
Algorithms for Analytic Combinatorics in Several Variables

by

Josip Smolčić

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2023
©Josip Smolcic 2023

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners. I understand that

my thesis may be made electronically available to the public.

ii

Abstract

Given a multivariate rational generating function we are interested in computing asymp-
totic formulas for the sequences encoded by the coefficients. In this thesis we apply the
theory of analytic combinatorics in several variables (ACSV) to this problem and build
algorithms which seek to compute asymptotic formulas automatically, and to aid in un-
derstanding of the theory. Under certain assumptions on a given rational multivariate
generating series, we demonstrate two algorithms which compute an asymptotic formula
for the coefficients. The first algorithm applies numerical methods for polynomial system
solving to compute minimal points which are essential to asymptotics, while the second
algorithm leverages the geometry of a so-called height map in two variables to compute
asymptotics even in the absence of minimal points. We also provide software for computing
gradient flows on the height maps of rational generating functions. These flows are useful
for understanding the deformations of integral contours which are present in the analysis
of rational generating functions.

iii

Acknowledgment

I would like to give my thanks and appreciation to the following people that helped make
this thesis possible:

Stephen Melczer for granting me the opportunity to study mathematics at the grad-
uate level, for bringing this thesis up to a presentable standard and for inspiring
confidence in me. It has been a great experience working with you.

Eric Schost and Kevin Purbhoo for reading and providing feedback on this thesis.

The staff and faculty at the Combinatorics and Optimization department at UW
for providing an exciting environment to study Mathematics and for supporting me
throughout my time here.

My Mom, Dad and Sister for supporting and believing in me, I love you all.

iv

Table of Contents

1 Introduction 1
1.1 Overview of Topics . 2
1.2 Original Contributions . 3

2 Background and Motivating Examples 4
2.1 Polynomials . 4

2.1.1 Gröbner Bases . 6
2.1.2 Homotopy Continuation . 7

2.2 Generating Functions . 13
2.2.1 Formal Series . 13
2.2.2 Examples and Constructions of Generating Functions 15

2.3 Analytic Combinatorics . 20
2.3.1 The Method in One Variable . 20
2.3.2 The Method in Several Variables 23

3 Algorithms for ACSV 29
3.1 Numerically Computing Minimal Points 30

3.1.1 The Combinatorial Case . 30
3.1.2 The Non-Combinatorial Case . 32
3.1.3 Practice and Examples . 36

3.2 Flows on the Height Function . 41
3.2.1 Computation of Flows . 42

3.3 Bivariate Generating Functions and DeVries Algorithm 46
3.4 Future Work and Continuations . 51

References 52

v

Chapter 1

Introduction

A generating function is a mathematical object which encodes a sequence. For example,
consider the Fibonacci sequence fn which begins

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

and is often described by its initial values f0 = 1, f1 = 1 and the recurrence fn = fn−1+fn−2

for n ≥ 2. The recursive description describes the entire Fibonacci sequence, however, it
can be difficult to analyze. The generating function F (z)

F (z) =
∑
n≥0

fnz
n

of the sequence fn is the power series in z whose nth coefficient is the nth Fibonacci
number. At first, the introduction of a generating function seems superfluous, however it
is a powerful tool for analyzing fn. For instance, the Fibonacci generating function satisfies

(1− z − z2)F (z) = F (z)− zF (z)− z2F (z)

=
∑
n≥0

fnz
n − z

∑
n≥0

fnz
n − z2

∑
n≥0

fnz
n

=
∑
n≥0

fnz
n −

∑
n≥0

fnz
n+1 −

∑
n≥0

fnz
n+2

= f0 + (f1 − f0)z +
∑
n≥2

(fn − fn−1 − fn−2)z
n = f0 = 1,

1

and thus F (z) = 1
1−z−z2

. Since F (z) is a rational function, we may apply partial fraction
decomposition, and geometric series identities to derive the formula

fn = Aφn +Bφ−n

where φ =
√
5+1
2

, A = 1
1+1/φ2 and B = 1− A.

The field of analytic combinatorics uses generating functions to derive behavior of
univariate sequences. It is now classical. In this thesis we are interested in the behavior of
multivariate generating functions, an area still being developed.

1.1 Overview of Topics

Analytic combinatorics in several variables (ACSV) is the subject that applies the theory
of complex analysis to analyze multivariate generating functions and the sequences which
they encode. The ACSV framework draws on many areas of mathematics, from algebra and
topology to geometry and complex analysis. An introduction to the theory and methods
in one and several variables is given in [13]. Throughout this thesis we build on the theory
to develop software which applies the results of ACSV to automatically analyze generating
functions in several variables.

In Chapter 2 of this thesis we establish the necessary background, notation and machin-
ery needed to describe the methods in the following chapters. We begin with an overview
of the necessary tools for studying systems of multivariate polynomials, and in particular
computing the solutions to these systems. Following this we review background on formal
power series and generating functions. Generating functions are important in combina-
torics and computing asymptotic formulas for the sequences they encode is the primary
application of the software developed in this thesis. In the final section of Chapter 2 we
introduce the methods of analytic combinatorics with several examples, stating the key
results that we use in our analysis and introducing the problems we seek to solve.

In Chapter 3 we discuss our results and contributions. Section 3.1 builds on the work
of Melczer and Salvy in [14] to reduce the problem of computing the asymptotic formula
for a sequence with a given rational generating function, satisfying certain conditions, to
the problem of analyzing the solutions to a particular system of polynomial equations. We
apply the method of homotopy continuation through the Julia software implementation
[4] by Breiding and Timme to solve these polynomial equations. In Section 3.2 we discuss
an important tool in the theory of ACSV called the height function, and show a method
of numerically computing a flow on the surface which is defined by this height function.
A Julia implementation of this is provided to aid in visualization of ACSV problems.
In Section 3.3 we provide a SageMath [18] implementation of an algorithm of DeVries
[5]. This algorithm leverages the geometry of height functions in two variables to provide

2

an effective characterization of points necessary in computing asymptotic formulas for
coefficients of bivariate generating functions using ACSV. We conclude with a discussion
of future work in Section 3.4.

1.2 Original Contributions

The software developed in this thesis can be found on

https://github.com/JSmol/acsv-algorithms

and is original. Further contributions include

⋄ The Julia software package ACSVHomotopy discussed and used in Section 3.1, and
an accompanying paper [11] with Lee and Melczer. The software implements both the
combinatorial, non-combinatorial and heuristic methods, and it is the only practical
software to study multivariate generating functions that are non-combinatorial.

⋄ The Julia software for computing flows on height function in Section 3.2.

⋄ To our knowledge the first implementation of DeVries’ algorithm for bivariate ACSV
discussed in Section 3.3.

3

https://github.com/JSmol/acsv-algorithms

Chapter 2

Background and Motivating Examples

In this chapter we give an overview of the definitions, theorems and concepts which we
rely on in later chapters. The first section discusses the background on polynomial system
solving that is heavily relied upon in the theory of ACSV. The following section discusses
our main object of study: generating functions. The final section introduces the ACSV
framework as currently established, which is built upon in the later chapters of this thesis.
Several examples are given to illustrate the concepts, and references are given for further
reading when applicable.

2.1 Polynomials

Let K be a field. We denote the ring of n-variate polynomials over K with indeterminants
z = (z1, z2, . . . , zn) as R = K[z]. We use the notation zj = zj11 · · · zjnn for multivariate
monomials. Given any polynomial

f =
∑
j∈Nd

cjz
j ∈ K[z]

we call the set supp(f) = {j : cj ̸= 0} the support of f . Given any finite set of polynomials
F = {f1, f2, . . . , fm} ⊆ R the ideal generated by F is

⟨F ⟩ = ⟨f1, f2, . . . , fn⟩ =

{
m∑
j=0

ajfj : aj ∈ R

}
.

A set F generating an ideal I is called a basis for the ideal I. When considering sets of
polynomials we are often interested in the vanishing set of F , that is the points w ∈ Kn

such that f(w) = 0 for each f ∈ F . The vanishing set of F is denoted V(F), and the

4

vanishing set of any set of polynomials is called an algebraic set. Since any point vanishing
on F also vanishes on ⟨F ⟩, we also consider vanishing sets of entire ideals V(⟨F ⟩) = V(F).

Example 1. When f(x, y) = x2 + y2 − 1, the real part of the vanishing set denoted
V(f) ∩ R2 is the set of all points on the unit circle in R2.

Example 2. When F = {x2 + y2 − 1, x − 1/2} the real part of the vanishing set has
precisely two elements, V(F) =

{(
1/2,±

√
3/4
)}

. We understand these elements as the
intersection of a circle and a line in R2.

Notice that a system of polynomial equations may have infinitely many solutions, as
in Example 1. For our applications, we are interested in polynomial systems which have
only finitely many solutions, and call a polynomial system F zero dimensional if V(F) is
finite. The system {x2 + y2 − 1, x− 1/2} in Example 2 is zero dimensional. An important
question we seek to answer is: given a zero dimensional system F , how do we compute the
set V(F)?

Example 3. Let f1 = 1+x+y+z, f2 = 1+x2+y2, f3 = 1−x−y+z2 and F = {f1, f2, f3}.
The ideal I = ⟨F ⟩ has an alternate generating set,

I = ⟨x+ y + z + 1, y2 + yz + y + z/2, z2 + z + 2⟩.

From here we can solve for V(I) as follows. Notice that z2 + z + 2 is univariate and has
solutions σ1 =

1+
√
−7

2
≈ −0.500+1.323i and σ2 =

1−
√
−7

2
≈ −0.500−1.323i. Next, y2+yz+

y+ z/2 only has y and z variables, so substituting z = σ1 gives a univariate polynomial in
y with approximate solutions −0.588 + 0.172i and 0.088 + 1.151i, and substituting z = σ2

gives approximate solutions −0.588 − 0.172i and 0.088 − 1.151i. The x coordinate of a
solution is obtained by substituting z and y with σ1 and its corresponding y solutions,
into x + y + z + 1 = 0 and the same is done with σ2. The result is 4 solutions, with
approximations

z = −0.500− 1.323i y = −0.588 + 0.172i x = 0.088 + 1.151i

z = −0.500− 1.323i y = 0.088 + 1.151i x = −0.588 + 0.172i

z = −0.500 + 1.323i y = −0.588− 0.172i x = 0.088− 1.151i

z = −0.500 + 1.323i y = 0.088− 1.151i x = −0.588− 0.172i.

In Example 3 the solutions to the polynomial system F are difficult to read off, however
given a different basis for I = ⟨F ⟩ we are able to explicitly compute the solutions easily.
The alternative basis given in Example 3 is an example of a special basis called a Gröbner
basis. Gröbner bases offer an approach to computing vanishing sets of zero dimensional
systems.

5

2.1.1 Gröbner Bases

For our purposes, Gröbner bases are a useful computational tool for computing vanish-
ing sets of special polynomial systems, however the theory of Gröbner bases and their
applications is much deeper. For completeness we define the machinery required for our
application. The book [6] provides further reading of Gröbner bases and various other
applications can be found. We follow [19, Chapter 21] which provides a computational
introduction to Gröbner bases.

Definition 1. A monomial order is a total order ⪯ on the set of monomials za such that
1 ⪯ za for all monomials za and za+c ⪯ zb+c whenever za ⪯ zb.

Example 4. Let za ̸= zb be monomials. The order ⪯lex defined by

za ⪯lex zb ⇐⇒ the leftmost nonzero entry of b− a is positive

is a monomial order. For example, in Q[z1, z2, z3] we order the monomials z1, z2, z1z2, z31z3,
z42z3 by ⪯lex as

z2 ⪯lex z42z3 ⪯lex z1 ⪯lex z1z2 ⪯lex z31z3.

Definition 2. Let f be a d-variate polynomial such that f =
∑

a∈Nd faz
a where only

finitely many fa ∈ K are nonzero. The leading term of f with respect to a monomial order
⪯ is denoted lt⪯(f), where lt⪯(f) = faz

a if and only if za ⪰ zb whenever fb ̸= 0. We also
employ the notation

lt⪯(I) = ⟨lt⪯(f) : f ∈ I⟩

for ideals I = ⟨f1, f2, . . . , fm⟩ and monomial orders ⪯. When the monomial order is clear
from context, we write lt(f) instead of lt⪯(f) and lt(I) instead of lt⪯(I).

Example 5. Suppose we order the variables as x ⪯lex y ⪯lex z in Q[x, y, z], then for
f = x+ y + xy + x3z + y4z we have lt(f) = x3z and lt(⟨f⟩) = ⟨x3z⟩.

Definition 3 (Gröbner Basis). Fix a monomial order ⪯ and consider a polynomial ideal
I = ⟨f1, f2, . . . , fn⟩. A basis g1, g2, . . . , gm for I is a Gröbner basis for I if I = ⟨g1, g2, . . . , gm⟩
and lt(I) = ⟨lt(g1), lt(g2), . . . , lt(gm)⟩.

Gröbner bases have many nice properties which are useful in theory and practice.
Here we are primarily interested in computing Gröbner bases explicitly for solving zero
dimensional polynomial systems. The following theorem illustrates how Gröbner basis are
used for explicit computations when working with multivariate polynomials.

Theorem 1 (Elimination Theorem; Theorem 3.3 of [6]). Let I be an ideal in K[z], let
Rt = K[zt+1, . . . , zd] and let It = I ∩ Rt. If G is a Gröbner basis for I with respect to the
lexicographic order then

Gt = G ∩Rt

6

is a Gröbner basis for It with respect to the induced lexicographic order on Rt.

It is interesting to note that Theorem 1 does not work for arbitrary term orders. Term
orders for which the elimination theorem holds are called elimination orders. The elimina-
tion theorem allows vanishing sets of zero dimensional ideals to be computed one coordinate
at a time, as illustrated in Example 3, and Theorem 1 implies that this method applies
to any zero dimensional ideal. Unfortunately, computing Gröbner bases with respect to
the lexicographic order is at times not practical due to the computational complexity of
the task. Alternative orders which are more efficient to compute exist, but come at the
cost of not being an elimination order. Although there are methods to convert between
Gröbner bases with different monomial orders for zero dimensional systems, we consider
an alternative method for computing the zeros of polynomial systems.

2.1.2 Homotopy Continuation

Homotopy continuation is a method for numerically solving equations by analyzing maps
between polynomial systems called homotopies in R = C[z]. Given continuous functions F
and G mapping from Cd to Cm, a continuous map H : Cd × [0, 1]→ Cm where H(z, 0) =
G(z) and H(z, t) = F (z) is called a homotopy between G and F . In our case the maps
F and G are m-tuples of d-variate polynomials being evaluated at points in Cd, that is,
we identify the polynomial systems F with the continuous map F : Cd → Cm defined by
F (z) = (f1(z), f2(z), . . . , fm(z)).

Let F = {f1, f2, . . . , fm} ⊆ R and let G = {g1, g2, . . . , gm} ⊆ R be polynomial systems,
and suppose that both G and F are zero dimensional. Further suppose that the set V(G) is
known. The method at a high level is to construct a differentiable homotopy map H(z, t)
such that H(z, 0) = G(z) and H(z, 1) = F (z), then track the zeroes of H(z, t) in the z
variables as t varies smoothly from 0 → 1. Under certain assumptions on the map H, all
the unknown solutions F (z) can be recovered at t = 1.

The polynomial system G is called the start system in the homotopy continuation
method. The choice of a start system G and homotopy H is important in determining
whether the homotopy continuation method will find all possible solutions. In practice,
start systems G(z) and homotopies H(z, t) that meet the requirements for homotopy con-
tinuation exist generically. We say that a property holds generically if it holds for all
polynomials (or systems of polynomials) of fixed support except for those which have co-
efficients in a fixed algebraic set.

The simplest example of a start system is called a total degree start system. Given
a square polynomial system F = {f1, . . . , fm}, Bézout’s theorem states that there are at
most N =

∏m
j=1 deg(fj) isolated solutions to F (z). Let gj(z) = z

deg(fj)
j − 1 for j ∈ [m].

The system G = {g1, . . . , gm} has exactly N solutions in Cm. We construct a homotopy

7

Hζ(z, t) = ζtF (z) + (1− t)G(z) where ζ is a random nonzero complex number so that the
solutions of Hζ(z, 1) are the same as those of F (z). Multiplying by ζ is done in practice
to decrease the likelihood of a root vanishing or two roots colliding as t goes from 0→ 1.

Example 6. We begin with a simple one variable illustration of the idea. Suppose we
wish to use this method to calculate the zeroes of the quintic equation

F (x) = x5 − 6x4 + 16x2 − 4.

Let G = (x−2)(x−1)x(x+1)(x+2), the solutions of which are {0,±1,±2} by construction.
The map H(x, t) = tF (x) + (1 − t)G(x) is a homotopy between F and G. Moreover, the
map H(x, t) has exactly 5 real1 solutions for all t between 0 and 1. Let N be a natural
number and for all n ≤ N , approximate the solutions to H(x, (n+ 1)/N) by M iterations
of Newtons method. That is, the solution to H(x, (n + 1)/N) is approximated by xM in
the sequence

xm+1 = xm −
H(xm, (n+ 1)/N)

Hx(xm, (n+ 1)/N)

where x0 is an approximate (or exact in the case n = 0) solution to H(x, n/N). Starting
from the solutions 0,±1,±2 of H(x, 0) we build the up all the solutions to H(x, n/N)
where 1 ≤ n ≤ N . Figure 6 shows the plot of all the solutions when N = 50 and M = 20.
The final result is the 5 points

−1.3719, −0.5316, 0.5254, 1.9084, 5.4697,

which numerically match the roots of F . Moreover, the solutions can be approximated
arbitrarily closely by choosing M to be larger.

The HomotopyContinuation.jl [4] Julia library is complete with sophisticated
start systems and homotopies which consider the structure of the given polynomial sys-
tems, further increasing the probability that the algorithm successfully finds all the roots
without wasting computational effort. While other implementations of the method exist,
the Julia library is easy to download and there is minimal code required to build and solve
equations. Additionally, it is well documented and there are many examples available
online demonstrating the software. The software is available online at

https://www.juliahomotopycontinuation.org.

As we are working with polynomial systems, we also leverage the multivariate polynomial
library DynamicPolynomials.jl for constructing polynomials and performing basic
operations, available online at

1We only require that H(x, t) has 5 complex solutions, however, for visualization purposes, it is better
to study an example with real roots.

8

https://www.juliahomotopycontinuation.org

Figure 2.1: Plot of the solutions computed in Example 6. As n goes from 0 → N the
solutions of H(x, n/N) go from the solutions of G to the solutions of F .

https://github.com/JuliaAlgebra/DynamicPolynomials.jl.

These packages are imported into Julia with the following code.

using HomotopyContinuation
using DynamicPolynomials

We omit this code in future examples for succinctness.

Example 7. Suppose we want to solve for the intersection points of two curves in R2,
defined by the solutions of f = x3+y3−xy2−yx2−24xy+16 and g = −24xy−x+12y+10.
We do this in Julia by writing the following code.

@polyvar x y
f = xˆ3 + yˆ3 - x*yˆ2 - y*xˆ2 - 24*x*y + 16
g = -24*x*y - x + 12*y + 10
F = System([f, g])
result = solve(F)

Result with 6 solutions
=======================

6 paths tracked
6 non-singular solutions (4 real)
random_seed: 0xe0f2ef76
start_system: :polyhedral

The output shows that there are 6 solutions, 4 of which are real. The package also provides
the random seed that was used internally for any random number generations, and which

9

https://github.com/JuliaAlgebra/DynamicPolynomials.jl

polynomial system was used as a start system. Often we are interested only in the real
solutions, which are recovered using the command real_solutions(result). In this
case we have 4 real solutions.

4-element Vector{Vector{Float64}}:
[0.6101580387872538, 3.551655597338044]
[1.095352969283962, 0.6232050208121189]
[0.3871275309385142, -3.548574388493044]
[-1.9435708172691493, -0.2036563788272101]

Figure 2.1.2 shows the plot of the curves where we can clearly visualize the 4 real solutions
as intersection points.

Figure 2.2: Plot of curves defined in Example 7.

A consequence of using numerical methods for polynomial system solving is that we
cannot recover the algebraic solutions without outside knowledge, instead using floating
point approximations to true algebraic solutions. In general it is not possible to obtain
exact algebraic solutions from the homotopy continuation method, however it is possible
to compute small subsets of Cd which are guaranteed to contain distinct algebraic solu-
tions. The HomotopyContinuation.jl library accomplishes this certification by way
of interval arithmetic [3].

Certification of solutions

Define the set of compact real intervals to be

IR = {x : a ≤ x ≤ b where x, a, b ∈ R}

10

with binary operations +,−,×,÷ defined by

X ◦ Y = {x ◦ y : x ∈ X, y ∈ Y },

except that division by 0 is undefined. The set of complex intervals is then

IC = {X + iY : X, Y ∈ IR}.

Let F = {f1, . . . , fn} be an n-variate square polynomial system. The certification
routine of the homotopy continuation library takes the system F and returns a sequence
of disjoint tuples I(k) =

(
I
(k)
1 , . . . , I

(k)
n

)
∈ ICn such that for each k there exists a unique

solution a ∈ Cd of F with aj ∈ I
(k)
j for all j ∈ [n]. Homotopy continuation also offers

methods for certifying whether solutions are real, or real and positive, as this is often an
important feature in applications [3].

Example 8. To demonstrate the certification functionality, consider the simple bivariate
square system F = {x2 − 1, y3 − 1}. We solve this system in Julia and certify it in Julia
with the following code.

@polyvar x y
F = System([xˆ2 - 1, yˆ3 - 1], variables=[x, y])
sols = solutions(solve(F))
certs = certificates(certify(F, sols))

Each certificate corresponds to a solution of F and carries with it metadata about that
solution. The following certificate corresponds to the solution (1, 1) of F .

SolutionCertificate:
solution_candidate = [

1.0 + 0.0im,
1.0 + 0.0im,

]
is_certified = true
certified_solution_interval = [

[1.000000000000 +/- 1.14e-13] + [+/- 1.14e-13]im,
[1.000000000000 +/- 1.52e-13] + [+/- 1.52e-13]im,

]
precision = 53
is_real = true

The metadata of each certificate shows: an approximate solution, whether the solution was
successfully certified, the complex intervals which contain the true algebraic solution, the
precision of the floating point numbers, and whether or not the solution is real.

The system F has solutions
(
e2kπi/2, e2ℓπi/3

)
for k ∈ {0, 1} and ℓ ∈ {0, 1, 2}. There are

exactly 2 real solutions and 1 real positive solution, and we recover them with the following
code in Julia.

11

real = filter(is_real, certs) # returns 2 solutions: (-1, 1) and (1, 1)
real_positive = filter(is_positive, certs) # returns 1 solution: (1, 1)

Our main algorithm for ACSV presented in Section 3.1 leverages all of these features.

As a final example to demonstrate the power of the method, and the Julia implemen-
tation, we walk through an example from [2].

Example 9. A conic is the real part of a vanishing set of a degree two polynomial in two
variables. How many circles are tangent to 3 conic curves in R2?

Let F = {f1, f2, f3} be degree two bivariate polynomials where fj is bivariate in variable
xj and yj. We wish to find values a, b, r such that the circle{

(x, y) ∈ R2 : (x− a)2 + (y − b)2 = r
}

is tangent to each conic defined in F . The conic fj is tangent to the circle at a point
(xj, yj) ∈ R2 if

∂
∂xj

((xj − a)2 + (yj − b)2 − r))

∂
∂yj

((xj − a)2 + (yj − b)2 − r))
=

∂
∂xj

fj
∂

∂yj
fj
.

Therefore, the real solutions to the square system of equations

0 = fj(xj, yj)

0 = (xj − a)2 + (yj − b)2 − r

0 = 2(xj − a)
∂

∂xj

fj(xj, yj)− 2(yj − b)
∂

∂y
fj(xj, yj)

in the variables a, b, r, x1, x2, x3, y1, y2 and y3 describe circles of radius r centered at
(a, b) tangent to fj at (xj, yj). The system is square with 9 equations and variables. The
following code generates random polynomials, builds the corresponding system and solves
it in Julia.

@polyvar x[1:3] y[1:3] a b r
f = [sum(randn(6) .* [1, x[j], y[j], x[j]*y[j], x[j]ˆ2, y[j]ˆ2]) for j in 1:3]
F = System([

f; # conics
[(x[j]-a)ˆ2 + (y[j]-b)ˆ2 - r for j in 1:3]; # circles
[2*(x[j] - a)*differentiate(f[j], y[j]) - # tangent conditions
2*(y[j] - b)*differentiate(f[j], x[j]) for j in 1:3]

])
res = solve(F)

12

Result with 184 solutions
=========================

256 paths tracked
184 non-singular solutions (14 real)
random_seed: 0xee0b55b6
start_system: :polyhedral

Generically, there are 184 complex solutions with 3 conics, and in our example we find
this to be the case. Additionally, we find there are 14 real solutions. Figure 2.3 plots the
results.

Figure 2.3: Three random conic curves and the 14 circles which are tangent to all of them
in R2.

2.2 Generating Functions

In this section we briefly establish notation and language for working with generating func-
tions, then proceed with several examples of generating functions with direct application to
combinatorics. A comprehensive first introduction to generating functions for the purpose
of solving enumerative problems is available online at [12]. In this thesis we are not focused
on the derivation of generating functions, and in most cases we assume that a generating
function has been given in an appropriate form for analysis. However, some examples will
be done from scratch for completeness and to demonstrate the power of the methodology.

2.2.1 Formal Series

Let d ∈ N, let K be a field, and let

A(z1, z2, . . . , zd) =
∑

j1,j2,...,jd≥0

aj1,j2,...,jdz
j1
1 zj22 · · · z

jd
d

13

where aj1,j2,...,jd ∈ K. We call the summation A(z1, z2, . . . , zd) a formal power series over the
field K. For notational convenience we often write A(z) =

∑
j∈Nd ajz

j to denote multivariate
series. The ring of formal power series over K is written

K[[z]] =

∑
j∈Nd

ajz
j : aj ∈ K

 ,

with binary operations +,−,×,÷ defined as usual for convergent series.

In many applications it is not enough to consider only formal power series, as there
is often a need for negative powers of variables. Therefore, we construct a larger class of
series. The field of univariate formal Laurent series over K is the set

K((z)) =

{∑
j≥N

ajz
j : N ∈ Z, aj ∈ K

}
.

The field of multivariate formal Laurent series is defined iteratively as

K((z1, z2, . . . , zk)) = K((z1, z2, . . . , zk−1))((zk))

for all k ∈ [d]. Note that changing the order of the variables changes the elements of the
field.

We call these series formal because we are unconcerned with the convergence of the
series, for example the series

∑
n≥0 n!z

n does not converge for any nonzero z but is still
a valid element of C[[z]]. Operations such as addition, multiplication or substitution are
done formally in these rings by manipulating the symbols abiding by the distribution and
associativity rules. The purpose of a formal series for us is to represent the sequence
or multidimensional array of numbers which is induced by its coefficients. When we are
studying the coefficients aj of the formal series A(z) we call A(z) the generating function
of aj. We employ the standard coefficient extraction notation [zj]A(z) = aj when working
with generating functions. In enumerative combinatorics, the coefficients of generating
functions are what is important.

While we think of a generating function as a potentially infinite series, it is often
infeasible to write down the coefficients in practice, as this often requires great knowledge
of the coefficients. Instead, we strive to find a representation of the generating series
through some other object, such as the solution to a functional equation or a power series
expansion of an analytic function around the origin. For example, we saw at the start of
Chapter 1 the generating series of the Fibonacci sequence was the power series expansion
of 1

1−z−z2
around z = 0. In Section 2.2.2 we will see the Catalan generating function,

which is the power series solution to the functional equation A(z) = 1 + zA(z)2. In this

14

thesis, the focus is on multivariate generating functions which are described as power series
expansions of rational functions around the origin.

2.2.2 Examples and Constructions of Generating Functions

To motivate the analysis that follows below, we give several examples constructing gener-
ating functions. We begin our discussion with a construction of the well-known Catalan
generating function.

Example 10 (Catalan generating function). Suppose we wish to enumerate rooted binary
trees with n vertices, where we distinguish between left and right children. Let T denote
the set of all such trees. A tree in T is either empty or has the form (L,R) for two smaller
trees L and R in T , for example the empty tree is ∅, the tree of size 1 is (∅,∅), and trees
of size three are

(((∅,∅),∅),∅), ((∅, (∅,∅)),∅), ((∅,∅), (∅,∅)), (∅, ((∅,∅),∅)), (∅, (∅, (∅,∅))).

Pictorially, we draw the trees of size three as

.

The univariate generating function whose coefficients count the number of trees in T with
n vertices is called the Catalan generating function, and satisfies the functional equation
T (z) = 1 + zT (z)2. To see this, denote the coefficients of T (z) by tn, so

tn =
n−1∑
k=0

tktn−1−k (2.1)

for n ≥ 1 since any non-empty tree of size n is a vertex and two smaller trees whose number
of vertices sum to n − 1. Multiplying Equation (2.1) by zn and summing over all n ≥ 1,
after adding 1 = t0 to both sides, we obtain

T (z) = 1 +
∑
n≥1

(
n−1∑
k=0

tktn−1−k

)
zn = 1 + z

∑
n≥0

(
n∑

k=0

tktn−k

)
zn = 1 + zT (z)2,

15

as claimed. From here the analysis continues. We apply the quadratic formula and conclude
that T (z) is the power series expansion of 1+

√
1−4z
2z

or 1−
√
1−4z
2z

at the origin. Expanding
both functions around z = 0 we have

1−
√
1− 4z

2z
= 1 + z + 2z2 + 5z3 + · · ·

and
1 +
√
1− 4z

2z
=

1

z
− 1− z − 2z2 − 5z3 − · · · .

Notice that the expansion of 1+
√
1−4z
2z

is not a power series. Therefore, since there are no
rooted binary trees with a negative number of vertices, we conclude that T (z) = 1−

√
1−4z
2z

and thus there are [zn]1−
√
1−4z
2z

rooted binary trees with n vertices.

A generating function F (z) which satisfies P (F (z), z) = 0 where P (y, z) is a bivariate
polynomial is called an algebraic generating function. The Catalan generating function is
an example of an algebraic generating function. Extracting asymptotic formulas of uni-
variate algebraic generating functions is automatic in most applications using the analytic
combinatorics framework, and the methods for doing this are covered in [7].

While univariate generating functions are interesting and useful, this thesis is focused on
multivariate generating functions which are series expansions at the origin of rational func-
tions. For multivariate generating functions, the coefficients form a multidimensional array,
rather than a univariate sequence. We are typically interested in univariate sequences, so
we introduce the following definition to obtain univariate sequences from multivariate gen-
erating functions.

Definition 4. Let F (z) be a multivariate power series with coefficients fj. The main
diagonal of F (z) is the univariate power series

∆F (z) =
∑
n≥0

fnrz
n.

When r is any vector in Nd, we call

∆rF (z) =
∑
n≥0

fnrz
n

the r-diagonal of F (z).

While multivariate generating functions arise naturally when counting combinatorial
objects with respect to multiple parameters (such as walks by length and end point or trees
by internal vertices and leaves), Definition 4 hints that we may encode univariate sequences

16

as diagonals of multivariate generating functions. The following theorem demonstrates how
a sequence encoded by an algebraic generating function can be encoded as the diagonal of
a bivariate rational generating function.

Theorem 2 (Proposition 3.8 of [13]). Suppose f(z) =
∑

n≥0 fnz
n satisfies f(0) = 0 and

P (f(z), z) = 0, where P (y, z) is a polynomial such that ∂P
∂y
(0, 0) ̸= 0. Then the sequence

fn is the diagonal of the bivariate generating function

F (y, z) =
y2Py(y, yz)

P (y, yz)
.

Example 11 (Catalan generating function as a diagonal). The catalan generating function
does not satisfy the conditions of Theorem 2, however, this is easily fixed by multiplying
by z shifting the coefficients. If f(z) = zT (z) then f(z) satisfies P (y, z) = y2 − y + z and
the conditions of Theorem 2 are satisfied, so

f(z) = ∆

(
y(2y − 1)

y − 1 + z

)
.

This means we can analyze the bivariate rational function y(2y−1)
y−1+z

instead of the univariate
functional equation T (z) = 1 + zT (z)2.

Example 12 (non-crossing configurations, Example VII.16 of [7]). Non-crossing configu-
rations are graphs where the vertices are ordered in a circle and each edge between vertices
is a straight line connection between them such that no pair of edges cross. Figure 2.4
shows 4 different non-crossing configurations. Non-crossing configurations come in vari-
ous flavours, for example, we may be interested in those non-crossing graphs which are
only trees and discard all other configurations. In [7], Flajolet and Sedgewick study the
enumeration of non-crossing configurations which are trees, forests, connected graphs and
general graphs by number of vertices. In each case, the generating function is univariate
and satisfies an algebraic equation. In this example we apply Theorem 2 to build bivariate
rational functions which have diagonals counting non-crossing configurations. In future
sections, we will analyze these multivariate generating functions.

The enumeration of non-crossing graphs results in the simplest bivariate rational gen-
erating function, so we begin by considering the generating function G(z) counting those.
The generating function G(z) = 1 + z + 2z2 + 8z3 + · · · satisfies the algebraic equation

P (y, z) = y2 + (2z2 − 3z − 2)y + 3z + 1.

We do not have G(0) = 0 which is required for Theorem 2. To resolve this we let Q(y, z) =
P (1 + z + 2z2 + z2y, y)/z3 and let G′(z) = (G(z) − 1 − z − 2z2)/z2, then G′(0) = 0 and

17

Qy(0, 0) ̸= 0, so Theorem 2 holds. As a result we have

G′(z) = ∆
y2Py(y, yz)

P (y, yz)
= ∆

2y4z2 − 3y3z + 2y3 − 2y2

2y3z2 − 3y2z + y2 + 3yz − 2y + 1
. (2.2)

The generating function T (z) of non-crossing configurations which are trees does not
satisfy Theorem 2 either, since T (z) = z + z2 + 3z2 + · · · satisfies

P (y, z) = y3 − zy + z2

where Py(0, 0) = 0. In general we remedy this by following the method demonstrated by
Adamczewski and Bell in [1]. Let T (z) = a(z) + zrb(z) where a has degree r, b(0) = 0 and
r is chosen such that the discriminant D(z) of P in y is D(z) = zrd(z) for some polynomial
d(z) where d(0) ̸= 0. Then the generating function b(z) satisfies the polynomial

Q(y, z) = P (a(z) + zry, z)/zr+1

and Qy(y, z) ̸= 0 by construction. The discriminant of P in y is −27z4 + 4z3, so

Q(y, z) = y3z5 + 9y2z5 + 3y2z4 + 27yz5 + 3y2z3 + 18yz4 + 27z5

+ 21yz3 + 27z4 + 6yz2 + 36z3 + 3yz + 19z2 − y + 12z.

The generating function b(z) is thus encoded by

b(z) = ∆
y2Q(y, yz)

Qy(y, yz)
,

from which we have T (z) as well. The analysis is similar in the case of the generating func-
tions C(z) enumerating non-crossing connected graphs and F (z) enumerating non-crossing
forests. In Chapter 3 we revisit this example and explicitly compute the exponential growth
rate of each of the non-crossing configurations.

Figure 2.4: Plots of the different types of non-crossing configurations. From left to right:
tree, forest, connected graph and graph.

18

A rich source of multivariate generating functions comes from the enumeration of walks
in lattices. There are several variations, each with different levels of difficulty providing a
sandbox for exploring the theory of generating functions.

Example 13 (lattice walk enumeration). Suppose we wish to count walks in Z×Z which
only take steps from S = {(1, 1), (1,−1), (−1, 1), (−1,−1)}. We denote the steps in the
set S pictorially as S = {↗,↘,↖,↙}, and walks are sequences of steps s = s1, s2, . . . , sn
where sj ∈ S, see Figure 2.5. If a(i, j, k) is the number of length k walks which end at
coordinate (i, j) ∈ Z2, the function

A(x, y, t) =
∑
i,j,k

a(i, j, k)xiyjtk ∈ C((x, y))[[t]]

is the generating function for the number of such walks. Let S(x, y) =
∑

(a,b)∈S x
ayb and

Ak(x, y) = [tk]A(x, y). Then Ak(x, y) is a polynomial in x, y, x−1, y−1 such that

Ak+1(x, y) =
∑

(a,b)∈S

xaybAk(x, y) = S(x, y)Ak(x, y)

for all k. Multiplying by tk+1 and summing we find A(x, y, t) − 1 = S(x, y)A(x, y, t). so
the generating function is

A(x, y, t) =
1

1− tS(x, y)
=

1

1− t(xy + xy−1 + x−1y + x−1y−1)
.

Figure 2.5: The walk s =↗↘↙↙↖↙↖↗↗↖ plotted in Z× Z.

Example 14 (restricted quadrant lattice walk). Let Q denote the set of all walks in the
lattice N × N which take steps from S = {(1, 1), (1,−1), (−1, 1), (−1,−1)} and begin at

19

(0, 0). Walks in Q are confined the the north east quadrant of the integer lattice Z×Z and
we call such walks restricted quadrant lattice walks or quadrant lattice walks. The main
diagonal of the generating function

Q(x, y, t) = − (x+ 1)(y + 1)

tx2y2 + tx2 + ty2 + t− 1

counts the number of of quadrant lattice walks in Q by length. The methods for deriving
these generating functions are sophisticated and beyond the scope of this thesis, but the
methods generalize to many different steps sets each with different rational generating
functions. For example, changing the step set to {↓,↗,↖}, yields the generating function

− (xy2 − x2 − 1)(x+ 1)

(txy2 + tx2 + t− 1)(x2 + 1)(y − 1)
.

Chapter 4 of [13] covers much of the methods used to construct the generating functions
enumerating lattice walks which we will analyze in Chapter 3.

2.3 Analytic Combinatorics

We begin this section by briefly reviewing the techniques for generating functions of a
single variable. Following the univariate analysis, we illustrate the differences that arise
when considering rational multivariate generating functions before discussing the methods
of ACSV and applying them to an explicit example. The goal of our analysis will be to
obtain an asymptotic formula for a sequence of numbers an, so we begin with the following
definition.

Definition 5. Let an define a sequence of numbers in C. We say that an is asymptotically
equal to f(n), and write an ∼ f(n), if

lim
n→∞

an
f(n)

= 1.

When an ∼ f(n) the function f(n) is useful as an approximation for an, which gets more
accurate as n grows. We also make use of big-O notation, writing |an| = O(f(n)) if there
exists N > 0 and C ∈ R>0 such that |an| ≤ C|f(n)| for all n ≥ N .

2.3.1 The Method in One Variable

It is helpful to understand the process in one variable before attempting to attack the
problem in the multivariate setting. Consider the following combinatorial object.

20

Definition 6 (Alternating Permutation). A permutation σ = σ1, σ2, . . . , σn is said to be
alternating if

σ1 < σ2, σ2 > σ3, σ3 < σ4, σ4 > σ5,

Consider the function sec(z) and its power series expansion around the origin,

sec(z) =
∑
n≥0

snz
n =

∑
n≥0

an
n!

zn.

It is known that the coefficients an count even length alternating permutations [17]. The
idea of analytic combinatorics is the characterization of the relationship between the sin-
gularities of sec(z) and the asymptotic behavior of the coefficients sn. Leveraging this
relationship, we arrive at an explicit asymptotic formula for the number of alternating
permutations an. In order to proceed with the analysis, we recall the following essential
results from complex analysis. Let D be an open connected subset of C.

Theorem 3 (Cauchy Integral Formula). If F (z) =
∑

n≥0 fnz
n is analytic in D then, for a

closed curve γ inside D containing the origin, we have

fn =
1

2πi

∮
γ

F (z)

zn+1
dz. (2.3)

Theorem 4 (Cauchy Residue Theorem). If F (z) is meromorphic on D and γ is a simple
closed curve inside D then

1

2πi

∮
γ

F (z)dz =
∑
ρ

Res
z=ρ

F (z),

where the summation is over the singularities ρ of F (z) which are inside γ and Resz=ρ F (z)
denotes the complex residue.

The function sec(z) = 1
cos(z)

is analytic within the disc D = {z ∈ C : |z| < π
2
}, therefore

by Theorem 3, we have

sn = In =
1

2πi

∮
γ

sec(z)

zn+1
dz

where γ = {z ∈ C : |z| = 1}. Notice that by Theorem 4 and the fact that sec(z) is analytic

inside γ, we know that In = Res
z=0

sec(z)

zn+1
. The next step in the analysis is to compute the

integral In. We proceed by introducing the integral

I ′n =
1

2πi

∮
γ′

sec(z)

zn+1
dz,

21

where γ′ = {z ∈ C : |z| = 2}. Note that the only difference between In and I ′n is that the
domain of integration has larger radius. Let M = max{| sec(z)| : z ∈ γ′} and observe that

|I ′n| =
∣∣∣∣ 1

2πi

∮
γ′

sec(z)

zn+1
dz

∣∣∣∣ ≤ length(γ′)

2π
· M

2n+1
=

M

2n
= O(2−n).

Moreover, by Theorem 4 and the fact that sec(z) has precisely two singularities inside γ′

at ±π
2
, we have

I ′n = Res
z=0

sec(z)

zn+1︸ ︷︷ ︸
In

+ Res
z=π/2

sec(z)

zn+1
+ Res

z=−π/2

sec(z)

zn+1
.

The residues of sec(z)
zn+1 at π

2
and −π

2
are −(−π/2)−n+1 and (π/2)−n+1. It follows by taking

absolute values that

|I ′n| =
∣∣In − (2/π)n+1 + (−2/π)n+1

∣∣ = O(2−n).

Thus
sn ∼ (2/π)n+1 − (−2/π)n+1

and the number of alternating permutations is given by an ∼ n! ((2/π)n+1 − (−2/π)n+1).
Let fn = n!((2/π)n+1 − (−2/π)n+1), Table 2.1 shows the approximation to 5 significant
figures for n ≤ 20.

n an fn an/fn
0 1.00000e+0 1.27324e+0 7.85398e-1
2 1.00000e+0 1.03205e+0 9.68946e-1
4 5.00000e+0 5.01928e+0 9.96158e-1
6 6.10000e+1 6.10272e+1 9.99555e-1
8 1.38500e+3 1.38507e+3 9.99950e-1
10 5.05210e+4 5.05213e+4 9.99994e-1
12 2.70276e+6 2.70277e+6 9.99999e-1
14 1.99361e+8 1.99361e+8 1.00000e+0
16 1.93915e+10 1.93915e+10 1.00000e+0
18 2.40488e+12 2.40488e+12 1.00000e+0
20 3.70371e+14 3.70371e+14 1.00000e+0

Table 2.1: The asymptotic formula fn converges to the actual number an of alternating
permutations as n→∞.

The process above generally applies to a wide range of meromorphic functions that are
analytic around the origin. This illuminates an intimate connection between the location of
singularities of a meromorphic function and the asymptotic growth rates of the coefficients

22

of its power series expansion around the origin. For large n, the integrand on the right hand
side of (2.3) gets smaller as the curve γ is pushed further away from the origin. However,
as γ is pushed beyond singular points of F (z) it picks up residues at those singular points.
Those residues are then used to approximate the coefficients fn.

The approach when considering generating functions of several variables attempts to
mirror that of the approach in a single variable. There is, however, a significant difference
between the singularities of multivariate functions and univariate functions which will
ultimately complicate the method: even bivariate generating functions have infinitely large
sets of singularities.

2.3.2 The Method in Several Variables

In this thesis we restrict to the case where the generating function is expressed as the
power series expansion at the origin of a rational function, as we would like to apply the
techniques of computing with multivariate polynomials to analytic combinatorics. Let

F (z) =
G(z)

H(z)
=
∑
n∈Zd

fnz
n

denote a multivariate rational function in d variables over C with a power series expansion
around the origin. As we have seen, there are many different sequences which are encoded in
the coefficients of F (z). Fix a direction r ∈ Nd and study the r-diagonal of F (z), however in
our examples, and in practice, the most important diagonal is the main diagonal. Our main
example for illustrating the methods is the rational generating function F (x, y) = 1

1−x−y
,

with power series expansion

F (x, y) =
1

1− (x+ y)
=
∑
i,j≥0

(
i+ j

j

)
xiyj.

The main diagonal of F (x, y) is the sequence of central binomial coefficients fn,n =
(
2n
n

)
.

As in the univariate case, the objective of ACSV is to extract asymptotic formulas for
sequences encoded by generating functions. This is done by applying the theory of mul-
tivariate complex analysis to the generating function F (z). We begin by reviewing the
language, definitions and theorems from complex analysis in several variables. A thorough
and introductory review of the necessary background is given in Chapter 3 of [13].

Given a ∈ Cd and r ∈ Rd
>0, the set

Da(r) =
{
z ∈ Cd : |zj − aj| < rj, j ∈ [d]

}

23

is the open polydisk of radius r centered at a. The closure of Da(r) is

Da(r) =
{
z ∈ Cd : |zj − aj| ≤ rj, j ∈ [d]

}
,

and the set
Ta(r) =

{
z ∈ Cd : |zj − aj| = rj, j ∈ [d]

}
is the polytorus of radius r centered at a. For polydisks and polytori centered at the origin,
we omit the subscript a since this is the case we consider most often.

A series
∑

n≥0 cn is said to be absolutely convergent if
∑

n≥0 |cn| converges, and a func-
tion F (z) is analytic at a ∈ Cd if there exists r ∈ Rd

>0 such that

F (z) =
∑
n∈Nd

fn(z− a)n

is absolutely convergent for each z ∈ Da(r). The set D containing the points z ∈ Cd such
that the series

∑
n∈Nd fn(z− a)n converges absolutely is the domain of convergence of F .

Notice that polynomials are analytic at every point in Cd since the summation is finite.
Moreover, rational functions G(z)/H(z) are analytic at points a ∈ Cd such that H(z) ̸= 0,
since we can recover the coefficients iteratively from the equation

G(z) = H(z)
∑
n∈Nd

fn(z− a)n.

Given a rational function F (z) = G(z)/H(z) where G(z) and H(z) are coprime, the
singular set of F (z) is the set V(H). Elements of V(H) are called singularities of F (z). A
key difference between univariate and multivariate complex analysis is the singular behavior
of functions which are not analytic on all of C. In one variable, the singular sets of rational
functions are finite and consist of the isolated zeros of univariate polynomials. Moving
to several variables, the singular sets contain positive dimensional algebraic sets. The
following theorem, which generalizes the univariate Cauchy integral formula, allows us to
compute asymptotic formulas for multivariate generating functions.

Theorem 5 (multivariate Cauchy integral formula: Theorem 3.1 of [13]). If F (z) is ana-
lytic on a connected open subset Ω ⊆ Cd and Da(r) ⊆ Ω such that

F (z) =
∑
n∈Nd

fn(z− a)n

in Da(r) then for all n ∈ Nd we have

fn =
1

(2πi)d

∫
Ta(r)

F (z)

(z− a)n+1
dz,

24

where 1 ∈ Cd is the all ones vector.

We now return to the rational generating function F (x, y) = 1
1−x−y

, whose singular
points are the points in Cd defined by x + y = 1. There are three different Laurent series
expansions of F (x, y) centered at the origin:

⋄ F (x, y) =
1

1− (x+ y)
=
∑
i,j≥0

(
i+ j

j

)
xiyj

⋄ F (x, y) =
−1/x

1− (1− y)/x
=
∑
i,j≥0

(
i

j

)
(−1)j+1yjx−i−1

⋄ F (x, y) =
−1/y

1− (1− x)/y
=
∑
i,j≥0

(
i

j

)
(−1)j+1xjy−i−1.

Each expansion is centered at the origin, however each expansion has a different domain of
convergence. The power series expansion has domain of convergence |x|+ |y| < 1, therefore
Theorem 5 implies (

2n

n

)
= In =

1

(2πi)2

∫
T (1/4,1/4)

F (x, y)

xn+1yn+1
dxdy. (2.4)

Chapter 5 of [13] illustrates the process of manually deforming the domain of integration
and approximating the integral (2.4) explicitly to extract a asymptotic formula for

(
2n
n

)
.

The method mirrors that of the univariate analysis in that the domain of integration is
expanded past the singular points of F (x, y) then a residue calculation is made to approxi-
mate the value of In. The result in this case is that

(
2n
n

)
∼ 4n√

πn
. The remaining expansions

of 1
1−x−y

require additional tools to analyze. Here we restrict to analyzing only the power
series expansions of rational generating functions, as these are most often the expansions
with combinatorial significance.

Let F (z) = G(z)/H(z) with coprime polynomials G(z) and H(z), and fix a diagonal
vector r ∈ Nd. Further suppose that F (z) admits a power series expansion at the origin.

Definition 7 (critical points). The solutions w ∈ Cd
∗ to the system of equations

H(w) = 0

zj
∂H

∂zj
(w) = rjλ, j ∈ [d]

(2.5)

are called the critical points with respect to the function F (z) and direction r. When
∂H
∂zj

(w) ̸= 0 for some j, and thus all j when r has no zero coordinate, the point w is a

25

smooth critical point. The variable λ in the critical point equations is used in the formulas
for asymptotics, however when the critical points are smooth it is possible to eliminate λ
from the equations so that there is one less equation and variable by instead considering
the system

H(w) = 0

rjz1
∂H

∂z1
(w)− r1zj

∂H

∂zj
(w) = 0, j ∈ {2, 3, . . . , d}.

At times we will solve this system when we do not need the value λ.

Definition 8 (minimal points). Suppose D ⊆ Cd is the domain of convergence of the
power series expansion of F (z) centered at the origin. A point w ∈ D ∩ V(H) is called a
minimal point of F (z) with respect to the power series expansion. Equivalently, a minimal
point w ∈ V(H) is a point such that there does not exist a point z ∈ V(H) with |zj| < |wj|
for all j ∈ [d]. Furthermore, if T (w)∩V(H) is finite then we say that w is finitely minimal.
If T (w) ∩ V(H) = {w} then we say that w is strictly minimal.

Theorem 6 (smooth multivariate asymptotics; Theorem 5.2 of An Invitation to Analytic
Combinatorics in Several Variables, Melczer 2021). Let

F (z) = G(z)/H(z) =
∑
n∈Nd

fnz
n

be a rational generating function and suppose w is a nondegenerate strictly minimal smooth
critical point w in the direction r such that ∂

∂zd
H(w) ̸= 0. Then

fnr = w−nr (2πn)
(1−d)/2√

det(rdH)
(
C0 +O(n−1)

)
(2.6)

where C0 =
−G(w)

wdHzd
(w)

and H is the (d− 1)× (d− 1) matrix

Hij =

{
ViVj + Uij − VjUid − ViUjd + ViVjUdd i ̸= j

Vi + V 2
i + Uii − 2ViUid − ViUjd + V 2

i Udd i = j

where
Uij =

wiwjHzizj(w)

Hzd(w)
and Vi =

wiHzi(w)

wdHzd(w)
=

ri
rd

and the point w is nondegenerate if and only if detH ̸= 0.

Theorem 6 is a powerful tool for analysing power series expansions of multivariate
rational generating functions. When w is finitely minimal and each point in T (w)∩V(H)
satisfies the conditions, asymptotics are obtained by summing (2.6) over all points in

26

T (w) ∩ V(H). Each component of Theorem 6 is explicit except for the value of w and
verification of minimality. Therefore, the problem of computing minimal critical points
explicitly is of great importance when working with multivariate generating functions. In
the later chapters, we demonstrate algorithms which offer a solution this problem.

Example 15. We conclude the section by applying Theorem 6 to F (x, y) = 1
1−x−y

to
compute an asymptotic formula for the central binomial coefficients. On the main diagonal,
the second set of critical equations from Definition 7 are 1 = x+ y and x = y from which
we deduce there is exactly one critical point at (1/2, 1/2). Moreover, this critical point is
smooth since

−1/2 = Hx(1/2, 1/2) = Hy(1/2, 1/2) ̸= 0.

The domain of convergence D of the power series expansion of F (x, y) is |x| + |y| ≤ 1,
therefore the point (1/2, 1/2) ∈ D is also a minimal point. The 1×1 matrix H in Theorem
6 is [2], so (1/2, 1/2) is non-degenerate. The constant C0 is 1 and therefore we have the
well known asymptotic formula(

2n

n

)
= (1/2)−n(1/2)−n (2πn)

−1/2

√
2

(1 +O(1/n)) =
4n√
πn

(1 +O(1/n)).

27

n
(
2n
n

)
4n√
πn

(
2n
n

)
/ 4n√

πn

1 2.00000e+00 2.25676e+0 8.86227e-1
2 6.00000e+00 6.38308e+0 9.39986e-1
3 2.00000e+01 2.08470e+1 9.59369e-1
4 7.00000e+01 7.22163e+1 9.69311e-1
5 2.52000e+02 2.58369e+2 9.75350e-1
6 9.24000e+02 9.43429e+2 9.79406e-1
7 3.43200e+03 3.49378e+3 9.82316e-1
8 1.28700e+04 1.30725e+4 9.84506e-1
9 4.86200e+04 4.92996e+4 9.86214e-1
10 1.84756e+05 1.87079e+5 9.87583e-1
11 7.05432e+05 7.13491e+5 9.88705e-1
12 2.70416e+06 2.73246e+6 9.89640e-1
13 1.04006e+07 1.05011e+7 9.90433e-1
14 4.01166e+07 4.04763e+7 9.91113e-1
15 1.55118e+08 1.56415e+8 9.91703e-1
16 6.01080e+08 6.05794e+8 9.92219e-1
17 2.33361e+09 2.35083e+9 9.92675e-1
18 9.07514e+09 9.13837e+9 9.93080e-1
19 3.53453e+10 3.55785e+10 9.93443e-1
20 1.37847e+11 1.38711e+11 9.93770e-1

Table 2.2: The asymptotic formula converges to
(
2n
n

)
with error O(1/n)

28

Chapter 3

Algorithms for Analytic Combinatorics
in Several Variables

In this chapter we survey algorithms for ACSV. We begin with an application of the homo-
topy continuation method discussed in Section 2.1 to the problem of computing minimal
critical points of rational generating functions. The primary goal is to develop an algorithm
that takes a rational generating function specified by its numerator and denominator, and
a direction vector, and outputs the asymptotic formula obtained by an application of The-
orem 6 if and when it applies. Section 3.1 builds on the work of Melzcer and Salvy in
[14] to achieve this. Next, we introduce the “height function” of a generating function with
respect to a direction. Understanding the geometry of the singular variety under the height
function is important in ACSV because it is connected to deformations of the Cauchy in-
tegral formula for coefficients. In Section 3.2 we demonstrate the process of computing a
flow on the height function. In Section 3.3 we discuss the implementation details of an
alternative algorithm for computing critical points determining asymptotics that leverages
the geometry of the height function for bivariate rational generating functions.

Partial code examples are given throughout and links to complete implementations are
provided to the interested reader. The examples demonstrate cases when the algorithms
are successful and also illustrate what shortcomings are present. We omit some code from
examples to avoid redundancy and encourage the interested reader to see the full code
available on GitHub at

https://github.com/JSmol/acsv-algorithms.

Below we refer to notebooks available inside the repository.

29

https://github.com/JSmol/acsv-algorithms

3.1 Numerically Computing Minimal Points

In this section, we demonstrate a method for computing minimal critical points in order to
apply Theorem 6. To accomplish this, we encode the minimal points of a rational generat-
ing function as the solutions of a zero dimensional polynomial system, then solve the system
using the numerical methods discussed in Chapter 2. We provide an implementation of
this in the Julia programming language built on the HomotopyContinuation.jl [4]
library, which provides methods for solving polynomial systems using homotopy continua-
tion techniques.

Let F (z) = G(z)/H(z) be a d-variate rational generating function with a power series
expansion around the origin and fix a vector r ∈ Nd. The most expensive computation
required to apply Theorem 6 is typically finding the minimal critical points of F (z). Fol-
lowing the work of Melczer and Salvy in [14], we begin by considering a special type of
rational generating function that simplifies the method before moving to a more general
class.

3.1.1 The Combinatorial Case

A power series is called combinatorial if only finitely many of its coefficients are negative. If
a rational generating function F has a combinatorial power series expansion, then we say F
is combinatorial. Generating functions which are obtained through combinatorial processes
are often combinatorial and combinatorial generating functions have minimal critical points
that are easier to compute. This allows for a simpler algorithm when computing minimal
points.

Suppose that F (z) is a combinatorial rational function, let w be a critical point and
consider the equation

H(tz) = 0 (3.1)

in the complex variables z and real variable t. Lemma 21 of [14] shows that a critical point
w ∈ V(H) is minimal if and only if w′ = (|w1|, . . . , |wd|) is a minimal critical point. The
resulting system is square in the variables w, λ, t, and is generically zero dimensional [13].
To check whether a known critical point w = (w1, . . . , wd) is minimal, we can check if there
is a solution (|w1|, . . . , |wd|, λ, t) to Equations (2.5) and (3.1) where t ∈ (0, 1).

This introduces two complications which arise when considering numerical solutions.
The first problem comes from verifying (w′, λ, t) = (w′

1, . . . , w
′
d, λ, t) is a solution to equa-

tions (2.5) and (3.1) where w′ = (|w1|, . . . , |wd|) and w = (w1, . . . , wd) is a critical point.
Since the homotopy method produces open intervals containing solutions, rather than so-
lutions themselves, it is difficult to verify that z = w for vectors of algebraic numbers.
In theory this is resolved with root separation bounds for polynomials. A root separation

30

bound is a bound m which has the property that |α−β| > m for all distinct pairs of roots
α, β of a polynomial. Unfortunately, the bounds which are available are exponential in the
degrees of the polynomials involved. The arguments presented in [14] show that an interval
width of 2−O(D3 logk(D3)) where D = deg(H)d and k is some natural number is sufficient to
rigorously verify w′ = (|w1|, . . . , |wd|). The exponent in this bound is large, and therefore
computing the roots to this precision is the most expensive operation of computing the
minimal points in the combinatorial case.

The second problem comes from verifying when a solution of (3.1) has t = 1 exactly.
Given any interval around 1 containing a solution, it is not possible to determine whether
the solution is equal to 1 without external knowledge. To resolve this, we extend the
system by adding the additional equation s(1− t)−1 with a new variable s. This equation
removes the solutions where t = 1 exactly while all other solutions remain.

We now describe the method for computing minimal points in the combinatorial case.
Define the combinatorial case system to be

0 = H(w)

0 = wjHwj
(w)− rjλ, ∀j ∈ [d]

0 = H(tw)

0 = s(1− t)− 1.

(3.2)

Section 3 of [14] gives the following sufficient conditions under which the combinatorial
case system correctly identifies minimal critical points, and dominant asymptotics can be
effectively computed:

(A0) F (z) = G(z)/H(z) admits at least one minimal critical point,

(A1) ∇H(z) does not vanish at the minimal critical points,

(A2) G(z) is nonzero at at least one minimal point,

(A3) all minimal points are non-degenerate,

(J1) the Jacobian matrix of the combinatorial case system is non-singular at its solutions.

Suppose F = G/H satisfies (A0), (A1), (A2), (A3), (J1) and let S be the set of solution
to (3.2). Let w′ ∈ Rd

>0 be a critical point such that for all solutions (w′, λ, t) ∈ S we have
t /∈ (0, 1) and further suppose that w′ is the only such point. Then w is a minimal critical
point determining the asymptotics of the r-diagonal if w is a critical point and |wj| = w′

j for
all j ∈ [d]. We conclude this subsection with an example applying the combinatorial-case
method.

31

Example 16. Let F (x, y) = 1
1−x−y

. The first step of computing the minimal points of
F (x, y) using the combinatorial case method is to solve the critical point equations. This
is done in Julia with the following code.

@polyvar x y λ s t
H = 1 - x - y
sys = System(

[H, x*differentiate(H, x) - y*differentiate(H, y)],
variables=[x, y]

)
result = solve(sys)
display(map(sol -> round.(sol; digits=3), solutions(result)))

1-element Vector{Vector{ComplexF64}}:
[0.5 + 0.0im, 0.5 + 0.0im]

There is exactly one critical point at (1/2, 1/2), as expected. The following code solves the
full combinatorial case system and displays the real solutions.

@polyvar λ t s
sys = System([# full comb-case system

H;
[x, y] .* differentiate(H, [x, y]) .- λ;
H([x, y] => t*[x, y]);
s*(1-t) - 1

], variables=[t; x; y; λ; s])
real_sols = real_solutions(solve(sys; show_progress=false))

Vector{Float64}[]

We see there is no real solutions, and hence none with t ∈ (0, 1), thus verifying that the
point (1/2, 1/2) is minimal. Later we will see an example with multiple critical points
where System (3.2) has non-trivial solutions that require further analysis to determine
minimality.

3.1.2 The Non-Combinatorial Case

There are symbolic-numeric approaches to asymptotics in the combinatorial case demon-
strated in [9], but they are not efficient enough to handle non-combinatorial functions.
This is a problem as verifying that an arbitrary rational generating function F (z) is com-
binatorial is difficult (perhaps undecidable) in general. If we do not know that the rational
function F (z) is combinatorial, we cannot verify minimality just by looking at points with
positive coordinates. Fortunately, it is still possible to construct a square polynomial sys-
tem whose solutions identify the minimal points of F (z).

We begin by decomposing into real variables. Let w = a+ ib and split H(w) so that

H(w) = H(a+ ib) = u(a,b) + iv(a,b)

32

for real valued functions u and v. The critical point equations (2.5) in the variables w, λ
become

0 = u(a,b)

0 = v(a,b)

rjλR = aj
∂u

∂aj
+ bj

∂u

∂bj
, j ∈ [d]

rjλI = aj
∂v

∂aj
+ bj

∂v

∂bj
, j ∈ [d]

(3.3)

in the variables a,b, λR, λI . Section 3.3 of [14] notes that a+ ib is minimal if the system

0 = u(x,y)

0 = v(x,y)

0 = x2
j + y2j − t(a2j + b2j), j ∈ [d]

(3.4)

does not have a real solution (x,y, t) where 0 < t < 1. Together, Equations (3.3) and (3.4)
form a polynomial system of 3d + 4 equations in the 4d + 3 variables a,b, λR, λI ,x,y, t.
The resulting system is not square, however under the assumption:

(J2) the Jacobian matrix of the system (3.3), (3.4) is non-singular at its solutions,

Melczer and Salvy prove in [14] that the real solutions of equations (3.3) and (3.4) satisfy
the additional equations

(ν1yj − ν2xj)
∂u

∂xj

(x,y)− (ν1xj + ν2yj)
∂u

∂yj
(x,y)

for 1 ≤ j ≤ d with at least one of ν1 or ν2 nonzero1. Therefore we extend the system of
Equations (3.3) and (3.4) to a square system depending on whether ν1 is zero by adding
one of the following sets of d (or d− 1) equations

0 = (yj − νxj)
∂u

∂xj

(x,y)− (xj + νyj)
∂u

∂yj
(x,y), j ∈ [d] ν1 ̸= 0

0 = −xj
∂u

∂xj

(x,y)− yj
∂u

∂yj
(x,y), j ∈ [d− 1] ν1 = 0

(3.5)

and in each case the result is a square polynomial system in 1 (or 0) extra variables. We
call the systems built from equations (3.3), (3.4), (3.5) and s(1− t)−1 the extended critical
point systems.

1Melczer and Salvy incorrectly state in [14] that ν1 and ν2 must both be nonzero: at least one is
non-zero at the solutions of interest, but the other may vanish [11].

33

The extended critical point systems are large with many variables and the computation
of solutions is expensive in general. The following heuristic, which replaces the large
systems by two smaller systems where we substitute the variables a,b, λR, λI by floating
point approximations to the critical points of F , significantly improves the running time
of the computation and we make use of it in our examples. For each approximation w to a
critical point, we construct a system of equations by substituting a = ℜ(w) and b = ℑ(w)
in each extended system. The result is square systems of size 2d + 4 and 2d + 3 for each
critical point. In practice, this heuristic performs much faster than solving the large system
outright and still correctly identifies minimal points. It is the case that replacing the critical
equations by numerical approximations to critical points introduces issues pertaining to
correctness of results, however this currently the only method that can practically study
non-combinatorial generating functions in more than two variables.

Example 17. We conclude this subsection by solving for the minimal points of a bivariate
generating function with denominator

H(w1, w2) = (1− w1 − w2)(20− w1 − 40w2)− 1

using the extended critical point systems. We begin by declaring the necessary variables
in Julia.

@polyvar w[1:2] x[1:2] y[1:2] a[1:2] b[1:2] λR λI s t ν ν1 ν 2

The critical points are computed as is in the combinatorial case.

H = (1-w[1]-w[2])*(20-w[1]-40*w[2])-1
sys = System([H, w[1]*differentiate(H, w[1]) - w[2]*differentiate(H, w[2])])
result = solve(sys)
display(map(sol -> round.(sol; digits=3), solutions(result)))

4-element Vector{Vector{ComplexF64}}:
[9.997 - 0.0im, 0.253 + 0.0im]
[0.49 + 0.281im, 0.581 - 0.162im]
[0.49 - 0.281im, 0.581 + 0.162im]
[0.548 + 0.0im, 0.31 + 0.0im]

There are 4 critical points, two of which are real. The point (0.548, 0.31) is the only minimal
critical point. The next step is to split H(w1, w2) into real and imaginary components and
build the extended non-combinatorial case systems.

@polyvar I
u = sum(filter(t -> iseven(degree(t, I)), terms(H(w => a + I.*b))))
v = sum(filter(t -> isodd(degree(t, I)), terms(H(w => a + I.*b))))
u, v = subs(u, I => im), -im*subs(v, I => im)

With u(a, b) and v(a, b) computed, we construct the extended systems with the following
code.

34

critical equations in variables a, b, λR λI after splitting
criteqs = [u; v; a.*differentiate(u, a) + b.*differentiate(u, b) .- λR;

a.*differentiate(v, a) + b.*differentiate(v, b) .- λI]
minimality equations in variables x, y, a, b, t
circeqs = [u([a; b] => [x; y]);

v([a; b] => [x; y]); x.ˆ2 + y.ˆ2 - t.*(a.ˆ2 + b.ˆ2)]
balance equations
J2eqs = (ν 1.*y - ν 2.*x) .* differentiate(u([a; b] => [x; y]), x) -

(ν 1.*x + ν 2.*y) .* differentiate(u([a; b] => [x; y]), y)
there are two systems to solve depending on the value of ν1

extended_systems = [
System([criteqs; circeqs; s*(1-t) - 1; subs(J2eqs, [ν 1, ν 2] => [1, ν])]),
System([criteqs; circeqs; s*(1-t) - 1; subs(J2eqs[1], [ν 1, ν 2] => [0, 1])])

]

The first system corresponds to adding the top d equations of (3.5) and the second system
corresponds to taking the bottom d− 1 equations. We solve both equations and examine
the a,b and t coordinates of each solution in the following code.

the output solutions have form (a, b, t)
sols1 = real_solutions(solve(extended_systems[1]))
sols2 = real_solutions(solve(extended_systems[2]))
display(map(sol -> round.([sol[5:8]; sol[12]]; digits=4), [sols1; sols2]))

32-element Vector{Vector{Float64}}:
[0.4901, 0.5808, -0.2808, 0.1624, 688.0156]
[9.9971, 0.2528, 0.0, 0.0, 0.0085]
[0.4901, 0.5808, -0.2808, 0.1624, 0.4167]
[0.4901, 0.5808, -0.2808, 0.1624, 1.0421]
...

There are 16 solutions to each system, resulting in 32 solutions total. The critical point
(9.997, 0.253) is not a minimal point, since the second solution in the list

[9.9971, 0.2528, 0.0, 0.0, 0.0085]

clearly has t ≈ 0.0085 ∈ (0, 1). We verify this rigorously by first certifying the solutions to
the systems.

certs1 = certificates(certify(extended_systems[1], sols1))
display(certified_solution_interval(certs1[2])[12]) # t value

[0.008498195031 +/- 4.39e-13] + [+/- 1.14e-13]im

The solution t is certified to be real so the imaginary component is exactly 0, and the real
component is inside the interval

0.008498195031± 4.39 · 10−13

with endpoints larger than 0 and less than 1, as required. The remaining two complex

35

points are easily seen to be non-minimal in a similar way by analyzing the solutions and
checking for t ∈ (0, 1), which is done automatically in Julia with minimal code. Finally, it
is also seen that there are no solutions where the t value is between 0 and 1 corresponding
to the point (0.548, 0.31). It follows that (0.548, 0.31) is the only minimal critical point.

3.1.3 Practice and Examples

In this section we demonstrate the effectiveness and shortcomings of the homotopy con-
tinuation method by applying it to several examples. The package ACSVHomotopy is
available GitHub at

https://github.com/ACSVMath/ACSVHomotopy

with further documentation available in [11]. All computations in this section were com-
pleted on a machine with the following (virtual) hardware.

OS: Ubuntu 22.04.1 LTS on Windows 10 x86_64
Kernel: 5.15.79.1-microsoft-standard-WSL2
CPU: AMD Ryzen 5 5600X (12) @ 3.700GHz
GPU: 5c84:00:00.0 Microsoft Corporation Device 008e
Memory: 7915MiB

Example 18. The rational function F (x, y) = 1
(1−x−y)(20−x−40y)−1

from Example 17 hap-
pens to be combinatorial. We will consider the main diagonal and compute asymptotics
using the combinatorial case method. The first step is to define the rational function that
we are analyzing.

@polyvar x y z λ t s
H = (1-x-y)*(20-x-40*y)-1

The following code solves the critical point system in Julia given the denominator H, and
certifies the solutions.

sys = System([H; x*differentiate(H, x) - y*differentiate(H, y)])
sols = solutions(solve(sys; show_progress=false))
certs = certificates(certify(sys, sols))
display(map(sol -> round.(sol; digits=4), solution_approximation.(certs)))

4-element Vector{Vector{ComplexF64}}:
[9.9971 + 0.0im, 0.2528 + 0.0im, 93.5529 + 0.0im]
[0.4901 - 0.2808im, 0.5808 + 0.1624im, 3.5707 + 1.9223im]
[0.4901 + 0.2808im, 0.5808 - 0.1624im, 3.5707 - 1.9223im]
[0.5482 + 0.0im, 0.31 + 0.0im, -3.9442 + 0.0im]

There are 4 critical points, two of which (9.997, 0.253) and (0.548, 0.31), are real. In order
to determine which of these two critical points is minimal, we solve System (3.2) and
examine the real solutions.

36

https://github.com/ACSVMath/ACSVHomotopy

@polyvar λ t s
sys = System([# full comb-case system

H;
[x, y] .* differentiate(H, [x, y]) .- λ;
H([x, y] => t*[x, y]);
s*(1-t) - 1

], variables=[t; x; y; λ; s])
real_sols = real_solutions(solve(sys; show_progress=false))
certs = certificates(certify(sys, real_sols))
display(map(sol -> round.(sol[1:3]; digits=4), solution_approximation.(certs)))

2-element Vector{Vector{ComplexF64}}:
[0.0922 + 0.0im, 9.9971 + 0.0im, 0.2528 + 0.0im]
[1.7099 + 0.0im, 0.5482 + 0.0im, 0.31 + 0.0im]

The first solution has t = 0.092 and therefore the critical point (9.997, 0.253) is not minimal.
The second solution has t = 1.71 so it does not provide information about minimality. To
be certain that the point (9.997, 0.253) is not minimal we check the certified interval and
see that the entire interval is between 0 and 1 as follows.

intervals = certified_solution_interval.(sols)
intervals = filter(I -> 0 < real(I[1]) < 1, intervals)
display(map(I -> real(I[1]), intervals))

1-element Vector{Arblib.Arb}:
[0.092185655233 +/- 4.51e-13]

Indeed, the point (9.997, 0.253) is not minimal. Since those are the only real solutions, and
since the complex points are easily seen to be coordinate wise further from the origin than
(0.548, 0.31), we conclude that (0.548, 0.31) is the only minimal point of F (x, y). The fact
that F (x, y) is combinatorial simplified the analysis dramatically when compared to the
non-combinatorial case.

The code in the following examples is from the worksheet ACSVHomotopy.ipynb in the
GitHub repository.

Example 19 (non-crossing configurations). We return to the generating functions for non-
crossing configurations discussed in Example 12. Applying Theorem 2, we are able to ob-
tain bivariate rational generating functions T, F, C,G whose diagonals count non-crossing
trees, forests, connected graphs and graphs respectively. The notebook non-crossing-
configurations.ipynb on GitHub shows how these generating functions are derived and
computes the first 20 coefficients of each. As we have obtained these generating functions
through algebraic means, it is not clear whether or not they are combinatorial generating
series. Therefore, we solve this series using the non-combinatorial method through the
ACSVHomotopy package. Once the code is downloaded and included in Julia, the follow-
ing code declares the denominator of G which we computed in Example 12 and computes
the minimal point.

37

https://github.com/JSmol/acsv-algorithms/blob/main/3.1/ACSVHomotopy.ipynb
https://github.com/JSmol/acsv-algorithms/blob/main/3.1/non-crossing-configurations.ipynb
https://github.com/JSmol/acsv-algorithms/blob/main/3.1/non-crossing-configurations.ipynb

@polyvar x y
H = (yˆ2*x + 6*y*x + 8*x - 1)
@time find_min_crits(H)

46.263916 seconds (87.24 M allocations: 4.335 GiB, 2.74% gc time,
85.05% compilation time)
1-element Vector{Vector{Float64}}:
[0.03033008588991066, 2.828427124746189]

The output shows that the machine used over 4 gigabytes of memory and took 46 sec-
onds to compile and solve the systems. The minimal point is found to be approxi-
mately (0.03033, 2.828). Applying Theorem 6 to extract the exponential growth, we
find that the number of non-crossing graphs on n vertices grows exponentially with base
11.656854249492378, matching the univariate analysis to 15 decimal places. We can verify
minimality heuristically with the approach above by running.

@time find_min_crits(H; approx_crit=true)

12.545423 seconds (28.35 M allocations: 1.335 GiB, 2.00% gc time,
98.31% compilation time)
1-element Vector{Vector{Float64}}:
[0.03033008588991066, 2.828427124746189]

With the heuristic method, the algorithm uses over 1 gigabyte of memory and completes
in 12 seconds.

The remaining non-crossing configuration generating functions C,F, T have denomina-
tors of degree 8, 12 and 12 respectively, and the computations are more involved. Solving
the systems without the heuristic is possible, but far less reasonable than the heuristic
approach method that approximates critical points. The following code computes the
minimal points for each of the generating series C,F, T using the heuristic method.

non-crossing connected graphs denominator
H = yˆ5*xˆ3 + 3*yˆ4*xˆ3 + 3*yˆ3*xˆ3 + 3*yˆ3*xˆ2 + yˆ2*xˆ3 + 6*yˆ2*xˆ2 + yˆ2*x

+ 3*y*xˆ2 + 5*y*x + 4*x - 1
find_min_crits(H; approx_crit=true)

1-element Vector{Vector{Float64}}:
[0.05391937820329315, 1.7846096908265279]

non-crossing forests denominator
H = yˆ7*xˆ5 + 21*yˆ6*xˆ5 + 147*yˆ5*xˆ5 + 7*yˆ5*xˆ4 + 343*yˆ4*xˆ5 + 98*yˆ4*xˆ4

+ 2*yˆ4*xˆ3 + 343*yˆ3*xˆ4 + 44*yˆ3*xˆ3 + 210*yˆ2*xˆ3 + 10*yˆ2*xˆ2 + 82*y*xˆ2
+ 3*y*x + 33*x - 1

find_min_crits(H; approx_crit=true)

1-element Vector{Vector{Float64}}:
[0.0043199830940064176, 28.144810807432684]

38

non-crossing trees denominator
H = yˆ7*xˆ5 + 9*yˆ6*xˆ5 + 27*yˆ5*xˆ5 + 3*yˆ5*xˆ4 + 27*yˆ4*xˆ5 + 18*yˆ4*xˆ4

+ 3*yˆ4*xˆ3 + 27*yˆ3*xˆ4 + 21*yˆ3*xˆ3 + 36*yˆ2*xˆ3 + 6*yˆ2*xˆ2 + 19*y*xˆ2
+ 3*y*x + 12*x - 1

find_min_crits(H; approx_crit=true)

1-element Vector{Vector{Float64}}:
[0.011368682831512572, 13.031249999999993]

Each generating function admits one minimal critical point, all of which have positive
and real coordinates. Applying Theorem 6 to each we find that the exponential growth
of the number of non-crossing connected graphs, forests and trees to 5 decimal places is
10.39230n, 8.22469n and 6.75000n as expected from known univariate analysis.

Note that the leading coefficient C0 in Theorem 6 is zero in these examples. Asymptotics
can still be derived from these points, but higher order terms are necessary [13].

Example 20 (lattice walks). To conclude this section we apply the homotopy method to
generating functions pertaining to lattice walk enumeration. The generating functions in
this example are all combinatorial 3-variate generating functions. Recall from Chapter 2
that the number of lattice walks in N× N of length n with step set S = {↗,↘,↖,↙} is
counted by the coefficients of

F (x, y, z) =
(x+ 1)(y + 1)

1− z(x2y2 + x2 + y2 + 1)

on the main diagonal. The generating function has 4 critical points,

4-element Vector{Vector{ComplexF64}}:
[1.0 + 0.0im, -1.0 + 0.0im, 0.25 + 0.0im, -1.0 + 0.0im]
[1.0 + 0.0im, 1.0 + 0.0im, 0.25 + 0.0im, -1.0 + 0.0im]
[-1.0 + 0.0im, -1.0 + 0.0im, 0.25 + 0.0im, -1.0 + 0.0im]
[-1.0 + 0.0im, 1.0 + 0.0im, 0.25 + 0.0im, -1.0 + 0.0im]

which represent the points (±1,±1, 1/4) ∈ C3. The function F (x, y, z) is a combinatorial
generating series, therefore to test minimality we check the critical points with real and
positive coordinates. There is only one such point (1, 1, 1/4) and this point is found to be
minimal by solving the combinatorial case system. As a result the exponential growth of
these types of lattice walks is 4n. To compute the sub-exponential growth and coefficients
in the asymptotic formula, we need the remaining minimal critical points, which have
the same coordinate-wise modulus. Here it happens that all 4 of the critical points are
minimal, however, to rigorously verify this we require precision on the order of 2−4096

which is unreasonable to compute without powerful hardware. The SageMath package
demonstrated in [9] is available online and it provides an alternative symbolic-numeric
approach to solving for minimal points of combinatorial generating functions which is less
prone to this weakness.

39

For now we turn to the non-combinatorial case algorithm to verify the minimal points
and recover asymptotics. The following code computes minimal critical points and gives
asymptotics using Theorem 6.

H = 1 - (z*xˆ2*yˆ2 + z*xˆ2 + z*yˆ2 + z)
@time find_min_crits(H; approx_crit=true)
println("minimal points: ")
display(map(pnt -> round.(pnt; digits=4), MCP))
asm = asymptotics((1+x)*(1+y), H, MCP)
println("result: ", asm(n))
println("expect: ", 2/π*(4ˆn/n))

minimal points:
4-element Vector{Vector{Float64}}:
[1.0, -1.0, 0.25]
[1.0, 1.0, 0.25]
[-1.0, -1.0, 0.25]
[-1.0, 1.0, 0.25]
result: (0.6366197723675815(4.000000000000001ˆn)) / n
expect: (0.6366197723675814(4ˆn)) / n

Our calculation matches the known asymptotic growth 2
πn
4n to 15 decimal places.

We can apply the same analysis to other generating functions pertaining to these types
of lattice walks. The generating function counting restricted quadrant walks with step set
{↖, ↑,↗,↙, ↓,↘} by length is the main diagonal of

− (x+ 1)(y + 1)

tx2y2 + txy2 + tx2 + ty2 + tx+ t− 1
.

The known asymptotic growth is
√
6

πn
6n, which the following code computes to 15 decimal

places.

G = -(x + 1)*(y + 1)
H = (t*xˆ2*yˆ2 + t*x*yˆ2 + t*xˆ2 + t*yˆ2 + t*x + t - 1)
MC = find_min_crits(H; approx_crit=true)
println("minimal points: ")
display(map(pnt -> round.(pnt; digits=4), MCP))
asm = asymptotics(G, H, MCP)
println("result: ", asm(n))
println("expect: ", sqrt(6)/π*(6ˆn/n))

minimal points:
2-element Vector{Vector{Float64}}:
[1.0, -1.0, 0.1667]
[1.0, 1.0, 0.1667]
result: (0.7796968012336761(6.0ˆn)) / n
expect: (0.779696801233676(6ˆn)) / n

40

The step set {↖, ↑,↗,←,→,↙, ↓,↘} yields the generating function

− (x+ 1)(y + 1)

tx2y2 + tx2y + txy2 + tx2 + ty2 + tx+ ty + t− 1
,

and the asymptotic growth 8
3πn

8n is computed the same way.

G = -(x + 1)*(y + 1)
H = (t*xˆ2*yˆ2 + t*xˆ2*y + t*x*yˆ2 + t*xˆ2 + t*yˆ2 + t*x + t*y + t - 1)
MCP = find_min_crits(H; approx_crit=true)
println("minimal points:")
display(map(pnt -> round.(pnt; digits=4), MCP))
asm = asymptotics(G, H, MCP)
println("result: ", asm(n))
println("expect: ", 8/3π*(8ˆn/n))

minimal points:
1-element Vector{Vector{Float64}}:
[1.0, 1.0, 0.125]
result: (0.8488263631567748(7.999999999999998ˆn)) / n
expect: (0.8488263631567752(8ˆn)) / n

3.2 Flows on the Height Function

The code above proves minimality at critical points. In the absence of minimal critical
points it is hard to know how to compute asymptotics. One approach uses the height
function h : V(H)→ Rd in the direction r defined by

h(z) = h(z1, . . . , zd) = −
d∑

j=1

rj log |zj|.

The importance of the height function comes from the fact that it represents the terms in
the Cauchy integral for coefficients

1

(2πi)d

∫
T

F (z)

znr+1
dz =

1

(2πi)d

∫
T

F (z)

z1
e−nr log(z)dz (3.6)

that vary with n. Points where the height function is large are those where the integrand
is large, and points where the height function is small are those where the integral is small.
When using the Cauchy integral formula to approximate the coefficients fnr, points of lower
height will have exponentially smaller contributions. Analysis of the integral (3.6) is done
by deforming the contour T smoothly and continuously past the singular set V(H). As the
contour T is pushed passed points on the singular set, the Cauchy integral is reduced to an
integral on V(H) using residues and intersection cycles [15, Chapter 7]. For this reason, it

41

is helpful to analyze the process of continuously and smoothly deforming a contour T ′ of
dimension d − 1 which lives in V(H) instead of deforming T directly. This motivates the
concept of a flow on V(H), which moves points to lower heights.

Returning to the main diagonal of the generating function

F (x, y) =
1

H(x, y)
=

1

1− x− y

we are able to plot the height function in 3 real dimensions by parameterizing V = V(H)
in terms of x as

h(x, y(x)) = − log |x| − log |y(x)| = − log |x| − log |1− x| .

Figure 3.1 depicts the height function h : C\{0, 1} → R as a surface in R3. We visualize
a contour of integration T ′ ⊆ V(H) as a curve which rests on the surface defined by the
height map. The goal is to deform a given T ′ smoothly and continuously to a contour with
smaller height, when possible.

Figure 3.1: Plot of height function h(x, 1 − x). The critical point is the saddle point at
x = 1/2. On the right we plot rings where the top ring corresponds to a contour where
|x| = 1/18 and each lower ring is the result of computing a gradient flow for each point
on the initial contour. We see that the rings continue to flow towards the critical point
(1/2, 1/2) on one side, and −∞ on the other.

3.2.1 Computation of Flows

We now demonstrate how to compute a flow on the height map of a given rational gener-
ating function with respect to the main diagonal. Formally for our purposes, a flow (often
called a gradient flow) is a function from f(z, t) = V × [0, T] → V for some fixed T such

42

that at each value t ∈ [0, T] we have

d

dt
f(z, t) = −∇h̃(z)

where h̃ =
∏d

j=1 |zj|2. The reason we consider h̃ instead of h is to avoid unnecessary rational
functions or logarithms in our computations, and h and h̃ give points the same relative
heights. We begin by illustrating the process of computing flows here in two variables.

Let H ∈ Q[z, w] where Hw(z0, w0) ̸= 0 for some point (z0, w0) ∈ V(H). The im-
plicit function theorem implies the existence of an open set D containing z0 such that
H(z, w(z)) = 0 for all z ∈ D. Splitting the variables into real and complex components,
we write z = x+ iy and w(z) = u(x, y) + iv(x, y). Our goal is to construct functions x(t)
and y(t) such that z0 = x(0) + iy(0), and as t goes from 0 → 1 the path on the surface
h′(x(t), y(t), u(x(t), y(t)), v(x(t), y(t))) moves along the path of steepest decent.

We begin with the defining equations

dx

dt
= − ∂

∂x
h̃′(x, y, u(x, y), v(x, y))

dy

dt
= − ∂

∂y
h̃′(x, y, u(x, y), v(x, y))

which we require the flow to satisfy. Then we compute

dx

dt
=

∂

∂x
h̃′(x, y, u(x, y), v(x, y)) = −2x(u2 + v2) + (x2 + y2)

(
2u

∂u

∂x
+ 2v

∂v

∂x

)
and, in a similar fashion,

dy

dt
= −2y(u2 + v2) + (x2 + y2)

(
2u

∂u

∂y
+ 2v

∂v

∂y

)
.

The result is the differential-algebraic system of equations

0 = ℜ(H(x, y, u, v))

0 = ℑ(H(x, y, u, v))

x′ = −2x(u2 + v2) + (x2 + y2)

(
2u

∂u

∂x
+ 2v

∂v

∂x

)
y′ = −2y(u2 + v2) + (x2 + y2)

(
2u

∂u

∂y
+ 2v

∂v

∂y

)
,

(3.7)

in the unknowns x, y, u and v as functions of t. In order to compute a solution to (3.7)
we first need to compute the partials ∂u

∂x
, ∂u
∂y
, ∂v
∂x

and ∂v
∂y

. Since Hw(z0, w0) ̸= 0 the implicit

43

function theorem yields the equality

dw

dz
= −Hz(z, w)

Hw(z, w)
,

valid on an open set containing the point (z0, w0). The Cauchy-Riemann equations are

−Hz(z, w)

Hw(z, w)
=

∂u

∂x
+ i

∂v

∂x
=

∂u

∂y
− i

∂v

∂y
,

from which we are able to compute all required partials, and therefore the system (3.7).
To compute initial conditions for the differential-algebraic system, we take

x0 = ℜ(z0), y0 = ℑ(z0), u0 = ℜ(w0), v0 = ℑ(w0),

and the first order derivatives with respect to t are

x′
0 =

dx

dt
(x0, y0, u0, v0), y′0 =

dy

dt
(x0, y0, u0, v0),

u′
0 =

(
∂u

∂x

dx

dt
+

∂u

∂y

dy

dt

)
(x0, y0, u0, v0), v′0 =

(
∂v

∂x

dx

dt
+

∂u

∂y

dy

dt

)
(x0, y0, u0, v0),

where each function to be evaluated is explicit in terms of H and derivatives of H.

To solve the differential-algebraic system (3.7) we employ the extensive Julia library
DifferentialEquations.jl [16] with the Sundials [10, 8] differential equation solver
through Julia interface Sundials.jl. The code referenced in this section uses both of
these these packages.

Example 21. Let H(z, w) = 1− z−w, r = (1, 1) and note that Hw(z, w) = −1 ̸= 0. The
function w(z) = 1 − z satisfies H(z, w(z)) = 0 on all of C. Since dw

dz
= −1 and therefore

∂u
∂x

= −1, ∂u
∂y

= 0, ∂v
∂x

= 0 and ∂v
∂y

= −1, the system (3.7) is

0 = 1− x− u, 0 = −y − v,

x′ = −2x(u2 + v2) + (x2 + y2)2u, y′ = −2y(u2 + v2) + (x2 + y2)2v.

If we take the points on V where |z| = 1/18 as our initial conditions, we are able to compute
a numerical solution to the system. The result is used to produce images such as the right
of Figure 3.1 and the full code is in the notebook flows-on-binom.ipynb on the GitHub
repository. Note that it is possible to compute flows with many different sets of initial
conditions using this method. For example, we may instead be interested in the contour

44

https://github.com/JSmol/acsv-algorithms/blob/main/3.2/flows-on-binom.ipynb

where |w| = 1/18, which is this case is symmetric.

Example 22. Consider the generating function 1/H(z, w) where

H(z, w) = 2 + z − w(1 + z)2.

Figure 3.2 depicts the height function h(z, w(z)), where w(z) = 2+z
(1+z)2

. The implicit func-
tion theorem yields dw

dz
= −Hz

Hw
valid around points where z ̸= −1. The notebook cpai-

flow.ipynb builds and solves System (3.7) automatically. A flow with initial points on V(H)
where |z0| = 1/12 was used to generate the plot on the left in Figure 3.2. Notice that in
Figure 3.2 the flow appears to drift off on the real positive axis, while the height is not
decreasing significantly. The generating function 1/H has a critical point at infinity which
is apparent in the graphic as the height function is not decaying as z → ∞. In fact one
can prove that the maximum value of the height function on a curve around the orgin in z
is bounded below, even as z → ∞. Critical points at infinity are complicated to analyze,
and are actively being researched.

Figure 3.2: Plots of flows on V(H) with H = 2+ z−w(1+ z)2 using the parameterization
w(z) = 2+z

(1+z)2
. The plot on the left shows a flow computed with initial points on |z| = 1/12.

Rather than plot the contours, we plot the trajectories of each sampled point as it flows
down the gradient.

Flows in many variables

Flows in many variables are computed similarly, but the process is more computationally
expensive. Moreover, higher dimensional varieties are not amenable to simple visualizations
such as the ones presented in the bivariate case.

Let z◦ = (z1, z2 . . . , zd−1) denote the first d − 1 coordinates of z. Let d > 1 and let
H(z1, z2, . . . , zd−1, w) = H(z◦, w) ∈ Q[z◦, w]. Fix a point (a◦, w0) ∈ V(H) and assume that

45

https://github.com/JSmol/acsv-algorithms/blob/main/3.2/cpai-flow.ipynb
https://github.com/JSmol/acsv-algorithms/blob/main/3.2/cpai-flow.ipynb

Hw(a
◦, w0) ̸= 0. The implicit function theorem implies the existence of a parameterization

w(z◦) valid on an open set D around (a◦) such that H(z◦, w(z◦)) = 0 and

∇w(z◦, w(z◦)) = − 1

Hw(z◦, w(z◦))

(
Hz1(z

◦, w(z◦)), . . . , Hzd−1
(z◦, w(z◦))

)
,

for all z ∈ D. As in the bivariate case, we split into real and imaginary components so
that z◦ = x◦ + iy◦ and w = u(x◦,y◦) + iv(x◦,y◦), and

∂u

∂xj

= −ℜ
(
Hzj

Hw

)
,

∂v

∂xj

= −ℑ
(
Hzj

Hw

)
,

∂u

∂yj
= − ∂u

∂yj
,

∂v

∂yj
=

∂u

∂xj

for each j ∈ [d− 1]. The final differential-algebraic system is thus

0 = ℜ(H(x◦,y◦, u, v)),

0 = ℑ(H(x◦,y◦, u, v)),

x′
j =

∂

∂xj

h̃(x◦,y◦, u, v),

y′j =
∂

∂yj
h̃(x◦,y◦, u, v).

for all j ∈ [d− 1] and h̃(x◦,y◦, u, v) = −(u2+ v2)
∏d−1

j=1(x
2
j + y2j). The initial conditions are

computed by fixing a point (a◦, w0) and evaluating dxj

dt
,
dyj
dt

and

du

dt
= ∇u ·

(
dx1

dt
,
dy1
dt

, . . . ,
dxn

dt
,
dyn
dt

)
dv

dt
= ∇v ·

(
dx1

dt
,
dy1
dt

, . . . ,
dxn

dt
,
dyn
dt

)

at (a◦, w0). As in the bivariate case, the entire process is automatic in Julia and the code
is available in the notebook flows-in-many-vars.ipynb.

3.3 Bivariate Generating Functions and DeVries Algo-
rithm

Non-minimal critical points are hard to analyze in general. However, in the bivariate case
the PhD thesis [5] describes an algorithm that provides a general analysis. To the best
of our knowledge, we provide the first implementation of this algorithm, using SageMath

46

https://github.com/JSmol/acsv-algorithms/blob/main/3.2/flows-in-many-vars.ipynb

[18].

Fix a denominator H(z, w) ∈ Q[z, w] and consider the main diagonal. For simplicity,
we assume that the partial derivative Hw(z, w) never vanishes, so that the implicit function
theorem implies the existence of a paramaterization of V(H) in terms of z. Let C denote
the set of critical points of H. Around each critical point (z0, w0) ∈ C there exists a disk
split into m regions which have heights above h(z0, w0) and m regions which have height
below h(z0, w0), where m is the smallest number greater than 0 such that

dm

dzm
h(z0, w(z0)) ̸= 0.

The number m is called the degree of degeneracy of the point (z0, w0). Figure 3.3 depicts the
typical geometry of the height function around a critical point with degree of degeneracy 4.
Since the point (z0, w0) is critical, the degree of degeneracy is always at least 2. When the
degree of degeneracy at (z0, w0) is 2 we call (z0, w0) nondegenerate. When the degeneracy
is greater than two Theorem 6 does not apply, but it is still possible to extract asymptotic
formulas for generating functions with minimal points that have degeneracy greater than
2.

Figure 3.3: The typical geometry of the height map around a point of degeneracy 4. The
surface is split into 8 regions, 4 of which are monotone ascending on rays pointing out of
the critical point and 4 of which form monotone descending rays pointing out of the critical
point.

Following [5], we begin by solving the critical point equations. For each critical point
(z0, w0) in descending order of height we check each ascending region for paths which
approach a pole where z = 0 or w = 0, such that the path is strictly ascending in height.
For a fixed critical point (z0, w0), if there exists strictly ascending paths which approach

47

z = 0 and strictly ascending paths which approach w = 0, and there are no other critical
points of higher height which satisfy this property, then the point (z0, w0) is a critical
point of H that determines asymptotic behavior [5, Chapter 3]. Figure 3.4 illustrates
the strictly ascending paths out of the critical point (1/2, 1/2) for the generating function

1
1−z−w

. Once a critical point with ascending paths to poles where z = 0 and w = 0 is
found, it is sufficient to check all other critical points which are at equal height and then
determine an asymptotic formula for coefficients. Critical points of lower height contribute
exponentially smaller asymptotic growth.

The formal details of implementing these computations rigorously, and all the necessary
and sufficient conditions for successful completion, are outlined in [5, Chapter 4]. Here
we focus on the details of implementing the stepping function which is responsible for
determining how points move discretely along the surface defined by the height function
such that their paths are strictly ascending in height. This is the most costly and interesting
operation in the algorithm.

Figure 3.4: The zero set of H = 1 − x − y. The critical point (1/2, 1/2) has strictly
ascending paths to the poles z = 0 and w = 0 and therefore it detemines asymptotics.
Plotted in green are some of the discrete steps taken by of DeVries algorithm implemented
in SageMath.

The stepping function

Let (z0, w0) ∈ V(H) and suppose that (z0, w0) is not a critical point, so dh
dz
(z0, w0) ̸= 0. Let

w = w(z) be a parameterization of V(H) inside a open set D given by the implicit function
theorem. We wish to step to a point (z1, w(z1)) ∈ V(H) such that along the ray z0 → z1
the height function strictly increases. We begin by fixing a direction v with |v| = 1 and
determining the maximal δ such that z + δv ∈ D, and thus H(z + δv, w(z + δv)) = 0.

48

We accomplish this by computing disjoint open balls Bϵj(wj) such that

deg(H(z0,w))⋃
j=1

Bϵj(wj) ⊇ {w : ∃z ∈ Bδ(z0), H(z, w) = 0},

where δ meets the following criteria.

⋄ For any z′ ∈ Bδ(z0) the polynomial H(z′, w) has the same number of roots as
H(z0, w).

⋄ There exists deg(H(z0, w)) unique disjoint solutions of H(Bδ(z0), w), contained in
the balls Bϵj(wj).

With these conditions met we are able to discretely step from any point (z0, w0) to
(z0 + δv, w(z0 + δv)) with w(z0 + δv) ∈ Bϵj(wj) for only one value of j between 1 and
deg(H(z0, w)). Let Bϵ1(w1) denote the unique solution to H(Bδ(z0), w) such that w0 ∈
Bϵ1(w1). Then w(z0 + δv) ∈ Bϵ1(w1) is computed by solving for the roots of the univariate
polynomial H(z0 + δv, w) up to sufficient accuracy and checking which root is in Bϵ1(w1).

Next we determine a suitable δ and direction v so that the curve on the height map

h(z0 + tv, w(z0 + tv)), t ∈ [0, δ] (3.8)

is increasing as t continuously moves from 0 → δ. The number δ is the called the step
size and Section 4.12 of the PhD thesis [5] gives a method of computing a neighborhood
of z0 such that the ray (3.8) is monotone for all choices of v. With this δ we are able to
discretely step on the height function such that the piece-wise linear functions connecting
the discrete jumps are strictly ascending on the height map by choosing

v =
dh

dz
(z0, w0) = ℜ

([
−1

z
+

1

w

Hz(z, w)

Hw(z, w)

]
z=z0
w=w0

)
.

When (z0, w0) is a critical point we have dh
dz
(z0, w0) = 0 and there are n ≥ 2 distinct strictly

ascending paths out of (z0, w0), where n is the degree of degeneracy of (z0, w0). In this
case, the direction vectors are rotations of dnh

dzn
(z0, w0) as shown in [5, Chapter 4].

Implementation

Our SageMath implementation of DeVries algorithm is available on GitHub inside the
notebook DeVries-algorithm.ipynb. The implementation reports various statistics pertain-
ing to the algorithm during execution. Returning to the bivariate generating function

49

https://github.com/JSmol/acsv-algorithms/blob/main/3.3/DeVries-algorithm.ipynb

F (z, w) = 1
1−z−w

we verify that the the lone critical point (1/2, 1/2) determines asymp-
totics by executing DeVries algorithm. Execution of the code yields two strictly ascending
paths which exist the point (1/2, 1/2) leading towards the poles at (0, 1) and (1, 0) of
the height function. These are easily visualized in Figure 3.4. The first path approaches
w = 0 and takes 2643 steps total to do so, the second path approaches z = 0 and takes
1021 steps total. We conclude that (1/2, 1/2) is a critical point determining asymptotics
as expected. Examining the output we find that on average the step sizes lay inside the
interval [10−5, 10−4]. In this case it is clear that that larger step sizes work to produce the
same results with less computations, hinting that the sufficient conditions for guaranteeing
an ascending path on the height map are not necessary. A more optimal step size would
significantly improve the efficiency of this algorithm.

As a final example, we show a bivariate generating function to which the methods of
Section 3.1 do not apply. The methods of DeVries’ algorithm are valid in this case, however
the computation of strictly ascending paths is infeasible due to small step sizes.

Example 23 (Supertrees). The rational generating function

F (z, w) =
G(z, w)

H(z, w)
=

2z2w(2z5w2 − 3z3w + x+ 2z2w − 1

z5w2 + 2z2w − 2z3w + 4w + z − 2

has as its main diagonal the generating function counting the combinatorial class of su-
pertrees, analyzed by Flajolet and Sedgewick in Example VI.10 of [7]. In their analysis they
show that the class of supertree satisfies an algebraic equation and proceed with a uni-
variate analysis. Here we consider a multivariate approach to analyzing this combinatorial
class. The methods of Section 3.1 do not apply as the function F (z, w) has a degenerate
critical point determining asymptotics. There are 3 solutions to the critical point equations
which, ordered by height in decreasing order are

(3.236, 0.0477), (2.000, 0.125), (−1.236, 0.3273).

The point (2, 1/8) is the critical point with degree of degeneracy 4. When computing
ascent paths from the critical points the average step size δ which guarantees that the step
is strictly ascending is between 10−16 and 10−17. As a result it is infeasible to compute
paths which we know rigorously are strictly ascending. We may proceed with the analysis
by scaling the step size up several orders of magnitude. Doing so we find numerically
that the steps appear to be strictly increasing, even though we cannot say so rigorously.
Regardless, proceeding with the algorithm we find that the critical point (3.236, 0.0477)
has two paths which both lead to w = 0, and the critical point (2, 1/8) has three paths
which lead to w = 0 and one path which leads to z = 0. The point (−1.236, 0.3273) is
strictly lower in height and therefore the algorithm correctly identifies the strictly minimal
point (2, 1/8).

50

3.4 Future Work and Continuations

We conclude this thesis with a discussion of directions of future work relating to the
algorithms discussed in this thesis. In Section 3.1 we saw that the paper [14] uses the
structure of the critical point system to analyze the complexity of the system using general
techniques of polynomial system solving. The combinatorial case and non-combinatorial
case systems are sparse and have a particular structure depending only on the denominator
of the corresponding generating function, which naturally leads to the following question.

Is there some way to leverage the structure of the combinatorial and
non-combinatorial systems to further improve the efficiency of the solver?

In [11] the authors discuss a heuristic which employs the monodromy method of the
homotopy continuation library [4]. The monodromy method is potentially a more efficient
method of solving polynomial systems, but has more strict necessary conditions that the
standard homotopy continuation method. For example, the monodromy method requires
a solution to the polynomial system as input. The monodromy method also requires that
the monodromy group of the polynomial system be transitive if all the solutions are to be
computed.

Can we apply the monodromy method to more efficiently solve the
combinatorial and non-combinatorial systems?

When building the non-combinatorial case systems we introduced the additional as-
sumption (J2). In [14] the authors show that assumptions (A0), (A1), (A2), (A3) and (J1)
all hold generically, and conjecture that assumption (J2) holds generically as well.

Does assumption (J2) hold generically?

In Section 3.3 we saw that DeVries algorithm applies in cases when the methods of
Section 3.1 do not. Unfortunately, the step sizes required to ensure that the discrete steps
are strictly increasing are extremely small, and in our examples, not optimal.

Can we find better bounds so that discrete steps taken in DeVries algorithm
are strictly increasing?

51

References

[1] Boris Adamczewski and Jason P. Bell. Diagonalization and rationalization of algebraic
Laurent series. Annales scientifiques de l’École Normale Supérieure, Ser. 4, 46(6):963–
1004, 2013.

[2] Paul Breiding. The number of circles that are tangent to 3 given conics. https://www.
JuliaHomotopyContinuation.org/examples/circles-conics/. Accessed: June 27, 2022.

[3] Paul Breiding, Kemal Rose, and Sascha Timme. Certifying zeros of polynomial sys-
tems using interval arithmetic, 2020.

[4] Paul Breiding and Sascha Timme. HomotopyContinuation.jl: A Package for Homo-
topy Continuation in Julia. In International Congress on Mathematical Software,
pages 458–465. Springer, 2018.

[5] Timothy DeVries. Algorithms for Bivariate Singularity Analysis. ProQuest LLC, Ann
Arbor, MI, 2011. Thesis (Ph.D.)–University of Pennsylvania.

[6] Viviana Ene and Jürgen Herzog. Gröbner Bases in Commutative Algebra. American
Mathematical Soc., 2011, 01 2011.

[7] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 2009.

[8] David J Gardner, Daniel R Reynolds, Carol S Woodward, and Cody J Balos. Enabling
new flexibility in the SUNDIALS suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Software (TOMS), 2022.

[9] Benjamin Hackl, Andrew Luo, Stephen Melczer, Jesse Selover, and Elaine Wong.
Rigorous analytic combinatorics in several variables in sagemath, 2023.

[10] Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L Lee, Radu Serban,
Dan E Shumaker, and Carol S Woodward. SUNDIALS: Suite of nonlinear and dif-
ferential/algebraic equation solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

52

 https://www.JuliaHomotopyContinuation.org/examples/circles-conics/
 https://www.JuliaHomotopyContinuation.org/examples/circles-conics/

[11] Kisun Lee, Stephen Melczer, and Josip Smolčić. Homotopy techniques for analytic
combinatorics in several variables. In Proceedings of the 24th International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pages 27
– 34, 2022.

[12] Stephen Melczer. An invitation to enumeration. https://enumeration.ca/. Accessed:
March 19, 2023.

[13] Stephen Melczer. Algorithmic and symbolic combinatorics—an invitation to analytic
combinatorics in several variables. Texts and Monographs in Symbolic Computation.
Springer, Cham, [2021] ©2021. With a foreword by Robin Pemantle and Mark Wilson.

[14] Stephen Melczer and Bruno Salvy. Effective coefficient asymptotics of multivariate
rational functions via semi-numerical algorithms for polynomial systems. J. Symbolic
Comput., 103:234–279, 2021.

[15] Robin Pemantle, Mark C. Wilson, and Stephen Melczer. Analytic Combinatorics in
Several Variables, Second Edition. Cambridge University Press, 2023.

[16] Christopher Rackauckas and Qing Nie. Differentialequations.jl–a performant and
feature-rich ecosystem for solving differential equations in julia. Journal of Open
Research Software, 5(1), 2017.

[17] Richard P. Stanley. A survey of alternating permutations. In Combinatorics and
graphs, volume 531 of Contemp. Math., pages 165–196. Amer. Math. Soc., Providence,
RI, 2010.

[18] The Sage Developers. SageMath, the Sage Mathematics Software System (Version
9.5), 2022. https://www.sagemath.org.

[19] Joachim von zur Gathen and Jürgen Gerhard. Modern Computer Algebra. Cambridge
University Press, 3 edition, 2013.

53

 https://enumeration.ca/

	Introduction
	Overview of Topics
	Original Contributions

	Background and Motivating Examples
	Polynomials
	Gröbner Bases
	Homotopy Continuation

	Generating Functions
	Formal Series
	Examples and Constructions of Generating Functions

	Analytic Combinatorics
	The Method in One Variable
	The Method in Several Variables

	Algorithms for ACSV
	Numerically Computing Minimal Points
	The Combinatorial Case
	The Non-Combinatorial Case
	Practice and Examples

	Flows on the Height Function
	Computation of Flows

	Bivariate Generating Functions and DeVries Algorithm
	Future Work and Continuations

	References

