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Abstract

Flow-induced vibration (FIV), a common phenomenon of fluid-structure interaction (FSI), is
found everywhere and at all scales in the applications of marine, civil, aeronautical, and power
engineering. The study of FIV phenomenology, ranging from fatigue and concomitant damage
of structures to its exploitation for energy extraction, has been an active area of fundamental
research. The research on the mechanism supporting the amplifying, stabilizing, and suppress-
ing of FIV has practical implications for the structural design for optimal engineering fatigue
control, energy utilization, etc. Moreover, the noise propagation generated from FIV is also
accompanying environmental pollution that should not be ignored.

However, past research on the FIV supported by nonlinear spring and the corresponding
detailed FSI characteristics are limited. The present study will conduct a numerical FIV study
of bluff bodies mounted by linear and nonlinear springs, and analyze the impact of stiffness
nonlinearity on the FIV responses, including the amplitude variation, phase change, frequency
variation, and wake pattern. The technical method used in this part is direct Computational Fluid
Dynamics/Computational Structural Dynamics (CFD/CSD) simulation with the full-order model
(FOM), via the coupled Navier-Stokes and body-structure equations.

Additionally, the present study investigates the geometrical influences on FIV response and
the mechanism underpinning the transfer from lock-in range to desynchronization or galloping
range. Different body shapes, varied Reynolds numbers, and reduced velocity will involve many
cases, as a result, expensive time will be consumed if the corresponding grids are generated and
FOM calculations are carried out for each case. This part of the research will be mainly based
on the data-driven stability analysis using the reduced-order model (ROM), and FOM based on
CFD/CSD method will be used as supplementary for comparison. ROM could also provide the
modal analysis and physical perspective that are not available for FOM.

Combining ROM and FOM methods, this thesis explores the mode transformation and inter-
action in the lock-in behavior of laminar flow past a circular cylinder. For the galloping analysis,
it is observed very small changes in the windward interior angle of an isosceles-trapezoidal body
can provoke or suppress galloping—indeed, a small decrease or increase (low to 1◦) of the wind-
ward interior angle from a right angle (90◦) can result in a significant enhancement and com-
plete suppression, respectively, of the galloping oscillations. This supports our hypothesis that
the contraction and/or expansion of the cross-section in the streamline direction is significant-
ly responsible for the galloping response. Furthermore, one novel methodology of data-driven
stability analysis via the superposition of 2-D reduced-order modes (SROM) for the purpose of
performing modal analysis and stability predictions of 3-D flow-induced vibration with spanwise
shear inflow is presented.

Lastly, noise propagation from energy harvesters based on the FIV mechanism also deserves
attention. Owing that there is limited past research on noise propagation from oscillating cylin-
ders, an investigation on aeroacoustics study of different oscillation patterns of single cylinder
and tandem cylinders is carried out.
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Chapter 1

Introduction

——————————————————————-

1.1 Background

Energy is essential to humanity since it serves as the foundation for social and economic
progress. Countries that were overly dependent on oil and gas were badly impacted after the
two oil crises of the 1970s, and as a result, they started looking for other energy sources as an
oil substitute. At the same time, people began to progressively grasp that beyond the 1980s,
the conventional fossil fuels supporting human civilization would unavoidably begin to decline.
Moreover, as dangerous compounds are released during the burning of the fuel, it not only pol-
lutes the environment in which people really live but also has a severe effect on their ability to
survive and develop. During the 1990s, all nations studied energy countermeasures and nation-
al energy policies for the sake of sustainable development, searched for innovative, clean, safe,
and dependable sustainable energy systems, and accelerated the production and use of renewable
clean energy. The UK government has set a goal of cutting carbon dioxide emissions by 50%
compared to 1990 levels by 2050 [27]. International Energy Agency (IEA) (2012) reports that
4,206 TWh of electricity from renewable sources, including wind energy and hydropower, were
generated in 2010, making up 20% of the total amount of electricity produced worldwide. The
IEA (2012) New Policies Scenario predicts a 270 percent growth in renewable power between
2010 and 2035.

Solar energy, hydro energy, ocean energy, wind energy, and geothermal energy are currently
classified as renewable energy sources. In particular, wind and hydro energy are widely used as
clean energy sources. At present, the rotating turbine is mainly used to harness those kinds of en-
ergy, which uses the fluid to drive the blades to generate electricity. However, the performance of
those turbines is limited by the fluid velocity, making it infeasible to utilize wind or hydro energy
in the places/environments with the low-speed incident flow. In addition, the traditional rotary
turbines, especially the small-scale machine designed for distributed energy, is encountered the
problems of safety and noise. For example, underwater rotary turbines will cause damage to
migratory turtles or fish, traditional wind turbines pose a threat to birds, and small-scale wind
power generators close to residential areas can cause damage to human limbs and ears (cf. with
Fig. 1.1). Based on the above consideration, looking for new devices that can utilize the fluid
energy of nature becomes a key point for consideration.
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(a) (b)

Figure 1.1: Problems encountered by traditional rotating wind turbines. (a) Birds attacked by
blades, and (b) Noise level surrounding rotating wind turbines (source: EWEA. 1991).

Flow-induced vibration (FIV) is a common phenomenon of fluid-structure interaction (FSI)
that is relevant to the applications of marine, civil, aeronautical, and power engineering. With re-
spect to the characteristics of the structural response, FIV mainly includes the patterns of motion
associated with lock-in (resonance and flutter), galloping, buffeting, and surge [28, 29, 30]. A-
mong these various patterns of motion, the instability of lock-in and galloping are most likely to
induce a large-amplitude oscillation in structures and, consequently, understanding the physical
mechanisms underpinning those two phenomenon is an important and active area of fundamental
research. Taking the most representative phenomenon—vortex-induced vibration (VIV), as an
example herein, vortex shedding occurs periodically on both sides of a non-streamlined structure
under the action of water or air currents, which will form periodic external force on the structure
and cause structural vibration. When the amplitude reaches a certain level, it will cause dam-
age to the structure. Therefore, scholars and engineers have been considering VIV as a harmful
phenomenon for decades. However, it is found that in the case of low velocity flow, the VIV
behavior can produce a large amplitude, and most of the kinetic energy of the fluid is absorbed
by the structure, forming a stable periodic oscillation. This dynamics feature makes it possible
to use the VIV phenomenon as the mechanism support underpinning a certain kind of energy
harvester. Lee [31] reported that Vortex Induced Vibration Aquatic Clean Energy (VIVACE)
generator with a single cylinder (Diameter = 3.5”, Axial length = 36”) can generate electricity
from 0.4 m/s water flow, and its maximum power is 15.85 W at 1.11 m/s flow velocity.

As one kind of unstable vibration, the resonance pattern of VIV occurs in a certain range in
which the vortex-shedding frequency approaches the natural frequency of the structural system,
and can produce effective vibration in a wide range of velocity and Reynolds number. But in
reality, VIV is only one widely known case within the varied patterns of flow-induced vibration
(FIV). Therefore, effective transverse kinetic energy can be obtained from the low-speed flow by
using FIV, which can be converted into electric energy with an appropriate energy driving trans-
mission device. This idea has important practical implications for the utilization of low-speed
water or wind energy. If the power generation device driven by FIV can be widely used, not
only can the utilization range of water and wind energy resources be greatly expanded, but also
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the fluid with low velocity will assist to alleviate the energy shortage. In addition, the dynamic
problem of energy generators using FIV is also related to structural design and parameter opti-
mization, which can be used as the research basis for complex multiple vibration systems. From
this preceptive, the research on FIV has practical significance for optimizing energy structure,
promoting clean energy development, coping with climate change, and developing a low-carbon
economy.

Moreover, the disturbance of the bluff body and the vibration of the rod will be accompanied
by aeroacoustics noise. Low-frequency noise affects human physiological and mental health,
the academic research on low-frequency noise radiated from structural motion has also become
a hot topic. For example, the aerodynamic noise produced by high-speed trains and aircraft
has brought serious environmental pollution. Among them, the cylindrical rod including bogie
structures and pantograph is an indispensable and important part of these trains, and the generated
aerodynamic noise is extremely prominent. Hence, the noise caused by FIV deserves particular
attention from researchers while the application of FIV phenomena is combined with commercial
power generation. Compared to the aeroacoustics study on the flow passing fixed bluff body, the
study of noise on flow pass oscillating bluff body is still limited.

As mentioned above, the trend of how to transfer the FIV energy to accessible and stable
power is a very promising research direction. The structural energy within FIV is mainly located
at the regimes with amplified amplitudes, so what factors are associated with the magnitude
of these regimes and the accompanied amplitudes deserve to be studied in depth. Moreover,
the noise problem brought by body oscillation in FIV is also a research direction that demands
attention.

1.2 Basic principles and preliminary parameters

1.2.1 Basic principles

Figure 1.2: Vortices behind the Aleutian Islands [1].

As one of the most widely known cases of fluid-solid coupling instability, the appearance of
resonance lock-in should be accompanied with the unstable wake dynamics (or, vortex-shedding
behavior), so called ‘vortex-induced vibration (VIV)’. The resonance (lock-in) pattern herein is
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correlated to the mechanism underpinning ‘VIV’. The phenomenon of flow around bluff body
exists widely in nature, and Fig. 1.2 shows a series of vortices formed by the airflow around
the Aleutian Islands captured by NASA Landsat 7. One of the most significant phenomena
found by Von Karman in the experiment of flow around a cylinder is that when the Reynolds
number increases to a certain value (viz., critical Reynolds number Recr), the fluid vortices will
alternately fall off from the tail of the cylinder and form regular, reverse and alternating vortex
series in the wake, which is called Karman vortex street. The flow past a circular cylinder is the
most classical one among all situations of the flow around a blunt body. Scholars have tried to
explain this physical mechanism, among which Gerrard [32]’s shear layer interaction model has
been widely recognized.

For viscous flow, when the uniform incoming fluid flows through the cylinder surface, a
boundary layer is formed on the cylinder surface. However, the velocity of each point outside
the boundary layer is different from that of the plate boundary layer. As shown in Fig. 1.3, the
velocities of points A, B, C and D in the figure are different. Boundary layer separation is an
important phenomenon on a cylinder. When the incoming velocity U0 is close to the surface of
the upstream side of the object, on the front stagnation point A where the maximum pressure
point appears, the velocity is zero. This is because the pressure increases due to the obstruction
at point A. With respect to point B outside the boundary layer, the velocity is the maximum, but
the pressure is the minimum. After point B, the pressure increases but the velocity decreases.
Consequently, the fluid in the boundary layer is not only affected by the friction resistance, but
also by the pressure difference opposite to the flow direction. Before point C, only the velocity
on the wall is equal to zero, while after point C, the kinetic energy of fluid near the wall of the
boundary layer is exhausted, so the fluid near the wall stagnates and reverses under the action
of high pressure in the back section. The pressure distribution in the boundary layer along the
surface of the cylinder is identical to the pressure distribution of the fluid outside the boundary
layer since the boundary layer is extremely thin.

Figure 1.3: Schematic for boundary-layer separation [2].
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Point C is usually referred as the separation point S. At the separation point, the boundary
layer separates from the cylinder surface and forms a free shear layer, which extends down-
stream, as shown in Fig. 1.4a. The wake region is between the shear layers on both sides, and the
velocity in the outer part of the shear layer is greater than that in the inner part, so the fluid gen-
erates wake vortices and falls off downstream, forming several wake vortices. A series of wake
vortices behind the cylinder are called ‘vortex street’, as shown in Fig. 1.4b. The wake vortex
occurs alternately on the left and right sides of the cylinder. When the wake vortex occurs at the
separation point on one side, the circumferential velocity v1 opposite to the rotation direction of
the wake is caused on the cylinder surface, as shown in Fig. 1.4c. The velocity v+v1 of the wake
side is larger than the original velocity v, and the v− v1 of the other side is less than the original
velocity v. Therefore, a pressure difference is formed on the cylinder surface perpendicular to
the incoming flow, which is called lift force FL. Next, the next wake falls off from the other side
and generates lift in the opposite direction. Therefore, each ‘pair’ wake has the opposite lift force
and forms an alternating force period perpendicular to the flow direction. The coupling effect
between the fluid and the structure gets intense when the structure natural frequency approaches
the lift force frequency. Meanwhile, the drag force FD will be produced in the flow direction of
the cylinder. FD is one order of magnitude smaller than FL in quantity, so its influence on the
whole structure is not as important as FL.

(a) Free shear layer behind separated point [32].
(b) Von Karman Vortex streets behinds a circular
cylinder.

(c) Schematics for vortex shedding from a circular cylinder.

Figure 1.4: Mechanism for the vortex shedding from circular cylinder.

Based on above introduction, we know that when a fluid flows through a bluff body, the vortex
shedding phenomenon will appear in the wake under certain flow conditions. As the vortex
shedding frequency approaches the natural frequency of the object, a periodic fluid force will be
induced on the body surface perpendicular to the direction of the incoming flow, thus causing the
body to vibrate and generating periodic shedding vortices on both sides of the back of the body
alternately. The vibration of body in turn changes the shape of wake flow and vortex shedding.
This fluid-structure interaction is termed VIV. As shown in Fig. 1.5, due to the influence of
the added mass, the falling frequency of the vortex is locked at the vibration frequency of the
cylinder in a wide range near the natural frequency, rather than limited to it. Therefore, the VIV
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is a kind of self-excited response phenomenon. The result of ‘lock-in’ phenomenon leads to the
unstable dynamic interaction between structure and fluid.

Inflow

streamline

vortex

moving direction

vortex shedding

moving direction

vortex shedding

Figure 1.5: The occurrence of reciprocating motion of a circular cylinder submerged in the
uniform incident flow.

As explained above, the critical Reynolds number Recr means the largest Reynolds number
for flow past a stationary cylinder to generate a shedding vortex, and consequently, no external
fluid forces would act on the stationary body surface at the subcritical Reynolds number. Howev-
er, with respect to one FIV system with a Reynolds number below the critical Reynolds number,
certain behaviors of structural instability will also appear, and flutter lock-in is one representative
case herein. Based on the modal analysis of Zhang et al. [12], flutter lock-in is the root cause
owing to the unstable structural mode, supporting the assertion of Langre [33] that frequency
lock-in is caused by coupled-mode flutter.

Among these various patterns of motion, the galloping instability—a special kind of un-
bounded vibration—is most likely to induce a large-amplitude oscillation in structures and, con-
sequently, understanding the physical mechanisms underpinning this phenomenon is an impor-
tant and active area of fundamental research. Galloping behavior is commonly encountered for
elastically-mounted objects with non-circular cross-sections submerged in high-speed liquid or
air [34]. For instance, unlike the flow-induced vibration (FIV) response of a circular cylinder
which will transfer into desynchronization after the lock-in range with increasing inflow veloci-
ty, the FIV response of a square cylinder will involve galloping instability [35, 36]. The lock-in
phenomenon will occur only when the structural natural frequency is comparable to the vortex-
shedding frequency, leading to induced oscillations with limited vibration amplitude. In marked
contrast, the galloping instability will appear over a broad range of the incident velocity of the
incoming flow (implying that the structural natural frequency does not have to be comparable to
the vortex-shedding frequency) and, moreover, the amplitude of vibration for this phenomenon
is known to increase with increasing incident flow velocity [35, 37, 36]. Furthermore, galloping
is generally a low-frequency oscillation (viz., occurring at frequencies that are much lower than
the vortex shedding frequency).

Galloping instability has important consequences for engineering applications and, in par-
ticular, for construction engineering. For example, slender structures with a square section are
widely used in engineering construction (e.g., high-rise and towering structures, transportation
trestle bridges, and corridors). However, owing to the aerodynamic characteristics of a square
section, these structures may gallop under the action of the wind and this buffeting response may
lead to fatigue damage to various structural components and connections, which can lead to an
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increased probability of physical harm, property loss, or environmental impact. The galloping
of an ice-coated transmission line is a common example of such concerns. The ice coating can
change the shape of the cross-section of the transmission line by forming crescent-shaped, fan-
shaped, or D-shaped cross-sections [38]. This change in the cross-sectional shape of the power
line in conjunction with the slenderness of the structure and the presence of a crosswind can
potentially induce large-amplitude wind-induced vibrations in the structure, leading to fatigue
of and damage to conductors and even to dragging down the transmission tower. From the per-
spective of modal analysis, galloping and flutter are considered by Li et al. [16] to have similar
intrinsic motivating factors. However, there is still insufficient research on the triggering factors
of galloping, which will be further explored in this thesis.

1.2.2 Main parameters

1. Reynolds number Re.

As an important and basic parameter in fluid mechanics, Reynolds number directly affects
the form of vortex shedding pattern, which is expressed by the ratio of inertial force to
viscous force:

Re =
U0D

ν
, (1.1)

where U0 is the velocity of incoming flow, D is the diameter of cylinder section, ν is the
kinematic viscosity coefficient of fluid. When the Reynolds number is very small, the
viscous force is dominant and the flow is relatively stable. With the increase of Reynolds
number, the inertial force becomes stronger and flow develops into turbulence. Reynolds
number has the greatest influence on the wake shape.

2. Strouhal number St .

fvs represents the vortex shedding frequency of flow past stationary cylinder. In the flow
past fixed bluff body, the intrinsic physical properties of boundary layer separation and
flow instability can be associated with vortex shedding frequency fvs and Strouhal number
St ,

fvs =
StU0

D
, (1.2)

St is the most mysterious and robust parameter in the flow past cylinder. As shown in Fig.
1.6, the St number is related to the Re [3]. It can be seen that in the subcritical region
(300 < Re < 1.5×105), the St number is relatively stable and about 0.20, which indicates
that the vortex shedding in the wake is orderly. In the critical region, the St is dispersed
and the spectrum band of vortex shedding frequency is wider. In moving cylinder cases,
fmvs represents the vortex shedding frequency of a forced or self-excited body in motion.
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Figure 1.6: Relationship between Reynolds number and Strouhal number [3].

3. Frequency ratio f ∗.

fosc represents the oscillation frequency of a vibrating body (either forced or self-excited)
regardless of whether lock-in or galloping is present. Frequency ratio is shown as ratio:

f ∗ =
fosc

Fn
, (1.3)

here Fn represents the natural frequency of structural part of FIV system:

Fn =
1

2π

√
k

ms +ma
, (1.4)

in which, k is the stiffness of linear spring, ms is the body mass of the structural part, ma is
the added mass on the natural frequency of the structure. In fluid mechanics, added mass
is the inertia added to a system because an accelerating or decelerating body must move
(or deflect) some volume of surrounding fluid as it moves through it. Added mass is a
common issue because the object and surrounding fluid cannot occupy the same physical
space simultaneously. For simplicity, added mass can be modeled as some volume of fluid
moving with the object, though in reality "all" the fluid will be accelerated, to various
degrees, and ma(= CamD). mD(= πρ f D2/4) is the mass of fluid corresponding to body
volume of unit length. Ca is the added mass factor, which could be neglected while the
fluid medium around the structure is air, because its added mass has limited influence on
Fn of the structure. The effect of the added mass is non-negligible when the fluid medium
is water, and Ca is set as 1 normally [39].

4. Reduced velocity Ur.

The reduced velocity Ur represents the ratio of the movement distance of one vibration
period to the characteristic length, diameter for circular cylinder, of the structure, and the
reduced velocity is also a dimensionless parameter:

Ur =
U0

FnD
, (1.5)
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5. Mass ratio m∗ and structural damping ratio ζ .

Mass ratio m∗ is defined as the ratio of the oscillation body mass ms to the fluid mass mD
corresponding to body volume, also the ratio of the body’s density ρs to the surrounding
fluid density ρ f :

m∗ =
ms

mD
=

ρs

ρ f
. (1.6)

The structural damping ratio ζ represents the energy consumption due to structure’s own
properties when the structure vibrates:

ζ =
c

2
√

k (ms +ma)
, (1.7)

where c is the structural damping. A mass-damping ratio parameter m∗ζ is obtained by
combining the mass ratio with the damping ratio [40]. By changing the mass ratio m∗ and
damping ratio ζ separately, the FIV experiment of elastically supported rigid cylinder was
carried out by Khalak and Williamson [5] in a towing tank to study the influence of these
two parameters on the FIV response. They indicate that the amplitude of the elastically
supported rigid cylinder depends on m∗ζ , the smaller m∗ζ is, the larger the FIV amplitude
peak value is.

6. Lift coefficient CL and drag coefficient CD.

The transverse force of fluid on the unit length structure is called the lift force FL, and the
dimensionless coefficient is called the lift coefficient CL:

CL =
FL

1
2ρ fU2

0 D
. (1.8)

Periodic vortex shedding can induce periodic fluid force on the structure, and long-term FIV
will damage the structure. In the practical application of ocean engineering and bridge engineer-
ing, there are many phenomena of fluid induced structural vibration. For example, the galloping
of transmission lines, the ringing of cables, the winding vibration of heat exchange pipes, and
the vibration of skyscrapers, bridge piers and offshore drilling structures can cause destructive
vibration accidents. The structural damage caused by FIV has been studied extensively by schol-
ars in recent decades. Due to the obvious unstable relationship between fluid and solid in FSI
system, many issues concerning FIV dynamics have not been fully understood.
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Chapter 2

Literature review

2.1 Experimental investigations of FIV

2.1.1 Response analysis

Figure 2.1: Response of a spring-mounted circular cylinder of self-excited vibration in air [4],
Vr, fex and fair here represents Ur, fosc and fn in present work.

Vortex-induced vibration (VIV) of the single circular cylinder is the most fundamental part
in the FIV research. In 1968, Feng [4] first carried out a pioneering experimental study on a
single rigid circular cylinder, which has been regarded as a classic example of VIV experiment
for decades. The experiment was carried out in a wind tunnel and the cylinder’s motion direction
is limited in transverse direction, with a high mass ratio m∗= 248, a damping ratio = 0.00103,
and a Reynolds number range of (1−5)×104. Feng measured the amplitude ratio A/D, actual
vibration frequency, wake variation frequency and phase angle of VIV system and studied the
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relationship between amplitude ratio and reduced velocity, as shown in Fig. 2.1. Since 1996,
Williamson and his team have carried out many VIV experiments of a rigid circular cylinder
with low mass ratio and elastic support [5, 41]. They have changed the mass ratio by modifying
the stiffness coefficient, adjusting the system mass and changing the diameter of the cylinder.
Different from Feng’s experiment [4], Khalak and Williamson [5, 41] used low mass ratio and
low mass-damping ratio in the experiment to measure the lift forces, drag forces, displacement
and frequency response of the structure.

While comparing Feng’s high-m∗ experiment [4] with air as the fluid medium and Khalak
and Williamson’s low-m∗ experiment [5] with water as the fluid medium, several obviously dif-
ferences could be observed with respect to the responses. In Feng’s experiment, there are only
two branches of the displacement response, which are the initial branch and the lower branch.
When the reduced velocity changes from small to large or from large to small, the displacemen-
t response has some shift around reduced velocity of 6, as shown in Fig. 2.1. In the low-m∗

experiment of Khalak and Williamson [5], whose mass-damping parameter is 0.013, the maxi-
mum displacement response is larger than that of Feng [4] in which the mass-damping param-
eter is roughly 30. Therefore, in addition to the initial branch and the lower branch, another
branch is defined: the upper branch, as shown in Fig. 2.2a. Similarly, Khalak and Williamson
[41][42][8] also obtained varied branches of amplitude response while m∗ is different with the
lower Reynolds number range (Re = 2× 103− 1× 104). The amplitude jump behavior was
accompanied by the phase angle (between displacement and lift forces) showing a 180◦ jump.

(a) Amplitude ratio versus reduced velocity.
(b) Frequency ratio versus reduced velocity at low
mass-damping ratio.

Figure 2.2: Amplitude and frequency ratio versus reduced velocity in experiments [5], U∗ here
is Ur in present work.

In Feng’s experiment [4] which is conducted in the air, the mass ratio is very large (m∗ =
248). The vibration frequency of the cylinder approaches the structural natural frequency, and
consequently the frequency ratio f ∗ is about 1. However, with respect to the VIV response in
water, the oscillation frequency of the cylinder with low mass ratio is obviously higher than the
natural frequency in the resonance regime (Ur is about 5-12). Therefore, the frequency ratio f ∗ is
no longer near 1.0 but about 1.4, as shown in Fig. 2.2b. Govardhan [43] studies the relationship
between frequency ratio f ∗ and reduced velocity at low mass ratio. The smaller the mass ratio
is, the larger the frequency ratio is, and the range of lower branch increases with the decrease
of mass ratio m∗. What’s interesting is that Govardhan and Willamson [44] also observed the
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extreme mass ratio m∗ in the experiment: when m∗ drops to about 0.5, the upper limit of the
lock-in area is very large. No matter how the flow rate increases, the system will always be
locked in the state with large VIV amplitude, the vibration frequency is also obviously greater
than the structural natural frequency of the system.

In terms of the wake dynamics of FIV, the periodic vibration of the cylinder results in differ-
ent vortex modes in wake, which are different from the classical Karman vortex street. Jauvitis
and Williamson [6][7] and Govardhan and Williamson [8][9] summarized various forms of vor-
tex shedding behaviours, including ‘2S’, ‘2P’, ‘P + S’, ‘2C’ and ‘2T’. It is proposed that there is
a certain corresponding relationship between the vortex shedding pattern and the amplitude and
frequency of FIV response, such as initial branch corresponds to the ‘2S’ pattern and the lower
branch corresponds to the ‘2P’ pattern. Braka and Laneville [45] also observed the ‘2P’ mode
through the free vibration experiment of a cylinder, and the premise of this kind of vortex shed-
ding is to use as small structural damping as possible. It should be pointed out that ‘2T’ wake
mode occurs only when m∗ < 6 and its appearance depends heavily on mass ratio m∗, while ‘2C’
wake shape appears only in the vibration of rotationally elastically-supported cylinder [9]. The
diagrams of various wake shedding modes are shown in Fig. 2.3. ‘2S’ in the figure indicates
that there are two single shedding vortex in each vibration cycle, ‘2P’ indicates that there are two
pairs of counter-rotating shedding vortex in each vibration cycle, ‘2C’ represents two pairs of
co-rotating vortex shedding in each half of the vibration cycle, and ‘2T’ represents that there are
three shedding vortex in each half cycle.

Figure 2.3: Wake modes from vortex-induced vibration summarized by Jauvitis and Williamson
[6][7] and Govardhan and Williamson [8][9] .

With respect to the studies on galloping behaviors, Zhao et al. [46] experimentally inves-
tigated the dynamic response (including lock-in and galloping) of the flow past an elastically-
mounted forward- or backward-facing D-section. While the forward-facing D-section exhibited
lock-in and galloping regimes in turn as the reduced velocity was increased, the backward-facing
D-section only exhibited the lock-in regime. This study [46] also applied Den Hartog’s stability
criterion (discussed later) in order to explain the differences in response caused by the different
facing orientations of the obstacle in the flow.

The flow-induced vibration of a large side-ratio elastically-mounted rectangular cylinder in
a turbulent flow was investigated experimentally by Zhao et al. [35]. These investigators found
that as the ratio of the cross-flow side width to the streamwise side width varies from 2 to 5, the
response of the FIV system exhibits a significant and sudden change. More specifically, it was
found that side ratios from 2 to 4 display a galloping instability with the amplitude increasing
with the reduced velocity. In contrast, for a side ratio of 5, the system was found to transition
abruptly to a desynchronization branch after the lock-in range. This is the so-called “galloping-
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collapse” behavior. However, the investigation conducted by Zhao et al. [35] did not provide a
theoretical explanation for this sudden disappearance of the galloping instability with increasing
ratio of the cross-flow to streamwise side width.

Brankovic and bearantz [47] has carried out experiments on the free vibration of a single
circular cylinder in the range of Reynolds number from 3000 to 21000. The mass ratio m∗ is
higher than 0.8, but the damping ratio is very small and about 0.002. Through the experiments,
the relationship between the transverse fluid force/the phase angle and the reduced velocity is
obtained, and the jumping phenomenon of the phase angle is observed. In addition, Parkinson
and Ferguson [48][49], Griffin and Ramberg [50][51], Sumer and Fredsoe [52], Gerrard [53],
Zdravkovich [54] and others have discussed the natural characteristics of FIV in their papers or
monographs. Pantazopoulos [55], Bearman [56], Gabbai and Benaroya [57] and Sarpkaya [40]
have also made a good review of various types of FIV experiments.

2.1.2 Energy harnessing

FIV can cause fatigue damage of slender structures, which has a negative impact on the
smooth development of ocean, road and bridge engineering, but it may also benefit us. When
FIV occurs, the structure will produce periodic vibration, which can be converted into useful
electrical energy by means of transmission device or piezoelectric generator [58][59][60]. This
kind of power can be used for industrial applications, such as power supply for roads, bridges,
street lights, underwater monitoring devices, offshore platform facilities, etc.

In the past decade or so, many researchers have used experimental and numerical methods to
study how to capture energy by FIV of rigid cylinder, and have derived the prediction model of
FIV of rigid cylinder coupled with energy capture device. Bernitsas’s research group at Univer-
sity of Michigan [10][61] proposed the design scheme of laying the bundle of rigid cylindrical
tubes underwater to obtain energy, which is relatively comprehensive research for energy acqui-
sition based on VIV, as shown in Fig. 2.4. The VIV-based energy utilization unit is referred to as
VIVACE Converter.

Figure 2.4: VIVACE energy harnessing units based on VIV [10].

Kim [62] try to maximize the synergy of multiple parallel cylinders in fluid induced motion
(FIM) to realize the utilization of water kinetic energy. Kim studied the effect of tandem spacing,
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staggering, passive turbulence control (PTC), mass ratio, spring stiffness, damping, and cylinders
number on FIM response. Two kinds of channel are used in their research, including the old Low
Turbulence Free Surface Water (LTFSW) Channel and the new LTFSW Channel, new channel
could help the FIM system to get the high oscillation amplitude. VIVACE is tested in the old
LTFSW Channel with high Reynolds numbers in the range of 28,000 < Re < 120,000, and four
cylinders with identical diameter D = 3.5 cm and length L = 36 cm are solidly connected. The
maximum amplitude reached 2.2D-2.8D which was the limit of the old LTFSW Channel in the
galloping region of FIM. In the investigation of VIVACE operating in the new LTFSW Channel,
tandem spacing of cylinders in the range of 28,000 < Re < 120,000 was conducted. For this
smallest spacing of 1.43D, both smooth and roughened cylinders exhibited distinct response
with higher amplitude and lower oscillation frequency compared with those of other spacings.

Sun et al. [63][64][65] continued the research on VIVACE in University of Michigan, and
studied the effect of damping, mass-ratio and stiffness with respect to the energy conversion of
a single cylinder in VIV. The oscillator have the ability to harness energy from water flow with
velocity low to 0.3946 m/s. The synchronous branch will be shifted to a higher Reynolds number
by the increase in spring stiffness, resulting in the gap between VIV and galloping, in which the
power output will drop. A company named VORTEX Bladeless [66] in Spain is also trying to
develop a VIV-based wind generator, which is funded by the European Union’s Horizon 2020
research and innovation.

Besides the application of energy harvester using lock-in behavior as the fundamental un-
derpinning theory, the academics also try to apply galloping phenomena to harness power. The
topological equivalent aerodynamic method is introduced by Zhao et al. [67] to design a funnel-
shape galloping energy harvester with wide working wind-speed range and high normalized har-
vesting power. Harvey et al. [68] tried to develop one galloping energy harvester, a curved blade
oriented perpendicular to the incident flow, which is capable of producing self-sustained oscilla-
tions at uncharacteristically low wind speeds. A square cylinder with a V-shaped groove on the
windward side in the piezoelectric cantilever flow-induced vibration energy harvester (FIVEH)
is presented by Zhao et al. [69] to improve the output power of the energy harvester and reduce
the onset velocity for the power output, for the purpose of the self-powered supply of low energy
consumption devices in the natural environment with low wind speed.

2.2 Numerical investigations of FIV

2.2.1 Computational fluid dynamics

Because FIV is a complex fluid structure coupling phenomenon, and involves many parame-
ters, the influences of parameters on FIV is difficult to be fully investigated by the experimental
system. In addition, it is almost impossible to obtain all the dynamics information of fluid domain
only by experiments if various parameters and vibration conditions are considered, and reveal the
relationship between flow responses and system parameters. The numerical simulation method,
which is not limited by the experimental conditions, can flexibly adjust the parameters, thus re-
vealing the influences from parameters and predicting the results. With the development and
progress of computer technology, it has become an important technical tools to simulate VIV
by computational fluid dynamics (CFD). With respect to CFD methods, there are three kinds of
numerical calculation methods used to undertake the FIV calculations in the literature: Direct

14



Numerical Simulation (DNS), Large Eddy Simulation (LES), Reynolds Averaged Navier-Stokes
(RANS), and the synthesis of the above methods.

Direct numerical simulation (DNS) is to directly solve the N-S equation of turbulent motion.
Because there is no skillful or model approximation for the turbulent flow, it is a kind of tur-
bulence numerical simulation method with the highest degree of refinement. The instantaneous
flow field of turbulence can be obtained, and all the information of turbulence can be obtained,
and the relatively accurate results can be obtained theoretically. Evangelinos et al. [70] used
the DNS method to simulate the VIV of a rigid and flexible circular cylinder with Re = 1000,
and made two assumptions: the structural damping is zero and the structural natural frequency
is locked in the St number under the condition of flow passing fixed circular cylinder. Blackburn
et al. [71] have carried out two-dimensional(2-D) and three-dimensional(3-D) DNS and exper-
imental research on vortex-induced vibration of a single rigid cylinder at low Reynolds number
(Re < 500). The numerical simulation and experiment adopt the same parameters. The simula-
tion results are similar to the experimental results with respect to the 3D flow field, and the results
of 2-D and 3-D flow field simulation are different under the same Reynolds number. At the same
time, the change of phase angle φ is also studied by the DNS method with Re = 500 [72]. The
researchers who use DNS to simulate VIV with higher Reynolds numbers of 3900 and 10000
are Ma et al. [73] and Dong et al. [74] respectively. In recent years, George and Ducoin [75]
simulated the three-dimensional incompressible fluids dynamics using DNS and coupled it with
the motion equation to investigate the laminar-to-turbulent transition-induced vibration system
consisting of a rigid NACA66 hydrofoil supported by the elastic axis by a torsional spring and
damper. The hydrofoil is fixed at angle of attack of 4◦ and limited to move in transverse direc-
tion. Re of incident flow is 450,000.The results show that the airfoil vibration strongly affects
the pressure gradient of the hydrofoil, thus changing its transition position and boundary layer
properties, and in addition these properties are proportional to the amplitude and frequency ratio
of the airfoil vibration. Chen et al. [76] used 3-D DNS method to investigate the FIV response of
one elastically-mounted circular cylinder near a stationary wall at a subcritical Reynolds number
of 500. However, due to the various scale quantities in turbulence, any disturbance on the bound-
ary may lead to the generation of new small-scale quantities or increase the original small-scale
quantities. Therefore, DNS will become very expensive in terms of computing resources and can
not meet the complex engineering flow problems.

The basic idea of Large Eddy Simulation (LES) is to give up the simulation of eddy motion
in the full scale of flow field, and decompose the turbulent motion into two parts: small-scale
eddy motion and large-scale eddy motion. The large-scale turbulent motion or vortex passage
is directly calculated by the instantaneous Navier-Stokes equation, while the sub grid scale (S-
GS) model is established to approximate the effect of small-scale motion on large-scale motion,
which is shown as an additional sub-grid Reynolds stress term in the equation. In 1941, Ko-
mogorov proposed the k41 theory of dissipation mechanism [77][78], and considered that the
small-scale turbulent motion is approximately isotropic. The Large Eddy Simulation (LES) with
engineering significance was first carried out by Deardorff [79] in 1970. Subsequently, LES has
been successfully applied to the numerical simulation of various turbulent flows. Dalheim [80]
and Herjford et al. [81] also used LES method to simulate the free vibration of a single circular
cylinder subjected to uniform incoming flow. Zhang and Dalton [82] used LES method to sim-
ulate the 2-D transverse vibration of a circular cylinder with Re = 13000. Janocha et al. [83]
performed the LES calculation to investigate the flow past a vibrating cylinder in the subcritical
Reynolds number regime at Re = 3900.
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Although DNS and LES methods can provide insight into the interaction mechanism of wake
boundary layer in FIV response, the Reynolds Averaged Navier-Stokes (RANS), which has the
advantages of robustness and less running time, has become the main numerical calculation
method to solve the turbulence problem. In this method, instantaneous quantity is decomposed
into its time-averaged and fluctuating quantities, and then the governing equations are time av-
eraged. When the turbulence model is used to simulate the turbulence effect, the calculation
results are greatly affected by the kinds of turbulence model. Pan et al. [84] used RANS code to
simulate the two-dimensional VIV of a elastically-supported rigid cylinder with low mass damp-
ing ratio. In the upper and lower branches, the 2P vortex shedding mode is consistent with the
experimental results. The vortex mode changes accompanied by the change of frequency ratio
through the lock-in region. Guilmineau and Queutey [85] also used the two-dimensional incom-
pressible Reynolds averaged N-S equation to simulate the VIV of a rigid cylinder with k-omega
(k−ω) turbulence model, the Re range is 900-15000, and the vibration of the cylinder in the
flow direction is limited. The maximum amplitude is consistent with the results from the exper-
iment of Khalak and Williamson [41], but the upper branch does not show good conformance.
Wanderly et al. [86] numerically solved the two-dimensional RANS equation to study the static
status and VIV of rigid cylinder. The k-epsilon (k− ε) turbulence model was used to close the
governing equations. The lift, drag coefficient and St number are basically consistent with the
numerical and experimental results of other researchers. The VIV response of two rigidly con-
nected circular cylinders in side-by-side and tandem arrangements is numerically investigated
by Zhao et al. [87] with RANS SST k−ω model. The vortex-shedding phenomenon from the
upstream cylinder disappears for the gap ratio of 0.5 in the tandem unit at large reduced veloci-
ty, and the accompanied structural response is determined as galloping behavior. The Arbitrary
Lagrangian Eulerian (ALE) scheme is also used here for solving the governing equations. Fur-
thermore, Catalano et al. [88] simulated the VIV with Re = 0.5×106 and 1×106 in Fluent CFD
software using RANS method (standard k− ε model) and LES method (with wall model imple-
mentation), and compared the results of the two methods. The results show that the accuracy
of RANS results is within the allowable error range, and the lift, drag coefficient and St number
are more consistent with the experimental results than LES model. In addition, Xu & Zhu [89]
used RANS solver combined with SST k−ω turbulence model to simulate the transverse and
in-line motion of elastic support cylinder with a low mass ratio, and the ‘2T’ vortex shedding
mode were captured. Khan et al. [90] undertook the CFD investigation of the VIV system using
RANS models (SST k−ω model) in ANSYS FLUENT, and the Reynolds number is fixed at
10,000. The results exhibit high conformance to that using DES, LES, and DNS models. The
vortex-shedding phenomenon from the upstream cylinder disappears for the gap ratio of 0.5 in
the tandem unit at large reduced velocity, and the accompanied structural response is determined
as galloping behavior.

In terms of the energy harnessing researches based on VIV with numerical method, Barrero-
Gil et al. [91], Luo et al. [92] and Wang et al. [93] studied the sensitivity of energy harnessing
efficiency of rigid cylindrical structure to system parameters under 1-DOF by numerical method.
The results show that the mass-damping ratio, Reynolds number, natural frequency and reduced
velocity have significant effects on the harnessing efficiency. Naseer et al. [94] studied the ef-
fect of additional magnetic poles on the energy trapping performance of a conventional rigid
cylindrical VIV piezoelectric energy harvesting structure, and additional magnetic pole is used
to increase the bandwidth of the ‘lock-in’ region of the VIV of a rigid cylinder. Pan et al. [95] s-
tudied the energy capture characteristics of a rigid cylinder based on piezoelectric units by means
of experiments and multi-body dynamics simulation. The results show that the trapping charge
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level is related to the flow velocity and cylinder diameter. The maximum electromechanical con-
version efficiency can reach 17.8 %. Based on the wake oscillator model, Franzini and Bunzel
[96] studied the energy capture characteristics of VIV of rigid cylinder with 1-DOF and 2-DOF
by numerical method. The results show that the maximum energy harvesting efficiency can reach
50 % with proper parameters. In addition, they also studied the parameter sensitivity of the wake
oscillator model in the model, and pointed out that the parameter selection of the wake oscillator
model must be based on, otherwise the calculation results will be greatly affected. Chen et al.
[97] used the immersed boundary method to study the structural and wake responses of the FIV
system consisting of laminar flow past elastically-mounted D-section body at varied angles of
attack with Re = 100. However, the lack of small vortex resolution in RANS model will limit
its use in aeroacoustics calculations. Therefore, this thesis will use DES, the combined model of
LES and RANS, to resolve the flow field in the calculations of aerodynamic noise propagation.

2.2.2 Linear stability analysis

Accurate hydrodynamic model is an important basis for analysis, control and optimization.
For example, the analysis of maneuverability and stability in flight mechanics, the flutter anal-
ysis in aeroelasticity and the FIV problem studied in this thesis need to rely on high-precision
unsteady flow simulation to obtain accurate aerodynamic parameters. A simple and accurate
flow analysis model is also of great significance to understand the complex flow mechanism of
high-dimensional and nonlinear, and to carry out flow control [98].

In order to establish accurate unsteady hydrodynamic and aerodynamic models, researchers
have developed various methods based on linearization theory since 1990s, such as quasi steady
Grossman and Theodorsen models for two-dimensional problems, vortex lattice method and
dipole grid method for three-dimensional wing. For hypersonic flow, piston theory and its im-
proved method have been developed. The computational fluid dynamics (CFD) has gradually
become the most widely used aerodynamic method in the fluid mechanics field with the rapid
evolution of computer technology. Based on the high-dimensional and nonlinear governing e-
quations of unsteady flow field (such as Euler equation and Navier-Stokes equation) and high-
precision numerical solution technology, CFD method can accurately describe the detailed infor-
mation of unsteady flow field evolution with time with full-order model (FOM), and reproduce
the physical characteristics of flow, so as to accurately obtain the unsteady aerodynamic char-
acteristics. However, the aerodynamic simulation method based on unsteady CFD technology
not only has a large amount of calculation and time-consuming, but also involves the solution
of high-dimensional flow equation, which is not convenient for the qualitative analysis of the
system, and brings many difficulties for the development of model engineering and the mech-
anism interpretation of complex flow phenomena. In view of this, a simple and accurate flow
analysis model is also of great significance to understand and gain deeper physical insights into
the characteristics of the complex and highly nonlinear fluid flow underpinning FIV [98].

Models used in the context of theoretical investigations should be accurate, efficient, elegant,
and intuitive. To this purpose, researchers have developed a variety of reduced-order models
[99, 100] in order to reduce the computational cost of full-order fluid flow simulations and to ex-
tract the main characteristics of the fluid system in order to provide the basis for the interpretation
and analysis of the complex system. By using numerical data obtained from a small number of
high-fidelity computational fluid dynamics (CFD) simulations, ROMs can be developed which
can achieve levels of accuracy comparable to those obtained from a full CFD simulation, thereby
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reducing the computational cost of unsteady aerodynamic/aeroelastic prediction by one-to-two
orders of magnitude while maintaining good accuracy. This advantage makes it easy to couple
various component-level ROMs into a system-of-systems simulation and to apply it to appli-
cations involving multidisciplinary analysis, control, and optimization design allowing one to
analyze the dynamical behaviour of these complex systems quickly.

Dowell et al. [101] believes that the unsteady aerodynamic models can be divided into three
categories: Firstly, pure linear models. That is to say, the static and dynamic aerodynamic forces
of the research object conform to the linear characteristics. Secondly, the static nonlinearity is
accompanied by the dynamic linear model. This situation means that the flow is non-linear in
space (for example, there is discontinuity in space) and obeys linear relationship in time, which is
also called time linearization model. The linear system identification method and the state space
method are all of this kind of model. The model is usually applicable to the unsteady flow of
structures under small disturbance when shock wave and flow separation exist at transonic speed
and high angle of attack. Thirdly, dynamic nonlinear model. With the increase of the amplitude
of motion, the aerodynamic characteristics of dynamic nonlinearity gradually become obvious,
and the hypothesis of small disturbance is invalid. Since the complete linear model is usually
suitable for steady and quasi steady small disturbances, the unsteady aerodynamic ROM based
on system identification mainly focuses on the latter two dynamic characteristics.

It is important to note that FIV systems are nonlinear in general. As a result, linear stability
analysis (LSA) can be used to analyze such systems (and, in particular, to study their dynamical
characteristics) only when the effects arising from the nonlinear interactions are not dominan-
t [101]. In this case, the information embodied in the eigenvalues of the coupled system that
models the interaction between the vibrating structure and the surrounding fluid flow can be used
to assess the stability characteristics of this system. More specifically, in order to apply LSA
to a system, a time-linearized aerodynamic model needs to be obtained using some form of a
system identification methodology such as the eigensystem realization algorithm (ERA) [102] or
an autoregressive with exogenous input (ARX) model [103]. Both of these methodologies can
be (and have been) used to construct mathematical models of the dynamical characteristics of a
VIV system from the measured input and output data. The detailed introduction to the specific
LSA analysis and modal evaluations on lock-in and galloping behaviors will be presented in the
following sections 2.3.2 and 2.3.3.

2.3 Triggering and enhancement of FIV

2.3.1 Effect of nonlinear restoring forces on lock-in behavior

The studies referenced above concern the nature of FIV for a body (structure) supported
by a linear spring-damper system whereby the stiffness of the spring is constant implying that
the spring force is linearly proportional to the displacement of the supported body. However,
most spring support systems used in engineering problems, which include various applications
in vehicle, civil, traffic and ocean engineering are nonlinear in nature implying that the stiffness
of the spring does not remain constant as a function of the displacement of the body. Moreover,
the characteristics of a nonlinear spring-damper system is different from that of a linear spring-
damper system, and will require further research when such a system is coupled with a fluid
dynamical system.
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In recent years, some experimental studies of the VIV effects on a structure supported on
a nonlinear spring-damper system have demonstrated that the nonlinear restoring forces in the
system have a significant impact on the lock-in range of reduced velocity and on the amplitude of
the induced vibration. Stappenbelt [104] experimentally investigated the influence of compliance
nonlinearity on the VIV response of an elastically-mounted rigid cylinder in a steady, uniform
flow. The point at which the initial lock-in occurs seems to remain unchanged in comparison to
the case of linear compliance, but the whole lock-in range becomes greater with the nonlinear
restoring forces. Wang et al. [105], Ramesh et al. [106] and Barton et al. [107] conducted careful
studies on the effect of nonlinear restoring forces on the operation of energy harvesting devices.
These researchers found that the increased lock-in range and the enhanced amplitude of the con-
comitant vibrations arising from the nonlinear restoring forces are conducive to the optimization
of the energy harvesting quality of the devices through an enhancement of the flow-induced
motions in the system.

Huynh et al. [108] numerically and experimentally investigated the VIV response for two
types of nonlinear stiffness, namely bi-stable stiffness and hardening stiffness. The bi-stable s-
tiffness has the potential to allow the system to operate in water flows at lower velocity. On the
other hand, the hardening stiffness has the potential to extend the operating range into water flows
at high velocity, which could improve potentially the overall performance of a VIV-based energy
converter. However, the numerical model used in the study conducted by Huynh et al. [108] was
based on a simple wake oscillator model, with a simple periodic excitation force included in the
structural equation, rather than on a more rigorous fully-coupled FSI model. Sun et al. [109]
experimentally investigated hydrokinetic power conversion using flow-induced vibrations with
nonlinear (adaptive piecewise-linear) springs. Results for the amplitude response, frequency re-
sponse, and energy harvesting efficiency are presented and discussed in this study. Moreover, Sun
et al. [109] divided the experimental amplitude response into four performance zones according
to the VIV response. Finally, in this study, it was shown that an optimal power harnessing can
achieved by changing the nonlinear piecewise-constant spring function.

In spite of these studies, it is noted that research on the VIV phenomenology associated with
structures supported by nonlinear spring-damper systems is rather limited. Wang et al. [110]
studied the effects of a cubic stiffness nonlinearity on the VIV of a circular cylinder for a low-
Reynolds number flow, with a nonlinear spring incorporating the hardening spring nonlinearity
and the softening spring nonlinearity. It was shown that the softening spring nonlinearity alters
the amplitude of the lock-in range, but does not change the distribution of the various branches
associated with this lock-in range. On the other hand, with increasing hardening spring nonlin-
earity, it was shown in the study that the branch distribution of the lock-in range is significantly
altered accompanied by a relatively large amplitude of oscillation over a wider range of reduced
velocity Ur. In short, the VIV phenomenology for structures that are supported by an nonlinear
spring-damper system are significantly different than those supported by a linear spring-damper
system.

Badhurshah et al. [111] studied the effect of a bi-stable spring (rather than a linear spring)
on the VIV response of a circular cylinder submerged in uniform laminar flow at Re = 150.
This numerical study was conducted using an immersed boundary method to address a moving
boundary value problem on a two-dimensional domain. The results of these simulations showed
that a bi-stable spring could increase the lock-in range compared to that of a linear spring for
high mass ratios, with the implication that a VIV system mounted on a bi-stable spring may be
useful for the design of energy harvesters. Mishra et al. [112] numerically investigated the VIV
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of a rigid circular cylinder coupled to a Standard Linear Solid (SLS) device at Re = 150 in order
to study the viscoelastic effect. The SLS could be regarded as a normal linear spring-damping
unit superposed in parallel with an nonlinear spring-undamping unit. The mass ratio was fixed
at 2.546, and the effect of the nonlinearity on the VIV response was investigated by adjusting
the parameters associated with the strength of the nonlinearity in the structural control equation.
The results obtained in this study, which include the increased lock-in range arising from the use
of an nonlinear spring and the effects of the nonlinearity in hardening and softening springs on
the VIV response, are consistent with the findings reported by Wang et al. [110].

In view of above discussion, the chapter 3 of present thesis will focus on a two-dimensional
(2D) numerical VIV study of a circular cylinder mounted on linear and nonlinear springs for
a low Re-number flow. To this purpose, we analyze the impact of the spring nonlinearity on
the VIV response, focusing specifically on the differences in the amplitude variation, the phase
change, the frequency variation and characteristic wake pattern between the linear and nonlinear
spring-mounted cylinder.

2.3.2 Modal evolution of lock-in behavior

Section 2.2.2 presents the background information and past development of linear stability
analysis (LSA), this section will introduce some practical applications of LSA as well as the
data-driven analysis in the FIV investigations in recent years.

Zhang et al. [12] used a ROM to study the physical mechanisms of VIV for flow past a
circular cylinder at a Reynolds number of 60. Zhang et al. showed that a ROM can provide some
deeper insights into the underlying modal mechanism of VIV, whereby the modes so obtained
from the model can be divided into structural and wake modes according to the characteristics of
the root loci (in contrast with the results obtained from a FOM). Furthermore, these investigators
found that the lock-in range can be divided into a resonance and a flutter regime. The resonance
lock-in mechanism is interpreted to be caused by the frequency proximity of the structural and
wake modes, while the flutter lock-in mechanism is instead correlated with an unstable structural
mode arising from the modal coupling interaction. The modal behavior of a FIV system is
either coupled or uncoupled, depending on whether there is a clear distinction between the root
loci associated with the structure and wake modes. For a FIV system with two coupled modes
(which we label herein as WSMI and WSMII), it is necessary to determine which of these two
modes represent the hidden structure mode at each value of the natural frequency Fs—indeed,
the hidden structure model (labelled as SMc herein) can be WSMI at one value of Fs and switch
to WSMII at another value of Fs (or vice-versa), a process which is described as “mode veering”
by Gao et al. [113]. The proper identification of the hidden structure mode SMc for a FIV system
in a coupled modal condition will be investigated later in this thesis.

Zhang et al. [12] obtained their reduced-order model for the fluid dynamics using an ARX
identification methodology. The ARX model is a linear dynamic model based on a discrete
difference equation. The basis of this model is to represent the current system output as the
linear superposition of current input and the previous (in time) inputs and outputs. An alternative
to the ARX model is the autoregressive moving average (ARMA) model [114].

Navrose and Mittal [14] subsequently investigated the lock-in phenomenon for flow past an
elastically-supported cylinder using global LSA based on the linearized Navier-Stokes equations,
with the main conclusions similar to those obtained by Zhang et al. [12]. For the case of low
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and high mass ratios, the interaction between the fluid and the solid modes are coupled and
uncoupled, respectively. Furthermore, Navrose and Mittal [14] analyzed the transfer of energy
(kinetic energy of the cylinder, potential energy of the spring, and disturbance energy of the wake
flow) within the lock-in range for cases involving different mass ratios.

Yao and Jaiman [15] investigated vortex-induced vibration of bluff bodies with differen-
t cross-sectional shapes using a reduced-order model. The shapes include an ellipse, a forward
triangle, a diamond, and squares with varied rounding radii. In this study, Yao and Jaiman
[15] constructed a stability phase diagram summarizing succinctly the dominant lock-in type-
s (resonance or flutter) for different cross-sectional shapes in the Reynolds number range of
30 < Re < 100 based on the characteristics of the root loci. To this purpose, Yao and Jaiman used
ERA, which is a linear system identification method based on the impulse response of the system.
ERA was originally formulated by Juan and Pappa [115] who used it to investigate the modal
parameter identification of structures associated with the space shuttle. Because ERA is based
on the minimum realization principle of control theory and has a sound theoretical basis, it has
been widely applied in aerodynamic modelling problems involving linear dynamics. For exam-
ple, Silva and Bartels [116] developed a reduced-order model for aeroelastic analysis and flutter
prediction using ERA and applied it to the aeroelastic stability analysis of an AGARD445.6 wing
[117]. Brunton et al. [118] established aerodynamic models of two-dimensional flat plates and
three-dimensional wings in the test environment using ERA. The results show that this method
can accurately establish aerodynamic models under different equilibrium positions. In some fur-
ther work, Yao and Jaiman [119] applied an active feedback consisting of a uniform blowing
and suction on the surface of a circular cylinder in order to achieve the suppression of the vortex
street and the VIV in the elastically-mounted structure. The analysis here was based on a model
reduction for the VIV of the circular cylinder using ERA. The feedback control system, based on
an actuator configuration with a blowing and suction over the porous surface of a circular cylin-
der, was shown to be capable of suppressing the nonlinear saturated state of vortex shedding in
the wake of the circular cylinder.

Chizfahm and Jaiman [120] obtained a reduced-order model for the fluid dynamics of a
sphere using ERA and constructed a coupled FSI model. Moreover, the effects of the near-wake
jet (attached on the downstream side of the sphere) on the VIV response was investigated in this
study. These results showed that this arrangement resulted in the suppression of large-amplitude
oscillations and can be regarded as a suppression control device. Li et al. [121] applied ARX
to investigate the wake-induced vibration for a configuration consisting of two identical circular
cylinders in an in-line tandem arrangement and used this arrangement to investigate the stability
of the downstream cylinder for a spacing between the two cylinders of twice the cylinder diam-
eter. This study showed that the Reynolds number and mass ratio have significant effects on the
structural response of the downstream cylinder. An important advancement of the application
of stability analysis to high-Reynolds number flows was made by Chizfahm and Jaiman [122],
who used a recurrent neural network (based on a long short-term memory cell) in conjunction
with the ERA, in order to obtain a nonlinear state-space model for the VIV of a freely vibrating
sphere at Reynolds numbers up to 2000.

According to Yao and Jaiman [15], the application of the ARX method to VIV does not have
a rigorous mathematical basis and, moreover, is sensitive to the input signal. In contrast, ERA
has a more rigorous theoretical basis in fluid dynamics and, hence, is more appropriate for the
analysis of the unstable linear system generated by VIV. In view of this, following the work of
Yao and Jaiman [15], Flinois et al. [123] and Ma et al. [124], ERA will be used as the system
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identification method to build a low-order fluid model in the present study.

In spite of the research cited above, there still remains much that is unknown regarding the
physical mechanisms underlying the fluid-structure coupling of a single circular cylinder and,
as a result, this canonical case needs to be investigated further on a fundamental level. Yao and
Jaiman [15] investigated the modal mechanisms responsible for a VIV system consisting of a
flow past a cylinder. In this investigation, the authors suggested that the frequency lock-in for
VIV is solely the result of a flutter-induced lock-in for Re > 70. Indeed, this suggestion is still
open to discussion as conclusions from previous studies such as Zhang et al. [12] and Navrose
and Mittal [14] are all conducted for flows with Reynolds number less than 100. To this point,
we shall carry out systematically a large number of simulations of flow past a circular cylinder
for various combinations of the Reynolds number Re, the mass ratio m∗, and the reduced natural
frequency Fs; and, more specifically, for Re ranging from 20 to 180, for m∗ ranging from 5 to
50, and for Fs ranging from 0.05 to 0.30. This comprehensive set of simulations will allow us
to address the important issue of the effect of Reynolds number on the relevant mechanisms
underlying VIV and, moreover, will allow us to re-examine the Yao and Jaiman assertion alluded
to above.

Critically, the present work will focus on introducing some novel modal behaviors which in-
clude various mode transformations and interactions, which are then used to explain some subtle
features such as the beating phenomenon which occurs in the initial branch and the significant lag
time that ensues between the initial branch and the occurrence of the fully-developed response in
the lower branch that have been overlooked previously. In so doing, this bridges some important
gaps in our current understanding of this phenomenon and, indeed, the results from the careful
analysis conducted herein will be used to redress some of these key limitations and to reduce
some critical knowledge gaps on the VIV response of a circular cylinder arising from some pri-
or efforts. Towards this objective, FOM/CFD will be used in conjunction with ROM/ERA and
supplemented with power spectral analysis and dynamic mode decomposition to provide deeper
insights and a better understanding of the physical processes underlying the lock-in phenomenon
and to study in greater depth the influence of the Reynolds number on the fluid-structure interac-
tion. Using this approach, we reveal and explain the characteristics of the vibration response for
each branch (initial, lower, and upper) of the lock-in range.

It is acknowledged that the Neimark-Sacker bifurcation may have a possible effect on the
VIV response of an elastically-mounted cylinder at Reynolds number of about 180. One needs
to be careful in the interpretation of the dynamical characteristics of a VIV system obtained
using LSA based on ROM/ERA as the nonlinear effects in the system may not be accounted for
properly (especially for flows at higher Reynolds numbers). With this caveat, we follow the lead
of prior efforts in the application of LSA to the analysis of FIV systems (e.g., flow past a sphere at
Re = 300 [120] or a square cylinder at Re = 150 [16]) and use ROM/ERA to elucidate the modal
dynamics associated with a flow past an elastically-mounted circular cylinder for 20≤ Re≤ 180.

2.3.3 The triggering of galloping behavior

Among the various patterns of FIV motion, the galloping instability—a special kind of un-
bounded vibration—is most likely to induce a large-amplitude oscillation in structures and, con-
sequently, understanding the physical mechanisms underpinning this phenomenon is an impor-
tant and active area of fundamental research. Galloping behavior is commonly encountered for
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elastically-mounted objects with non-circular cross-sections submerged in high-speed liquid or
air [34]. For instance, unlike the FIV response of a circular cylinder which will transfer into
desynchronization after the lock-in range with increasing inflow velocity, the FIV response of a
square cylinder will involve galloping instability [35, 36]. The lock-in phenomenon will occur
only when the structural natural frequency is comparable to the vortex-shedding frequency, lead-
ing to induced oscillations with limited vibration amplitude. In marked contrast, the galloping
instability will appear over a broad range of the incident velocity of the incoming flow (imply-
ing that the structural natural frequency does not have to be comparable to the vortex-shedding
frequency) and, moreover, the amplitude of vibration for this phenomenon is known to increase
with increasing incident flow velocity [35, 37, 36]. Furthermore, galloping is generally a low-
frequency oscillation (viz., occurring at frequencies that are much lower than the vortex shedding
frequency).

Galloping instability has important consequences for engineering applications and, in par-
ticular, for construction engineering. For example, slender structures with a square section are
widely used in engineering construction (e.g., high-rise and towering structures, transportation
trestle bridges, and corridors). However, owing to the aerodynamic characteristics of a square
section, these structures may gallop under the action of the wind and this buffeting response may
lead to fatigue damage to various structural components and connections, which can lead to an
increased probability of physical harm, property loss, or environmental impact. The galloping
of an ice-coated transmission line is a common example of such concerns. The ice coating can
change the shape of the cross-section of the transmission line by forming crescent-shaped, fan-
shaped, or D-shaped cross-sections [38]. This change in the cross-sectional shape of the power
line in conjunction with the slenderness of the structure and the presence of a crosswind can
potentially induce large-amplitude wind-induced vibrations in the structure, leading to fatigue of
and damage to conductors and even to dragging down the transmission tower.

As introduced in section 2.1.1, through theoretical analysis, numerical simulations, and ex-
periments, it is known that the shape of the outline of a structure and the angle of attack (or,
direction of the incoming flow) are important factors that determine whether galloping instability
occurs. Additionally, a key difference from the lock-in behavior is that the initial state of the FIV
system can sometimes determine whether the galloping instability occurs. More specifically, gal-
loping can be classified as patterns of soft-galloping or hard-galloping [125, 126]. Soft-galloping
is thought to be a self-initiated oscillation that requires no initial displacement, velocity, or exter-
nal forces. In contrast, the triggering of hard-galloping requires an initial structural displacement
(or, velocity) to exceed a certain threshold [126]. Lien et al. [127] conducted experiments on
the responses associated with soft-galloping and hard-galloping of elastically-mounted isosceles-
triangular prisms (where the base of the isosceles triangle is perpendicular to the incident flow)
in a water channel with a Reynolds number Re ≈ 105. This study investigated the influences of
the structural mass, stiffness, damping, and aspect ratio (viz., ratio of the height to the base of the
isosceles triangle) on the response. The resulting measurements demonstrated that a low-aspect
ratio (less than about 0.866) will initiate a hard-galloping of the isosceles-triangular prisms. In
the study of D-sections conducted by Zhao et al. [46] mentioned previously, it was found that
the forward-facing D-section can gallop “softly” from rest, in marked contrast to the charac-
teristics of the hard-galloping response of D-sections reported by some previous investigations
[128, 129]. Taken as a whole, these experimental studies seem to suggest the following hypothe-
sis: the shape of the after-body of an object determines whether the galloping instability belongs
to either the hard or soft patterns of flow-induced vibration response.
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In addition to numerical simulations and experimental tests, theoretical analysis has been ap-
plied to the investigation of galloping instability. However, the application of theoretical methods
for investigating galloping is challenging owing to the complexity of the underlying dynamics.
The seminal theoretical investigations of galloping instability can be traced back to the work of
Den Hartog [130, 131]. In accordance to Den Hartog, when an object is immersed in a fluid flow
with a uniform and constant velocity, the lateral oscillation of the object will cause the relative
speed of the incoming flow to vary in magnitude and direction with time. As a result, the angle of
attack will change with time which, in turn, will affect (modify) the aerodynamic forces acting on
the object. Under certain circumstances, the influence of the varying aerodynamic forces on the
object will result in a negative damping in the FIV system, causing the structure to continuous-
ly absorb energy from the surrounding fluid and, consequently, to generate violent oscillations.
Owing to the validity and clear physical insights provided by Den Hartog’s stability criterion,
this criterion has been widely used in the analysis and assessment of the structural stability in
various fluid-structure coupling applications of engineering interest [49, 34, 46].

However, owing to the fact that Den Hartog’s stability criterion considers only the change
in the aerodynamic force as a function of the incident fluid flow direction, the application of
this criterion is rather limited for the general and comprehensive analysis of fluid-solid coupling
problems. As a consequence, Den Hartog’s stability criterion has been utilized essentially as
a kind of quasi-steady analysis in these types of problems. From this perspective, other quasi-
steady models [132, 133] that have been proposed and developed subsequently are all subject
to the same limitations—namely, the inability to accurately predict certain special galloping
behaviors and the value of the onset reduced velocity Ur that triggers the galloping instability. In
spite of this, Den Hartog’s stability criterion is still useful in that it can provide researchers with
an analytical framework to better understand certain aspects of the galloping phenomenology.
As a consequence, we will use this analytical framework for certain analysis conducted in this
thesis with a clear recognition of its limitations. To this purpose, the derivation of Den Hartog’s
stability criterion and the limitations of its application will be discussed in detail herein.

Research breakthroughs on understanding the physical mechanisms underpinning the gallop-
ing phenomenon, which build on insights obtained from experimental investigations, computa-
tional simulations and theoretical analysis, have still not provided a complete understanding of
this complex phenomenon.

As presented above, the application of linear stability analysis (LSA) [12, 15, 14] has pro-
vided deeper insights into the underlying physical mechanisms underpinning FIV phenomenon.
While investigating the influence of sharp-corner rounding on the flow dynamics of an elastically-
mounted square cylinder, the range of Re used in the study conducted by Yao and Jaiman [15]
was too low to observe the triggering of the galloping instability and, in this sense, the study
was limited primarily to the lock-in behavioural characteristics of the square cylinder. Howev-
er, it can be argued that galloping is perhaps the most significant phenomenon that needs to be
considered in the stability analysis for the vibration of bodies with non-circular cross-sections,
leaving an important gap in our current knowledge of the effects of shape in the transition of the
vibration response characteristics from lock-in to galloping.

Following the work of Zhang et al. [12], Li et al. [16] sought to explain the galloping in-
stability of the square cylinder by utilizing the idea of modal competition (viz., the interaction
between SM and WM that can result in a “winning” mode which ultimately dominants the vi-
bration). In this study, this idea was explored using ROM/ARX, FOM/CFD, and dynamic mode
decomposition (DMD). The result of the analysis was that modal competition was found to be
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present throughout the entire range of the reduced velocity Ur (which include the lock-in, gallop-
ing, and desynchronized regimes). This work demonstrated that the instability of the structure
mode (SM) leads to large-amplitude and low-frequency vibrations of the structure, whereas the
instability of the wake mode leads to high-frequency vortex-shedding from the blunt-body. How-
ever, Li et al. [16] did not provide an explanation for how the structure mode becomes unstable
and why a particular mode (either SM or WM) eventually dominates the dynamics (resulting in
the different dynamical regimes observed as part of this complex phenomenology). Furthermore,
it is noted that Li et al. [16] seems to have mistakenly identified one of the coupled modes as a
pure structure mode in the modal coupled condition and, as a result, did not correctly distinguish
the structure modes from the coupled-modes, potentially leading to an interpretation error.

Following on from the investigation of Yao and Jaiman [15], Bukka et al. [134] applied LSA
on a FIV system using the ROM/ERA methodology and attempted to suppress the FIV response
of the system through the inclusion of passive suppression devices in the tail of structure. The
shapes of the suppression devices considered in this study encompass a number of interesting
configurations: namely, a fairing (two strips affixed tangent to the upper and lower ends of the
cylinder), a splitter-plate (a strip attached perpendicular to the tail section of the cylinder), and
a connected-C (a C-shaped foil of different radii fastened to the cylinder). The FIV behavior
of the connected-C device was observed to be similar to that of a fairing in the sense that both
devices were shown to suppress successfully the occurrence of flow-induced vibration. Indeed,
it was shown that the root loci obtained using ROM/ERA for the two types of passive suppres-
sion devices were nearly identical to each other. As a comparison, the results from both the
FOM/CFD and ROM/ERA simulations indicated that the cylinder-splitter configuration resulted
in a galloping instability at higher values of the reduced velocity. The study conducted by Bukka
et al. [134] clearly demonstrated that a linear stability analysis based on ROM/ERA can be used
to provide physically-insightful explanations for the FIV response of an elastically-supported
structure in terms of the underlying modal mechanisms.

2.3.4 FIV with spanwise shear inflow

With respect to the research on FIV, a uniform incident flow is usually regarded as the ambient
situation of the flow field for simplicity/convenience, and this treatment widely appears in the
past experimental and numerical studies [11, 135, 136, 12, 14, 15, 137, 16, 134]. However,
non-uniform inflow, a more widespread natural behavior to be encountered than uniform inflow,
will induce more complicated characteristics in the corresponding wake fields and structural
responses of the system. As one specific situation in non-uniform inflow, an incoming shear flow
is a widely encountered fluid environment in engineering applications, which include rotating
blades with airfoil cross-sections, bladeless turbines with circular cross-sections, and tall slender
buildings with square cross-sections. Regarding the structural response and wake dynamics for
shear flow past a cylindrical obstacle, academics have also undertaken large amounts of analysis
on stationary [138, 139, 140, 141, 142, 143] and moving structures [144, 145, 146, 147].

In terms of the FIV of elastically-mounted structures with shear inflow, Gsell et al. [148]
and Ding et al. [149] investigated the vortex-induced vibration (VIV) of an elastically-supported
cylinder with a planar shear flow in the 2-D computational domain using the traditional compu-
tational fluid dynamics (CFD), where planar shear flow means that the incoming flow velocity
varies in value along the cross-flow direction. De and Sarkar [150] further considered the shear
profile of inflow velocity in both planar (cross-flow) and spanwise directions in a VIV study of
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a circular cylinder in the 3-D domain via direct numerical simulations. Although the incoming
flow in which an object/structure is immersed for practical problems may have velocity varying
along several directions, for the flow-induced vibration of a slender object, the change of inflow
velocity along its spanwise direction should always be of paramount importance to consider due
to its predominant presence and dynamical complexity.

Depending on the spanwise length and stiffness of the 3-D rod/cylinder, it could be treated
as a rigid or flexible body in dynamic analysis. For significantly long or slender rods, the cor-
responding flow-induced vibration will have to account for the deformation of the rod itself in
motion. In marked contrast to the rigid rods, flexible rods contain a large number of structural
modes that result in more complex dynamical responses when they interact with fluids. Bour-
guet et al. [151, 152] numerically investigated the vortex-induced vibrations of a long flexible
cylinder in shear flow via traditional CFD methodology, with a length-to-diameter ratio up to
200 and Reynolds numbers ranging from 110 to 1100. Observations indicated that the wake dy-
namics could be locked at different frequencies at various spanwise locations, but the lock-in of
fluid-solid coupling is a locally mono-frequency event owing to the fact that the vortex formation
is generally synchronized with a single vibration frequency at a given location. Wang and Xiao
[153] considered a vertical flexible riser subject to both the uniform and linearly sheared cur-
rents, and the numerically predicted FIV response was in good agreement with the experimental
tests. The results indicated that the number of dominant modes and the corresponding frequen-
cies, structural amplitudes, and resulting fatigue damage increase with the inflow velocity. The
wake flow near the position where the maximum structural amplitudes appeared displayed the 2P
mode, while the 2S mode is observed to be the dominant pattern for the overall vortex-shedding
behavior.

A rod-shaped cylinder with relatively high structural strength can be regarded as a rigid struc-
ture and a non-deformable object for the purpose of analyzing the characteristics of its motion.
To our knowledge, there are still limited studies on the FIV of such rigid cylinders with finite
length under spanwise shear inflow. Zhao [154] applied the traditional CFD method to numeri-
cally investigate the vortex-induced vibration of a rigid cylinder mounted by a linear spring with
a length-to-diameter ratio of 19.2 immersed in a spanwise shear flow. The effect of different
mass ratios and shear inflow angles are considered with the Reynolds number fixed at 500. The
fluid-solid response, phase variation, and wake pattern are analyzed at different reduced veloc-
ities. The results revealed that the maximum structural amplitude and regime width of lock-in
are comparable with their counterparts for a cylinder in a uniform flow. Furthermore, the re-
searcher concluded that the sectional lift forces along certain spanwise lengths of the cylinder
stimulate the vibration, while those along other parts in the spanwise direction suppress the vi-
bration. These distributions associated with stimulation and suppression of vibration depend on
the reduced velocity.

Additionally, the FIV of the bluff body at subcritical Reynolds numbers has always been an
area of intense focus by researchers. The critical Reynolds number Recr represents the largest
Reynolds number that allows for the appearance of vortex-shedding behavior for flow past a
stationary body, which is equal to 46.8 for the case of the circular cylinder. Previous works [155,
156, 157] have demonstrated that the FIV of a circular cylinder would also occur for subcritical
Reynolds numbers as low as 18 in a 2-D computational domain with uniform inflow.

The vortex-induced vibration (VIV) of a flexible cylinder with uniform inflow at a subcritical
Reynolds number (Re) was explored numerically by Bourguet [158]. The onset Re for the VIV
of the flexible cylinder to appear was found to be 20, which is almost consistent with the previ-
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ously reported onset Re for VIV of the rigid cylinder. Further detailed assessment of the variation
of system parameters (including the mass ratio and damping coefficients) at Re = 25 was con-
ducted to investigate the corresponding effects on the structural responses and wake dynamics.
The lock-in regimes are found to correspond to different ranges of reduced velocity because the
flexible cylinder contains many orders of structural modes, leading to varying structural natu-
ral frequencies. Additionally, the flow dynamics would be temporally and spatially locked with
structural motion once the cylinder vibrates. Accompanied by the formation of cellular wake
patterns, the cross-flow standing-wave responses are synchronized regardless of which structural
modes are involved during the FIV.

Investigations on the response of FIV, especially the lock-in behavior, rely on many research
methods/models such as CFD, the wake oscillator model, and linear stability analysis, to gain
physical insight from different perspectives. As mentioned by the Hollenbach et al. [159] and
Sanders [160], the traditional CFD method (used by the literature works introduced above), as
one full-order model (FOM), has no ability to provide physical insight into the generation of flow-
induced vibrations including the lock-in behavior. Moreover, with respect to the VIV study using
a non-uniform velocity as the incident flow, the necessary 3-D computation using FOM/CFD is
significantly time-consuming and yet unable to expose the underlying modal situation. Ge et
al. [161] applied the wake oscillator (one kind of empirical formula) model to the FIV study of
long flexible rods. The three-dimensional structure of the flexible cylinder is divided into several
elements, and the interaction between each structure element and the fluid is represented by
the two-dimensional control equations. Inside the control equations, the wake oscillator model
represents the flow dynamical equation, and the structural control equation uses the common
structural vibration model, in which the spring stiffness is replaced by the terms corresponding to
the material properties, such as the bending stiffness of the rod material. In addition, while the rod
faces non-uniform inflow, the parameters of the wake oscillator in the governing equation of each
element can be adjusted according to the dynamic properties corresponding to different Reynolds
numbers (or, inflow velocity). Using the methodology introduced above which employs the wake
oscillator model, the FIV of three-dimensional flexible rods can be studied in the case of non-
uniform inflow [162]. This chapter will focus on the study of spanwise shear flow-induced
vibration at subcritical Reynolds numbers based on LSA, and consequently, resonance lock-in is
excluded from the present analysis.

The investigation of an FIV system with spanwise shear inflow must be carried out in the
3-D computational domain. Compared with the previous 2-D LSA works mentioned above, to
our knowledge there are few precedents for the using 3-D LSA for the study of FIV in the past.
Chizfahm and Jaiman [120] obtained a ROM for the fluid dynamics of a sphere at Re = 300 using
the eigensystem realization algorithm (ERA) and constructed the associated coupled FSI model
to study the effects of the near-wake jet (attached to the downstream side of the sphere) on the
VIV response. The construction process of the fluid ROM, including the obtainment of the base
flow for a sphere and the dynamic response (or, lift coefficients) when subjected to an impulse,
is performed in the 3-D computational domain. The results show that the direct 3-D LSA is
capable of capturing the effect of the near-wake jet on the FIV response in terms of trend, but
cannot predict the lock-in range very accurately.

The following work herein also encounters such errors in the direct 3-D LSA of the shear
flow-induced vibration of a rigid cylinder. Therefore, in addition to carrying out direct 3-D LSA,
a novel/original LSA methodology is proposed here—the rigid cylindrical structure is segmented
into several elements in the spanwise direction, and the aerodynamic characteristics of each
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element are simplified into 2-D situations with uniform inflow. ERA identification is conducted
for each element to provide the separate 2-D fluid ROM, and the integral fluid ROM for the
3-D cylinder with shear inflow is obtained via the superposition of all 2-D fluid reduced-order
models (ROMs). Then, the LSA could be achieved via the coupling of the integral fluid ROM
and the structural equation. This differential idea of partitioning a slender structure (with a
relatively large length-to-chord ratio) into small elements and then superimposing the dynamical
features of each small element is similar to the Blade-Element-Momentum (BEM) theory [163,
164, 165], which is a mature concept frequently applied in the research of wind turbines. The
detailed information of the proposed methodology will be introduced later in sub-section 6.5. In
addition, before performing direct 3-D and superimposed 2-D LSA, this study performs detailed
3-D calculations based on FOM/CFD and systematically analyzes the lock-in range, spectrum
features, wake response, etc. Although the determination of the lock-in boundary via FOM/CFD
(which involves a large number of calculations corresponding to different reduced velocity Ur
cases) is very time-consuming, it could provide a detailed understanding of the lock-in behavior
of the FIV system being studied and also establish a credible validation for the subsequent LSA
analysis.

2.4 Aeroacoustics

Vortex shedding results in periodic fluctuations of the lift and drag forces which, in turn,
generates sound waves referred to as Karman vortex sound [166]. Since the work of Strouhal
[167] on aeolian tones, the mechanism of noise generation for the flow past a cylinder has been
of great interest to researchers. The generation of aeolian tones was attributed to the vortex
shedding behind a circular cylinder [168, 169].

2.4.1 Measurements of flow-induced sound from a stationary body

Several experimental investigations of sound generation have been conducted for the flow
past a stationary cylinder. Oguma et al. [17] carried out experimental measurements of the a-
coustic field emitted from a flow past a stationary circular cylinder at Re = 4×104. The pressure
fluctuations of the flow were evaluated by measuring the instantaneous velocity field using par-
ticle image velocimetry (PIV) implemented in conjunction with the pressure Poisson equation.
The sound pressure fluctuations were measured simultaneously by a microphone in the far field.
The results of these experiments showed that the shear layers around the cylinder and in the near-
wake were significant sound sources. The peak frequency of the sound power spectral density
(PSD) occurred at about 146 Hz.

Xing et al. [170] conducted a parametric study concerning the control of the far-field noise
using helical cables wrapped along the cylinder span. The results of these experiments revealed
that the noise control depends primarily on the dimensionless thread pitch and the cable density.
Subsequently, the study conducted by Li et al. [171] provided an explanation of the noise reduc-
tion mechanism of the helical-cable technique and these researchers extended their investigation
to tandem cylinders. In particular, this study found that the helical cables suppress noise by inter-
rupting the two-dimensional vortex-shedding process and by disrupting the in-phase relationship
of the flow pulsations along the cylindrical span by creating a three-dimensional trailing edge.
Moreover, it was found that noise suppression control on the upstream cylinder is more important
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than that on the downstream cylinder in terms of the noise generated by the flow past two tandem
cylinders.

The tandem cylinder data collected by the Basic Aerodynamics Research Tunnel (BART)
[20, 22] and the Quiet Flow Facility (QFF) [21] at the National Aeronautics and Space Ad-
ministration (NASA) Langley Research Center are the most widely used measurements for the
validation of numerical aeroacoustic models. These measurements include stable surface pres-
sures, detailed off-surface measurements of the flow fields using PIV and hot-wire measurements
in the rear cylinder wake, unsteady surface pressure data, and far-field noise. The data from these
experiments were conducted at Re = 1.66×105. These data are used to validate one of our test
cases in the present work.

2.4.2 Numerical model

Numerical methods for computational aeroacoustics are mainly classified as either hybrid
methods or direct methods. In terms of direct simulation, on the basis of compressible Navier
Stokes equation, Yokoyama et al. [172] carried out direct numerical simulation of the flow field
and sound field, in order to clarify the fluid-acoustic interaction of the opening and closing sound
holes in the actual recorder. Hildebrand et al. [173] carried out direct numerical simulation
(DNS) to study the acoustic free flow disturbance radiated by turbulent boundary layer, along the
contour nozzle wall in a rectangular test section of a supersonic wind tunnel.

Osamu and Hatakeyama [174] used direct numerical simulation (DNS) to study the sound
produced by a two-dimensional circular cylinder in a uniform flow. This DNS study showed that
when a vortex is shed from one side of the cylinder, a negative pressure pulse is generated from
that side and a positive pressure pulse is generated from the other side. The alternating vortex
shedding from the upper and lower sides of the cylinder produces negative and positive pulses
and, in consequence, results in the generation of sound pressure waves. The dipolar nature of
this generated sound was confirmed. Moreover, it was found that the lift dipole dominates the
sound field.

Compared with DNS, hybrid methods significantly reduce computational demands by allow-
ing coarser grids and larger time steps to be used in the numerical simulation while providing
reasonable accuracy in the solution. For this reason, hybrid methods are widely used in computa-
tional aeroacoustics. The commonly used sound models in many commercial software packages
are based on the Ffowcs Williams-Hawkins (FW-H) equation [175, 176], and the simplified in-
tegral method [177].

The British scientist Lighthill [178][179] established the acoustic analogy theory in 1950s
and derived the famous Lighthill equation. Thus, the research on hydrodynamic acoustics has
officially become a new discipline. The fruitful work of Lighthill is considered to be a mile-
stone in the birth of modern hydrodynamic acoustics theory. The solution of Lighthill equation
is assumed to be obtained in free space, which is applicable to free turbulent radiation noise in
unbounded space, such as jet noise, but it has some limitations for sound generation problems
with solid boundary or moving boundary. In fact, in engineering practice, there are a lot of a-
coustic problems of fluid solid interaction (FSI). In order to solve this problem, Curle [180] in
1955 extended Lighthill acoustic analogy theory to consider the influence of static solid bound-
ary. On the basis of Lighthill equation and generalized function theory, the FW-H acoustic wave
equation of sound field caused by moving object is derived by Ffowcs Williams and Hawings
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[181] with using the generalized function theory, and the influence of moving solid boundary on
noise is displayed. In terms of the studies on the aeroacoustics from uniform flow past a cylin-
der, researchers have also used the hybrid simulation approach to calculate the noise generation
[182][183][184]. The FW-H wave equation will be discussed in following section.

There are some other studies about the differential methods for acoustics simulation, in-
cluding Acoustics Perturbation Equation (APE) [185][186], Linearized perturbed compressible
equations (LPCE) [187][188] and etc. However, the differential acoustics simulation has high
requirements on the mesh quantity and time step size, which will bring expensive calculation
costs, especially in far-field noise study. The present study in this thesis will mainly focus on the
FW-H method in acoustics simulation and analysis.

2.4.3 Sound generation of the flow past moving bodies

Noise propagation has also been a key research area for renewable energy, as extracting en-
ergy from the wind often results in a highly turbulent and noisy wake. For example, the noise
generated by both traditional wind [189, 190] and tidal [191, 192] turbines has been heavily
investigated. As introduced above, new types of energy harvesting devices have been recently
proposed involving the extraction of energy from flow-induced vibration (FIV). In particular,
certain energy harvesting devices can be tuned to resonate under vortex-induced vibration (VIV)
which, in turn, can transfer energy into the vibrating structure. The kinetic energy of this vi-
bration can be initiated from a low-speed flow and this vibrational kinetic energy can then be
converted into electric energy with an appropriate generator [95, 61]. This idea has important
implications for the use of low-speed water or wind energy and can be widely used as a source
of distributed energy [96, 10].

However, the noise generated by a VIV energy harvester can be of concern. While a large
body of literature exists concering the flow dynamics around oscillating cylinders, including
experimental [193, 194, 195, 196] and numerical [197, 198, 199] studies, the noise generated by
this flow has not been studied in detail. Ganta et al. [200, 201] simulated the sound generation
by a two-dimensional laminar flow past a circular cylinder performing rotary oscillations using a
DNS approach. The DNS studies were performed over a wide range of forcing frequencies and
rotary oscillation amplitudes, specifically in the synchronization region. The rotary oscillation
of a cylinder modifies the vortex-shedding patterns in the wake region which, in turn, results in
the generation of different noise patterns.

The distinct wake patterns in VIV result in a distinct acoustic behaviour. For example, some
studies of the flow past a cylinder in forced oscillation exhibited reduced sound generation com-
pared to that of the flow past a stationary cylinder. The directivity of the sound field is also
affected by the amplitude of the rotary oscillations. Hattori and Komatsu [25] investigated the
sound propagation from a single or tandem circular cylinder(s) at Re = 150 using DNS. This
study demonstrated that the acoustic field predicted by DNS is in excellent conformance with
that obtained using the FW-H methodology. Interestingly, the oscillation of the cylinder sup-
presses the noise generation—the aeroacoustic energy of the flow past an oscillating cylinder at
0.14 < Sc < 0.17 is significantly less than that of the flow past a stationary cylinder at the same
Reynolds number (Sc is the Scrunton number defined as Sc ≡ foscD/U0 where fosc is the oscil-
lation frequency, D is the cylinder diameter, and U0 is the inflow velocity). Moreover, this study
showed that the acoustic power generated by the flow past tandem cylinders depends strongly
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on the in-line spacing between the two cylinders because the vortex-shedding pattern behind the
front (upstream) cylinder depends critically on this spacing.

2.5 Motivations and novelties

The above discussion implies that the investigations on the mechanism underpinning FIV
behaviors and the associated detailed responses are valuable. More specifically, researches on
lock-in and galloping regimes are the most important focus, and the correlated applications to
energy utilization will also be the future research hotpot. With respects to the industrial fields,
most engineering springs are nonlinear with varied configurations and different orders. However,
the FIV studies about the effects of nonlinear restoring forces are still limited, and how it affects
the characteristics of lock-in behaviors is unclear. As a consequence, the FIV responses with the
nonlinear restoring forces deserve to be further studied.

In addition, there are abundant researches on the FIV system consisting of flow passing
elastically-mounted bluff bodies including circular, square and triangle cylinders, and the con-
cerned FIV behaviors (accompanied by structural instability) involves flutter, resonance, and gal-
loping patterns. Nevertheless, the key factors, such as the variations of cross-sectional shapes,
triggering structural instability are still unclear and remain to be investigated. On the one hand,
changing cross-sections of bluff body will bring a lot of case studies, which is expensive for the
traditional FOM/CFD calculations. On the other hand, the traditional CFD method, as one full-
order model (FOM), has no ability to provide physical insight into the generation of flow-induced
vibrations. As a consequence, the linear stability analysis (LSA) using the ROM/ERA methodol-
ogy will be applied herein for both the studies of lock-in and galloping behaviors. Furthermore,
except for the conventional LSA used in the exploration of the 2-D FIV system consisting of
different cross-section bodies submerged in uniform flow, one new/original LSA based on the
superposition of 2-D fluid ROMs will be proposed and applied for the 3-D FIV system with
spanwise shear inflow (similar to the practical working scenario of bladeless wind turbines).

Energy utilization will inevitably bring various forms of pollution, and the aerodynamics of
noise propagation has been one of the research focuses for traditional wind turbines and tidal
turbines. As a result, the aeroacoustics problems brought by the FIV energy harvester will also
be the object of concern. Present work will conduct research on aeroacoustics propagation from
forced vibration of single and tandem cylinders, especially in the turbulent situation which could
emulate the actual life situation.

To sum up, the right panel of figure 2.5 structures the motivations of this thesis, in which the
innovations corresponding to separate contents are also indicated. The research objectives in the
present work cover three parts:

1. The influences of restoring force with nonlinearity on FIV response.

2. The influences of parameters and configurations setting such as different cross-sections of
bluff bodies on FIV response.

3. Aeroacoustics propagation originating from oscillations of the cylinder (array).

The novelties of current research are also summarizes in the left panel of Fig. 2.5. Combined
with the discussion in Section 2.3, the previous work on the above-introduced contents/researches
are relatively scarce, and correlated further explorations will be very valuable. In addition, if the
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lock-in or galloping phenomenon enhanced by the above methods is applied in practical energy
utilization, the inevitable noise pollution is valuable to pay attention to. However, the researches
on the aerodynamic noise of vibrating cylinders in the turbulent situation are also very limited so
far.

Lock-in/galloping phenomenon in flow-induced 

vibration (FIV) of bluff body

Nonlinear 
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Figure 2.5: The motivations of this thesis and the corresponding innovations.
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2.6 Outline of thesis

The framework consisting of the main contents in this thesis is exhibited in figure 2.6. The
correspondence between the problem/chapters in the first (top) panel and the detailed case stud-
ies in the third (bottom) panel is distinguished by the box color in which it is located. Term
one of above-mentioned research will be undertaken in chapter 3, corresponding to the research
focus with respects to the effect of nonlinear restoring forces herein. This problem is analyzed
with the help of FOM/CFD and the corresponded to-be-explored contents are displayed in the
third panel of figure 2.6. It is noted that the methodology of FOM/CFD is used in all problems
(chapters) to be studied in the present thesis, but different problems may involve other additional
methodologies for assistant analyzes.

The second term of above-mentioned research would contain three sub-parts, all involving
the application of linear stability analysis (LSA). More specifically, chapter 4 focuses on the
dynamics characteristics especially the modal evolution of the lock-in behavior. In chapter 5,
the mechanism underpinning the galloping behavior is investigated from various perspectives. In
this stage, this thesis will investigate the relationship between different cross-sectional shapes and
structural instability using Den Hartog stability criterion. Furthermore in chapter 6, one novel
data-driven theory using the superposition of 2-D ROMs is proposed for the stability prediction
of a 3-D FIV system with spanwise shear inflow. The detailed contents of the case studies are
shown in the third panel.

In terms of the noise problem (studied in chapter 7), the preliminary FW-H model is used
herein to calculate aeroacoustics propagation from cylinders’ oscillation. Firstly, the proposed
thesis will compare present simulation results with measurement results based on the units of
fixed single cylinder and fixed tandem cylinders. Secondly, the noise propagation from single-
cylinder with different oscillation patterns will be analyzed. Thirdly, the noise propagation from
tandem cylinder array with different oscillation patterns will be compared.

It is reminded that the concerned problems in chapters 3, 4, and 5 are all two-dimensional
(2-D) situations, whereas three-dimensional FIV systems are investigated in chapters 6 and 7.
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Chapter 3

FIV response with nonlinear restoring
forces

This chapter will focus on a two-dimensional (2D) numerical FIV study of a circular cylinder
mounted on linear and nonlinear springs for a low Re-number flow. All forms of nonlinearity can
be approximately replaced by polynomials through Taylor expansions. The quadratic nonlinear
term is the basis of all polynomials, and consequently, the research on it will be representative.
For this purpose, we analyze the impact of the spring nonlinearity on the FIV response, focusing
specifically on the differences in the amplitude variation, the phase change, the frequency varia-
tion, and characteristic wake pattern between the linear and nonlinear spring-mounted cylinder.
More specifically, we study the FIV response of a circular cylinder mounted on a linear/quadratic
spring. The Reynolds number studied in this chapter is larger than the critical Reynolds number,
and consequently, vortex-shedding behaviors will occur for flow passing stationary cylinder at
the same Reynolds number. In this case, the term ‘vortex-induced vibration (VIV)’ is applied
in this thesis when the studied Reynolds number is larger than the critical Reynolds number. To
the best of our knowledge, this is the first study that is focused on the influence of a quadratic
spring nonlinearity on the VIV dynamics of an elastically-spring-mounted cylinder (with previ-
ous studies focusing primarily on a cubic spring nonlinearity). Indeed, the quadratic nonlinearity
is the first higher-order nonlinear term in the Taylor series expansion of the restoring force for a
general nonlinear spring and, hence, is important to investigate. For this purpose, the equivalent
natural frequency for the VIV system is derived for the first time and the relationship between
this equivalent natural frequency and the characteristics of the induced VIV oscillation is in-
vestigated. Furthermore, a seminal investigation involving the application of a dynamic mode
decomposition (DMD) is used herein, allowing one to compare different wake models for the
FIV response of a system that includes the influences of a nonlinear restoring force.

3.1 Methodology

3.1.1 Laminar flow model

In this chapter, we will focus on the analysis of VIV for a cylinder supported by a nonlinear
spring and immersed in a laminar flow. The incident velocity U0 of the flow into the computa-
tional domain is constant at the inlet plane. The mass and momentum conservation laws for the
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laminar flow are given by
∂ui

∂xi
= 0 , (3.1)

and
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ρ

∂ p
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+ν
∂ 2ui

∂x j∂x j
, (3.2)

where ũ j = dx j/dt is the j-th component of the grid velocity arising from the motion of the
cylinder (structure) immersed in the flow; xi is i-th component of a Cartesian coordinate vector~x
with i, j ≡ 1, 2, 3 corresponding to the x-, y- and z-directions, respectively; t is the time; p is the
pressure; ρ is the density of the fluid; ν is the kinematic viscosity of the fluid; and, ui represents
the i-th component of fluid velocity.

The open source computational fluid dynamics (CFD) toolbox OpenFOAM [202] is used to
simulate the flow field. The Navier-Stokes equations are discretised with a finite-volume method
(FVM). To this purpose, a second-order accurate implicit Euler scheme is employed to discretize
the transient term, while a second-order-accurate Gaussian integration scheme is used for dis-
cretization of the advection, pressure gradient and diffusion terms in the momentum transport e-
quation. The same discretization schemes have been used by Wang et al. [110] in their numerical
simulation of VIV of a circular cylinder supported on a spring with a cubic stiffness nonlinearity.
The large time-step transient PIMPLE algorithm which combines the semi-implicit method for
pressure-linked equations (SIMPLE) with the pressure-implicit with the splitting of operators
(PISO) algorithm is used to solve the continuity and momentum transport equations together in a
segregated manner. All these algorithms are iterative solvers, but PISO and PIMPLE are used for
transient problems, whereas SIMPLE is used for steady-state problems. The pressure-velocity
coupling provided by the PIMPLE algorithm results in better stability and higher accuracy [203].
The time step size is adjusted to control the maximum Courant-Friedrichs-Lewy (CFL) number
CFLmax which is specified to be 0.4 at each time step in the PIMPLE algorithm. The maxi-
mum CFL number CFLmax is defined as CFLmax ≡ ‖~u‖∆ t/∆xmin where ∆xmin is the size of the
smallest grid cell in the computational domain and ‖~u‖ is the magnitude of the fluid velocity~u.

3.1.2 Structure model and fluid-structure interaction with linear or non-
linear restoring forces

As derived in Appendix. A, the nonlinearity relationship between restoring force and struc-
tural displacement (in engineering spring) can be transformed into polynomial form. Springs
with complex nonlinear restoring forces are required for modeling some practical applications
such as an automobile’s energy absorbing system or the spring vibration characteristics of elastic
rods [204]. These springs with highly nonlinear relations can be modeled using a Taylor expan-
sion of a nonlinear form into a sum of terms involving polynomials of various degrees (viz., the
partial sum consisting of the first (n+ 1) terms of the Taylor expansion of the nonlinear form
yields the n-th Taylor polynomial approximation of the form). As an example, the nonlinear
restoring force Fnr for a simple spring can be modeled using the third-order Taylor polynomial
with the form:

Fnr =−k1 ·∆L− k2 ·∆L · |∆L|− k3 ·∆L3 , (3.3)

where ∆L is the total compression or elongation of the spring from its equilibrium length (where
∆L= 0) and k1, k2 and k3 are spring constants. Indeed, this functional form for the restoring force
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of a nonlinear spring (acting to restore the spring to its equilibrium length) is commonly used in
vibration theory. The spring is linear if k2 and k3 are identically equal to 0 and, in this case, k1 > 0
is the usual string constant that appears in Hooke’s law (which states that the force required to
compress or stretch a spring by some distance ∆L is proportional to that distance). Retaining the
second-order term in Eq.(3.3) yields the simplest form of a nonlinear spring (namely, a quadratic
spring). This chapter focuses on the characteristics of the VIV of a structure supported by a
spring with quadratic (nonlinear) restoring force characteristics with k1 > 0, k2 > 0, and k3 = 0.

The transverse motion of a circular cylinder mounted on a nonlinear spring and damper sys-
tem is governed by the following second-order ordinary differential equation (where y corre-
sponds to the displacement of the cylinder in the transverse direction from the equilibrium posi-
tion):

mÿ+ cẏ+ k1y+ knln (y, ẏ) = Fy , (3.4)

where ln (y, ẏ) = ln (y) in present study, with special cases corresponding to a quadratic spring
if n = 2 so l2 (y, ẏ) = y|y|, a cubic spring with n = 3 so l3 (y, ẏ) = y|y|2, a quartic spring with
n = 4 so l4 (y, ẏ) = y|y|3, and so on for higher values of n associated with higher-order springs.
If c = 0 and n = 2, the model of Eq. (3.4) reduces to the case of a circular cylinder mounted on
a quadratic spring with no structural damping (the case of interest in the present study). Hence,
Eq. 3.4 with these simplifications yields

mÿ+(k1 + k2|y|)y = Fy , (3.5)

where k1 is the linear spring (stiffness) constant (N m−1), k2 is the quadratic spring (stiffness)
constant (N m−2), m is the mass of the circular cylinder, and Fy is the hydrodynamic force
(acting on the cylinder) in the transverse direction (or, y-direction). The numerical scheme used
to integrate the equation of motion (viz., Eq. 3.5) is the explicit second-order symplectic method
[205]). The fluid-structure interaction in the current study is based on a weakly coupled approach.
The numerical procedure [110] executed for each time step in the simulation of the FSI consists
of the following key steps:

• The hydrodynamic load on the cylinder is obtained by solving the flow (or Navier-Stokes)
equation on the current grid;

• The calculated dynamic load obtained from the flow solution is utilized in the structural
dynamic solver to calculate the motion of the cylinder;

• A new grid field (including new grid positions and grid velocities) resulting from the mo-
tion of the cylinder is obtained using the spherical linear interpolation of the dynamic grid
quantities (positions and velocites) as a function of the distance to the current (updated)
location of the surface of the cylinder;

• The velocity boundary conditions corresponding to the moving cylinder are updated;

• The next time step involves the solution of the Navier-Stokes equation on the updated grid
to obtain the new hydrodynamic load on the cylinder.
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3.2 Description of the problem

3.2.1 Boundary condition and mesh dependency study

The computational domain and the boundary conditions for present study are shown in
Fig. 3.1. The computational domain is 42D in the streamwise (x-) direction and 30D in the cross-
stream (y-) direction where D is the diameter of the circular cylinder. The center of the circular
cylinder is located along the centerline of the computational domain (y = 0) in the cross-stream
(transverse) direction and at a streamwise distance of 12D from the inflow (inlet) boundary (left
edge of the domain shown in Fig. 3.1). A zero-gradient streamwise velocity boundary condition
is applied at the lateral boundaries of the domain and a Neumann boundary condition is imposed
on the velocity at the outflow (outlet) boundary of the domain. At the inflow boundary, a Dirich-
let boundary condition is prescribed for the incident flow velocity ~u = (U0,0) where U0 is the
incident streamwise wind speed. The initial conditions used to prescribe the motion of the cylin-
der are y = 0 and ẏ = 0 (cylinder at rest at t = 0). The choice for the computational domain size
and boundary conditions used here is consistent with those used in other numerical simulations
of VIV involving rigid and flexible cylinders [110, 206].

12 D 30 D

1
5
 D

1
5
 D

Figure 3.1: Computational domain and the boundary conditions imposed for simulation of VIV
for a cylinder supported by a spring. The subscripts i and j on a vector quantity refer to the
component of that quantity in the x (streamwise) and y (transverse) directions, respectively.

The simulation of flow past a stationary (fixed) cylinder is conducted and used to assess the
sensitivity of the results to the mesh used. Towards this objective, four different meshes with a
total number of cells ranging from 17,725 (coarse) to 65,322 (very fine) are used for the simula-
tion of a laminar flow past a stationary cylinder at Re = 100 and the root-mean-square (rms) lift
Crms

L and drag Crms
D coefficients were computed. The results of this analysis for the four differ-

ent meshes are summarized in Table 6.1. It can be seen that the differences between the values
of Crms

L and Crms
D obtained on meshes 1 (coarse) and 2 (intermediate) are quite large (viz.,the

discrepancy is 2.3% and 0.6% for the root-mean-square lift and drag coefficients, respectively).
However, the differences in the values of Crms

L and Crms
D obtained on meshes 3 (fine) and 4 (very

fine) are small (more precisely, the discrepancy in the results for the two meshes is 0.04% for
Crms

L and 0.07% for Crms
D ).
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Based on these considerations, mesh 3 is used for the simulations conducted in this study
as it provides the best compromise (balance) between numerical accuracy and computational
effort. Mesh 3, exhibited in Fig. 3.2 is a fine mesh consisting of 45,656 cells (see Table 6.1).
Using this mesh, the maximum amplitude of the lift coefficient Cmax

L and the Strouhal number
St ≡ fvsD/U0 (where fvs is the vortex shedding frequency and U0 is the incident wind speed) have
been obtained for the flow past a stationary cylinder at Re = 100 and summarized in Table 3.2.
These results are seen to be in very good conformance those obtained by Lu et al. [207] and by
Zhang et al. [12] for the same case.

12 D 30 D

1
5
 D

1
5
 D

(a) Mesh overlaid on computation domain
(b) Expanded view of mesh in the immediate
vicinity of the cylinder

Figure 3.2: The fine mesh (mesh 3) consisting of 45,656 cells used to discretize the computational
domain in the present study.

Table 3.1: Root-mean-square lift and drag coefficients for flow past a stationary cylinder at
Re = 100 for four different meshes.

Mesh Number of cells Crms
L Crms

D
1 17725 0.2234 1.311
2 31933 0.2287 1.319
3 45656 0.2335 1.349
4 65322 0.2336 1.348

3.2.2 Validation test of VIV with linear restoring forces

To validate the accuracy of our fluid-structure interaction numerical model and its implemen-
tation, we consider the case of VIV for an elastically-mounted circular cylinder with a linear
spring whereby the cylinder in allowed to vibrate in both the streamwise (x-) and transverse (y-)
directions. For the case considered, the damping coefficient c = 0 (no structural damping in the
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Table 3.2: Comparison of the maximum amplitude of the lift coefficient Cmax
L and Strouhal num-

ber St for flow past a stationary circular cylinder at Re = 100.

Cmax
L St

Present 0.34 0.169
Lu et al. [207] 0.34 0.167

Zhang et al. [12] 0.34 0.166

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
U

r

0

0.1

0.2

0.3

0.4

0.5

0.6

Y m
ax

/D

Singh and Mittal 
Zhang et al. 
Present work

(a) Maximum amplitude of oscillation

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
U

r

0.1

0.12

0.14

0.16

0.18

0.2

0.22

f os
cD

/U
0

Singh and Mittal
Zhang et al.
Present work

St = 0.166

f = F
s
 = 1/U

r

(b) Oscillation frequency

Figure 3.3: VIV response of a cylinder elastically mounted on a linear spring for Re = 100 and
m∗ = 10 compared with those obtained by Singh and Mittal [11] and by Zhang et al. [12].

system) and the mass ratio m∗ = 10. The simulation is conducted for a flow past an elastically-
mounted cylinder for a Reynolds number Re = 100. The reduced velocity Ur in the problem is
varied by changing the natural frequency of the structure (cylinder).

Figure 3.3a shows the maximum amplitude Amax (normalized by the cylinder diameter D) of
the oscillation in the transverse direction as a function of the reduced velocity Ur. The maximum
amplitude Amax exhibits a sudden jump to its largest value of Amax/D≈ 0.6 at Ur ≈ 4.6 and then
slowly decreases with increasing Ur. However, when Ur approaches a value of about 7.6, the
maximum amplitude Amax begins to increase again with increasing values of Ur until it reaches
a secondary relative maximum value of Amax/D ≈ 0.25 at Ur ≈ 8.2. After this value of Ur,
the maximum amplitude is seen to exhibit a sudden (discontinuous) jump to a lower value of
Amax/D ≈ 0.025 at a reduced velocity of about 8.3. This behavior in the maximum amplitude
as a function of the reduced velocity is in good agreement with the results reported by other
investigators [11, 12].

Figure 3.3b displays the oscillation frequency fosc of the vibrations in the transverse direction
as a function of reduced velocity Ur. When the reduced velocity Ur is in the range from about
4.7 to 8.2 (which corresponds to a reduced natural frequency Fs ≡U−1

r = fnD/U0 in the range
from about 0.12 to 0.21), the oscillation frequency fosc is seen to match the natural structural
frequency fn—a condition that is associated with the lock-in phenomenon. Outside this range
of reduced velocities, the forced vibration in the system lies outside the lock-in range (viz.,
the vortex shedding frequency is not close to a natural fundamental frequency of vibration of
the cylinder). The Strouhal number (which characterizes the vortex shedding frequency) St ≡
fvsD/U0 ≈ 0.166 for a cylinder over a wide range of flow velocities (see Table 3.2). Finally, in
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Fig. 3.3b, the results for fosc as a function of Ur obtained in our simulations are seen to compare
well with similar results reported by other investigators [12, 11].

3.3 Results and discussion

At each value of the Reynolds number Re used in this study, the corresponding flow past
a stationary cylinder is calculated and this flow is used subsequently as the initial flow for the
VIV calculation involving the elastically-mounted cylinder on a (non)linear spring. For the latter
calculation, the initial state of the cylinder mounted on the spring is prescribed (namely, y = 0
and ẏ= 0 at the initial time t = 0) and then allowed to vibrate in response to the lift force imposed
on it by the flow (viz., when the elastically-mounted cylinder is coupled to the flow). It is stressed
that vibrations of the cylinder in the transverse direction are significantly larger than those in the
streamwise direction and, as a result, the analysis presented in the remainder of this study will
focus on the vibrations in the transverse direction only.

For the simulations reported in this section, we investigate various flows in the Re-number
range from 50 to 150 inclusive for each spring stiffness condition with a fixed mass ratio m∗= 10
and a structural damping coefficient c = 0 (viz., no damping). The variation in the value of Re
is achieved by adjusting the value of the inlet velocity U0. The spring-mounted cylinder has a
diameter D = 0.1 m and the flow is assumed to have a kinematic viscosity ν = 0.0001 m2 s−1.

3.3.1 Linear, linear/quadratic and quadratic springs

For the first set of simulations, we consider the dynamics of a circular cylinder elastical-
ly mounted on (1) a pure linear spring with spring constant k1 = 0.0063 N m−1; (2) a lin-
ear/quadratic spring combination with k1 = 0.003 N m−1 and k2 = 0.11 N m−2; and, (3) three
different pure quadratic springs with spring constants of k2 = 0.14, 0.21, and 0.28 N m−2.
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Figure 3.4: The response of the (a) maximum amplitude Amax and (b) phase difference Φ be-
tween the transverse displacement and the lift force as a function of Re for an elastically-mounted
cylinder on a spring subject to linear and/or quadratic restoring forces. It is difficult to identify
the lock-in range due to many combinations of (k1,k2) here, so the following contents will select
a set of (k1,k2) with encrypted Re increment and identify the correlated lock-in interval.

As discussed previously, the natural frequency for the VIV of a cylinder elastically mounted
on a nonlinear spring will change with the amplitude of oscillation, but this amplitude cannot
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be determined a priori. In consequence, it is interesting to investigate the variation of this am-
plitude as a function of Re. To this purpose, the variation of the amplitude and phase of an
elastically-mounted circular cylinder on a linear and/or nonlinear spring with Re (the latter of
which is related to the inflow velocity U0) is shown in Fig. 3.4a. The dependence of the maxi-
mum amplitude Amax/D on Re is displayed in Fig. 3.4a. The maximum amplitude Amax of the
elastically-mounted cylinder is sensitive to the “type” of linear/quadratic spring (as characterized
by (k1,k2)) used to mount the cylinder. For the case of a linear spring where k2 = 0, the max-
imum amplitude exhibits a sudden jump to the largest “observed” value of Amax as Re (which
depends on U0) approaches the lower bound of the lock-in range. After this point, the maximum
amplitude is seen to decrease slowly with increasing values of Re (or, equivalently, U0), until the
system transitions outside the lock-in range.

In terms of the VIV response for a nonlinear spring (whether for a linear/quadratic or a
purely quadratic spring), it is seen that the lock-in range in these cases differ from that for the
linear spring. In contrast to the linear spring which exhibits a sudden transition (jump) when
the lock-in condition has been achieved, the nonlinear springs transition in a more gradual (ap-
proximately linear) manner into the lock-in regime. For example, for the linear/quadratic spring
with (k1,k2) = (0.003,0.11), the transition into the nonlinear lock-in regime occurs gradually as
Re increases from about 80 to 120 (and, the maximum amplitude of the oscillations is seen to
increase linearly (approximately or better) for increasing Reynolds number in this range).

For the pure quadratic spring with k1 = 0 and with an effective stiffness keff ≡ k2|y|, the
maximum amplitude Amax is seen also to undergo a more gradual (linear) increase with increasing
Re, followed by a sudden drop in value after the largest value of amplitude has been achieved in
the lock-in regime. Generally, the range of lock-in increases with increasing values of k2 owing
to the fact that larger values of k2 will facilitate oscillatory motions in the system at the higher
value of Re. This phenomenon is consistent with the results obtained by Huynh et al. [108] in
their numerical and experimental investigations of nonlinear VIV energy converters.

An appropriate combination of k1 and k2 for a linear/quadratic spring can be potentially
utilized to enhance the useful lock-in regime for energy conversion, provided both the magnitude
of the amplitude response and extent of the range of flow velocities at which lock-in occurs can
be simultaneously exploited. Towards this objective, it is noted that the nonlinear lock-in for the
cylinder occurs at a lower value of the velocity for the pure quadratic spring than that for the linear
spring—but, on the other hand, the maximum amplitude of oscillation obtained for the linear
spring in the lock-in regime is larger than that for the pure quadratic spring. More importantly,
it is noted that a linear/quadratic spring configuration can potentially inherit the strengths of the
linear and pure quadratic springs vis-a-vis the characteristics of the lock-in regime; namely, a
lock-in that occurs at a lower velocity (as for a pure quadratic spring) and a maximum amplitude
of oscillation that is large within the operational lock-in regime. For example, the linear/quadratic
spring configuration with (k1,k2) = (0.003,0.11) exhibits a local synchronization of the vortex
shedding frequency and the structural vibration frequency at Re ≈ 80, but within the range of
the lock-in regime the maximum amplitude of oscillation Amax/D attains a value of about 0.6
(equal to the maximum amplitude of oscillation achieved by the linear spring) at Re ≈ 120 (see
Fig. 3.4a).

In terms of the VIV response of a cylinder mounted on a linear spring, four distinct branches
in the response have been identified. These different branches of the response emerge as the re-
duced velocity Ur is increased and are characterized as follows [40]: (1) an initial branch which
emerges as the vortex shedding frequency approaches the natural structural vibration frequency
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and is characterized by a distinct increase in the amplitude of oscillation; (2) an upper branch as
the amplitude of the oscillations transitions to a higher level corresponding to a complete local
synchronization of the vortex shedding frequency and the natural structural frequency, a state that
is associated with the largest vibrations; (3) a lower branch as the amplitude of the oscillations
transitions to a lower level as the vortex shedding frequency diverges more and more from the
natural structural frequency; and, (4) desynchronization in which the amplitude of oscillations
vanish as desynchronization occurs between the vortex shedding frequency and natural structural
frequency leading to lock-out. However, for the VIV response of a circular cylinder mounted on
an nonlinear (hardening) spring, the range of Re associated with the start of the initial branch to
the start of the upper branch is increased (extended), implying that the envelope of the maximum
amplitude of the transverse displacement exhibits a smooth increase with increasing Re. Further-
more, the range of Re corresponding to the upper and lower branches of the response shrinks.
In consequence, the value of Amax decreases precipitously (rapidly) (accompanied by a jump
in the phase difference between the transverse displacement and the lift coefficient from 0◦ to
180◦) with a small increase in Re after the point when Amax attains its largest (maximum) value
in the upper branch of the response. One set of (k1,k2) will be chosen and simulations will be
conducted for a large number of values of Re in order to investigate the branches of the response
in detail, the results of which will be described in sub-section 3.3.2.

Figure 3.4b displays the dependence of the phase difference Φ between the transverse dis-
placement of the cylinder and the lift force as a function of Re. The phase difference Φ as defined
here is the same as that used by Govardhan and Williamson [208]. A perusal of the figure shows
that Φ exhibits a sharp jump from 0◦ to 180◦ within the later stages of the lock-in range. This
behaviour is consistent with that reported by Wang et al. [105]. For the pure quadratic spring, the
phase difference Φ is approximately 0◦ for a large range of values of Re (associated with the non-
linear lock-in regime) and Φ transitions abruptly (jumps) to about 180◦ at the end of the lock-in
range (corresponding to the local desynchronization between the vortex shedding frequency and
the natural structural frequency). A comparison of Figs 3.4a and 3.4b shows that the value of the
Reynolds number Re at which Amax decreases abruptly in magnitude coincides (approximately
or better) with the value of Re at which Φ increases sharply from 0◦ to 180◦, a characteristic that
has also been observed by Wang et al. [105].’
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Figure 3.5: Oscillation frequency fosc as a function of Re for a cylinder supported by various
types of (non)linear springs characterized by (k1,k2).

The variation of the oscillation (vibration) frequency with Re for different types of springs
(characterized by (k1,k2)) is displayed in the Fig. 3.5. The frequency corresponding to the peak
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with the largest amplitude is selected if there are multiple peaks in the spectrum. An examination
of Fig. 3.5 reveals that for a linear spring, the oscillation frequency is constant (approximately
or better) over the range of Reynolds numbers from about 100 to 140 implying that over this
range the system is in the lock-in condition. This characteristic of the lock-in condition for a
linear spring is consistent with results reported previously by Khalak and Williamson [42] and
Leontini et al. [209]. This property of a linear spring is in stark contrast with that of a nonlin-
ear spring where the oscillation frequency is seen to vary with Re rather than remain constant.
Indeed, an important characteristic feature of a nonlinear spring is that the natural frequency of
a system coupled to the spring (e.g., cylinder mounted on a nonlinear spring) is not constant.
In consequence, for such systems the oscillation frequency cannot easily achieve lock-in at one
constant value. If the nonlinear stiffness (k2) of the spring is large, the frequency of oscillation is
proportional (approximately or better) to the vortex shedding frequency. These characteristics of
a linear and nonlinear spring are consistent with those described by Wang et al. [105] who also
found that the characteristics of the vibration frequency of a nonlinear spring departs from that
of a linear spring.

It is interesting to compare and contrast the transient signals of the transverse displace-
ment and the lift coefficient in the VIV response of a circular cylinder mounted on a linear
and linear/quadratic spring. Towards this objective, we consider two specific cases which ex-
hibit comparable maximum amplitudes for the transverse displacement: namely, (k1,k2,Re) =
(0.0063,0,100) and (0.003,0.11,120). The time series of the normalized displacement y/D and
the lift coefficients CL for these two cases are shown in Fig. 3.6. Note that for both cases, the
maximum normalized transverse displacement ymax/D assumes a value of about 0.6. Further-
more, it can be seen that starting from an initial condition where the cylinder was at rest at y = 0,
the vibration response of the system with the linear spring achieves equilibrium at tU0/D = 100,
in contrast with that of the nonlinear spring which reaches equilibrium at a significantly longer
time of tU0/D = 280. Moreover, it is noted that the beating phenomenon appears in the early
stage of the vibration response for the nonlinear spring. Finally, it is interesting to note that after
the system with the linear and linear/quadratic springs reach equilibrium, the temporal fluctua-
tions in the lift coefficient CL are very similar and, indeed, the maximum lift coefficient has a
value of about unity in both cases. Nevertheless, a careful persual of Fig. 3.6 shows that the
maximum lift coefficient attained by the system with the linear/quadratic spring (with a value of
about 1.37) is slightly larger than that attained by the system with the linear spring.

Next we consider two sets of cases for a linear/quadratic spring combination summarized as
follows: (1) linear spring constant fixed at a value of k1 = 0.003 N m−1 and the quadratic spring
constant assuming values of k2 = 0.06, 0.11 and 0.16 N m−2; and, (2) quadratic spring constant
fixed at a value of k2 = 0.11 N m−2 and the linear spring constant taking values of k1 = 0.002,
0.003 and 0.004 N m−1. Note in the two sets, one case overlaps; namely (k1,k2) = (0.003,011)
so there are actually only five linear/quadratic spring combinations here.

Figure 3.7 displays the dependence of the maximum amplitude Amax on Re for the lin-
ear/quadratic spring combinations summarized above. The results in this figure can be inter-
preted as two series: namely, one where k1 is fixed at a value of 0.003 N m−1 with k2 taking
values of 0.06, 0.11 and 0.16 N m−2 and another where k2 is fixed at a value of 0.11 N m−2 with
k1 taking values of 0.002, 0.003 and 0.004 N m−1. For the first series, the maximum amplitude
response associated with k2 = 0.06 N m−2 (for a fixed value of k1) has a broader (wider) peak
as a function of Re than that associated with the larger values of k2 = 0.11 and 0.16 N m−2, im-
plying that the case with the smallest value of the quadratic spring constant provides a response
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Figure 3.6: Time series of the normalized displacement y/D and the lift coefficient CL for a
circular cylinder elastically mounted on (a) a linear spring with (k1,k2,Re) = (0.0063,0,100)
and (b) a linear/quadratic spring with (k1,k2,Re) = (0.003,0.11,120).

with the largest values of the maximum amplitude over the largest range of Reynolds number. In
contrast, for the second series, the maximum amplitude response corresponding to k1 = 0.004 N
m−1 (for a fixed value of k2) exhibits a broader peak as a function of Re than that corresponding
to the smaller values of k1 = 0.002 and 0.003 N m−1, suggesting that the case with the largest
value of the linear spring constant gives a response with the largest values of Amax over the largest
range of values of Re. Taken together, these results imply that selecting a linear/quadratic spring
combination with a larger value of k1 and a smaller value of k2 will result a VIV system with a
wider range of lock-in.
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Figure 3.7: The dependence of the maximum amplitude Amax on Re for an elastically-mounted
cylinder with various linear/quadratic spring combinations (giving rise to different linear and
nonlinear restoring forces) characterized by (k1,k2). It is difficult to identify the lock-in range
due to many combinations of (k1,k2) here, so the following contents will select a set of (k1,k2)
with encrypted Re increment and identify the correlated lock-in interval.

The inset plot in Fig. 3.7 shows the dependence of the root-mean-square of the lift coefficient
CL as a function of the Reynolds number for the linear/quadratic spring combination (k1,k2) =
(0.002,0.11). Note that the variation of rms(CL) with Re mirrors that of the variation of the
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Figure 3.8: Time series of the transverse displacement of an elastically-mounted cylinder on a
linear/quadratic spring with (k1,k2) = (0.002,0.11) for various values of Re.

corresponding Amax with Re which is not surprising as a large lift force acting on the elastically-
mounted cylinder will result in a large maximum amplitude for the transverse displacement y of
the cylinder. Nevertheless, it should be emphasized that there is a phase difference between the
lift force and the resulting transverse displacement. This will be discussed more fully below.

Figure 3.8 exhibits the time history of the transverse displacement oscillations for an elastically-
mounted cylinder on a linear/quadratic spring configuration with (k1,k2) = (0.002,0.11) for six
different Reynolds numbers spanning the range of flows from Re = 60 to 120 inclusive. A pe-
rusal of this figure indicates that the oscillations of the transverse displacement are periodically
stable over the lock-in range. The range of Re spans the various branches of the amplitude re-
sponse. More specifically, we note that the desynchronized branch occurs at Re = 60 and 120.
The range of Re from about 70 to 110 corresponds to the transition through the lock-in range as
the pattern of oscillations progresses from the initial branch to the upper branches of the ampli-
tude response. For increasing values of Re in this range, the maximum amplitude of the response
increases monotonically (approximately or better) attaining the largest Amax at Re = 110. For Re
in the range 80 to 100, the transverse displacement amplitude first increases to a maximum value
and then decreases to a slightly smaller (but more stable) value of the amplitude. At Re = 110,
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Figure 3.8: Time series of the transverse displacement of an elastically-mounted cylinder on a
linear/quadratic spring with (k1,k2) = (0.002,0.11) for various values of Re.

the transverse displacement oscillations exhibit the largest maximum amplitude. These oscilla-
tions undergo a long transient period of fluctuations before transitioning into a stable (and large
amplitude) oscillation. During this transient period, the oscillations are seen to exhibit a beating
phenomenon that is associated with a mode change or a mode competition [210, 211]. This beat-
ing phenomenon is seen to still occur in the time series of the transverse displacement associated
with the desynchronised branch of the response at Re = 120, albeit the amplitude of the response
is much smaller than that in the upper and lower branches.

Figure 3.9 encapsulates the phase difference Φ between the lift force and the transverse dis-
placement and the oscillation frequency fosc of the transverse displacement as a function of Re.
A perusal of the figure shows that the transition of the phase difference from 0◦ to 180◦ occurs
at larger values of Re for the linear/quadratic spring configuration with the larger values of both
k1 and k2. The value of Re at which Φ transitions from 0◦ to 180◦ is consistent with the value
of Re where the maximum amplitude Amax exhibits the sudden drop in value after the largest
value of amplitude has been achieved in the lock-in range. As discussed previously, with re-
spect to the hardening spring VIV system, the square of the equivalent natural frequency ω

(2)
eq of

a linear/quadratic spring configuration is proportional to the amplitude a of the transverse dis-
placement. In consequence, the quadratic spring contribution implies that the equivalent natural
frequency will depend on Re (owing to the fact that the amplitude depends on Re) which, in
turn, suggests that the oscillation frequency cannot be locked at one constant structural natural
frequency in the initial branch even though the VIV system exhibits a large-amplitude response.
Indeed, the vortex shedding frequency is proportional to Re which, in turn, affects the oscillation
frequency of the VIV system for the nonlinear lock-in range. A more detailed comparison and
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Figure 3.9: (a) The phase difference Φ between the lift force and the transverse displacement
and (b) the oscillation frequency fosc of the transverse displacment as a function of Re for an
elastically-mounted cylinder on a linear/quadratic spring configuration characterized by (k1,k2).

analysis of the frequencies of the structural oscillations, the fluid force (or, lift coefficient), and
the nature of the vortex shedding will be provided later in the study for one particular case.

Figure 3.10 displays the power spectral density (PSD) of the normalized transverse displace-
ment oscillations y(t)/D and the associated phase-plane diagrams (viz., plots of the normal-
ized transverse displacement y/D versus the transverse velocity d(y/D)/dt of the normalized
displacement). The results shown are stratified in terms of Re for two cases of an elastically-
mounted cylinder on a linear/quadratic spring configuration characterized by (k1,k2)= (0.003,0.06)
and (0.003,0.16). It is noted that the results for the linear/quadratic spring system with (k1,k2) =
(0.003,0.06) for Re = 110, 120 and 130 (two leftmost columns of panels in Fig. 3.10) and
with (k1,k2) = (0.003,0.016) for Re = 120, 130 and 140 (two rightmost columns of panels in
Fig. 3.10) show the behavior of the transverse displacement oscillations in the upper to desyn-
chronised branches of the amplitude response. In the former case for Re = 110 and in the latter
case for Re = 120, the PSD of the transverse displacement exhibits one peak (corresponding to
one dominant frequency of oscillation) and the associated phase-plot diagram is consistent with
the dynamics associated with a periodic system. The behavior is consistent with the appearance
of the time series plots of the transverse displacement oscillations shown in Fig. 3.8 and, more
specifically, with the time series corresponding to Re = 110 in that figure which is associated
with the upper or lower branches of the lock-in range.

For (k1,k2)= (0.003,0.06) at Re= 120 and (k1,k2)= (0.003,0.16) at Re= 130 in Figs 3.10(a)
and (b), respectively, the power spectra of the normalized transverse displacements exhibit two
peaks and the associated phase-plane diagrams consist of two lobes (which we will refer to sim-
ply as a “binoculus” effect). The “binoculus” phenomenon observed herein implies that the e-
quilibrium point of the transverse displacement oscillations does not correspond simply to y = 0.
Rather, there are two equilibrium points in the oscillations and the dynamics switches (transi-
tions) from one point to the other in the course of the temporal evolution of y(t). This behavior
is consistent with the beating phenomenon in the transverse displacements discussed previously
with reference to Fig. 3.8 (and, more particularly with reference to part (g) of that figure corre-
sponding to Re = 120) which is associated with the transition of the dynamical system out of the
lock-in range [110]. The “binoculus” effect observed in the phase-plane diagrams here is clearly
associated with the beating effect whereby two oscillations in the transverse displacement of very
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Figure 3.10: Power spectral density (PSD) of the normalized transverse displacement y/D and
the associated phase-plane diagram for an elastically-mounted cylinder on a linear/quadratic
spring configuration with (a) (k1,k2) = (0.003,0.06) for Re = 110, 120 and 130 and (b)
(k1,k2) = (0.003,0.16) for Re = 120, 130 and 140.

similar frequencies interfere with one another, producing periodic and repeating modulations in
the vibrations (viz., beats).

It is noted that as Re increases, the “binoculus” effect vanishes as the amplitude response of
the VIV system transitions into the desynchronised branch. When this occurs, the oscillations of
the transverse displacement of the cylinder correspond to a single dominant frequency and the
constant amplitude of the oscillations decreases to a level consistent with the transition out of
the lock-in range (associated with the desynchronised branch of the amplitude response). The
signature of this effect is clearly seen in Fig. 3.10 at Re = 130 for (k1,k2) = (0.003,0.06) and
at Re = 140 for (k1,k2) = (0.003,0.16) in both the power spectra of the transverse displacement
and in the corresponding phase-plot diagrams.

3.3.2 Equivalent natural frequency and identification of branches of the
response

As discussed above, in a cylinder mounted on a nonlinear spring and subject to VIV, the nat-
ural structural frequency of the system changes with the oscillation amplitude. In consequence,
it is beneficial to derive an equivalent natural frequency feq for such a VIV system which can be
used for interpretation of the phenomenon. To this purpose, a useful procedure is the describing
function (equivalent linearization) technique which was first applied in control theory to pro-
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vide approximate solutions to (weakly) nonlinear systems subject to random excitations [212].
In this technique, each nonlinear term (element) in the system is replaced with a (quasi) linear
term (element) with an appropriate functional form (describing function) that approximates the
input-output response of the nonlinear element [213]. The gain of the linear element (obtained
as part of the equivalent linearization of the nonlinear system) is a function of the amplitude of
the input, with the form of the function (or, describing function) depending on the type (nature)
of the input. Two examples of describing functions that are used in the equivalent linearization
technique are the sinusoidal input describing function (SIDF) [214, 215] and and the random
input describing function (RIDF) [216].

To obtain an equivalent natural frequency for an oscillating cylinder mounted elastically on a
linear/nonlinear spring with no structural damping (c = 0), we re-cast Eq. 3.4 as follows:

ÿ+ω
2
1 y+

kn

m
ln (y, ẏ) = fy , (3.6)

where ω1 ≡
√

k1/m (natural frequency of linear spring) and fy ≡ Fy/m. Equation 3.6 could be
recast as

ÿ+ω
(n)2
eq y = fy , (3.7)

where ω
(n)
eq is the equivalent frequency for the linear/nonlinear spring system. It is assumed that

the displacement y can be approximated by a sinusoid with a slow modulation of the amplitude
and phase as follows (sinusoidal input describing function):

y(t) = a(t)sin
(

ω
(n)
eq t +φ (t)

)
. (3.8)

Using the equivalent linearization methodology described by Caughey [213], the equivalent
frequency ω

(n)
eq can be obtained for a linear/nonlinear spring system. The derivation of ω

(n)
eq is

described in Appendix A for a general linear/nonlinear spring. The key result required for the
current analysis can be succinctly summarized as follows. For a linear/quadratic spring system
(when n = 2), the equivalent frequency ω

(2)
eq is given by

ω
(2)2
eq = ω

2
1

(
1+ ε2

2√
π
〈a2〉1/2

)
, (3.9)

where 〈a2〉 is the mean-square amplitude of the transverse oscillations and ε2 ≡ k2/k1. During
the lock-in range, when the amplitude and phase is constant (approximately or better) so a(t) and
φ(t) are not slowly-varying functions of time t, the equivalent frequency assumes the following
form:

ω
(2)2
eq = ω

2
1

(
1+ ε2

8
3π

a
)

, (3.10)

where a is the maximum amplitude of the transverse oscillations. Note that for a linear/quadratic
spring system, the equivalent natural frequency varies as the square root of the root-mean-square
amplitude (for transverse oscillations with a slow modulation in the amplitude and phase) or
with the square root of the (maximum) amplitude (for transverse oscillations whose amplitude
and phase are constant in time).

Figure 3.11 shows the equivalent natural frequency feq ≡ ωeq/(2π) for a linear spring with
k1 = 0.0063 N m−1 and a linear/quadratic spring with k1 = 0.003 N m−1 and k2 = 0.11 N m−2.
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stiffness kins of an elastically-mounted cylinder on a linear/quadratic spring configuration with
(k1, k2) = (0.003,0.11) for a flow with Re = 120.

The sudden decrease in the maximum amplitude at Re ≈ 120 exhibited in Fig. 3.4a for the lin-
ear/quadratic spring with (k1,k2) = (0.003,0.11) corresponds to the sharp decrease in feq at
Re ≈ 120 for the linear/quadratic spring as seen in Fig. 3.11. Here, the equivalent natural fre-
quency is seen is to be the natural frequency of the linear spring with k1 = 0.003 N m−1 after the
sharp decrease in value for Re greater than about 120. This suggests that the natural frequency
arising from the linear part of the linear/quadratic spring system is stable and determines the
mininum value of the natural frequencies inherent in the linear/quadratic spring, a contention
which is supported by Fig. 3.12. More specifically, Fig. 3.12 displays the instantaneous stiffness
kins ≡ k1 + k2|y| and the instantaneous natural frequency (2π) f ins

n ≡
√

kins/m. If the nonlinear
restoring forces arise from the combination of a linear part (k1) and a quadratic part (k2) of lin-
ear/quadratic spring combination, the instantaneous natural frequency will vary over a range of
frequencies with the minimum value in the range determined by the natural frequency of the
linear spring (characterized by k1).

To obtain a deeper understanding of the behavior of each branch of the VIV response of a
circular cylinder mounted on a linear/quadratic spring, and further explore the relationship be-
tween the derived equivalent natural frequency and oscillation frequency, we conducted a series
of simulations for the case (k1,k2) = (0.002,0.11) at twenty-five different values of Re in the
range from 50 to 140. The variation of the maximum normalized amplitude Amax/D of the trans-
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Figure 3.13: (a) Normalized structural amplitude Amax/D and phase difference Φ , (b) structural
oscillation frequency fosc, original vortex-shedding frequency fvs and equivalent natural frequen-
cy feq, (c) maximum lift coefficient Cmax

L , and (d) normalized amplitudes of the fluid force (viz.,
the maximum lift coefficient and the force coefficients associated with the linear (Cmax

f 1 ) and the
quadratic (Cmax

f 2 ) contributions of the elastic force as a function of Re for (k1,k2) = (0.002,0.11).
The region associated with the start of the initial branch to the beginning of the upper branch is
shaded in blue. The upper and lower branches are delineated as the red-shaded region.

verse displacement and the maximum lift coefficient Cmax
L as a function of Re is summarized

in Figs 3.13(a) and (c). The maximum amplitude Amax/D exhibits a monotonic increase with
increasing Re for Re in the range from 65 to 110 (delineated as the blue-shaded region) and this
monotonic increase in the maximum amplitude is associated with a corresponding monotonic
increase in Cmax

L over the same range of Re. For the range 110 < Re < 117 (delineated as the
red-shaded region), it is observed that Amax/D exhibits a small decrease in value from about
0.599 to 0.578. This small decrease in Amax/D just before the transition out of the lock-in range
is consistent with those observed for (k1,k2) = (0.003,0.06) and (0.004,0.11) in Fig. 3.7 and for
(0,0.14) in Fig. 3.4a. In marked contrast, over this range of Re, the corresponding Cmax

L displays
a sudden (rapid) decrease in value. In accordance with the characteristics of the branches of a
VIV system supported by a linear spring [11], Cmax

L is known to rapidly increase in the initial
branch to a maximum value (associated with the start of the upper branch) and then gradually
decrease in value as the VIV system transitions from the upper to the lower branch. The range
of Re associated with the initial branch for a VIV system with a linear spring is very narrow. In
contrast, compared to a linear restoring force, the nonlinear restoring force associated with the
response of a VIV system with a nonlinear spring will exhibit an increased (extended) range of
Re corresponding to the transition from the initial branch to the upper branch (or, equivalently,
from the smallest to largest values of Amax/D or Cmax

L ), while the range of Re associated with
upper and lower branches is reduced. An examination of Fig. 3.13(a) shows that the phase dif-
ference Φ between the lift force and the transverse displacement is small (Φ . 10◦) in the early
stages of the initial branch. When the Reynolds number Re approaches values associated with
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the beginning of the upper branch (100 < Re < 110), the phase difference Φ begins to increase,
slowly at first and then rapidly in the upper/lower branch as Φ tends to 180◦. When the system
transitions out of the lock-in range, Φ maintains a value of about 180◦ as Re increases further.

Next, we investigated in detail the frequency response of the VIV system with a linear/quadratic
spring in order to validate the equivalent natural frequency derived earlier (with details given
in Appendix A). To this purpose, the structural oscillation frequency fosc, the original vortex-
shedding frequency fvs and the equivalent natural frequency feq as a function of Re are com-
pared Fig. 3.13(b). Firstly, in the region outside the blue- and red-shaded areas, the VIV system
is in the desynchronized branch. The variation of fosc with increasing Re approaches the dashed
line corresponding to the vortex-shedding frequency fvs, indicating that the behavior of the VIV
system corresponds to that of a forced vibration. Secondly, in the blue-shaded region (which is
associated with the start of the initial branch to the beginning of the upper branch), the value of
the oscillation frequency fosc is larger than that of the vortex-shedding frequency fvs and small-
er than the equivalent natural frequency feq. This suggests that the structural natural frequency
and the vortex-shedding frequency together affect the vibration, and the structural oscillation
frequency fosc cannot be locked at one constant value. However, when the system enters the
red-shaded region (associated with the upper and lower branches), fosc is essentially identical
to feq (approximately or better) and is effectively constant as Re increases, indicating that the
system has entered the lock-in regime which is similar to that of a VIV system with a linear
spring. Furthermore, this implies that the equivalent natural frequency feq derived herein is cor-
rect and can be used to study the characteristics of the natural frequency of the VIV system with
a linear/quadratic spring which extends (generalizes) the results reported by Wang et al. [110].

Figure 3.13(d) exhibits the variation of the force coefficients Cmax
L , Cmax

f 1 , and Cmax
f 2 as a

function of Re. Here, Cmax
L ≡ Fmax

y /(ρU2
0 D/2) is the maximum lift coefficient; and, Cmax

f 1 ≡
(k1Amax)/(ρU2

0 D/2) and Cmax
f 2 ≡ (k2A2

max)/(ρU2
0 D/2) are the maximum force coefficients cor-

responding to the linear and quadratic contributions of the elastic force, respectively. The max-
imum values of Cmax

f 1 and Cmax
f 2 occur at a value of Re ≈ 100, whereas the maximum value of

Cmax
L occurs at a value of Re ≈ 110. In the red-shaded region (associated with the upper and

lower branches of the response), all three force coefficients are seen to decrease with increasing
Re in this region. Furthermore, the force coefficient associated the quadratic contribution to the
elastic force displays the largest amplitude owing to its nonlinear character. This implies that the
quadratic spring plays a dominant role in this VIV system.

To compare the variation of the transient signal in the initial and lower branches of the VIV
response, we investigate two cases: namely, (k1,k2,Re)= (0.002,0.11,95) (for the initial branch)
and (0.002,0.11,115) (for the lower branch). Time series of the normalized transverse displace-
ment y/D and the lift coefficient CL and the corresponding power spectral densities for these
quantities are shown in Fig. 3.14. It is noted that the power spectrum was calculated for that
portion of the time series when the quantity (displacement or lift coefficient) has reached equi-
librium. Similar to our discussion of Fig. 3.8, it is seen that the time required for the transverse
displacement and the lift coefficient to reach equilibrium at Re= 95 and 115 is shorter for the dis-
placement than for the lift coefficient. Furthermore, the time variation of y/D and CL at Re = 95
exhibits a small modulation in their amplitudes. In both the initial and lower branches of the
response, the fluctuation frequency of CL is locked to the structural oscillation frequency. The
development of y/D in the lower branch for (k1,k2,Re) = (0.002,0.11,115) can be partitioned
into two regimes with the boundary separating these two regimes occurring at the normalized
time tU0/D = 500. In the first regime with the normalized time ranging from 0 to 500, the time
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Figure 3.14: Time series of the normalized transverse displacement y/D and the lift coefficient
CL along with the associated power spectral density for these quantities: (a) initial branch with
(k1,k2,Re) = (0.002,0.11,95) and (b) lower branch with (k1,k2,Re) = (0.002,0.11,115).

series of the transverse displacement and the lift coefficient displays a modulation. In second
regime with 500 < tU0/D < 1000, modulations in the time series of y/D and CL are absent. Fi-
nally, at the end of the first regime, the amplitude of CL decreases to near zero and is subsequently
amplified in concert with the increase in the amplitude of the transverse displacement.

3.3.3 Wake pattern and DMD analysis

Williamson and Roshko [217] classified wake patterns observed in VIV systems into three
classes: namely, ‘P’ corresponding to vortex pairs, ‘S’ corresponding to a single vortex and ‘SP’
associated with a configuration consisting of a ‘S’ and ‘P’ mode. It was normally considered
that the patterns in the wake vortex dynamics model for VIV were related (correlated) to the
transverse displacement of the cylinder.

Figure 3.15 exhibits the vorticity isopleths illustrating the wake vortex dynamics of an elastically-
mounted cylinder with a linear/quadratic spring configuration of (k1,k2) = (0.002,0.11) and
(k1,k2) = (0.003,0.11) at various values of Re corresponding, as such, to various values of the
maximum amplitude Amax/D. The patterns of vorticity shown in the leftmost column of panels in
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Figure 3.15: Isopleths of the vorticity in the wake of an elastically-mounted cylinder on a lin-
ear/quadratic spring configuration with (a) (k1,k2) = (0.002,0.11) for seven equally-spaced val-
ues of Re from 60 to 120 inclusive and with (b) (k1,k2) = (0.003,0.11) for seven equally-spaced
values of Re from 70 to 130 inclusive. Incident flow direction is from left to right in the figure.

this figure are associated with the temporal evolution of the transverse displacement y/D shown
in Fig. 3.8. Owing to the small amplitude displacement for (k1,k2) = (0.002,011) at Re = 60 or
(k1,k2) = (0.003,0.11) at Re = 70, the wake vortex dynamics are seen to be statistically station-
ary (approximately or better) and the vortex shedding regime here displays a 2S wake pattern.
When the maximum amplitude Amax/D of the transverse displacement increases to Amax/D =
0.41 for (k1,k2,Re) = (0.002,0.11,100) or to 0.46 for (k1,k2,Re) = (0.003,0.11,110), the topol-
ogy of the vortical wake pattern changes to C(2S). The topology (as more clearly seen in the en-
larged sub-figures of Fig. 3.15 with the darkened colors) of the vortical wake pattern is consistent
with that identified in the investigation of Huang et al. [218], namely the so-called S(2Po) pattern.
The smaller vortices (identified by the red ellipses in enlarged plots) in the up/down pairs are lo-
cated at the top/bottom of the strong vortex, and is quickly damped out in wake region due to the
low Reynolds number. It is noted that for Re ranging from 60 to 100 for (k1,k2) = (0.002,0.11)
and from 70 to 110 for (k1,k2) = (0.003,0.11), the response here belongs to the initial branch;
and, for Re = 110 at (k1,k2) = (0.002,0.11) and for Re = 120 at (k1,k2) = (0.003,0.11), the re-
sponse here belongs to the upper branch. Overall, this observed transition in the wake oscillatory
pattern with increasing oscillation amplitude is consistent with the results reported by Lambert
and Olivier [219] and by Prasanth and Mittal [135].

Figure 3.16 exhibits the velocity deficit δU ≡
(
1−‖~U‖/U0

)
(‖~U‖ is the Euclidean norm

of the flow velocity ~U and U0 is the incident wind speed) in the wake of a cylinder mounted
elastically on a linear/quadratic spring configuration with (k1,k2) = (0.002,0.11). Note that both
the maximum amplitude of the transverse displacement y/D and the velocity deficit δU increase
as Re increases from 100 to 110. These characteristics are correlated with the transition in the
vortex shedding regime from C(2S) for Re = 100 to 2P for Re = 110 as shown in Fig. 3.15(a).
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Figure 3.16: The velocity deficit δU ≡ (1−‖~U‖/U0) obtained in the wake of an elastically-
mounted cylinder on a linear/quadratic spring configuration with (k1,k2) = (0.002,0.11) at (a)
Re = 100 for seven equally-spaced points in time over one-half cycle of the transverse displace-
ment oscillation (bottom panel) and at (b) Re = 110 for five-equally spaced points in time over
one-half cycle of the transverse displacement oscillation (bottom panel). Incident flow direction
is from left to right in the figure.

Furthermore, velocity deficit region in the cylinder wake is wider in the transverse direction and
the wake vortices initially attached to the surface of the cylinder are swept away more quickly
from the surface for Re = 110 than for Re = 100.

Next, the wake oscillatory dynamics is analyzed using dynamic mode decomposition (DMD)
which is used here identify characteristic features in the vortical motions that can be associated
with physically meaningful damped (or driven) sinusoidal (periodic) behavior. To this purpose,
the velocity field is sampled at a point in the wake of an elastically-mounted cylinder at a rate
of 50 samples per oscillation cycle for a total sampling time of 40 oscillation cycles. These
sequential snapshots of the velocity field at a given location are stacked into columns of a data
matrix X from which the DMD modes and eigenvalues can be computed using a DMD algorithm.

An examination of Figs 3.17,3.18 and 3.19 shows that the DMD velocity modes are symmet-
rically or anti-symmetrically distributed with respect to the centerline. According to the proper
orthogonal decomposition (POD) analysis of Qu et al. [220] and Konstantinidis et al. [221], the
antisymmetric distributions represent the antisymmetric vortex-shedding modes, while the sym-
metric distributions correspond to the symmetric shedding process.

The modes extracted from the DMD analysis are correlated with characteristic harmonics
(frequencies) associated with both the vortex shedding of the stationary cylinder (viz., cylin-
der that has not been coupled to a spring) and the VIV oscillations of the elastically-mounted
cylinder on the linear/quadratic spring. Figure 3.17 exhibits the results of the DMD analysis
for an elastically-mounted cylinder on a linear/quadratic spring configuration with (k1,k2) =
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(c) The four largest DMD modes sorted by decreasing amplitude

Figure 3.17: Dynamic mode decomposition of velocity time series obtained in the wake
of an elastically-mounted cylinder on a linear/quadratic spring configuration with (k1,k2) =
(0.002,0.11) at Re = 60 summarized in terms of (a) spectrum showing the distribution of the
real and imaginary parts of the eigenvalues; (b) amplitudes of the DMD modes normalized by
the maximum amplitude and plotted as a function of the frequency; and, (c) real part of the DMD
modes depicted using contours of the velocity components and velocity magnitude (white: zero;
red: above a given positive threshold; blue: below a given negative threshold).

(0.002,0.11) for Re = 60 where the maximum displacement amplitude is only Amax/D = 0.008
(suggesting that the oscillations of the transverse displacements can be interpreted as being ap-
proximately statistically stationary). An examination of Fig. 3.17a shows that the modulus of
the (complex) eigenvalues is unity (viz., |λ | = 1), so all the eigenvalues lie on the unit circle in
the complex plane. This implies that the wake oscillatory dynamics of the flow is approximately
linear (or, quasi-linear) which is consistent with similar results reported by Hemati et al. [222]
and Sarkar et al. [223].

The amplitudes of the various DMD modes normalized by the maximum amplitude are dis-
played Fig. 3.17b as a function of their associated frequency. It is noted that the first two modes
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corresponding to a frequency f of 0.084 Hz (or, equivalently, to a Strouhal number of St = 0.14)
are associated with the largest magnitude in energy. According to Kozlov et al. [224] and Qu et
al. [225], the Strouhal number St for flow past a stationary cylinder for Re = 60 is 0.14 which is
consistent with the characteristic frequency associated with the first two DMD modes. In conse-
quence, these first two DMD modes are associated with wake oscillatory motions (and concomi-
tant vortex shedding structures, so-called ‘Kármán street modes’) of the stationary cylinder at
Re = 60. The real parts of the first four DMD modes with the largest amplitude (data highlighted
within the circle in Fig. 3.17b corresponding to the first four dominant modes) are visualized as
color isopleths of the velocity components and the magnitude of the velocity in Fig. 3.17c. The
spatial pattern of the first two DMD modes are similar, albeit with a phase difference. Simi-
larly, the third and fourth dominant modes are seen to have a similar spatial pattern. All these
dominant modes exhibit a symmetry/anti-symmetry pattern. The features of modal similarity,
symmetry/anti-symmetry, and phase shift have been observed in the principal orthogonal de-
composition (POD) analysis conducted Siegel et al. [226] in the context of the low-dimensional
modeling of a transient cylinder wake.

Figure 3.18 summarizes the DMD analysis of the velocity in the wake of an elastically-
mounted cylinder on a linear/quadratic spring configuration with (k1,k2)= (0.002,0.11) for Re=
100 with a maximum displacement amplitude of Amax/D = 0.41. Again, it is seen that the
moduli of almost all the eigenvalues are unity and so lie on the unit circle of the complex plane.
The first three dominant DMD modes are enclosed by the ellipse in Fig. 3.18b. Of these three
modes, the first two dominant modes are associated with dominant frequencies of 0.176 Hz
(or, St = 0.176) and 0.353 Hz (or, St = 0.353). These two dominant frequencies are correlated
with the first and second harmonics for the elastically-mounted cylinder on the linear/quadratic
spring configuration with (k1,k2) = (0.002,0.11) at Re = 100. These results can be compared
to Fig. 3.9b where it can be seen that fosc ≈ 0.17 Hz at Re = 100 for (k1,k2) = (0.002,0.11),
which is coincident with the first harmonic frequency of the elastically-mounted cylinder and
with the frequency associated with the first dominant DMD mode, the so-called ‘body vibration
mode’. It is interesting to note that the spatial pattern for the third dominant mode at Re = 100
is very similar to that for the dominant mode at Re = 60 (cf. with Fig. 3.17c). Furthermore,
this spatial pattern is similar to the spatial pattern of vortex shedding for flow past a stationary
cylinder as reported in Noack et al. [227]. Assimilating all this information, it is suggested that
the third dominant DMD mode at Re = 100 is connected (linked) to the ‘Kármán street mode’
from a stationary cylinder at the same Reynolds number. Even so, the link seems tenuous owing
to the fact that St = 0.168 for flow past a stationary cylinder at Re = 100, whereas the frequency
associated with the third dominant mode is 0.130 Hz (or, equivalently, St = 0.130).

Figure 3.19 shows the results of a DMD analysis for the flow in the wake of an elastically-
mounted cylinder on a linear/quadratic spring configuration with (k1,k2) = (0.002,0.11) at Re =
110 where the maximum amplitude of the transverse displacement is Amax/D = 0.6. In contrast
with the DMD results for Re = 60 and 100 (cf. Figs 3.17 and 3.18) the DMD mode that is linked
to wake oscillations (or, ‘Kármán street mode’) behind the stationary cylinder is absent. Physical
insights can be obtained by combining the information about the DMD modes with that concern-
ing the maximum amplitude of the transverse displacement. For flow past a stationary cylinder,
the vortex shedding arises from the periodic boundary-layer separation from the surface of the
cylinder. At Re = 110, the significant vibrations associated with the wake oscillations obliterate
this periodic boundary-layer separation from the cylinder surface and, as a consequence, the vor-
tical wake structures are the result of the VIV of the cylinder. In this case, the ‘Kármán street
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Figure 3.18: Dynamic mode decomposition of velocity time series obtained in the wake
of an elastically-mounted cylinder on a linear/quadratic spring configuration with (k1,k2) =
(0.002,0.11) at Re = 100 summarized in terms of (a) spectrum showing the distribution of the
real and imaginary parts of the eigenvalues; (b) amplitudes of the DMD modes normalized by
the maximum amplitude and plotted as a function of the frequency; and, (c) real part of the DMD
modes depicted using contours of the velocity components and velocity magnitude (white: zero;
red: above a given positive threshold; blue: below a given negative threshold).

mode’ disappears and the ‘body vibration mode’ dominates the wake modal pattern.

From Fig. 3.19b, the fifth dominant DMD mode corresponding to a frequency of 0.214 Hz (or,
equivalently, to St = 0.195) is correlated with the first harmonic in the ‘body vibration mode’ of
the elastically-mounted cylinder at Re = 110. Additionally, this frequency is consistent with the
oscillation frequency fosc summarized in Fig. 3.9b for (k1,k2) = (0.002,0.11) at Re = 110. The
first dominant DMD mode with a dominant frequency of 0.428 Hz corresponds to the second
harmonic in the VIV-motion (or, ‘body vibration mode’) of the elastically-mounted cylinder
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Figure 3.19: Dynamic mode decomposition of velocity time series obtained in the wake
of an elastically-mounted cylinder on a linear/quadratic spring configuration with (k1,k2) =
(0.002,0.11) at Re = 110 summarized in terms of (a) spectrum showing the distribution of the
real and imaginary parts of the eigenvalues; (b) amplitudes of the DMD modes normalized by
the maximum amplitude and plotted as a function of the frequency; and, (c) real part of the DMD
modes depicted using contours of the velocity components and velocity magnitude (white: zero;
red: above a given positive threshold; blue: below a given negative threshold).

with (k1,k2) = (0.002,0.11) at Re = 110. Interestingly, the second dominant DMD mode has an
eigenvalue magnitude less than unity (and, hence lies inside the unit circle in the complex plane)
implying a damped mode (viz., a mode whose amplitude decreases with time). As a result, the
second dominant DMD mode does not seem to be associated with either the ‘Kármán street
mode’ of the stationary cylinder or with the ‘body vibration mode’ of the elastically-mounted
cylinder.
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3.4 Chapter summary

In this chapter, one degree-of-freedom VIV in the transverse direction of an elastically-
mounted circular cylinder (resulting in nonlinear restoring forces) is investigated using two-
dimensional computational fluid dynamics simulations for a range of Re from 50 to 150 inclusive.
The damping in the system is assumed to be absent (so damping coefficient c = 0). The charac-
teristics of VIV for the fluid-structure interaction of an elastically-mounted cylinder on a linear,
linear/quadratic and quadratic spring are analyzed and compared.

The equivalent natural frequency feq for an elastically-mounted cylinder on a linear/nonlinear
spring is derived and it is found that unlike a linear spring, the equivalent natural frequency is
dependent on the amplitude of the transverse displacement and so cannot be determined a priori.
More specifically, the square of the equivalent natural frequency for a linear/quadratic spring
configuration is proportional to the (constant) amplitude of the transverse displacement (or, more
generally to the root-mean-square of the amplitude of the transverse displacement for the case
where the amplitude and phase of the sinusoidal oscillations can exhibit a slow modulation in
time).

The maximum amplitude of the transverse displacement of an elastically-mounted cylinder
on a linear/quadratic spring will increase with increasing Re (at low values of Re starting at
around 60 as determined in the present study). However, the presence of the linear spring com-
ponent in the configuration will limit the maximum amplitude of the VIV at the higher values
of Re (e.g., this self-limiting mechanism is observed to occur at Re = 120 in the present study).
The increase in the maximum amplitude Amax of the transverse displacement with increasing Re
in the VIV system with a quadratic (nonlinear) component in the spring configuration will be
smooth and, at sufficiently large values of Re will exhibit a sudden drop in Amax as the response
transitions from the upper branch to the lower branch to the desynchronised branch. In this study,
it was found that the lock-in range for a VIV system with a nonlinear restoring force is more ex-
tensive than that for a linear restoring force only, but the maximum amplitude of the response
does not change significantly between these two cases.

The phase difference Φ between the lift force and the transverse displacement for a VIV
system with a quadratic (nonlinear) restoring force exhibits a sudden jump from Φ ≈ 0◦ (or, more
precisely, from a small phase difference of less than about 10◦) to about 180◦ for the same Re
(approximately or better) at which the system exhibits a sudden drop in the maximum amplitude
Amax. Both of these conditions are the signature of the transition out of the lock-in range for the
VIV system. It is noted that larger values of k2 (implying a larger nonlinear restoring force for
the VIV system) are associated with a sharper transition in Φ as a function of Re as it jumps from
0◦ to 180◦ in the desynchronised branch.

For a VIV system with a quadratic (nonlinear) restoring force, the range of Re corresponding
to the transition from the start of the initial branch to the start of the upper branch is increased
(extended), and the upper/lower branches of the response are suppressed compared to that with
a linear spring. The derived equivalent natural frequency feq is equal to the structural oscillating
frequency fosc in the suppressed upper and lower regions of the response.

For Re corresponding to the end of the lock-in range where the maximum amplitude of the
transverse displacement exhibits a sudden drop to a smaller level (transition from the lower
branch to the desynchronised branch of the amplitude response), a beating phenomenon is ob-
served in the oscillations of the transverse displacement. The signature of the latter physical
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effect is apparent from the fact that the power spectrum of the transverse displacement exhibits
two dominant peaks at two slightly different frequencies and the associated phase-plane diagram
displays a characteristic “binoculus” structure. This beat phenomenon in the transverse displace-
ment oscillations disappears at still larger values of Re.

The vortial wake structure for a VIV system with a quadratic (nonlinear) restoring force is
similar to the classical von Kármán vortex street where regions of concentrated vorticity are shed
downstream from opposite (alternate) sides of a cylinder. The wake oscillatory pattern is related
to the amplitude response of the elastically-mounted cylinder (VIV system). For smaller values
of the amplitude response, the vortex shedding regime exhibits a characteristic 2S pattern with a
single-row configuration which occurs during the initial branch of the amplitude response (viz.,
associated with the lower amplitude response in the initial branch). As the amplitude response
of the VIV system increases, the vortex shedding regime transitions into a 2P pattern with a
double-row vortex street in the upper branch.

The DMD analysis of the velocity in the wake of an elastically-mounted cylinder on a lin-
ear/quadratic spring showed that the transverse extent of the DMD modes is larger for larger
values of the maximum amplitude of the transverse displacement. The characteristic frequencies
associated with the dominant DMD modes are correlated with either the wake vortex structure
(‘Kármán street mode’) of the stationary cylinder or the vortical wake structure arising from the
VIV (‘body vibration mode’) of the elastically-mounted cylinder. Furthermore, strong VIV os-
cillations of the elastically-mounted cylinder can significantly alter the wake oscillatory pattern
of the stationary cylinder.
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Chapter 4

2-D linear stability analysis of lock-in
behavior with uniform inflow

This chapter will focus on introducing some novel modal behaviors which include various
mode transformations and interactions, which are then used to explain some subtle features such
as the beating phenomenon which occurs in the initial branch and the significant lag time that
ensues between the initial branch and the occurrence of the fully-developed response in the lower
branch that have been overlooked previously. In so doing, this bridges some important gaps in
our current understanding of this phenomenon and, indeed, the results from the careful analysis
conducted herein will be used to redress some of these key limitations and to reduce some critical
knowledge gaps on the FIV response of a circular cylinder arising from some prior efforts. To-
wards this objective, FOM/CFD will be used in conjunction with ROM/ERA and supplemented
with power spectral analysis and dynamic mode decomposition to provide deeper insights and a
better understanding of the physical processes underlying the lock-in phenomenon and to study
in greater depth the influence of the Reynolds number on the fluid-structure interaction. Using
this approach, we reveal and explain the characteristics of the vibration response for each branch
(initial, lower, and upper) of the lock-in range.

This chapter is organized as follows. The numerical methods for reduced-order models used
in the present study are described in section 4.1. The accuracy of reduced-order models is val-
idated in section 4.2. Section 4.3 provides a review of the limitations and conclusions obtained
from past investigations of the modal mechanisms of FIV systems based on reduced-order mod-
elling. Section 4.4 provides a detailed analysis of the mode transformation and interaction in the
vortex-induced vibration for laminar flow past a circular cylinder using FOM/CFD, ROM/ERA,
power spectral analysis and DMD.

4.1 Methodology of reduced-order model based on eigensys-
tem realization algorithm

The reduced-order model for the simplified representation of the FIV of the system is ob-
tained using the eigensystem realization algorithm. Figure 4.1 displays the key steps in the
construction of an ERA-based ROM for the VIV of the system. As a system consisting of a
coupled fluid-structure interaction, the ROM for the system consists of two parts—the first part
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Figure 4.1: Schematic diagram summarizing the procedure used to obtain state-space model for
the total system involving the coupling of a fluid dynamics ROM (with input h and output CL) to a
structural dynamics model (with input CL and output h). The fluid dynamics ROM is constructed
using ERA.

is the reduced, linear fluid model whose input is the normalized transverse displacement h≡ y/D
(where y is the transverse displacement and D is the diameter of the cylinder) and whose output
is the lift coefficient CL and the second part is the linear structural model whose input is the lift
coefficient CL and whose output of normalized transverse displacement h. Once these two mod-
els have been obtained, they are recast into a state-space form and coupled together to obtain the
final state-space model for the total system.

A reduced-order model for the fluid dynamics is obtained using the ERA. However, it is
impossible to identify a linear aerodynamics model based on an unsteady vortex flow. The lin-
earization of the mean flow [228] or the use of an equilibrium base flow [12, 15] are two of the
most commonly used methodologies for the application of LSA to FIV systems. Here, we will
follow the examples of Zhang et al. [12] and Yao and Jaiman [15] and apply ROM/ERA with
respect to an equilibrium base flow to provide a linear aerodynamics model for the flow past an
elastically-mounted cylinder. To this purpose, the required base flow is obtained by solving the
Navier-Stokes equations (cf. Eqs (3.1) and (3.2)) using a large dimensionless time step value of
10 and a maximum of 30 iterations for one single time step. The equilibrium base flow is ob-
tained once the value of the lift force has stabilized in the iterative solution of the Navier-Stokes
equations.

Once the equilibrium base flow has been completed, the ERA can be used to provide a low-
dimensional linear input-output model for the fluid dynamics system. To this end, we model the
fluid dynamics system using a discrete-time multiple-input multiple-output (MIMO) state-space
model as follows:

xr (k+1) = Ãrxr (k)+ B̃rur (k) , (4.1)

yr (k) = C̃rxr (k)+ D̃rur (k) , (4.2)

where xr(k) is the Nx-dimensional state vector, ur(k) is the Nu-dimensional input vector, and
yr(k) is the Ny-dimensional output vector obtained at discrete-time step k. Here, it is noted
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that tk ≡ k∆ t is the time associated with the k-th discrete-time step, where ∆ t is the time-step
size. Furthermore, Ãr, B̃r, C̃r, and D̃r are the (Nx×Nx)-system, (Nx×Nu)-input, (Ny×Nx)-
output, and (Ny×Nu)-feedthrough matrices, respectively. Note that for the special case of a
single-input single-output (SISO) state-space model, Nu = Ny = 1. The ERA is constructed using
impulse response measurements of the system and, in this context, a discrete-time Kronecker
delta function input uδ

r (or, unit impulse function) assumes the following form:

uδ
r (k)≡ uδ

r (k∆ t) =

{
INu, k = 0;
0, k = 1,2,3, . . . ,

(4.3)

where INu is an (Nu×Nu) identity matrix. The output responses for the unit impulse inputs are
given by

yδ
r (k)≡ yδ

r (k∆ t) =

{
D̃r , k = 0;
C̃rÃk−1

r B̃r , k = 1,2,3, . . . .
(4.4)

Note that yδ
r (k) are (Ny×Nu) matrices (viz., Nu impulse responses are obtained corresponding

to each of the Nu unit impulse input signals, each of which gives an output impulse response of
dimension Ny as a function of time).

The output responses are collected for each unit impulse input and used by ERA to determine
(estimate) the system matrices (Ãr, B̃r,C̃r, D̃r). ERA is a data-driven algorithm consisting of the
following steps. Firstly, the Hankel matrix H(1 : r,1 : s) is constructed by stacking the shifted
time sequences of impulse response measurements yδ

r into an (Nyr×Nus) matrix as follows:

H(1 : r,1 : s) =


yδ

r (1) yδ
r (2) · · · yδ

r (s)
yδ

r (2) yδ
r (3) · · · yδ

r (s+1)
...

... . . . ...
yδ

r (r) yδ
r (r+1) · · · yδ

r (s+ r−1)

 . (4.5)

Next, a singular value decomposition of the Hankel matrix H(1 : r,1 : s) is applied to give (su-
perscript T denotes matrix transposition)

H (1 : r,1 : s) =UΣV T = [U1 U2]

[
Σ1 0
0 Σ2

][
V T

1
V T

2

]
, (4.6)

where the small singular values in the diagonal matrix Σ2 are truncated (viz., Σ2 is ignored) and
only the first l singular values in Σ1 are retained. In consequence, the truncated Hankel matrix
estimated as Ĥ ≈U1Σ1V T

1 represents the significant temporal patterns in the time sequence data.
Finally, the reduced-order model is constructed as follows using a second shifted Hankel matrix
H̃ ≡ H(2 : r+1,2 : s+1):

Ār = Σ
−1/2
1 UT

1 H̃V1Σ
−1/2
1 ; (4.7)

B̄r = Σ
1/2
1 V T

1 Em ; (4.8)

C̄r = EtU1Σ
1/2
1 ; (4.9)

D̄r = yδ
r (0) . (4.10)
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Here,
Em =

[
Iq 0

]T and Et =
[
Ip 0

]
(4.11)

are (Nus×q) and (p×Nyr) matrices consisting of the (q×q) and (p× p) identity matrices Iq and
Ip, respectively, which used to extract the first q columns and the first p rows in the construction
of B̄r and C̄r. In the present study, the input ur and the output yr are the dimensionless displace-
ment h ≡ y/D and lift coefficient CL, respectively, so p = q = 1. In summary, the input-output
dynamics of the ROM assumes the following form which constitute the discrete-time state-space
equations for the fluid flow model (reduced system obtained from using the FOM/CFD data):

xr (k+1) = Ārxr (k)+ B̄rur (k) , (4.12)
yr (k) = C̄rxr (k)+ D̄rur (k) , (4.13)

where (in a slight abuse of notation) xr is an l-dimensional state vector for the reduced system.
Moreover, the input-output dynamics for the ROM/ERA in Eqs (4.12) and (4.13) are determined
by the (l× l)-system matrix Ār, the (l×q)-input matrix B̄r, the (p× l)-output matrix C̄r and the
(Ny×Nu)-feedthrough matrix D̄r.

In order to couple the reduced fluid model with the structural model, the discrete-time state-
space form (cf. Eq. (4.12)) must be converted into the continuous-time state-space form. This
can be accomplished as follows:

ẋr (t) = Arxr (t)+Brur (t) ,
yr (t) =Crxr (t)+Drur (t) ,

(4.14)

where Ar = ∆ t−1 ln(Ār), Br = Ar
[
Ār− I

]−1 B̄r, Cr = C̄r, and Dr = D̄r. Here, I is an identity
matrix with the same size as Ār [229].

The dimensionless structural equation for a transversely vibrating body has the following
form:

ḧ+4πFsζ ḣ+(2πFs)
2 h = asCL

/
m∗ , (4.15)

where Fs = fnD/U0≡U−1
r is the reduced natural frequency ( fn is the structural natural frequency,

D is the cylinder diameter, U0 is the free-stream velocity, and Ur is the reduced velocity); m∗ =
ρs/ρ is the mass ratio (ρs is the density of the cylinder and ρ is the density of the fluid); h is the
non-dimensional transverse displacement (viz., the transverse displacement y normalized by D);
and, ζ is the damping coefficient. The characteristic length scale factor as is determined by the
body geometry as follows:

as =
1

Ab
·

L2
b

2
, (4.16)

where Ab and Lb are the area and the characteristic length of the cross-section of the bluff body.
It is noted that as = 1/2 and 2/π for a square and circular cylinder, respectively. Following from
this, the structural equation can be recast into a continuous-time state-space form as follows:

ẋs (t) = Asxs (t)+qBsyr (t) ,
h(t) =Csxs (t)+qDsyr (t) ,

(4.17)
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with the state vector xs ≡
(
h, ḣ
)T , q≡ as

/
m∗, and

As =

[
0 1

−(2πFs)
2 −4πFsζ

]
; Bs =

[
0
1

]
;

Cs = [1 0] ; Ds = [0] . (4.18)

As alluded to in Fig. 4.1, the state-space model for the fluid dynamics [cf. Eq. (6.1)] can
be coupled with the state-space model for the structural dynamics [cf. Eqs (4.17) and (4.18)] to
yield the linear and reduced-order coupled model for the VIV system. This yields the ROM for
the total system consisting of the structural part given by Eq. (4.17) and the fluid part given by
Eq. (6.1), so the linear and reduced coupled-model for the VIV system is obtained as follows:

ẋrs (t) = Arsxrs (t)≡
[

As +qBsDrCs qBsCr
BrCs Ar

]
xrs (t) , (4.19)

h(t) = [Cs 0]xrs (t) , (4.20)

where xrs ≡ (xs,xr)
T .

The VIV stability problem can investigated by analyzing the behaviour of the eigenvalues
of the system matrix Ars exhibited in Eq. (4.18). The two or three leading eigenvalues (which
depends on the Reynolds number) are associated with the most unstable modes of the system
which, necessarily, include both the structural and wake modes. The methodology that we use
for identifying the structural and wake modes will be described later. Our interpretation of the
physical processes associated with the behaviour of these modes will be described in Sections 4
and 5. We note that the eigenvalues determine the growth/decay rate and oscillatory characteris-
tics of the associated (eigen)mode. In particular, the positivity or negativity of the real parts of
the eigenvalues determine the growth or decay rate of the mode, respectively. The imaginary part
of each eigenvalue is associated with the oscillatory frequency of the associated mode, with the
eigenfrequency (in continuous time) given by Im(λ )/(2π) where λ is the (complex) eigenvalue
and Im( · ) denotes the imaginary part of a complex number.

4.2 Validation of reduced-order model

Sub-section 3.2.1 already demonstrates that the present method of FOM/CFD provides good
accuracy for obtaining the base flow required for the ERA identification as well as for the pro-
vision of high-quality FOM/CFD datasets for the subsequent analysis, And consequently, the
parameter definition such as mesh situation, computational domain, boundary condition, etc. are
consistent with those of Sub-section 3.2.1. This section focuses on validating the fluid reduced
model and the coupled FSI reduced model using ERA.

4.2.1 Validation of ROM/ERA fluid model

The ROM/ERA is constructed using the equilibrium base flow owing to the fact that the
variation of the dynamic force associated with a small displacement of the body (cylinder) around
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the base flow is linear. This assertion will be validated later by a comparison of the results
obtained from the FOM and ROM. Figure 4.2 exhibits the contours of the streamwise velocity
for flow past a stationary cylinder at Re = 60 and 100. In this figure, the line integral convolution
(LIC) vector field visualization methodology [230, 231] is used to display the characteristics
of the base flow around the circular cylinder. The LIC vector field visualization cannot provide
information on the orientation (clockwise or counter-clockwise) of the flow such as that provided
by flow streamlines. Nevertheless, the LIC vector visualization methodology is an effective
means for identifying the recirculating regions in the flow. The LIC vector field in Fig. 4.2 clearly
shows the extent of the recirculating region in the wake of the cylinder. Table 5.2 compares the
length of the recirculating region for base flows past a stationary cylinder at Re = 60 and 100.
The length of the recirculating region is defined as the distance in the streamwise direction along
the centerline of the cylinder between the base point (which is taken as the center of cylinder)
and the stagnation point in the wake. We note that the length of the recirculating regions in the
wake of a stationary cylinder at Re = 60 and 100 obtained in our current simulations are in very
good conformance with the results of other investigators [232, 15, 26].

(a) Re = 60 (b) Re = 100

Figure 4.2: The streamwise velocity contours exhibited using the line integral convolution (LIC)
visualization methodology for a base flow past a stationary circular cylinder at (a) Re = 60 and
(b) Re = 100. The direction of the flow is from left to right.

Table 4.1: The length of the recirculation region (measured from the center of the cylinder) nor-
malized by the cylinder diameter D for a base flow past a stationary circular cylinder at Re = 60
and 100. The results of the present simulations are compared with those of previous investigators.

Re Present Flavio and Paolo [232] Yao and Jaiman [15] Mao and Blackburn [26]
60 4.0 4.1 4.1 4.2

100 6.4 6.6 — 6.5

The magnitude of the input impulse signal is important for ROM identification. On the one
hand, the signal needs to excite the relevant modes in the underlying flow. On the other hand, the
amplitude of the input impulse cannot be too large; otherwise, the nonlinear characteristics of the
underlying flow will dominate the dynamics. Insufficient data in the regime of the flow where lin-
ear dynamics dominate would make it impossible to construct an unsteady fluid flow model using
ROM/ERA to obtain the low-dimensional linear input-output model from the impulse response
data. Furthermore, at larger values of Re, the flow past a circular cylinder exhibits significant
Hopf bifurcation resulting in the formation of a periodic vortex street. Based on these considera-
tions, the dynamic responses for impulse values of δ = 10−2, 10−3, and 5×10−4 are compared.
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It is noted that the nonlinearity arising for δ = 10−2 develops too quickly with the result that it is
not possible to extract sufficient data for ERA identification. In contrast, values of δ = 10−3 and
5× 10−4 are appropriate for LSA in the sense that these values for the impulse allow sufficient
time for the dynamical response to evolve linearly to enable enough data to be obtained for ERA
identification. As a consequence, the input impulse signal for the non-dimensional transverse
displacement h used in our numerical experiments is prescribed as δ = 10−3 (normalized by the
cylinder diameter D) in a Reynolds number range from 20 to 180.

In accordance to Yao and Jaiman [15] and Juang and Pappa [102], the dimensions of the
Hankel matrix H from Eq. (4.5) for a SISO system (where Nu = Ny = 1) can be tall (r > s),
wide (r < s) or square (r = s), depending on the choice of r and s. For the current study, (r,s) =
(500,200) was found to be sufficient to obtain a good match between the predictions provided
by FOM/CFD and ROM/ERA for the dynamic response (CL) of the system when subjected to an
impulse input signal (viz., an impulse in the non-dimensional transverse displacement h). The
dimensionless time step ∆ t is chosen as 0.05, which is sufficient for the resolution of the discrete-
time impulse response yδ ≡CL, the latter of which is used to construct the matrix H(1 : r,1 : s)
in accordance to Eq. (4.5). If the data corresponding to the first 700 (r+ s) time steps are used to
construct the ROM, then for a specific combination of (Re,m∗), the computational efficiency in
the prediction of structural instability using ROM/ERA will be more than 300 times that of using
FOM/CFD. For the system matrix Ār, the retention of the first l = 30 singular valus of H(1 : r,1 :
s) is sufficient to capture the dominant temporal patterns in the fluid flow. Figure 4.3 displays the
first 30 singular values (HSV) of the Hankel matrix where it can be seen that the singular values
monotonically and rapidly decrease to zero implying that the dominant dynamics of the system
occur on a low-dimensional space. In consequence, a ROM can be used to approximate well the
dynamics of the VIV system.

0 5 10 15 20 25 30
HSV index

10-5
10-3

100

104

H
SV

Figure 4.3: Distribution of the first 30 singular values (HSV) of the Hankel matrix H(1 : r,1 : s)
with (r,s) = (500,200) for Re = 60.

Figure 4.4a exhibits the rate of growth characterized by Re(λ ) of the first wake mode as a
function of Reynolds number Re. The dynamic response of the wake mode for different values
of Re is consistent with the results reported by Yao and Jaiman [15] and, more generally, with
the prevailing knowledge—in particular, that the minimum Re required for the generation of a
periodic vortex street in the wake of a circular cylinder is 46.8 [232, 233, 234]. For Re greater
than 47, the increasing fluctuating amplitude of CL for increasing Re results in the generation of
a periodic vortex street in the wake of a circular cylinder as the flow begins to lose its stability
through the Hopf bifurcation. For Re less than 47, the vibration amplitude of CL decreases grad-
ually, and the wake of a circular cylinder tends to be stable with no vortex street formation. The
impulse response of CL (arising from the impulse input signal uδ ≡ h) obtained from FOM/CFD
over 1000 time steps and from the corresponding ROM/ERA over 900 time steps are displayed
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in Fig. 4.4b. It can be seen that there is a very good conformance in the impulse response ob-
tained from the full-order model and the reduced-order model. Indeed, the system identification
method based on ROM/ERA has a high predictive accuracy for the time development of the
dynamic coefficient CL for both the stable (Re < 47) and unstable (Re > 47) behaviours in the
wake of a circular cylinder. In particular, the first 10 time steps obtained from both FOM/CFD
and ROM/ERA at Re = 20 are shown in the inset plot of Fig. 4.4b, demonstrating that there is
excellent agreement between these two predictions.

50 60 70 80 90
Re-0.05

0

0.05

0.1

0.15

R
e(
6

) 
of

 f
ir

st
 w

ak
e 

m
od

e

Re = 47

Present work
Yao and Jaiman

(a) Re(λ ) of first wake mode

0 100 200 300 400 500 600 700 800 900
Time steps

-5

-2.5

0

2.5

5

C
L

#10-5

FOM, Re = 20 
FOM, Re = 40 
FOM, Re = 60 

0 5 10

-0.5
0

0.5
1

1.5

ROM, Re = 20 
ROM, Re = 40 
ROM, Re  = 60 

(b) The CL impulse response

Figure 4.4: (a) The growth rate as characterized by Re(λ ) of the first wake mode as a func-
tion of Reynolds number Re, and (b) the predictions of the CL impulse response obtained using
FOM/CFD and the corresponding ROM/ERA at Re = 20, 40, and 60. The cases at Re = 20 and
40 correspond to stable wake flows, whereas that at Re = 60 corresponds to an unstable wake
flow.

4.2.2 Validation and preliminary analysis of ROM/ERA for VIV system

Figure 4.5 shows the root loci of the eigenvalues of the coupled FSI system (flow past a
circular cylinder elastically supported on a linear spring) as a function of the reduced natural
frequency Fs for (Re,m∗) = (60,50). The current results obtained with ROM/ERA are seen to be
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Figure 4.5: The root loci for a FSI system consisting of the flow past a circular cylinder elasti-
cally mounted on a linear spring for (Re,m∗) = (60,50). The present results are compared with
those of Zhang et al. [12] and with the case of a stationary circular cylinder. The eigenvalue
corresponding to the wake mode for this case is strictly positive.

in very good agreement with those obtained by Zhang et al. [12] based on ROM/ARX. Following
the convention established by Yao and Jaiman [15], Cossu and Morino [235], and Zhang et
al. [12], the two most unstable modes (or, the two leading eigenvalues) are significant in this case
and are referred to as SM (corresponding to a “nearly structural mode”) and WM (corresponding
to a “von Karman mode/wake mode”). The identification of these modes is useful for analyzing
and comparing the behaviour of the root loci for different cases and, as a result, the identification
of these characteristic modes will be an underlying focus of this chapter. A perusal of Fig. 4.5
shows that when the natural frequency of the SM is close to the frequency of the WM, the SM
crosses the imaginary axis and enters the right-half plane, and the VIV system becomes unstable.
It is suggested that the fundamental reason for the instability of an elastically supported bluff
body under subcritical flow is the interaction between the SM and WM. It should be noted that
the linear growth rate does not necessarily correlate with the dominance of one specific mode.
More specifically, the growth rate as measured by Re(λ ) of the structural mode predicted by
LSA represents the increasing growth rate of the amplitude in the initial linear regime of the VIV
response predicted by FOM for flutter lock-in [121]. In the above discussion, the WM for a flow
past a circular cylinder with Re greater than 46.8 is unstable and, as a consequence, the signature
of this instability is revealed through the fact that the real part of the WM is always positive.
Additionally, it is seen that the trajectories of the SM and WM are disconnected corresponding,
as such, to an uncoupled modal condition.

Figure 4.6 shows the behaviour of the unstable region (or, lock-in range) for the FSI system
as a function of the mass ratio m∗ for flow past a circular cylinder mounted on a linear spring at
Re= 33. Because there is no resonance lock-in for Re= 33, the boundaries of the unstable region
(viz., lock-in regime) in this case are defined by the flutter lock-in. It can be seen that the mass
ratio has little effect on the upper boundary of the unstable region. As the mass ratio decreases
to less than about 30, the lower boundary of the unstable region is seen to decrease more rapidly.
Our current results based on ROM/ERA are in good agreement with the results obtained using
an FOM by Mittal and Singh [13] and those obtained using ROM/ARX by Zhang et al. [12]. In
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Figure 4.6: Delineation of the lower and upper boundaries of the unstable region for flow past a
circular cylinder mounted on a linear spring for Re = 33. The results obtained using the present
ROM/ERA are compared with those obtained by Zhang et al. [12] using ROM/ARX and by
Mittal and Singh [13].

particular, the lower and upper boundaries of the unstable region are predicted accurately—more
specifically, the lower boundary of U l

r = 5.6 and the upper boundary of Uu
r = 10.4 for m∗ = 4.73

and the lower boundary of U l
r = 6.8 and the upper boundary of Uu

r = 10.3 for m∗ = 100 agree
well with those obtained by Mittal and Singh [13] using a full-order model. It should be noted
that Mittal and Singh analyzed the phenomenon of VIV using two (both) degrees of freedom;
namely, those in the transverse and the streamwise directions. Our current results show that the
degree of freedom in the transverse direction is the dominant effect in the determination of the
stability of the VIV system.

Figure 4.7a shows the real part Re(λ ) and imaginary part Im(λ ) of the complex eigenvalue λ

(which determines the growth/decay and characteristic frequency of the mode, respectively) as a
function of the reduced natural frequency Fs for the coupled FSI system based on the ROM/ERA.
The Reynolds number Re, mass ratio m∗, and structural damping ζ for the flow past a circular
cylinder mounted on a linear spring are 60, 50 and 0, respectively. In the discussion of Zhang
et al. [12], the lock-in region of the flow is delineated into two regimes: namely, that due to
resonance-induced lock-in and that due to flutter-induced lock-in. Resonance-induced lock-in
appears when Im(λ ) associated with the SM and WM are close in value—a region defined by the
lower F l

s and upper F t
s boundary in the reduced natural frequency. In contrast, the flutter-induced

lock-in is correlated with the unstable structural mode (viz., when the real part of the eigenvalue
associated with the SM is positive, so Re(λ )> 0) and arises from the coupled interaction between
the SM and WM—in a region defined by the lower F t

s and upper Fu
s boundary in the reduced

natural frequency. These two kinds of lock-in phenomena constitute the frequency lock-in range.
The identification of these two regimes of lock-in are exhibited in Fig. 4.7a. Moreover, as is
evident in Fig. 4.7b, outside the frequency lock-in interval either when f < F l

s or when f >
Fu

s , the coupled system displays the characteristics of a forced-vibration under the effect of an
unsteady aerodynamic load. The current results obtained using ROM/ERA agree with both the
ROM/ERA and FOM/CFD results presented by Zhang et al. [12] for (Re,m∗) = (60,50). In
the following analysis, the identification of the left-hand (or lower) and right-hand (or upper)
bounds of the lock-in range are determined based on a characteristic signature of the frequency
lock-in—namely, the lower and upper bounds of the lock-in are associated with abrupt changes
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Figure 4.7: (a) The real and imaginary parts of the two leading eigenvalues obtained from
ROM/ERA and (b) the oscillation frequency F as a function of the reduced natural frequency
Fs for FOM/CFD conducted by Zhang et al. [12] for the case of flow past a circular cylinder
mounted on a linear spring with (Re,m∗) = (60,50).

in the variation of Ymax/D or F/ fn as a function of the reduced natural frequency Fs.

In the global linear stability analysis (LSA) of Navrose and Mittal [14] for a VIV system,
the two leading uncoupled eigenmodes are defined as the fluid mode (FM) and the elastic mode
(EM). The definitions for FM and EM are same as those for WM and SM as proposed by Zhang
et al. [12] and used in the analysis conducted herein. To demonstrate that the results produced by
the global LSA method and the reduced VIV model are essentially identical, we consider the case
of a flow past a circular cylinder mounted on a linear spring for (Re,m∗) = (60,20). Figure 4.8
shows the variation of the real and imaginary parts of the eigenvalues as a function of reduced
natural frequency Fs obtained using ROM/ERA. A careful examination of the figure shows that
the latter results are in excellent conformance with those obtained using the global LSA [14].
With reference to the real parts of the eigenvalues, it is seen that both the FM from the global LSA
and the WM from the ROM/ERA are unstable for all values of Fs. Furthermore, the maximum
growth rate for the FM and WM is achieved when Fs = 0.125. Finally, both the SM and EM are
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modes plotted as a function of the reduced natural frequency Fs for flow past a circular cylinder
mounted on a linear spring with (Re,m∗) = (60,20). The analysis is conducted using ROM/ERA
and compared with the global LSA of Navrose and Mittal [14].

seen to be unstable over the range of reduced natural frequency where 0.137 < Fs < 0.172 and,
in this range, the growth rate of the modes are essentially identical (approximately or better).

4.3 Summary of key results obtained from the previous LSA
on lock-in behavior

This section synthesizes and summarizes the key results obtained by previous studies con-
cerning the relationship between the response (e.g., lock-in range) of a VIV system and the
behaviour of the eigenvalues for the system obtained using LSA conducted by Zhang et al. [12],
Navrose and Mittal [14], and Yao and Jaiman [15]. The differences between coupled and uncou-
pled modes will also be considered within the context of the identification of specific patterns of
lock-in.

• With reference to Fig. 4.7, Zhang et al. [12] remarked that the lock-in range can include
two physical mechanisms for lock-in; namely, a resonance lock-in (occurring in the range
of reduced natural frequency (F l

s ,F
t
s ) in Fig. 4.7a) and a flutter lock-in (occurring in the

range of reduced natural frequency (F t
s ,F

u
s ) in Fig. 4.7a).

• With reference to Figs 4.9a and 4.10a, for the uncoupled condition at (Re,m∗) = (60,20)
computed herein, there is a clear distinction between the wake and structure modes, re-
ferred to as WM (or, FM) and SM (or, EM) respectively, as mentioned previously. The
resonance lock-in appears when the eigenfrequencies (Im(λ )/(2π)) corresponding to the
SM and WM are close to each other in value. The flutter lock-in, on the other hand, is due
to the coupling flutter between the SM and WM and, simultaneously, when the real part
(Re(λ )) of the eigenvalue associated with the SM is positive.
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Figure 4.9: Root loci obtained from ROM/ERA for a flow past a circular cylinder mounted
on a linear spring for (a) (Re,m∗) = (60,20) and (b) (Re,m∗) = (60,5). The solid red square
corresponds to the case of a stationary circular cylinder.

• With reference to Figs 4.9b and 4.10b, for the coupled condition at (Re,m∗) = (60,5)
computed herein, there is no distinction between the wake and structure modes. This is
in stark contrast to the uncoupled condition, where an independent SM can be identified.
Moreover, two coupled modes referred to as WSMI and WSMII can defined based on the
behaviour of the root loci for the two leading eigenvalues [15]. In this case, one needs to
ascertain which of the two coupled modes WSMI or WSMII is associated with the hidden
structural mode from the behavior of these modes as a function for the reduced natural
frequency Fs—this will be one of the focal points in this study. The hidden structural mode
in the coupled condition will be referred to as “SMc” herein. Following from this, Zhang
et al. [12] argues that this structural mode is associated with the eigenvalue possessing the
smaller real part. In the case of Fig. 4.10b, the role of SMc is assumed by WSMI and
WSMII alternately (tracked using the red arrow in the figure), with the mode-switching
point occurring at the value of Fs where the mode associated with the eigenvalue possessing
the smallest real part switches over. Zhang et al. [12] argue that the flutter lock-in range
will be bounded by the two intersections of the real part (Re(λ )) of the complex eigenvalue
λ associated with SMc with the horizontal axis (viz., where Im(λ ) = 0).

• Yao and Jaiman [15] indicated that the lower (left) boundary of the resonance lock-in
range cannot be precisely determined based on the behaviour of ROM root loci owing to
the overlap of the SM and WM trajectories in the complex plane.

• Yao and Jaiman [15] argue that when the real part of the eigenvalue associated with the
SM is always negative (cf. the behaviour of the root loci for a square cylinder with sharp
corners conducted at (Re,m∗) = (60,10)), the lock-in regime is entirely dominated by the
resonance lock-in.

• Yao and Jaiman [15] suggested that the frequency lock-in of VIV for a flow past a circular
cylinder is due only to a flutter-induced instability for Re > 70.
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Figure 4.10: Real and imaginary parts of the two leading eigenvalues obtained from ROM/ERA
for a flow past a circular cylinder mounted on a linear spring for (a) (Re,m∗) = (60,20) and (b)
(Re,m∗) = (60,5).

4.4 New perspectives on the analysis of lock-in range for VIV
system based on LSA

This section summarizes our investigations of the stability of the fluid-structure interaction
associated with VIV response (e.g., frequency lock-in, desynchronization) using simulation da-
ta obtained from ROM/ERA and FOM/CFD. The analysis presented herein will involve high-
er Reynolds numbers than considered in previous investigations reported by Zhang et al. [12],
Navrose and Mittal [14] and Yao and Jaiman [15] for a flow past a circular cylinder. This is
important since higher Reynolds numbers will result in more complex mode interactions in the
FSI (and, these type of interactions have not been studied previously).

4.4.1 Uncoupled condition for wake-structure modes

Figure 4.11a displays the real and imaginary parts of the two leading eigenvalues as a function
of Fs for a flow past a circular cylinder mounted on a linear spring at (Re,m∗) = (40,10). This
case corresponds to the uncoupled condition. The wake mode is stable over the entire Fs range
(since the real part of the eigenvalue associated with the WM is strictly negative) owing to the
fact that Re is less than the critical Reynolds number of Recr ≈ 47 for a flow past a stationary
circular cylinder. The lock-in phenomenon in this case arises entirely from the mechanism of
flutter lock-in, an observation that is consistent with the results reported by Yao and Jaiman
[15] for the same case. Therefore, a large-amplitude VIV is present, even though there is no
excitation of the motion arising from the resonance between the wake and structure modes. The
VIV amplitude response (normalized transverse displacement as a function of Fs) obtained by
Navrose and Mittal [14] using FOM/CFD is shown in Fig. 4.11b. This result demonstrates that
significant vibrations of the cylinder will occur even though there is no initial periodic vortex
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Figure 4.11: The VIV response as a function of Fs for a flow past a circular cylinder mounted on
a linear spring at (Re,m∗) = (40,10) obtained using (a) ROM/ERA and (b) FOM/CFD [14]. The
lock-in range is delineated as the region shaded in red.

street generated in the wake, which corroborates the flutter lock-in mechanism alluded to above.

Figure 4.12a displays the real and imaginary parts of the two leading eigenvalues for a flow
past a circular cylinder mounted on a linear spring at (Re,m∗) = (60,50). Following the conven-
tion proposed by Zhang et al. [12], the lock-in range is divided into the resonance lock-in and
the flutter lock-in. For the case of (Re,m∗) = (60,50), the range of values of Fs associated with
the resonance lock-in and the flutter lock-in do not overlap one another. As the reduced veloc-
ity Ur increases (or, equivalently, as the reduced natural frequency Fs decreases), the regime of
flutter lock-in transitions into the regime associated with resonance lock-in. In the range of Fs
associated with the resonance lock-in, the real part of the eigenvalue corresponding to the WM
increases, which is consistent with an increase in the instability of the wake flow. The closeness
in the values of the frequencies associated with the SM and WM is the underlying reason for
the resonance lock-in. In the flutter lock-in regime, the real part of the eigenvalue associated
with the SM is positive. Following from these considerations, we infer that the instability in the
SM leads to the onset of the flutter lock-in. It is known that the lock-in regime consists of three
characteristic branches (cf. Fig. 4.12c). These branches consist of (1) the initial branch, which
is characterized by a distinct increase in the amplitude of the oscillations; (2) the upper branch,
where the amplitude of the oscillations transitions to a higher level corresponding to a complete
local synchronization of the vortex shedding frequency with the natural structural frequency, a
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state that is associated with the largest vibrations; and, (3) the lower branch, where the ampli-
tude of the oscillations transitions to a lower level. A comparison of the ROM/ERA results of
Fig. 4.12a with the FOM/CFD results of Fig. 4.12c shows that the flutter and resonance lock-in
are associated with the upper and lower branches, respectively (provided, of course, that both
lock-in regimes are present).
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Figure 4.12: The VIV response as a function of Fs for a flow past a circular cylinder mount-
ed on a linear spring at (a) (Re,m∗) = (60,50) for ROM/ERA; (b) (Re,m∗) = (100,10) for
ROM/ERA; (c) (Re,m∗) = (60,50) for FOM/CFD conducted by Zhang et al. [12]; and, (d)
(Re,m∗) = (100,10) for FOM/CFD. The lock-in range is delineated as the region shaded in red.

Figure 4.12b displays the real and imaginary parts of the two leading eigenvalues for a flow
past a circular cylinder mounted on a linear spring at (Re,m∗) = (100,10). The results shown in
this figure agree well with those reported by Yao and Jaiman [15] for the same values of (Re,m∗).
Interestingly, the range of Fs where the Re(λ )> 0 for the SM completely overlaps that associated
with the resonance lock-in. As a consequence, Yao and Jaiman [15] argued that the frequency
lock-in for this VIV system is the result of a pure flutter instability only. However, we assert
that the flutter instability is not the only physical mechanism producing the frequency lock-in
at Re = 100. To this assertion, it can be seen from Fig. 4.12d that the lower boundary of the
frequency lock-in range obtained using a high-fidelity FOM/CFD occurs at Fs = 0.119. On the
other hand, the ROM/ERA predictions exhibited in Fig. 4.12b suggest that this lower boundary
occurs instead at Fs = 0.104 (which corresponds to the value of Fs at which the real part of the
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eigenvalue associated with the SM first becomes positive). This incompatibility implies that it
is necessary to find another condition of the eigenvalue distribution that can be used to identify
the lower boundary in Fs that defines the termination of the lock-in. To this purpose, it is noted
that if the lower boundary of the lock-in range is identified by the value of Fs where the slope of
Im(λ )/(2π) first deviates from the reference line f = Fs (dashed line in Fig. 4.12b), this yields
a lower boundary at Fs = 0.117. Interestingly, this value of the lower boundary is comparable
with that obtained from FOM/CFD—namely, Fs = 0.119. In view of this, we can infer that as
Fs decreases (or, equivalently, as Ur increases) and the resonance lock-in first appears (viz., the
SM frequency approaches the WM frequency), the positive growth rate of the SM will no longer
affect the lock-in (i.e., the flutter lock-in disappears) and resonance lock-in will dominate the
FSI until it too disappears (when Fs decreases to values less than the lower boundary identified
above). The analysis to further support this argument will be provided in the following sub-
sections.

After the termination of the resonance lock-in, if the SM is still unstable (viz., if ReSM(λ )>
0) , the VIV system will transition into either the galloping or desynchronization regime depend-
ing on the specific shape of the body. Li et al. [16] presented a similar argument and suggested
that the instability of the SM is intimately linked to the galloping phenomenon for a square cylin-
der. In consequence, the instability condition of the SM at small values of Fs (or, equivalently,
at large values of Ur) is not directly correlated with the lock-in range, but may lead to the gal-
loping phenomenon for specific body cross-sections such as a square cylinder. A body with a
circular cross-section is not susceptible to galloping, so the flow-induced oscillations cannot be
maintained as the reduced velocity Ur increases past the termination of the lock-in, suggesting
that these oscillations will rapidly disappear in this case.

4.4.2 Coupled condition for wake-structure modes

The discussion in the previous sub-section are for cases where the structural and wake modes
are uncoupled. In this sub-section, cases where the structural and wakes modes are coupled
will be investigated. For the uncoupled condition, the SM can be unambiguously identified.
For the coupled condition, the structural mode is now identified with either WSMI or WSMII
(depending on the situation). In this thesis, we will refer to the latter mode as SMc (to emphasize
its distinctive properties).

Figure 4.13a displays the real and imaginary parts of the two leading eigenvalues for a flow
past a circular cylinder mounted on a linear spring at (Re,m∗) = (60,5). There is a good confor-
mance between the global LSA conducted by Navrose and Mittal [14] and the current predictions
provided by ROM/ERA. In this case, the structural and wake modes are coupled owing to the
small mass ratio m∗, and the stability roles of WSMI and WSMII switch at a specific value of the
reduced natural frequency Fs [12, 15]. Moreover, no distinction can be made between the SM and
the WM, but the coupled modes WSMI and WSMII can be defined. With reference to Fig. 4.10,
previous researchers [12, 15] suggested that the resonance lock-in and flutter lock-in dominate
the lock-in range in succession with no overlap between the two. The real parts of the eigen-
values associated with WSMI and WSMII intersect—and, the point of intersection, functions as
the switching point. More specifically, WSMI and WSMII alternately represents the SMc over
different intervals of Fs, a phenomenon referred to as ‘mode veering’ by Gao et al. [113].
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Figure 4.13: The VIV response as a function of Fs for a flow past a circular cylinder mounted on a
linear spring at (Re,m∗) = (60,5) obtained using (a) ROM/ERA; and, (b) FOM/CFD conducted
by Navrose and Mittal [14]. The lock-in range is delineated as the region shaded in red.
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4.4.3 Interaction between the structural mode and the second wake mode

The wake mode that interacts with the structural mode, such as in the coupled and uncoupled
conditions corresponding to (Re,m∗) = (60,5) and (100,10), respectively, is referred to as the
first WM (WMI). This characteristic behaviour is evident also in Figs 4.14a, 4.14b and 4.14c
which show the root loci obtained from ROM/ERA for various flows past a circular cylinder
conducted at Re values of 40, 60, and 100, respectively, for various mass ratios m∗. Moreover, it
is noted that for the root loci at Re = 100 exhibited in Fig. 4.14c, the second wake model WMII
is seen to approach the structural mode SM from the left side of the coordinate axis, exerting its
influence on the SM together with the WMI. As Re increases to 120, it is the second wake mode
that primarily dominates the structural-wake mode interaction and the loop in the complex plane
representing the first wake mode WMI shrinks as shown by the root loci of Fig. 4.14d. Increasing
the value of Re to 180, the loop in the complex plane associated with WMI shrinks to a single
point, as is evident on perusal of Fig. 4.14f. This indicates that the wake mode interacting with
the structural mode will transition from the first wake mode to the second wake mode as the
Reynolds number increases. The coupling of the structural mode with a second wake mode was
also found by Li et al. [16] using a ROM for the galloping phenomenon of a square cylinder.
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Figure 4.14: Root loci parameterized by the reduced natural frequency Fs for different mass ratios
m∗ obtained from ROM/ERA for a flow past a circular cylinder mounted on a linear spring. The
structural mode interacts primarily with the first wake mode for the cases (a)-(c), whereas for
cases (d)-(f), with the second wake mode.

As the mass ratio m∗ decreases for a fixed value of Re, the real part of the eigenvalue asso-
ciated with the structural mode becomes more positive (viz., moves further into the right half
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of the complex plane). As a consequence, the structural instability increases and the vortex-
induced vibration exhibits a larger amplitude of oscillation. Furthermore, the range of reduced
velocity Ur for which vortex-induced vibration occurs increases. The fact that a reduction of the
mass ratio leads jointly to an increase in the oscillation amplitude and a widening of the velocity
range associated with lock-in has been observed in some previous experimental investigations
[5, 41, 44].
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Figure 4.15: The VIV response as a function of Fs for flows past a circular cylinder mounted on a
linear spring for (a) (Re,m∗) = (120, 10) obtained using ROM/ERA; (b) (Re,m∗) = (140,10) ob-
tained using ROM/ERA; (c) (Re,m∗) = (120, 10) obtained using FOM/CFD; and, (d) (Re,m∗) =
(140,10) obtained using FOM/CFD. These two cases correspond to a coupled condition in which
the structural mode is coupled to the second wake mode. The lock-in range is delineated as the
region shaded in red. The points maked with ‘o’ are data obtained using FOM/CFD and these
points are connected with solid lines for visualization purposes only.

Figure 4.15a displays the real and imaginary parts of the leading eigenvalues for a flow
past a circular cylinder mounted on a linear spring at (Re,m∗) = (120,10). Here, the terms
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WMIc/WMIIc are introduced to more aptly describe the first/second wake modes (depending on
Reynolds number), which is represented by WSMI and WSMII successively in a coupled modal
situation. When one of WSMI/WSMII represents SMc, the other mode represents WMIc (for
Re 6 100) or WMIIc (for Re > 120). Therefore, we observe that it is mainly the second wake
mode (WMIIc) that interacts with the structural mode. However, based on the trajectory of the
eigenvalue λ associated with WMI in Fig. 4.15a, it is seen that Re(λ ) exhibits a slight variation
around Fs = 0.132 (located at the lower boundary of the lock-in area delineated as the region
shaded in red). This implies that there still exists some interaction between WMI and SMc (SMc
is represented by WSMI/WSMII in turn). To identify the trajectory of SMc and which specific
mode is undertaking this role at a certain Fs, the variation of Im(λ ) is one criterion to use. This is
because the eigenfrequency associated with SMc should adhere closely to the dotted line ( f =Fs)
(representing reduced natural frequency) throughout the entire Fs range. In consequence, there
should be one SMc switching location around Fs = 0.1, where the mode acting as SMc changes
from WSMII (marked by ◦) to WSMI (marked by4). In terms of the variation of Re(λ ), it can
therefore be inferred that the intersection point of WSMI and WSMII around Fs ≈ 0.1 should
be the mode switching point. The intersection point located on the right side of the Re(λ ) plot
between WSMI and WSMII (Fs ≈ 0.26) does not affect the modal representation of SMc in that
WSMII continues to act as SMc in this range.

Figure 4.15c presents the results obtained using FOM/CFD showing the dependence of the
normalized maximum amplitude Ymax/D and the normalized oscillation frequency fosc/ fn on the
reduced natural frequency Fs for (Re,m∗) = (120,10). It is stressed that if there are multiple
peaks in the frequency spectrum of the oscillations at a given value of Fs, the frequency cor-
responding to the largest peak in the spectrum is the one that is plotted here. With respect to
the lock-in range, the lower and upper boundaries for this range are given by F l

s = 0.125 and
Fu

s = 0.215, respectively. The upper boundary Fu
s obtained from FOM/CFD is not exactly e-

qual to the largest value of Fs for which ReSMc(λ )> 0 (cf. Fig. 4.15a). Moreover, the value of F l
s

(which is associated with the lower boundary of the resonance lock-in) obtained from FOM/CFD
is consistent with the value of Fs where the frequencies associated with the wake and structural
modes converge.

A careful examination of Re(λ ) in Fig. 4.15a reveals that for values of Fs less than about
0.03, ReSMc(λ ) transitions from a negative value to a positive value. The positivity of ReSMc(λ )
at large values of Ur (or, equivalently, at small values of Fs) may be due to a galloping instability.
To explore this hypothesis, we conducted high-fidelity FOM/CFD simulations of flow past a
cylinder at (Re,m∗) = (120,10) for Ur = 8.6, 20, and 80 (or, equivalently, for Fs = 0.1163, 0.05,
and 0.0125, respectively).

Figures 4.16a, 4.16b and 4.16c exhibit time series of the structural displacement in the trans-
verse direction of flows past a circular cylinder with (Re,m∗,Fs)= (120,10,0.1163), (120,10,0.05)
and (120,10,0.0125), respectively. The vibration amplitudes for Ur = 20 and 80 are still rather
small (with the maximum amplitude smaller than 0.03D), indicating that the system is not in the
lock-in or galloping range. However, the displacement equilibrium positions about which the
vibrations occur are shifted to 0, 0.008, and 0.1 for Fs = 0.1163, 0.05, and 0.0125, respectively.
This suggests that the equilibrium position of the vibrating body is displaced in the transverse
direction with respect to the original equilibrium position at Y/D = 0. Moreover, larger values
of Ur are associated with larger displacements of the equilibrium position of the body. In view of
this, we suggest that this overall deflection of the structure to a new equilibrium position corre-
sponds to a kind of structural mode instability—associated with ReSMc(λ )> 0, but distinct from
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Figure 4.16: Time series of the displacement in the transverse direction for a VIV system
consisting of a flow past a circular cylinder mounted on a linear spring for (a) (Re,m∗,Fs) =
(120,10,0.1163); (b) (Re,m∗,Fs) = (120,10,0.05); and, (c) (Re,m∗,Fs) = (120,10,0.0125) ob-
tained using FOM/CFD.

the conventional notions of lock-in and galloping. Furthermore, the current simulations define
the values for Fs and Ur by changing the structural stiffness while keeping Re constant. More
specifically, large values of Ur are associated with a small spring stiffness which, in turn, implies
that the restoring force on the elastically-mounted cylinder is smaller, resulting in a larger overall
structural deflection.

Figure 4.15b displays the real and imaginary parts of the leading eigenvalues for a flow past
a circular cylinder mounted on a linear spring at (Re,m∗) = (140,10). An interesting feature
revealed in this figure is that the real and imaginary parts of the eigenvalue associated with WMI
are constant (approximately or better) over the entire range of Fs. Moreover, with reference to
Figs 4.12a and 4.12b, the eigenvalues associated with the interacting modes appear to be “pulled”
toward each other in the lock-in range. From this perspective, it seems that the first wake mode
(WMI) has no influence on the structural mode SMc in the case of (Re,m∗) = (140,10). Also,
consistent with the case of (Re,m∗) = (120,10), the right-side intersection point (at Fs ≈ 0.25)
of Re(λ ) for (Re,m∗) = (140,10) also does not exhibit SMc track switching. Note that in the
latter case, the real parts of the eigenvalues associated with WSMI and WSMII do not intersect
for values of Fs < 0.15, unlike that of the former case. Nevertheless, we suggest that there still
exists a SMc transition point at a smaller value of Fs and that this transition occurs where the
difference in values of Re(λ ) for WSMI and WSMII are at a minimum. This transition point
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Figure 4.17: The VIV response as a function of Fs for a flow past a circular cylinder mounted
on a linear spring at (Re,m∗) = (180, 10) obtained from (a) ROM/ERA and (b) FOM/CFD. This
case corresponds to the structural mode coupling with the second wake mode. The lock-in range
is delineated as the region shaded in red. The points marked by ‘o’ are data obtained using
FOM/CFD and these points are connected with solid lines for visualization purposes only.

also coincides with the point where Im(λ ) first converges to the reduced natural frequency [the
latter of which is shown as the dotted line ( f = Fs) in the bottom panel of Fig. 4.15b].

To provide further insights on the lock-in range for (Re,m∗) = (140,10), Fig. 4.15d presents
the normalized maximum amplitude Ymax/D and normalized oscillation frequency fosc/ fn as a
function of Fs obtained using FOM/CFD. The lower and upper bounds of the lock-in range are
given by F l

s = 0.128 and Fu
s = 0.217, respectively. A comparison Fig. 4.15b with Fig. 4.15d

shows that the upper boundary of the flutter lock-in obtained from ROM/ERA (i.e., the value of
Fs where ReSMc(λ ) transitions from a positive to a negative value) matches well with the upper
boundary of the lock-in range obtained from FOM/CFD.

Figures 4.15a and 4.15b both imply Fs associated with the left-end of the region where
ReSM/SMc(λ )> 0 is smaller than the lower boundary of the lock-in range obtained from FOM/CFD
at Re = 120 and 140. This supports the current argument that the condition ReSM/SMc(λ ) > 0
does not necessarily imply the presence of a flutter lock-in because under this condition if the
modal frequencies are also observed to converge (viz., approach one another), then a resonance
lock-in is expected to be the dominant mechanism “driving” the lock-in. Consistent with the
analysis of Yao and Jaiman [15], the lower (or, left) boundary of the resonance range cannot be
determined accurately based on the behaviour of the ROM root loci. Li et al. [16] suggest that
this inconsistency is due to the nonlinear competition between the leading wake mode and the
structural mode.

84



At larger values of Re (viz., for Re > 100), the predictions of FOM/CFD show that the
lower boundary of the lock-in range exhibits a sharp decrease in the maximum amplitude re-
sponse with decreasing Fs, whereas the maximum amplitude response at the smaller values of
Re (e.g., for Re = 40 and 60) exhibits a smoother transition with decreasing Fs. Furthermore, we
found that the lower boundary associated with the region where ReSM/SMc(λ )> 0 for Re = 100,
120, and 140 is larger than that of the lower boundary of the resonance lock-in range. Fur-
thermore, we found that the region where ReSM/SMc(λ ) > 0 for Re = 100, 120, and 140 covers
the lower boundary of the resonance lock-in range. Here, the interaction between the wake
and the structural modes involves two cases: namely, the uncoupled interaction between SM
and WMI for (Re,m∗) = (100,10) and the coupled interaction between SMc and WMIIc for
(Re,m∗) = (120,10) or (140,10).

Figure 4.14f shows the root loci trajectory for a flow past a circular cylinder mounted on a
linear spring for (Re,m∗) = (180,10). The area of the complex plane associated with the WMI
loop is very small (almost converging to a single point) and is associated with a constant value
(approximately or better) for ReWMI(λ ) and ImWMI(λ ). This characteristic behaviour suggests
that WMI has no influence on the structural mode SMc. Owing to the fact that the frequency
associated with WMI is essentially constant over the entire range of values of Fs, we assert that
WMI is correlated with the wake mode corresponding to the flow past the stationary cylinder and
that WMIIc is correlated with the wake mode induced by the structural oscillations.

The discussion above, in conjunction with the results presented in Fig. 4.14, show that at a
low Reynolds number (e.g., Re = 60) only the first wake mode interacts with the structural mode,
so WMI appears to be related to the modes for both the flow passing the stationary cylinder
and for the structural oscillations. For Re > 100, the wake mode representing the flow past a
stationary cylinder (WMI) acts as a trigger for the phenomenon of resonance lock-in, but WMI
and WMIIc jointly interact with the structural model during VIV. Furthermore, as shown by
Fig. 4.17a (which exhibits the real and imaginary parts of the leading eigenvalues for a flow
past a circular cylinder mounted on a linear spring for (Re,m∗) = (180,10)), the eigenfrequency
gap between WSMI and WSMIIc increases as Re increases to 180. While the eigenfrequencies
Im(λ )/(2π) associated with WSMI and WSMII are close to each other for a limited range of
values of Fs (0.1 < Fs < 0.16), these eigenfrequencies diverge from each other with a certain
spacing, indicating that the coupling between WSMI and WSMII is weaker at these larger Fs
values. Owing to this weaker interaction, the resonance lock-in range for this case terminates at
Fs = 0.155, whereas for the case of Re = 120 and 140 the termination of the resonance lock-in
occurs at Fs = 0.125 and 0.130, respectively. This behaviour corroborates the relatively narrow
lock-in range (delineated as the region shaded in red) obtained from FOM/CFD in Fig. 4.17b.

4.4.4 Aerodynamic coefficients and wake patterns

Yao and Jaiman [15] is at variance with Zhang et al. [12] concerning the conclusion that the
root-mean-square (rms) lift coefficient is suppressed in the resonance regime but strengthened in
the flutter regime, because they state that the mechanism of flutter lock-in is responsible entirely
for the observed lock-in for Re > 70. However, the present work suggests that the resonance
lock-in still exists for the flow past a circular cylinder at Re > 70. Indeed, the results presented
here lends support for Zhang et al.’s [12] view concerning the relationship between the root-
mean-square (rms) lift coefficient and the mechanism responsible for the lock-in.
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Figure 4.18: Root-mean-square value of the lift coefficient (CL) as a function of Fs for (a) Re= 60
[15]; (b) 70 [15]; (c) 100; (d) 120; (e) 140; and, (f) 180 obtained using FOM/CFD with m∗ = 10.
The lock-in range is delineate as the region shaded in red. The red dotted vertical line, marking
the location of the maximum value of rms(CL), corresponds to the initial branch.

Figures 4.18a and 4.18b exhibit the root-mean-square values of the lift coefficient (rms(CL))
as a function of Fs obtained using FOM/CFD. The data shown in these two panels of Fig. 4.18
were extracted from Yao and Jaiman [15]. For Re = 60 and 70, the upper bound of the lock-in
range (delineated as the region shaded in red) is located precisely at the value of Fs associated
with the maximum value of rms(CL). Figures 4.18c, 4.18d, 4.18e, and 4.18f summarize how the
rms(CL) varies with Fs for (Re,m∗) = (100,10), (120,10), (140,10), and (180,10), respectively.
A perusal of Fig. 4.18 shows that for Re > 100, the upper bound of the lock-in range occurs at
a smaller value of Fs than that associated with the maximum of rms(CL) (viz., with the reduced
natural frequency corresponding to max(rms(CL)) shown by the dotted vertical lines in each of
the panels for Fig. 4.18). The max(rms(CL)) in the present FOM/CFD simulations for Re =
100, 120, 140, and 180 is associated with the initial branch, where the oscillation amplitude is
amplified but does not attain the largest value of the amplitude with increasing Ur.

Figure 4.19 shows time series of CL obtained using FOM/CFD for various combinations of
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(Re,Ur,Fs). These time series display a modulation in the amplitude of oscillations for the initial
branch of the lock-in range for Re = 100 and 120, and this modulation disappears as the system
enters the upper branch of the lock-in range. The beating phenomenon present in the initial
branch leads to increased values of rms(CL) compared to those of the upper branch. Moreover,
the beating phenomenon evident in the initial branch suggests that there is a balanced competition
between the structure and wake modes so the VIV response in this case is unable to achieve a
stable (stationary) state. This conclusion reinforces that advocated by Li et al. [16] where these
researchers argue that it is the modal competition that determines whether galloping occurs.
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Figure 4.19: Time series of the lift coefficients for flow past a circular cylinder mounted on
a linear spring for (Re,Ur,Fs) = (100,4.6,0.217) (top left panel, initial branch), (Re,Ur,Fs) =
(100,4.8,0.208) (top right panel, upper branch), (Re,Ur,Fs) = (120,4.4,0.227) (bottom left pan-
el, initial branch) and (Re,Ur,Fs) = (120,4.6,0.217) (bottom right panel, upper branch). The
time series were obtained using FOM/CFD. The location in the envelope of the amplitude re-
sponse for two of the cases of Ur at Re = 100 and 120 can be obtained from Figs 4.12d and
4.15c, respectively.

Figure 4.20 exhibits the vortical flow pattern in the wake of a circular cylinder mounted on a
linear spring at (Re,m∗) = (120,10) obtained using FOM/CFD. The various panels in the figure
document the development of the VIV system at it transitions through various stages: namely,
desynchronization, initial branch, upper branch, lower branch, and then back to desynchroniza-
tion for increasing values of Ur. The results of the current simulations are seen to exhibit various
vortex shedding patterns which are consistent with similar outcomes reported by Lambert and
Olivier [219] and Prasanth and Mittal [135]. The modes of vortex shedding include the ‘P’ mode
which corresponds to the shedding of vortex pairs, the ‘S’ mode which corresponds to the shed-
ding of a single vortex, and the ‘C(2S)’ wake mode which generally appears with a relatively
large amplitude at the initial branch of the VIV system consisting a flow past a circular cylinder
mounted on a linear spring. We note that Fig. 4.20b displays the 2S mode of vortex shedding in
the initial branch owing to the fact that the normalized maximum transverse amplitude Ymax/D
does not meet the threshold for the triggering of the ‘C(2S)’ wake mode. For a reduced velocity
of Ur = 4.6, the flutter lock-in is in the upper branch and the VIV system exhibits the 2P mode of
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vortex shedding as is evident from an examination of Fig. 4.20c. On the other hand, for Ur = 8.0
corresponding to a resonance lock-in in the lower branch, the VIV system displays a 2S mode of
vortex shedding as can be seen in Fig. 4.20e.

Furthermore, our results support Yao and Jaiman [15] who questioned the interpretation pro-
vided by Zhang et al. [12] on the relationship between the nature of the wake pattern and the
mechanism responsible for the lock-in (i.e., resonance or flutter). Indeed, the modes of vortex
shedding depend on the body shape, the amplitude of the oscillations, and the characteristic fre-
quencies of shedding and have no direct link to whether the lock-in is induced by resonance or
flutter. In general, the transition of the wake dynamics from the desynchronization, the initial
branch, the upper branch, and the lower branch and, finally, back to the desynchronization re-
gions of the VIV (as Ur increases or, equivalently, as Fs decreases), the wake will exhibit the
‘2S’, ‘2S/C(2S)’, ‘2P’, ‘2S’, and ‘2S’ modes of vortex shedding, respectively, for the flow past a
circular cylinder.

2S
(a) Ymax/D= 0.044; wake mod-
e 2S; Outside lock-in range;
desynchronization

(b) Ymax/D= 0.196; wake mod-
e 2S; Outside lock-in range; ini-
tial branch

2P
(c) Ymax/D= 0.569; wake mod-
e 2P; Flutter lock-in; upper
branch

(d) Ymax/D= 0.376; wake mod-
e 2S; Resonance lock-in; lower
branch

(e) Ymax/D= 0.255; wake mod-
e 2S; Resonance lock-in; lower
branch

(f) Ymax/D = 0.057; wake mod-
e 2S; Outside lock-in range;
desynchronization

Figure 4.20: Isopleths of the instantaneous vorticity for flow past a circular cylinder mounted on
a linear spring at (Re,m∗) = (120,10) obtained using FOM/CFD for (a) Fs (Ur) = 0.238 (4.2);
(b) 0.227 (4.4); (c) 0.217 (4.6); (d) 0.143 (7.0); (e) 0.125 (8.0); and, (f) 0.122 (8.2). The flow
is from left to right.

4.4.5 Frequency analysis of the modal mechanism

Figure 4.21 shows time series for the normalized transverse displacement Y/D of motion and
the corresponding power spectral density (PSD) for a VIV system consisting of the flow past a
circular cylinder mounted on a linear spring at (Re,m∗) = (120,10) obtained using FOM/CFD.
The information contained here can be used to ascertain the possible presence of the interaction
between the wake mode (characterized by a frequency of 0.175 Hz for flow past a stationary cir-
cular cylinder at Re = 120) and the structural mode (whose characteristic frequency will depend
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on the reduced natural frequency Fs) for different values of Ur.
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Figure 4.21: Time series of the transverse displacement and the corresponding power spectrum
of this displacement for a VIV system consisting of flows past a circular cylinder mounted on a
linear spring at (Re,m∗) = (120,10) obtained using FOM/CFD for values of (a) Fs = 0.227; (b)
0.217; (c) 0.125; and, (d) 0.122 which span the entire lock-in range.

The top panel in the Fig. 4.21, obtained at Ur = 4.4, exhibits the presence of the beating
phenomenon in the transverse displacement which remains even when the flow-induced vibration
is fully developed. The amplitude of oscillations here displays the characteristic modulation
associated with the beating phenomenon. The characteristic frequencies associated with both the
SM and WM are seen to be present in the time series of the transverse displacement as is evident
from a perusal of the PSD plot. In the power spectrum, the first spectral peak is associated with
the WM (with a corresponding frequency of 0.175 Hz) and the second spectral peak is associated
with the SM (with a corresponding frequency of 0.227 Hz). The system is at the edge (initial
branch) of the lock-in range.

For the second panel in Fig. 4.21, obtained at Ur = 4.6, the amplitude of oscillations, after
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equilibrium (stationarity) has been achieved, is characterized by a single frequency. In this case,
the reduced natural frequency Fs is close to Strouhal number St for flow past a stationary cylinder,
so the lock-in phenomenon occurs quickly and the system enters the upper branch.

The third panel in Fig. 4.21, obtained at Ur = 8.0, exhibits a substantial transient in the
time development of the transverse displacement amplitude before the system finally achieves an
equilibrium or stationary state. According to Zhang et al.’s [12] analysis, the wake and structural
modes coexist in the early stages of the time development here. Owing to the role of resonance,
the structural frequency gradually dominates the flow-induced vibration and at the later stages of
the time evolution, the system achieves a periodic stability characterized by a single oscillation
frequency. In this example, the system enters the lower branch.

The bottom panel in Fig. 4.21, obtained at Ur = 8.2, exhibits an interesting vibration pat-
tern. In this case, the system transitions out of the lock-in range so the transverse displacement
amplitude is very small (viz., the vibration almost disappears). The power spectrum of this
low-amplitude vibration shows that the frequencies induced by the structural and wake modes
co-exist. The first spectral peak corresponds to the SM (with a characteristic frequency of 0.122
Hz) and the second spectral peak is associated with the WM (with a characteristic frequency of
0.175 Hz). In general, as the VIV system transitions into the lock-in range, the vibration will
be dominated by the structural natural frequency after a sufficient time has elapsed for the VIV
system to develop.

tU0/D

Frequency (Hz)

Figure 4.22: Time-frequency spectrum of the time series of the transverse displacement for
(Re,m∗,Ur) = (120,10,8).

Next, we apply a time-frequency analysis to the time series exhibited in the third panel of
Fig. 4.21 for the case Ur = 8.0. The result of the time-frequency analysis is shown in Fig. 4.22.
A careful examination of this figure shows the presence of two prominent spectral peaks corre-
sponding to frequencies of 0.125 Hz and 0.175 Hz which are associated with the SM and WM,
respectively. With increasing time tU0/D, it is seen that the power of the spectral peak associated
with the SM increases monotonically (approximately or better), while that associated with the
WM decreases (albeit slowly) until it disappears altogether at tU0/D≈ 1200. The calculation at
Ur = 8.0 in Fig. 4.21 also indicates that the vibration achieves stability for tU0/D> 1200. Follow-
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ing from this, it is apparent that there is a strong modal competition occurring here, but the SM
ultimately wins this competition and dominates the dynamics of the VIV system. Furthermore,
it is asserted that it is this balanced competition between initially two equally “strong” structural
and wake modes that results in the very long transient seen in the third panel of Fig. 4.21. Owing
to the closeness of the two frequencies associated with the SM and WM (reflecting the onset of a
resonance), the competition between the SM and WM persists for a long time leading to the long
transient development seen in the time series. This provides support for our argument that it is
the mechanism of resonance rather than that of flutter that dominates the lower branch region of
the VIV response.

To follow on, we use dynamic mode decomposition (DMD) to investigate the dynamics of
the wake flow. DMD is a data-driven methodology that can be used to extract dynamical in-
formation from data acquired from either experimental measurements or numerical simulations
of time-varying phenomena [236]. To this purpose, we apply DMD to identify the dominant
modes responsible for the dynamics of a flow past a circular cylinder and, more specifically, to
identify a low-order dynamics model for the underlying unsteady flow phenomenon. The DMD
version applied in our analysis is the streaming total DMD (STDMD) [237, 238], which has been
implemented in OpenFOAM v2006 [202].

Despite the existence of many versions of the DMD algorithm [222, 237, 238], the most im-
portant feature of the analysis is that every DMD mode is associated with a characteristic com-
plex frequency (or, eigenvalue) and corresponds to a low-dimensional coherent spatiotemporal
pattern in the data set. The (complex) eigenvalues describe the growth/decay and oscillatory
characteristics of the associated DMD (dynamical) mode. The magnitude |λ | of the (complex)
eigenvalue represents the growth/decay rate of the associated DMD mode. More specifically,
damped (decaying) modes are associated with eigenvalues whose magnitude is less than unity,
whereas amplified (growing) modes are associated with eigenvalues whose magnitude is greater
than unity. Furthermore, DMD modes associated with eigenvalues where |λ | = 1 (which lie
on the unit circle in the complex plane) are purely oscillatory in nature. The amplitude |α| of
the DMD modes can be arranged in decreasing order of magnitude where the modes with the
largest amplitude are considered to be dominant (and provide generally a good approximation
of the underlying dynamics in a low-rank subspace). To this purpose, the amplitudes of the D-
MD modes can be computed using data snapshots and normalized with respect to the maximum
mode amplitude [239]. For the DMD conducted herein, the velocity snapshots are sampled sixty
times per oscillation cycle and fifty oscillation cycles are used for the analysis. We apply the
DMD methodology to analyze the wake flow for a VIV system consisting of flow past a circular
cylinder mounted on a linear spring for (Re,m∗,Ur) = (180,10,4.2) and (180,10,6.2) in order
to obtain a deeper insight into the nature of the vortical wake dynamics and to garner a better
understanding of the mode competition predicted by ROM/ERA.

Figure 4.23 presents a time series of CL and the corresponding power spectrum for a flow past
a circular cylinder mounted on a linear spring for (Re,m∗,Ur) = (180,10,4.2) which belongs
to the initial branch region of VIV. The power spectrum consists of two predominant peaks at
frequencies of 0.219 Hz and 0.194 Hz. The spectral peak at 0.194 Hz is consistent with the
Strouhal number St for a flow past a stationary cylinder at Re = 180 [240], whereas the spectral
peak at 0.219 Hz is associated with the structural mode. Owing to the equal interaction between
the structural and wake modes in the initial branch, the dominant spectral peak at 0.219 Hz
deviates from the structural natural frequency Fs ≡U−1

r = 0.238 Hz.

Figure 4.24 shows the spectra, mode amplitudes, and isopleths of two representative D-
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Figure 4.23: Time series of CL and the associated power spectrum for a flow past a circular
cylinder mounted on a linear spring with (Re,m∗,Ur) = (180,10,4.2) obtained using FOM/CFD.
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Figure 4.24: DMD of VIV system consisting of a flow past a circular cylinder mounted on a
linear spring with (Re,m∗,Ur) = (180,10,4.2). (a) Distribution of eigenvalues in the complex
plane. (b) Mode amplitudes |α| (normalized by the maximum amplitude) and their associated
frequencies. (c) The real parts of two DMD modes of the streamwise velocity (white: zero; red:
above a positive threshold; blue: below a negative threshold).

MD models for a flow past a circular cylinder mounted on a linear spring at (Re,m∗,Ur) =
(180,10,4.2). It is seen that the magnitude of all the eigenvalues are unity (viz., the eigenvalues
lie on the unit circle |λ |= 1 in the complex plane suggesting that the flow is in a near-equilibrium
(or, quasi-equilibrium) state where the dynamics are linear (approximately or better)). Similar
observations were reported by Hemati et al. [222] and Sarkar et al. [223]. The two dominant
mode amplitudes exhibited in Fig. 4.24(b) are at 0.219 Hz and 0.194 Hz which are consistent
with the power spectrum shown in Fig. 4.23. The first two DMD modes for the streamwise ve-
locity are exhibited in Fig. 4.24(c). The modes are consistent with the notion that the first DMD
mode (at 0.194 Hz) is consistent with the signature of von Kármán vortex shedding, whereas the
second DMD mode (at 0.219 Hz) is associated with the signature of the SM. In conformance
with the discussion above, the WM and SM involve a competing equilibria, which manifests
itself in a modulation in the time variation of CL. This, in turn, shapes the nature of the vortical
wake patterns revealed by the DMD modes.

Figure 4.25 depicts the time series of CL and the corresponding power spectrum for a flow past
a circular cylinder mounted on a linear spring with (Re,m∗,Ur) = (180,10,6.2) which belongs
to the lower branch region of the lock-in range. The power spectrum exhibits a single dominant
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Figure 4.25: Time series of CL and the corresponding power spectrum for a flow past a circular
cylinder mounted on a linear spring with (Re,m∗,Ur) = (180,10,6.2) obtained using FOM/CFD.
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Figure 4.26: DMD of VIV system consisting of a flow past a circular cylinder mounted on a
linear spring with (Re,m∗,Ur) = (180,10,6.2). (a) Distribution of eigenvalues in the complex
plane. (b) Mode amplitudes |α| (normalized by the maximum amplitude) and their associated
frequencies. (c) The real part of the dominant DMD mode of the streamwise velocity (white:
zero; red: above a positive threshold; blue: below a negative threshold).

peak corresponding to a frequency of 0.162 Hz associated with the structural mode. Indeed,
in the case, it is evident that the structural mode dominates the VIV response. Moreover, the
structural natural frequency Fs ≡U−1

r = 0.162 Hz is precisely equal to the oscillation frequency,
owing to the fact that the structural mode completely dominates the mode interaction in this case
with the result that modal competition between the SM and WM disappears as the VIV settles
into an equilibrium state.

Figure 4.26 shows the spectra, mode amplitudes and isopleths of the first DMD mode for a
flow past a circular cylinder mounted on a linear spring with (Re,m∗,Ur) = (180,10,6.2). This
figure shows that the eigenvalues are distributed uniformly on the unit circle of the complex
plane implying that the eigenvalues are associated with a fundamental frequency and positive
integer multiples of this fundamental frequency (viz., the various harmonics). The fundamental
frequency corresponds to an oscillation frequency of 0.162 Hz which is consistent with the power
spectrum shown in Fig. 4.25. The DMD mode corresponding to the fundamental frequency of
the streamwise velocity is shown in Fig. 4.26(c). These results support the notion that the VIV
system in this example is locked at the structural natural frequency.
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Figure 4.27: Characteristics of the vortex-induced vibration (VIV) and the relationship of these
characteristics with the modal distribution of root loci obtained from ROM/ERA.

4.5 Chapter summary

The present work provides a synthesis of the key characteristics for the dynamics of a VIV
system consisting of the flow past a circular cylinder elastically mounted on a linear spring. The
important results of this investigation are summarized in Fig. 4.27. For Re less than a critical
Reynolds number Recr (which is approximately 47 for a circular cylinder) required to trigger
vortex shedding for the flow past a stationary cylinder, the wake modes are stable and flutter is
the only mechanism responsible for triggering the lock-in. When the structural modes are stable
over the full range of values of Fs (viz., there is no flutter lock-in), the frequency lock-in will be
completely determined by the mechanism of resonance lock-in. In present work, we argue that
the flutter is not necessarily the only factor responsible for the frequency lock-in at Re = 100 for
the flow past a circular cylinder. This is contrary to the contention of previous investigators [15]
who have stated that the frequency lock-in for a VIV system arises only from a pure flutter mode
instability for Re> 70.

With increasing Ur, a resonance lock-in manifests itself (viz., when the structural natural
frequency and vortex shedding frequency are close to one another). The instability of the SM
is not the dominant effect in the VIV system (i.e., the flutter lock-in disappears altogether) and
the resonance lock-in will be the primary mechanism influencing the lock-in until this resonance
disappears.

After the resonance lock-in disappears, the flutter lock-in will not reappear even if ReSM(λ )>
0 (as shown for a flow past a circular cylinder at Re = 100 investigated herein as well as the re-
sults reported by Yao and Jaiman [15]). Nevertheless, the condition ReSM(λ ) > 0 is related to
the galloping instability at large values of Ur, but the occurrence of galloping (which gives rise
to large-amplitude vibrations) is determined by the specific body shape. To summarize, the con-
dition ReSM(λ )> 0 is correlated with a flutter lock-in or a galloping instability, but a resonance
lock-in will be the primary mechanism governing VIV when the frequencies corresponding to
the structural and wake modes are close to one another. In the latter case, the resonance lock-in
will be responsible for the frequency lock-in (and not the flutter instability).

Occasionally, the condition ReSM/SMc(λ ) > 0 at large values of Ur is linked to an overall
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deflection of the vibrating structure to a new equilibrium position with respect to the original
equilibrium position at Y/D = 0. This occurs for a circular cylinder supported by a spring with
a small string stiffness. This phenomenon is independent of either the flutter lock-in or the
galloping instability (e.g., refer to the case of the flow past a circular cylinder elastically mounted
on a linear spring with (Re,m∗,Fs) = (120,10,0.0125)).

There exist numerous wake modes and the wake dynamics will become increasingly more
unstable as the Reynolds number increases. In the complex plane, the trajectories of the root
loci corresponding to the full spectrum of wake modes will tend to move from the negative half-
plane to the positive half-plane. During this process, the particular wake mode that is nearest to
the structural mode in frequency will interact with it, potentially resulting in either a coupled or
uncoupled condition. A resonance lock-in occurs when the frequency corresponding to the SM
is close to the frequency corresponding of any of the wake modes—and not, necessarily, the first
wake mode.

As Re varies over 100, 120, 140, and 180, the area of the first wake mode WMI loop in the
complex plane decreases monotonically. In consequence, the interaction between WMI and the
SM decreases with an increasing Reynolds number, while the second wake mode WMII exhibits
a stronger interaction with the SM owing to the modal transformation of the wake flow. At a
certain value of Re (e.g., Re = 140), an increasing m∗ is correlated with a weaker interaction
in the VIV system and with a smaller WMI loop area. The latter condition is also correlated
with a constant value (approximately or better) for imaginary part of the eigenvalue associated
with WMI. The transition out of the lock-in range is faster at Re = 180 than at either Re = 140
or 160, owing to the weaker interaction (coupling) between WSMI and WSMII, implying a
weaker coupling between the structural and wake modes. This observation lends support for the
dominance of the resonance lock-in in the lower branch region of VIV.

The balanced competition between the wake and structural modes is the cause of the beating
phenomenon observed in the time series of the transverse displacement for the initial branch of
the VIV. The upper branch is correlated with the flutter lock-in, in which the structural mode
dominates the interaction, and where the structural oscillations rapidly settle into an equilibrium
state. The mode interaction in the lower branch region of VIV, associated with resonance lock-
in, exhibits a long transient in the temporal development of the transverse displacement before it
finally settles into an equilibrium or stationary state. This observation provides support for the
assertion that the resonance lock-in dominates the lower branch region of VIV, even when the
real part of the eigenvalue for the SM is positive (implying a growth rate in the SM).
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Chapter 5

2-D linear stability analysis of galloping
behavior with uniform inflow

This chapter focus on investigating the mechanism underlying the triggering of galloping
behavior in elastically-mounted structures. Considering the literature review and summary in
Chapter 2, although past experiments and numerical simulations undertaken by the research com-
munity have extensively explored the influence of various shapes on the galloping response, there
still remains much that is poorly understood regarding the physical mechanisms that determine
galloping—for example, what particular characteristics in the cross-sectional shape of a body
result in the generation of galloping and what determines whether this galloping is “hard” or
“soft” are currently unanswered questions. Our present state of understanding and our current
gaps of knowledge with respect to the galloping phenomenon will be discussed later. From this
perspective, further detailed studies of the galloping phenomenon (with the objective of provid-
ing a more complete characterization and deeper physical insights into the complex dynamics
of this phenomenology) are needed, particularly as it concerns the problem of obtaining a better
and more unified understanding of the precise conditions and underlying physical reasons for the
triggering of galloping. The studies in this chapter will be significant for the amplification and
suppression of flow-induced vibration in practical engineering issues.

In this chapter, the detailed characterization of the galloping response in a FIV system is
based on the mechanistic insights and predictions of the complex dynamics provided by: (1) a
full-order model obtained using high-fidelity computational fluid dynamics; (2) a linear stability
analysis undertaken using a reduced-order model constructed from the eigensystem realization
algorithm; and, (3) a quasi-steady analysis conducted using the Den Hartog stability criterion.
The results obtained herein provide a unified approach for studying the effects of body geome-
try (shape), Reynolds number, and mass ratio on the nature of the galloping instability and the
associated chaos in the galloping structure and, in so doing, provide a deeper and better under-
standing of the physical processes responsible for galloping. From this perspective, we first use
these results to ameliorate certain oversights in the LSA of galloping conducted by Li et al. [16]
and, thereby, extend the utility of their work. Next, we propose some novel factors that may be
responsible for the triggering of the galloping instability, particularly with reference to the sensi-
tive influence of the cross-sectional shape of the object for self-excited motion to occur. To this
purpose, we investigate the geometry effects on galloping and, more specifically, how even small
(minute) changes in the cross-sectional shape of a trapezoidal body in the windward direction
can trigger the galloping instability.

96



Following from this analysis, we undertake a seminal investigation of the influence of the
after-body shape (geometry) on the causation of either hard-galloping or soft-galloping from a
purely modal perspective. In addition, we apply a quasi-steady theory to explain the influence
of the side-ratio of rectangular cylinders on galloping oscillations but, even so, we describe
and emphasize the specific limitations of this theory when applied to other body geometries.
Finally, the influence of the Reynolds number and the mass ratio on the galloping mechanism is
investigated systematically, with the result that certain special modal characteristics associated
with galloping (viz., uniformity of the eigenfrequency of the structure mode at the value of
the reduced velocity Ur associated with the onset of galloping) are reported for the first time.
Critically, this study provides the first comprehensive and detailed investigation on the specific
mechanisms underlying the triggering (initiation) conditions for the galloping instability and, in
so doing, addresses a key limitation of prior efforts in this regard.

5.1 Methodology of Den Hartog stability criterion

Besides the methodologies of FOM/CFD and ROM/ERA already introduced above, this
chapter would also use the Den Hartog stability criterion, one quasi-steady model, to explore the
galloping phenomenon. Hartog [pp. 370–371] [131] proposed a stability criterion to determine
the potential susceptibility of a FIV system to develop a galloping behavior from the equilibrium
position. Figure 5.1 shows a bluff body that is moving in the downward direction (transverse to
the incident flow U) and, as a result of this motion, the incoming flow Urel relative to the moving
body is incident from below at an angle α = tan−1(v/U), where v is the downward (transverse)
velocity of the body.

X

Y

U

X

Y

𝛼 = 0°, stationary

Urel

FL

FD

FY

0° < 𝛼 ≪ 1°

downward motion

𝛼

Figure 5.1: The total fluid force acting on a downward-moving body can resolved into two
components: a lift force FL and a drag force FD.

The lift FL and drag FD forces acting on the downward-moving body have y-components
(opposite of the direction of the moving body) given by FL cosα and FD sinα , respectively, which
results a total upward force FY acting on the body that retards its downward motion:

FY = FL cosα +FD sinα . (5.1)

The condition for aerodynamically unstable behavior for the moving (vibrating) body is given
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by
dFY

dα
< 0 , (5.2)

which, in view of (5.1), can be recast in terms of the static force coefficients for a unit spanwise
length as follows:

dFY

dα
= cosα

(
dFL

dα
+FD

)
+ sinα

(
−FL +

dFD

dα

)
≈
(

dFL

dα
+FD

)
=

1
2

ρU2D
(

dCL (α)

dα
+CD (α)

)
< 0 ,

(5.3)

where the penultimate line follows from the assumption that α � 1 so cosα ≈ 1 and sinα ≈ 0.
Here, CL and CD are the lift and drag coefficients respectively, and U is the flow speed.

From (5.3), it is seen that a positive value for the derivative of the lift coefficient with re-
spect to α corresponds to an aerodynamically stable behavior for the vibrating body, whereas
an negative value for the derivative of the lift coefficient with respect to α can potentially lead
to an aerodynamically unstable behavior for the body. The Den Hartog stability condition can
only be used to assess the stable behavior of a body with a specific shape at a certain angle of
attack α and, from this perspective, the parameters that define the elastically-supporting device
(e.g., spring) that may be attached to the body are not taken into consideration. Clearly, the Den
Hartog stability condition has limitations, and the analysis conducted herein will clarify some of
these restrictions in the application of this stability criterion (based on a quasi-steady theory for
addressing aerodynamic problems).

5.2 Numerical set-up and validation

5.2.1 Computational domain and mesh sensitivity

Structural amplitude of galloping response could achieve a value much larger than that of
lock-in behavior. As a consequence, the domain size used here is sufficiently large to allow for
possible large-amplitude vibrations of the body. Figure 5.2 shows the computational domain
and the boundary conditions used for the FOM/CFD simulations conducted in present galloping
study. A number of two-dimensional (2-D) numerical simulations of the flow-induced vibration
of a bluff body mounted on a linear spring is undertaken at low Reynolds number Re. The
computational domain is 48D in the streamwise (x-) and 50D in the cross-stream or transverse
(y-) directions, where D as a characteristic length of the bluff body. To facilitate comparisons of
the results of the simulations for the different bluff body geometries, we use the same transverse
length T L for every body geometry studied herein. This transverse length is taken to define the
characteristic length D for each of the body geometries.

The center of the bluff body is located along the centerline of the computational domain at
y = 0 and at a distance of 12D downstream from the inlet boundary (left edge of the domain).
The boundary conditions applied here are consistent to those within section 3.2.1. For all the
simulations in this chapter, the characteristic length D of the bluff body, the incident wind speed
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U0 at the inlet boundary, and fluid density ρ are 0.1 m, 0.1 m s−1, and 1.2 kg m−3, respectively.
The Reynolds number Re is changed by adjusting the kinematic viscosity ν of the fluid.

12D 36D

2
5
D

2
5
D

TL x

y

bluff body with 

characteristic length TL

Figure 5.2: The computational domain used for the simulations of the flow past a bluff body
elastically-mounted on a linear spring. The prescribed boundary conditions on the flow velocity
used in the simulations are shown.

To investigate the galloping instability for which the amplitude of vibration of the body is
expected to be significantly larger than that for vortex-induced vibration, an overset mesh (im-
plemented in OpenFOAM/v2006 [202]) is used with a computational domain size that is large
enough so that the entire motion of the elastically-mounted body in the transverse (y-) direction
is well contained within the domain. To begin, the simulation of the flow past a stationary square
cylinder is conducted and used to assess the sensitivity of the results to the mesh used. For this
assessment, we used four different mesh sizes with the number of cells in the different meshes
ranging from 58,032 to 82,810. The flow past a stationary square cylinder at the Reynolds num-
ber Re = 100 was simulated using these four meshes. For each of these simulations, we extracted
the root-mean-square (rms) lift Crms

L and drag Crms
D coefficients. The values for these two dynam-

ical force coefficients are compared in table 6.1 for each of the four meshes. In addition, these
results are compared with those reported by Zhao et al. [241] and Li et al. [16] for the same case.

The percentage differences in the values of Crms
L and Crms

D obtained in going from mesh 1
(coarse) to mesh 2 (intermediate) are 1.4% and 3.9%, respectively. This discrepancy is quite
large. However, in going from mesh 3 (fine) to mesh 4 (very fine), the percentage differences in
the values of Crms

L and Crms
D are reduced considerably, being only 0.16% and 1.8%, respectively.

Based on these considerations, mesh 3 is used for all the simulations conducted herein. Mesh 3
provides the best compromise between numerical accuracy and computational cost. Moreover,
the values of Crms

L and Crms
D obtained for mesh 3 are in good agreement with those obtained by

Zhao et al. [241] and Li et al. [16]. In particular, our current values for the root-mean-square
lift and drag coefficients lie between those obtained by these previous investigators. Figure 5.3
displays mesh 3—the hybrid overset mesh used in our simulations of the flow past a square
cylinder elastically-supported on a linear spring. More specifically, this figure shows the overall
mesh used in the tessellation of the computational domain and two increasingly expanded views
of the mesh in the vicinity of the square cylinder.
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Mesh Cell number Crms
L Crms

D
1 58032 0.1786 0.0049
2 65995 0.1812 0.0051
3 78752 0.1895 0.0054
4 82810 0.1898 0.0055

Zhao et al. [241] — 0.1908 0.0057
Li et al. [16] — 0.1817 0.0052

Table 5.1: Aerodynamic coefficients (root-mean-square lift and drag coefficients) of flow past a
stationary square cylinder at Re = 100 for four different meshes.

(a)

(b) 

(c)

Figure 5.3: The fine mesh (mesh 3) used for the simulation of the flow past a square cylinder: (a)
tessellation of the computational domain showing the overset and a partial background mesh sur-
rounding the square cylinder; (b) close-up view of the overset mesh around the square cylinder;
and, (c) expanded view of mesh in the immediate vicinity of the walls of the square cylinder.

5.2.2 Validation of full-order model

The previous section 3.2.2 already validates the predictive accuracy of the FOM/CFD and
its implementation with respect to the lock-in behavior. In this section, we will focus on the
FOM/CFD validation for galloping response using the simulation of the flow past a square cylin-
der elastically mounted on a linear spring. The square cylinder is free to move in the cross-stream
(y-) direction. The physical parameters for this simulation are as follows: the structural damping
coefficient ζ = 0, the mass ratio m∗ = 10, and the Reynolds number Re = 150. The reduced
velocity Ur is varied by changing the structural natural frequency fn.

Figure 5.4 shows the variation of normalized maximum transverse displacement ymax/D as a
function of the reduced velocity Ur for the FIV system consisting of the flow past an elastically-
supported square cylinder. The normalized maximum transverse displacement ymax/D exhibits
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a sudden increase to a value of 0.14 at Ur ≈ 5.75, and then decreases slowly thereafter with
increasing values of Ur. When Ur reaches a value of between 17 and 18, ymax/D exhibits a
rapid increase in value with increasing Ur. The amplification of ymax/D associated with this
range of values of Ur is unbounded (viz., the motion here is not self-limiting) and corresponds
to a galloping instability. The variation of ymax/D as a function of Ur predicted here for the
elastically-supported square cylinder is in excellent conformance with the results reported by
Li et al. [16]. Based on these considerations, it is concluded our current FOM/CFD simulations
provide good accuracy for providing the high-fidelity FOM/CFD data sets needed for the analysis
of the triggering of galloping in structures and for securing the equilibrium base flow required
for the application of ROM/ERA to fluid-structure interaction problems studied herein.
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Figure 5.4: The normalized maximum transverse displacement ymax/D as a function of the re-
duced velocity Ur of a FIV system consisting of the flow past an elastically-mounted square
cylinder at (Re,m∗) = (150,10). The results were obtained using FOM/CFD and compared with
results obtained by Li et al. [16].

5.3 Validation of reduced-order model

As an example of an equilibrium base flow for LSA investigation of galloping response,
figure 5.5 shows the isopleths of the vorticity field for a flow past a stationary square cylinder at
Re = 150.

Table 5.2 compares the length of the recirculating region (steady wake) for a base flow past a
stationary square cylinder at three different values of the Reynolds number: namely, at Re = 100,
125 and 150. The length of the recirculating region is defined as the distance in the streamwise
direction along the centerline of the cylinder between the base point (which is taken as the geo-
metric center of square cylinder) and the stagnation point in the wake. The length of the recircu-
lating region in the wake of a stationary square cylinder at Re = 100, 125 and 150 obtained in our
current simulations is in very good agreement with the corresponding results reported by Mao
and Blackburn [26] in their investigations of the nature of the primary instability modes in the
steady wake of a square cylinder. More specifically, the discrepancy in our current predictions
of the length of the recirculating bubble in the steady wake of the square cylinder is 2.4%, 1.8%
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Re Present Mao and Blackburn [26]
100 8.4 8.6
125 11.0 11.2
150 14.1 14.4

Table 5.2: The length of the recirculation region (steady wake) normalized by the cylinder diam-
eter (side length) D for a base flow past a stationary square cylinder. The results of the present
simulations are compared with those reported by Mao and Blackburn [26].

and 2.1% at Re = 100, 125 and 150, respectively, when compared with those obtained by Mao
and Blackburn [26].

Figure 5.5: Contours of the vorticity field obtained for an equilibrium base flow past a stationary
square cylinder at Re = 150. The direction of the flow is from left to right.

Since the work reported here focuses on the factors that trigger the galloping instability, we
validate ERA/ROM for the flow past a forward equilateral triangular cylinder (with one side per-
pendicular to the incident flow) mounted on a linear spring at (Re,m∗) = (60,10). The root loci
obtained for this case are shown in figure 5.6. The root loci clearly show the coupling between
the structure and wake modes. Here, it is seen that either WSMI or WSMII alternately assumes
the role of the structure mode depending on the value of the reduced natural frequency Fs. The
value of Re(λ ) over the interval where Im(λ )< 0.9 is strictly positive which is in agreement with
the result reported by Yao and Jaiman [15]. This implies that the structure mode is unstable as Fs
decreases (or, equivalently, as the reduced velocity Ur increases). Moreover, these modal char-
acteristics are indicative of the fact that a FIV system involving a forward equilateral triangular
cylinder will transition into galloping (distinguished by their large-amplitude and low-frequency
oscillations) after lock-out, in contradistinction to the dynamical response of a circular cylinder
at large values of Ur. It is noted that FOM/CFD simulations described later for the flow past a
forward isosceles-triangular cylinder provide further validation of this result (viz., this case is
seen to exhibit galloping also). The maximum amplitude of oscillations of the forward equilat-
eral triangular cylinder continues to increase with increasing Ur after the system transitions out
of lock-in (which is a characteristic signature of a galloping instability).
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Figure 5.6: The root loci (parameterized by the reduced natural frequency Fs =U−1
r ) for the flow

past a forward equilateral triangular cylinder elastically-mounted on a linear spring at (Re,m∗) =
(60,10). This result is compared with that obtained by Yao and Jaiman [15]. The red solid square
corresponds to the stationary body.

5.4 Effect of windward orientation for various body geome-
tries

This section examines the relationship between the galloping instability and the windward
orientation of the cross-section of the body (D-section, triangular-section, or square-section)
using simulations obtained from FOM/CFD. We use this information to investigate the modal
mechanisms that are responsible for the observed features of the dynamics using an LSA based on
ROM/ERA. Finally, we study the stability of different body geometries at the system equilibrium
point using a quasi-steady stability analysis. This approach will help to unravel the specific
conditions and mechanisms that trigger the galloping instability.

5.4.1 D-section body (half-cylinder)

To begin, we study the flow past a D-section (or, semi-circular) body at (Re,m∗) = (60,10)
with reference to the galloping instability. The dynamic response of an elastically-mounted D-
section body in an uniform flow has been investigated by various researchers [242, 129, 128].
These efforts provided insights on the importance of an after-body for the generation vortex-
induced vibrations [46]. Here, we investigate the flow past an elastically-mounted D-section
body in order to study galloping. More specifically, we use the results of our simulations of
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Figure 5.7: Elastically-mounted D-section body (half-cylinder) in the (a) forward and (b) back-
ward orientations with respect to the incident flow.

the flow past a D-section body mounted on a linear spring to explain the underlying modal
mechanisms of the galloping instability for this case using linear stability analysis and examine
the identification of the hidden structure mode for the coupled modal condition. We will use
the descriptor forward or backward D-section body (half-cylinder) to describe the configurations
when the flat face of the half-cylinder is facing into (windward of) or away from (leeward of) the
incident wind direction, respectively, as shown in figure 5.7.
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Figure 5.8: (a) Normalized maximum amplitude ymax/D and (b) normalized oscillation frequen-
cy foscD/U0 in the transverse direction as a function of Ur for a flow past an elastically-mounted
D-section body with forward and backward orientations at (Re,m∗) = (60,10). The inset plot in
(a) shows an expanded view of the variation of ymax/D around Ur ≈ 6 for the backward D-section
body.

Figure 5.8(a) shows the variation of the maximum amplitude ymax/D as a function of Ur
for the FIV system consisting of a flow past an elastically-mounted D-section body at (Re,m∗) =
(60,10) in the forward and backward orientations. These predictions were obtained using FOM/CFD
— the solution (structural dynamic response and flow field) obtained at given value of Ur was
used as the initial state of the system at the next larger value of Ur in the calculations. For these
simulations, the variation in the reduced velocity Ur is achieved by adjusting the structural spring
stiffness while keeping the Reynolds number Re at the prescribed fixed (constant) value. As a
consequence, the initial state of the system encodes the potential energy of the spring and the
kinetic energy of the body. A perusal of figure 5.8(a) shows that the maximum amplitude of the
vibrations in the transverse direction for the forward D-section body is significantly larger than
that for the backward D-section body. Moreover, ymax/D for the forward orientation increas-
es monotonically with increasing Ur in stark contrast with the backward orientation where the
maximum amplitude is seen to increase to a peak value at a reduced velocity Ur ≈ 6 and then
decrease monotonically from this peak value with increasing Ur.
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Figure 5.8(b) displays the normalized oscillation frequency foscD/U0 of the transverse vibra-
tions as a function of Ur for an elastically-mounted D-section body at (Re,m∗) = (60,10) in the
forward and backward orientations. For the forward D-section body, the dependence of the oscil-
lation frequency fosc on Ur is consistent (approximately or better) with the relationship f =U−1

r
(viz., the oscillation frequency is inversely proportional to the reduced velocity) for Ur & 5. In
stark contrast, the oscillation frequency for the backward D-section body does not conform to the
relationship f =U−1

r , although at Ur ≈ 6 the normalized oscillation frequency for the backward
orientation is approximately equal to the inverse of the reduced velocity Ur. Note that the back-
ward D-section also exhibits the maximum value of ymax/D at Ur ≈ 6 (see figure 5.8(a)). The
FIV system for the backward orientation exhibits the behavior of a forced vibration for Ur & 6.
Moreover, the elastically-mounted forward and backward D-section bodies will transition to gal-
loping and the desynchronization range, respectively, after leaving the lock-in range. Finally, for
the lock-in or galloping regimes, the structural oscillation frequency is dominated (determined
principally) by the corresponding structural natural frequency.

The results presented in figure 5.8 are consistent with those obtained from an experimental
investigation of the flow past an elastically-mounted D-section body (for both the forward and
backward orientations) conducted by Zhao et al. [46] (for Reynolds numbers in the range 1080
≤ Re ≤ 9000). In these experiments, the forward D-section body was observed to exhibit a
galloping instability. Moreover, for the backward D-section body, the maximum amplitude of
the transverse vibrations was observed to occur at a value of the reduced velocity of Ur ≈ 6.
These observations are in good agreement with our simulations for the D-section body (albeit for
laminar flow, rather than for the turbulent flow in the experiments of Zhao et al. [46]). Finally,
our present calculations also support the conclusion reached by Zhao et al. [46] that an after-body
is not strictly required for the appearance of a significant amplitude response in a FIV system.
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Figure 5.9: Root loci obtained from a ROM/ERA model of the FIV system (parameterized by
the reduced natural frequency Fs = U−1

r ) for the flow past an elastically-mounted forward and
backward D-section body at (Re,m∗) = (60,10). The red solid squares correspond to the case of
the flow past a stationary half-cylinder in the forward and backward orientations.

Figure 5.9 shows the root loci obtained from ROM/ERA for a flow past a forward and back-
ward elastically-mounted D-section body at (Re,m∗) = (60,10). A perusal of this figure suggests
that the FIV response of both the forward and backward half-cylinders is in a coupled state in-
volving the structure and first wake modes. However, with increasing Ur, Re(λ ) associated with
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Figure 5.10: Growth/decay rate Re(λ ) and eigenfrequency Im(λ )/2π as a function of Fs =U−1
r

for the FIV system consisting of the flow past an elastically-mounted D-section body (half-
cylinder) in the (a) backward and (b) forward orientations at (Re,m∗) = (60,10). The structure
mode SMc, which is hidden in the coupled WSMI and WSMII modes, is marked with open red
circles. The dashed line corresponds to the function f = Fs.

the root loci for the forward half-cylinder is positive while that for the backward half-cylinder
becomes negative (viz., crosses over to the left half of the complex plane). This stark difference
in the modal variation indicates that there are significant differences in the dynamics between the
forward and backward orientations of an elastically-mounted D-section body in an uniform flow.
In other words, the structure mode associated with the forward D-section body is associated with
an instability for increasing values of Ur, which is a characteristic signature for galloping phe-
nomenon. This signature is similar to the modal behavior of the forward equilateral triangular
body presented previously in figure 5.6.

The variation of Re(λ ) and Im(λ ) as a function of the reduced velocity Ur is critical for pro-
viding a clearer understanding of the modal dynamics associated with the galloping instability.
Towards this objective, the variation of the eigenvalues associated with the two leading unsta-
ble modes as a function of the reduced natural frequency Fs (or, equivalently, the inverse of the
reduced velocity) is shown in figure 5.10. More specifically, figures 5.10(a) and (b) show the
growth/decay rates and eigenfrequencies of WSMI and WSMII for the backward and forward
half-cylinders, respectively, as a function of Fs.

When a coupling condition occurs between the wake and structure modes, a mode-switching
action must occur because the eigenfrequency (or, imaginary part of the eigenvalue) associated
with the structure mode is a function of the reduced natural frequency Fs. The coupled mode
that is associated with an eigenfrequency that is closest in value to the reduced natural frequency
Fs is identified as SMc. The subscript ‘c’ in this identification of the structure mode is used to
remind the reader that this mode is associated with the coupled condition. In order determine
which of the coupled modes in figure 5.10 represents the SM, the modes whose associated
eigenfrequencies are closest to Fs are depicted using the red markers. Nevertheless, we note that
the application of this criterion cannot be used to determine the location of the mode-switching
with absolute accuracy within the overlapping region where the frequencies associated with the
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two modes approach each other in value, as a result of their strong modal interaction.

For the D-section in the backward orientation, it is seen from figure 5.10(a) that SMc is unsta-
ble in the interval Fs ∈ (0.130,0.204) (or, equivalently, for Ur ∈ (4.9,7.7)). This interval, which
is associated with an unstable SMc, is consistent with the results shown in figure 5.8(a) (see inset
here)—for the D-section body in the backward orientation, ymax/D > 0 in Ur ∈ (4.9,7.7) (ap-
proximately or better). This implies that for the D-section body in this orientation, the structure
mode is unstable in a certain interval (viz., lock-in range) due to the proximity of the structural
natural frequency to the vortex-shedding frequency. This is evident on an examination of fig-
ure 5.10(a)—the eigenfrequencies Im(λ ) associated with the coupled modes are close to one
another. This observation supports the assertion made by Zhao et al. [46] that an after-body is
not a necessary condition for the occurrence of significant amplitude vibrations in VIV.

For the D-section body in the forward orientation, it is seen from figure 5.10(b) that Re(λ ) as-
sociated with SMc (marked with the red open circles) is positive for Fs < 0.227 (or, equivalently,
for Ur > 4.4). This observation, in turn, is consistent the result in figure 5.8(a) that ymax/D > 0
for Ur > 4.4 for the forward D-section body. According to the modal analysis conducted by
Li et al. [16] for a square cylinder, the instability of the structure mode at large values of Ur
(viz., values greater than about 10) leads to a low-frequency galloping vibration of the structure,
which is consistent with our current results. Furthermore, Li et al. [16] partitioned the induced
response into three distinct regions: namely, VIV, pre-galloping, and galloping obtained from an
examination of their FOM/CFD simulations for the square cylinder (cf. with figure 17 in Li et al.
[16]). Pre-galloping is defined as the range of values of Ur where the structure mode is unstable
as predicted using LSA, but galloping has not yet occurred (the latter of which can be determined
from an analysis of FOM/CFD simulations).

Li et al. [16] concluded that LSA significantly underestimates the value of Ur associated
with the onset of galloping. Indeed, figure 15 in Li et al. [16] concluded that a square cylinder at
(Re,m∗) = (150,10) results in a coupling between the structure and wake modes. This implies
that one of the two coupled modes must correspond to the structure mode, in turn, so that there
must exist one mode-switching point (also demonstrated previously in work reported by past
works [12, 15]). However, in figure 17 of Li et al. [16] for the square cylinder at the same
(Re,m∗) = (150,10), the authors asserted that the full coupled-mode (labelled as WMSI in our
work) can be interpreted as a pure structure mode for the purposes of analysis. This interpretation
of the underlying modal dynamics appears to be incorrect and seems to have resulted in an
underestimation of the value of Ur associated with the onset of galloping (and, ultimately, to
the conclusion reached by Li et al. [16] that the value of Ur linked to the onset of galloping as
predicted using LSA is much lower than that derived using FOM/CFD).

In contradistinction to these conclusions, we suggest that an unstable structure mode leads to
galloping and that LSA does not significantly underestimate the value of Ur associated with the
onset of galloping. Furthermore, we assert that pre-galloping does not necessarily have to occur
and, indeed, this assertion is consistent with our current results for the forward D-section body.
Finally, galloping can be divided into two regimes: namely, hard-galloping and soft-galloping
[127]. Soft-galloping occurs without the need to impose any initial excitation (either an initial
nonzero displacement and/or an initial nonzero velocity) in the FIV system. In contrast, hard-
galloping requires an initial excitation of the FIV system and the magnitude of this excitation
must also exceed a certain (minimum) threshold. An analysis of the effects of the initial excita-
tion on the nature of the galloping response and the relationship between soft- and hard-galloping
and the cross-sectional shape of the body will be addressed later.
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Figure 5.11: Contours of the vorticity field for a flow past a D-section body in the forward
orientation at (Re,m∗) = (60,10) for 12 different values of the reduced velocity Ur.

Figure 5.11 exhibits the contours of the vorticity field for a flow past the forward D-section
body at (Re,m∗) = (60,10) for various values of the reduced velocity Ur that span regimes from
lock-in to galloping. The values of Ur = 5, 6 and 7 correspond to the lock-in regime for the FIV
system and the wake mode is associated with a typical 2S pattern of vortex shedding in which
two single vortices are shed during each cycle of oscillation. For values of Ur = 9 and 10, the
vortex-shedding mode is similar to a 2S pattern, but the spacing between the vortices is increased.
As the values of Ur increase to 12 and 14, the vortex-shedding modes are stretched or elongated
and there is a region in the wake (delineated by the grey ellipse) where the two vortex structures
appear to be parallel to one another (approximately or better). We refer to this vortex-shedding
mode as an elongated-2S (E-2S) pattern. When Ur reaches a value of 16, the associated reduced
natural structural frequency Fs = 1/16 = 0.0625 is smaller than the normalized vortex-shedding
frequency Fvs = 0.147 and, as a result, the behavior of the vortex shedding is no longer locked-
in to the natural structural frequency. In this case, the moving body can be regarded simply as
a moving source of vortex shedding and, owing to the relatively slow speed of motion of the
body, the vortex-shedding pattern is similar to the vortex shedding pattern at the lower values
of Ur, except for the fact that the contours of the vorticity field are slightly deformed (with one
normal vortex and another that is slightly stretched in the streamwise direction). We refer to
this vortex-shedding mode as deformed-2S (D-2S) and this vortex pattern occurs for values of
Ur = 16, 18 and 25 as seen in figure 5.11. At still larger values of Ur (e.g., Ur = 50 and 60),
the oscillation amplitude of the body is further increased and accompanied by a further decrease
in the oscillation frequency. Owing to the very slow transverse motion of the body, the vortex-
shedding pattern is a 2S mode seen at the very small values of Ur, but the pattern is spatially
displaced as a whole in the transverse direction as the body moves (as if it were frozen in the
flow). For reference, it is noted that ymax/D = 3.15, 5.64 and 6.63 for Ur = 25, 50 and 60,
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respectively.

Figure 5.12 summarizes the stability of a forward and backward D-section body at Re = 60.
The results were obtained using a quasi-steady analysis. We note that the values of lift coeffi-
cient CL and the drag coefficient CD for rotation angles α = −1◦, 0◦ and 1◦ are obtained from
the base flow in order to remove any fluctuations in these force coefficients arising from the
vortex-shedding. Overall, it is seen that CD exhibits a very small change for small variation-
s in the rotation angle α , whereas CL exhibits a much larger change for the same variations
in α . In addition, CL essentially vanishes at α = 0◦ owing to the symmetry of the body rel-
ative to the flow direction for this rotation angle. As the body is rotated clockwise from −1◦

to 1◦, the lift coefficient CL for the forward D-section body changes from a positive value of
0.0285 to a negative value of −0.0277, whereas that for the backward D-section body changes
from a negative value of −0.00457 to a positive value of 0.00466. The Den Hartog function
H(α) ≡ dCL (α)/dα +CD (α) at α = 0◦ is negative- and positive-valued for the forward and
backward D-section body, respectively. The gradient of CL(α) with respect to α for the forward
D-section body is negative and if the absolute value of this quantity exceeds the associated drag
coefficient CD(α), then the FIV system will be negatively damped and, as a result, the structure
will be prone to instability. In consequence, the elastically-mounted forward D-section body is
expected to exhibit a galloping instability for a flow at Re = 60. Finally, it should be noted that
an analysis of experimental data for the forward and backward D-section body (half-cylinder) at
Re = 4880 based on a quasi-steady approach also suggests that the forward half-cylinder mani-
fests a galloping instability [46].
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Figure 5.12: The lift coefficient CL and drag coefficient CD for the base flow of a forward and
backward D-section body (half-cylinder) at Re = 60 with rotation angle α of −1◦, 0◦ and 1◦.
The value of Den Hartog function H(α) is given for a rotation angle α = 0◦.

5.4.2 Isosceles-triangular body

As a common shape for engineering cables and ice-coated wires, an elastically-mounted
triangular body is an important geometry for fluid-solid interaction investigations. In view of this,
we study a FIV system consisting of the flow past an elastically-mounted isosceles-triangular
body at (Re,m∗) = (120,10) in both the forward and backward orientations when the flat face
of the body is facing into (windward of) or away from (leeward of) the incident wind direction,
respectively, as shown in figure 5.13. It is mentioned previously that the transverse length T L
is the same for all the body geometries investigated herein, so T L for the isosceles-triangular
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body is identical to the characteristic length D for the half-cylinder (viz., T L = D). Furthermore,
SL/T L = 1/2 for the isosceles-triangular body (or, diagonally-cut semi-square cylinder) studied
herein.

Y

inflow
X

Y

X

SL

(a) Forward  isosceles-triangular

                               SL

(b) Backward  isosceles-triangular

TL TLinflow

Figure 5.13: Elastically-mounted isosceles-triangular body in the forward and backward orien-
tations relative to the incident flow. The triangular body has SL/T L = 1/2.

Figure 5.14 shows the root loci for the FIV system consisting of the flow past an isosceles-
triangular body in the forward (black open circle markers) and backward (black open square
markers) orientations at (Re,m∗) = (120,10). The root loci were obtained using ROM/ERA.
The root loci for the two orientations exhibit three leading modes: a single wake mode (WM)
and two coupled modes (WSMI and WSMII). It should be noted the red solid square markers
in the figure correspond to the modes for the flow past the stationary isosceles-triangular body
in either the forward or backward orientations. For the body in the forward orientation, the
associated red markers lie on the right-hand-side of the complex frequency plane, implying that
the flow past the stationary body results in an unstable vortex street at Re = 120. For the case
of the backward orientation, there is a wake mode I (WMI) and wake-structure coupled modes I
and II (WSMI and WSMII). The two modes WSMI and WSMII are confined to the left-half-side
of the complex frequency plane for the entire range of values of Fs (or, of Ur), implying that
the isosceles-triangular body in the backward orientation does not result in flutter lock-in and
galloping at (Re,m∗) = (120,10) because the growth rate of the vibration represented by Re(λ )
is strictly negative. Nevertheless, the resonance lock-in will still materialize for that range of
values of Ur where the structural mode frequency is close to the frequencies associated with the
wake modes. In comparison with the root loci for the backward D-section body (cf. figure 5.9),
it is expected that a curved after-body which gives rise to points of flow separation will result
in a flutter lock-in. For the case of the forward isosceles-triangular body, the relevant modes
governing the dynamics are WSMI, WSMII, and WMII. In this case, the modal characteristics
of the body is similar to that of the forward D-section body in that the trajectory of the root loci
does not cross over to the left-half-side of the complex frequency plane with increasing values
of Ur. This suggests that the forward isosceles-triangular body considered here will exhibit a
galloping instability at large values of Ur.

To obtain a clearer view of nature of the modal interaction, we plot the growth/decay rate
Re(λ ) and eigenfrequency Im(λ )/2π of the modes for the backward and forward isosceles-
triangular body as a function of the reduced natural frequency Fs in figures 5.15(a) and (b),
respectively. In this figure, the single wake modes WMI and WMII are delineated using the black
open circle markers. Among the coupled modes, the mode associated with an eigenfrequency that
is closest in value to Fs (shown as the dashed line) is taken to be the structure mode SMc which is
delineated in figure 5.15 with the red markers. It is noted that for the forward isosceles-triangular
body (see figure 5.15(b)), the growth rate of the structure mode SMc is positive for Fs < 0.05
implying that body will undergo a galloping instability. However, for the backward isosceles-
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Figure 5.14: Root loci (obtained from ROM/ERA) for a FIV system consisting of the flow past
an elastically-mounted isosceles-triangular body at (Re,m∗) = (120,10) in the forward and back-
ward orientations. The inset plot displays the part of the root loci for the backward isosceles-
triangular body corresponding to the wake mode 1 (WM1) loop (which collapses to a near-point
structure) in the right half of the complex frequency plane. The red solid squares show the results
for the flow past the stationary isosceles-triangular body in the forward and backward orienta-
tions.

triangular body, over the range of values of Fs associated with resonance lock-in (identified by
red rectangular box in figure 5.15(a)), the frequencies associated with the structure and wake
modes move away from one another, implying that the coupling between these modes is weak.
This will result in an abrupt termination of the lock-in range as the reduced velocity Ur increases
(or, equivalently, as the reduced natural frequency Fs decreases).

To supplement the preceding analysis based on ROM/ERA, we have conducted a number of
FOM/CFD simulations of the flow past an elastically-mounted isosceles-triangular body. Fig-
ure 5.16 exhibits the time series of the normalized transverse amplitude y/D (recall T L = D) and
the lift coefficient CL for flow past an elastically-mounted isosceles-triangular body in the back-
ward orientation at (Re,m∗) = (120,10). In this FOM/CFD simulation, the value of the reduced
velocity Ur was changed (sharply) in time from 19 to 6 to 10 and, finally, to 14 in sequence.
The fully-developed state of the FIV system at a given (constant) value of Ur was used as the
initial condition for the state of the FIV system at the succeeding value of Ur. A perusal of fig-
ure 5.16 shows that a galloping instability does not occur for the backward isosceles-triangular
body at Ur = 19. However, when Ur is decreased to a value of 6, the triangular body manifests
large-amplitude oscillations with ymax/D≈ 0.30, implying that the FIV system has transitioned
into the lock-in range. As mentioned above, this lock-in range corresponds to the regime of a
resonance lock-in. Finally, increasing Ur to either 10 or 14, it is seen that the vibration amplitude
is reduced significantly from that observed at Ur = 6.

Figure 5.17 exhibits the time series of the normalized transverse amplitude y/D and the lift
coefficient CL obtained from a FOM/CFD simulation for the flow past an elastically-mounted
forward isosceles-triangular body at (Re,m∗) = (120,10). The simulation was conducted with
the reduced velocity Ur changing abruptly in time in accordance to the following sequence: 25
to 7 to 14 to 25 and, finally, to 63. For the first value of Ur = 25 (regime 1), the FIV system
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Figure 5.15: Growth/decay rate Re(λ ) and eigenfrequency Im(λ )/2π as a function of Fs of
the modes associated with the flow past an elastically-mounted isosceles-triangular body at
(Re,m∗) = (120,10) in the (a) backward and (b) forward orientations. The single uncoupled
wake mode is identified using black open circle markers and the structure mode hidden in the
coupled WSMI/WSMII modes is identified using red open circle markers.

was started from an initial condition where the triangular body was at rest (viz., (y, ẏ) = (0,0) at
t = 0). For the second value of Ur = 25 (regime 2), the fully-developed state of the FIV system at
the previous value of Ur = 14 was used as the initial condition for the state of the FIV system at
Ur = 25. Note that as the FIV system progresses in time through the sequence of values of Ur—7,
14, 25 and 62—the transverse maximum amplitude of vibrations ymax/D increases monotonically
from 1.64 to 3.50 to 6.31 and, finally, to 16.30, respectively. This response implies that the
forward isosceles-triangular body will transition to a galloping instability at the larger values of
Ur (e.g., at Ur = 14, 25 and 62) after it has achieved lock-in at Ur = 7. It is interesting to note that
when the FIV system is started from rest as for the case of the first value of Ur = 25, the system
does not exhibit a galloping instability. Moreover, a power spectral analysis of the time series
displayed in figure 5.17 indicates that the the structural oscillation frequency fosc corresponding
to Ur = 25 (regime 1), 7, 14, 25 (regime 2) and 63 assumes the values fosc = 0.160 Hz, 0.129 Hz,
0.070 Hz, 0.040 Hz and 0.015 Hz, respectively. Because U0 = 0.1 m s−1 and D = 0.1 m, the non-
dimensional oscillation frequency foscD/U0 has the same value as the associated dimensional
quantity fosc. Keeping this in view, we note that the oscillation frequency fosc corresponding
to Ur = 7, 14, 25 (regime 2) and 63 is comparable to the reduced natural frequency Fs ≡U−1

r
(approximately or better), suggesting the structure mode dominates the FIV response in the lock-
in and galloping regimes. In contrast, the oscillation frequency fosc at Ur = 25 (regime 1) is
approximately equal to vortex-shedding frequency for flow past the stationary forward isosceles-
triangular body, implying the response in regime 1 is that of a forced-vibration. The response of
the forward isosceles-triangular body conforms to the characteristics of hard-galloping.

Figure 5.16 shows that for the backward isosceles-triangular body for Ur = 6, the large ampli-
tude of the transverse oscillations when the FIV system is in the lock-in range is correlated with
small amplitude fluctuations in the lift coefficient CL. This is in stark contrast with the response
of the forward isosceles-triangular body displayed in figure 5.17 where it can be seen that the
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Figure 5.16: Time series of the normalized transverse amplitude y/D and lift coefficient CL
obtained from FOM/CFD simulation for the flow past a backward elastically-mounted isosceles-
triangular body at (Re,m∗) = (120,10) with Ur changing (abruptly) in time from 19 to 6 to 10
and, finally, to 14.

flutter lock-in regime for Ur = 7 is correlated with large amplitude fluctuations in the lift coef-
ficient CL. This result supports the claim made by Zhang et al. [12] that the root-mean-square
(rms) lift coefficient is reduced in the resonance lock-in regime, whereas it is increased in the
flutter lock-in regime. Furthermore, when the FIV system consisting of the flow past a forward
elastically-mounted isosceles-triangular body enters into the galloping regime at Ur = 14, 25,
and 62, the time variation of the lift coefficient appears to be very chaotic (see figure 5.17).

A power spectral analysis was conducted for the time series of the transverse displacement y
and the lift coefficient CL for the forward elastically-mounted isosceles-triangular body shown in
figure 5.17. The power spectrum was obtained for the segments of the time series corresponding
to Ur = 25—these segments consist of the early portion of regime 1 defined by the time span
tU0/D∈ (100,250), the late portion of regime 1 defined by the time span tU0/D∈ (600,800) and
regime 2 defined by the time span tU0/D ∈ (1250,1350). Recall that U0/D = 1 s−1, so the non-
dimensional time tU0/D is equal in value to (viz., has the same magnitude as) the dimensional
time t. The power spectrum of these three segments of the time series is exhibited in figure 5.18.
The dominant frequency in the power spectrum of the transverse displacement for the early and
late portions of regime 1 is 0.04 Hz and 0.16 Hz, respectively, suggesting that the dynamic
response here is determined by a competition between the structure and wake modes.

Although the forward elastically-mounted isosceles-triangular body has the potential to man-
ifest a galloping instability at Ur = 25, for the early part of regime 1 corresponding to the body
starting from a state of rest (viz., (y, ẏ) = (0,0) at t = 0), the structure mode with the associated
frequency of 0.04 Hz eventually dissipates in the modal competition with the result that the wake
mode with the associated frequency of 0.16 Hz eventually dominates the oscillations leading to a
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Figure 5.17: Time series of the normalized transverse amplitude y/D and lift coefficient CL
obtained from FOM/CFD simulation for the flow past a forward elastically-mounted isosceles-
triangular body at (Re,m∗) = (120,10) with Ur changing (abruptly) in time from 25 to 7 to 14 to
25 and, finally, to 62.

forced vibration of the FIV system. It is noted that the dominant frequency in the power spectrum
of CL for both the early and late portions of regime 1 occurs at 0.16 Hz owing to the fact that
the structural oscillation is weak. This result supports the notion that the galloping instability is
associated with a mode competition as proposed by Li et al. [16]. In the early stage of regime 2,
the initial motion of the body results in large transverse displacements of the body. During this
early period of the vibration, the negative damping in the FIV system reinforces and maintains
the large oscillations. These oscillations, in turn, alter the dynamics of the lift coefficient CL (see
the bottom panel of figure 5.18(c) where it is seen that dominant frequencies of CL occur at both
0.04 Hz and 0.16 Hz, in contradistinction to that for the early and late stages of the dynamics
in regime 1). In consequence, if the initial state of the body is not at rest (viz., when the body
is subject to an external excitation with y 6= 0 and/or ẏ 6= 0), this leads to a reinforcement of the
structure mode in the modal competition.

Figure 5.19 summarizes the stability condition for the FIV system consisting of a flow past
a forward and backward elastically-mounted isosceles-triangular body at Re = 120. The assess-
ment of the stability was undertaken using a quasi-steady stability analysis. As in the case for
the forward and backward elastically-mounted D-section body investigated previously, it is seen
that the Den Hartog function H(α) is negative- and positive-valued for the forward and back-
ward isosceles-triangular body, respectively. This implies that the FIV response of the triangular
body in the forward and backward orientations is unstable and stable, respectively. This result is
consistent with the fact that a forward elastically-mounted isosceles-triangular body was found
earlier to exhibit a galloping instability at Re = 120. However, as the body oscillates, the value of
the rotation angle α can change with the result that the FIV system cannot be negatively damped
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Figure 5.18: Power spectral density (PSD) of the normalized transverse amplitude y/D and the
lift coefficient CL for the flow past a forward elastically-mounted isosceles-triangular body at
(Re,m∗) = (120,10) (cf. figure 5.17) for (a) 100 < tU0/D < 250 (early stage of regime 1), (b)
600 < tU0/D < 800 (late stage of regime 1), and (c) 1250 < tU0/D < 1350 (regime 2). The
power spectra were obtained at Ur = 25.

throughout the course of these oscillations. In consequence, the amplitude of the transverse dis-
placement cannot increase continuously, with the result that the FIV system will eventually settle
into an equilibrium state (indeed, as a so-called limit cycle). Furthermore, we suggest that the
structural instability arising from the negative damping in the FIV system is correlated with the
galloping instability, but the emergence of lock-in in the system arises from a resonance effect
which is totally unrelated to the negative damping.

Bringing together the results of our analysis of the response of the D-section body and the
isosceles-triangular body in the forward orientation, we infer that the shape of the after-body is
not directly related to whether or not galloping occurs. Rather, the galloping instability appears
to be related to the shape of the downstream contraction of the body. This aspect of the FIV
response, as well as the influence of the shape of the after-body on the characteristics of hard- or
soft-galloping, will be studied in detail later.

5.4.3 Square cylinder

Previous experimental and numerical investigations have shown that the flow past an elastically-
mounted square cylinder exhibits galloping instability. Zhao et al. [243] studied experimentally
the effects of the angle of attack θ (viz., the angle between the incident flow direction and the
normal to the windward face of the square cylinder) on the response of a FIV system consist-
ing of a flow past an elastically-mounted square cylinder in a water channel for a mass ratio
m∗ = 2.64 and a reduced velocity Ur ranging from 3 to 17. The measurements showed that the
square cylinder oriented at θ = 0◦ and 45◦ exhibited a transition to a galloping oscillation and
to desynchronization, respectively, as the values of Ur increased. A numerical study of the FIV
response of a square cylinder was conducted by Li et al. [16] for a square cylinder under the
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Figure 5.19: The lift CL and drag CD coefficients for the base flow past a forward and backward
elastically-mounted isosceles-triangular body at Re = 120. The body is oriented relative to the
incident wind direction with a rotation angle α = −1◦, 0◦ and 1◦. The Den Hartog function
H(α) is provided for a rotation angle of α = 0◦.

following conditions: (θ ,Re,m∗,Ur) = (0◦,150,10,20). This response can be compared to that
for (θ ,Re,m∗,Ur) = (45◦,150,10,20) which we have conducted using FOM/CFD—the time se-
ries of the normalized transverse displacement y/D is displayed in figure 5.20(a). The very small
value for the maximum transverse displacement of ymax/D ≈ 0.055 implies that a galloping in-
stability does not occur in this case in stark contrast to the case with θ = 0◦ where a galloping
instability was observed with ymax/D ≈ 0.21 as reported by [16]. Finally, figure 5.20(b) shows
that the vortex shedding pattern for the square cylinder oriented at θ = 45◦ is consistent with
a 2S mode of vortex shedding which corresponds to the desynchronization branch of the FIV
response.

Li et al. [16] showed that a square cylinder oriented at θ = 0◦ to the incident wind direction
does not exhibit galloping until Re & 139. In view of this, we constructed a ROM/ERA for the
flow past an elastically-mounted square cylinder at (Re,m∗) = (140,10) for θ = 0◦ and 45◦. The
root loci obtained from the ROM/ERA for these two cases of the angle of attack are exhibited
in figure 5.21: namely for the square cylinder oriented at θ = 0◦ (blue open square markers)
and at 45◦ (black open circle markers) with respect to the incident wind direction. The arrows
point in the direction of increasing Ur (or, equivalently, of decreasing Fs). A careful perusal
of figure 5.21 shows the first wake mode WMI for θ = 0◦ and 45◦ shrinks down to a point in
the complex frequency plane, whereas the second wake mode is coupled to the structure mode
(designated herein as WSMI and WSMII).

The root loci corresponding to the square cylinder oriented at θ = 45◦ lie primarily in the
positive right-half of the complex frequency plane at the smaller values of Ur, implying that the
structure mode is associated with a positive growth rate over this range of Ur—which, in turn,
is linked to a wider lock-in regime that can include potentially both resonance and flutter as
the root cause of the frequency lock-in. Furthermore, at larger values of Ur, the root loci for
the square cylinder at θ = 45◦ lie in the negative (left) half of the complex frequency plane,
implying that the structure mode exhibits a negative (or, decaying) growth rate, so this mode
is expected to be stable at the larger values of Ur. In contrast, the growth/decay rate of the
structure mode (as characterized by Re(λ )) for the square cylinder at θ = 0◦ is positive at the
larger values of Ur, suggesting the presence of a galloping instability in the FIV response at the
larger values of Ur. However, at the smaller values of Ur, the root loci for the square cylinder at
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Figure 5.20: (a) Time series of the normalized transverse displacement y/D and (b) 2S vortex
shedding mode arising from the response (desynchronization branch) of a FIV system consisting
of the flow past a square cylinder with (θ ,Re,m∗,Ur) = (45◦, 150, 10, 20).

θ = 0◦ lie in the negative left-half of the complex frequency plane and, as a result, the structure
mode corresponds to a negative or decaying growth rate—so, coupled-mode flutter cannot be
the mechanism underlying the lock-in of frequencies here. In view of this, we suggest that the
mechanism underlying frequency lock-in for the square cylinder at θ = 0◦ is that of resonance.
Consequently, the frequency lock-in in this case is associated with a narrow range of values of
Ur. This suggestion is supported by FOM/CFD simulations conducted by Li et al. [16]. These
simulations showed that the frequency lock-in regime for the square cylinder at θ = 0◦ only
occurs when Ur ≈ 6–7.

Figure 5.22 summarizes the stability characteristics for the FIV system consisting of a flow
past an elastically-mounted square cylinder at Re = 120 for two angles of attack θ = 0◦ and
45◦. The assessment of the stability was undertaken using a quasi-steady stability analysis. The
stability characteristics of this FIV system is sensitive to the value of θ . An examination of the
Den Hartog function H(α) for α = 0◦ for the flow past an elastically-mounted square cylinder at
the angle of attack θ = 0◦ is negative-valued—so, in this case, the response of the FIV system will
give rise to increasing transverse displacements of the body until a limit cycle (or equilibrium
state) is reached. In contrast, for the square cylinder at θ = 45◦, H(α) > 0 at α = 0◦ so the
FIV system in this case is stable. These results suggest that the nature of the flow-induced
vibration of an elastically-mounted square cylinder depends critically on the angle of attack
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Figure 5.21: Root loci for a FIV system consisting of the flow past an elastically-mounted square
cylinder oriented at θ = 0◦ (blue open square markers) and 45◦ (black open circle markers) at
(Re,m∗) = (140,10). The arrows point in the direction of increasing Ur along the root loci. The
solid red squares correspond to the root loci for the stationary square cylinder oriented at θ = 0◦

and 45◦. The root loci were obtained using a ROM/ERA of the FIV system.

θ . If we consolidate the results obtained here for the square cylinder with those for the D-
section body described earlier, it appears that the presence of sharp corners in a body is not a
sufficient condition for a flow past such a body to provoke structural instabilities. This issue will
be investigated in depth in the next section.

5.4.4 Summary

Figure 5.23 summarizes the response characteristics of a number of FIV systems consisting
of the flow past an elastically-mounted body with various geometries and orientations: namely, a
D-section body (half-cylinder) in the forward and backward orientations, an isosceles-triangular
body in the forward and backward orientations, and a square cylinder at angles of attack of
θ = 0◦ and 45◦. The appearance and disappearance of the various modes of response (resonance
and/or flutter lock-in, pre-, soft- and hard-galloping) for these FIV systems for increasing values
of the reduced velocity Ur are encapsulated in the figure at specific values of (Re,m∗). Firstly,
we note that the appearance of one or more forms of galloping occurs when a flat side of the
geometrical body is facing directly into the wind (viz., when the outward unit normal to a flat
face of the body is anti-parallel to the direction of the incident wind). Secondly, it is interesting
to note that the square cylinder at θ = 0◦ does not undergo flutter-induced lock-in but exhibits
pre-galloping, in contradistinction to the D-section and isosceles-triangular bodies which do not
undergo pre-galloping but exhibit flutter-induced lock-in. Thirdly, resonance lock-in occurs for
all the body geometries and orientations shown in figure 5.23 (albeit the range of values of Ur for
this type of frequency lock-in will vary with the body shape and orientation). More specifically,
resonance lock-in will be present so long as the Reynolds number of the flow exceeds the critical
Reynolds number for the formation of a stable vortex street in the wake of the body. Finally, the
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Figure 5.22: The lift CL and drag CD coefficients for the base flow past an elastically-mounted
square cylinder at Re = 120 for two angles of attack θ = 0◦ and 45◦. At each value of θ , the
square cylinder is oriented relative to the incident wind direction with a rotation angle α =−1◦,
0◦ and 1◦. The Den Hartog function H(α) is provided for a rotation angle of α = 0◦.
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Figure 5.23: Summary of the response characteristics of a FIV system consisting of the flow
past an elastically-mounted body with three different geometries at two different orientation-
s: namely, a D-section body (or, half-cylinder) in the forward and backward orientations, an
isosceles-triangular body in the forward and backward orientations, and a square cylinder at two
angles of attack θ = 0◦ and 45◦. The symbols × and � are used to indicate the absence or p-
resence, respectively, of the response mode (resonance or flutter-induced lock-in, pre-galloping,
soft-galloping, hard-galloping).

shape of the after-body appears to be related to whether or not the galloping is hard or soft, but
the detailed mechanisms underlying this relationship are unknown at present and, as a result, will
require further investigation in future studies.
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5.5 Effect of windward interior angle of trapezoidal body on
response

As shown previously, when a flat face of an elastically-mounted geometrical body (e.g., half-
cylinder, isosceles-triangular body, square cylinder) is directed into the incident flow, the body
tends to exhibit a galloping instability for sufficiently large values of the reduced velocity Ur.
This result leads to the following question—does the value of the interior angle at the ver-
tices of the windward flat face of the geometrical body have any effect on whether galloping
occurs or not? To resolve this question we consider a sequence of isosceles-trapezoidal bod-
ies elastically-mounted in a flow at (Re,m∗) = (160,10). Figure 5.24 depicts the sequence of
isosceles-trapezoidal bodies considered herein—the interior angles of the windward flat face of
the bodies have values of 85◦, 90◦ (square cylinder), 91◦ and 95◦ and the cross-sectional area of
each trapezoidal body is equal to that of the square cylinder (trapezoidal body with an interior
angle of 90◦). The characteristic lengths—T L and SL—of each isosceles-trapezoidal body are
the same. The acute and obtuse interior angles of the geometrical bodies correspond to either a
contraction or expansion, respectively, of the body in the streamwise direction.

TL 91° TLTL
85°

SL SLSL

Inflow 95° TL

SL

Figure 5.24: Isosceles-trapezoidal bodies with windward interior angles of 85◦, 90◦ (square
cylinder), 91◦ and 95◦ All the isosceles-trapezoidal bodies have the same values of T L and SL.

Figure 5.25 shows the time series of the normalized transverse displacement y/D (obtained
using FOM/CFD simulations) for a FIV system consisting of the flow past an elastically-mounted
isosceles-trapezoidal body at (Re,m∗) = (160,10) for four different values of the windward in-
terior angle: namely, for 85◦, 90◦ (square cylinder), 91◦ and 95◦. For each of the four configura-
tions considered here, the value of the reduced velocity Ur was changed (abruptly) in time—the
sequence of change points of Ur is shown in each panel of the figure. The initial temporal seg-
ment for each configuration used an initial condition of (y, ẏ) = (0,0) at t = 0 for Ur = 25 in
order to investigate the presence or absence of soft- or hard-galloping in the response of the FIV
system.

The configuration with a windward interior angle of 85◦, 90◦, 91◦, and 95◦ has a maximum
normalized transverse displacement ymax/D at Ur = 25 of 1.805, 0.625, 0.013, and 0.014, respec-
tively. A careful perusal of figure 5.25 shows that very small changes in the value of the interior
angle at the vertices of the upper and lower sides of the windward face of the body can substan-
tially affect the stability of the system and determine ultimately whether galloping does or does
not occur. More specifically, it appears that a windward interior angle of 90◦ is the tipping point
for stability, with the result that galloping disappears suddenly when the windward interior angle
of the body increases ever so slightly from a right angle of 90◦ to an obtuse angle of 91◦. On
the other hand, when the windward interior angle of the body is acute, the response of the FIV
system is unstable and prone to galloping with large transverse displacements of the body (e.g.,
ymax/D = 1.805 and 0.625 for a windward interior angle of 85◦ and 90◦, respectively, at Ur = 25).
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Figure 5.25: Time series of the normalized transverse displacement y/D obtained for a FIV sys-
tem consisting of the flow past an elastically-mounted isosceles-trapezoidal body at (Re,m∗) =
(160,10) with a windward interior angle of (a) 85◦, (b) 90◦, (c) 91◦, and (d) 95◦. For each con-
figuration, the reduced velocity Ur is changed (abruptly) in time in accordance to the sequence
of values shown along the top each panel.

It should be noted that all four configurations in figure 5.25 exhibit lock-in at Ur = 6, suggesting
that the appearance of the lock-in here is not related to the small changes in the windward interior
angle of the body. Furthermore, from a careful examination of figures 5.25(c) and (d) involving
a windward obtuse interior angle for the body, the FIV system at Ur = 14, 25 and 40 enters into
the desynchronization region of the response, demonstrating that the two configurations with a
windward obtuse interior angle exhibit neither soft- nor hard-galloping.

Figure 5.26(a) shows the root loci for a FIV system consisting of the flow past an elastically-
mounted isosceles-trapezoidal body at (Re,m∗) = (160,10) for windward interior angles of 85◦,
90◦, 91◦ and 95◦. The results were obtained from a ROM/ERA of the FIV system. A perusal of
the figure shows that even small changes in the windward interior angle of the body has signifi-
cant effects on the trajectory of the associated root loci. The root loci for the isosceles-trapezoidal
body with windward interior angles of 85◦ and 90◦ imply that after leaving the resonance lock-in
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Figure 5.26: (a) The root loci and (b) the variation of the growth/decay rate Re(λ ) and eigenfre-
quency Im(λ )/2π as a function of Fs for a FIV system consisting of the flow past an elastically-
mounted isosceles-trapezoidal body at (Re,m∗) = (160,10) with windward interior angles of
85◦, 90◦, 91◦, and 95◦. The structure mode SMc that is hidden in the coupled WSMI/WSMII
modes is demarcated with crossed open symbols. The dotted line corresponds to the relationship
f = Fs.

region with increasing values of Ur, the growth rate (characterized by Re(λ )) associated with
the structure mode is positive, so the trapezoidal body here has an unstable structure mode that
leads to a galloping instability. Moreover, we note that Re(λ ) for the structure mode associated
with the trapezoidal body with a windward interior angle of 85◦ is larger than that associated
with the square cylinder (or, trapezoidal body with a windward interior angle of 90◦). Hence,
the response of a trapezoidal body with a windward acute interior angle is more unstable than
that with a right angle (viz., a square cylinder) and, in consequence, the former body geometry is
more prone to exhibit large amplitude oscillations in the response than the latter body geometry.
Our FOM/CFD simulations for Ur = 14 shown in figures 5.25(a) and (b) provide further support
for this assertion—here, it is seen that the normalized maximum transverse displacement ymax/D
for the trapezoidal body with a windward interior angle of 85◦ is eight times larger than that for
the square cylinder with a windward interior angle of 90◦ (viz., ymax/D = 0.883 and 0.115 for
the former and latter case, respectively). Finally, as mentioned previously, small changes in the
windward interior angle of the trapezoid body do not alter substantially the amplitude response
in the resonance lock-in region—for example, for Ur = 6 in figures 5.25(a) and (b), the normal-
ized maximum transverse displacement for the trapezoidal body with a windward interior angle
of 85◦ and 90◦ is ymax/D = 0.215 and 0.101, respectively.

As Ur increases beyond the range of values associated with the resonance lock-in regime
for the flow past an isosceles-trapezoidal body with a windward interior angle of 85◦ and 90◦,
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there will be a value of Ur at which galloping will be initiated. The precise value of Ur at
which this occurs depends critically on the mode-switching behaviour of SMc. The locations
at which mode switching occurs for the trapezoidal body with a windward interior angle of 85◦

and 90◦ are marked as S85 and S90 in the top panel of figure 5.26(b), respectively. The values
of Ur corresponding to the onset of galloping for the trapezoidal body with a windward interior
angle of 85◦ and 90◦ are 9 and 14, respectively. The time series of the transverse displacement
(obtained using FOM/CFD simulations) for the trapezoidal body with a windward interior angle
of 85◦ at the reduced velocity Ur = 14, 10 and 8, shown in figure 5.25(a), suggests that the onset
of galloping occurs at Ur = 8. Similarly, a perusal of figure 5.25(b) indicates that for the square
cylinder, the onset of galloping occurs in the interval Ur ∈ (10,14). These results for the value
of Ur associated with the onset of galloping are generally consistent with those obtained using
ROM/ERA. Interestingly, this result seems to contradict the assertion of Li et al. [16] that the
use of LSA will lead to a significant underestimation of the value of Ur associated with the onset
of galloping. The discrepancy here is due to the fact that Li et al. [16] did not identify the correct
structure mode in their LSA of the square cylinder.

For an isosceles-trapezoidal body with a windward obtuse interior angle, the response of the
FIV system is stable—even when the difference between the obtuse angle and a right angle is
as small as either 1◦ or 5◦. An examination of figure 5.26(a) shows that the root loci associated
with the isosceles-trapezoidal body with a windward interior angle of 95◦ is located in the left-
half-side of the complex frequency plane over the entire range of values of the reduced velocity
Ur—so, the structure mode corresponds to a negative growth rate (Re(λ ) < 0). As a result,
this trapezoidal body will exhibit a resonance lock-in region, but no flutter-induced lock-in or
galloping. Moreover, a perusal of figure 5.26(b) shows that for the isosceles-trapezoidal body
with a windward interior angle of 91◦, the structure mode first transitions from a stable to an
unstable state with increasing values of Ur (or, equivalently, with decreasing values of Fs) and
then switches back to a stable state at an even larger value of Ur (viz., the transition back to the
stable state occurs at Fs≈ 0.025). The ROM/ERA results here are at variance with the FOM/CFD
simulations where it can be seen the isosceles-trapezoidal body with a windward interior angle
of 91◦ does not appear to exhibit a galloping instability (viz., no galloping is evident at Ur = 10,
14, 25, and 40 in figure 5.25(c)). In spite of this discrepancy, both the FOM/CFD and ROM/ERA
results suggest that even a small increase in the windward interior angle of an isosceles-trapezoid
body beyond a right angle (square cylinder) can greatly enhance the structural stability of the
body and suppress the galloping instability.

Figure 5.27 summarizes the stability characteristics for the FIV system consisting of a flow
past an elastically-mounted isosceles-trapezoidal body at Re = 160 for various values of the
windward interior angle. Interestingly, the Den Hartog function H(α) at α = 0◦ is negative for
the trapezoidal body regardless of the value of the windward interior angle, implying the body
exhibits a galloping instability that does not depend on the windward interior angle. The quasi-
steady stability analysis here is incorrect as it has been shown above that a galloping instability
does not occur for the isosceles-trapezoidal body with a windward interior angle of 91◦ and 95◦

(in contradistinction to predictions provided by the Den Hartog stability criterion). Although
the Den Hartog stability criterion has been successfully applied previously for the D-section
and isosceles-triangular bodies, it cannot be used to assess the system stability for the isosceles-
trapezoidal body and especially with respect to how very small variations in the geometry of
the body (e.g., windward interior angle) affects the stability (and, more specifically, whether
galloping occurs).

123



The work presented herein shows that a contraction of the trapezoidal body in the stream-
wise direction (viz., in the direction of the incident wind) is correlated with the presence of a
galloping instability, and this trend has also been seen for the D-section and isosceles-triangular
bodies. Moreover, recent research conducted by Bukka et al. [134] concerning the design of a
passive device for the suppression of FIV has provided some interesting and practical results.
When compared with a simple circular cylinder, the addition of a fairing device inhibits the VIV
response, but the addition of a splitter-plate device causes galloping. Moreover, these investiga-
tors found that decreasing the radius of a C-shaped foil in a connected-C will provoke a structural
instability and lead to galloping.
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Figure 5.27: The lift CL and drag CD coefficients for the base flow past an elastically-mounted
isosceles-trapezoidal body at Re = 160 for various values of the windward interior angle. The
body is oriented relative to the incident wind direction with a rotation angle α =−1◦, 0◦ and 1◦.
The Den Hartog function H(α) is provided for a rotation angle of α = 0◦.

5.6 Effect of side ratio of rectangular cylinder on response

Zhao et al. [35] experimentally investigated the galloping instability of the flow past an
elastically-mounted rectangular cylinder with various values of the side ratio SR for Reynolds
numbers ranging from 1000 to 8000. The side ratio SR is defined as the ratio of the streamwise
length SL to the transverse length T L of the rectangular cylinder, so SR = SL/T L. These re-
searchers reported on the following interesting phenomenon: namely, with increasing values of
the reduced velocity outside the frequency lock-in range, galloping appears when SR > 0.25 and
the oscillation amplitude continues to increase with increasing Ur. However, when SR = 0.2 the
rectangular cylinder exhibits bounded galloping—the oscillation amplitude continues to increase
with increasing reduced velocity until Ur = 10.8, after which it abruptly decreases. The latter
corresponds to the system exiting the galloping regime and entering into the desynchronization
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branch of the response. Zhao et al. [35] proposed that the collapse of galloping for a rectangular
cylinder at SR = 0.2 is related to the incident wind direction relative to the cylinder, but does not
propose any physical mechanism to explain this phenomenon.
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Figure 5.28: The root loci for the flow past an elastically-mounted rectangular cylinder for var-
ious values of the side ratio SR at (Re,m∗) = (150,10). Regimes 1 and 2 represent the range of
values of Ur where galloping and flutter lock-in occur, respectively. The direction of the black
arrow points towards increasing values of Ur.

In this sub-section, we investigate the phenomenology associated with the collapse of gallop-
ing for a cylinder with a rectangular cross-section at specific values of the side ratios SR using
LSA (ROM/ERA) and quasi-steady stability analysis. Figure 5.28 exhibits the root loci (ob-
tained using ROM/ERA) for a FIV system consisting of the flow past a rectangular cylinder at
(Re,m∗) = (150,10) for four different values of the side ratio: namely, SR = 0.5, 0.25, 0,2, and
0.1. The inset plot in figure 5.28 provides a magnified view of the trajectory of the root loci at
the large values of Ur. Only the variation of the root loci for the structure mode SM is shown in
the figure owing to the fact that the various modes are uncoupled.

For the rectangular cylinder with a side ratio of 0.5 or 0.25, the associated root loci in Regime
1 (demarcated in figure 5.28) lie in the right half of the complex frequency plane—the growth rate
Re(λ ) of the SM is positive and the response of the FIV system in this region corresponds to a
galloping instability. However, for the rectangular cylinder with a side ratio of 0.2, it is observed
from a perusal of the inset plot of figure 5.28 that the associated root loci crosses over from the
right half to the left half of the complex frequency plane at a specific value of Ur. This implies that
the unstable SM associated with galloping will suddenly collapse at this specific value of Ur (viz.,
where Re(λ ) crosses over from being positive-valued to being negative-valued)—a phenomenon
consistent with that reported by Zhao et al. [35]. Moreover, for the rectangular cylinder with a
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side ratio of 0.1, the associated root loci in Regime 1 lies in the left half of the complex frequency
plane, implying that the galloping instability is inhibited in this case. However, for this case, the
value of Ur in Regime 2 (demarcated in figure 5.28) where the root loci first crosses over from
the left half to the right half of the complex frequency plane is associated with the onset of the
flutter lock-in region. Taken together, these results suggest that a rectangular cylinder having a
smaller side ratio results in a more stable FIV system at the larger values of Ur beyond the lock-in
region and, at the same time, extends the range of values of Ur associated with the flutter lock-in
by decreasing the value of Ur associated with the onset of lock-in. The galloping phenomenon
will disappear when the side ratio of the rectangular cylinder is less than some critical threshold.

The Den Hartog stability criterion can be used to provide another perspective on the collapse
of galloping for a rectangular cylinder with a specific side ratio. To this purpose, figure 5.29
indicates that the Den Hartog function H(α) < 0 at α = 0◦ for the rectangular cylinder with
SR = 1 (square cylinder), 0.25, 0.2, and 0.1—which, in turn, implies that the derivative of the
lift coefficient CL with respect to α (viz., dCL(α)/dα) is negative for all these cases. As the side
ratio decreases from 1.0 to 0.1, the drag coefficient CD for the rectangular cylinder with a rotation
angle α = 1◦ increases slowly from a value of 1.122 to 1.226. However, the absolute value of
dCL(α)/dα decreases more rapidly owing to the reduction of the side length SL. As a result,
H(α) ≡ dCL(α)/dα +CD(α) increases through the sequence of values of −1.261, −0.068,
−0.015 and 0.075 as the side ratio varies through the sequence of values of 1, 0.25, 0.2 and
0.1, respectively. It is noted that the negative damping (implied by a negative value for H(α))
disappears when the side ratio of the rectangular cylinder decreases below some critical value.
This critical value depends on the competition between the gradient of the lift coefficient with
respect to the rotation angle and the drag coefficient, the latter two quantities of which determine
the sign of the Den Hartog stability function.
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Figure 5.29: The lift CL and drag CD coefficients for the base flow past an elastically-mounted
rectangular cylinder at Re = 150. The cylinder is oriented relative to the incident wind direction
with a rotation angle α = −1◦, 0◦ and 1◦. The Den Hartog function H(α) is provided for a
rotation angle of α = 0◦.

126



5.7 Effect of after-body on hard- and soft-galloping

The FOM/CFD simulations of the flow past an elastically-mounted forward isosceles-triangular
body at (Re,m∗) = (120,10) (cf. figure 5.17) confirmed the presence of hard-galloping (viz., the
galloping here cannot be initiated from a state of rest where there is no initial displacement
and/or initial velocity). In order to further investigate the effect of the after-body on the gal-
loping response, we conducted FOM/CFD simulations of the flow past a forward and backward
elastically-mounted D-section body at (Re,m∗) = (120,10), the results of which will be used
to compare with those obtained from the flow past an elastically-mounted forward isosceles-
triangular body.

An examination of figure 5.30(a) shows that for Ur = 5 and 7, the backward elastically-
supported D-section body is in the lock-in region—and, as well, the body does not exhibit either
hard- or soft-galloping at Ur = 14. In marked contrast, the forward elastically-supported D-
section body at Ur = 14 and 25 shown in figure 5.30(b) clearly exhibits a galloping instability—
and, more specifically, soft-galloping in contradistinction to the forward elastically-supported
isosceles-triangular body which, as we have mentioned earlier, exhibits hard-galloping. It is
noteworthy that the type of galloping that occurs appears to be related to the geometrical shape
of the after-body, with a rounded after-body being more likely to initiate soft-galloping.

0 100 200 300 400 500 600 700
-0.5

0

0.5

y/
D

0 100 200 300 400 500 600 700
Time (s)

-0.5

0

0.5

C
L

5 1425U
r
 =

y
 max

/D =

7
0.540.031 0.075 0.035

(a) Backward

0 200 400 600 800 1000 1200
-5

0

5

y/
D

0 200 400 600 800 1000 1200
Time (s)

-1

0

1

C
L

251425U
r
 =

y
 max

/D =
7

4.39 1.54 2.87 4.27

(b) Forward

Figure 5.30: Time series of the normalized transverse displacement y/D and the lift coefficient CL
obtained for a FIV system consisting of the flow past a (a) backward and (b) forward elastically-
mounted D-section body at (Re,m∗) = (120,10). For each of these two orientations of the body,
the reduced velocity Ur is changed (abruptly) in time in accordance to the sequence of values
shown along the top of each panel.

The backward and forward elastically-supported D-section body at Ur = 7 shown in fig-
ures 5.30(a) and (b), respectively, correspond to the frequency lock-in region (frequency syn-
chronization of the vortex-shedding frequency and the structural natural frequency). In this
lock-in region, the temporal fluctuation characteristics of the lift coefficient CL for the backward
D-section body are significantly different than those of the forward D-section body. These differ-
ences in the fluctuation characteristics of CL have also been observed for the isosceles-triangular
body in the forward and backward orientations, which is evident from a careful examination of
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figures 5.16 and 5.17. Finally, note that as Ur increases from 7 to 14 and, finally, to 25 in fig-
ure 5.30(b), the normalized maximum transverse displacement ymax/D increases monotonically;
in contradistinction, the maximum amplitude of the lift coefficient CL does not exhibit such a
monotonic increase.

The power spectra of the time series data of the transverse displacement y and the lift coef-
ficient CL, shown in figure 5.30 for various values of the reduced velocity Ur, have been com-
puted and summarized in figure 5.31. For the backward D-section body in the lock-in region
at Ur = 5 and in the desynchronization branch of the response at Ur = 14 and 25, it is seen
from figure 5.31(a) that the power spectra of y and CL have a dominant peak at a frequency of
0.185 Hz (lock-in range) and at 0.19 Hz (desynchronization regime) which correspond, respec-
tively, to the structural natural frequency and the vortex-shedding frequency of the stationary
backward D-section body at Re = 120. For the forward D-section body at the values of Ur shown
in figure 5.31(b), the power spectra for the transverse displacement y exhibit a single peak at a
non-dimensional frequency equal to U−1

r (again, we remind the reader that owing to the fact that
D/U0 = 1 s, the non-dimensional frequency is equal in magnitude to the dimensional frequen-
cy). To place this in perspective, we note that the vortex-shedding frequency for the stationary
forward D-section body is 0.17 Hz at Re = 120. As a result, the structural natural frequency at
Ur = 7 is very close in value to the vortex-shedding frequency of the stationary body, so there is a
frequency synchronization of the vortex-shedding frequency and the structural natural frequency
in this case (as is evident on examination of the power spectrum of CL in figure 5.31(b) for Ur = 7
which exhibits a dominant peak at the frequency corresponding to the vortex-shedding frequency
(approximately or better) as well as a secondary peak at a frequency of 0.42 Hz). Moreover, at
Ur = 14 (or, equivalently, at Fs = 0.071), the power spectrum of the lift coefficient CL for the
forward D-section body is rather complex, exhibiting multiple peaks at a number of different
frequencies, including a weak peak at a frequency of 0.071 Hz. Finally, we note that the power
spectrum of CL for the forward D-section body at Ur = 25 contains multiple peaks, including a
peak at a frequency of 0.17 Hz (vortex-shedding frequency for the stationary forward D-section
body owing to the fact that the low-frequency galloping can no longer synchronize in frequency
with the vortex-shedding dynamics).

5.8 Effect of Reynolds number and mass ratio on galloping

As the Reynolds number Re is increased, the growth rate of the structure and wake modes is
amplified and there is a stronger coupling between these modes. Furthermore, the mass ratio m∗

has an important effect on the response of a FIV system. In this section, we will use FOM/CFD
simulations and ROM/ERA to investigate the effect of Re and m∗ on the characteristics of gal-
loping in the flow past an elastically-mounted square cylinder and an isosceles-triangular body.

5.8.1 Square cylinder

Figure 5.32 displays the root loci obtained using ROM/ERA for a FIV system consisting
of the flow past an elastically-mounted square cylinder for a number of different values of the
Reynolds number Re ranging from 20 to 180, inclusive, with m∗ = 10. The characteristics of the
modes for this case are summarized in figure 5.33. For Re < 100, the growth/decay rate Re(λ )
of the structure mode is negative for the entire range of values of the reduced velocity (viz.,
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Figure 5.31: Power spectrum of the transverse displacements y and lift coefficients CL at different
values of the reduced velocity Ur for a flow past a (a) backward and (b) forward elastically-
mounted D-section body at (Re,m∗) = (120,10).

the root loci lie entirely in the left half of the complex frequency plane). In this case, the square
cylinder will not exhibit galloping. More specifically, the modes are uncoupled (decoupled modal
condition) for Re = 20—the wake mode is stable implying that there is no vortex shedding from
the square cylinder. At Re = 40, the structure and the first wake mode are coupled and, as well,
the wake mode is stable. At Re = 60 and 80, the FIV system corresponds to a decoupled modal
condition, but the wake mode is unstable. At Re = 100, the root loci for a certain range of values
of Ur lie along the imaginary axis of the complex frequency plane (viz., along Re(λ ) = 0) as
seen clearly in the inset plot of figure 5.32(a). Here, the structure mode is at the tipping point
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Figure 5.32: Root loci for a FIV system consisting of the flow past an elastically-mounted square
cylinder for (a) 20 ≤ Re ≤ 120 and (b) 140 ≤ Re ≤ 180 with m∗ = 10. The arrows point in the
direction of increasing Ur along the root loci. The root loci were obtained using a ROM/ERA of
the FIV system.
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Figure 5.33: A summary of the the modal characteristics of a FIV system (obtained using
ROM/ERA) consisting of the flow past an elastically-mounted square cylinder at various val-
ues of the Reynolds number Re ranging from 20 to 180, inclusive, with m∗ = 10.

between stability and instability and galloping is about to take place in the FIV system. For
Re > 100, the root loci for the structure mode lies in the right half of the complex frequency
plane for a certain range of values of Ur, implying the presence of galloping in the response of
the FIV system. Furthermore, an increasing Re leads to a stronger interaction between the modes
which encompass specific behaviours such as a decoupled modal condition at Re = 120 and 140,
a coupled modal condition involving the structure and second wake modes at Re = 160 and,
finally, a coupled modal condition involving the structure and the first and second wake modes at
Re = 180 (cf. figure 5.32(b)). Taken together, these collective results show that an increase in the
Reynolds number is associated generally with an increase in the degree of instability (viz., larger
growth rates) of the modes on the one hand and a greater interaction between the structure and
wake modes on the other hand (leading to ever more complex couplings between these various
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modes).

Figure 5.34(a) displays the root loci for a FIV system consisting of the flow past an elastically-
mounted square cylinder at Re = 140 for m∗= 5, 10, and 50. We note that the structure mode SM
is not coupled to any of wake modes and that the first wake mode designated as WMI collapses
to a single point in the complex frequency plane (approximately or better). The two modes SM
and WMII are closer to one another in the complex frequency plane at m∗ = 5 than at m∗ = 50
implying that a smaller mass ratio is associated with a stronger interaction between these two
modes. Interestingly, the trajectories of the root loci for m∗ = 5, 10, and 50 all intersect the
imaginary or vertical axis (Re(λ ) = 0) of the complex frequency plane at exactly the same lo-
cation: namely, at the location Im(λ ) = 0.616. This may be purely coincidental—indeed, other
investigators [12, 15] have also noted this seeming coincidence.
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Figure 5.34: (a) The root loci and (b) the variation of the growth/decay rate Re(λ ) and eigen-
frequency Im(λ ) as a function of Fs for a FIV system consisting of the flow past an elastically-
mounted square cylinder for m∗ = 5, 10 and 50 at Re = 140. The root loci were obtained using a
ROM/ERA of the FIV system. Only the structure mode is shown in (b).

The real and imaginary parts of the eigenvalue associated with the SM for a FIV system
consisting of the flow past an elastically-mounted square cylinder are plotted in figure 5.34(b) as
a function of Fs. Firstly, the value of Fs (or, Ur) where Re(λ ) = 0 (see top panel of figure 5.34(b))
corresponds to that value of Fs (or, Ur) associated with the onset of galloping in the FIV system.
Note that the onset value of Fs (or, Ur) for galloping decreases (or, increases since Ur = F−1

s ) as
the mass ratio m∗ increases. In other words, an elastically-mounted square cylinder with a smaller
value of m∗ will exhibit galloping at a lower value of the reduced velocity Ur. Interestingly, the
value of the eigenfrequency Im(λ )/2π associated with the structure mode at the onset value of
Ur (viz., the value of the reduced velocity at which the FIV system first becomes unstable) is
constant with m∗ as is evident on a careful examination of figure 5.34(b).
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5.8.2 Isosceles-triangular body

-0.1 -0.05 0 0.05 0.1 0.15
Re(6)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Im
(6

)

m* = 10
m* = 60

Figure 5.35: Root loci for a FIV system consisting of the flow past an elastically-mounted
isosceles-triangular body in the forward orientation for m∗ = 10 and 60 at Re = 60. The root
loci were obtained using a ROM/ERA of the FIV system.
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Figure 5.36: The variation of the growth/decay rate Re(λ ) and the eigenfrequency Im(λ )/2π as
a function of the reduced natural frequency Fs for a FIV system consisting of the flow past an
elastically-mounted isosceles-triangular body in the forward orientation for (a) m∗ = 10 and (b)
m∗ = 60 at Re = 60. The corresponding root loci for this case are displayed in figure 5.35.

In this sub-section, we investigate the effects of the mass ratio m∗ on the response of a FIV
system consisting of the flow past an elastically-mounted isosceles-triangular body in the forward
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orientation at Re = 60. Figure 5.35 displays the root loci for this FIV system for two values of
m∗: namely, m∗ = 10 and 60. To disentangle this information, figures 5.36(a) and (b) exhibit
the growth/decay rate Re(λ ) and the eigenfrequency Im(λ )/2π as a function of the reduced
structural frequency Fs for m∗ = 10 and 60, respectively (obtained from the complex eigenvalues
extracted from the ROM/ERA for the FIV system). The root loci for the FIV system shown in
figure 5.35 suggest the modes associated with the response are coupled and uncoupled for m∗ =
10 and 60, respectively. This suggests that for the forward isosceles-triangular body, the modes
in the response of the FIV system are more strongly coupled (and, hence, interact more strongly
with one another) at the smaller value of m∗. The result raises the following question—does
the stronger interaction between the modes at the smaller value of the mass ratio m∗ influence
the amplitude of the structural vibrations and alter the range of values of Ur associated with the
structural instability?
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Figure 5.37: Time series of the normalized transverse displacement y/D obtained for a FIV
system consisting of the flow past an elastically-mounted isosceles-triangular body in the forward
orientation at (a) (Re,m∗) = (60,10) and (b) (Re,m∗) = (60,60). For each case, the reduced
velocity Ur is changed (abruptly) in time in accordance to the sequence of values shown along
the top of each panel: namely, Ur varies from 7 to 14 to 25 and, finally, to 50.

To address this question, FOM/CFD simulations of the flow past an elastically-mounted
isosceles-triangular body in the forward orientation were conducted for two values of the mass
ratio: namely, for m∗ = 10 and 60. For these two cases, the reduced velocity Ur is changed
(abruptly) at selected change points in time in accordance to the following sequence: Ur = 7,
14, 25, and 50 in that order. The time series of the normalized transverse displacement y/D fol-
lowing from these two simulations are displayed in figure 5.37. It is noted that for m∗ = 10, the
normalized maximum transverse displacement ymax/D was 1.009, 3.692, 6.418, and 12.685 for
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Figure 5.38: Time series of the normalized transverse displacement y/D obtained for a FIV sys-
tem consisting of the flow past an elastically-mounted isosceles-trapezoidal body in the forward
orientation at (a) (Re,m∗,Ur) = (60,10,4) and (b) (Re,m∗,Ur) = (60,60,4).

Ur = 7, 14, 25, and 50, respectively. Similarly, for m∗ = 60, the normalized maximum transverse
displacement ymax/D was 1.341, 2.818, 4.798, and 9.250 for Ur = 7, 14, 25, and 50, respectively.
A comparison of these two cases shows that in the galloping regime, ymax/D at m∗ = 10 is 31%,
33% and 37% larger for Ur = 14, 25 and 50, respectively, than that at m∗ = 60. Moreover, in
the frequency lock-in regime at Ur = 7, ymax/D at m∗ = 60 is 33% larger than that at m∗ = 10.
Consequently, a smaller mass ratio results in oscillations with reduced amplitude in the lock-in
region and with increased amplitude in the galloping region, all other factors (e.g., Reynolds
number, reduced velocity) being equal.

A careful examination of figures 5.36(a) and (b) shows that the value of Fs (or, Ur = F−1
s )

associated with the onset of the flutter-induced lock-in for m∗ = 10 and 60 is 0.255 (Ur = 3.92)
and 0.220 (Ur = 4.54), respectively. In view of this, we conducted FOM/CFD simulations for
the flow past an elastically-mounted isosceles-triangular body in the forward orientation at Re =
60 for Ur = 4 (or, equivalently, for Fs = 0.25) and for m∗ = 10 and 60. The results of these
simulations are given in figure 5.38 which shows the time series of the normalized transverse
displacement y/D for m∗ = 10 and 60. It is noted that the normalized maximum transverse
displacement ymax/D is 0.30 and 0.01 for m∗= 10 and 60, respectively. The responses of the FIV
system shown here belong to the frequency lock-in and desynchronization regimes, respectively.
Hence, a smaller value of m∗ implies that structural instability is present for a wider range of
values of the reduced velocity Ur.

5.9 Chapter summary

In this chapter, detailed investigations were conducted to determine the mechanisms responsi-
ble for triggering galloping in a flow past an elastically-mounted body, with a particular emphasis
on the critical influence of the body geometry on the initiation of a galloping instability. Three
methodologies have been used to address this problem: namely, full-order model/computational
fluid dynamics simulations, application of linear stability analysis based on the use of a reduced-
order model obtained using the eigenvalue realization algorithm, and use of the Den Hartog
stability (galloping) criterion (based on a quasi-steady theory) that determines the condition for
aerodynamic instability in a single degree-of-freedom oscillator.

In the application of a linear stability analysis based on ROM/ERA to a FIV system, we
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show that for a system with coupled modes, singling out one of these coupled modes (e.g., either
WSMI or WSMII) and simply designating it to be the pure structure mode as done by Li et
al. [16] is not correct. In fact, doing so leads to a significant underestimation of the value of
Ur associated with the onset of galloping as has been reported by Li et al. [16]. Rather, it is
necessary to carefully identify which of the two coupled modes at any particular value of Ur
actually corresponds to the structure mode taking into account possible mode switching. The
structure mode so obtained is designated as SMc herein. The modal stability analysis needs to
be based on the trajectory of the root loci associated with SMc. Furthermore, the range of values
of Ur where the real part of SMc is positive is related to the flutter-induced lock-in region for the
smaller values of Ur (normally for Ur ≤ 7) and to the galloping regime for the larger values of Ur
(normally for Ur ≥ 10) in this range.

The vorticity field for the flow past an elastically-supported forward D-section body at (Re,m∗)=
(60,10) for a range of values of the reduced velocity Ur (obtained from FOM/CFD simulations)
was used to study how the wake patterns change as a function of Ur. For Ur ≤ 7, the FIV system
is in frequency lock-in and the vortex wake pattern is 2S (with each period alternatively shedding
a single vortex). For values of the reduced velocity in the range 12 ≤Ur ≤ 14, the vortex shed-
ding modes are stretched or elongated in the streamwise direction—a vortex wake pattern which
we have named E-2S (or, elongated-2S). For 16≤Ur ≤ 25 where the natural structural frequen-
cy is less than the vortex-shedding frequency, the vortex wake pattern changes into a so-called
D-2S (deformed-2S) mode consisting of a normal vortex (as in 2S) and an elongated vortex (as
in E-2S) with each period alternatively shedding a vortex of one type or the other. Finally, for
Ur ≥ 50, owing to the very large amplitude and very low frequency of the oscillations of the
galloping regime, the vortex-shedding pattern corresponds to a slow transverse displacement of
a 2S mode (as if the 2S vortex pattern were frozen into the flow at any particular time in this
spatial displacement).

A detailed study of the two key factors—the cross-section geometry of the body and the angle
of attack of the incident flow—was undertaken in this chapter. The key results are summarized
below.

A careful analysis of the response and structural stability of a FIV system consisting of the
flow past an elastically-supported D-section body (half-cylinder), isosceles-triangular body, and
isosceles-trapezoidal body (including a square cylinder) has been undertaken. The upshot of this
effort was that both the geometry of the body and the angle of attack has a significant effect on the
stability of the FIV system. More specifically, a number of FOM/CFD simulations demonstrated
conclusively that galloping appears when the flat face of the body is windward of the incident
flow and, alternatively, galloping disappears when the flat face of the body is leeward of the
incident flow. Moreover, linear stability analysis based on ROM/ERA showed that the structure
mode SMc is unstable for large values of the reduced velocity Ur when the flat face of the body
is windward. Finally, the Den Hartog stability criterion revealed that negative damping in the
FIV system, that arises from the occurrence of a negative gradient of the lift coefficient CL with
respect to the angle of attack α at α = 0◦ (when the oscillations are normal to the incident wind
direction), occurs when the flat face of the body is windward (providing the condition for an
aerodynamically unstable behavior of a single degree-of-freedom oscillator).

A novel result of the present work concerns the fact very small changes in the windward
interior angle of an isosceles-trapezoidal body can have a significant effect on the appearance
or disappearance of galloping. Using an isosceles-trapezoidal body with a windward interior
right angle (square cylinder) as the reference, it was found that even a small increase in the
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value of the windward interior angle (say, from 90◦ to 91◦) can lead to a complete suppression
of the galloping instability. Alternatively, a small decrease in the windward interior angle of
an isosceles-trapezoidal body to a value below 90◦ can result in a significant enhancement of
the galloping oscillations. These conclusions were supported by our FOM/CFD simulations and
linear stability analysis (and, more specifically, ROM/ERA).

We explain, for the first time, some experimental results reported by Zhao et al. [35] con-
cerning the collapse of galloping for a rectangular cylinder when the side ratio decreases below
a critical threshold value (between about 0.1 and 0.2). To this purpose, a linear stability analysis
showed that when the side ratio of a rectangular cylinder decreases to a value of 0.1, the growth
rate associated with the structure mode SMc at (Re,m∗) = (150,10) is positive for a certain
range of values of Ur and then becomes negative for a further increase in value of Ur outside this
range—this observed behavior of the the root loci trajectory associated with SMc is consistent
with the collapse of galloping reported by Zhao et al. [35] (viz., galloping was observed for a
certain range of values of Ur and then collapses for a further increase in the value of Ur). This
analysis is supported by the Den Hartog stability criterion—as the side ratio of the rectangu-
lar cylinder is decreased the negative damping disappears when the side ratio is reduced below
some critical value (and, as a result, galloping disappears). The disappearance of the negative
damping here occurs when the magnitude of the slope of the lift coefficient dCL(α)/dα (which
is negative) is reduced to the point where it becomes less than the drag coefficient CD(α).

It was found that a FIV system consisting of the flow past a forward D-section body and an
isosceles-triangular body at (Re,m∗) = (120,10) exhibit soft- and hard-galloping, respectively.
The presence of a curved after-body appears to provoke soft-galloping and this seems to be
related to the presence of separation points arising in the motion of the shear layer on the body
surface. Moreover, the manifestation of hard-galloping for certain body geometries requires a
sufficiently large initial displacement of the body—large enough so that it can extract sufficient
energy from the surrounding fluid to excite galloping (aided by the negative damping in the initial
vibrational cycles).

The effects of the Reynolds number Re and the mass ratio m∗ on the characteristics of gal-
loping in the flow past an elastically-supported square cylinder and isosceles-triangular body
was studied in this chapter. The results of the linear stability analysis suggest that increasing
the Reynolds number and decreasing the mass ratio tends to enhance the coupling between the
structure and wake modes and to increase the range of values of the reduced velocity Ur where
the structure mode SMc exhibits a positive growth rate. Furthermore, a smaller value of m∗ re-
sults in oscillations with decreased amplitude in the frequency lock-in region and with increased
amplitude in the galloping region, all other factors (Reynolds number, reduced velocity) being
equal.

The synthesis of the results from FOM/CFD simulations, linear stability analysis (ROM/ERA)
and application of the Den Hartog stability criterion can provide deeper insights in the mecha-
nisms underlying flow-induced vibrations. For example linear stability analysis (ROM/ERA) can
be usefully applied to study the mechanisms responsible for the collapse of the galloping insta-
bility in an elastically-mounted rectangular cylinder, but cannot be used to determine whether a
bluff body is susceptible to either soft- and hard-galloping. Quasi-steady stability analysis can
be applied to particular structures to determine whether they will be subject to an aerodynami-
cally unstable behaviour (albeit under the major limitation that this analysis is valid only for an
angle of attack of α = 0◦). However, quasi-steady theory cannot be used to determine the type
of galloping that a structure may exhibit or the influence of small structural changes in the cross-
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sectional geometry (e.g., windward interior angle) on the FIV response. The latter can only be
ascertained using FOM/CFD simulations.

From a comparison of the FIV response for the flow past an elastically-supported half-
cylinder, isosceles-triangular body and isosceles-trapezoidal body with various values for the
windward interior angle, it is noted that a contraction towards the after-body will widen struc-
tural instability to smaller values of Ur (to approximately 4 or 5), allowing the existence of
a flutter lock-in region. Furthermore, the contraction of the isosceles-trapezoidal body in the
streamwise direction is associated with the presence of a galloping instability. If we combine
these observations with some recent work conducted by Bukka et al. [134] for the design of
passive FIV suppression devices, we hypothesize that a body with a cross-sectional geometry
that is contractive in the streamwise direction will tend to provoke galloping.
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Chapter 6

3-D linear stability analysis of FIV system
with spanwise shear inflow

The presented motivations in this thesis are correlated to the application of the FIV phe-
nomenon in energy harvesting devices such as bladeless wind turbines. Additionally, a vertical
bladeless wind turbine will often encounter a shear situation in the vertical direction of the in-
cident flow. As a consequence, the FIV system with spanwise shear inflow is valuable to be
investigated. As mentioned by the Hollenbach et al. and Sanders [159, 160], the traditional CFD
method, as one full-order model (FOM), has no ability to provide physical insight into the gen-
eration of flow-induced vibrations including the lock-in behavior. Moreover, with respect to the
FIV study using a non-uniform velocity as the incident flow velocity, the necessary 3-D compu-
tation using FOM/CFD is significantly time-consuming and yet unable to expose the underlying
modal situation.

Compared with the previous 2-D LSA works mentioned above, to our knowledge there are
few precedents for the using 3-D LSA for the study of FIV in the past. Chizfahm and Jaiman
[120] obtained a ROM for the fluid dynamics of a sphere at Re = 300 using the eigensystem re-
alization algorithm (ERA) and constructed the associated coupled FSI model to study the effects
of the near-wake jet (attached to the downstream side of the sphere) on the VIV response. The
construction process of the fluid ROM, including the obtainment of the base flow for a sphere
and the dynamic response (or, lift coefficients) when subjected to an impulse, is performed in the
3-D computational domain. The results show that the direct 3-D LSA is capable of capturing the
effect of the near-wake jet on the FIV response in terms of trend, but cannot predict the lock-in
range very accurately.

The following work herein also encounters such errors in the direct 3-D LSA of the shear
flow-induced vibration of a rigid cylinder. Therefore, in addition to carrying out direct 3-D LSA,
a novel/original LSA methodology is proposed in this chapter—the rigid cylindrical structure
is segmented into several elements in the spanwise direction, and the aerodynamic characteris-
tics of each element are simplified into 2-D situations with uniform inflow. ERA identification
is conducted for each element to provide the separate 2-D fluid ROM, and the integral fluid
ROM for the 3-D cylinder with shear inflow is obtained via the superposition of all 2-D fluid
reduced-order models (ROMs). Then, the LSA could be achieved via the coupling of the integral
fluid ROM and the structural equation. This differential idea of partitioning a slender structure
(with a relatively large length-to-chord ratio) into small elements and then superimposing the
dynamical features of each small element is similar to the Blade-Element-Momentum (BEM)
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Figure 6.1: Diagram of the physical configuration for the flow-induced vibration of a circular
cylinder with inflow sheared in spanwise (z) direction. Reynolds number Re increases linearly in
positive z (spanwise) direction. Re−5D = U(−5D)D/ν = 25, Re0 = U(0)D/ν = 35, and Re5D =
U(5D)D/ν = 45.

theory [163, 164, 165], which is a mature concept frequently applied in the research of wind
turbines. The detailed information of the proposed methodology will be introduced later in this
chapter. In addition, before performing direct 3-D and superimposed 2-D LSA, present work
performs detailed 3-D calculations based on FOM/CFD and systematically analyzes the lock-in
range, spectrum features, wake response, etc. Although the determination of the lock-in bound-
ary via FOM/CFD (which involves a large number of calculations corresponding to different
reduced velocity Ur cases) is very time-consuming, it could provide a detailed understanding of
the lock-in behavior of the FIV system being studied and also establish a credible validation for
the subsequent LSA analysis.

This chapter is arranged as follows: Section 6.1 presents the problem to be studied. From
section 6.2 to 6.3, the detailed FIV responses including structural amplitude, oscillation frequen-
cy, lock-in scope, wake pattern, etc. are obtained using FOM calculation and discussed in detail.
In section 6.4 and 6.5, the direct 3-D and superimposed 2-D LSA are conducted, with the cor-
responding results compared and validated with the FOM results. The theory of the data-driven
stability analysis via the superposition of 2-D ROMs (SROM) is also explained.

6.1 Problem definition

Fig. 6.1 displays the configuration of one circular cylinder elastically mounted on a linear
spring-damping unit and submerged in spanwise shear inflow. The spanwise length is set to be
L = 10D, where D is the diameter of the circular cylinder. It has been introduced above that
the lock-in behavior of the FIV system with Re higher than the critical Reynolds number Recr
will involve the resonance pattern. Due to the fact that the present work focuses on the flutter
pattern of flow-induced vibration, the Reynolds number is limited to a value below 45 because
the lowest Re for flow past a stationary circular cylinder that can generate a vortex street is Recr =
46.8 [232, 233, 234]. Meanwhile, the minimum Re for the appearance of the structural instability
of an elastically-supported circular cylinder is 18 [156]. Considering the points above, the range
of the Reynolds number along the spanwise (z) direction of the circular cylinder is set to be
(25, 45) for the incident flow used in this study. More specifically, the incident flow velocity
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Figure 6.2: Size and boundary conditions of the 3-D computational domain for the configuration
of a circular cylinder elastically mounted by linear spring in a spanwise shear flow.

U(z) (viz., = Ux(z)) is linearly proportional to the location along the cylinder’s length in the z
direction, leading to Re−5D = U(−5D)D/ν = 25, Re0 = U(0)D/ν = 35, and Re5D = U(5D)D/ν

= 45. In particular, U(0) (viz., the velocity of incident flow at z = 0) is taken to define the
reference velocity U0 in present study. The mass ratio m∗ and structural damping coefficient ζ

is maintained constant at 10 and 0 throughout the present work. The cylinder is constrained to
move in the transverse (y−) direction.

The computational domain and boundary condition for the three-dimensional (3-D) FOM/CFD
calculation of FIV response in the present work is shown in Fig. 6.2. The center of the elastically-
mounted circular cylinder is at the transversal centerline (y = 0), situated at 7D in x downstream
from the inlet boundary. The streamwise (x−) length, the cross-stream (y−) length, and the span-
wise (z−) length of the computational domain are 32D, 36D, and 10D, thus creating a transverse
length that is large enough to avoid any blockage effects. A zero-gradient streamwise velocity
boundary condition is applied at the lateral boundaries of the domain and a Neumann boundary
condition is imposed on the velocity at the outflow (outlet) boundary. A Dirichlet boundary con-
dition was prescribed for the incident flow velocity ~u = (Ux(z),0,0) where Ux(z) is the incident
streamwise flow speed varying in the spanwise (z−) direction according to the manner described
above. Symmetric boundary conditions are used in the two spanwise boundaries, consistent with
that used in the past FIV studies [154, 136], which also involved 3-D uniform and spanwise shear
inflows. The initial state of the cylinder’s motion are assigned to be y = 0, ẏ = 0 (viz., cylinder at
rest at t = 0).

The technique of overset mesh (implemented in OpenFOAM [202]) is applied in the present
work with the definition of a large background mesh domain to allow sufficient transverse range
for the elastically-supported cylinder to move in the transverse direction. The mesh dependency
study is conducted via a 3-D simulation of shear flow (with Re ranging from 25 to 45 in the
spanwise direction) past a stationary circular cylinder. Four different mesh conditions with cells
number ranging from 1956765 to 2843865 are tested, and the corresponding root-mean-square
(rms) lift and drag coefficients (Crms

L and Crms
D ) are compared in table 6.1. It can be seen that the

relative differences of Crms
L and Crms

D between mesh 1 to mesh 2 are considerable, but decrease
to 0.25% and 0.11% as the mesh is refined to mesh 3 (fine) and mesh 4 (very fine). Mesh 3
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Mesh Cells number Crms
L Crms

D
1 1956765 0.001614 1.541
2 2245860 0.001752 1.654
3 2695420 0.001976 1.778
4 2843865 0.001981 1.780

Table 6.1: Aerodynamic coefficients (root-mean-square lift and drag coefficients) of shear flow
past stationary circular cylinder with Re ranging from 25 to 45 for different mesh conditions.

is adopted in the present work to achieve the best balance of calculation time and accuracy.
Fig. 6.3a and 6.3b display the overview of the hybrid overset mesh and background mesh used
in the present study, with the expanded/close-up views of mesh in the immediate vicinity of the
circular cylinder shown in Fig. 6.3c.

6.2 Overview of response

This section will provide an overview of the fluid-solid response using a systematic CFD/FOM
calculation for one elastically-mounted circular cylinder submerged in a spanwise shear flow with
the configuration introduced above. The behavior of the maximum amplitude of transverse dis-
placements ymax/D due to variations in the reduced velocity Ur is shown in Fig. 6.4 (a). First, it
can be observed that ymax/D exhibits a sudden increase from 0.0002 at Ur = 5.6 to 0.2705 at Ur =
5.7. Additionally, ymax/D is 0.1046 and 0.0031 at Ur = 9.4 and 9.5, respectively. Based on these
data points, the lock-in range which exhibits amplified structural amplitudes (viz., ymax/D >
0.1) is determined to be Ur ∈ (5.6, 9.5), which is denoted with a red background in all four
sub-figures of Fig. 6.4. More precisely, ymax/D reaches the largest value at Ur = 6.2, and then
gradually decreases in the lock-in range.

Figure 6.4 (b) indicates the variation of the root mean square (rms) value of the lift coeffi-
cient CL as a function of reduced velocity Ur. Combined with the other researchers’ observations
[12, 15], it is asserted that Crms

L would be amplified in the flutter regime and suppressed in the
resonance regime compared to that of the desynchronization regime (or, the situation of flow past
a stationary cylinder). More specifically, for a system with Re above Recr, the FIV response will
transition through desynchronization, flutter lock-in, resonance lock-in, and finally desynchro-
nization again in sequence as Ur is increased. The accompanied Crms

L suddenly increases to the
largest value at the beginning of flutter and then gradually decreases to the lowest value at the
end of resonance. In terms of the present configuration with 3-D shear flow, the overall Re are
below the critical Re and consequently the flutter pattern dominates the lock-in mechanism. The
corresponding behavior is seen where Crms

L suddenly increases to the largest value at the start
of the flutter and then gradually drops to a value close to that of a flow past stationary units.
This feature is also reported by the 2-D FIV study of a circular cylinder at subcritical Reynolds
numbers [155].

Since the wake field is stable at a subcritical Reynolds number outside the lock-in range (i.e.,
the structural amplitude is negligible), there is no external force excitation from the fluid dynam-
ics, meaning no forced-vibration would appear. Therefore, structural vibrations are completely
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(a) (b)

(c)

Figure 6.3: The fine mesh (mesh 3) used for the 3-D simulation of a flow past a circular cylinder:
(a) the translucent view showing the background and an overset mesh surrounding the circular
cylinder; (b) the background mesh; and, (c) overset mesh and expanded view of the mesh in the
immediate vicinity of the walls of the circular cylinder.

dominated by the structural natural frequency, as can be seen in Figure 6.4 (c) in which the varia-
tion of foscD/U0 is accompanied by the dashed line representing ‘Fs = 1/Ur’ in the lock-in range.
This frequency response behavior is also observed in the 2-D FIV study of a circular cylinder at
(Re,m∗) = (40, 10) [14].

Fig. 6.4 (d) displays the change of the phase differences θ(◦) between the real-time fluctua-
tion of displacements and lift coefficients with increasing Ur. Indeed, the equilibrium point of the
fluctuation of y/D or CL is not at zero during the FIV response for certain values of Ur. As a con-
sequence, it is necessary to calculate the phase difference after subtracting its average value (or,
the value of the equilibrium point) from the time histories when calculating the phase difference
between displacements and lift coefficients. It is evident that the phase difference θ immediately
decays to almost 0◦ as lock-in behavior appears and maintains this constant level until the right
boundary of the lock-in range. Based on past FIV investigations of the circular cylinder where
Re is greater than Recr [15, 14, 244], the Ur of the point at which phase difference jumps to a
different level and the transition point between the resonance and flutter patterns are found to
almost coincide with each other. In other words, the phase difference θ stabilizes at almost ex-
actly 0◦ and 180◦ in flutter and resonance lock-in, respectively. The present results demonstrate
agreement with this relationship since it is evident that the phase difference θ remains low (close
to 0◦) throughout the overall lock-in range, in which only the flutter pattern exists. Based on the
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Figure 6.4: (a) Normalized maximum structural amplitude ymax/D, (b) root mean square (rms)
value of lift coefficient Crms

L , (c) normalized structural oscillation frequency foscD/U0, and (d)
phase difference θ as a function of Ur. The lock-in region with amplified structural amplitude
(or, with ymax/D > 0.1) are delineated with red shading.

above analysis, it is also suggested here that the appearance of a jump in phase difference from
0◦ to 180◦ is more likely to occur in a FIV response that manifests the resonance pattern.

To further investigate the phase difference θ(◦) between the fluctuation of y and CL, several
representative cases with different Ur values are chosen to be examined in detail with the corre-
sponding real-time histories of y/D and CL plotted in Fig. 6.5. In terms of the FIV responses
at Ur = 5.6, the curves reveal that the equilibrium positions of the fluctuation of y/D and CL
are not actually at the zero value (or, y/D = CL = 0). In addition to the fluctuations caused by
structural vibrations, the dynamics coefficient is superimposed with small numerical fluctuation-
s, thus exhibiting unsmooth curves. While the structural amplitudes are amplified at Ur = 6.0, it
is observed that the curve of the fluctuating CL becomes smooth. In stark contrast, the structural
amplitude gradually decays as Ur increases to 7.0, 8.0, and 9.0. This is accompanied by the reap-
pearance of the sawtooth element in the CL curve and its increasing aggravation (with increasing
Ur). Furthermore, the small fluctuation amplitudes of y/D and CL at Ur = 9.5 reveal the reap-
pearance and magnification of the offset of the equilibrium point (away from 0). When the FIV
response completely jumps out of lock-in range at Ur = 10.0 and 10.5, the structural oscillation
completely disappears, as displayed in the last two panels of Fig. 6.5. In these two Ur cases,
CL remains almost constant at 1.9×10−3, and there is also no observable numerical fluctuations.
Overall, in all situations where there are visible oscillations in the structural amplitude, the phase
difference between it and the lift coefficient excited by structural oscillation remains close to 0◦

in the present work.

Figure 6.6a and 6.6b show for the cases of Ur = 6 and 9, respectively, the real-time history
(from initial state to final equilibrium state) of the transverse displacement, the corresponding
time-frequency spectrum, and the spectrum for a particular part of the time-series with stabilized
responses. It is noted here that the spectrum information of the amplitude response boxed within
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Figure 6.5: Time series of the instantaneous normalized structural amplitudes ymax/D and in-
stantaneous lift coefficients CL of FIV systems that have achieved the equilibrium state at Ur =
(a) 5.6, (b) 6.0, (c) 7.0, (d) 8.0, (e) 9.0, (f) 9.5, (g) 10.0, and (h) 10.5.

the red outlines in the first sub-panel is extracted and plotted on the third sub-panel. Firstly, a
comparison of the real-time history of transverse displacement (first sub-panel) between Ur =
6 and 9 reveals that the FIV responses at Ur = 9 requires more lagging time than that at Ur =
6. This feature will be explained in the following LSA analysis. Lagging time here refers to
the time it takes for an elastically supported cylinder to develop from a stationary state to an
equilibrium state of oscillation. It is further observed that in the early-stage of FIV response
the time-frequency spectrum (second sub-panel) of Ur = 6 and 9 both display the broadband
features. With the development of the FIV, an intense peak gradually appears in the spectrum
with the dominant frequency equal to the natural frequency. More specifically, as shown in the
spectrum (third sub-panel) in Figure 6.6a and 6.6b, the final dominant frequency of transverse
displacement for Ur = 6 and 9 are 0.155 Hz and 0.110 Hz, respectively. Additionally, although the
structural amplitude of the final response reaches a stable value, its spectrum characteristics still
do not exhibit the sharp contraction of the single-peak feature often seen in the FIV amplitude
response with uniform inflow. The spans/scopes of the corresponding spectral peaks for Ur = 6
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Figure 6.6: Time series of instantaneous normalized structural amplitudes ymax/D through the
overall FIV development (first panel), the corresponded time-frequency spectrum (second panel),
and power spectral density (PSD) of ymax/D at final equilibrium state (third panel) at Ur = (a) 6.0
and (b) 9.0. The data of the time series used for PSD analysis in the third panel is sourced from
the area delineated by the red-line box in the first panel.
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and 9 are (0.11, 0.19) Hz and (0.04, 0.18) Hz, respectively. It would be expected that the variation
of the incoming velocity of the shear flow could make the vortex-shedding mechanism highly
inconsistent in the spanwise direction while generating a pressure difference in the spanwise
direction, which consequently has an effect on the structural response during lock-in.
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Figure 6.7: The variation in vortex-shedding behavior manifested in spanwise direction at Ur
= 5.8: (a) view of the circular cylinder in x− z plane, (b) time series of the z−components of
vorticity along the span at (x,y) = (2D, 0), (c) frequency spectrum along the span corresponding
to the data series in (b), and (d) vortex-shedding frequency for uniform inflow past a stationary
circular cylinder at Reynolds number ranging from 25 to 45.

Although the displacement of each part of the rigid body is identical, its fluid characteristics
including vortex-shedding behavior vary in the spanwise direction as a result of shear inflow.
Figure 6.7 (a) shows the top view (perpendicular to the y-direction) of the circular cylinder.
Figure 6.7 (b,c) presents a selected time series of the z−component’s fluctuations of vorticity
at (x,y) = (2D, 0) and the corresponding power spectral density (PSD) along the spanwise (z−)
direction. It is seen in Fig. 6.7 (b) that the overall vortex-shedding behavior is very regular.
More specifically, along the positive z−direction which corresponds to an increasing Reynolds
number, the vorticity value has an increasing amplitude and the fluctuation of vorticity also shows
an incremental lag in phase. Moreover, as observed in Fig. 6.7 (c), the power of the frequency
peak becomes stronger due to the enhancement of the vortex strength. However, the peak value
of the vortex-shedding spectrum does not change much along the spanwise direction because the
vortex-shedding mechanism is locked by the large-amplitude vibrations of the rigid body. More
specifically, the spectrum indicates that the vortex-shedding frequency is about 0.171 Hz, which
is roughly the same as the structural natural frequency 0.172 Hz (= U/UrD = 0.1 (m/s)/(5.8·0.1
(m))). As a comparison/reference here, in Fig. 6.7 (d) we display the vortex-shedding frequency
for uniform inflow past a stationary circular cylinder at a corresponding subcritical Reynolds
number ranging from 25 to 45. The data in Figure 6.7 (d) are derived from a dimensionless
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fitting formulation/equation based on experimental results (describing the variation of Strouhal
number St with Reynolds number) [245]. It is noted that St, which changes based on a varied
inflow velocity, is converted into the vortex-shedding frequency shown here.

6.3 Wake pattern

Figure 6.8: Reynolds number Re(mean)x corresponding to the x−component of mean velocity
on the x− z plane at y = 0 when the FIV system reaches equilibrium state at Ur = 6.0.

Fig. 6.8 displays the x−component of the mean Reynolds number Re(mean)x on the slice
at y = 0 for Ur = 6, where Re(mean)x = U(mean)xD/ν and U(mean)x is the x−component of
mean velocity. Firstly, figure 6.8 shows that the Reynolds number range of the incoming flow
from the left is (25, 45). The incident flow reaches stagnation when it hits the left edge of the
slice of the cylinder, and the velocity drops rapidly to zero in the entire spanwise (z−) range. In
addition, the cylinder produces a recirculation area in the downstream region of x/D < 2. The
lengths in the streamline (x−) direction for this recirculation area do not differ substantially in
the spanwise (z−) direction. Furthermore, the Reynolds number gradually recovers to the level
of the incoming flow as the wake progresses further downstream.

Fig. 6.9 displays the three-dimensional translucent vorticity contour of the FIV response of
the circular cylinder at Ur = 5.6, 6.0, 9.0, and 9.5. Specifically, Ur = 5.6 and 9.5 correspond to the
left and right bounds of the lock-in range, and the corresponding maximum normalized structural
amplitudes ymax/D at the final equilibrium states are both smaller than 0.01. Therefore, at and
beyond these bounds the effect of structural oscillation on the wake flow becomes negligible
and the FIV response can be regarded as the same as that for a flow past a stationary cylinder.
Moreover, as introduced above, the Hopf-bifurcation would not appear at subcritical Reynolds
numbers for a circular cylinder. As a consequence, no visible vortex behavior is formed at
Ur = 5.6 and 9.5. In addition, since the incoming velocity gradually increases with the positive
z−direction due to the shear inflow, the streamwise distance from the right-end of the contour/iso-
surface at a certain value of the vorticity magnitude to the centerline of the cylinder gradually
increases in the positive z−direction. In other words, the vortex contour appears to extend more
downstream as z/D increases. In terms of Ur = 6.0 and 9.0 in Fig. 6.9b and 6.9c, the vortex is
detached from and shed by the wall surface in the wake as a result of the large-amplitude vibration
of the structure. A further perusal found that the vortex structure in the wake could be interpreted
as a vortex tube, with the tube’s centerline also skewed in the streamline (x−) direction as the
z−coordinate increases. More specifically, unlike the 2S-2P hybrid wake pattern discovered by
Techet et al. [246] in the 3-D wake study of the tapered cylinder oscillating in a uniform flow,
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(a) Ur = 5.6 (b) Ur = 6.0

(c) Ur = 9.0 (d) Ur = 9.5

Figure 6.9: Instantaneous iso-surfaces of magnitudes of vorticity downstream of the cylinder at
Ur = (a) 5.6, (b) 6.0, (c) 9.0, and (d) 9.5.

the wake flow calculated herein only exhibits a 2S pattern. Moreover, the FIV response at Ur =
6.0 with ymax/D = 0.319 displays a wider transverse (y−) width of the vortex-street than that of
Ur = 9.0 with ymax/D = 0.173.

Figure 6.10 displays the three-dimensional streamlines near the cylinder for Ur = 6.0, 7.0, 8.0,
and 9.0. Incidentally, the computational domain of the streamlines exhibited here is chosen to be
the fields of the overset meshes designed for this study, which was shown previously in Fig. 6.3c.
Firstly, the presence of the cylinder causes a low-pressure region to appear in the wake flow. The
velocity gradient of the shear flow in the spanwise direction in the vicinity and downstream of
the cylinder creates a pressure gradient in the z−direction, and this pressure gradient then leads
to the spanwise stream observable near the core of the main vortex area. Furthermore, at the
top boundary which is constrained with symmetric boundary conditions, the spanwise stream is
blocked and a vortex perpendicular to the cylinder is formed. These vortices affect and weaken
the spanwise vortices. Such observations are also reported by Zhao [154]. With more scrutiny,
it is found the flow along the spanwise streams is stronger near the main vortex core of the
cylindrical wake for Ur = 6 and 7 than for Ur = 8 and 9. This is because the maximum vibration
amplitudes corresponding to Ur = 6 and 7 are larger than those for Ur = 8 and 9.
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Figure 6.10: Instantaneous streamline around the circular cylinder at Ur = (a) 6.0, (b) 7.0, (c) 8.0,
and (d) 9.0.

Figure 6.11: The three-dimensional translucent contour of vorticity magnitudes of the base flow
for shear inflow past a stationary circular cylinder with Re ranging from 25 to 45.

6.4 Three-dimensional data-driven stability analysis

In this sub-section, the data-driven stability analysis of the FIV response of a circular cylinder
with shear inflow is directly undertaken within the 3-D domain. More specifically, the 3-D base
flow for spanwise shear flow past the cylinder is first obtained, and then one impulse (input) of
transverse (y) displacement is imposed on the cylinder body with the resulting dynamic response
of CL (output) resolved/predicted by FOM/CFD. The ERA identification technology is applied
to obtain the ROM of fluid dynamics in the 3-D domain based on the dynamic response of CL
(output). Then, the state-space form of the fluid ROM is coupled with the structural state-space
form to construct the coupled 3-D ROM for the FIV system as introduced in previous sub-section
introducing ERA method. Within the calculation of lift coefficients CL in the present work, we
note that the reference velocity is maintained as the mean value of inflow velocity and also equal
to U(0) at z = 0. Fig. 6.11 displays the vorticity contours of the base flow of the stationary
circular cylinder subjected to spanwise shear inflow. As a whole, the vorticity distribution of the
base flow is analogous to the contour of FIV response at Ur = 5.6 and 9.5 with tiny structural
amplitudes (cf. with figure 6.9), which is due to the fact that the flow Reynolds number remains
in the subcritical Reynolds number range throughout the entire computational domain.

The root loci of the two uncoupled modes SM and WM provided by the direct 3-D ROM of
FIV system at (Re,m∗) = ((25, 45), 10) is plotted in Fig. 6.12a. It is noted the trajectory of just one
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Figure 6.12: (a) The root loci and (b) the variation of the growth/decay rate Re(λ ) and eigen-
frequency Im(λ )/2π as a function of Ur for the studied FIV system. The structure mode SM is
demarcated with red symbols. The dotted line corresponds to the relationship f = Fs.

WM appears in the determined/chosen range of the complex coordinate system. Additionally,
this single WM is located in the stable left-half plane (Re(λ ) < 0). This is in agreement with
the physical fact that no vortex street is generated in this case. The growth rate Re(λ ) and
eigenfrequency Im(λ )/2π as a function of reduced velocity Ur is plotted in Fig. 6.12b. The
trajectory of SM is marked in red. A perusal of Fig. 6.12b indicates that the unstable regime of
the structural mode SM ranges from a Ur of 5.6 to 8.6. The Ur range for the unstable structural
mode (predicted by the data-driven stability analysis) or the lock-in phenomenon (predicted by
FOM/CFD) is referred to as Ũr, and by this notation Ũr (3-D ROM) = (5.6, 8.6). Comparing the
Ũr (3-D ROM) with Ũr (FOM) (∈ (5.6, 9.5)), it is found that the prediction of the left-boundary is
of excellent accuracy, whereas the right-boundaries show a significant difference. It is expected
that dynamic interactions in the spanwise (z−) direction would have nonlinear effects on the
ERA identification process, thus explaining the prediction flaws of the direct 3-D ROM observed
here.

6.5 Data-driven stability analysis via SROM

In advance of conducting a data-driven stability analysis via the novel superposition of 2-
D ROM (SROM) for a practical case, a simple example is presented herein to explain how to
superimpose 2-D ROMs for the purpose of analyzing an FIV system with a 3-D domain and shear
inflow. As presented in Fig. 6.13, the inflow velocity is defined with a smooth linear increase
from 0 to 2U0 along the z−axis (in the original configuration on the left), with a mean value of
velocity of U0 at z = 0. The span length of the circular cylinder is then divided into 3 identically
sized elements in the modified configuration shown on the right. Therefore the velocity ranges of
element 1, 2, and 3 are (0, U0/3), (U0/3, 2U0/3), and (2U0/3, U0), respectively. In this case each
element is simplified to be experiencing a uniform inflow velocity so that we can apply a 2-D
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Figure 6.13: Illustration of a simple superposition case: the procedure for dividing a circular
cylinder with linear shear inflow (with incident velocity ranging from 0 to 2U0) into three iden-
tically sized elements each subject to a uniform inflow along the spanwise direction.

calculation to resolve the corresponding domain. After the simplification, the inflow velocity for
element 2 is still U0, whereas the velocity of inflow for element 1 and 3 are determined based
on averaging the velocity at the element bounds to be U0/6 (= (0+U0/3)/2) and 5U0/6 (=
(2U0/3+U0)/2), respectively.

For each element in a 2-D situation, the ERA identification is undertaken and the correspond-
ing state-space sub-form is thus obtained as follows:

ẋr (t) = Ae
rxr (t)+Be

rur (t) ,
yr (t) =Ce

r xr (t)+De
rur (t) ,

(6.1)

with e = 1, 2, and 3 denoting element 1, 2, and 3, respectively. For this case (represented by the
right diagram in Fig. 6.13) in which the spanwise length along the z−axis is equally divided, the
weight of each element is equal, and consequently the overall system matrices are expressed as:

(Aa
r ,B

a
r ,C

a
r ,D

a
r ) = ∑

3
e=1

1
3(A

e
r,B

e
r,C

e
r ,D

e
r). (6.2)

However, if the ratio of the spanwise length of each element to the total spanwise length
is nonuniform across elements, the inner coefficient (1/3 in the above equation 6.2) of the sub-
system matrices should also be adjusted accordingly when superimposing. Moreover, it is em-
phasized again that the reference velocity for calculating CL in the structural formula should be
unique/fixed, so it is set as the mean value of the entire shear inflow U0 herein. As a consequence,
the reference velocity used for the calculation of CL is still U0 even for element 3 (which has an
inflow velocity of 5U0/6) and element 1 (which has an inflow velocity of U0/6) during the ERA
identification for flow dynamics.

The superposed system matrices (Aa
r ,B

a
r ,C

a
r ,D

a
r ) for the fluid dynamics (cf Eq. 6.2) are cou-

pled with the system matrices (As,Bs,Cs,Ds) for the structural dynamics (cf. Eqs 4.17) to yield
the system matrix Aa

rs of the simplified reduced-order coupled model for the FIV system with
3-D shear inflow:

Aa
rs ≡

[
As +qBsDa

rCs qBsCa
r

Ba
rCs Aa

r

]
. (6.3)

Then, the leading eigenvalues for Aa
rs are extracted for corresponding analysis using a methodol-

ogy similar to the one introduced in the previous sub-section. The mesh settings and associated
parameters for the attainment of individual 2-D ROMs for each element are identical to those
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used in our previous work [244].
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Figure 6.14: (a) The overall root loci and (b, c, d) the variation of the growth/decay rate Re(λ )
and eigenfrequency Im(λ )/2π as a function of Ur for the 2-D FIV system with uniform inflow
at Re = (b) 25, (c) 35, and (d) 45. In (b, c, d), the structure mode and wake mode are demarcated
using red and blue symbols, respectively.

Before performing the novel superposition of 2-D ROMs (SROM) to predict the 3-D VIV
response with spanwise shear inflow, the modal root loci for single 2-D ROMs with VIV at sep-
arate Re of 25, 35, and 45 are investigated. It is found, as expected, that applying 2-D ROM to
predict the lock-in range of VIV response with uniform inflow at subcritical Reynolds numbers
is quite accurate/credible. This has been demonstrated by previous chapters and other investiga-
tions [156, 14]. The overall root loci for 2-D ROM-based VIV at three Re values are displayed
in Fig. 6.14a. It is observed that the eigenvalue distribution at Re of 25 and 35 correspond to
the uncoupled modal situation and that at Re of 45 corresponds to the coupled modal situation.
Moreover, the wake modes for all three Re values experience the stable state with ReWM(λ )<0.
The real part Re(λ ) of eigenvalues as a function of Ur are re-plotted in Fig. 6.14b, 6.14c, and
6.14d, with structural mode SM or SMc delineated with red circle markers. The Ur ranges of the
positive ReSM/SMc(λ ) are (6.9, 9.8), (6.1, 9.9), and (5.8, 9.7) for Re at 25, 35, and 45, respec-
tively. The purpose of introducing the VIV response under a 2-D uniform flow here is to prove
that in the case of subcritical Reynolds numbers, the Ur lock-in range boundaries for different
Reynolds numbers are noticeably different. These considerable discrepancies thus establish a
baseline for highlighting the comparative accuracy of the following prediction using SROM.

For the initial attempt of SROM, we divide the structural body into identically sized cylin-
drical elements with each element subjected to a uniform 2-D incoming flow. This identical-size
division strategy is named SROM1 in the present work and is shown in Figure 6.15. For the
superpositions (a) and (b) in Fig. 6.15, the spanwise length of the circular cylinder is divided into
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Figure 6.15: Diagram showing the division of the cylinder column equally along the spanwise
direction into (a) 3 and (b) 5 elements for the superposition of 2-D ROMs (SROM1).
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Figure 6.16: The root loci, obtained by the SROM1 with (a) 3 and (b) 5 elements, for the studied
FIV system with spanwise shear inflow.

3 and 5 elements with identical lengths, in which Re values at each element are (25, 35, 45) and
(25, 30, 35, 40, 45), respectively. This lays out the two SROM1 cases that will be evaluated.

In accordance with the calculation results obtained using FOM/CFD, the response of the
FIV configuration studied in this chapter has one single uninterrupted lock-in interval, and the
Ur value corresponding to the left- and right-boundaries are 5.6 and 9.5 respectively. In other
words, the structural instability occurs in the continuous Ur interval without interruption. In
stark contrast, the root loci of SM in Fig. 6.16a moves to the positive plane then returns to the
negative plane twice with increasing Ur, which disagrees with the stability situation predicted
by the calculation of FOM/CFD. As the element number increases to 5, a continuous instability
interval of the structural mode emerges as shown in Fig. 6.16b.

The root loci of the 2-D superposition strategy with 5 identical elements (cf. with Fig. 6.16b)
is re-plotted in Fig. 6.17, in which the growth rate Re(λ ) and eigenfrequency Im(λ )/2π as a func-
tion of reduced velocity Ur are displayed. The trajectory of SM is marked with red. First, the
Im(λ )/2π for the two WM remain almost constant at around 0.15, and the variation of Im(λ )/2π
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Figure 6.17: The variation of the growth/decay rate Re(λ ) and eigenfrequency Im(λ )/2π as
a function of Ur, obtained using SROM1-5E, for the studied FIV system with spanwise shear
inflow. The structure mode and wake modes are demarcated with red and black symbols, respec-
tively, and the dotted line corresponds to the relationship f = 1/Ur.

for SM correlates with the dotted line ( f = Fs). This demonstrates that the eigenfrequencies of
SM and WM are correlated to reduced natural frequency and vortex-shedding frequency respec-
tively. It should be emphasized that vortex-shedding behavior refers to the wake pattern of the
FIV response herein, not the fluid dynamics for flow past a cylinder at stationary state due to the
fact that the wake mode is stable at Re < Recr here. Secondly, the Ur value of the left- and right-
boundaries for the range of structural instability are 5.4 and 8.5, respectively, still demonstrating
non-negligible errors compared to the results predicted by the FOM.

However, it is found after further analysis that the above element-division strategy consists
of flaws. The Reynolds numbers of the incoming flow at the two physical boundaries of the
circular cylinder in the spanwise direction are 25 and 45, respectively. With this in mind, the
length of the elements situated at both ends should be set to half of the length of the intermediate
elements when segmenting the cylinder if the Re corresponding to the two boundary elements
are predetermined as 25 and 45. When the cylinder is divided into n elements with the spanwise
length of the elements at both ends (e = 1, n) half that of the elements spanning the middle area
between them (1 < e < n), the resulting formulation becomes:

(Aa
r ,B

a
r ,C

a
r ,D

a
r ) = ∑e=1,n

1
2(n−1)(A

e
r,B

e
r,C

e
r ,D

e
r)+∑

n−1
e=2

1
n−1(A

e
r,B

e
r,C

e
r ,D

e
r). (6.4)

Based on this new proposition, the updated strategy, named SROM2 in the present work, for
the superposition of 2-D data-driven stability analysis will be evaluated (cf. with Fig. 6.18). This
type of division strategy continuously encodes the partition density of the cylinder with its asso-
ciated Reynolds number increment between adjacent elements set to 10 (coarse), 5 (medium), to
2.5 (fine), respectively.

The root loci of the VIV system obtained using SROM2 of the coarse (cf. with Fig. 6.18a)
and medium (cf. with Fig. 6.18b) discretization fineness are displayed in Fig. 6.19. As with the
case of SROM1 discretized into 3 identical elements (Fig. 6.16a), the 3-element case in SROM2
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Figure 6.18: Diagram showing division of the cylinder column with the spanwise length of the
two end elements set to half of the intermediate elements for the superposition of 2-D ROMs
(SROM2). The increment of Reynolds number in (a), (b), and (c) are 2.5 (fine division), 5
(medium division), and 10 (coarse division), respectively.

here (Fig. 6.19a) also predicts discontinuous instability intervals for the structural mode, showing
that such few elements prove too coarse to correctly capture the lock-in range. As the interval of
Re is reduced to 5 (or, for the case of SROM2-5E), a continuous range of structural instability
appears in Fig. 6.19b, and the associated equation for matrix superposition is converted to the
form:

(Aa
r ,B

a
r ,C

a
r ,D

a
r ) = ∑e=1,5

1
8(A

e
r,B

e
r,C

e
r ,D

e
r)+∑

4
e=2

1
4(A

e
r,B

e
r,C

e
r ,D

e
r). (6.5)

The root locus is replotted in Fig. 6.20, which describes the variation of Re(λ ) and Im(λ )/2π

with Ur. A perusal of the SM trajectory shows that the range of the positive growth rate Re(λ )
of SM starts from Ur = 5.5 and ends at Ur = 9.3. In comparison to the Ur interval (∈ (5.6, 9.5))
of flutter lock-in predicted by the FOM/CFD method, considerable errors are still found in the
results obtained using SROM2-5E, but the accuracy of the prediction via data-driven stability
analysis has already been greatly improved.

To further increase the prediction accuracy of present SROM2 analysis, the superposition
configuration in Fig. 6.18c is analyzed and the accompanying equation 6.2 is derived as:
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e
r). (6.6)

The eigenvalue distribution with a fine Re interval of 2.5 (SROM2-9E) is shown in Fig. 6.21.
Firstly, it is observed that there is only one dominating wake mode in Fig. 6.21a, which is in
line with the physical meaning (the reader is referred to the analysis presented for the direct 3-D
LSA). Furthermore, it was asserted in our past work [244] that the second dominant WM will
not appear until Re increases to 100 at laminar flow. There should be only one dominant WM at
a subcritical Re, which can also be observed in the modal situation (cf. with Fig. 6.12a) for the
3-D data-driven stability analysis presented in sub-section 6.4. Although the prediction of the
lock-in boundary via 3-D data-driven stability analysis is inaccurate, its modal physical insights
are still valuable and credible. Secondly, the growth rate Re(λ ) of SM (marked with red) in
Fig. 6.21b indicates that SROM2-9E (with a Re interval of 2.5) provides a prediction of lock-in
range with Ũr (SROM2-9E) ∈ (5.6, 9.5), where the growth rate Re(λ ) is 0 at these Ur bounds for
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Figure 6.19: The root loci, obtained using the SROM2 with (a) 3 and (b) 5 elements, for the FIV
system being studied with spanwise shear inflow.
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Figure 6.20: Growth/decay rate Re(λ ) and eigenfrequency Im(λ )/2π as a function of Ur, obtained
by SROM2-5E, for the FIV system with spanwise shear inflow being studied.

SM, demonstrating a high-precision agreement with the FOM predictions.

The FSI response at the left and right boundaries of the lock-in reflects the dynamics of the
system at the edge of stability. In an effort towards this objective, the structural amplitude time-
history for Ur = 5.6, 5.7, 9.4, and 9.5 are displayed in Fig. 6.22. The maximum amplitude ymax/D
for Ur = 5.6 and 9.5 are 0.00017 and 0.009, respectively, which proves that the structural state is
stable in those two cases and conforms to the fact that the growth rate Re(λ ) = 0 at Ur = 5.6 and
9.5. Based on the above evidence, it can be asserted that SROM2-9E here achieves a near-perfect
prediction accuracy in comparison with FOM/CFD results. Moreover, the amplitude responses
corresponding to the two lock-in endpoints both show a tendency to expand first and then con-
tract, and the equilibrium position of structural oscillation for Ur = 5.6 shifts from the origin
position (i.e.: y = 0). On the other hand, the ymax/D for Ur = 5.7 and 9.4 finally reaches 0.271
and 0.105, respectively, which are considerably large structural amplitudes that demonstrate the
FSI system belongs to the lock-in regime. A striking phenomenon is that the FSI system at
Ur=9.4 consumes considerable time (tU0/D > 1500) before reaching the final equilibrium state.
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Figure 6.21: (a) The root loci and (b) the variation of the growth/decay rate Re(λ ) and eigen-
frequency Im(λ )/2π as a function of Ur, obtained by SROM2-9E, for the FIV system being
studied.

Whether the lagging time of the FIV development implies some hidden physical meaning will
be investigated below.

Fig. 6.23 compares the the growth rate Re(λ ) and lagging time as a function of reduced veloc-
ity Ur. We note that only the FIV response belonging to the lock-in regime (or, with an unstable
structural mode) is displayed here. To begin, it could be seen that in the lock-in regime, the value
of the growth rate obtained by SROM and the value of lagging time obtained by FOM/CFD show
a clear inverse correlation. In the initial stage of FIV development, the dynamic characteristics of
FSI could be regarded as a linear relationship, and the expansion rate of the structural amplitude
will maintain a nearly constant value throughout this stage. The expansion rate of the amplitude
is the physical meaning of growth rate in linear stability analysis [247]. In the smaller sub-plots
of Fig. 6.22b and 6.22c, the time-history with a log scale of displacement y is presented, and it
is evident that the peak amplitude increases almost linearly with the time variation. It should be
emphasized that the linear relationship here is not perfect, because the three-dimensional shear-
ing inflow will pull the wake in the spanwise direction, which would have a certain impact on the
linear dynamics features in the initial stage of FIV development. Additionally, the SROM-based
LSA method divides the circular cylinder into several elements, which also introduces some sim-
plification/discretization errors. This linear feature is gradually replaced by nonlinear dynamic
characteristics with the enhanced body amplitude and the increasing complexity of the flow field,
and the structural response finally enters into the limit-cycle. As a consequence, the lagging time
is minimum around Ur = 6.2 and reaches a maximum value near the right boundary (Ur > 9) of
the lock-in range.

Since an ERA-based ROM is essentially a linear state-space model, under the same input of
displacement input h, the linear (superposition) relationship between the transfer matrices (Ãe

r ,
B̃e

r , C̃e
r , D̃e

r) of the sub-elements can be completely transplanted to the corresponding relationship
of its output (of CL) with no change, that is:

ya
r = ∑e=1,n

1
2(n−1)y

e
r +∑

n−1
e=2

1
n−1ye

r, (6.7)
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Figure 6.22: Time series of the normalized transverse displacement y/D for the studied FIV
system with spanwise shear inflow at Ur = (a) 5.6, (b) 5.7, (c) 9.4, and (d) 9.5 obtained using
FOM/CFD. The logarithmic scale is used for the zoomed-in subgraphs in (b, c).

where cylinder is divided into n elements and ya
r and ye

r satisfy:

xa
r (k+1) = Ãa

r xr (k)+ B̃a
r ur (k) , (6.8)

ya
r (k) = C̃a

r xr (k)+ D̃a
r ur (k) , (6.9)

xe
r (k+1) = Ãe

rxr (k)+ B̃e
rur (k) , (6.10)

ye
r (k) = C̃e

r xr (k)+ D̃e
rur (k) , (6.11)

with (Ãa,e
r , B̃a,e

r , C̃a,e
r , D̃a,e

r ) as the discrete-time state-space form converted from (Aa,e
r , Ba,e

r , Ca,e
r ,

Da,e
r ).

The above information indicates that the transfer matrix affects the distribution of eigenroots,
and the value of the transfer matrix is determined by the CL response obtained via FOM/CFD.
On the basis of the linear relationship described above, we can instead directly compare ya

r (in
equation 6.7) in place of the CL responses of different ROM strategies, and the associated dis-
crepancy between the SROM2-9E and other strategies are also analyzed herein. Fig. 6.24 shows
the overall response of lift coefficients CL (or, the output ya

r ) obtained using direct 3D-ROM and
SROM2. Firstly, in the subplot of Fig. 6.24, the first 10-steps of the response of lift coefficients
are presented and no obvious discrepancies of value could be observed among different ROM
strategies. Thus, it would be expected that the value of the initial CL response when subjected
to the impulse has no decisive influence on the Ur value of the lock-in boundaries in this case.
More specifically, except for the significantly larger CL responses in the few starting time-steps,
subsequent responses in time steps from 50 to 600 evolve quickly back to very small absolute
values (< 2× 10−5), which is illustrated in the main plot of Fig. 6.24. It is noted again here
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lagging time obtained using FOM/CFD at different Ur values in the lock-in regime.

that the inflow Reynolds numbers in this study ranged from 25 to 45, which were smaller than
the critical Reynolds number. Therefore, the development of CL will not lead to the appearance
of Hopf-bifurcation and will instead gradually stabilize. However, compared to the other three
trajectories, the CL development of SROM2-3E does not show an obvious contracting trend in
the range of 0-600 time steps. The trend development of SROM2-5E and SROM2-9E are almost
consistent with each other, but there are still small discrepancies, and the extent of this consisten-
cy can also be observed by comparing the values of the Ur boundaries of the lock-in regime (refer
to Figures 6.21b and 6.20.) Additionally, the trend development of 3D-ROM exhibits a certain
degree of lag compared to that of SROM2-9E. Considering the theoretical basis of obtaining the
fluid ROM based on the ERA identification, differences in the CL response have likely led to
prediction errors of the 3D-ROM.

Given that the methodologies of SROM2-9E and FOM/CFD show excellent agreement on
the prediction of lock-in range, the computational efficiency of those two models is compared
herein. The time consumed by mesh design/production is not taken into consideration here. In
order to precisely determine the lock-in range using FOM/CFD, a total of about 20 cases corre-
sponding to various Ur values are calculated, with an identical cell number of 2695420 for each
case. An average of 75,000 times steps are required for each case to reach the final equilibrium
state, and each time step involves 15 inner iterations. Applying SROM2-9E to investigate the
modal features necessitates division of the circular cylinder into 9 elements, with each element
being treated as a 2D situation with uniform inflow. For each element (at different Re), the base
flow should be obtained first and the CL response subjected to a displacement impulse exerting on
the base flow is then calculated. These two processes are conducted via FOM/CFD and the cells
number used is 66708. The number of time-steps and iteration numbers (per time-step) for ob-
taining the base flow is 30 and 25, respectively; the same for calculating the CL response is 1000
and 15. The time expended on post-processing is also ignored in this comparison. Considering
the numbers presented above, a preliminary estimation suggests that the processing efficiency of
SROM2-9E is about 7000 times that of FOM/CFD.

Finally, Fig. 6.25 depicts the evolution of an unstable Ur region, with varying mass ratio m∗,
of an FIV response of a system comprised of an elastically-mounted circular cylinder submerged
in spanwise shear inflow with Re ranging from 25 to 45. Firstly, the region of unstable structure
is delineated with a red shade, and the lower and upper boundaries are marked with the dashed
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Figure 6.25: Instability boundaries, predicted by SROM2-9E, of the flutter lock-in range as a
function of mass ratio m∗ for the studied FIV system.

lines. As m∗ increases, the Ur values corresponding to the upper and lower boundaries of the
unstable region gradually increase and stabilize after m∗ = 30. As shown by the root loci of
the FIV response for which Re > Recr [12, 244], the Ur span of resonance lock-in widens more
significantly as m∗ decreases compared to flutter lock-in, which leads to the overall widening of
the whole lock-in span. However, it is stressed once more that the lock-in pattern in this study is
completely of the flutter mode. Thus, there is no significant change in the Ur span of the whole
lock-in scope (which is observable via the difference between the Ur values of the upper and
lower boundaries) as m∗ varies.

6.6 Chapter summary

In this chapter, we introduced one new methodology of data-driven stability analysis via
the superposition of 2-D reduced-order modes (SROM) for the purpose of performing modal
analysis and stability predictions of 3-D flow-induced vibration of an elastically-mounted circular
cylinder, submerged in spanwise shear inflow at subcritical Reynolds numbers ranging from 25 to
45. The proposed methodology divides the circular cylinder into several elements in a spanwise
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direction, and the 2-D fluid ROM is obtained for each element via ERA identification. The 3-D
fluid ROM of the studied system is constructed by superimposing the separate 2-D fluid ROMs
together and then coupling with the structural control model to achieve the 3-D coupled ROM
for the FIV system of interest.

A detailed and time-consuming calculation using the method of FOM/CFD is applied to de-
termine the lock-in range, which is crucial for establishing a reference for verifying subsequent
results of the data-driven stability analysis. Due to the fact that the entire lock-in range is sub-
jected to the flutter pattern, the root-mean-square value of the lift coefficient abruptly reaches its
maximum value when entering the lock-in interval (as Ur increases), and then gradually decreas-
es and reaches its minimum value (or, the value at the desynchronized branch) at the right bound
of the Ur lock-in range. In this flutter lock-in range, the structural oscillation frequency is locked
at the structural natural frequency, and the phase differences between transverse displacements
and lift coefficients remain close to a value of zero. Additionally, the amplified amplitude of
structural response in the lock-in range would induce vortex-shedding behavior, and the accom-
panied vortex tube is skewed in the streamline direction as the inflow Reynolds number increases
in the spanwise direction. Furthermore, the vortex-shedding frequencies along the spanwise di-
rection are identical but there is an enhancement of the spectrum power in the positive spanwise
direction. The vortex pattern in the desynchronized branch (or, when the system is out of the
lock-in range) is stable, characterized by an absence of Hopf-bifurcation.

The stability prediction of direct 3-D data-driven stability analysis exhibits non-negligible
errors in comparison with the results of FOM/CFD calculations. It would be expected the non-
linear characteristics caused by the spanwise dynamics interaction have a significant effect on
the accurate attainment of the base flow and the process of ERA identification. In terms of the
data-driven stability analysis via the superposition of 2-D reduced-order modes, the prediction of
the proposed methodology has achieved extremely high consistency with FOM/CFD calculations
after several revisions/improvements in the element-division strategy. Considering the time tak-
en by the two methods (SROM and FOM/CFD) for prediction, it is demonstrated that the newly
presented theory of data-driven stability analysis (SROM) is both accurate and efficient. Further-
more, this study explains that the growth rate provided by SROM shows a negative correlation
to the lagging time for the FIV system during the development from the initial stationary state to
the final equilibrium state. Additionally, the evolution of the Ur region for the unstable structural
mode indicates that the span of the whole flutter lock-in range reflects only small changes with
varying mass ratio m∗.
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Chapter 7

Aeroacoustics noise propagation

As introduced above that past studies have focused on the flow dynamics of moving cylinder-
s and aeroacoustics of stationary cylinders, investigations of the noise generated by oscillating
cylinders are very limited, especially for turbulent flow at a high Reynolds number Re. Practi-
cal engineering problems require an understanding of the aeroacoustics of flow past oscillating
cylinders at high Re. The study in this chapter is the first to perform computational aeroacous-
tics of single/tandem oscillating cylinders in a turbulent flow at high Re (viz., at Re > 50,000),
in a fully three-dimensional computational domain and with structural oscillations in either the
streamwise or transverse directions.

Specifically, this chapter investigates the existence of the noise suppression phenomenon
for turbulent flows. While this phenomenon has been observed in laminar flow at Re = 150,
it is of interest to determine whether this phenomenon is applicable for a fully turbulent flow.
Additionally, we investigate the effect of various oscillation configurations on the dynamics and
aeroacoustics of the flow past both a single or tandem cylinder(s). Furthermore, this thesis also
analyzes the vortex structures generated in the wake of these flows.

This chapter is organized as follows. The numerical methodology used in this chapter are
discussed in Section 7.1. In Section 7.2, the numerical methodology is validated on a num-
ber of test cases: namely, the case of a flow past a stationary cylinder measured by Oguma et
al. [17], the case of a flow past stationary tandem cylinders measured by BART/QFF [20, 22, 21],
and the case of a flow past oscillating tandem cylinders (at Re = 150) simulated by Hattori and
Komatsu [25]. Section 7.3 investigates the aeroacoustics of the flow past a single or tandem sta-
tionary cylinder(s) at large values of Re; namely, Re = 60,000, 120,000 and 240,000. Section 7.4
demonstrates that the noise suppression phenomenon applies to turbulent flow and investigates
the underlying mechanism for this suppression. The aerodynamics and aeroacoustics for the flow
past a single or tandem oscillating cylinder(s) at Re = 120,000 are investigated in Sections 7.5
and 7.6, respectively.

7.1 Numerical methods

7.1.1 Energy equation

The energy equation is the fundamental equation in fluid dynamics and is derived from the
first law of thermodynamics [248]. The energy equation is used in combination with RANS or
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LES to incorporate the effects of density and temperature in the flow. It is could be used for
incompressible external flow simulations, and also compressible flow via the combination with
the ideal gas law [249].

7.1.2 Turbulence model

The fluid is assumed to be Newtonian and the resulting fluid flow is compressible and un-
steady. The accuracy of the aerodynamic noise calculation is closely correlated to the resolution
of the vortices in the flow field. According to the literature review, detached eddy simulation
(DES) is used to model the turbulence in this chapter. DES is a hybrid method that combines the
Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES) methods. In DES,
the turbulence model switches from RANS to LES depending on the mesh size in comparison to
the turbulence length scale. If the turbulence length scale is larger than the mesh size, then LES
can be used as the mesh is sufficient to resolve the larger scales of the turbulence. If the turbu-
lence length scale is smaller than the mesh size, then RANS is used. This switching effectively
means that RANS is used near the wall, and LES is used away from the wall. The mesh size
and time step required to resolve the boundary-layer flow using RANS are less computationally
demanding than would be required if a full LES was used throughout the entire computational
domain.

The shear stress transport (SST) DES method [250] is used herein. The k-ω SST turbulence
closure model is used in the RANS model to solve the boundary-layer flow. The detailed in-
formation of RANS model are shown in Appendix. C. The k-ω SST RANS model has been
modified for use in the DES model. This modification involves the dissipative term in the turbu-
lent kinetic energy (k) transport equation: namely, the dissipation of k in the SST RANS given
by

Dk
RANS = ρβ

∗kω = ρk3/2/l , (7.1)

has been modified in the SST DES as

Dk
DES = ρk3/2/l̃ , (7.2)

where l̃ = min(l,CDES∆) is the DES length scale, l = k1/2/(β ∗ω) is the RANS length scale,
CDES is a calibration constant with a value of 0.82, and ∆ is the maximum local grid spacing.

7.1.3 Solid body motion

The fluid is assumed to be Newtonian and the resulting fluid flow is compressible and un-
steady. SST-DES is used to model the turbulence in present acoustics simulation, as presented in
section 7.1.2. The forced oscillations of the cylinder are characterized by the frequency f and the
amplitude A = xi,max, where xi,max is the maximum imposed amplitude along the i-th Cartesian
spatial coordinate. A sinusoidal motion is explicitly imposed on the cylinder at each time step,
prior to solving the flow field. More specifically, the sinusoidal motion is prescribed as follows:

xi (t) = xi,max sin(2π f t) , (7.3)

where xi is the i-th Cartesian coordinate direction with i = 1, 2, and, 3 corresponding to the x-,
y-, and z-directions, respectively.
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The cylinder oscillates independently from the flow, but the wake can be strongly affected by
the cylinder motion. The no-slip boundary condition along the surface of the moving cylinder
depends on the current cylinder velocity. Continuity of the velocities imposes the following
constraint at the solid cylinder wall; namely, ui = ẋi where ui is the i-th component of the fluid
velocity vector u ≡ (u,v,w), and ẋi is the i-th component of the cylinder velocity. A moving
mesh procedure has been developed as a user subroutine. It operates only in a ring surrounding
the cylinder and leads to a deformed mesh whose structure is preserved during the oscillations
[251]. A second-order accurate implicit Euler scheme is employed to discretize the transient
term, while a second-order accurate Gaussian integration scheme is used for the discretization
of the advection, pressure gradient and diffusion terms in the momentum transport equation.
The calculation of this chapter still use PIMPLE scheme to solve the continuity and momentum
transport equations together in a segregated manner. For this iterative solution, we used 12 inner
iterations per time step and prescribed under-relaxation factors of 0.3 and 0.7 in the iterative
solution for the pressure and velocity fields, respectively.

7.1.4 Acoustic modelling

The Ffowcs Williams-Hawkings (FW-H) equation is an inhomogeneous wave equation de-
rived from the continuity and Navier-Stokes equations. The wave equation includes three noise
terms: quadrupole source (turbulence-induced noise term due to unsteadiness in the fluid), dipole
source (loading noise term due to dilatation of boundaries) and monopole source (thickness noise
term due to fluctuating stresses on the surface). Since the FW-H equation is suitable for predict-
ing the sound generated by arbitrary moving solid surfaces, it has become an important theoret-
ical and numerical basis for engineering noise prediction. A large number of methods has been
proposed to solve the FW-H equation.

Since the turbulent term (quadrupole source) is a volume integral, it is difficult to select the
integration region and conduct integration in the fluid around the rigid body [252]. The perme-
able FW-H method starts from establishing a permeable surface, abandoning the assumption of
that the normal velocity of the fluid is equal to that of the surface of the rigid body in contact
with it, and allowing these two velocities to be distinct (different). In this way, the calculation
of the loading and thickness noise on the permeable surface can include the noise caused by
turbulence (or, quadrupole source) inside the surface [253, 254]. Farassat et al. [255, 256, 257]
introduced the time-domain integration method resulting in the Farassat 1 and Farassat 1A for-
mulae. These formulations have become one of the most widely used methods for computational
aeroacoustics, and can be used for permeable and impermeable control surfaces. The Farassat
1A formulation, as applied in this study, is described in detail in Appendix. A. The FW-H model
applied in this thesis is based on the work of Epikhin et al. [258] concerning the implementation
of the Farassat 1A formulation inside the open-source software OpenFOAM [202]. The present
work uses a custom solver to decompose the fluctuating acoustic total noise pressure into loading
and thickness components, while applying an impermeable surface as the FW-H control surface.
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Figure 7.1: Schematic of experiment conducted by Oguma et al. [17] involving the flow past
a stationary circular cylinder with a diameter D = 0.03 m and a length of Lc = 0.5 m. The
incident velocity on the cylinder is U0 = 22.5 m s−1 to give a Reynolds number for the flow of
Re = 40,000.

7.2 Validation of numerical methodology

7.2.1 Flow past a stationary cylinder at high Reynolds number

Oguma et al. [17] conducted measurements of the flow field and noise generated by the flow
past a stationary circular cylinder. A simplified schematic of the setup of this experiment is shown
in Fig. 7.1. The mean inflow velocity U0 is 22.2 m s−1 with Re≡U0D/ν = 40,000, where ν is
the kinematic viscosity of air. The circular cylinder has a diameter of 30 mm and a length of 500
mm. The resulting aspect ratio of the cylinder (ratio of the length to the diameter of the cylinder)
is 16.7. The aspect ratio of the cylinder is large enough to produce a two-dimensional mean flow
at the mid-span of the circular cylinder. A microphone with a diameter of 12.7 mm is located
1.5 m from the top side of the circular cylinder (viz., the microphone is located at the coordinates
of (x,y,z) = (0,1.515,0) m). The mean velocity in the test section was uniform to within an
accuracy of ±1% and the free-stream turbulence level was 1.5%. The free-stream turbulence is
an important quantity for aeroacoustics because an increased free-stream turbulence can increase
the noise level [259].

Fig. 7.2(a) shows the computational domain and the boundary conditions for the validation
case. Dirichlet boundary conditions were imposed for the incoming wind velocity and turbulence
intensity. At the top, bottom, and outflow planes of the computational domain, a pressure outlet
boundary condition was imposed with the pressure set equal to the standard (ambient) atmo-
spheric pressure. Symmetric boundary conditions are applied at the spanwise boundaries. The
velocity at the upstream boundary is fixed at 22.2 m s−1 resulting in a Reynolds number for the
flow of Re = 40,000. The turbulence intensity was prescribed to be 4.0%. The mesh in the com-
putational domain is shown in Fig. 7.2(b). The maximum dimensionless wall-normal distance
y+ ≡ yuτ/ν (y is the wall-normal distance and uτ is the friction velocity) of the first cell above
the wall is 6 which is sufficient for the application of the k-ω SST RANS model near the wall.
The time step was dynamically adjusted to maintain a maximum CFL number of 0.8 in order to
promote numerical stability and accuracy of the solution. The aspect ratio of the first-layer mesh
on the column surface here and in the following cases is approximately 5.

Fig. 7.3 compares the simulated velocity and pressure fields to the experimental measure-
ments reported by Oguma et al. [17]. Fig. 7.3(a) shows the variation of the mean surface pres-
sure coefficient CP = (P−P0)/(0.5ρ0U2

0 ) (ρ0 is the air density and P0 is the atmospheric air
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Figure 7.2: Boundary conditions and computational mesh used for the validation case consisting
of the flow past a stationary circular cylinder at a high Reynolds number (Re = 40,000). The
permeable FW-H surface used for the prediction of the noise field is shown in (a) as PS0.

pressure) as a function of the angle θ (measured from the upstream stagnation point) along the
cylinder. The mean surface pressure coefficient from the numerical simulation generally agrees
well with the experimental data. The base pressure from the present study is in better agreement
with the Oguma et al. [17] experiment than with the Fujisawa and Takeda [18] experiment—this
observation is consistent with another numerical study conducted by Dong et al. [19]. Fig. 7.3(b)
compares the mean velocity measurements along the domain centerline (y/D = 0) with the PIV
measurements reported by Oguma et al. [17]. Although there are several differences in the setup
between the present numerical study and these experiments (e.g., aspect ratio, free-flow turbu-
lence, and cylinder end conditions), nevertheless the time-averaged behaviour of the cylinder
wake is consistent with the previous experimental and numerical results.

Fig. 7.4 compares the mean streamwise velocity and pressure coefficient CP contours around
the cylinder. Fig. 7.4(b) shows the mean velocity vectors from the experimental PIV results. The
results in Fig. 7.4(c) show that the simulation accurately captures the size of the recirculation
zone behind the cylinder. The velocity magnitude increases as the flow moves over the cylinder
and a velocity deficit is generated in the near-wake region of the flow. The flow separates near
an angle of θ = 80◦, measured from the stagnation point. A careful perusal Figs. 7.4(a) and
7.4(c) shows that the mean pressure field from the simulation is also in good agreement with the
experimental results. A high-pressure zone is created upwind of the cylinder and a low-pressure
zone forms in the near-wake region of the cylinder.

Fig. 7.5 compares the simulated noise generation to the experimental measurements reported
by Oguma et al. [17]. Two types of surfaces are used for the representation of the sound source
in the FW-H equation: namely, an impermeable FW-H surface (cylinder walls) and a permeable
FW-H surface (PS0) as shown in Fig. 7.2(a). The power spectral density (PSD) of the sound
pressure level (SPL) at the microphone location (viz., at (x,y,z) = (0,1.5,0) m) is given in dB
Hz−1 (relative to a reference pressure of Pref = 20× 10−6 Pa). The experimental spectra are
obtained by sampling the data at a frequency of 10 kHz for a temporal duration of 36 s. The
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Figure 7.4: Comparison of the velocity and pressure fields between the present simulations and
the experimental data reported by Oguma et al. [17].

experimental results show that the sound field is dominated by the vortex-shedding frequency,
combined with the broadband noise from the turbulent wake. The first peak frequency is related
to the lift force fluctuations and the second peak frequency is due to the weaker energy arising
from the drag force fluctuations. The noise predictions obtained from our numerical simulations
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Figure 7.5: Comparison of the power spectrum of the sound pressure level obtained at the mi-
crophone location (x = 0, y = 1.5 m, z = 0) between the present study and the experimental
measurements reported by Oguma et al. [17]. The present simulations of the sound pressure lev-
el use both an impermeable (cylinder walls) and a permeable (PS0) FW-H surface for the sound
source.

are in good agreement with the experimental measurements, especially for the peak frequencies.
The power spectrum obtained from the permeable FW-H surface is higher than that obtained
from the impermeable FW-H surface. The permeable FW-H surface only includes the pressure
fluctuations in the boundary layer. However, the predictions of the noise obtained using the two
FW-H surfaces are similar. The numerical simulation does not include the background noise,
so the sound power at frequencies less than about 80 Hz is smaller than that observed in the
experimental measurements.

7.2.2 Flow past stationary tandem cylinders at high Reynolds number

The most widely used noise measurements for numerical validation are the NASA tandem
cylinder data obtained at the Basic Aerodynamics Research Tunnel (BART) [20, 22] and the
Quiet Flow Facility (QFF) [21] at the NASA Langley Research Center. The data from these
experiments include measurements of the surface pressure along the cylinder walls, the flow field
around the cylinders obtained using PIV, hot-wire anemometer measurements of the velocity in
the wake of the cylinders, and measurements of the noise generated by the flow past the cylinders.

The tandem cylinder case consists of two equal-diameter cylinders aligned in the flow direc-
tion. The tandem cylinders of diameter D = 0.05715 m are separated by a distance of 3.7D in the
streamwise direction. The flow Mach number is M0 = 0.128. The experiments were performed
at a Reynolds number of Re = 1.66× 105. For the experiments conducted in the closed-loop
wind tunnel (BART) and in the open-jet anechoic wind tunnel (QFF), the length of the cylinder
is 12.4D and 16D, respectively. Fig. 7.6 shows the arrangement of the cylinders used for the
present simulations. The aspect ratio of the cylinders used in these simulations is 12.4—this
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Figure 7.6: Layout of tandem circular cylinders separated in the streamwise direction by 3.7D.
Each cylinder has a diameter of D = 0.05715 m. The incident wind speed on the cylinder is
U0 = 44.0 m s−1 to give a Reynolds number for the flow of Re = 166,000. This configuration
of two cylinders is used in the present simulations and in the experiments reported by Jenkins et
al. [20].
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Figure 7.7: Boundary conditions and mesh used for the numerical simulations of the case of two
tandem circular cylinders separated in the streamwise direction. The permeable FW-H surfaces
used for the prediction of the noise field are shown in (a) as PS1 and PS2.

value is the same as that used in the tandem cylinder experiments conducted at the BART.

Fig. 7.7(a) shows the computational domain, the boundary conditions and the inflow turbu-
lence intensity for the tandem cylinder validation case. The boundary conditions are consistent
with the previously discussed single cylinder case. The numerical simulations were conducted
for a flow with a Reynolds number of Re = 166,000—this value of Re matches that used in the
experimental measurements. The mesh is displayed in Fig. 7.7(b). This mesh maintains a max-
imum value for the dimensionless wall-normal distance y+ for the first cell above the wall of
5.

The variation of the mean pressure coefficient CP along the surface of the front (upstream)
and rear (downstream) cylinders is shown in Figs. 7.8(a) and 7.8(b), respectively. For the front
cylinder, the pressure coefficient is captured well by the simulation. The simulation correctly
predicts the separation point location of θ ≈ 110◦ for the upstream cylinder. For the rear cylinder,
the simulation underestimates the pressure coefficient, in alignment with previous studies [260,
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(a) Upstream cylinder (b) Downstream cylinder

Figure 7.8: Comparison of mean pressure coefficient CP along the surface of the cylinders ob-
tained from the present numerical simulations and from the QFF experiments [21] for the (a)
upstream and (b) downstream cylinders.

261]. However, the separation point at an angular position of θ ≈ 130◦ is predicted well by the
simulations, and the overall prediction of the pressure coefficient is also reasonable. Fig. 7.9
shows that the simulated mean streamwise velocity along the computational domain centerline
(viz., at y/D = 0) also agrees well with the experimental results. The velocity difference in the
wake field in Fig. 7.9b is presumed to originate from the issues with the grid quality of the wake
region and RANS model used near the cylindrical surface.

Fig. 7.10 shows the PSD of the fluctuating surface pressure on both cylinders obtained from
the BART experiments and from the present simulation. The dominant peak and weaker peak
are correctly predicted by the present simulation on the front and rear cylinder surfaces, with
slight amplitude differences. The primary vortex-shedding frequency of 179 Hz from the sim-
ulation is in good agreement with the BART experiments. The smaller peaks at frequencies of
approximately 350 Hz, 550 Hz and 700 Hz, evident in the BART experimental fluctuating surface
pressure PSD for the front and rear cylinders, are also captured well in the present simulation.
The relatively high amplitude in the broadband part of the power spectral density, especially at
the angular position of θ ≈ 180◦ for the front cylinder, is consistent with results reported by
David et al. [24].

The Ffowcs Williams-Hawkings equation was used to predict the acoustic field based on
the unsteady flow data. Three different FW-H surfaces were used to represent the sound (pres-
sure fluctuation) source: namely, an impermeable FW-H surface coinciding with the walls of the
cylinders and two permeable FW-H surfaces shown in Fig. 7.7(a) and designated as PS1 and PS2.
The temporal duration used in the FW-H solver was the last 0.5 s of the numerical simulation—a
duration that encompassed more than 80 vortex-shedding periods. The acoustic observer is locat-
ed at the point (x/D,y/D,z/D) = (−8.33,27.815,0) where the origin of the Cartesian coordinate
system coincides with the center of the first cylinder (cf. Fig. 7.7(b)).

Fig. 7.11(a) exhibits the PSD of the sound pressure level. It is seen that a good agreement
is obtained between the present results and the QFF measurements, with respect to both the
amplitude and location of the peak values in the power spectra. Our simulation results are similar
to the numerical simulations (using the lattice Boltzmann method) reported by Guillaume et
al. [23]. Both of these numerical simulations improve on the simulations reported by David et
al. [24] (which used unsteady RANS to predict the flow field). The present numerical simulations
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(a) At y = 0 between cylinders (b) At y = 0 in wake behind rear cylinder

Figure 7.9: Mean streamwise velocity at y = 0 for downstream fetches in the range 0.5≤ x/D≤
3.3 between the cylinders and in the range 4.0≤ x/D≤ 6.0 corresponding to the wake of the rear
cylinder. The mean streamwise velocity is compared between the present numerical simulations
and the experimental measurements reported by Jenkins et al. [20].

contain some noise owing to the small time step used for the acquisition of the sound pressure—
and, moreover, no smoothing has been applied in the PSD processing. Fig. 7.11(b) compares
the sound pressure level PSDs generated by the three FW-H surfaces (one impermeable and
two permeable) to the experimental measurements. The overall shapes of the SPL PSDs from
the three FW-H surfaces are consistent with the experimental results. However, the SPL PSD
predicted using the two permeable FW-H surfaces exhibit weak peaks near 60 Hz, which may
originate from the turbulence (quadrupole source) in the wakes of the tandem cylinders. These
weak peaks increase with distance from the cylinder, especially in the high broadband and low-
frequency ranges. Comparing the present simulations to the experimental results demonstrates
that the sound pressure fluctuations provided by the impermeable FW-H surface (which coincides
with the surfaces of the cylinders) leads to excellent predictions of the far-field noise.

7.2.3 Flow past oscillating tandem cylinders at a Reynolds number of 150

This sub-section will investigate the sound propagation from oscillating tandem cylinders in
a laminar flow in order to further validate the present acoustic model for the simulation of the
noise generated by a moving object. The results from the present work are compared to the
DNS computations undertaken by Hattori and Komatsu [25]. Fig. 7.12 shows the setup for this
tandem cylinder case. The streamwise distance between the centers of the two cylinders is 4D
and the aspect ratio of each cylinder is 16.7. The front (upstream) cylinder is fixed, while the rear
(downstream) cylinder oscillates with an amplitude of 0.2D and a non-dimensional frequency of
0.14U0/D. The inflow velocity is from left to right and the resulting flow has a Reynolds number
of Re= 150 and a Mach number of M0 = 0.2. The height of the first cell away from the cylindrical
surface is consistent with the simulation in Section 7.2.1. The FW-H control surface is taken to
be a rectangle with a streamwise (in-line) length of 6D and a transverse width of 2D. The center
of this rectangle coincides with the center of the tandem cylinder array (viz., the center of the
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(a) 90◦ around front cylinder (b) 0◦ around rear cylinder

(c) 135◦ around front cylinder (d) 45◦ around rear cylinder

(e) 180◦ around front cylinder (f) 90◦ around rear cylinder

Figure 7.10: The PSD of the fluctuating surface pressure for the front (upwind) and rear (down-
wind) cylinders obtained from the present numerical simulations and from the BART experi-
ments [22].

rectangle midway between the two cylinders in the streamwise direction and this is taken to be
the origin of a Cartesian coordinate system used in the simulation).

Fig. 7.13 compares the present predictions of the SPL directivity in the x-y plane (at z/D = 0)
at a radial distance of 80D from the midpoint between the two in-line cylinders for angular
positions θ in the range 0◦ ≤ θ ≤ 180◦ to the DNS results reported by Hattori and Komatsu [25].
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Figure 7.11: Power spectral density of the sound pressure level at the observer (microphone)
location (x/D,y/D,z/D) = (−8.33,27.815,0): (a) comparison of the present predictions of the
SPL PSD with those obtained by Guillaume et al.[23] and David et al.[24] and with experimental
measurements of the SPL PSD obtained from the QFF experiment [21]; and, (b) comparison of
the present predictions of the SPL PSD obtained using three different FW-H surfaces (one im-
permeable surface coinciding with the walls of the cylinders and two permeable surfaces shown
as PS1 and PS2 in Fig. 7.7(a)).

Overall, the general SPL directivity from the two methods is in excellent conformance with each
other. The sound pressure intensity from the DNS is slightly smaller near θ = 180◦ (viz., in the
downstream direction) than that predicted by our present simulations. Hattori and Komatsu [25]
also compared the results from the FW-H method and DNS and showed that a high degree of
consistency between the two predictions was obtained.

Figure 7.12: Configuration of tandem cylinders used in the DNS conducted by Hattori and Ko-
matsu [25]—the front (upstream) cylinder is fixed and the rear (downstream) cylinder is oscillat-
ing in transverse (or, y-) direction. The center-to-center separation between the two cylinders in
the streamwise (or, x-) direction is L = 4D.
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Figure 7.13: The SPL directivity for the configuration of tandem cylinders shown in Fig. 7.12
obtained in the x-y plane (at z/D = 0) at a radial distance of 80D from the midpoint between the
two in-line cylinders for angular positions in the range 0◦ ≤ θ ≤ 180◦. The prediction obtained
from the present numerical simulation are compared to that obtained from the DNS conducted
by Hattori and Komatsu [25].

7.3 Effect of Reynolds number and number of cylinders on
the noise structure

In the previous section, the present hybrid model was validated using three test cases: namely,
a turbulent flow past a stationary cylinder, a,turbulent flow past stationary tandem cylinders, and
a laminar flow past tandem cylinders one of which is oscillating in the transverse direction. This
section will use the validated hybrid model to study high Reynolds number flows over stationary
cylinders. Firstly, the effect of Re on the noise structure generated by the flow past tandem
cylinders will be investigated. Secondly, the similarities and differences in the noise structure
generated by the flow past a single cylinder and a pair of cylinders (tandem cylinders) will be
studied for a fixed value of the Reynolds number Re.

7.3.1 Effect of Reynolds number on noise

Fig. 7.14(a) shows the computational domain, boundary conditions and inflow turbulence
intensity for a tandem cylinder case. Both cylinders have a diameter D of 0.1 m and the distance
between the centers of the two cylinders in the streamwise direction is L = 3D. The aspect ratio
of the cylinders is five. Fig. 7.14(b) displays the mesh used to simulate this case for three different
values of the Reynolds number: namely for Re = 60,000, 120,000 and 240,000. The maximum
dimensionless wall-normal distance y+ of the first cell above the cylinder wall is 2.5, 5.0, and
10.0 for Re = 60,000, 120,000, and 240,000, respectively. We note that y+ varies because a
constant (fixed) mesh condition is used for the three different values of Re. The time step was
dynamically adjusted to maintain a maximum CFL number of 0.6, resulting in an higher temporal
accuracy than those used for the validation case studies described previously.

The positions of the microphones (observers) used to monitor the sound pressure are dis-
played in Fig. 7.15. The microphones are located at angular positions θ of 0◦, 45◦, 90◦, 135◦
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Figure 7.14: (a) The computational domain and boundary conditions and (b) the computational
mesh used in the simulation of the tandem cylinders case. The permeable FW-H surfaces used
in the prediction of the noise field are shown as PS1 and PS2 in (a).

1.5D  1.5D

10D

microphone

Figure 7.15: The location of the microphones used for monitoring the sound pressure from the
noise field generated by a flow over tandem cylinders (viz., a pair of cylinders whose center-to-
center separation in the streamwise direction is L = 3D).

and 180◦ in the x-y plane (at z/D = 0) at a radial distance of 10D from the midpoint between
the tandem cylinders in the streamwise direction (which coincides with the origin of the Carte-
sian coordinate system used to describe the computational domain as shown in Fig. 7.14). The
walls of both cylinders are used as the impermeable FW-H surface for the determination of the
noise field. Fig. 7.16 shows the PSD of the sound pressure level at the microphone locations
for Re = 60,000, 120,000, and 240,000. The peak amplitudes of the sound pressure level PSD
depend on the observer location. For Re = 60,000, the sound pressure level PSD at an angular
position of 90◦ has a maximum value at a frequency of 19.2 Hz. Furthermore, it is seen that the
sound pressure level PSD at an angular position of θ = 180◦ has a maximum value at a frequency
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(b) Re = 120,000
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(c) Re = 240,000

Figure 7.16: The sound pressure level PSD at different angular positions θ in the x-y plane (at
z/D = 0) at a radial distance of 10D from the midpoint between the stationary tandem cylinders
in the streamwise direction. The surfaces of the two cylinders are taken as the impermeable
FW-H surface for determination of the noise field generated by a flow past the tandem cylinders.

of 35.8 Hz. In contrast, the sound pressure level PSD at an angular position of θ = 135◦ exhibits
spectral peaks at frequencies of 19.2 Hz and 35.8 Hz—these frequencies are related to the lift
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force and drag force fluctuations, respectively. This characteristic feature is also exhibited in the
SPL power spectra for the other two values of Re (viz., for Re = 120,000 and 240,000), with the
SPL PSD at the higher values of Re generally producing a richer set of harmonics.

The sound pressure level PSD at an angular position of θ = 135◦ provides additional infor-
mation, since it takes into account the pressure fluctuations in the transverse (lift) and in-line
(drag) directions. Fig. 7.17(a) compares the sound pressure level PSD at an angular location of
θ = 135◦ for Re = 60,000, 120,000 and 240,000. The frequency corresponding to the largest
(dominant) spectral peak increases with increasing values of Re. This increase is due to the fact
that this frequency is associated with the vortex-shedding frequency which, in turn, is correlat-
ed with the value of Re. Furthermore, the peak amplitude and the overall spectral amplitudes
also increase with increasing values of Re. The directivity pattern for the sound pressure level
at three values of Re is shown in Fig. 7.17(b). The SPL directivity pattern is skewed (tilted) in
the downwind direction and reaches its maximum value at an angular position θ of around 135◦

(approximately or better).
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(a) Sound pressure level PSD at an angular position of θ = 135◦
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(b) SPL directivity

Figure 7.17: (a) The sound pressure level PSD at an angular position of θ = 135◦ and (b) the
SPL directivity pattern for angular positions in the range 0◦ ≤ θ ≤ 180◦ for three different values
of the Reynolds number Re. The sound pressure level is determined in the x-y plane (at z/D = 0)
at a radial distance of 10D from the midpoint between the tandem cylinders in the streamwise
direction. The surfaces of the two cylinders are taken as the impermeable FW-H surface for
determination of the noise field generated by a flow past the tandem cylinders.

7.3.2 Effect of number of cylinders on noise

For a fixed Reynolds number of 120,000, the effect of adding a second cylinder on the noise
generation is investigated numerically. For the case of a single cylinder, the boundary conditions,
domain, inflow turbulence intensity, and the maximum value of the dimensionless wall-normal
distance y+ of the first cell above the wall of the mesh used for the simulation are consistent
with those used in sub-section 7.2.1. For the case of tandem cylinders, the boundary conditions,
inflow turbulence intensity, and y+ for the first grid cell above the wall are the same as those used
in sub-section 7.3.1.

Fig. 7.18 exhibits the sound pressure level PSD for the flow past a single and tandem cylin-
der(s) in the x-y plane at z/D = 0 at a radial distance of 10D at three different angular positions;
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(a) SPL PSD at an angular position of θ = 90◦
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(b) SPL PSD at an angular position of θ = 135◦
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Figure 7.18: The sound pressure level PSD obtained in the x-y plane at z/D = 0 at a radial
distance of 10D for three angular positions θ = 90◦, 135◦, and 180◦ for the flow past a single
and tandem cylinder(s) at Re = 120,000. An impermeable FW-H surface coinciding with the
surfaces of the cylinder(s) is used for the prediction of the noise field generated by the flow past
a single or tandem cylinder(s).

namely, at θ = 90◦, 135◦, and 180◦. Unless stated otherwise, the radial distance for the de-
termination of the SPL PSD and/or SPL directivity is measured from the center of the cylinder
for the single cylinder case or from the midpoint between the streamwise separation of the t-
wo cylinders for the tandem cylinders case. As shown in Fig. 7.18, the first tonal frequency of
the noise generated by a flow past a single and tandem cylinder(s) is located at 44.56 Hz and
36.24 Hz, respectively. Furthermore, the second tonal frequency of this noise for a single and
tandem cylinder(s) is located at 123.07 Hz and 80 Hz, respectively. The sound pressure level PS-
D for the tandem cylinders exhibits larger amplitudes than those for a single cylinder. In general,
the peak frequency value of the SPL PSD for the single cylinder is larger than that of the tandem
cylinders, but the spectral amplitude corresponding to this frequency is smaller. In conformance
with these observations, a perusal of the SPL PSD for a single and tandem cylinder(s) shows that
the acoustic energy at the angular positions of θ = 90◦ and 180◦ is contained primarily in the
first and second tones of the noise, respectively. Fig. 7.19 shows the SPL directivity in the x-y
plane at z/D = 0 at a radial distance of 10D for angular positions in the range 0◦ ≤ θ ≤ 360◦.
The SPLs for the single and tandem cylinder(s) assume values of approximately 90 dB and 95
dB, respectively.
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Figure 7.19: The SPL directivity pattern in the x-y plane at z/D = 0 at a radial distance of 10D
obtained for the flow past a single and tandem cylinder(s) at Re = 120,000. An impermeable
FW-H surface coinciding with the surfaces of the cylinder(s) is used for the prediction of the
noise field generated by the flow past a single or tandem cylinder(s).

7.4 Single circular cylinder in forced transverse oscillation at
varied frequencies

For the case of a laminar flow past an oscillating cylinder at Re = 150, the oscillation fre-
quency significantly affects the aeroacoustic energy of the generated noise at a fixed value of
the oscillation amplitude A. In this case, the aeroacoustic energy of an oscillating cylinder for
0.14 < Sc < 0.17 is suppressed significantly compared to that of a stationary cylinder [25] (Sc
is the Scrunton number defined as Sc ≡ f D/U0 where f is the oscillation frequency, D is the
cylinder diameter, and U0 is the inflow velocity). However, it is unknown whether the noise sup-
pression arising from the oscillation of a cylinder occurs for a turbulent flow—a regime of flow
that has engineering and practical relevance.

This section investigates the effect of the oscillation frequency on the aeroacoustic propaga-
tion of a turbulent flow past a transversely oscillating cylinder at a fixed Reynolds number of
Re = 120,000 with an oscillation amplitude of A = 0.2D and an oscillation frequency f ranging
from 5 to 50 Hz (viz., 5 Hz ≤ f ≤ 50 Hz). Five microphones (observers) are positioned in the
x-y plane at z/D = 0 at a radial distance of 10D at angular positions of θ = 0◦, 45◦, 90◦, 135◦,
and 180◦. The root-mean-square (r.m.s.) values of the fluctuating pressure p′ as a function of the
Scrunton number Sc is shown in Fig. 7.20. Here, the dashed horizontal lines in the figure corre-
spond to the acoustic noise power generated by a flow past the stationary cylinder for the same
value of the Reynolds number Re. Overall, the structure of the acoustic energy exhibits a sym-
metry about the angular position θ = 90◦. More specifically, the r.m.s. values of p′ as a function
of Sc at angular positions of 0◦ and 45◦ are the same (approximately or better) as those at 180◦

and 135◦, respectively. Additionally, the r.m.s. values of p′ are smallest at the angular positions
of θ = 0◦ and 180◦ (viz., in the upstream and downstream directions, respectively). This largest
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Figure 7.20: Root-mean-square (r.m.s.) values of the fluctuating pressure p′. The results corre-
spond to the noise generated by the flow past a transversely oscillating cylinder at Re = 120,000
with an oscillation amplitude A = 0.2D and an oscillation frequency f ranging from 5 to 50 Hz.
The five microphones (observers) are positioned in the x-y plane at z/D = 0 at a radial distance
of 10D at angular positions of θ = 0◦, 45◦, 90◦, 135◦, and 180◦. The horizontal dashed lines
correspond to the r.m.s. values of p′ obtained for the stationary cylinder.

levels of the noise occur at an angular position of 90◦. More significantly, the acoustic energy is
minimum at Sc ≈ 0.15 for the turbulent flow past an oscillating cylinder at Re = 120,000. This
observation is consistent with the results reported by Hattori and Komatsu [25] for the case of a
laminar flow past an oscillating cylinder at Re = 150. In particular, it appears that the observed
reduction in the noise occurs when the oscillation frequency of the cylinder is about 57% of the
vortex-shedding frequency of the stationary cylinder. For Sc > 0.2, the acoustic energy is seen
to increase monotonically with increasing values of Sc.

Hattori and Komatsu [25] suggested that the synchronization between the lift force exerted
on the cylinder and the inertial force leads to the reduction of the acoustic power. For 0.14 <
Sc < 0.17, the periodic lock-in to the cylinder oscillation reduces the lift force and, thereby, the
acoustic power. However, the work did not discuss how the synchronization modifies the two
aeroacoustic sources provided by the forced oscillation and the original vortex shedding (viz.,
the vortex shedding from the stationary cylinder). Such an analysis can provide deeper physical
insights concerning the impact of the synchronization.

Fig. 7.21 displays the power spectrum of the fluctuating pressure p′ obtained from a micro-
phone (observer) in the x-y plane at z/D = 0 at a radial distance of 10D at an angular position of
θ = 135◦. For the case of a stationary cylinder, the power spectrum of p′ has only one dominant
peak at a frequency of 44 Hz with an amplitude of 0.42 Pa arising from the vortex shedding.
For a cylinder with an oscillation frequency f of 20 Hz, the power spectrum of p′ exhibits two
dominant peaks with frequencies of 20 Hz and 44 Hz. These two frequencies correspond to the
frequency of the forced oscillation (20 Hz) and to the frequency associated with the vortex shed-
ding from the stationary cylinder (44 Hz). The amplitude of the spectral peak at 44 Hz (due to
vortex shedding) is comparable to that for the stationary cylinder.

As the oscillation frequency f of the cylinder increases to 25 Hz (Sc = 0.14), the first peak in
the p′ power spectrum at 25 Hz (correlated with the structural motion) is enhanced in amplitude

180



10 20 30 40 50 60 70 80 90
Frequency (Hz)

0

0.1

0.2

0.3

0.4

0.5

Po
w

er
 o

f 
p'

 (
Pa

)

Stationary
f: 20 Hz 
f: 25 Hz 
f: 30 Hz 
f: 35 Hz 
f: 50 Hz

40 50

0.5

1

1.5

2

Figure 7.21: Power spectrum of the fluctuating pressure p′ obtained from a microphone (observ-
er) positioned in the x-y plane at z/D = 0 at a radial distance of 10D at an angular position of
θ = 135◦. The p′ power spectrum for the stationary cylinder is compared with a cylinder with
oscillation frequencies f of 20, 25, 30, 35, and 50 Hz.

relative to that of the p′ power spectrum for the cylinder with an oscillation frequency of 20 Hz.
In contrast, the second peak at 44 Hz (corresponding to the vortex shedding of the stationary
cylinder) is reduced in amplitude relative to that for the p′ power spectrum for the cylinder with
f = 20 Hz. This reduction in the spectral peak amplitude is associated with an overall decrease
in the total sound pressure (cf. Fig. 7.20).

As the cylinder oscillation frequency f increases further to 30 Hz (Sc = 0.17), the ampli-
tudes of the first and second dominant peaks in the p′ power spectrum are further increased and
decreased (suppressed), respectively, relative to those for the p′ power spectra for cylinders with
smaller values of the oscillation frequency f . For cylinder oscillation frequencies f ≥ 35 Hz,
the total acoustic power (sound pressure) begins increasing again (cf. Fig. 7.20) owing to the
increased amplitude of the (dominant) first peak in the p′ power spectrum. Indeed, for cylinder
oscillation frequencies greater than 35 Hz, the second peak in the p′ power spectrum disappears
altogether. The overall sound pressure exhibits a monotonic increase with increasing values of Sc
(or, cylinder oscillation frequency f ) owing to the fact that the amplitude of the first (dominant)
peak in the p′ power spectrum increases monotonically with f . More specifically, the monotonic
increase in the overall sound pressure appears to be exponential with increasing values of Sc.
In consequence, the effective value of the sound pressure already approaches 2.0 Pa when the
cylinder oscillation frequency is 50 Hz (Sc = 0.28).

Based on the preceding discussion, the oscillation of the cylinder generates a thickness noise
p′T (x, t) (cf. Eq. (B.2)) arising from the periodic structural motion. To further understand the
influence of the structural motion on the noise generation, we decompose the total noise into a
loading p′L (x, t) and a thickness p′T (x, t) noise contribution and use the surface of the cylinder
as the control surface for the application of the FW-H methodology (implying that there is no
quadrupole noise contribution). To this purpose, we consider the noise generated by an oscil-
lating cylinder with an oscillation frequency f = 0 Hz (stationary cylinder), 20 Hz, 25 Hz, and
50 Hz. The r.m.s. values of fluctuating pressure p′ for the loading and thickness noise are sum-
marized in Fig. 7.22. The loading and thickness noise are highlighted in the figure using blue and
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f Sc

0 Hz 0
0.2704 0.4115 0.5228 0.4184 0.2640

0.2704 0 0.4115 0 0.5228 0 0.4184 0 0.2640 0

20 Hz 0.1111
0.3202 0.4481 0.5657 0.4667 0.3068

0.3192 0.0134 0.4465 0.0806 0.5592 0.1157 0.4613 0.0807 0.3080 0.0134

25 Hz 0.1389
0.2818 0.2614 0.2803 0.29785 0.2765

0.2824 0.0136 0.2445 0.1496 0.2322 0.2202 0.2706 0.1500 0.2763 0.0137

50 Hz 0.2778
0.5065 1.3977 1.9317 1.3900 0.4508

0.4613 0.1538 0.9323 0.9433 1.1999 1.4565 0.8574 0.9471 0.4423 0.1518

Figure 7.22: The r.m.s. value of the fluctuating pressure p′ (Pa) obtained for an oscillating cylin-
der with oscillation frequency f (equivalently Sc) of 0 Hz (stationary cylinder), 20 Hz, 25 Hz and
50 Hz in the x-y plane at z/D = 0 at a radial distance of 10D at angular positions of 0◦ (upstream
direction), 45◦, 90◦, 135◦ and 180◦ (downstream direction). An impermeable FW-H surface
(cylinder walls) is used to determine the noise field generated by the flow past the cylinder. Un-
der each column associated with a particular angular position, the total sound pressure, loading
noise, and thickness noise are highlighted in the white, blue and yellow boxes, respectively.

yellow colours, respectively. The r.m.s value of the total sound pressure is not equal to the sum
of the r.m.s values of the loading and thickness noise owing to the fact that the fluctuations of the
loading and thickness noise involve phase differences. As a consequence, for the case of a cylin-
der oscillating with a frequency of f = 20 Hz, at a radial distance of 10D and an angular position
of θ = 180◦ (downstream direction), the value of the total sound pressure of 0.3068 Pa is smaller
than the value of the loading noise (cf. the values shown in red in the column corresponding to
an angular position of 180◦ in Fig. 7.22).

For the stationary cylinder (oscillation frequency f = 0 Hz), there are no components in the
acoustic field arising from the thickness noise due to the fact that a fixed cylinder surface is used
in the application of the FW-H methodology. As the cylinder starts to move to-and-fro (from
side to side), the r.m.s. value of p′ associated with the thickness noise (highlighted in yellow in
Fig. 7.22) increases monotonically with an increasing cylinder oscillation frequency. However,
the r.m.s. value of p′ arising from the loading noise (highlighted in blue in Fig. 7.22) exhibits
a sudden decrease at 25 Hz, after which it increases again. More specifically, a comparison of
Fig. 7.21 with Fig. 7.22 shows that the loading noise is not related to the second peak in the p′

power spectrum (which corresponds to the vortex shedding from the stationary cylinder). This is
because the second peak is seen to disappear at a certain oscillation frequency and then re-appear
again with an amplitude that increases with increasing cylinder oscillation frequency.

Fig. 7.23(a) shows the power spectrum of the fluctuating pressure p′ for a cylinder with
oscillation frequencies f of 20, 25, and 50 Hz. The microphone (observer) is positioned in the
x-y plane at z/D = 0 at a radial distance of 10D and at an angular position of θ = 135◦. It is
noted that the noise generated by the stationary cylinder includes only the loading noise (with a
dominant peak frequency of 44 Hz). For an oscillating cylinder with oscillation frequencies of
20, 25, and 50 Hz, both the loading and thickness components of the noise exist. The implies that
the motion of the cylinder gives rise to both a loading and a thickness component of the noise.
The energy associated with these two components of the noise is comparable in magnitude.

Next, we consider the quadrupole component of the noise arising from the turbulence of the

182



10 20 30 40 50 60 70 80 90
Frequency (Hz)

0

0.1

0.2

0.3

0.4

Po
w

er
 o

f 
p'

 (
Pa

)

f: 20 Hz, thickness
f: 20 Hz, loading 
f: 25 Hz, thickness 
f: 25 Hz, loading 
f: 50 Hz, thickness 
f: 50 Hz, loading

50
0

0.5

1

peak2

(a)

5 10 20 40 80 150 300 500
Frequency (Hz)

20

40

60

80

100

120

PS
D

 (
dB

/H
z)

impermeable control surface
permeable control surface

(b)

Figure 7.23: FW-H predictions of (a) the power spectrum of the fluctuating pressure p′ obtained
from a microphone (observer) positioned in the x-y plane at z/D = 0 at a radial distance of 10D
and an angular position of θ = 135◦ for a cylinder oscillating with frequencies f of 20, 25, and
50 Hz and (b) the power spectral density of the SPL obtained using an impermeable (cylinder
walls) and a permeable (PS0) FW-H control surface for a cylinder oscillating with a frequency f
of 50 Hz.

flow. The power spectral density of the SPL obtained at the microphone location (given above)
for an oscillating cylinder with an oscillation frequency f of 50 Hz is shown in Fig. 7.23(b).
In this figure, we compare the results obtained using the FW-H methodology for two different
control surfaces: namely, an impermeable (cylinder walls) and a permeable FW-H surface (PS0)
(see Fig. 7.2(a) for the delineation of PS0). The quadrupole noise resulting from the use of the
permeable control surface appears to enhance the energy of the broadband noise relative to that
obtained from the impermeable control surface. Nevertheless, the peak energy obtained using
the two FW-H control surfaces is comparable. The broadband characteristics of the quadrupole
noise are consistent with the chaotic nature of the turbulence.

7.5 Single circular cylinder with forced oscillations in the trans-
verse or streamwise directions

This section will study the vortex structure and the noise characteristics for a flow past a sin-
gle oscillating cylinder at Re = 120,000 that is free to vibrate in either the transverse or stream-
wise directions [262, 263]. The computational domain, boundary conditions, inflow turbulence
intensity, and mesh are the same as those in sub-section 7.3.2. Fig. 7.24 displays the three cases
investigated in this section: namely, a stationary cylinder, a cylinder oscillating in the transverse
direction, and a cylinder oscillating in the streamwise direction. The amplitude and frequency
of the cylinder oscillations are fixed to A/D = 1 and f = 20 Hz (Sc = 0.111). Thirty complete
cycles of oscillations are used for the time-domain analysis.

7.5.1 Analysis of unsteady vortex structures

Vortex shedding from a cylinder is significant in the generation of noise. The use of vorticity
is a popular method for the visualization of the vortex structure in a turbulent wake. Unfortu-
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nately, the components of the vorticity vector depends on the coordinate system. Haller [264]
proposed an objective description of a vortex using an invariant of the velocity gradient tensor:

Q =
1
4
(
ωi jωi j−2Si jSi j

)
, (7.4)

where Q is the second invariant of the velocity gradient tensor under a Galilean transformation,
Si j is the strain-rate tensor defined as Si j ≡ 1

2

(
∂ui
∂x j

+
∂u j
∂xi

)
, ωi j is the rotation tensor defined as

ωi j ≡ 1
2

(
∂ui
∂x j
− ∂u j

∂xi

)
, and i, j = 1, 2, 3 represent the coordinate directions.

Eq. 7.4 implies that Q at a location in the flow is the difference between the rotation and the
strain rate. If this difference is positive so that the rotation rate (or, swirling rate) is greater than
the strain rate (or, axial deformation rate), then vortex structures dominate at this location in the
flow. Therefore, the locations where Q > 0 can be used as a criterion for the identification of
vortices in the flow. Another important invariant is the third invariant of the velocity gradient
tensor under a Galilean transformation given by

R =
1
3

(
Si jS jkSki +

3
4

ωiω jSi j

)
, (7.5)

where ωi are the components of the vorticity vector. Both Q and R can be used to distinguish
vortex structures in the flow field. When Q is positive and large (implying that the rotation rate
is greater than the strain rate), then the third invariant R≈ 0.25ωiω jSi j represents the strength of
vortex extension. When R is negative, the vortex structure is compressed and the vortex is weak.
When R is positive, the vortex structure is stretched, and the vortex is strong. When Q is negative
and large, the strain rate is greater than the rotation rate, and the flow field is mainly dominated
by the strain. It is worth noting that both Q and R take values of zero near the wall and, as a result,
the use of Q and R for the description of vortical motion avoids an over-prediction of vortices in
the near-wall region.

Fig. 7.25 shows the velocity gradient tensor invariants for the stationary and oscillating single
cylinder. The flow past a stationary cylinder exhibits regular vortices in the wake. Near the
stationary cylinder surface, the value of Q is positive and large, implying that the vortex is already
formed in this region of the flow. Additionally, the small absolute value of R at specific positions

Figure 7.24: Three cases: (a) single stationary cylinder; (b) single cylinder oscillating in the
transverse (or, y-) direction; and, (c) single cylinder oscillating in the streamwise (or, x-) direc-
tion. For cases (b) and (c), the cylinder is oscillating with an amplitude A = D and a frequency
f = 20 Hz.
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(a) Q isopleths (b) R isopleths

Figure 7.25: Isopleths of the (a) second invariant Q and (b) third invariant R obtained when the
cylinder passes through the initial position (viz., the stationary position for the oscillating cylin-
der) after several oscillation cycles for three cases: namely, a stationary cylinder, a cylinder os-
cillating in the transverse (y-) direction, and a cylinder oscillating in the streamwise (x-)direction.

in the wake indicates flow regions where the vortex structure is relatively stable. When R is
positive and large, the vortex is strengthened. The third invariant R has a large absolute value,
but is positive near the lower surface and negative near the upper surface of the cylinder, implying
that the vortex is strengthened near the lower surface.

When the cylinder vibrates in the transverse direction, the isopleths of Q in the wake become
more complex. Overall, the positive and negative regions are staggered, indicating that the effects
of rotation and strain jointly dominate the dynamics of the unsteady wake. Moreover, the large
values of Q and R suggest that the vibration of the cylinder results in the detachment of the vortex
from the cylinder surface, elongating and ejecting the vortex as a result of the transverse motion
(velocity) of the cylinder. The vortices that are shed from the cylinder move downstream and
these coherent structures are gradually smeared (dissipated) in the wake.

7.5.2 Analysis of the acoustic field

Figs 7.26(a) and (b) display the SPL PSD obtained at a microphone (observer) positioned
in the x-y plane at z/D = 0 at a radial distance of 10D and at an angular position of θ = 135◦.
The results are shown for both the flow past a stationary and an oscillating cylinder (with an
oscillation frequency f = 20 Hz) with Re = 120,000. For each case, the FW-H methodology
is applied using an impermeable (cylinder walls) and a permeable (PS0) FW-H control surface.
For the flow past a stationary cylinder, the SPL PSD obtained using the permeable FW-H surface
exhibits larger values of the amplitude in the frequency range from 10 Hz to 80 Hz and is more
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(b) Cylinder oscillating in the streamwise direction
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Figure 7.26: The SPL PSD obtained for (a) a stationary cylinder and (b) a cylinder oscillating in
the streamwise (x-) direction at a microphone positioned in the x-y plane at z/D = 0 at a radial
distance of 10D and at an angular position of θ = 135◦. The FW-H methodology is applied in
both cases for an impermeable (cylinder walls) and a permeable (PS0) FW-H surface. (c) The
SPL directivity pattern obtained for a stationary cylinder, a cylinder oscillating in the transverse
direction, and a cylinder oscillating in the streamwise direction at the same microphone location
as in (a) and (b) using an impermeable FW-H surface coinciding with the cylinder walls.

complex (viz., exhibits a more complex structure in the spectral peaks) for frequencies greater
than about 80 Hz. The dominant peak in the SPL PSD for the stationary cylinder corresponding
to a frequency of 43 Hz is associated with the vortex-shedding frequency. In contrast, the SPL
PSD for a flow past an oscillating cylinder exhibits characteristics that are consistent with those
of broadband noise. Even so, the SPL PSD in this case still exhibits spectral peaks at 20, 40, and
60 Hz—frequencies that are associated with the various harmonics of the cylinder oscillation
frequency (viz., 20 Hz).

Fig. 7.26(c) displays the SPL directivity pattern (with the cylinder surface used as the FW-H
control surface) obtained for a stationary cylinder, a cylinder oscillating in the transverse (y-)
direction, and a cylinder oscillating in the streamwise (x-) direction. A perusal of this figure
shows that the sound pressure level from the flow past a stationary cylinder is smaller than that
for the oscillating cylinder (in either the transverse or streamwise directions). In a direction
orthogonal to the flow direction (viz., at an angular position θ of around 90◦), the cylinder
oscillating in the transverse direction exhibits a larger sound pressure level than the cylinder
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Figure 7.27: Five cases (scenarios) of tandem cylinders: (1) Scenario (a)—front and rear cylin-
ders stationary; (2) Scenario (b)—front cylinder oscillating in transverse direction and rear cylin-
der stationary; (3) Scenario (c)—front cylinder oscillating in streamwise direction and rear cylin-
der stationary; (4) Scenario (d)—front cylinder stationary and rear cylinder oscillating in trans-
verse direction; and, (5) Scenario (e)—front cylinder stationary and rear cylinder oscillating in
streamwise direction.

oscillating in the streamwise direction. In contrast, the sound pressure level for the cylinder
oscillating in the transverse and streamwise directions are comparable in the flow direction (viz.,
at an angular position θ of around 180◦).

7.6 Tandem cylinders with forced oscillations in the trans-
verse or streamwise directions

This section investigates the acoustic field for a flow past a stationary and oscillating tandem
cylinder(s) at a Reynolds number Re = 120,000 for a number of different cases. The com-
putational domain, boundary conditions, inflow turbulence intensity, and mesh are same as in
Section 7.3. Fig. 7.27 shows the five cases (scenarios) that will be investigated here for the tan-
dem cylinders. For the cases (sceanrios) where one of the cylinders is oscillating, the amplitude
and frequency of the oscillation are A = D and f = 20 Hz, respectively. The five cases (scenar-
ios) considered herein are as follows: (1) Scenario (a)—front (upstream) and rear (downstream)
cylinders both stationary; (2) Scenario (b)—front cylinder oscillating in the transverse direction
and rear cylinder stationary; (3) Scenario (c)—front cylinder oscillating in the streamwise direc-
tion and rear cylinder stationary; (4) Scenario (d)—front cylinder stationary and rear cylinder
oscillating in the transverse direction; and, (5) Scenario (e)—front cylinder stationary and rear
cylinder oscillating in the streamwise direction.

7.6.1 Analysis of average pressure on the cylinder surfaces

Fig. 7.28 displays the PSD of the average surface pressure on the front and rear cylinders.
When both cylinders are stationary (cf. Fig. 7.28(a)), the peak values of the average surface
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(a) Scenario (a) (b) Scenario (b) (c) Scenario (c)

(d) Scenario (d) (e) Scenario (e)

Figure 7.28: The average surface pressure PSD for the front and rear cylinders for five cases
(scenarios): (a) front and rear cylinders stationary; (b) front cylinder oscillating in the transverse
direction and rear cylinder stationary; (c) front cylinder oscillating in the streamwise (in-line)
direction and rear cylinder stationary; (d) front cylinder stationary and rear cylinder oscillating
in the transverse direction; and, (e) front cylinder stationary and rear cylinder oscillating in the
streamwise (in-line) direction.

pressure PSD for the front cylinder occur at frequencies of about 35 Hz and 80 Hz—these two
frequencies correspond to the lift and drag force fluctuations, respectively. Due to the vortex-
shedding from the front cylinder, the average surface pressure PSD of the rear cylinder also
exhibits a spectral peak at a frequency of about 35 Hz. However, the average surface pressure
PSD of the rear cylinder does not exhibit a spectral peak at a frequency of 80 Hz implying that
this cylinder is minimally influenced (impacted) by the drag force fluctuations arising from the
front cylinder.

For Scenario (b), the average surface pressure PSD for the front cylinder exhibits a spectral
peak value at a frequency of 20 Hz (fundamental frequency) and a second spectral peak value
(corresponding to the first harmonic) at a frequency of 40 Hz. This second spectral peak (first
harmonic) has a larger amplitude than the first peak (fundamental frequency). These characteris-
tics of the average surface pressure PSD are also reflected generally in those of the rear cylinder.
In Scenario (c), the amplitude of the first spectral peak (fundamental frequency at 20 Hz) is larger
than that of the second spectral peak (first harmonic at 40 Hz) in the average surface pressure
PSD of the front cylinder. Furthermore, vibrations in the streamwise (in-line) direction appears
to weaken the vortex shedding and, as a result, the spectral peak amplitude of the rear cylinder
sound pressure level PSD at a frequency of 30 Hz is smaller relative to that associated with fun-
damental frequency at 20 Hz. This phenomenon is observed for in-line oscillations of either the
front or the rear cylinder. As can be seen from the amplitudes of the average surface pressure PS-
D, when either the front or rear cylinder is oscillating in the in-line direction (cf. Figs 7.28(c) and
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(a) Front cylinder (b) Rear cylinder

Figure 7.29: The sound pressure level PSD at various angular positions θ on the surface of
the front (upstream) and rear (downstream) cylinders for the case where the front cylinder is
oscillating in the streamwise (in-line) direction and the rear cylinder is stationary (Scenario (c)).

(e)), the amplitude of the spectral peak value at a frequency of 20 Hz is about 2×10−3 Pa Hz−1.
However, the cases involving two stationary cylinders or one or the other cylinder oscillating in
the transverse direction (cf. Figs 7.28(a), (b), and (d)), the amplitude of the spectral peak at a
frequency of 20 Hz is less than 1× 10−3 Pa Hz−1. The surface pressure fluctuations resulting
from an in-line oscillation of either the front or rear cylinder is larger than those resulting from a
transverse oscillation of either the front or rear cylinder.

We use Scenario (c) to analyze the variation of the sound pressure level along the cylinder
surface. The SPL PSDs at three angular positions on the front cylinder (viz., at θ = 90◦, 135◦

and 180◦) and at three angular positions on the rear cylinder (viz., at θ = 0◦, 45◦ and 90◦)
are exhibited in Fig. 7.29. The frequencies associated with the spectral peaks of the SPL at
these angular positions are similar to those of the average surface pressure—in particular, there
are dominant peaks corresponding to frequencies of around 20 Hz and 30 Hz. However, the
amplitude of each peak varies depending on the angular position of the observer. These results are
similar to the fluctuating surface pressure power spectra (cf. Fig. 7.10) on the cylinder measured
in the NASA tandem cylinders experiment (see Section 7.2.2).

Fig. 7.30 shows the mean pressure coefficient CP as a function of the arclength s≡ πDθ/360
along two different circular arcs on the front and rear cylinders for the five scenarios summarized
in Fig. 7.27. The reference pressure at the upwind stagnation point of the front cylinder for
each of these scenarios is different. When both the front and rear cylinders are stationary, the
mean pressure coefficient for the rear cylinder varies with the spanwise location of the circular
arc (e.g., positions 1 and 2 shown in Fig. 7.30(a)) which is indicative of the effect of the strong
three-dimensional nature of the flow around the rear cylinder. For the cases when one or the
other cylinder oscillates, the mean pressure coefficient CP is more uniform along the spanwise
direction for the rear cylinder.

In general, the oscillatory motion of one or the other cylinder has a very small effect on the CP
distribution of the front cylinder, but significantly affects the CP distribution of the rear cylinder.
In particular, the location of the separation point on the front cylinder does not exhibit significant
variations (viz., the separation point is located at s≈ 0.065, except for Scenario (b) where from
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(a) Two sampling arcs (b) Scenario (a) (c) Scenario (b)

(d) Scenario (c) (e) Scenario (d) (f) Scenario (e)

Figure 7.30: The mean pressure coefficient CP as a function of the arclength s≡ πDθ/360 along
circular arcs at (a) two spanwise positions on the surface of the front and rear cylinders. The de-
pendence of CP on s for the front and rear cylinders is summarized for five different scenarios: (b)
Scenario (a)—front and rear cylinders stationary; (c) Scenario (b)—front cylinder oscillating in
the transverse direction and rear cylinder stationary; (d) Scenario (c)—front cylinder oscillating
in the streamwise (in-line) direction and rear cylinder stationary; (e) Scenario (d)—front cylinder
stationary and rear cylinder oscillating in the transverse direction; and, (f) Scenario (e)—front
cylinder stationary and rear cylinder oscillating in the streamwise (in-line) direction.

Fig. 7.30(c) it is seen that the separation point is located at s ≈ 0.085). This insensitivity of the
separation point location is due to the relative uniformity of the incident flow and to the stable
and dominant vortex shedding from the front (upstream) cylinder. Nevertheless, the oscillation
of the front cylinder in the transverse direction has a significant effect on the dynamics of the
vortex shedding, leading to the movement of the separation point location as is evident from a
careful examination of Fig. 7.30(c). In contrast to the front cylinder, the flow incident on the rear
(downstream) cylinder is rather complex, and the oscillatory motion of the front cylinder appears
to alter both the location of the separation point and the surface pressure distribution of the rear
cylinder. When one or the other cylinder vibrates in the in-line direction, the pressure coefficient
CP at the stagnation point of the rear cylinder is approximately zero. The near vanishing of
the pressure coefficient here may be due to the continuous stretching and squeezing of the fluid
between the two cylinders as one of the cylinders oscillates in the streamwise (in-line) direction.
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7.6.2 Analysis of unsteady vortex structures

Fig. 7.31 displays the isopleths of the velocity gradient tensor invariants Q and R for the
tandem cylinders for the five scenarios summarized in Fig. 7.27. For the case where the front
and rear cylinders are both stationary (cf. Fig. 7.31(a)), the value of Q near the center of the shed
vortices is positive, indicating that the vortex structure plays a leading role in the advection of
these structures at the given location. The downstream development of the wake of the front
cylinder is suppressed owing to the presence of the rear cylinder. The vortex shedding from the
rear cylinder is more regular than that of the front cylinder for all five scenarios studied. Near
the stagnation point of the cylinder surfaces, the value of Q is large and negative, suggesting that
the flow is dominated by strain at the stagnation point. The isopleths of R show that the flow is
highly complex. When the vortex shed by the front cylinder collides with the rear cylinder, the
value of R is negative with a large absolute value, implying that the strain dominates this region
of the flow.

When the front cylinder begins to vibrate in the streamwise (in-line) direction (cf. Fig.
7.31(c)), it is seen from a careful perusal of the isopleths of Q and R that the vortices shed
by the front (upstream) cylinder are squeezed between the two cylinders. This compression of
the shed vortices from the upstream cylinder does not occur in the case of a single cylinder.
When the front cylinder begins to vibrate in the transverse direction (cf. Fig. 7.31(b)), the large
values of Q suggest that the vibration of the front cylinder ejects the detached vortex away from
the region between the two cylinders. These ejected vortices are not as easily squeezed by the
in-line motion of one or the other of the cylinders.

Furthermore, it can be observed from an examination of the isopleths of R that the oscillations
of the rear cylinder generate more flow regions with large |R| in the wake—this results in more
instability of the flow in the wake region. An increased instability of the wake region, in turn,
increases the sound level of the broadband noise. While the regularly shed vortices produce
the dominant peaks in the noise power spectrum, the dynamical processes associated with wake
instability and broken vortices increase the energy of the broadband noise.

7.6.3 Analysis of acoustic field

In this section, the SPL PSD for Scenario (d) (viz., front cylinder stationary and rear cylinder
oscillating in transverse direction) is analyzed. To this purpose, the SPL PSDs acquired in the
x-y plane at z/D = 0 at a radial distance of 10D at various angular positions θ are compared. The
impermeable cylinder walls and the permeable surfaces designated previously as PS1 and PS2
are used as the FW-H surfaces. As a reminder for the reader, the two permeable FW-H surfaces
PS1 and PS2 used here are shown in Fig. 7.14(a).

Fig. 7.32 shows the SPL PSDs at microphones (observers) positioned at angular positions of
θ = 0◦, 45◦, 90◦, 135◦, and 180◦ at a radial distance of 10D from the midpoint of the streamwise
separation between the pair of cylinders (where the front cylinder is stationary and the rear cylin-
der is oscillating in the streamwise direction). The SPL PSDs displayed in this figure, obtained
using the two permeable FW-H control surfaces PS1 and PS2, are similar to each other and each
has a larger amplitude than that obtained using the impermeable FW-H control surface, especial-
ly in the range of frequencies between 80 Hz and 500 Hz. This difference in amplitude suggests
that the permeable FW-H control surface PS1 provides all the necessary information on the pres-
sure required to model the noise produced by the flow over the tandem cylinders—whereas, the
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(a) Q isopleths (b) R isopleths

Figure 7.31: Isopleths of the two invariants Q and R taken when the cylinder passes through the
initial position (viz., the stationary position for an oscillating cylinder) after several cycles of
oscillations for five different scenarios of tandem cylinders.

impermeable FW-H control surface coinciding with the cylinder walls does not provide sufficient
information on the sound source to enable an accurate prediction of the noise field. This observa-
tion is contrary to the NASA QFF case shown in Fig. 7.11 in which it is seen that the noise field
produced by the impermeable and permeable FW-H control surfaces are similar to each other,
even in the high-frequency band. The difference between the present results and the NASA QFF
case is due to the motion of the rear cylinder. This difference highlights the fact that the vibra-
tion of this cylinder generates a highly turbulent and unstable wake (yielding a quadrupole source
contribution) which generates more noise in the wake than that for a pair of stationary cylinders.
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(a) SPL PSD at angular position 90◦
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(b) SPL PSD at angular position 45◦
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(c) SPL PSD at angular position 135◦
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(d) SPL PSD at angular position 0◦
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(e) SPL PSD at angular position 180◦

Figure 7.32: SPL PSDs obtained at various angular positions at a radial distance of 10D from
the midpoint between the two cylinders with the front cylinder stationary and the rear cylinder
oscillating in the transverse direction.

The oscillatory motion of one of the cylinders generates more broadband noise (which include
the contributions in the high-frequency range with frequencies greater than about 80 Hz). The
latter noise contribution cannot be captured using a FW-H impermeable control surface (viz., the
cylinder walls). Finally, it is of interest to note the SPL PSDs for the impermeable and permeable
FW-H control surfaces obtained at an angular position of θ = 90◦ are similar to each other. This
similarity may arise from the weak directivity of the broadband noise in the transverse direction.

Fig. 7.33 exhibits the SPL PSDs at a fixed angular location of θ = 135◦ at a radial distance
of 10D from the midpoint between the pair of cylinders for the five scenarios summarized in
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Figure 7.33: SPL PSD obtained at an angular position of θ = 135◦ at radial distance of 10D from
the midpoint between the two cylinders for five different scenarios.

Fig. 7.27. The permeable control surface PS1 is used in the FW-H methodology for the prediction
of the noise field. The dominant peak in the SPL PSDs corresponds to a frequency between
about 30 Hz and 40 Hz for all five scenarios—a frequency that corresponds (approximately or
better) to the primary vortex-shedding frequency of the stationary tandem cylinders (shown as
the black curve in Fig. 7.33). The vibration of one of the cylinders in the pair causes the primary
vortex-shedding frequency to shift slightly which is consistent with the PSD characteristics of
the average surface pressure displayed in Fig. 7.28. The PSD amplitude of the broadband noise
increases when the cylinder vibrates, but the amplitude of the primary peak between 30 and 40
Hz remains relatively constant. There are also several harmonics corresponding to the vibration
frequency, along with an overall global increase in the SPL amplitude evident from a careful
examination of Fig. 7.34(b).

Fig. 7.34 exhibits the SPL directivity at a (fixed) radial distance 10D from the midpoint be-
tween the pair of cylinders for angular positions in the range 0◦ ≤ θ ≤ 180◦ for the five scenarios
of tandem cylinders depicted in Fig. 7.27. A comparison of Figs 7.34(a) and 7.34(b) shows that
the SPLs obtained using the permeable FW-H control surface (PS1) are larger than those ob-
tained using the impermeable FW-H control surface (viz., the cylinder walls), especially in the
upwind (θ = 0◦) and downwind (θ = 180◦) directions of the tandem cylinders. A significant lev-
el of broadband noise (arising from the turbulence or quadrupole source) is incorporated using
the permeable FW-H control surface (PS1)—an observation that is consistent with Fig. 7.32.

When an impermeable control surface (viz., the cylinder walls) is used in the FW-H method-
ology, a careful perusal of Fig. 7.34(a) shows that when one or the other cylinder is oscillating in
the streamwise (in-line) direction, the overall SPL is significantly larger—especially in the up-
wind (0◦) and downwind (180◦) directions—than that when one of the cylinders is oscillating in
the transverse direction. For the SPL directivity obtained using the permeable FW-H control sur-
face, the oscillation of one or the other cylinder increases the overall SPL (especially in the range
of angular positions 135◦ ≤ θ ≤ 180◦) in comparison to the case of two stationary cylinders.
This increase in the SPL directivity in the downwind direction agrees with the results reported
earlier with regard to the fact that the oscillations of a cylinder increase the turbulent velocity
fluctuations in the wake region. In particular, in-line (x-direction) oscillations of one or the other
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Figure 7.34: Directivity of the SPL obtained at a radial distance of 10D from the midpoint
between the pair of cylinders for five different scenarios involving tandem cylinders: directivity
predicted using (a) an impermeable FW-H control surface (taken as the cylinder walls) and (b)
the permeable FW-H control surface PS1.

cylinder is seen to generate the largest noise levels—an observation that is consistent with the
results obtained using the impermeable FW-H control surface.

In conclusion, the streamwise (in-line) oscillations of one or the other cylinder result in larger
values of the SPL than the transverse oscillations of one or other cylinder (assuming the same
oscillation amplitude and frequency for the two cases). This outcome is consistent with the
power spectral analysis described earlier. The physical mechanism underpinning this observed
difference resides in the fact that an in-line oscillation of one or the other cylinder results in a
repeatedly (periodic) squeezing of the flow between the cylinders which, in turn, generates high
levels of shear in the flow increasing the complexity of the flow field. Furthermore, oscillations
of the rear (downstream) cylinder (in either the streamwise or transverse directions) increase the
SPL more than comparable oscillations of the front (upstream) cylinder. When the rear cylinder
is stationary, it blocks the wake of the front cylinder. However, when the rear cylinder oscillates,
the noise increases through a combination of the more energetic oscillating wake of the rear
cylinder and the repeated thrashing within the front cylinder wake. These observations agree the
results reported by David et al. [24]—in this study, the researchers showed that noise production
in a tandem cylinders array is attributed primarily to the motion of the rear cylinder.

7.7 Chapter summary

The work in this chapter uses a three-dimensional DES/FW-H simulation methodology to
investigate the wake and noise generated by an oscillating single or tandem cylinder(s) at high
Reynolds numbers. A comparison between previous experimental and numerical results and
those obtained from our DES/FW-H simulation methodology is conducted for the stationary sin-
gle and tandem cylinder(s) in a turbulent flow and for oscillating tandem cylinders in a laminar
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flow. There is good conformance between the numerical and experimental results for the pre-
dictions of the surface pressure, the wake velocity profiles, and the sound generation—with very
minor discrepancies observed only in the prediction of the location of the separation point of the
rear cylinder in the tandem cylinders case. The validity of the SST-DES turbulence model, cou-
pled with the FW-H equation solved using the Farassat time-domain integration methodology,
for the prediction of the flow and noise fields is thereby demonstrated for the turbulent flow over
a single or a pair of cylinder(s).

As the flow moves past the stationary tandem cylinders, the turbulent fluctuations and flow
velocity increase both the amplitude of the broadband noise and the frequency of the dominant
peak in the SPL PSD in comparison to that of a single cylinder. Furthermore, more spectral peaks
are present in the SPL PSD for the tandem cylinders in comparison to that for a single cylinder.
The PSD of the sound pressure has a strong dependence on the angular position (direction or
directivity). The propagation of the sound pressure in the transverse direction is associated with
the lift fluctuation which has a smaller frequency and a larger amplitude. The propagation of
sound pressure in the streamwise (in-line) direction is associated with the drag fluctuations which
has a larger frequency and a smaller amplitude.

The oscillation of a single cylinder leads to the suppression of the acoustic energy in com-
parison to that of a stationary cylinder (both at Reynolds number Re = 120,000)—indeed, this
phenomenon occurs when the value of oscillation frequency approaches 57% of the vortex-
shedding frequency for the stationary cylinder. This acoustic energy suppression is consistent
with previous laminar simulations (at Re = 150) which concluded that the aerodynamics noise
is significantly reduced if the fluid motion is locked in the frequency range below the original
vortex-shedding frequency for the fixed (stationary) cylinder. Furthermore, the reduction of the
noise here arises from the oscillations in the structure which, in turn, suppresses the source of
noise caused by the vortex shedding from the stationary cylinder. The new source of noise aris-
ing from the cylinder oscillation does not compensate for this noise suppression. Moreover, the
new noise source induced by the structural motion includes the loading and thickness noise—
these two contributions to the noise have comparable energy. In contrast, the noise generated by
the vortex shedding from the stationary cylinder embodies only the loading noise and this noise
component disappears as the oscillation frequency increases.

Five different scenarios of tandem cylinders summarized in Fig. 7.27 were investigated in
detail. When one or the other cylinder oscillates in either the transverse or streamwise directions,
the use of an impermeable control surface in the FW-H method for the prediction of the noise
field leads to an underprediction of the sound pressure level. The use of a permeable control
surface (e.g., PS1) provides improved predictions of the noise field by capturing properly the
higher broadband noise levels through the inclusion of a quadrupole source that represents the
noise arising from the turbulent fluctuations in the wake. The noise energy provided by one or
the other cylinder oscillating in the streamwise (in-line) direction is larger than that associated
with one or the other cylinder oscillating in the transverse direction. In addition, the oscillation
impacts the distribution of the mean pressure coefficient CP on the rear cylinder more than on
the front cylinder due primarily to the highly complex nature of the incident flow on the rear
cylinder.

The second Q and third R invariants of the velocity gradient tensor were calculated for the
five different scenarios of tandem cylinders studied herein. The isopleths associated with the
distribution of Q in the wake are more complex when the front cylinder oscillates in the transverse
direction. The flow is dominated by the strain near the stagnation point at the surfaces of the two
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cylinders resulting in large negative values of Q. The oscillations of the rear cylinder increase
the values of R in the wake more than the oscillations of the front cylinder. This increase in the
values of R is associated with an increased broadband noise.

The oscillations of one or the other cylinder lead to an increase in the SPL directivity, espe-
cially in the upwind (θ = 0◦) and downwind (θ = 180◦) directions. A transverse oscillation of a
single cylinder results in a higher SPL than a streamwise (in-line) oscillation of the same cylin-
der. In contrast, for tandem cylinders, an in-line oscillation of one or the other cylinder results
in a higher SPL than a transverse oscillation of one or the other cylinder. Furthermore, the SPL
is more sensitive to oscillations of the rear cylinder than the front cylinder. This sensitivity aris-
es because the oscillation of the rear cylinder increases friction, collision, and extrusion of the
flow, leading to stronger pressure fluctuations and higher noise levels. These studies will be of
great implications to engineering issues such as the design and assessment of the noise problem
originating from bladeless wind turbines.
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Chapter 8

Conclusions and future work

In this thesis, to begin with, the effect of nonlinear restoring forces on the response of the
flow-induced vibration system is studied. Secondly, the modal behavior and underlying mech-
anism of lock-in behavior are investigated with respect to the FIV system with uniform flow.
Thirdly, this thesis tries to figure out the triggering mechanism of galloping phenomena for the
FIV system with the uniform flow, and varied factors are considered in this part. Fourthly, to
further explore the modal situation underpinning the locking interval of the FIV-based energy
extractor in real physical scenarios, one new data-driven theory via the superposition of the 2-D
ROMs (SROM) for the purpose of performing modal analysis and stability predictions of 3-D
FIV of an elastically-mounted circular cylinder submerged in spanwise shear inflow at subcrit-
ical Reynolds numbers is introduced. Lastly, the aeroacoustics propagations of moving single
and tandem cylinders with forced oscillation are investigated. The conclusions are summarized
as follows:

(1) The numerical simulation of two-dimensional flows around an elastically-mounted circu-
lar cylinder on a linear/quadratic spring configuration at a low-Reynolds number is conducted in
order to study the vortex-induced vibration. The Re extent ranged from 50 to 150. The equivalen-
t natural frequency for a circular cylinder elastically supported on a nonlinear spring is derived
and found to depend on the square root of the maximum amplitude of the displacement. The
range of Re associated with the initial branch is increased and the upper and lower branches are
suppressed for an elastically-mounted cylinder on a linear/quadratic spring configuration com-
pared to that elastically supported on a linear spring. The detailed characteristics (e.g., vortex
shedding modes, amplitude, oscillation frequency, etc.) of the nonlinear lock-in range and the
transition out of this range for the FIV system as a function of increasing Re are studied using
power spectrum, phase portrait, and dynamical mode decomposition analysis. The information
is synthesized in order to investigate the different physical mechanisms and phenomena appear-
ing in the FIV system and how these are linked to the underlying vortex shedding and amplitude
response regimes of the dynamics of the fixed and elastically-mounted cylinder. Overall, the
amplitude-emphasized range is extended by the nonlinear restoring forces.

(2) A reduced-order model for the fluid dynamics is obtained using the eigensystem realiza-
tion algorithm (ERA), which is subsequently coupled to a linear structural equation to provide a
state-space model for the coupled FIV system, in order to provide a simplified computationally
inexpensive mathematical representation of the system. This methodology is used to study the
dynamics of laminar flows past an elastically-mounted circular cylinder with Reynolds number
Re ranging from 20 to 180, inclusive. A detailed analysis of the distribution of the eigenvalues

198



of the transfer (or, system) matrix of the reduced FIV system shows that the frequency range of
the lock-in can be partitioned into resonance and flutter lock-in regimes. The resonance lock-in
(lower branch of the FIV response) dominates the fluid-structure interaction. Furthermore, it is
shown that when the structural natural frequency is close to one of the eigenfrequencies asso-
ciated with the wake modes, resonance lock-in (rather than flutter lock-in) will be the primary
mechanism governing the FIV response even though the real part of the eigenvalues associated
with the structural mode is positive. With increasing Reynolds number, the instability of each
wake mode is enhanced resulting in a transformation of the wake modes interacting with the
structural mode. It is suggested herein that the weakened interaction between the wake modes
and the structural mode at Re = 180 (associated with the greater separation between the root
loci of the modes) results in the premature termination of the resonance lock-in at Fs = 0.155
with increasing Ur. The DMD and power spectral analysis of the time series of the transverse
displacement and lift coefficient are used to support the results obtained from ROM/ERA and,
more specifically, to provide a clear demonstration of the balanced interaction between the wake
modes and the structural mode. This result is used to explain the beating phenomenon which
occurs in the initial branch and the significant lag time that arises between the initial branch and
the occurrence of a fully-developed response in the lower branch.

(3) The mechanisms that are important for the triggering of galloping in a system consisting
of the flow past an elastically-mounted body with various cross-sectional geometries are inves-
tigated using three methodologies: high-fidelity full-order model, linear stability analysis based
on the eigensystem realization algorithm, and the Den Hartog stability criterion. The results
synthesis is used to study the effect of the Reynolds number, the mass ratio, the cross-sectional
geometry, and the angle of attack on the suppression/initiation of galloping. In the LSA appli-
cation to a flow-induced vibration system with coupled modes, the importance of identifying
correctly which of the coupled modes correspond to the structure mode is stressed. LSA and the
Den Hartog stability criterion are applied to explain the recently observed phenomenon of the
collapse of galloping for a rectangular cylinder when the side ratio is decreased below a critical
value. Galloping appears and disappears when the flat face of a body is directed into or away
from the incident wind direction. Furthermore, it is found very small changes from a right an-
gle in the windward interior angle of an isosceles-trapezoidal body can significantly provoke or
suppress galloping.

(4) We present a novel data-driven theory for the stability analysis of a flow-induced vi-
bration (FIV) system consisting of an elastically-mounted circular cylinder submerged in three-
dimensional spanwise shear inflow at subcritical Reynolds number. The presented data-driven
theory separates the cylinder into several elements along the spanwise direction and treats the
aerodynamics of each element as a two-dimensional situation subject to uniform inflow. An
eigensystem realization algorithm is constructed to obtain the separate 2-D flow reduced-order
model for each element, then the SROM is processed to obtain the simplified 3-D flow ROM.
The simplified 3-D flow ROM is coupled with the structural model to perform a linear stabil-
ity analysis of the FIV system under study. The proposed data-driven technique demonstrates
high consistency with the high-fidelity full-order model with regard to the prediction of the flut-
ter lock-in boundaries while being more time-efficient, whereas the traditional direct 3-D data-
driven analysis involves significant errors. The growth rate obtained using SROM is negatively
correlated with the lagging time (reflected in the FOM calculation) for the FIV system to evolve
from the initial stationary state to the final equilibrium state. The evolution of the structural insta-
bility range with the variation of the mass ratio is analyzed/predicted by the proposed data-driven
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theory.

(5) The noise generated by a three-dimensional turbulent wake behind an oscillating single or
tandem cylinder(s) is studied using detached eddy simulation and the Ffowcs Williams-Hawkings
(FW-H) method. The drag force fluctuations result in the propagation of the sound pressure in
the streamwise direction, whereas the lift force fluctuations result in the propagation of the sound
pressure in the transverse direction. The second and third invariants of the velocity gradient ten-
sor are used to visualize the distinct vortex structures in the wake for the five different scenarios
of tandem cylinders. The fundamental frequency and the first harmonic in the sound pressure
power spectrum are related to the oscillation frequency of the cylinder. For an oscillating cylin-
der at a fixed Reynolds number Re = 120,000, the sound energy is suppressed compared to that
of a stationary cylinder provided the value of oscillation frequency approaches 57% of the orig-
inal vortex-shedding frequency of the stationary cylinder. This noise reduction arises from the
structural oscillations suppressing the noise generated by the vortex shedding from the station-
ary cylinder—the additional source of noise arising from the structural oscillations is too small to
compensate for the mechanism responsible for the noise suppression. The noise generated by the
cylinder motion includes contributions from the loading and thickness noise, whereas the noise
generated by vortex shedding from the stationary cylinder only includes the loading noise. A
single-cylinder oscillating in the transverse direction exhibits a larger sound pressure level (SPL)
than the streamwise oscillation of the same cylinder. In contrast, the streamwise oscillation of
one or the other cylinder in a tandem array results in a larger SPL than the transverse oscillation
of one or the other cylinder. Finally, the SPL is more sensitive to the oscillations of the rear
(downstream) cylinder than the front (upstream) cylinder.

In the future, the effect of nonlinear restoring force on FIV response will be investigated
in turbulent situations and tandem (cylinder) configurations. Furthermore, applying the LSA
methodology to the FIV system at higher Reynolds numbers will also be conducted. The features
discrepancy of aeroacoustics propagation from moving cylinders with forced and self-excited vi-
bration are also valuable to be further analyzed. The effect of turbulence models on aerodynamic
noise propagation also deserves to be further explored. In addition, in future acoustic propaga-
tion studies of complex cylindrical arrays, a combination of actuator line models and acoustic
models could be considered to reduce expensive computational costs.
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Appendix A

Appendix: The simplify of one common
engineering VIV system mounted by
nonlinear restoring force

Figure A.1: VIV system oscillating in Y direction supported by two linear springs in X and Y
direction.

For instance in Fig. A.1, the tandem-linear spring FSI system is very common in the engi-
neering world. The cylinder motion is supported by two linear springs from X and Y direction,
with ka and kb are stiffness of two linear springs in two direction, and the cylinder only move in
Y direction. Then the integral springs force acted on the cylinder in Y direction f orcey will be:

f orcey = kb ·∆y+ ka ·∆y ·

(√
L2

a +∆y2−La

)
√

L2
a +∆y2

, (A.1)

if kb = 0, force from ka part will change as Fig. A.2 with different ka and La. As can be seen,
the relationship of force changing with distance is not linear, and the lager ka and smaller La are
related to higher degree of nonlinearity.
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Figure A.2: Integral spring forces in Y direction with different ka and La .

To have a better study of nonlinear spring’s effect on VIV, most nonlinear system could be
transferred to simple form, approximately equal to the form of a polynomial. Then the equation
could be expanded into polynomial form by Taylor formula,

f orcey = kb ·∆y+ ka ·∆y ·

(√
L2

a +∆y2−La

)
√

L2
a +∆y2

,

= (kb + ka) ·∆y− kaLa ·
∆y√

L2
a +∆y2

,

(A.2)

after Taylor expands,

f orcey = (kb + ka) ·∆y− ka

(
∆y− 1

2L2
a

∆y3 +
3

8L4
a

∆y5 +o
(

∆y5
))

, (A.3)

if kb=0, omitting high order terms,

f orcey = ka

(
1

2L2
a

∆y3− 3
8L4

a
∆y5

)
, (A.4)

thus, if the small effects of higher-order terms is ignored, nonlinear spring can be transformed
into polynomial form. This is a relatively simple case of nonlinear restoring force in engineering.
In some other practical applications, such as automobile damping, complex nonlinear restoring
force will be involved to meet the requirements. The nonlinear terms of Taylor expansion of
engineering relations start from the second or third order. Here, one kind of simple nonlinear
spring with force value f orces is defined as equation A.5, and use it in the study of present
work. This kind of nonlinear equation is the classical nonlinear spring expression in the vibration
theory, and study on this will be valuable and representative. The spring is linear while k2 and
k3 is equal to 0. Quadratic nonlinearity is the starting point of nonlinear system, so this thesis
mainly studies the characteristics of VIV under quadratically nonlinear spring with hardening
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spring (k2 > 0,k3 = 0) characteristics.

f orces = k1 ·∆L+ k2 ·∆L · |∆L|+ k3 ·∆L3,

∆L =
√

∆x2 +∆y2.
(A.5)

Figure A.3: VIV system with nonlinear restoring force of quadratic and cubic orders, structural
damping is zero.

224



Appendix B

Appendix: Ffowcs Williams-Hawkings
(FW-H) equation with Farassat’s
formulation 1A

In Farassat’s formulation 1A, the quadrupole term is neglected, and the sound pressure p′ at
the observer position x and time t from a subsonic moving source can be expressed as follows:

p′ (x, t) = p′T (x, t)+ p′L (x, t) , (B.1)

where the subscripts T and L denote the thickness and loading components of the noise. The
thickness p′T and loading p′L noise are given, respectively, by

4π p′T (x, t) =
∫

f=0

[
Q̇n +Qṅ

r (1−Mr)
2

]
ret

dS+
∫

f=0

[
Qn
(
rṀr + c0

(
Mr−M2))

r2 (1−Mr)
3

]
ret

dS , (B.2)

and

4π p′L (x, t) =
1
c0

∫
f=0

[
L̇r

r (1−Mr)
2

]
ret

dS+
∫

f=0

[
Lr−LM

r2 (1−Mr)
2

]
ret

dS

+
1
c0

∫
f=0

[
Lr
(
rṀr + c0

(
Mr−M2))

r2 (1−Mr)
3

]
ret

dS .

(B.3)

Here, Mi = vi/c0 with i = 1,2,3 are the components of the Mach vector where c0 is the speed of
sound; M is the length (magnitude) of the Mach vector, and the dot above a variable indicates a
time derivative. The terms in the equation are defined as follows (Einstein summation convention
for repeated indices implied):

Mr = Mir̂i , Ṁr =
∂Mi
∂τ

r̂i ,

Qn = Qin̂i , Q̇n =
∂Qi
∂τ

n̂i , Qṅ = Qi
∂ n̂i
∂τ

,

Li = Li jn̂ j , L̇r =
∂Li
∂τ

r̂i , Lr = Lir̂i , LM = LiMi ,

(B.4)
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where Qn and Li are defined as

Qn = Qin̂i ≡ [ρ0vi +ρ (ui− vi)] n̂i ,
Li = Li jn̂ j ≡

[
Pi j +ρui

(
u j− v j

)]
n̂ j .

(B.5)

Here, the velocity vi defines the motion of the surface f .

The moving surface is described by f (x, t) = 0 such that n̂ = ∇ f is the unit outward normal
to the surface. Pi j = (p− p0)δi j− τi j is the compressible stress tensor, and δi j is the Kronecker
delta. In general, the viscous term in Pi j is negligible. In consequence, the stress tensor simplifies
to Pi j = (p− p0)δi j. Additionally, in the region away from the source area, the perturbation of
the density is small and c2 (ρ−ρ0) can be replaced by the sound pressure p′. The subscript “ret”
on a quantity refers to that quantity evaluated at the retarded time tret (viz., at the time at which
the source was emitted):

tret = t− r
c0

, (B.6)

where r = |x−y| denotes the distance from the sound source at y at the time of emission tret of
the sound to the observer at x at the time of observation t.

226



Appendix C

Appendix: Parameters of turbulence
models used in present work

The equations for turbulence kinetic energy and turbulence specific dissipation rate in k-
omega Shear Stress Transport (SST) turbulence model are shown as:

∂ (ρk)
∂ t

+
∂ (ρuik)

∂xi
= Pk−ρβ

∗kω +
∂

∂xi

[(
µ +

µt

σk

)
∂k
∂xi

]
, (C.1)

∂ (ρω)

∂ t
+

∂ (ρuiω)

∂xi
= Pω −ρβωω

2 +
∂

∂xi

[(
µ +

µt

σω

)
∂ω

∂xi

]
+2ρ (1−F1)

1
σω,2ω

∂k
∂xi

∂ω

∂xi
,

(C.2)
with ui as the velocity along the ith coordinate, ρ as the density, ω as the turbulence specific
dissipation rate, k as the turbulence kinetic energy, Pk is the production term for k, µ as the
dynamic viscosity, µt as the turbulent viscosity, and F1 is the blending factor.

Pk = min
(
−τi j

∂ui

∂x j
,10ρβ

∗kω

)
, (C.3)

Pω =
αω

k
Pk, (C.4)

α =

(
βi,1

β ∗
− 0.412

σω,1
√

β ∗

)
F1 +

(
βi,2

β ∗
− 0.412

σω,2
√

β ∗

)
(1−F1) , (C.5)

µt =
ρk

max
(

ω, SF2
a1

) , (C.6)

F1 = tanh〈

{
min

[
max

( √
k

β ′ωd
,
500µt

ρωd2

)
4kρσω2

d2CDkω

]}4

〉, (C.7)

F2 = tanh


[

max

(
2
√

k
β ∗ωd

,
500µt

ρωd2

)]2
 , (C.8)
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CDkω = max
[

2ρσω2
1
ω

(
∂k
∂xi

)(
∂ω

∂xi

)
,10−10

]
, (C.9)

σk =
1(

F1
σk,1

)
+
(
(1−F1)/σk,2

) , (C.10)

σω =
1(

F1
σω,1

)
+((1−F1)/σω,2)

, (C.11)

βω = βi,1F1 +βi,2 (1−F1) , (C.12)

with τi j as the turbulence shear stress, S as strain rate magnitude, and d as the distance to the
surface. The constants’ value in present research are:

β
∗ = 0.09,a1 = 0.31,σk,1 = 0.85,σk,2 = 1.0, (C.13)

σω,1 = 0.5,σω,2 = 0.856,βi,1 = 0.075,βi,2 = 0.0828. (C.14)
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Appendix D

Appendix: Derivation of equivalent natural
frequency

We focus on development of an equivalent linearization for the following differential equation
describing a cylinder of mass m supported by a linear/nonlinear spring configuration with no
structural damping (c = 0):

mÿ+ k1y+ knln (y, ẏ) = Fy , (D.1)

where k1 is the linear spring constant and kn is the nonlinear spring constant for an n-th order
nonlinear spring. Dividing Eq. D.1 by m gives

ÿ+ω
2
1 y+

kn

m
ln (y, ẏ) = fy , (D.2)

where ω1 ≡
√

k1/m, and fy ≡ Fy/m. Now, let us try to recast Eq. D.2 in the following form

ÿ+ω
(n)2
eq y = fy , (D.3)

where the equivalent frequency ω
(n)
eq ≡

√
k(n)eq /m, and k(n)eq is the “equivalent linear spring con-

stant”. The problem reduces to the determination of the equivalent frequency ω
(n)
eq for n-th order

nonlinear spring.

To this purpose, it is useful to define εn ≡ kn/k1. Now, the equivalent linearization method
described by Caughey [213] can be used to determine ω

(n)
eq . Towards this objective, the transverse

displacement of the cylinder can be approximated by a sinusoid with a slow modulation in the
amplitude and phase, so

y(t) = a(t)sin
(

ω
(n)
eq t +φ (t)

)
≡ asin(θ) . (D.4)

Following the equivalent linearization method described by Caughey [213], we obtain the
following key result (Eq. (1.15) in [213]) which in terms of our current notation gives

ω
(n)2
eq = ω

2
1 +2

kn

m
〈S(n) (a)〉
〈a2〉

, (D.5)
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where

S(n) (a)≡ 1
2π

∫ 2π

0
asin(θ)ln (y, ẏ)dθ , (D.6)

and 〈 · 〉 denotes an ensemble-averaging operation. To compute the ensemble averages in e-
quation D.5, we follow Caughey [213] and assume that the distribution of the envelope (slow
modulation in the transverse displacement oscillations of the cylinder) follows a Rayleigh dis-
tribution for the amplitude peaks a(t) (cf. Eq. D.4), so the probability density function for a is
modeled in accordance to

p(a) =
a
〈y2〉

exp
(
− a2

2〈y2〉

)
, (D.7)

where 〈y2〉 is the mean-square displacement of the transverse oscillations.

With this assumption, the ensemble averages in Eq. D.5 can be explicitly evaluated. Firstly,
the mean-square amplitude of the transverse oscillations 〈a2〉 is given by

〈a2〉=
∫

∞

0

a3

〈y2〉
exp
(
− a2

2〈y2〉

)
= 2〈y2〉 . (D.8)

Secondly, we can evaluate 〈S(n) (a)〉 in Eq. D.5 as follows. The nonlinear spring function (n> 2)
is given by

ln (y, ẏ) = y|yn−1| . (D.9)

Substituting Eq. D.9 into Eq. D.6 and evaluating the integral, we get

S(n) (a) =
1√
π

Γ ((n+2)/2)
Γ ((n+3)/2)

an+1 , n = 2,3, · · · , (D.10)

where Γ (x) is the gamma function. Now, we can use Eq. D.10 to compute 〈S(n) (a)〉 which is
required in Eq. D.5 to determine the equivalent frequency. This leads to

〈S(n) (a)〉=
√

21+n

π
Γ ((n+2)/2)〈y2〉(n+3)/2−1 , n = 2,3, · · · . (D.11)

Finally, substituting Eqs D.11 and D.8 into Eq. D.5, we get a general expression for the equivalent
frequency for an n-th order nonlinear spring:

ω
(n)2
eq = ω

2
1

(
1+ εn

2√
π

Γ ((n+2)/2)〈a2〉(n−1)/2
)

, n = 2,3, · · · . (D.12)

In the preceding analysis, it was assumed that the transverse displacement of the cylinder
can be modeled as a sinusoid with a slowly varying amplitude and phase as given in equation
D.4. However, in certain regimes of operation (e.g., lock-in), the amplitude and phase of the
sinusoid is constant (approximately or better) in time. For this case, the probability distribution
of the amplitude p(a) reduces to a delta function, so p(a) = δ (a). In view of this, the equivalent
frequency in Eqs D.5 and D.6 simplifies to

ω
(n)2
eq = ω

2
1

(
1+2εn

Sn (a)
a2

)
, n = 2,3, · · · , (D.13)
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which in view of Eq. D.10 results in

ω
(n)2
eq = ω

2
1

(
1+ εn

2√
π

Γ ((n+2)/2)
Γ ((n+3)/2)

an−1
)

, n = 2,3, · · · . (D.14)
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