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Abstract

This thesis mainly focuses on the structural properties of digraphs with high dichro-
matic number. The dichromatic number of a digraph D, denoted by χ⃗(D), is designed to
be the directed analog of the chromatic number of a graph G, denoted by χ(G). The field
of χ-boundedness studies the induced subgraphs that need to be present in a graph with
high chromatic number. In this thesis, we study the equivalent of χ-boundedness but with
dichromatic number instead. In particular, we study the induced subgraphs of digraphs
with high dichromatic number from two different perspectives which we describe below.

First, we present results in the area of heroes. A digraph H is a hero of a class of
digraphs C if there exists a constant c such that every H-free digraph D ∈ C has χ⃗(D) ≤ c.
It is already known that when C is the family of F -free digraphs for some digraph F , the
existence of heroes that are not transitive tournaments TTk implies that F is the disjoint
union of oriented stars. In this thesis, we narrow down the characterization of the digraphs
F which have heroes that are not transitive tournaments to the disjoint union of oriented
stars of degree at most 4. Furthermore, we provide a big step towards the characterization
of heroes in {rK1 +K2}-free digraphs, where r ≥ 1. We achieve the latter by developing
mathematical tools for proving that a hero in F -free digraphs is also a hero in {K1+F}-free
digraphs.

Second, we present results in the area of χ⃗-boundedness. In this area, we try to deter-
mine the classes of digraphs for which transitive tournaments are heroes. In particular, we
ask whether, for a given class of digraphs C, there exists a function f such that, for every
k ≥ 1, χ⃗(D) ≤ f(k) whenever D ∈ C and D is TTk-free. We provide a comprehensive liter-
ature review of the subject and outline the χ-boundedness results that have an equivalent
result in χ⃗-boundedness. We conclude by generalizing a key lemma in the literature and
using it to prove {B,B′}-free digraphs are χ⃗-bounded, where B and B′ are small brooms
whose orientations are related and have an additional particular property.
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Chapter 1

Introduction

One of the most studied graph invariants in graph theory is the chromatic number. The
chromatic number of a graph G, denoted by χ(G), which we will formally define soon, can
be thought of as a measurement of complexity of G. Graphs with few edges and a high
chromatic number have become a subject of study in graph theory. They have inspired
new research fields, such as χ-boundedness, with conjectures that have resisted decades of
work trying to settle them. The field of χ-boundedness, roughly speaking, deals with the
question: which structures are we guaranteed to find in a graph G if G has small chromatic
number locally but χ(G) is really large?

In this thesis, we present results related to the directed analog of the question: what
structures are we guaranteed to find in a digraph D when D has large dichromatic number,
denoted by χ⃗(D)? As we will see, the dichromatic number of digraphs, which is a directed
analog of the chromatic number of graphs, has multiple interesting properties. For instance,
our question is interesting even when D is dense. We proceed to formalize these concepts
in the following section.

Important note: Throughout this thesis, graphs and digraphs are simple and finite.
In particular, for two vertices u, v in a digraph, not both of the arcs uv and vu are present.

1.1 Background definitions

A graph G = (V,E) is an ordered pair composed of a vertex set V (G) = V , and an edge
set E(G) = E ⊆

(
V (G)
2

)
. A digraph D = (V,A) is an ordered pair composed of a vertex

set V (D) = V and an arc set A(D) = A ⊆ {(u, v) : u, v ∈ V (D), u ̸= v}. For simplicity,
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we use the notation uv to denote the edge {u, v} in a graph or the arc (u, v) in a digraph.
Furthermore, when considering a digraph D = (V,A) where uv ∈ A(D), we say u sees v,
and v is seen by u. An orientation of a graph G is a digraph D such that if {u, v} ∈ E(G),
then either (u, v) ∈ A(D) or (v, u) ∈ A(D), but not both. The underlying undirected graph
of a digraph D is the graph G with V (G) = V (D) and where uv is an edge in G if either
uv ∈ A(D) or vu ∈ A(D).

A path P on m vertices is the graph with m vertices v1, . . . , vm whose edges are of the
form vivi+1 for every i ∈ {1, . . . ,m− 1}. Regarding orientations of a path, we use arrows
→ and ← to denote the direction of the arcs. For instance, the orientation P : v1 → v2 ←
v3 → v4 ← . . . is an orientation where the directions of the arcs are alternating. When the
names of the vertices are not important, we omit them. For instance, →→←← denotes a
digraph isomorphic to ({v1, . . . , v5}, {v1v2, v2v3, v4v3, v5v4}). Finally, the directed path on
m vertices refers to a path on m vertices with orientation →→ · · · →.

A (di)graph H is an induced subgraph of a (di)graph G if by deleting vertices of G we
can get a (di)graph isomorphic to H. Equivalently, we say H is an induced subgraph of G if
there exists a set S ⊆ V (G) such that G[S] is isomorphic to H. We call S a copy of H in G.
If G has no copy ofH, then we say G isH-free. Furthermore, if C is a set of (di)graphs, then
G is C-free if for every H ∈ C, G is H-free. Note, for instance, that complete graphs are
2K1-free graphs. In directed graphs, 2K1-free digraphs, or equivalently oriented complete
graphs, are called tournaments. Transitive tournaments are tournaments oriented such
that there is no directed cycle.

Let D1, D2, and D3 be induced subgraphs of a digraph D whose vertex sets are pairwise
disjoint. We use D1 ⇒ D2 to indicate that every vertex in D1 sees every vertex in D2. We
will also use this notation constructively. That is, for two digraphs F1 and F2 with V (F1)∩
V (F2) = ∅, the notation F1 ⇒ F2 denotes the digraph F with induced subgraphs F1 and
F2 with non-overlapping vertex sets where V (F ) = V (F1)∪V (F2), and every vertex in the
copy of F1 sees every vertex in the copy of F2. Furthermore, we say D = ∆(D1, D2, D3) if
V (D) = V (D1)∪V (D2)∪V (D3), and D1 ⇒ D2, D2 ⇒ D3, and D3 ⇒ D1. For convenience,
if D1 is a transitive tournament on m vertices, then we write D = ∆(m,D2, D3) for
∆(D1, D2, D3). We use D1 + D2 to denote the disjoint union of D1 and D2, and we use
rD1 for an integer r ≥ 0 to denote the disjoint union of r copies of D1.

Let G be a graph. For an integer m, let [m] := {1, . . . ,m}. A set S ⊆ V (G) is a
stable set if for every u, v ∈ S, we have that uv ̸∈ E(G). An m-coloring of G is a function
c : V (G) → [m] such that for every color i ∈ [m], the set c−1(i) is a stable set. The
chromatic number of G, denoted by χ(G), is the minimum number m such that there
exists an m-coloring of G. Figure 1.1 shows an example of a graph with chromatic number
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Figure 1.1: The Petersen graph with a 3-coloring

3.

Assume D is a digraph. Neumann-Lara [23] introduced the following analogs of m-
colorings and χ for digraphs. An m-dicoloring of D is a function c : V (D) → [m] such
that for every color i ∈ [m], the set c−1(i) is an acyclic set (that is, a set that contains no
directed cycle). The dichromatic number of D, denoted by χ⃗(D), is the minimum number
m such that there exists an m-dicoloring of D. For convenience, if D is a digraph and
S ⊆ V (D), then we use χ⃗(S) to denote χ⃗(D[S]). Figure 1.2 shows an example of a digraph
with dichromatic number 2.

For a graph G, we say a set S ⊆ V (G) is a clique if for every u, v ∈ S, where u ̸= v, we
have uv ∈ E(G). Furthermore, the clique number of G, denoted by ω(G), is the maximum
cardinality of a set S ⊆ V (G) such that S is a clique. On the other hand, if D is a digraph,
then ω(D) denotes ω(G) where G is the underlying undirected graph of D. Moreover, the
girth of a graph G, denoted by g(G), is the size of the smallest cycle in G, or ∞ if G is
a forest. If D is a digraph, then the undirected girth of D, denoted by g(D), refers to
the girth of the underlying undirected graph of D. It is worth pointing out that different
definitions of the girth of a digraph exists. For instance, some define it as the size of the
shortest directed cycle. This is a different concept which we will not use. Notice that if
g(G) > 2, then ω(G) ≤ 2.
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Figure 1.2: An orientation of the Petersen graph with a 2-dicoloring

1.2 Heroes

One of the easiest observations regarding the chromatic number is that, for every graph G,
we have ω(G) ≤ χ(G). The equivalent in digraphs does not hold. An acyclic tournament
TTk, for instance, has k = ω(TTk) > χ⃗(TTk) = 1. In fact, it is not immediately obvious,
as it is for χ, that there exists a digraph D with χ⃗(D) > 2. One of the easiest ways
to get arbitrarily high dichromatic number is the following construction due to Berger,
Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and Thomassé [5]. Let T1 = K1,
and for every n ≥ 1, let Tn+1 = ∆(1, Tn, Tn). A quick proof by induction yields χ⃗(Tn) =
n. The simplicity of the construction motivates the following question. What makes a
tournament have high dichromatic number?

Following the notation of Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Sey-
mour, and Thomassé [5], we say that a digraph H is a hero of a family of digraphs C if
there exists a constant c such that every H-free digraphs D ∈ C have χ⃗(D) ≤ c. Given
that tournaments are 2K1-free digraphs, we can ask our question again as follows. What
are the heroes of tournaments?

Many properties of the dichromatic number of digraphs can be seen as analogous to
properties of undirected graphs. For instance, Erdős [13] proved the counter-intuitive result
that a graph G need not have many edges to have high chromatic number.

Theorem 1.2.1 (Erdős [13]). For every pair of integers g, k, there exists a graph G such
that g(G) ≥ g and χ(G) ≥ k.
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Harutyunyan and Mohar [19] proved that the dichromatic number shares this property
as well.

Theorem 1.2.2 (Harutyunyan and Mohar [19]). For every pair of integers g, k, there
exists a digraph D such that g(D) ≥ g and χ⃗(D) ≥ k.

This very surprising property indicates that the dichromatic number, like the chromatic
number, is hard to bound. In this section and the following, we focus on questions related
to bounding the dichromatic number by forbidding induced subgraphs.

In [4], Aboulker, Charbit, and Naserasr organize related results and open questions
into the following unified theory. They observe that, due to Theorem 1.2.2, for {F,H}-free
digraphs to have bounded dichromatic number, one of F and H needs to be a directed
forest. Furthermore, given that 2K1 is an induced subgraph of every directed forest except
the path on two vertices → and K1, it follows that if H is a hero in F -free digraphs
where F ̸∈ {→, K1} is an oriented forest, then H is a hero in 2K1-free digraphs. That is,
Aboulker, Charbit, and Naserasr [4] proved the following.

Theorem 1.2.3 (Aboulker, Charbit, and Naserasr [4]). Given digraphs H and F , if
{H,F}-free digraphs have bounded dichromatic number, then one of them, say F , is an
oriented forest. Furthermore, if F has at least 3 vertices, then H is a hero in 2K1-free
digraphs.

Thus, it is important to know the structure of heroes of 2K1-free digraphs. In the
landmark paper [5], Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and
Thomassé characterized them completely.

Theorem 1.2.4 (Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, and
Thomassé [5]). H is a hero in tournaments if and only if one of the following holds:

• H = K1,

• H = H1 ⇒ H2 where H1 and H2 are heroes in tournaments, or

• H = ∆(1, H1,m) or H = ∆(1,m,H1) where m ≥ 1 and H1 is a hero in tournaments.

As noted in [4], the question about bounding the dichromatic number of {F,H}-free
digraphs is the directed version of the famous Gyárfás-Sumner conjecture.

Conjecture 1.2.5 (Gyárfás [17] and Sumner[31]). For every forest F and every clique Kk

on k vertices, the {F,Kk}-free graphs have bounded chromatic number.
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Aboulker, Charbit, and Naserasr [4] proved that if the underlying undirected graph of
F has a path on four vertices and H is a hero in F -free digraphs, then H is a transitive
tournament. Using this, the authors of [4] made the following two conjectures. An oriented
star is an orientation of the star K1,t for some integer t.

Conjecture 1.2.6 (Aboulker, Charbit, and Naserasr [4]). If F is a directed forest and H
is a transitive tournament, then H is a hero in F -free digraphs.

Conjecture 1.2.7 (Aboulker, Charbit, and Naserasr [4]). If F is the disjoint union of
oriented stars, and H is a hero in tournaments, then {F,H}-free digraphs have bounded
dichromatic number.

Thus, Conjecture 1.2.6 can be seen as the directed version of Conjecture 1.2.5, the
Gyárfás-Sumner conjecture. Although some progress has been made (for instance, Cook,
Masař́ık, Pilipczuk, Reinald, and Souza [12] proved the conjecture for every orientation of
the path on four vertices), the conjecture remains wide open. We will discuss Conjecture
1.2.5 and Conjecture 1.2.6 in more detail in the next section.

On the other hand, Aboulker, Aubian, and Charbit [1] disproved Conjecture 1.2.7.

Theorem 1.2.8 (Aboulker, Aubian, and Charbit [1]). If C is the cyclic triangle and F
contains a copy of K1 + K2, then ∆(1, 2, C),∆(1, C, 2),∆(1, 2, 3), and ∆(1, 3, 2) are not
heroes in F -free digraphs.

Despite the conjecture being false, there are positive results in the literature. The
following theorems summarize some of them.

Theorem 1.2.9 (Harutyunyan, Le, Newman, and Thomassé [18]). Let r ≥ 2 be an integer.
H is a hero in rK1-free digraphs if and only if:

• H = K1;

• H = H1 ⇒ H2 where H1 and H2 are heroes in rK1-free digraphs; or

• H = ∆(1,m,H1) or H = ∆(1, H1,m) where m ≥ 1, and H1 is a hero in rK1-free
digraphs.

In other words, the heroes of rK1-free digraphs are precisely the heroes of tournaments.

Theorem 1.2.10 (Aboulker, Aubian, and Charbit [1]). A digraph H is a hero in {K1 +
K2}-free digraphs if:
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• H = K1;

• H = H1 ⇒ H2 where H1 and H2 are heroes in {K1 +K2}-free digraphs; or

• H = ∆(1, 1, H1) where H1 is a hero in {K1 +K2}-free digraphs.

Along with Theorem 1.2.8, this characterizes heroes in {K1+K2}-free digraphs almost
completely: only the status of ∆(1, 2, 2) remains to be decided.

Theorem 1.2.11 (Chudnovsky, Scott, and Seymour [9]). If F is an oriented star and H
is a transitive tournament, then H is a hero in F -free digraphs.

Theorem 1.2.12 (Steiner [30]). If F =←→ and H = C⃗3 ⇒ TTk for some integer k ≥ 1,
then H is a hero in F -free digraphs.

As we will see, Theorems 1.2.9 to 1.2.11 are very important to our paper. Regarding
the second bullet point of Theorem 1.2.10, Aboulker, Aubian, and Charbit proved the
following much stronger result.

Theorem 1.2.13 (Aboulker, Aubian, and Charbit [1]). Let H1, H2 and F be digraphs such
that H1 ⇒ H2 is a hero in F -free digraphs, and H1 and H2 are heroes in {K1 + F}-free
digraphs. Then H1 ⇒ H2 is a hero in {K1 + F}-free digraphs.

In this thesis, we include the proof of the following three results which were proven in
collaboration with Hidde Koerts, Benjamin Moore, and Sophie Spirkl. The first result is a
full characterization of heroes in F -free digraphs when the underlying undirected graph of
F is a star with degree at least 5.

Theorem 1.2.14. If F is an orientation of a star of degree at least 5, then H is a hero
in F -free digraphs if and only if H is a transitive tournament.

Note that, previously, the smallest case known to be false for Conjecture 1.2.7 was
K1 +K2. Thus, it was still possible that Conjecture 1.2.7 holds for directed stars, rather
than the stronger statement of the disjoint union of directed stars. Theorem 1.2.14 proves
that this weaker statement is false as well.

Regarding oriented stars of degree 4, we prove the following.

Theorem 1.2.15. If F is an oriented star of degree 4 and H is a hero in F -free digraphs,
then either H is a transitive tournament or H = ∆(1,m,m′) where m,m′ ≥ 1.

7



Like Theorem 1.2.14, Theorem 1.2.15 contradicts Conjecture 1.2.7 for cases that were
previously still open. Furthermore, we prove the following strengthening of Theorem 1.2.10.

Theorem 1.2.16. For every r ≥ 0, a digraph H is a hero in {rK1 +K2}-free digraphs if:

• H = K1,

• H = H1 ⇒ H2 where H1 and H2 are heroes in {rK1 +K2}-free digraphs.

• H = ∆(1, 1, H1) where H1 is a hero in {rK1 +K2}-free digraphs.

We prove this theorem by developing conditions that imply that heroes in F -free di-
graphs are also heroes in K1 + F -free digraphs.

By Theorem 1.2.8 and Theorem 1.2.10, to characterize heroes in {K1 + K2}-free di-
graphs, it is enough to determine whether H = ∆(1, 2, 2) is a hero in {K1 + K2}-free
digraphs. By the same logic, Theorem 1.2.16 characterizes heroes in {rK1 + K2}-free
digraphs up to ∆(1, 2, 2).

1.3 χ⃗-boundedness

We now discuss the directed analog of the field of χ-boundedness.

A set of graphs C is hereditary if for every G ∈ C, the induced subgraphs of G are
also in C. A hereditary set of graphs C is χ-bounded if there exists a function f such that
χ(G) ≤ f(ω(G)) when G ∈ C. Furthermore, we say C is χ-bounded by f . Gyárfás [17] was
the first person to study χ-boundedness systematically. We elaborate on his contributions
later.

The concept of χ-boundedness is a generalization of the concept of perfect graphs, where
a graph G is perfect if every induced subgraph G′ of G satisfies that χ(G′) = ω(G′). Recall
that ω(G) ≤ χ(G). Thus, perfect graphs are those graphs where equality is achieved for
every induced subgraph. The most important result regarding perfect graphs is the Strong
Perfect Graph Theorem by Chudnovsky, Robertson, Seymour, and Thomas [8] which fully
characterizes them. The complement of a graph G, denoted by Ḡ, is the graph such that
V (G) = V (Ḡ) and E(Ḡ) = {uv : uv ̸∈ E(G), u ̸= v}.

Theorem 1.3.1 (Chudnovsky, Robertson, Seymour, and Thomas [8]). A graph G is perfect
if and only if G is {C5, C̄5, C7, C̄7, . . . }-free.
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Notice that the family of perfect graphs is χ-bounded by f(x) = x, the identity function.
The next most natural question, then, is: which other families of graphs C have the property
that C-free graphs are χ-bounded as well? The study of χ-bounded families is an active
area of study in graph theory. We refer the interested reader to the most recent survey on
the subject by Scott and Seymour [28]. One of the most important conjectures in the field
is the Gyárfás-Sumner conjecture, which was already mentioned in an equivalent form in
the previous section (Conjecture 1.2.5).

Conjecture 1.3.2 (Gyárfás [17] and Sumner[31]). F -free graphs are χ-bounded if and only
if F is a forest.

The following argument proves the only if part of the conjecture. If F is not a forest,
then, for every k, we can use Theorem 1.2.1 to find a graph G with g(G) ≥ g(F ) + 1 and
χ(G) ≥ k. That is, G is F -free, has ω(G) = 2, yet it has an arbitrarily high chromatic
number, so there cannot exist a function f such that F -free graphs are χ-bounded by f .

Much work has been put into proving the other direction of the Gyárfás-Sumner con-
jecture. In this thesis, we deal with the directed analog of the conjecture. In the directed
case, we consider χ⃗-boundedness. A hereditary family C of digraphs is χ⃗-bounded if there
exists a function f such that χ⃗(D) ≤ f(ω(D)) for every D ∈ C. Notice that Conjecture
1.2.6 is equivalent to the following:

Conjecture 1.3.3 (Aboulker, Charbit, and Naserasr [4]). F -free digraphs are χ⃗-bounded
if and only if F is a directed forest.

Unlike Conjecture 1.2.7, this conjecture is yet to be decided. We proceed to compare
some of the results from the field of χ-boundedness to those in χ⃗-boundedness. First,
the only if part of Conjecture 1.3.3 follows by using the same argument but instead of
Theorem 1.2.1, we use Theorem 1.2.2. Second, Conjecture 1.3.3 can also be reduced to
oriented trees. As pointed out by Scott and Seymour [28] in their survey on the subject, if
F1-free graphs and F2-free graphs are χ-bounded, then {F1+F2}-free graphs are χ-bounded.
χ⃗-boundedness has the equivalent result.

Theorem 1.3.4 (Steiner [30]). If F1-free digraphs and F2-free digraphs are χ⃗-bounded,
then {F1 + F2}-free digraphs are χ⃗-bounded.

Note that the equivalent is not true for heroes: if H is a hero in F1-free digraphs and
F2-free digraphs, then it does not necessarily follow that H is a hero in {F1 + F2}-free
digraphs. Take, for instance, the case where H = ∆(1, 2, 3), F1 = K1, and F2 = K2.
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Gyárfás [17] started the systematic study of χ-boundedness by proving the result for
every path. Let Pn be the path on n vertices. Furthermore, two non-overlaping sets of
verticesX and Y in a graph G are complete (resp. anticomplete) to each other if xy ∈ E(G)
(resp. xy ̸∈ E(G)) for every x ∈ X and y ∈ Y . Lastly, let N [v] = N(v) ∪ {v}.

Theorem 1.3.5 (Gyarfas [17]). For every n ≥ 1, Pn-free graphs are χ-bounded.

Description of the proof: We proceed by induction on the clique number. Evidently, if
ω(G) = 1, then χ(G) = 1. For the inductive step, let G be a Pn-free graph, and assume
that the statement is true for every graph with clique number less than ω(G). Let γ be
the constant such that if G′ is a Pn-free graph and ω(G′) < ω(G), then χ(G′) ≤ γ. We
want to bound χ(G) by using γ and ω(G) only. For this purpose, we may assume that G
is connected as otherwise we can color every component independently.

The first key observation is noticing that, for every vertex v ∈ V (G), the neighborhood
of v has clique number strictly less than ω(G), so χ(N(v)) ≤ γ. The way in which we use
this fact is as follows. Let G1 = G, and v1 = v. Consider G2 = G1 \ N [v1] (that is, the
graph that results from deleting every vertex in N [v1] from G1). What do we know about
χ(G2)? If it is small, that is, if it can be bounded by using γ and ω(G), then we win:
χ(G1) ≤ χ(G2) + γ. So assume χ(G2) is large. Furthermore, for simplicity we assume G2

is connected as otherwise the rest of the argument can be applied to the component of G2

with largest chromatic number.

What is different between G1 and G2? There is one important difference: there exists
a vertex, v1, anticomplete to G2. Other than that, they have the same properties: both
have large chromatic number, both have the same clique number (as otherwise χ(G2) ≤ γ),
and both are Pn-free. We take advantage of this by repeating the same process: pick a
vertex, v2, in N(v1) with a neighbor in G2, so v2 ̸∈ V (G2), and now do the same. We set
G3 = G2 \ N [v2], assume G3 is connected as before, and we ask again: what do we know
about χ(G3)? Again, if it is small, then we win: χ(G2) ≤ χ(G3) + γ, which contradicts
that G2 has large chromatic number. So assume G3 has large chromatic number.

What have we gained? Now there exists a P2, the one with vertex set {v1, v2}, that
is anticomplete to G3. And as before, there is nothing stopping us from repeating the
same argument. Thus, if χ(G) is indeed large (that is, it cannot be bounded by using γ
and ω(G)), then we can repeat this process forever. But once we get to step n, there is a
problem: the set {v1, . . . , vn} induces a copy of Pn, contradicting that G is Pn-free.

This argument is famously known as the Gyárfás path argument. It works in many
contexts, with the appropiate necessary modifications, when trying to prove statements
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about Pn-free graphs, and it gives a lesson: forbidding a tree, at least one as simple as a
path, restricts our ability to infinitely “explore” the graph, and this leads to a bounded
chromatic number.

The original Gyárfás path argument, although elegant and a cornerstone of the field,
is not terribly complicated. For instance, one does not need more than half a page to
formalize it. So it is reasonable to expect oriented paths to have an analogous argument,
at the very least the directed path → · · · →. Such argument, however, is yet to be found
and it is not likely to exist because of a very important yet subtle difference between graphs
and digraphs. Shortest paths in graphs are induced paths; this is not the case in digraphs.
This small difference makes the Gyárfás path argument fail very early: once we pick v2,
how do we reach G2? How does a shortest path between v2 and G2 help us if it is not
induced? By making strong additional assumptions, it is possible to make the Gyárfás
path argument work, as we explain later.

Arguments with a similar objective as the Gyárfás path argument have been found
for other cases. One known in the folklore with no known first author is the proof that
K1,t-free graphs are χ-bounded. Stars allow for a very short argument. First, we observe
that in K1,t-free graphs, stable sets in the neighborhood of a vertex have size at most t.
Second, since in an inductive proof on χ(G) we bound the clique number, this leads to a
bound on the degree of every vertex, a bound provided by Ramsey’s theorem [24]. Third,
we use the bounded degree to bound χ(G). The equivalent for χ⃗-boundedness is true:

Theorem 1.3.6 (Chudnovsky, Scott, and Seymour [9]). If F is an oriented star, then
F -free digraphs are χ⃗-bounded.

Note that this is equivalent to Theorem 1.2.11. Chudnovsky, Scott and Seymour [9]
in fact proved the stronger result that F -free digraphs are χ-bounded. This notion is
stronger since χ⃗(D) ≤ χ(D) where χ(D) refers to the chromatic number of the underlying
undirected graph of D. Proving this result is much harder than proving that K1,t-free
graphs are χ-bounded.

In their breakthrough paper, Kierstead and Penrice [22] developed the notion of tem-
plates, which in short are maximal complete multipartite parts, to prove that if T is a
tree of radius two, then T -free graphs are χ-bounded. This idea of using templates was
improved in [21], and then again to obtain the following:

Theorem 1.3.7 (Scott and Seymour [27]). If T is a tree obtained from a radius two
tree by subdividing some of the edges incident to the center vertex, then T -free graphs are
χ-bounded.
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This is the strongest known result regarding trees of bounded radius. Indeed, tem-
plates are a powerful idea. A closed tournament in a digraph is the smallest, by vertex
size, strongly connected subgraph which contains a tournament of maximal size. These
structures can be seen as the directed analog of templates. Closed tournaments are used
to prove the current strongest result regarding oriented paths. Furthermore, we use them
to prove a related result. We elaborate on this subject later.

The last technique which we will discuss is levelings. This technique fixes a vertex v,
and then partitions the graph by distance to v. Leveling has been used to prove results
such as:

Theorem 1.3.8 (Chudnovsky, Scott, and Seymour [10]). If T is a tree obtained from a
star and the subdivision of a star by adding a path joining their centers, then T -free graphs
are χ-bounded.

Theorem 1.3.9 (Chudnovsky, Scott, Seymour, and Spirkl [29]). If T is a tree obtained
from two paths by joining them with an edge, then T -free graphs are χ-bounded.

These results are among the most significant advances towards the Gyárfás-Sumner
conjecture. More relevant to our subject, leveling can be used to prove C-free graphs are
χ-bounded for the case where C is an infinite set of graphs. For instance, the technique
can be used to prove the following theorem.

Theorem 1.3.10 (Chudnovsky, Scott, Seymour, and Spirkl [11]). For every l ≥ 2, the
{C2l+1, C2l+3, . . . }-free graphs are χ-bounded.

In [7], with Hompe, Moore, and Spirkl, we proved that Theorem 1.3.10 does not have
an analog in χ⃗-boundedness:

Theorem 1.3.11 (Carbonero, Hompe, Moore, and Spirkl [7]). Digraphs with no induced
directed cycle of odd length at least 5 are not χ⃗-bounded.

Indeed, χ⃗-bounded families are rare. To illustrate why, define a t-chordal digraph as a
digraph D whose induced directed cycles all have size t. The same authors as [7] proved
the following (where the case t = 3 was first proven by Aboulker, Bousquet, and de Verclos
[3]).

Theorem 1.3.12 (Carbonero, Hompe, Moore, and Spirkl [6]). For every t ≥ 3, the t-
chordal digraphs are not χ⃗-bounded.
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Notice that 3-chordal digraphs are the directed analog of chordal graphs, that is, graphs
in which every induced cycle has size 3 . Chordal graphs are perfect, so they are χ-bounded
by the identity function. Yet, when we consider the equivalent of chordal graphs in di-
graphs, or the more general concept of t-chordal graphs, we do not even get χ⃗-boundedness.

On the upside, and coming back to paths, Theorem 1.3.12 is, in some sense, tight. In
the same paper, the authors proved the following.

Theorem 1.3.13 (Carbonero, Hompe, Moore, and Spirkl [6]). If t ≥ 1 and P is the
directed path on t vertices, then P -free t-chordal digraphs are χ⃗-bounded.

Theorem 1.3.13 is proven by using the Gyárfás path argument. Indeed, one needs the
strong assumption that D is t-chordal for the Gyárfás path argument to work in P -free
graphs. Despite paths being probably the next most complicated case after oriented stars,
which, again, is not a simple case, they are still hard. This is true despite the rich theory
and library of techniques that has been developed for χ-boundedness. In regards to paths,
the following two are the best results.

Theorem 1.3.14 (Aboulker, Aubian, Charbit, and Thomassé [2]). Let P be the directed
path on 6 vertices. If D is P -free and ω(D) ≤ 2, then χ⃗(D) ≤ 382.

Theorem 1.3.15 (Chudnovsky, Scott, and Seymour [9] and Cook, Masař́ık, Pilipczuk,
Reinald, and Souza [12]). If P is an orientation of the path on 4 vertices, then P -free
digraphs are χ⃗-bounded.

For Theorem 1.3.15, Chudnovsky, Scott, and Seymour [9] proved the following: if
P =→←← or P =←→→, then P -free digraphs are χ-bounded. Interestingly, the other
orientations of P do not have this property. Cook, Masař́ık, Pilipczuk, Reinald, and Souza
[12] designed a proof technique to prove that, for any given orientation P of P4, the P -
free digraphs are χ⃗-bounded. They achieve this by using closed tournaments, which, as
discussed before, can be seen as the directed analog of templates.

In this thesis, we include the proof of the following result which was proven in collab-
oration with Hidde Koerts, Benjamin Moore, and Sophie Spirkl. This is a strengthening
of an unpublished result by Linda Cook and Seokbeom Kim (private communication). We
present a way to use the proof technique from [12] to prove the following.

For an integer r ≥ 1, let the r-broom, denoted by Br, be the graph defined as follows:

Br := (V = {v1, v2, v3, w1, . . . , wr}, E = {v1v2, v2v3, v3w1, . . . , v3wr}).
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Figure 1.3: An illustration of Br.

See Figure 1.3. If B is an orientation of Br and B′ is an orientation of Bs, then we say
B and B′ have opposing orientations if v2v3 ∈ A(B) and v3v2 ∈ A(B′). Furthermore, a
valid orientation B of Br is an orientation such that either {v3w1, . . . , v3wr} ⊆ A(B) or
{w1v3, . . . , wrv3} ⊆ A(B).

Theorem 1.3.16. Let r and s be positive integers. If B and B′ have valid opposing orien-
tations of Br and Bs respectively, then {B,B′}-free digraphs are χ⃗-bounded.

The analogous result for χ-boundedness is true and stronger. A broom is a tree where
an end-vertex of a path is identified with the center of a star. Notice that the underlying
undirected graph of an r-broom is a broom where the path has 3 vertices. Gyárfás [16]
proved that if B is a broom, then B-free graphs are χ-bounded.

To prove Theorem 1.3.16, we expand the proof technique in [12] to this context by
generalizing a key lemma from the literature. This lemma was first proven in [4], but
independently discovered in [12]. A set S ̸= ∅ of vertices of D is nice if there exists a
partition S1, S2 of S such that every vertex in S1 (resp. S2) only has in-neighbors (resp.
out-neighbors) in V (D) \ S.

Lemma 1.3.17 (Aboulker, Charbit, and Naserasr [4]). Let C be a hereditary class of
digraphs. If there exists integers c, k such that every D ∈ C has a nice set S with χ⃗(S) ≤ c,
then χ⃗(D) ≤ 2c for every D ∈ C.

By generalizing this lemma to the following result, we are able to use the proof technique
in [12] used to prove Theorem 1.3.16. A set S of vertices of D is k-nice if there exists a
partition S1, S2 of S ̸= ∅ such that every vertex in S1 (resp. S2) has at most k in-neighbors
(resp. k out-neighbors) in V (D) \ S.
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Lemma 1.3.18. Let k ≥ 0, and let C be a hereditary class of digraphs. If there exists an
integer c such that every D ∈ C has a k-nice set S with χ⃗(S) ≤ c, then χ⃗(D) ≤ 2c(k + 1)
for every D ∈ C.
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Chapter 2

Heroes

In this chapter, we present the proofs related to the results highlighted in Section 1.2. We
prove Theorem 1.2.14 in Section 2.1, Theorem 1.2.15 in Section 2.2, and Theorem 1.2.16
in Sections 2.3 and 2.4. These results and their proofs are part of an upcoming publication
co-authored with Hidde Koerts, Benjamin Moore, and Sophie Spirkl.

Throughout the section, we use the following definitions. For a digraph D, when we
say that X1 ⊆ V (D) is complete (resp. anticomplete) to X2 ⊆ V (D), we mean that this is
the case for the underlying undirected graph of D. Additionally, X1 is in-complete (resp.
out-complete) to X2 if every vertex in X1 is seen by (resp. sees) every vertex in X2.

2.1 Proof of Theorem 1.2.14

In this section, we prove Theorem 1.2.14, which we restate for the reader’s convenience:

Theorem 1.2.14. If F is an orientation of a star of degree at least 5, then H is a hero
in F -free digraphs if and only if H is a transitive tournament.

To prove this theorem, as well as Theorem 1.2.15, we need the following family of
graphs. Let n and k be integers such that n > 2k > 2. The k-tuple shift-graph with indices
in {1, ..., n} is the graph whose vertices are of the form (x1, . . . , xk), where xi ∈ {1, . . . , n}
for every i ∈ {1, . . . , n} and xi < xi+1 for every i ∈ {1, . . . , n}. Furthermore, two vertices
(a1, . . . , ak) and (b1, . . . , bk) are adjacent if ai+1 = bi for every i ∈ {1, . . . , k − 1} or vice
versa. In [14], Erdős proved the following.
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Theorem 2.1.1 (Erdős [14]). For every fixed k, if Gn is the k-tuple shift-graph with indices
in {1, . . . , n}, then χ(Gn)→∞ as n→∞.

We will also use the Gallai-Roy Theorem ([15, 25]):

Theorem 2.1.2 (Gallai [15] and Roy [25]). If D has no directed path of length t, and G
is the underlying undirected graph of D, then χ(G) ≤ t.

The following theorem gives a construction which will allow us to prove one direction
of Theorem 1.2.14. The construction is inspired by the construction in [1] used to prove
Theorem 1.2.8. They add edges to shift graphs to create a complete multipartite digraph
with certain properties. We use shift graphs as well but we add edges in a different way.
We use the same strategy to prove Theorem 1.2.15.

Theorem 2.1.3. There exists digraphs F1, F2, . . . such that:

• χ⃗(Fn)→∞ as n→∞;

• for every n ≥ 1 and v ∈ V (Fn), the neighborhood of v can be partitioned into four
tournaments; and

• for every n ≥ 1, the digraph Fn has no cyclic triangle ∆(1, 1, 1).

Proof. Let Gn be the 7-tuple shift-graph with indices in {1, ..., n}, and let Dn be the
orientation of Gn where (a1, . . . , a7)(b1, . . . , b7) ∈ A(D) if bi = ai+1 for every i ∈ {1, . . . , 6}.
For every v = (a1, . . . , a7) ∈ V (Gn), define m(v) = a4. Let X := A(Dn). That is, X is
the set of edges of the form (•, b, c, d, e, f, g) → (b, c, d, e, f, g, •). Moreover, let D′

n be the
digraph with V (D′

n) = V (Dn) and A(D′
n) = X ∪ Y where Y is the set of arcs of the form

(a, b, c, d, •, •, •)→ (•, •, •, a, b, c, d). Note that as m is strictly increasing along arcs in X,
it follows that X is acyclic. Likewise, m is strictly decreasing in Y , so Y is acyclic.

(2.1) For every n ≥ 1, χ(Gn)/3 ≤ χ⃗(D′
n).

Proof. We will prove the claim by proving that a set of vertices that induces an acyclic set
in D′

n also induces a subgraph with chromatic number at most 3 in Gn. Let Λ be a set
of vertices that induces an acyclic set in D′

n. Notice that Dn[Λ] does not have a directed
path of length 3 because if such a path v1 → v2 → v3 → v4 exists, then v4v1 ∈ A(D′

n)
contradicting that Λ is an acyclic set in D′

n. Thus, by Theorem 2.1.2, we have χ(Gn[Λ]) ≤ 3
as desired. ■
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Finally, let Fn be the digraph with V (Fn) = V (D′
n) and A(Fn) = X ∪ Y ∪ Z1 ∪ Z2

where we define Z1 and Z2 as follows. Let < be a total ordering of V (Fn). Define Z1

(resp. Z2) as the set of edges such that uv ∈ Z1 (resp. uv ∈ Z2) if u < v and there exists
numbers a, b, c, d (resp. d, e, f, g) such that both u and v are of the form (a, b, c, d, •, •, •)
(resp. (•, •, •, d, e, f, g)).

(2.2) If v ∈ V (Fn), then NFn(v) can be partitioned into four tournaments.

Proof. Fix v = (a, b, c, d, e, f, g) ∈ V (Fn). The neighbors u of v such that uv ∈ X or vu ∈ X
are of the form (•, a, b, c, d, e, f) and (b, c, d, e, f, g, •) respectively. By the definition of edges
in Z1 ∪ Z2, vertices of these forms each induce a tournament.

Denote byA andB the neighbors of v of the forms (•, •, •, a, b, c, d) and (d, e, f, g, •, •, •),
respectively. Notice that these sets partition the neighbors of v connected to v via edges in
Y . Denote byM andN the neighbors of v of the form (a, b, c, d, •, •, •) and (•, •, •, d, e, f, g),
respectively. Notice that these sets partition the neighbors of v connected to v via edges
in Z1 ∪ Z2. By the definition of edges in Z1 ∪ Z2, each of the sets A,B,M and N induces
a tournament. Furthermore, M is complete to A, and B is complete to N via edges in
Y . Since A(Fn) = X ∪ Y ∪ (Z1 ∪ Z2), these are all the neighbors of v, thus finishing the
proof. ■

(2.3) Fn has no cyclic triangle.

Proof. Assume for a contradiction that there exist vertices u, v, w such that u sees v, v
sees w, w sees u, and where u = (a, b, c, d, e, f, g).

We claim that no edge in the cyclic triangle is in Z1 ∪ Z2. For a contradiction, assume
without loss of generality that uv ∈ Z1∪Z2, so m(v) = d. Assume first that wu ∈ Z1∪Z2.
Consequently, m(w) = d as well, so vw ∈ Z1 ∪ Z2, which contradicts that the edges in
Z1 ∪Z2 form an acyclic orientation. Therefore, wu ̸∈ Z1 ∪Z2. Assume next that wu ∈ X.
Consequently, m(w) = c, so vw ∈ X. Thus, v = (•, •, a, b, c, d, e), which contradicts that
m(v) = d. Therefore, wu ̸∈ X. Thus, wu ∈ Y , so w = (d, e, f, g, •, •, •). But then
vw ̸∈ X ∪ (Z1 ∪ Z2), so vw ∈ Y . Thus, the first index of v is g. This contradicts that
m(v) = d since d < g. We conclude that no edge in the cyclic triangle is in Z1 ∪ Z2.

We claim that no edge in the cyclic triangle is inX. For a contradiction, assume without
loss of generality that uv ∈ X, so v = (b, c, d, e, f, g, •). Assume vw ∈ X. Consequently,
w = (c, d, e, f, g, •, •), so by definition wu ̸∈ Y . But wu ̸∈ X since m(u) ̸= g, which
contradicts that wu is an arc and wu ̸∈ Z1 ∪ Z2. Thus, vw ∈ Y , so w = (•, •, •, b, c, d, e).
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But then wu ̸∈ X and wu ̸∈ Y . This contradicts that wu is an arc and wu ̸∈ Z1 ∪ Z2.
We conclude that no edge in the cyclic triangle is in X. But then every edge in the cyclic
triangle is in Y , which contradicts that the edges in Y induce an acyclic digraph. This
finishes the proof. ■

The second and third bullet points are proven in (2.2) and (2.3) respectively. Since Fn

contains D′
n as a subgraph, it follows that χ(Gn)/3 ≤ χ⃗(F ′

n) as well. As mentioned, the
sequence χ(Gn)→∞ as n→∞, so χ⃗(Fn)→∞ as n→∞ as well. Thus, the first bullet
point holds.

Proof of Theorem 1.2.14: Assume F is a directed star of degree at least 5. By Theorem
1.2.11, every transitive tournament is a hero in F -free digraphs. For the other direction,
assume that H is a hero in F -free digraphs. If H is not transitive, then H contains a cyclic
triangle. Thus, the cyclic triangle is a hero in F -free digraphs. This, however, contradicts
Theorem 2.1.3 which provides a family of digraphs of arbitrarily high dichromatic number
with no cyclic triangles and which is F -free (the construction is F -free because a copy of F
contains a vertex whose neighborhood has a stable set with at least 5 vertices, contradicting
that the neighborhood of every vertex can be partitioned into four tournaments). Thus,
we conclude that H is transitive, which finishes the proof.

2.2 Proof of Theorem 1.2.15

In this section, we prove Theorem 1.2.15, which we restate for the reader’s convenience:

Theorem 1.2.15. If F is an oriented star of degree 4 and H is a hero in F -free digraphs,
then either H is a transitive tournament or H = ∆(1,m,m′) where m,m′ ≥ 1.

We do so by using a proof technique very similar to the one we used to prove Theorem
1.2.14. We start by first restricting some of the heroes in F -free digraphs when F is an
oriented star of degree 4. Let the in-triangle, denoted by IT , be the digraph on 4 vertices
a, b, c, d where d is in-complete from a, b, c and where {a, b, c} induces the cyclic triangle.
The first step towards proving Theorem 1.2.15 is proving the following.

Theorem 2.2.1. If ST is a directed star of degree at least 4, then no hero in ST -free
digraphs contains the in-triangle as a subgraph.
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This theorem is an immediate consequence to the following theorem.

Theorem 2.2.2. There exists digraphs F1, F2, . . . such that:

• χ⃗(Fn)→∞ as n→∞;

• for every n ≥ 1 and v ∈ V (Fn), the neighborhood of v can be partitioned into three
tournaments; and

• for every n ≥ 1, the digraph IT is not a subgraph of Fn.

Proof. Let Gn be the 5-tuple shift-graph with indices in {1, . . . , n}, and let Dn be the
orientation of Gn where (a1, . . . , a5)(b1, . . . , b5) ∈ A(D) if bi = ai+1 for every i ∈ {1, . . . , 4}.
For every v = (a1, . . . , a5) ∈ V (Gn), define m(v) = a3. Let X = A(Dn). That is,
X is the set of edges of the form (•, b, c, d, e) → (b, c, d, e, •). Moreover, let D′

n be the
digraph with V (D′

n) = V (Dn) and A(D′
n) = X ∪ Y where Y is the set of arcs of the form

(a, b, c, •, •)→ (•, •, a, b, c). Note that as m is strictly increasing along arcs in X, it follows
that X is acyclic. Likewise, m is strictly decreasing in Y , so Y is acyclic.

(2.1) For every n ≥ 1, we have χ(Gn)/2 ≤ χ⃗(D′
n).

Proof. We will prove the claim by proving that a set of vertices that induces an acyclic set
in D′

n also induces a bipartite subgraph in Gn. Let Λ be a set of vertices that induces an
acyclic set in D′

n. For a contradiction, assume that Λ does not induce a bipartite subgraph
in Gn. Without loss of generality, we may assume that Λ induces an odd cycle in Gn. Since
Gn[Λ] is an odd cycle and Gn is the undirected underlying graph of Dn, it follows that
Dn[Λ] contains an induced directed path on 3 vertices as a subgraph. Let v1 → v2 → v3
be such a directed path in Dn[Λ]. By the way in which the edges of Dn are oriented, and
by the definition of Y , it follows that v3v1 ∈ Y . This, however, contradicts that Λ induces
an acyclic set in D′

n, thus proving the claim. ■

Finally, let Fn be the digraph with V (Fn) = V (D′
n) and A(Fn) = X∪Y ∪Z1∪Z2 where

we define Z1 and Z2 as follows. Let < be a complete ordering of V (Fn). Define Z1 (resp.
Z2) as the set of edges such that uv ∈ Z1 (resp. uv ∈ Z2) if u < v and there exists numbers
a, b, c (resp. c, d, e) such that both u and v are of the form (a, b, c, •, •) (resp. (•, •, c, d, e).

(2.2) If v ∈ V (Fn), then NFn(v) can be partitioned into three tournaments.
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(•, •, c, d, e)

(a, b, c, •, •)

(•, a, b, c, d) (b, c, d, e, •)

(c, d, e, •, •)(•, •, a, b, c)

Figure 2.1: Illustration of the neighborhood of the vertex (a, b, c, d, e) in Fn.

Proof. Fix v = (a, b, c, d, e) ∈ V (Fn). The neighbors u of v such that uv ∈ X or vu ∈ X
are of the form (•, a, b, c, d) and (b, c, d, e, •). Vertices of the former type are complete to
the vertices of the latter type by edges in Y . Thus, vertices adjacent to v via an edge in
X form a clique.

Denote by A and B the neighbors of v of the forms (•, •, a, b, c) and (c, d, e, •, •), re-
spectively. Notice that these sets partition the neighbors of v connected to v via edges
in Y . Denote by M and N the neighbors of v of the form (a, b, c, •, •) and (•, •, c, d, e),
respectively. Notice that these sets partition the neighbors of v connected to v via edges
in Z1 ∪ Z2. By the definition of edges in Z1 ∪ Z2, each of the sets A,B,M and N induce
a tournament. Furthermore, M is complete to A, and B is complete to N via edges in Y .
Since A(Fn) = X ∪Y ∪ (Z1 ∪Z2), these are all the neighbors of v, thus finishing the proof.
Figure 2.1 illustrates the neighborhood of a vertex.. ■

(2.3) Every cyclic triangle in Fn has two edges in X and one edge in Y .

Proof. Let u, v, and w be vertices such that u sees v, v sees w, and w sees u. For a
contradiction, assume that uv ∈ Z1 ∪ Z2, and set v = (a, b, c, d, e). Since uv ∈ Z1 ∪ Z2,
we have m(u) = c. If vw ∈ X, then m(w) = d. Since m(u) < m(w), it follows that
wu ∈ Y , so m(u) = b, a contradiction. If vw ∈ Z1 ∪ Z2, then m(w) = c, contradicting the
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fact that edges in Z1 ∪ Z2 induce an acyclic graph. Thus, vw ∈ Y , so m(w) = a. Since
m(w) < m(u), it must be that wu ∈ X, so m(u) = b, a contradiction. We conclude that
every edge in the directed triangle is not in Z1 ∪ Z2. Since each of X and Y span acyclic
graphs, we may assume uv ∈ X and vw ∈ Y . Consequently, m(u) = b and m(w) = a, so
m(w) < m(u). This implies that wu ∈ X, proving that directed triangles have two edges
in X and one edge in Y . ■

The second bullet point is true by (2.1). Since Fn contains D′
n as a subgraph, by (2.2),

we have χ(Gn)/2 ≤ χ⃗(F ′
n) as well. As mentioned before, we have χ(Gn)→∞ as n→∞.

Thus, χ⃗(Fn) → ∞. This proves the first bullet point. We prove the third bullet point
by contradiction. Assume IT is a subgraph of Fn. Let u → v → w → u be the directed
cycle in Fn and x be the vertex in-complete from {u, v, w}. Without loss of generality, by
(2.1), we may assume that uv, vw ∈ X. Set v = (a, b, c, d, e). If ux ∈ X, then m(x) = c,
and since m(w) = d > m(x), it follows that wx ∈ Y . This implies that m(x) = b, a
contradiction to m(x) = c. If ux ∈ Y , then m(x) < a, so m(x) < m(v). It follows that
vx ∈ Y , implying m(x) = a, a contradiction. Thus, ux ∈ Z1 ∪ Z2, so m(x) = b. Since
m(x) < m(v), it follows that vx ∈ Y , so m(x) = a, a contradiction. This shows that Fn is
IT -free, which finishes the proof.

Proof of Theorem 1.2.15: Let the out-triangle, denoted by OT , be IT with arcs
reversed.

(2.1) OT is not a hero in ST -free digraphs.

Proof. Let ST ′ be ST with arcs reversed. By Theorem 2.2.1, the {ST ′, IT}-free digraphs
do not have bounded dichromatic number. By reversing arcs, we get that {ST,OT}-free
digraphs do not have bounded dichromatic number. ■

Assume for a contradiction that there exists a hero H such that H is not acyclic and
H ̸= ∆(1,m,m′) for integers m,m′ ≥ 1. If H is not strongly connected, then there exists
non-empty tournaments H1 ⊆ H and H2 ⊆ H such that V (H1) ∩ V (H2) = ∅, H1 is not
transitive, and either H1 is out-complete to H2, or H2 is out-complete to H1. Since H1 is
not transitive, it contains a directed triangle T . If T is out-complete to H1, then H contains
a copy of IT , a contradiction. Thus, H2 is out-complete to T , but then H contains a copy
of OT , a contradiction. We conclude H is strongly connected.

Since H is strongly connected, by Theorem 1.2.4, it follows that H = ∆(1,m,H ′) or
H = ∆(1, H ′,m) where H ′ is a hero in ST -free digraphs. It is then enough to prove that
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H ′ is acyclic. Suppose not. That is, assume that H ′ contains a directed triangle T . In
either case, by the structure of strongly connected heroes, H contains a copy of IT , a
contradiction.

2.3 Localized and colocalized digraphs

In this section, we introduce the concept of localized and colocalized digraphs and how these
conditions relate to Theorem 1.2.16. Broadly speaking, we want to build upon Theorem
1.2.13 by using the proof strategies devised by Harutyunyan, Le, Newman, and Thomassé
[18] to prove Theorem 1.2.9. To elaborate, we need some definitions.

In a digraph D, we say the out-neighborhood (resp. in-neighborhood) of a set of vertices
S ⊆ V (D), denoted by N+(S) (resp. N−(S)), is the set of vertices not in S that vertices
v ∈ S see (resp. v ∈ S is seen by). Furthermore, the neighborhood of S is N(S) :=
N+(S)∪N−(S). When S = {v}, we use N(v), N+(v), and N−(v) to denote N(S), N+(S),
and N−(S) respectively.

A digraph D is k-local if, for every v ∈ V (D), we have χ⃗(N+(v)) ≤ k. Furthermore, it
is k-colocal if, for every v ∈ V (D), we have χ⃗(N−(v)) ≤ k. The concept of k-local digraphs
was introduced by Harutyunyan, Le, Newman, and Thomassé [18]. A digraph F cooperates
if H is a hero in F -free digraphs when one of the following three conditions hold:

• H = K1;

• H = H1 ⇒ H2 where H1 and H2 are heroes in F -free digraphs; or

• H = ∆(1, 1, H1) where H1 is a hero in F -free digraphs.

In other words, a digraph F cooperates when their heroes can be used to construct bigger
heroes by using the operations described above. Notice that Theorem 1.2.10 is equivalent
to proving K1+K2 cooperates, and Theorem 1.2.16 is equivalent to proving that rK1+K2

cooperates for every r ≥ 1.

The definitions of localized and colocalized digraphs are more technical. We say a
digraph F is localized (resp. colocalized) if for every r ≥ 1, the following two:

• ∆(1, 1, H) is a hero in {(r − 1)K1 + F}-free digraphs; and

• H is a hero in {rK1 + F}-free digraphs
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imply that, for every fixed k ≥ 1, ∆(1, 1, H) is a hero in k-local (resp. colocal) {rK1+F}-
free digraphs. These definitions are meant to describe the properties a digraph F needs
to have for the proof strategy of Theorem 1.2.9 to apply to F , where in Theorem 1.2.9,
F = 2K1.

The first step to proving Theorem 1.2.16 is proving the following.

Theorem 2.3.1. Let F be a localized and colocalized digraph. If F cooperates, then rK1+F
cooperates for every r ≥ 0.

Aboulker, Aubian, and Charbit [1], in Question 5.4, asks the following. If H is a hero
in {K1 + F}-free digraphs and ∆(1, 1, H) is a hero in F -free digraphs, does it follow that
∆(1, 1, H) is a hero in {K1 + F}-free digraphs? Theorem 2.3.1 proves that the question
has an affirmative answer if F is localized and colocalized.

The following lemma simplifies using Theorem 2.3.1 for certain cases.

Lemma 2.3.2. Let F be a digraph isomorphic to F with every arc reversed. If F is
localized, then F is colocalized.

Proof. Assume that ∆(1, 1, H) is a hero in {(r − 1)K1 + F}-free digraphs, and assume
that H is a hero in {rK1 +F}-free digraphs. Fix k ≥ 1. We want to prove that ∆(1, 1, H)
is a hero in k-colocal {rK1+F}-free digraphs. Let D be a k-colocal {rK1+F,∆(1, 1, H)}-
free digraph. Let D∗ be D with every arc reversed, and notice that D∗ is k-local and
{rK1 +F,∆(1, 1, H)}-free. Since F is localized, ∆(1, 1, H) is a hero in k-local {rK1 +F}-
free digraphs. Thus, there exists an integer c such that χ⃗(D∗) ≤ c. This implies that
χ⃗(D) ≤ c. Equivalently, ∆(1, 1, H) is a hero in {rK1 + F}-free digraphs. This finishes the
proof.

In this section, we prove Theorem 2.3.1. The following lemma simplifies the proof of
Theorem 2.3.1 to the case where r = 1.

Lemma 2.3.3. If F is localized, then K1 + F is localized. Similarly, if F is colocalized,
then K1 + F is colocalized.

Proof. Assume that F is localized. To prove that K1 + F is localized, fix r ≥ 0, and
assume that (1) ∆(1, 1, H) is a hero in {rK1 + F}-free digraphs, and that (2) H is a hero
in {(r + 1)K1 + F}-free digraphs. We want to prove that, for every k ≥ 1, the digraph
∆(1, 1, H) is a hero in k-local {(r+1)K1 +F}-free digraphs. But since F is localized, this
follows by definition of localized graphs. The statement for colocalized has an analogous
proof with arcs reversed.
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To prove Theorem 2.3.1, for r = 1, we rely heavily on two key results from the literature.
First, we use Theorem 1.2.13 to prove that H1 ⇒ H2 is a hero in {K1 + F}-free digraphs
whenever H1 and H2 are heroes in F -free digraphs. Second, we use the proof strategy
devised by Harutyunyan, Le, Newman, and Thomassé [18] to prove that if H is a hero in
tournaments, then ∆(1,m,H), where m ≥ 1, is a hero in rK1-free digraphs, for r ≥ 2.

This proof strategy uses the concept of bags. A (c, β)-bag is a subset B of V (D) such
that χ⃗(B) = β, and a (c, β)-bag-chain is a sequence of (c, β)-bags B1, . . . , Bt such that for
every 1 ≤ i ≤ t and v ∈ Bi, we have:

• χ⃗(N+(v) ∩Bi−1) ≤ c, and

• χ⃗(N−(v) ∩Bi+1) ≤ c.

The length of the (c, β)-bag-chain is t. The proof strategy is as follows. For a {∆(1, 1, H), rK1+
F}-free digraph D, we want to prove the following three objectives.

1. First, we prove that for a large enough c, and for every β ∈ N, the absence of a (c, β)-
bag-chain of length 8 implies that the digraph has bounded dichromatic number.

2. Second, we prove that, for large enough c and β′, (c, β′)-bag-chains have a bounded
dichromatic number.

3. Lastly, we prove that for large enough c and β′, if there is a (c, β′)-bag-chain, then
vertices not in a maximal (c, β′)-bag-chain have bounded dichromatic number as well.

To accomplish the second objective, we use the following lemma.

Lemma 2.3.4. Assume that there exists an integer m such that:

• {∆(1, 1, H), F}-free digraphs D have χ⃗(D) ≤ m; and

• {H,K1 + F}-free digraphs D have χ⃗(D) ≤ m.

If D is a {∆(1, 1, H), K1 +F}-free digraph with a partition (X1, . . . , Xn) of V (D), and m′

an integer such that:

• for every 1 ≤ i ≤ n, we have χ⃗(Xi) ≤ m′;

• for every 1 ≤ i ≤ n and for every v ∈ Xi, we have χ⃗(N
+(v)∩(X1∪· · ·∪Xi−1)) ≤ m′;

and
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• for every 1 ≤ i ≤ n and for every v ∈ Xi, we have χ⃗(N
−(v)∩(Xi+1∪· · ·∪Xn)) ≤ m′;

then χ⃗(D) ≤ 6(m+m′) + 2.

This is a generalization of Lemma 3.8 by Aboulker, Aubian, and Charbit [1], and our
proof differs from theirs only slightly. The proof also needs the following result.

Lemma 2.3.5 (Aboulker, Aubian, and Charbit [1]). Let D be a digraph and let (X1, . . . , Xn)
be a partition of V (D). Suppose that k is an integer such that:

• for every 1 ≤ i ≤ n, we have χ⃗(Xi) ≤ k, and

• for every 1 ≤ i < j ≤ n, if there is an arc uv with u ∈ Xj and v ∈ Xi, then
χ⃗(Xi+1 ∪ · · ·Xj) ≤ k.

Then χ⃗(D) ≤ 2k.

For a vertex v in a digraph D, let N0(v) be the set of non-neighbors of v.

Proof of Lemma 2.3.4. We start with the following claim.

(2.1) χ⃗(N0(v)) ≤ m for every v ∈ D.

Proof. Since D is K1 + F -free, it follows that N0(v) is F -free. Furthermore, since D is
∆(1, 1, H)-free, we have by the definition of m that χ⃗(N0(v)) ≤ m. ■

Set k′ = 2(m+m′)+m+1. It suffices to show that the partition (X1, . . . , Xn) satisfies the
hypothesis of Lemma 2.3.5 with k = k′ +m′. Let uv be an edge such that u ∈ Xj, v ∈ Xi,
and i < j, and set X = Xi+1 ∪ · · · ∪ Xj−1. For a contradiction, assume that χ⃗(X) > k′.
Let A = (N−(v) ∪ N0(v)) ∩X. By the hypothesis and by (2.1), the dichromatic number
of A is at most m + m′. Similarly, the set B = (N+(u) ∪ N0(u)) ∩ X has dichromatic
number at most m+m′. Thus, the set X ′ = X \ (A∪B) has χ⃗(X ′) > k′− 2(m+m′) > m.
Consequently, there exists a copy X ′′ of H in X ′. But then, by the definitions of A and B,
it follows that {u, v}∪X ′′ induces a copy of ∆(1, 1, H), a contradiction. Thus, χ⃗(X) ≤ k′,
so χ⃗(X ∪Xj) ≤ k′ +m′, as desired.
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We dedicate the rest of the section to proving Theorem 2.3.1.

Proof of Theorem 2.3.1. By Lemma 2.3.3, it is enough to prove the result for r = 1.
That is, we want to prove that K1 + F cooperates. Evidently, H = K1 is a hero in
every class of graphs. Assume then that H1 and H2 are heroes in {K1 + F}-free digraphs.
Consequently, they are heroes in F -free digraphs, and since F cooperates, it follows that
H1 ⇒ H2 is a hero in F -free digraphs. Thus, by Theorem 1.2.13, it follows that H1 ⇒ H2

is a hero in K1 + F -free digraphs.

It remains to show that ∆(1, 1, H) is a hero in {K1 + F}-free digraphs whenever H is
a hero in {K1 + F}-free digraphs. The proof of this fact uses the strategy used to prove
Theorem 1.5 in [18]. In particular, we use the concept of bag chains and apply them in the
same way, just in a more general context and with many small modifications, such as the
use of Lemma 2.3.4. Some of our proofs, thus, are very similar to those in [18]. However,
since we exclude ∆(1, 1, H) instead of ∆(1, k,H), in some places we are able to simiplify
the proofs.

AssumeH is a hero in {K1+F}-free digraphs. Let c be an integer such that {K1+F,H}-
free digraphs D have χ⃗(D) ≤ c. Since H is a hero in K1 + F -free digraphs, H is a hero
in F -free digraphs as well, and since F cooperates, it follows that ∆(1, 1, H) is a hero
in F -free digraphs. Let b′ be such that {F,∆(1, 1, H)}-free digraphs D have χ⃗(D) ≤ b′.
Since F is localized, set f1(r, k,H) as the function such that {∆(1, 1, H), rK1 +F} k-local
digraphs D have χ⃗(D) ≤ f1(r, k,H) whenever ∆(1, 1, H) is a hero in {(r− 1)K1 +F}-free
digraphs, and H is a hero in {rK1 + F}-free digraphs. Let f2(r, k,H) be the equivalent
but from the fact that F is colocalized. Now let f(r, k,H) = max{f1(r, k,H), f2(r, k,H)}.
Set

f̂(β) := 2f (1, 2f (1, 2f (1, β,H) + 1, H) + 1, H) .

Finally, set β′ = 2|V (H)|(c + b′) + b′ + 1. We will show that {∆(1, 1, H), K1 + F}-free
digraphs D have χ⃗(D) ≤ b where

b = 6(max{b′, c}+ β′) + 3f̂(β′) + 2.

Assume that D is a {∆(1, 1, H), K1 + F}-free digraph. Henceforth, we will use the
terms β-bags and β-bag-chains to refer to (c, β)-bags and (c, β)-bag-chains. To achieve the
first objective, we start by proving that the absence of a β-bag-chain of length 2 bounds
the dichromatic number. Call a vertex v β-red if N+(v) ≤ β, and β-blue if N−(v) ≤ β.
The following two claims are the equivalent of Lemma 4.11 in [18], although our proof is
significantly simpler as we deal with ∆(1, 1, H) instead of ∆(1,m,H) for some m.

(2.1)
For every β ∈ N, if D does not have a β-bag-chain of length 2, then χ⃗(D) ≤
2f(1, β,H).
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Proof. Set R,B, and U as the sets of β-red, β-blue and uncolored vertices respectively.
We start by proving that U is empty. For the sake of a contradiction, assume that u ∈ U .
Set B1 = N−(u) and B2 = N+(u). We claim that B1, B2 is a β-bag-chain. Let v ∈ B1. If
χ⃗(N−(v) ∩ B2) > c, then there exists a copy X of H in B2. But then {u, v} ∪X induces
a copy of ∆(1, 1, H) in D, a contradiction. A symmetric argument proves that if v ∈ B2,
then χ⃗(N+(v)∩B1) ≤ c. That is, B1, B2 is β-bag-chain of length 2, a contradiction. Thus,
U is empty. Notice that D[R] is d-local, so χ⃗(R) ≤ f(1, d,H). Similarly, D[B] with arcs
reversed is β-colocal as well, so χ⃗(B) ≤ f(1, β,H), and hence χ⃗(D) ≤ 2f(1, β,H), as
claimed. ■

(2.2)
For every β ∈ N, if D does not have a β-bag-chain of length 8, then χ⃗(D) ≤
f̂(β).

Proof. We proceed by contrapositive. Assume that χ⃗(D) > f̂ . By (2.1), there exists a
(2f (1, 2f (1, β,H) + 1, H) + 1)-bag-chain of length 2, say A1, A2. By definition of a bag
and by (2.1), it follows that A1 contains a (2f(1, β,H)+1)-bag-chain of length 2 consisting
of bags A1

1, A
2
1. Similarly, A2 contains the (2f(1, β,H)+1)-bag-chain A1

2, A
2
2. Finally, using

the same reasoning, we can split each of these bags into the β-bag-chain B1, . . . , B8 where
B1, B2 is the β-bag-chain of A1

1, where B3, B4 is the β-bag-chains of A2
1, and so on. But

then B1, . . . , B8 is a β-bag-chain of length 8, finishing the proof. ■

With the first objective achieved, we now prove the second objective. From now on, we
assumeB1, . . . , Bt is a β

′-bag-chain inD with tmaximum, where β′ = 2|V (H)|(c+b′)+b′+1.
For convenience, define Bi,j, where i < j, as the union of the bags Bi, . . . , Bj.

(2.3) χ⃗(N0(v)) ≤ b′ for every v ∈ V (D).

Proof. This is a consequence of the fact that the set of non-neighbors of v is {F,∆(1, 1, H)}-
free. Thus, the result holds by the definition of b′. ■

The following is the equivalent of Claim 4.3 in [18], although we are able to prove a
stronger statement.

(2.4) For every i ≥ 1, v ∈ Bi, and s > 1,

• N+(v) ∩Bi−s = ∅, and

• N−(v) ∩Bi+s = ∅.
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Proof. For a contradiction, let s > i be the smallest integer such that there exists vertices
u and v such that u ∈ N+(v) ∩Bi−s or u ∈ N−(v) ∩Bi+s. We deal first with the former.

Suppose first that s = 2. Let A = (N−(u)∪N+(v))∩Bi−1, and B = (N0(u)∪N0(v))∩
Bi−1. By the definition of a β-bag-chain and (2.3), χ⃗(A) ≤ 2c and χ⃗(B) ≤ 2b′. Thus,
χ⃗(Bi−1 \ (A ∪ B)) ≥ β′ − 2c− 2b′ > c. By the definition of c, there exists a copy X of H
in Bi−1 \ (A ∪ B). But by the definition of A and B, this implies that {u, v} ∪X induces
a copy of ∆(1, 1, H), a contradiction.

Suppose then that s > 2. The proof for this case is very similar. Let A = (N−(u) ∪
N+(v))∩Bi−1) and B = (N0(u)∪N0(v))∩Bi−1. By the minimality of s, and since s > 1,
we have A = N+(v)∩Bi−1. By (2.3), it follows that χ⃗(B) ≤ 2b′. Thus, χ⃗(Bi−1 \(A∪B)) ≥
β′ − 2b′ − c > c. By the definition of c, there exists a copy X of H in Bi−1 \ (A ∪ B).
But then, by the definition of A and B, this implies that {u, v} ∪ X induces a copy of
∆(1, 1, H), a contradiction.

The proof for the case where u ∈ N−(v) ∩Bi+s is analogous with arcs reversed. ■

The following is the equivalent of Claim 4.4 and Claim 4.5 in [18].

(2.5) For every i and v ∈ Bi,

• χ⃗(N+(v) ∩B1,i−1) ≤ c, and

• χ⃗(N−(v) ∩Bi+1,t) ≤ c.

Proof. The result is immediate from (2.4) and the definition of β′-bag-chains. ■

We can now prove our second objective, which is the equivalent of Claim 4.6 in [18].
Our proof however is significantly simpler as we deal with ∆(1, 1, H) instead of ∆(1,m,H)
for some m.

(2.6) χ⃗(B1,t) ≤ 6(max{b′, c}+ β′) + 2.

Proof. Applying Lemma 2.3.4 with m = max{b′, c}, and m′ = β′, where the hypothesis
holds by (2.5), it follows that χ⃗(B1,t) ≤ 6(max{b′, c}+ β′) + 2. ■

For our final objective, we will partition the vertices of V (D) \B1,t in such a way that
we can apply Lemma 2.3.4 again. Partition V (D)\B1,t into sets Zi we call zones such that
v ∈ Zi if i is the largest index such that χ⃗(N−(v)∩Bi) > c, and v ∈ Z0 if no such i exists.
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Furthermore, for convenience, set Zi,j := Zi ∪ · · · ∪ Zj where i < j. We proceed to prove
claims that will allow us to bound χ⃗(Z0,t) by using Lemma 2.3.4. (2.7-2.9) might seem
unrelated to this objective at first, but they will allow us to bound χ⃗(Zi). The following is
the equivalent of Claim 4.7 in [18].

(2.7) For every i and every v ∈ Zi,

• χ⃗(N−(v) ∩Bi+r) ≤ c for r ≥ 1, and

• N+(v) ∩Bi−r = ∅ for r ≥ 2.

Proof. The first bullet point is true by the definition of Zi. We prove the second. For a
contradiction, assume that there exists a vertex u such that u ∈ N+(v) ∩ Bi−r. We claim
that χ⃗(N−(v) ∩Bi−1) ≤ b′ + 2c. For a contradiction, assume this is not the case. Set

A := (N0(u) ∪N−(u)) ∩ (N−(v) ∩Bi−1).

By (2.3) and (2.5), χ⃗(A) ≤ b′ + c, so χ⃗((N−(v) ∩ Bi−1) \ A) > c. Thus, there exists a
copy X of H in (N−(v) ∩ Bi−1) \ A. But then {u, v} ∪X induces a copy of ∆(1, 1, H), a
contradiction.

Thus, χ⃗(N−(v) ∩ Bi−1) ≤ b′ + 2c. Since χ⃗(N0(v) ∩ Bi−1) ≤ b′ by (2.3), and since Bi−1

is a β′-bag, it follows that χ⃗(N+(v) ∩ Bi−1) ≥ |V (H)|(b′ + c) + 1. By the definition of a
zone, there exists a copy X ′ of H in N−(v) ∩Bi. Set

A′ :=
⋃
x∈X′

(N0(x) ∪N+(x)) ∩ (N+(v) ∩Bi−1).

By (2.3) and (2.5), it follows that χ⃗(A′) ≤ |V (H)|(b′+c). Thus, χ⃗((N+(v)∩Bi−1)\A′) > 0,
so there exists a vertex u′ in (N+(v) ∩ Bi−1) \ A′. This, however, implies that {u′, v,X ′}
induces a copy of ∆(1, 1, H), a contradiction. ■

The following two claims are the equivalent of Claim 4.8 in [18], although our statement
is stronger given that we deal with ∆(1, 1, H) instead of ∆(1,m,H) for some m.

(2.8) For every i ≥ 0, v ∈ Bi, and r ≥ 2, we have N+(v) ∩ Zi−r = ∅.

Proof. For a contradiction, assume that there exists a vertex u such that u ∈ N+(v)∩Zi−r.
Now let

A = (N0(u) ∪N−(u)) ∩Bi−1,
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and let
B = (N+(v) ∪N0(v)) ∩Bi−1.

By the definition of zones and by (2.3), χ⃗(A) ≤ b′+c, and by the definition of a β-bag-chain
and (2.3), χ⃗(B) ≤ b′+c. Thus, χ⃗(Bi−1\(A∪B)) ≥ β′−(b′+c)−(b′+c) > c. Consequently,
there exists a copy X of H in Bi−1 \ (A∪B). But by the definition of A and B, {u, v}∪X
induces a copy of ∆(1, 1, H), a contradiction. ■

(2.9) For every i, v ∈ Bi, and r ≥ 3, we have N−(v) ∩ Zi+r = ∅.

Proof. For a contradiction, assume that there exists a vertex u such that u ∈ N−(v)∩Zi+r.
Now let

A := (N0(u) ∪N+(u)) ∩Bi+1,

and let
B := (N0(v) ∪N−(v)) ∩Bi+1.

By (2.3) and (2.8), χ⃗(A) ≤ b′. Furthermore, by (2.3) and the definition of bags, χ⃗(B) ≤
b′ + c. Thus, χ⃗(Bi+1 \ (A ∪B)) ≥ β′ − b′ − (b′ + c) > c. Consequently, there exists a copy
X of H in Bi+1 \ (A ∪ B). But by the definition of A and B, it follows that {u, v} ∪ X
induces a copy of ∆(1, 1, H), a contradiction. ■

Finally, we are ready to bound χ⃗(Zi). The following is the equivalent of Claim 4.10 in
[18].

(2.10) For every i, χ⃗(Zi) ≤ f̂(β′).

Proof. By (2.2), it is enough to prove that zones do not have a β′-bag-chain of length 8. We
will do this by using the maximality of t. Assume for a contradiction that Y1, . . . , Y8 is a β

′-
bag-chain of length 8 in Zi. By (2.7), (2.8) and (2.9), B1, . . . , Bi−3, Y1, . . . , Y8, Bi+3, . . . , Bt

is a longer β′-bag-chain than B1, . . . , Bt which contradicts the maximality of t. ■

To finish the proof, it remains to show we can partition Z0,t such that we are able to
color each part. The following is the equivalent of Claim 4.9 in [18].

(2.11) For every i and v ∈ Zi,

• N+(v) ∩ Z0,i−3 = ∅, and

• N−(v) ∩ Zi+3,t = ∅.
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Proof. Let us prove the first bullet point. Suppose for a contradiction that there exists a
vertex u such that u ∈ N+(v) ∩ Z0,i−3. Now let

A := (N0(u) ∪N−(u)) ∩Bi−2,

and
B := (N0(v) ∪N+(v)) ∩Bi−2.

By (2.3) and the definition of zones, χ⃗(A) ≤ b′+ c. Similarly, χ⃗(B) ≤ b′ by (2.3) and (2.7).
Since Bi−2 is a β′-bag, we have χ⃗(Bi−2\(A∪B)) > β′−(b′+c)−b′ > c. By the definition of
c, there exists a copy X of H in Bi−2 \ (A∪B). But then, by the definitions of A and B, it
follows that {u, v} ∪X induces a copy of ∆(1, 1, H), a contradiction. A similar argument,
using the established claims, gives the second bullet point. ■

We are ready to prove that χ⃗(Z0,t) is bounded.

(2.12) χ⃗(Z0,t) ≤ 3f̂(β′).

Proof. Let Zi =
⋃

j∼=i mod 3 Zj. By (2.11), every strongly connected component in Zi is

contained in a zone Zj. Thus, by (2.10), χ⃗(Zi) ≤ f̂(β′). Since Z1,Z2,Z3 partitions Z0,t, it

follows that χ⃗(Z0,t) ≤ 3f̂(β′) as claimed. ■

We are ready to finish the proof. Since V (D) = B1,t ∪Z0,t, and by (2.6) and (2.12), we
have:

χ⃗(D) ≤ χ⃗(B1,t) + χ⃗(Z0,t) ≤ 6(max{b′, c}+ β′) + 2 + 3f̂(′β)

as claimed.

2.4 Proof of Theorem 1.2.16

In this section, we prove Theorem 1.2.16, which we restate for the reader’s convenience.

Theorem 1.2.16. For every r ≥ 0, a digraph H is a hero in {rK1 +K2}-free digraphs if:

• H = K1,

• H = H1 ⇒ H2 where H1 and H2 are heroes in {rK1 +K2}-free digraphs.
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• H = ∆(1, 1, H1) where H1 is a hero in {rK1 +K2}-free digraphs.

Equivalently, we will prove that for every r ≥ 1, the digraph rK1 +K2 cooperates. We
will use Theorem 2.3.1 to do this. Thus, we need to prove that K2 cooperates, and that K2

is localized and colocalized. Notice that by Lemma 2.3.2, we only need to show that K2

is localized. Notice that K2-free digraphs are stable sets, which have bounded dichromatic
number. Thus, every digraph is a hero in K2-free digraphs, so K2 cooperates.

To prove that K2 is localized, we use domination. We say a set of vertices S1 dominates
a set of vertices S2, or equivalently S1 is a dominating set for S2, if every vertex in S2 \ S1

is seen by a vertex in S1. A digraph F dominates if, for every r ≥ 1, the following two:

• ∆(1, 1, H) is a hero in {(r − 1)K1 + F}-free digraphs;

• H is a hero in {rK1 + F}-free digraphs;

imply that there exists a function g(r, k,H) such that for every {∆(1, 1, H), rK1 +F}-free
k-local digraph D, either χ⃗(D) ≤ g(r, k,H), or F -free acyclic induced subsets S of V (D)
have a dominating set in D of size at most g(r, k,H).

We want to prove that if F dominates, then F is localized. The concept that a digraph
F dominates, as well as how this implies that F is localized, is meant to generalize the
proof strategy devised by Harutyunyan, Le, Newman, and Thomassé [18] to prove that
k-local rK1-free digraphs, where r ≥ 2, have bounded dichromatic number.

To prove that digraphs that dominate are localized, we use a concept introduced in
[18]. A family of digraphs C is tamed if, for every m, there exists integers M and l such
that if D ∈ C has χ⃗(D) ≥M , then there exists a subset X ⊆ V (D) such that |X| ≤ l and
χ⃗(X) ≥ m. The following proof is a slight generalization of the proof of Claim 2.4 in [18].

Lemma 2.4.1. If F dominates and the following two hold:

• ∆(1, 1, H) is a hero in {(r − 1)K1 + F}-free digraphs, and

• H is a hero in {rK1 + F}-free digraphs,

then, for every k ≥ 1, the family of {∆(1, 1, H), rK1 + F}-free k-local digraphs is tamed.

Proof. We proceed by induction on m. The case when m = 1 is immediate. Assume the
statement holds for m. Let M and l be the corresponding integers. Let c be an integer
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such that {rK1 + F,H}-free digraphs D have χ⃗(D) ≤ c, and let b be an integer such
that {(r − 1)K1 + F,∆(1, 1, H)}-free digraphs D have χ⃗(D) ≤ b. Since F dominates,
let g(r, k,H) be the associated function. Furthermore, let p = M + bl + kl + 1, and let
d = m((g(r, k,H) + r)p+ 1) + 1. Note that, by the pigeonhole principle, d is the smallest
number such that if a set S of size d is m-colored, then there exists a monochromatic
susbset of size at least (g(r, k,H) + r)p+ 2. We claim that the statement holds for m+ 1
when M ′ = max{g(r, k,H) + 1, kd,M + d(b+ k + 1)} and l′ = d+ l + l

(
d

(g(r,k,H)+r)p+2

)
.

Assume that D is a {∆(1, 1, H), rK1+F}-free k-local digraph, and assume χ⃗(D) ≥M ′.
We start with the following claim.

(2.1) χ⃗(N0(v)) ≤ b for every v ∈ V (D).

Proof. Since D is {rK1+F,∆(1, 1, H)}-free, it follows that N0(v) is {(r−1)K1+F,∆(1, 1,
H)}-free, so the claim follows by definition of b. ■

Since χ⃗(D) ≥M ′, we have χ⃗(D) > g(r, k,H). Let B be a minimum dominating set for
D. Since D is k-local, it follows that χ⃗(D) ≤ |B|k, so |B| ≥ M ′/k ≥ d. Pick W ⊆ B
such that |W | = d. By the choice of M ′ and the size of B, we know this subset exists.
Notice that χ⃗(

⋃
w∈W N0(w)) ≤ bd by (2.1), and χ⃗(

⋃
w∈W N+(w)) ≤ kd since D is k-local.

Since χ⃗(D \W ) ≥ M ′ − d, it follows that the set A of vertices out-complete to W has
dichromatic number at least M ′− d− bd− kd ≥M. By the definition of M , there exists a
set A out-complete to W of size at most l and dichromatic number at least m.

We will define a set AS for every subset S of W of size (g(r, k,H) + r)p+ 2 as follows.
Let S be such a set, and let Y =

⋃
s∈S N

+(s). For a contradiction, assume that χ⃗(Y ) ≤ p.
Let Y1, . . . , Yp be a partition of Y into p acyclic sets. For each set Yi, pick a vertex y1i with
no in-neighbors. Having picked vertex yji for some 1 ≤ j ≤ r−1, pick another vertex yj+1

i in
Yi\

⋃
k≤j N

+[yki ] (unless this set is empty) with no in-neighbors in Yi\
⋃

1≤k≤j N
+[yki ]. Then,

for every i, the vertices y1i , . . . , y
r
i form a stable set, and so the set Y ′

i = Y \
⋃

1≤k≤r N
+[yki ]

is acyclic and F -free. Since χ⃗(D) > g(r, k,H), there exists a dominating set Zi for Y
′
i of

size at most g(r, k,H), so the set Z ′
i = Zi ∪ {y1i , . . . , yri } is a dominating set for Yi of size

at most g(r, k,H) + r.

Thus, the set Z = Z ′
1∪· · ·∪Z ′

p is a dominating set for Y of size at most (g(r, k,H)+r)p.
Adding a vertex z from A, we get a dominating set for N+[S] of size at most (g(r, k,H) +
r)p+1. Then (B\S)∪Z∪{z} is a dominating set forD of size at most |B|−1, contradicting
that B is a smallest dominating set. Thus, χ⃗(Y ) > p.

Because |A| ≤ l, by (2.1), and by the fact that D is k-local, we have

χ⃗(N0(A) ∩ Y ) ≤ bl,
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A

A

Figure 2.2: Illustration of the proof of Lemma 2.4.1.

and
χ⃗(N+(A) ∩ Y ) ≤ kl.

Thus, the set A′ of vertices of Y out-complete to A has dichromatic number at least
p − bl − kl > M , which implies by the inductive hypothesis that A′ contains a set AS

with χ⃗(AS) ≥ m and |AS| ≤ l. This is how we define AS for every subset S of W where
|S| = (g(r, k,H) + r)p+ 2. Figure 2.2 illustrates this process.

Finally, take

V := W ∪ A ∪
⋃

AS.

where the union happens over all subsets S of W of size exactly (g(r, k,H)+ r)p+2. This
set has size at most d + l + l

(
d

g(r,k,H)p+2

)
= l′. By the definition of d, every m-coloring f

of V contains a monochromatic set S ⊆ W of size g(r, k,H)p + 2. Let f(S) = {γ}. Since
χ⃗(A), χ⃗(AS) ≥ m, it follows that there exists a ∈ A and a′ ∈ AS with f(a) = f(a′) = γ.
Now let s ∈ S be an in-neighbor of a′ (which exists since AS ⊆ N+(S)). It follows that
{a, a′, s} is a cyclic triangle monochromatic under f . Since f was an arbitrary m-coloring,
this argument applies to every m-coloring of V . We conclude that χ⃗(V ) ≥ m + 1, and so
V is the desired set for m+ 1, finishing the inductive argument.

The following is analogous to the proof of Theorem 2.3 in [18].

Lemma 2.4.2. If F dominates, then F is localized.
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Proof. Assume that

• ∆(1, 1, H) is a hero in {(r − 1)K1 + F}-free digraphs, and

• H is a hero in {rK1 + F}-free digraphs.

Let c be an integer such that {rK1 + F,H}-free digraphs D have χ⃗(D) ≤ c. Furthermore,
let b be an integer such that {(r − 1)K1,∆(1, 1, H)}-free digraphs D have χ⃗(D) ≤ b.
Fix an integer k ≥ 1. By Lemma 2.4.1, {rK1 + F,∆(1, 1, H)}-free k-local digraphs are
tamed. Let M and l be the corresponding integers following the definition of tameness
when m = k + b+ 1.

Let D be a {rK1 + F,∆(1, 1, H)}-free k-local digraph. To prove that F is localized,
it is enough to show that χ⃗(D) ≤ max{M, lk}. Assume that χ⃗(D) > M . By definition,
there exists a set X ⊆ D such that |X| ≤ l and χ⃗(X) ≥ m. We claim that X is a
dominating set of D. Assume for a contradiction that there exists a vertex v not in⋃

x∈X N+(x). Consequently, X ⊆ N0(v) ∪N+(v). By the definition of k and b, it follows
that χ⃗(X) ≤ k+ b, a contradiction. Thus, X dominates D. But D is k-local, so χ⃗(D) ≤ kl
thus finishing the proof.

Now that we have proven that digraphs F that dominate are localized, it only remains
to show that K2 dominates.

Lemma 2.4.3. K2 dominates.

Proof. Fix an integer r ≥ 1. Assume that

• b is an integer such that {∆(1, 1, H), (r−1)K1+K2}-free digraphs D have χ⃗(D) ≤ b;
and

• c is an integer such that {H, rK1 +K2}-free digraphs D have χ⃗(D) ≤ c.

Fix k, and assume that D is a {rK1+K2,∆(1, 1, H)}-free k-local digraph. Set g(r, k,H) =
c+ k + |V (H)|(kr + k + b) + 2.

Notice that K2-free sets are stable sets, so let S be a stable set. We may assume by
possibly adding vertices that S is a maximal stable set in D. Set T = V (D) \ S. Since S
is maximal, every vertex in T has a neighbor in S.

(2.1) χ⃗(N0(v)) ≤ b for every v ∈ V (D).
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Proof. The proof is a consequence of the fact thatN0(v) is {(r−1)K1+K2,∆(1, 1, H)}-free,
so the result follows by the definition of b. ■

(2.2) Every vertex v ∈ T has fewer than r non-neighbors in S.

Proof. For a contradiction, assume that a vertex v has r non-neighbors in S. Let Λ be the
set containing these non-neighbors. Let u ∈ S be a neighbor of v. It follows that Λ∪{u, v}
induces a copy of r′K1 +K2 where r′ ≥ r, a contradiction. ■

(2.3)
If there exists a vertex in T with only out-neighbors in S, then there exists r
vertices that dominate S.

Proof. Suppose that there exists a vertex v ∈ T whose neighbors in S are only out-
neighbors. Let Λ be the set of non-neighbors of v in S. By (2.2), we have that |Λ| ≤ r− 1,
making Λ ∪ {v} a dominating set for S of size at most r as desired. ■

Since r ≤ g(r, k,H), we may assume that every vertex in T has an in-neighbor in S.
Consequently,

⋃
s∈S N

+(s) \ S = T . If χ⃗(T ) ≤ g(r, k,H) − 1, then χ⃗(D) ≤ g(r, k,H), so
we may assume that χ⃗(T ) > g(r, k,H). Let d := |V (H)|(kr+ k+ b) + 1. By removing one
vertex at a time, we create a subset S ′ of S such that d ≤ χ⃗(

⋃
s∈S′ N+(s) \ S) ≤ d + k.

This is possible because D is k-local. Set X = T \ (
⋃

s∈S′ N+(s)). It follows that χ⃗(X) ≥
g(r, k,H)− d− k ≥ c. By the definition of c, there exists a copy X ′ of H in X.

Notice that, by the dichromatic number of
⋃

s∈S′ N+(s) and since D is k-local, we have
that |S ′| ≥ r|V (H)| + 1. Let S ′′ be the set of vertices s ∈ S ′ such that s is a neighbor of
every vertex in X ′. By (2.2), every vertex in T has at most r non-neighbors in S. Thus,
S ′′ contains at most r|V (H)| fewer vertices than S ′, and so S ′′ is non-empty. It follows
that X ′ is complete to S ′′. Let Y =

⋃
s∈S′′ N+(s) \ S. Since χ⃗(

⋃
s∈S′ N+(s) \ S) ≥ d and

D is k-local, it follows that χ⃗(Y ) ≥ d− kr|V (H)|.

Let A =
⋃

x∈X′ N0(x) ∩ Y and B =
⋃

x∈X N+(x) ∩ Y . Then, χ⃗(A) ≤ |V (H)|b and
χ⃗(B) ≤ |V (H)|k by (2.1) and the fact that D is k-local. Consequently, χ⃗(Y \ (A ∪ B)) ≥
d− kr|V (H)| − |V (H)|b− |V (H)|k > 0 by the definition of d. Thus, Y ′ = Y \ (A ∪ B) is
non-empty. Figure 2.3 illustrates the situation.

Let y ∈ Y ′, and let s ∈ S ′′ be an in-neighbor of y in S ′′, which exists by the definition
of Y . By definition, s is in-complete from X ′, and X ′ is in-complete from y. Thus, the set
{s, y} ∪X ′ induces ∆(1, 1, H), a contradiction.
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S T

Figure 2.3: Illustration of the proof of Lemma 2.4.3.
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Proof of Theorem 1.2.16. By Theorem 2.3.1, it suffices to show that K2 cooperates,
is localized, and is colocalized. Since K2-free digraphs are stable sets, K2 cooperates. By
Lemma 2.4.3, K2 dominates, so by Lemma 2.4.2 K2 is localized. By Lemma 2.3.2, K2 is
colocalized as well, thus finishing the proof.
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Chapter 3

χ⃗-boundedness

In this chapter, we prove Theorem 1.3.16, which we restate for the reader’s convenience.

Theorem 1.3.16. Let r and s be positive integers. If B and B′ have valid opposing orien-
tations of Br and Bs respectively, then {B,B′}-free digraphs are χ⃗-bounded.

We do so by imitating the technique designed by Cook, Masař́ık, Pilipczuk, Reinald,
and Souza [12] to prove that if P is an orientation of P4, then P -free digraphs are χ⃗-
bounded. We achieve this by generalizing Lemma 1.3.17. In particular, we prove Lemma
1.3.18, which we restate for the reader’s convenience.

Lemma 1.3.18. Let k ≥ 0, and let C be a hereditary class of digraphs. If there exists an
integer c such that every D ∈ C has a k-nice set S with χ⃗(S) ≤ c, then χ⃗(D) ≤ 2c(k + 1)
for every D ∈ C.

We remind the reader that a set S ̸= ∅ is k-nice if there exists a partition S1, S2 of S
such that every vertex in S1 (resp. S2) has at most k in-neighbors (resp. k out-neighbors)
in V (D) \ S.

3.1 Proof of Lemma 1.3.18

Proof of Lemma 1.3.18. Fix C. We proceed by induction on |V (D)|. The statement
holds if |V (D)| = 1. Assume the statement holds for digraphs with fewer than |V (D)|
vertices. We proceed to prove the statement for |V (D)|. By assumption, D has a k-nice
set S with χ⃗(S) ≤ c. Let S1 and S2 be the sets as in the definition of a k-nice set.
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Using the induction hypothesis, let f0 : (V (D) \ S)→ {1, . . . , k+ 1} × {1, . . . , 2c} be a
(2c(k+1))-dicoloring of the digraph induced by the vertex set V (D) \S. Furthermore, let
f1 be a c-dicoloring of S1 using colors in {1, . . . , c}, and let f2 be a c-dicoloring of S2 using
colors in {c+ 1, . . . , 2c}.

We define a function m : S → {1, . . . , k+1} as follows. Let u ∈ S. If u ∈ S1, then u has
at most k in-neighbors in V (D) \ S. Thus, |f0(N−(u) ∩ (V (D) \ S))| ≤ k. Consequently,
there exists a number m(u) such that no color in f0(N

−(u) ∩ (V (D) \ S)) has m(u) as its
first coordinate. We define m(v) when v ∈ S2 similarly, where we use its out-neighborhood
in V (D) \ S instead. Using these, we can define the following coloring.

f(v) =


f0(v) if v ̸∈ S;

(m(v), f1(v)) if v ∈ S1;
(m(v), f2(v)) if v ∈ S2.

We claim that f is a (2c(k + 1))-dicoloring of D. The first index of the coordinate has
k + 1 values, and the second index at most 2c. Thus, this indeed uses at most 2c(k + 1)
colors. For a contradiction, assume that C is a directed monochromatic cycle in D. Since
f0, f1 and f2 are dicolorings, C is not contained in neither of the sets S1, S2 and V (D) \S.
Since f1 and f2 use colors that do not overlap, it follows that C does not overlap with S1

and S2, so C is not contained in S. By the same reason, if C overlaps with S and V (D)\S,
then C overlaps with only one of S1 and S2.

Thus, either C overlaps with V (D) \ S and S1, or C overlaps with V (D) \ S and S2.
We proceed to prove that both lead to a contradiction. Assume C overlaps with S1. Thus,
there is an edge e = uv in C such that u ∈ V (D) \ S and v ∈ S1. But then, by the
definition of m(v), the first coordinate of f(u) is not equal to the first coordinate of f(v),
contradicting that C is monochromatic. A similar argument shows a contradiction when
C overlaps with S2 and V (D) \ S. This finishes the proof.

3.2 Proof of Theorem 1.3.16

We restate Theorem 2.3.1 one last time.

Theorem 1.3.16. Let r and s be positive integers. If B and B′ have valid opposing orien-
tations of Br and Bs respectively, then {B,B′}-free digraphs are χ⃗-bounded.
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With Lemma 1.3.18, we can now prove Theorem 1.3.16 by using the same argument
line that Cook, Masař́ık, Pilipczuk, Reinald, and Souza [12] used to prove that for every
orientation P of P4, the P -free digraphs are χ⃗-bounded (Theorem 1.3.15). To do so, we
need to define the concepts developed in [12] to prove the result.

For a not strongly connected tournament K, let K1, . . . , Kk be the partition of V (K)
into its strongly connected components. Let K∗ be the tournament that results from
contracting each of these parts into a single vertex each. K∗ has vertices u∗ and v∗ such
that N−

K∗(u)∩K∗ = ∅ and N+
K∗(v)∩K∗ = ∅. If u is in the component that got contracted

to the vertex u∗, then we call u a source vertex. If v is in the component that got contracted
to the vertex v∗, then we call v a sink vertex.

We say C is a path-minimizing closed tournament (PMCT) if either V (C) = K, where
K is a strongly connected tournament with ω(D) = |K|, or V (C) = K ∪ V (P ) where K
is a tournament that is not strongly connected, ω(D) = |K|, and P is a directed path
from a sink vertex to a source vertex of K. Furthermore, K is picked such that |V (C)| =
|V (K) ∪ V (P )| is minimized. Notice that if D has a strongly connected tournament on
ω(D) vertices, then every PMCT is a tournament. Otherwise, if C is a PMCT, then C is
not a tournament, and K is picked such that |V (P )| is as small as possible.

The proof strategy from Cook, Masař́ık, Pilipczuk, Reinald, and Souza [12] that proves
Theorem 1.3.15 is as follows. They to prove that f(ω(D)) ≤ χ⃗(D) by induction on ω(D).
Assuming that the case has been solved for ω < ω(D), it follows that, for every v ∈ V (D),
χ⃗(N(v)) ≤ f(ω(D) − 1). By using PMCTs, they find a nice set. Finally, they finish the
proof by proving that this nice set has bounded dichromatic number, which by Lemma
1.3.18 finishes their inductive step. In our case, we follow the same line of logic with some
minor differences. In particular, instead of finding a nice set, we find a k-nice set, which
allows us to find brooms instead of paths on four vertices. The rest of the proof is similar
to theirs but with extra consideration for the fact that we now deal with a k-nice set, as
opposed to simply nice sets.

Eventually, we need to go into four different cases. For that, we will illustrate the
different cases that we will have. There are 8 types of orientations to consider that we
separate into four types. These are illustrated on Figure 3.1a, Figure 3.1b, Figure 3.2a,
and Figure 3.2b. Since B and B′ are of opposing orientation, we may assume that B is of
type 1 or type 3, and that B is of type 2 or type 4, giving four cases.

Proof of Theorem 1.3.16: Let C be the set of {B,B′}-free digraphs. To prove that C is
χ⃗-bounded, we proceed by induction on ω(D). The result is immediate if ω(D) = 1. For
a digraph D, assume that the statement holds for every ω < ω(D). That is, assume that
there exists a number γ such that if ω(D′) < ω(D) and D′ is {B,B}-free, then χ⃗(D′) ≤ γ.
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(a) Type 1 brooms. (b) Type 2 brooms.

Figure 3.1: Type 1 and type 2 brooms.

(a) Type 3 brooms. (b) Type 4 brooms.

Figure 3.2: Type 3 and type 4 brooms.
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Finally, let k = max{R(r, ω(D)), R(s, ω(D))} where R is the graph Ramsey number. We
want to prove that

χ⃗(D) ≤ 2(ω(D)(γ + 1) + γ(6k + 25) + 2)(k + 1).

We may assume that D is strongly connected as the strongly connected components
of a digraph can be colored independently. Let C be a PMCT, which exists since D is
strongly connected. Let X be the set of vertices v ̸∈ C such that v has an in-neighbor and
an out-neighbor in C, Z = N(V (C)) \X, and Y = N(X) \N [V (C)].

(3.1)
If S is a set of vertices in D such that |S| ≥ k, then S contains a stable set
of size at least max{r, s}.

Proof. The proof is immediate from the definition of the graph Ramsey number. ■

The following is the analog of the proof of Lemma 3.1 from [12].

(3.2) N [C ∪X] is a k-nice set.

Proof. We want to prove that if v ∈ N [C ∪X], then either v has at most k in-neighbors in
V (D) \N [C ∪X], or v has at most k out-neighbors in V (D) \N [C ∪X]. For this purpose,
notice that if v ∈ C ∪X, then the result follows immediately.

For a contradiction, assume that there exists a vertex v ∈ N(C ∪X) such that v has
at least k in-neighbors and out-neighbors not in N [C ∪X]. Let S− := N−(v) \N [C ∪X]
and S+ := N+(v) \N [C ∪X]. Either v ∈ Y or v ∈ Z. If v ∈ Y , then by the definition of
Y , there exists x ∈ X such that x is a neighbor of v. Since x ∈ X, there exists vertices
c1, c2 ∈ C such that c1x, xc2 ∈ A(D). Note that as v ∈ Y , v is non-adjacent to c1, c2.
Furthermore, notice that {x, c1, c2} is anticomplete to S− ∪ S+. Since B and B′ have
opposing orientations, both cases xv ∈ A(D) and vx ∈ A(D) each imply that there exists
a copy of B or B′ in {c1, c2, x, v} ∪ S− ∪ S+. Since D is {B,B′}-free, we conclude v ̸∈ Y .

It follows that v ∈ Z. Since v ̸∈ X, v has either only in-neighbors or only out-neighbors
in C. Furthermore, since C contains a clique of maximal size, N0(v) ∩ C is nonempty.
Thus, since C is strongly connected, there is an arc from N0(v) ∩ C to N(v) ∩ C, and an
arc from N(v) ∩C to N0(v) ∩C. Let these arcs be x1y1 and y2x2, respectively. Note that
{x1, x2, y1, y2} are anti-complete to S+ ∪ S−. As before, both cases where v has only in-
neighbors in C or out-neighbors in C imply that the set {x1, x2, y1, y2, v}∪S−∪S+ contain
a copy of B or B′. Since D is {B,B′}-free, both lead to contradictions. We conclude
N [C ∪X] is a k-nice set. ■
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K P

X
Y

Z
N(P ) \N [K]

N(K) \X

Figure 3.3: An illustration of N [C ∪X].

By using Lemma 1.3.18, it is enough to bound χ⃗(N [C∪X]). If C is a strongly connected
tournament, then we consider P to be the empty path. As noted by Cook, Masař́ık,
Pilipczuk, Reinald, and Souza [12],

χ⃗(N [C ∪X]) ≤ χ⃗(N [K]) + χ⃗(P ) + χ⃗(N(P ) \N [K]) + χ⃗(Y ).

For an illustration of N [C ∪ X], see Figure 3.3. Thus, we want to bound each of
these. By the minimality of |V (P )| and by Observation 4.1 in [12], we have χ⃗(P ) ≤ 2.
Furthermore, since χ⃗(N(v)) ≤ γ for every v ∈ V (D) by the definition of γ, we have
χ⃗(N [K]) ≤ ω(D) + ω(D)γ = ω(D)(γ + 1). We proceed to bound χ⃗(Y ). The following
is the analog of Lemma 4.3 and Corollary 4.4 in [12]. However, we use k-nice sets to get
brooms rather than paths.

(3.3) χ⃗(Y ) ≤ 2γ(k + 1).

Proof. We proceed by proving that every non-empty induced subgraph Y ′ of Y has a k-nice
set S such that χ⃗(S) ≤ γ, which finishes the proof by Lemma 1.3.18. The statement is
true for Y ′ = ∅, so we may assume Y ′ is not empty.

By the definition of Y , there exists a vertex x ∈ X such that N(x) ∩ Y ′ ̸= ∅. By
the definition of X, there exists vertices c1, c2 ∈ C such that c1x, xc2 ∈ A(D). Set S =
N(x) ∩ Y ′. By the definition of γ, we get χ⃗(S) ≤ γ. It suffices to prove that S is a
k-nice set. For a contradiction, assume that there exists a vertex s ∈ S which has at
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least k in-neighbors and out-neighbors in Y ′ \ N(x). Let S− := N−(s) ∩ (Y ′ \ N(x)) and
S+ := N+(s) ∩ (Y ′ \ N(X)). If xs ∈ A(D), then {c1, x, s} ∪ S+ induces a subgraph that
contains a copy of B′ by Claim (3.1). A similar argument works if sx ∈ A(D). This proves
that S is a k-nice set, thus finishing the proof. ■

It remains to bound χ⃗(N(P ) \ N [K]). How we do it mimics the technique used in
Section 5 of [12]. If C is a strongly connected tournament, then P is the empty path,
so χ⃗(N(P )) = 0. Assume then that K is not strongly connected. If P has at most four
vertices, then χ⃗(N(P ))\N [K] ≤ 4γ. Assume then that P has more than four vertices. Let
P ′ be the path P with the first, the second first, the last, and the second-to-last vertices
deleted. Let Q be the set of these four vertices. We want to bound the dichromatic number
of N(P ′) \ (N [K] ∪N(Q)).

Let v1, . . . , vn denote the vertices of P ′ labeled such that vivi+1 ∈ A(D) for every
i ∈ {1, . . . ,m− 1}. When talking about vertices v in N(P ′), we use first (in/out-)neighbor
of v to refer to the vertex vi that is a (in/out-)neighbor of v such that i is minimized.
Similarly, the last (in/out-)neighbor of v refers to the vertex vi that is a (in/out-)neighbor
of v such that i is maximized.

The rest of the proof is by cases. Notice that since B and B′ have opposing consistent
orientations, we may assume without loss of generality that B is of type 1 or type 3, and
B′ is of type 2 or type 4.

Let A− (resp A+) be the set of vertices in N(P ′) \ (N [K] ∪N(Q)) such that their first
neighbor is an in-neighbor (resp out-neighbor). Furthermore, let B+ (resp. B−) be the
set of vertices in N(P ′) \ (N [K] ∪N(Q)) such that their last neighbor is an out-neighbor
(resp. in-neighbor). The following claim will make the proofs of each case less repetitive.

(3.4) The following are true.

• If B is of type 1, then χ⃗(A−) ≤ 2γ(k + 1).

• If B′ is of type 2, then χ⃗(A+) ≤ 2γ(k + 1).

• If B is of type 3, then χ⃗(B−) ≤ 2γ(k + 1).

• If B′ is of type 4, then χ⃗(B+) ≤ 2γ(k + 1).

Proof. Let us prove the first bullet point. We will use Lemma 1.3.18 to bound χ⃗(A−).
Let i be the smallest integer such that N+(vi) ∩ A− ̸= ∅. By the definition of γ, we have
χ⃗(N+(vi)∩A−) ≤ γ. We claim N+(vi)∩A− is a k-nice set in D[A−]. Let v ∈ N+(vi)∩A−
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be such that v has at least k in-neighbors and at least k out-neighbors not in A− \N+(vi).
Let S+ := N+(v) ∩ (A− \ N+(vi)) be the set of out-neighbors of v in A−, and let S− :=
N−(v) ∩ (A− \N+(vi)) be the set of out-neighbors of v in A− \N+(vi).

Since vertices in A− have vi as their first neighbor, vi−1, where we pick vi−1 as the
second vertex of P if i = 1, is anticomplete to S+ ∪ S−. Furthermore, since vertices in
S+∪S− are not in N+(vi), and S+∪S− ⊆ A−, we have that vi is anticomplete to S−∪S+.

This, however, implies that {vi−1, vi, v}∪S+∪S− contains a copy of B. We conclude that
every vertex in N+(vi)∩A− contains at most k out-neighbors in A− \N+(vi). This finishes
the proof thatN+(vi)∩A− is a k-nice set inD[A−], and so the proof that χ⃗(A−) ≤ 2γ(k+1).

Similar arguments prove the remaining bullet points. ■

In the following sections, we will prove that, for every case, χ⃗(N(P ′)\(N [K]∪N(Q))) ≤
γ(4k + 19). This will finish the proof since then,

χ⃗(N [K ∪X]) ≤ χ⃗(N [K]) + χ⃗(P ) + χ⃗(N(P ) \N [k]) + χ⃗(Y )

≤ ω(D)(γ + 1) + 2 + 4γ + γ(4k + 19) + γ(2k + 2)

= ω(D)(γ + 1) + γ(6k + 25) + 2,

where the 4γ in the second line came from N(Q), the neighborhood of the vertices in P
that are not in P ′. By Lemma 1.3.18,

χ⃗(D) ≤ 2(ω(D)(γ + 1) + γ(6k + 25) + 2)(k + 1),

as claimed.

3.2.1 Brooms of type 1 and type 2

Assume that B is a broom of type 1, and that B′ is a broom of type 2. By (3.4), χ⃗(A− ∪
A+) ≤ 4γ(k+1). However, A−, A+ partitions N(P ′)\(N [K]∪N(Q)), so χ⃗(N(P ′)\(N [K]\
N(Q))) ≤ γ(4k + 4) ≤ γ(4k + 19), as claimed.

3.2.2 Brooms of type 3 and type 4

Assume that B is a broom of type 3, and that B′ is a broom of type 4. By (3.4), χ⃗(B− ∪
B+) ≤ 4γ(k+1). However, B−, B+ partitions N(P ′)\(N [K]\N(Q)), so χ⃗(N(P ′)\(N [K]\
N(Q))) ≤ γ(4k + 4) ≤ γ(4k + 19), as claimed.
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3.2.3 Brooms of type 2 and type 3

Assume that B is a broom of type 3, and that B′ is a broom of type 2. By (3.4), χ⃗(A+ ∪
B−) ≤ 4γ(k+1). Let C ′ = N(P ′)\(N [K]∪N(Q)∪A+∪B−), and for every i ∈ {1, . . . ,m},
let Li be the set of vertices v in C ′ such that viv ∈ A(D) and i is minimized.

(3.5) For every i ≥ 1 and j ≥ i+ 3, if v ∈ Li, then N+(v) ∩ Lj = ∅.

Proof. Assume for a contradiction that there exists a vertex u ∈ N+(v)∩Lj. Since u ̸∈ A+,
vj is the first neighbor of v in P . Since u ̸∈ B−, u has an out-neighbor vl in P with l > j.
But then we can shorten the path P by replacing vertices vi+1, . . . , vl−1 with v and u. This
contradicts C is a PMCT. ■

Set
Ci = {c ∈ Lj : i is congruent to j modulo 3}.

That is, for example, C1 is the union of L1, L4, L7, and so on. Furthermore, by (3.5), every
strongly connected subdigraph D′ of Ci is contained in a set Li. Since Li is contained in
the neighborhood of vi, it follows that χ⃗(Li) ≤ γ. Thus, χ⃗(Ci) ≤ γ.

We can now finish the proof. Since C1, C2, C3 is a partition of C ′, it follows that
χ⃗(C ′) ≤ 3γ. Thus,

χ⃗(N(P ′) \N [K]) ≤ χ⃗(A− ∪B−) + χ⃗(C ′)

≤ 4γ(k + 1) + 3γ

≤ γ(4k + 7)

≤ γ(4k + 19).

as claimed.

3.2.4 Brooms of type 1 and type 4

Assume that B is a broom of type 1, and that B′ is a broom of type 4. By (3.4), χ⃗(A− ∪
B+) ≤ 4γ(k + 1). Let C ′ = N(P ′) \ (N [K] ∪ N(Q) ∪ A− ∪ B+). C ′ does not contain a
strongly connected tournament on ω(D) vertices by the minimality of |V (P )|. For every
i ∈ {1, . . . ,m}, let Li be the set of vertices v in C ′ such that vvi ∈ A(D) and i is minimized.
Notice that since v ̸∈ A− ∪B+, it follows that v has both an in-neighbor and out-neighbor
in P ′, and so L1, . . . , Lm partitions C ′. Finally, let C1, . . . , C5 be such that:

Ci = {c ∈ Lj : i is congruent to j modulo 5}.
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That is, for example, C1 is the union of L1, L6, L11, and so on. We will bound χ⃗(Ci) by
partitioning each of C1, . . . , C5 into three sets each with a clique number strictly smaller
than ω(D). This will imply that χ⃗(C ′) ≤ 15γ. The following claim will allow us to make
such a partition.

(3.6)
Let 1 ≤ i ≤ 5, and let v ∈ Ci. If K1 and K2 are tournaments in Ci each of
size ω(D), then v is not both a sink vertex of K1 and a source vertex of K2.

Proof. For a contradiction, assume the claim does not hold. That is, suppose there exists
a vertex v and tournaments K1 and K2 each of size ω(D) such that v is a source vertex
of K1 and a sink vertex of K2. Let u be a sink vertex in K1 and w be a source vertex in
K2. Note that this implies that wv, vu ∈ A(D). Let vi and vj be the first out-neighbor
and in-neighbor of v respectively. Furthermore, let vx be the first in-neighbor of w, and
let vy be the last out-neighbor of u. Since v ̸∈ A− ∪ B+, we have i < j. Furthermore,
if i ≤ x, then K1 and vi → · · · → vx contradict the minimality of C as a PMCT. Thus,
x < i. Using similar logic, we also have j < y.

By the definition of Ci, we have x ∼= j mod 5, and since x < j, we have that |x−j| ≥ 5.
Consequently, the path P ′′ which is P ′ with vertices vx, . . . , vy replaced by vx, w, v, u, vy, is
strictly smaller. This contradicts the minimality of C, thus finishing the proof. ■

(3.7) For every 1 ≤ i ≤ 5, we have χ⃗(Ci) ≤ 3γ.

Proof. Let Xi (resp. Yi) be the set of vertices v ∈ N(P ′) \ (N [K]∪N(Q)) such that there
exists a tournament K ′ with |K ′| = ω(D) in Ci where v is a sink vertex (resp. source
vertex) of K ′, and let Zi = Ci \ (Xi∪Yi). If ω(Xi) = ω(D), then there exists a tournament
K ′ in Xi with a source vertex v. But since v ∈ Xi, then v is a sink vertex of another
tournament, this contradicts (3.6). Thus, ω(Xi) < ω(D). By similar logic, ω(Yi) < ω(D).
As for Zi, each ω(D)-vertex tournament in Zi is strongly connected by the choice of Xi

and Yi. But since P ̸= ∅, this contradicts that C is a PMCT. Thus, ω(Zi) < ω(D). We
conclude χ⃗(Ci) ≤ 3γ. ■

We can now finish the proof. Since C1, . . . , C5 is a partition of C ′, it follows that
χ⃗(C ′) ≤ 15γ. Thus,

χ⃗(N(P ′) \ (N [K] ∪N(Q))) ≤ χ⃗(A− ∪B+) + χ⃗(C ′)

≤ 4γ(k + 1) + 15γ

≤ γ(4k + 19).

as claimed, which finishes the proof of this case, and so the proof of Theorem 1.3.16.
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conjecture to digraphs. Electronic Journal of Combinatorics, 2021.

[5] Eli Berger, Krzysztof Choromanski, Maria Chudnovsky, Jacob Fox, Martin Loebl,
Alex Scott, Paul Seymour, and Stephan Thomassé. Tournaments and colouring. Jour-
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