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Abstract

We initiate a study of computable online (c-online) learning, which we analyze under
varying requirements for “optimality” in terms of the mistake bound. Our main contribu-
tion is to give a necessary and sufficient condition for optimal c-online learning and show
that the Littlestone dimension no longer characterizes the optimal mistake bound of c-
online learning. Furthermore, we introduce anytime optimal (a-optimal) online learning, a
more natural conceptualization of “optimality” and a generalization of Littlestone’s Stan-
dard Optimal Algorithm. We show the existence of a computational separation between
a-optimal and optimal online learning, proving that a-optimal online learning is compu-
tationally more difficult. Finally, we consider online learning with no requirements for
optimality, and show, under a weaker notion of computability, that the finiteness of the
Littlestone dimension no longer characterizes whether a class is c-online learnable with
finite mistake bound. A potential avenue for strengthening this result is suggested by ex-
ploring the relationship between c-online and CPAC learning, where we show that c-online
learning is as difficult as improper CPAC learning.
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Chapter 1

Introduction

Motivated by recent work on computable PAC (CPAC) learning (Agarwal et al., 2020,
2021; Sterkenburg, 2022), we initiate a study of computable online (c-online) learning,
where learners and their output hypotheses are required to be computable. As stated in
Littlestone’s seminal paper (1988, p. 289), the original definition of online learning was
limited to finite domains (and hence finite hypothesis classes) to avoid “computability
issues.” Although Littlestone’s results are easily extendable to the infinite setting (see
Shalev-Shwartz and Ben-David, 2014, Chapter 21), an implicit assumption is that learners
are functions, not necessarily computable, that map input samples to output hypotheses.
Indeed, this assumption is implicit in many recent advances in online learning—for example,
the equivalence between online learning and differentially private PAC learning (Alon et al.,
2022) and the characterizations of proper online learning (Chase and Freitag, 2020; Hanneke
et al., 2021) and agnostic online learning (Ben-David et al., 2009).

A key result in online learning is that the Littlestone dimension characterizes the mis-
take bound of optimal online learners (Littlestone, 1988, Theorem 3). It is therefore natural
to ask whether this fundamental result still holds in the computable setting. In this work,
we formalize and investigate computable online learning under different notions of “opti-
mality” in terms of the mistake bound.

Our main contribution is to give a necessary and sufficient condition for optimal c-online
learning (Section 5.2), the proof of which relies on expanding the concept of significant
points introduced by Frances and Litman (1998). Using this necessary and sufficient con-
dition, we show that the Littlestone dimension no longer characterizes the optimal mistake
bound of c-online learning (Section 5.3). In particular, we construct a class with finite
Littlestone dimension for which no optimal online learner is computable. We also provide
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a positive result for the learnability of Littlestone dimension 1 classes in the computable
setting (Section 5.2).

Additionally, we introduce a notion of anytime optimal (a-optimal) online learning
which captures the optimality property displayed by Littlestone’s Standard Optimal Algo-
rithm (Sections 3.1, 4.1). Although optimal and a-optimal online learning are equivalent
in the standard online learning model, we prove a computational separation between the
two, showing that a-optimal online learning is computationally more difficult than optimal
online learning. Specifically, we construct a class that is optimally but not a-optimally
c-online learnable (Section 4.2).

A corollary of Theorem 3 from Littlestone (1988) is that the finiteness of the Littlestone
dimension characterizes whether a class is online learnable at all—that is, whether it is
online learnable with finite mistake bound. However, we show the existence of a “weakly
computable” class with finite Littlestone dimension for which no computable online learner
achieves finite mistake bound (Section 6.1). A potential avenue for strengthening this
result is suggested in Section 6.2, where we explore the relationship between c-online and
improper CPAC learning.

This thesis is structured as follows. Chapter 2 provides a high-level overview of the prior
work on computable learnability as well as a formal treatment of the required background
and notation from online learning and computability theory. Chapter 3 introduces our
main definitions of a-optimal online learning, optimally significant inputs, and c-online
learning. The last three chapters analyze c-online learning under increasingly looser notions
of “optimality”—Chapter 4 considers a-optimal c-online learning, Chapter 5 optimal c-
online learning, and Chapter 6 c-online learning.
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Chapter 2

Prior work and formal background

This chapter provides a high-level overview of the prior work on computable learnability
(Section 2.1) in addition to a formal treatment of the required background from online
learning (Section 2.2) and computability theory (Section 2.3).

2.1 Computable learnability

It was recently shown by Ben-David et al. (2019) that there exist certain simple learning
problems whose learnability can be neither proven nor disproven using the standard axioms
of mathematics. Specifically, they show the existence of a simple problem whose learnability
is undecidable with respect to Zermelo-Frankel set theory with the axiom of choice (ZFC
set theory for short). They further show that there can be no combinatorial dimension
(akin to the VC or Littlestone dimension) that characterizes this simple learning problem.
Interestingly, the authors observe that “the source of the problem is in defining learnability
as the existence of a learning function rather than the existence of a learning algorithm”
(p. 48).

Motivated by this work on the undecidability of learning, Agarwal et al. (2020) in-
troduced computable PAC (CPAC) learnability, where learners are indeed algorithms. A
fundamental result from Valiant (1984)’s celebrated probably approximately correct (PAC)
model of learning—one of the main models for formalizing the theory of machine learning—
is that the VC dimension characterizes PAC learnability (Vapnik and Chervonenkis, 1971;
Blumer et al., 1989). However, although the VC dimension provides tight upper and lower
bounds on the sample complexity of learning (i.e. the number of labeled examples needed
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to learn), it does not take into account the computational resources required for learning.
Indeed, Agarwal et al. (2020) and Sterkenburg (2022) showed that the VC dimension no
longer fully characterizes PAC learnability in the computable setting.

In our work, we expand the study of computable learnability beyond the PAC setting to
the online learning model, where instead of receiving a batch of examples sampled from an
underlying distribution, the learner receives its training examples one step at a time in an
arbitrary or adversarial manner. Similar to the characterization of PAC learnability by the
VC dimension, a fundamental result from online learning is that the Littlestone dimension
characterizes online learnability (Littlestone, 1988). Hence, given Agarwal et al. (2020) and
Sterkenburg (2022)’s results showing the failure of the VC dimension in the computable
PAC model, it is natural to explore the extent to which the Littlestone dimension still
characterizes online learnability in the computable setting.

2.2 Online learning

We first give an informal description of the online learning model and then introduce the
formal notation that will be used throughout this thesis. The definitions in this section
are based on those given in Shalev-Shwartz and Ben-David (2014, Chapter 21).

Introduced in Littlestone (1988)’s seminal work, online learning takes place in rounds.
Informally, at each round t, an adversary presents the learner with some point xt, the
learner makes a prediction pt, and the adversary reveals the true label yt. The goal of
the learner is to minimize the number of mistakes it makes. Clearly, with no further
restrictions, the adversary could contradict the learner at each time step and cause an
unbounded number of mistakes. It is therefore assumed that the learner has access to
a class of hypotheses and that the sequence of examples presented by the adversary is
consistent with some hypothesis from this class.

Formally, let X be the domain set and Y = {0, 1} be the label set. A hypothesis is a
function h : X → Y and a hypothesis class is a set of hypotheses H ⊆ YX . The support
of a hypothesis h is h−1(1) = {x : h(x) = 1}. Given a set E ⊆ X , the characteristic
function of E is χ

E
: x 7→ 1[x∈E]. A sample S ∈ S = ∪T∈N(X × Y)T is a finite sequence

of labeled domain instances, where the empty sample is denoted by ε. Given a sample
S = ((xi, yi))

T
i=1, let Sn = ((xi, yi))

n
i=1 be the length-n prefix of S, where 0 ≤ n ≤ T . Denote

by S⌢S ′ the concatenation of two samples S, S ′ ∈ S. The empirical loss of a hypothesis h
with respect to a sample S is defined as LS(h) =

∑T
t=1 1[h(xt )̸=yt]. The empirical loss of a

hypothesis class H is LS(H) = infh∈H LS(h). The set of all samples that are H-realizable
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is denoted by SH = {S ∈ S : LS(H) = 0}. Given a sample S, define HS = {h ∈ H :
LS(h) = 0} as the set of all hypotheses from H that are consistent with S. For some
labeled instance (x, y) ∈ X × Y , let H(x,y) = {h ∈ H : h(x) = y}. Furthermore, define
[n] = {x ∈ N : 1 ≤ x ≤ n}, where n ∈ N.

Definition 2.2.1 (online learner). An online learner is a function A ∈ YS×X that takes an
input history S ∈ S and a domain instance x ∈ X as input and predicts A(S, x) ∈ {0, 1}.
Given a sample S = ((xt, yt))

T
t=1, representing one run of the online learning process, at

time step t ∈ [T ], A’s prediction is A(St−1, xt), its output hypothesis is A(St−1, ·) ∈ YX ,
and its version space is HSt−1 .

Definition 2.2.2 (mistake bound). The number of mistakes made by an online learner
A on a sample S = ((x1, y1), . . . , (xT , yT )) is MA(S) =

∑T
t=1 1[A(St−1,xt )̸=yt]. The mistake

bound of A with respect to a hypothesis class H is MA(H) = supS∈SH MA(S)—that is,
the most that A errs on any H-realizable sample. The optimal mistake bound of H is
M(H) = infA∈YS×X MA(H).

Definition 2.2.3 (online learnable class). A hypothesis class H is online learnable if
M(H) <∞.

Definition 2.2.4 (optimal online learner). An online learner A is an optimal online learner
for a hypothesis class H if MA(H) = M(H).

Definition 2.2.5 (H-shattered tree). LetH ⊆ {0, 1}X and d ∈ N. We call (x1, . . . , x2d−1) ∈
X 2d−1 an H-shattered tree of depth d if, for every (y1, . . . , yd) ∈ {0, 1}d, there exists h ∈ H
such that for all j ∈ [d] we have that h(xij) = yj, where ij = 2j−1 +

∑j−1
k=1 yk2

j−1−k. Let
T d
H denote the set of all H-shattered trees of depth d.

Remark 2.2.6. Intuitively, (x1, . . . , x2d−1) ∈ T d
H represents a labeling of the nodes of a

complete binary tree of depth d, with xi labeling ith node. Each (y1, . . . , yd) represents a
different path through the tree starting from the root node i1 = 1. If ij is the current node
in the path, we go to the left child of ij if yj = 0 and go to the right child if yj = 1.

Definition 2.2.7 (Littlestone dimension). The Littlestone dimension of a hypothesis class
H is the depth of the largest H-shattered tree. Formally, Ldim(H) = sup{d ∈ N : T d

H ̸= ∅}
if H ̸= ∅, and Ldim(∅) = −1.

Remark 2.2.8. Note that, for any hypothesis class H, if Ldim(H(x,r)) = Ldim(H) for some
x ∈ X and r ∈ {0, 1}, we must have that Ldim(H(x,1−r)) < Ldim(H).

Definition 2.2.9 (Standard Optimal Learner). The Standard Optimal Learner for a hy-
pothesis class H is defined as SOLH : (S, x) 7→ 1[

Ldim
(
H(x,1)

S

)
≥ Ldim

(
H(x,0)

S

)].
5



Theorem 2.2.10 (Littlestone, 1988, Theorem 3). Given any hypothesis class H, we have
that M(H) = Ldim(H). In particular, for every online learner A, MA(H) ≥ Ldim(H) and
MSOLH(H) = Ldim(H).1

2.3 Computability

We use notation given by Soare (2016). Let {Pe}e∈N and {φe}e∈N be effective numberings of
all Turing machines and all partial computable (p.c.) functions, respectively. If Pe halts on
input x and outputs y, we write φe(x) = y and say that φe(x) converges (denoted φe(x) ↓).
Otherwise, φe(x) diverges (denoted φe(x) ↑). The domain of φe is dom(φe) = {x : φe(x) ↓}
and its range is rng(φe) = {φe(x) : φe(x) ↓}. If dom(φe) = N, φe is a total computable
(t.c.) function (abbreviated computable function). We also extend this notation to n-place

p.c. functions, where φ
(n)
e is the p.c. function of n variables computed by Pe and φe denotes

φ
(1)
e . A set E is recursively enumerable (r.e.) if it can be effectively enumerated—that is,

if it is the domain of some p.c. function. E is decidable if its characteristic function,
χ
E
: x 7→ 1[x∈E], is computable. The restriction of φe to an r.e. set X is the p.c. function

φe|X , where φe|X(x) equals φe(x) if x ∈ X ∩ dom(φe) and is undefined otherwise. We say
φe2 is a p.c. extension of φe1 if φe2|dom(φe1 )

= φe1 .

The canonical index of a finite set F ⊂ N is an integer y that explicitly specifies all
elements of F , and Dy denotes the finite set with canonical index y.2 Furthermore, given a
sequence Z ∈ ∪n∈NNn, we let ⟨Z⟩ denote the encoding of Z by a standard 1:1 computable
function from ∪n∈NNn to N. In a slight abuse of notation, we extend this notation to apply
when Z ∈ S 3 and, for a set X of such integer sequences, we define ⟨X⟩ = {⟨Z⟩ : Z ∈ X}.

1Although Littlestone (1988, Theorem 3) only considers finite classes, the result is easily extendable
to infinite classes if the learners are not required to be computable (see Shalev-Shwartz and Ben-David,
2014, Corollary 21.8)

2Specifically, the canonical index of a finite set F ⊂ N is the integer y =
∑

x∈F 2x. The elements of the
finite set with canonical index y, Dy, are the positions of the “on” bits in y’s binary expansion.

3To be explicit, given an n-tuple of integers Z = (z1, . . . , zn), we have that ⟨Z⟩ = Πn
i=1p

zi+1
i , where

pi is the ith prime number. Similarly, given a sample S = ((x1, y1), . . . , (xn, yn)), we define ⟨S⟩ =
⟨(x1, y1, . . . , xn, yn)⟩. Note that any 1:1 partially computable function is computably invertible on its
range, so Z and S are computably recoverable given ⟨Z⟩ and ⟨S⟩ respectively.
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Chapter 3

Formal setup and definitions

This chapter introduces our main definitions of anytime optimal online learning (Section
3.1), optimally significant inputs (Section 3.2), and c-online learning (Section 3.3).

3.1 Anytime optimal online learning

We present a notion of anytime optimal online learning, which we claim is a more natural
conceptualization of “optimality” when referring to online learning.

As a motivating example, consider the class Hd = {χ
[n]
}2d−1
n=0 over the domain X = N,

where 2 < d < ∞ (recall that [n] = {1, 2, . . . , n} and χ
A
is the characteristic function

of the set A ⊆ N). Further define E = {2d + i}d−1
i=1 and let H′

d = Hd ∪ {χE
}. That is,

Hd is a set of 2d thresholds over the natural numbers and E is a set of d − 1 distinct
domain instances that are not given the label 1 by any h ∈ Hd. It is easy to verify that
Ldim(H′

d) = Ldim(Hd) = d (see Shalev-Shwartz and Ben-David, 2014, Chapter 21). Now,
let A be the learner that behaves as follows: for all inputs (S, x) ∈ S×X ,

A(S, x) =

{
SOLH′

d
(S, x) if S is Hd-realizable

0 otherwise.

Note that A is still an optimal online learner for H′
d as it errs no more than d times on

any H′
d-realizable sample; however, on the H′

d-realizable sample ((x, 1))x∈E, A errs d − 1
times while SOLH′

d
only errs at time step 1. It is clear that any H′

d-realizable sample that
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contains some x ∈ E with the label 1 can only be realized by χ
E
; hence, a “truly optimal”

learner should incur no mistakes after seeing any x ∈ E with the label 1.

The above example illustrates a gap between the commonly accepted definition of
optimal online learning and the stricter optimality displayed by the Standard Optimal
Learner. We define our notion of anytime optimal online learning below, where the learner
makes the optimal number of mistakes even after conditioning on a given input sample.
The properties of anytime optimal online learning are further explored in Section 4.1.

Definition 3.1.1 (post-S mistake bound). Given a hypothesis class H, an online learner
A, and an H-realizable sample S ∈ SH, we define the post-S mistake bound of A with
respect to H as

MS
A(H) = sup

S′ ∈ S:
S⌢S′ ∈ SH

MA(S
⌢S ′)−MA(S).

That is, MS
A(H) is the most that A can be made to err after witnessing S. The optimal

post-S mistake bound of H is defined as MS(H) = infA∈YS×X MS
A(H).

Definition 3.1.2 (anytime optimal (a-optimal) online learner). An online learner A is
anytime optimal (a-optimal) for a hypothesis class H if MS

A(H) = MS(H) for all S ∈ SH.

3.2 Significant inputs for optimal and anytime opti-

mal online learning

Frances and Litman (1998) introduced the concept of significant points, points on which all
optimal online learners agree on in the first time step of online learning. Formally, we say
that x ∈ X is an optimally significant point for online learning a classH if A(ε, x) = A′(ε, x)
for any two optimal online learners A and A′. Furthermore, Lemma 3 from Frances and
Litman (1998) characterizes all optimally significant points as follows: x is an optimally
significant point for H iff there exists r ∈ {0, 1} such that Ldim(H(x,r)) = Ldim(H).
Moreover, A(ε, x) = r for all online learners A that are optimal w.r.t. H. Below, we extend
this definition to apply beyond the first time step.

Definition 3.2.1 (optimally significant input). LetH be any hypothesis class. We say that
(S, x) ∈ SH×X is an optimally significant input for online learning H if A(S, x) = A′(S, x)
for any two optimal online learners A and A′ for H. Let IH be the set of all optimally
significant inputs for H.
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Definition 3.2.2 (anytime optimally (a-optimally) significant input). Let H be any hy-
pothesis class. We say that (S, x) ∈ SH×X is an anytime optimally (a-optimally) significant
input for online learning H if A(S, x) = A′(S, x) for any two a-optimal online learners A
and A′ for H.

3.3 Computable online learning

When defining a computably online learnable hypothesis class, we require both the class
and the learner to conform to some notion of “computability.”1 Following the computable
PAC (CPAC) setting (Agarwal et al., 2020), we let X = N, and assume, as a minimum,
that the class consists of computable hypotheses. It is also desirable to assume an effective
enumeration of (the encodings of) the hypotheses. A class H ⊂ {0, 1}N of computable
hypotheses is recursively enumerably representable (RER) if there exists an r.e. set E ⊂ N
such that H = {φe : e ∈ E}. A class H is decidably representable (DR) if each h ∈ H has
finite support and {y : ∃h ∈ H (Dy = h−1(1))} is a decidable set. Next, we define what it
means for the learner itself to be computable.

Definition 3.3.1 (computable online (c-online) learner). Let H ⊂ {0, 1}N be any class
of computable hypotheses. A two-place p.c. function A : N2 → N is a computable online
(c-online) learner for H, if, for every H-realizable sample S ∈ SH and every domain
instance x ∈ X , A(⟨S⟩, x) ↓= y for some y ∈ {0, 1}. That is, dom(A) ⊇ ⟨SH⟩ × X and
rng(A|⟨SH⟩×X ) ⊆ {0, 1}.

Definition 3.3.2 (computable optimal online learner). A computable optimal online learner
A for a class H ⊂ {0, 1}N of computable hypotheses is a c-online learner for H with
MA(H) = M(H).2

Definition 3.3.3 (computable a-optimal online learner). A computable anytime optimal
(a-optimal) online learner A for a class H ⊂ {0, 1}N of computable hypotheses is a c-online
learner for H with MS

A(H) = MS(H) for all S ∈ SH.

Definition 3.3.4 (computably online (c-online) learnable class). A class H ⊂ {0, 1}N of
computable hypotheses is computably online (c-online) learnable if there exists a c-online
learner A for H with MA(H) <∞.

1The reader is referred to Section 2.3 for the relevant notation from computability theory.
2Note that when A is a c-online learner for a class H of computable hypotheses, MA(S) =∑T
t=1 1[A(⟨St−1⟩,xt )̸=yt] is well-defined for any H-realizable S = ((xt, yt))

T
t=1. We can extend the nota-

tion for MA(H) and MS
A(H) similarly.
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Definition 3.3.5 (optimally c-online learnable class). A class H ⊂ {0, 1}N of computable
hypotheses is optimally c-online learnable if there exists a computable optimal online
learner for H.

Definition 3.3.6 (a-optimally c-online learnable class). A class H ⊂ {0, 1}N of com-
putable hypotheses is anytime optimally (a-optimally) c-online learnable if there exists a
computable a-optimal online learner for H.
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Chapter 4

Anytime optimal c-online learnability

We start our analysis by considering the computability of a-optimal online learners. In
Section 4.2, we show the existence of a computational separation between a-optimal and
optimal online learning, proving that a-optimal online learning is computationally more
difficult. Our proof relies on properties of a-optimal online learners presented in Section
4.1 below.

4.1 Properties of anytime optimal online learners

The following lemma gives a characterization of the optimal post-S mistake bound of any-
time optimal online learning in terms of the Littlestone dimension of the version space.
The proof is implicit in the proof of Theorem 3 from Littlestone (1988) and the argu-
ment is almost identical to the one presented by Shalev-Shwartz and Ben-David (2014,
Lemma 21.6).

Lemma 4.1.1 (characterizing the mistake bound of a-optimal online learning). Let H be
any hypothesis class. Then, for any H-realizable sample S ∈ SH, M

S(H) = Ldim(HS). In
particular, for every online learner A, MS

A(H) ≥ Ldim(HS) and MS
SOLH

(H) = Ldim(HS).

Informally, the next lemma states that an input is a-optimally significant iff it causes
an “imbalance” in the Littlestone tree of the version space. Again, the proof is implicit in
the proof of Theorem 3 from Littlestone (1988) and almost identical to the argument by
Shalev-Shwartz and Ben-David (2014, Lemma 21.7).
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Lemma 4.1.2 (characterizing a-optimally significant inputs). Let H be any hypothesis
class. Then, an input (S, x) ∈ S × X is a-optimally significant for H if and only if

Ldim(H(x,1)
S ) ̸= Ldim(H(x,0)

S ). Furthermore, A(S, x) = argmaxr∈{0,1} Ldim(H(x,r)
S ) for all

a-optimal online learners A for H.

4.2 Computational gap between optimal and anytime

optimal online learning

In this section, we show that a-optimal online learning is computationally more difficult
than optimal online learning. In particular, we construct an RER class that is optimally
but not a-optimally c-online learnable. This result is extended to the DR case in Appendix
C.

Theorem 4.2.1. There exists an RER class H ⊂ {0, 1}N of computable hypotheses with
finite Littlestone dimension such that H is optimally c-online learnable but not a-optimally
c-online learnable.

Proof. Consider the following class:

HRER
halt =

⋃
e∈N

{
χ{3e}

}
∪

⋃
e∈N:
φe(e)↓

{
χ{3e, 3e+1}, χ{3e, 3e+1, 3e+2}

}
.

For simplicity, let H = HRER
halt . Note that H is RER, each h ∈ H is computable, and

Ldim(H) <∞.

Assume, by way of contradiction, that there exists a computable a-optimal online
learner A for H. For each e ∈ N, let Se = ((3e, 1)) and xe = 3e + 1. Further define
f : e 7→ A(⟨Se⟩, xe). First, note that f is computable, since for each e ∈ N the sample Se

is H-realizable and A(⟨Se⟩, xe) ↓. Next, we show by Lemma 4.1.2 that each (Se, xe) is an
a-optimally significant input. Note that for any e ∈ N,

H(xe,0)
Se = {χ{3e}} and H(xe,1)

Se =

{
{χ{3e, 3e+1}, χ{3e, 3e+1, 3e+2}} if φe(e) ↓
∅ otherwise.

Therefore, if φe(e) ↓, Ldim(H(xe,1)
Se ) = 1 > Ldim(H(xe,0)

Se ) = 0 and A(⟨Se⟩, xe) = 1. On

the other hand, if φe(e) ↑, Ldim(H(xe,0)
Se ) = 0 > Ldim(H(xe,1)

Se ) = −1 and A(⟨Se⟩, xe) = 0.

12



Hence, f is computable and equals χ{e∈N: φe(e)↓}, contradicting the undecidability of the

halting problem.

AlthoughH is not a-optimally c-online learnable, we show the existence of a computable
optimal online learner B for H. It is easy to verify that Ldim(H) ≥ 2; hence, it suffices
to show that MB(H) = 2. B predicts 0 until, for some e ∈ N, a mistake is made on
x1 ∈ {3e, 3e + 1, 3e + 2}, at which point it matches χ{3e, 3e+1, x1}

. If x1 = 3e + 2, B will

not err again. Otherwise, it could possibly err on x2 ∈ {3e + 1, 3e + 2}. If x2 = 3e + 2,
the target function must be χ{3e, 3e+1, 3e+2}; otherwise, if x2 = 3e + 1, the target function

must be χ{3e}. In either case, B errs no more than Ldim(H) = 2 times on any H-realizable
sample.
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Chapter 5

Optimal c-online learnability

In this chapter, we loosen the requirement of a-optimality, turning our focus to all optimal
online learners instead. We give a necessary and sufficient condition for when optimal c-
online learning is possible (Section 5.2) and show that the Littlestone dimension no longer
characterizes the mistake bound of optimal c-online learning (Section 5.3). We also give a
complete characterization of all optimally significant inputs (Section 5.1), a result which
is used in our main proofs.

5.1 Characterizing optimally significant inputs

The following lemma gives a complete characterization of all optimally significant inputs.

Lemma 5.1.1 (characterizing optimally significant inputs). Let H be any hypothesis class
satisfying Ldim(H) = d < ∞. Let S = ((x1, y1), . . . , (xT , yT )) be any H-realizable sample
and xT+1 ∈ X be any domain instance, where T ∈ N. Then, (S, xT+1) is a significant input
w.r.t. optimal online learning H iff the following conditions both hold:

1. for each t ∈ [T + 1], Ldim(HSt−1) = maxr∈{0,1} Ldim(H(xt,r)
St−1

), and

2. for each t ∈ [T ], Ldim(H(xt,yt)
St−1

) ≥ Ldim(HSt−1)− 1.

Furthermore, A(St−1, xt) = argmaxr∈{0,1} Ldim(H(xt,r)
St−1

) for all t ∈ [T + 1] and all optimal
online learners A.
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Proof. It follows from Lemma A.0.1 (Appendix A) that conditions 1 and 2 above are
equivalent to the following two conditions:

I. Ldim(HS) = maxr∈{0,1} Ldim(H(xT+1,r)
S ), and

II. MA(S) = Ldim(H)− Ldim(HS) for every online learner A that is optimal for H.

It remains to show that (S, xT+1) is optimally significant if and only if conditions I
and II hold. First, assume for the sake of contradiction that the two conditions hold
but there exists an optimal online learner A that predicts A(S, xT+1) = 1 − r∗, where

r∗ = argmaxr∈{0,1} Ldim(H(xT+1,r)
S ). Then, on the sample S∗ = S⌢((xT+1, r

∗)), A makes
Ldim(H) − Ldim(HS) + 1 mistakes and, by Lemma 4.1.1, can be made to err at least

Ldim(H(xT+1,r
∗)

S ) = Ldim(HS) times after witnessing S∗, a contradiction. Furthermore, it

follows from Lemma A.0.1 that A(St−1, xt) = argmaxr∈{0,1} Ldim(H(xt,r)
St−1

) for all t ∈ [T +1]
and all optimal online learners A.

Conversely, if (S, xT+1) is optimally significant, there exists r∗ ∈ {0, 1} such that for
all online learners A, if A is optimal then A(S, xT+1) = r∗. For an a-optimal online
learner A∗, let A′ be the learner that agrees with A∗ on all inputs except (S, xT+1). Since
this single change in prediction causes A′ to no longer be optimal, we must have that
MA′(S∗) +MS∗

A′ (H) ≥ d+ 1, where S∗ = S⌢((xT+1, r
∗)). Note that MA′(S∗) +MS∗

A′ (H) =
MA∗(S)+1+MS∗

A∗ (H), so we must have that MA∗(S)+MS∗
A∗ (H) ≥ d. However, since A∗ is

a-optimal, the maximum values for MA∗(S) and MS∗
A∗ (H) are d−Ldim(HS) and Ldim(HS)

respectively. Hence, the inequality is only satisfied when both conditions I and II hold.

Corollary 5.1.2 (version space of optimally significant inputs). Let H be a hypothesis
class with Ldim(H) = d < ∞ and let (S, x) ∈ IH be any optimally significant input for
H. Then, there exists m ∈ N such that MA(S) = m for all optimal online learners A and
Ldim(HS) = d−m.

5.2 Necessary and sufficient condition for optimal c-

online learning

In this section, we give a necessary and sufficient condition for optimal c-online learning
in the RER setting (Corollary 5.2.2). The condition follows from Theorem 5.2.1, which
shows that the predictions of all optimal online learners are computable on inputs that
are optimally significant. Corollary 5.2.3 shows that any infinite RER class of Littlestone
dimension 1 is optimally c-online learnable.
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Theorem 5.2.1 (computability of optimally significant predictions). Let H ⊂ {0, 1}N be
any RER class of computable hypotheses with finite Littlestone dimension. Then, there
exists a partial computable function psigH such that psigH (⟨S⟩, x) = A(S, x) for any optimally
significant input (S, x) ∈ IH and any optimal online learner A for H.

Proof. Let X = N and H ⊂ {0, 1}X be any RER class of computable hypotheses with
Ldim(H) = d < ∞. First, we show the existence of a Turing machine MH that behaves
as follows: for any S ∈ S, x ∈ X , and d′ ∈ N, if there exists r ∈ {0, 1} for which

Ldim(H(x,r)
S ) = d′ and Ldim(H(x,1−r)

S ) < d′, MH halts on input (⟨S⟩, x, d′) and outputs r.
Note that for any RER class H′ of computable hypotheses, the set ⟨T d′

H′⟩ of (the encodings
of) all H′-shattered trees of depth d′ is r.e.. Therefore, since both H(x,1)

S and H(x,0)
S are

RER, MH simultaneously runs the enumerators for T d′

H(x,1)
S

and T d′

H(x,0)
S

until one yields an

output. If the enumerator for T d′

H(x,y)
S

yields an output first, MH halts and outputs y. Now,

if there exists r for which Ldim(H(x,r)
S ) = d′ and Ldim(H(x,1−r)

S ) < d′, we must have that
T d′

H(x,r)
S

̸= ∅ and T d′

H(x,1−r)
S

= ∅; hence, MH will eventually halt and output r.

Now, consider the Turing machine P sig
H that behaves as follows on any input (⟨S⟩, xT+1),

where S = ((x1, y1), . . . , (xT , yT )) for some T ∈ N: 1) initializem = 0; 2) for each t ∈ [T+1],
let pt be the result of running MH on input (⟨St−1⟩, xt, d−m) and increment m if pt ̸= yt;
3) output pT+1.

We will show that if (S, xT+1) ∈ IH, pt = argmaxr∈{0,1} Ldim(H(xt,r)
St−1

) for each t ∈
[T + 1]; hence, by Lemma 5.1.1, psigH is computed by P sig

H . We proceed by induction on

t ∈ [T + 1]. If t = 1, by lemma 5.1.1, there exists r1 ∈ {0, 1} such that Ldim(H(x1,r1)
S0

) = d

and Ldim(H(x1,1−r1)
S0

) < d. Therefore, MH halts on input (⟨S0⟩, x1, d) and outputs r1. Now,
consider any τ ∈ [T + 1] such that the condition holds for all t < τ . Then, mτ−1 =∑τ−1

t=1 1[pt ̸=yt] is the number of mistakes that all optimal online learners make on Sτ−1.
Hence, by Corollary 5.1.2, Ldim(HSτ−1) = d−mτ−1 and, by Lemma 5.1.1, there exists rτ ∈
{0, 1} such that Ldim(H(xτ ,rτ )

Sτ−1
) = d −mτ−1 and Ldim(H(xτ ,1−rτ )

Sτ−1
) < d −mτ−1. Therefore,

MH halts on (⟨Sτ−1⟩, xτ , d−mτ−1) and outputs pτ = rτ , as required.

Corollary 5.2.2 (characterizing optimal c-online learning). Let H ⊂ {0, 1}N be any RER
class of computable hypotheses with finite Littlestone dimension and let psigH be the par-
tial computable function defined in Theorem 5.2.1. Then, H is optimally c-online learn-
able iff there exists a p.c. extension prealH of psigH such that dom(prealH ) ⊇ ⟨SH⟩ × X and
rng(prealH |⟨SH⟩×X ) ⊆ {0, 1}.
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Corollary 5.2.3 (optimal c-online learnability of classes with Littlestone dimension 1).
Let H ⊂ {0, 1}N be any infinite RER class of computable hypotheses with Ldim(H) = 1.
Then, H is optimally c-online learnable.

Proof. By Corollary 5.2.2, it suffices to show that SH × X ⊆ IH. Let T ∈ N and consider
any H-realizable sample S = ((x1, y1), . . . , (xT , yT )) ∈ SH and any xT+1 ∈ X . We will
show that (S, xT+1) satisfies Lemma 5.1.1 and is hence an optimally significant input for

H. Let τ ∈ [T ] be the earliest time step such that Ldim(HSτ−1) ̸= Ldim(H(xτ ,yτ )
Sτ−1

). If no
such time step exists, let τ = T + 1. Then, Ldim(HSt−1) = 1 for all t ≤ τ and, since S is
H-realizable, Ldim(HSt−1) = 0 for all τ < t ≤ T+1. Therefore, condition 2 of Lemma 5.1.1
is satisfied for all t ∈ [T ] and condition 1 is satisfied for all t ̸= τ . Now, since H is infinite
and at most one hypothesis is removed from the version space at each time step before
τ , HSτ−1 is also infinite and there exists r ∈ {0, 1} such that H(xτ ,r)

Sτ−1
is infinite. Hence,

Ldim(HSτ−1) = Ldim(H(xτ ,r)
Sτ−1

) = 1 and condition 1 holds for t = τ .

5.3 Littlestone dimension fails to characterize optimal

mistake bound of c-online learning

In this section, we show that the Littlestone dimension no longer characterizes the mistake
bound of optimal c-online learning. Specifically, we construct a DR class of computable
hypotheses that has finite Littlestone dimension but is not optimally c-online learnable.
Without the RER requirement, constructing such a class is not too difficult. In fact, the
class Hhalting =

⋃
e∈N:φe(e)↓{χ{2e, 2e+1}} ∪

⋃
e∈N:φe(e)↑{χ{2e}}, presented by Agarwal et al.

(2020, Theorem 9), has Littlestone dimension 1 but any computable optimal online learner
for this class would decide the halting problem.

Theorem 5.3.1. There exists a DR class H ⊂ {0, 1}N of computable hypotheses such that
Ldim(H) <∞ but H is not optimally c-online learnable.

Proof. For each x ∈ N, let {C(x)
i }i∈N:i>0 be an effective enumeration of all halting com-

putations starting from input x (see Soare, 2016, Section 1.5.2). Further define, for each

x ∈ N, the p.c. function cx such that if Pe halts on input x, C
(x)
cx(e)

is the halting certificate.
That is, for each e ∈ N,

cx(e) =

{
i if there exists i s.t. C

(x)
i is a halting computation for Pe on input x

undefined otherwise.
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Now, consider the following class:

HDR
ext =

⋃
e∈N: φe(0)↓

{
χ{2e, 2e3c0(e)}

}
∪

⋃
e∈N: φe(0)↓ and φe(e)↓=1

{
χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}
∪

⋃
e∈N: φe(0)↓ and φe(e)↓=0

{
χ{2e, 2e5c0(e), 2e13ce(e)}, χ{2e, 2e3c0(e), 2e13ce(e)}

}
.

For simplicity, let H = HDR
ext . Note that each h ∈ H is computable since cx(e) is

evaluated only if φe(x) ↓. Furthermore, Ldim(H) = 2 (Appendix B.1) and H is DR
(Appendix B.2).

By Theorem 5.2.1, sinceH is RER, there exists a p.c. function psigH such that psigH (⟨S⟩, x) =
A(S, x) for any optimally significant input (S, x) ∈ IH and any optimal online learner A
for H. For each e ∈ N, let Se = ((2e, 1)) and define the p.c. functions x : e 7→ 2e3c0(e) and
f : e 7→ psigH (⟨Se⟩, x(e)). In Appendix B.3, we show using Lemma 5.1.1 that (Se, x(e)) is
an optimally significant input for H iff φe(0) ↓ and φe(e) ↓∈ {0, 1}. Furthermore, for any
e ∈ N such that φe(0) ↓ and φe(e) ↓∈ {0, 1}, we have that

f(e) = psigH (⟨Se⟩, x(e)) =

{
1 if φe(0) ↓ and φe(e) ↓= 0

0 if φe(0) ↓ and φe(e) ↓= 1.

Now, assume for the sake of contradiction that H is optimally c-online learnable. Then,
by Corollary 5.2.2, there exists a p.c. extension prealH of psigH such that dom(prealH ) ⊇ ⟨SH⟩ ×
X and rng(prealH |⟨SH⟩×X ) = {0, 1}. It follows that the following function is also partial
computable:

g(e) =

{
0 if e = 0

prealH (⟨Se⟩, x(e)) otherwise.

We will show that for any e > 0 such that φe(0) ↓, we have that g(e) ̸= φe(e). First,
if φe(e) ↓∈ {0, 1}, (Se, x(e)) is optimally significant for H and g(e) = f(e) = 1 − φe(e).
Otherwise, if φe(e) ↑ or φe(e) ↓̸∈ {0, 1}, we must have that g(e) ↓∈ {0, 1} since Se is
H-realizable for any e satisfying φe(0) ↓. Now, since g is p.c. and each p.c. function has
infinitely many indices, there exists e′ > 0 such that g = φe′ . However, since g(0) ↓,
this would imply the existence of some e′ > 0 such that φe′(0) ↓ and g(e′) = φe′(e

′), a
contradiction.
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Chapter 6

C-online learnability

A corollary of Theorem 2.2.10 is that the finiteness of the Littlestone dimension charac-
terizes whether a class is online learnable at all—that is, whether it is online learnable
with finite mistake bound. Although the class HDR

ext presented in Theorem 5.3.1 is not
optimally c-online learnable, it is still c-online learnable by the learner that predicts 0 ex-
cept on instances it has seen labeled 1. In this section, we analyze c-online learning when
there is no requirement for optimality. As a first step, we construct a non-RER class of
computable hypotheses that has finite Littlestone dimension but is not c-online learnable
(Section 6.1). Next, we explore the connection between c-online and CPAC learning and
suggest a potential avenue for strengthening the result to the RER setting (Section 6.2).

6.1 Finite Littlestone dimension fails to characterize

c-online learning

The following theorem shows that, in the non-RER setting, the finiteness of the Littlestone
dimension no longer characterizes c-online learnability.

Theorem 6.1.1. There exists a class H ⊂ {0, 1}N of computable hypotheses such that
Ldim(H) <∞ but H is not c-online learnable.

Proof. Recall that any c-online learner is a two-place partial computable function. The idea
is to construct a classH such that for any two-place p.c. function A and for any input length
T there exists a hypothesis h ∈ H and T consecutive domain instances x1, . . . , xT ∈ N such
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that, on the sample S = ((xt, h(xt)))
T
t=1, we have that A(⟨St−1⟩, xt) ̸= h(xt) for all time

steps t ∈ [T ]. Hence, any c-online learner for H will have an infinite mistake bound.

Formally, define the functions s1 : n 7→
∑n

i=0 i and s2 : n 7→
∑n

i=0 s1(i). For each i ∈ N
and j ≤ i, let Ni = {n : s2(i) ≤ n < s2(i + 1)} and Ni,j = {n : s2(i) + s1(j) ≤ n <
s2(i) + s1(j + 1)}. Note that the natural numbers can be partitioned into disjoint sets
N = ⊔i∈NNi and each Ni can be further partitioned as Ni = ⊔ij=0Ni,j. Let I1, I2, I, and m
be functions defined as follows: for each i ∈ N, j ≤ i, and n ∈ Ni,j, I1(n) = i, I2(n) = j,
I(n) = I1(n)− I2(n), and m(n) = minNi,j.

Let {Ae}e∈N be an effective numbering of all two-place p.c. functions and define the
function L : n 7→ 1[AI(n)(⟨Sn⟩, n)↓=0], where Sn = ((n′, L(n′)))n−1

n′=m(n). Now, let Hsplit =

{hi}i∈N, where

hi(n) =

{
L(n) if I1(n) = i

0 otherwise.

For simplicity, let H = Hsplit. Note that each hi is computable since |h−1
i (1)| ≤ s2(i) <∞.

However, H is not RER, since otherwise a Turing machine for computing L would exist.
Furthermore, Ldim(H) = 1 since each domain instance is given the label 1 by at most one
h ∈ H.

Now, assume for the sake of contradiction that H is c-online learnable and let Ae be a
c-online learner for H. Since Ae has finite mistake bound, there exists M ∈ N such that
MAe(H) ≤ M . However, we will show the existence of an H-realizable sample on which

Ae errs M + 1 times. Let i = M + e, j = M , and S = ((n, hi(n)))
maxNi,j

n=minNi,j
. We will show

that for each t ∈ [|S|] = [M + 1], we have that Ae(⟨St−1⟩, nt) = 1 − hi(nt), where nt =
minNi,j + t−1 is the tth domain instance in S. By definition, since nt ∈ Ni,j, we have that
I1(nt) = i; hence, hi(nt) = L(nt) = 1[AI(nt)

(⟨Snt ⟩, nt)↓=0], where Snt = ((n′, L(n′)))nt−1
n′=m(nt)

.

Note that I(nt) = e and Snt = St−1. Therefore, hi(t) = 1[Ae(⟨St−1⟩,nt)↓=0]. Now, since Ae

is a c-online learner for H and St−1 is an H-realizable sample, we will always have that
Ae(⟨St−1⟩, nt) ↓∈ {0, 1}. Therefore, hi(nt) = 1 − Ae(⟨St−1⟩, nt) for each t ∈ [M + 1] and
MAe(S) = M + 1, as required.

6.2 Connection between c-online and CPAC learning

It is natural to ask whether Theorem 6.1.1 can be extended to the RER setting. That is,
does there exist an RER class H of computable hypotheses such that Ldim(H) < ∞ but
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no c-online learner for H achieves MA(H) < ∞? In this section, we propose a potential
avenue for addressing this question.

Recently, Sterkenburg (2022) proved a necessary condition for agnostic improper CPAC
learnability and constructed an RER class of finite VC-dimension not satisfying this con-
dition. In Lemma 6.2.4, we show that this condition is also necessary for agnostic c-online
learnability. In particular, we show that any class that is agnostically c-online learnable is
also agnostically improperly CPAC learnable but by a probabilistic learner (Lemma 6.2.3).

Thus far, we have been concerned with realizable c-online learners—learners whose
predictions are only guaranteed to be computable on realizable samples. We therefore ex-
tend the definition of agnostic online learning introduced by Ben-David et al. (2009) to the
computable setting. Let X = N and H ⊂ {0, 1}X be any class of computable hypotheses.
An agnostic c-online learner A : N2 → Q ∩ [0, 1] is a two-place total computable function,
where for any sample S ∈ S and any domain instance x ∈ X , A(⟨S⟩, x) is the probability
of predicting the label 1 on the given input.1 The loss of a hypothesis h : X → [0, 1]
on a labeled instance (x, y) is ℓ(h, (x, y)) = Pp∼Bernoulli(h(x))[p ̸= y] = |h(x) − y|. The
expected regret of an agnostic c-online learner A with respect to H and a sample size

T is E[RA(H, T )] = supS=((xt,yt))Tt=1

[∑T
t=1 ℓ(At, (xt, yt))− infh∈H

∑T
t=1 ℓ(h, (xt, yt))

]
, where

At = A(⟨St−1⟩, ·). The error of h : X → [0, 1] w.r.t. a distribution D over X × Y is
LD(h) = E(x,y)∼D ℓ(h, (x, y)) and the error of a hypothesis class H with respect to D is
LD(H) = infh∈H LD(h).

Definition 6.2.1 (agnostic c-online learnable). A class H ⊂ {0, 1}N of computable hy-
potheses is agnostically c-online learnable if there exists an agnostic c-online learner A
whose expected regret grows sublinearly in the length of the input sample. That is,
limT→∞

E[RA(H,T )]
T

= 0.

Definition 6.2.2 ((agnostic) improper CPAC learnable by a probabilistic learner). A class
H of computable hypotheses is improperly CPAC learnable by a probabilistic learner (in
the realizable setting) if there exists a partial computable function A : N2 → Q∩ [0, 1] and
a function mH : (0, 1)2 → N such that dom(A) ⊇ ⟨SH⟩ × X and for all ϵ, δ ∈ (0, 1), all
m ≥ mH(ϵ, δ), and all distributions D over X × Y that satisfy LD(H) = 0, we have that
with probability at least 1− δ over S ∼ Dm, LD(AS) ≤ LD(H) + ϵ, where AS = A(⟨S⟩, ·).
We say that H is agnostically improperly CPAC learnable by a probabilistic learner if A
is a total computable function and the above condition holds for any distributions D over
X × Y .

1Since there exists a computable bijection between N and Q ∩ [0, 1], we can assume, without loss of
generality, that A is a valid computable function.
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Lemma 6.2.3 (computable online-to-batch conversion). Let H ⊂ {0, 1}N be any class of
computable hypotheses that is (agnostically) c-online learnable. Then, H is (agnostically)
improperly CPAC learnable by a probabilistic learner.

Proof. Let A be an agnostic c-online learner for H. We use A to construct an agnostic
improper CPAC learner B for H that is probabilistic. For any S = ((xt, yt))

T
t=1 and x ∈ X ,

define B(⟨S⟩, x) = 1
T

∑T
t=1A(⟨St−1⟩, x). We can think of B as representing an algorithm

that uniformly at random picks some t ∈ [T ] and outputs A(⟨St−1⟩, ·) as its hypothesis. As
required, B is a computable function from N2 into Q ∩ [0, 1]. The proof that B is a PAC
learner for H follows from the standard online-to-batch conversion argument (see Kakade
and Tewari, 2008; Shalev-Shwartz and Ben-David, 2014, Exercise 21.7.5). The proof can
also be extended to the realizable setting.

Lemma 6.2.4 (necessary condition for agnostic c-online learnability). Let H ⊂ {0, 1}N be
any class of computable hypotheses that is agnostically c-online learnable. Then, H satisfies
the following two conditions: (1) Ldim(H) <∞ and (2) for sufficiently large n, there exists
an algorithm Cn that on any input X ⊂ X of size n, outputs a labeling g : X → {0, 1} for
which ((x, g(x)))x∈X is not H-realizable.

Proof. The first condition follows from Ben-David et al. (2009), who showed that H is ag-
nostically online learnable in the standard setting iff Ldim(H) <∞. The second condition
follows almost directly form Sterkenburg (2022, Lemma 9), who showed that if H is agnos-
tically improperly CPAC learnable, for sufficiently large n, there exists an algorithm Cn

satisfying the stated property. Their proof, which follows from the Computable No-Free-
Lunch theorem (Agarwal et al., 2020, Lemma 19), can also be extended to probabilistic
learners. Hence, the result follows from Lemma 6.2.3.

Question 1 Is there an RER class of computable hypotheses with finite Littlestone di-
mension that is not agnostically c-online learnable? Lemma 6.2.4 suggests one approach
for addressing this question: constructing an RER class with finite Littlestone dimension
that does not satisfy Sterkenburg (2022)’s necessary condition for improper CPAC learn-
ing. However, In Appendix D, we show that the class Hinit presented by Sterkenburg
(2022, Theorem 10)—the only known finite-VC class that does not satisfy Sterkenburg’s
condition—has infinite Littlestone dimension. Hence, this class cannot be used.

Question 2 Is there an RER class of computable hypotheses with finite Littlestone dimen-
sion that is not realizably c-online learnable? Note that such a class must have Littlestone
dimension greater than 1, as we show in Corollary 5.2.3 that any infinite RER class with
Littlestone dimension 1 is optimally c-online learnable, and it is not difficult to show that
any finite class is c-online learnable with mistake bound at most the size of the class.
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Chapter 7

Conclusion and future work

In this work, we investigate computable online learning under three different settings.
First, we formalize anytime optimal (a-optimal) online learning, a natural conceptualization
of “optimality,” and show that it is computationally more difficult than optimal online
learning. Second, we give a necessary and sufficient condition for optimal c-online learning
and prove that the Littlestone dimension no longer characterizes the optimal mistake bound
of c-online learning. Finally, we demonstrate that, in the non-RER setting, the finiteness
of the Littlestone dimension no longer determines whether a class is c-online learnable with
finite mistake bound. Although this last result remains open in the RER setting, we give
some suggestions for how one might strengthen this result.

As we have shown that some very fundamental results from online learning fail in the
computable setting, it would be interesting for future work to explore computable online
learning in various related settings—for example, agnostic online learning, proper online
learning, and differentially private PAC learning.

Furthermore, similar to Sterkenburg (2022)’s characterization of proper CPAC learning,
our characterization of optimal c-online learning relies on computability-theoretic concepts.
A major remaining open problem is whether a purely combinatorial characterization of
computable learnability can exist.
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Appendix A

Proof of Lemma 5.1.1

Lemma A.0.1. Let H be a hypothesis class such that Ldim(H) = d < ∞. Let S =
((xt, yt))

T
t=1 be any H-realizable sample and xT+1 ∈ X be any domain instance, where

T ∈ N. Then, the following conditions are equivalent:

A. For each t∈ [T ], Ldim(HSt−1) = max
r∈{0,1}

Ldim(H(xt,r)
St−1

) and Ldim(HSt) ≥ Ldim(HSt−1)−1.

B. MA(S) = Ldim(H)− Ldim(HS) for every online learner A that is optimal for H.

Furthermore, for all t ∈ [T ] and all optimal online learners A, we have that A(St−1, xt) =

argmaxr∈{0,1} Ldim(H(xt,r)
St−1

).

Proof. (A =⇒ B) Assume that condition A holds and let A∗ be an a-optimal online learner
for H. Note that, by Lemma 4.1.2, each (St−1, xt) is an a-optimally significant input and

A∗(St−1, xt) = r∗t = argmaxr∈{0,1} Ldim(H(xt,r)
St−1

). Hence, it follows from condition A that
the Littlestone dimension of the version space decreases iff A∗ errs and decreases by at
most one at each time step. Therefore, MA∗(St) = d− Ldim(HSt) for any t ∈ [T ].

We will show that condition B holds by showing that, for each t ∈ [T ], every opti-
mal online learner must agree with A∗ on (St−1, xt). Assume for the sake of contradiction
that there exists an optimal online learner A such that for some t ∈ [T ], A(St−1, xt) =
1 − r∗t . Let τ be the earliest such time step. Then, on the sample Sτ−1

⌢((xτ , r
∗
τ )), A

errs MA∗(Sτ−1) + 1 times. However, by Lemma 4.1.1, A can be made to err at least

Ldim(H(xτ ,r∗τ )
Sτ−1

) = Ldim(HSτ−1) = d−MA∗(Sτ−1) more times, a contradiction.
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(B =⇒ A) Let A∗ be an a-optimal online learner such that A∗(St−1, xt) = yt
for all (St−1, xt) that are not a-optimally significant. That is, A∗ errs if and only if

Ldim(H(xt,yt)
St−1

) < Ldim(H(xt,1−yt)
St−1

). Furthermore, MA∗(S) ≤ d − Ldim(HS), as every time
A∗ errs the Littlestone dimension of the version space decreases by at least one. We will
show that if condition A does not hold, this inequality is strict.

First, if there exists some t ∈ [T ] such that both Ldim(H(xt,yt)
St−1

) < Ldim(HSt−1) and

Ldim(H(xt,1−yt)
St−1

) < Ldim(HSt−1), there are two cases. Either A∗ does not err at time step
t and the Littlestone dimension of the version space decreases by at least one, or A∗ errs
and the Littlestone dimension of the version space decreases by at least two. Similarly, if
there exists t ∈ [T ] such that Ldim(HSt) ≤ Ldim(HSt−1)− 2, the Littlestone dimension of
the version space goes down by at least one more than the number of mistakes made. In
either case, MA∗(S) < d− Ldim(HS).
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Appendix B

Proof of Theorem 5.3.1

B.1 Littlestone dimension of HDR
ext

Lemma B.1.1. Ldim(HDR
ext ) = 2.

Proof. For simplicity, let H = HDR
ext . First, we will show that Ldim(H) ≥ 2. Consider any

three distinct indices e1, e2, e3 ∈ N such that φei(0) ↓ for all i ∈ [3] and φe1(e1) ↓= 1. Then,
the N-labeled tree of depth 2 given by 2e2 ← 2e1 → 2e13c0(e1) is shattered by χ{2e3 ,2e33c0(e3)}
, χ{2e2 ,2e23c0(e2)}, χ{2e1 ,2e15c0(e1),2e17ce1 (e1)}, χ{2e1 ,2e13c0(e1)} ∈ H.

Next, we will show that Ldim(H) ≤ 2 by showing the existence of a learner B (not
necessarily computable) which errs at most twice on any H-realizable sample. B predicts
0 until (possibly) a mistake is made on x1. There are two cases for x1. If x1 = 2eyi for
some e, i ∈ N s.t. i > 0 and y ∈ {3, 5, 7, 11, 13}, B matches χ{2e,2eyi} until a mistake is

potentially made on x2, at which point it matches the target function χ{2e,2eyi,x2}
and does

not err again. If x1 = 2e for some e ∈ N, there are three cases. If φe(e) ↓= 1, B matches
χ{2e,2e5c0(e)}, if φe(e) ↓= 0, B matches χ{2e,2e13ce(e)}, and otherwise B matches χ{2e,2e3c0(e)}.

In either case, B can be made to err at most once more.

B.2 Proof that HDR
ext is DR

Lemma B.2.1. HDR
ext is decidably representable.
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Proof. First, note that the set {(e, i, x) : C(x)
i is a halting certificate for Pe on input x} is

decidable by the following Turing machine Pcert. On any input (e, i, x), after ensuring that
i > 0, Pcert simulates running Pe on input x and checks each configuration that Pe goes
through against the corresponding one in C

(x)
i . If at any point the configurations are not

the same or if there are no more configurations left to check from C
(x)
i , Pcert halts and

outputs 0. Otherwise, if Pe halts on input x and all the configurations match, Pcert halts
and outputs 1. Pcert is guaranteed to halt since C

(x)
i is a finite sequence of configurations.

Now, we will show that the set {y : ∃h ∈ H (Dy = h−1(1))} is decidable by the following
Turing machine P . Given the canonical index y of any finite set as input, P first decodes y
into its associated set Dy and checks if Dy equals any of the sets {2e, 2e3i}, {2e, 2e5i, 2e7j},
{2e, 2e5i, 2e11j}, {2e, 2e5i, 2e13j}, {2e, 2e3i, 2e13j} for some e, i, j ∈ N such that i, j > 0. If
not, P halts and outputs 0. Otherwise, if Dy = {2e, 2e3i}, P halts and outputs the result of
running Pcert on (e, i, 0). Otherwise, P evaluates Pcert on (e, i, 0) and (e, j, e) and, if either
result is 0, halts and outputs 0. If both invocations of Pcert yield 1, let r be the result of
evaluating Pe on input e. P outputs 1 if r = 0 and 2e13j ∈ Dy or if r = 1 and 2e13j ̸∈ Dy.
Otherwise, it outputs 0.

B.3 Optimally significant inputs for HDR
ext

Lemma B.3.1. For each e ∈ N, let Se = ((2e, 1)) and define the partial computable
function x : e 7→ 2e3c0(e). Then, (Se, x(e)) is a significant input w.r.t. optimal online
learning the class HDR

ext iff φe(0) ↓ and φe(e) ↓∈ {0, 1}. Furthermore, for any optimal online
learner A for HDR

ext , if φe(0) ↓ and φe(e) ↓= r for some r ∈ {0, 1}, A(Se, x(e)) = 1− r.

Proof. Let H = HDR
ext . First, consider any e ∈ N such that φe(0) ↓ and φe(e) ↓∈ {0, 1}.

We will show that (Se, x(e)) is an optimally significant input by showing that it satisfies
Lemma 5.1.1. That is, we need to show that Ldim(HSe) ≥ Ldim(H) − 1, Ldim(H) =

maxr∈{0,1} Ldim(H(2e,r)), and Ldim(HSe) = maxr∈{0,1} Ldim(H(x(e),r)
Se ).

By Lemma B.1.1, Ldim(H) = 2, and it is easy to verify that Ldim(H(2e,0)) = 2 and
Ldim(HSe) = 1. Hence, the first two conditions are satisfied. For the third condition there
are two cases. Note that for r ∈ {0, 1},

Ldim(H(x(e),r)
Se ) =

{
{χ{2e,2e5c0(e),2e7ce(e)}, χ{2e,2e5c0(e),2e11ce(e)}} if r = 0 and φe(e) ↓= 1

{χ{2e,2e3c0(e)}, χ{2e,2e3c0(e),2e13ce(e)}} if r = 1 and φe(e) ↓= 0.

30



Hence, Ldim(H(x(e),1−φe(e))
Se ) = Ldim(HSe) = 1 and by Lemma 5.1.1, (Se, x(e)) is an

optimally significant input and A(Se, x(e)) = 1 − φe(e) for any optimal online learner A,
as required.

Conversely, for any e ∈ N such that φe(0) ↑, Se is notH-realizable and (Se, x(e)) cannot
be an optimally significant input. Now, for any e ∈ N such that φe(0) ↓ but φe(e) ̸∈ {0, 1},
HSe = {χ{2e,2e3c0(e)}} and Ldim(HSe) = 0 < Ldim(H) − 1. Hence, Lemma 5.1.1 is not

satisfied and (Se, x(e)) is not an optimally significant input.
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Appendix C

Extending Theorem 4.2.1 to the DR
setting

In this section, we extend Theorem 4.2.1 to the DR setting. The technique is similar to
that used in the proof of Theorem 5.3.1.

Theorem C.0.1. There exists a DR class H ⊂ {0, 1}N of computable hypotheses with
finite Littlestone dimension such that H is optimally c-online learnable but not a-optimally
c-online learnable.

Proof. For each x ∈ N, let the p.c. function cx be defined as in Theorem 5.3.1 and consider
the following class:

HDR
halt =

⋃
e∈N: φe(0)↓

{
χ{2e, 2e3c0(e)}

}
∪

⋃
e∈N: φe(0)↓ and φe(e)↓

{
χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}
.

For simplicity, let H = HDR
halt. Since |h−1(1)| ≤ 3 for each h ∈ H, we have that

Ldim(H) < ∞. Furthermore, each h ∈ H is computable since cx(e) is evaluated only if
φe(x) ↓. To show that H is DR, the same proof technique presented in sub-appendix:
HDRextisDRcanbeapplied.

Now, assume for the sake of contradiction that there exists a computable a-optimal
online learner A for H. For each e ∈ N, let Se = ((2e, 1)) and define the p.c. functions
x : e 7→ 2e3c0(e) and f : e 7→ A(⟨Se⟩, x(e)). We will show that
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f(e) = A(⟨Se⟩, x(e)) =


1 if φe(0) ↓ and φe(e) ↑
0 if φe(0) ↓ and φe(e) ↓
undefined if φe(0) ↑ .

First, note that f(e) ↓ iff φe(0) ↓: if φe(0) ↓, Se is H-realizable and c0(e) ↓; otherwise,
Se is not H-realizable and c0(e) ↑. Next, we show by Lemma 4.1.2 that if φe(0) ↓, we must
have that (Se, x(e)) is a-optimally significant for H. Note that for any e such that φe(0) ↓
we must have that

H(x(e),1)
Se =

{
χ{2e,2e3c0(e)}

}
and

H(x(e),0)
Se =

{
∅ if φe(e) ↑{
χ{2e, 2e5c0(e), 2e7ce(e)}, χ{2e, 2e5c0(e), 2e11ce(e)}

}
if φe(e) ↓

Therefore, if φe(0) ↓ and φe(e) ↑, Ldim(H(x(e),1)
Se ) = 0 > Ldim(H(x(e),0)

Se ) = −1 and

f(e) = 1. On the other hand, if φe(0) ↓ and φe(e) ↓, Ldim(H(x(e),0)
Se ) = 1 > Ldim(H(x(e),1)

Se ) =
0 and f(e) = 0. Next, we can use f to construct the following p.c. function:

g(e) =


1 if e = 0

1 if e > 0 and f(e) = 1

undefined if e > 0 and f(e) = 0 or f(e) ↑ .

Since g is a p.c. function, there exists e such that φe = g. Furthermore, since each
p.c. function has infinitely many indices, we can assume that e > 0. Now, by definition of
g, since e > 0,

g(e) ↓ ⇐⇒ f(e) = 1 ⇐⇒ φe(0) ↓ ∧ φe(e) ↑ ⇐⇒ g(e) ↑,

contradicting the existence of an a-optimal c-online learner for H.
Although H is not a-optimally c-online learnable, we can show that there exists a

computable optimal online learner B for H. It is easy to verify that Ldim(H) ≥ 2; hence,
it suffices to show that MB(H) = 2 = Ldim(H). B predicts 0 until a mistake is made
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on (x1, 1). There are three cases for x1. If x1 = 2eyi for some e, i ∈ N such that i > 0
and y ∈ {5, 7, 11}, B will match the function χ{2e,2e5c0(e),2eyi}. Since (x1, 1) is realizable iff

φe(0) ↓ and φe(e) ↓, B’s hypothesis is computable and can be made to err at most once
before the target function is determined. If x1 = 2e3i for some e, i ∈ N such that i > 0, B
will match the target function χ{2e,2e3i} and make no further mistakes. Finally, if x1 = 2e

for some e ∈ N, B matches χ{2e,2e5c0(e)}, which is computable since φe(0) ↓. B can only

be made to err on (2e3c0(e), 1), (2e5c0(e), 0), (2e7ce(e), 1), or (2e11ce(e), 1) (the last two only
if φe(e) ↓), after which it will match the target function and not err again.
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Appendix D

Littlestone dimension of Hinit

In this section, we show that the class Hinit presented by Sterkenburg (2022, Theorem 10)
has infinite Littlestone dimension.

Proposition D.0.1. Define Hinit = {hs}s∈N, where, for each s, x ∈ N,

hs(x) =

{
1 if φx,s(x) ↓
0 otherwise,

and φi,s(x) ↓ denotes that φi halts on input x within s computation steps. Then, Ldim(Hinit) =
∞.

Proof. We say that a hypothesis class H ⊆ {0, 1}X contains k thresholds if there are
x1, . . . , xk ∈ X and h1, . . . , hk ∈ H such that for all i, j ∈ [k], hi(xj) = 1[i≥j]. It is not
difficult to show that if H contains 2n thresholds, then Ldim(H) ≥ n (see Alon et al., 2022,
Appendix A). We will show that Ldim(Hinit) = ∞ by showing that for each k ∈ N, H
contains k thresholds.

Define H = {z ∈ N : φz(z) ↓} and for any z ∈ H, let sz = argmins∈N φz,s(z) ↓. That
is, sz is the earliest time step at which φz(z) ↓. First, we will show that for each z1 ∈ H,
there exists z2 ∈ H such that sz2 > sz1 . That is, φz2(z2) converges strictly after φz1(z1).
Assume by way of contradiction that there exists some z1 ∈ H such that for all z2 ∈ H,
sz2 ≤ sz1 . Then, H = {z ∈ N : φz,sz1

(z) ↓} and H = {z ∈ N : φz,sz1
(z) ↑}. However, this

would imply that H is recursively enumerable, which contradicts the undecidability of H.

Therefore, for any k ∈ N, there exist x1, . . . , xk ∈ H such that sx1 < . . . < sxk
.

Note that hsx1
, . . . , hsxk

form k thresholds over these instances, since for each i, j ∈ [k],
hsxi

(xj) = 1[φxj,sxi
(xj)↓] = 1[sxi ≥ sxj ]

= 1[i ≥ j].
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