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Abstract 

Railway defects can lead to enormous economic and human losses. Among all types of the defects, 

surface defects are the most common and prominent. Although various non-destructive methods can be 

used to detect railway defects, optical inspection is considered the most suitable for surface defects. 

The aim of this project is to utilize the commercial drones as a platform for conducting visual 

inspections. The project is divided into two parts: flight control of the drone and the development of an 

algorithm to identify defects. 

For the flight control of the drone, two methods are proposed: pre-set flight path and the real-time track 

tracing. The pre-set flight path is the simplest approach because it is a built-in function of the drone. 

However, it is heavily dependent on the GPS coordinate system, which can be problematic in areas 

with weak GPS signals. The real-time track tracing, on the other hand, requires the development of an 

algorithm to locate the railway track. This can be achieved through either pattern matching or edge 

detection. Of the two methods, edge detection is more promising since it produces more consistent 

result and can be achieved by incorporating various image filters.  

Numerous attempts have been made to use optical-based non-destructive testing (NDT) methods for 

detecting railway defects. However, reliable and accurate interpretation of the test data is crucial in the 

NDT practice. There are many sources of errors that can negatively impact the results of NDT, with 

human errors being the most unpredictable and frequent. The introduction of artificial intelligence (AI) 

has the potential to address this problem, but the lack of sufficient railway images with various types 

of defects is the major obstacle to training the AI models through supervised learning. To address the 

issue of data scarcity, RailGAN model is proposed in this research. The RailGAN model can improve 

upon the basic CycleGAN model by incorporating an additional pre-sampling stage for railway tracks 

in the algorithm.  Two pre-sampling techniques are tested for the RailGAN model: image-filtration and 

U-Net. By applying both techniques to 20 real-time railway images, it is demonstrated that U-Net can 

produce more consistent results in image segmentation across all images while being less affected by 

pixel intensity values of the railway track. The application of the RailGAN model implemented with 

U-Net and the original CycleGAN model to the same real-time railway images shows that the original 

CycleGAN model generates defects in the irrelevant background, whereas the RailGAN model adds 

synthetic defect patterns only on the railway surface. The defective images generated by RailGAN 
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model closely resemble real cracks on the railways and can be used for training neural network-based 

defect identification algorithms.  

The proposed solution for defect identification involves the use of the YOLO network, which can detect 

and localize defects in the images.  It is trained using the generated defective railway images and their 

corresponding labels. Testing the algorithm on 10 images available online, the YOLO-v5 algorithm can 

identify 90% of all defects in the images. 

However, there are still future works that need to be accomplished. For the drone flight control, the 

algorithm will need to be written in the JAVA language using the mobile SDK. Regarding defect 

detection, RailGAN will generate a larger amount of images, and the YOLO network will be trained 

with a larger dataset. The model will also be saved as a JSON file and implemented in the mobile SDK 

to enable real-time defect detection in the future.  
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Chapter 1 

Introduction 

1.1 Motivation 

According to an annual report by Via Rail Canada Inc. [1], over 5 million passengers chose to travel 

by rail in 2019. Even during the pandemic year, the ridership across Canada was still over 1 million 

[2]. In addition to the passenger trains, cargo services through railways are also essential in day-to-

day life, making travelling by rail an irreplaceable way of transportation. Safety plays a vital role in 

maintaining the working condition of a railway system. Due to the capacity of railway transportation, 

railway accidents can result in significant financial losses, pose lethal threats to passengers, endanger 

nearby residents, and wreak havoc on the environment. Among all the serious accidents in railway 

transportation, derailment is the most common [3], and defective railways are the most frequent cause 

of derailments. According to a recent report by the Transportation Safety Board of Canada, between 

2011 and 2020, there were 959 main-track derailments, 37% of which were caused by track-related 

issues. There were also over 6000 non main-track derailments, and almost 1/3 of these ascribed to 

problems with railway tracks [3].  

One of the most infamous railway derailment accidents caused by the track defect was the Hither 

Green rail crash happened on November 5th, 1967, [4]. In that accident, a broken rail caused the 

leading pair of wheels of the third coach to derail, leading to a derailment of 11 coaches in total. The 

cause of the broken rail was traced back to a minor fatigue crack located at a bolt hole. The developed 

crack triggered a triangular piece on the rail to break, eventually leading to the fracture of the rail [5]. 

The accident resulted in the deaths of 49 passengers and injuries to 79 others on the train. Despite 

modern inspection technologies, defects on the railways can still be overlooked, resulting in trouble. 

In 2015, a westbound Canadian National Railway (CN) freight train derailed near Saint-Basile, New 

Brunswick. The main contributor to the accident was the significant gauge face wear on the high rail 

in the derailment curve. Unclear criteria in assessing rail conditions are one of the critical factors in 

overlooking the defect [6].  

Therefore, to avoid similar accidents in the future, impartial preventive inspections should be 

conducted regularly. It is essential to identify problems on the rail surface before they get any worse. 

Also, the inspections should adhere to a definite standard and minimize human error as much as 

possible. However, most current inspection techniques require the presence of human inspectors in 
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the field, disrupting the normal operations of the train. There has been some research progress so far 

by different labs around the world, which are further reviewed in section 2.1, yet very few of them 

can achieve reliable autonomous examination in the field. 

1.2 Railway Defect Background 

Depending on the location of the defects on the rail, rail defects can be categorized as follows: 

transverse defects, longitudinal defects, web defects, base defects, surface defects and defective weld 

[7,8]. Among all these categories, the surface defects are of most importance, because they can 

develop over time and initiate other types of defects. They are also more common and approachable 

than others. In Table 1, commonly seen surface defects, their locations and the corresponding level of 

importance are summarized. 

Table 1: List of Surface Defects [7, 8] 

Name Definition  Level of importance 

Nicked rail A nicked on the head, web, or base, which is 
usually caused by broken wheel or dragging 
equipment 

High 

 

Shelling A progress horizontal separation on the gage side.  High 

Flaking A progressive horizontal separation of the running 
surface around the gage corner 

Low 

Slivers A separation of a metal from the surface of head, 
web and base 

Low 

Flowed Rail A rolling out of trend metal beyond field corner Low 

Burned Rail A marked by left the intense friction from slipping 
wheel. 

Moderate 

Mill Defect Deformation, cavities, seams, or foreign material 
found in the head, web or base of the rail 

Extreme High 

Flattened Rail A length of railway flattened out across the width 
of the rail to a depth of less than 1 inch. 

Low 

Crushed Head Flattening of railhead by more than 1 inch.  Low 

Corrosion It is the decaying of the material of head, web or 
base of the rail. 

Moderate 

Corrugation A wavelike pattern on the running surface. Low 
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Damaged Rail Broken rails caused by broken, flat or slipping 
wheels. It can also be cause by derailment 

High 

Head Checks Slight separation of metal on gauge side of the 
rail. 

Moderate 

Spalling Separation from parent metal on the rail head. Low 

1.3 Project Objectives 

Since surface defects are of utmost importance, the primary objective of this project aims is to 

achieve autonomous detection of all surface defects. This objective is further broken down into the 

following sub-objectives: 

1. Find the suitable NDT method for detecting all types of surface defects introduced in Section 

1.2. This includes identifying the methodology and the platform that can carry out the NDT. 

2. Develop a track-finding algorithm that can either guide the platform or support the NDT 

method for surface defect detection. 

3. Generate/find surface defect dataset used for training the defect detection model. 

4. Train and improve the model for defect detection to enable recognition of surface defects with 

a high confidence rate. 

5. Test the defect detection algorithm using real surface defect images available online. 

1.4 Thesis Outline 

The thesis is organized into the following chapters: 

Chapter 1 provides an overview of the project motivation, types of surface defects that needs to be 

tackled, and the objective and sub-objective of this project. 

Chapter 2 reviews the background knowledge of current NDT methods that can be used for defect 

detection of metal products and provides a literature review about application of these NDT methods. 

Based on the information provided, the most appropriate NDT method to detect surface defect will be 

selected, and the hardware and platform that carry out the NDT will be proposed. 

Chapter 3 introduces railway track finding and proposes different ways to accomplish this task. The 

results of the test of each proposed method are demonstrated in section 3.6. 
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Chapter 4 presents a novel way of generating surface defect images for use as the training dataset. 

Chapter 5 proposes two different defect identification methods followed by a discussion.  

Chapter 6 examines training and validation process of the different CNN networks proposed in 

chapter 4 and chapter 5, as well as the experimental results of the defect detection algorithm, and a 

detailed conclusion on the implementation of such defect detection algorithm. This chapter is partly 

based on the journal published:  

Chapter 7 presents the main conclusion of this project, as well as the recommendation for future 

work.  
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Chapter 2  

Non-destructive testing and Carrying Platform 

2.1 Non-Destructive Testing Methods (NDT) 

The prevailing non-destructive testing (NDT) methods used in railway inspection include 

thermography, magnetic flux leakage, visual inspection, ultrasonic testing, and acoustic emission. 

Each of these methods approaches inspection tasks by using different physics, which makes them 

excel at detecting different types of defects. To determine the most appropriate method for this 

project, each method is reviewed in the following sections. 

2.1.1 Thermography 

The thermographic testing is a type of non-destructive testing that maps the temperature pattern of an 

object’s surface or body, and the output image is used to analyze the health of the structure.[9] To 

carry out such testing, an infrared (IR) camera is required to measure and display the temperature, 

then the data is transmitted to a computer for recording or processing.[10] Thermography testing can 

be further broken down into active and passive testing.[11] Passive thermography directly measures 

the temperature of the specimen, while active thermography measures the temperature change after 

applying thermal excitation. Both techniques can offer non-contact, full-field, and fast inspection with 

a thermogram, but they are limited by the high equipment costs and uncertain conductivity. Some 

researchers have applied active thermography to railway defect identification. Tuschl et al. used 

inductive thermography to find the railway defects [12]. The equipment they used included an 

induction generator (consisting of induction coils) and an infrared camera. They used two types of 

setups: a static and a scanning setup. In the static setup, both equipment and specimen were held in 

place, while in the scanning setup, both equipment and specimen were moving at a constant speed. 

The power required in both setups was between 5 to 10 KW. In both settings, the team could identify 

the crack by differentiating the temperature increase between the intact area and the crack in the 

specimen. Another research using thermography for railway defect detection was done by Peng et al. 

[13]. They developed the lock-in thermography to model the rail squat defect. In their experimental 

setup, they used thermal lamps with a sinusoidal stimulus to excite the rail sample. An infrared 

camera was implemented to record the phase and amplitude of the response. As a result, the team 

proposed that a 0.2 Hz excitation rate was a suitable frequency for defect detection, and a higher 
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excitation (1Hz) could be used to locate the squat. Netzelmann et al. applied induction (eddy current) 

thermography testing method to detect surface crack of the railway [14]. The process of the 

experiment involved generating the eddy current pulse with 50 to 500 ms length to the railway, and 

the infrared camera recorded the radiation change after the heating pulse was applied. The team used 

this technique and applied such device on a moving test car, and the railway surface crack could be 

successfully detected when test car was travelling between 2 and 15 km/h. This principle was also 

applied to detect wheel defect In this research, a robot held the infrared camera and the inductor close 

to the rotating wheel. While wheel was rotating, the camera scanned the wheel surface, and provided 

information such as the crack position and crack depth. 

2.1.2 Ultrasonic Testing (UT) 

UT typically utilizes acoustic waves with frequency range between 400 kHz to 25 MHz to conduct 

NDT measurements [9,15]. By converting high frequency electrical energy into mechanical waves 

using transducers, acoustic waves are emitted into the object.  

As shown in figure 1, the input signal of the ultrasonic probes is displayed along with the base echo of 

the signal. If the signal encounters a defect in the object, the defect echo is also displayed on the screen 

[16]. 

Figure 1: Diagram of ultrasonic Testing 
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By examining the time of flight between the pulse and echo and the speed of sound traveling in the 

material, the location of the defect can be calculated. UT can thus be used for the detection of internal 

defects, and it is a popular technique for generic NDT due to its low cost and availability [17].  

For railway defects detection, mobile stations equipped with UT setups are widely used. For example, 

in [18], Yilmaz et al. used a vehicle equipped with twelve 25MHz ultrasound probes to investigate 

defects on the rail, operating at an average speed of 5 km/h to investigate defects on the rail. Mounting 

all the sensors on the car and operating the car at a low speed were due to the fact that coupling medium 

such as ultrasonic gel should be applied between the probes and the rail to ensure a reliable testing 

result. This is because the air gap between the transducer and the rail can cause significant loss in energy 

transmission, leading to an extremely low signal to noise ratio (SNR). Despite efforts to perform UT in 

a non-contact manner, such as using air-coupled ultrasonic probes to detect rail defect [19], onerous 

signal processing was required to achieve a good accuracy and the low SNR for air coupling remained 

a fundamental problem. 

2.1.3 Magnetic Flux Leakage 

Magnetic flux leakage testing is another NDT method with high efficiency and accuracy. To conduct 

magnetic flux leakage (MFL) testing, the surface of the specimen is magnetized to the saturation point 

using either a yoke-type magnetizer (usually with ferromagnetic yoke) or a magnetizing coil. With the 

appearance of a defect, the magnetic field in the material leaks into the air. Then the MFL sensors are 

employed to take measurements on the volumetric changes of the charges to locate the defect spot [20]. 

MFL testing is very popular in oil and gas industry [21] and can also be used for rail defect detection. 

In a study to examine the detectability of the MFL on railway defects, Antipov et al. [22] implemented 

two different methods. They first used three-dimensional computer simulation to relate the defect size 

and depth to the sensor signal. The result showed that the transverse cracks with the heigh less than 14 

mm could be detected when the edge of the defect is less than 20 mm from the rolling surface. In the 

second method, they recorded and analyzed 600 signals from actual rail defects and used both magnetic 

and ultrasonic methods to determine the detectability of various types of flows. They were able to 

identify over 94% of the transverse crack and 91% of the longitudinal cracks by MFL, compared to 

only 60% by ultrasonic testing. They concluded that MFL method is more promising and efficient than 

ultrasonic testing in terms of railway NDT. Jia et al. [23] enhanced the signal for railway surface defect 

detection by adding a ferrite magnetism gatherer (FMG). The team simulated the enhancement effect 
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by adding FMG with four different cross section shape (rectangle, square, diamond and circular), and 

the result shows that rectangular FMG achieved a better focusing ability. By further implementing FMG 

in the real test case, the signal was significantly amplified. The team also utilized a differential detection 

method to get rid of the interference of the signal.  

2.1.4 Visual Inspection 

Visual inspection using camera to detect defects is the easiest and most intuitive way among all NDT 

methods. However, it is not easy to differentiate defects from other part of the surface, especially when 

the surface takes an irregular shape. Therefore, image enhancement during signal processing is 

required. 

One of the image enhancement methods, which has been successfully implemented on the railway 

defect detection, is spectral image differencing. In [24], Deutshi et al. introduced the spectral image 

differencing method by placing two light sources before and after the color-line scan camera. With a 

flat surface, the scan camera will read the same amount of light from both light sources. However, if 

on the uneven surface such as flakes or cracks, the amount of light from both lights received by the 

scan cam will be different. They used convolutional filter and morphological image analysis to process 

the images. They found that the cavity in the rail could be identified as a light spot in the image. The 

team installed these systems on the train and conducted the test, and found that the camera could 

identify the defect with the camera resolution of 0.5 mm * 0.35 mm, when the vehicle traveled at a 

speed lower than 60 km/h. 

2.1.5 Acoustic Emission 

Acoustic emission (AE) is a relatively recent detection method used for railway applications. When 

stress is applied to the object, transient waves are produced when cracks are initiated or propagated due 

to deformation, and they can be collected by the sensors applied on the objects. By inverse calculations, 

the locations of the newly formed crack can be found. Therefore, instead of applying external 

excitations during inspections for signal generation, AE makes use of the stress waves generated during 

normal operations. So, AE can only be used on structures undergoing dynamic changes [9].  

When railway tracks are in service, the load from the train can cause the dynamic change required in 

AE. Zhang et al. developed a model to perform AE on the railway track [25]. Because it is hard to 

generate a growing defect on the test track, they simulated the process by dropping pencil leads onto 
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the contact point between the wheel and the track. They then tried to identify the AE caused by the 

crushing of the pencil leads to verify the concept. However, this was an experimental study which has 

not been implemented in real-world scenarios. One challenge with AE is that the measurement takes 

place when dynamic changes happen in the material, so continuous monitoring must be performed 

frequently. This can easily overload the remote signal collectors on site with numerous data, making it 

difficult to analyze the data effectively [26]. 

2.1.6 Discussion 

All of the NDT methods discussed in the previous section have shown their potential and applications 

in defect identification and recognition for the railways. However, they have limitations that need to 

be considered when selecting a suitable method for specific applications. Advantages and limitations 

of each method are summarized in Table 2 below. 

Table 2: NDT methods advantages and limitations 

NDT Methods Advantages Limitations 

Thermography Reliable 

Portable 

Can know both surface and sub-
surface defects 

Active: Need to heat up the whole 
railway, which requires high power 
source 

Passive: Can only perform inspection 
during certain time range (when 
temperature changes the most) 

Ultrasonic 
Testing 

Portable 

Relatively expensive 

Can know the existence of the crack 
as well their location 

Equipment is relatively expensive. 
Need to be close to the surface 

Requires couplant gel to enhance the 
image quality and ensure the energy 
wave transmission 

Magnetic Flux 
Leakage 

Portable 

Can identify small surface and sub 
surface cracks 

Not suitable for detection axial 
cracks 

Need to magnetize the railway 

Visual 
Inspection  

Portable 

Does not require external excitation 

Does not require other devices 

Reliability and accuracy are highly 
dependent on the resolution of the 
camera. 
Can only discover the surface defect 

Acoustic 
Emission 

Able to identify inner defect in the 
railway structure.  
Does not require external excitation 

Can only pick up the defect when it 
starts to initiate (when inner 
structure changes) 
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As shown in Table 2, all NDT methods except acoustic emission can detect surface defects. However, 

thermography and magnetic flux leakage require external excitation, such as heating up or 

magnetizing the railway, which requires a large power source on the carrier to achieve defect 

recognition. Ultrasonic testing also requires the application of a coupling gel on the railway surface to 

avoid the loss of energy transmission for a more reliable result, which is challenging to achieve in real 

life situations. Thus, visual inspection is the most suitable method for surface defect detection.  

2.2 Carrying Platform 

In order to develop the system for autonomous visual inspection within the given time frame, a 

commercial programmable drone was chosen as the hardware platform due to its agility, flexibility, and 

availability. A typical configuration of such drones includes a high-resolution camera, a multi-axis 

gimbal system, and a software development kit (SDK). The SDK allows developers to program 

different software for the drone in various applications [27]. Additional sensors can also be added to 

the drone as extra payloads to expand its capability, if necessary.  

To select a suitable drone for the project, our team conducted a thorough comparison of the 

specifications of the drones from different manufacturers. Since the drone should be programmable to 

achieve our goal, SDK support is a crucial factor for the project. After considering several options, we 

identified four major drone manufacturers that provide SDK support: DJI, Parrot, Skydio and Yuneec 

[28]. Based on our analysis, DJI SDK stands out due to its user-friendliness and strong community 

support. DJI also offers SDK support on multiple platforms, including Linux, Windows, and mobile 

platforms (Android and IOS), which further enhances the versatility of the system. Moreover, DJI 

updates its SDK more frequently than other competitors, ensuring that users have access to the state-

of-art features, while experiencing fewer programming issues. 

Three drones from DJI have SDK support, so they were considered as the hardware platform for this 

project. Table 3 provides detailed information on each drone. 

Table 3: Specs for DJI drones with SDK support [29] [30] 

 Flight Time Sensor  Resolution Gimbal 

Mavic Air 
2 

34 mins 1/2" CMOS 

Effective Pixels: 

12 MP and 48 

MP 

4K Ultra HD HDR: 3840×2160 

24/25/30 fps  

2.7K HDR: 2688×1512 24/25/30 

fps  

3-axis (tilt, 

roll, pan) 

±0.01° 
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FHD HDR: 1920×1080 24/25/30 

fps 

Mavic 2 
Zoom 

31 mins 1/2.3" CMOS 

Effective Pixels: 

12 MP 

4K: 3840×2160 24/25/30p  

2.7K: 2688x1512 

24/25/30/48/50/60p 

FHD: 1920×1080 

24/25/30/48/50/60/120p 

3-axis (tilt, 

roll, pan) 

±0.005° 

(Mavic 2 

Zoom) 

Mavic 2 
Pro 

31 mins 1” CMOS 

Effective Pixels: 

20 million 

4K: 3840×2160 24/25/30p 2.7K: 

2688×1512 24/25/30/48/50/60p 

FHD: 1920×1080 

24/25/30/48/50/60/120p 

3-axis (tilt, 

roll, pan) 

±0.01° 

(Mavic 2 

Pro) 

 

As shown in Table 2, the Mavic 2 Zoom (Figure 2) stands out as the most suitable drone for this project 

due to its stable gimbal system and superior lens quality. Therefore, it has been selected as the hardware 

platform for the project.  

 

Figure 2: Mavic 2 Zoom 

The flight control of the selected drone, the Mavic 2 Zoom, will be programmed to autonomously fly 

along the railway using an application on a mobile device. Our team is currently developing this 

software, which will utilize the image processing algorithm outlined in Section 5.2. 
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2.3 Technical Roadmap 

Since visual inspection by the drone has been selected as the main inspection method, the overall 

roadmap can be summarized as shown in Figure 3. 

The project comprises two major parts: hardware development and software design. For hardware, a 

drone has been selected as the hardware platform, but the issue of flight controls of the drone must be 

addressed to ensure autonomous flight. On the software side, a railway track detection algorithm is 

required to achieve autonomous flight. Once the drone can fly reliably along the railway, the defect 

detection should be in place to perform the inspection, and an AI-based algorithm will be developed 

to fulfill this task. To achieve this, a database with training and validation data for AI model should 

be established, and a data generation algorithm will be developed to increase the amount of data that 

can be used for the process. 

 

  

Railway Defect Detection 

Hardware Software 

Drone Flight Controls Autonomous Navigation 

Railway Track 

Detection 

Defect Detection 

AI-based 

Algorithm 

Dataset Generation 

Figure 3: Technical roadmap for the entire project 
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Chapter 3 

Drone Navigation 

3.1 Introduction 

The autonomous navigation is required to allow the drone to conduct the inspection without human 

intervention. It is also necessary in the development phase for swift data collection. To achieve this, 

two different methods have been identified in the project: pre-set flight path and real-time track tracing. 

3.2 Pre-set flight path 

The pre-set flight path method utilizes the drone’s built-in function of doing waypoint flights, where 

the drone follows a flight path that is predefined in the software interface provided by DJI [31][32][33]. 

Waypoint function by DJI drone can retrace the route that is manually defined by the user prior to the 

flight. To adopt this method to railway inspection, the drone can initially fly manually by controller 

along the rail to record the flight path, which can be later retraced automatically by the drone. This 

approach is relatively straightforward and does not require additional coding since it is a built-in 

function of the drone. However, it relies on GPS coordinate system for path recording, thus weak GPS 

signals or incorrect readings due to signal jamming can lead to significant deviation from the track. If 

the drone is offset from the railway track, the camera can no longer record information about the railway 

surface. Furthermore, the pre-set flight path is fixed after recording and cannot be actively adjusted 

during the flight, which limits the flexibility and robustness of this method. 

3.3 Real-time track tracing on flight 

Since the images of a track should be recorded for the inspection, they can also be used to guide the 

drone for the flight by real-time image processing. The real-time image processing during the flight can 

also resolve the limitations of pre-set flight path method and allow a more flexible flight control to 

adapt to different conditions in each flight mission. In order to achieve autonomous navigation for the 

drone during railway inspection, two different methods have been proposed and experimented. One 

method involves using template matching [34] to locate the track in the image. To implement this 

method, a template should be made out of a section of the track. By comparing the template to various 

track images, the algorithm will identify and highlight the location of the railway in the image. The 

other method involves using edge detection algorithms to recognize the track as a line feature in the 



 

 14 

image. Once the track is located by either method, a flight control algorithm can be implemented to 

guide the drone to follow the detected track. 

3.4 Pattern Matching 

To test the feasibility of pattern matching for railway track identification, several real-time track 

images are acquired by drone. A small section of the railway track is snipped and set as a template for 

the template matching (from OpenCV package) algorithm to search and highlight all similar 

structures in the other images. In this process, the template matching algorithm slides the template 

along the images, compares the overlapped regions using different operations and store the 

comparison result in a result image, as illustrated in Figure 4. 

OpenCV package offers 6 different template matching operations, including squared difference 

(cv.TM_SQDIFF), normalized squared difference (cv.TM_SQDIFF_NORMED), cross correlation 

(cv.TM_CCORR), normalized cross correlation (cv.TM_CCORR_NORMED), cosine coefficient 

(cv.TM_CCOEFF) and normalized cosine coefficient (cv.TM_CCOEFF_NORMED) [35]. The 

equation for each method is introduced below. For all of these equations, R denotes the result, T 

denotes the template and I denotes the image [36][37]. 

1. Squared Difference:  

   𝑹(𝒙, 𝒚) = ∑ (𝑻(𝒙′, 𝒚′) − 𝑰(𝒙 + 𝒙′, 𝒚 + 𝒚′))𝒙′,𝒚′
𝟐
              (1) 

Based on the equation, the best result (the pattern matches the section in the image) is achieved 

when the function value is zero. 

2. Normalized squared difference:  

     𝑹(𝒙, 𝒚) =
∑ (𝑻(𝒙′,𝒚′)−𝑰(𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′

𝟐

√∑ (𝑻(𝒙′,𝒚′)∙∑ 𝑰𝒙′,𝒚′ (𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′
𝟐
                 (2) 

This is similar to the squared difference, but a normalization step is included. So the best result is 

also reached when the function value is zero. 

3. Cross correlation 

          𝑹(𝒙, 𝒚) = ∑ (𝑻(𝒙′, 𝒚′) ∙ 𝑰(𝒙 + 𝒙′, 𝒚 + 𝒚′))𝒙′,𝒚′               (3) 

Based on the equation, the most similar section in the image to the pattern is at the maximum value. 

4. Normalized cross correlation  
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𝑹(𝒙, 𝒚) =
∑ (𝑻(𝒙′,𝒚′)∙𝑰(𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′

√∑ (𝑻(𝒙′,𝒚′)∙∑ 𝑰𝒙′,𝒚′ (𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′
𝟐
              (4) 

Similar to the squared difference, the best result is also reached when the result is at the maximum 

function value. 

5. Cosine Coefficient 

           𝑹(𝒙, 𝒚) = ∑ (𝑻′(𝒙′, 𝒚′) ∙ 𝑰′(𝒙 + 𝒙′, 𝒚 + 𝒚′))𝒙′,𝒚′               (5) 

where 𝑇′ and 𝐼′ can be further expressed as: 

𝑻′(𝒙′, 𝒚′) = 𝑻(𝒙′, 𝒚′) −
𝟏

𝒘∙𝒉
∙ ∑ 𝑻(𝒙, 𝒚)𝒙",𝒚"                        (6) 

𝑰′(𝒙 + 𝒙′, 𝒚 + 𝒚′) = 𝑰(𝒙 + 𝒙′, 𝒚 + 𝒚′) −
𝟏

𝒘∙𝒉
∙ ∑ 𝑰(𝒙 + 𝒙", 𝒚 + 𝒚")𝒙",𝒚"      (7) 

For the cosine coefficient equation, the best match between the template and the image is indicated 

by a value of 1 in the resultant image, while the worst possible value is -1. The value 0 in the resultant 

image means that the template and the section of the image being compared are not related. 

6. Normalized cosine coefficient 

        𝑹(𝒙, 𝒚) =
∑ (𝑻(𝒙′,𝒚′)∙𝑰(𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′

√∑ (𝑻′(𝒙′,𝒚′)∙∑ 𝑰𝒙′,𝒚′ ′(𝒙+𝒙′,𝒚+𝒚′))𝒙′,𝒚′
𝟐
              ( 8 ) 

The characteristics of the resultant image from the normalized cosine coefficient are similar to those 

of the cosine coefficient. A positive value indicates a good match, and a negative value means a poor 

matching result. However, unlike the cosine coefficient which falls within the range [-1,1], the result 

from the normalized cosine coefficient can range from negative infinity to positive infinity.  

 

For all these equations introduced above, the symbol prime (′) and double prime (") denote different 

coordinate system. Let’s consider the following example with the first template option (squared 

difference) in Figure 4: 
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Figure 4: Example of template matching 

Suppose the template (orange square) is a 2*2 image with a local coordinate system of (𝑥′, 𝑦′). As the 

template is sliding through the image (blue square) and its left corner overlaps with the point (3,2) (the 

coordinate system of the image), the result (𝑥, 𝑦) (the value of the result at point (3,2)) is calculate by 

the summation of the squared difference between the template 𝑇(𝑥′, 𝑦′) , and the image 

𝐼(𝑥 + 𝑥′, 𝑦 + 𝑦′), which begins with the point (3,2). 

Among all the methods, TM_SQDIFF and TM_SQDIFF_NORMED are widely used due to its fast 

computational speed when the template is an exact match of the section in the image. However, 

TM_CCOEFF_NORMED is recommended for cases where there is more contrast or exposure [38]. As 

a result, TM_CCOEFF_NORMED is selected as a template matching operation for the project. 

Different threshold values are applied to the test, and the results acquired by implementing template 

matching are shown in Figure 5. The algorithm demonstrated the ability to find the patterns with 
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different confidence levels depending on the chosen threshold value. However, further investigation 

revealed that the track recognition results were too sensitive to the chosen template. The lighting 

conditions at the time the pictures were taken played an important role in setting up the comparison, 

resulting in poor performance when template taken from images acquired in different lighting 

conditions were used for detection. For example, the template image taken on a sunny day with a higher 

intensity value could not be used for railway images taken on an overcast day with a lower intensity 

value.  

 

Figure 5: An example of same railway with different threshold for template matching. a) 

Template; b) Threshold with 0.5; c) Threshold with 0.7 

In some cases, even with templates taken from the same lighting conditions, the railway tracks appeared 

too similar in color to their surrounding features, which could easily confuse the algorithm. 

Furthermore, since the drone was used in this project, it was also important for the drone to maintain a 

certain altitude when using this method. Because of the scaling effect caused by the distance, the size 

of the track in the template can be very different from that of the actual image if the altitude settings 

were different for the template and the image being processed. Therefore, while this method had the 

potential to be implemented, but it was limited by several factors that were difficult to control in real-

world situations. 

3.5 Edge Detection Algorithm 

In order to implement the edge detection algorithm, the OpenCV [39] package was utilized. The 

complete code for both image and video processing can be found in Appendix A and B. To reduce the 

processing time, the images are first resized to a smaller number of pixels. The original image size 
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acquired from DJI drone is 5472*3648, but in the testing, it is found that robust results when could be 

obtained with a target size of 640*480. Next, the images are converted to greyscale to simplify the 

operations required for the processing [40]. The original image and the greyscale image after this step 

are shown in Figure 6. 

 

 

Figure 6: Railway track image (top: original image; bottom: greyscale image) 

After the greyscale image is obtained, the gaussian blur is applied to smooth the image. The gaussian 

filter is a low-pass filter that helps to blur the image and remove the unnecessary features to rule out 

noises on the images [41]. This spatial filter uses a kernel to convolve with input image, and the 
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resultant images consists of the new pixel values with the weighted average operation of the original 

pixel value and its neighboring pixels. The one-dimensional filter can be expressed by equation 9 

below [42]: 

𝒈(𝒙) = 𝒆
−

𝒙

𝟐𝝈𝟐                 (9) 

where x is the x coordinate value, and 𝜎 is the standard deviation. For image processing, the gaussian 

filter is usually in two-dimensional, and the equation is shown as below: 

𝒈(𝒙) = 𝒆
−
𝒙𝟐+𝒚𝟐

𝟐𝝈𝟐                (10) 

where x and y are the distance between the gradient and the origin in both x and y coordinates. The 

smoothed image is shown in Figure 7 below:

 

Figure 7: Image after gaussian filter (top: greyscale image bottom: smoothed image) 

Once the image is smoothed, the actual edge detection operation is implemented to enhance contrast 

between the railway tracks and its surroundings. In this project, two different types of edge detection 

methods are tested: Canny Edge detection and Sobel Detection. For Canny edge detection, the 

algorithm first removes the noise in the image with a 5*5 Gaussian filter, and then it finds the intensity 

gradient and its direction using horizontal and vertical Sobel kernels. The equation for finding the 

gradient and the angle is shown in equation 11 and equation 12 [43]. 

𝑮(𝒙) = √(𝑮𝒙
𝟐 + 𝑮𝒚

𝟐)              (11) 
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 𝜽 = 𝐚𝐫𝐜𝐭𝐚𝐧⁡(
𝑮𝒚

𝑮𝒙
)              (12) 

where Gx and Gy are the first derivative of smoothed images by Sobel kernel in both x and y directions, 

respectively. After obtaining the gradient, the non-maximum suppression (NMS) are performed to 

enhance the edge detection. This involved scanning the entire image for local maximum point in both 

horizontal and vertical directions. Pixels that quailed as local maxima were retained, while others are 

suppressed by setting their intensity value to zero. In this way, the thick edges could be converted to 

sharp and thin edge, improving edge identification accuracy. The final stage to complete the process is 

thresholding, where the upper and lower threshold values are set, and only the edge section that falls 

within the range are retained for further processing.  

For the Sobel edge detection method, on the other hand, only two convolutional kernels are applied in 

both x and y directions. Such kernels are shown in Figure 8 [44]: 

 

Figure 8: The x-direction Sobel kernel and y-direction Sobel kernel 

Subsequently, these two kernels are convoluted with the original images to obtain the gradient 

magnitude Gx and Gy in both x and y directions. The total gradient magnitude is computed using the 

same equation 11 as Canny edge detection. However, in some cases, the approximate magnitude is 

calculated using equation 13 [45]: 

|𝑮| = |𝑮𝒙| + |𝑮𝒚|              (13) 

Upon applying both line detection methods, it was discovered that the Sobel detection method proved 

to be the better option. The principle of the Sobel filter involved applying directional masks to enhance 

the edge feature in the images [41]. To implement the Sobel filter, we included both horizontal and 

vertical Sobel filters after the gaussian blur. The result from the Sobel line detection is displayed in 

Figure 9 below: 
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Figure 9: Image obtained after the line detection 

The next step is to find the straight lines that were enhanced by the Sobel filters in the images. This is 

achieved by applying Hough Transform to the image, as detailed in reference [46]. To identify a desired 

line, the line representation is initially expressed using equation 14: 

     𝒚 = 𝒂𝒙 + 𝒃                  (14) 

This line expression is then altered to the following form: 

𝑏 = 𝑎𝑥 + 𝑦 

where a is the slope and b is the intercept of the line. The purpose of line detection is to identify the 

appropriate pair of a and b values, which is visualized in Figure 10.  

 

Figure 10: Line detection algorithm 
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However, this approach has the drawback that vertical line cannot be detected as the slope value 

becomes undefined. To overcome this problem, the Houghline transform is introduced. The Houghline 

transform operates on the principle that when two points lie on the same line, their corresponding cosine 

curves intersect at a specific θ and ρ values, as illustrated in Figure 11 [47][48]. Here, ρ is the length of 

the normal line and θ is the angle between the normal line and the x-axis. By selecting a threshold for 

certain θ and ρ pairs, the Houghline transform can identify lines with a desired orientation, enabling 

the detection of both horizontal and vertical lines.  

 

Figure 11: Representation of the θ and ρ pair [45]  

Such algorithms output the x and y coordinates of the starting point and ending points of all the straight 

lines detected in the images. The mid-point of the two tracks can be calculated by taking the average 

of the top and bottom 50 percentile x and y values of the detected lines which helps finding the mid-

point of the two tracks.  

The algorithm developed so far can detect the tracks consistently. The sample result is demonstrated in 

Figure 12, where the detected tracks are highlighted in green, indicating the accuracy of the algorithm 

in identifying the location of the railway tracks within the images. 
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Figure 12: Edge Detection Algorithm to Detect Railway Track 

3.6 Autopilot 

In practice, the centerline of the drone’s camera is aligned with the centerline of the drone itself. To 

ensure accurate tracking of the detected railway tracks, a simple control algorithm is developed that 

adjusts the drone’s position during flight. The algorithm aligns the centerline of the drone’s camera 

with the average position between the two railway tracks, as detected using the method described in the 

previous section. Based on the alignment, the control algorithm calculates the necessary drone 

maneuvers using the control model we developed. These commands are then transmitted to the drone, 

enabling automatic course correction for the drone during the flight.  

Figure 13 provides an example of the result from control algorithm when applied to a single frame of 

the recorded video. The movement requirement is displayed in pixels within the image, which is later 

translated into the duration of the drone’s sideways flight. This information enables precise control of 

the drone's movements, ensuring accurate tracking of the detected railway tracks. 
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Figure 13: Image snipped by the video processed with control algorithm 
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Chapter 4 

Defect dataset generation 

The primary focus of this chapter is to develop a methodology for generating a sufficient number of 

defective railway images to train a detect identification training model. By systematically introducing 

a range of defects into high-quality railway images, we aim to create a comprehensive and diverse 

dataset that can be used to train machine learning algorithms to accurately detect and classify defects 

in railway infrastructure. This approach has the potential to significantly improve the efficiency and 

accuracy of railway inspection and maintenance, ultimately contributing to improved safety and 

reliability in rail transportation. 

4.1 Introduction 

Since surface defects can be visually inspected, computer vision-based (AI) methods have recently 

become a popular tool for identifying and classifying surface defects. For example, algorithms such as 

You Only Look Once (YOLO) and Region-Based Convolutional Neural Network (RCNN) have been 

implemented for real-time defect detection and segmentation on low-shot walls, steel plates, and even 

transmission lines [49][50][51]. However, since these algorithms rely on supervised learning, the 

problem of generating a sufficiently large pool of image data, especially for defective samples, has 

emerged. While data can be collected from railways in service, this method is time-consuming and may 

not provide a sufficient quantity of data. Alternative methods, such as engraving defects onto real 

railway samples or manually creating artificial defects in images of railways, are both inefficient and 

costly, because they require extensive human intervention and supervision. However, artificial imaging 

methods seem feasible if the process can be automated. To this end, there have been attempts to create 

defective images using network-based image processing techniques, such as generative adversarial 

network (GAN) by Goodfellow et al. [52]. This chapter aims to develop an efficient and automated 

methodology for generating a diverse dataset of defective railway images, improving the accuracy and 

efficiency of defect identification and classification using machine learning algorithms. 

4.2 Generative adversarial network (GAN) 

In machine learning, a typical GAN is a type of neural network model consisting of two networks: a 

generator network and a discriminator network [53]. The main purpose of the generator network is to 
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generate synthetic images based on normal images, whereas the discriminator network tries to 

differentiate the defective and normal images. The two networks are trained simultaneously in a 

competitive process, where the generator network tries to generate images that can fool the 

discriminator network, and the discriminator network tries to accurately classify the images as either 

normal or synthetic. The overall goal of a GAN model is to learn the underlying distribution of normal 

images and generate new images that are indistinguishable from the normal images. The flowchart of 

a GAN model is shown in Figure 14.  

 

Figure 14:Flow chart of the GAN model 

The mapping (X) measures the difference between the non-defective dataset (A) and the defective 

dataset (B). The non-defective dataset (A) is sent to the generator (G) and a defective image set (𝐴̂) is 

generated according to mapping (X). Then, the generated defective images are sent to the 

discriminator (D) with the provided defective dataset (B). The comparison result is produced by the 

discriminator, and according to the return value, differences can be found between the generated 

dataset (𝐴̂) and the defective dataset (B). Both the generator and discriminator need to be updated 

during the training. The generator loss measures a reward for the generator if the generated images 

“fool” the discriminator, while the discriminator penalizes itself if it misclassifies the image. When 

the loss function reaches a balance (discriminator and generator can no longer be improved), the 

discriminator cannot tell the difference between the real and artificial defects [54][55]. This approach 

allows the GAN model to generate high-quality synthetic defective images, which can be used to train 

a classifier to recognize and classify defects in future inspections. 



 

 27 

4.3 GAN extensions 

The classic GAN model has been evolved into different forms and architectures: DCGAN [56-59], 

Pix2Pix [60-62], CycleGAN [63-65] and StyleGAN [66-71], and several attempts have been made to 

generate surface defects using these models.  

4.3.1 DCGAN 

The DCGAN, developed by Radford et al. [56], is a direct extension of the vanilla GAN model. 

DCGAN uses convolutional layers with LeakyReLu activation function in the discriminator network; 

it also uses convolutional-transpose layers with ReLU activation function in the generator network. The 

generator takes a vector of input images, and returns an image defined by its RGB color matrix, while 

the discriminator uses the information from the RGB images and outputs a scalar probability [56][57]. 

Liu et al. [58] applied DCGAN to generate defective images of micro-precision glass encapsulated 

electrical connectors. In their study, both the generator and discriminator had 5 convolutional layers. 

With their DCGAN model, Liu et al. successfully generated 1,500 defective images from 125 real 

defective and 75 non-defective samples. Another example of using DCGAN for defective image 

generation can be found in [59] where the image enhancement algorithm was combined with the 

DCGAN to generate defects on magnetic rings images. The image enhancement was conducted with a 

frequency-based bandpass filter. It was reported that their method can produce images with better 

details compared to the original GAN model. 

4.3.2 Pix2Pix 

The Pix2Pix model was first introduced by Isola et al. [60]. The input to the model is a tuple consisting 

of a non-defective image and an exact corresponding target image. Note that both images are identical 

other than the appearance of the object of interest or the defects on the objects. The generator is updated 

according to the L1 losses measured by the discriminator until convergence [61]. Mertes et al. used a 

Pix2Pix model to generate synthetic defects on carbon fiber surfaces in images [62]. It was shown that 

Pix2Pix model can generate realistic-looking synthetic defects and can improve the pixel-based defect 

classification, while the performance of the model is similar to the conventional data augmentation 

method using normal images. 
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4.3.3 CycleGAN 

Zhu et al. first proposed the CycleGAN model in [63], which has two generators and discriminators, 

respectively. Whereas other GAN models have only forward mapping, the CycleGAN model introduces 

one more generator to learn the inverse mapping. By including this additional mapping, the CycleGAN 

model can introduce cycle consistency losses to improve the model accuracy. Shuanlong et al. [64] 

used the core concept of cycle consistency loss to build a surface defect generation adversarial network 

(SDGAN) to generate images with a commutator surface defect.  The team combined the D2 loss with 

the original cycle consistency loss, where D2 loss measured the performance between the pair, the 

discriminator and the generator. They compared SDGAN with other GAN models in terms of accuracy 

and quality and found that the SDGAN model could achieve a lower error rate (1.77% in defect 

generation and 0.74% for defect classification) than the original CycleGAN model.  Du-Ming Tasi et 

al. [65] proposed a two-stage CycleGAN model to generate and identify surface defects on a texture 

surface. They used images with and without defects to produce a synthetic image in the first stage. 

Then, they place one defect-free image and the corresponding synthetic image into the second 

CycleGAN. During the training process, a binary image containing the shape of the defect was returned 

as the result of the accumulated differences between the defect-free and synthetic defect images. After 

that, a U-Net architecture was used to perform defect segmentation. Their model could successfully 

annotate and segment different patterns of defects with an accuracy of over 90%. 

4.3.4 StyleGAN 

StyleGAN was first developed by Karras et al. [66]. During the process of this model, images go 

through several modifications [67]. First, the image sizes of both generator and discriminator are 

doubled in width and height during training. Second, the generator structure uses the adaptive instance 

normalization, which converts the output into Gaussian distribution with a style vector as bias. Third, 

Gaussian noise is added to each layer to allow slight variation in the style that the model can generate 

[66-68]. Lastly, StyleGAN adopts mixing regularization where two random latent codes are used to 

generate a given percentage of images, respectively. This allows the model to localize the style to 

specific parts of the images. Situ et al. [69] combined the StyleGAN model with adaptive discriminator 

augmentation (ADA) to generate surface defects on water sewers. They were able to generate high-

resolution synthetic images with the model. They further combined the model with the freeze 

discriminator (Freeze-D) and found that the performance was better than both StyleGAN and 
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StyleGAN-ADA. Saiz et al. [70] combined the StyleGAN with a differentiable augmentation 

(DiffAugment) method to generate images of defects on steel surfaces. The idea of the DiffAugment 

method is that the data augmentation for GAN models should be differentiable [71]. The dataset can 

improve segmentation compared to the conventional augmentation methods. 

4.3.5 Model Recommendation 

The aforementioned models proposed by various literature have demonstrated high accuracy and 

success rate in generating defect patterns in some specific applications. However, these models have 

shown their ability only when there is no background. In the training of defect detection algorithms, 

target object, such as railways in this study, can contain similar features to the background. Therefore, 

using CycleGAN without any enhancement or pre-processing of the images can generate defects in the 

background, as there is no control over the locations where the defects are created. Hence, RailGAN is 

proposed and developed in this research to accurately produce synthetic defects only on the specific 

object, i.e., railway. 

4.4 RailGAN Model 

The RailGAN process is composed of two parts: image segmentation and defect generation. The 

flowchart of the overall process is shown in Figure 15. 

 

Figure 15: Process of RailGAN 
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Firstly, the railway images go through the image segmentation process to differentiate the background 

and the railway track surface sections. Then the defect generation algorithm is applied to the track 

surface section. Finally, the original background section is added back to fabricate the defective railway 

images. 

Image segmentation techniques are employed to classify each pixel in the image into two different 

classes: background and the railway track surface. There are several techniques to achieve this, and in 

this project, two approaches are considered: image filtering and convolutional neural network (CNN). 

4.5 Methodology 

4.5.1 Image Filtering 

For the image segmentation, the railway images are first imported as greyscale images to reduce the 

computation time. Then, two layers of 2D convolutional filters are applied to the images. 

The first filter applies to the image is the Gaussian filter. The Gaussian filter blurs the image by 

performing a downsampling, removing details in the background and emphasizing key features in the 

image. By applying Gaussian filter to the railway images, the sketchy edges of rocks, sand or bushes 

in the background are softened, leaving only the track area as the focus for the next steps. After the 

Gaussian filtering, a Sobel filter is applied to the image to emphasize the changes between the 

adjacent pixels. This operation effectively enhances edges, with a threshold value selected based on 

the railway edge pixel intensity values. However, the light reflection from the uneven surface in the 

background can also be enhanced, so an additional step of Hough transform is applied to find line 

features. Hough transform detects the points that can form lines in the image based on the criteria of 

minimum points and maximum gap width between the points. This function returns coordinates that 

connect left and right boundaries of both tracks. These coordinates can also provide information on 

the orientation of the railway presented in the image. 

4.5.2 CNN Approach 

U-Net is chosen as the CNN solution for image segmentation in this project, because fewer sample 

images are required to train an accurate model. U-Net was originally developed by Ronneberger et al. 

[72] for biomedical segmentation. It was named for its U-shape structure, as shown in Figure 16 [72]: 
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Figure 16: U-Net Structure [72] 

U-Net contains two sections: contracting path and expansive path. During the contracting path, which 

is shown in the left half of Figure 16, images go through convolution operations followed by 

downsampling. This process is similar to other convolutional neural networks, which convert each 

input image to its own feature representation. The expansive path is the opposite of the contracting 

path. For each stage, the feature map is upsampled by up-pooling convolution, followed by unpadded 

convolution process. With the symmetric shape of the U-Net, the model allows for skipping 

connections between an encoder layer and a decoder layer, which enables fine-grained details to be 

constructed in the output segmentation map. For the training process, input images with their 

corresponding segmentation map are sent to the network, and the neural network learns how to 

segment the input railway images. 

4.6 Defect Generation 

The defect generation algorithm in RailGAN is based on CycleGAN. As introduced in the previous 

section, CycleGAN has shown the potential to outperform the vanilla GAN model in creating 
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artificial defective images, thanks to its delicate architecture. The detailed process is shown in Figure 

17. 

 

Figure 17: CycleGAN model architecture 

Typical GAN model has only the forward mapping X from A (non-defect) to B (defect), while the 

CycleGAN model introduces one more generator, Y, to learn the inverse mapping from B to A. The 

two discriminators measure the similarity between the original non-defect dataset and the generated 

defect images, as well as the original defect dataset with the generated defect images. CycleGAN can 

further improve its model accuracy by using both forward and inverse mappings and exploiting both 

cycle consistency losses. After dataset 𝐴̂ is produced by the first generator, 𝐴̂⁡̂is created through the 

inverse mapping F, which allows one cycle consistency loss to be measured for the similarity between 

the original sample A and generated 𝐴̂⁡̂. Similarly, there is one more loss being measured between 

𝐵̂⁡̂and B. These losses ensure the quality of the generators, providing further benefits to the overall 

performance of the model. For a better interpretation, when we translate an article from English to 

Chinese, and then translate it back to English, the difference between the original English article and 

the translated English article is considered as the cycle consistency loss. 

When applying Cyclegan to our railway track project, the generators, discriminators, and cycle 

consistency loss perform the following tasks: 

Generator 1 (G1) takes the photo of a non-defective railway track from the dataset 1 as input and 

generates a defective railway track image. Then, the discriminator 1 (D1) compares the original 

defective railway track image from the dataset 2 with the generated defective railway track image 

from G1. 

Generator 2 (G2) inputs an image from the defective railway track dataset and generates a non-

defective railway track image with the mapping. Then, the discriminator 2 (D2) compares the original 
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non-defective railway track image from the dataset 1 with the generated non-defective railway track 

images by G2. 

The process for cycle consistency loss 1 (forward) is as follows: the model first uses G1 to generate a 

defective image from a non-defective railway track image in dataset 1, and then it further implements 

G2 to generate the non-defective railway track image from the generated image. The cycle 

consistency loss will measure the similarity between the original non-defective railway track image 

with the non-defective railway track image generated by G2. Cycle consistency loss 2 (backwards) 

has the same process, but it compares the original defective railway track image with the defective 

railway track images generated by G1.  

4.7 Implementation 

4.7.1 Image Filter 

When following the process from section adding image filters to achieve the image segmentation, the 

results of each step can be demonstrated as shown in Figure 18. 

 

Figure 18: RailGan process with image filter 

The output after each convolutional filter is shown in Figure 19. 
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Figure 19: (a) Live image, (b) Greyscale image from Gaussian filter, (c) Binary image from 

Sobel filter, (d) Lines Detected by Hough transformation, (e) Straightened image after rotation, 

and (f) Image segmentation after track and background identification 

The railway images are first resized to an image size of 256*256 to reduce the required computational 

time and power. The Gaussian filter uses the kernel of dimension of 5 and had a standard deviation of 

5 in the x-direction and 0 in the y-direction. The Sobel filter has a kernel size of 3, and it contains values 

representing the first order x-derivative, which enhances all vertical edges. A threshold of pixel value 

is applied, which created binary image as shown in Figure 19(c). 

The next step in the image segmentation process it to apply Hough transformation, which detects lines 

consisting of a minimum of 200 points with a maximum gap of 1. These parameters are adopted 

empirically to highlight the edges of the railway. By using the coordinates of the end point, the 

algorithm is able to determine the angle between the found line and the vertical axis. The angle is then 

used to rotate the image so that the railway was aligned in the vertical direction. Once the rotation is 

complete, the final step is performed to separate the railway from the background. 
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4.7.2 U-Net  

With the U-Net algorithm, the overall structure is implemented as show in Figure 20: 

 

Figure 20: RailGAN with U-Net 

The contracting path consists of two consecutive layers of 3*3 unpadded convolutions, which reduces 

the size of the image by 2 in both width and length. Max pooling with a 2*2 kernel is then applied to 

discretize the spatial size of the layer by retaining only the maximum value within each 2*2 area, 

effectively reducing the computational load [73]. An example of a 2*2 max pooling process is shown 

in Figure 21.  

 

Figure 21: Example of 2*2 maxpooling 
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The two 3*3 unpadded convolution and one 2*2 max pooling calculation are repeated three times 

during the contracting path to downsample the image. The ‘ReLu’ activation function i used in each 

step. The ReLu activation function sets the function value to 0 when x is smaller than 0 and equals to 

x when x is greater than or equal to 0 [74]. The ReLu activation function can be expressed as equation 

15 and can be visually represented in Figure 22. ReLu activation function provides computation 

efficiency and introduces the non-linearity property of U-Net, which helps to generalize training data.  

       𝒇(𝒙) = {
𝟎⁡⁡⁡𝒙 < 𝟎⁡
𝒙⁡⁡⁡𝒙 ≥ 𝟎

               ( 15 ) 

 

Figure 22: ReLU activation function 

During the expansive path, a 2D transposed convolution is used to upsample the feature map, 

followed by concatenation with the corresponding feature map in the contracting path to retain a more 

accurate prediction [75]. This process is repeated three times, and each step was finished with two 

3*3 unpadded convolution with ‘ReLu’ as an activation function. At the end of the expansion path, a 

final 1*1 convolution layer is used to map the feature vectors to classes. The loss of the network is 

originally measured by a multi-class cross-entropy loss function, but for our case, where we only 

want to segment the images into two classes (railway track and the background), the loss function is 

changed to binary cross entropy (BCE) for the training. The binary cross entropy function is derived 

from the Bernoulli distribution, as shown in equation 16.  

𝒇(𝒌; 𝒑) = 𝒑𝒌 + (𝟏 − 𝒑)(𝟏−𝒌)              (16) 



 

 37 

where k is the possible outcomes, p is the probability of the case 1, and 1-p is the probability of case 

2. Binary cross entropy is similar to the Bernoulli distribution with only two cases. However, the 

formal way of Binary cross entropy loss function is taking the log of both sides of the Bernoulli 

distribution, and it is expressed as: 

𝐥𝐨𝐠⁡(𝒇(𝒌: 𝒑) = 𝒌𝒍𝒐𝒈(𝒑) + (𝟏 − 𝒌)𝐥𝐨𝐠⁡(𝟏 − 𝒑)             (17) 

The network is trained with ‘Adam’ optimizer with a learning rate of 0.0001. Adam optimizer is 

chosen in this case for its fast computation time and less parameter to tune than other optimizer. [76] 

Adam implements the idea of the momentum stochastic gradient descent and root mean square 

propagation (RMSP), which are recognized as the two moving averages in the algorithm. Instead of 

regular stochastic gradient descent (SGD) which maintains the same learning rate during the weight 

updates and gradient descent, the concept “momentum” incorporates the information from the 

previous steps to accelerate the gradient descent process, and it is considered as the “exponentially 

weighted average” [77]. This step can be expressed equation 18 below to calculate the change of 

parameter (weights or position). 

𝜽𝒕 = 𝜽𝒕−𝟏 − 𝜶 ∙ 𝒎𝒕               (18) 

where 𝜃𝑡 is the parameter at time t, and 𝜃𝑡−1 is the parameter at previous step. 𝛼 ∙ 𝑚𝑡 is the change of 

parameter where 𝛼 is the learning rate and 𝑚𝑡 is the aggregate of gradients at time t. 𝑚𝑡 can be 

calculated as equation 19: 

 𝒎𝒕 = 𝜷𝟏 ∙ 𝒎𝒕−𝟏 + (𝟏 − 𝜷𝟏) ∗ 𝒈𝒓𝒂𝒅(𝜽𝒕−𝟏)             (19) 

where 𝛽 is average parameter, and  𝑔𝑟𝑎𝑑(𝜃𝑡−1) is the gradient of the parameter in the previous step, 

and it is calculated as the division of the derivative of loss function over the derivative of the 

parameter at time t. 

  𝒈𝒓𝒂𝒅(𝜽𝒕−𝟏) =
𝝏𝑳

𝝏𝜽𝒕
               (20) 

On the other hand, RMSP updates the parameter based on the moving average of the squared 

gradients.  

 𝜽𝒕 = 𝜽𝒕−𝟏 − 𝜶 ∙
𝒈𝒓𝒂𝒅(𝜽𝒕−𝟏)

√𝑽𝒕+𝒆
              (21) 
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where 𝑒 is a numerical constant to avoid denominator to be zero, and 𝑉𝑡 is the moving average of 

squared gradients, and it can be calculated as equation 22: 

𝑽𝒕 = 𝜷𝟐 ∙ 𝑽𝒕−𝟏 + (𝟏 − 𝜷𝟐) ∙ 𝒈𝒓𝒂𝒅(𝜽𝒕−𝟏)
𝟐            (22) 

The whole optimization process can be summarized as steps below [78]: 

1. All the parameters are initialized at time=0. 

      {
𝒎𝟎 = 𝟎
𝑽𝟎 = 𝟎
𝒕 = 𝟎

               (23) 

2. Then while parameter does not converge, the time will go to the next step. And the gradients 

are first updated. 

   𝒕 = 𝒕 + 𝟏               (24) 

     𝒈𝒕 = 𝒈𝒓𝒂𝒅(𝜽𝒕−𝟏) =
𝝏𝑳

𝝏𝜽𝒕
              (25) 

3. Then we calculate the first and second moment 𝑚𝑡 and 𝑉𝑡 

 𝒎𝒕 = 𝜷 ∙ 𝒎𝒕−𝟏 + (𝟏 − 𝜷𝟏) ∗ 𝒈𝒕              

( 26 ) 

  𝑽𝒕 = 𝜷 ∙ 𝑽𝒕−𝟏 + (𝟏 − 𝜷𝟐) ∙ 𝒈𝒕
𝟐              

( 27 ) 

4. During the next stage, we compute the bias-corrected first and second moments. 

𝒎𝒕̂ =
𝒎𝒕

(𝟏−𝜷𝟏)
               (28) 

𝑽𝒕̂ =
𝑽𝒕

(𝟏−𝜷𝟐)
               (29) 

5. And the last step is updating the parameter. 

    𝜽𝒕 = 𝜽𝒕−𝟏 − 𝜶 ∙
𝒎𝒕̂

√𝑽𝒕+𝒆
                        

( 30 ) 

4.7.3 Cyclegan Implementation 

Table 4 shows all the parameters used for building the discriminator network.  



 

 39 

Table 4: Discriminator network parameters 

 

The activation function used in the network is LeakyReLu with a negative slope coefficient of 0.2. 

LeakyReLu activation function is a variation of the ReLU activation function introduced above. 

Unlike ReLu, which has a value of 0 when x is smaller than 0, LeakyReLu is a function that has a 

small slope coefficient (in our case equals 0,2). The function equals x when x is greater than 0, which 

is the same as the ReLU. LeakyRelu activation function is shown as equation 31, and can be visually 

interpreted in Figure 23 [79]: 

𝒇(𝒙) = {
𝟎. 𝟐𝒙⁡⁡⁡𝒙 < 𝟎⁡
𝒙⁡⁡⁡𝒙 ≥ 𝟎

               (31) 

 

Figure 23: LeakyReLU activation function 

The discriminator losses are measured by mean square error (MSE), with the loss function as 

equation 32 [80]: 
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    𝑴𝑺𝑬 =
𝟏

𝒏
∑ (𝒀𝒊 − 𝒀̂𝒊)

𝟐𝒏
𝒊=𝟏               (32) 

where 𝑌𝑖 is the real value, 𝑌̂𝑖 is the predicted value.  

A discount factor of 0.5 was used on the loss to make the learning rate of the discriminator slower 

than the generators. Specifically, the learning rate of discriminator is set to be 0.5 times slower than 

the learning rate of the generator. The network is trained with the Adam optimizer at a learning rate of 

0.0001. Table 5 presents the generator network configuration. 

Table 5: Generator network parameters 

 

c7s1-64 is a 7*7 normalized layer with instance normalization and ReLU activation function 

(instanceNormReLU layer). This layer consists of 64 filters and stride 1. The second and third layers, 

with names starting with d followed by a number k (abbreviated as dk, similar to uk in the following 

descriptions), are 3*3 instanceNormReLU layers with k filters and stride 2. The residual layers 

(R256) consist of two 3*3 convolutional layers with 9 residual blocks concatenated to the output 

channel-wise. The fourth and fifth layers (denoted as uk) are 3*3 fractional-stride convolutional 

instanceNormReLU layers with k filters and stride 0.5. It is worth noting that, from the fourth layer, 

the convolution layers are transposed to convert the generated image back to original size 

(256*256*3). The final layer, denoted as c7s1-3, uses Tanh activation function with 3 filters and 

stride 1. Tanh activation can be written as the form in equation 33 [81]: 

𝒇(𝒙) =
𝒆𝒙−𝒆−𝒙

𝒆𝒙+𝒆−𝒙
               (33) 
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Figure 24: Tanh activation function 

As shown in Figure 24, the main characteristic of the tanh activation function is that the output is 

within the range [-1,1]. For the CycleGAN generator, the pixel values of the images are normalized to 

[-1,1], so the Tanh activation function is the most suitable for the CycleGAN network to generate 

images within the same range. 
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Chapter 5 

Defect Detection Algorithm 

The next step is to choose an appropriate defect detection algorithm, which serves two purposes in the 

project:  

1. The defect detection algorithm will be used to test and validate the effectiveness of the 

RailGAN algorithm developed in Chapter 4.  

2. It will be implemented on the drone for the final product. 

For the defect detection algorithm, there are two potential candidates have been proposed: VGG-16 

and YOLO. 

5.1 VGG-16 

The first candidate for defect detection is VGG-16 [82]. Originally named “Very Deep Convolutional 

Networks for Large-Scale Image Recognition,” it was developed by Visual Geometry Group in Oxford 

University and has a depth of 16 convolutional layers, including 13 convolutional layers and 3 fully 

connected layers. The main architecture of VGG-16 is shown in Figure 25. 

 

Figure 25: VGG-16 structure 
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As shown in Figure 25, the input image first goes through convolution layers, which has 5 different 

sections. During each section, multiple 3*3 convolutions are applied to the input images, followed by 

a 2*2 max pooling. In this structure, a stack of two 3*3 convolution filter serves as an effective receptive 

field of 5*5, and a stack of three 3*3 convolution filter serves as a 7*7 filter. The reason for breaking 

up a larger filter into a stack of 3*3 convolutions is that higher accuracy in distinguishing the decision 

function, and fewer parameters are required to tune to imporve the performance of smaller filters. These 

different sections reduce the size of the images.  

Following these 5 sections, the input images are flattened, and then go through three fully connected 

layers. The first two layers have 4096 neurons, and the last layer has 1000 neurons, which relate to 

1000 possible classes in the original VGG-16 architecture. However, for our railway track detection 

task, we only need to differentiate between defective and non-defective railways, so the last layer is 

modified to have only 2 neurons, one for each class. VGG-16 uses the Softmax activation function for 

the last layer, which is appropriate for multi-class classification tasks. In the future, the project will 

identify different types of surface defects, so Softmax activation is considered the most appropriate for 

this purpose. Softmax activation function converts the output values to a probability distribution over 

the possible classes, with the equation written as [83]:  

𝒇(𝒙)𝒊 =
𝒆𝒙𝒊

∑ 𝒆
𝒙𝒋𝑵

𝒋=𝟏
               (34) 

Suppose there are different classes in x, and the weight for these classes can form an arbitrary vector. 

In Equation 34, 𝑥𝑖  is the ith index in this vector, N is the total number of classes [84]. For better 

understanding of this equation, Softmax function can be considered as taking a vector with the weight 

of different classes as inputs and applying an exponential function to each element in the vector, 

followed by a normalization process by dividing by the summation of all the exponential values in the 

vector. Softmax ensures that the total of all values in the vector adds up to 1, making it suitable for 

predicting probability distribution, particularly for multi-class classification tasks such as the defect 

detection in this project.  

To train the network, the images are divided into two categories: defective railways and non-defective 

railways. During the training, the network learns to map each defect image to its corresponding 

category. For actual implementation, VGG-16 outputs the possible category that the image belongs to 

along with its corresponding probability.  
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5.2 YOLO-Network 

YOLO (You Only Look Once) is selected as the second algorithm to validate the fabricated images 

due to its high overall performance in terms of speed and accuracy compared to other object detection 

algorithms [85]. Unlike other object detection methods such as RCNN, Faster RCNN or FPN, which 

use two-stage detection methods [86], YOLO uses a one-stage detection method with a single neural 

network that combines the two processes by direct regression. 

5.2.1 YOLO-Architecture 

YOLO was originally modified from the GoogLenet, and its architecture includes a total of 24 

convolutional layers with 2 fully connected layers at the end, as shown in Figure 26 [87]: 

 

Figure 26: Architecture of YOLO 

The first 24 convolutional layers are used for image classification by extracting the image features. 

This architecture is similar to the GoogLenet, however, YOLO simplifies the GoogLenet by replacing 

the idea of the inception module with a combination of a 1*1 reduction layer with a 3*3 convolutional 

layer, except for the first layer that has a (7*7) filter [88]. The last two fully connected layers are used 

for prediction. YOLO-v5 uses the Leaky ReLU activation function in the hidden layers and sigmoid 

for the detection layer. 

As for the optimizer, YOLO originally suggests stochastic gradient descent (SDG). However, as 

discussed in section 4.7.2, Adam performs better than the traditional SDG, so for the training our 

defect detection algorithm, we have decided to use the Adam optimizer instead. 
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5.2.2 Principle for Defect Detection 

First, YOLO splits the input image into an S*S grid. Instead of having large grids that contain the 

whole object that needs to be detected, these small grids are created to only contain the center of these 

objects. In order to achieve object detection, each grid is responsible for predicting B bounding boxes, 

and these bounding boxes have 5 values: the coordinates of the center of the box (x,y), the size of the 

bounding box (width and height), and the confidence score. The confidence score represents the 

probability that an object is contained within the bounding box. For example, in Figure 27, the images 

are divided into 7*7 grids. Each grid has 2 bounding boxes, resulting in a total of 98 bounding boxes. 

There are also different weights of lines for bounding boxes, which symbolize different confidence 

score (the thicker line means higher confidence, and thinner line means lower confidence).  

 

Figure 27: Example of YOLO 

The first four values enable the bounding box to locate the object, but they need to be normalized into 

the range between 0 to 1 to be fed into the CNN. For x and y, these two values only need to be 

divided by the size of the grid. The width and height of the bounding boxes can be normalized by 

dividing them by the width and height of the whole image. The confidence score is calculated as 

𝒄𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆 = 𝐏𝐫(𝒐𝒃𝒋) ∗ 𝑰𝑶𝑼𝒕𝒓𝒖𝒕𝒉
𝒑𝒓𝒆𝒅

             (35) 

where Pr(𝑜𝑏𝑗) is the probability of a grid containing an object, and IOU is the intersection over union 

between predicted bounding box and the ground truth. The principle of IOU is represented in Figure 

28 and IoU is defined as: 
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           𝑰𝒐𝑼 =
𝒕𝒓𝒖𝒕𝒉∩𝒑𝒓𝒆𝒅

𝒕𝒓𝒖𝒕𝒉∪𝒑𝒓𝒆𝒅
              (36) 

 

 

Figure 28: Principle of IoU 

The YOLO network can also predict the probability of a grid cell containing an object and its class-

specific confidence score. The object can be located by multiplying the confidence score with the 

class probability. This is represented by equation 37, where the class probability is conditioned on the 

object being present in the cell. 

    𝐏𝐫(𝑪𝒍𝒂𝒔𝒔|𝑶𝒃𝒋𝒆𝒄𝒕) ∗ 𝐏𝐫(𝒐𝒃𝒋) ∗ 𝑰𝑶𝑼𝒕𝒓𝒖𝒕𝒉
𝒑𝒓𝒆𝒅

= 𝐏𝐫(𝑪𝒍𝒂𝒔𝒔) ∗ 𝑰𝑶𝑼𝒕𝒓𝒖𝒕𝒉
𝒑𝒓𝒆𝒅

           (37) 

There can be different grid cells that predict the same object. By setting the threshold of IOU, YOLO 

can discard one that is lower than the threshold (these grids is considered irrelevant to the class). 

However, this does not solve the problem of having multiple bounding boxes that contains the same 

object that are all over the threshold. This can cause noise during the training. To tackle this issue, 

YOLO uses NMS to keep the boxes that has the largest confidence score and remove the one with 

smaller confidence.   
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5.3 Discussion 

For the defect detection, the first step is to take the video and use the defect detection algorithm to 

locate any defects from the video, and the next step is to implement such defect detection algorithm 

on the drone to achieve real-time defect detection.  

When comparing VGG-16 with YOLO-v5, VGG-16 can only perform image classification (defect 

and non-defect), while YOLO-v5 can not only perform classification, but can also localize the object 

such as defects in the image. Since VGG-16 has a less complex task to perform, the processing and 

training time are faster compared to YOLO-v5.  

If VGG-16 is used as the solution, the video or the live stream will be processed frame by frame, and 

the algorithm can only identify the frames that contain the defect, i.e.  defective images. On the other 

hand, if we use YOLO-v5, although the processing speed would be slower, the algorithm can detect 

and locate the defects on the live stream. This would allow the algorithm to output the image of the 

defect in a bounding box, as well as information such as its shape, width, depth and location on the 

railway track, which can be analyzed by mechanics to facilitate the repair process.  

Considering all these aspects, we have selected YOLO-v5 as the defect detection algorithm for this 

project.  
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Chapter 6 

Experiment and Results 

This chapter will provide an overview of the training, testing and validation process for the different 

CNN architectures described in Chapter 5 and 6. Additionally, the results of the generated images by 

the RailGAN proposed in Chapter 5 and the ability to detect defects using YOLO-v5, as introduced in 

Chapter 6, will be presented.  

6.1 Image Segmentation 

6.1.1 U-Net Training 

To train the U-Net, two sets of images were required: railway images and their corresponding 

segmentation map output. The segmentation map for each image was manually labeled using online 

software (labelstudio.io) by highlighting the track area. The dataset used to train the U-Net consisted 

of 120 real-time railway images taken from the drone and their corresponding masked images labelled 

on the railway track surface. Examples of the created dataset are presented in Figure 29. 

 

Figure 29: Real-time railway images (top row) and masked images (bottom) 
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The effectiveness of the image segmentation model is usually evaluated by two criteria: accuracy and 

dice score. Accuracy is defined as the number of correctly labeled pixel values over the total number 

of pixels in all images, and it can be represented by equation 38. 

𝒂𝒄𝒄𝒖𝒓𝒂𝒄𝒚 =
𝑻𝑷+𝑻𝑵

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
              (38) 

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative. The Dice 

score, on the other hand, is defined as Equation 39 [8]: 

𝒅𝒊𝒄𝒆⁡𝒔𝒄𝒐𝒓𝒆(𝑨,𝑩) =
𝟐𝑻𝑷

𝟐𝑻𝑷+𝑭𝑷+𝑭𝑵
=

𝟐|𝑨∩𝑩|

|𝑨|+|𝑩|
            (39) 

where A is the predicted result from U-net and B is the true masked image from the dataset.  

The U-net was trained with two sets of datasets using the learning rate of 0.00001 and was initially set 

to train for 200 epochs. The accuracy and dice score vs number of epochs are shown in Figure 30.  

 

 

Figure 30:Accuracy and dice score during training 

0

20

40

60

80

100

1 6
1

1
1

6
2

1
2

6
3

1
3

6
4

1
4

6
5

1
5

6
6

1
6

6
7

1
7

6
8

1
8

6
9

1
9

6
1

0
1

1
0

6
1

1
1

1
1

6
1

2
1

1
2

6
1

3
1

1
3

6
1

4
1

1
4

6
1

5
1

1
5

6
1

6
1

1
6

6
1

7
1

1
7

6
1

8
1

1
8

6
1

9
1

1
9

6

A
cc

u
ra

cy

Epochs

Accuracy During Training

0

0.2

0.4

0.6

0.8

1 8

1
5

2
2

2
9

3
6

4
3

5
0

5
7

6
4

7
1

7
8

8
5

9
2

9
9

1
0

6

1
1

3

1
2

0

1
2

7

1
3

4

1
4

1

1
4

8

1
5

5

1
6

2

1
6

9

1
7

6

1
8

3

1
9

0

1
9

7

D
ic

e 
Sc

o
re

Epochs

Dice Score During Training



 

 50 

Figure 30 shows that the accuracy of the U-net model started at 30% and quickly reached 90% at 

around 35 epochs. This was due to the small amount of training dataset for the network. At 200 

epochs, the U-net model achieved a high accuracy of 96%, which was considered sufficient to be 

adopted for the RailGAN. 

On the hand, the dice score of the U-net model, which is shown in Figure 30, started at 0 and rose to 

about 0.7 at the fourth epochs, which was an acceptable dice score for image segmentation. 

Throughout the training process, the dice score fluctuated between 0.4 to 0.7. This will be further 

discussed in the Chapter 7.  

The trained U-Net model was tested and evaluated with 20 different railway images found online, 

along with their corresponding masked images. The results of some test images are shown in Figure 

31, indicating that the trained U-Net model can successfully segment the railway track from the 

background regardless of light condition and pixel values. 

 

Figure 31: Result of U-Net after 100 epochs 

In order to determine the most effective method for image segmentation, the performance of U-Net was 

compared with the image filter techniques. Both methods were applied to same set of real-time images 

by following the flowchart described in sections 4.7.1 and 4.7.2, as illustrated in Figure 32. The original 
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railway images are shown in the first column, and the results of segmentation using image filters and 

U-Net are shown in the second and third columns, respectively.  

 

Figure 32: Left column: original images; center column: image segmentation by image filters; 

right column: image segmentation by U-Net.  

When image filter techniques were used to perform railway track segmentation, the threshold value had 

to be adjusted according to pixel intensity values of the railway track, which were affected by lighting 

conditions in the images. In the first row of Figure 32, the threshold had to be set between 130 to 220; 
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in the second row, the threshold was set between 170 and 220. In the third row, since the pixel value of 

the railway track was higher than the background, an inverse binary thresholding between 160 to 250 

had to be used. However, the U-Net approach produced more consistent results regardless of the pixel 

intensity values of the track surfaces in all three images. Besides, some pixels were mis-categorized in 

all of the images by image filter technique. The railway track region segmented in the second column 

included part of the background, and the background also contained some part of railway track surfaces, 

whereas the U-Net was able to perform a more reliable separation on the track surface from the 

background, as shown in the third column. Therefore, U-Net was selected as the image segmentation 

solution for the RailGAN. 

6.2 RailGAN Implementation 

After selecting U-net as the image segmentation method, by following the flowchart in Figure 20, the 

CycleGAN model was trained to generate defects on the railway track area only. However, there were 

only 15 defective railway surface images available for the development of the model from online 

resources. To overcome the lack of dataset, some image manipulation methods, such as image rotation, 

resizing, cropping, and contract adjustment, were applied to the existing datasets to expand it to 100 

images. These images, along with 100 non-defect images, were first segmented by U-net, and the 

railway track region of these images were sent to the CycleGAN for training. During training process, 

the model was saved after every 120 epochs. By observing each model output, the network learned the 

mapping and improved its performance during training. However, after 1800 epochs, the model began 

to show signs of overfitting and became unstable, producing images with dramatical changes in color 

tones. The best performing model in the validation process was the one trained for 1800 epochs. 

Example images generated by both generator 1 and generator 2 of the model can be shown in Figure 

33 and Figure 34, respectively. 
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Figure 33: Training progress of generator 1 (non-defect to defect) 
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Figure 34: Training progress from defect to non-defect 

The RailGAN model was developed by combining the trained U-net segmentation model from section 

6.1.1 with the CycleGN model trained. To further evaluate the performance of RailGAN, this model 
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was applied to 20 images captured from real-time video taken with a drone. These images contained 

railway tracks taken from different angles and under different light conditions, and some examples are 

shown in Figure 35. 

 

Figure 35: Images generated from RainGAN 

However, there still requires the confirmation of the effectiveness of the RailGAN compared to the 

original CycleGAN model in terms of generating railway track defects, so a comparison test between 

two models was conducted. First, the Cyclegan model was re-trained using the same 200-image dataset 

(100 with defect and 100 non-defect), but this time without the image segmentation by U-Net. Then, 

both RailGAN model and CycleGAN were applied to the same test images, and the results are shown 

in Figure 36. Figure 36(b) shows the outputs of the CycleGAN model, which has no control over where 

the defects are generated. In contrast, Figure 36(c) demonstrates that the RailGAN model performed 

significantly better by generating defects only on the track surface. Moreover, all of the defect images 

generated by the RailGAN resemble real cracks on the railway surface, indicating that these images 

can be effectively utilized for defect identification and classification algorithm in the next stage. 
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Figure 36: Three example images with different lighting conditions and angles: (a) live image of 

railway track; (b) results from the original CycleGAN model; (c) results from the RailGAN 

model. 
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6.3 Defect identification algorithm 

Using the RailGAN algorithm, a total of 100 defect images with different crack patterns and lighting 

conditions were generated. Then the defects in these fabricated images were labelled by Roboflow, 

and the dataset was split into training and validation sets in a 9:1 ratio. Some examples of the labelled 

dataset are demonstrated in Figure 37. 

 

Figure 37: Example of labelled images 

These fabricated images, coupled with the coordinates of corresponding label bounding box in each 

image, were sent to the YOLO-v5 network by Roboflow for training. The training process was 

originally set with 2000 epochs with learning rate of 0.0001, and Roboflow automatically saved the 

model with the best performance. For YOLO, the performance of the model was evaluated by 

precision, recall, mean average precision with threshold over 0.5 (mAP50). The precision measures 

the accuracy of the prediction, and is defined by equation 40 [90]: 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =
𝑻𝑷

𝑻𝑷+𝑭𝑷
              (40) 

On the other hand, recall measures the model’s ability to find the positives, and is defined as equation 

41 [90]: 

𝑹𝒆𝒄𝒂𝒍𝒍 =
𝑻𝑷

𝑻𝑷+𝑭𝑵
              (41) 

From the precision and recall values obtained for a certain class, the precision-recall (PR) curve for 

this particular class can be obtained. Figure 38 shows the PR curve for the class defect:  
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Figure 38: PR curve for YOLO training 

Suppose there are k number of classes in total, the mAP can be defined as [91]: 

      𝒎𝑨𝑷@𝒕 =
𝟏

𝒌
∑ 𝑨𝑷@𝒕𝒌−𝟏
𝟎               (42) 

where t is the threshold, and AP is the area under the PR curve.  

The loss, precision, recall and mAP50 during training are visually presented in Figure 39. 

 

Figure 39: Loss, precision, recall and mAP50 during training 
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During the training process, the loss decreased while the precision, recall, and mAP 0.5 increased. 

However, a sign of overfitting was observed as the precision, recall and mAP 0.5 slightly decreased 

towards the end of the training. The model reached the best overall performance after 1348 epochs, 

which is automatically selected by Roboflow, by having 95.8% precision, 83.6% recall and 91.1% 

mAP50. This model was saved out for testing and validation. 

This trained YOLO model was then applied to the original defect images to verify the effectiveness of 

the algorithm on real defect images for testing. Among 10 real defect images with cracks found 

online, the trained YOLO model was able to identify 9 defects, as shown in some examples in Figure 

14.  

 

Figure 40: Example of crack defects identified by YOLO algorithm 
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Chapter 7 

Conclusion and Future Work 

7.1 Conclusion 

Considerable amount of work has been made in this project of achieving autonomous railway defect 

recognition. There are different types of railway defects, and this project aimed to tackle the surface 

defect that can develop and initiate other types of defects.  

The literature review in Chapter 2 identified multiple attempts to tackle railway defect recognition. 

And among different NDT methods, visual inspection was considered to be the most suitable since it 

is portable and does not require external excitation applied to the whole railway track. The drone was 

then selected as the most suitable platform for visual inspection. Thus, the whole project was divided 

into the drone navigation on the railway and defect identification algorithm.  

In Chapter 3, the drone hardware and software components were discussed, along with the navigation 

system that enables autonomous flight. For the drone navigation, the key process is to find the railway 

track in the images. In the project, two different ways were proposed. The first method is template 

matching, which use a template of a small section of the railway track to find the railway track region. 

The second method is to apply different filters to achieve railway edge detection. By comparing both 

methods, the latter one has a more consistent performance since template matching requires the drone 

flying at a fixed height, and the threshold needs to be adjusted according to the intensity value of the 

railway track.  

Chapter 4 proposed RailGAN model to generate artificial defect images of railways. The images first 

went through the track segmentation, which could separate railway track from the background. Two 

different methods were considered to perform this task. In the first method, image filters such as the 

Gaussian filter and Sobel filter were used to extract the railway track surface, while the second 

method adopted the CNN method U-Net. To train U-net, 120 railway images along with their labeled 

masked images were used. After 200 epochs, the model reaches an accuracy over 96% and a dice 

score close to 0.7, which is acceptable for image segmentation method. Comparison of the results 

from these two methods indicated that the U-Net model could achieve more consistent results, while 

the threshold values for the image filters were highly dependent on the pixel intensity values of the 

railway track surface.  
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Then, the trained U-net model is used to perform image segmentation on railway track surface which 

is later used for the defect generation. The defect generation method selected was based on 

CycleGAN, followed by splicing the background section back to finish the whole RailGAN model 

process. During the training process, the CycleGAN model is saved every 120 epochs, and the best 

model is accepted at 1800 epochs.  By applying the RailGAN to live footages taken by a drone, it was 

evident that RailGAN performed significantly better than the original CycleGAN model. RailGAN 

could successfully generate defects only on the railway surface, while the original Cyclegan model 

tended to generate defects in the background.  

With the RailGAN model, the defective railway images are generated. These images are labeled by 

RoboFlow, and the images as long as the bounding boxes are sent to the YOLO-v5 model for the final 

defect identification algorithm. And the result show by applying the trained model to the defective 

railway track images, YOLO can successfully identify 90% of all the defects. 

7.2 Future work 

Although this project achieved significant progress in the development of the RailGAN model and 

defect detection algorithm, there is still more work to be done to successfully build a prototype for 

autonomous railway defect recognition. Due to the time constraints, the project mainly focused on 

these key elements, but future work should also consider other important aspects such as drone 

autonomous flying. 

In addition, the developed defect detection algorithm can also be implemented on other platforms 

such as a railway cart, which can provide more flexibility and accuracy in detecting defects. 

Furthermore, the development of RailGAN also inspires future projects in terms of image generation, 

which can be applied to other areas such as medical imaging and computer vision. Therefore, future 

work can explore the potential of the developed technologies in other fields and improve their 

performance and efficiency. 

7.2.1 Drone Control 

Currently, all the track detection and autopilot algorithms were developed and simulated on a 

powerful desktop PC in Python scripts; however, they have not been integrated with the live drone 

control. The immediate next step for this regard is to migrate the developed algorithms and functions 

to the drone controller with the SDK provided by DJI. SDK enables a development of a mobile 
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application. Then the mobile device needs to connect to the controller through wire connection, and 

the controller will communicate the command from SDK to the drone through radio signal. The 

current progress to achieve this is getting the video live stream from the drone camera. The video will 

be processed by the track detection algorithm with the power of the mobile device. Once all these 

algorithms are compiled and loaded on the drone, the iterative process of R&D to fine tune the 

models and algorithms will take place. Online and offline testing on the drone will be carried out. To 

help streamline the process, the team will also try to implement an on-board WIFI emitter to establish 

live wireless communication between the drone and the ground control.  

7.2.2 Defect Detection Algorithm 

Currently, all the algorithms developed have shown the potential to achieve defect recognition. First 

some fine-tunning still need to be done for all these networks. For example, the U-net still achieve a 

relatively low dice score, so more research will be done on the activation function to increase the 

performance of the model. Next, the project will be focusing on generating a large patch of defective 

railway images by RailGAN network. As introduced in Chapter 6, the current RailGAN model have 

only generated 120 defective images, and we are looking at having over one thousand images as the 

defective dataset, and YOLO-v5 model will be retrained with this larger dataset.  

As mentioned above, the whole program will be implemented on the drone, so once the defect 

detection algorithm is trained and validated, the network will be saved as json file in order to be used 

in JAVA, and the SDK application developed will use this algorithm to achieve real-time defect 

detection.
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Appendix A 

Image Tracking 

import math 

import statistics 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

# video=cv2.VideoCapture("Along_Rail.MP4") 

# while True: 

#     ret,frame=video.read() 

#     if not ret: 

#         video=cv2.VideoCapture("") 

#         continue 

# 

#     cv2.imshow('frame',frame) 

# 

#     key=cv2.waitKey(25) 

#     if key==27: 

#         break 

# video.release() 

# cv2.destroyAllWindows() 

image_original = cv2.imread('DJI_0010.JPG') 

print(image_original.shape[0:2]) 

height,width=image_original.shape[0:2] 

#resize the picture 

image_resized=cv2.resize(image_original,(0,0),fx=0.25,fy=0.25) 

 

#convert to greyscale 

image_gray = cv2.cvtColor(image_resized, cv2.COLOR_BGR2GRAY) 

cv2.imwrite('greyscale.jpg', image_gray) 

#image2=cv2.imshow('Gray',image_gray) 

#cv2.waitKey(0) 

#apply Guarssian filter 

img_blur = cv2.GaussianBlur(image_gray,(3,3), cv2.BORDER_DEFAULT) 

cv2.imwrite('blurred.jpg', img_blur) 

#image2=cv2.imshow('blurred',img_blur) 

#cv2.waitKey(0) 

sobelx2 = cv2.Sobel(img_blur, cv2.CV_16S, 1, 1, ksize=3) 

abs_sobel64f = np.absolute(sobelx2) 

sobel_x = np.uint8(abs_sobel64f) 

 

kerSize = 20 

kernel = np.ones(shape=(kerSize, kerSize)) * 0.1 

img_sobel_filtered = cv2.filter2D(src=sobel_x, ddepth=-1, kernel=kernel) 

 

img_binary = cv2.threshold(img_sobel_filtered, 200, 255, 

cv2.THRESH_BINARY_INV)[1] 

 

# cv2.imshow('flt',img_sobel_filtered) 

cv2.imshow('BIN',img_binary) 

cv2.imwrite('filtered.jpg', img_binary) 
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#plt.plot(img_sobel_filtered[1,:]) 

 

#plt.show() 

#image4=cv2.imshow("sobel",sobel_x) 

#Double Threshold 

filtered_image = cv2.Canny(sobel_x, 90,100) 

Lines=cv2.HoughLinesP(img_binary,1,math.pi/180,300,10,300) 

print(Lines) 

x1 = np.zeros(Lines.shape[0]) 

y1 = np.zeros(Lines.shape[0]) 

x2 = np.zeros(Lines.shape[1]) 

y2 = np.zeros(Lines.shape[1]) 

for i,line in enumerate (Lines): 

    x1[i],y1[i],x2[i],y2[i]=line[0] 

    #cv2.line(image_resized,(x1,y1),(x2,y2),(0,255,0),3) 

 

x3 = x1.tolist()+x2.tolist() 

 

''' 

x3.sort() 

x_11 = int((x3)) 

for i in range(len(x3)-1): 

    if (x3[i+1]-x3[i]) > 100: 

        x_12 = int(x3[i]) 

        x_21 = int(x3[i+1]) 

        break 

x_22 = int(max(x3)) 

''' 

 

x3.sort() 

x_mean=int(statistics.mean(x3)) 

for i in range(len(x3)-1): 

    if (x3[i]>x_mean): 

        x_11=int(x3[0]) 

        x_12=int(x3[i-1]) 

        x_21=int(x3[i]) 

        x_22=int(x3[-1]) 

        break 

 

cv2.line(image_resized,(x_11,900),(x_12,0),(0,255,0),3) 

cv2.line(image_resized,(x_21,900),(x_22,0),(0,255,0),3) 

# Plot output 

image1= cv2.imshow('filtered image',filtered_image) 

image7=cv2.imshow('line',image_resized) 

cv2.waitKey(0) 
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Appendix B 

Video Tracking 

import math 

import statistics 

from PIL import Image, ImageDraw 

import cv2 

import numpy as np 

import matplotlib.pyplot as plt 

 

#import video 

video=cv2.VideoCapture("Along_Rail.mp4") 

while True: 

    ret,frame=video.read() 

    if not ret: 

        video=cv2.VideoCapture("Along_Rail.mp4") 

        continue 

#resize the picture 

    img_resized=cv2.resize(frame, (0, 0), fx=0.25, fy=0.25) 

    height=img_resized.shape[0] 

    width=img_resized.shape[1] 

#convert to greyscale 

    image_gray = cv2.cvtColor(img_resized, cv2.COLOR_BGR2GRAY) 

#apply Guarssian filter 

    img_blur = cv2.GaussianBlur(image_gray,(7,7), 7) 

#sobel filter 

    #sobelx2 = cv2.Sobel(img_blur, cv2.CV_16S, 0, 1, ksize=3) 

    sobelx2 = cv2.Sobel(img_blur, cv2.CV_16S, 1, 0, ksize=3) 

    cv2.imshow("haha", img_blur) 

    abs_sobel64f = np.absolute(sobelx2) 

    sobel_x = np.uint8(abs_sobel64f) 

    kerSize = 5 

    kernel = np.ones(shape=(kerSize, kerSize)) * 0.2 

    #cv2.imshow('',sobel_x) 

    img_sobel_filtered = cv2.filter2D(src=sobel_x, ddepth=-1, 

kernel=kernel) 

    #cv2.imshow('',img_sobel_filtered) 

# Double Threshold 

    img_binary = cv2.threshold(img_sobel_filtered, 70, 130, 

cv2.THRESH_BINARY_INV)[1] 

#find lines 

    

Lines=cv2.HoughLinesP(img_binary,1,math.pi/180,200,minLineLength=400,maxLi

neGap=4) 

    x1 = np.zeros(Lines.shape[0]) 

    y1 = np.zeros(Lines.shape[0]) 

    x2 = np.zeros(Lines.shape[0]) 

    y2 = np.zeros(Lines.shape[0]) 

    for i,line in enumerate (Lines): 

        x1[i],y1[i],x2[i],y2[i]=line[0] 
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    x3 = x1.tolist()+x2.tolist() 

    x3.sort() 

    x_mean=int(statistics.mean(x3)) 

    w=width/2 

    if x_mean<w: 

        distance=w-x_mean 

        T="Should move{} pixel to the left".format(distance) 

        cv2.putText(img_resized, T, 

                    (100,100), 

                    cv2.FONT_HERSHEY_SIMPLEX, 

                    1, 

                    (250,0,0), 

                    2) 

    elif x_mean>w: 

        distance=x_mean-w 

        T="Should move {} pixels to the right".format(distance) 

        cv2.putText(img_resized, T, 

                    (100, 100), 

                    cv2.FONT_HERSHEY_SIMPLEX, 

                    1, 

                    (250, 0, 0), 

                    2) 

    #cv2.imshow("haha", img_resized) 

    '''for i in range(len(x3)-1): 

        if (x3[i] > x_mean): 

            x_11=int(x3[0]) 

            x_12=int(x3[i-1]) 

            x_21=int(x3[i]) 

            x_22=int(x3[-1]) 

            break 

    ''' 

    cv2.line(img_resized, (x_mean, 900), (x_mean, 0), (0, 255, 0), 7) 

    #cv2.line(img_binary, (x_mean, 540), (x_mean, 0), (0, 255, 0), 7) 

    #cv2.line(img_resized, (x_21, 900), (x_22, 0), (0, 255, 0), 3) 

    sel = 1 

 

    if sel == 1: 

        trg = img_resized 

    elif sel == 2: 

        trg = img_binary 

    elif sel == 3: 

        trg = img_sobel_filtered 

    elif sel ==4: 

        trg = sobel_x 

 

    cv2.imshow("haha", trg) 

 

    key=cv2.waitKey(25) 

    if key==27: 

        break 

video.release() 

cv2.destroyAllWindows() 


