, and Daymet with North 

American coverage (Thornton et al., 2020). The benefits and drawbacks of these gridded data 

products are discussed below. 

 Lake morphometry parameters (depth and volume) were found to be relatively 

unimportant at the scale of our study using the satellite datasets (Figures 8b, 9c, and 9d). This is in 

line with other regional and global scale studies (Shuvo et al., 2021 and citations within), indicating 

a lower importance of lake morphometry when compared to climate and nutrient input variables. 

The relative importance of lake depth in the in situ scenario A (Figure 8a) was likely because of 

the small number of unique lakes included in this dataset (see Figure 6 and Table 2, above). 17 of 

the 20 lakes included in scenario A were located in the UK, and their similarities in climate and 

environmental conditions may have caused the model to attribute more predictive importance to 

the lake depth.  

As a result of their close proximity, the in situ lakes included in scenario A also had similar 

latitudes; therefore, latitude was found to have a negligible importance in scenario A (Figure 8a). 

Additionally, the SSR received by the 17 UK lakes in scenario A was represented by only three 

unique SSR stations (with the fourth SSR station located in Canada). Due to the physical closeness 

of the UK lakes, there was little variation in lake elevation, and, therefore, little variation in lake-
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SSR elevation difference between the lakes. Likely as a result of this, the lake-SSR elevation 

difference was also found to have negligible importance in scenario A (Figure 8a). 

Since trophic status was used here as a proxy for nutrient availability, it was surprising that 

in all model scenarios, it had relatively low importance. Prior analysis on regional in situ 

chlorophyll-a data as part of this study had shown a differentiation by trophic status in chlorophyll-

a response to SSR. It is possible that this was due to an uneven distribution of different trophic 

statuses in our input datasets, with over half of the rows of data representing eutrophic lakes in the 

scenario B dataset (Figure 11b).  

Except for trophic status, the results from our model generally seem to agree with 

previously published investigations into various drivers of spring and fall seasonal chlorophyll-a 

growth rates (i.e., algal blooms), as discussed above. Using a unique growth window approach, it 

is of particular interest to note the importance of SSR up to one week prior to the start of the 

growing phase in predicting the overall growth rate.  

 

4.3 SSR controls and predictions  

Anthropogenic activities, including climate change, are major drivers of changes in cloud 

cover, water vapour, and aerosol concentrations. Atmospheric water vapour content and global air 

temperature are projected to increase with climate change (Intergovernmental Panel on Climate 

Change, 2001; Lavers et al., 2015), with warmer air temperatures potentially leading to increases 

in cloud cover (Croke et al., 1999). Deforestation, which modifies the seasonality of cloud cover 

patterns relative to pristine forest (Durieux et al., 2003), is expected to increase with population 

growth (Pahari & Murai, 1999). In tropical regions, atmospheric aerosol content is anticipated to 

be higher on average in the thirty-year period between 2021 and 2050 compared to 1961-1990, but 

will likely be lower in temperate and (sub)arctic regions (Stier et al., 2006). 

 All these factors – water vapour, cloud cover, and atmospheric aerosols – act as attenuators 

of SSR (Ångström, 1962; McCormick & Ludwig, 1967; Renner et al., 2019; Yu et al., 2021). 
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Inevitably, with increasing anthropogenic impacts on the climate and environment, there will be 

effects on cloud cover, water vapour content, and aerosol concentrations, and thus on SSR around 

the globe. 

However, predictions of future SSR trends are currently limited in the literature. One study 

applying aerosol-forcing models for SSR predictions found that forecast results varied greatly 

depending on the model that was implemented (Gutiérrez et al., 2020). This study acknowledged 

the limitations of their predictions given that cloud cover and water vapour impacts were not 

included in their model. Overall, the global interactions between cloud cover, water vapour, and 

aerosols with climate change are not fully understood (Rosenfeld et al., 2014). These interactions 

occur at varying spatial and temporal scales, making SSR predictions difficult. 

 

4.4 Implications 

Algal blooms are increasing in frequency, duration, and intensity worldwide, and will 

likely continue to do so with global climate change. Most algal bloom management programs focus 

on the reduction of nutrient inputs. However, investigating other factors that contribute to lake 

productivity will increase our understanding of why algal blooms occur, contributing to our ability 

to assess the effectiveness of best management practices.  

By using a machine learning model to analyze long term, global scale datasets, a simple 

technique is demonstrated by which satellite data, and other large-scale environmental data, can 

be used to supplement in situ environmental and lake monitoring efforts.  

Additionally, the hemisphere-scale dataset of long term SSR and chlorophyll-a records 

compiled as part of this work may be a valuable resource for future studies looking to incorporate 

SSR effects into research on lake productivity. 

 

 



 

 40 

4.5 Limitations and future directions 

As machine learning models are inherently data-driven, this study is limited in scope by 

the data-derived predictive parameters available at the scale of our study. Thus, this study is unable 

to completely account for all known or suspected influencing factors on chlorophyll-a growth rate.  

For example, photoinhibition occurs when algae are exposed to harmful levels of solar 

radiation and begin to suffer instead of benefit from the dosage (Staehr et al., 2016). 

Photoacclimation occurs when algae become adapted to higher solar radiation levels and begin to 

produce less chlorophyll-a relative to their biomass (Westberry et al., 2008). It is hypothesized 

that photoinhibition would cause an observed effect of decreasing chlorophyll-a growth rate with 

increasing SSR, at SSR values higher than some optimal level. It is also expected that 

photoacclimation would result in decreasing chlorophyll-a growth rate (relative to biomass) with 

increasing SSR, past a certain point.  

This study is unable to examine these effects in detail with the current model and compiled 

dataset due to limitations in biomass and turbidity data at the scale of the study. These factors 

warrant further study from a physiological modelling approach, and preliminary work on such a 

model has shown promise. 

In addition, the growth window calculations are an aspect of this study’s methodology that 

warrants further attention. The methodology was designed and tested on in situ data and may not 

be directly applicable for use on satellite datasets. The detection and calculation of algal bloom 

growth windows using satellite data could be improved in future work by implementing aspects 

of the bloom-detection methodologies tested in a 2020 study by Germán et al. The authors of this 

study compared techniques such as threshold values, gap-filling and instantaneous slope 

estimation to identify periods of rapid growth from satellite chlorophyll-a data (Germán et al., 

2020). 

The results of this study should also be viewed with an understanding of the spatial 

limitations of the data. As Figure 2 shows, long-term in situ SSR records outside of Europe and 

some parts of North America are sparse. Additionally, it was found during the data collection phase 
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of the study that the quantity and quality of many SSR records around the world have declined 

since the 1990s. This trend is especially notable in North American SSR records and is well 

acknowledged in the literature (Wild, 2009). Alpert & Kishcha (2008), Cutforth & Judiesch 

(2007), and various related publications emphasize acknowledgement of limitations on 

conclusions about SSR patterns at a purportedly “global scale.” These conclusions are not truly 

global, given that the majority of recent continuous in situ SSR records are in Europe, with urban 

areas especially overrepresented. 

Some recent studies investigating SSR as a factor in chlorophyll-a concentrations have 

used reanalysis rather than in situ data (Shuvo et al., 2021; Tian et al., 2017). Undoubtedly the 

improved homogeneity, spatial and temporal representation, and accessibility of reanalysis data 

products over in situ data lends itself to greater ease of use. However, as reanalysis time series are 

based on numerical simulation using historical climate data (Bengtsson, 2004), there will be 

deviations from the direct in situ SSR measurements used in this study. Zhang et al. (2020) 

conducted a study evaluating ERA-Interim and MERRA-2 SSR reanalysis products against surface 

measurements in China. Some deviations from the surface measurements were identified, and 

these were found to be caused by incorrect estimations of local cloud cover and aerosol optical 

depth in the reanalysis products (Zhang et al., 2020). Therefore, SSR reanalysis products would 

probably be most useful in regional or local studies where enough in situ SSR records exist for 

evaluation of the accuracy of the gridded data. Future improvements to, and more validation of, 

reanalysis products would likely open doors to greater solar radiation and algal bloom modelling 

capabilities. 

Due to the data limitations and scale effects of studying SSR trends, a regional approach 

incorporating reanalysis data might be a promising direction for this research. Regional trends and 

interactions between cloud cover, air temperature, aerosols, and water vapour might be better 

understood at a sub-global scale and more accurate models could be developed. The contributions 

of SSR to algal blooms could then be better quantified. This increased modelling capability would 

greatly contribute to improved accuracy of algal bloom and lake health forecasts  
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5. Conclusions 

With the increasing availability of high resolution, large scale satellite data in all fields of 

environmental science, there is increasing opportunity to take advantage of the data by way of 

global scale studies not possible at any other time in human history. While the challenges at these 

scales of study, and the tools to overcome them, may differ from traditional in situ environmental 

and lake research, there is much value to be gained in utilizing satellite data resources. It is 

promising to see comparable results between in situ and satellite data using a widely applicable 

methodology.  

 Several representative SSR radii were tested (1°, 2°, and 3°) in this study for pairing SSR 

data with lake locations. A 1° radius, represented by scenario B, was found to result in the highest 

model accuracy (represented by R2 and RMSE scores).  

When model accuracy was optimized (scenario B), during-growth window temperature 

was the most important predictor, explaining ~18% of the chlorophyll-a rate variation. The 

scenario B model also showed that the combined importance of pre- and during- growth window 

SSR, explaining ~17.5 % and ~11% respectively, was comparable to the combined importance of 

pre- and during- growth window temperature, at ~29%. In all four model input dataset scenarios, 

pre-growth window SSR explained more variation than during-growth window SSR.  

Partial dependency plots of satellite data model input scenarios B-D suggested that algal 

photoacclimation or photoinhibition behaviours in response to SSR above ~200 W/m2 may have 

been represented by the model.  

 This study joins recent literature in successfully demonstrating the feasibility of using 

satellite data for modelling global-scale quantitative relationships between environmental 

variables and chlorophyll-a growth rates, using a widely applicable supervised machine learning 

technique. In addition to global scale lake monitoring, this technique could be useful in other fields 

of environmental science where satellite data or other large-scale datasets are employed.  

Satellite data and data driven models are becoming more prevalent in modern day 

environmental science. However, they are not replacements for vital in situ monitoring and 
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physiological understanding of systems. Rather, they are additional tools that must be validated 

against high quality, direct measurements to be of use. In the unfolding age of environmental “big” 

data, “traditional” data collection and modelling for long-term environmental monitoring and 

forecasting are as important as ever. 
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Appendix I: 

Summary of compiled in situ SSR and lake datasets 

 

 

Table A1: Summary of all in situ SSR datasets used in this project 

Data source Parameter 

description 

Record 

length 

Number 

of stations 

Region Retrieval 

Global Earth 

Balance Archive 

(GEBA), ETH 

Zurich (co-

funded by the 

Federal Office 

of Meteorology 

and Climatology 

MeteoSwiss 

within the 

framework of 

GCOS 

Switzerland) 

Monthly mean 

SSR, W/m2  

Varies, 

longest 

1922 - 

2017  

2290 Global Online download (May 25, 

2020) from https://geba.eth

z.ch (Wild et al., 2017) 

Baseline 

Surface 

Radiation 

Network 

(BSRN) 

Instantaneous 

SSR every 

minute, W/m2  

Varies, 

longest 

1992 - 

2020 

60 Global Online download (October 

19, 2020) from 

https://bsrn.awi.de/ 

(Driemel et al., 2018) 

IISD - 

Experimental 

Lakes Area 

(IISD-ELA) 

Instantaneous 

photosynthetically 

active radiation 

(PAR) every 15 

minutes, 

μmol/m2/s 

Varies, 

longest 

1973 - 

2016 

5 North-

western 

Ontario, 

Canada 

Data request; received 

September 9, 2020 

 

 

 

https://geba.ethz.ch/
https://geba.ethz.ch/
https://bsrn.awi.de/
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Table A2: Summary of all in situ lake datasets used in this project 

Data source Parameter 

description 

Record 

length 

Number 

of lakes 

Region Retrieval 

ECCC 

Freshwater 

Inventory and 

Surveillance of 

Mercury: Water 

Quality Data 

(Contains 

information 

licensed under 

the Open 

Government 

Licence – 

Canada) 

Chlorophyll-a, 

pH, DIC, heavy 

metals 

2008 - 

2016 

20 Canada Online download from 

http://data.ec.gc.ca/data/sub

stances/monitor/clean-air-

regulatory-agenda-

freshwater-inventory-and-

surveillance-of-mercury-

cara-fishg/freshwater-

inventory-and-surveillance-

of-mercury-water-quality-

data/ (Freshwater Inventory 

and Surveillance of 

Mercury: Water Quality 

Data, n.d.) 

ECCC Lake 

Erie Satellite-

derived Daily 

Algal Bloom 

Indices 

(Contains 

information 

licensed under 

the Open 

Government 

Licence – 

Canada) 

Water quality 

Index, algal 

bloom % lake 

coverage and 

intensity 

2002 - 

2018 

1 Lake Erie, 

Southern 

Ontario, 

Canada 

Online download from 

https://open.canada.ca/data/

en/dataset/0e12e786-b199-

4716-891d-529b9f43f904 

(Binding et al., 2018)  

Lake Winnipeg 

Datastream 

Depth, N, 

ammonia, P, DIC, 

DOC, 

chlorophyll-a, pH, 

alkalinity 

2002 - 

2020 

1 Lake 

Winnipeg, 

Manitoba, 

Canada 

Online download from 

https://lakewinnipegdatastre

am.ca/  (Lake Winnipeg 

DataStream, n.d.) 

http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
http://data.ec.gc.ca/data/substances/monitor/clean-air-regulatory-agenda-freshwater-inventory-and-surveillance-of-mercury-cara-fishg/freshwater-inventory-and-surveillance-of-mercury-water-quality-data/
https://open.canada.ca/data/en/dataset/0e12e786-b199-4716-891d-529b9f43f904
https://open.canada.ca/data/en/dataset/0e12e786-b199-4716-891d-529b9f43f904
https://open.canada.ca/data/en/dataset/0e12e786-b199-4716-891d-529b9f43f904
https://lakewinnipegdatastream.ca/
https://lakewinnipegdatastream.ca/
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IISD - ELA Chlorophyll-a 

(epilimnion 

composite 

sample), DOC, 

temperature 

1968 - 

2019 

5 North-

western 

Ontario, 

Canada 

Data request; received 

September 9, 2020 

ECCC Great 

Lakes Water 

Quality 

Monitoring and 

Surveillance 

Data (Contains 

information 

licensed under 

the Open 

Government 

Licence – 

Canada) 

Chlorophyll-a, 

water 

temperature, N, P, 

Depth 

2000 - 

2018 

5 Southern 

Ontario, 

Canada 

Online download from 

https://open.canada.ca/data/

en/dataset/cfdafa0c-a644-

47cc-ad54-460304facf2e 

(Great Lakes Water Quality 

Monitoring and 

Surveillance Data - Open 

Government Portal, n.d.) 

ECCC Hamilton 

Harbour Water 

Quality Data 

(Contains 

information 

licensed under 

the Open 

Government 

Licence – 

Canada) 

Depth, 

chlorophyll-a, 

DIC, DOC, P, N 

1987 - 

2018 

1 Lake 

Ontario, 

Southern 

Ontario, 

Canada 

Online download from 

https://open.canada.ca/data/

en/dataset/c50e3bb8-97f5-

48be-a910-a8a7b59f85ff 

(Hiriart-Baer et al., 2016) 

ECCC Clear 

Lake Water 

Quality - Riding 

Mountain 

(Contains 

information 

Depth, 

chlorophyll-a, 

DO, pH, Secchi 

depth, 

conductivity 

1978 - 

2018 

1 Clear 

Lake, 

Alberta, 

Canada 

Online download from 

https://open.canada.ca/data/

en/dataset/2a55313f-26fc-

4872-9a57-2a7bf2a4cc38 

(Clear Lake Water Quality 

https://open.canada.ca/data/en/dataset/cfdafa0c-a644-47cc-ad54-460304facf2e
https://open.canada.ca/data/en/dataset/cfdafa0c-a644-47cc-ad54-460304facf2e
https://open.canada.ca/data/en/dataset/cfdafa0c-a644-47cc-ad54-460304facf2e
https://open.canada.ca/data/en/dataset/c50e3bb8-97f5-48be-a910-a8a7b59f85ff
https://open.canada.ca/data/en/dataset/c50e3bb8-97f5-48be-a910-a8a7b59f85ff
https://open.canada.ca/data/en/dataset/c50e3bb8-97f5-48be-a910-a8a7b59f85ff
https://open.canada.ca/data/en/dataset/2a55313f-26fc-4872-9a57-2a7bf2a4cc38
https://open.canada.ca/data/en/dataset/2a55313f-26fc-4872-9a57-2a7bf2a4cc38
https://open.canada.ca/data/en/dataset/2a55313f-26fc-4872-9a57-2a7bf2a4cc38
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licensed under 

the Open 

Government 

Licence – 

Canada) 

- Riding Mountain - Open 

Government Portal, n.d.) 

ECCC Water 

Quality - Prince 

Albert (Contains 

information 

licensed under 

the Open 

Government 

Licence – 

Canada) 

Chlorophyll-a, 

DOC, TP, temp, 

secchi depth 

1992 - 

2019 

2 Saskatche

wan, 

Canada 

Online download from 

https://open.canada.ca/data/

en/dataset/a0096ea6-6ce0-

4007-b43e-9d535cd1a32c 

(Water Quality - Prince 

Albert - Open Government 

Portal, n.d.) 

Environmental 

Protection 

Agency (EPA) 

Great Lakes 

Environmental 

Database 

System 

(GLENDA) 

Chlorophyll-a 1983 - 

2015 

1 Lake Erie, 

Southern 

Ontario, 

Canada 

Provided by project 

partners 

UK Centre for 

Ecology and 

Hydrology 

Water 

temperature, pH, 

chlorophyll-a, P, 

N, Secchi depth, 

alkalinity, misc 

ions 

1945 - 

2013 

7 United 

Kingdom 

Online download from 

https://catalogue.ceh.ac.uk/

eidc/documents (Maberly et 

al., 2017) 

 

National 

Ecosystem 

Research 

Network of 

China 

Chlorophyll-a, 

temperature, pH, 

N, P, DO, misc 

ions, depth 

2005 – 

2019 

1 Lake 

Taihu, 

China 

Online download from 

http://www.cnern.org/index

.action (国家生态系统观测

研究网络, n.d.) 

https://open.canada.ca/data/en/dataset/a0096ea6-6ce0-4007-b43e-9d535cd1a32c
https://open.canada.ca/data/en/dataset/a0096ea6-6ce0-4007-b43e-9d535cd1a32c
https://open.canada.ca/data/en/dataset/a0096ea6-6ce0-4007-b43e-9d535cd1a32c
https://catalogue.ceh.ac.uk/eidc/documents
https://catalogue.ceh.ac.uk/eidc/documents
http://www.cnern.org/index.action
http://www.cnern.org/index.action
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Environmental 

Information 

System of the 

State Institute 

for the 

Environment 

Baden-

Württemberg 

(LUBW) 

Chlorophyll-a 

 

 

1998 – 

2019 

1 Lake 

Bodensee, 

Germany 

Online download from 

https://udo.lubw.baden-

wuerttemberg.de/public/ind

ex.xhtml  

Kasumigaura 

Long-term 

Monitoring 

Project of the 

National 

Institute for 

Environmental 

Studies, Japan 

Secchi, OC, N, 

C/N, Depth, 

chlorophyll-a 

1977 - 

2018 

1 Lake 

Kasumigau

ra, Japan 

Online download from 

https://db.cger.nies.go.jp/ge

m/inter/GEMS/database/kas

umi/contents/datalist.html 

(National Institute for 

Environmental Studies, 

2016) 

Norwegian 

Institute for 

Water Research 

(NIVA) 

Chlorophyll-a, 

depth 

1976 – 

2020 

1 Lake 

Mjøsa, 

Norway 

Online download from 

http://www.aquamonitor.no

/Portal/  

Water 

Information 

System Sweden 

(VISS) 

Chlorophyll-a 1945 - 

2020 

706 Sweden Data request; received July, 

2020 

UK 

Environment 

Agency Water 

Quality Archive 

(Beta) 

Chlorophyll-a, P, 

N, water 

temperature, misc 

ions 

2000 - 

2020 

550 United 

Kingdom 

Online download from 

https://environment.data.go

v.uk/water-

quality/view/download  

https://udo.lubw.baden-wuerttemberg.de/public/index.xhtml
https://udo.lubw.baden-wuerttemberg.de/public/index.xhtml
https://udo.lubw.baden-wuerttemberg.de/public/index.xhtml
https://db.cger.nies.go.jp/gem/inter/GEMS/database/kasumi/contents/datalist.html
https://db.cger.nies.go.jp/gem/inter/GEMS/database/kasumi/contents/datalist.html
https://db.cger.nies.go.jp/gem/inter/GEMS/database/kasumi/contents/datalist.html
http://www.aquamonitor.no/Portal/
http://www.aquamonitor.no/Portal/
https://environment.data.gov.uk/water-quality/view/download
https://environment.data.gov.uk/water-quality/view/download
https://environment.data.gov.uk/water-quality/view/download


 

 60 

Aquasat Chlorophyll-a, 

DOC, Secchi, 

temperature 

1965 - 

2018 

 North 

America 

Online download from 

https://figshare.com/articles

/dataset/AquaSat/8139383 

(Ross et al., 2019) 

LTER – 

Cascade Lakes 

Project  

depth, DIC, 

chlorophyll-a  

1992 – 

2016 

6 Michigan, 

USA 

Online download from 

https://portal.edirepository.

org/nis/mapbrowse?packag

eid=knb-lter-ntl.354.4 

(Carpenter et al., 2017) 

Oneida Lake, 

New York 

water 

temperature, TDS, 

pH, chlorophyll-a, 

Secchi depth, P, 

N, alkalinity, 

conductivity 

1975 - 

2017 

1 Oneida 

Lake, New 

York, USA 

Online download from 

https://knb.ecoinformatics.o

rg/view/kgordon.35.96 

(Rudstam, n.d.) 

LTER – Trout 

Lake Area 

Chlorophyll-a, 

depth 

1981 - 

2018 

1 Trout 

Lake, 

Wisconsin, 

USA 

Online download from 

https://lter.limnology.wisc.e

du/node/55078 (Lead et al., 

2019) 

Poconos 

Mountains 

Region 

limnological 

data 

depth, 

chlorophyll-a, 

water 

temperature, N, P, 

alkalinity, etc 

1989 - 

2018 

3 Pennsylva

nia, USA 

Online download from 

https://search.dataone.org/v

iew/https%3A%2F%2Fpast

a.lternet.edu%2Fpackage%

2Fmetadata%2Feml%2Fedi

%2F186%2F3 (Williamson, 

2020) 

 

  

https://figshare.com/articles/dataset/AquaSat/8139383
https://figshare.com/articles/dataset/AquaSat/8139383
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.354.4
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.354.4
https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-ntl.354.4
https://knb.ecoinformatics.org/view/kgordon.35.96
https://knb.ecoinformatics.org/view/kgordon.35.96
https://lter.limnology.wisc.edu/node/55078
https://lter.limnology.wisc.edu/node/55078
https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F186%2F3
https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F186%2F3
https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F186%2F3
https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F186%2F3
https://search.dataone.org/view/https%3A%2F%2Fpasta.lternet.edu%2Fpackage%2Fmetadata%2Feml%2Fedi%2F186%2F3
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Appendix II: 

Example Python code for random forest model 
 

# -*- coding: utf-8 -*- 

""" 

Created on Sun Jan 10 01:31:18 2021 

 

@author: Rahim Barzegar and Jane Ye 

""" 

# Imports 

from sklearn.model_selection import train_test_split 

import numpy as np 

import pandas as pd 

from sklearn.model_selection import GridSearchCV 

from sklearn.ensemble import RandomForestRegressor 

from sklearn.preprocessing import LabelEncoder 

import pickle 

warnings.filterwarnings("ignore") 

 

 

# Fix random seed for reproducibility 

np.random.seed(1234) 

 

# Load data 

df = 

pd.read_csv('../../data/processed_data/MLfiles/SSRLakesML_sat_1deg_21040

7.csv',  header=0) 

 

# Filter by days_in_window to exclude inaccurately calculated growth 

windows 

df = df.loc[(df['days_in_wi'] < 56) & (df['days_in_wi'] > 2)] 

 

# Print number of rows, number of unique lakes, number of unique SSR 

stations 

print(df.shape[0]) 

print(df['Lake'].nunique()) 
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print(df['SSRID'].nunique()) 

 

# Define parameter set from input df 

df = df[['mean_ssr', 'mean_temp', 'mean_turbi', 'chla_rate', 'trophic_st',  

'lat', 'GeoDistKm', 'Volume', 'MeanDepth', 'LakeSSRElevDiff']] 

 

# drop nan values in mean ssr and 7 days previous mean ssr columns 

df = df.dropna() 

 

 

########################################################################## 

# Dealing with non-numerical (categorical) variables: 

# The mask identifies object type columns 

# label encoder assigns a number to the categories 

# (ie, 4 different categories, they get assigned a # from 0-3) 

 

# Define numerical columns 

num_cols = ['mean_ssr', 'mean_temp', 'mean_turbi', 'chla_rate', 'lat',  

'GeoDistKm', 'Volume', 'MeanDepth', 'LakeSSRElevDiff'] 

 

# Define categorical columns 

cate_cols = df.columns.drop(num_cols) 

 

# convert numerical data 

df[num_cols] = df[num_cols].apply(pd.to_numeric, errors='coerce') 

 

# Define X and y sections of the data 

X = df.drop(columns=['chla_rate']) 

y= df['chla_rate'] 

 

# Apply categorical boolean mask 

categorical_feature_mask = X.dtypes==object 

 

# Filter categorical columns using mask and turn it into a list 

categorical_cols = X.columns[categorical_feature_mask].tolist() 
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# Initiate labelencoder object 

le = LabelEncoder() 

 

# Apply le on categorical feature columns 

df[categorical_cols] = X[categorical_cols].apply(lambda col: 

le.fit_transform(col)) 

 

 

########################################################################## 

# Assign features and target, train and test values 

 

# Define predictor parameter set 

features = ['mean_temp', 'mean_ssr', 'mean_turbi', 'trophic_st', 'lat', 

'GeoDistKm', 

            'Volume', 'MeanDepth', 'LakeSSRElevDiff'] 

 

# Define target parameter 

target = ["chla_rate"] 

 

# Define train and test values 

X = df[features].values 

y = df[target].values.ravel() 

 

train_X, test_X, train_y, test_y = train_test_split(X, y, test_size=0.2, 

random_state = True) 

 

######################################################################### 

# Set up cross validation by grid search and do model fitting/prediction 

 

# Set the parameters for our grid search using bagging 

params = {'n_estimators': range(1,20,1), 

          'max_depth':range(1,10,1), 

          'min_samples_split':range(2,10,1), 

          'max_features': ['auto', 'sqrt','log2'], 

          'min_samples_leaf':range(1,10,1), 

         } 
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# Initialize a GridSearchCV with 10-fold cross validation for the Bagging 

Decision Tree Classifier 

bdtc = RandomForestRegressor(random_state=0) 

model = GridSearchCV(bdtc,params,cv=10,n_jobs=6,verbose=1) 

 

model.fit(train_X,train_y) 

 

# Save model estimator, train and test X and Y, to external file  

# External files can be read in to create plots and data visualizations 

with open('referencefiles/model_sat1deg_210407_duringgwtempssr.pickle', 

'wb') as handle: 

    pickle.dump(model, handle, protocol=pickle.HIGHEST_PROTOCOL) 

 

with open('referencefiles/features_sat1deg_210407_duringgwtempssr.pickle', 

'wb') as handle: 

    pickle.dump(features, handle, protocol=pickle.HIGHEST_PROTOCOL) 

 

np.savetxt('referencefiles/trainx_sat1deg_210407_duringgwtempssr.csv', 

train_X, delimiter=',') 

np.savetxt('referencefiles/trainy_sat1deg_210407_duringgwtempssr.csv', 

train_y, delimiter=',') 

np.savetxt('referencefiles/testx_sat1deg_210407_duringgwtempssr.csv', 

test_X, delimiter=',') 

np.savetxt('referencefiles/testy_sat1deg_210407_duringgwtempssr.csv', 

test_y, delimiter=',') 


