
UniFlow: A CFG-Based Framework
for Pluggable Type Checking and

Type Inference

by

Zhiping Cai

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Zhiping Cai 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

A type system is a crucial component of high-level programming languages, as it en-
hances program correctness by ruling out certain type errors. However, the built-in type
system often adheres to a specific set of rules defined by the language’s specification (e.g.,
Java, Kotlin and C++). Pluggable type systems were then introduced as an idea to provide
customizable type rules for different scenarios.

Various approaches exist for implementing a pluggable type system. The Checker
Framework is a well-known framework to facilitate the development of type checkers for
Java. This framework enables developers to define their type rules and override the analysis
logic. Additionally, Checker Framework Inference is a framework built upon the Checker
Framework to provide constraint-based whole-program inference. It helps to reduce the
burden of manually annotating the codebase when applying a new type system.

However, the complexity of these frameworks presents a steep learning curve to type
system developers. This work examines some of the critical issues encountered from our
previous experience in developing these frameworks. The Checker Framework performs its
analysis on two different program representations: abstract syntax tree (AST) and control
flow graph (CFG). The shared responsibilities of these representations in the framework
cause readability and maintainability issues for developers. Checker Framework Inference
suffers not only from the same problem but also from difficulty in employing the same
type rules for type checking and type inference. This is because the underlying Checker
Framework assumes type rules can be checked modularly and immediately at any AST.
In contrast, the type inference is not modular and generates constraints to be solved in a
later stage.

We propose a novel CFG-based type system framework, UniFlow, addressing the afore-
mentioned issues by providing a unified development process for type systems supporting
both type checking and type inference. It strives to resolve types and apply type rules
on the program’s CFGs whenever possible. This approach reduces friction in type system
development, allowing developers to focus on a single flow-sensitive program representation
that is simpler than ASTs. It also forces developers to express type rules as constraints,
such that the same set of type rules can be implemented once, but consistently reused
in type checking and type inference. Moreover, our framework supports running multiple
type systems and attempts to improve error message reporting for users.

We present UniFlow’s architecture and explain each crucial component and functional-
ity in detail. We discuss the advantages and limitations of our framework. Furthermore, we
explore the initial implementation of the framework and outline future research directions.

iii

Acknowledgements

I would like to express my most sincere appreciation to Professor Werner Dietl for his
invaluable instruction and support throughout my master’s program. His expertise and
professional feedback have been extremely helpful in achieving our research goals.

I would like to extend my gratitude to my thesis readers, Professor Arie Gurfinkel and
Professor Mahesh Tripunitara, for their time and insightful feedback.

I would also like to thank my colleagues Di, Piyush, Haifeng and Alex, for the inspiring
discussions and memorable research experience in my graduate journey. I am also grateful
for the emotional support from Skittles and Rara.

iv

Dedication

This thesis is dedicated to my parents. Their guidance and encouragement always give
me confidence in overcoming any difficulties. I feel grateful for their selfless support.

v

Table of Contents

List of Figures ix

1 Introduction 1

2 Background 4

2.1 Program Representations . 4

2.2 Pluggable Type Systems . 5

2.2.1 Dataflow Framework . 5

2.2.2 Checker Framework . 9

2.2.3 Nullness Checker . 10

2.3 Type Inference . 12

2.3.1 Checker Framework Inference . 13

3 Introduction to a Novel Pluggable Type System Framework 17

3.1 Motivations . 17

3.1.1 Type Resolution and Dataflow Analysis 17

3.1.2 Duplication of Work . 20

3.1.3 Pluggable Types Modeling . 21

3.1.4 Type Checking and Type Inference 22

3.1.5 Effective Error Messages . 23

3.2 Design Goals . 24

vi

4 Architecture and Design 26

4.1 Architecture Overview . 26

4.2 Example and Walk-Through . 29

4.3 Data Classes . 34

4.4 Framework Layer . 36

4.4.1 Analysis Order . 37

4.4.2 Slot Location . 39

4.4.3 Multiple Type Systems Support . 40

4.4.4 Analysis Messages . 44

4.5 Type System Layer . 45

4.5.1 A Java-Like Programming Language 46

4.5.2 Type Resolution Stage . 47

4.5.3 Constraint Generation Stage . 53

5 Discussion and Future Work 58

5.1 Comparison . 58

5.1.1 Functionality and Performance . 58

5.1.2 Developer and User Experience . 60

5.2 Limitations of the Framework . 61

5.3 Implementation and Challenges . 62

5.4 Future Work . 63

5.4.1 Generic Types Support . 63

5.4.2 Local Type Inference . 64

5.4.3 Bytecode Support . 65

6 Related Work 66

6.1 Type System vs. Flow Analysis . 66

6.2 Type Analysis Frameworks . 67

6.3 Pluggable Type System Approaches . 68

vii

7 Conclusion 69

References 71

viii

List of Figures

2.1 An example to demonstrate type checking and type refinement 8

2.2 Overview of the Checker Framework’s workflow 8

2.3 Partial type hierarchy of Nullness Checker 11

2.4 Overview of Checker Framework Inference’s workflow 14

3.1 An example for explaining type resolution 19

3.2 CFG nodes for the string concatenation in Figure 3.1 20

3.3 An example of compiler error message . 23

4.1 Architecture diagram of UniFlow . 27

4.2 An example class Demo to demonstrate UniFlow’s analysis 30

4.3 CFG generated for Demo::foo in Figure 4.2 31

4.4 Syntax of our programming language . 46

4.5 Relevant CFG nodes to our programming language 47

4.6 Abstract transfer rules for the considered CFG nodes 50

4.7 Abstract type resolution for the considered CFG nodes 52

4.8 Abstract constraint generation for the considered declarations 54

4.9 Abstract constraint generation for the considered CFG nodes 56

ix

Chapter 1

Introduction

A high-level programming language often includes a type system that helps to protect
the correctness and safety of a program. The type system defines a set of type rules to
verify program behaviour at either compile-time, run-time, or both. For example, Java
has a built-in type system that performs checks both statically and dynamically [13], while
Python only provides a dynamic type system [33].

A drawback of the built-in type system is it may not satisfy the need of every pos-
sible project. Gilad Bracha discussed this limitation and proposed the general idea of a
“pluggable type system” in 2004 [6]. He suggested developing type systems that can be
used as optional plugins with no impact on the run-time semantics of any programs [6].
This approach allows users to choose the type systems they want for tackling issues not
considered by the built-in type system. In this work, we focus on static pluggable type
systems for statically-typed programming languages.

Although different type systems analyze different program properties, they all share
some basic requirements. They need to define their type lattices, be able to determine the
type of a program expression, and properly implement their type rules. To standardize
and facilitate the development process, type system frameworks are emerging to provide
general architecture and foundation for customizing type systems [3, 12, 27].

The Checker Framework is a framework for building type systems that can perform
modular type checking for Java programs [10, 27]. By traversing the abstract syntax trees
(ASTs) of a program, it allows type systems to deduce the types of different expressions
and check whether there are any type rule violations. It also incorporates flow-sensitive
type refinement to reduce the occurrence of false positives, which is achieved by dataflow

1

analyses on the program’s control flow graphs (CFGs). Section 2.2 explains the framework
in more detail.

There is also Checker Framework Inference as an extension to the Checker Framework
[12, 34]. In addition to the typical type checking, it features a constraint-based whole-
program type inference that helps to minimize the burden of manually annotating the
source code. If a program passes the type inference, there exists at least one way to annotate
the program to make it type check; otherwise, it may have a real type error or false positive
result. Since this framework inherits the foundation of the Checker Framework, it has a
similar workflow operating on the program’s ASTs and CFGs. It introduces constraint
variables to applicable locations in the ASTs, and it uses dataflow analysis to refine the
variables of some expressions. After that, it traverses the ASTs to generate constraints for
type rules. More information about Checker Framework Inference is available in Section
2.3.

From the past experience in developing these two frameworks, we have learned their
good practices and areas of improvement. We like the idea of flow-sensitive type refinement,
but the implementation is complex in that it requires us to combine the flow-insensitive
logic with the flow-sensitive logic. Specifically, to evaluate the type of an expression, the
code often needs to interact with the related ASTs and CFGs, leading to complex depen-
dencies and duplicate logic. We also like the idea of expressing type rules as constraints
in Checker Framework Inference, but the internal implementation has extra complexity
due to its dependency on the Checker Framework. The Checker Framework assumes each
type rule can be checked at the location it is applied, but type inference can only generate
constraints that need to be solved later. Hence, the framework itself needs to consider
two ways to enforce the same type rule: one for type checking, and the other one for type
inference.

We propose our framework UniFlow, which unifies the architecture for type checking
and type inference, as a novel approach to address the above issues. Inspired by several
previous studies on the equivalence between type system and dataflow analysis [15, 19,
26], we decided to strive for a unified program representation and a unified type rule
representation. UniFlow resolves types and generates constraints on CFG when possible,
thus minimizing the interaction between different program representations. It also ensures
type rules are always guarded by constraints, regardless of the current analysis being type
checking or type inference. Developers can expect the same set of type rules to have the
same behaviour in all situations.

Our framework also attempts to handle other weaknesses in the existing frameworks.
For example, Checker Framework Inference does not support type inference on multiple

2

type systems at the same time, whereas UniFlow supports executing multiple type systems
that have no circular dependencies. This functionality is required by some sophisticated
type systems, such as the Nullness Checker in the Checker Framework, which depends on
an Initialization Checker and a Map Key Checker [32].

The major contributions of this thesis are:

1. An exploration of our learning from the existing frameworks in detail. The experience
is helpful for understanding the complexity of a type system framework, as well as
the potential areas of improvement.

2. The proposal of a CFG-based pluggable type system framework, UniFlow, that unifies
the way for type systems to support both type checking and type inference. We
believe there is no precedented framework with a similar design. We present the
overall architecture of UniFlow and thoroughly explain its important components
and functionalities.

3. We share our current progress in implementing the new framework. There are also
some discussions about the advantages, the limitations, and the potential objectives
for the future.

The rest of this thesis is organized as follows. Chapter 2 introduces the background
knowledge about program representations and type system frameworks. Chapter 3 explores
the critical issues according to our past experience and discusses our design goals. Chapter
4 provides the architecture and design details for our framework. Chapter 5 discusses
meaningful topics and future directions. Chapter 6 contains related work, and Chapter 7
concludes the thesis.

3

Chapter 2

Background

2.1 Program Representations

Static program analysis evaluates the properties of a program by analyzing the source code
instead of executing it. To avoid directly analyzing the high-level source code, most static
analyzers will first translate the source code into an abstract intermediate representation,
which is then used as the foundation for analysis [23]. This section introduces the two
most common and relevant program representations.

Abstract Syntax Tree

An abstract syntax tree (AST) is a representation of the syntactic structure of a program.
It is a tree with nodes representing nested syntax or constructs from the source code,
such as an assignment node or a while loop node. AST is essential for analyzing different
components of the source code in an organized manner.

Control Flow Graph

A control flow graph (CFG) is a representation of the possible control flows of a program.
It usually consists of blocks of nodes and directed edges to connect the blocks, where each
node is some program statement and each edge is some flow of control. Compared to AST,
there are the following notable differences:

4

• While a CFG can be generated from an AST [1] or a piece of bytecode [21, 36], it
is not possible to convert a CFG back to the original AST. This is because a CFG
cannot represent some static constructs, such as a field or a class declaration, that
can be expressed by an AST. In addition, multiple kinds of AST may correspond a
branching in the CFG, such as an if statement or a ternary expression.

• A CFG models the control flow of a program explicitly, allowing us to easily track
the property of an expression at each point of execution. An AST focuses more on
the syntactic structure of the source code, so it is less convenient to track the order
of execution. Therefore, it is more suitable to perform flow-sensitive analyses on a
CFG.

• An AST can be a nested structure with subtrees to represent a complex semantics
meaning, such as an entire while loop. A CFG is a flattened structure of blocks and
edges, with possibly no syntactic sugars [1]. Figure 2.1 is an example showing the
structures of an AST and its corresponding CFG.

• A CFG may introduce temporary local variables that are not in the original AST [1].

Hereinafter, we refer to an AST node as a “tree” and a CFG node as a “node” to avoid
any possible confusion.

2.2 Pluggable Type Systems

Creating a pluggable type system is a flexible approach to enforcing custom type rules on
program properties that are not limited by the domain of the built-in type system. Type
system developers may choose their favourite methods to perform type analysis, while type
system users have the freedom to apply the ones they need.

In recent years, there have been many research projects aiming to create new pluggable
type systems. Both traditional and novel static analysis methods are being explored, e.g.,
abstract interpretation [24], dataflow analysis [4, 12, 21], formal verification [8, 18], and
machine learning [16, 28].

2.2.1 Dataflow Framework

Dataflow analysis is a way of analyzing certain properties of a program by using a CFG and
a lattice [23]. According to Møller and Schwartzbach [23], the analysis will iterate through

5

all possible execution paths of the program, define constraint variables and constraints for
each node, and finally compute the result using a fixed-point algorithm. Based on the
order of iteration (i.e., the order of reasoning), there are two different approaches: forward
analysis and backward analysis. Forward analysis starts at the entry point of a CFG to
collect information and move toward the exit point, whereas backward analysis starts at
the exit point of a CFG to collect information and move toward the entry point. In this
thesis, we focus on the forward analysis, for a reason that will be explained in Section 2.2.2.

Dataflow Framework is a framework that provides the foundation work for performing
dataflow analysis in Java. As written in its documentation:

The primary purpose of the Dataflow Framework is to estimate values: for each
line of source code, it determines properties for each variable, that are true for
every value the variable might contain [1].

The framework defines the basic components for dataflow analysis, transforms an AST into
a CFG, and provides a fixed-point algorithm.

Basic Components

Node, Block, and Edge together form a ControlFlowGraph (CFG). A Node represents a
single operation in the control flow. A Block can be specified as one of the various types
of basic blocks: a RegularBlock is a sequence of Nodes that will not raise any exceptions,
an ExceptionBlock is a single Node which may raise an exception, a ConditionalBlock
represents a branching of the control flow, and finally, a SpecialBlock is used as a pro-
gram entry or exit block. Edges are directed edges connecting different blocks, with labels
specifying how the analysis information should flow from one block to another.

A Store is a storage for information obtained from previous Nodes. The two major
components of a Store are JavaExpression and AbstractValue. JavaExpression is an
expression in code that is crucial for the analysis, such as a variable access or a method
call. AbstractValue is the dataflow information that can be associated with a JavaEx-
pression. Therefore, we can view each Store as “a mapping from JavaExpressions to
AbstractValues [1].”

A TransferFunction is the core of dataflow analysis logic. It is responsible for analyzing
an input Node and producing useful information. The inputs of a TransferFunction are
a Node and a TransferInput, where the TransferInput contains one or multiple Stores
passed from the previous Node. The output of a TransferFunction is TransferResult,

6

which contains an AbstractValue for the current Node and one or multiple Stores with
possibly refined information. The reason for having multiple Stores in an input or output
is to handle diverged facts at branching (e.g., conditions and if statements).

For brevity, we may use the uncapitalized names interchangeably when referring to
instances of these classes (e.g., “transfer function”, “transfer input”, etc.) after this section.

AST to CFG Transformation

Figure 2.1a shows the source code of an example class Counter, and in Figure 2.1b, we
have the transformed CFG for the method countInteger. We can find different blocks in
different shapes: regular blocks as rectangles, conditional blocks as octagons, and exception
blocks and special blocks as ovals. Each node is displayed in a separate line in regular
blocks, with its expression on the left and its name on the right.

During the transformation, the framework will attempt to desugar each source code
expression into simpler node expressions. In the example, we have a postfix increment
at line 9 that is desugared in the CFG: a new temporary variable tempPostfix#num0 is
introduced to store the original value of count, then the value of count is increased by
one. More details about the desugaring strategy are available in the framework’s manual
[1].

In addition, each CFG node will have a reference to the corresponding AST. For ex-
ample, the type cast node (java.lang.Integer)o has a reference to the return expression
tree on line 10 of the source code. If the CFG node is generated from the desugaring
process and does not have a corresponding tree, the framework will create an artificial tree
to provide as much information as possible [1]. For example, it creates an artificial binary
tree for the numerical addition node ((this).count + 1).

Analysis and Fixed-Point Iteration

The framework supports both forward analysis and backward analysis. At each node,
it prepares a transfer input by merging information from predecessor nodes if this is a
forward analysis, or from successor nodes if this is a backward analysis. It then invokes the
transfer function with the input and determines if a fixed-point is reached by comparing
the returned transfer result with the previous result. The entire process is implemented
using a work-list algorithm, in which the work-list keeps track of the blocks that have not
reached a fixed-point.

7

1 public class Counter {
2

3 private int count = 0;
4

5 public Integer countInteger(
6 @Nullable Object o
7) {
8 if (o instanceof Integer) {
9 count++;
10 return (Integer) o;
11 }
12 return null ;
13 }
14 }

(a) Source code of an exam-
ple class Counter. The method
countInteger accepts a nullable
Object o. If o is an Integer, it in-
creases the field count by one and
returns the Integer; otherwise, it
returns null. (b) CFG generated for countInteger

Figure 2.1: An example to demonstrate type checking and type refinement

Figure 2.2: Overview of the Checker Framework’s workflow

8

2.2.2 Checker Framework

The Checker Framework provides a software foundation for writing custom pluggable type
systems to extend Java’s built-in type system. Pluggable types are defined and represented
as annotations that can annotate the Java types in the source code. As an example from
Figure 2.1a, Object o is annotated with a pluggable type qualifier @Nullable at line 6.
In this thesis, both “annotation” and “qualifier” are used interchangeably to describe a
property defined by a pluggable type system.

Many type systems focusing on different program properties have been built on top
of the Checker Framework to enhance the code quality of Java programs. For example,
there is the Nullness Checker to ensure null safety [27], the PICO Checker to protect im-
mutable properties [30, 31], and the Crypto Checker to detect invalid use of cryptographic
algorithms [35].

Figure 2.2 provides a simple overview of the Checker Framework’s workflow, in which
we highlight the following four processes:

• CFG Translation: Dataflow Framework is used to translate ASTs into CFGs. As
stated in Section 2.2.1, each CFG node has a reference to the corresponding tree.
If the tree is artificial, it will not contain location information for a type system to
report relevant errors. Thus, the path from the compilation unit to each artificial
tree is recorded so that the innermost real tree can be used for error reporting.

• Type Refinement: The Checker Framework attempts to resolve and refine the type
of each program expression, by performing dataflow analysis on the generated CFGs.
This will be introduced in more detail later in this section.

• Type Rule Checks: The Checker Framework traverses different subtrees in each
compilation unit and check against the type rules defined by a specific type system.
It will report an error message for a tree if the tree fails to satisfy the type rules.

• Annotated JDK and Stub Files: Annotated JDK1 is a fork of the JDK source
code with extra annotations from the Checker Framework. The framework can parse
these files to retrieve precise types for the most commonly used libraries, and thus
reduce the number of false positive outputs. Similarly, developers and users can write
stub files to annotate other bytecode or third-party libraries to improve accuracy and
precision.

1https://github.com/eisop/jdk

9

https://github.com/eisop/jdk

The above description shows the Checker Framework heavily depends on Dataflow
Framework. This is because Dataflow Framework is an independent module developed
along with the Checker Framework, and it is designed to work for general dataflow analysis.
More information about the architecture and each component of the Checker Framework
is available in its manual [32]. In Section 3.1, we will investigate some details of the type
resolving, type checking, and error reporting processes.

Flow-Sensitive Type Refinement

Flow-sensitive type refinement (hereinafter referred to as “type refinement”) means the
type of an expression can be more precise than its declared type, by analyzing the infor-
mation from dataflow. Type refinement is an optional feature to type systems since it does
not affect the expressiveness of code and requires extra computation resources.

The native type system in javac compiler2 does not support any type refinements. For
instance, in Figure 2.1a, we have an instanceof check at line 8 to ensure the Java type
of the variable o can be refined to Integer. However, javac does not recognize this extra
piece of information from dataflow and requires an explicit cast at line 10. In fact, it has
become a common practice to make an explicit type cast when instanceof evaluates to
true3.

The Checker Framework, on the other hand, integrates type refinement to reduce the
occurrence of false positives. Since the types are refined as the program execution proceeds,
the framework uses forward dataflow analysis to obtain and compute the latest refined type
for every expression. Reducing false positives is important to the framework because it
makes the analysis result more accurate and trustworthy to users. Without type refinement,
for example, Nullness Checker may produce false positive warnings on expressions that are
already guarded by a null check.

2.2.3 Nullness Checker

Nullness Checker is one of the earliest built-in checkers in the Checker Framework [27].
It is a sound type system that guarantees no NullPointerException will be thrown at
runtime, if it type checks the program without reporting errors.

2https://openjdk.org/groups/compiler/
3Starting from Java 14, a syntactic sugar called “binding variable” [13] is introduced to further simplify

this pattern.

10

https://openjdk.org/groups/compiler/

Figure 2.3: Partial type hierarchy of Nullness Checker

The core type qualifiers of Nullness Checker are @Nullable and @NonNull, where @Nul-
lable means the value of a reference can be null and @NonNull indicates the value of
a reference is definitely not null. The qualifier hierarchy (subtype relationship between
qualifiers) of the two is

@NonNull <: @Nullable

since @NonNull is a more precise type than @Nullable. When running as a plugin of the
javac compiler, the type hierarchy of Nullness Checker is the combination of its qualifier
hierarchy and Java’s type hierarchy [32]. By generalizing the example provided in the
Checker Framework manual [32], this relationship is illustrated in Figure 2.3, where T can
be any reference type that extends java.lang.Object.

In most cases, @NonNull is the default qualifier for unannotated type use in the source
code. For the example given in Figure 2.1a, the return type of countInteger is considered
as @NonNull Integer, and thus the checker will report an “incompatible type” error at
line 12. This error will not appear at line 10 because the type of variable o is refined to
@NonNull Object when the instanceof check evaluates to true.

Nullness Checker also contains many other annotations to improve the analysis accu-
racy. Here, we introduce a few of them:

• @PolyNull is a polymorphic qualifier that represents either @Nullable or @NonNull.
It is usually used in a method signature to indicate the method supports both types,
and a concrete type will be determined at the call site.

• @RequiresNonNull is a precondition to annotate on a method declaration. It means
the specified expression should be non-null immediately before the method’s call site.

• @EnsuresNonNull is a postcondition to annotate on a method declaration. It means
the specified expression should be non-null immediately after the method returns.

11

In addition, Nullness Checker depends on the results from two other checkers: Initial-
ization Checker and Map Key Checker. Initialization Checker can verify different stages of
an object’s initialization, which helps to ensure all @NonNull fields will be initialized with
a non-null value. May Key Checker keeps track of the keys of a map to resolve the type of
Map.get more precisely.

2.3 Type Inference

Type inference, in general, is to statically determine the types of certain variables or expres-
sions that are missing explicit type annotations. There are different kinds of type inference
depending on the scope it covers. Java’s type system supports various kinds of local type
inference, such as “invocation type inference” and “functional interface parameterization
inference” [13]. The scope of these type inference techniques is only limited to the local
expressions in a method.

When users want to apply a new pluggable type checker into an unannotated code
base, a very common issue is the checker will generate too many false positives that make
the error report unreadable. This is because the default types are often too conservative
to describe many type uses accurately. To improve analysis accuracy and precision, users
will need to manually annotate their source code, which requires a certain amount of
effort depending on the size of the project. Type inference can help to annotate the code
automatically, but inference within a method is not sufficient for determining the types in
field or method declarations.

In this thesis, we are focusing on a technique named whole-program inference to reduce
the barrier of using a pluggable type system. Whole-program inference determines the
type annotation for all possible locations in the source code, by taking the entire program
into consideration. For instance, for the source code in Figure 2.1a, we can annotate the
locations applicable to whole-program type inference with @i where i is an integer:

1 @1
2 public class Counter extends @2 Object {
3

4 public @3 Counter() {
5 super();
6 }
7

8 private @4 int count = 0;

12

9

10 public @5 Integer countInteger(
11 @Nullable Object o
12) {
13 if (o instanceof @6 Integer) {
14 count++;
15 return (@7 Integer) o;
16 }
17 return null;
18 }
19 }

There are several possible solutions to satisfy Nullness Checker’s type rules. One of them
is as follows:

@i =

{
@Nullable if i = 2 or i = 5

@NonNull otherwise

Note that it is possible that some solutions are not favourable or no solutions can be found.
The results can still be investigated to show potential issues in the source code, and they
always help users work in the right direction toward a safely annotated code base.

For conciseness, we will refer to whole-program type inference as “type inference”,
unless otherwise specified.

2.3.1 Checker Framework Inference

Checker Framework Inference extends the Checker Framework with the functionality to
perform constraint-based type inference. Each type system within the framework supports
three modes: a type checking mode for modular type checking, a type inference mode for
whole-program type inference, and an annotation mode that annotates the source code
with the type inference results [34]. This section explains the type inference mode in more
detail.

Figure 2.4 illustrates the workflow of Checker Framework Inference in inference mode.
The dashed backward arrow shows the inference result can be used to update the source
code, and then the user can execute another round of type check or inference until the
result looks satisfying. Compared to the Checker Framework’s workflow in Figure 2.2,
it has three distinct processes: introducing constraint variables, creating constraints, and
solving the constraints.

13

Figure 2.4: Overview of Checker Framework Inference’s workflow

Constraint Variable

The creation of constraint variables can be compared to type resolution in type checking
mode. They both need to resolve an annotated type for each expression so that the type
can be recognized and properly checked by the type rules. However, unlike type checking
mode, that can handle the unannotated expressions with defaulting strategy, inference
mode has to introduce constraint variables for these locations. The constraint variable to
a location can be either fixed or adjustable, based on how the variable is defined.

In Checker Framework Inference, “slot” is the terminology to describe constraint vari-
ables. Here, we list a few commonly used slots:

• Constant Slot indicates a fixed concrete type that does not require any inference
reasoning. This is mainly used for the explicit annotations in the source code, and
JDK or other libraries whose types are not involved in the inference.

• Source Slot is a fixed variable to an unannotated type use in the source code, includ-
ing class bounds, field types, method return and parameter types, type parameters,
type arguments, etc. Solution to this variable can be inserted back into the source
code.

• Refinement Slot is created as the refined type of the left-hand side (LHS) expression
for each assignment. The purpose of introducing a new Refinement Slot at each
assignment is to simulate static single-assignment (SSA) form, thus simplifying the
analysis logic. This variable is also fixed to its creation location.

• Polymorphic Instance Slot represents a type to substitute polymorphic qualifiers
of a method at its call site. Each call site of a poly method requires a new instance
of this slot, which will then be fixed for the rest of the inference process.

14

• Merge Slot indicates a least upper bound (LUB) or a greatest lower bound (GLB)
of two variables. It is mostly created in dataflow analysis when a join of multiple
Stores happens. This slot is not fixed since it can be replaced with a more precise
variable as the fixed-point iteration continues.

The first step of constraint variable introduction is to traverse through the input AST
and annotate applicable locations with Source Slots. Then the inference proceeds with
simulating type refinement for better precision. It will execute a dataflow analysis to
create more precise variables, such as Refinement Slots, Polymorphic Instance Slots, and
Merge Slots.

Constraint

The commonly used type constraints in Checker Framework Inference are Subtype Con-
straints and Equality Constraints. The two constraints can be formulated as x <: y and
x = y, respectively, where x and y are two constraint variables.

There are several places in which constraints can be created. When a variable that
associates with some other variables is created, a constraint to describe the relationship
among these variables is needed. For instance, a Merge Slot X representing the upper
bound of Slot A and Slot B should be a super type of both Slots A and B. The resulting
constraint set is {A <: X,B <: X}

The other possible places are where the Checker Framework applies type rules, such
as verifying the well-formedness of a type or applying type rules against an expression.
Instead of instantly providing the check results, Checker Framework Inference overrides
the associated methods to build constraints when appropriate. Section 3.1.4 gives some
discussion about this step.

Constraint Solver

Checker Framework Inference has integrated some commonly used constraint solvers, in-
cluding MAX-SAT solver, SMT solver, and LogiQL solver. Developers may use one or
multiple solvers depending on their preference.

Before feeding the collected constraints into a solver, we need to encode them as the
solver’s input format (e.g., CNF formula or first-order logic formula). For simple lattices,
this process is trivial and may already be supported by the framework. Previous work

15

from Li has studied how to encode and solve constraints for arbitrary type systems [20].
On the other hand, developers will need to specify how to encode constraints for complex
lattices. For example, the PUnits type inference by Xiang et al. [34] defines how to encode
constraints as predicates for SMT solver, using boolean and integer variables.

16

Chapter 3

Introduction to a Novel Pluggable
Type System Framework

This thesis introduces UniFlow, a novel approach for developing a pluggable type system
framework. Instead of writing analysis code for both the AST and the CFG, the frame-
work allows type system developers to focus on a single program representation (i.e., CFG).
Instead of using different approaches in type checking and type inference, the framework
bridges the gap with a constraint-based approach for both. To provide a better under-
standing of the decisions taken, in this chapter, we explain the major motivations and
design goals behind the initiation of UniFlow.

3.1 Motivations

3.1.1 Type Resolution and Dataflow Analysis

Type systems need to first resolve some declarations or uses of a type before performing any
analyses. Type resolution can be either flow-insensitive or flow-sensitive (i.e., flow-sensitive
typing). From Chapter 2, it is intuitive to utilize AST for flow-insensitive analysis and CFG
for flow-sensitive analysis. However, evaluating the type of the same expression in both
program representations overcomplicates the responsibilities of the two analyses. For a
pluggable type system framework with such architecture, the extra complexity is a burden
to the framework maintainers and the type system developers.

17

According to the Checker Framework Manual [32], CFAbstractTransfer and Annotat-
edTypeFactory are two major components for type resolution. The class CFAbstract-
Transfer and its child classes are transfer functions in the dataflow analysis to provide
flow-sensitive type refinement. The class AnnotatedTypeFactory and its child classes pro-
vide the most accurate type information, so they need to combine type resolution from both
flow-sensitive and flow-insensitive analyses. During type refinement process, the transfer
function unfortunately requires AnnotatedTypeFactory to provide some type information.
Thus, there is a tight dependency between the flow-sensitive and the flow-insensitive logic,
and a developer has to study the source code in order to understand details about the two
sides.

Here, we provide a brief overview of the dependency4. In CFAbstractTransfer, Anno-
tatedTypeFactory is often used for retrieving a flow-insensitive type of a tree associated
with the current CFG node, such as the node of a field access, an array access, and a local
variable access. If another type of the current node is available in the input store of the
transfer function, the more specific type of the two will be determined and returned as
the transfer result value. Otherwise, the flow-insensitive type will be used as the default
transfer result value.

In AnnotatedTypeFactory and its child class GenericAnnotatedTypeFactory, we have
the foundation of type resolution logic in the Checker Framework. A method called getAn-
notatedType is the commonly used entry point for type resolution, which has many vari-
ants (overloaded and extended versions) to accommodate varying situations. In general, it
determines the type of an AST with the following steps:

1. Create an instance of AnnotatedTypeMirror as a mirror of the Java type associated
with the tree, which can store any annotations resolved by a type system.

2. Annotate the type by migrating the existing annotations from the source code.

3. Annotate the type by traversing and analyzing information from the tree. For exam-
ple, the type of a binary expression is the LUB of the operands’ types.

4. Annotate the type by finding related type information. For example, if a wildcard
type has unannotated bounds, propagates the annotations from the substituted type
parameter to the bounds.

5. Apply default annotations according to any predefined rules.

4Information is collected from version 3.28.0-eisop1 of the Checker Framework at https://github.com
/eisop/checker-framework.

18

https://github.com/eisop/checker-framework
https://github.com/eisop/checker-framework

1 public class TypeResolve<T> {
2

3 List<? extends T> rankings = new ArrayList<>();
4

5 void printTop1() {
6 if (!rankings.isEmpty()) {
7 System.out.println("Top 1 is " + rankings.get(0));
8 }
9 }
10 }

Figure 3.1: An example for explaining type resolution

6. Attempt to query and apply flow-sensitive type refinement for the tree (if the tree is
not the exact same one being processed by a transfer function).

In steps 3 to 6, the type factory may need to recursively resolve the types of some other
components, which exacerbates the complexity and makes debugging a demanding task.

Consider the code snippet in Figure 3.1, the string concatenation in line 7 is a good
example for demonstrating type resolution. We highlight a portion of steps that will be
performed in the Checker Framework, and we will study how to simplify them in Section
3.2:

• The transfer function receives a CFG node StringConcatenateNode which represents
the binary tree “Top 1 is ” + rankings.get(0), then it will ask AnnotatedType-
Factory for the type of the tree.

• Following the previously described steps for getAnnotatedType, at step 3, the type
factory needs to recursively invoke getAnnotatedType to resolve the types of the left
and right operands.

• Finding the type of the left operand is trivial since we only need flow-insensitive
information from a string literal.

• Finding the type of the right operand requires a propagation of annotations from the
type parameter T as described previously in step 4. Flow-sensitive type refinement
will also be queried and applied.

19

Node Expression Node Type
“Top 1 is ” StringLiteralNode
(this) ImplicitThisNode
(this).rankings FieldAccessNode
(this).rankings.get MethodAccessNode
0 IntegerLiteralNode
(this).rankings.get(0) MethodInvocationNode
StringConversion((this).rankings.get(0)) StringConversionNode
(“Top 1 is ” + StringConversion((this).rankings.get(0))) StringConcatenate

Figure 3.2: CFG nodes for the string concatenation in Figure 3.1

• Once the types of the two operands are ready, the type factory handles any implicit
conversions of the operands5. In this example, rankings.get(0) is implicitly con-
verted to a String by Java, so the corresponding Java type and annotations need to
be adapted.

• Finally, the LUB of the two adapted types is computed and returned.

3.1.2 Duplication of Work

There are many similar components between an AST and the corresponding CFG. For
example, in the Dataflow Framework [1], AssignmentNode and MethodInvocationNode
correspond to AssignmentTree and MethodInvocationTree respectively. These redundan-
cies also become a burden to type system developers, as the code is prone to redundant
computation and duplicate logic.

Taking the string concatenation shown in Figure 3.1 as input, the block of CFG nodes
generated is available in Figure 3.2. Note that flow-sensitive analysis has to process the
nodes in the (execution) order they are defined inside a block. Recall from the previous
section that, to resolve the type of the last node, the Checker Framework needs to compute
the types of the two operands. The computation is redundant because, at the time of
analyzing the last node, both operands are already analyzed, and thus their types are
already available.

5There was a recent issue related to this step, where the bounds of an annotation could be different
between pre- and post-conversion. The issue was causing invalid annotations in both flow-sensitive and
flow-insensitive type resolutions. Finding and fixing the issue was a demanding and time-consuming task,
as shown in the details provided at https://github.com/eisop/checker-framework/pull/213.

20

https://github.com/eisop/checker-framework/pull/213

Desugaring is another area prone to duplicate work. Since many syntactic sugars are
defined in high-level programming languages, type systems are required to desugar the code
to handle any implicit operations. When a type system requires both AST and CFG, the
amount of effort is naturally doubled. We can examine the string concatenation example
again because there is an implicit string conversion for its right operand. The Dataflow
Framework has built-in functionality for desugaring [1], which generates the StringCon-
versionNode shown in Figure 3.2. However, the getAnnotatedType method must still
handle the implicit conversion in a flow-insensitive context, as described in the previous
section.

3.1.3 Pluggable Types Modeling

During type resolution, a type system will deduce the correct types and store the result
as a well-formed data object. This section discusses the issues we have encountered when
using such data objects in the Checker Framework.

In the Java compiler, an instance of TypeMirror or its child classes represents a use of
some Java types and the corresponding details. In the Checker Framework, Annotated-
TypeMirror closely follows the structure of TypeMirror to not only provide the underlying
Java type but also incorporate annotations for any pluggable types.

The first issue is about the mutability of data objects. AnnotatedTypeMirror pro-
vides various setter methods to modify its internal data about Java types and annotations.
Although it gives the flexibility to adjust the data for use cases like type refinement, devel-
opers need to be cautious that changing one instance of AnnotatedTypeMirror will affect
all references to it. To reuse an AnnotatedTypeMirror without affecting other references,
utility methods shallowCopy and deepCopy are created for different levels of adjustment.
Developers may question why a copy method is used and how the copy may affect other
places in code. Without clear documentation, it is difficult to answer those questions as the
code base continues to grow larger. Pull requests #1086, #1622, #2176 in the typetools
Checker Framework6 are examples with such discussions, in which we see questions like
“Why is a shallow copy good enough?” and “Why is a deep copy necessary?” and an
answer could be “I changed it to a deep copy, but I’m not sure if there is other code that
relies on the shallow copy.”

The second issue is how to distinguish between the declaration and the use of a type.
For example, in the following code snippet:

6https://github.com/typetools/checker-framework

21

https://github.com/typetools/checker-framework

1 class Box<T> {
2 Box<T> nestedBox;
3 }

Box<T> in line 1 is the declarations of type Box and its type parameter T, while Box<T> in
line 2 is a use of Box with type argument T.

In the Java compiler, Element represents a static construct that includes all kinds of
type declarations, which is different from a TypeMirror (i.e., a type use). In the Checker
Framework, AnnotatedTypeMirror can be adapted to represent either an annotated de-
clared type or an annotated type use. It introduces a helper method isDeclaration for
developers to distinguish between the two. Consider the two possible cases of an Annotat-
edTypeMirror representing @X Box<T>:

• If it is the declaration of Box, all uses of Boxmust not have an annotation @Y under the
same pluggable type hierarchy such that @X <: @Y and @X ̸= @Y7. In addition, there
is a method named getTypeArguments which actually returns the type parameter T.

• If it is a use of Box, @X is simply the primary annotation on the type use, and
getTypeArguments intuitively returns a type argument T.

The problem is the meaning of an AnnotatedTypeMirror varies based on the result of
isDeclaration, and developers may misuse one as the other.

3.1.4 Type Checking and Type Inference

Checker Framework Inference, which is built upon the foundation of the Checker Frame-
work, demonstrates that the same type rules can be reused in both type checking and type
inference [12]. While the ideal implementation should also reuse most of the architectures
and code, Checker Framework Inference maintains two sets of implementation for differ-
ent modes: a traditional checker for type checking mode and a constraint-based checker
for type inference mode. The main reason is it inevitably inherits the architectures and
interface designs that solely target type checking from the Checker Framework.

In type checking, the Checker Framework needs to compute some type relations accord-
ing to the tree it is processing. For instance, for an AssignmentTree, it needs to determine

7This does not apply to local variables because their type can be temporarily out of the bound and
then refined to a type within the bound. This allows intermediate steps for object initialization.

22

1 Nullness.java:5: error: [dereference.of.nullable] dereference of
possibly-null reference object

2 object.toString();
3 ˆ

Figure 3.3: An example of compiler error message

whether the type of the RHS is a subtype of the type of the LHS. The result of each type
relation check is a Boolean value because all the involved types can be determined when
visiting the tree.

On the other hand, instead of immediately checking some type relations, type inference
requires collecting and encoding each type rule check into a set of constraints. Then it
utilizes a constraint solver to determine a satisfying solution. Therefore, when overrid-
ing some type checking logic, Checker Framework Inference always needs to create new
constraints on the side while returning a meaningless Boolean value. Developers will un-
fortunately have to take care of the consequences of returning such a meaningless result. If
the result is always true, an underlying disjunction will pass instantly and skip the rest of
the checks; if the result is always false, an underlying conjunction will fail and also ignore
the remaining checks.

3.1.5 Effective Error Messages

When there are failures in type checking or type inference, the type system should output
error messages to help users identify potential issues in the source code. According to
Becker et al. [5], previous studies have demonstrated empirical evidence that readability
and context information of error messages are crucial to developers’ productivity.

The Checker Framework provides a strong foundation for type systems to report their
errors. It supports referring to a message template with an identifier key in the source
code, while the actual key-value pair of message templates are stored in a separate Java
properties file [32]. This is helpful for reviewing the message contents and keeping the
source code clean. It also utilizes the built-in error reporting tools from the Java compiler
to produce enhanced and consistently styled error messages. In Figure 3.3, the Checker
Framework provides the error message “dereference of possibly-null reference object” with
message key “dereference.of.nullable”, and the Java compiler provides location information
that the error happens on the use of variable object on line 5 of the file Nullness.java.

23

However, this inherited error reporting architecture is unsuitable for Checker Frame-
work Inference. As described in the previous section, the Checker Framework can obtain
the type checking results in real time, so it naturally reports an error if a check fails. Be-
cause giving immediate results is impossible in type inference, a type system cannot decide
what to report when the Checker Framework asks for error reporting. Currently, Checker
Framework Inference can output a minimal unsatisfiable subset of constraints, with byte-
code style locations about where the constraints are created. These error messages could
be duplicated when multiple unsatisfiable constraints are created for a single check, and
their information cannot be easily interpreted by users.

3.2 Design Goals

Taking all the topics discussed in Section 3.1 into consideration, we want our UniFlow
framework to provide a better experience for both type system developers and users. Hence,
we carefully decide the following design goals for the new framework.

• Single Program Representation: Given the source code of a sequence of (exe-
cution) statements, UniFlow will convert it into a CFG and provide the foundation
to allow type systems to perform type resolution, type checking and type inference
on top of the CFG. This removes the extra complexity of learning and using both
AST and CFG, which is studied in Section 3.1.1. In addition, since the CFG gener-
ator can take care of code desugaring, developers can focus on each straightforward
CFG node instead of being concerned about syntactic sugars such as implicit conver-
sion and compound assignment. This simplifies and deduplicates some of the logic
described in Section 3.1.2.

The only exception is inheritance-related logic because inheritance is the property
of a static construct that is irrelevant to control flow. Since the type rules for in-
heritance are mostly straightforward, the framework can provide a general default
implementation for most type systems. Developers may also override the default
behaviour to fulfill special requirements.

• Incremental Type Resolution: When resolving the type of a CFG node, UniFlow
should allow developers to retrieve the types determined for some previous nodes,
upon which the current type can be built. This addresses the duplicated work of
type computation in Section 3.1.2.

24

• Multiple Type Systems Support: UniFlow should support running multiple type
systems at the same time, where there can be non-cyclic dependencies between type
systems. This is supported in the Checker Framework, but it is not adapted to work
in Checker Framework Inference because of some technical challenges.

• Immutable Data Objects: Pluggable types and other widely used data objects
should be immutable. This allows developers to easily create altered versions of data
objects, regardless of the size of the code base or the number of references to an
object. They will not be distracted by how to copy an object or potential issues to
some irrelevant uses of it. This should substantially mitigate the first issue in Section
3.1.3.

• Distinct Declaration Constructs: There should be distinct data classes for static
declaration constructs that are meaningful to type systems. In Java, these con-
structs include type declaration, method declaration, variable declaration, etc. This
emphasizes the differences between context-sensitive and context-insensitive logic in
the framework, which may help with smoothing the learning curve shown in Section
3.1.1 and 3.1.3. In addition, this can also reduce some duplicated work relevant to
issues in Section 3.1.2. For example, type resolution for a declaration does not require
any refinements, so it can be computed once for all future references.

• Constraint-Based Type Rules: UniFlow will unify the experience of type checking
and type inference by abstracting each type rule into a constraint object. In type
checking mode, all constraints can be solved in real time, so we can simply use
two special constraint objects to represent constant results “true” and “false”. Real
constraints will be created in type inference mode, and the framework will attempt
to solve them in a later stage. This feature not only addresses the issues in Section
3.1.4, but also makes the code reusable for both type checking and type inference
modes. Developers can simply provide constraints as type rules for each CFG node,
and users are guaranteed to observe a consistent behaviour across both modes.

• Effective Error Reporting: UniFlow should provide a strong foundation for error
reporting, which produces readable and consistent error messages similar to the ex-
ample in Figure 3.3. To match the strategy for type rules, developers will be able to
reuse the code in both type checking and type inference. Additionally, a dedicated
file or storage for message templates should still be supported. By addressing the
issues in Section 3.1.5, type system users can actually expect error messages to help
them locate and understand the errors.

25

Chapter 4

Architecture and Design

In this chapter, we present the overall architecture of UniFlow, explain the framework’s
process with a complete example, and discuss the design of each component in detail. We
will demonstrate our work based on the Java programming language, whereas the general
ideas can be adapted to other object-oriented or imperative languages as well.

4.1 Architecture Overview

Figure 4.1 shows the overview of UniFlow’s architecture. We split most components into
two layers, the framework layer and the type system layer, according to their functionality
and responsibility. For clarity and simplicity, only the major interactions among compo-
nents are illustrated using arrows, while the comprehensive relationships will be explained
throughout the rest of Chapter 4. The obligation of each component is described as follows:

• Javac Compiler is the official Java compiler8. During compilation, it generates an
AST for each compilation unit, and then it passes the AST to its compiler plugins
for additional static analyses9. Our framework is also a compiler plugin.

• CFG Builder accepts ASTs and translates them into CFGs. We use Dataflow
Framework in this translation and the following dataflow analyses.

8https://openjdk.org/
9More details about compiler plugins are available at https://openjdk.org/groups/compiler/proces

sing-code.html and https://openjdk.org/groups/compiler/doc/hhgtjavac/index.html.

26

https://openjdk.org/
https://openjdk.org/groups/compiler/processing-code.html
https://openjdk.org/groups/compiler/processing-code.html
https://openjdk.org/groups/compiler/doc/hhgtjavac/index.html

Figure 4.1: Architecture diagram of UniFlow

27

• Resolved Types Accumulator accepts a CFG and starts type resolution in the
form of a dataflow analysis. It iterates through each type system and triggers their
transfer functions. The fixed-point status for different type systems is memorized for
the upcoming type checking stage.

• Transfer Function defines how a type system should manage type resolution and
type refinement for each node. It invokes the type resolver to determine the most pre-
cise type of the current node, updates the stores for type refinement, and constructs
a transfer result containing the latest type and stores.

• Type Resolver determines the flow-sensitive type of a node or the flow-insensitive
type of a declaration construct. Given a node with its transfer input, the resolver
returns its qualified type (i.e., fully annotated Java type). Given a declaration con-
struct, the resolver annotates all type declarations and type uses in it.

In type checking mode, it simply produces concrete types using collected facts and
defaulting strategy. Whereas in type inference mode, it may need to introduce new
constraint variables. The constraint variables are represented as slots similar to the
ones in Checker Framework Inference [12].

• AST Processor accepts the AST of a compilation unit and triggers tasks that
require trees. This is to cover the information that is missing in a CFG, such as some
declaration constructs and the locations of some specific tokens in the source file. In
the current design, we find it necessary only for the type rules accumulator and the
slot manager.

• Type Rules Accumulator iterates through each type system and applies their type
checker on the consumed CFG or AST. If the input is a CFG, it provides the type
checker with every node in the CFG and the associated fixed-point status, namely,
transfer input and transfer result. If the input is an AST, it invokes the type checker
to check inheritance rules on class and method declarations.

• Type Checker generates constraint-based conditions to enforce the type rules. As
mentioned in the item above, it defines rules for any nodes and also contains inher-
itance checks for class and method trees. Note that the rules and the conditions
are mode-agnostic, which guarantees consistent behaviour in both type checking and
type inference.

• Slot Manager is a centralized place for managing slots. When the type resolver
requests a constraint variable, it must validate the request and determine the correct
slot to return.

28

Tracking the locations of different slots is another important task in slot manager.
This serves two purposes: one is to provide debug information about the creation of
each slot, and the other one is to insert inference results back into the source code.
It traverses the AST from the AST processor to memorize all possible locations that
can be annotated in the source code.

• Constraint Manager is a centralized place for managing constraints. For each
type of relation (e.g., subtype, equality), it determines the most accurate constraint
to return. If all operands are constant slots, it can return an “always true” or
“always false” constraint; otherwise, it will consider creating a real constraint. It also
maintains a mapping from a set of constraints to the corresponding error messages
created by each type system.

• Constraint Encoder accepts the input constraint objects and encodes them into
formulas that can be recognized by a specific constraint solver.

• Constraint Solver solves the encoded constraints. If a solution exists, it returns
the solution; otherwise, it returns the minimal unsatisfiable subset of constraints.
Note that there are no actual constraints in type checking mode, so a solver is only
necessary for type inference mode.

• Solution Decoder decodes the solution from the solver and generates a mapping
from each slot to its assigned concrete qualifier.

• Output Generator can provide meaningful analysis results to both users and devel-
opers, by collecting all information from the slot manager, the constraint manager,
and the inference solution if applicable. For type system developers, it generates
details about each slot and constraint created. For type system users, its outputs
are different based on the analysis result. If inference succeeds, users can expect the
solution to be inserted back into the source code. If checking or inference fails, users
will see the error messages deduced from those unsatisfiable constraints.

4.2 Example and Walk-Through

In this section, we provide an example program to demonstrate the entire type checking
and type inference processes in UniFlow. The example is a nullness analysis based on
the type system from Nullness Checker (introduced in Section 2.2.3), without advanced
annotations (e.g., pre- and post-conditions) or initialization checks.

29

1 @1
2 class Demo extends @2 Object {
3

4 @3 Demo foo(@4 boolean isNonNull) {
5 @5 Demo result = null;
6 if (isNonNull) {
7 result = new @6 Demo();
8 }
9 return result;
10 }
11 }

Figure 4.2: An example class Demo to demonstrate UniFlow’s analysis

Figure 4.2 shows the example class Demo. The foo method in Demo has a boolean
parameter isNonNull. If isNonNull evaluates to true, the method returns a new instance
of Demo; otherwise, it simply returns null. The annotations @1 to @6 do not appear in the
source code, but each indicates a possibly unannotated location and can have a different
meaning in different type systems. In this analysis, @2 and @6 are meaningless to a nullness
type system, so they are fixed to @2 = @Nullable and @6 = @NonNull.

When javac compiler receives the file “Demo.java”, it generates an AST for the compi-
lation unit Demo and passes the AST to UniFlow. CFG builder receives the AST and uses
Dataflow Framework to generate CFGs for every enclosed initializer block, field initializer,
constructor, method, and lambda expression. In this example, we are only interested in
the foo method. Its corresponding CFG is shown in Figure 4.3, in which each non-special
block is numbered for future references.

Now, we are at resolved types accumulator for type resolution. The accumulator will
invoke the transfer function of our single type system. Since the example CFG does not
have any execution loops, the transfer function will terminate after two iterations through
the CFG (where the second iteration is to confirm we have reached the fixed-point). The
fixed-point results are as follows, where Si and S ′

i are the stores before and after block #i
respectively, and JXK represents the resolved type of node X.

30

Figure 4.3: CFG generated for Demo::foo in Figure 4.2

31

Block#1 :

S1 = {isNonNull 7→ @4 boolean}
JresultK = @5 Demo

JnullK = @Nullable NullType

Jresult = nullK = @7 Demo

JisNonNullK = @4 boolean

S ′
1 = S1 {result 7→ @7 Demo}

Block#2 :

{
S2 = S ′

1

S ′
2 = S2

Block#3 :

S3 = S ′

2

JresultK = @7 Demo

S ′
3 = S3

Block#4 :

S4 = S ′

3

JDemoK = ∅
S ′
4 = S4

Block#5 :

S5 = S ′

4

Jnew Demo()K = @NonNull Demo

S ′
5 = S5

Block#6 :

S6 = S ′

5

Jresult = new Demo()K = @8 Demo

Jexpression ...K = ∅
S ′
6 = S6 {result 7→ @8 Demo}

Block#7 :

S7 = LUB(S ′
2, S

′
6)

= {isNonNull 7→ @4 boolean, result 7→ @9 Demo}
JresultK = @9 Demo

Jreturn resultK = JresultK
S ′
7 = S7

At block #1, we create a new constraint variable @7 as the refined type of result
after the assignment. We learned this technique for simulating SSA form from Checker
Framework Inference10. At block #2, we have a “then” store and an “else” store for the
branching, but we only show S ′

2 because the two stores are identical in this case. Equations

10https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c400
33ea774c7c/src/checkers/inference/model/RefinementVariableSlot.java

32

https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c40033ea774c7c/src/checkers/inference/model/RefinementVariableSlot.java
https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c40033ea774c7c/src/checkers/inference/model/RefinementVariableSlot.java

from block #3 to block #5 are straightforward. At block #6, we introduce another new
constraint variable @8 for the assignment. At block #7, our input store is the LUB of S ′

2

and S ′
6 because we need to merge the facts from the two incoming edges. As a result, the

constraint variable @9 is used to represent the LUB of @7 and @8. Note that the types of
two nodes, JDemoK and Jexpression ...K, are ignored because they do not have a Java
type. JDemoK is a class name identifier, and Jexpression ...K is just an internal marker
for some evaluated program statement.

The actual objects for constraint variables @i are defined by type resolver, which can be
different in different contexts. In type checking mode, there are no real constraint variables
because we can always reason a concrete qualifier. We will have @3 = @4 = @6 = @8 =
@NonNull and @1 = @2 = @5 = @7 = @9 = @Nullable. Whereas in inference mode, we need
real constraint variables: @1 to @6 are source slots, @7 and @8 are refinement slots, and @9
is a merge slot.

The next major task is to generate constraints for type rules. As the type checker
iterates through the CFG with cached fixed-point results, we will collect the following
constraints.

@7 <: @5 (at Jresult = nullK)
@7 = @Nullable (at Jresult = nullK)
@8 <: @5 (at Jresult = new Demo()K)
@8 = @NonNull (at Jresult = new Demo()K)
@7 <: @9 (at block #7)

@8 <: @9 (at block #7)

@9 <: @3 (at Jreturn resultK)

Recall that the type checker must also apply type rules to declaration trees. The generated
constraints are

@2 <: @Nullable (upper bound of Object is @Nullable)

@1 <: @2 (Demo extends Object)

@3 <: @1 (upper bound of Demo is @1)

@4 <: @NonNull (upper bound of boolean is @NonNull)

Finally, we want to solve the constraints and report the analysis results. In type
checking mode, we can directly solve the constraints by substituting constraint variables
with the aforementioned assignments. The type system will find the constraint @9 <: @3 is
not satisfiable, and thus it will report an “incompatible return type” error for the return

33

statement. In type inference mode, we can utilize the method from Li’s work [20] to encode
the constraints as CNF formulas, and then feed the encoded constraints into a MAX-SAT
solver. A possible solution is @4 = @6 = @8 = @NonNull and @1 = @2 = @3 = @5 = @7 =
@9 = @Nullable. Inserting the solution back, we will get an altered version of the source
code that can pass the type check:

1 @Nullable
2 class Demo extends @Nullable Object {
3

4 @Nullable Demo foo(@NonNull boolean isNonNull) {
5 @Nullable Demo result = null;
6 if (isNonNull) {
7 result = new @NonNull Demo();
8 }
9 return result;
10 }
11 }

Note that some qualifiers are the same as the default in type checking mode. Therefore,
we can further simplify the result by removing the redundant explicit qualifiers:

1 class Demo extends Object {
2

3 @Nullable Demo foo(boolean isNonNull) {
4 Demo result = null;
5 if (isNonNull) {
6 result = new Demo();
7 }
8 return result;
9 }
10 }

4.3 Data Classes

The word “data class” describes a class whose primary purpose is to hold different data
properties. We are using it in this thesis as a more intuitive alternative to other names,

34

such as “value class”. In UniFlow, important data objects are required to be immutable
for code simplicity and reusability. We define the following core immutable data classes:

Definition 4.3.1 (Qualifier). Qualifier is an internal representation of annotation in
the framework. For each pluggable type in the lattice, there should be a unique corre-
sponding Qualifier.

Definition 4.3.2 (QualifiedType). QualifiedType mirrors the structure of Java’s Type-
Mirror11 with attached qualifiers. Each QualifiedType can have at most one primary
qualifier (i.e., the annotation directly annotated on the type).

Definition 4.3.3 (QualifiedElement). QualifiedElement mirrors the structure of Java’s
Element12 with attached qualifiers. Each QualifiedElement can have at most one primary
qualifier (i.e., the annotation directly annotated on the element).

Definition 4.3.4 (Slot). Slots are a special subset of Qualifiers to represent constraint
variables [12].

Definition 4.3.5 (Constraint). Constraint represents some abstract relation among a
set of Slots [12].

Definition 4.3.6 (ProductSlot). ProductSlot is a special implementation of Qualifier.
It represents an n-tuple (S1, . . . , Sn) in a product lattice L1 × · · · × Ln where each Si is
a Slot representing a constraint variable in lattice Li, and Li = Lj if and only if i = j.
ProductSlot is not a subtype of Slot.

Definition 4.3.7 (AnalysisMessage). AnalysisMessage is identified by a 3-tuple (K,P,M)
where K is the kind of the message (e.g., warning or error), P is the position that the mes-
sage is referring to in the source code, and M is the message key and message body.

Qualifier, QualifiedType and QualifiedElement are the essential components for cre-
ating annotated types and annotated declaration constructs, which will be used throughout
the analysis. The purpose of introducing Qualifier is for flexibility and deduplication.
Although Java has an existing annotation representation called AnnotationMirror13, it is

11https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/type/p
ackage-summary.html

12https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/elemen
t/package-summary.html

13https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/elemen
t/AnnotationMirror.html

35

https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/type/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/type/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/element/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/element/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/element/AnnotationMirror.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.compiler/javax/lang/model/element/AnnotationMirror.html

a simple key-value mapping of the annotation properties and is not flexible for customiza-
tion. In addition, one instance of internal Qualifier may represent multiple annotations
that are alias to each other. For example, @a.b.c.Nullable and @x.y.z.Nullable from
different packages can both be recognized as a NULLABLE enum instance internally.

In contrast to AnnotatedTypeMirror in the Checker Framework, QualifiedType is an
annotated type use, while QualifiedElement is an annotated declaration construct. This
helps developers to distinguish the difference between the two and thus will act more
carefully when converting from a type declaration to a type use. Note that type uses could
appear in a declaration construct, such as the extends bound in a class declaration. This
means QualifiedTypes can be nested inside a QualifiedElement, but a QualifiedType
cannot contain a QualifiedElement.

Slot, ProductSlot and Constraint are essential for type rules enforcement. The def-
initions of Slot and Constraint are based on the ones defined in Checker Framework
Inference [12]. However, having the two components is not sufficient to UniFlow, as we
need to support Slots and Constraints generated by different type systems. In Definitions
4.3.2 and 4.3.3, we set one as the upper bound of the number of primary qualifiers in a
QualifiedType or a QualifiedElement. This is to simplify their interfaces and offload the
complexity of managing multiple Slots to a specific implementation.

ProductSlot is the special implementation to support Slots from multiple lattices and
type systems. As described in Definition 4.3.6, each ProductSlot can be represented as
(S1, . . . , Sn), where n is a fixed number based on the total number of lattices involved in
the analysis. For example, in an analysis with two distinct type systems T1 and T2, where
each type system Ti has one type lattice Li, then all ProductSlots in the analysis have size
two. If @1 ∈ L1 and @2 ∈ L2, we can represent @1 @2 Object (multiple primary qualifiers)
as @(@1,@2) Object internally with a ProductSlot. Note that a ProductSlot may contain
both constant and non-constant slots, which is a combination of constraint variables that
are either solved or yet to be solved. In addition, to prevent needlessly nested structures,
ProductSlot is designed to not inherit from class Slot.

For brevity, we may use the uncapitalized names interchangeably when referring to
instances of these classes (e.g., “product slot”, “qualifier”, etc.) in the rest of this thesis.

4.4 Framework Layer

The framework layer defines and enforces the standard processes and functionality of the
framework. It controls the current analysis stage, defines how to communicate with differ-

36

ent framework components, and manages slots and constraints in a centralized place. The
behaviour of this layer should be general enough to orchestrate different type systems, and
type system developers can focus on their development without delving into the layer’s
technical details.

4.4.1 Analysis Order

The order in which dataflow analysis is performed on different CFGs can affect a type
system’s overall accuracy and precision. This is because the analysis results on one CFG
may help the analysis of another CFG. One example is that the type of a final field can
be refined by checking its initializer, which then benefits the analyses on internal methods
that use this field. Another example is analyses for both lambda expressions and local
classes require the types of the variables they captured. Lambda expressions and local
classes declared inside a method may capture the local variables and parameters of the
method, but each of these constructs is analyzed as a separate CFG. Generally speaking,
we need the types of certain variables to improve the dataflow analyses of the CFGs that
use these variables. A limitation of this strategy is the more precise information is only
available to members of the current compilation unit, as other compilation units may not
have been fully initialized by the compiler.

This idea of reordering the analysis targets is originated and implemented in the Checker
Framework14. In particular, the implementation traverses the compilation unit tree and
performs the analysis in level order. Traversing in level order has the disadvantage of losing
the enclosing relations between different structures in code. This means at each level, it
needs to accumulate the analysis results and further propagate everything to the next level,
even if some results have become redundant as it finishes analyzing an inner scope. The
implementation causes some extra memory footprint and may leak analysis results to other
CFGs.

In UniFlow, we propose a preorder traversal to address the issues. As shown in Algo-
rithm 1, we can implement our solution in the common visitor pattern. When it finds a
class tree, the SortClassMembers function sorts the class members and visits them in the
following order:

1. static fields and static initializers

14https:
//github.com/eisop/checker-framework/blob/e6c069537bd8dae1c79c70665859c36f382c8d0c/framework
/src/main/java/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.java#L1300

37

https://github.com/eisop/checker-framework/blob/e6c069537bd8dae1c79c70665859c36f382c8d0c/framework/src/main/java/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.java#L1300
https://github.com/eisop/checker-framework/blob/e6c069537bd8dae1c79c70665859c36f382c8d0c/framework/src/main/java/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.java#L1300
https://github.com/eisop/checker-framework/blob/e6c069537bd8dae1c79c70665859c36f382c8d0c/framework/src/main/java/org/checkerframework/framework/type/GenericAnnotatedTypeFactory.java#L1300

Algorithm 1 Perform Analysis in Defined Order

1: function visit(Tree tree)
2: childTrees← tree.getChildren()
3: if tree is a class declaration then
4: childTrees← sortClassMembers(childTrees)
5: else if tree is a field initializer, initializer block, method declaration, or lambda

expression then
6: processCFG(buildCFG(tree))
7: end if
8:

9: for each childTree in childTrees do
10: visit(childTree)
11: end for
12: resultsCleanup(tree)
13: end function

14: function processCFG(ControlFlowGraph cfg)
15: performDataflowAnalysis(cfg)
16: performTypeChecks(cfg)
17: end function

38

2. instance fields and instance initializers

3. constructors

4. other methods

This ensures the analysis on field initialization always happens before its usage in the
current class. When the visitor finds a field initializer, an initializer block, a method decla-
ration, or a lambda expression, it will generate a corresponding CFG and start processing
the CFG. As defined in the ProcessCFG function at line 14, the function performs dataflow
analysis and immediately uses the resolved types to execute type checks. After analyzing
the CFG of the current tree, the visitor proceeds to visit the children of this tree. If the
visitor finds some other tree, it will traverse its children to continue finding the previ-
ously mentioned trees. For instance, there can be local class declarations inside a method
declaration.

When the algorithm finally reaches line 12, analysis results from the current scope may
have become redundant, so it attempts to clean up the analysis results. Some fine-tuning is
required for the ResultsCleanup function. For example, analysis results from a field should
only be removed after visiting its enclosing class.

4.4.2 Slot Location

Section 4.1 explains the importance of tracking the location of each created slot. In Checker
Framework Inference, this is achieved by requiring a location object to create a new slot.
However, the location of a declaration construct cannot be determined until its enclosing
compilation unit is processed. For example, if javac processes files in the order of “A.java”
followed by “B.java” and class A accesses a field in class B, compiler plugins will not have
the AST to determine the location of B’s field when analyzing components in A. This
can introduce mutable or missing locations to the framework. Moreover, the VariableAn-
notator15 in Checker Framework Inference performs location search and type resolution
simultaneously, further exacerbating the readability and complexity.

In UniFlow, the creation of each slot is different according to the type of location it
requires. Fortunately, only source slots require accurate locations because their solutions
can be inserted back. Other slots are only created for local expressions in a dataflow

15https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c400
33ea774c7c/src/checkers/inference/VariableAnnotator.java

39

https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c40033ea774c7c/src/checkers/inference/VariableAnnotator.java
https://github.com/eisop/checker-framework-inference/blob/47bf3c36b99bfeb4d86ab69857c40033ea774c7c/src/checkers/inference/VariableAnnotator.java

analysis, and their locations are used for debugging. Therefore, the new strategy for
locating slots can be clarified as follows. The type resolver is responsible for determining
the appropriate slot to use and requesting the slot from the slot manager. If the slot is a
source slot, the slot manager will not ask the type resolver to provide a location. Instead,
it will traverse the compilation unit tree in a separate stage to match the source slots
accordingly. If the slot is not a source slot, the slot manager will require the current node
to deduce the best approximation of the location.

4.4.3 Multiple Type Systems Support

The framework layer needs to ensure each component supports multiple type systems.
Furthermore, the framework allows each type system to own multiple qualifier hierarchies,
although most type systems in the Checker Framework only have one qualifier hierarchy.
This section explores our design to provide the necessary foundation.

Type Resolution Stage

Type resolution consists of resolving the type of declaration constructs and resolving the
type of CFG nodes. When handling the CFG nodes, resolved types accumulator must
collect analysis results from different type systems, and each type system can focus on the
qualifiers they support. Algorithm 2 shows how this stage is generally managed.

The resolved types accumulator itself can be considered as a transfer function, with the
obligation to delegate the call to each type system and combine their results. The function
VisitNode shows how it handles each node in the CFG. Here, we provide descriptions for
the important lines in the function.

Line 2 We declare a variable r to store the transfer results we have accumulated. Its
initial value is null.

Line 3 We iterate through type systems in a topological order based on their dependencies
on each other. This is because the result from a type system may improve the result
of another type system, such as the Initialization Checker in Nullness Checker.

Line 4 We call the transfer function of the current type system, with transfer input and
accumulated results r provided. The result of this function is assigned to r′. The re-
sult uses qualified types to represent annotated types and product slots to store their
qualifiers. This ensures a unified communication method, while each type system
can have multiple qualifier hierarchies.

40

Algorithm 2 Resolved Types Accumulator

1: function VisitNode(node, input)
2: r ← null ▷ Declare a transfer result variable
3: for each t in type systems sorted in topological order do
4: r′ ← callTransfer(t, node, input, r)
5: r ← combine(r, r′) ▷ Combine existing results with the new result
6: end for
7: return r
8: end function

9: function Combine(r, r′)
10: if r is null then
11: return r’
12: end if
13: newV alue← combination of the result values in r and r′

14: newThenStore← combination of the “then” stores in r and r′

15: newElseStore← combination of the “else” stores in r and r′

16: return a new transfer result from newV alue, newThenStore and newElseStore
17: end function

41

Line 5 We combine r and r′ and assign the combined result back to r.

The function Combine will combine results from different type systems by merging
their respective components. Let K be the set of possible Java expressions, V be the set of
possible qualified types using product slots, and Σ : K → V be a store that maps a Java
expression to its refined qualified type. Assume each v ∈ V is represented as p T , where
p = (s1, . . . , sn) is a product slot, and T is the Java type identifier. We can consider a
transfer result as r = {rv,Σ1,Σ2}, where rv ∈ V is the result value of the current node, Σ1

and Σ2 are then and “else” stores respectively. Note that it is possible that the result only
has one store, which can be covered by the special case Σ1 = Σ2. Finally, we can formalize
the combining process as follows:

combine(r, r′) = {combine(rv, rv′), combine(Σ1,Σ
′
1), combine(Σ2,Σ

′
2)} (4.1)

combine(Σ,Σ′) = {α 7→ combine(Σ(α),Σ′(α)) | α ∈ K} (4.2)

combine(p T, p′ T) = combine(p, p′) T (4.3)

combine(p, p′) = combine((s1, . . . , sn), (s
′
1, . . . , s

′
m))

= (s1, . . . , sn, s
′
1, . . . , s

′
m)

(4.4)

The reason for having identical T s in equation 4.3 is that the framework does not
refine Java types, which is consistent with Java’s type system and simplifies the combining
process. We also assumed v ∈ V is represented as p T for the brevity of the formulas. In
reality, a qualified type can be a nested structure (e.g., array type or generic type), and we
need to combine the matching product slots recursively.

The strategy to handle declaration constructs is very similar. We can replace the node
visitor with a tree visitor focusing on those declarations. Instead of calling the transfer
function, we invoke the type resolver of each type system to get an instance of a qualified
element. After that, we can combine the product slots of multiple qualified elements.

Constraint Generation Stage

There is no predefined order to execute type systems in the constraint generation stage, as
we already have the types resolved for all the nodes and declarations. Each type system
may access all the qualifiers in product slots and generate its constraints independently.
Since all the constraints are based on slots, the framework provides a utility class to return
a proper constraint for each requested type relation. The utility class will try to eagerly

42

evaluate the type relation when possible. For example, if we need a subtype constraint
between two constant slots, the utility class will ask the corresponding type system for the
answer to produce a solved constraint (i.e., a constant instance indicating a true or false
result).

The constraint manager is responsible for storing all the generated constraints. It can
output the constraints of a type system in the subsequent stages. It also provides error
messages to the analysis output, which will be explained in the next section.

Constraints Solving Stage

Algorithm 3 demonstrates an overview of the contraint solving procedure. The algorithm
starts with declaring an empty mapping s to store solutions. It then begins to iterate
through type systems by the topological order of their dependency graph. The following
actions are performed in each iteration for the current type system t:

Line 3 We get the constraints generated by t from constraint manager and assign the set
to c.

Line 4 We substitute any solved variables in c with its solution in s. Note that each type
system may be in either type checking or inference mode. If an ancestor is in type
checking mode, we already have its solutions in the type resolution stage. In other
words, only inference solutions are effective to s and this substitution.

Line 5 This step will initiate the process of encoding constraints, executing an external
solver, and decoding the solutions. The details are omitted because we can safely
reuse the existing strategy from Checker Framework Inference. If the constraints can-
not be solved because they are unsatisfiable or an ancestor causes cascading failures16,
we can assume s′ = ∅.

Line 6 We update our solutions with the union of s and s′.

Compared to solving all constraints at once, the benefits of this algorithm are twofold.
First, any inference failures in one type system will not affect other type systems that are
not effectively depending on it, making the analysis results more accurate and debuggable.

16Such failures can happen if there exist real constraint variables owned by other type systems in c,
whose solutions cannot be determined in any previous steps.

43

Algorithm 3 Solve Constraints in Defined Order

1: s← {} ▷ Declare a mapping of solved variable to its solution
2: for each t in type systems sorted in topological order do
3: c← getConstraints(t)
4: c← substituteSolvedVariables(c, s)
5: s′ ← solveConstraints(t, c)
6: s← s ∪ s′

7: end for

Second, each type system has the flexibility to choose its solver and encoding/decoding
strategies, making the logic simpler and more modular.

A disadvantage of this algorithm is the inference results from one type system may
affect the analyses of its descendants, for the results can be either too loose or too strict
for the descendants. The possible solutions include introducing soft constraints or manually
tuning the inference results. We leave this as a topic for future study.

4.4.4 Analysis Messages

As outlined in our design goals, we want UniFlow to underpin a friendly message reporting
mechanism. Since the solution to many constraints cannot be determined when they are
generated, we decided to make the message a detached property of constraint that can be
queried later. In other words, for a specific type rule application at a program location, the
type system may generate a set of constraints and a message to show when the constraints
are unsatisfiable, which will be managed by the constraint manager. Once the solver
has finished its work, the framework can retrieve and output the corresponding failure
messages to users. The reason for it being a detached (i.e., optional) property is that
there are some naturally derived constraints without explanations. For example, we may
generate merge slots when merging stores from different edges, where each LUB/GLB is
always the supertype/subtype of the types they merged.

In Section 4.3, we defined the three components of a message: message kind, code
position and message body. The type system should specify message kind and body, and the
framework can retrieve code position from the current CFG node or AST tree. In addition
to message generation, we considered the potential issues in message reporting. According
to Dataflow Framework’s manual [1], the same expression may appear in multiple blocks,
which is caused by special control flows such as try-finally statements. This means we may
observe duplicate messages for the same issue at the same location, so the framework must

44

deduplicate messages before producing outputs. Another potential issue is that storing all
the messages in memory is not scalable, for the number of messages positively correlates to
the source code’s size and the number of constraints. One simple solution is to use constant
string templates consistently, so we only need to store formatting arguments and compute
the actual messages later. Eventually, a more sophisticated solution is to compute and
offload all messages to a local disk-based database, such as H2 MVStore17 or MapDB18.

4.5 Type System Layer

The type system layer provides the basic architecture and functionality for type system
developers. It defines the essential components and the general implementation of a type
system, which developers can override to achieve different purposes. The goal of this layer
is to properly define the obligations of a type system, while giving it the flexibility to
extend and customize its behaviour.

There are seven basic components in a type system. We have listed five of them
in Section 4.1. The rest of the components are qualifier hierarchy and type hierarchy.
A type system may define one or multiple qualifier hierarchies. A qualifier hierarchy is
the implementation of a pluggable type lattice. Compared to the QualifierHierarchy19

in the Checker Framework, it only represents a single hierarchy with one top qualifier
and one bottom qualifier. It offers various utilities for the covered qualifiers, such as
determining subtype relations, finding the LUB or GLB of two qualifiers, and converting
an AnnotationMirror to the corresponding qualifier. Note that the qualifier hierarchy
operates on real qualifiers and does not recognize constraint variables. On the other hand,
type hierarchy aims to generate constraints for the relations between qualified types, which
is similar to the TypeHierarchy20 in the Checker Framework. In most cases, it should obey
the rules defined in the Java Language Specification [13].

In the following sections, we will explore how a type system works in type resolution
and constraint generation, with some formalizations for illustrative purposes only. We
omit the explanations for constraint encoding and solution decoding because the related
strategies have been studied on Checker Framework Inference [12, 20].

17https://www.h2database.com/html/mvstore.html
18https://mapdb.org/
19https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d

/framework/src/main/java/org/checkerframework/framework/type/QualifierHierarchy.java
20https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d

/framework/src/main/java/org/checkerframework/framework/type/TypeHierarchy.java

45

https://www.h2database.com/html/mvstore.html
https://mapdb.org/
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/QualifierHierarchy.java
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/QualifierHierarchy.java
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/TypeHierarchy.java
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/TypeHierarchy.java

P ::= Cls

Cls ::= class Cid extends T
{
fd md

}
fd ::= T f ;

md ::= Tr m(T pid) { stmt } T ::= q C

stmt ::= return e q ::= qid | α | ϵ
e ::= null | x | new T () | e.f | e0.f := e1 | C ::= Cid | Object

e0.m(e) | (T) e x ::= pid | this
pid parameter identifier f field identifier

m method identifier Cid class identifier

qid concrete qualifier identifier α constraint variable identifier

Figure 4.4: Syntax of our programming language

4.5.1 A Java-Like Programming Language

In Figure 4.4, we define a simple Java-like programming language that we can use for some
formalizations in later sections. This language is a modified version of the one that is used
in the first paper of Checker Framework Inference [12].

A program P is formed by one or multiple class declarations. Each class declaration
starts with its name and superclass, followed by a block of field and method declarations. A
field declaration consists of a type and its name. A method declaration has a return type, a
method identifier, some parameters, and a statement in the method body. The statement
returns the value of an expression e. The possible forms of the expression e include null
literal, parameter read, object creation, read/write of a field, method invocation, and
explicit type cast.

A type is a qualifier followed by a class name. In the source code, the qualifier represents
an optional annotation on the type, which can only be a concrete qualifier from the lattice.
For the type system, the qualifier must be a product slot containing contraint variables,
where some variables are solved and some are yet to be solved.

Since this language is a subset of Java, we may use the definitions in Dataflow Frame-
work’s manual to convert method bodies into CFGs [1]. Specifically, we list the CFG nodes
that are involved21 in Figure 4.5. Note that x can indicate the method receiver this, and

21Actually, we ignored ClassNameNode for type expression T because there is little context to evaluate
the node itself.

46

Node Expression Node Type
null NullLiteralNode
e.f FieldAccessNode
e.m MethodAccessNode
x LocalVariableNode
e0.m(e) MethodInvocationNode
e0.f := e1 AssignmentNode
new T () ObjectCreationNode
(T) e TypeCastNode
return e ReturnNode

Figure 4.5: Relevant CFG nodes to our programming language

we treat it as a final local variable access. In reality, there is a specific node to represent
the receiver.

Both expression and subexpression can have a corresponding node. In other words,
translating an expression in AST can result in multiple nodes, starting from the first
subexpression, in their evaluation order. For example, the nodes generated for the expres-
sion this.x.y are this, this.x and this.x.y, where the last node is the corresponding
node.

4.5.2 Type Resolution Stage

The type resolver is responsible for handling both declaration constructs and CFG nodes.
To improve modularity and maintainability, we decompose it into two components: a
declaration type resolver for the types in declarations and a node type resolver for the
types of CFG nodes.

Declaration Types Resolution

The declaration type resolver is an element visitor that accepts an element, an abstraction
of a declared entity generated by javac. It will introduce constraint variables to the types
in the element and returns a qualified element. In type checking mode, all constraint
variables are constants determined by the existing annotations or defaulting strategy. In
type inference mode, constant slots are only used for existing annotations or bytecode
locations, while source slots are created for other places.

47

We can formalize the declaration type resolver based on our language to demonstrate
the framework’s default implementation.

declType(E) =

class Cid extends qType(E, T) if E is a class declaration

qType(E, Tr) m(qType(E, T) pid) if E is a method declaration

qType(E, T) f if E is a field declaration

qType(E, T) = qType(E, q C)

=

αconst(q) C if q ̸= ϵ and is in the lattice

αconst(defaultQual(C)) C if type checking mode or E is not from source

αsrc C otherwise

In the above formalization, we defined declType(E) as the function that consumes an
element E and returns the corresponding qualified element. It searches for type uses in the
element and replaces each T with qType(E, T). The qType(E, T) is a helper function to
ensure we have a qualified type. If T is already annotated with a valid annotation, qType
will use a constant slot to wrap the corresponding concrete qualifier. The function then
checks if the type system is in type checking mode or E is not from the source code. If
either is true, we ask for the default concrete qualifier for class C and convert it into a
constant slot; otherwise, we introduce a source slot as the constraint variable for inference.
The behaviour of the function defaultQual(C) should be specified by developers. It can
be as simple as returning the top qualifier, or it can consider different factors, such as the
bounds of C and the type use context.

Note that the function declType always returns the same qualified element for the same
input. It memorizes the previous results so that it will not create new slots for the resolved
elements.

We assumed that the type system has only one qualifier hierarchy. This assumption
simplifies our explanation by safely ignoring trivial actions such as constructing product
slots or adding loops. For brevity, we will continue to make this assumption throughout
the rest of Section 4.5.

Node Types Resolution (Transfer Function)

Resolving the type of a CFG node requires the coordination of the transfer function and the
node type resolver. The transfer function manages stores and constructs transfer results,

48

while the node type resolver is responsible for deducing the qualified type of the current
node. Both are implementations of a node visitor to handle different kinds of nodes.

We can formalize the basic transfer rules as shown in Figure 4.6. Recall that the domain
of Γ is the set of nodes, whereas the domain of Σ is the set of Java expressions. The key
difference between a node and a Java expression is that the node is only a single instance
of expression. For example, for the expression this.m(this.f, this.f) in AST, there will
be two distinct nodes for the two this.f arguments, but both arguments are the same in
Java expression.

We also employ a few helper functions. We use shouldStore(e) to determine if the
expression corresponds to node e should be accepted by stores. Typically, it holds for
local variable accesses, field accesses, and invocations of pure methods. The function
merge(Σ1,Σ2) computes the LUB of the two stores. The removeRelated(Σ, e) is similar to
removeConflicting in the Checker Framework22, which is a technique for handling gen/kill
problems. It notifies the store Σ that the type of e will be updated, implying any results
related to the type of e should be removed. For example, if the type of x needs to be
updated, then the existing type of x.y is no longer valid.

We now explain each rule in Figure 4.6. For an assignment node e0.f := e1, we resolve
the qualified type of the node as T , then we ensure the node has type T in Γ and refine the
type of the LHS expression e0.f to T in Σ′′. The outputting “then” and “else” stores are
both Σ′′, which is formed by merging the input stores, removing no longer valid mappings,
and adding the new mapping. For any expression e that is not an assignment node, we
need to consider if shouldStore(e) holds and if the resolved type is different from the one
in Σ. If both conditions are true, we apply the rule DefaultStore, which is similar
to Assign but refines the type of the entire expression e in Σ′′; otherwise, we apply the
last rule Default to store the qualified type of e in Γ and propogate the merged store
Σ. Despite of the formatting, these rules are different from any formal type rules, for the
transfer function may need to be applied several times in fixed-point iterations.

We reiterate that the formalizations are to illustrate the basic logic, and developers
can extend each component for their approaches. For instance, the stated rules unsoundly
assume all method calls are pure. To resolve this issue, we need to introduce a basic
type system, “PureChecker”, that determines if a method is side-effect-free and if it is
deterministic. Then another type system based on the “PureChecker” (in type checking
mode) may override the logic to clear the stores after a non-side-effect-free method call.

22https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d
/framework/src/main/java/org/checkerframework/framework/flow/CFAbstractStore.java#L910

49

https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/flow/CFAbstractStore.java#L910
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/flow/CFAbstractStore.java#L910

Default

e is not an assignment
Σ = merge(Σ1,Σ2)
Γ,Σ ⊢ JeK = T

not shouldStore(e) or Σ(e) = T

Γ,Σ1,Σ2 ⊢ e : Γ [e 7→ T] ,Σ,Σ

DefaultStore

e is not an assignment
Σ = merge(Σ1,Σ2)
Γ,Σ ⊢ JeK = T

shouldStore(e) Σ(e) ̸= T
Σ′ = removeRelated(Σ, e)

Σ′′ = Σ′ [e 7→ T]

Γ,Σ1,Σ2 ⊢ e : Γ [e 7→ T] ,Σ′′,Σ′′

Assign

Σ = merge(Σ1,Σ2)
Γ,Σ ⊢ Je0.f := e1K = T

Σ′ = removeRelated(Σ, e0.f)
Σ′′ = Σ′ [e0.f 7→ T]

Γ,Σ1,Σ2 ⊢ e0.f := e1 : Γ [e0.f := e1 7→ T] ,Σ′′,Σ′′

Figure 4.6: Abstract transfer rules for the considered CFG nodes. Γ is the type environment
that maps each node e to its corresponding qualified type, and Σ1/Σ2 are the “then”/“else”
stores respectively. In the premises, we use Γ,Σ ⊢ JeK = T to represent the qualified type of
e is T from the node type resolver. The conclusions are of the form Γ,Σ1,Σ2 ⊢ e : Γ′,Σ′

1,Σ
′
2,

which means, given a node e and the satisfied premises, the transfer function consumes the
inputs Γ,Σ1,Σ2 and returns the updated environments Γ′,Σ′

1,Σ
′
2.

50

“PureChecker” will also complement the logic of the function shouldStore(e) to reject
non-pure method invocations.

Another example is the Nullness Checker in the Checker Framework, which overrides
the transfer function to handle a null check node. The logic can be formalized as follows:

NullCheck

Σ = merge(Σ1,Σ2)
Γ,Σ ⊢ Je ̸= nullK = T

Σ′
1 = removeRelated(Σ1, e)

Σ′
2 = removeRelated(Σ2, e)

Σ′′
1 = Σ′

1 [e 7→ makeNonNull(Σ1(e))]
Σ′′

2 = Σ′
2 [e 7→ makeNullable(Σ2(e))]

Γ,Σ1,Σ2 ⊢ e ̸= null : Γ [e ̸= null 7→ T] ,Σ′′
1,Σ

′′
2

This rule has two objectives. First, it needs to set the qualified type of the node in Γ.
Second, it refines the type of the expression e in both stores. “Then” store Σ′′

1 maps to the
type when e ̸= null evaluates to true, which is achieved by changing the primary qualifier
of Σ1(e) to αconst(@NonNull). “Else” store Σ′′

2 maps to the type when e ̸= null evaluates
to false, so we change the primary qualifier of Σ2(e) to αconst(@Nullable).

Node Types Resolution (Node Type Resolver)

Next, we will formalize the node type resolver, i.e., the rules for JeK. Before analyzing a
CFG, the resolver can collect the known facts to prepare an input store for the entry block.
For example, analyzing a lambda function requires the types of all captured variables. For
this simple language, the resolver can prepare the types of parameters and receiver this
before entering a method’s CFG. The types of parameters can simply be extracted from
the qualified element of the method. The type of the receiver this depends on the strategy
of a specific type system.

Figure 4.7 gives the basic rules for the node type resolver. Our rules assume the in-
put stores for the entry block already contain types of local variable expressions. Before
discussing the details, we explain the new helper functions introduced. The element func-
tion consumes a field access e.f or method access e.m and retrieves the associated field
or method declaration as a javac element. Viewpoint adaptation is an abstract function
that adapts the type of a field or method access according to the type of its receiver [11].
We use the notation ▷ for this function, where the left operand is the receiver’s type, and
the right operand is the type to be adapted. assignQual(αRHS) decides the qualifier that
applies to the type of an assignment node. In type checking mode, it returns αRHS; in type
inference mode, it returns the refinement slot αrefine corresponds to this assignment node.

51

T FieldAcc
Σ(e.f) = T

Γ,Σ ⊢ Je.fK = T
T FieldAccNew

Σ(e.f) = ∅ Γ(e) = Te

declType(element(e.f)) = Td f
Te ▷ Td = T

Γ,Σ ⊢ Je.fK = T

T Return
Γ(e) = T

Γ,Σ ⊢ Jreturn eK = T
T Null

T = defaultQual(nulltype) nulltype

Γ,Σ ⊢ JnullK = T

T MthAcc

Γ(e) = Te

declType(element(e.m)) = Trd m(Td pid)
(Trd m(Td pid))[αpoly/poly] = T ′

rd m(T ′
d pid)

Te ▷ T ′
rd m(T ′

d pid) = Tr m(T pid)

Γ,Σ ⊢ Je.mK = Tr m(T pid)

T MthInvk
Γ(e0.m) = Tr m(T pid)

Γ,Σ ⊢ Je0.m(e)K = Tr

T LocalVarAcc
Γ,Σ ⊢ JxK = Σ(x)

T NewObj
Γ,Σ ⊢ Jnew T ()K = qType(T)

T Cast
Γ,Σ ⊢ J(T) eK = qType(T)

T Assign

declType(element(e0.f)) = TLHS f TLHS = αLHS CLHS

Γ(e1) = TRHS TRHS = αRHS CRHS

T = assignQual(αRHS) CLHS

Γ,Σ ⊢ Je0.f := e1K = T

Figure 4.7: Abstract type resolution for the considered CFG nodes. Each rule for node
e can be considered as a case in the visit(e) method. Γ is the input type environment
from the transfer function. Σ = merge(Σ1,Σ2) is the merged input stores from the transfer
function. For any subnode e′ in the node e, we denote a look-up of the type of the subnode
as Γ(e′) = Since e′ is always evaluated before e in a CFG, the look-up does not require
extra arguments and is guaranteed to succeed.

52

We begin our explanation with the difference between T FieldAcc and T FieldAc-
cNew. For a field access e.f whose type already exists in Σ, we apply T FieldAcc to
directly reuse the existing qualified type. If we cannot find an existing type for e.f in Σ,
then T FieldAccNew is applied. To get the qualified type of e.f , we need to get the type
of the receiver (JeK) and the declared type of the field (Td), and we perform a viewpoint
adaptation Te ▷ Td.

It is also necessary to explain the rulesT MthAcc, T LocalVarAcc andT Assign,
while other rules are rather straightforward. T MthAcc applies to a method access node.
We first look up the declared type of the method Trd m(Td pid). Then we substitute all
polymorphic qualifiers in the declared type with a polymorphic instance slot αpoly dedicated
to this location. This ensures we create a fresh αpoly for each call site of a polymorphic
method. Lastly, we obtain the final resolved type by performing a viewpoint adaptation.

T LocalVarAcc loads the type of a local variable JxK directly from Σ. The reason
is that we have prepared the types of local variables, and this simple language does not
support reassigning the value of a local variable. In reality, we must consider declarations
and reassignments of local variables in a CFG, and the strategy is akin to how we handle
field declarations and reassignments.

T Assign handles the type of an assignment node, or more specifically, the refined
type of the LHS after assigning the RHS. This rule requires the declared type of the LHS
e0.f and the qualified type of the RHS e1. We extract two important pieces of information
from these types: CLHS and αRHS. As previously discussed, we do not refine any Java
types to simplify the process of combining and merging different stores, so CLHS will be
the class identifier in the final resolved type T . The qualifier of T is obtained from the
helper function assignQual(αRHS). Although it is possible that TRHS is not a subtype of
TLHS, we leave the validation part to the type checker.

4.5.3 Constraint Generation Stage

Similar to how we split the work of type resolution, the type checker is also split into a
declaration type checker and a node type checker, where the former handles constraints on
declaration constructs and the latter handles constraints on CFG nodes.

Constraints for Declarations

The declaration type checker is an element visitor that focuses on class, field, and method
declarations. Let K(X) be the set of constraints generated for declaration X. Figure 4.8

53

C Class

declType(class Cid extends T) = class Cid extends T ′

K1 = wellformed(T ′)
T ′ = α′ C ′ K2 = upperbound(Cid) <: α′

⊢ K(class Cid extends T) = K1 ∪K2

C Field

declType(T f) = T ′ f
K1 = wellformed(T ′)

⊢ K(T f) = K1

C Method

declType(Tr m(T pid)) = T ′
r m(T ′ pid)

K1 = wellformed(T ′
r) K2 = wellformed(T ′)

K3 = override(T ′
r m(T ′ pid))

⊢ K(Tr m(T pid)) = K1 ∪K2 ∪K3

Figure 4.8: Abstract constraint generation for the considered declarations

illustrates our fundamental rules.

Again, we have introduced a few helper functions. The function upperbound(C) returns
the qualifier upper bound for the Java type C, whose actual determination strategy is type
system dependent. The function wellformed(T) generates a set of constraints for the well-
formedness check of qualified type T . Its basic logic can be formalized as follows:

wellformed(T) = wellformed(α C) = {α <: upperbound(C)}

The function override(T ′
r m(T ′ pid)) generates constraints for method overriding. Let

T ′
r m(T ′ pid) = T ′

r m(T ′
1 p1, . . . , T

′
n pn). If m overrides ms in the superclass, let the

qualified element of ms be

declType(Tsr ms(Ts pid)) = T ′
sr ms(T ′

s pid) = T ′
sr ms(T

′
s1 ps1, . . . , T

′
sn psn)

We will have the the following constraints:

override(T ′
r m(T ′ pid)) = {T ′

si <: T ′
i | i ∈ Z, 1 ≤ i ≤ n} ∪ {T ′

r <: T ′
sr}

If m does not override any methods, the function returns an empty set.

Given the explanations for the helper functions, the three rules in the figure are straight-
forward. It is worth noting thatK2 in C Class is the inheritance rule for class declaration,
which ensures the qualifier upper bound of the class Cid is a subtype of the qualifier α′ in
its qualified superclass T ′.

54

Constraints for Nodes

The node type checker is a node visitor that applies type rules to each CFG node. Let K(e)
be the set of constraints generated for node e. Figure 4.9 illustrates our fundamental rules.
We have one new helper function, currentMethod(), which simply returns the method
associated with the current CFG.

There are no explicit constraints for null literal, field access, method access, or local
variable access. So we will focus on explaining other rules.

C NewObj checks the type of a new object instance is well-formed. C Cast ensures
the casted type is well-formed and is comparable to the original type. The notation <:>
represents the comparable constraint introduced in the GUT paper [12], which means one
operand should be the subtype of the other. C Assign verifies that, for an assignment
node, the type of the RHS is a subtype of the declared type of the LHS. C Return checks
the type of the returning node is a subtype of the method’s declared return type. Finally,
C MthInvk produces the constraints for a method invocation. It ensures the type of each
argument is the subtype of the matching parameter’s type.

Recall that the constraint variables are slots, but we have listed some constraints using
qualified types in the form of T1 op T2. For these rules, type hierarchy is the component to
help with generating concrete constraints. As previously stated, it follows the subtyping
strategy defined for Java types in the language specification [13], and it applies the strategy
to qualifiers in T1 and T2. There are no constraints for Java types because it is the compiler’s
responsibility to ensure their type safety.

Implicit Constraints from Slots

Despite the constraints from declarations and nodes, there are some implicit constraints
derived from slots. Specifically, for the slots we have introduced, we must have constraints
on the refinement and merge slots. The implicit constraints may not require error messages
since they cannot be treated as the root cause of type checking or inference failures.

Given a refinement slot αrefine that indicates the refined type of an assignment. If the
RHS’s type has qualifier αRHS, an equality constraint

K(αrefine) = {αrefine = αRHS}

needs to be established.

55

C NewObj

Γ(new T ()) = T ′

K1 = wellformed(T ′)

Γ ⊢ K(new T ()) = K1

C Cast

Γ(e) = T ′ Γ((T) e) = T ′′

K1 = wellformed(T ′′)
K2 = T ′ <:> T ′′

Γ ⊢ K((T) e) = K1 ∪K2

C Assign

declType(element(e0.f)) = TLHS f
Γ(e1) = TRHS K1 = TRHS <: TLHS

Γ ⊢ K(e0.f := e1) = K1

C Return

Γ(return e) = T ′

declType(currentMethod()) = Tr m(T pid)
K1 = T ′ <: Tr

Γ ⊢ K(return e) = K1

C MthInvk

Γ(e0.m) = Tr m(T pid)
T = T1, . . . , Tn e = e1, . . . , en

Γ(ei) = T ′
i

Ki = T ′
i <: Ti

Γ ⊢ K(e0.m(e)) =
⋃n

i=1Ki

C Null
Γ ⊢ K(null) = ∅

C LocalVarAcc
Γ ⊢ K(x) = ∅

C FieldAcc
Γ ⊢ K(e.f) = ∅

C MethodAcc
Γ ⊢ K(e.m) = ∅

Figure 4.9: Abstract constraint generation for the considered CFG nodes. Γ is the type
environment from the type resolution stage, which is a mapping from a node to its qualified
type. Since the current stage is after type resolution, the type checker can access the
qualified type of every node in Γ, without the need to provide any extra arguments.

56

For a merge slot αmerge that merges α1 and α2, we will consider two cases:

K(αmerge) =

{
{αmerge <: α1, αmerge <: α2} if αmerge is the lower bound of α1 and α2

{α1 <: αmerge, α2 <: αmerge} if αmerge is the upper bound of α1 and α2

When αmerge is a lower bound, it is a subtype of both operands. When αmerge is an upper
bound, it is a supertype of both operands. Note that, in the constraints, we do not enforce
αmerge to be a GLB or a LUB since that part depends on the precision required by a type
system. The type system may define mandatory constraints to compute the greatest or
the lowest bound, or it may provide soft constraints to prefer a more precise bound.

The generation of these constraints is executed after collecting constraints from other
places and before the encoding stage. We can find the slots that are effectively involved
in the collected constraints. Then we iterate through the slots to generate the required
implicit constraints.

57

Chapter 5

Discussion and Future Work

Given all the information from previous chapters, this chapter briefly compares UniFlow
with the existing frameworks (Section 5.1), discusses the limitations of our framework
(Section 5.2), presents our experience in the implementation process (Section 5.3), and
explores potential future work (Section 5.4).

5.1 Comparison

This section will compare UniFlow, the Checker Framework and Checker Framework Infer-
ence from two angles: (1) functionality and performance, (2) developer and user experience.

5.1.1 Functionality and Performance

Superficially, the three frameworks share some common underpinnings: they are all based
on Dataflow Framework [1] and javac’s Compiler Tree API23, i.e., they analyze the same
set of nodes and trees. The Checker Framework only supports type checking, whereas the
other two frameworks support both type checking and type inference. Checker Framework
Inference requires one independent type system with one qualifier hierarchy, while the other
two frameworks support multiple type systems with multiple qualifier hierarchies.

The first task of the analysis is type resolution. The Checker Framework executes
flow-sensitive type refinement proactively. At each node, it can combine flow-insensitive

23https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source/tree/pack
age-summary.html

58

https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source/tree/package-summary.html
https://docs.oracle.com/en/java/javase/17/docs/api/jdk.compiler/com/sun/source/tree/package-summary.html

and flow-sensitive information on demand (i.e., the getAnnotatedType method), then it
refines the type based on the current context. Although getAnnotatedType is a very flexible
method, it cannot reuse the types computed before. The main reason is operations on both
AST and CFG can control type resolution, so it is difficult to determine if the type of an
expression has been completely resolved and refined24. A similar discussion has been given
in Section 3.1.2, where the types of the operands of a binary expression will be recomputed
by the framework. In the worst case, an expression of the form N1 op N2 op . . . op Nn

requires n(n + 1)/2 type computations. Checker Framework Inference also suffers from
the same issue. UniFlow can always reuse the computed types because we know our type
environment Γ and stores Σs always contain the latest information from previous nodes,
and we only have one source of truth.

The Checker Framework and Checker Framework Inference can use stub files to provide
annotations for bytecodes. This functionality is important since annotating commonly used
libraries will improve analysis accuracy and reduce false positives. Although the support
is not shown in UniFlow’s design, we think it is trivial to incorporate stub files by using
the existing approach.

In inference mode, both Checker Framework Inference and UniFlow need to traverse
ASTs to find appropriate locations to insert solutions. This step visits each tree at most
once, so we consider its performance impact as negligible.

The next task in the analysis is applying type rules. In type checking mode, all three
frameworks can perform checks against the type rules without using constraint solvers.
However, getAnnotatedType in the two frameworks is again used commonly in this process
to retrieve the types of different expressions, causing performance overhead. In UniFlow,
we can reuse the fixed-point results from our dataflow analysis. In type inference mode,
there is no significant difference in performance between Checker Framework Inference and
UniFlow. Both frameworks need to generate constraints and feed them into some solvers.
UniFlow needs some extra resources to compute error messages, but this is necessary and
only has a minimal performance impact.

Ultimately, functionality and performance are also type system dependent. Some type
systems may have simple lattices with simple program properties to analyze. Some other
type systems may have complex, possibly infinite-height, lattices that require special widen-
ing and narrowing strategies. Complex lattices and program properties can also complicate
the constraints, thus increasing the time on running solvers. We think it will be mean-
ingful to experiment the performance of the same type system implemented on different
frameworks.

24The only exception as for now is the types on declarations since they are not affected by control flows.

59

5.1.2 Developer and User Experience

UniFlow is designed to provide a better developer experience than the preceding frame-
works. Its two significant contributions are the unified program representation and the
unified type rules handling. As discussed in previous sections and chapters, using both
AST and CFG to analyze the type of an expression can cause confusion about their objec-
tives or any duplicate logic in code. With the unified program representation, developers
know they use CFG for flow-sensitive expressions and AST for flow-insensitive (declaration)
constructs. This flattened design allows them to quickly locate and learn the logic for a
specific node or tree, thus making the learning curve smoother. On the other hand, Checker
Framework Inference proposed that the type rules for type checking can be reused for type
inference, but its implementation requires a type system to take different approaches in
different modes: use boolean expressions for type checking and generate constraints for
type inference. UniFlow unifies this process by only operating on constraints, allowing
developers to focus on the actual rules instead of how to handle different modes. Other
important improvements are already discussed in Section 3.2.

One advantage of the Checker Framework is it provides various utilities that cover
many different aspects, including type defaulting strategies, stub files, patches for javac
bugs, etc. These technical details are very helpful for boosting developers’ productivity.
Another advantage is the Checker Framework manual [32], which thoroughly explains each
component and provides instructions for building a new type system. These advantages
are the results of many years of development. They are good areas of improvement to
UniFlow.

Besides developer experience, we think user experience should also be considered care-
fully. For analysis behaviour, both the Checker Framework and Checker Framework Infer-
ence provide many command line options for users to adjust. Users will have the freedom
to decide what assumptions to make (e.g., concurrent semantics assumption [32]) and what
files to include or exclude. We also bear these options in mind when implementing our
framework. For analysis results, UniFlow can output error messages for inference failure,
while Checker Framework Inference only provides the unsatisfiable constraints. There are
still many possible improvements to explore. For example, both UniFlow and Checker
Framework Inference do not support producing multiple inference solutions. To make the
solutions more flexible to users, we may allow users to define some preference rules or even
automatically study their preferences from some source code.

60

5.2 Limitations of the Framework

To avoid having unnecessary complexity in the framework or type system development, we
have added several limitations to our framework.

The first limitation is it requires the type system dependencies to have a topological
order, i.e., their dependency graph must be a directed acyclic graph. This requirement
allows the framework to execute multiple type systems in a consistent order, and each
type system does not have to rely on the actual implementation of another type system.
The problem with circular dependency is ensuring the same solver applies to multiple
type systems. These type systems must have a consensus on the encoding and decoding
strategies to make the solver function properly. Based on the existing extensions to the
Checker Framework, we have not observed a meaningful use case of mutually dependent
type systems. Therefore, the limitation is introduced for better modularity and flexibility.

The second limitation is AST is still essential for providing location and context infor-
mation, for CFG represents the control flow instead of the syntax structure of the program.
In Chapter 4, we have presented the use of AST in processing declarations and finding slot
and error locations. However, it is possible that a type system requires context information
when analzying a node. An example is already given in Section 4.5.3, where we introduce
the helper function currentMethod(). We do not think retrieving such information through
the AST is a bad idea, as there is still a clear distinction between AST and CFG. Moreover,
the framework can provide many helper functions to retrieve abstract location or context
information.

The third limitation is on the power of inference. Many program properties can be too
complicated to infer. The question is, to what extent do we want inference to cover? For
example, if we want to infer polymorphic qualifiers for a method, we would need to at least
generate constraints for each possible combination of its declared types. For a method
signature of the form Tr m(T1 p1, . . . , Tn pn), we may have a polymorphic annotation for
any of the types Tr, T1, . . . , Tn. So we need to take

∑n+1
i=1

(
n+1
i

)
= 2n+1 − 1 combinations

into consideration. As the size of the program scales up, there will likely be too many
constraints for the solver. Due to the complexity, our default constraints in Section 4.5.3
do not infer polymorphic qualifiers. It only guarantees that the existing polymorphic
qualifiers are respected. Ultimately, the inference power is determined by the specific type
system, which involves more research and discussion.

61

5.3 Implementation and Challenges

We have implemented a basic version of our framework, which is publicly accessible on
GitHub25. We tested the framework using a simple type system with a two-element type
lattice. We observed expected results from both type checking and type inference, implying
our design and ideas are actually feasible. Compared to our eventual goal of laying the
groundwork, the implementation is still in an early stage. We plan to continue refining our
implementation and conducting more sophisticated experiments.

In this section, we want to share some challenges we have experienced in implementing
the initial version:

• Generic Types Support: Parametric polymorphism is supported in Java by the
introduction of generic types [17]. It is not trivial for a type system to handle generic
types since many complex topics are involved: we need to consider how to resolve
recursive types such as <T extends Comparable<T>>, how to handle the upper bound
and the lower bound of a type parameter, how to take care of wildcard types, etc.
This is currently an obstacle to our implementation, and we will discuss the relevant
future work in the next section.

• Complexity of Javac: Javac has a complex pipeline for code compilation, and anal-
ysis plugins need to have some understanding of its behaviour to function properly.
For example, it is possible to retrieve trees that are not yet analyzed by javac, but
those trees are only partially initialized, meaning they do not provide sufficient infor-
mation for most of the analyses. This is one of the motivations for us to treat location
as a detached property of slots, which is explained in Section 4.4.2. Another example
is most of the annotations on the declaration bytecode are not directly accessible.
This may have a negative impact on the accuracy of computed default types. Accord-
ing to the related workarounds in the Checker Framework, the solution is to process
some raw data from the bytecode26. We believe that reading the documentation and
writing test cases are effective ways to learn the behaviour of javac.

• Defaulting Strategies Support: Determining the default qualifier for an unan-
notated type use is a type system’s basic functionality. Although the strategy will
be specified by the type system as explained in Section 4.5.2, it is the framework’s

25https://github.com/zcai1/uniflow
26https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d

/framework/src/main/java/org/checkerframework/framework/type/TypesIntoElements.java

62

https://github.com/zcai1/uniflow
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/TypesIntoElements.java
https://github.com/eisop/checker-framework/blob/1b92dc5b55f25c061c963cbb14f0876748972d1d/framework/src/main/java/org/checkerframework/framework/type/TypesIntoElements.java

responsibility to provide the necessary groundwork. From our experience, there are
two pieces of information crucial to this process. The first one is the position of the
current type relative to the outermost type. For example, Object can be a simple
Object type, but it can also represent the upper bound of a wildcard type, such as
List<? extends Object>. The second piece of information is the context of the
current type use. For example, a type system may want to unsoundly assume the
top qualifier as the default for parameters in bytecode, allowing it to loosen type
rules for some methods.

5.4 Future Work

The previous sections have covered many functionalities and experiments we will continue
working on, including support for stub files and other defaulting strategies. In this section,
we want to discuss future topics that need more elaboration.

5.4.1 Generic Types Support

The first question to address for generic types is how to construct a qualified type where
a type use appears in its own type declaration or mutually depends on another generic
type. An example of the first case is <T extends Comparable<T>>, and an example of
the second case is <T extends Comparable<S>, S extends Comparable<T>>. From our
design for data classes in Section 4.3, qualified types are immutable, and thus it is difficult
to create a recursive reference among multiple qualified types. Our tentative solution is
to use reassignable (i.e., non-final) fields internally in the framework layer, and we can
make the property effectively non-reassignable to type systems. More importantly, the
framework should carefully handle all recursions to avoid recomputing the qualifier of any
constructed qualified types.

Once we can properly handle recursive types, the qualified types will cover all possible
TypeMirrors from javac, including type variables and wildcard types. We will also update
all the type visitors to provide default logic and prevent infinite recursion. This step
involves many targets, such as how stores are combined and what constraints to generate
for generic types. Luckily, it is possible to obtain some inspiration from the Checker
Framework.

The next question we need to think carefully is how to perform type refinement for
generic types. Consider the following code snippet:

63

1 List<Cat> cats = new ArrayList<>();
2 List<Animal> animals1 = cats; // invalid
3 List<? extends Animal> animals2 = cats; // valid

Line 2 fails to type check because generics are typically invariant in Java, but line 3 passes
the type check because the wildcard ? extends Animal is covariant. There is another form
of wildcard ? super T that is contravariant. Type rules for qualifiers can simply follow
these existing rules in Java, but whether to refine the upper or lower bound of a wildcard
type remains an open question.

Java also allows writing raw types in the source code, i.e., types with no type arguments
specified. This will suppress some type rules to allow unsound operations at compile time.
For pluggable type systems, the question is if we want to make conservative assumptions
for the ignored type arguments. Additionally, we should consider if it is meaningful to
have inference for the type arguments. It is possible that we have an inference solution,
but we cannot insert the solution back and pass Java’s type system.

5.4.2 Local Type Inference

Local type inference is a big topic that pertains to generic types and type inference. Ac-
cording to Chapter 18 of Java Language Specification [13], local type inference is needed
for “generic method applicability”, “generic method invocation type inference”, and “func-
tional interface parameterization inference”. Since pluggable type systems do not affect
runtime semantics, it is not their duty to find the applicable generic method. The other
two use cases can be demonstrated using the following code:

1 List<Cat> cats = new ArrayList<>();
2 Predicate<? super Cat> isGrey = c -> c.getColour() == GREY;

Line 1 uses “generic method invocation type inference”, where the type argument to the
constructor invocation is inferred as Cat. Line 2 shows “functional interface parameteriza-
tion inference”, where the parameter type of the lambda expression is inferred as Cat.

For consistency, it is beneficial for pluggable type systems to follow the same direction,
meaning type qualifiers should obey the same local inference rules. There will be a sub-
stantial improvement for analyzing reactive stream operations, which are often written as
a chain of generic method invocations with lambda expression arguments.

64

By following the instructions in the specification, we think it should be straightforward
to generate proper constraints for the relevant contexts, and we can merge them into
other constraints to feed into the solver. The drawbacks of this solution are: (1) adding
these constraints may slow down the solver, and (2) it may not be easy to debug if some
constraints are unsatisfiable.

The other option to implement local type inference is by building a dedicated solver,
which can compute the solutions after receiving a piece of context information (e.g., a
statement). Since the dedicated solver only focuses on a small piece of code and a few
types of constraints, it could be more efficient in solving the constraints and easier to
debug. However, the amount of required effort needs to be measured carefully.

5.4.3 Bytecode Support

Compared to AST, an advantage of CFG is it can represent the control flow of bytecode
instructions. Many previous works have proposed ways to generate CFGs from bytecode to
perform static analysis [2, 36]. Since UniFlow is a CFG-based framework, running analysis
on bytecode will be an interesting research direction. In addition, we believe allowing type
inference on bytecode can provide more precise information for analyzing the source code
that depends on it.

There are two foreseeable challenges. First, we need to find ways to retrieve information
that we used to get from AST. Fortunately, the element objects in javac will provide
information about declarations in bytecode. The difficult part is providing meaningful
outputs to type system users, such as the location of a bytecode instruction and the stub
files containing inference solutions. Second, since the CFG nodes will represent bytecode
instructions, they are very different from the existing nodes generated from AST. We need
to have special type resolution and constraint generation strategies for these nodes. For
example, an assignment expression in the source code may be translated into a sequence
of load and store instructions. So a valid question would be how to model the stores in
regard to memory locations.

65

Chapter 6

Related Work

6.1 Type System vs. Flow Analysis

Several works have compared type system with control flow (or dataflow) analysis. Pals-
berg and O’Keefe presented a safety analysis, which is a flow-based analysis for detecting
semantics errors in a program, is equivalent to a type system that checks if a program is
well-typed [26]. Although the constraints required for type system and for control flow
analysis are fundamentally different, they proved the two approaches will accept the same
programs.

Heintze not only demonstrated four control flow analyses for type safety but also pro-
vided four type systems that deduce control flow properties [15]. This work blurs the
distinction between type system and flow analysis since, for certain abstract program prop-
erties, they are just two different approaches for the same goal.

While the previous two studies were based on higher-order languages, we have similar
results for imperative languages. Laud et al. defined a framework containing some common
dataflow analyses for imperative languages, and they showed a general way to produce the
equivalent type system for each analysis in the framework [19]. Examples of a few dataflow
analysis translations were given in the paper to provide the concrete results obtained by
their method.

As concluded by Cousot, type system and program analysis are both a kind of abstract
interpretation [9]. The proofs and examples from previous works have established a solid
foundation for the feasibility of implementing a type system as a dataflow analysis, thus
reinforcing the validity of our work.

66

6.2 Type Analysis Frameworks

Besides the Checker Framework and Checker Framework Inference, there are other research
projects on building frameworks that support pluggable type systems. JavaCOP is a
framework developed by Markstrum et al. for defining and verifying type constraints for
Java programs [3]. The type constraints (i.e., type rules) are expressed in declarative
syntax using their special rule language, which works well with pattern-matching but lacks
expressiveness compared with the visitor pattern adopted in the Checker Framework and
UniFlow. A follow-up work shows improvements to the framework by adding dataflow
analysis and a testing framework for type systems [22].

Greenfieldboyce and Foster proposed JQual [14], which accepts custom type qualifiers
and performs type inference for Java programs. The project supports context-sensitive
interprocedural analysis by building constraint graphs and solving reachability problems,
instead of using constraint solvers. However, there are many limitations: it only supports
a single type system with a finite type lattice, it cannot handle generic types, and it is
unsound for annotations on the bytecode.

Infer is a static analysis tool that supports C, Objective-C, and Java, and it is now
owned by Facebook [8]. Its analysis is based on separation logic [25] and bi-abduction [7],
which is claimed to be scalable for large projects. A derivation of the tool, named Infer.AI,
has been developed to provide a more general framework with abstract interpretations27.
Although this is an open source framework with many implemented static analyses (e.g.,
purity and nullness), it has no publications or documentation about how to implement a
custom type system or any implementation details.

Schubert et al. built PhASAR, a dataflow analysis framework for C and C++, which
operates on LLVM IR [29]. Similar to JQual, this framework also provides interprocedural
analysis by solving graph reachability problems. It allows developers to override transfer
functions for different program properties, but few ways exist to encode constraints due
to the fixed set of solvers. The paper also mentions that PhASAR is currently soundy
but not sound. Overall, we see the potential of implementing an LLVM-based UniFlow by
extending this framework, which may be a reasonable future direction.

27https://fbinfer.com/docs/about-Infer

67

https://fbinfer.com/docs/about-Infer

6.3 Pluggable Type System Approaches

This section explores the approaches of different pluggable type systems. Using the Checker
Framework is a popular and straightforward approach. Crypto Checker by Xing et al.
detects improper use of cryptographic algorithms [35]. It uses the Checker Framework to
define type lattice and type rules that can flexibly support various forms of cryptographic
algorithms. PUnit developed by Xiang et al. provides modular type checking and whole-
program type inference for any units of measurement [34]. Checker Framework Inference
allows it to build a sound analysis over sophisticated lattices and constraints.

Formal verification involves more complex techniques but also can be more expressive.
Lanzinger et al. proposed a way to improve the precision of property type system with the
power of formal verification [18]. For property type errors reported by a type system, they
suggested adding assertions for the expected properties and using deductive verfication
tools to verify those assertions, thus reducing false positives. Infer also uses formal verfi-
cation thanks to its strong foundation on separation logic [8]. It claimed to have decent
precision while running incremental analysis based on bi-abduction.

Machine learning is currently a trending field that also contributes to the development
of pluggable type systems. DeepTyper by Hellendoorn et al. performs type inference for
TypeScript and JavaScript [16]. The tool features a deep learning model that attempts to
place the correct type annotations for a given context, which is achieved by learning from a
collection of well annotated programs. TypeWriter is another tool aiming for type inference
on dynamically typed languages [28]. It is trained on both the context and the natural
language information to provide better understanding of the source code. In addition, it
uses a static type checker to rule out the predictions that cannot type check, thus refining
the inference results.

68

Chapter 7

Conclusion

We present UniFlow, a CFG-based framework that helps developers to build precise and
expressive pluggable type systems. Based on our past experience in developing other type
system frameworks, we carefully design the new framework to provide a better experience
for both type system developers and users. With the main focus on dataflow analysis, our
framework specifies the tasks on different program representations, making the analysis
process more straightforward and more maintainable. There are two important layers in
the framework: the framework layer and the type system layer. This design abstracts the
underlying details of the framework, allowing developers to focus on writing the code for
their analysis. Moreover, our framework requires type rules to be expressed as constraints.
Developers will only need to define the type rules for once, and their type systems will
support two different modes: a modular type checking mode and a whole-program type
inference mode, with consistent behaviours. Ultimately, users can expect helpful error
messages with location information in any mode.

Compared to the Checker Framework and Checker Framework Inference, UniFlow pro-
vides a smoother learning curve and theoretically some performance gains. The two former
frameworks are still more refined due to many years of development. Their abundant doc-
umentation and functionalities are great resources for learning. On the other hand, the
framework itself has a few limitations on what type systems can do. These limitations will
not affect the soundness of the type systems, and we consider them as safe trade-offs for
less complexity.

The project is still in its infancy, and many challenges remain to be conquered. We
have implemented a prototype with limited functionalities to explore the feasibility of our
design, where the initial results are encouraging. We have two important upcoming tasks:

69

to support generic types and to conduct more comprehensive experiments. For a longer
time frame, we believe supporting bytecode analysis will bring significant improvements
and new research topics.

70

References

[1] A Dataflow Framework for Java. [Online]. Available: https://checkerframework.o
rg/manual/checker-framework-dataflow-manual.pdf (visited on 01/20/2023).

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and D. Zanardini, “Cost Analysis
of Java Bytecode,” in Proceedings of the 16th European Symposium on Program-
ming, ser. ESOP’07, Braga, Portugal: Springer-Verlag, 2007, pp. 157–172, isbn:
9783540713142.

[3] C. Andreae, J. Noble, S. Markstrum, and T. Millstein, “A Framework for Implement-
ing Pluggable Type Systems,” SIGPLAN Not., vol. 41, no. 10, pp. 57–74, Oct. 2006,
issn: 0362-1340. doi: 10.1145/1167515.1167479.

[4] S. Banerjee, L. Clapp, and M. Sridharan, “NullAway: Practical Type-Based Null
Safety for Java,” in Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2019, Tallinn, Estonia: Association for Computing Ma-
chinery, 2019, pp. 740–750, isbn: 9781450355728. doi: 10.1145/3338906.3338919.

[5] B. A. Becker et al., “Compiler Error Messages Considered Unhelpful: The Landscape
of Text-Based Programming Error Message Research,” in Proceedings of the Work-
ing Group Reports on Innovation and Technology in Computer Science Education,
ser. ITiCSE-WGR ’19, Aberdeen, Scotland Uk: Association for Computing Machin-
ery, 2019, pp. 177–210, isbn: 9781450375672. doi: 10.1145/3344429.3372508.

[6] G. Bracha, “Pluggable Type Systems,” inOOPSLA Workshop on Revival of Dynamic
Languages, Oct. 2004.

[7] C. Calcagno, D. Distefano, P. W. O’Hearn, and H. Yang, “Compositional Shape
Analysis by Means of Bi-Abduction,” J. ACM, vol. 58, no. 6, Dec. 2011, issn: 0004-
5411. doi: 10.1145/2049697.2049700.

71

https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://checkerframework.org/manual/checker-framework-dataflow-manual.pdf
https://doi.org/10.1145/1167515.1167479
https://doi.org/10.1145/3338906.3338919
https://doi.org/10.1145/3344429.3372508
https://doi.org/10.1145/2049697.2049700

[8] C. Calcagno et al., “Moving Fast with Software Verification,” in NASA Formal Meth-
ods, K. Havelund, G. Holzmann, and R. Joshi, Eds., Cham: Springer International
Publishing, 2015, pp. 3–11, isbn: 978-3-319-17524-9.

[9] P. Cousot, “Types as Abstract Interpretations,” in Proceedings of the 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, ser. POPL
’97, Paris, France: Association for Computing Machinery, 1997, pp. 316–331, isbn:
0897918533. doi: 10.1145/263699.263744.

[10] W. Dietl, S. Dietzel, M. D. Ernst, K. Muslu, and T. W. Schiller, “Building and
Using Pluggable Type-Checkers,” in 2011 33rd International Conference on Software
Engineering (ICSE), 2011, pp. 681–690. doi: 10.1145/1985793.1985889.

[11] W. Dietl, S. Drossopoulou, and P. Müller, “Generic Universe Types,” in ECOOP
2007 – Object-Oriented Programming, E. Ernst, Ed., Berlin, Heidelberg: Springer
Berlin Heidelberg, 2007, pp. 28–53, isbn: 978-3-540-73589-2.

[12] W. Dietl, M. D. Ernst, and P. Müller, “Tunable Static Inference for Generic Universe
Types,” in ECOOP 2011–Object-Oriented Programming: 25th European Conference,
Lancaster, Uk, July 25-29, 2011 Proceedings 25, Springer, 2011, pp. 333–357.

[13] J. Gosling et al., The Java Language Specification, Java SE 17 Edition. 2021. [Online].
Available: https://docs.oracle.com/javase/specs/jls/se17/html/index.html.

[14] D. Greenfieldboyce and J. S. Foster, “Type Qualifier Inference for Java,” in Proceed-
ings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications, ser. OOPSLA ’07, Montreal, Quebec,
Canada: Association for Computing Machinery, 2007, pp. 321–336, isbn: 9781595937865.
doi: 10.1145/1297027.1297051.

[15] N. Heintze, “Control-Flow Analysis and Type Systems,” en, in Static Analysis, A.
Mycroft, Ed., ser. Lecture Notes in Computer Science, Berlin, Heidelberg: Springer,
1995, pp. 189–206, isbn: 978-3-540-45050-4. doi: 10.1007/3-540-60360-3 40.

[16] V. J. Hellendoorn, C. Bird, E. T. Barr, and M. Allamanis, “Deep Learning Type In-
ference,” in Proceedings of the 2018 26th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
ser. ESEC/FSE 2018, Lake Buena Vista, FL, USA: Association for Computing Ma-
chinery, 2018, pp. 152–162, isbn: 9781450355735. doi: 10.1145/3236024.3236051.

72

https://doi.org/10.1145/263699.263744
https://doi.org/10.1145/1985793.1985889
https://docs.oracle.com/javase/specs/jls/se17/html/index.html
https://doi.org/10.1145/1297027.1297051
https://doi.org/10.1007/3-540-60360-3_40
https://doi.org/10.1145/3236024.3236051

[17] A. Igarashi, B. Pierce, and P. Wadler, “Featherweight Java: A Minimal Core Calculus
for Java and GJ,” in Proceedings of the 14th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, ser. OOPSLA ’99,
Denver, Colorado, USA: Association for Computing Machinery, 1999, pp. 132–146,
isbn: 1581132387. doi: 10.1145/320384.320395.

[18] F. Lanzinger, A. Weigl, M. Ulbrich, and W. Dietl, “Scalability and Precision by Com-
bining Expressive Type Systems and Deductive Verification,” Proc. ACM Program.
Lang., vol. 5, no. OOPSLA, Oct. 2021. doi: 10.1145/3485520.

[19] P. Laud, T. Uustalu, and V. Vene, “Type systems equivalent to data-flow analyses for
imperative languages,” Theoretical Computer Science, vol. 364, no. 3, pp. 292–310,
Nov. 2006, issn: 0304-3975. doi: 10.1016/j.tcs.2006.08.013.

[20] J. Li, “A General Pluggable Type Inference Framework and its use for Data-flow
Analysis,” Master’s Thesis, University of Waterloo, 2017. [Online]. Available: http:
//hdl.handle.net/10012/11771.

[21] C. Male, D. J. Pearce, A. Potanin, and C. Dymnikov, “Java Bytecode Verification for
@NonNull Types,” in Compiler Construction, L. Hendren, Ed., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2008, pp. 229–244, isbn: 978-3-540-78791-4.

[22] S. Markstrum, D. Marino, M. Esquivel, T. Millstein, C. Andreae, and J. Noble,
“JavaCOP: Declarative Pluggable Types for Java,” ACM Trans. Program. Lang.
Syst., vol. 32, no. 2, Feb. 2010, issn: 0164-0925. doi: 10.1145/1667048.1667049.

[23] A. Møller and M. I. Schwartzbach, Static Program Analysis, Oct. 2018. [Online].
Available: http://cs.au.dk/%5C∼amoeller/spa/.

[24] R. Monat, A. Ouadjaout, and A. Miné, “Static Type Analysis by Abstract Inter-
pretation of Python Programs,” in 34th European Conference on Object-Oriented
Programming (ECOOP 2020), R. Hirschfeld and T. Pape, Eds., ser. Leibniz Inter-
national Proceedings in Informatics (LIPIcs), vol. 166, Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 17:1–17:29, isbn: 978-3-95977-154-
2. doi: 10.4230/LIPIcs.ECOOP.2020.17.

[25] P. W. O’Hearn, J. C. Reynolds, and H. Yang, “Local Reasoning about Programs
That Alter Data Structures,” in Proceedings of the 15th International Workshop on
Computer Science Logic, ser. CSL ’01, Berlin, Heidelberg: Springer-Verlag, 2001,
pp. 1–19, isbn: 3540425543.

[26] J. Palsberg and P. O’Keefe, “A Type System Equivalent to Flow Analysis,” ACM
Trans. Program. Lang. Syst., vol. 17, no. 4, pp. 576–599, Jul. 1995, issn: 0164-0925.
doi: 10.1145/210184.210187.

73

https://doi.org/10.1145/320384.320395
https://doi.org/10.1145/3485520
https://doi.org/10.1016/j.tcs.2006.08.013
http://hdl.handle.net/10012/11771
http://hdl.handle.net/10012/11771
https://doi.org/10.1145/1667048.1667049
http://cs.au.dk/%5C~amoeller/spa/
https://doi.org/10.4230/LIPIcs.ECOOP.2020.17
https://doi.org/10.1145/210184.210187

[27] M. M. Papi, M. Ali, T. L. Correa Jr., J. H. Perkins, and M. D. Ernst, “Practical
Pluggable Types for Java,” in ISSTA 2008, Proceedings of the 2008 International
Symposium on Software Testing and Analysis, Seattle, WA, USA, Jul. 2008, pp. 201–
212.

[28] M. Pradel, G. Gousios, J. Liu, and S. Chandra, “TypeWriter: Neural Type Prediction
with Search-Based Validation,” in Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, ser. ESEC/FSE 2020, Virtual Event, USA: Association for
Computing Machinery, 2020, pp. 209–220, isbn: 9781450370431. doi: 10.1145/336
8089.3409715.

[29] P. D. Schubert, B. Hermann, and E. Bodden, “PhASAR: An Inter-procedural Static
Analysis Framework for C/C++,” en, in Tools and Algorithms for the Construction
and Analysis of Systems, T. Vojnar and L. Zhang, Eds., ser. Lecture Notes in Com-
puter Science, Cham: Springer International Publishing, 2019, pp. 393–410, isbn:
978-3-030-17465-1. doi: 10.1007/978-3-030-17465-1 22.

[30] L. Sun, “An Immutability Type System for Classes and Objects: Improvements,
Experiments, and Comparisons,” Master’s Thesis, University of Waterloo, Apr. 2021.
[Online]. Available: http://hdl.handle.net/10012/16882.

[31] M. Ta, “Context Sensitive Typechecking And Inference: Ownership And Immutabil-
ity,” Master’s Thesis, University of Waterloo, Apr. 2018. [Online]. Available: http:
//hdl.handle.net/10012/13185.

[32] The Checker Framework Manual: Custom pluggable types for Java. [Online]. Avail-
able: https://checkerframework.org/manual/ (visited on 01/20/2023).

[33] G. Van Rossum et al., “Python Programming Language,” in USENIX annual tech-
nical conference, Santa Clara, CA, vol. 41, 2007, pp. 1–36.

[34] T. Xiang, J. Y. Luo, and W. Dietl, “Precise Inference of Expressive Units of Mea-
surement Types,” Proc. ACM Program. Lang., vol. 4, no. OOPSLA, Nov. 2020. doi:
10.1145/3428210.

[35] W. Xing, Y. Cheng, and W. Dietl, “Ensuring Correct Cryptographic Algorithm
and Provider Usage at Compile Time,” in Proceedings of the 23rd ACM Interna-
tional Workshop on Formal Techniques for Java-like Programs, ser. FTfJP 2021,
Virtual, Denmark: Association for Computing Machinery, 2021, pp. 43–50, isbn:
9781450385435. doi: 10.1145/3464971.3468418.

[36] J. Zhao, “Analyzing Control Flow in Java Bytecode,” in 16th Conference of Japan
Society for Software Science and Technology, Citeseer, 1999, pp. 313–316.

74

https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1145/3368089.3409715
https://doi.org/10.1007/978-3-030-17465-1_22
http://hdl.handle.net/10012/16882
http://hdl.handle.net/10012/13185
http://hdl.handle.net/10012/13185
https://checkerframework.org/manual/
https://doi.org/10.1145/3428210
https://doi.org/10.1145/3464971.3468418

	List of Figures
	Introduction
	Background
	Program Representations
	Pluggable Type Systems
	Dataflow Framework
	Checker Framework
	Nullness Checker

	Type Inference
	Checker Framework Inference

	Introduction to a Novel Pluggable Type System Framework
	Motivations
	Type Resolution and Dataflow Analysis
	Duplication of Work
	Pluggable Types Modeling
	Type Checking and Type Inference
	Effective Error Messages

	Design Goals

	Architecture and Design
	Architecture Overview
	Example and Walk-Through
	Data Classes
	Framework Layer
	Analysis Order
	Slot Location
	Multiple Type Systems Support
	Analysis Messages

	Type System Layer
	A Java-Like Programming Language
	Type Resolution Stage
	Constraint Generation Stage

	Discussion and Future Work
	Comparison
	Functionality and Performance
	Developer and User Experience

	Limitations of the Framework
	Implementation and Challenges
	Future Work
	Generic Types Support
	Local Type Inference
	Bytecode Support

	Related Work
	Type System vs. Flow Analysis
	Type Analysis Frameworks
	Pluggable Type System Approaches

	Conclusion
	References

