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Abstract

Widespread interest in the advancement of autonomous vehicle technology is moti-
vated by multiple outstanding issues associated with vehicular travel despite the decades-
long ubiquity of this mode of transportation. It is well known that the leading cause of
accidents on the road is human error. Furthermore, vehicle hardware faults and harsh
environmental circumstances are also common collision factors due to the challenges that
they introduce to the driving task. Autonomous vehicles have the potential to greatly
exceed the perception, decision making, and control capabilities of human drivers in some
applications, and the large-scale adoption of this technology will thereby mitigate the pri-
mary driving-related safety concerns. Numerous additional benefits will be realized as
a result; for instance, complex planning algorithms will help to reduce traffic congestion,
and transportation- and insurance-related costs will be minimized due to the lower collision
rates. Though it may be many years before the technology sees extensive use for passenger
transportation applications due to the complexity of standard driving environments, au-
tonomous vehicles will likely find use over the short-term in other specialized domains. For
example, these vehicles can be used to transport payloads over short distances in a wide
variety of applications, including agriculture, mining, and shipping, where the operating
environment is less complex. In these scenarios, autonomous vehicle technology will help
to lessen the effects of labour shortages while enabling longer operating hours at a lower
cost.

A key component of the autonomous stack is the motion controller, which serves to
regulate the longitudinal and lateral motion of the vehicle according to a defined set of
objectives by precisely manipulating the available actuators. Model predictive control
(MPC) is a powerful control strategy commonly used for this purpose; the algorithm can
coordinate a large set of control inputs such that the system meets all defined objectives
while satisfying any constraints on the states and inputs. Many prior works investigate the
use of MPC, and its variants, for vehicle path tracking and stability control applications.
One such variant is distributed MPC; with this approach, the controlled plant is modelled as
a set of interacting subsystems, each subsystem using its own MPC controller to select a set
of optimal control actions in combination with all others. An extension of distributed MPC,
agent-based MPC (AMPC), enhances the control capabilities by allowing the controller to
additionally consider both the effect of subsystems that are not controllable by the optimal
controller and the effects of hardware faults on the system dynamics. While previous works
have investigated the application of AMPC to vehicle stability control tasks, in this thesis,
AMPC is utilized to perform path tracking.

The vehicle hardware platform considered in this work, WATonoTruck, is modular
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and over-actuated in design, making it a suitable test platform for AMPC. Built using
the corner module platform, the wheels at each corner can be independently driven and
steered. A vehicle dynamics reference model to represent the behaviour of WATonoTruck is
constructed; this model utilizes a nonlinear tire force model to accurately characterize the
tire-road interaction, and incorporates Ackermann geometry to prevent unecessary wheel
slip and reduce the control task complexity that results from the over-actuated nature of the
system. This model serves as the prediction model for the designed AMPC controller. The
controller also considers numerous constraints on the vehicle states, inputs, and input rates
to ensure stability, and can incorporate an external longitudinal controller and account
for actuator faults. The controller is validated over several simulated and experimental
tests that demonstrate its ability to provide effective path tracking and velocity control
performance in a varied set of scenarios, including those where actuator failures occur or
the driving environment is harsh.
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Chapter 1

Introduction

1.1 Motivation

Despite the significant worldwide reliance on vehicles to meet daily transportation needs,
there are many outstanding issues with the current state of car-based travel. Between
2005 and 2007, the U.S. Department of Transportation conducted a study to determine the
leading causes of passenger vehicle accidents that involved collecting evidence at numerous
collision scenes around the country [1]. The study’s findings indicated that approximately
94% of crashes were the result of driver error, 2% were related to a vehicle hardware
failure, 2% were the result of hazardous environmental conditions, and the remaining 2%
were of unknown cause. The U.S. Department of Transportation further reported that
motor vehicle crashes were a leading cause of death, with over 37,000 lives lost in collisions
throughout the United States in 2017 [2]. In addition to the safety concerns associated
with driving, issues related to traffic congestion, transportation and insurance-related costs,
and the vast amount of space occupied by infrastructure built to support vehicular travel
hamper the experience of vehicle users and society at large.

The widespread adoption of autonomous vehicles (AVs) is expected to both resolve
these outstanding challenges and provide additional benefits for society. AV technology
has the potential to exceed the perception, prediction, decision making, planning, and
control capabilities of human drivers, which will significantly reduce the possibility of hu-
man error. The use of model-based and data-driven control algorithms will enable the
vehicle to respond effectively to harsh conditions, such as wet or snowy road surfaces,
or a vehicle malfunction, such as a steering or electric motor failure, by utilizing a pre-
dictive model that characterizes the system’s behaviour in such scenarios. The resulting
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safety improvements will allow for faster vehicle speeds, shortening travel times; provide
insurance and medical savings due to minimized collision rates; and reduce the area that
vehicles require to safely travel and park, freeing space for new bicycle lanes and pedestrian
walkways [3]. Furthermore, AV technology can provide value in domains beyond human
passenger transportation. AVs may be used to transport payloads for a wide variety of ap-
plications, including agriculture, mining, and shipping. AVs operating in these spaces will
alleviate the impact of later shortages, provide cost savings, and enable longer operational
hours. In comparison to urban environments, the relative simplicity of the driving task in
these scenarios will likely result in faster adoption of AV technology and the corresponding
realization of its benefits.

A popular and successful method to develop a safe, reliable, and understandable AV
architecture involves the integration of a set of modules that each undertake a unique aspect
of the driving task and operate concurrently to govern the behaviour of the vehicle. These
modules include perception, which utilizes measurements collected using sensors such as
LIDAR, RADAR, and cameras to determine the position and orientation of obstacles in
the vehicle’s environment; prediction, which considers the historical evolution of obstacle
states to predict their trajectory over a finite period of time into the future; decision making,
which considers the state of the vehicle and the environment to determine high-level desired
behaviour, such as stopping at a stop sign; motion planning, which plans a local path that
is safe and feasible for the vehicle to follow; and the controller, which manipulates the
vehicles actuators such that the vehicle perform safe maneuvers by following the planned
trajectory while maintaining stability. A successful AV motion controller must achieve a
set of path following and velocity regulation control objectives while adhering to a set of
constraints imposed to ensure stability and safety, considering vehicle dynamics to ensure
maneuver feasibility, and coordinating the manipulation of the available actuators. The
control task is further complicated by nonlinear tire force behaviour and the nonlinear
relationship between system states.

In recent years, researchers have studied the control of over-actuated AVs; features of
these vehicles may include, for example, four-wheel independent steering (4WIS) and four-
wheel independent drive (4WID) [4–13]. While an increasing number of available actuators
enables a growing ability to precisely manipulate the vehicle to meet its control objectives
while satisfying the defined constraints, the problem of coordinating these actuators to
enable this capability becomes increasingly complex. Model predictive control (MPC) is
a powerful control algorithm suitable for application to the vehicle motion control task;
the technique can coordinate a large number of actuators to achieve a set of objectives
while adhering to a set of constraints. MPC utilizes a reference model to predict system
behaviour over a finite prediction horizon given the current state and selects a feasible
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input sequence that will result in the optimal system behaviour; therefore, knowledge of
vehicle dynamics may be incorporated directly into the control input selection process.

The University of Waterloo’s Mechatronic Vehicle Systems (MVS) Lab is currently
developing WATonoTruck, an over-actuated autonomous flatbed truck equipped with in-
dependent drive and steering at each wheel. The novelty of WATonoTruck stems from its
corner module (CM)-based design. CMs, also developed by the MVS Lab, are effectively
small electric vehicles with a single wheel; each contain independent suspension, steering,
drive, and brake systems, and a microcontroller [14]. Four modules are installed at each
corner of the truck; they communicate with each other and a central computer using a
controller area network (CAN) bus. While most existing vehicle motion control research
treats the vehicle as a single system to be controlled by a controller, the modular nature
of the WATonoTruck hardware platform motivates its representation as a distributed sys-
tem. With this framework, each subsystem, or ”agent”, utilizes its own controller and
continuously selects its control actions in collaboration with all others. Agent-based MPC
(AMPC), a distributed, cooperative optimal control algorithm, is suitable for this purpose;
in comparison to standard, centralized MPC, this control strategy facilitates increased flex-
ibility to changes in the system’s actuator topology and tolerance to actuator faults, while
providing equivalent optimal control performance [15–17].

1.2 Objectives and contributions

The primary objective of this work is to design an AMPC controller for WATonoTruck.
This task includes the formulation of a vehicle dynamics reference model that incorporates
Ackermann steering geometry and nonlinear tire force behaviour; the reconfiguration of
the reference model to account for the distributed nature of the system; defining state,
input, and input rate constraints to ensure system safety and maneuver feasibility; the
design of an external longitudinal controller that can be incorporated into the agent-based
scheme, if desired; and the AMPC formuation. While this work focuses on the control of
WATonoTruck, the vehicle model and controller formulation are presented in a generalized
way to allow for the application of the controller, with or without modification, to other
vehicle hardware platforms.

The second objective is to implement and validate the AMPC scheme through both sim-
ulation and experimental testing. The capability of the designed framework to effectively
control WATonoTruck, an over-actuated vehicle platform, will be evaluated by utilizing
different actuator configurations to demonstrate flexibility to hardware topology changes,
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simulating actuator faults to exhibit robustness to hardware failure, and driving the vehicle
in harsh simulation scenarios.

The central novel contribution of this work is the application of AMPC to the task
of autonomous path tracking. Additional novel contributions include the ability of the
controller to easily handle different actuator configurations, including cases where certain
actuators are disabled, and to consider the effects of ”non-controllable” agents that are
controlled externally to the AMPC scheme on the overall system dynamics; a method to
prevent reference model singularities at low speeds without causing model errors at higher
speeds; and the derivation of constraints applied to the imaginary front- and rear-center
steering angles that prevents violations of the Ackermann geometry at all corners.

1.3 Outline

Chapter 2 includes a review of the literature relevant to the objectives of this thesis.
Topics covered include vehicle path tracking and stability control, with a focus on studies
that utilize MPC; distributed model predictive control and its prior application to vehicle
motion control tasks; and control strategies used when considering over-actuated vehicles.

In Chapter 3, the formulation of the AMPC prediction model is outlined. This includes
an overview of the WATonoTruck hardware platform, the presentation of the equations of
motion needed to represent the dynamics of the system, the state space representation
of the system in both centralized and agent-based forms, the method to use the model
to predict the system state over the MPC prediction horizon, an approach to account for
hardware faults within the model, and a model modification that prevents singularities at
low speeds.

In Chapter 4, the formulation of the AMPC controller is presented. First, the con-
straints enforced on the system states, inputs, and input rates are given. The MPC for-
mulation is then outlined before the details of the AMPC algorithm are discussed. A
non-controllable longitudinal velocity controller that can be incorporated into the AMPC
framework is also presented.

Simulation and experimental results conducted using the AMPC controller are pre-
sented in Chapter 5. The simulations demonstrate that the AMPC framework is capable
of handling varied actuator configurations, accounting for hardware faults, and effectively
controlling the vehicle in harsh scenarios. The path tracking performance demonstrated
through the experimental results further reinforces these findings.
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Chapter 6 concludes this thesis with a summary of its contents and an outline of possible
future directions for the project to continue the development of the AMPC framework.
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Chapter 2

Literature review and background

2.1 Vehicle motion control

Vehicle motion control is a complex task that involves regulating the longitudinal, lateral,
and vertical components of a vehicle’s motion. For AV applications, the purpose of the
motion controller is to enable the vehicle to track a desired reference path and velocity
profile while maintaining stability. These high-level requirements further comprise a set of
lower-level objectives. For instance, to ensure vehicle stability, the controller may constrain
the vehicle yaw rate and limit the longitudinal and lateral slip of the wheels to confine
the system state to a stable region while preventing tire force saturation. Path tracking
objectives include minimizing both the lateral deviation and heading error of the vehicle
with respect to the reference path. These objectives must be met while coordinating all
available actuators with consideration for the constraints on actuator states and rates of
change.

MPC is a popular control approach that is suitable for vehicle motion control; the
technique can coordinate multiple system inputs to achieve optimal control performance
while considering constraints on both the inputs and system states. Linear MPC considers
the current system state and a desired reference trajectory over a finite time horizon that
extends into the future to select the optimal control input vector at every samping instant.
The MPC objective is formulated as a convex quadratic programming (QP) optimization
problem that considers the difference between the reference and actual states over the
horizon to select globally optimal inputs. MPC requires a linear reference model to predict
system behaviour over the horizon; standard vehicle dynamics models, while typically
nonlinear, can be linearized about the operating point at each sampling instant and used
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as the MPC reference. The following subsections describe the application of MPC to vehicle
motion control problems.

2.1.1 Stability control

Many researchers apply MPC to achieve vehicle stability control objectives. One recurring
strategy involves the use of tire forces as the MPC reference model inputs. Palmieri et
al. [18] design an MPC controller used to stabilize a vehicle when performing sudden lane
change maneuvers or taking corners at high speeds. The controller selects longitudinal
force modifications to the driver’s intended drive force at each wheel that result in optimal
lateral behaviour. The forces are realized using an integrated slip controller that selects
brake torque while preventing excessive wheel spin. Since the forces are selected by the
controller, it is not necessary to consider nonlinear tire force behaviour when constructing
the MPC reference model, which simplifies the optimization. Instead, the nonlinear pure
slip magic formula tire model is used to determine the tire force bounds, which serve as
a controller constraint. Beal and Gerdes [19] devise a safe handling envelope that defines
bounds on the vehicle yaw rate and sideslip angle that the vehicle must not exceed to
remain laterally stable. The authors use MPC to perform lateral vehicle control; a linear
bicycle model serves as the reference model, the lateral tire force at the front wheel serves
as the input, and the rear lateral force is estimated using a linearized brush tire model;
the driver’s steering angle input is corrected by considering the optimal lateral tire force.
In addition to the stability constraints, a yaw rate reference is incorporated so that the
driver’s intended maneuver is executed. Experimental results indicate that the vehicle
stability is maintained regardless of the driver input.

Another effective approach to MPC-based vehicle stability control involves utilizing
an overall yaw moment that acts on the vehicle as an control action in addition to, or
in place of, the forces that act on the vehicle. Bernardini et al. [20] employ a hybrid
MPC technique to combine active front steering (AFS) and differential braking for lateral
stability control. The effect of differential braking on the vehicle is represented by a yaw
moment input. The prediction model is hybridized through the inclusion of an integral
term to the yaw rate tracking objective that mitigates the effect of both disturbances and
model inaccuracies and facilitates zero steady state tracking error. Additionally, wheel
sideslip angles are minimized in the MPC optimization. Di Cairano et al. [7] similarly
utilize AFS and differential braking via MPC to ensure yaw stability while tracking the
yaw behaviour intended by the driver as indicated by the steering input. Differential
braking is again emulated using an overall yaw moment input. The steering angle rate is
included as a model input while the steering angle is incorporated into the system state
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vector. Wheel slip angle constraints are imposed, and a piecewise affine approximation
of a nonlinear tire force model is used; the wheel status is assumed to be either linear
or saturated over the prediciton horizon according to its operating condition. Nahidi et
al. [8] design a multi-layer integrated longitudinal and lateral stability controller. The
upper layer uses MPC to determine the overall longitudinal force and yaw moment that
will lead to stable behaviour. The center of gravity (CG)-based nature of this controller
makes it applicable to any passenger vehicle, regardless of the powertrain configuration.
A low-level optimal torque distributor is used to compute the torque at each wheel that
will result in the desired CG longitudinal force and yaw rate. The controller is evaluated
using an electric vehicle in many harsh maneuvers on slippery roads, including double lane
change, full throttle launch, and acceleration in turn; the controller is able to maintain the
stability of the vehicle in each scenario.

Considering the CG forces and moments as inputs to the MPC scheme reduces model
simplicity and computational intensity by removing the need to include nonlinear tire force
behaviour in the prediction model; tire models can instead serve to constrain the MPC
inputs. Further, this method provides a high-level controller that is adaptable to different
powertrain configurations. However, by utilizing wheel torque values as inputs to the model
rather than CG forces and moments, the MPC controller can consider how wheel dynamics
will influence the behaviour of the system over the prediction horizon. Jalali et al. [9]
design an integrated vehicle stability and slip controller using MPC that considers torque
applied via differential braking and torque vectoring as inputs to the system. A double
track vehicle model is used; the yaw rate, lateral velocity, and wheel angular velocities are
regulated to maintain stability. The controller can be modified as needed to accommodate
different driveline configurations, such as front-wheel drive or rear-wheel drive, by removing
the relevant torque inputs from the reference model. Ataei et al. [21] present a reference
model that can be reconfigured to perform stability control using MPC for vehicles with
different wheel configurations. The model considers torque applied by differential braking
and torque vectoring, active front and rear wheel steering, and active camber. Ataei et
al. [10] use MPC to perform slip control when accelerating or braking, lateral stability and
handling improvement, and rollover prevention. Torque at each corner and active steering
at the front wheels are the inputs considered. The capability of the controller to sucessfully
handle all objectives demonstrates the proficiency of MPC at handling multiple integrated
control tasks.
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2.1.2 Path tracking

While it is necessary to consider vehicle stability requirements when developing AV motion
controllers, additional objectives must be incorporated when implementing path tracking
capabilities. Many researchers use MPC to control autonomous vehicles while satisfying
path tracking and stability requirements. Falcone et al. [22] use MPC to control an AV
equipped with AFS to track a predefined path in a double lane change scenario on a slippery
road. Two different approaches are considered. The first uses a nonlinear vehicle model,
resulting in a nonlinear optimization problem that cannot be solved at a frequency suitable
for high-speed experimental testing. The second involves linearizing the nonlinear model at
the operating point at each sampling instant to generate a linear time-varying (LTV) model
to be used with linear MPC. Falcone et al. [23] extend the previous work by considering
an additional constraint to guarantee stability; AFS is used to perform path tracking. Cui
et al. [24] present a path tracking controller using MPC that incorporates an unscented
Kalman filter (UKF) to estimate unmeasurable states including the vehicle sideslip angle,
the wheel sideslip angles, and the tire-road friction coefficient (TRFC). A 3DOF vehicle
model combined with the magic formula tire force model are used to represent the system
dynamics. The controller and estimator combination was found to provide accurate path
tracking performance over a wide range of road conditions. Zhang et al. [25] investigate
the application of MPC to low-speed autonomous valet parking path tracking scenarios. A
kinematic vehicle model was used as the MPC reference model, and experimental results
demonstrated the efficacy of the technique in various scenarios.

MPC may be combined with other techniques to mitigate issues including hardware
faults or the unexpected appearance of an obstacle. Geng et al. [26] devise a fault-tolerant
MPC scheme that provides robust path tracking. A fault signal detection algorithm, de-
veloped using Kalman filtering and chi-squared detectors, is used to detect sensor faults
and fuse multiple redundant sensor measurements to maintain accuracy in the presence of
a fault. This strategy enables the system to maintain optimal path tracking performance
when faults occur. Brown et al. [27] present an MPC-based path tracking controller that
prevents unsafe behaviour in the presence of an obstacle. Using the stability envelope de-
veloped by Beal and Gerdes [19] in addition to an environmental envelope that defines the
safe driving area, the controller enables the vehicle to deviate from the defined reference
path to avoid collisions while maintaining stability and minimizing lateral and heading
error. Alsterda et al. [28] propose the contingency MPC algorithm. This novel technique
enables the vehicle to track the desired path while maintaining a contingency plan, an
alternative path that may be taken should an emergency occur. The technique enables the
vehicle to deviate from the desired path to prevent stability when the road surface condi-
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tion changes and a loss of friction occurs; the efficacy of the controller was demonstrated
in experimental scenarios conducted on snow- and ice-covered roads. Hajiloo et al. [29] use
MPC for combined path planning and tracking. Their controller employs active steering
and, when needed, differential braking to track the reference while avoiding collisions with
obstacles. Ji et al. [30] use MPC perform path tracking along a reference path generated
by an artificial potential field. The potential field spans the drivable area of the vehicle;
areas of high intensity in the field indicate locations where obstacles exist and the vehi-
cle should avoid. The reference path is constructed by considering the negative gradient
of the potential field to determine the direction of steepest descent. Vehicle dynamics
are not considered when generating the path, which may render it infeasible to follow.
Rasekhipour et al. [31] address this issue; in this work, the potential field is integrated into
the MPC objective function in addition to a nominal reference path corresponding to the
lane centerline. This enables the controller to consider both the dynamics of the vehicle
and position of nearby obstacles when planning and tracking the path.

Effective MPC-based path tracking is only possible if the controller can run in real time.
Reducing the computational complexity of the algorithm enables the use of increasingly
accurate vehicle models that will aid prediction accuracy, thereby improving path tracking
performance. Wang et al. [32] develop an approach to, in real-time, adjust the MPC pa-
rameters with the greatest effect on the optimization time, namely the prediction horizon
length, control horizon length, and sampling frequency. The method improved the path
tracking performance given the capacity of the CPU used to perform the optimization.
Zhang et al. [33] highlight various challenges regarding the application of MPC to vehi-
cle path tracking, including the computational complexity that results from long horizon
lengths and a high number of optimization variables, and propose an improved MPC using
Laguerre functions and exponential weights to mitigate these issues. The Laguerre func-
tions reduce the number of variables to be optimized; they formulate the input sequence
over the horizon as a linear combination of orthogonal functions. The coefficients that
comprise the linear function are optimized; because the set of coefficients is smaller than
the set of control inputs over the horizon, optimization efficiency is improved. Exponential
weights are used to reduce tracking error priority further along the horizon to minimize
the effect of compounding model prediction error. Choi et al. [34] introduce a variable
sampling time MPC that is applied to vehicle path tracking. The optimal sampling time is
selected by considering the magnitude of the steering angle and lateral acceleration while
the vehicle is running. When compared to an MPC controller with a fixed sampling time,
tracking performance was improved while computational efficiency remained the same.

The accuracy of the MPC reference vehicle model greatly impacts the controller’s ef-
ficacy. Model accuracy may be improved by utilizing online parameter estimations or
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incorporating data-driven methods. Lin et al. [35] present an adaptive MPC controller
that can estimate the tire cornering stiffness and TRFC in varying road conditions. The
controller demonstrates effective path tracking capabilities in changing conditions. Liang
et al. [36] use adaptive MPC for a combined decision making, motion planning, and path
tracking scheme. The proposed controller can accurately track the path in lane change
scenarios on straight and curved roads. Aswani et al. [37] develop a learning-based MPC
(LBMPC) controller that uses machine learning to augment the reference model by esti-
mating the error between the model predictions and the actual evolution of the system
state. In this work, the method is applied to various non-ground vehicle applications; to
extend this work, Ostafew et al. [38, 39] apply the strategy to mobile robot path tracking
tasks. In these papers, Gaussian process regression is the machine learning technique used.
Rokonuzzaman et al. [40] apply LBMPC to AV path tracking using neural networks as the
learning method. In this case, the neural network replaces the dynamic reference model,
rather than augmenting it, once enough data has been collected.

2.2 Distributed model predictive control

The MPC technique employed by all works cited in Section 2.1 uses a single, central-
ized optimization problem to select all inputs at the each sampling input by considering
all objectives of the system. Because of this characteristic, the technique is commonly
referred as ”centralized MPC”. Unlike centralized MPC, alternative approaches such as
distributed and decentralized MPC must perform more that one optimization to select
all system inputs at each sampling instant. One such approach, cooperative distributed
MPC (DMPC), was first presented by Venkat et al. [41] and extended by Rawlings et
al. [42]. The authors reason that centralized MPC is unsuitable for the control of large,
networked systems due to organizational rather than computational issues. For example,
a centralized controller would be inflexible to changes in the plant and would not be able
to effectively control all subsystems simultaneously if some were operated externally to the
MPC controller. Although alternative DMPC frameworks had been proposed prior to this
work, the preceding techniques did not guarantee optimal control performance equivalent
to that of a centralized MPC scheme; conversely, the distributed controller of Venkat et
al. is guaranteed to provide optimal control performance equivalent to centralized MPC.
To achieve this, each subsystem is modelled as an independent, decentralized system with
its own states and inputs. Interaction models are used to characterize the relationships
between each subsystem. The decentralized and interaction models are combined to de-
termine the effect of each subsystems’ actions on the evolution of all others. Christofides
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et al. [43] compare the cooperative DMPC technique developed in the previous works to
other non-centralized MPC techniques, namely decentralized MPC and non-cooperative
distributed MPC. Similar to cooperative DMPC, both decentralized and non-cooperative
distributed MPC involve segmenting the system into multiple subsystems, each with their
own controllers and inputs to optimize. With decentralized MPC, there is no communica-
tion between the subsystems. Therefore, in scenarios where some subsystems have a strong
influence on the others, stability and control optimality issues may arise. For decentralized
MPC to be successful, the interactions between subsystems must be weak enough to be
considered minor disturbances. Conversely, cooperative DMPC allows for communication
between subsystems to enable better control performance. In the non-cooperative case,
while subsystems can communicate, each subsystem considers their own local objectives
that may be in conflict with the objectives of others. This may result in non-optimal be-
haviour for certain subsystems. This serves as a contrast to cooperative DMPC, where the
objectives are shared globally among all agents, and an optimal solution can be found.

Given the number of microcontrollers utilized on modern passenger vehicles and the
increasing amount of motion control features that they implement, it is reasonable to view
vehicles as a large, networked system that would benefit from a distributed control ap-
proach. Recognizing this opportunity, Tang and Khajepour [15] apply cooperative DMPC
to the vehicle stability control task for modular urban vehicles. The plant considered in
this work was developed using CMs [14], which are effectively small, one-wheel electric
vehicles that contain their own microcontrollers and suspension, steering, drive, and brake
systems. The cooperative DMPC methodology is applied by considering each CM as its
own subsystem, or ”agent”. Each agent selects the drive torque, brake torque, steering an-
gle, and active suspension inputs by cooperating with all other agents to achieve optimal
control performance. Tang and Khajepour [16] extend this work by applying cooperative
DMPC to passenger vehicle equipped with active steering, torque vectoring, and differen-
tial braking. Different methodologies to cluster the actuators into agents are discussed,
including clustering actuators by corner as in to the previous work, or by actuator type.
Here, the performance of the controller is validated in simulation; it is further validated
experimentally by Tang et al. [17] on an equivalent passenger vehicle hardware platform.
In these three studies, the authors augment the standard cooperative DMPC formulation
by incorporating non-cooperative agents into the system. These agents represent groups
of actuators that cannot be controlled by the MPC controller as they are handled, for
example, by some proprietary, third party logic that cannot be accessed. In this case, the
actions of the non-controllable agents are provided to the controllable agents, i.e., those
whose actions are selected by the cooperative DMPC scheme. This allows the controllable
agents to consider the effect of the non-controllable agents’ actions on the dynamics of the
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system while selecting their own. In these works, the authors choose to name their control
methodology agent-based MPC (AMPC) to indicate that it coordinates the control efforts
of multiple agents, defined according to existing actuator topologies, while accounting for
the non-controllable agent inputs, which are not considered in the standard cooperative
DMPC formulation.

2.3 Control of over-actuated vehicles

Vehicles that have independently steered and driven wheels, such as those developed using
the CM platform, are highly over-actuated. In comparison to conventional passenger vehi-
cles, these systems have the potential for increased maneuverability and safety due to the
large number of redundant inputs. For example, a vehicle that can steer both its front and
rear wheels can make much sharper turns in low speed scenarios in comparison to a vehicle
that only has front wheel steering capabilities. Furthermore, in the event of an actuator
hardware failure, the redundant actuators that remain functional can compensate for the
failure and maintain the desired system behaviour. However, the drawback of this feature
is the challenge of coordinating the large set of actuators required to control the vehicle
while meeting all objectives.

Many studies involve the design of vehicle stability controllers for over-actuated vehicles.
Li et al. [4] propose the application of an optimal torque distribution controller to a four-
wheel independent drive (4WID) vehicle to improve stability and handling. The algorithm
considers the drivers’ drive and brake commands to determine the desired longitudinal
force at each wheel, and uses this information to determine torque corrections to be applied.
Moreover, direct yaw moment control (DYC) is commonly applied to this class of problems.
Chen et al. [5] utilize DYC, a wheel force distribution controller, and a UKF estimator to
improve vehicle stability. The DYC controller uses sliding mode control (SMC) to select
the CG yaw moment that will result in the desired yaw rate and sideslip angle. The
wheel force distributor determines the longitudinal wheel forces at each wheel that will
result in this yaw moment, along with an overall longitudinal force acting on the vehicle
that will result in the driver’s desired acceleration as indicated by the accelerator pedal
input. The optimization attempts to minimize the longitudinal force at each wheel while
satisfying the other objectives. Yim [6] implements a technique similar to Chen et al. [5],
where SMC-based DYC is used to determine the the desired yaw moment. In this case,
the vehicle considered is both 4WID and four-wheel independent steer (4WIS); the desired
forces at each wheel are thus determined by considering both the wheel torque and steering
angles. In this case, the desired longitudinal behaviour of the vehicle is not considered,
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so the vehicle may not accelerate as the driver intends when the stability control features
are engaged. The works by Bernardini et al. [20], Di Cairano et al. [7], Nahidi et al. [8],
Jalali et al. [9], and Ataei et al. [10] discussed in Section 2.1.1 similarly discuss how control
actions are coordinated in 4WID systems or those equipped with differential braking.

Over-actuated vehicle path tracking has also been previously investigated. Tan et
al. [11] utilize MPC for path tracking control of a two-wheel independent steer, 4WID ve-
hicle. The method provides good path tracking performance in simulated scenarios. Hang
et al. [12] use MPC for path tracking control of a 4WIS vehicle. A single track vehicle
model is used, and the front and rear steering angles selected by the controller are ap-
plied to both the front and rear two wheels, respectively. While the control performance
is acceptable, the Ackermann steering geometry is not considered, which may result in
unecessary large sideslip angles in experimental scenarios. Tan et al. [13] develop a 4WIS
vehicle path tracking controller that, rather than imposing a restrictive relationship be-
tween the front and rear steering angles, derives a model that avoids this restriction by
considering Ackermann steering geometry.

Multiple works use MPC to perform combined path tracking and velocity control. Ren
et al. [44] propose an integrated controller that considers both path tracking and stability
objectives for a vehicle with torque vectoring capabilities. In this approach, an upper-
level MPC controller first selects a steering angle and total longitudinal force necessary to
follow the path and desired velocity. Then, a yaw rate controller determines a desired yaw
rate by considering the desired steering angle and current yaw rate and lateral velocity.
The desired velocity is passed to a stability controller, which determines the overall yaw
moment to be applied to the vehicle; this, along with the total longitudinal force, is used
by an optimal torque distributor to determine the torque at each corner that will satisfy
all objectives. Wu et al. [45] develop an MPC-based path tracking controller for a 4WID
vehicle equipped with AFS. The magic tire formula is used to incorporate accurate tire
behaviour into the reference model; the tire parameters are determined using nonlinear
least squares fitting on tire force data. Wheel sideslip angles are constrained to be small,
and slack variables are used with these constraints to prevent optimization infeasibility.
Tire force constraints are imposed by considering the friction circle and actuator torque
limits. Jeong and Yim [46] use MPC for path tracking and velocity control of a 4WID,
4WIS vehicle. The steering angle and longitudinal force at each wheel were taken to be
the control inputs. Wheel sideslip angle and slip ratio where minimized in the MPC cost
function to prevent tire saturation, and a linear tire model was used to estimate the lateral
forces.
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2.4 Summary

In this chapter, vehicle path tracking- and stability control-related literature was first
reviewed; in particular, the application of MPC to vehicle motion control problems was
explored due to the large body of existing work demonstrating the efficacy of the algorithm.
The existing approaches can be categorized according to the choice of control inputs;
namely, the tire forces, overall yaw moment, and wheel torque. While the use of tire forces
and yaw moments as inputs improves the reference model simplicity by removing the need
to incorporate nonlinear tire force behaviour, the model accuracy decreases. Further, a
separate torque distribution controller is required to determine the torque at each wheel
that will result in the desired forces and moments. Additionally, researchers consider
methods to improve controller robustness to faults and the appearance of obstacles, reduce
computational complexity, and enhance prediction model accuracy.

Subsequently, an overview of DMPC and its prior application to vehicle motion control
problems was provided. Cooperative DMPC provides an effective alternative to centralized
MPC for controlling large, distributed systems. By representing a vehicle as a distributed
system, researchers apply AMPC to the task of vehicle stability control.

Finally, the techniques used to control over-actuated vehicles were investigated. In
particular, due to the documented success of the algorithm, MPC-based techniques were
again the primary focus of this section. The reviewed studies demonstrate that excellent
control performance can be provided when all actuators of an over-actuated vehicle are
effectively coordinated and that MPC may be used to perform combined path tracking
and longitudinal velocity control. In some studies, Ackermann steering geometry is not
considered, which may result in unecessary wheel slip, and the lateral controllers do not
consider the effect of their actions on the longitudinal dynamics of the vehicle.

The design of the agent-based controller presented in this thesis is informed by the
preceding work that is outlined in this chapter. An integrated reference model with wheel
torque inputs that considers nonlinear combined slip lateral tire force is constructed; these
features enhance the prediction accuracy by representing the complete relationship between
wheel torque and the motion of the vehicle. However, a combined slip longitudinal tire
force model is not used; to reduce computational complexity, these forces are assumed to
be proportional to the torque at each wheel. The vehicle parameters used to construct the
prediction model are determined using computer aided design software. It is assumed that,
given these features, the model accuracy is sufficient and that adaptive and learning-based
methods are not needed. Furthermore, it is assumed that an upstream trajectory planner
will provide a safe reference trajectory, so integrated collision avoidance features are not
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needed. The agent-based nature of the controller allows it to easily consider the effects
of hardware faults. Moreover, Ackermann geometry is used to both lessen the challenges
associated with over-actuated vehicle control and minimize unnecessary wheel slip.
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Chapter 3

Vehicle dynamics prediction model

3.1 WATonoTruck hardware platform

The vehicle motion controller presented in this work was created for use withWATonoTruck,
an autonomous flatbed truck developed by the MVS Lab at the University of Waterloo.
The development of WATonoTruck is motivated by the benefits provided by autonomous
mobility in domains such as mining, shipping, agriculture and warehousing that involve
the frequent transportation of heavy material. The assembled truck is displayed in Figure
3.1.

Figure 3.1: The assembled WATonoTruck.

The truck body was built to incorporate CMs, which are individual wheel modules
that contain independent steering, drive, brake, and suspension systems, along with a
microcontroller (MCU). A primary advantage of the CM-based modular vehicle design
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approach is the ease with which the CMs can be installed on any vehicle chassis, in any
configuration, to suit the needs of a particular application. CMs are space efficient, can
support large payloads, and provide independent drive-, steer-, and brake-by-wire control
capabilities at each wheel. CM specifications are given in Table 3.1. A diagram of the
CM is shown in Figure 3.2. For cost reasons, the two rear CMs on WATonoTruck do
not contain electric motors. To enable autonomous driving cababilities, WATonoTruck
is further equipped with a suite of sensors and computers used to perceive obstacles in
the environment and implement the autonomous driving stack. The sensors used include
two Robosense RS-LiDAR-16 LIDARs, which are installed at the front and rear of the
truck and provide a detection range of up to 150 m across a 180 degree horizontal field
of view; two Robosense RS-Bpearl LIDARs, installed at the sides to enable blind spot
dectection; and four Basler Dart daA1920-160uc S-Mount cameras, each equipped with
101 degree horizontal field of view lenses, that are installed in pairs at the front and rear.
This combination of sensors enables the detection of all obstacles in the vicinity of the
truck. A Nvidia Jetson AGX Xavier is used to process the camera data and perform 2D
object detection, while a Simply NUC Ruby PC is used to run all other processes.

Parameter Value

Maximum payload 3000 kgf
Rated motor torque output ± 220 N m
Motor-to-wheel gear reduction 8:1
Maximum steering angle ± 32 deg
Maximum steering angle rate ± 6.8 deg/s

Table 3.1: Corner module specifications.

The modular nature of WATonoTruck makes it suitable to demonstrate the benefits of
the AMPC framework when applied to vehicle motion control problems. Each CM can be
represented as a subsystem, or agent, that operates as part of a larger distributed system.
Each agent uses its own MPC controller to select optimal control actions; the optimization
procedure is performed in collaboration with the other agents. The Simply NUC Ruby PC
serves as the central computer used to facilitate the agent collaboration, while the MCUs
at each corner are used to apply the optimal control actions.
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Figure 3.2: Corner module hardware overview. Diagram originally presented in an MVS
Lab internal report.

3.2 Double-track vehicle dynamics modelling

MPC, and therefore AMPC, require a prediction model that accurately represents the
system dynamics to provide optimal control performance. In this section, a double-track
longitudinal and lateral vehicle dynamics model is presented. The model consists of a point
mass at the vehicle’s CG location and the position of the vehicle’s wheels, which generate
forces at the tire-road interface that act upon the CG. The vehicle’s longitudinal velocity
u, lateral velocity v, and yaw rate r serve as the model’s states. The evolution of these
states is characterized by the differential equations

m(u̇− vr) = Fx, (3.1)

m(v̇ + ur) = Fy, (3.2)

Iz ṙ =Mz, (3.3)

where m represents the vehicle mass; Iz, the yaw moment of inertia; Fx and Fy, the
total longitudinal and lateral forces that act on the CG along the vehicle’s x- and y-axes,
respectively; and Mz, the total yaw moment that acts on the CG about the vehicle’s z
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axis. These equations can be rearranged as

u̇ =
1

m
Fx + vr, (3.4)

v̇ =
1

m
Fy − ur, (3.5)

ṙ =
1

Iz
Mz, (3.6)

to model the state time derivatives. The total forces and moment Fx, Fy, and Mz that act
upon the vehicle CG are summations of the corresponding forces and moments

Fx =
∑
i

Fxi, (3.7)

Fy =
∑
i

Fyi, (3.8)

Mz =
∑
i

Mzi, (3.9)

generated at the wheels. Here, i ∈ {fl, fr, rl, rr} indexes the vehicle corners and Fxi, Fyi,
and Mzi are the forces and moments generated at the wheels expressed in the vehicle body
frame. These quantities equivalent to

Fxi = cos(δi)fxi − sin(δi)fyi, (3.10)

Fyi = sin(δi)fxi + cos(δi)fyi, (3.11)

Mzi = TiFxi + aiFyi, (3.12)

where fxi and fyi are the tire forces expressed in the frame of wheel i, δi is the steering
angle of wheel i, ai is the longitudinal distance between the CG and wheel i, and Ti is the
lateral distance between the CG and wheel i. ai and Ti are given as

ai =

{
a i = {fl, fr}
−b i = {rl, rr}

, (3.13)

w = a+ b, (3.14)

Ti =


−Tf/2 i = fl

Tf/2 i = fr

−Tr/2 i = rl

Tr/2 i = rr

, (3.15)
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T = Tf = Tr. (3.16)

Here, a and b are the longitudinal distances between the CG and the front and rear axles,
respectively; w is the wheelbase; and T is the track width, which is equivalent for both
the front and rear axles. Figure 3.3 displays the vehicle states, geometry, and coordinate
frame definitions. The relationship between the tire forces expressed in the vehicle body
and wheel frames is outlined in Figure 3.4.

,
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Figure 3.3: Double-track vehicle dynamics model.

Figure 3.4: Tire forces expressed in the vehicle body and wheel frames.

Ackermann steering geometry is used to reduce the number of inputs that the controller
must optimize and to prevent unnecessary wheel slip. Two steering angles, δf and δr, are
defined; these angles correspond to the imaginary center wheels shown in Figure 3.5. Once
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(a) (b)

Figure 3.5: Example steering angle combinations where all wheels rotate about the same
point to maintain the Ackermann steering geometry. In (a), the point about which the
vehicle is rotating is behind the rear axle; all steering angles have the same sign. In (b), the
point about which the vehicle is rotating is between the axles; the front and rear steering
angles have opposite signs.

δf and δr are selected, a point about which the vehicle should smoothly revolve is defined.
Subsequently, the corner steering angles δi ∀i are selected using [13]

δfl = arctan

(
tan(δf )

1− T
2w
(tan(δf )− tan(δr))

)
≈ δf

1− T
2w
(δf − δr)

, (3.17)

δfr = arctan

(
tan(δf )

1 + T
2w
(tan(δf )− tan(δr))

)
≈ δf

1 + T
2w
(δf − δr)

, (3.18)

δrl = arctan

(
tan(δr)

1− T
2w
(tan(δf )− tan(δr))

)
≈ δr

1− T
2w
(δf − δr)

, (3.19)

δrr = arctan

(
tan(δr)

1 + T
2w
(tan(δf )− tan(δr))

)
≈ δr

1 + T
2w
(δf − δr)

, (3.20)

such that all wheels revolve around this point with minimal sideslip. Small angle approxi-
mations are used to simplify this relationship and the overall model.

States that relate the vehicle’s pose to the path must also be included in the prediction
model to enable path tracking capabilities. These states include the lateral error e and
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heading error ∆ψ at the vehicle’s position, given as the arc length s, along the path.
Changes in the lateral and heading error values are governed by

∆ψ̇ = r − rdes = r −Kṡ ≈ r −Ku (3.21)

ė = u sin(∆ψ) + v cos(∆ψ) ≈ u∆ψ + v (3.22)

where rdes is the yaw rate that must be maintained for the vehicle to follow the path and
K is the path curvature at s [27,47,48]. e is defined as positive when the vehicle is to the
left of the path. K is defined as positive when the path is curving in the counterclockwise
direction. The path state definitions are shown in Figure 3.6.

Figure 3.6: Definitions of path states and related quantities.

3.3 Tire force modelling

Many nonlinear combined slip lateral tire force models establish a relationship between the
longitudinal slip ratio λi, the sideslip angle αi, and the generated lateral force fyi. λi and
αi are defined as

λi =
Reff,iωi − ui

max(Reff,iωi, ui)
, (3.23)

αi = δi − arctan

(
v + air

u

)
≈ δi −

v + air

u
, (3.24)

where Reff,i and ωi are the effective radius and angular velocity of wheel i, respectively.
Equation (3.24) is simplified using a small angle approximation. The definitions of the
quantities required to estimate λi and αi are depicted in Figure 3.7.
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(a) (b)

Figure 3.7: (a) Definitions of the variables needed to compute λi. (b) Definitions of the
variables needed to compute αi.

In this work, the Burckhardt combined slip lateral tire force model is used to estimate
the lateral tire forces generated at the tire-road interface [49]. This model is selected over
other popular nonlinear combined slip tire force models, such as the magic formula [50],
for its reduced complexity, which will simplify the vehicle dynamics model and improve
the optimal controller efficiency. The Burckhardt model is defined as

Sres,i =
√
λ2i + α2

i , (3.25)

µB,yi =
αi
Sres,i

[C1y(1− e−C2ySres,i)− C3ySres,i], (3.26)

fB,yi = FziµB,yi, (3.27)

where fB,yi represents the Burckhardt model’s lateral force estimation, µB,yi is the normal-
ized lateral force, Sres,i is the combined slip ratio, and Fzi is the normal load on the wheel.
C1y, C2y, and C3y are the model parameters to be fitted. Therefore, in this work,

fyi = fB,yi. (3.28)

When the prediction model described in this chapter is used to validate the motion
controller in simulation, the simulated plant, described in Section 5.1, provides the normal
force acting on each tire throughout the simulation; therefore, Fzi estimation is not re-
quired. However, when performing experimental testing, the hardware platform, described
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in 5.3, does not have tire force sensors. To account for this, when using the controller
experimentally, Fzi is estimated using

Fzfl =
1

2w
(mgb−maxh) +

mayh

2T
, (3.29)

Fzfr =
1

2w
(mgb−maxh)−

mayh

2T
, (3.30)

Fzrl =
1

2w
(mgb+maxh) +

mayh

2T
, (3.31)

Fzrr =
1

2w
(mgb+maxh)−

mayh

2T
, (3.32)

where g is the gravitational acceleration constant, ax is the longitudinal acceleration, ay is
the lateral acceleration, and h is the CG height with respect to the ground.

The combined slip Burckhardt model can also be used to estimate the longitudinal tire
forces. However, to further reduce model complexity, an affine relationship between force
and torque is instead used. Ignoring wheel dynamics, the longitudinal force is given as

fxi = Qi/Reff,i, (3.33)

where Qi represents the torque applied at wheel i. While WATonoTruck is FWD, wheel
torque inputs Qi are included for all four corners to improve model generality and enable
different drivetrain configurations to be evaluated in Simulation. However, using the agent-
based framework, the model can be reconfigured to incorporate only the front two Qi when
used for experimental testing with WATonoTruck; this is discussed further in Section 3.4.2.

3.4 State-space system representation

3.4.1 State-space model linearization and discretization

Linear MPC relies on the definition of a discrete, linear state-space model that represents
the dynamics of the system. In this work, the state-space model used to represent the
behaviour of WATonoTruck is constructed using the equations presented in Sections 3.2
and 3.3. A nonlinear relationship between the system states and inputs,

ẋ = fSS(x, U), (3.34)
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x = [u, v, r, e,∆ψ]T , (3.35)

U = [δf , δr, Qfl, Qfr, Qrl, Qrr]
T , (3.36)

is established, where x ∈ Rnx is the state vector, U ∈ RnU is the input vector, and
fSS represents the nonlinear relationship. To further reduce model complexity, ωi is not
included as a state in x, and wheel dynamics are therefore not incorporated into the
reference model. At each sampling instant, the measured ωi is used with eq. (3.23) to
estimate λi; this value of λi is used to construct the continuous reference model fSS.

The nonlinear model given in eq. (3.34) can be linearized by performing a first order
Taylor expansion of fSS; the result is a linearized model of the form

ẋ ≈ Ax+BU +W, (3.37)

where A is the state matrix, B is the input matrix, and W can be treated as a disturbance
term. A, B, and W are defined as

A =


∂u̇
∂u

∂u̇
∂v

. . . ∂u̇
∂∆ψ

∂v̇
∂u

∂v̇
∂v

. . . ∂v̇
∂∆ψ

...
...

. . .
...

∂∆ψ̇
∂u

∂∆ψ̇
∂v

. . . ∂∆ψ̇
∂∆ψ


∣∣∣∣∣∣∣∣∣∣
x=x(k), U=U(k−1)

, (3.38)

B =


∂u̇
∂δf

∂u̇
∂δr

. . . ∂u̇
∂Qrr

∂v̇
∂δf

∂v̇
∂δr

. . . ∂v̇
∂Qrr

...
...

. . .
...

∂∆ψ̇
∂δf

∂∆ψ̇
∂δr

. . . ∂∆ψ̇
∂Qrr


∣∣∣∣∣∣∣∣∣∣
x=x(k), U=U(k−1)

, (3.39)

W = fSS(x(k), U(k − 1))− Ax(k)−BU(k − 1), (3.40)

and are evaluated at the operating point x(k), U(k − 1) at each sampling instant k. The
linearized system is then discretized, resulting in a model of the form

x(k + 1) = Adx(k) +BdU(k) +Wd, (3.41)

where Ad, Bd, and Wd are the discretized forms of the matrices A, B, and W , respectively.
They are discretized according to

Ad = Inx +∆tA, (3.42)

Bd = ∆tB, (3.43)
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Wd = ∆tW, (3.44)

where Inx is the nx × nx identity matrix and ∆t is the sampling time. The system output
vector y ∈ Rny is defined as

y(k) = Cyx(k) = [u, e,∆ψ]T , (3.45)

Cy =

1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 , (3.46)

where Cy is the output matrix.

In certain cases, it is desirable to control or constrain additional quantities that do not
comprise y. The controlled output z ∈ Rnz , given as

z(k) = Czx(k) +DzU(k) +Wz, (3.47)

represents the vector of states to be controlled. In this application, the only controlled
outputs are u, e, and ∆ψ; therefore, z = y, Cz = Cy, Dz = 0nx×nU

, and Wz = 0nx×1. Here,
0n1×n2 represents the n1 × n2 zero matrix for any n1, n2 ∈ Z+. Similarly, the constrained
output zc ∈ Rnzc is a vector of states to be constrained. It is defined as

zc(k) = Czcx(k) +DzcU(k) +Wzc . (3.48)

In this application, the states to be constrained are r, αfl, αfr, αrl, and αrr. Therefore,
unlike z, zc ̸= y; instead, zc = [yTc , y

T
zc ]

T , where yc ∈ Rnyc represents any elements in x to be
constrained, and yzc ∈ Rnyzc represents the states to be constrained that are not elements
of x. yc and yzc are defined as

yc = [r(k)] = Cycx, (3.49)

Cyc = [0, 0, 1, 0, 0], (3.50)

yzc(k) = [αfl(k), αfr(k), αrl(k), αrr(k)]
T = Ayzcx(k) +ByzcU(k) +Wyzc . (3.51)

The relationship between αi, x, and U described in eq. (3.24) is nonlinear. The form of the
matrices Ayzc , Byzc , and Wyzc are therefore determined by performing a first order Taylor
expansion to linearize this relationship; they are defined as

Ayzc =


∂αfl

∂u

∂αfl

∂v
. . .

∂αfl

∂∆ψ
...

...
. . .

...
∂αrr

∂u
∂αrr

∂v
. . . ∂αrr

∂∆ψ


∣∣∣∣∣∣∣
x=x(k), U=U(k−1)

, (3.52)
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Byzc =


∂αfl

∂δf

∂αfl

∂δr
. . .

∂αfl

∂Qrr

...
...

. . .
...

∂αrr

∂δf

∂αrr

∂δr
. . . ∂αrr

∂Qrr
,


∣∣∣∣∣∣∣
x=x(k), U=U(k−1)

(3.53)

Wyzc = yzc(k)− Ayzcx(k)−ByzcU(k − 1). (3.54)

Given this relationship, the matrices used to compute zc as shown in eq. (3.48) are defined
as

Czc =

[
Cyc
Ayzc

]
, (3.55)

Dzc =

[
0nyc×nU

Byzc

]
, (3.56)

Wzc =

[
0nyc×1

Wyzc

]
. (3.57)

3.4.2 State-space model for individual agents

The model presented in Subsection 3.4.1 is formulated for use with a single, centralized
controller, and must be augmented before it is used within the agent-based framework. The
agent-based control strategy involves representing the system as a set of na subsystems,
or agents, that each regulate a subset of the system’s inputs and collaborate to provide
optimal control performance. For any agent j, the system state evolution is described by
an extension of eq. (3.41),

x(k+1) = Adx(k)+BjdUj(k)+BjdOCUjOC(k)+BdNCUNC(k)+BdDAUDA(k)+Wd. (3.58)

Here, Uj ∈ RnUj represents the vector of inputs controlled by agent j, UjOC ∈ RnUjOC

represents the vector of inputs controlled by all controllable agents other than j (i.e., all
”other controllable” agents, OC), UNC ∈ RnUjNC represents the vector of inputs controlled
by all non-controllable (NC) agents, and UDA ∈ RnUjDA represents the vector of inputs
for all disabled actuators (DA) that are not in use. The controllable agents are those
whose optimal input vector is selected by the AMPC controller. The NC agents are those
whose inputs are selected using control logic external to the AMPC controller. The DA
agent is used to account for actuators that are not in use. For example, since the reference
model includes Qi inputs for all four wheels while the experimental platform WATonoTruck
only has electric motors at the front two corners, the DA agent can be used to disable the
inputs Qrl and Qrr when the controller is used with WATonoTruck for experimental testing.
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Furthermore, the DA agent can be used to account for actuator faults that have occurred;
this is further described in Section 3.6. The advantage of this model formulation is that
it allows agent j to consider the contribution of all other agent’s actions on the overall
system dynamics while it optimizes its own, including those of the NC and DA agents.

The input matrices Bjd, BjdOC, BdNC, and BdDA characterize the effect of the corre-
sponding agents’ inputs on the system. These matrices are constructed using elements from
the matrix Bd. The columns that comprise the matrix Bd may be denoted as Bδfd ∈ Rnx ,
Bδrd ∈ Rnx , BQfld ∈ Rnx , BQfrd ∈ Rnx , BQrld ∈ Rnx , and BQrrd ∈ Rnx , such that

Bd = [Bδfd, Bδrd, BQfld, BQfrd, BQrld, BQrrd]. (3.59)

Each column characterizes the effect of the corresponding element of U on the system
dynamics. The set of columns that comprise the matrices Bjd, BjdOC, BdNC, and BdDA are
the same as the columns that comprise the Bd. For example, if some controllable agent
1 handles U1 = [δf , δr]

T , some controllable agent 2 handles U2 = Qfl, some controllable
agent 3 handles U3 = Qfr, a non-controllable agent controls UNC = [Qrl, Qrr]

T , and no
actuators are disabled, then input matrices used to construct the prediction model for
agent 1 will consist of B1d = [Bδfd, Bδrd], B1dOC = [BQfld, BQfrd], BdNC = [BQrld, BQrrd]. In
this example, BdDA is empty as UDA does not exist. Figure 3.8 displays a representation of
the system using this example agent configuration.

Figure 3.8: Example agent configuration.

Equation (3.58) can be extended so that each agent j can estimate z and zc. In this
case, z and zc are defined as

z(k) = Czx(k) +DzjUj(k) +DzjOCUjOC(k) +DzNCUNC(k) +DzDAUDA(k) +Wz, (3.60)
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zc(k) = Czcx(k)+DzcjUj(k)+DzcjOCUjOC(k)+DzcNCUNC(k)+DzcDAUDA(k)+Wzc . (3.61)

Since z(k) = y(k), it follows that Dzj = 0nz×nUj
, DzjOC = 0nz×nUjOC

, DzNC = 0nz×nUNC
,

and DzDA = 0nz×nUDA
. Conversely, since zc = [yTc , y

T
zc ]

T ,

Dzcj =

[
0nyc×nUj

Byzcj

]
, (3.62)

DzcjOC =

[
0nyc×nUjOC

ByzcjOC

]
, (3.63)

DzcNC =

[
0nyc×nUNC

ByzcNC

]
, (3.64)

DzcDA =

[
0nyc×nUDA

ByzcDA

]
, (3.65)

where Byzcj
, ByzcjOC

, ByzcNC
, and ByzcDA

are constructed using the columns of Byzc analo-
gously to how Bjd, BjdOC, BdNC, and BdDA are constructed using the columns of Bd.

3.5 Predicting the system state over a receding hori-

zon

MPC controllers use the system dynamics reference model at each sampling instant through-
out runtime to predict the system state over a finite, receding prediction horizon of Np time
steps into the future. These predictions are used to select optimal control actions along
an Nc step control horizon, where Nc ≤ Np; the control actions are held constant for the
remaining Np−Nc time steps that the state evolution is predicted. In the centralized case,
the controlled states are predicted over the horizon using

z̄ = Sxx+ SU Ū + SWd
W̄d + SWz , (3.66)

where z̄ = [z(k + 1)T , ..., z(k + Np)
T ]T ∈ RnzNp represents the predicted states over the

horizon, Ū = [U(k)T , ..., U(k + Nc − 1)T ]T ∈ RnUNc represents the control actions applied
over the control horizon, and W̄d = [W T

d ,W
T
d , ...,W

T
d ]

T ∈ RnxNp . The definitions of the
matrices Sx, SU , SWd

, and SWz are given in Appendix A. The constrained state z̄c =
[zc(k + 1)T , ..., zc(k +Np)

T ]T ∈ RnzNp predicted over the horizon is similarly defined as

z̄c = Scxx+ ScU Ū + ScWd
W̄d + ScWz . (3.67)

30



The definitions of the matrices Scx, ScU , ScWd
, and ScWz are also give in Appendix A. In

the non-centralized case, the model used by agent j to predict the states z̄ and z̄c is

z̄ = Sxx+ SUj
Ūj + SUjOC

ŪjOC + SUNC
ŪNC + SUDA

ŪDA + SWd
W̄d + SWz , (3.68)

z̄c = Scxx+ ScUj
Ūj + ScUjOC

ŪjOC + ScUNC
ŪNC + ScUDA

ŪDA + ScWd
W̄d + ScWz . (3.69)

Again, the definitions of the matrices SUj
, SUjOC

, SUNC
, SUDA

, ScUj
, ScUjOC

, ScUNC
, and

ScUDA
are given in Appendix A.

MPC controllers can also minimize the rate of change of the control inputs when using
the prediction model to satisfy all other control objectives. To enable this capability in the
centralized case, the relationship

∆Ū = S∆UU Ū + S∆U (3.70)

is established. Here, ∆U(k) = U(k)−U(k−1) represents the change in U between sampling
instants and ∆Ū = [∆U(k)T , ...,∆U(k + Nc − 1)T ]T ∈ RnUNc represents the change in U
between each sampling instant over the control horizon. In the non-centralized case,

∆Ūj = S∆UjUj
Ūj + S∆Uj

, (3.71)

where ∆Ūj = [∆Uj(k)
T , ...,∆Uj(k +Nc − 1)T ]T ∈ RnUj

Nc and ∆Uj(k) = Uj(k)−Uj(k− 1)
represents the change in Uj between sampling instants. The definitions of the matrices
S∆UU , S∆U , S∆UjUj

, and S∆Uj
are given in Appendix A.

3.6 Incorporating hardware faults into the prediction

model

One benefit of the AMPC framework is its ability to consider the effects of actuator faults
on the dynamics of the vehicle. In this work, three types of faults are considered. Wheel
torque faults are the first type; these faults occur when an electric motor driving a wheel
fails and no torque can be produced. To accommodate for this fault type, the agent con-
figuration is changed; the input Qi corresponding to the failed motor, previously handled
by a controllable or non-controllable agent, is instead assigned to the DA agent. The value
of Qi is assumed to be zero for the remainder of the runtime. The second type of fault
includes cases where the agent selecting one or both of the imaginary center steering angles
δf and δr fails. In this case, it is assumed that the agent controlling the faulted imaginary
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center steering angle will continuously output a constant value. To account for this fault
type, the imaginary center steering angle is again assigned to the DA agent, and the value
of this input is held constant. The third fault type includes cases where a CM’s steering
actuator fails. As discussed in Section 3.4.2, due to the incorporation of Ackermann ge-
ometry within the reference model, the imaginary center steering angles δf and δr serve as
inputs to the model, while the corner steering angles δi do not. Because the variables δi
are not treated as model inputs, the DA agent cannot be used to account for this type of
fault. Faults of this type can be considered by incorporating

δi(k) = σiδi(k) + δi,fault (3.72)

into the prediction model for all corners. If no fault has occurred, σi = 1 and δi,fault = 0
so that δi(k) = δi(k). However, at the sampling instant when a fault occurs, and for the
remainder of runtime, σi = 0 and δi,fault = δi(k− 1) so that δi(k) = δi(k− 1). This ensures
that if no fault has occurred, the controller can utilize the reference model to correctly
consider the steering angles δi that will be applied as a result of the selected δf and δr,
but when a fault at some corner i does occur, the model indicates to the controller that
the current steering angle at corner i will be held constant for the remainder of runtime
regardless of the values of δf and δr.

3.7 Preventing model singularities

As presented thus far, an outstanding issue with the model is the possibility for singularities
to occur when u approaches zero. This issue results from the division by u in eqs. (3.23)
and (3.24). Furthermore, as λi, αi, and therefore Sres,i go to zero with u, the same problem
arises with eq. (3.26). To prevent this issue, eqs. (3.24) and (3.26) may be augmented as

αi = δi − arctan

(
v + air

u+ ϵα

)
, (3.73)

µB,yi =
αi

Sres,i + ϵµy
[C1y(1− e−C2ySres,i)− C3ySres,i], (3.74)

where ϵα and ϵµy are small scalar values that prevent divisions by 0. Similarly, λi may be
bounded by

|λi| ≥ ϵλ (3.75)

where ϵλ is a small scalar. Rather than including ϵλ in the denominator of eq. (3.23), it is
acceptable to bound λi in this way because, as mentioned in Section 3.4.1 and Appendix A,
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eq. (3.23) is not included directly within the continuous reference model fSS; λi is estimated
before the reference model is constructed at each sampling instant, and is held constant
over the prediction horizon.

To improve model accuracy, it is desirable for ϵλ, ϵα, and ϵµy to be large when the
vehicle is travelling at low speeds, and much smaller when the vehicle is travelling at
higher speeds. To achieve this, the values of ϵλ, ϵα, and ϵµy are varied with u using an
arctangent relationship. The relationship between these quantities and u, displayed in
Figure 3.9, is represented by the equation

ϵℓ =
−2
π

ϵℓ,low − ϵℓ,high
2

arctan

(
1

scale
(u− uthreshold)

)
+
ϵℓ,low + ϵℓ,high

2
∀ℓ ∈ {λ, α, µy},

(3.76)
where ϵℓ,low represents the value of ϵℓ as u→ 0, ϵℓ,high represents the value of ϵℓ as u→∞,
scale is a scale factor that determines the slope of the linear transition region, and uthreshold
is a threshold that determines the location of the transition region. The parameters values
used in this work are given in Table 3.2.

0 10 20 30 40 50

u [km/h]

0

0.2

0.4

0

06
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07y

Figure 3.9: ϵλ, ϵα, and ϵµy plotted as a function of u.
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Value
Parameter ϵλ ϵα ϵµy

ϵℓ,low 0.025 0.5 0.125
ϵℓ,high 0.001 0 0
scale 0.5 km/h 0.5 km/h 0.5 km/h
uthreshold 5 km/h 5 km/h 5 km/h

Table 3.2: Parameters used to prevent model singularities.
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Chapter 4

Development of a vehicle path
tracking controller using agent-based
model predictive control

4.1 Constraints

4.1.1 State constraints

The optimal controller presented in this work must achieve the control objective while
adhering to a set of constraints on the states, inputs, and input rates. As discussed in
Subsection 3.4.1, the states to be constrained are zc = [r, αfl, αfr, αrl, αrr]

T . The desired
bounds on zc are given as

zc,min(k) = [rmin(k), αfl,min(k), αfr,min(k), αrl,min(k), αrr,min(k)]
T , (4.1)

zc,max(k) = [rmax(k), αfl,max(k), αfr,max(k), αrl,max(k), αrr,max(k)]
T , (4.2)

where zc,min(k) and zc,max(k) represent the desired minimum and maximum bounds, re-
spectively, on the controlled states zc. Soft constraints of the form

z̄c(k) ≥ z̄c,min(k)− ϵ̄min, (4.3)

z̄c(k) ≤ z̄c,max(k) + ϵ̄max, (4.4)

are used to enforce the desired constraints over the prediction horizon while preventing
optimization infeasibility. Here, z̄c,min(k) = [zTc,min(k), ..., z

T
c,min(k + Np)]

T and z̄c,max(k) =
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[zTc,max(k), ..., z
T
c,max(k+Np)]

T represent the constraints applied over the prediction horizon.
The slack variable vectors ϵ̄min ∈ Rnϵ̄min and ϵ̄max ∈ Rnϵ̄max are defined as

ϵ̄min = [ϵTmin, ..., ϵ
T
min]

T , (4.5)

ϵ̄max = [ϵTmax, ..., ϵ
T
max]

T , (4.6)

ϵmin = [ϵrmin
, ϵαfl,min

, ϵαfr,min
, ϵαrl,min

, ϵαrr,min
]T , (4.7)

ϵmax = [ϵrmax , ϵαfl,max
, ϵαfr,max

, ϵαrl,max
, ϵαrr,max ]

T , (4.8)

where ϵmin ∈ Rnϵmin and ϵmax ∈ Rnϵmax are used to enforce the soft constraints at each
sampling instant along the prediction horizon; ϵrmin

, ϵαfl,min
, ϵαfr,min

, ϵαrl,min
, ϵαrr,min

, ϵrmax ,
ϵαfl,max

, ϵαfr,max
, ϵαrl,max

, and ϵαrr,max are the individual scalar slack variables used to relax
the constraints on individual states; and nϵ̄min

= nϵ̄max = Npnzc . In total, there are nϵ̄ =
nϵ̄min

+ nϵ̄max slack variables. The bounds on r are

rmin =
−µg
u

, (4.9)

rmax =
µg

u
, (4.10)

where µ is the TRFC. At each sampling instant, these bounds calculated using the current
u and µ and are held constant over the prediction horizon. The TRFC at each wheel i is
determined using the longitudinal TRFC µxi and lateral TRFC µyi at wheel i as [51]

µi =
µxiµyi√

µ2
xi sin

2(αi) + µ2
yi cos

2(αi)
. (4.11)

In this work, µ is then taken to be the average of all µi. The bounds on αi correspond
to the sideslip angle that results in the maximum Fyi. For standard passenger AV appli-
cations, it is common to establish a relationship between αi and the vehicle body sideslip
angle, β, and use this relationship to limit β such that the bounds on αi are not violated.
However, the standard relationship between αi and β for passenger vehicles does not apply
to WATonoTruck, since all wheels are independently steered. For example, there may be
a scenario where the steering angle for all wheels is set to the same, non-zero value; in this
case, β would not be zero as the heading of the vehicle would not align with the direction of
its velocity vector, but all αi would be approximately zero. Therefore, for this application,
all αi are constrained instead of β.
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4.1.2 Input and input rate constraints

It is also necessary to constraint both the inputs and input rates. In the centralized case,
these constraints are of the form

Ū(k) ≥ Ūmin(k), (4.12)

Ū(k) ≤ Ūmax(k), (4.13)

∆Ū(k) ≥ ∆Ūmin(k), (4.14)

∆Ū(k) ≤ ∆Ūmax(k), (4.15)

where ∆Ū is the difference in Ū between sampling instants and Ūmin, Ūmax, ∆Ūmin, and
∆Ūmax, represent the bounds on the inputs and input rates over the control horizon. These
constraint vectors are defined as

Ūmin(k) = [Umin(k)
T , ..., Umin(k +Nc − 1)T ]T , (4.16)

Ūmax(k) = [Umax(k)
T , ..., Umax(k +Nc − 1)T ]T , (4.17)

∆Ūmin(k) = [∆Umin(k)
T , ...,∆Umin(k +Nc − 1)T ]T , (4.18)

∆Ūmax(k) = [∆Umax(k)
T , ...,∆Umax(k +Nc − 1)T ]T , (4.19)

Umin = [δf,min, δr,min, Qfl,min, Qfr,min, Qrl,min, Qrr,min]
T , (4.20)

Umax = [δf,max, δr,max, Qfl,max, Qfr,max, Qrl,max, Qrr,max]
T , (4.21)

∆Umin = [∆δf,min,∆δr,min,∆Qfl,min,∆Qfr,min,∆Qrl,min,∆Qrr,min]
T , (4.22)

∆Umax = [∆δf,max,∆δr,max,∆Qfl,max,∆Qfr,max,∆Qrl,max,∆Qrr,max]
T . (4.23)

In the non-centralized case, the constraints on the actions for some agent j are of the form

Ūj ≥ Ūj,min, (4.24)

Ūj ≤ Ūj,max, (4.25)

∆Ūj ≥ ∆Ūj,min, (4.26)

∆Ūj ≤ ∆Ūj,max, (4.27)

where ∆Ūj is the rate of change of Ūj and Ūj,min, Ūj,max, ∆Ūj,min, and ∆Ūj,max, represent
the bounds on the inputs and input rates for agent j. These constraint vectors are defined
as

Ūj,min(k) = [Uj,min(k)
T , ..., Uj,min(k +Nc − 1)T ]T , (4.28)
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Ūj,max(k) = [Uj,max(k)
T , ..., Uj,max(k +Nc − 1)T ]T , (4.29)

∆Ūj,min(k) = [∆Uj,min(k)
T , ...,∆Uj,min(k +Nc − 1)T ]T , (4.30)

∆Ūj,max(k) = [∆Uj,max(k)
T , ...,∆Uj,textmax(k +Nc − 1)T ]T . (4.31)

The elements of Uj,min, Uj,max, ∆Uj,min, and ∆Uj,max, are dependent on the inputs selected
by agent j.

The bounds on δf and δr are

δf,min = arctan

((
1

tan(δmin)
− T

2w
+
T tan(δmax)

2w tan(δmin)

)−1
)
, (4.32)

δf,max = arctan

((
1

tan(δmax)
+

T

2w
− T tan(δmin)

2w tan(δmax)

)−1
)
, (4.33)

δr,min = arctan

(
tan(δmin) tan(δf,max)

tan(δmax)

)
, (4.34)

δr,max = arctan

(
tan(δmax) tan(δf,min)

tan(δmin)

)
, (4.35)

where δmin and δmax represent the steering actuator limits at each wheel. So long as
δf,min ≤ δf ≤ δf,max and δr,min ≤ δr ≤ δr,max, these constraints ensure that the Ackermann
geometry is maintained without violating the actuator limits for any combination of δf
and δr. These constraints were derived using eqs. (3.17) to (3.20). The rate constraints
on the steering rates ∆δf and ∆δr are the actuator steering rate limits ∆δmin and ∆δmax.
The bounds on Qi are

Qi,min = max(Qmin,act, Qmin,fxi), (4.36)

Qi,max = min(Qmax,act, Qmax,fxi), (4.37)

where Qmin,act and Qmax,act represent the actuator torque limits and Qmin,fxi and Qmax,fxi

represent the longitudinal force limits. Qmin,fxi and Qmax,fxi are given as

Qmin,fxi = −fxi,maxReff,i, (4.38)

Qmax,fxi = fxi,maxReff,i, (4.39)

where the maximum tire force fxi,max is computed using the friction ellipse,

fxi,max = µxi

√
F 2
zi − (fyi/µy)2. (4.40)

38



The rate constraints on the wheel torque rate ∆Qi are set according to the motor limits.

To reduce the controller optimization complexity and increase the stability of the ve-
hicle, a relationship between δf and δr of the form

δr = kδδf (4.41)

is established. The coefficient kδ is adjusted according to the vehicle velocity u to improve
both mauenverability at low speeds and stability at high speeds. The vehicle’s yaw rate
gain, which describes the relationship between the steering angle and yaw rate, can be used
to determine the effect of kδ on stability. Using a bicycle model with both front and rear
wheel steering, the yaw rate gain is defined as [52]

G =
r

δf
=

u

w +Kusu2

(
1− δr

δf

)
, (4.42)

Kus =
m

w

(
b

Cf
− a

Cr

)
, (4.43)

where G is the yaw rate gain, Kus is the understeer gradient, and Cf and Cr are respectively
the front and rear cornering stiffnesses. Given the relationship eq. (4.41),

G =
r

δf
=

u

w +Kusu2
(1− kδ). (4.44)

Equation (4.44) demonstrates that the yaw rate gain, and therefore the stability of the
vehicle, is influenced by Kus, u, and kδ. The relationship between these quantities is given
in Figure 4.1. Kus > 0, Kus < 0, and Kus = 0 correspond to oversteer, understeer, and
neutral steer vehicles, respectively. For the purposes of this analysis, it is assumed that
all tires of WATonoTruck have the same properties and are subjected to the same normal
load; thus, Cf = Cr. Furthermore, for WATonoTruck, a = b. These properties indicate
that WATonoTruck is a neutral steer vehicle. Therefore, to reduce the yaw rate gain and
improve stability at high speeds, kδ should be reduced. Conversely, kδ can be increased
at low speeds to improve the vehicle maneuverability. Figure 4.2 displays the relationship
between kδ and u that is used in this work. Note that this constraint may only be imposed
if both δf and δr are controlled by the same agent, because optimal control performance
will not be provided if there are coupled input constraints between agents [53].

4.2 Model predictive control formulation

This section is used to describe the formulation of standard, centralized MPC prior to the
presentation of AMPC; the AMPC algorithm, an extension of MPC, is outlined in the
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(a) Kus = 0 (b) Kus = −0.005

(c) Kus = 0.005

Figure 4.1: Relationship between yaw rate gain, u, and kδ, in (a) neutral steer, (b) oversteer,
and (c) understeer cases.

Figure 4.2: Relationship between kδ and u used in this thesis.
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next section. The objective of an MPC controller is to minimize the deviation between
the system state and reference trajectories while also minimizing the control input effort,
control input rate of change, and violation of the soft constraints. To achieve this, at each
sampling instant k, the controller selects an optimal sequence of input vectors Ū that, when
applied to the system over a receding prediction horizon of Np time steps into the future, is
predicted to best satisfy the control objectives over the horizon. The optimal inputs may
vary over the control horizon, i.e., the first Nc steps along the prediction horizon, where
Nc ≤ Np; the inputs are held constant over the remainder of the prediction horizon. At
each time step k, The first input vector U(k) in the sequence Ū(k) is applied to the system,
while the remainder are discarded and the optimization procedure is performed again at
the following sampling instant. The set of control objectives are described by the objective
function

J = min
Ū ,ϵ̄min,ϵ̄max

Np∑
ℓ=1

[
∥z(k + ℓ)− zref(k + ℓ)∥2Q + ∥U(k + ℓ− 1)∥2R

+ ∥∆U(k + ℓ)∥2P + ∥ϵmin(k + ℓ)∥2Qϵ
+ ∥ϵmax(k + ℓ)∥2Qϵ

]
,

(4.45)

where zref is the reference trajectory to be tracked by the controller, and Q ∈ Rnz×nz , R ∈
RnU×nU , P ∈ RnU×nU , and Qϵ ∈ Rnϵmin×nϵmin are positive definite diagonal weight matrices
whose diagonal elements are used to weigh the relative importance of each objective. In
this work, to enable path tracking and longitudinal velocity control objectives, the reference
trajectory over the prediction horizon z̄ref(k) at time step k is defined as

z̄ref(k) = [zref(k + 1)T , ..., zref(k +Np)
T ]T , (4.46)

zref(k + ℓ) = [uref(k + ℓ), eref(k + ℓ),∆ψref(k + ℓ)]T , (4.47)

where uref is the reference longitudinal velocity, eref is the reference lateral error, ∆ψref

is the reference heading error, and zref is the controlled state reference vector at a single
sampling instant. It is assumed that uref is provided to the controller by an upstream
trajectory planner. To achieve the path tracking objectives, eref = ∆ψref = 0 for all time.
The matrices Q, R, P , and Qϵ are defined as

Q =

Qu 0 0
0 Qe 0
0 0 Q∆ψ

 , (4.48)

R =


Rδf 0 . . . 0
0 Rδr . . . 0
...

...
. . .

...
0 0 . . . RQrr

 , (4.49)
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P =


P∆δf 0 . . . 0
0 P∆δr . . . 0
...

...
. . .

...
0 0 . . . P∆Qrr

 , (4.50)

Qϵ =


Qϵr 0 . . . 0
0 Qϵαfl

. . . 0
...

...
. . .

...
0 0 . . . Qϵαfr

 . (4.51)

The diagonal elements of each matrix Q, R, P , and Qϵ are scalar weight values used to
establish the relative importance of the set of all objectives characterized by J .

Since the reference model presented in Chapter 3 is linear, the cost function J is
quadratic and can be rewritten in quadratic programming (QP) form as

J = min
Ūϵ

1

2
ŪT
ϵ HϵŪϵ + fTϵ Ūϵ. (4.52)

The MATLAB function quadprog is used to solve the QP problem; the objective function
form given in eq. (4.52) is the form accepted by quadprog. With J in this form, a convex
optimization may be performed by the MPC controller at each time step to determine
the optimal control input sequence. Here, Ūϵ = [ŪT , ϵ̄Tmin, ϵ̄

T
max]

T ∈ RnŪϵ is an augmented
version of the optimal sequence of input vectors that also includes the slack variables. The
Hessian matrix Hϵ and gradient vector fϵ are defined as

Hϵ =

[
H 0
0 Q̄ϵ

]
, (4.53)

fϵ =

[
f
0

]
, (4.54)

H = 2(STU Q̄SU + R̄ + ST∆UU P̄S∆UU), (4.55)

f = 2STU Q̄E + 2ST∆U P̄S∆UU , (4.56)

E = Sxx(k) + SWd
W̄d + SWz − z̄ref. (4.57)

Here, H and f represent the Hessian matrix and gradient vector, respectively, that would
be used to construct the QP form of the cost function J if hard rather than soft constraints
were used, and therefore the slack variables were not. E represents the predicted reference
tracking error over the prediction horizon if all control inputs were zero. z̄ref is the reference
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trajectory over the prediction horizon. Q̄ and Q̄ϵ represent block diagonal matrices with Np

row and column partitions; Q and Qϵ serve as the blocks along their diagonals, respectively.
R̄ and P̄ are block diagonal matrices with Nc row and column partitions; the blocks along
their diagonals are R and P .

The MATLAB function quadprog accepts constraints of the form

AQPŪϵ ≤ bQP, (4.58)

AQPEŪϵ = bQPE, (4.59)

lb ≤ Ūϵ ≤ ub, (4.60)

where AQP and bQP are used to impose inequality constraints, and AQPE and bQPE are used
to impose equality constraints. In this work, the inequality constraints are used to enforce
constraints on the input rates and soft constraints on the constrained states, while the
equality constraints are used to impose the relationship between the steering angles δf and
δr given in eq. (4.41). The matrices AQP, bQP, AQPE, and bQPE are defined in Appendix B.
lb and ub are simply used to enforce the bounds on inputs Ū given in eqs. (4.12) and (4.13)
and the bounds on the slack variables ϵ̄min and ϵ̄max. All elements of ϵ̄min and ϵ̄max must be
greater than zero, but can be arbitrarily large.

4.3 Agent-based model predictive control formulation

The formulation of AMPC is derived from centralized MPC. However, in the agent-based
case, rather than utilizing a single, centralized controller to select all optimal control inputs
for the system, each agent uses its own MPC controller to select its optimal control inputs
at each sampling instant. Furthermore, rather than performing a single optimization at
each sampling instant, each agent uses their MPC controller to iteratively optimize their
control actions in collaboration with all others; the agents act cooperatively to achieve
the control objectives described in Section 4.2. The objective function that is used by all
agents at each iteration of the cooperative optimization procedure is of the form

Jj = min
Ūj ,ϵ̄min,ϵ̄max

Np∑
ℓ=1

[
∥z(k + ℓ)− zref(k + ℓ)∥2Q + ∥Uj(k + ℓ− 1)∥2Rj

+ ∥∆Uj(k + ℓ)∥2Pj
+ ∥ϵmin(k + ℓ)∥2Qϵ

+ ∥ϵmax(k + ℓ)∥2Qϵ

]
,

(4.61)
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where Rj and Pj are diagonal matrices whose diagonal elements are those from R and P
that correspond to the inputs Uj and input changes ∆Uj. The objective function can be
rewritten in QP form as

Jj = min
Ūjϵ

1

2
ŪT
jϵHjϵŪjϵ + fTjϵŪjϵ. (4.62)

Like the centralized case, this objective function is convex and will result in a globally
optimal solution. Here, Ūjϵ = [ŪT

j , ϵ̄
T
min, ϵ̄

T
max]

T ∈ RnŪjϵ is an augmented version of the
optimal sequence of input vectors for agent j that also includes the slack variables. The
Hessian matrix Hjϵ and gradient vector fjϵ are defined as

Hjϵ =

[
Hj 0
0 Q̄ϵ

]
, (4.63)

fjϵ =

[
fj
0

]
, (4.64)

Hj = 2(STUj
Q̄SUj

+ R̄j + ST∆UjUj
P̄jS∆UjUj

), (4.65)

fj = 2STUj
Q̄Ej + 2ST∆Uj

P̄jS∆UjUj
, (4.66)

Ej = Sxx(k) + SUjOC
ŪjOC + SUNC

ŪNC + SUDA
ŪDA + SWd

W̄d + SWz − z̄ref. (4.67)

The interpretation of Hj, fj, and Ej are analagous to H, f , and E used in the centralized
case. R̄j and P̄j are block diagonal matrices with Nc row and column partitions whose
blocks on the diagonal are all Rj and Pj, respectively.

At each sampling instant k, each agent uses its prediction model, i.e., eq. (3.68), with
inputs Ūj to formulate the objective function given in eq. (4.62). To achieve this, they
use the current ŪNC(k) and ŪDA(k) provided by the NC and DA agents and the inputs
of the other controllable agents from the previous time step ŪjOC(k − 1); it is initially
assumed that ŪjOC(k) will be approximately equal to ŪjOC(k − 1). The resulting Jj is
used to determine a tentative optimal Ūj(k). Agent j broadcasts this Ūj(k) to all other
controllable agents p ̸= j and receives a tentative optimal Ūp(k) from all other controllable
agents. These Ūp(k) ∀p are used to construct a new estimation of ŪjOC(k) that is used
by agent j to update its objective function Jj. This procedure is then repeated iteratively
by all agents until each converge on an optimal Ūj(k). This algorithm, which can be
interpreted as a cooperative game played by all controllable agents and is known as the
cooperative control routine (CCR) [15,43] is summarized in Algorithm 1. In this algorithm,
c denotes the current CCR iteration, cmax the maximum number of iterations, Ū c

j (k) the
tentative Ūj(k) for agent j determined using Jj at iteration c, Ū

∗
j (k) the converged Ūj(k) to
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be applied by agent j at time k, αCCR the CCR update rate, and ϵCCRj ∈ RNcnUj the CCR
convergence threshold vector. The elements of ϵCCRj are threshold values corresponding
to each input in Ūj that define the amount of change in Ū c

j (k) between iterations that
indicates convergence. The elements that correspond to steering inputs are denoted ϵCCRδ

and those that correspond to torque inputs are denoted ϵCCRQ.

Algorithm 1: Cooperative control routine.

At each time step k, receive state x(k) measurements;
c← 1; // Initialize CCR iteration counter

Ū c−1
j (k)← Ū∗

j (k − 1) ∀j = {1, ..., na}; // Initialize inputs

while any |Ū c
j (k)− Ū c−1

j (k)| ≥ ϵCCRj ∀i do // Loop until convergence

for all controllable agents j whose actions have not converged do
Compute Ūj(k) using eq. (4.62), Ū c−1

p (k) ∀p ̸= j, ŪNC, and ŪDA;

Ū c
j (k)← αCCRŪ

c−1
j (k) + (1− αCCR)Ūj(k); // Update inputs

Broadcast Ū c
j (k), receive Ū

c
p(k) ∀p ̸= j;

end
if c == cmax then

break; // Enforce maximum number of while loop iterations

else
c← c+ 1; // Update iteration counter

end

end
Ū∗
j (k)← Ū c

j (k); // Agent j’s optimal control input

Apply the first input in the sequence Ū∗
j (k) ∀j;

Repeat at next time step k ← k + 1;

When optimizing their control inputs, each agent adheres to the set of constraints on
the states, inputs, and input rates considered in Section 4.2. In the form accepted by
MATLAB’s quadprog, these constraints are represented as

AQPjŪjϵ ≤ bQPj, (4.68)

AQPEjŪjϵ = bQPEj, (4.69)

lbj ≤ Ūjϵ ≤ ubj. (4.70)

Similar to the centralized case, AQPj and bQPj are used to impose inequality constraints
and AQPEj and bQPEj are used to impose equality constraints In this work, the inequality
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constraints are used to enforce constraints on the input rates and soft constraints on the
constrained states, while the equality constraints are used to impose the relationship be-
tween the steering angles δf and δr given in eq. (4.41). The matrices AQPj, bQPj, AQPEj,
and bQPEj are defined in Appendix B. lbj and ubj are simply used to enforce the bounds
on inputs Ūj given in eqs. (4.24) and (4.25) and the bounds on the slack variables ϵ̄min and
ϵ̄max. All elements of ϵ̄min and ϵ̄max must be greater than zero, but can be arbitrarily large.

4.4 Longitudinal velocity controller

To further reduce the complexity of the AMPC optimization problem, an external NC
agent can be used to perform longitudinal velocity control. When in use, this agent selects
all Qi inputs not assigned to the DA agent in place of the AMPC controller; in this case,
the AMPC controller is only responsible for the path tracking objectives. A proportional
(P) controller with the transfer function

H = Kp (4.71)

is used by this agent. The error signal uref − u is used to select the value of all non-
controllable Qi inputs. Here, Kp is the proportional gain. A block diagram of the NC
longitudinal control agent is given in Figure 4.3.

Figure 4.3: NC longitudinal control agent block diagram.

When the NC longitudinal control agent is in use, then the matrix Cy used to predict
the controlled output z may be redefined as

Cy =

[
0 0 0 1 0
0 0 0 0 1

]
, (4.72)
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since the AMPC controller is no longer responsible for the longitudinal velocity control
objective. In this case, z̄ref must also be modified by removing the longitudinal velocity
reference such that z̄ref(k) = [eref(k + 1),∆ψref(k + 1), ..., eref(k +Np),∆ψref(k +Np)]

T .
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Chapter 5

Results and discussion

5.1 Simulation environment

MATLAB and Simulink are used to implement the AMPC controller described in Sec-
tion 4.3 and validate its performance throughout a variety of simulated test scenarios. The
vehicle plant, WATonoTruck, is represented by two blocks within Simulink’s Vehicle Dy-
namics Blockset: Vehicle Body 3DOF, which characterizes the longitudinal, lateral, and
yaw characteristics of the vehicle by considering its mass, geometry, and forces exerted by
the tires, Combined Slip Wheel 2DOF, which characterizes the longitudinal and lateral be-
haviour of all four wheels by utilizing the nonlinear combined slip magic formula tire force
model [50]. Since factors such as roll stability, altitude changes, and non-zero grade and
bank angles are not considered in this study, the vehicle’s vertical, pitch, and roll motion
is not significant, and does not need to be modelled. To create an accurate representation
of the system dynamics, both blocks are configured to use vehicle body and tire model
parameters that correspond to WATonoTruck. The vehicle parameters used in both the
plant and controller reference models are given in Table 5.1; the values of these parameters
correspond to the physical properties of WATonoTruck. Unless otherwise mentioned, a
TRFC of µxi = µyi = 1 ∀i is used throughout all scenarios. A TRFC of µxi = µyi = 0.5
will be used when evaluating the controller performance in harsh conditions. Tire force
data provided by MSC Adams for a tire of size 285/80 R22.5 is used to create both the
plant tire force model and to determine the Burckhardt lateral tire force model parameters
when both µxi = µyi = 1 and µxi = µyi = 0.5. This tire size closely resembles the tires
installed on WATonoTruck, which are 11 R24.5; MSC Adams does not provide data for
the 11 R24.5 tire size and empirical tire force data collection is outside of the scope of
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this work, so the 285/80 R22.5 tire size serves as a similar substitute. The friction coef-
ficients used are adjusted in the model and plant using the longitudinal and lateral peak
friction coefficients in the magic formula model [50]. The Burckhardt model parameters,
fitted using nonlinear least squares regression, are displayed in Table 5.2. It is assumed
that the properties of each wheel are identical, and therefore the fitted coefficients are
the same. The use of the high fidelity Vehicle Dynamics Blockset blocks in combination
with WATonoTruck-specific body and tire force parameters results in a plant model that
characterizes the behaviour of the system with high accuracy.

Parameter Value

m 2880.1 kg
a 1.75 m
b 1.75 m
Iz 11241.67 kg m2

T 2.00001 m
Reff,i ∀i 0.65 m

Table 5.1: Vehicle parameters.

Parameter µx, µy Value

C1y 1 0.7990
C2y 1 7.4327
C3y 1 0.1858
C1y 0.5 0.3364
C2y 0.5 38.6918
C3y 0.5 0.0518

Table 5.2: Burckhardt model parameters.

Beyond the vehicle body and tire force modelling, a second order steering model is used
to represent the dynamics of the plant’s steering actuators. Each CM contains a linear
actuator that is used to set the steering angle; the relationship between the linear actuator
travel speed and the wheel steering rate is represented by the empirical linear model

δ̇i = mδxlaẋla,i + bδxla , (5.1)
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where, for some wheel i, δ̇i is the steering angle rate, ẋla,i is the linear actuator travel speed,
and mδxla and bδxla are respectively the slope and intercept of the linear relationship. Given
this, the steering dynamics are represented by the transfer function

δ̇i,max

τs2 + s
, (5.2)

where δ̇i,max represents the maximum steering rate determined using eq. (5.1) and the max-
imum linear actuator travel speed, and τ is the system time constant. Here, s represents
the complex variable resulting from a Laplace transform. A time constant of τ = 0.05s is
used. PD controllers with transfer functions

H(s) = Kp +Kds (5.3)

are used by the steering systems to track the desired steering angles at each corner output
from the optimal controller. The proportional gain Kp and derivative gain Kd are set to
2000 and 200, respectively. Again, the s represents a complex variable resulting from the
Laplace transform in this case. A block diagram representing the steering system is given
in Figure 5.1. A block diagram outlining the overall simulation environment is given in
Figure 5.2.

,

Figure 5.1: Steering system block diagram.

5.2 Simulation results

The results presented in the following subsections demonstrate the capability of the AMPC
controller to control the vehicle throughout a varied set of path tracking scenarios. These
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⋮

Figure 5.2: Simulation environment overview, implemented using MATLAB and Simulink.

include cases where the actuator topology is varied, where hardware failures occur in the
system, and when the vehicle is required to make maneuvers in harsh scenarios. The set
of controller parameters used throughout all simulations is given in Table 5.3.

5.2.1 Varied actuator topologies

One benefit of the AMPC framework is its ability to control the vehicle using a wide variety
of different actuator topologies. In this subsection, the AMPC path tracking performance
is compared over multiple trials; in each trial, the reference path and desired velocity profile
remain the same, while the actuator configuration is changed. The chosen reference path
represents a standard single lane change (SLC) maneuver. Due to the large weight and
low maximum steering rate of the vehicle, a relatively low maximum desired velocity of
20 km/h is used. The actuator configurations include all-wheel steer (AWS) and all-wheel
drive (AWD), AWS and front-wheel drive (FWD), AWS and rear-wheel drive (RWD),
front-wheel steer (FWS) and AWD, FWS and FWD, and FWS and RWD. In the AWS
cases, both δf and δr are selected by a single controllable agent. It is necessary for one
controllable agent to select both δf and δr so that the constraint eq. (4.41) can be used.
In the FWS cases, δr is disabled. In each trial, the torque at the driven wheels is selected
by the NC longitudinal control agent. More specifically, the NC longitudinal control agent
selects Qfl, Qfr, Qrl, and Qrr in the AWD trials; Qfl and Qfr in the FWD trials; and
Qrl and Qrr in the RWD trials. Qrl and Qrr are disabled in the FWD trials, and Qfl and
Qfr are disabled in the RWD trials. The disabled actuators are assigned to the DA agent.
Over all of the agent configurations considered in this section, the inputs are grouped by
actuator type rather than by their CM.

Figure 5.3 displays a comparison between the vehicle’s trajectory, its controlled states,
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Parameter Value

∆t 0.05 s
Np 20
Nc 10
Qu 1e5
Qe 5e5
Q∆ψ 1e6
Rδf 5e5
Rδr 5e5
RQfl

2.5e–3
RQfr

2.5e–3
RQrl

2.5e–3
RQrr 2.5e–3
P∆δf 2e6
P∆δr 2e6
P∆Qfl

0
P∆Qfr

0
P∆Qrl

0
P∆Qrr 0
Qϵr 1e5
Qϵαfl

1e8

Qϵαfr
1e8

Qϵαrl
1e8

Qϵαrr
1e8

Maximum CCR iterations 10
αCCR 0.5
ϵCCRδ 0.1π/180
ϵCCRQ 10

Kp (NC longitudinal controller) 3500

Table 5.3: Controller parameters used in simulation.

and its control inputs across all trials. The results demonstrate that regardless of the
actuator topology, the AMPC scheme is able to consider the available steering actuators
while accounting for the torque applied by NC longitudinal velocity control agent and the
absence of any disabled actuators to provide similar control performance across all trials.
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In each case, the vehicle is able to closely follow the path at the desired velocity with
minimal lateral or heading error while the steering and torque inputs remain smooth.
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Figure 5.3: Comparison between SLC maneuvers performed by the vehicle across multiple
trials using different actuator configurations. Across each trial, the reference path and
desired velocity profile were the same. (a) displays the vehicle trajectory in each case,
(b) the longitudinal velocity, (c) the lateral tracking error, (d) the heading error, (e) the
imaginary center steering angles, and (f) the wheel torque.
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5.2.2 Actuator faults

An additional benefit of the proposed AMPC scheme is its fault-tolerant control capabil-
ities. In this subsection, the ability of the AMPC to control the vehicle in the presence
of hardware faults is presented. For each scenario, the cases where the faults are both
detected and not detected will be compared. When a fault is detected, the agents update
their system prediction models as described in Section 3.6 to account for the change in the
dynamics of the system. In the scenarios where the faults are not detected, no changes are
made to the prediction models and the controller attempts to control the vehicle as if no
fault has occurred.

In the first fault scenario, the vehicle is performing a 180 degree turn when the two
right motors simultaneously fail. At the start of this scenario, one controllable agent is
used to select both δf and δr, which allows the constraint eq. (4.41) to be enforced. Four
additional controllable agents are used to optimize the wheel torque inputs, each selecting
the torque Qi for one wheel i. Therefore, at the start of runtime, five controllable agents
are in use. This configuration, where the wheel torque inputs are grouped by their CM,
highlights how each torque input can be individually adjusted to account for the others
that have faulted. The failure occurs 10 s into runtime, and results in Qrl = Qrr = 0 for
the remainder of the simulation. At the time of the fault, in the case where the fault is
detected, these actuators are assigned to the DA agent; the number of controllable agents
thus reduces by two. Figure 5.4 displays the path tracking performance and control inputs
throughout the scenario in the cases where the faults both are and are not detected. In the
case where the fault is detected, a small, immediate change occurs in the steering angles
to compensate for it. In contrast, this change does not immediately occur in the case
where the fault is not detected. There is also an observable difference in the torque inputs
between both cases after the fault occurs. As a result, there is a noticeable difference in
the lateral tracking and heading error values after the fault occurs; the error is generally
lower in the case where the fault is detected. Further, the longitudinal velocity slightly
exceeds the reference after the fault occurs in the case where the fault is not detected.

In the second fault scenario, the vehicle performs a 90 degree turn. Throughout this
trial, multiple motors fail in sequence; Qrl fails 4 seconds into runtime, Qfr fails at 6
seconds, and Qfl fails at 8 seconds. At the start of this scenario, one controllable agent is
used to select both δf and δr, which allows the constraint eq. (4.41) to be enforced. Four
additional controllable agents are used to optimize the wheel torque inputs, each selecting
the torque Qi for one wheel i. Therefore, at the start of runtime, five controllable agents
are in use. This configuration, where the wheel torque inputs are grouped by their CM,
highlights how each torque input can be individually adjusted to account for the others
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Figure 5.4: Right motors simultaneously fail while the vehicle performs a 180 degree turn.
Cases where fault both is and is not detected are compared. (a) Vehicle trajectory. (b)
Longitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e, g) Steering angle,
torque inputs in case where fault is detected. (f, h) Steering angle, torque inputs in case
where fault is not detected.
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that have faulted. At the time of each fault, the corresponding actuator is assigned to
the DA agent, and the number of controllable agents reduces by one. These actuators
are assigned to the DA agent at the times that their corresponding fault occurs. For the
remainder of the 15 second simulation, the only motor available is Qrr. Figure 5.5 displays
the path tracking performance and control inputs throughout the scenario in the cases
where the faults both are and are not detected. In this example, while not as noticeable as
the previous scenario, there is an observable difference in the lateral tracking and heading
error values between the cases where the fault was and was not detected. There is also an
observable difference in all inputs between both cases after the faults occur.

In the third fault scenario, the vehicle is tracking an alternative curved path when an
issue occurs with the steering actuators. At the start of this scenario, one controllable
agent is used to select δf and another δr. Separate agents are used to select δf and δr
in this scenario to demonstrate how one can compensate for the other when one of them
fails. All Qi are selected by the NC longitudinal control agent. Therefore, at the start
of runtime, two controllable agents are in use. 7 seconds after the start of runtime, an
issue occurs with the agent controlling δr that results in δr remaining constant for the
remainder of the simulation. At this time, δr is assigned to the DA agent and the number
of controllable agents reduces to one. Figure 5.6 displays the path tracking performance
and control inputs throughout the scenario in the cases where the faults both are and are
not detected. In the case where the fault is detected, the front steering angle inputs remain
smooth and the path is tracked effectively. However, in the case where the fault is not
detected, the front steering inputs become unreliable and the vehicle deviates significantly
from the path.

In the fourth fault scenario, the vehicle is following a sinusoidal path when two steering
actuators fail in sequence; δrl first fails 4 seconds after the start of the simulation, and
δfl fails 4 seconds later. After δrl and δfl fault, they remain constant for the remainder
of the simulation. In this case, one controllable agent selects both δf and δr, while the
NC longitudinal control agent selects all Qi. The failures of the δrl and δfl actuators are
accounted for by the AMPC controller using eq. (3.72). Since δrl and δfl are not inputs
to the reference model, there are no updates to the model’s agent configuration when the
faults occur; δf and δr are selected and used as normal to determine δfr and δrr. Figure 5.7
displays the path tracking performance and control inputs throughout the scenario in the
cases where the faults both are and are not detected. In this scenario, there is again a
noticeable difference in the lateral and heading errors between the cases where the faults
were and were not detected; when the faults are detected and considered by the AMPC
controller, the tracking errors are much lower.

Overall, the results in this subsection indicate that the AMPC scheme can utilize the
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Figure 5.5: Three motors fail in sequence while the vehicle performs a 90 degree turn.
Cases where faults both are and are not detected are compared. (a) Vehicle trajectory. (b)
Longitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e, g) Steering angle,
torque inputs in case where faults are detected. (f, h) Steering angle, torque inputs in case
where faults are not detected.
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Figure 5.6: δr fails while the vehicle follows a curved path. Cases where the fault both is
and is not detected are compared. (a) Vehicle trajectory. (b) Longitudinal velocity. (c)
Lateral tracking error. (d) Heading error. (e, g) Steering angle, torque inputs in case where
fault is detected. (f, h) Steering angle, torque inputs in case where fault is not detected.
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Figure 5.7: The left steering actuators fail in sequence while the vehicle follows a sinu-
soidal path. Cases where faults both are and are not detected are compared. (a) Vehicle
trajectory. (b) Longitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e,
g) Steering angle, torque inputs in case where faults are detected. (f, h) Steering angle,
torque inputs in case where faults are not detected.
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DA agent to account for faults that are detected throughout runtime. In doing so, the
controller can provide much better control performance compared to cases where faults are
not detected or considered and the prediction model continues to assume that the system
has not changed. Furthermore, as shown in the previous subsection, the controller can also
account for the inputs selected by the NC longitudinal control agent. In certain cases, the
fault detection capabilities result in minor improvements in the lateral and heading error
values, while in others, these capabilities prevent the vehicle from significantly deviating
from the path.
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5.2.3 Harsh scenarios

In this subsection, the ability of the AMPC scheme to effectively control the vehicle in
harsh path tracking scenarios is investigated. Furthermore, the simulation results in this
section show that changing the topology of the actuators available to the controller, which
can be easily done using the AMPC framework, can result in path tracking improvements.
To demonstrate this, for each harsh scenario, two simulations are compared: in one case,
the NC longitudinal control agent selects a single torque value to apply to each wheel, and
in the second, torque vectoring is enabled by utilizing four controllable agents in place of
the NC agent that each select one of the wheel torque values Qi.

In the first harsh scenario, the vehicle attempts to perform a double lane change (DLC)
maneuver on a slippery road with a TRFC of µx = µy = 0.5 at a high speed of 80 km/h.
One controllable agent controls both δf and δr, which enables the use of the constraint
given in eq. (4.41). However, given the vehicle speed and the relationship between kδ and
u described in Figure 4.2, δr is constrained to be zero throughout the entire maneuver. Fig-
ure 5.8 displays the path tracking performance and control inputs throughout the scenario
in the cases where torque vectoring both is and is not used. To demonstrate the ability of
the controller to satisfy the constraints in harsh scenarios, the yaw rate and sideslip angles
throughout these simulations are shown in Figure 5.9. The results demonstrate multiple
benefits of augmenting the actuator configuration to enable torque vectoring, which is eas-
ily achieved using the AMPC framework. Firstly, the lateral and heading error are greatly
minimized when torque vectoring is used; when the NC agent selects the wheel torque, the
vehicle becomes unstable and deviates significantly from the path when performing the
second lane change. Second, to account for the large deviation from the path, the steering
angle becomes large and irregular when torque vectoring is not used in an unsuccessful
attempt to return to the path; the use of torque vectoring allows the steering angles to
remain comparatively small and smooth. Third, the use of torque vectoring prevents the
yaw rate and sideslip angles from significantly exceeding the constraints, while these states
become undesirably large when torque vectoring is not used.

In the second harsh scenario, the vehicle performs an acceleration-in-turn (AIT) ma-
neuver around a circular path. Again, a TRFC of µx = µy = 0.5 is used to increase the
difficulty of the control task. While the maximum speed used here is lower than the harsh
DLC case, the acceleration and top speed of the vehicle is larger in this scenario in compar-
ison to the results presented in Subsections 5.2.1 and 5.2.2. One controllable agent controls
both δf and δr, which enables the use of the constraint given in eq. (4.41). Figure 5.10
displays the path tracking performance and control inputs throughout the scenario in the
cases where torque vectoring both is and is not used. To demonstrate the ability of the
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Figure 5.8: Harsh DLC scenario. Results in cases where torque vectoring both is and is not
used is compared. (a) Vehicle trajectory. (b) Longitudinal velocity. (c) Lateral tracking
error. (d) Heading error. (e, g) Steering angle, torque inputs in case where torque vectoring
is used. (f, h) Steering angle, torque inputs in case where torque vectoring is not used.
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Figure 5.9: Sideslip angles and yaw rate throughout the harsh DLC scenario in the cases
where torque vectoring both is and is not used. (a, c) Sideslip angles and yaw rate,
respectively, in the case where torque vectoring is used. (b, d) Sideslip angles and yaw
rate, respectively, in the case where torque vectoring is not used.

controller to satisfy the constraints in harsh scenarios, the yaw rate and sideslip angles
throughout these simulations are shown in Figure 5.11. In this scenario, it is again seen
that when torque vectoring is utilized, the lateral and heading error responses are smaller
and smoother, the steering inputs are smoother, and the sideslip angles remain closer to
bounds.

The results in this subsection demonstrate that reconfiguring the actuator topology,
which can be easily done using the AMPC framework, can result in a large improvement
in path tracking performance. In these examples, the configurations used did not change
throughout their respective simulations. However, in future work, the capability to switch
between actuator topologies online depending on the state of the system can be explored.
For example, it would be possible to use the NC longitudinal control agent to select the
wheel torque values when the vehicle is travelling in a stable condition, but when the vehicle
stability worsens as indicated, for instance, by some pre-defined sideslip angle or lateral
error thresholds, the actuator topology could be reconfigured to enable torque vectoring and
improve the system stability. A technique of this nature would further utilize the benefits
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Figure 5.10: Harsh AIT scenario. Results in cases where torque vectoring both is and
is not used is compared. (a) Vehicle trajectory. (b) Longitudinal velocity. (c) Lateral
tracking error. (d) Heading error. (e, g) Steering angle, torque inputs in case where torque
vectoring is used. (f, h) Steering angle, torque inputs in case where torque vectoring is not
used.
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Figure 5.11: Sideslip angles and yaw rate throughout the harsh AIT scenario in the cases
where torque vectoring both is and is not used. (a, c) Sideslip angles and yaw rate,
respectively, in the case where torque vectoring is used. (b, d) Sideslip angles and yaw
rate, respectively, in the case where torque vectoring is not used.

of the capability to easily switch actuator configurations within the AMPC framework.
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5.3 Experimental vehicle platform

The AMPC controller, outlined in Section 4.3, is evaluated experimentally usingWATonoTruck.
The values of the parameters used to construct the AMPC prediction model are the same
as those given in Table 5.1, as these correspond to the physical properties of WATonoTruck.
It is assumed that the values listed in this table correspond perfectly to the properties of
the plant; no additional parameter estimation techniques are used. For safety reasons, all
experimental results were collected using low-speed, high-friction driving scenarios. The
road surface was dry throughout all experimental testing and had an estimated TRFC of
µx = µy = 1. Because of this, it was not necessary to use torque vectoring during any ex-
perimental testing to ensure vehicle stability. Figure 5.12 displays images of WATonoTruck
captured during experimental testing.

(a) (b)

Figure 5.12: Displays the truck throughout an autonomous cornering maneuver performed
experimentally. (a) Entering the corner. (b) Exiting the corner.

As mentioned in Section 3.1, WATonoTruck has one independent steering system at all
four corners, and one independent electric motor at the two front corners. For each of the
experimental tests conducted, unless otherwise specified, one controllable agent is used to
select δf and δr, the NC longitudinal control agent is used to select Qfl and Qfr, and the
Qrl and Qrr inputs are assigned to the DA agent as the actuators corresponding to these
inputs do not exist on the hardware platform.

The AMPC controller is run using an augmented version of the Simulink model used to
perform simulation testing. In this Simulink model, the plant dynamics are replaced with
a Simulink-Robot Operating System (ROS) interface that enables the controller to receive
sensor measurements and publish the desired control input requests. The ROS interface
is connected to the vehicle’s CAN bus, which is used to retrieve the sensor measurements
from and send the control requests to the hardware. Wheel speed sensors report the wheel
angular velocity measurements while the vehicle position, velocity, acceleration, heading,

66



and yaw rate are reported by an inertial navigation system (INS) that combines global
navigation satellite system (GNSS) and inertial measurement unit (IMU) sensors. The
acceleration is reported directly from the IMU while the INS uses extended Kalman filters
(EKFs) to determine the position, velocity, heading, and yaw rate by fusing the GNSS
and IMU readings. A block diagram outlining the overall hardware platform is given in
Figure 5.13.

⋮

Figure 5.13: Vehicle hardware platform overview.

5.4 Experimental results

The results presented in the following subsections demonstrate the capability of the AMPC
controller to control the vehicle throughout a varied set of experimental path tracking
scenarios. The set of controller parameters used throughout all experiments is largely the
same as those given in Table 5.3; all differences are highlighted in Table 5.4.

Parameter Value

Qe 5e6
Q∆ψ 5e6

Table 5.4: Controller parameters used to generate experimental results that differ from
those used in simulation.
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5.4.1 Path tracking

The first set of experimental scenarios serve to validate the ability of the AMPC scheme
to provide effective path tracking performance using the physical WATonoTruck platform
as it performs two standard path following maneuvers: an SLC and a 90 degree turn.
Due to the large size and weight of the vehicle, its low maximum steering rate, and a
limited amount of physical space available to perform experimental testing, a low reference
longitudinal velocity of 2.5 km/h was used in both scenarios.

Figure 5.14 displays the results of the experimental scenario where the vehicle performs
an SLC maneuver. The vehicle trajectory with respect to the reference path, its controlled
states, and the steering and torque inputs selected by the AMPC scheme and the NC
longitudinal control agent, respectfully, are shown. Figure 5.16 displays this information for
the experimental scenario where the vehicle performs a 90 degree turn. In both cases, the
AMPC controller enables the vehicle to effectively follow the path, maintaining low lateral
and heading error values, while the longitudinal velocity remains close to the reference. The
optimal controller can consider both the inputs selected by the NC longitudinal control
agent and the unused inputs assigned to the DA agent when selecting the steering angles.
The non-zero lateral and heading errors present at the beginning of the scenario results from
the difficulty of perfectly manually aligning the vehicle with the path before its autonomous
path tracking capabilities are evaluated. Despite the presence of state measurement noise,
the steering profile remains smooth.

5.4.2 Actuator faults

An experimental test in which an actuator fault occurs is performed to determine the ability
of the AMPC framework to handle faults that occur on the physical hardware. For safety
reasons and to prevent damage to the wheels caused by unecessary wheel slip, steering
faults are not analyzed experimentally. Furthermore, since WATonoTruck does not have
electric motors at the rear wheels, only faults to the front motors can be considered.

Figure 5.16 displays the results of the experimental actuator fault test. In this scenario,
the vehicle is performing an SLC maneuver. Shortly after the beginning of the maneuver,
a wheel torque fault is simulated at the front-right corner by assigning Qfr to the DA
agent such that Qfr remains zero for the remainder of the maneuver, and the SLC must
be completed using only the front-left motor. In spite of the fault, the AMPC controller
enables the vehicle to smoothly track the path and desired velocity while maintaining low
lateral and heading error values. The optimal controller effectively considers the inputs
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Figure 5.14: Experimental SLC path tracking scenario. (a) Vehicle trajectory. (b) Lon-
gitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e) Steering angle. (f)
Wheel torque.

of both the NC and DA agents. As in the previous subsection, the non-zero lateral and
heading errors present at the beginning of the scenario results from the difficulty of per-
fectly manually aligning the vehicle with the path before its autonomous path tracking
capabilities are evaluated. Further, despite the presence of state measurement noise and
the occurrence of the fault, the steering profile remains smooth.
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Figure 5.15: Experimental 90 degree turn path tracking scenario. (a) Vehicle trajectory.
(b) Longitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e) Steering angle.
(f) Wheel torque.
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Figure 5.16: Experimental SLC path tracking scenario where a fault at the front-left motor
is simulated, causing the torque output of this motor to go to zero. (a) Vehicle trajectory.
(b) Longitudinal velocity. (c) Lateral tracking error. (d) Heading error. (e) Steering angle.
(f) Wheel torque.

71



Chapter 6

Conclusions and future work

6.1 Conclusions

The purpose of this thesis was to outline the formulation and features of the AMPC frame-
work; detail the application of AMPC to the path tracking and velocity control task for
WATonoTruck, an over-actuated, 4WIS, two-wheel independent drive autonomous flatbed
truck; and present simulation and experimental results that validate the performance of
the controller. While past studies have separately explored the use of MPC for vehicle path
tracking control and utilizing AMPC to achieve vehicle stability objectives, using AMPC
to perform combined path tracking and longitudinal velocity control is a novel approach.

The hardware platform WATonoTruck, in particular, is a suitable for use with a dis-
tributed control approach given its modular, CM-based design. The prediction model
presented in this work, which serves to characterize the behaviour of a vehicle with inde-
pendent steering and torque actuators at each corner, includes features such as a nonlinear
tire force model that accurately describes the complex relationship between the tires and
road surface and the Ackermann steering geometry, which lessens the complexity of the
control optimization problem by reducing the number of inputs that the controller must
select. To utilize the reference model for agent-based control design, a method to aug-
ment the model for use with each controllable agent is presented. Furthermore, the AMPC
framework can handle varied agent configurations and allows the controllable agents to
incorporate the contribution of NC agents on the system dynamics along, consider the
effects of actuator faults, and disable inputs if the corresponding actuator is not in use or
does not exist on the hardware platform. Beyond this, a set of constraints to impose on the
system states, inputs, and input rates are outlined; these constraints serve to ensure sys-

72



tem stability, enforce the actuator hardware limitations, and reduce the complexity of the
optimization problem by introducing an additional steering relationship. Slack variables
are incorporated into the optimal control scheme to prevent optimization infeasibility in
cases where the state constraints cannot be satisfied. A proportional controller designed to
perform longitudinal velocity control is presented; the AMPC framework can be configured
to utilize this external controller as an NC agent, or handle both the path tracking and
velocity control tasks on its own.

The AMPC controller is validated in both simulation and experimental test scenar-
ios. The simulation results demonstrate that the AMPC controller can perform both path
tracking and velocity control simultaneously; provide path tracking capabilities in cooper-
ation with an NC agent that handles velocity control; be easily reconfigured to control the
vehicle using different actuator topologies; enable effective path tracking in the presence
of hardware faults; and work effectively even in harsh scenarios where the desired longitu-
dinal velocity is high and the TRFC is low. The success of the controller throughout the
experimental tests in both standard path tracking scenarios and in the presence of actuator
faults further reinforces the conclusions drawn from the simulation results and indicates
that the designed prediction model effectively characterizes the behaviour of the vehicle.

6.2 Future work

While the presented AMPC controller is successful in meeting the objectives of this thesis,
there are different means through which the algorithm can be further improved that can
be explored in future work. A key component of AMPC is the prediction model that rep-
resents the dynamics of the system; to maximize the control performance, it is desirable
that the prediction model represents reflects the characteristics of the system with high
accuracy. One method to improve the model accuracy involves the incorporation of param-
eter estimation techniques to estimate the values of the parameters used to construct the
model. Given the intention to utilize WATonoTruck in applications where large amounts
of material must be transported, this feature is particularly relevant as the mass and CG
location of the vehicle will frequently change. Incorporating online parameter estimation
techniques will enable the controller to consider the change in these parameters without
the need to manually remeasure them whenever the payload changes. Beyond this, the
model accuracy could be further improved by incorporating a combined slip tire force
model to estimate the longitudinal tire forces in addition to the lateral forces. While a
simpler longitudinal tire force model was used in this work to reduce the model complexity
and improve the optimization efficiency, the trade-off between these quantities and the
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model accuracy can be explored. Furthermore, the inclusion of a machine learning-based
component to the prediction model could also help to improve its accuracy. A data-driven
model could be used, for example, to estimate the error between the actual vehicle motion
and the behaviour predicted by the physics-based model, or to represent the complex tire
force behaviour or estimate tire force limits.

An additional vehicle motion control-related challenge that is particularly prevalent in
experimental scenarios is the task of accurately determining the longitudinal slip ratio and
sideslip angle at each wheel when the vehicle speed is low. Along with the methods that
will generally improve the accuracy of the prediction model, there are multiple techniques
that may improve slip estimation accuracy or mitigate the effects of inaccuracies that were
not explored in this work. One source of error is measurement noise, which is particularly
detrimental at low speeds as the magnitude of the velocity, yaw rate, and wheel angular
velocity noise becomes closer to the magnitude of the true underlying signal. The use of
predictive filters such as the Kalman filter (KF) to reduce measurement noise could be
explored; unlike other low-pass filters, the KF does not incur a phase delay in the filtered
signal, and the reference model that the KF requires is already known. Furthermore, to
mitigate the issue entirely, the use of a kinematic AMPC reference model at low speeds
could be explored; when the vehicle speed exceeds a certain threshold where the slip
estimations become accurate, the presented dynamic model could then be used as the
AMPC reference.

A third avenue for future work relates to actuator prioritization. In this thesis, the same
actuator topology was used throughout all test scenarios, except for those in which a fault
occurred. Nonetheless, using the AMPC framework presented here, it is possible to change
the actuator topology online at any time. This capability could be used to prioritize which
actuators are in use. For example, in standard driving conditions where torque vectoring
is not needed to ensure the stability of the system, the NC longitudinal control agent could
be used to select the wheel torque that will be applied to all wheels; however, if the vehicle
detects that it is entering an unstable operating condition, the actuator topology could be
reconfigured such that the NC longitudinal control agent is replaced with four controllable
agents, each controlling one of the Qi inputs, which will then perform torque vectoring to
improve the vehicle stability.
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Appendix A

State prediction matrix definitions

All matrix definitions given in this section assume that the matrices Ad, Bd, and so forth
remain constant over the prediction horizon; their constant values are determined by con-
sidering the operating condition of the system at each time step. This implies that the
quantities ωi, λi, and Fzi, measured or estimated at each sampling instant, are also as-
sumed to be constant over the prediction horizon. The matrices Sx, SU , SWd

, and SWz that
are used to predict the controlled state over the prediction horizon z̄ in the centralized case
are defined as

Sx =

 CzAd...

CzA
Np

d

 , (A.1)

SU =



CzBd Dz 0nz×nU
. . . 0nz×nU

CzAdBd CzBd Dz . . . 0nz×nU

...
...

...
. . .

...
CzA

Nc−2
d Bd CzA

Nc−3
d Bd CzA

Nc−4
d Bd . . . Dz

CzA
Nc−1
d Bd CzA

Nc−2
d Bd CzA

Nc−3
d Bd . . . CzBd +Dz

CzA
Nc
d Bd CzA

Nc−1
d Bd CzA

Nc−2
d Bd . . . CzAdBd + CzBd +Dz

...
...

...
. . .

...

CzA
Np−1
d Bd CzA

Np−2
d Bd CzA

Np−3
d Bd . . . Cz

∑Np−Nc

ℓ=0 [Aℓd]Bd +Dz


, (A.2)

SWd
=


Cz 0nz×nWd

. . . 0nz×nWd

CzAd Cz . . . 0nz×nWd
...

...
. . .

...

CzA
Np−1
d CzA

Np−2
d . . . Cz

 , (A.3)
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SWz =

Wz
...
Wz

 . (A.4)

The matrices Scx, ScU , ScWd
, and ScWz used to compute z̄c are defined analogously to Sx,

SU , SWd
, and SWz , respectively, but with Czc , Dzc , Wzc , 0nz×nU

, and 0nz×nWd
respectively

substituted for Cz, Dz, Wz, 0nzc×nU
, and 0nzc×nWd

. The matrices SUj
, SUjOC

, SUNC
, and

SUDA
used to predict z̄ in the non-centralized case are defined as

SUj
=



CzBjd Dzj 0nz×nUj
. . . 0nz×nUj

CzAdBjd CzBjd Dzj . . . 0nz×nUj

...
...

...
. . .

...
CzA

Nc−2
d Bjd CzA

Nc−3
d Bjd CzA

Nc−4
d Bjd . . . Dzj

CzA
Nc−1
d Bjd CzA

Nc−2
d Bjd CzA

Nc−3
d Bjd . . . CzBjd +Dzj

CzA
Nc
d Bjd CzA

Nc−1
d Bjd CzA

Nc−2
d Bjd . . . CzAdBjd + CzBjd +Dzj

...
...

...
. . .

...

CzA
Np−1
d Bjd CzA

Np−2
d Bjd CzA

Np−3
d Bjd . . . Cz

∑Np−Nc

ℓ=0 [Aℓd]Bjd +Dzj


,

(A.5)
SUjOC

=

CzBjdOC DzjOC 0nz×nUjOC
. . . 0nz×nUjOC

CzAdBjdOC CzBjdOC DzjOC . . . 0nz×nUjOC

...
...

...
. . .

...
CzA

Nc−2
d BjdOC CzA

Nc−3
d BjdOC CzA

Nc−4
d BjdOC . . . DzjOC

CzA
Nc−1
d BjdOC CzA

Nc−2
d BjdOC CzA

Nc−3
d BjdOC . . . CzBjdOC +DzjOC

CzA
Nc
d BjdOC CzA

Nc−1
d BjdOC CzA

Nc−2
d BjdOC . . . CzAdBjdOC + CzBjdOC +DzjOC

...
...

...
. . .

...

CzA
Np−1
d BjdOC CzA

Np−2
d BjdOC CzA

Np−3
d BjdOC . . . Cz

∑Np−Nc

ℓ=0 [Aℓd]BjdOC +DzjOC


,

(A.6)
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SUjNC
=

CzBjdNC DzjNC 0nz×nUjNC
. . . 0nz×nUjNC

CzAdBjdNC CzBjdNC DzjNC . . . 0nz×nUjNC

...
...

...
. . .

...
CzA

Nc−2
d BjdNC CzA

Nc−3
d BjdNC CzA

Nc−4
d BjdNC . . . DzjNC

CzA
Nc−1
d BjdNC CzA

Nc−2
d BjdNC CzA

Nc−3
d BjdNC . . . CzBjdNC +DzjNC

CzA
Nc
d BjdNC CzA

Nc−1
d BjdNC CzA

Nc−2
d BjdNC . . . CzAdBjdNC + CzBjdNC +DzjNC

...
...

...
. . .

...

CzA
Np−1
d BjdNC CzA

Np−2
d BjdNC CzA

Np−3
d BjdNC . . . Cz

∑Np−Nc

ℓ=0 [Aℓd]BjdNC +DzjNC


,

(A.7)

SUjDA
=

CzBjdDA DzjDA 0nz×nUjDA
. . . 0nz×nUjDA

CzAdBjdDA CzBjdDA DzjDA . . . 0nz×nUjDA

...
...

...
. . .

...
CzA

Nc−2
d BjdDA CzA

Nc−3
d BjdDA CzA

Nc−4
d BjdDA . . . DzjDA

CzA
Nc−1
d BjdDA CzA

Nc−2
d BjdDA CzA

Nc−3
d BjdDA . . . CzBjdDA +DzjDA

CzA
Nc
d BjdDA CzA

Nc−1
d BjdDA CzA

Nc−2
d BjdDA . . . CzAdBjdDA + CzBjdDA +DzjDA

...
...

...
. . .

...

CzA
Np−1
d BjdDA CzA

Np−2
d BjdDA CzA

Np−3
d BjdDA . . . Cz

∑Np−Nc

ℓ=0 [Aℓd]BjdDA +DzjDA


.

(A.8)

The matrices ScUj
, ScUjOC

, ScUNC
, and ScUDA

used to predict z̄c are defined analogously
to SUj

, SUjOC
, SUNC

, and SUDA
, respectively, but with Czc , Dzcj, DzcjOC, DzcjNC, DzcjDA,

0nz×nUj
, 0nz×nUjOC

, 0nz×nUjNC
, and 0nz×nUjDA

respectively substituted for Cz, Dzj, DzjOC,

DzjNC, DzjDA, 0nzc×nUj
, 0nzc×nUjOC

, 0nzc×nUjNC
, and 0nzc×nUjDA

.

The matrices S∆UU , S∆U , S∆UjUj
, and S∆Uj

that are used to determine ∆Ū and ∆Ūjare
defined as

S∆UU =


−InU

0nU×nU
. . . 0nU×nU

0nU×nU

InU
−InU

. . . 0nU×nU
0nU×nU

...
...

. . .
...

...
0nU×nU

0nU×nU
. . . −InU

0nU×nU

0nU×nU
0nU×nU

. . . InU
−InU

 , (A.9)
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S∆U =


−U(k − 1)
0nU×nU

...
0nU×nU

 , (A.10)

S∆UjUj
=


−InUj

0nUj
×nUj

. . . 0nUj
×nUj

0nUj
×nUj

InUj
−InUj

. . . 0nUj
×nUj

0nUj
×nUj

...
...

. . .
...

...
0nUj

×nUj
0nUj

×nUj
. . . −InUj

0nUj
×nUj

0nUj
×nUj

0nUj
×nUj

. . . InUj
−InUj

 , (A.11)

S∆Uj
=


−Uj(k − 1)
0nUj

×nUj

...
0nUj

×nUj

 , (A.12)

where U(k− 1) and Uj(k− 1) represents control actions selected at the previous time step.
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Appendix B

Constraint matrix definitions

In the centralized case, the input rate constraints are enforced using

AQP∆Umin
Ū ≤ bQP∆Umin

, (B.1)

AQP∆UmaxŪ ≤ bQP∆Umax , (B.2)

AQP∆Umin
=


−InU

0nU×nU
. . . 0nU×nU

0nU×nU

InU
−InU

. . . 0nU×nU
0nU×nU

...
...

. . .
...

...
0nU×nU

0nU×nU
. . . −InU

0nU×nU

0nU×nU
0nU×nU

. . . InU
−InU

 , (B.3)

bQP∆Umin
=


−∆t ∆Umin − U(k − 1)

−∆t ∆Umin

−∆t ∆Umin
...

−∆t ∆Umin

 , (B.4)

AQP∆Umax = −AQP∆Umin
, (B.5)

bQP∆Umax =


∆t ∆Umax + U(k − 1)

∆t ∆Umax

∆t ∆Umax
...

∆t ∆Umax

 . (B.6)
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Note that AQP∆Umax = −AQP∆Umin
= S∆UU . Soft constraints on the constrained states are

enforced using
AQPzcŪϵ ≤ bQPzc , (B.7)

AQPzc =

[
−ScU Inϵ̄min×nϵ̄min

0nϵ̄max×nϵ̄max

ScU 0nϵ̄min×nϵ̄min
Inϵ̄max×nϵ̄max

]
, (B.8)

bQPzc =

[
−z̄c,min + Scxx(k) + ScWd

W̄d + ScWz

z̄c,max − Scxx(k)− ScWd
W̄d − ScWz

]
. (B.9)

The input rate and constrained states are combined as,

AQP =

AQP∆Umin
0NcnU×nϵ̄

AQP∆Umax 0NcnU×nϵ̄

AQPzc

 , (B.10)

bQP =

bQP∆Umin

bQP∆Umax

bQPzc

 , (B.11)

to form a single set of inequality constraints. The matrices that define the equality con-
straints used to impose the relationship between the steering angles given in eq. (4.41) are
defined as

AQPδ =
kδ −1 01×(nU−2) 01×nU

. . . 01×nU

01×nU
kδ −1 01×(nU−2) . . . 01×nU

...
...

. . .
...

01×nU
01×nU

. . . kδ −1 01×(nU−2)

, (B.12)

AQPE =
[
AQPδ 0Nc×nϵ̄

]
, (B.13)

bQPE = [0Np×1]. (B.14)

In the non-centralized case, the input rates are enforced using

AQPj∆Umin
Ūj ≤ bQPj∆Umin

, (B.15)

AQPj∆UmaxŪj ≤ bQPj∆Umax , (B.16)
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AQPj∆Umin
=


−InU

0nUj
×nUj

. . . 0nUj
×nUj

0nUj
×nUj

InU
−InU

. . . 0nUj
×nUj

0nUj
×nUj

...
...

. . .
...

...
0nUj

×nUj
0nUj

×nUj
. . . −InU

0nUj
×nUj

0nUj
×nUj

0nUj
×nUj

. . . InU
−InU

 , (B.17)

bQPj∆Umin
=


−∆t ∆Uj,min − Uj(k − 1)

−∆t ∆Uj,min

−∆t ∆Uj,min
...

−∆t ∆Uj,min

 , (B.18)

AQPj∆Umax = −AQPj∆Umin
, (B.19)

bQPj∆Umax =


∆t ∆Uj,max + Uj(k − 1)

∆t ∆Uj,max

∆t ∆Uj,max
...

∆t ∆Uj,max

 . (B.20)

Note that AQPj∆Umax = −AQPj∆Umin
= S∆UjUj

. The matrices used to enforce the soft state
constraints are defined as

AQPjzcŪjϵ ≤ bQPjzc , (B.21)

AQPjzc =

[
−ScUj

Inϵ̄min×nϵ̄min
0nϵ̄max×nϵ̄max

ScUj
0nϵ̄min×nϵ̄min

Inϵ̄max×nϵ̄max

]
, (B.22)

bQPjzc =

[
−z̄c,min + Scxx(k) + SUjOC

ŪjOC + SUNC
ŪNC + SUDA

ŪDA + ScWd
W̄d + ScWz

z̄c,max − Scxx(k)− SUjOC
ŪjOC − SUNC

ŪNC − SUDA
ŪDA − ScWd

W̄d − ScWz

]
.

(B.23)
The matrices used to implement the full set of inequality constraints are

AQPj =

AQPj∆Umin
0NcnUj

×nϵ̄

AQPj∆Umax 0NcnUj
×nϵ̄

AQPzc

 , (B.24)

bQPj =

bQPj∆Umin

bQPj∆Umax

bQPjzc

 . (B.25)
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The matrices used to construct the equality constraints that establish a relationship be-
tween δf and δr are defined as

AQPjδ =
kδ −1 01×(nUj

−2) 01×nUj
. . . 01×nUj

01×nUj
kδ −1 01×(nUj

−2) . . . 01×nUj

...
...

. . .
...

01×nUj
01×nUj

. . . kδ −1 01×(nUj
−2)

, (B.26)

AQPEj =
[
AQPjδ 0Nc×nϵ̄

]
, (B.27)

bQPEj = [0Np×1]. (B.28)

Note that this constraint relationship may only be used if some agent j handles both δf
and δr.
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