
Towards Object Re-identification
from Point Clouds for 3D MOT

by

Benjamin Thérien
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Abstract

This thesis studies the problem of object re-identification (ReID) in a 3D multi-object
tracking (MOT) context, by learning to match pairs of objects from cropped (e.g., using
their predicted 3D bounding boxes) point cloud observations. We are not concerned with
state-of-the-art performance for 3D MOT, however. Instead, we seek to answer the fol-
lowing question: In a realistic tracking by-detection context, how does object ReID from
point clouds perform relative to ReID from images? To enable such a study, we propose
a lightweight matching head that can be concatenated to any set or sequence processing
backbone (e.g., PointNet or ViT), creating a family of comparable object ReID networks
for both modalities. Run in Siamese style, our proposed point cloud ReID networks can
make thousands of pairwise comparisons in real-time (10 Hz). Our findings demonstrate
that their performance increases with higher sensor resolution and approaches that of image
ReID when observations are sufficiently dense. Additionally, we investigate our network’s
ability to enhance 3D multi-object tracking, showing that our point cloud ReID networks
can successfully re-identify objects that led a strong motion-based tracker into error. To
our knowledge, we are the first to study real-time object re-identification from point clouds
in a 3D multi-object tracking context.
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Chapter 1

Introduction

Multi-object tracking is essential for safety-critical autonomous driving, where being able
to accurately keep state can be a matter of life or death. Many 3D MOT methods [155, 75,
160, 57] following the tracking-by-detection paradigm rely heavily on motion cues provided
by the precise detections of LiDAR-based methods [155, 75]. While these trackers easily
arrive close to the top of existing benchmarks, they do not capture the complete picture.
Any complete multi-object tracking approach should feature a re-identification component
in addition to a motion-based tracker, especially for safety-critical applications. Consider,
for instance, Figure 1.1, where the Ego vehicle, E, equipped with only a motion-based
tracker, loses sight of V1 due to occlusion and incorrectly propagates V1’s track to V2.
This causes a potential crash scenario in frame 6, where the ego is trying to reach the exit
(unaware of V1), while V1 is slowing down to pass behind the truck. Had the ego been
equipped with a ReID module, the motion model’s error in frame 3 could have been avoided.
Therein lies the importance of object ReID for 3D MOT—it is robust to ambiguous motion
cues which can fool even the strongest motion-based trackers. Consequently, many existing
works leverage ReID features from images to improve a motion-based tracker’s performance
[58, 142, 141, 133].

While strong ReID performance can be obtained from RGB data alone, even au-
tonomous agents equipped with arrays of RGB sensors stand to benefit from the added
redundancy, diversity, and complementarity offered by processing depth-sensor information
for ReID. Let us examine, for instance, an autonomous vehicle equipped with both types
of sensors. Redundancy refers to the ability of one sensor to accomplish the job of another
if it were to fail. If the camera malfunctions, then LiDAR can fill the gap. Diversity
refers to the range of information available from different sensors. When added to RGB
information, LiDAR scans offer otherwise unavailable 3D shape information, increasing
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the diversity of the sensor suite. Complementarity refers to the ability of two sensors to
complement each other. When processing LiDAR scans in addition to image information,
the sensors complement each other by having slightly different viewing angles and being
robust to different lighting conditions. Together with the need for ReID in a tracking con-
text, this requirement for independently leveraging point cloud information in multi-modal
settings leads us to wonder: how effective is LiDAR-based ReID compared to camera-based
ReID in a tracking-by-detection scenario?

To the best of our knowledge, we are the first to investigate ReID of deformable and
non-deformable objects from sparse LiDAR observations in a tracking-by-detection context.
Our contributions can be summarized as follows:

• We propose a symmetric matching head that runs in real-time and can be added to
most existing point processing backbones.

• Our thorough empirical evaluation on the Waymo and nuScenes datasets is the first to
establish point cloud ReID performance relative to image ReID. Our results demon-
strate that our proposed point cloud ReID networks can approach the performance
of image ReID when LiDAR observations are sufficiently dense.

• Our experiments investigating the effect of scaling training time reveal that our net-
works continue to learn and improve well beyond their original training schedule,
suggesting a simple way to improve performance.

• We demonstrate that our networks can successfully re-identify observations that led
three strong motion-based multi-object trackers into error.

Our results outline a promising future for point-based object ReID, especially as depth-
sensor resolution continues to increase.
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Figure 1.1: Only relying on motion cues for MOT can be problematic. The
sequence depicts a potential crash scenario that could have been avoided by a tracker
leveraging object re-identification.
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Chapter 2

Background

We begin this chapter with a brief overview of supervised learning and its connection to
maximum likelihood estimation. We then explain how this powerful methodology can be
applied to learn representations of complex high-dimensional data, a necessary step to
effectively re-identify objects from sensor observations. We continue our discussion of deep
learning by introducing the transformer, an architecture quickly becoming ubiquitous to
most applications, and show how it can be adapted to process images and point clouds.

2.1 Supervised Learning

Let P(x,y) be a probability distribution relating x and y. Supervised learning algorithms
relate x to y by making a prediction of y’s value given an observation of x. Suppose that
x ∈ X ⊆ Rk and y ∈ Y ⊆ Rg, then the goal of supervised learning is to find a function
f : X → Y which estimates the conditional density P(y|x). This differs from unsupervised
learning, which is typically concerned with directly learning the density P(x) or clustering
observations x ∼ P(x) without requiring access to the corresponding label y.

While non-parametric methods to supervised learning exist (e.g. k-Nearest-Neighbour),
in what follows we will concern ourselves exclusively with methods that are parametric.
Formally, supervised learning can be defined as the problem of estimating the parameters
θ of a function fθ ∈ F that minimizes the expected prediction error over x,y ∼ P(x,y),
where F is a class of functions mapping X to Y . The expected prediction error is defined
as the expected loss over the distribution P :

L(fθ) = E(x,y)∼P [l(fθ(x),y)], (2.1)

4



where l : Y ×Y → R is a loss function that measures the discrepancy between the predicted
output fθ(x) and the true output y. The function f that minimizes the expected prediction
error is called the optimal predictor or the Bayes predictor, and it is defined as:

f ∗(x) = arg min
ŷ∈Y

Ey∼P|x[l(ŷ,y)], (2.2)

where Ey′∼P|x denotes the conditional expectation of y given x.

In practise, the true joint density P(x,y) is unknown and we only have access to a
finite number of samples (x,y) ∼ P(x,y). Therefore, finding the optimal predictor f ∗ is
impossible. Instead, our supervised learning algorithms estimate the conditional density
P(y|x) based on a finite dataset D =: {(xi,yi)}ni=1 by finding a function fθ ∈ F that
minimizes the empirical risk, defined as:

L̂(fθ) =
1

n

n∑
i=1

l(fθ(xi),yi). (2.3)

This is equivalent to solving the following optimization problem:

θ̂ = arg min
θ

L̂(fθ). (2.4)

This optimization problem can be solved using various techniques, such as gradient descent,
stochastic gradient descent, or convex optimization.

Under the assumption that (xi,yi) are i.i.d and with the appropriate choice of loss
function L̂ (e.g., cross-entropy), the empirical risk L̂(fθ) is equivalent to the negative
log-likelihood of the model parameters. Specifically, if we assume that the conditional
distribution P(y|x) is approximated by a probability density function fθ(y|x), where θ is
the parameter vector, then the negative log-likelihood (NLL) of the parameters under the
training examples in D is given by:

NLL(θ) = −
n∑

i=1

log fθ(yi|xi). (2.5)

In this case, maximizing the log-likelihood is equivalent to minimizing the negative log-
likelihood, which is equivalent to minimizing the empirical risk L̂(f), where L̂ is chosen to
be cross-entropy. Therefore, θ̂ obtained from solving equation 2.4 will be the conditional
maximum likelihood estimator (MLE) of P(y|x). Using MLE estimators is appealing in
practice as they can be shown to be the best estimators in the limit as the number of
samples n → ∞ [36]; that is, they converge the fastest to the true value of θ. This, of
course, assumes 1) that the true functional form of the conditional distribution P(y|x) is
an element of F and can therefore be found by solving equation 2.4 and 2) that the true
distribution has a single valid parametric form fθ.
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2.2 Representation Learning

The most popular supervised learning algorithms today fall under the category of Deep
Learning. Unlike traditional supervised learning algorithms, which typically rely on models
of limited representational capacity operating over handcrafted features, deep learning au-
tomatically extracts features of interest directly from the data. By stacking multiple layers
of non-linear transformations, deep learning models can learn hierarchical representations
that capture increasingly abstract and complex features. These high-capacity models can
be used to directly estimate P(y|x) even when x is very high-dimensional, as is the case
for images or point clouds.

Deep learning solutions to machine learning problems can be described by five main
components: the dataset, loss function, model architecture, optimization algorithm, and
hyperparameters. We will now describe each of these components by illustrating how they
combine to solve a simple binary classification problem. Suppose that we are interested in
diagnosing a disease from chest x-ray scans. We have access to a dataset D =: {(xi,yi)}ni=1,
whose samples are drawn i.i.d from P(x,y). x ∈ X is a chest x-ray scan (2D image) that
we have flattened into one long row vector. y ∈ {0, 1} is the corresponding label; y = 1
if the patient has the disease and y = 0 otherwise. Binary cross-entropy is a common loss
function to use in this setting

Lbce(x, y) = y · log(x) + (1 − y) · log(1 − x). (2.6)

For illustration purposes, we select our model to be a simple multi-layer perceptron fθ(x) =
σ(Wh · (Wh−1 · . . . (W2 · (W1x

T )+)+)) with h layers and ReLU non-linearities after each
layer except for layer h whose activation function is a sigmoid. Bias terms can be included
in W by appending a constant element to the input. The parameters θ are the weights
of each matrix Wi, i = 1, 2, . . . , h. Having specified our dataset, loss function, and model
architecture, we must now select an optimization algorithm to solve the optimization prob-
lem of equation 2.4. In deep learning, this is typically accomplished using gradient descent,
stochastic gradient descent, or one of their variants [77, 59, 109]. In stochastic gradient
descent, the parameters of fθ are updated as follows

θt+1 = θt − α∇θLbce(fθ(x),y), (2.7)

using the gradient of the loss function with respect to a single example. A more efficient
variant called mini-batch gradient descent averages the gradient over a number of samples

θt+1 = θt − α∇θ
1

m

m∑
i=1

Lbce(fθ(Xi,:),Yi,:), (2.8)
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where m << n is the size of a mini-batch and X,Y are matrices of samples stacked
row-wise. This variant has two advantages: it reduces the noise in the gradient estimate
and allows for adjusting the memory complexity of the gradient computation by reducing
the size of m. The setting of the learning rate α and other hyperparameters can be
determined by out-of-sample performance assessment (e.g., using a validation set to tune
them). Repeatedly applying equation 2.8 for an appropriate number of passes over the
dataset should produce θ̂ an approximate minimizer of equation 2.4. Given our choice
of loss function in equation 2.6 and our assumption about i.i.d training data, fθ̂ can be
interpreted as an approximate maximum likelihood estimate of P(y|x). Of course, no
guarantees on the goodness of this estimate can be given as the optimization problem is
highly non-convex. In practice, however, gradient descent should converge to a reasonably
low value of Lbce provided that x contains enough information about the true value of y.

2.3 Transformers

While the basic network architecture outlined in the previous section served well for il-
lustration purposes, in practice more complex architectures are used to process sensory
information. Today, the Transformer is the deep learning practitioner’s architecture of
choice. Introduced by Vaswani et al. the transformer is rapidly becoming ubiquitous to
almost every application [20, 129, 51, 39, 27, 1, 35]. Originally designed for Natural Lan-
guage Processing (NLP), the transformer processes sequences of token embeddings (input
vectors) in each forward pass. That is, the transformer operates over inputs of the form
X ∈ RS×d, where S is the set or sequence dimension and d is the feature or channel di-
mension. The original transformer architecture can be created by stacking N transformer
encoder layers, followed by N transformer decoder layers. At the heart of any transformer
layer is the attention mechanism it uses. In what follows, we outline two versions of this
attention mechanism (sections 2.3.1 and 2.3.2). In section 2.3.3, we discuss details of the
transformer encoder block. Finally, sections 2.3.4 and 2.3.5 introduce two adaptations of
the transformer architecture used in our empirical study: the vision transformer, and the
point transformer.

2.3.1 Dot product attention

Of the many different attention formulations, dot product attention [131] is the most widely
used. This mechanism models pair-wise interactions between sequence elements as a fully
connected graph, where each layer updates an element’s representation based on a convex
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combination of the elements it is connected to. We note that considering the input to be a
sequence, here, implicitly assumes that positional encodings have been added to it to break
permutation equivariance. Since the weights of the convex combination are obtained by
pushing attention scores through a softmax layer, the most heavily weighted elements are
emphasized relative to others—an inductive bias toward only attending to a few elements.
Formally, let Q ∈ RS′×dq , K ∈ RS×dk , and V ∈ RS×dv , be the query, key, and value
matrices where S and S ′ are sequence lengths. Then, dot product attention is defined as

A(Q,K,V ) = softmax

(
QKT

√
dk

)
V . (2.9)

The softmax operation is applied row-wise, meaning that each row vector in the output
matrix is a convex combination of the rows of V . In most settings dk = dv = dq. Given an
input sequence X ∈ RS×d of length S, the query, key, and value matrices are computed as
follows:

Q = WQXT , K = WKXT , V = W V XT .

The operation defined above is known as self-attention (SA) since a single input sequence
is used to compute all attention matrices. Note that here S ′ = S. Alternatively, the query
matrix may be computed from another sequence X̄ ∈ RS′×d, allowing related but distinct
sequences to attend to each other. This is known as cross-attention (CA) and S need not
equal S ′. These attention mechanisms can be written using the following shorthand:

SA(X) = A(WQXT ,WKXT ,W V XT ), (2.10)

CA(X̄,X) = A(WQX̄T ,WKXT ,W V XT ). (2.11)

One drawback of dot product attention is its quadratic memory and computational
complexity in the sequence length of O(S2). This directly results from computing the
S × S attention matrix, which is required to compute the row-wise softmax:

A(Q,K,V )i,: =

∑S
j=1 exp(Qi,:K

T
:,j)V:,j∑S

j=1 exp(Qi,:KT
:,j)

. (2.12)

2.3.2 Linear attention

Linear attention (LA) was proposed in [55] as an alternative to dot product attention,
which pivots the computational complexity of the attention operation to be quadratic in
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the feature dimension O(d2) as opposed to the sequence dimension. This is advantageous
when dealing with longer sequences or smaller feature dimensions, where d << S. This is
accomplished by removing the row-wise softmax operation from equation 2.12 in favor of
a more efficient way of computing attention weights. Katharopoulos et al. propose using
a kernel:

LA(Q,K,V )i,: =

∑S
j=1 ϕ(Qi,:)ϕ(K:,j)

TV:,j∑S
j=1 ϕ(Qi,:)ϕ(K:,j)T

= ϕ(Qi,:)

∑S
j=1 ϕ(K:,j)

TV:,j∑S
j=1 ϕ(K:,j)T

. (2.13)

In vectorized form this yields

LA(Q,K,V ) =
ϕ(Q)ϕ(K)TV∑S

j=1 ϕ(K:,j)T
. (2.14)

From the associativity of matrix multiplication, we see that we can compute the numerator
as ϕ(Q)(ϕ(K)TV ), obtaining the desired complexity. Analogous to dot product attention,
we define shorthand for linear self-attention (LSA) and linear cross-attention (LCA),

LSA(X) = LA(WQXT ,WKXT ,W V XT ), (2.15)

LCA(X̄,X) = LA(WQX̄T ,WKXT ,W V XT ). (2.16)

2.3.3 Transformer block

We have introduced two variants of the attention operation, which trade-off memory com-
plexity between the sequence length and representation dimension. We will now illustrate
how these operations fit into a transformer encoder layer. We leave out the transformer
decoder layer for brevity. The output of the lth transformer encoder layer (Tl) can be
defined as follows

Il =LN(MHAl(X) + X)

Tl(X) =LN(hl(Il) + Il) (2.17)

Where LN is layer normalization [2], hl is an MLP applied to each member of the sequence
individually, and multi-head attention MHA is defined as the concatenation of multiple
attention operations using different weight matrices but operating over the same input
sequence X:

MHAl(X) = ⊕h
i=1Al,i(W

Q
l,iX

T ,WK
l,i X

T ,W V
l,iX

T ) = ⊕h
i=1SAl,i(X), (2.18)
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where l, i designates the layer l and the attention head i. We note that the dot product self-
attention (SA) used here could be replaced with LSA to obtain a transformer with linear
attention. The input X to all layers except the first will be the output of the previous layer.
The first layer receives X + P , the input sequence X added to a positional embedding P
that indicated the position of the token in the sequence. Since the self-attention operation
is permutation equivariant, P must be added to the sequence. Otherwise, the transformer
would become an over-parameterized bag of words model as it would have no way of
determining the order of the sequence.

2.3.4 Transformers applied to Image Processing

In their paper “An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale”, Dosovitskiy et al. propose the vision transformer (ViT) architecture—a trans-
former architecture for image processing [23]. The authors show their architecture achieves
competitive results on image classification compared to SOTA convolutional neural net-
works(CNNs). To process images with a transformer, the authors split an image into a
sequence of evenly sized patches. For instance, an image of resolution 224×224×3 can be
split into 196 patches of size 16×16×3. These patches are then flattened to X ∈ R196×768

and added to positional encodings before being processed by a transformer using the exact
architecture described above with dot product attention.

2.3.5 Transformers applied to Point-Cloud Processing

Point clouds are unstructured sets living in 3D space. They are, therefore, naturally pro-
cessed by transformers where elements of the set can be treated as elements of a sequence.
Multiple works propose slightly different transformer architectures to process point clouds
[51, 167, 1]. However, we will limit our discussion to the adaptation of [51] as it is the only
one used throughout our experiments.

The siamese Point-Transformer [51], which we call Point-Transformer (PT) henceforth,
computes multi-scale features for each element of the input point-cloud. This is accom-
plished by as series of self-attention “encoder” blocks that compute features at progres-
sively finer resolutions and subsequent cross-attention “decoder” blocks that upsample the
encoder’s outputs to compute a representation for each point in the input point cloud.

Encoder For images and text, each element of the input sequence constitutes a meaning-
ful part of the input on its own: a word or an image patch. Although it is natural to treat
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every point of the point cloud as an element of the input sequence, a single point is only
meaningful in relation to the other points in the set. Therefore, it is helpful to aggregate
local context within the point cloud to obtain meaningful input features for each point.
This can be accomplished using edge convolutions [138] to aggregate information from the
k-nearest neighbors of a point in 3D space. Applying edge convolutions to compute fea-
tures of a set of S points produces a feature map E ∈ RS×d where S, the set dimension, is
analogous to the sequence dimension from previous sections and d is the feature or channel
dimension.

While PT’s architecture is similar to the original transformer it is not identical like ViT.
For instance, PT does not stack encoder layers by directly taking the output of the previous
layer. Instead, PT’s encoder layers operate over edge features El of progressively coarser
resolution. The edge features input to each layer are computed as described above, by
computing features of KNN neighbourhoods for points processed by the previous encoder
layer. Each of these subsamples contains N

2l
points, where N is the number of input

points. In this way, features are passed from one encoder layer to the next when they are
aggregated within the edge convolution, leading to progressively coarser features as each
encoder summarizes the features of the previous layer using fewer centroids.

During the forward pass, PT first encoder takes as input the set of point features El and
corresponding positional embeddings Pl that are computed directly from the 3D points.
The PT’s encoder layer uses multi-head linear self-attention defined as follows:

MHA
Epts

l (Êl) = ⊕h
i=1LSAl,i(Êl), (2.19)

where Êl = El + Pl. Then, PT’s transformer encoder layer can then be defined as

Il =LN(hl(MHA
Epts

l (Êl))),

T pts
l (Êl) =LN(MLPl(Il ⊕El)) + Il, (2.20)

where hl is a linear layer, MLPl is a multilayer perceptron, LN is a layer nomalization, and
⊕ designates feature level concatenation. After applying these encoder layers to different
resolution input features we obtain features maps Hl = T pts

l (Êl) for l ∈ {1, 2, 3}.

Decoder To propagate the encoded information from features at coarser resolutions to
finer resolutions, the authors use a version of multi-head cross-attention between subse-
quent encoded feature maps computed as follows:

MHA
Dpts

l (Hl,Ol+1) = ⊕h
i=1 LA(WQ

l,iH
T
l ,W

K
l,i O

T
l+1,W

V
l,i (Ol+1 + Pl+1)

T ). (2.21)
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The corresponding decoder block is defined similarly to the encoder:

Il =LN(hl(MHA
Dpts

l (Hl,Ol+1))),

Ol =LN(MLPl(Il ⊕Hl)). (2.22)

This is done for l = 2, 1, 0, where O3 = H3 and H0 is the original set of points in stacked
matrix form. Therefore, the final output O0 is a feature map for each point in the set,
where each feature depends on the coarser-resolution features of previous layers.
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Chapter 3

Related Work

This section briefly outlines areas relevant to our study of object ReID from point clouds
and highlights the absence of point-based ReID in 3D multi-object tracking, thus far.

3.0.1 Point-Processing Networks

The ability to effectively represent irregular sets of points is essential for 3D geometry
processing. Respecting the symmetries of permutation invariance (PointNet) [101] and the
metric space structure of raw point clouds (PointNet++) [102] were shown early on to be
important priors. Subsequent works propose edge convolutions to process point clouds in
CNN-style [138], a performant and efficient residual-MLP framework [81], exploiting the
benefits of depth [62], using the MLP-Mixer [16], using a transformer-based architecture
[167], among others. In the following study, we select three efficient models to use for our
experiments: PointNet [101], DGCNN [138], and Point-Transformer [51].

3.0.2 3D Single Object Tracking

Single object tracking (SOT) from point clouds focuses on the task of identifying a single
target object within a large search area. Consequently, most methods apply point process-
ing networks to compare the target to the search area, techniques that could be adapted to
our point-cloud-ReID-for-MOT setting. Indeed, many recent works [32, 51, 50, 117, 103]
have shown the benefits of siamese point-processing networks for SOT. Giancola et al. [32]
learn a similarity function between cropped point cloud patches and use a Kalman filter to
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generate candidate bounding boxes for matching with the current target observation. In
follow-up work, P2B [103] eliminates the need to approximate greedy search at inference
time in favor of an end-to-end regression approach that directly estimates the target’s next
position through Hough voting. Hui et al. [50] improve on this approach with a novel
regression head inspired by work on object detection [29]. Specifically, they use point
features computed from a siamese network which learns target and search area features
together as input to a voxelization branch, which voxelizes the 3D space and pools along
the height dimension. A 3D object-detection-style head is then applied over the resulting
BEV feature map to regress center position, height, and yaw. In their latest work [51],
the authors show that their results can be improved by employing a Point-Transformer
backbone. Given the strong performance of their architecture for SOT, we include it in
our study and show that the Point-Transformer also performs strongly for re-identification
in a multi-object tracking context.

3.0.3 3D Multi-Object Tracking

Maintaining 3D tracklets for detected objects is an essential task for autonomous vehicles—
allowing them to forecast the future motion of these objects for planning. Many 3D MOT
approaches follow the tracking-by-detection paradigm [140, 15, 160, 67, 163, 40, 57, 110,
142, 66, 98, 133, 141, 58], where an object detector is used to identify candidate objects for
matching to existing tracks and a motion model is used to propagate tracks from one frame
to the next. Detections from LiDAR-based object detectors are of high quality, simplifying
the downstream tracking task as motion cues are more reliable with better detections.
However, approaches that additionally use appearance-based features [142, 58, 163, 133],
typically outperform other methods for a given object detector. Of all the works mentioned,
only one [141] leverages representations of object-level point clouds cropped from their
predicted 3D bounding boxes. While we also crop object point clouds from their 3D
bounding boxes, our work differs in multiple ways: 1) the other work evaluates the proposed
networks with respect to the 3D MOT task, while our results focus on point cloud ReID
accuracy compared to image ReID, 2) the results in [141] are only for the KITTI-car split,
while we evaluate our model’s performance on all classes for nuScenes and WOD, and 3)
the other work does not provide details on how the points used for ReID are extracted.
Sufficient details are needed to address our main research question, however. If the points
are not normalized, then a point processing network could learn a motion model.
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3.0.4 Object Re-Identification from images and point clouds.

ReID from images has been an active area of research for many years, with most work
focusing on Vehicle ReID [175, 170, 114, 25, 28, 73, 56] or Person ReID [169, 18, 48, 52,
53]. In contrast, ReID which leverages depth sensor information has received relatively
little attention. A number of works consider ReID from RGB-D data [87, 68, 72, 99],
leveraging the depth information in conjunction with skeleton normalization to improve
re-identification performance. A recent work [171] proposes OG-NET for pedestrian ReID
from point clouds. However, the work uses point clouds that are artificially generated
from image datasets for person re-identification, using a human pose estimation pipeline
applied to each image. In contrast, our study involves real observations cropped directly
from large-scale autonomous driving datasets.
Finally, in what is the closest work to our own, Giancola et al. [32] propose an improvement
to 3D single-object tracking (SOT) which leverages shape completion regularization for
similarity learning. Specifically, they use a siamese network and train it to encode cropped
(e.g., using GT bounding boxes) point cloud observations into a latent vector representation
similar to one of the corresponding complete object (created by aggregating points from all
the crops). At inference, they use a Kalman filter to generate candidate bounding boxes for
matching to the current target observation. While this method also proposed to train ReID
networks from cropped bounding box observations, our studies differ in multiple ways: 1)
they train their networks for the 3D SOT task, while our focus is 3D MOT, 2) their study
only involves cars and is limited to the KITTI dataset, while we train and evaluate on
all classes of the large-scale nuScenes and Waymo datasets, and 3) their study does not
compare performance with image re-identification models.
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Chapter 4

ReID Dataset Construction

To train our point re-identification networks, we extract object observations from the
nuScenes dataset [7] and the Waymo Open Dataset (WOD) [126]. This extraction process
seeks to maximize the applicability of our results to a tracking-by-detection context and
is non-trivial. Here, we briefly describe the salient details. Starting with an overview of
each dataset’s sensor suite, we highlight the differences between them and explain how
we mitigated their class discrepancy. We then detail the object detectors used to obtain
ReID samples with realistic noise and explain our object extraction procedure for point
clouds and images. Finally, we discuss the statistics of our newly created ReID datasets
and outline our training-time and testing-time sampling algorithms.

4.1 Dataset differences

Sensors Each dataset contains multimodal driving data captured from one (nuScenes)
or multiple (WOD) LiDAR sensors and an array of camera sensors. nuScenes employs a
single 360◦ 32-beam LiDAR, while WOD features four close proximity LiDAR sensors on
its front, back, and sides and one 64-beam 360◦ 10 Hz top-mounted sensor. This means
that LiDAR scans from the WOD will have a much better coverage of the entire scene than
their nuScenes counterparts (see fig.4.1), allowing us to study how point ReID improves as
sensor resolution increases. The situation is reversed for cameras, however. On nuScenes,
six cameras capture a full 360◦ view of the scene, while the WOD was captured from a
vehicle equipped with five cameras that have a front-facing field of view (FOV) of ∼ 252◦

and a corresponding blind spot behind the vehicle. The nuScenes cameras capture six
1600 × 1200 images, while the WOD cameras are of slightly higher resolution, producing
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Figure 4.1: WOD observations (64-beam LiDAR) are much denser than their
nuScenes counterparts (32-beam LiDAR). The figure shows a heatmap of the mean number
of points per bucket for the nuScenes (left) and Waymo (right) datasets. The mean is calculated
from the number of points within true positive bounding boxes whose center lies within the
bucket. The 30 distinct azimuth ranges shown cover 360◦ and the 18 radii shown are each five
meters apart. The heatmaps are centered on the ego vehicle.

three 1920 × 1280 frontal images and two 1920 × 886 lateral images. The WOD vehicle’s
LiDAR-Camera FOV discrepancy is a perfect illustration of a real-world robotics system
that can benefit from the added complementarity of LiDAR-based ReID.

Class Labels The nuScenes dataset annotates 10 distinct classes (see table 4.2); however,
we only concern ourselves with the classes considered on their tracking benchmark: car,
bus, pedestrian, truck, bicycle, motorcycle, and trailer. In their original dataset release,
WOD provided substantially fewer tracking labels: vehicle, pedestrian, and bicycle. In an
effort to increase the compatibility of both datasets, we enhance the original WOD class
labels using their point cloud segmentation labels (released in a subsequent update to the
dataset). Specifically, we annotate the objects within segmentation-annotated frames using
the majority vote of annotated points within a bounding box. Then, using the tracking
labels, we propagate the new class of the object to all frames. This procedure expands the
labels to include car, truck, bus, and motorcycle. We note that some objects don’t receive
a new label as they never occur in a segmentation-annotated frame. We choose to ignore
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these objects as they make up a negligible amount (0.6%) of all annotated objects (see the
“other vehicle” class in figure 4.2).

car: 63.8%
pedestrian: 31.6%
truck: 1.9%
bicycle: 0.8%
bus: 0.7%
motorcycle: 0.6%
other_vehicle: 0.6%

Figure 4.2: Waymo class label split after propagating segmentation annotations. The
plot shows the proportions of different types of objects in the WOD training set after propagating
segmentation labels. We note that the samples belonging to the “other vehicle” class are ignored
during the creation of our ReID datasets, since we do not have label information for them.

4.2 Object extraction

Obtaining bounding boxes from 3D object detectors To simulate the noise encoun-
tered in a real tracking-by-detection setting we extract object observations using predicted
bounding boxes from 3D object detectors. This improves noise realism over previous work
that simply applied Gaussian noise to GT bounding boxes’ position and yaw [32]. To ex-
tract these realistic observations, we use ground-truth tracking annotations in conjunction
with bounding boxes predicted from 3D object detectors. For the nuScenes dataset, we use
detections from the pre-trained BEVfusion C+L checkpoint provided by [75]. For WOD,
we train our own object detector using the CenterPoint [155] implementation provided by
MMDetection3D [19]. Our CenterPoint model is trained for 20 epochs, where each epoch
constitutes a pass over 20% of the frames in WOD (sampled uniformly at random). We
report the performance of each detector on their respective validation sets in tables 4.1
and 4.2. While results between datasets are difficult to compare, we hypothesize that the
nuScenes model attains relatively stronger performance. This is to be expected as the
model incorporates both camera and LiDAR information, while our Waymo model does
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not. We note that this performance difference should have an impact on the level of noise in
predicted bounding boxes and consequently may impact our ReID network’s performance.

Class
Level 1 Level 2

mAP mAPH mAP mAPH

Car 68.3 67.8 60.7 60.2
Truck 34.2 33.5 32.2 31.6
Bus 49.0 48.6 42.6 42.3
Motorcycle 53.1 52.2 38.0 37.4
Cyclist 68.4 67.0 65.8 64.5
Pedestrian 65.9 59.7 58.0 52.4

Table 4.1: Performance of the Center-
Point model on the WOD with en-
hanced vehicle labels. The metrics are
only calculated on samples with an en-
hanced label.

Class AP ATE ASE AOE AVE AAE

Car 89.2 0.170 0.148 0.061 0.274 0.185
Truck 64.6 0.326 0.181 0.093 0.247 0.217
Bus 75.3 0.338 0.189 0.069 0.430 0.274
Trailer 42.5 0.520 0.201 0.610 0.214 0.140
Const. Veh. 30.4 0.735 0.431 0.797 0.118 0.295
Pedestrian 88.2 0.134 0.288 0.387 0.217 0.101
Motorcycle 78.6 0.184 0.249 0.216 0.348 0.271
Bicycle 65.1 0.169 0.257 0.411 0.190 0.015
Traffic Cone 79.5 0.121 0.317 - - -
Barrier 72.0 0.178 0.277 0.054 - -

NDS: 0.714 68.5 0.288 0.254 0.300 0.255 0.187

Table 4.2: Performance of the BEV-
fusion C+L model on the nuScenes
validation set. This model was used
to generate the nuScenes detections for
tracking and to create the nuScenes ReID
dataset.

Extracting objects Each detector implements non-maximal suppression before out-
putting its detections—an important step in most tracking-by-detection pipelines. Our
object extraction pipeline further eliminates noisy detections by thresholding their confi-
dence score to be above τc = 0.1. Using the remaining detections, we extract true and false
positives by matching detected bounding boxes to ground truth bounding boxes using a
permissive intersection over union (IoU) threshold of τIoU = 0.01. That is, true positives
correspond to predicted bounding boxes of the correct class whose IoU with the corre-
sponding ground truth bounding box is above τIoU . Hungarian matching is used here to
obtain a unique assignment between ground truth and true positive bounding boxes. Du-
plicate true positives are discarded. Conversely, false positives are obtained by extracting
observations whose IoU with the ground truth is below τIoU . To extract observations from
LiDAR scans, we first crop points within an object’s 3D bounding box before translating
and rotating them such that the 3D bounding box becomes centered at (0, 0, 0)T and faces a
canonical orientation. Note that despite this normalization step, the observations will still
contain noise from the object detector’s prediction; that is, the object’s true orientation
will not necessarily be facing the canonical orientation, nor will its true center necessarily
be at (0, 0, 0)T . To extract observations from images, we project the predicted 3D bound-
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ing boxes to the image plane using the camera’s projection matrix. Depending on the
relative angle of the 3D bounding box to the image plane, the bounding box may project
to a non-rectangular shape on the image plane. To obtain a rectangular 2D bounding box,
we always use the bounding box enclosing the projected shape. For bounding boxes that
project to multiple images, we select the projection with the largest enclosing bounding
box.

Complete objects In addition to collecting sparse point cloud observations, we also
obtain a dense point cloud for each object. Similar to previous work [83, 134, 32], we use
each dataset’s tracking annotations to aggregate points for an object within all of its ground
truth bounding boxes. Each individual point cloud observation is rotated and translated
such that its bounding box is centered at the origin and facing a canonical orientation—
this time, there will be little noise since we use ground truth bounding boxes. To further
enhance our dense point cloud, we exploit object’s symmetry and mirror the point cloud
across the object’s centerline. Finally, all points are concatenated to form one dense point
cloud.

4.3 Dataset statistics and sampling algorithms

Statistics Table 4.3 reports the training split statistics for our ReID datasets created
from nuScenes (left) and WOD (right). Our dataset extraction pipeline collects 35, 212
unique true positive objects on nuScenes and 63, 756 on WOD. Each unique object can
have one or more observations. On nuScenes, individual observations total 856, 013, while
WOD has many more observations totaling 6, 899, 297. To train our networks for the re-
identification task, we sample positive and negative pairs of observations. When sampling
these pairs, however, we only sample objects from the same class. We chose to do this for
two reasons: 1) during training, our networks focus on difficult comparisons—objects of
different classes are often easy to distinguish—and 2) this enables reduced inference over-
head in a tracking-by-detection context, by only comparing objects of the same predicted
class. Even without combining objects of different classes, the number of possible positive
and negative pairs is enormous. On nuScenes, there are over six million positive pairs,
while WOD contains 435 million. However, this is nothing compared to the number of
negative pairs: 3.9e + 16 and 3.98e + 19 for nuScenes and WOD respectively. To put this
scale in perspective, the WOD ReID dataset has 11 orders of magnitude more samples
than the popular ImageNet[22] dataset. We will, therefore, be training networks in the
underfitting regime; that is, we will be unable to overfit to the training set. We also note
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that both ReID datasets feature a severe imbalance problem. For instance, on WOD the
positive pairs make up just 1.12e− 9% of the total number of possible pairs.

Classes # of Obj. # of Obs. Pos. Pairs Neg. Pairs

FP bicycle −− 13, 100 −− −−
FP bus −− 2, 069 −− −−
FP car −− 125, 223 −− −−
FP motorcycle −− 7, 222 −− −−
FP pedestrian −− 106, 206 −− −−
FP trailer −− 8, 023 −− −−
FP truck −− 21, 792 −− −−
bicycle 554 7, 575 7.76e + 4 1.62e + 12
bus 422 8, 375 1.07e + 5 4.54e + 11
car 20, 830 326, 967 3.77e + 6 3.34e + 16
motorcycle 588 8, 201 8.67e + 4 9.73e + 11
pedestrian 9, 112 156, 852 1.83e + 6 5.43e + 15
trailer 773 13, 921 1.66e + 5 3.34e + 12
truck 2, 933 50, 487 5.98e + 5 1.32e + 14

Total 35, 212 856, 013 6.63e + 06 3.90e + 16

Classes # of Obj. # of Obs. Pos. Pairs Neg. Pairs

FP bicycle −− 27, 043 −− −−
FP bus −− 2, 378 −− −−
FP car −− 24, 971 −− −−
FP motorcycle −− 46, 111 −− −−
FP pedestrian −− 604, 021 −− −−
FP truck −− 5, 987 −− −−
bicycle 497 46, 204 3.02e + 6 1.23e + 14
bus 378 43, 639 3.35e + 6 4.59e + 13
car 43, 305 4, 002, 934 2.78e + 8 3.25e + 19
motorcycle 355 32, 317 2.18e + 6 9.90e + 13
pedestrian 18, 107 1, 954, 970 1.41e + 8 6.40e + 18
truck 1, 114 108, 722 7.77e + 6 7.13e + 14

Total 63, 756 6, 899, 297 4.35e + 08 3.89e + 19

Table 4.3: Training set statistics for nuScenes (left) and WOD (right). From left
to right, the columns contain the number of unique objects of each class, the number of
observations of these objects, the number of positive pairs of each class, and the number
of negative pairs of each class. False positives are used to create negative pairs with ob-
servations of the corresponding true positive class. Positive and negative pairs are created
from objects of the same predicted class.

Sampling at training time Our training-time sampling procedure is detailed in algo-
rithm 1. At training time, one epoch constitutes one pass over every unique object in the
dataset. For each object O (of class c), we flip a coin to determine whether to sample an
associated positive or negative observation. Positives are sampled uniformly at random
from the other observations of O, while choosing to sample negative leads to another coin
toss. This time, we select between sampling a false positive FP of class c′ (c′ denotes a
false positive misclassified by the object detector as belonging to class c) or a true positive
by sampling an object O′ of class c other than O and then sampling from its observations
uniformly at random. Therefore, during training, our networks learn to predict a match
or no match between objects of the same predicted class.

Sampling at testing time At testing time, we sample a balanced test set of reasonable
size that can reveal the true performance of our models at all point densities. To accomplish
this, we sample at most 10 distinct positive pairs (o1,o2) for each object in the test set,
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Eval set Positive Pairs Negative Pairs Total

nuScenes eval 53,834 53,686 107,520
waymo eval 1 119,874 119,742 239,616
waymo eval 2 145,470 145,346 290,816

Table 4.4: Evaluation set statistics.

keeping track of their point densities(do1 ,do2). Then, for each positive pair (o1,o2), we
sample a corresponding negative pair (o1,o

′
2), where o′2 has a similar point density to o2. We

define point densities as similar if they fall within the same power-two interval: [2n, 2n+1).
Before sampling from the nuScenes test set, we filter out observations that have fewer than
two points and observations without image crops. We name this test set nuScenes eval.
On WOD, we create two test sets. The first, called Waymo eval 1, is created identically to
nuScenes eval. The second, called Waymo eval 2, only filters out observations that have
fewer than two points. Therefore, it will include many observations that have no associated
image crops as they are out of the sensor’s field of view, exposing the actual performance
of the image models. These test sets are each sampled with the seed set to 66 so that the
same samples are used every time. Table 4.4 reports the statistics for these evaluation sets.
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Algorithm 1: Data Sampling Algorithm for one Epoch of Training
Data: Dataset D of all objects and their observations.
Result: A set of sampled pairs for one epoch of training.

// Initialize sample

S ← ∅;
foreach object O in D do

o1 ← random observation of O;
c← class of O;
p1 ← random number between 0 and 1;
if p1 ≤ 0.5 then

// Sample positive pair

o2 ← random observation of O other than o1;
l← 1;

end
else

// Sample negative observation

l← 0;
p2 ← random number between 0 and 1;
if p2 ≤ 0.5 then

// Sample false positive

o2 ← random false positive of predicted class c;

end
else

// Sample true positive

O′ ← random object of class c other than O;
o2 ← random observation of O′;

end

end
S ← S ∪ (o1, o2, l);

end

return S
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Chapter 5

Method and Experiments

This chapter is divided into three parts. We first introduce our proposed matching head
for real-time ReID and provide the objective we use to train it. Next, we introduce the
architectures used throughout our empirical studies and report their training details. Fi-
nally, we report and discuss the results of four empirical studies: a comparison of point
and image ReID on nuScenes and WOD, an investigation of the effects of scaling train-
ing time on WOD, an investigation of our ReID network’s ability to complement strong
motion-based trackers on the nuScenes dataset, and an ablation study that applies popular
representation learning techniques to our problem.

5.1 Method

In the following section, we present our proposed real-time matching module (RTMM) for
making efficient pairwise comparisons in a 3D multi-object-tracking-by-detection context.
We then illustrate how existing point-based architectures can be adapted to use it—leading
to a family of RTMM-based point cloud ReID networks and we define our training objective.

5.1.1 A real-time matching mechanism for point sets

Given our goal of evaluating point cloud ReID in a multi-object-tracking-by-detection
context, it is important for our matching module to be capable of making a large number
of pairwise comparisons in real-time (e.g., between tracks and detections from one timestep
to the next). Inspired by the strong performance of Hui et al (2022)’s Point-Transformer for
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Figure 5.1: The architecture of our proposed matching head, RTMM. RTMM
compares two vector-valued input sequences, making it compatible with various sequence
or set processing backbones.

single object tracking, we adapt their “coarse-to-fine correlation network” to fit our needs.
Specifically, we eliminate the ego feature augmentation module, as we found its memory
complexity scales poorly with the number of comparisons being made, making a large
number of real-time comparisons infeasible. As a result, we only keep their cross-feature
augmentation (CFA) module, which uses efficient linear attention [55]. While we maintain
the same structure within CFA blocks as [51] (described below), we modify the structure
of their correlation network to make it symmetric, exploiting the inherent symmetry of our
pairwise matching problem. To make symmetric comparisons between two sets of points
{x(i)

1 }n1
i , {x(i)

2 }n2
i , with x1,x2 ∈ R3, we apply l = 2 CFA blocks between each point cloud’s

representation and concatenate the resulting features maps along the sequence dimension,
before applying an invariant pooling operation along it (see fig. 5.1). Finally, the outputs
are fed to a residual MLP for binary classification of match or no match. Concretely, CFA
blocks receive two sets of points {x(i)

1 }n1
i , {x(i)

2 }n2
i , which we designate in stacked matrix

form X1,X2 ∈ Rn×3 henceforth. The point sets are subsampled or resampled to size n (we
use n = 128 in all our experiments) before being fed to a point backbone fθ to compute
representations fθ(X1), fθ(X2). We note that fθ can be any set or sequence processing
network. A CFA block first computes linear cross-attention (LCA):

L = LCA(fθ(X1), fθ(X2) + P ) (5.1)

where P = MLPpos(X2) is a positional encoding computed from the corresponding 3D
points. Next, a layer normalization (LN) is applied followed by an MLP applied to the
channel-wise concatenation of LN(L) and fθ(X1) and another layer normalization is ap-
plied,

L′ = LN( MLP( LN(L) ⊕ fθ(X1))). (5.2)
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Model Parameters Batch Size Inference Time

RTMM 223K 2000 49.7 ms ± 5.84 ms
Point Baseline 132K 2000 0.19 ms ± 0.01 ms

DeiT-Tiny 5910k 100 32.4 ms ± 1.75ms
DeiT-Base 87, 338k 100 173 ms ± 11.8ms

DGCNN 617k 100 18.7 ms ± 3.25ms
PointNet 2800k 100 8.04 ms ± 0.099ms
Point-Transformer 529k 100 15 ms ± 0.605ms

Point-Transformer2M 2000k 100 27.5 ms ± 0.149ms
Point-Transformer4M 4413k 100 43.4 ms ± 0.435ms
Point-Transformer7M 7768k 100 58 ms ± 0.796ms

Table 5.1: Inference speed of different point and image backbones used in our
experiments. All models were tested on a single RTX 3090 GPU.

Finally, a residual connection is applied to complete the CFA block:

CFA(fθ(X1),X1, fθ(X2),X2) =L′ + fθ(X1). (5.3)

Then, our real-time matching module is structured as follows:

X̄ l
1 = CFAθl(X̄

l−1
1 ,X1, X̄

l−1
2 ,X2) (5.4)

X̄ l
2 = CFAθl(X̄

l−1
2 ,X2, X̄

l−1
1 ,X1) (5.5)

RTMMl
θ(X1,X2) = σ(MLPres(pool(X̄ l

1⊕̂X̄ l
2))), (5.6)

where MLPres is a residual MLP block followed by a linear projection layer (mapping
each output to R); pool(x) := maxpool(x) ⊕ avgpool(x); ⊕̂ designates sequence/set level
concatenation; ⊕ designates vector concatenation of the channel dimension; X̄0

i = fθ(Xi);
and σ(·) is the sigmoid activation function. In practice, we find that setting l = 2 is
sufficient to achieve strong matching performance.

We note that on all datasets and for all point models, we subsample or resample the
input point cloud X to contain 128 points. This decision was made to avoid unnecessarily
increasing the sequence length (and thus the inference time) when most observations from
nuScenes and Waymo have fewer than 128 points. While some may argue that this would
limit the performance of our networks at higher point densities, our experiments show
(see figure 5.3) that our networks’ performance continues to increase for objects at point
densities well above 128.
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Figure 5.2: The performance of point cloud ReID approaches image ReID with
sufficient points. The plot show the performance of the image and point cloud ReID
networks as a function of the number of points in the observations. Left is the nuScenes
eval set, while right is Waymo eval 1.

5.1.2 Compatibility with existing point backbones

In our empirical evaluation, we select fθ to be one of the following: PointNet[101], DGCNN[138],
and Point Transformer [51]. However, almost any point processing backbone can be
adapted with minimal effort to use our proposed RTMM. Due to the unstructured nature
of point cloud inputs, most point-processing backbones compute an intermediate represen-
tation fθ(X) ∈ RN×d that is equivariant to permutations of the columns of X, followed
by an invariant pooling layer. Such constructions preserve the set cardinality dimension
N until the pooling operation, making them amenable to processing using sequence mod-
els such as our RTMM. Therefore, many existing point backbones can be adapted to our
method by extracting their representation before invariant pooling layers.

5.1.3 Training objective

We train our networks for object re-identification tasks using binary cross-entropy (5.7)
but experiment with various other objectives from the literature.

L(x,y) =
1

n

n∑
i=1

(yi · log(xi) + (1 − yi) log(1 − xi)) (5.7)
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We find, however, that binary cross-entropy achieves results stronger or on par with other
formulations while being simple and fast to train with. We discuss further details of other
formulations in our ablation study (Table. 5.4 and sec. 5.6).

5.2 Experimental Setup

Models Compared To place our experiments within a meaningful context, we train
three image models and one point cloud baseline model to compare with our three point
cloud ReID networks (PointNet [101], DGCNN [138], and Point-Transformer [51]). For
our image baselines, we select DeiT [129], a family of efficient vision transformers of dif-
ferent sizes. They are efficient and can be adapted with little effort to use our proposed
RTMM, unlike CNNs. Specifically, we choose DeiT-Tiny as our main point of compari-
son and train one DeiT-Tiny model from a pre-trained checkpoint and another from ran-
dom initialization. DeiT-Tiny allows us to assess the performance of an image model
with a comparable number of parameters to our point models (5M v.s. 2.8M). We also
train a larger DeiT-Base model from a pre-trained checkpoint for reference. To compare
RTMM to an alternative point-processing model, we train a naive point baseline. It uses a
Point-Transformer backbone to compute representations of the compared point clouds and
concatenates the pooled representations, feeding them to a residual MLP for matching:
MLP′res(pool(fθ(X1)) ⊕ pool(fθ(X2))).

Inference Speed Table 5.1 compares the inference speed of the different architectures
in our study. The first two entries correspond to different matching heads: the baseline
and our proposed RTMM. We see that the baseline is two orders of magnitude faster than
our proposed RTMM; however, our experiments show (see table 5.2) the performance dif-
ference is well worth the added latency. The remaining entries compare different backbone
architectures which can precede either of the matching heads. We note that we compare
match heads and backbones with different batch sizes of 2000 and 100, respectively. This
is because the backbones process samples individually, while the matching heads process
pairs of samples. Thus, for multi-object tracking the backbone need only process all de-
tections at the current timestep (which is often below 100), while the matching head must
make pairwise comparisons between two timesteps, significantly increasing the batch size.
The backbone models are divided into three sections: image models, the models used in
our image versus point cloud experiments (table 5.2), tracking error study (figure 5.6), and
ablation study 5.7, and models used in our scaling experiments. DeiT-Tiny, the smallest
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Backbone Par. Acc. F1 Pos. F1 Neg. Car Pedestrian Bicycle Bus Motorcycle Truck FP

DeiT-base∗I 85.7M 91.91% 91.75% 92.06% 94.24% 88.17% 89.97% 92.53% 89.14% 91.28% 95.67%
DeiT-tiny∗I 5.7M 91.06% 91.07% 91.06% 93.43% 87.37% 88.97% 91.35% 88.44% 90.31% 93.36%
DeiT-tinyI 5.7M 87.41% 87.52% 87.29% 90% 83.2% 84.24% 86.18% 84.57% 86.98% 89.43%

DGCNNL 0.6M 71.6% 70.75% 72.41% 75.47% 61.68% 63.66% 77.88% 65.08% 79.11% 80.09%
Point-TransformerL 0.5M 72.83% 72.1% 73.52% 77.21% 61.89% 64.37% 79.5% 65.45% 80.56% 80.51%
PointnetL 2.8M 72.92% 72.19% 73.6% 76.85% 63.12% 64.09% 78.12% 65.69% 80.27% 80.77%
Point-BaselineL 0.5M 60.8% 59.94% 61.61% 64.28% 52.55% 51.81% 66.52% 52.31% 65.53% 65.12%

DeiT-base∗I 85.7M 95.18% 95.17% 95.19% 96.01% 93.59% 94.03% 90.33% 90.02% 93.56% 97.27%
DeiT-tiny∗I 5.7M 94.43% 94.47% 94.38% 95.26% 92.77% 93.59% 89.54% 91.5% 92.96% 95.87%
DeiT-tinyI 5.7M 92.82% 92.92% 92.71% 93.87% 90.71% 91.97% 86.79% 89.4% 91.07% 93.14%

DGCNNL 0.6M 82.26% 82.09% 82.43% 84.65% 76.89% 80.24% 79.8% 68.67% 87.91% 88.08%
Point-TransformerL 0.5M 84.75% 84.76% 84.73% 86.96% 79.9% 79.04% 85.85% 73.66% 87.71% 88.98%
PointnetL 2.8M 81.37% 81.25% 81.49% 83.65% 76.25% 78.83% 80.5% 72.1% 85.06% 86.8%
Point-BaselineL 0.5M 60.74% 65.55% 54.38% 62.44% 56.6% 56.13% 71.62% 56.43% 66.24% 47.77%

DeiT-base∗I 85.7M 82.19% 82.5% 81.87% 82.29% 82.35% 78.1% 81.22% 74.45% 79.61% 82.72%
DeiT-tiny∗I 5.7M 80.01% 80.94% 78.99% 80.03% 80.23% 76.89% 80.53% 73.87% 78.3% 76.99%
DeiT-tinyI 5.7M 80.77% 81.46% 80.03% 80.99% 80.85% 77.12% 74.38% 73.54% 76.16% 77.27%

DGCNNL 0.6M 80.82% 80.38% 81.24% 83.44% 75.24% 78.59% 79.17% 71.01% 85.75% 83.03%
Point-TransformerL 0.5M 83.18% 82.89% 83.45% 85.43% 78.56% 76.13% 83.4% 72.5% 86.73% 85.1%
PointnetL 2.8M 80.2% 79.84% 80.55% 82.76% 74.84% 78.19% 80.6% 68.09% 83.43% 82.73%
Point-BaselineL 0.5M 60.23% 63.64% 56.13% 61.76% 56.74% 56.2% 66.98% 58.11% 65.67% 52.25%

∗: Pre-trained & fine-tuned on ImageNet 1k, I : using RGB data, L: using LiDAR data

Table 5.2: Point-based v.s. image-based object ReID. The table shows object ReID
results for point models and image models using our proposed RTMM matching head.
Models in the top section are trained on nuScenes and evaluated on nuScenes eval, while
models in the bottom two sections are trained on WOD and evaluated on Waymo eval 1
and Waymo eval 2, respectively.Waymo eval 1 filters out observations that do not have
an associated image crop, while Waymo eval 2 does not. All evaluation sets filter out
observations with fewer than two points.

image backbone is roughly half as efficient as the corresponding point models. Point-
Transfromer2M, the scaled-up model used in our scaling experiments runs at a similar
efficiency to DeiT-Tiny. When combined with RTMM, all models except for DeiT-Base
and Point-Transfromer7M run in real-time (faster than 10 Hz).

Training Details All models of the same modality in table 5.2 were trained using iden-
tical hyperparameters and their final checkpoints are used for evaluation. We used the
AdamW [77] optimizer with a learning rate of 1e− 5 (images) and 3e− 4 (point clouds),
weight decay of 0.01, and cosine learning rate and momentum schedules [122]. We use a
batch size of 64 × 4 GPUs (images) and 256 × 4 GPUs (point clouds) and note that our
batch normalization layers were not synchronized across devices during training. We also
note that training using the learning rate schedule of the other modality decreases final val-
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idation accuracy for all models. Pre-trained models are trained for 200 epochs each, while
randomly initialized models are optimized for 500 epochs and 400 epochs on nuScenes and
WOD, respectively. The epoch numbers for randomly initialized models were not chosen
arbitrarily; they roughly correspond to the same number of gradient descent steps (±3
epochs) across both datasets as the Waymo dataset is larger.

5.3 Experiments

Our empirical evaluation is based on two re-identification datasets created from nuScenes
and WOD (details provided in sec.4). The difference in LiDAR resolution between each
dataset (32 v.s. 64 beam, respectively), allows us to establish how ReID performance
varies as sensor resolution increases. We also establish the relative performance of image-
based and point-based ReID, how performance varies with respect to point density within
a dataset, that scaling training time significantly increases our models’ performance, and
that our models are capable of correcting the errors of strong motion-based multi-object
trackers. Finally, we provide an ablation study to assess whether common representation
learning techniques, such as triplet loss [46], a completion task [32, 50], or simply adding
a classification head, can help to improve the performance of point ReID networks.

5.3.1 A Comparison between point-based and image-based ReID

Table. 5.2 reports the results of our large-scale empirical study. The top section of the
table corresponds to models trained on nuScenes and evaluated on nuScenes eval. The
bottom two sections correspond to models trained on Waymo and evaluated on Waymo
eval 1 and Waymo eval 2, respectively. Matching accuracy is reported overall and for
each individual class. We also report F1 scores for positive and negative matches. This
experimental study has three main goals: to measure point ReID performance as sensor
resolution is increased, to establish the performance difference between point-based and
image-based ReID networks, and to measure point ReID performance as point density is
increased within a dataset.

When comparing the accuracy of models trained on nuScenes to those trained on WOD,
we observe that there is an overall increase for all models except the point baseline. How-
ever, the point models improve by a much greater margin than image models: as much
as 11.92% for the point transformer versus a 5.41% increase for the randomly initialized
DeiT-tiny model. We hypothesize that the performance increase of image models is due
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to the following reasons: 1) the image sensors are of higher resolution on WOD and 2) the
WOD training set is much more diverse—it has 80% more objects. This second reason is
a potential confounder when assessing the extent to which the increase in point density
improves point ReID performance. However, the smaller relative increase for image models
allows us to account for the potentially confounding effect of a more diverse training set
on WOD, showing that the increase in sensor resolution from nuScenes to WOD causes
a performance improvement of at least a 11.92% − 5.41% = 6.51% for our point ReID
models. The story is very different, however, for the baseline model. We hypothesize that
it fails to learn any meaningful representations for matching, which is why improvements
from increased sensor resolution or dataset diversity have no impact on its performance.
This shows that simply concatenating the pooled representations of the point backbone is
insufficient for the tracking-by-detection matching task. All our models on both datasets
learn an unbiased matching function on aggregate as is evidenced by similar positive and
negative F1 scores. When looking at class-specific results, we note that all models follow a
similar increase from nuScenes to WOD as can be observed for accuracy, except for some
image models whose performance decreases on the Bus class. Of all classes, pedestrian
and bicycle benefit the most from the increase in LiDAR sensor resolution with respective
increases of 18.01% and 14.67%. This is a boon for our models’ applicability to 3D MOT
as pedestrians and cyclists are some of the most likely objects to become occluded and can
easily be lost by simple motion-model-based trackers. We note that truck and bus benefit
the least from increasing LiDAR sensor resolution. We hypothesize that this is because
large objects will have many points regardless of the sensor’s resolution.

Comparing the point re-identification models, Point-Transformer performs best on
WOD, while all models perform very similarly on the nuScenes dataset. Focusing on
image models exclusively, we note that the pre-trained DeiT-Base model performs best of
all as is expected given its large number of parameters. Directly comparing point models
to image models, we observe that image models always outperform their point counter-
parts when observations are visible to both camera and LiDAR sensors, but that increasing
sensor resolution considerably decreases this gap. When comparing the Point-Transformer
to the randomly initialized DeiT-Tiny on WOD, we observe the smallest performance gap
between large rigid objects (bus, truck, and car), while the smaller deformable objects
(pedestrian and bicycle) pose more difficulty to the Point Transformer. This is to be ex-
pected as deformable objects create inherent shape ambiguity, which can be resolved in
images by leveraging color or texture information, but for point clouds, an object’s shape
is its primary distinguishing characteristic. While the point models perform poorer than
image models overall, the relative improvement seen from nuScenes to WOD is non-trivial
and suggests that the gap in performance will shrink as LiDAR sensor resolution continues
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Backbone Epoch Acc. F1 Pos. F1 Neg. Car Pedestrian Bicycle Bus Motorcycle Truck FP

Point-Transformer2M 3200 87.48% 87.58% 87.38% 89.24% 83.56% 83.66% 87.03% 80.75% 90.5% 90.36%
Point-Transformer2M 1600 87.16% 87.15% 87.16% 89.18% 82.68% 82.25% 87.19% 78.57% 90.33% 91.25%
Point-Transformer2M 800 86.14% 86.14% 86.13% 88.17% 81.62% 81.49% 86.64% 76.77% 89.76% 90.34%
Point-Transformer2M 400 84.5% 84.57% 84.43% 86.64% 79.82% 78.56% 85.38% 73.03% 87.23% 88.3%
Point-Transformer2M 200 82.56% 82.67% 82.46% 84.9% 77.45% 76.11% 84.43% 70.69% 85.66% 86.53%

Table 5.3: Scaling training time significantly improves performance on waymo
eval 1.

to increase.

Intra-dataset point density comparison Figures 5.2 and 5.3 graph the accuracy of
our models when evaluated at different point densities within a dataset. The goal of this
stratified evaluation is threefold: to show that point ReID performance approaches image
ReID performance at higher point densities, to showcase the best possible performance one
can expect from our point ReID models, and to give an idea of how performance might
improve when even denser LiDAR sensors become available. We note that LiDAR sensors
with up to 128 beams (2 times the resolution of WOD’s 64-beam LiDAR) are already
commercially available today [124].

Figure 5.2 plots the overall point cloud ReID performance on nuScenes eval (left) and
Waymo eval 1 (right). Each plot graphs the accuracy of every model (except the baseline)

on pairs of point cloud observations ({x(i)
1 }n1

i , {x(i)
2 }n2

i ), where #points ≤ min(n1, n2); that
is pairs that both have more than x points. We chose to exclude the baseline as its poor
performance makes all lines look flat. The number of positive and negative examples for
each threshold is shown below the x-axis. We observe that our point models’ accuracy
increases with the number of points approaching or surpassing image model performance
at the highest densities, while the image models remain relatively flat throughout. We
note that the nuScenes image models do experience a slight decrease in performance at
higher point densities (more details are provided in sec.6.1). On nuScenes, all point models
perform relatively similarly throughout, but on WOD we observe the stronger performance
of the Point-Transformer at lower point densities, while PointNet performs the best at
higher densities.

Figure 5.3 plots the performance of our ReID models on Waymo eval 1 for specific point
density power-two buckets ([2i, 2i+1)). Each individual plot graphs matching accuracy
on pairs of observations where one element of the pair belongs to the bucket indicated
in the plot’s title and the other element belongs to the bucket on the x-axis. Instead
of showing cumulative accuracy numbers as reported in fig. 5.2 these plots report more
precise values. The plots show a convincing story: when comparing pairs of observations,
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Figure 5.3: Point cloud ReID matches image ReID performance when observa-
tions are sufficiently dense. The plots show the performance of our ReID models on
Waymo eval 1 for specific point density power-two buckets ([2i, 2i+1)). Each individual plot
graphs matching accuracy on pairs of observations where one element of the pair belongs
to the bucket indicated in the plot’s title and the other element belongs to the bucket on
the x-axis. We observe that performance stabilizes when both objects in the pairs have
more than 64 points.
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if each observation in the pair has more than 64 points, then ReID accuracy remains stable
at or above 88%. Furthermore, performance continues to increase as the points in each
observation are increased. This can be observed despite the inputs to all our models being
subsampled to 128 points. At the highest point densities, we see the curves reach those of
the image models. This shows that point ReID models can currently approach image-level
performance, a trend that will be amplified in the future with increases in LiDAR sensor
resolution.

5.4 Scaling point re-identification

As illustrated in table 4.3 the number of samples in our ReID datasets is combinatorially
large. For WOD, there are 4.35e8 positive samples and 3.89e19 negative samples. Since
each training epoch samples one positive or one negative sample with equal probability
for each object in the training set, there will be approximately 31, 878 positive pairs and
31, 878 negative pairs sampled every epoch on WOD. At this rate, it would take ∼ 13, 646
epochs to sample all possible positive samples on the WOD ReID dataset. Since we only
train our models for 400 epochs (∼ 9 hours on four Nvidia A6000 GPUs), it is quite
likely that we are underfitting the training set. In an effort to determine the importance
of training for longer, we train five models for 200 · 2i epochs with i ∈ {0, 1, 2, 3, 4} on
the WOD. For these experiments, we use a slightly larger 2 million parameter Point-
Transformer model as it has more capacity than the 500k parameter model used in our
previous experiments, but still has inference time on par with DeiT-Tiny. We also used a
slightly larger batch size for these experiments 256×5 GPUs keeping the learning rate and
other hyperparameters fixed. Table 5.3 shows the performance of Point-Transformer2M
models trained for different numbers of epochs. As expected, the model trained for the
longest (3200 epochs) achieves the strongest overall accuracy and the best or close to the
best accuracy for every individual class. Of all classes, the motorcycle class sees the largest
improvement from increased training time: +10.06%. This is expected as it has the least
number of samples in the training set and is therefore sampled the least at training time.
Additionally, we observe that the performance improvement of training longer seems to
start saturating between the models trained for 1600e and 3200e. While these numbers
can be noisy and more trials are needed to obtain reliable estimates, this suggests that
performance gains may be limited for further training.

Figure 5.4 plots the accuracy of the scaled models on waymo eval 1 as a function of the
point density. We observe that the increased training time leads to improved performance
at every point density. Additionally, it appears that performance at smaller point densities

34



2
119874
119742

4
111941
111798

8
100309
100176

16
84437
84314

32
65475
65365

64
46873
46789

128
31463
31390

256
19433
19390

512
10884
10867

1024
5672
5669

2048
2797
2793

#points 
Number of positive samples 
Number of negative samples

82

84

86

88

90

92

94
Ac

cu
ra

cy
 (%

) f
or

 b
ot

h 
ob

je
ct

s 
w

/ 
 x

 #
po

in
ts

Point-Transformer2M 3200e
Point-Transformer2M 1600e
Point-Transformer2M 800e
Point-Transformer2M 400e
Point-Transformer2M 200e

Figure 5.4: Training for longer leads to a significant increase in accuracy. The
plot shows performance as a function of point density. We see that models trained for
longer (darker) perform significantly better.

saturates faster as scale increases than with larger point densities. We hypothesize that this
is due to two reasons: 1) for very few points, even with more training time, it is impossible to
learn something without enough information and 2) observations at smaller point densities
are sampled more frequently during training because they are more prevalent. This suggests
that a sampling algorithm that explicitly balances samples at different point densities may
be beneficial.

Figure 5.5 plots the performance of our ReID models on Waymo eval 1 for specific point
density power-two buckets ([2i, 2i+1)). Each individual plot graphs matching accuracy on
pairs of observations where one element of the pair belongs to the bucket indicated in the
plot’s title and the other element belongs to the bucket on the x-axis. Instead of showing
cumulative accuracy numbers as reported in fig. 5.4 these plots give more precise values. We
observe similar trends to figure 5.3 where ReID accuracy remains stable for pairs with two
observations at or above 88%. Additionally, we see that the model trained for 3200 epochs
reaches the performance of the randomly initialized DeiT-Tiny model much earlier on and
even surpasses it at the highest point density. This shows that considerable performance
improvements can be made by training for longer.
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Figure 5.5: Scaled point ReID models can surpass the performance of image
ReID for dense enough observations. The plots show the performance of our ReID
models on Waymo eval 1 for specific point density power-two buckets ([2i, 2i+1)). Each
individual plot graphs matching accuracy on pairs of observations where one element of
the pair belongs to the bucket indicated in the plot’s title and the other element belongs
to the bucket on the x-axis. We observe that performance stabilizes when both objects
in the pairs have more than 64 points. Additionally, we note that the 3200 epoch scaled
model attains very competitive performance with DeiT-Tiny R.
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5.5 Correcting tracking errors

To demonstrate that our Re-ID networks can benefit 3D MOT, we extract errors from 3
strong multi-object trackers on the nuScenes validation set: Probabilistic MOT [15], Simple
Track [98], and a differentiable tracker that we implemented ourselves (further details of the
trackers are provided in the appendix as well as their full tracking scores, see table. A.1).
This is done by extracting instances where the tracker incorrectly matched one ground
truth object to another (negative pairs), or situations where the tracker failed to match a
ground truth object from one frame to the next (positive pairs). Since nuScenes provides
object ids, we can easily find the corresponding detections in our ReID dataset and verify
the performance of our point ReID models on them. This works because we use the same
BEVfusion C+L detections are used as input to our trackers and for creating the nuScenes
ReID dataset.

Specifically, to extract positive examples from tracking errors, we collect pairs of detec-
tions matched to a ground truth track where the predicted tracks that previously tracked
a ground truth object (GT1 at timestep T ) incorrectly switch (IDS) to another object
or simply miss the prediction at timestep T + k (fragmentation), despite GT1 still being
detected. The positive pair then becomes the detection matched to GT1 at timestep T
and the true positive detection for GT1 at timestep T + k. To extract negative examples,
we collect predicted tracks that switch between two GT tracks (GT1 at T and GT2 at
T + k). The negative pair then becomes the true positive detection for GT1 at T and the
true positive detection for GT2 at T + k.

Figure 5.6 plots the performance of our ReID networks on mistakes made by different
trackers. We observe similar accuracy to what is reported in table 5.2 for all models; image
ReID models perform the best, followed by point ReID models and finally the baseline
performs worst of all. This shows that point ReID models can be useful in a 3D MOT
context. Given that this performance was predictable from the results of table 5.2 we
hypothesize that the performance improvements from nuScenes to WOD will also port to
the errors of 3D multi-object tracker. That is, point ReID models will become even more
useful to 3D MOT as sensor resolution increases.

5.6 Ablation study

To provide more insight into our choice of training objective (binary cross-entropy (BCE)),
we provide an ablation study showing different losses we tried. In addition to BCE, we
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Figure 5.6: Point cloud ReID networks can correct a motion-based tracker’s
errors. The plot shows ReID accuracy as a function of the AMOTA score of the tracker
used to extract the errors.

experimented with triplet loss[46] Ltriplet as used by [172, 31, 166], a reconstruction objec-
tive Lshape as in [32, 50, 144], and a simple classification objective Lcls. In what follows,
we described the loss formulations added to our pipeline in figure 5.7 and discuss how
performance varies when they are combined with BCE.

To extract triplets from training batches sampled according to algorithm 1, we design
a triplet sampling algorithm. It works as follows: for each positive pair of samples in
the batch, we sample 128 associated negative examples (n) uniformly at random from the
batch. We use the first element of the positive pair as the anchor, a, the second element
is the positive sample p. Since we use an effective batch size of 4 × 256 = 1024 to train
our networks and approximately half of the samples drawn from algorithm 1 are positive,
each batch fed to the triplet loss will have M =∼ 65536 samples. To compute the triplet
loss, the point cloud representation fθ(X) ∈ R64×128 is flattened yielding stacked anchor,
positive, and negative batches: A,P ,N ∈ R∼65536×8192. Then, following loss formulation
is used

Ltriplet(A,P ,N ) =
1

M

M∑
i=0

max (0,m + ∥Ai,: − Pi,:∥2 − ∥Ai,: −Ni,:∥2) , (5.8)

where m = 10 and i indexes the rows of A,P , and N . While this formulation is the one
that we show in table 5.4, we also experimented with applying a pooling operation over the
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Lmatch Ltriplet Lshape Lcls Acc. F1 Pos. F1 Neg. Car Pedestrian Bicycle Bus Motorcycle Truck FP

84.46% 84.47% 84.44% 86.76% 79.37% 78.56% 86.24% 73.11% 88.02% 88.65%
84.44% 84.46% 84.43% 86.75% 79.47% 78.28% 84.83% 71.71% 86.4% 88.6%
84.73% 84.72% 84.75% 87% 79.7% 78.83% 85.3% 75.84% 88.45% 89.08%
84.13% 84.29% 83.97% 86.24% 79.42% 79.42% 84.43% 75.45% 87.88% 88.78%
84.74% 84.75% 84.74% 87.11% 79.67% 78.77% 83.49% 70.54% 87.14% 88.94%
84.08% 84.24% 83.92% 86.22% 79.29% 79.75% 84.2% 74.98% 88.31% 88.73%
84.96% 84.96% 84.96% 87.29% 79.96% 79.53% 83.65% 71.16% 87.28% 89.63%
85.19% 85.19% 85.19% 87.46% 80.29% 79.42% 83.88% 72.17% 88.17% 89.87%

Table 5.4: Ablation study for different losses. Each row in the table represents a
distinct Point-Transformer model trained on WOD and evaluated on Waymo eval 1.

set dimensions of fθ(X) before creating A,P , and N and with using the representations
computed from RTMM. The former performed worse than the proposed formulation, while
the latter was trivially minimized and achieved 0 loss shortly after the start of training.

We also explore adding a shape completion objective similar to those used by [32, 50].
To compute Lshape we use the Chamfer distance between an upsampled version of the
input point cloud, ŷshape, and the ground truth yshape created by subsampling a dense
version (see sec.4.2) of the input sample to 2048 points. We note that the loss is not
computed for false positives as they have no corresponding dense objects. We com-
pute ŷshape = Conv1Dus(fθ(X)), where Conv1Dus is a series of 1D convolution blocks
(Conv1D,Norm,ReLU) which converts fθ(X) ∈ R64×128 to ŷshape ∈ R3×2048. The loss is
computed as follows:

Lshape(Q,P ) =
∑
p∈P

min
q∈Q

∥p− q∥22 +
∑
q∈Q

min
p∈P

∥q − p∥22, (5.9)

where Q = ŷshape and P = yshape in our experiments.

The last objective we experiment with is categorical cross-entropy. Specifically, we
train the network to predict the class of each object from the pooled hidden representation
pool(fθ(X)) output by the point backbone. For false positives, we create extra classes
corresponding to each possible misclassification. This effectively doubles the number of
classes (C). The loss is computed as follows

Lcls(y, ŷ) = −
2·C∑
i=1

yi · log(ŷi), (5.10)

where ŷ = softmax(MLPcls(pool(fθ(X)))).

Table 5.4 shows the performance of Point-Transformer models trained with combina-
tions of the different objectives on WOD. We use the same hyperparameters as described
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Figure 5.7: Network diagram for the point cloud ReID networks in our ablation
study. The diagram depicts the flow from input to loss functions for the different objectives
used in our ablations study.

in section 5.2. All models obtain a final validation accuracy between 84.08% and 85.19%,
showing largely inconclusive results which could have been the work of regular randomness
associated with non-deterministic GPU operations. Given the lack of empirical evidence
of a stronger performing formulation, we chose to train our models using only the binary
cross-entropy objective.
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Chapter 6

Limitations, Conclusion, and Future
Work

6.1 Limitations

This thesis provides an empirical evaluation of point cloud ReID for multi-object tracking,
however, some limitations affect the impact of the work. The most glaring limitation is the
proposed training-time sampling algorithm. Although algorithm 1 might seem intuitive,
further inspection reveals that it introduces a bias towards positive samples at higher point
densities (see figure A.1). This would go unnoticed if the same sampling algorithm were
used at test time. However, we opted to use a balanced sampling algorithm at testing time
to expose any potential biases learned during training. This limitation impacts our results
as our models inherit the sampling algorithm’s bias during training. This can be observed
in the left side of figure 5.2 (image models) and on the top two plots of figure A.1 (point and
image models). Thankfully, however, the bias does not affect the soundness of our results,
other than the reported point cloud ReID accuracy being lower than it could have otherwise
been. We defer further discussion of this limitation to section A.3.1 of the appendix. Other
limitations include the poorly performing point cloud ReID baseline, a lack of experiments
elucidating the effect of sensor noise on performance, and missing results for tracking
errors on WOD. While the point baseline’s comparison mechanism—concatenating pooled
backbone representations—is certainly reasonable, its extremely poor performance limits
the model’s ability to be an effective baseline. Selecting a stronger baseline algorithm would
help remedy this flaw and highlight the strength of RTMM. The problem of bounding
box noise certainly needs to be addressed by any effective ReID network operating in
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a tracking-by-detection context. While we provide extensive performance evaluation of
our ReID models, the effect that sensor noise has on performance is not accounted for.
Additional experiments using an analogous dataset generated from ground truth bounding
boxes could help answer this question. Finally, experiments re-identifying tracking errors
from the WOD tracking benchmark would improve the impact of the work.

6.2 Conclusion

We have conducted the first large-scale study of object re-identification from cropped point
cloud observations in a 3D multi-object tracking context. Our findings can be summarized
as follows: 1) we establish the performance of point cloud ReID relative to image ReID,
2) we show that our point ReID networks can attain strong ReID performance, even on
par with image models, as long as the compared observations are sufficiently dense, 3) we
established that point ReID performance increases as LiDAR sensor resolution is increased,
4) we demonstrated the performance of point ReID models can be substantially increased
by training for longer, and 5) we demonstrated that our point ReID networks can re-identify
pairs of objects incorrectly tracked by three strong multi-object trackers—demonstrating
point ReID’s potential to enhance 3D MOT.

While image ReID outperforms point ReID when observations are visible to both sen-
sors, our results show that the latter still attains strong enough performance to be useful
in a 3D MOT pipeline. Therefore, methods should be developed to leverage this newly dis-
covered capability. For the time being, autonomous driving systems like the WOD vehicle,
which have limited camera FOV, stand to benefit the most from the added complementar-
ity of a ReID network processing 360◦ LiDAR scans. However, even vehicles equipped with
cameras covering 360◦ can benefit from the added redundancy of point ReID, especially in
cases where the observations are sufficiently dense to be reliable. In the future, as LiDAR
technology continues to advance, point ReID performance can only increase—magnifying
the implications of our findings. Already today, bleeding edge LiDAR sensors feature 128
beams[124], twice the resolution of WOD’s top-mounted LiDAR.

6.3 Future Work

Our initial study of ReID from point clouds opens many directions for future work. Inte-
grating our point ReID models into a multi-object tracker is a logical next step. Another
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possible direction is to investigate multi-modal object ReID in a multi-object tracking-by-
detection context; using techniques such as [88, 136] could work well for combining point
clouds and images, especially in our sequence-based framework. Another interesting direc-
tion would be to study how geometric priors, such as SE(3) or SO(3) equivariance [21, 27],
can enhance ReID from point clouds (e.g. to become invariant to the detector’s noise).
Finally, figure A.1 shows that our training time sampling algorithm is biased at higher
point densities; therefore, an investigation into better sampling algorithms is in order.
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Appendix A

Extended experimental details

A.1 Trackers

Method Name Modality AMOTA↑ AMOTP↓ MOTAR ↑ MOTA↑ MOTP↓ RECALL↑ GT MT↑ ML↓ FAF↓ TP↑ FP↓ FN↓ IDS↓ FRAG↓ TID↓ LGD↓

CAMO-MOT[133] CL 0.763 0.527 – – – – – – – – – – – – – – –
AlphaTrack[163] CL 0.732 – – – – – – – – – – – – – – – –
∗SimpleTrack(2 Hz)[98] CL 0.731 0.598 0.837 0.645 0.330 0.776 14556 4772 1124 45.3 85220 13241 16106 571 549 0.48 0.79
Intertrack[163] CL 0.721 0.566 – – – – – – – – – – – – – – –
+Differentiable Tracker (ours) CL 0.718 0.657 0.827 0.636 0.340 0.769 14556 4534 1246 44.8 83779 12767 17379 739 546 0.64 0.94
Eager MOT w/o images [58] CL 0.712 0.569 – – – 0.752 – – – – – – – 899 – – –
NEBP[67] L 0.708 – – – – – – – – – – – – – – – –
ShaSTA[110] L 0.703 – – – – – – – – – – – – – – – –
BP[67] L 0.698 – – – – – – – – – – – – – – – –
SimpleTrack(10hz)[98] L 0.696 0.547 – 0.602 – – – – – – – – – 405 – – –
OGR3MOT[160] L 0.693 0.627 – 0.602 – – – – – – – – – 262 332 – –
SimpleTrack(2 Hz)[98] L 0.687 0.573 – 0.592 – – – – – – – – – 519 – – –
CenterPoint[155] L 0.665 0.567 – 0.562 – – – – – – – – – 562 424 – –
∗Probabilistic MOT [15] CL 0.658 0.672 0.834 0.582 0.342 0.699 14556 3643 1793 44.1 75488 12858 25706 703 422 0.93 1.24
Eager MOT w/o images [58] L 0.651 0.587 – – – 0.698 – – – – – – – 864 – – –
∗: Results that we replicated using BEVfusion C+L detections; +:Models we implemented

Table A.1: Tracking results reported on the nuScenes validation set for various
existing methods. Despite being devoid of re-identification information, the trackers
we use to evaluate our ReID methods have strong performance compared to SOTA. This
demonstrates they are relevant baselines from which to extract tracking errors. We note
that CAMO-MOT, the first-place entry, leverages an image ReID model as part of their
pipeline.

We collected tracking mistakes from three different 3D multi-object trackers to evaluate
the performance of our point cloud re-identification networks. We chose two publicly
available baselines: [15, 98] and implemented a third tracker ourselves. We used the
detections of BEVfusion C+L (table 4.2) as input to each tracker.
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The entry designated “∗Probabilistic MOT” in table A.1 uses default open source code
from1. This tracker achieves the lowest AMOTA of the three methods we ran ourselves
and we find that its errors are easier for a point cloud ReID network to classify correctly
than errors from a more performant tracker (see figure 5.6).

The entry designated “∗SimpleTrack(2 Hz)” in the table uses existing open-source code.2

This tracker performs the strongest of the three that we evaluated ourselves. We use the
2 Hz variant of the simple track algorithm, keeping all hyperparameters set to their default
values.

The entry designated “+Differentiable Tracker (ours)” in table A.1 is the tracker we im-
plemented ourselves. We chose to implement a differentiable tracker (one that learns scores
for Hungarian matching) as our study would be incomplete without one. Many differen-
tiable trackers are advertised in the literature, but none release their open source code at
the time of writing [110, 142, 66, 133]. Our tracking pipeline follows the general structure
of tracking-by-detection, where bounding box features (x, y, z, sin(θ), cos(θ), vx, vy) along
with the ego’s velocity (in the xy plane) and yaw rate are input to an MLP similar to
[66]. We chose not to use any bounding box size features so as to remove any potential
re-identification information from the tracker itself. The MLP’s representation is fed to
an LSTM to encode track representations. We use track refinement and prediction mod-
ules similar to [66]. To match tracks to detections, we first model associations between
objects using cross-attention as done in [142]. Next, we concatenate track and detection
representations into pairs, feeding them to an MLP to regress matching scores. Individual
representations of tracks and detections are also fed to MLPs to regress scores for being
a false positive detection or newborn detection and false positive track or false positive
detection, respectively. This is similar to what is done in [110]. To train our model, we
emulate the inference phase during training as is done in [66]. Using teacher forcing, we
train our model with losses similar to [110] for 20 epochs on the nuScenes dataset. Each
epoch contains one sequence of 16 frames sampled for each scene in the training set. Gra-
dients are accumulated over 8 sequences (128 frames) before taking a step. We used the
AdamW [77] optimizer with a learning rate of 1e − 4, weight decay of 0.01, and cosine
learning rate and momentum schedules [122]. We note that the object detector is frozen
throughout training.

1We used the official implementation of probabilistic multi-object tracking found here https://github.
com/eddyhkchiu/mahalanobis_3d_multi_object_tracking.

2We used the official implementation of simple track found here https://github.com/tusen-ai/

SimpleTrack.
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A.2 Hyperparameters

Table. A.2 characterizes the hyperparameters of our ReID networks in greater detail. We
note that the difference in training epochs (400 vs. 500) for Waymo and nuScenes datasets
was intentional to have approximately the same number of gradient descent steps for each
(±3 epochs).

Parameter Explanation Value

Shared hyperparameters

WD weight decay 0.01

Point hyperparameters

Dp Point input dimension 3

N Number of input points 128

LR Learning Rate 3e − 4

B Batch Size 256 × 4

S × dL Sequence length and 128 × 64
latent feature dimension

Image hyperparameters

DI Image input dimension 3 × 224 × 224

B Batch Size 64 × 4

LR Learning Rate 1e − 5

Randomly initialized Waymo models

E Training epochs 400

Randomly initialized nuScenes models

E Training epochs 500

Pretrained Models

E Training epochs 200

Table A.2: Hyperparameters of our different architectures.

A.3 Additional results analysis.

While the main manuscript highlights the results that are central to our contributions,
some complementary figures could not be included. We include them and a corresponding
discussion here.
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A.3.1 Why does the sampling algorithm have a positive bias for
objects at higher point densities?

Figure A.1 illustrates a limitation of the sampling algorithm we use to select positive
and negative samples during training. While sampling negative examples uniformly at
random is an intuitive choice, it actually introduces a positive bias at higher point densities.
This is because relatively few objects actually contain samples that are of high density,
therefore, the probability of sampling one from all possible observations is low. In contrast,
when sampling positive examples our sampling algorithm must by definition sample other
observations of the same object. Therefore, if the first observation has many points, then it
is more likely that other observations of that same object will also have many points. This
is illustrated in the bottom plot of figure A.1, where we graph the ratio of the probability
of sampling a positive pair of observations with both observations containing at least x
points and the probability of sampling a negative with the same characteristics. As such,
the y-axis quantifies the extent to which the sampling is imbalanced in favor of positive
examples. We observe that the pedestrian class experiences the greatest imbalance of all
classes, where the ratio of positive to negative pairs is as high as 1000 to 1 for 2048+
points. Correspondingly, we observe (in the top left plot) that the accuracy of our point
ReID networks decreases as the number of points is increased for the pedestrian class. This
would go unnoticed if the same sampling algorithm were used at test time. However, we
opted to use a balanced sampling algorithm at testing time to expose any potential biases
learned during training.

By also plotting the positive and negative F1-scores, we can gain further insight into the
drop in accuracy and confirm our hypothesis that the networks learn the bias that is present
in the training data. For both pedestrian and car, we see the same trend: the positive
F1-score is higher than the negative F1-score—confirming the positive bias. One might
still ask: but why does the accuracy for the car class seem unaffected, while the pedestrian
accuracy suffers greatly? This is because of the magnitude of the imbalance. Note that
the y-axis of the bottom figure is log scale. We note that this imbalance phenomenon is
also observed for images, despite their input being devoid of explicit information about the
point density. We hypothesize that the image models are able to find correlations between
the input images and point density which can then be used to fit the imbalance in the
training distribution. When inspecting cropped images with a large number of LiDAR
points, we notice that the length of most images is compressed to fit the input size of
224 × 224— a correlation that an image model should be able to pick up on.
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Figure A.1: Unbalanced train-time sampling algorithm (bottom) causes our
point ReID models to be positively biased (top left) at high point densities. The
y-axis of the bottom plot quantifies the extent to which the sampling is imbalanced in favor
of positive examples as the number of points is increased. The top two plots, pedestrian
(left) and car (right), show the effect of the sampling algorithm on network performance.
We note that it dramatically affects the performance of our strongest-performing network
on the pedestrian class.
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A.3.2 Additional analysis comparing accuracy at different point
densities.

Figure A.2 is the twin of figure 5.2 from the main manuscript. Each figure plots the
performance of our ReID networks on nuScenes (left) and WOD (right) at different point
densities. The difference between the two figures is seen on the x-axis. Figure A.2 plots
accuracy on pairs of observations with at least one observation containing x points or
more, while figure 5.2 requires that both observations in the pair have at least x points.
We observe that the increase in accuracy is steeper when restricting to cases where both
observations have more than x points. However, figure 5.2 does show the same trend but
with a smaller slope.
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Figure A.2: The performance of point cloud ReID approaches image ReID with
sufficient points. The plot shows the performance of the image and point cloud ReID
networks as a function of the number of points in at least one observation of the pair. Left
was trained on nuScenes and evaluated on the nuScenes eval set, while right was trained
on Waymo and evaluated on the Waymo eval 1.
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A.4 Dataset visualization

Figures A.3 and A.4 provide visual examples of samples from our WOD ReID dataset. The
images are cropped from projected 3D bounding boxes predicted by our CenterPoint model
(see sec. 4 for details). The center plots shows the LiDAR crop associated with the same
bounding box. The rightmost plot shows complete point clouds created by aggregating the
points from all observations using ground truth bounding boxes. Aggregated deformable
objects (pedestrian, bicycle, and motorcycle) have a blob-like appearance, while rigid ob-
jects retain a more detailed shape. This is due to their deformability, causing them to
take on many different poses over a sequence. We selected observations with more than
200 points so that it is possible for a human to make out the underlying object. We note,
however, that most of the observations on the dataset contain fewer than 200 points.
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Figure A.3: Samples from our Waymo ReID dataset for deformable objects.
The plot shows the cropped image (left) and cropped sparse point cloud (center) for the
same predicted 3D bounding box (output by our CenterPoint model). We also include the
corresponding complete version of the point cloud (right), used to train our model in the
ablation study (see table. 5.4).
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Figure A.4: Samples from our Waymo ReID dataset continued for rigid objects.
The plot shows the cropped image (left) and cropped sparse point cloud (center) for the
same predicted 3D bounding box (output by our CenterPoint model). We also include the
corresponding complete version of the point cloud (right), used to train our model in the
ablation study (see table. 5.4).
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