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Abstract

Deep learning has dominated the landscape of computer vision for the past decade.
Deep learning networks are the top performers on a slew of computer vision challenges
(e.g., object detection or image segmentation) and on the most popular datasets. They
outperform other approaches by a large margin, each armed with their own tricks to im-
prove upon their predecessors. However recent research highlights several short-comings
of deep learning approaches, from poor generalization performance to the difficulty in un-
derstanding the rationale behind the decisions they make. More nuanced and human-like
tasks such as visual relationship detection still prove difficult for deep learning networks
as well.

In this thesis we tackle the problem of scene graph generation: the task of generating
a directed graph that describes the relationships between detected objects in an image.
We empirically identify, highlight and discuss the shortcomings of modern deep learning
approaches to this task along with the reasoning behind these failures. Scene graph gen-
eration relies on both object detection and visual relationship detection. Our experiments
first tackle object detection (through its more advanced task of instance segmentation)
in isolation, then explore visual relationship detection starting with its data and moving
on to its deep learning based approaches. Finally we propose and implement Topological
Relationship Fields, a novel approach that allows for representing and grounding relation-
ships purely visually. We utilize this representation for a scene graph generation approach
that builds upon our findings and tackles the problem radically differently than the current
standard approaches.

First, we isolate, evaluate, and quantify the effect of various image and object-level
signals on performance of deep learning-based instance segmentation approaches. This is
done via specifically crafted augmentations of the COCO 2017 object detection dataset. We
also explore how (or even whether) the effect of shape, content and context changes with
different training schedules, backbone architectures, and in non ROI-based detectors. We
find underlying biases to object mask shapes that plague Instance Segmentation and object
detection networks. We explore the bias of object shape versus content (its internal textures
and contours) and find this bias to be object-dependent, where certain objects are more
readily detected and even hallucinated based on shape (e.g., airplanes), whereas others are
more reliant on their content (e.g., zebras), and some on both (e.g., people). An object’s
content still plays the largest role in its classification, however networks start relying more
on shape and context when the object pixels are masked. We also find object context
and background play a limited, but not insignificant role in its detection and classification.
These assessments are critical in pinpointing certain unknown or unexpected behaviours



in commonly used deep networks, and in shedding light on potential failure modes in out
of distribution data.

Then, we explore the shortcomings of modern approaches to Scene Graph Generation
from a data, evaluation and an algorithmic standpoint. We begin by exploring the human
induced labelling bias in the Visual Genome Dataset (the de facto standard dataset used
in Scene Graph generation). It contains a large collection of images with corresponding
object and relationship labels. We explore the lingual aspect of the relationship predi-
cates and find that very few symmetric/inverse relationships are represented in the dataset
(for example, ’above’ and 'under’). We believe this is linked to human spatial cognition,
and posit that labelling bias stemming from human representations of relationships cre-
ates asymmetric relationship labels that span the whole dataset. We also perform a 2D
topological analysis of the bounding boxes linked by different relationship predicates. This
analysis sheds light on certain classes and their ambiguity wherein more frequent classes are
semantically overloaded and therefore quite confusing. We also show that when reduced to
more lingually and topologically well defined spatial relationships Scene Graph Generation
performance improves tremendously, but Scene Graph Generators remain far from perfect
even with better data. We show this by examining the ‘visual-ness’ of visual relationship
detection with current deep learning approaches. We describe and implement a new Naive
Bayes-based ‘statistical baseline’ for scene graph generation and demonstrate that a clas-
sical machine learning approach, one as simple as a categorical Naive Bayes classifier, can
perform relationship detection in a manner that achieves competitive performance to that
of modern scene graph generators. Most notably, this basic classifier does not utilize the
image pixels, but relies on the properties of the bounding boxes (class labels, topological
configuration, ... etc.) to predict the relationship labels. This is an alarming finding re-
garding scene graph generation that implies that visual data in images is often not being
utilized in modern visual relationship detection past the point of object detection.

Finally, we propose, implement and experiment with Topological Relationship Fields,
a novel paradigm for visual relationship detection and scene graph generation. Noting the
lack of reliance on the visual data in images for visual relationship detection, we specifically
propose a relationship representation and detector, that, by design, can only utilize the
visual, pixel-level, data in images and cannot explicitly make use of class statistics. While
this approach does not perform at the level of existing scene graph generation methods, it
shows promise as a first step towards a radically different paradigm to this task. It also
brings with it several benefits which include explainability, significantly reduced network
size, and a generalizable model capable of performing well in a zero shot setting.
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Chapter 1

Introduction

Our minds are marvelous.

Over the span of hundreds of thousands of years, our minds have learned to harness
fire, first for warmth, then for cooking, and eventually to power our world. Fire is just
one example of human ingenuity, and how our brains continue to learn and improve on
their knowledge. Humans consistently innovate and build on what they know to propel us
forward, each generation harnessing the knowledge of the ones preceding it. The rise has
been exponential, with the last few decades bringing with them technologies that would
seem almost alien to someone from the 1800’s. This is especially apparent when looking
at the field of artificial intelligence, where the improvement in hardware, coupled with
relatively recent research has created an almost synergistic effect, allowing machines to be
‘smarter’ than ever.

The field of deep learning (DL) specifically has seen a meteoric rise in popularity since
the beginning of the 2010’s, with Alexnet [65] motivating researchers to revisit artificial
neural networks and utilize them in a variety of different applications. Often times, these
deep networks have outperformed classical machine learning approaches, and they ap-
pear to solve previously unsolvable problems. Deep learning has effectively revolutionized

computer vision including fields such as image segmentation [18, 95, , ], 3D under-
standing and novel view synthesis [103, |, and video understanding [43] among many
others. Notably, approaches in DALL-E [105] and DALL-E 2 [104] appear to have even

learned how to be ‘creative’ and seem to be capable of generating images that are nothing
short of works of art.



1.1 Understanding The Limits of Current Deep Learn-
ing Approaches

Despite the immense progress achieved with deep learning, computer vision still isn’t a
fully solved problem. As they currently stand, deep architectures are usually able to solve
problems when provided with sufficient training data, as well as limited data variability
during inference time, however, these guarantees do not extend to those same architectures
when training data is scarce or when the inference domain is sufficiently varied [39, 106, 94].
Even the impressive results seen in DALL-E 2 lose some of their shine upon closer inspection

[91].

Furthermore, performance on ‘standard’ or benchmark datasets and challenges still
has not saturated: these include the COCO [77] and LVIS [11] datasets for more general
object detection and instance segmentation, and even more specific use datasets such as the
Cityscapes dataset [21] which is restricted to street imagery (from the view of a car). State
of the art performance appears to be even worse on benchmark datasets and challenges
aimed at higher level tasks, for example the Visual Genome dataset [61] which allows for
more human-like tasks such as visual question answering and visual relationship detection
(detecting relationships between objects in an image). Also, network performance outside
these benchmark datasets (which they are trained on) is quite often a large step below their
performance within these datasets [147, 94, 106].

A growing body of research on generalization performance and network robustness aims
to garner insight into the unpredictable behaviours networks exhibit [1141, 6, , ], what
some of the driving factors are [131, 23, 52], and how to mitigate them [102, 37]. This type
of validation research, and digging into what is driving networks to do well, and where
(and why) networks fail is critical to progressing the field of computer vision as it often
gives us the best insight into how to proceed with fixing the issues that are holding these
networks back. As such, we dedicate a large portion of this thesis to answering these
questions in the domains of instance segmentation (Chapter 3) and visual relationship
detection (Chapters 4 and 5) where this type of validation research has not yet been
thoroughly explored. The performance disparity, and the underlying deep learning artefacts
and biases causing it, are a very likely culprit in why applications of computer vision
ranging from medical image analysis to self driving cars (and many applications in between )
are not trivial to automate with deep learning just yet. For example, in the case of
autonomous vehicles, while performance is getting better when measured on the sunny
highways of San Francisco, there is a lot of research still geared towards solving some very
fundamental and realistic problems [10], such as engineering around image deformations



resulting from raindrops on the camera or radar [155]. We pinpoint these unpredictable
artefacts and their likely causes and effects in very commonly used network paradigms
(for example in MaskRCNN [14] which is effectively used in literature as an off the shelf
object detector/instance segmentation tool). We attempt to understand how Marcus’s 5th,
7th, 8th and 9th limits are manifesting in networks performing instance segmentation and
Visual Relationship Detection (VRD).

Despite these limitations, DL has proven itself to be a very handy tool, and through a
mix of exploration and exploitation has become the state of the art for a significant portion
of image-related tasks. We do not believe Marcus’s aforementioned limits can be addressed
in one fell swoop, nor do we believe that these limits diminish the work and progress that
DL researchers have achieved thus far. Instead, we see the limits as important principles to
keep in mind when critically evaluating existing architectures, as well as guiding principles
on how to build DL-based architectures that can move the field forward.

1.2 Relationship Detection: A Step Towards Human-
like Cognition

Human cognition, in a nutshell, is what allows us to reason about the world around us, we
take in outside stimuli (through our senses), and analyze them through our cognitive frame-
work to get to an understanding of our surroundings [47]. Through our human cognitive
abilities, we tend to build a knowledge of real world concepts that aids us tremendously in
understanding the world around us [1241]. A conceptual understanding of an object could
mean (but is not limited to) understanding it in many different ways: from its form (i.e.,
how it looks) to its function, and from its sub-parts to its interaction with other objects
around it [123]. Take the concept of a school bus, for example: we usually imagine a
large yellow and black vehicle (its form), transporting children to and from school (its
function), made up of four wheels, a chassis, windows, doors (...etc.) all arranged in a
certain manner (its sub-parts) and usually carrying kids, a bus driver and seen driving
on roads (its interaction with the world around it). These understandings are often even
themselves intertwined [9, 12], adding to the complexity of designing machines that can
explicitly understand concepts and making our human ability to understand them seem
quite impressive in comparison.

Human’s conceptual knowledge of a school bus (and in general) encodes with it a certain
robustness, seemingly in direct opposition to the deep learning limits described by Marcus
[39]. Whether we see a cartoon school bus, a differently colored school bus, a toy school bus,



or another variant we can still identify it by utilizing our conceptual knowledge of it. This
robustness does not necessarily apply to all deep networks trained to detect school buses,
in fact, most would struggle with one or more of those changes as they pose radical domain
shifts. This is not due to an error in the networks themselves, but is more likely because
they are missing crucial elements that allow them to truly understand what they have been
trained on. Networks are great at classifying the statistical correlations between pixels,
but a significant portion of deep learning networks lack the ability to gain a conceptual
understanding of the world simply because their architectures were not designed with that
knowledge in mind [$9, 69]. Marcus even emphasizes a cognitive, human-like, approach to
deep learning as the best path forward for building better AT in [90].

The origin, evolution, and nature of human cognition are still debated to this day
[17]. Human cognition is a fascinating research field in an of itself and we opt to take
some influence from cognitive psychology, specifically human relationship detection, and
progress relationship detection in computer vision in an attempt to build towards better
DL architectures. Relationship detection is one of the earlier cognitive abilities we gain

as humans [122], with these relationships pertaining to object interactions [122], and our
ability to detect and categorize relationships grows and remains a crucial part of our spatial
awareness and cognition [70, 83]. Within cognitive psychology, ‘image schemas’ [35, 12] are

used to describe early cognitive notions of spatial object relationship representations in the
human brain. Since relationship detection appears to happen rather early on in humans,
and human’s multiple cognitive systems appear interlinked [124], learning relationships in
computer vision may be a good step towards more ‘cognitive’ Al models [90], and all the
benefits this may provide.

However, even a human’s own spatial cognition is not free of biases. These biases
stem from which objects we, as humans, choose to focus on, and how they effect both
our language and how we describe what we see [70]. We, as humans, can innately correct
for some of these biases and understand the full scenario we’re looking at or reading or
hearing about, however if DL networks were trained with data that includes these biases,
they will struggle to move past them. In fact these human biases do trickle down into the
Visual Genome dataset [6], and we demonstrate this phenomenon and its effect on visual
relationship detection networks in Chapter 4.

In computer vision, relationships between different objects are represented using scene
graphs (first defined in [57]), which can be somewhat viewed as a computational analogue
to image schemas as re-defined in [88]. An image’s scene graph is simply a directed graph

Note that the term is borrowed from cognitive psychology and the ‘image’ portion of the term is not
a computer vision ‘image’-a collection of a pixels on a grid.



with nodes representing the objects seen in the image, grounded via bounding boxes, and
edges representing a directed relationship between the detected objects?. Current scene
graph generation approaches sequentially perform object detection and relationship detec-
tion, opting to generate object proposals first, then finding (and ranking) the most likely
relationships between those detected objects [10]. This approach is not without merit and
captures a portion of how humans reason about relationships. Almost all scene graph ap-
proaches follow this approach, however scene graph generation performance, and therefore
relationship detection, remains quite poor (as we discuss in Chapter 5). Inspired by human
spatial cognition, we propose a novel approach to scene graph generation and relationship
detection that is grounded in image pixels, which allows for these visual relationships to
be more grounded visually in the objects they relate, and captures another aspect of how
humans reason about relationships.

1.3 Contributions

The contributions of this thesis are as follows:

e In Chapter 3, we determine the negative and unpredictable network be-
haviour stemming from how object shape, its content and its context affect
instance segmentation. We systematically quantify the roles of these cues in cur-
rent deep learning approaches and underscore some of the common pitfalls exhibited
across different architectures.

— We show empirical evidence of shape detection biases in the tested networks,
that likely extend to other networks. The representation of object shape is
brittle, where networks can achieve a maskAP of over 20% on images with
the objects completely removed, but only if their outer contours remain rigidly
similar to those in the ground truth. They can also achieve around a 10%
maskAP simply using plain object silhouettes on a plain background.

— We also show that non-ROI based instance segmentation networks appear more
biased towards shape than their ROI based counterparts.

— We isolate which of the studied cues seem to be the most critical, and find that
it is actually object dependent with different object subsets relying on different

2Scene graphs can also include object ‘attributes’ (e.g., color), however these attributes are often not
explicitly detected or used in most scene graph approaches.



cues. However, on average content appears to bias networks more than shape
and context.

— We demonstrate that blurring the content of objects, but maintaining their
sharp outer contours causes very little change in network performance.

— We show that object context plays a smaller role than the other two cues, but
plays a non negligible role in aiding performance.

e In Chapter 4 we demonstrate the effect of human labeller’s spatial cogni-
tive biases on the language with which relationships in the Visual Genome
(VG) dataset are defined. We define the 2D topology of these visual relationships
and quantify how different topological and lingual combinations affect the learned
scene graph generation models.

— We show that the human labelling bias stemming from human representations
of relationships creates asymmetric relationship labels that span the whole VG
dataset.

— We show that the lack of inverse relationships in the VG dataset leads to a lack
of it in the learned models.

— We utilize 2D topology to both shed light on the lingual vagueness of certain
classes and show that some of these classes can be understood differently based
on their topological configurations.

— We show that when reduced to more lingually and topologically well defined
spatial relationships scene graph generation algorithm performance improves
tremendously, but scene graph generators are still far from perfect.

e In Chapter 5, we present a novel statistical approach to scene graph gener-
ation that performs competitively without utilizing image pixel data, then
describe and implement Topological Relationship Fields, an alternative ap-
proach to scene graph generation by utilizing topological configurations of bounding
boxes and explicitly constraining relationships to be visually grounded in
image pixels.

— We describe and implement a novel but simple categorical Naive Bayes classifier
for scene graph generation and demonstrate that this basic classical machine
learning approach, can perform relationship detection in a manner that achieves
comparable performance to that of modern scene graph generators.

— We discuss the how modern approaches to scene graph generation are being held
back from a data, evaluation and algorithmic standpoint.



— We describe, implement and evaluate Topological Relationship Fields a novel
representation for scene graph generation grounded in the image pixels them-
selves.

— We qualitatively demonstrate the visual nature of the learned relationships and
how they pertain to specific pixel regions.



Chapter 2

Literature Review

2.1 Introduction

Relationship detection is a key tool humans use for reasoning about the world around
them [70, 88]. In this section we begin by discussing relevant literature that pertains to a
precursor to relationship detection - object detection. In this thesis (Chapter 3) we explore
object detection through the lens of instance segmentation and discuss some of our findings
on troubling failure modes we uncovered empirically. We discuss the relevant literature
in Section 2.2, pertaining to image segmentation, and Section 2.3 which discusses failure
modes in computer vision more generally. While we view relationship detection, and scene
graph generation, as a stepping stone to empowering deep learning with conceptual knowl-
edge, we also review some other approaches to this in Section 2.4. Since a large portion
of our thesis is dedicated to relationship detection and some of its current shortcomings
(Chapters 4 and 5), we provide a more detailed overview of modern scene graph generation
in Section 2.5.

2.2 Image Segmentation

Image segmentation is a crucial and well explored topic in computer vision that lends itself
to many different tasks. Semantic segmentation is a core part of the image understanding
problem where, given an input image, the aim is to output a corresponding mask where
every pixel from the input image is labelled according the category it belongs to. Instance



segmentation goes one step further and distinguishes between different occurrences of the
same category of object within a single image.

2.2.1 Semantic Segmentation

After the seminal work on image classification with deep networks by Krizhevsky et al.
[65], researchers started unlocking the potential of deep learning for other computer vision
tasks, including image segmentation. Specifically, convolutional neural networks (CNNs)
lent themselves very well to image segmentation. In [24], Fully Convolutional Networks
(FCN) modified well performing classification architectures to the image segmentation
task by removing their fully connected (i.e., classifying) layers and replacing them with
convolution layers capable of outputting spatial maps. Their work beat the PASCAL
VOC state of the art proving how powerful deep learning can be for image segmentation.
The choice of using convolutional networks when dealing with images was not arbitrary,
however, as they were actually inspired by a model of the early human visual cortex
[29]. CNNs are a good example of how prior information can be built-in to deep learning
architectures, as researchers valued their properties of spatial invariance and connection
sparsity.

Building on FCNs, Segnet [1] and U-net [ 10] are two of the first encoder-decoder archi-
tectures for image segmentation which utilize an "hourglass’-like structure of consecutive
convolutions and down-sampling layers (the encoder), followed by another set of convolu-
tions and some up-sampling variant (the decoder) to return to a dense output map similar
in shape to the input image. These architectures do differ in their choices of kernel size,
pooling type (for the encoder), but their main differences are often seen in the decoder
where the choice of how to up-sample the low-level features to achieve a final segmen-
tation proves critical. In the case of Segnet [!] , the authors choose a memory efficient
option of utilizing only the pooling indices of the corresponding encoder layer (followed by
convolution layers to ’densify’ the sparse output) to reconstruct an output segmentation
that is faithful to the input image, in essence utilizing information about where a certain
feature originated from to produce their output. U-net [110], see figure 2.1, takes a differ-
ent approach, concatenating the entire feature map produced by the convolutions of the
down-sampling layers with those up-sampled in the decoder, utilizing more of the available
information at the cost of being more memory intensive. Several other methods use a
variant of the encoder-decoder architecture. Both these architectures also incorporated a
prior information cue of their own as both Segnet and U-net (and to a lesser extent FCN)
used a form of skip connections to maintain fine details in images, these skip connections
carry information about the fine details that is lost after every down-sampling stage.
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utilized when making decisions in the upsampling path. The intuition is that the middle

layer builds a useful compact representation that gets refined as it goes through the various
upsampling steps.
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Down-sampling was also not added into networks for naught, and it serves a key pur-
pose: modelling long range dependencies in an image. Traditional convolution kernels
only look at pixels in a close vicinity, so looking at pixels in a 10x10 vicinity required
a 10x10 convolution, which is computationally prohibitive. This is where downsampling
operations, such as pooling, or to a lesser extent strided convolutions serve a dual function,
they solve the long range dependency problem allowing a convolution operation to have
an extended receptive field, while also keeping the computation costs tractable. Though,
as mentioned previously, they bring with them the problem of having to sacrifice finer
details in an image to serve this function. The Deeplab family of networks [13, 14, 15], see
figure 2.2, address this issue head on by utilizing dilated convolutions. Dilated, or atrous,
convolutions still grow their receptive field but don’t utilize down-sampling, instead kernel
are larger but sparser by design, this allows a 3x3 kernel to sample a 5x5 grid in the input
by only sampling ever other pixel (a dilation rate of 2). Cascading dilated convolutions
with various rates can allow sampling different and larger receptive fields at no extra com-
putational cost. Dilated convolutions, Atrous Spatial Pyramid Pooling (ASPP) [13], and
Conditional Random Fields are all used in the Deeplab family, and implement the initial
target of downsampling and strided convolutions which was to encode another important
piece of conceptual knowledge: contextual information. We know that pixels in natural
images almost always, barring noise, belong to objects that the image is capturing and as
such context is an important cue that any deep learning network must be able to utilize.

There have been numerous innovations in semantic segmentation apart from the above
mentioned ones. The surveys in [30] and [95] were a key resource in classifying these
advances and understanding their utility in image segmentation.

2.2.2 Instance Segmentation

In certain cases, instance segmentation is a more desirable output to semantic segmenta-
tion. The chief difference being that in instance segmentation every instance of an object is
labelled separately as opposed to all instances of the same object being indistinguishable in
the output. The Regional Convolutional Neural Network (RCNN) family of networks, and
specifically the MaskRCNN [11] family tackle this problem. The original implementation
builds upon the Faster R-CNN [108] object detector, which outputs classified bounding
boxes around objects only, and adds a branch for mask prediction that enables instance
segmentation. Mask RCNN operates by first using a region proposal network trained to
generate bounding boxes for the regions in the image most likely to contain an “object”,
this is followed by a region classifier which outputs the likely class for the object detected
in the bounding box, as well as an object mask generator which generates a segmentation

11
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Figure 2.2: A schematic of the Deeplab V3+ [15]. The architecture employs dilated con-

volutions, and atrous spatial pyramid pooling as well as a variable dilation rate in its
encoder. Skip connections allow the decoder to not lose information from small details as
well, factoring into its state of the art performance.

mask for this object. Since every object is contained within its own bounding box, the
differing object masks are in fact instance segmentation masks. Mask R-CNN thus oper-
ates in two stages: a first stage which outputs region proposals (good candidate bounding
boxes around regions of interest), and a bounding box classification/regression and mask
prediction stage which gives the desired final outputs. Figure 2.3 shows a schematic of the
network architecture.

Any ‘Mask R-CNN’-type architecture has a feature extractor network, referred to as
the ‘backbone’, as well as networks for bounding box/mask prediction, referred to as the
‘heads’. Overall, a deep residual network (Resnet) backbone [15] augmented with a Feature
Pyramid Network (FPN) [75] appeared to be one of the better performing overall backbones
on the task of instance segmentation in the original implementation [11]. However, [1/]
gave no restrictions on what the backbone or head architectures need to be, and even
proposed a variety of different backbones and measured their performances.

The shifted window (Swin) transformer networks proposed in [83] prove to be a high
performing backbone architecture within a Mask R-CNN framework. In a nutshell Swin
transformers build upon the work done in [25] for vision transformers (ViT), they start
with smaller pixel patches that grow in a hierarchical manner in deeper layers (by merging
non overlapping nearby windows), and also utilize local attention making sure patches

12
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is identical to its predecessor Faster R-CNN with the exception of adding the ‘mask’ head
that operates on the ROI aligned and cropped feature maps to predict the object mask.
The feature extracting ‘backbone network’ can be modified, and often is in subsequent
works that improve upon the original MaskRCNN implementation. Photo was adapted
from [50].

don’t interact with other patches that are too far from them, with a key trick being that
attention is limited by windows that are shifted in consecutive layers (the titular shifted
windows). Overall Swin transformers demonstrate top performing results when used as
backbones for different image level tasks, with instance segmentation performance being
the task of interest for us. There are varying sizes of Swin based architectures, for example
the Swin-T backbone which is comparable to a Resnet-50 in its complexity.

Other approaches to instance segmentation 134, , , , 17] opt to not use the
region proposals seen in Mask R-CNN and instead output their object detections and masks
in a ‘single stage’. We note that the term ‘single stage’ is somewhat overloaded since the
‘single stage’ approaches aren’t always simply one fully convolutional network. The term
is used to imply that these networks don’t have a ROI Align and cropping operation that
ends up generating multiple sub regions (the ‘region proposals’) that are processed almost
as individual ‘new images’ by the rest of the network.

Tensormask [17] employs a sliding window approach, i.e., a dense approach to instance
segmentation, which carries with it some benefits. This approach is no longer limited
to using a consistent and class agnostic representation that loses geometric information
which is utilized in the R-CNN based methods, and instead can represent their knowledge
with structured and geometrically relevant ‘sub-tensors’ or‘tensor-masks’. The authors
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show that they’re able to achieve comparable results to state of the art R-CNN methods
with a dense approach. Much like Faster R-CNN, served as the precursor to Mask R-CNN,
Conditional Convolutions for Instance Segmentation (CondInst) [131] was inspired by and
built upon the Fully Convolutional One-Stage Object Detection (FCOS) approach [135].
CondInst opts to perform instance segmentation in a fully convolutional manner, having
the weights of its mask heads be dynamically generated based on the input (the titular
conditional convolutions). A schematic of the CondInst architecture is presented in figure
2.4. We also explore the Mask Encoding for Single Shot Instance Segmentation (MEInst)
approach of [162], who, noting the general redundancy in mask shapes, reparametrize and
encode object masks in a fixed size single-dimensional vector of significantly smaller size
than the initial 2-dimensional masks and instead train to predict that vector (decoding
it for the final output). In [I11], the authors propose Segmenting Objects by Locations
version 2 (SOLOvV2), building upon the previous version of the similarly named approach,
they utilize dynamically generated convolution heads at a specified grid of locations, having
each element in the grid be ‘responsible’ for predicting the instance whose center it contains.
SOLOvV2 doesn’t rely on predefined ‘anchor boxes’, which are a set of engineered region
shapes that define the acceptable shape or aspect ratio of the detectable regions of interest.
These are often gathered from the shapes of boxes in the ground truth, and are critical to

MaskRCNN.

Other single stage object detectors do exist as well, the survey in [32] further delves
into details and distinguishing characteristics of generic object detectors, and was a key
resource for us as well.

2.3 Common Trappings

While the advances in deep learning have allowed for impressive results and performance
on image segmentation among other computer vision tasks, a significant portion of these
networks still share some key disadvantages [30, 35].

2.3.1 Unpredictability

Several works [144, (, , | explore unpredictable behaviours in deep learning based
computer vision approaches, these works often tackle one task (e.g., image classification)
and describe the behaviour of networks trained on that task. The work done in [111]
quantifies the sometimes catastrophic failure modes resulting from over reliance of deep
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Figure 2.4: A schematic of CondInst [134]. Similarly to other one and two stage instance
segmentation approaches, CondInst uses an interchangeable ‘backbone’ network, however
as with other single stage approaches no ROI pooling/cropping is employed. In the case
of CondlInst (as with its object detection base Fully Convolutional One-Stage Object De-
tection), the features extracted at multiple stages of the Feature Pyramid Network of the
backbone network are fed into prediction heads to predict object class (along with box
parameters for the instance). The key to CondInst is that the shared head also predicts
the parameters for a small sized Fully Convolutional Network (the mask FCN head) con-
ditioned on the instance. This allows it to predict masks associated with the classes.
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learning-based image classifiers on image background. In image classification, networks are
trained with image level labels, and do not have pixel-level annotations detailing where ex-
actly the ‘foreground’ is. As a result, if an object occurs with a specific type of background
very frequently (e.g., a cow ‘foreground’ often standing in a grassy field with a blue sky),
networks may conflate the background with the foreground class. The authors of [I44]
find that image classification networks required the background to correctly predict the
foreground class of over a third of images. Furthermore, in images where the foreground
was removed, networks were shown to have the ability to predict the image class at around
50% of their original performance, implying their strong reliance on signals that are occur-
ring in the background even when the foreground is completely absent. The authors also
demonstrate that adversarially chosen backgrounds can cause for an 88% misclassification
rate, where the networks end up choosing their class based on the background.

In [116], Shetty et al. also demonstrate an over-reliance on object context in the case
of both image-level classification as well as pixel-level semantic segmentation networks.
Specifically, semantic segmentation networks are shown to rely on context to hallucinate
objects that have been explicitly removed. They also show that semantic segmentation
performance can actually be improved on edge cases by incorporating augmented data
with removed objects into their training data. In [I11], Rosenfeld et al. discover that
object detectors fail to correctly classify or even detect previously correctly classified and
detected objects when they are ‘transplanted’ into another image. A notable example, and
the namesake of their title (‘The elephant in the room’), is that when pixels belonging to
a foreground of ’elephant’ are overlaid onto another image, they can become completely
undetected, misclassified (seemingly in a manner that matches the general image context),
or even affect the detection of other objects in the scene changing their detection and
classifications. Another finding in [I11] is that the specific location of where the new
object is overlaid also seems to change what type of effect it will have on the object
detector. In some locations the transplanted object is classified correctly (at the cost of
the original image objects having their labels corrupted), and in others it is completely
invisible. Rosenfeld et al. believe this may due to ‘feature interference’, where pixels from
outside of the ‘region of interest’ are effecting network performance inside the region.

In [16], Hermann and Lampinen aim to understand which input features ultimately get
used by trained models and more importantly how and why these features get represented.
The authors utilize specially crafted synthetic datasets to get some insight into what net-
works are learning. They find that networks tend to ‘fixate’ on the easiest feature to use for
their task, usually this is a feature that is most readily decoded from the network when it’s
still untrained. This ‘easy feature’ is not always the most predictive, and this is specifically
designed for in their synthetic dataset, however the authors find that networks still focus
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on this easy to decode feature, and in some cases ignore more predictive features that are
more difficult to learn.

2.3.2 Data Hungriness and Generalization Performance

A common theme among deep networks is data hungriness, and in the case of image
segmentation that data is quite difficult to obtain. Since a network performing image
segmentation is meant to be outputting a pixel by pixel classification of the input image,
most approaches with full supervision require pixel-level annotations on the ground truth
used to train them. This level of supervision can be quite prohibitive, making networks
that can train with less ground truth data more lucrative [I10]. As expected there is a
trade-off that occurs between how much a network can learn, and how much data it needs,
and unless the architectures are modified fundamentally to account for less pixel-labelled
data, usually the networks training with less data have less network capacity. We look to
explore what methods can curb this need for data, and whether conceptual knowledge, in
the form of prior information can serve to reduce the amount of data needed for training
while maintaining performance.

The other side of the ‘data-hungriness’ coin is that the generalization performance of
the networks is often never reported on or addressed, and network performance on unseen
datasets is often not up to par with its performance on the datasets it has been trained
with [38, 89]. A good measure of intelligence for an approach is in how well it can adapt
to new domains, as it reflects on how robustly it built its knowledge from the training
data. In some applications, the data at inference time is identical to that at training
time, for a camera positioned in a stationary position over an assembly line, where the
lighting is constant and there are very few outliers, DL is a powerhouse. These sorts of
problems are a good example of the kind of problems where designing and implementing
deep learning architectures is relatively straightforward. However on a relevant problem
such as designing a vision system for a self-driving car, neither assuming a stationary data
domain (of a midday drive in San Francisco) or training on every possible scenario (From
snow, to unmarked roads ..etc.) is an efficient approach.

Data augmentation is presented as an approach to mitigate both ‘data-hungriness’ and
generalization issues. When used in [65], the aim was to make the most of the available
training data. Data augmentation links to prior knowledge as well, we understand that
a mirror image of a cat, is still a cat, but a purely data driven approach such as deep
learning would have to come to that conclusion on its own by observing it in the data.
Augmentation techniques range from simple crops and flips to more advanced techniques
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such as adversarial example training (where specific detrimental examples are used to
mitigate the brittleness of the network to some kinds of noise) [ 18]. Generative networks
have also been used for data augmentation [!] allowing the network to create more data
as well as training data with more complex augmentations. Even neural style transfer
has been used for data augmentation [118], utilizing the Generative Adversarial Network’s
(GAN) abilities to learn powerful transformations that can turn a summer scene into a
winter one for example. Data augmentation proves that with more data, architectures
have the ability to improve their performance, and to a certain extent it can be argued
that they make architectures more robust and are generalizable.

2.3.3 Other Drawbacks

In addition to the above, segmentation deep learning networks also aren’t commonly built
to take advantage of temporal consistencies when dealing with video data, and often opt
for a frame by frame approach [30]. Failure metrics are not very well defined, and it is not
possible to know what kinds of variances in data or tasks will make a certain architecture
fail [38]. Convolutional neural networks have also been shown to be overly reliant on
texture and local information for their decision making [31].

Deep networks are limited by their design decisions, from network architectures, inter-
network relationships, loss functions among others. All of these factors must be improved
upon and approached creatively. We next look to uniquely designed networks that have
shown promise in mediating some of the common trappings of image segmentation with
deep learning.

2.4 Conceptual Understanding (in Images)

In humans, vision is a complex task that relies on several different cognitive functions
[47, , |. In [9], Cavanagh puts forth the idea that our brains create a ”compressed
or annotated” version of what our eyes see to send to other centers in our brain. These
centers then go on to perform their own vision-related tasks not using measurements of
reflected light, but instead using a conceptual abstraction that was provided to them. Our
brain has summarized the detected light’s 'sensory data’ into a form that permits every
center of our brain that needs it to use it as effectively as possible. Understanding the
world around us requires a conceptual understanding of it. This understanding is gained
over time as we grow from children who can identify their parent’s faces to adults who
utilize vision to perform a wide range of tasks like driving and cooking.
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While utilizing deep learning for computer vision, however, this conceptual understand-
ing of the world is often left to the networks to figure out on their own. Some innovations
do target one part or another of this ”conceptual space”, yet algorithms struggle to learn
richer concepts and connections beyond those which they are given. For example, on the
concept of recursion, humans have a much easier time predicting how a tree will grow and
understanding the recursive concept of a branch and the other branches and leaves that
grow from it than machines do [67].

In [69] Lake et al. propose several “ingredients” for imbuing machines with more human-
like intelligence. These ingredients include concepts such as causality and compositionality
under a larger umbrella of “model building”, along with intuitive concepts of physics and
psychology that humans have evolved to use. Notably, the authors also place a significant
bit of importance on the interaction between the “ingredients”. This is supported by
research in psychology [121], where ‘ingredients’ similar to the ones cited by Lake et al.
are also attributed to human intelligence. While there is some debate as to how or when
we learn these concepts, these ‘core systems’ [124] allow us to function and think and are
likely what allows humans to be intelligent.

Furthermore, in [123], Spelke makes the argument we as humans start up with a frame-
work that enables us to survive much like animals do during early life, and one explanation
of the ‘intelligence’ we show is due to our language capabilities. Language encodes impor-
tant information, it allows the dissemination of ideas from one generation to the next and
from one person to another. One barrier to understanding another person is not under-
standing their language. This extends to machine learning architectures, where we cannot
hope to understand their results and demystify their inner workings without a ‘common
language’.

2.4.1 Human Tools for Conceptual Understanding

Marcus’s critiques of Deep Learning [39] are the symptom of deep learning approaches that
have not yet capitalized on a lot of what research shows works in humans. In a way, the core
of the critiques for deep learning is in their more human-related shortcomings. Humans
have a cognitive framework that allows them to go beyond pattern recognition and into
‘intelligence’ that deep learning methods just can’t seem to do. What does psychology,
biology and cognitive science tell us humans do different than what deep learning does?
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2.4.1.1 Compositionality

Humans have an innate sense of compositionality: sub-parts come together in different
ways to form an object that is greater than the sum of its parts. One way of expressing
this compositionality is as a hierarchy of objects and their subparts, and even the sub-parts
that form those subparts ...etc.

For example, we understand that a certain composition of wood, screws and glue can
form a table, and another composition of the same subparts can form a chair, and both a
table and a chair are conceptually different to both each other and their building blocks.
While it was believed that deep learning learns this compositionality innately by virtue
of its many cascading layers (where the shallow layers would learn the smaller parts, and
the deeper layers a composition of those parts), [31] shows that networks still rely very
heavily on local, textural patterns to make their decisions and may not be learning this
compositional hierarchy the way we thought they were.

In [69], Lake et. al. cite the importance of compositionality in a machine learning
setting, stemming from its importance and use in our cognitive understanding of the world.
The work in [68] showcases the power that learning data as a combination of subparts
rather than as individual examples can hold: Bayesian Program Learning is used to classify
handwritten letters and relies on commonly reoccurring gestures (the subparts) to classify
a character based on detecting what subparts were used to generate it. While their work
is limited to handwritten character generation, it serves as a simple, but powerful example
of how compositionality can be applied in the realm of computer vision.

Furthermore, humans are not only compositional learners, as we also learn relational
information within certain hierarchies [126]. As [1206] explains, humans rely heavily on
spatial representations, so much so that non-spatial concepts are likely encoded in a spatial,
number-line-like, low level representation in our brains. The authors give the example of
the words ‘insider’ and ‘outsider’, denoting the concepts of whether or not someone belongs
to a group, as one of many common words we use that show how deeply rooted our internal
representations are in spatial relationships.

This kind of spatial representation does not extend to deep networks. In [0], the authors
show how their architecture ‘Bagnet’, which by design only relies on local features (namely,
small image patches) ignoring where they may fall spatially, is able to perform comparably
to VGG and Alexnet on the Imagenet challenge. They further show that there is no
evidence to suggest that deep learning models are learning or utilizing higher order cues in
images, aside from local textural cues and a ‘bag of words’ type approach.This is further
backed up by the experiments in [31] which also show that networks still rely very heavily
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on local textural patterns to make their decisions and may not be learning a compositional
hierarchy as initially expected.

2.4.1.2 Language and Cross Domain Knowledge Transfer

Much like Cavanaugh cites the importance of an internal representation within our brain
that is a more succinct and useful summary of our sensory input [9], Spelke [123] argues
the importance of language (a sort of external representation) as part of what makes us
intelligent. Language allows us to relay highly distilled knowledge and arguably makes
human progress possible because of that. Through language we are able to learn from
thousands of years of human progress and build upon that progress from one generation to
the next generation. Yet, language plays almost no part in contemporary computer vision
that utilizes deep learning.

As an example, think back to when you had your first driving test. You were 16 and had
seen others driving almost all your life, however it is unlikely you knew all the rules of the
road only through perception. Between ambiguities on when to make a left turn and what
the zebra crossings really mean, the knowledge you gained through reading the driver’s
handbook and even asking your mother questions as she drove gave you a strong base
knowledge that you used to justify your perceptive system. You were able to dismiss any
ambiguities from your knowledge and give yourself a good head start on driving. Perhaps
simply by being a silent observer of others driving you would have gained enough knowledge
through pattern recognition, however, your knowledge of the underlying rules of the road
that were given to you through language made your driving knowledge much more robust.
In addition to your ‘quick start’, now if you happen to visit the United Kingdom and go
for a drive, you no longer have to relearn how to drive from scratch, you can simply tweak
a few rules in your mind and you’re able to drive there too.

Perception and language are indeed entangled in our minds [123], they do not happen
independently and do have the power to influence one another. Language is the tool we
use to express our ideas and transfer knowledge. In a sense language can be seen as the
tool that allows us to transfer the information that exists in the ‘latent space’ of our mind,
in a way that can be used by others and influences their own mind.

2.4.1.3 Causation and Systems Knowledge

Causality is a concept that greatly affects our understanding of the world. Physical system
causality, such as our understanding of the concept of gravity, gives us strong priors as to
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how things can and should behave and where we expect them to go. Think of watching a
toddler explore this concept for themselves, they pick something up and let it go in mid-air
expecting it to stay where they left it, only to be surprised by the object dropping; as
adults, we have a pretty good idea of where and how this object will go, and whether it
may or may not shatter based on a strong causal understanding of the world. We have
the ability to answer Judea Pearl’s [99] counter-factual of “what would have happened had
the child not dropped the pen” or “what would have happened had they opted to drop the
plate of Fine China instead”.

Causality is a deep field in and of itself, and it has started making its way into deep
learning [99], however specifically in image understanding, it is still only basically explored.
The term causality itself is somewhat overloaded, at its core it does revolve around being
able to answer the counterfactual proposed by Pearl, however in practice it has been
extended to different meanings. When referring to physical system causality, for example,
we would be talking about the physics causing what we’re observing to be true: a white
light passes through a prism and comes out as a ‘rainbow’, has the underlying physical
system causation of the prism bending the different wavelengths of visible light at different
angles.

In [85] it was shown that a causal signal does indeed exist in image data, and their work
focuses on causal signals between pixels of different object categories. Another causal con-
cept is related to ‘objectness’ and how our minds understand the concept of objects [124].
Objectness refers to how we understand that objects inherently have certain properties
defined in [62] as: cohesion, continuity and contact. Cohesion refers to us understanding
objects as a consistent organized set of parts that move together and have a boundary.
For example, we wouldn’t expect a car’s tires to suddenly switch to the middle or the
top during its drive, we know that the car is somewhat rigid in its composition of parts.
Continuity refers to our inherent knowledge that objects cannot phase in and out of ex-
istence, and hence they must move on a predictable path unless modified by something
else. Finally, contact is rooted in our physical system knowledge that in order for ob-
jects to influence each-other’s motions, they must touch. These properties don’t hold in
all domains, for example, magnets influence metals and other magnets without touching,
however as presented in [(2], they are usually the properties we learn first as children
(hence the fascination with peekaboo) and could serve as a good first step for intelligent
machines.
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2.4.2 Computer Vision Tools for Conceptual Understanding

In this section, we will go over literature describing deep learning tools that either have
been designed specifically in a human-like fashion, or we find can be useful to apply one or
more of the three areas of cognition (compositionality, language and causality) mentioned
in the Section 2.4.1. We find scene graphs [55] as a candidate that potentially can bring
all three of these cues into computer vision, and explore them in depth in section 2.5.
However we spend a significant portion of this thesis discussing some of the shortcomings
with current scene graph approaches that must be mitigated before they can be fully used
as a tool for conceptual understanding (Chapters 4 and 5).

In this section, however, we briefly discuss other approaches that also directly or in-
directly utilize the conceptual cues humans use in computer vision. First we discuss gen-
erative models that pertain most closely to applying compositionality, and specifically a
useful internal representation of objects, but could also be internally modelling causality.
We also discuss uniquely supervised approaches that also can allow for utilizing different
cognitive cues, depending on the approach utilized. We note that even in cognition, these
areas are not easily disentangled, and while we try to evidence our thought process for why
each approach may be the best suited to incorporate a certain cue, we cannot be certain
of this until we explore these tools experimentally.

2.4.2.1 Architecture Design Decisions

There has been a vast number of recent works that identify the aforementioned drawbacks
of deep learning for image understanding, among other drawbacks and aims to rectify them
using design decisions in the networks themselves.

In [76], the disparity between performance of bounding box classification approaches
utilizing dense sampling versus those utilizing two stage approaches (ROI detection then
classification, such as RCNNs) was remedied by the use of the proposed focal loss. This
modified loss function is specifically designed to favor modifying weights based on more
discriminitive examples of negatives, where the network is failing, over commonly seen ones
that the network already can easily classify. This novel loss puts more value on salient and
helpful examples, allowing the network to implicitly modify how it learns to suit the data
it’s looking at without relying on training data to do that.

Object context can relay a lot of information, and some approaches are designed around
utilizing this idea. An early example of this is Pyramid Scene Parsing Network [164] which
utilizes dilated convolutions and augments CNN extracted features with ones at multiple
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scales showing an improvement in performance. The authors of PSPnet argue that while
this receptive field was theoretically being reached in later layers of other networks, the
networks were still unable to capitalize on it, and their method explicitly allows networks
to do just that. The authors of [160] argue that in reality these types of networks attempt
to capture contextual information, but still don’t do it explicitly. Instead they propose
an explicitly defined context encoding module that finds the global context of the image
(for example: indoor bedroom) and scales relevant classes according to the detected scene.
This context encoding module is added towards the end of inference and right before the
final prediction. Their approach showed an improvement in segmentation performance,
notably improving segmentation of smaller objects in the scene. Finally, object contextual
representation, proposed in [154], attempts utilize the context of a pixel within the object it
belongs in as a more robust representation of that pixel. The method augments the feature
map of every pixel by utilizing aggregated features from the region of this pixel found
using a soft-segmentation, this theoretically improves a pixel’s representation because it
now shows it in the context of the object it is supposed to belong to, and this improvement
is shown experimentally. Context is an important visual cue for humans, and it’s one we
rely upon to make our decisions, empowering networks to reason about the context of the
images they are seeing promises to improve their performance.

Since supplying pixel-level supervision can be prohibitive, the idea of ‘weak supervision’
gained traction with deep learning researchers. In [98], the authors show that by utilizing
an expectation maximization approach, pixel level outputs can be deduced from image-
level labels. In a sense, we, as humans perform a similar action, as when shown multiple
pictures where the same unknown object exists, we simply find the one object by deducing
which object occurs repeatedly in all the images. In learning to segment every thing [19],
see figure 2.5, Hu et al. take the weak supervision idea even further. The authors propose
an extension to Mask R-CNN [11] that goes beyond the classes that have mask-annotation
training data. They propose training a weight transfer function that is designed to transfer
weights used in detection to weights to be used for segmentation, allowing them to train
with partially supervised data (out of 3000 classes, only 80 have mask annotations, and
all have bounding box annotations). The work implicitly recycles visual cues used for
detection to be used in segmentation, however in a class-agnostic fashion. They show
that this yields a qualitative and quantitative benefit, where they show that their model
outperforms one trained with grab-cut, and importantly does not compromise performance
on the 80 classes with full instance mask annotations. Essentially, they utilize as much
as they can from their bounding box data by allowing a network to reason about how it
should be transferring its weights between the two tasks of detection and segmentation.

Tensormask [17] also moved the field of instance segmentation forward, yet tackled the
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Figure 2.5: A schematic of the Mask® R-CNN architecture proposed in [19]. The key to
its success is is the weight transfer function and class-agnostic mask MLP additions that
allow for instance segmentations on classes that only have bounding box annotations.

problem in a different way than R-CNN based methods. Where R-CNN based methods
employ a two step process for their instance segmentation, consisting of first performing
object and bounding box proposal generation, followed by a segmentation inside a refined
subset of the proposals, Tensormask offers a single stage alternative. On one hand the
R-CNN based methods allow for a simpler representation that may be easier to engineer
with, however Tensormask’s geometrically relevant formulation could be more conceptually
similar to humans and could be the favourable approach moving forward.

There is a growing body of work improving on image segmentation using novel and
promising techniques beyond those we list in this section. We will discuss the utility of
generative networks, which have also shown promise when applied to image segmentation in
a later section. Specifically, we discuss networks such as PizzaGAN [97] and MONet [7] that
approach the image segmentation problem by utilizing the representations learned within
their architectures as opposed to generating new training data. These approaches, along
with the ones discussed in this section, are a clear indicator that research in deep learning
is moving towards making more robust and realistic (in terms of data and processing
requirements) architectures. One of the best places to take inspiration from is the way
humans approach this problem, and how we utilize our conceptual understanding of the
world to perform tasks such as segmentation.
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2.4.2.2 Coupled Problems

We view scene graphs as a well developed tool that could aid in incorporating some of
the ideas of cognitive science into deep learning for computer vision, as well as our first
proposed approach for incorporating conceptual information into deep learning. We are
also interested in another promising approach: multitask learning. A pop culture inspired
explanation of multitask learning is given in [112] and references The Karate Kid. In the
1984 film ‘The Karate Kid’ the titular hero is mentored by his sensei Mr. Miyagi, however
he is, to his chagrin, given several seemingly unrelated tasks at first (e.g., waxing a car),
only to later realize that they all in some way aided him in mastering Karate. It’s theorized
in cognitive science that humans could be employing multitask learning strategies, recently
shown experimentally in the case of a human reinforcement learning task in [136], and in
the space of machine learning coupling the tasks to be performed may prove beneficial.
Multi-task learning in deep learning is thought to improve performance on each individual
task since the many tasks act as network regularizers, prompting network representations to
gravitate towards more generalizable and useful representations, and away from overfitting
on one task.

2.4.2.2.1 Generative Models

In [68], the authors show how a generative model can outperform other deep learning
models on the task of character classification. The authors believe this is more closely
related to how we, as humans, perform classification (at least on similar tasks). It is clear
that a generative approach, when compared to one that is simply modeling pixel-level
statistics would be significantly more generalizable, and that is proven experimentally in
[68]. Performance on the task of handwritten character classification does not necessarily
indicate that a similar method would be able to perform similarly well on a task with
natural images, however this method is an indicator that generative methods could be a
good tool to explore.

In [97], the authors present PizzaGAN a Generative Adversarial Network that generates
images of custom pizzas based on a set of human-supplied commands, it also seems to
learn powerful representations that allow it to perform a variety of sub tasks (including
segmentation). PizzaGAN solves a problem on a small scale task, but demonstrates that
by tapping into generative networks, useful representations can be extracted. For example,
PizzaGAN is trained on images of pizza as inputs and a list of toppings as labels, and its
task is modifying an image of a pizza using a set of ‘add’ or ‘remove topping’ instructions.
While the network is mainly a slightly modified CycleGAN [167], the authors frame the
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network’s tasks in a manner that allows for some useful sub tasks to be learned ‘for free’,
with very limited labelled data. Regarding segmentation, since the network must be able
to add or remove toppings, its ‘remove topping’ mask generator is in fact a segmentation
network learned with weak supervision. Another interesting take-away from PizzaGANs is
that prior knowledge of the problem in the form of the ordering of the toppings improved
the performance of the segmentation as well. While this work is developed on the small
and specific task of generating pizzas, it indicates that the generative learning signal, which
could even come from weak labels, could have the ability to indirectly train networks to
perform on a different, more relevant task.

The symbol-concept association network (SCAN) [15] showcases the power of a gener-
ative representation utilizing Variational Autoencoders (VAE). In their work, the authors
propose a coupled detection and generation system, where the detection system is trained
on synthetic images that belong a closed space of concepts, and SCAN is the image gen-
erating VAE that is designed to have a similar latent space to the detection Autoencoder.
In brief the authors are able to demonstrate the utility of a specific class of VAEs (beta
VAESs) in learning a disentangled representation of the space it is trained on. This allows
the authors to show that they are able to impose logical operators (union, intersection,
exclusion) to generate images with concepts they haven’t seen before all as a result of using
this disentangled space. This provides insight into even more deep learning architectures
that can be used to model a hierarchical structure or used to incorporate prior information.

VAEs also are heavily utilized in MONet [7], which takes the idea of disentangling indi-
vidual elements of an image and moves it even further, see figure 2.6. MONet’s architecture
is designed with the idea that a network will likely perform better if it looks at individual
objects separately, and their experiments back this up. The authors present a two part
network that is applied recursively throughout the image. The two parts of the recursively
applied sub-network are an attention network that generates a mask based on an input
image, and sends forward this mask to a VAE that is tasked with reconstructing the image
knowing that its loss is only calculated inside the mask. This process is done recurrently,
where every subsequent attention network only suggests object masks in areas it has not
previously suggested, and the VAEs reconstruct those image subparts. The end result is
a disentangled representation of the scene with every VAE outputting a single portion of
the original image, which experimentally converges to outputting individual objects. This
work offers several key insights and impressive results: the experimental verification that
a VAE will perform better and gravitate towards reconstructing single objects at a time, a
unique method of applying a recurrent attention process in an image, the ability to perform
segmentation and even inpainting all while utilizing the self-supervisory signal of a VAE.
These results showcase a strong and class agnostic prior that was built into the network
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Figure 2.6: The MONet architecture proposed in [7]. Every attention network takes decides
on a subsection of the ‘scope’ to utilize and the VAE is tasked with encoding the image
yet is not asked penalized for anything outside its own scope. The summation of all the
scope masks is the whole image, hence the combination of all the VAE outputs masked
with their scopes is a recreation of the image from its subparts.

(that of disentangling image components and dealing with one at a time).

2.4.2.2.2 Creative Supervision Approaches

In the generative approaches above, the choice of supervisory signal is critical. We would
not be able to train such models if those methods required full supervision. In the case of
PizzaGANs and SCAN the signal is a weak supervision signal, similar to a classification,
yet those networks learn to do so much more than just what their supervisory signal offers.
This is especially interesting in MONet, where the whole process is self-supervised because
of its creative use of a VAE. There are several non-generative approaches that also make
use of unique supervision approaches and bypass the need for full supervision.

One of the most straightforward examples of approaching supervision for the task of
multi-task learning is shown in [151]. They show that a single backbone network can
generate a feature map representation that only requires a small amount of tweaking to
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perform all of the three tasks of image-object classification, bounding box detection and
semantic segmentation. The interesting part of the work is that most of the network is
trained jointly, i.e., image labels, bounding box labels and pixel level labels all contribute
to teaching the backbone network, and during inference only few additional steps need to
be taken after the forward pass through the backbone to address any or all of the 3 sub
tasks. Since image object labels are cheaper to obtain than bounding box labels which in
turn are cheaper to obtain than full pixel level labels, the authors demonstrate that their
method can approach the performance of a similar backbone network trained only using
pixel-level data with a smaller ratio of pixel labeled images.

We previously discussed the work titled ‘learning to segment everything’ [19] where
the authors used a promising type of supervision. The weight transfer function (a learned
network) is used to transfer the filter weights of layers used for object classification into
filter weights for segmentation based on a subset of the object classes that have pixel level
annotations. The power of the weight-transfer network is in the fact that it learns to
understand what ‘worked” when transferring these filters in a data agnostic fashion. This
unique approach to using the multiple available labels within a single network performing
multi-task learning is certainly an out of the box approach that paid off.

Self-supervision is also an interesting approach in image understanding and methods
utilizing self-supervision are usually crafted because of a certain prior knowledge and take
advantage of their unlabeled data in creative ways [51]. One example utilizing colorization
as a proxy task to pre-train networks is presented in [71]. In their work the authors show
how a self-supervisory signal of asking the network to predict the colors for a given image
(which was converted to gray) can prime the network’s filters in a surprisingly effective
way comparable to pre-training on labelled data. Generative networks often employ self
supervision as well, and it is one of the aspects that makes them so interesting and useful to
work with. There have been several works that utilize the self-supervisory signal available
in images to solve ‘jigsaw puzzle’ like tasks, where a network sees a chopped up image
and must reason as to where each piece came from [54], and in the same vein, this type of
supervision would be a free signal when priming a network to understand the often rigid
spatial composition of common objects (a car or a face for example).

2.5 Scene Graphs

Image object detection and segmentation allow us to parse the the visual content of im-
ages and automatically determine what exists in those images, scene graphs allow us to
gain an additional level of knowledge by classifying the relationships between the detected
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Figure 2.7: An example of a typical scene graph and its corresponding image, taken from
[158]. Generating these scene graphs automatically can be quite a challenging task which
requires reasoning on which of the detected objects share a relationship, and what rela-
tionship that may be.

objects. Scene graphs abstract information in an image into a directed graph consisting
of the objects in the image, which serve as the ‘nodes’ in the scene graph, as well as the
relationships between these objects, which serve as the directed edges. The scene graph
encodes structural and relational information between image sub-parts that allows for a
richer representation and reasoning about the image parts at a higher level, see Figure
2.7 for an example. A scene graph representation of an image is a powerful representa-
tion in an of itself, but can also be utilized in a variety of higher level computer vision
applications: image captioning [119], visual question answering [117], image retrieval [57],
and image generation [30, 55] among others. However before being able to utilize scene
graphs and capitalize on the benefits they offer, especially in the context of the conceptual
tools they can be useful for, we opted to dig into their current state and understand their
shortcomings to be able to build on this knowledge for future works.

2.5.1 Inception and Fundamental Approaches
Scene graphs were initially formalized in [57] where they were manually generated and

utilized as a tool for image retrieval. Scene graphs were presented as better suited to
describe a ’scene’ as opposed to a paragraph of text. Johnson et al. [57] were concerned

30



with utilizing scene graphs (rather than generating them), and utilized CRFs to connect a
queried scene graph with images to find the best matching image. However, the problem
of scene graph generation from images soon became the focus of extensive research in the
computer vision community.

Scene graph generation by iterative message passing (IMP) [140] was aimed specifically
at generating scene graphs from images in an end to end manner, where given only an input
image they output a scene graph for that image. They first extract a subset of bounding
boxes proposed by a region proposal network, and generate visual features for the objects
contained within these boxes to be passed to a node Gated Recurrent Unit (GRU), and the
visual features for a union box of every two objects to be passed to an edge GRU. Their
method utilizes "message passing” between dedicated GRUs for nodes and edges to ensure
that the edge GRUs and node GRUs are aware of their contexts. The message for every
node GRU is a combination of the hidden state of the previous node GRU along with the
hidden states of the GRUs for its incoming and outgoing edges, while the message for every
edge GRU is the hidden state of the previous GRU for this edge along with the hidden
states of the nodes this edge connects. The authors demonstrate that this message passing
improves scene graph generation performance, showing how contextual information can
lead to a more robust explanation of the image relationships.

Research on human cognition also indicated that detecting the relationship between two
objects and detecting the objects themselves is a 'reciprocal’ process [1 1, 39]. For example,
when humans detect person and clothes we are biased to predict a relationship of wearing,
and when humans know the relationship is wearing, they can also whittle down the space
of subject and objects that can share this relationship. VTransE [161] takes influence
from this notion, along with work in translation (TransE [5]) to create a lower dimensional
‘relation space’ where a relationship predicate is a ‘translating vector’ between the features
of its subject and object whatever they may be. This translation vector in the relationship
space is consistent for the same relationship predicate and is independent of what the
objects and the subjects may be, effectively the nearest neighbor after ‘translating’ by the
relationship vector from the subject feature should be the intended object feature. Visual
motif networks (motifnet) [I58] are also aimed at generating scene graphs from images
in an end-to-end manner. They first generate the object labels only (without generating
the relationships), utilizing a bidirectional LSTM to propagate information between the
different object proposal stages, once the object/node labels are finalized the edge labels are
then generated. The main novelty in this approach lies in how the edge labels are predicted:
the authors first query the training set for frequently recurring sub-graphs (motifs), which
correspond to object relationships that frequently occur together in the training set (for
example, an elephant has a head, a trunk, a leg and an ear). These motifs are incorporated
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into the output of the relationship predictor LSTM networks.

In [130], the authors propose VCTree which, by design, makes use of the parallel and
hierarchical nature of relationships. VCTree proposes a dynamically composed and hier-
archical tree structure (utilizing TreeLSTM [127]) which allows for a hierarchy of which
objects and relationships should be more biased by which context. The tree representation
presented in [130] aims to amend the the shortcomings of modelling visual relationships
in the manner of motifnets [158], which are too biased by co-occurrence, as well as IMP
[146], where the representation doesn’t make use of any hierarchical information.

2.5.2 Datasets
2.5.2.1 The Visual Genome Dataset

The Visual Genome (VG) dataset [64] is a collection of over 100,000 human annotated
images that has been used extensively in computer vision research. A main motivation for
creating the dataset was to allow for more cognitive-based computer vision research that is
focused on image understanding and reasoning, rather than solely image perception tasks
such as object detection or image segmentation. VG enables research that incorporates this
sort of reasoning such as Scene Graph Generation [158, , , 24, 59], Visual Question
Answering [157, 130], Image Captioning [35], among others [112, 10]. The full VG dataset
is composed of a collection of 108K images, along with human generated annotations in
the form of class-labelled bounding boxes around the objects in the images, attributes
describing those objects, relationships between those objects, as well as question-answer
pairs about the images. A sample of some of the kinds of data found in the VG dataset is
shown in Figure 2.8.

The images comprising the VG dataset were taken from the YFCC100M [132] and
COCO datasets [77] and then annotated rigorously using human annotators crowdsourced
though an online platform. In short, labellers were tasked with creating text descriptions
of regions in the image, these text descriptions are then grounded into the specific parts
they’re describing using bounding boxes to ground the objects being described and relation-
ships and attributes being connected to and between the object bounding boxes. The final
dataset is comprised of over 3.8 million total bounding boxes classified into 33,877 object
categories, these bounding boxes are connected by over 2 million total relationships (clas-
sified into 42K distinct relationship predicates), in addition to over 2.5 million attributes
describing the classified objects in the bounding boxes (with 68K distinct attributes). On
average, one image is expected to contain 35 object bounding boxes, 26 attributes and 21
relationships.
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Figure 2.8: A sample of a data point in the VG dataset, the object relations are displayed
in the form of a scene graph. Object attributes are not shown for clarity.

The Visual Genome Dataset therefore lends itself very well to the task of scene graph
generation [158, 129, 130, 24]. In this task, the vast amount of objects and relationships
found in the VG dataset can be a drawback due to severe class imbalance across object
categories and relationship predicates. It is common practice across scene graph literature
to instead opt for using a subset of the VG dataset, the VG150 dataset [129], containing the
150 most frequently occurring objects along with their 50 most frequent relationships. The
final object count in the VG150 dataset is 1,145,398 objects, i.e. the top 150 object classes
(out of the 33K classes) accounted for approximately a third of the total bounding boxes.
The total preserved relationships in the VG150, which are spread across 50 predicates
is 622,705 relationships (these are out of the original 42K predicates that described the
2M original relationships). Overall, this serves to lessen the severity of the inherent class
imbalance across objects and relationships, without severely altering the intention original
Visual Genome Dataset.

2.5.2.2 Alternative Datasets

The Visual Genome dataset is commonly used across the scene graph community for bench-
marking, however there are several other scene graph generation datasets available as well
[86, 66, 118]. The Visual Relationship Detection (VRD) [36] dataset is one of the earlier
visual relationship detection datasets and predates the Visual Genome datasets, it was
commonly used by earlier scene graph literature for training and benchmarking. VRD
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Figure 2.9: A sample image from the CLEVR dataset [56]. An almost infinite number of
images and configurations can be synthetically produced using 3D rendering software.

was labelled by computer vision researchers (as opposed to the crowdsourced workers who
labelled the VG dataset), however only contains 5000 images. The spatial sense dataset
[118] dataset contains around 12000 images with the relationship labels focusing on spatial
relationship detection. The dataset specifically aims to provide data with confusing and
difficult to infer spatial relationships that can only be predicted by algorithms that have a
deeper understanding of images and relationships.

The Open Images dataset [60] is a larger dataset containing annotations for multiple
image related tasks (including relationships between objects labelled via bounding boxes),
relationship labels in this dataset are more sparse than those found in the VG dataset, and
it hasn’t been too widely used for benchmarking scene graph generation or relationship
detection yet. The CLEVR dataset [50] is a synthetic dataset with rendered 3d images
of basic 3d shapes of differing shapes, materials, colors and spatial configurations. Scene
graph representations of the images are automatically generated for every image as well,
see Figure 2.9. The CLEVR dataset is sometimes used to train and benchmark scene
graph approaches [101, 20], however the natural (non-synthetically generated) images in
the Visual Genome dataset make for a more challenging and representative dataset and
the VG dataset remains more commonly used in scene graph literature.

The previously mentioned datasets all provide a 2D image with 2D bounding box an-
notations of the included objects along with relationships between those objects. Other
datasets focus on relationship detection in videos [114, 113], along with relationship de-
tection with 3D data [2, 61]. These datasets often must be tackled using domain specific
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approaches different than the approaches used for the VG dataset.

2.5.3 Evaluation Metrics

Given an input image, scene graph generators are evaluated under 3 different settings:

e Predicate Classification (PredCl): Where the object bounding boxes and the
object class labels associated with the bounding boxes are given, hence the scene
graph generator must only find the relationships between the given objects.

e Scene Graph Classification (SGCI): Where the object bounding boxes are given,
but the class labels associated with the bounding boxes are not, so the scene graph
generator must infer both the class labels as well as the relationships between the
bounding boxes.

e Scene Graph Detection/Generation (SGDet/SGGen): Where the input im-
age is given without any other labels or information, and the scene graph generator
must uncover the relevant objects in the image, their bounding boxes as well as
the relationships between them. This is the most challenging setting for evaluation.

A relationship is defined by the subject of the relationship, the object of the relationship,
and the relationship between them and is formalized as a relationship triplet in the form
of <subject, predicate, object>in scene graph literature. For example, one such triplet
observed in Figure 2.8 is <leaf, on , tree>, where ‘leaf’ is the subject, ‘on’ is the predicate
and ‘tree’ is the object of the relationship.

Scene graphs are evaluated based on their recall, as opposed to based on their precision.

Recall is calculated as: Recall = True Positives__ \Whereas precision is evaluated
True Positives+False Negatives
True Positives

True Positives+False Positives *

as: Precision =

In the case of scene graph generation, ‘True Positives’ are relationship triplets in the
ground truth that were correctly detected, ‘False Negatives’ are relationship triplets that
exist in the ground truth but were not detected, and ‘False Positives’ are relationship
triplets that do not exist in the ground truth but that were ‘falsely’ detected.

Earlier scene graph literature [116, , , , | relied on recall as the metric of
choice due to the nature and formulation of the scene graph generation problem, and this
continued to be standard practice in the literature (until [129]). Given an input image,
the scene graph generator is evaluated on how many of the ground truth relationships it
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was able to uncover (its recall) since this aligns more closely with the nature of the task,
and also because there may very well be unlabelled relationships in the ground truth that
a network could be detecting. Since the datasets used don’t exhaustively label all possible
relationships, using precision as the metric of choice would effectively be penalizing an
algorithm for ‘false’ detections that are not certainly false.

The relationship predicates in the Visual Genome dataset [64] or the VG150 [129] subset
are also not distributed equally. In the case of the VG150 subset, the top 3 most frequent
predicates (on, has, wearing) make up more than 55% of the total predicate instances in
the dataset. The large predicate class imbalance that exists in the VG and VG150 dataset
results in the recall score being quite biased to these predicates and networks trained on the
VG150 dataset being much more likely to predict them. As a result, [129] proposes using
the mean recall as the metric for evaluating scene graph generation approaches, and has
since become the standard comparison metric. The mean recall averages the recall score
across every predicate class individually instead of every predicted relationship instance.
So the average recall is calculated for every predicate separately first, and then averaged
again to get the mean recall which ensures under-represented predicate classes are not
being ignored in the evaluation. The defining metric in scene graph literature is the mean
recall@K metric. The mean recallQK metric is the mean recall score when the top K scene
graph predictions are used for evaluation, so a mean recall@20 would mean the scene graph
generator was allowed to predict up to 20 relationship triplets to compare to the ground
truth.

Another paradigm for evaluation scene graph performance is whether the evaluation is
done with or without graph constraints. The default evaluation mode in the literature is
with graph constraints which means only one relationship prediction between two objects
in each direction is allowed to be made. This is done so that algorithms are not allowed or
incentivised to predict multiple relationships between two objects which may be contradic-
tory (for example, simultaneously predicting ‘above’ and ‘next to’). This forces algorithms
to only predict the relationship they are most sure of between two objects (one in each
direction). Some literature opts to evaluate and report on network performance with and
without these constraints.

Generalizability of the algorithms is also evaluated via the zero shot recall score [30].
Zero shot recall is the recall (and not mean recall) QK specifically for relationship triplets
in the test set that have not been observed in the training set. This gives an idea of how
well relationships themselves are being ‘understood’ by the algorithms, since the triplet
configurations they are part of are completely novel to scene graph generators trained on
the training set.
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2.5.4 Progressing Scene Graph Generation

Given the relative recency of scene graph generation in computer vision the fundamental
approaches mentioned in section 2.5.1 are still relevant today, and get expanded on by
consequent methods. The work in [129] focuses on tackling scene graph generation by
addressing the tendency networks have to predict the more common relationship predicate
classes due to the imbalance of relationships in the VG dataset. They propose Total
Direct Effect, a method to debias how existing scene graph generator predict relationship
predicates and is based on counterfactual causality [99]. [129] first finds the relationship
predicates predicted for an object pair in an image, then finds the relationships predicted
when the visual features of the objects are removed and only the context features remain
(the ‘counterfactual interference’ portion) and compares the two to ensure that the final
relationship predicate is more affected by the visual stimuli between the objects rather
than the general context. The authors of [129] do acknowledge that general context can
be useful in narrowing down relationship predicates, but ultimately causes networks to
default to the more dominant relationship classes. This approach is shown to increase
performance of existing scene graph generation approaches, especially on the introduced
mean recall metric.

Prior information was shown to be successful in improving scene graph generation
performance. Implicitly in [146] where the authors formulate the scene graph generation
problem specifically to incorporate contextual information (via message passing). The au-
thors of [158] also incorporate their prior knowledge that certain objects’ interactions occur
frequently enough to warrant biasing their scene graph outputs to reflect these frequently
occurring groups of relationships. The authors of [30] take this idea one step further directly
incorporating a knowledge database (specifically ’Concept Net’ [121]) to resolve ambigui-
ties in the scene graph generation problem by utilizing conceptual and external knowledge,
allowing them to improve over existing methods, see figure 2.10. GBNet [156] utilizes a
fully connected graph to represent scene graphs, similarly to IMP [116], and refines this
graph with iterative message passing. Knowledge bases such as Conceptnet and Wordnet
are utilized to add in commonsense knowledge as well, and the message passing algorithm
utilizes this external knowledge to refine its predictions. These knowledge bases can be
generated in a variety of different ways and offer a powerful cue. However, all scene graph
methods (even those relying on external knowledge) still learn an internal representation
different than that in the external knowledge base. This memorized representation is not
simple to disentangle.

Scene graphs are usually first generated from images, then any following reasoning
method is trained and applied on the generated graphs, which is a two step process the
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Figure 2.10: A schematic of the scene graph architecture presented in [36] that allows
for use of a knowledge bank in to inform scene graph generation. The whole process is
regularized by using a generative portion based on predicted locations and labels.

authors of [101] hoped to replace. The authors propose an alternative to the previously
seen scene graph formulation, where instead of training a scene graph and following up
with a reasoning method, the scene graph generator itself is trained with supervision from
the downstream task allowing for a more relevant ‘scene graph’-like representation. In
a sense, given that scene graphs themselves tend to be intermediate steps, the authors
propose a modification where they become trainable with the end-goal in mind instead
of being trained independently. Effectively these ‘differentiable graphs’ are learned and
their generated features describe the traditional nodes and the edges in other scene graph
formulations, see figure 2.11.

Effectively every scene graph generation approach utilizing the visual genome dataset
is forced to represent its objects (and relationships) using bounding box annotations since
they are the only annotations provided. In [59], the authors aim to improve scene graph
generation by grounding object proposals with ‘segmentation masks’ as opposed to bound-
ing boxes. Segmentation masks only include the image pixels pertaining to the object
itself as opposed to bounding boxes where non-object pixels could be anywhere within the
bounding box and in some cases (for strangely shaped objects) may comprise the majority
of the area within the box. While segmentation masks are not readily available for the
visual genome dataset, the authors of [59] posed scene graph generation as a multi-task
learning problem in an attempt to give scene graph generators the ability to utilize the
more precise features from a segmentation mask for their object proposals (specifically
Motifnets [158] were experimented with). The authors utilize the same object detection
backbone (an R-CNN based backbone [11]) as the backbone for object proposals and fea-
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Figure 2.11: A schematic of the differentiable scene graph architecture presented in [101].
The intermediate representation allows for reasoning about the bounding boxes similarly
to other scene graphs approaches, however the differentiable formulation allows these types
of models to be trained on the downstream task in an end-to-end manner.

ture extraction for scene graph generation on images from the visual genome dataset as
well as the backbone for image segmentation on images from the COCO dataset [77] (which
includes segmentation mask labels) with different ‘heads’ performing either of the two tasks
depending on the source of the image. Since object labels between the VG150 dataset and
the COCO dataset are not overlapping, segmentation masks for the visual genome images
were generated by a zero shot segmentation approach that used the lingual similarity (Via
GLOVE [100] embeddings) between the VG150 objects with bounding box proposals and
the COCO objects’ proposed segmentation masks predicted using the object segmentation
head trained with the COCO [77] dataset. Effectively the proposed masks for the VG
objects are ‘transferred’ from mask proposals of lingually similar proposed object masks
(whose labels come from the COCO dataset). Then, for scene graph prediction on the
visual genome images, instead of utilizing bounding boxes, the scene graph prediction net-
works receive more precise features coming from subregions within the bounding boxes
that likely belong to the actual object. This approach [59] was shown to provide a small
improvement over the baseline networks that were trained on a single of the two tasks only,
improving network performance of both tasks on their respective datasets.

Almost analogously to how ‘single stage’ approaches differ from RCNN based ap-
proaches in object detection, the authors of [31] propose the first ‘single stage’ scene graph
generator opting to utilize a fully convolutional network (FCSGG) approach to generate
scene graphs from images. Taking influence from ‘part affinity fields’ [%] (initially used in
2D pose estimation), the authors encode relationships at the pixel level as directed vectors
between the object centers in the image. Additionally, scene graph generation in FCSGG
[81] is done simultaneously with object detection (as opposed to sequentially), making the
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predicted vector fields that encode relationships independent of the bounding box predic-
tions. Prediction is done using an additional head on a Centernet [166] object detection
network. When generating the final scene graph prediction, the densely predicted object
bounding box locations (predicted by centernet) and the densely predicted ‘relationships’
are compared at non-max suppressed pixel locations to generate the final scene graph.
While the recall performance of this approach is significantly under the state of the art, it
is the first step in a new paradigm for scene graph generation and our approach in Chapter
5 builds upon it.

[24] tackles the bias of scene graph generators proposing illogical relationships (e.g.
every person in an image predicted as wearing every item of clothing in the image) that
maximize performance but effective produce poor results. EBM [125] tackles some of the
issues that arise from using a cross entropy loss for training scene graph generators. The
authors note that using cross entropy loss during training of previous approaches translates
to networks treating objects and relationships in an image independently as opposed to
utilizing some of the structure that exists in the scene graph (i.e., a person cannot be
both standing on the beach and surfing in the water in the same image). They propose
an energy-based approach that directly incorporates the scene graph structures into its
learning framework and show an improvement in performance for the same frameworks
when compared to using cross entropy loss. GPSnet [78] use a focal loss to modify the
‘importance’ of each edge prediction, while also proposing a frequency softening technique
to mitigate the long tailed distribution of predicates. They also propose utilizing the visual
contexts of the 2 objects in the triplet to further debias the relationship prediction.

In NICE [73] the authors target the Visual Genome data itself, focusing on ‘denoising’
the ground truth data first before training. They utilize a combination of out of distri-
bution detectors and clustering approaches to refine the VG150 dataset. The refinement
is done by finding the unlabelled ‘negative’ training samples that may actually represent
positive relationships, while also modifying the positive labels (and the newfound false
negative labelled triplets) by reassigning samples from more vague positive relationships
into more the more precise but lesser represented classes. NARE [32] also attempts to
modify the input data, and does this by differentiating between ‘explicit’ labels (such as
spatial prepositions e.g., ‘on’) and ‘implicit’ labels (such as action verbs e.g. ‘riding’) in
the VG dataset. They then utilize different loss functions depending on which of the two
types labels is being predicted. During training whenever an implicit label is seen, a regular
cross entropy loss is used, however whenever an explicit label is seen they force the network
to predict a smoothed combination of this ‘explicit’ label with another ‘implicit’ one and
utilize a KL divergence loss to allow for a smoother 2 class prediction on these samples.
This approach appears to nudge their networks into predicting the less frequently occur-
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ring ‘explicit’ classes. The authors of HLNet [79] propose and utilize a heterophily-aware
message passing algorithm by distinguishing between object homophily, the tendency of
objects to have the same labels as their neighbors, and heterophily, the tendency of ob-
jects to have different labels than their neighbors, in scene graphs. They utilize a message
passing approach, iteratively refining their scene graphs based on the learned homophily
and heterophily of both relationships and objects. Many other approaches to scene graph
generation were proposed and surveyed in [10] and which we do not exhaustively list.

2.6 Conclusions

As discussed in this chapter, understanding the failure modes of the computer vision tools
we use is of paramount importance. Our thesis tackles relationship detection by breaking
it up into 3 major portions and aiming to understand the inner workings and failure modes
of each of those portions. First, we explore the ‘object detection” portion of scene graph
generation. We do this in Chapter 3 by observing the behaviours and artefacts present in
instance segmentation networks. Instance segmentation offers a dataset which we are able
to augment more readily for our experiments, and it is often done using networks build on
top of object detectors. Understanding the limitations in instance segmentation networks
can likely illuminate the limitations that we could see when object detector backbones
are used for relationship detection instead of instance segmentation. In Chapter 4, we
experiment with the ‘data’ portion of scene graph generation and tackle the Visual Genome
dataset directly. We leverage the insights we reviewed in this chapter in understanding
how human labellers could indirectly be affecting relationship detection done by machines
via the training datasets. Finally, in Chapter 5 we tackle scene graph generation from an
algorithmic perspective and utilize all our findings to craft a novel representation for use
in this, very human-centric, computer vision task.
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Chapter 3

The Role of Shape, Content, and
Context in Modern Instance
Segmentation

3.1 Chapter Summary

The work presented in this chapter focuses on understanding the roles of object shape, its
content and its context in object detection and instance segmentation. We systematically
quantify the roles of these cues in current deep learning approaches and underscore some
of the common pitfalls exhibited across different architectures. The chapter’s contributions
are as follows:

e We show empirical evidence of shape detection biases in the tested networks, that
likely extend to other networks. The representation of object shape is brittle, where
networks can achieve a maskAP of over 20% on images with the objects completely
removed, but only if their outer contours remain rigidly similar to those in the ground
truth. They can also achieve around a 10% maskAP simply using plain object sil-
houettes on a plain background.

e We also show that non-ROI based instance segmentation networks appear more bi-
ased towards shape than their ROI based counterparts.

e We isolate which of the studied cues seem to be the most critical, and find that it
is actually object dependent with different object subsets relying on different cues.
However, on average content appears to bias networks more than shape and context.
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e We demonstrate that blurring the content of objects, but maintaining their sharp
outer contours causes very little change in network performance.

e We show that object context plays a smaller role than the other two cues, but plays
a non negligible role in aiding performance.

3.2 Introduction

Deep learning networks seem to excel performance-wise on a variety of tasks (e.g., generic
object detection [32]), but a significant portion of deep learning networks lack the ability
to gain a conceptual understanding of the world simply because their architectures were
not designed with that knowledge in mind [09]. By design, and in a nutshell, deep learning
models attempt to optimize their feature extractors and classifiers to best suit the task
at hand. If certain correlations and conclusions at the pixel level (or other abstraction
level) allow for better decision making, these correlations, no matter how brittle they are,
may make their way into the networks. This is exacerbated in deeper models with more
capacity to learn, and eventually memorize, swathes of correlations that humans are likely
incapable of even noticing exist [71]. The optimal feature extractor and discriminator
learned on one task and, more importantly, on one dataset is susceptible to bias. Further-
more, performance metrics measured on validation and even test sets are not necessarily
the best measure of generalizibility and robustness.

Isolating these biases gives a small peak into the inner workings of these models and
can allow for better engineering with them. Until we’re able to better understand the
inner workings of networks and, more importantly, predict their failure modes before they
happen, experiments like the ones we present, along with a growing body of literature
[144, , 6, 31, ] remain crucial avenues for insight into these ‘black boxes’. Figure 3.1
shows a sample of predictor behaviours that we delve into in this work.

3.3 Related Works

To our knowledge we are the first work to conduct this type of rigorous experimentation
on instance segmentation networks, as image-level classification is experimented on in
[144, 6, 116], object detection (with a bounding box) is explored in [I11], and semantic
segmentation is explored in [ 16]. We further elaborate on some of the relevant literature in
Sections 2.3 and 2.4.1.1. Each problem domain differs in its labels and the methodologies
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shape content

Figure 3.1: Sample instance predictions on an augmented input image. In (b) shape
allows for detection even when foreground and background are replaced with noise (each
of different variance). Despite the object shape being of a person, once the content is
replaced with that of a distinctive class (¢), the predictor favours the content class. Adding
in context of an office in (d), then re-biases the predictor.
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of the deep networks used within it. Consequently, the deep networks all exhibit some task-
specific behaviours (seen in the differences in the conclusions of the aforementioned works
as well as our own), but also share some commonalities in their behaviours across tasks.
This may well be due to these networks ‘fixating” on the easiest feature given their own
tasks and labelled data. The task of instance segmentation brings with it a specific type
of label, the object instance mask, that allows for a variety of novel experiments that we
describe in section 3.4, along with a variety of task-specific architectures, and unique-and
quite interesting-behaviours which we delve into in section 3.5.

3.4 Experiment Methodology

Our primary experiment focus is on understanding the roles of shape, content and context
on instance segmentation networks, and our secondary focus is understanding how differ-
ences in network architecture and training paradigm serve to accentuate or de-emphasize
these cues. We choose eight different ‘networks’, all pre-trained on the COCO 2017 ob-
ject detection train set [77], and evaluate their performance on our specifically designed
augmentations of the COCO 2017 object detection validation set. Our choice of architec-
tures and dataset was based on both their extensive use and adoption in the literature
[82], though our provided implementation allows for easily extending these experiments to
alternative methods and datasets. In order to isolate the different cues, we design a series
of experiments which, when taken in comparison to each other, can highlight the effect of
a specific cue. Each ‘experiment’ takes the form of maskAP performance evaluation of a
specific network on a different specifically crafted augmentation of the COCO validation
dataset.

For every experiment, we evaluate the performance of a network on an augmented ver-
sion of the COCO validation set. We generate these augmentations on the fly at evaluation
time, with randomness (if it’s being used in the experiment) being seeded in a way that
allows every network to see the same augmented dataset. We perform our augmentations
on a class by class basis, then calculate the mean maskAP across all classes to generate the
final reported maskAP, this is keeping in line with how evaluation is done on the COCO
dataset in general. Note that maskAP is defined as the average area under the precision-
recall curves for detection IOU thresholds between 0.5-0.95 (in intervals of 0.05), which is
in turn averaged across all 80 object classes in the COCO dataset.

For every experiment we follow the same evaluation procedure described in the official
COCO object detection challenge [77]. This ensures that all our results are fair comparisons
to the baseline, to each other and to networks that may be tested in the future using our
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Figure 3.2: A representative subset of augmented images produced by our experiment
modes. The experiment mode name is listed first, then the values after the ‘-’ represent
mode details. Black/Mean/Noise are the color of the pixels used to replace any removed
pixels. Numbers represent how many maximum pixels are added during the dilation oper-
ations (when applicable). Other adjectives describe experiment specific modes (e.g., sharp
or soft for edge blurring). The group name in parenthesis refers to the relevant results in
Table 3.1.
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code base. Notably, we pay attention to the number of maximum detections considered
during evaluation, and keep it at its default value of 100. In certain experiments (e.g., the
Isolated Instance experiments), one input image is augmented multiple times within the
same experiment mode (usually to isolate several instances of the same class within an
image). We take this into consideration when performing evaluation by concatenating all
output proposals on one image during evaluation to make sure that the total number of
detections being considered per image is still less than 100. This ensures we don’t induce
any undue bias in these experiments that may stem from certain images being allowed to
have more than the maximum number of detections.

3.4.1 Architecture Specifics

We begin by looking at a Mask R-CNN [11] with a Resnet-50 and FPN backbone trained
with various training paradigms. We first consider a fully trained Mask R-CNN with a
Resnet-50 and FPN backbone (a 3x learning schedule or ~37 COCO epochs) which we
refer to as MRCNNB50-3x. For us to explore the effects of training time we also consider
an ‘undertrained’” model (which is trained with a 1x learning schedule or ~12 COCO
epochs) which we refer to as MRCNN50-1x, as well as a model trained with a much
longer training schedule (400 COCO epochs) and using large scale data jittering (which
resizes the image and performs horizontal flips) which we refer to as MRCNNB50-Jitter.
In order to consider the effect of backbone network depth, we also use a Mask R-CNN
with a Resnet-101 and FPN backbone that is fully trained (a 3x learning schedule) which
we refer to as MRCNN101-3x. We measure the effect of a different backbone by also
running our experiments on Mask R-CNN with a Swin-T transformer backbone [$3] which
is comparable in complexity to a Resnet-50.

We measure the effect of utilizing non-ROI based detectors by looking at three separate
networks. We experiment with Conditional Convolutions for Instance Segmentation (which
we refer to as CondInst) [131] with a Resnet-50 backbone and a bidirectional FPN, Mask
Encoding for Single Shot Instance Segmentation (which we refer to as MEInst) [162] with
a Resnet-50 backbone, and Segmenting Objects by Locations (which we refer to as SOLO)
[111] with a Resnet-50 backbone. We choose the checkpoints for all these networks to be
the ones trained with a 3x learning schedule on the COCO train set.
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3.4.2 Experimental Details

We display a representative subset of the image data produced in each experiment mode
in Figure 3.2. We elaborate on the inter-experiment cues being tested in Section 3.5. We
experiment with various dilation iterations (which is when a mask of interest is expanded
in all directions by a certain number of pixels - denoted by the number in the experiment
name). We also run our experiments with different colors (Black/Mean/Noise) used to
replace any ‘off” pixels. For fairness, we do not fine tune any of the networks on any
additional data, and we utilize the author-provided checkpoints for each. They are all
trained according to their described training schedule and on the COCO train set only.

3.4.2.1 Experiment Types:

Our experiment modes are as follows, note that we elaborate on the inter-experiment cues
being tested in the Results and Observations Section:

e Baseline: We baseline every network by evaluating its maskAP on the unmodified
image set. See Figure 3.1 for a simple example or refer to Appendix A Figure A.1
for more detailed examples.

e Isolated Instance: We take every instance in total isolation by only keeping the
image content within the single instance’s ground truth mask, and perform inference
on that set of images. We test with different background color variants (Black,
Mean, Noise) that define the new color of the removed pixels. We test with multiple
dilation sizes that increase the area of the object instance masks. These experiments
are performed in an instance by instance manner. See Figure 3.1 for a simple example
or refer to Appendix A Figure A.1 for more examples.

¢ Bounding Box: We take a bounding box around every instance in isolation. Every
bounding box is dilated by a maximum of 8 pixels on every side to add more local
context. We test with different background color variants (Black, Mean, Noise) that
define the replacement color of the removed pixels. These experiments are performed
in an instance by instance manner. See Figure 3.1 for a simple example or refer to
Appendix A Figure A.2 for more examples.

e All Instance: We keep all object instances of the same class in one image at a time,
and remove everything else. We test with different background color variants (Black,
Mean, Noise) that define the new color of the removed pixels. These experiments
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are performed in an image by image manner. See Figure 3.1 for a simple example or
refer to Appendix A Figure A.2 for more examples.

Global Instance Inpaint: For every individual instance we remove all other in-
stances of the same class from its image by inpainting, we also remove and inpaint its
own local context defined by the non-instance pixels within its bounding box (dilated
by 8 pixels). This experiment is performed in an instance by instance manner. See
Figure 3.1 for a simple example or refer to Appendix A Figure A.2 for more examples.

Hallucination: We remove all pixels inside all instances of a specific class (and
measure performance on that class). We keep the entire rest of the image in Global-
Hallucination modes, and keep only the pixels that exist in a bounding box around
the instance, looking at one instance at a time, in LocalHallucination modes. We
test with different color variants (Black, Mean, Noise) that define the replacement
color of the removed pixels. We test with and without dilation of increasing magni-
tude that increases the removed area around the object mask (zero extra pixels means
no dilations). LocalHallucination experiments are performed in an instance by in-
stance manner, GlobalHallucination experiments are performed in an image by
image manner. See Figure 3.1 for a simple example or refer to Appendix A Figure
A.3 for more examples.

Silhouette: We replace the pixels of all instances of a specific class with one
color, and replace the remaining image pixels with another color. Referred to as
Silhouette- ForegroundColor- BackgroundColor. These experiments are per-
formed in an image by image manner. See Figure 3.1 for a simple example or refer
to Appendix A Figure A.2 for more examples.

Blurred Objects: We blur all instances of one class in an image simultaneously (and
measure performance on that class). We remove all other pixels and test in isolation in
the BlurredIsolation modes (using different colors for the replaced pixels). We keep
local non-class pixels unblurred one instance at a time in BlurredLocal. We keep
all the non-class pixels unblurred and in the image in the BlurredGlobal modes,
with BlurredGlobal-Soft blurring the outer boundaries of the object within the
background (creating less sharp object contours). BlurredLocal is performed in an
instance by instance manner, all other modes in this experiment are performed in an
image by image manner. See Figure 3.1 for a simple example or refer to Appendix
A Figure A.4 for more examples.

Modified Background: For every object class independently we keep all instances
of the objects intact and blur all other pixels in BlurredBackground mode, or

49



replace the image background with an alternate image from the COCO val set that
doesn’t contain instances of that object in the BackgroundSwap modes. The dif-
ference between the background swap modes is whether or not we blur around the
object boundaries in the new images to soften the edge artefacts. These experiments
are performed in an image by image manner. See Figure 3.1 for a simple example or
refer to Appendix A Figure A.4 for more examples.

e Content Swap Experiments: For every object class independently we keep all
external contours of the instances of the objects intact but replace their pixels with
those belonging to a different class. We measure performance in isolation on a mean
colored background in ContentSwaplsolation, and within the image context of the
original shape instance in ContentSwapOriginal. We expand on this experiment
mode in section 3.4.2.4. See Figure 3.1 for a simple example or refer to Appendix A
Figure A.4 for more examples.

3.4.2.2 Color Modes:

In some of our experiments, we completely mask (or remove) pixels from the original image.
Replacing original pixels with black pixels imparts a bias into the output (since black pixels
are not ‘ignored’ by the network but seen like everything else). We ‘mask’ pixels using four
different ‘color’ modes to ensure that we aren’t biasing our results by the color choice:

e Mean: For every input image, we take the mean of its pixel values across the 3 RGB
channels and then utilize that ‘mean value’ to replace the pixels we aim to mask. We
empirically found this to be the best approach at ‘hiding’ an object/background. We
opted to calculate the mean per input image in the validation set and not use the
pre-computed global pixel mean across all images in the COCO dataset.

e Black: We replace any pixels we're aiming to mask with black pixels. The reason this
doesn’t work to ‘hide’ objects effectively is because networks operate on normalized
images which includes a step where the image mean is removed (making black pixels
more obvious than ‘mean’ pixels.)

e Noise: We replace the areas/pixels we're aiming to mask with Gaussian noise cen-
tered about the image mean.

e Inpaint: We use image inpainting to replace the areas we’re looking to mask, instead
of replacing them with a solid color.

20



3.4.2.3 Dilation and Blurring Modes

In some experiments we perform a ‘dilation’ on the foreground. This entails the using
the morphological ‘dilation’ operation on the masks of the objects belonging to the class
we’re currently evaluating and using those dilated masks in the experiment as opposed to
the ground truth masks found in the COCO validation set. Often this means that more
pixels around the object are being added to the foreground. We utilize a 5x5 dilation
kernel, so every one dilation operation adds (at most) 2 pixels to the masks. To avoid
any confusion, when listing our experiments and results the number used represents the
maximum number of pixels being added via the dilation operations (this number equates
to 2 x number_of _dilation_operations).

We denote some of our experiments as -Sharp or -Soft. These adjectives refer to
whether the edges of the object instances are kept ‘sharp’ (i.e., jagged like the original
COCO ground truth masks), or whether they are softened to reduce observed shape bias.
We soften edges by blurring gradually, which mostly affects a 2 pixel region outside the
object boundary. Furthermore, whenever we blur the foreground or background, we utilize
Gaussian blurring with a fixed 9%9 kernel size. As mentioned in the main body of the paper,
increasing or decreasing this kernel is likely to have effects of performance but measuring
its effects was outside of the scope of this paper. This measurement can easily be achieved
using our code base.

3.4.2.4 Content Swap Specifics

In the Content Swap Experiments our aim is measuring which cue (whether shape or
content) the networks seem to rely on more. In every image fed to the network, we
keep the object’s external contour (its shape) intact and replace all its content with that
of another class. In ContentSwaplsolation, we remove all non-object pixels from the
background and replace them with the image mean, whereas in ContentSwapOriginal
we keep the background pixels intact. Since the original images are those which contained
the objects of the shape class, the background (and context) is that of the shape classes
not the content classes.

3.4.2.4.1 Aspect Ratio

We replace the shape object’s content in two different ways:
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1. Morphing the content object’s aspect ratio (with experiments referred to as Con-
tentSwaplsolation -Morph or ContentSwapOriginal-Morph): In this mode,
for every shape and content pair, we resize the content object so that its bounding
box is exactly the same shape and size as that of the shape object. The content
object’s aspect ratio is not preserved. We then only take the content pixels that fall
into the shape object’s mask and remove the rest of the pixels in the resized content
bounding box. Note these are the main ContentSwap experiments we refer to and
rely on in our discussions.

2. Preserving the content object’s aspect ratio (with experiments referred to as Con-
tentSwaplsolation -Aspect or ContentSwapOriginal-Aspect): In this mode,
we scale the content class object while preserving its aspect ratio until its bounding
box fully overlaps with the shape object’s bounding box. After scaling we take a
random crop of the content image that is vertically always taken from the top of the
content image but is horizontally randomly chosen!. We then only take the content
pixels that fall into the shape object’s mask and remove the rest of the pixels in the
resized content bounding box.

Note that in both these replacement methods we only select replacement objects that
are of comparable mask size. Therefore a ‘small’ content object is never used to replace a
large shape object. This limits the amount of scaling and deforming that needs to be done
in either of the two content replacement modes and ensures that content objects aren’t
being deformed too severely.

3.4.2.4.2 Evaluation Modes

We run the content swap experiments across all different shape-content combinations.
For every shape class, we augment the same images with every other content class in the
COCO dataset. We measure and report two separate maskAP performances: performance
on the shape class and performance on the content class:

LOur reasoning for choosing not to take a completely random crop is somewhat experimental (finding
that completely random crops often don’t show the same information even within the same class). We
opted to only take top crops that are random horizontally, and this is certainly a big assumption that may
have effected the output results in this mode. However this can be easily modified in the source code to
measure for where content crops are most effective through multiple different experiments (top, bottom,
random,... etc.) that require rerunning the same experiment with these different crop locations and were
out of our scope.
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1. Shape class maskAP (denoted by a ‘-ShapeAP’): For every shape class we end up
with 79 different maskAPs (80 classes minus the shape class), one for every shape-
content combination. In this evaluation mode, the maskAP is a measurement of how
often and accurately the networks predict the shape class as the class of the modified
object. For every object class, we calculate the shape maskAP as the mean of the
maskAPs across all images where this class’s shape was used.

2. Content class maskAP (denoted by a ‘-Content AP’): Similarly to shape, for every
content class we end up with 79 different maskAPs (80 classes minus the shape
class), one for every shape-content combination. However, in this evaluation mode,
the maskAP is a measurement of how often and accurately the networks predict the
content class as the class of the modified object. For every object class, we calculate
the content maskAP as the mean of the maskAPs across all images where this class’s
content was used to fill in other object shapes.

We report on both ShapeAP and ContentAP for ContentSwaplsolation modes, whereas
we only report on ShapeAP for ContentSwapOriginal modes. While we do measure Con-
tentAP in the ContentSwapOriginal modes, we omitted these results from our work. The
reason for this omission is that that we calculate maskAPs for the whole image (by uti-
lizing the COCO API) and this means that there is a possibility for the content class to
exist in the image background and skew the results of ContentAP. We were able to find
a workaround for this in the ContentSwaplIsolation and were able to successfully calculate
Content AP, however were unable to do so in the ContentSwapOriginal experiments.

3.4.2.4.3 Random Sampling and Computation Considerations

In total, we run 4 separate Content Swap experiments per one shape-content combina-
tion (ContentSwaplsolation-Morph, ContentSwapOriginal-Morph, ContentSwaplsolation-
Aspect and ContentSwapOriginal-Aspect). With 80 different classes, this leads to 6320
different possible shape-content combinations (which is 8080 = 6400 minus the 80 combi-
nations where shape and content are the same?). We found running the four ContentSwap
experiments on all the shape-content combinations in the COCO validation set to be quite
computationally intensive and therefore opted to run them on 33 images per shape class.
Since images may (and often do) contain more than one object instance, we believe this

2We do not run a ContentSwap Experiment where the shape class and the target class are the same,
but the content is that of a different instance. Although this would be interesting to explore in future
work.
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number to be a good trade-off between computationally feasible experiments and statisti-
cally relevant experiments.

The randomness associated with choosing the shape and content source images is fixed
across networks. Additionally, the shape source images are the same across all different
content experiments, and the same final augmented images are being shown to every net-
work.

Our aim was to cast a wide net and test across different networks so we opted for
this reduction in number of images, these experiments can be run on the full dataset in a
specific mode and on a specific network for an estimate of these biases with less uncertainty
due to randomness.

3.5 Results and Observations

We present a summary of our results in Table 3.1. Note that due to the large scope of
experiments we provide the full range of experiment results in Appendix A as well as the
result breakdown by mask size and class. We also provide the results of the ContentSwap
experiments which must be tabulated on a class-by-class basis in in Appendix A as well.
There are many observations that can be made by looking at the maskAP performance,
we list the observations that stood out to us the most.

3.5.1 Objects in Isolation

The isolation modes (Groups A1, A2, A6 in Table 3.1) are designed to baseline the potential
best case scenario for a detector. Since the only active pixels in the image are those of one
instance of a single object with all others pixels being a plain color (or noise), effectively
the ‘detection’ is handed to them on a silver platter. However, the isolation modes are
devoid of any context, and this could potentially impact performance negatively in case
networks are using context to aid in detection and classification.

All but one network (MRCNNb50-Jitter) had the highest maskAP with the mean color
mode, and this is the highest maskAP they achieve across all experiment modes including
their baselines. SOLO actually outperforms every other network and achieves the highest
maskAP even across all other experiment modes for all other networks. This verifies the
claim of [111] regarding SOLO’s ability to generate finer masks and is a result of their
location-conditioned convolutions. Interestingly MRCNNbJH0-Jitter actually performs best
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Table 3.1: Selected maskAP results for all eight architectures. The experiment mode
name is listed first, with values after the ‘-’ representing mode details. Black/Mean/Noise
are the color of the pixels used to replace any removed pixels. Numbers represent how
many maximum pixels are added during the dilation operations. Other adjectives describe
experiment specific modes. Group is used for referring to experiments in the main body.
Please refer to Figure 3.2 for a more visual description.

ROI Based Non-ROI based
&)&e ‘b$
N4 Y o> & X
. 20 N 20 o 4 O
Group Experiment Mode O§ $$ $ $§ ‘ﬂ\\&\ Oo“é @Q)\ 60
N\ 2
Baseline 37.2% 42.6% 35.2% 38.6% 41.8% 39.4% 34.5% 37.6%
Al IsolatedInstance-Black-0 42.8%  47.0%  43.3%  42.7%  44.7%  46.8%  43.1%  44.T%
A2 IsolatedInstance-Mean-0 44.0%  452%  44.7%  45.9%  46.1%  49.3%  47.3%  51.7%
A3 IsolatedInstance-Mean-6 32.0%  30.7% 30.2% 31.4% 32.4% 29.8%  29.1%  31.2%
A4 IsolatedInstance-Mean-12 3L.7%  33.3% 29.8% 32.5% 34.8% 30.7% 27.9%  30.1%
A5 IsolatedInstance-Mean-20 33.7%  374%  31.8%  34.7%  37.0%  335%  29.9%  32.6%
A6 IsolatedInstance-Noise-0 42.9%  48.3%  41.8%  43.7%  45.6% @ 484%  43.7%  45.3%
B1 BoundingBox-Mean 33.5% 36.3% 32.0% 34.7% 37.0% 33.6% 30.0% 33.7%
C1 AllInstances-Mean 41.1% 43.7% 40.9% 43.3% 44.2% 48.0% 43.5% 48.1%
D1 Globallnstance-Inpaint 26.9%  28.6%  262%  272%  29.0%  29.0%  25.6% = 28.4%
E1 Silhouette-Black-Mean 8.5% 9.8% 9.3% 10.6% 9.9% 12.7% 18.4% 13.2%
E2 Silhouette-Noise-Noise 5.3% 9.6% 2.5% 3.4% 2.9% 11.9%  9.0% 4.1%
F1 GlobalHallucination-Inpaint-0 2.8% 4.9% 2.7% 3.2% 3.6% 3.8% 2.9% 2.9%
F2 LocalHallucination-Black 16.1% 20.6% 15.4% 17.5% 19.3% 19.5% 16.8% 15.0%
F3 GlobalHallucination-Black-0 22.7% 27.8% 21.3% 24.6% 26.5% 27.9%  21.2%  23.2%
F4 GlobalHallucination-Black-2 10.4% 12.9% 10.1% 11.9% 12.3% 13.9% 10.5% 11.3%
F5 GlobalHallucination-Black-4  5.9% 7.6% 5.9% 6.9% 7.3% 8.3% 6.1% 6.4%
F6 GlobalHallucination-Black-6 4.0% 5.2% 4.0% 4.6% 5.0% 5.8% 4.2% 4.2%
G1 BlurredGlobal-Sharp 36.8% 42.2% 34.8% 38.3% 41.0% 39.9% 34.1% 38.0%
G2 BlurredGlobal-Soft 29.0% 33.7% 27.0% 30.4% 33.0% 31.9% 27.5% 30.2%
H1 BlurredBackground-Soft 35.8%  40.0%  34.4%  37.1%  40.0%  39.1%  342%  38.0%
H2 BackgroundSwap-Sharp 32.8%  36.5%  325%  33.5%  343%  33.3%  295%  32.6%
H3 BackgroundSwap-Soft 25.8% 28.7% 25.5% 26.3% 27.0% 25.5% 23.6% 25.6%
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with a noisy background, and itself and Swin-T (the best performing methods on the
baseline) have the smallest increase in performance in the isolation modes. It is possible
that both of these networks likely already incorporate a similar representation in
their baseline performance, hence their improvement is not too great.

Another observation is that the lack of context doesn’t seem to impact perfor-
mance negatively in fact without any context at all the networks seemingly performed
better on average. However, there are exceptions to this: classes such as tie, frisbee,
surfboard, baseball bat, baseball glove, cellphone, remote, and mouse among others took
a performance hit in isolation (see Table 2 in the supplementary). All these classes are
usually smaller in area, but they also commonly appear being held or interacted with by
people (the most common class in the COCO dataset). This could be an indication of the
networks utilizing certain inter-class dependencies for their predictions.

3.5.2 Shape Memorization

In all the IsolatedInstance experiments we inadvertently introduced an additional signal
that may have been the cause of the surge in performance: shape. The object instance
is inserted using the COCO ground truth provided masks, which are analogous to what
the networks were trained with. In the case of COCO, mask annotations are given as a
series of connected segments around the object and can be somewhat ‘jagged’. By using
the mask annotations as-is in the isolation experiments these sharp boundary edges
caused networks to detect the underlying objects more accurately.

To demonstrate this memorization of object shape, we experiment with detection on
the same objects but with a small additional region from their original surroundings added
around them (Groups A3, A4, and A5). This only adds a small local region to the objects
(e.g., a maximum of 6 pixels in the case of dilation-6), but at the same time modifies the
sharp edge shapes into ones that the networks haven’t seen before. This additional bit of
boundary information drops network performance significantly, with networks performing
worse in this experiment than even their baselines. Overall, the larger, longer trained and
better performing networks take the most significant relative performance hits (MRCNN50-
Jitter, Swin-T and MRCNN101). While every network performs significantly more poorly
in this data paradigm, it is noteworthy that the lesser trained and smaller MRCNN50-1x
takes the smallest relative hit, even outperforming the larger and more trained MRCNN101-
3x network. This could possibly point to network capacity being able to memorize these
shapes to a certain extent (in the case of MRCNN101), or the longer training schedules
inadvertently leading networks to rely heavily on this feature. This brittle representation
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of object shape (stemming from the instance masks) is possibly the most ‘easy’ [16] feature
for the models to learn, leading them to rely on it disproportionately.

3.5.3 Now You’re Seeing Things

In order to quantify how much of an influence shape and context have we look at the
Silhouette and GlobalHallucination modes (Groups E and F). In both these modes the
object itself is masked, i.e., no object pixels are present in the input. Instead every pixel
belonging to the object class in question is replaced with either black colored pixels, mean
colored pixels or noisy pixels (and in one case, in-painting).

The global hallucination modes serve to illuminate the tendency of networks to pre-
dict objects that, effectively, aren’t really there. When object classes are masked
and the objects are now texture-less shape silhouettes, networks still con-
sistently predict the object’s presence with non-negligible maskAP. In the case of
GlobalHallucination-Black-0 (Group F3), the performance is reasonably high at over 20%
maskAP across every network. Masking using mean or noise pixels serves to camouflage
the object better, but maskAP is still not negligible. The three different color experiments
show a large variation in performance, with black pixels being seen as a bigger indicator
of ‘objectness’ and being less ignored compared to the mean and noise paradigms. This is
to be expected as all the networks normalize the input image during train and inference
time which involves centering it around a predefined pixel mean.

The question remains, how much of this detection is due to the rigid memorized shape
we saw in the IsolatedInstance and Alllnstances experiments (Groups A and C), and how
much of it is caused by context informing the prediction? In the Dilated GlobalHalluci-
nation experiments (Groups F4-F6), we dilate the object masks (and therefore erode their
original region in the image) by a varying degree and notice that even in the smallest form
of dilation (a mere 2 pixels) maskAP performance drops significantly in all 3 color modes.
This drop in performance continues as we dilate further and a 6 pixel dilation is the last
time we see significant detection maskAPs. Another interesting finding is that if we replace
coloring in the object pixels (which accentuates the sharp mask edges) and instead we in-
paint the object locations (GlobalHallucination-Inpaint), maskAP drops substantially. In
the in-painted images, object edges are effectively eliminated, however they are replaced
with imperfect ‘in-painted’ replacements that do seem to trigger object detection, though
to a very low degree and a very low but not nill maskAP. The main cue informing object
detection in this data paradigm is most likely context since both object edges and content
are gone.
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From the experiment outputs MRCNNb50-Jitter is the most susceptible to the halluci-
nation experiments. This could be due to it being the most well performing network in the
selected networks to start with, however looking at its closest baseline performer (Swin-T)
and the fact that Swin-T seems to be slightly less susceptible to some of the attacks may
point to the fact that the MRCNNbH0-Jitter could have memorized the cues that are causing
this result.

Finally, the Silhouette experiments (Group E) further demonstrate the role of shape,
even in the absence of all other cues. Most notable is maskAP in the Black-Mean silhouettes
when the object is replaced with black pixels, and everything else is replaced with mean
pixels. Even the Mean-Black silhouettes have a non-trivial AP, but also interesting is
the Noise-Noise silhouettes where the foreground is replaced with noise from a Gaussian
distribution and the background is replaced with noise from a Gaussian distribution with
a different variance. Even though the silhouettes in the noise-noise images are quite hard
to make out for humans (or at least our human colleagues), certain networks are still able
to detect them with some accuracy such as MRCNN50-Jitter, CondInst, and MEInst (but
peculiarly not SOLO). Figure 3.1 shows an example of this prediction.

3.5.4 Local versus Global Context

Sections 3.5.1 and 3.5.2 discussed the odd behaviour of networks devoid of any context in
the IsolatedInstance modes. Network performance seemingly took a hit when a small area
of local context was added in IsolatedInstance-6, but that is likely due to the rigid shape
boundaries that are ‘memorized’ by the networks. However as more and more local context
gets added in (in IsolatedInstance-12 and 20), this context begins positively influencing
prediction performance. This is likely due to local context now playing more of a part in
the object detection. MaskAP performance begins tending towards baseline performance,
though never exceeding it (unlike in the IsolatedInstance-0 experiments).

The BoundingBox experiments (Group B) supply objects with even more of their local
context and performance also improves but still doesn’t exceed the baseline. It is worth
noting that shape could be a factor here as well, with shape being inferred from the more
pronounced difference between the object and the now larger background in its vicinity.
The effect of global context can also be seen through the difference between the maskAP
performance in the BoundingBox experiments versus that of the baseline. While networks
seem to improve in performance when supplied with local and global context,
their reliance on a rigid representation of shape is still problematic.

Since some images contain multiple instances of the same objects, we designed the
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Alllnstances experiments (Group C) to see if isolation performance changes when all object
instances in an image are shown at the same time. In this mode for every image we keep
all the instances of one class of object (as opposed to keeping one instance at a time).
Our aim is to measure whether having other instances of the same class would bias the
networks into predicting that class, however experimentally that didn’t seem to be the
case. Network performance on the Alllnstances task was comparable to (but consistently
lower than) the IsolatedInstance-0 performance with the same background color. This
serves to show that having more of the same object in an image doesn’t seem
to cause networks to predict it any more readily.

Local hallucination experiments (Group F2) also highlight the effect of global context on
the predictions. The only difference between the local and global hallucination experiments
is that in the former pixels outside the area of the object bounding box are also masked
(leaving only object shape and local context). Looking at the difference in maskAP between
the two experiment modes (Group F2 and F3) shows a consistent positive effect of global
information across all networks. Though it still may be that this ‘global information’ is
being utilized by the networks in relationship to the object shape.

It is also worth noting that a similar drop in maskAP is seen between the baseline
and the BoundingBox experiments (Group B, where a bounding box is taken around a
non masked object). Again in these two modes the removal of global context (in the
form of pixels that are outside the object bounding box) affects maskAP negatively across
networks. The small difference in results between the ROI-based and non ROI-based
detectors also indicates that the non ROI-based detectors are not utilizing context too
much more effectively their ROI-based counterparts.

In the Globallnstance-inpaint experiment (Group D), shape (the sharp object edges)
along with the object pixels themselves are kept, and only local context is removed (non
object pixels in the object’s bounding box). Object instances are viewed one at a time,
and other same class instances are inpainted, which, as discussed in 3.5.3, effectively hides
them from the detector. Unexpectedly, performance takes a hit over the baseline, even
though the shape and content are still aiding the detection. We are unsure what causes
the performance hit in this mode, but it is possible that too many new image artefacts are
produced after the inpainting and the bounding box removals, that the detectors struggle
to still make sense of the instances.
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3.5.5 Content Remains Important

As demonstrated by the IsolatedInstance experiments (Group A), taking the rigidly mem-
orized shape out of the equation by dilating the object in isolation illuminates the role of
object content only. We define object ‘content’ as the set of pixels that form the object
itself, this set of pixels encodes object texture, color, internal contours, ... etc. After dilat-
ing the isolated instances, the shape edges likely aren’t too well defined and the network
will struggle to utilize them, and the object content remains as the biggest signal in those
experiments. Based on the maskAP results, object content is, unsurprisingly, an extremely
powerful cue in prediction, as even in complete isolation networks perform relatively close
their baselines when only given the content.

The hallucination experiments also serve to reiterate the important role of content. The
GlobalHallucination experiments (Group F3-F6) compared to the baseline, as well as the
LocalHallucination experiments (Group F2) compared to the bounding box experiments
(Group B) are two sets of experiments where the same area of pixels is active in both
modes, but one with and one without the object itself. Both sets of experiments show
that, again unsurprisingly, object content is likely the most substantially used
signal in prediction.

The blurring experiments (Group G) also offer interesting insights into what small
perturbations on image content can result in. In BlurredGlobal-Sharp we blur the objects
in question but keep their outer contour in the image sharp in comparison to BlurredGlobal-
Soft where the outer contour is softened by a decreasing Gaussian blur (to remove the
previously mentioned shape effect). Our aim is to isolate for the effect of blurring the
image content, so we explicitly wanted to make sure shape was removed from the equation.
The maskAP in both experiments remains relatively high, notably when the outer contour
remains intact network performance is almost exactly similar to the baseline indicating
that a well defined shape plus a weaker representation of content is enough to
approximate baseline performance. This likely says more about shape bias rather
than content, however performance drops below the baseline by a non-trivial margin when
the sharp edges are blurred and all that the networks can rely on is the blurred content. It
may be worth exploring the effect of more severe blurring kernels on performance in future
work.

3.5.6 Not All Objects are Seen in the Same Way

Given the biases we've seen so far in our experiments, we aim to measure which bias
is ‘stronger’, and whether a network is biased to different cues that occur in different
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Table 3.2: Observed maskAP performance in the content swap experiments for a subset of
classes and networks. We present the observed maskAP for the class when only its shape
is used (and its content is filled with that of other classes), both in its original image and
in isolation. We also present the average maskAP of the object class when its content is
used to fill in other shapes in isolation.
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person 18.6% 11.4% 9.4% 15.4% 11.0% 14.5%
bicycle 0.8% 0.2% 6.1% 1.2% 1.0% 8.2%
car 7.3% 3.4% 18.5% 9.2% 8.4% 20.9%
airplane 4.5% 20.3% 6.9% 14.3% 12.8% 11.7%
truck 3% 5.1% 19.9% 7.8% 9.5% 21.6%
traffic light | 19.7% 12.3% 20.0% 19.2% 35.5% 28.2%
fire hydrant | 37.5% 9.0% 10.8% 35.4% 26.5% 15.7%
stop sign 28.8% 5.5% 31.1% 26.7% 31.4% 37.9%
dog 10.8% 2.9% 8.1% 10.8% 7.5% 12.1%
umbrella 25.8% 19.9% 11.3% 20.5% 24.1% 20.5%
kite 32.4% 34.5% 19.8% 23.4% 30.0% 22.0%
baseball bat | 33.8% 4.1% 0.4% 20.9% 27.5% 2.6%
surfboard 31.4% 4.2% 5.9% 20.1% 9.0% 10.2%
pizza 3.5% 1.4% 15.6% 1.4% 6.0% 21.1%

objects. In our ContentSwap experiments, we explore how shape, content and context all
intertwine and serve to aid (or hinder) networks in confusing examples. We look at 2 sets
of ContentSwap experiments and compare their maskAPs. Within each set the data (or
evaluation) differs by one cue and the results offer some interesting insight into network
behaviour. Table 3.2 presents a subset of the results of the ContentSwap experiments, with
the full results found in Appendix A.

3.5.6.1 Set 1 : Shape vs Content Bias

First, we tackle the ContentSwap experiments done in isolation. In these experiments the
competing cues are object shape (defined by its external contour and the network bias to
those contours) versus object content (the contours/textures internal to the object). Across
all networks a certain set of object shapes seem to bias the network more heavily
than others (e.g., Airplanes, Kites, Umbrellas) where on average, despite the fact that
another class texture makes up their ‘content’, the networks still detect these objects as
the shape class with a significant maskAP. There are even some shapes that seem network
specific in their bias, for example the non-ROI based networks all seem to also favor the
shape originating from ‘baseball bat’ much more than the ROI based networks that don’t
display the same behaviour. Looking at classes whose content seems to bias detection,
we find that land-based transport classes (bus, car, truck, train, but notably not bicycle)
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along with food classes (pizza, cake, donut, but peculiarly not carrots) and even stop
signs are among the most biasing ‘content’ classes. Some objects (e.g., person and traffic
light) seem to even have the ability to bias all networks via their shape and their content.
Even more peculiar, street level categories (specifically stop sign, fire hydrant and the
aforementioned traffic light) have this double shape-content bias much more pronounced
in non-ROI networks. It is critical to note that on average, across all networks and all
classes, content appears to bias networks more than shape.

3.5.6.2 Set 2: Adding In Context

As discussed in section 3.5.1 a specific set of objects seem to depend on context for correct
detection. Looking at these same classes (e.g., baseball bat and surfboard), the same trend
emerges when we include and remove context from the ContentSwap experiments. We
notice this subset of classes, which had a low maskAP in the isolation modes (both with
their original content and their modified content), now display a high maskAP once context
is factored in. Effectively these objects could be more reliant on context than on
content for their predictions. Furthermore most other classes get better detected based
on shape after context is added in. The tableware classes (e.g., cup, fork, knife, spoon,
bowl) whose content has been modified seem to get significantly better detected within
context than without. It’s worth noting that the context added in is of the shape-class
object (since the instances that have their context replaced exist in those locations in the
images).

3.5.7 Background Signals Don’t Change Too Much

Taking influence from [I11], we attempt to quantify the effect of background signals on
the overall quality of detection and classification. This is done in the two background
swap experiments (Group H), the only difference between them being whether the object
instance’s outer contour is blurred in the new background image (to mitigate the shape bias
effects). The results don’t show an over-reliance on object background, with performance
remaining relatively steady in the BackgroundSwap-Sharp mode, but taking a hit in the
BackgroundSwap-Soft paradigm. We note that the reason why the maskAP appears to
be significantly lower in the blurred edges paradigm is due to us opting for a fixed size
blurring across all classes and instances. This lowered the detection accuracy of small area
instances significantly, with medium areas getting somewhat effected as well, and large
area instances holding steady.
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As expected, not all objects behave similarly when background changes. The same
set of objects that networks struggle with due to lack of context in section 3.5.1 (e.g.,
tie, frisbee), they also struggle with due to uninformative context in the background swap
experiments. This trend is seen in all tested networks regardless of architecture. Overall
an adversarial background appears to play as much of a part in damaging
detection performance as the lack of context seen in section 3.5.4. These findings
are somewhat different to those in [111], where in their case background and context played
a much more important role in detections. The likely reason for this difference in network
behaviour is that their image level classifiers were trained with image level categories that
were not as severely biased to object shape as instance segmentation networks since they
hadn’t seen instance masks.

3.6 Conclusions

We quantify the effect that object shape, content and context play in instance segmenta-
tion networks of various architectures and training paradigms. Our experiments allow us
to disentangle the effects of shape, content and context from each other. Overall, we did
not observe too many unexpected performance differences between differing architectures.
The non ROI-based approaches seemingly had a stronger bias towards shape which aided
them in some of our experiments that included the sharper shape contour, however this
may be an undesirable behaviour. The larger Resnet-101 backbone as well as the Swin-T
backbone both behaved predictably relative to the baseline Resnet-50 backbone with no
major performance shifts across experiments. Swin-T does appear to have a more refined
and possibly better understanding of objects as demonstrated by its better relative robust-
ness to certain shape attacks where it maintained its good performance when compared
to the jitter-augmented Mask RCNN. The jitter-trained Mask RCNN with a Resnet-50
backbone appeared to have ‘memorized’” a lot more of the data and behaves accordingly
(e.g., by having the highest performance in the noise-noise silhouette experiments), this
behaviour likely does cause it to exhibit good maskAP on the validation and even test set
(where it always evaluated using the same rigid external contours), however this perfor-
mance improvement may be a result of memorizing these biases and may not translate well
to other datasets.

[t’s unsurprising, even comforting, that networks more or less perform the same across
our different adversarial experiments. They usually all fall into the same traps, and excel at
the same classes on the same tasks. They all eventually converged to similarly performing
final architectures, and since all the cues and signals we explored came from the data, the
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networks all zeroed in on the same overall cues and optimized their performance based on
them.
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Chapter 4

The Topology and Language of
Relationships in the Visual (Genome
Dataset

4.1 Chapter Summary

This chapter focuses on exploring the topology and language of visual relationships in the
Visual Genome (VG) dataset, the most ubiquitous scene graph dataset, and how these
affect the learned scene graph generation models. The contributions are reiterated:

e We show that the human labelling bias stemming from human representations of
relationships creates asymmetric relationship labels that span the whole VG dataset

e We show that the lack of inverse relationships in the VG dataset leads to a lack of it
in the learned models

e We utilize 2D topology to both shed light on the lingual vagueness of certain classes
and show that some of these classes can be understood differently based on their
topological configurations.

e We show that when reduced to more lingually and topologically well defined spatial
relationships scene graph generation algorithm performance improves tremendously,
but scene graph generators are still far from perfect.
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4.2 Language and Inverse Relationships

In language, spatial prepositions often have inverses, which can serve as a dual (but op-
posite) representation of the same physical phenomenon being observed. For example, if
a table is ‘to the right of’ a person, it is immediately understood that the person is ‘to
the left of” the table. Several of the 50 predicate classes that exist in the VG150 data set
have linguistically ‘inverse’ relationship predicates within the set as well. For example, the
predicates ‘behind’ and ‘in front of’ are both in the VG150 predicate set. It follows that
if a subject-predicate-object triplet of subject A-‘behind’-object B exists, we would expect
to see the inverse triplet of subject B-‘in front of’-object A. One very commonly occurring
predicate, ‘near’, could even function as its own inverse.

Figure 4.1 shows a heat map of how often two relationship predicates share an inverse
relationship in the VG dataset. An inverse relationship exists if the same two bounding
boxes (containing the same specific objects) share two relationships, with one in each
direction. In other words, one inverse relationship exists between predicates ‘above’ and
‘under’ if for a specific pair of objects the objects are linked by the triplet subject A-under-
object B as well as subject B-above-object A in the dataset. Note that two objects may
have multiple relationships connecting them. The full heatmap of inverse relationships
between all 50 predicates can be found in Appendix B.

We notice that inverse relationships do not form a significant portion of the relationships
observed in the VG dataset. In fact, even the expected inverse relationships between
linguistically inverse predicates are not at all frequent. Predicates ‘under’ and ‘above’ (or
‘under’ and ‘over’ whose result can be seen in Appendix B) don’t share much of an encoded
inverse relationship, in fact ‘under’ seems to share a stronger inverse relationship with ‘on’,
however that is likely also due to how over-represented the predicate ‘on’ is in the VG
dataset. See Figure 4.2 for an example.

The work done by Landau and Jackendoff [70] on human spatial cognition touches on
a relevant issue. They describe the ‘asymmetry’ in the way humans form spatial represen-
tations, where these asymmetries come from many factors, including that certain objects
are more likely to be the ‘reference point’ based on size or relevance or saliency. Even
the more apparently ‘symmetrical’ spatial predicate relations tend to become asymmetric
in our reasoning by virtue of how humans form their own spatial reasoning. Given that
the VG labels are generated by human annotators, there is an asymmetric skew that will
inevitably exist in the resulting labels which is the root cause for why these inverse rela-
tionships do not exist. For example, of the over 243,000 relationship triplets that include
humans in the VG150 dataset, humans are the subjects in approximately 84% of those
relationships, while they are objects in only 19%.
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Figure 4.1: A heatmap of the occurrence of inverse relationships for specific predicates.
The letters in square brackets indicate which predicates we expect to be inverse pairs, the
numbers in parentheses are the total occurrences for this predicate in the dataset. For
every row the value in the heat map reflects the ratio of: (inverse relationship occurrences
of the row predicate with the predicate in the column) to (total occurrences of the predicate

in the row).
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Figure 4.2: Inverse relationships are rarely seen in the VG dataset and relationships usually
occur in one direction. For example, while the bottle has a logo, the logo is not labelled as
being on the bottle. This is among other missing inverse relationships in this image alone.
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This asymmetric skew is to be expected in human conversation and description, mainly
because human reasoning can understand the inverse relationship immediately and it does
not need to be explicitly stated. However, this will not be the case for learning algorithms
who don’t have an existing knowledge of the world, or of the verbal semantics of the
relationship predicates they are predicting. A small percentage of inverse relationships
existing in the VG150 dataset, even for the predicate classes where we expect them to
exist, could likely hinder the ability of learning models to understand these relationships.
A potential solution to this could be in the form of data augmentation (for a data-driven
solution) or even prior knowledge about these inverse relationships being given to the
learning algorithms utilizing this data. Alternatively, inverse relationships could be used
as a metric for measuring generalization performance of learned models, especially if certain
models were shown to be able to piece together these inverse relationships without explicitly
being told about them, or incentivised to learn them.

It is worth noting we also measured co-occurring ‘forward’ relationships between the
same two objects i.e. two objects related in the same subject-object configuration but with
different predicates. This measurement yielded no results of interest, as these relationships
turned out to be very rare.

4.3 Topological Relationships

The language that creates the relationship triplets may be biased by how humans view and
reason about the world, which makes the bounding boxes that also define these triplets
worth exploring as well. These bounding boxes are the smallest 2D image axis-aligned
rectangles that can hold the object they border and they lend themselves well to a 2D
topological analysis. Topological relationships [26, 19] can be determined between two 2D
areas, and the topological relationship can be classified depending on the configuration
between the borders and the interiors of these areas. Figure 4.3 describes the possible
topological relationships between two 2D areas.

A topological analysis of the bounding boxes found in the VG dataset sheds light on the
relationships in the dataset. Where our language and how we describe a relationship can
be influenced by our cognitive biases, observing the topological relationships between the
bounding boxes can give us an understanding of what a certain relationship is prioritizing.
They can inform us on whether the subject or the object is the more ‘dominant’ for a given
predicate class as well as validate whether the downstream task of scene graph prediction
that utilizes the features in these bounding boxes is being built on valid data. Since
several scene graph generation approaches [10] operate by taking the union or intersection
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Figure 4.3: Topological relationships [20, 19] visualized. Note that two additional relation-
ships exist Object in Subject (similar to (b), but with object and subject reversed), as well
as Subject Covers Object (similar to (e) but with the object and subject reversed).

of the detected object bounding boxes to predict the relationship predicate, a topological
perspective on how these bounding boxes are related in the VG dataset is quite relevant.

Furthermore, we analyse the dominant directions in which these relationships are oc-
curring. These directions are found by analysing the location of the object relative to the
subject when they are linked by a specific relationship predicate. For triplets with pred-
icates describing spatial prepositions, such as [subject, ‘above’, object], we expect to see
the object always being towards the south of the subject. This analysis also sheds light
on whether more frequent and more vague predicates (such as ‘on’ or ‘has’) are exhibiting
any regular directional relationships.
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Figure 4.4: A heatmap of the occurrence of topological relationships between bounding
boxes related by specific predicates. The values shown in the heatmap are the portions of
the total occurrences of the row predicate that exhibit the specific topological configura-
tion in the column. The values in parenthesis next to the predicate names are the total
occurrences of that predicate.
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We visualize some of the results of the topological analysis in Figure 4.4 and the di-
rectional analysis in Figure 4.5. The full heat maps for all the relationship predicates can
be found in Appendix B. Note that while the ‘equal’ topological relationship doesn’t occur
in this subset of predicates, mainly due to its more specific and rare configuration, it does
show up in the full set. Also noteworthy is our evaluation of the ‘covers’ versus ‘in’ topo-
logical relationships. While [20] describes these relationships rigidly (as shown in Figure
4.3), we loosened them very slightly (in the order of 5% of the smaller of the two bounding
boxes under analysis) to account for human error in labelling the bounding boxes. For
example, if a subject A lies completely within object B for a given case, however it is
proximal enough to the boundary of object B (though not exactly touching it as shown
in Figure 4.3e) we could still bin the topological relationship as a ‘subject covers object’
relationship depending on how close subject A is to the boundary (of B) relative to its own
size. Our directional calculations are binned into the 8 cardinal directions of a compass,
and measured based on the relative centers of gravity of the bounding boxes. For example
if for a certain relationship triplet [subject, predicate, object] the center of gravity of
the object bounding box is south-east of the center of gravity of the subject bounding
box, it is binned as ‘SE’. We also calculate the spread of the directions for the 8 different
topological configurations within each predicate, and isolate some predicate-topological
pairs of interest where directions exhibit a noteworthy spread, this is shown in Figure 4.6.
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in the column.
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The topological relationships tend to reveal the more ‘dominant’ of the subject and
object pair linked by a certain predicate. In some cases, such as the predicate ‘has’ (e.g.
building has window), the expected topological configuration is dominant: the object,
window, is fully contained in the subject. This follows from how we expect the lingual
relationship to occur [70]. Notably, the topological spread of the predicate ‘in’ is not as
would be expected, and further highlights the vagueness of this relationship predicate.
While the expected dominant topological configuration (subject in object - it is literally
in the name) is the most frequently occurring, it is not extremely dominant. We would
expect a ‘subject in object’ topological configuration for the relationship triplet [person
in car], but, for example, the triplet [bottle in hand] (where the bounding box of the
bottle is actually larger than that of the hand produces an ‘object in subject” topological
configuration, and an example triplet [plant in pot] counter-intuitively produced a disjoint
topological configuration due to how the bounding boxes are labelled.

The directional evaluation produced more expected results. Predicates ‘above’ and ‘un-
der’ mostly exhibited directional configurations that are true to their descriptions. In fact,
their symmetric relationship is highlighted well by how they exhibit similar topological
configuration distributions, while having inverse directional configurations. A similar, but
less pronounced, symmetric relationship is also seen in the predicates ‘behind’ and ‘in front
of’. Vague predicate classes, however, such as ‘on’ or ‘in’ still showed a big variety of direc-
tional configurations, likely due to them encoding several different lingual interpretations
of ‘on” and ‘in’. The predicate ‘near’ interestingly seemed to imply the subject and object
were side by side (with the slightly higher chances for a ‘W’ and ‘E’ configuration). The
results shown in Figure 4.6 help shed some light on the combination of topological and
directional configurations and serve to disambiguate some predicate classes. For instance,
the predicate ‘on’ exhibited more predictable directional qualities when the topological
relationship was ‘overlap’. In this predicate + topological combination, ‘on’ usually meant
the subject was on top of the object e.g.[person on sidewalk], as opposed to ‘on’ with
the configuration ‘Subject in Object’ (e.g. [fruit on tree|) where the subject is potentially
anywhere within the bounding box of the object.

Similarly to how inverse relationships can be used to augment the dataset, it is possible
to modify the more vague relationship classes based on their topological configurations.
Spatial predicates that are linguistically similar and exhibit similar topological and di-
rectional configurations could possibly be merged into broader classes without losing too
much of their meaning. For example, predicates such as ‘laying on’, ‘lying on’, ‘parked
on’ which all occur in the VG150 dataset, and all seem to be describing a similar spatial
configuration (further proven by their topological configurations) can be merged into a
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Figure 4.7: An example of the overloaded relationship predicate ‘on’. Different topolog-
ical configurations of the same predicate can disambiguate between different conceptual
and lingual interpretations of the predicate. Both figures showcase the same relationship
predicate ‘on’, however the ‘touching’ configuration in figure (a) coupled with the relative
position of each object implies a support relationship, whereas the ‘subject in object’” con-
figuration of (b) implies more of a containment relationship.

super set!. While on the other hand the larger and vaguer predicate classes ‘on’ or ‘in’ can
possibly be broken down. A simple example is presented in Figure 4.7.

We would also like to note that a topological analysis of the bounding boxes in VG
may be subject to certain biases and shortcomings as well. We live in a 3D world, and it
may be difficult for any computer vision system to infer the 3D concepts from 2D images
in the Visual Genome dataset annotated with 2D bounding boxes. Concepts like ‘behind’
and ‘in front of’ may be extremely difficult for a vision system that has only seen 2D
images to reason about, especially if it is not designed with the 3D world in mind. A
topological analysis of the VG dataset is likely better suited for the relationship labels that
are not overtly 3D in nature. Relationships like ‘above’ or ‘under’ are more two dimensional
than ‘in front of” or ‘behind’, for example, which may be why the symmetric relationship
between the more 2D pair (above-under) was more easily distinguishable in the topological
and directional analysis than that of of the more 3D pair (behind-in front of). With that
in mind, we still see value in this analysis and the properties that it was able to reveal in
the underlying data.

!This could provide an alternative to the synset embeddings that are extracted from Wordnet [03] IDs
which are already supplied in the VG dataset. Note we did not evaluate the topological configurations
while utilizing those IDs.
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4.4 Algorithmic Use in Scene Graphs

While we believe the topological and directional configurations along with the augmen-
tations defined by spatial language discussed previously could possibly be incorporated
into a novel algorithm for scene graph generation, it is outside of our scope of discussion
for this chapter. Instead we aim to experiment with different data configurations based
on what our exploration has yielded. The topological and lingual analysis enabled us to
better understand the ambiguities of the labels and restructure relationships in a manner
that is lingually and topologically sound. We created 2 alternate subsets of the VG150
relationship predicates and measured the performance of the same baseline model when
trained with these new labels.

In this section we conclude with 3 simple scene graph generation experiments that are
driven by modifying the data rather than modifying the underlying algorithm. To reiterate,
in scene graph generation [10], we are given an input image and tasked with identifying the
objects in that image along with the relationships that exist between those objects much
like the graph shown in Figure 2.8. Scene graph generators are evaluated under 3 different
settings:

e Predicate Classification: Where the object bounding boxes and the object class
labels associated with the bounding boxes are given, hence the scene graph generator
must only find the relationships between the given objects.

e Scene Graph Classification: Where the object bounding boxes are given, but the
class labels associated with the bounding boxes are not, so the scene graph generator
must infer both the class labels as well as the relationships between the bounding
boxes.

e Scene Graph Generation: Where the input image is given without any other labels
or information, and the scene graph generator must uncover the relevant objects in
the image, their bounding boxes as well as the relationships between them. This
is the most challenging setting for evaluation.

Scene graphs are also evaluated based on their recall, as opposed to based on their
precision. Given an input image, the scene graph generator is evaluated on how many of
the ground truth relationships it was able to uncover. The defining metric in scene graph
literature is the mean recall@QK metric. The mean recall averages the recall score across
every predicate class individually instead of every predicted relationship instance. This is
mainly due to the large predicate class imbalance that exists in the VG data set. So the
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average recall is calculated for every predicate separately first, and then averaged again
to get the mean recall which ensures under-represented predicate classes are not being
ignored in the evaluation. The mean recall@K metric is the mean recall score when the
top K scene graph predictions are used for evaluation, so a mean Recall@20 would mean
the scene graph was allowed to predict up to 20 relationship triplets to compare to the
ground truth.

The baseline scene graph generator we utilize for the experiments is the Stacked Motif
Network (MOTIF) [158]. In brief, the Stacked Motif Network (MOTIF) [158], first gen-
erates the object label only then utilizes a bidirectional LSTM to propagate information
between the different object proposal and relationship proposal stages, effectively allowing
object context to influence its label and its relationship labels. For our experiments we
follow the implementation of [59] and exchange the VGG16 [120] detector with a RESNeXt-
101-FPN [145] which was shown to improve performance. Proposing a novel scene graph
generation model is out of the scope of this chapter and we only aim to see the differences
in performance that a strong baseline generator can observe when the data it uses is better
structured. Scene graph generation networks usually achieve relatively low recalls (with the
Scene Graph Generation mean Recall still being under 10% in state of the art models [10]).
The reasoning authors give is usually the vagueness of the predicates and ‘long tailed’-ness
of the distributions in the VG dataset. Certain relationships dominate the dataset and
learning algorithms struggle to capture the true conceptual information contained in the
entirety of the dataset, instead focusing on the dominant classes. As shown in our lingual
and topological analysis, the VG dataset does indeed show topological and lingual ambi-
guity, lack of symmetrical relationships and labelling bias, and these are detrimental to
learning models.

We train and evaluate the same scene graph model [1558, 59] on three different predicate
configurations derived from the VG150 set:

e Original Predicates: We use the original 150 classes and 50 predicates from the
VG150 data set to baseline the model.

¢ Relationship Subset 1: The ‘less vague’ subset where we remove 14 of the more
vague original 50 predicate classes, and merge 4 others to keep 32 unique relationship
predicates. The removed classes are either linguistically vague, or did not exhibit
topological and directional configurations that matched their descriptions. That
being said, we do keep the larger vague classes (such as ‘in’ or ‘on’) since they form
such a large subset of the dataset.

e Relationship Subset 2: The spatial preposition subset where we take a subset of
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the 50 classes that correspond only to spatial prepositions, we also merge classes that
exhibit similar lingual, topological and directional configurations. We end up with 8
unique predicates that are a combination of 20 of the original predicates.

The exact predicates we use are listed in Table 4.1. The results of the experiments are
shown in in Table 4.2. At first glance the recall results when using relationship subset 2
may seem to indicate a significant leap in performance, though we also understand that
this leap is very much expected as the class labels are better balanced and much fewer.
That being said, it’s interesting to see that even an off the shelf scene graph generator
can perform quite well as a spatial preposition predictor when given the right data. In our
opinion the more interesting result is that of relationship subset 1. This experiment showed
some improvement in recall with the reorganized 50 relationships, but that improvement
is not as significant as we would have expected. Relationship subset 1 cleaned up edge
cases and some of the more ‘vague’ predicates of the original 50, but the performance
improvement seen was relatively small.

We analyze the existence of inverse relationships in the predictions of the scene graph
generators and show a subset of the results in Figure 4.8. In this analysis, we tallied what
inverse relationships are found by the scene graph generator for each of the correctly recalled
ground truth relationships. In other words, if a ground truth relationship is correctly
found by the generator in its top K relationships under a specific setting, we find whether
an inverse relationship is also being predicted (whether it exists in the ground truth or
not). This yielded some interesting findings on what inverse relationships the generator
is learning. For example, in the case of the original 50 predicate classes, the predictor
seemed to find a strong inverse relationship between predicates ’of” and ’has’, as well as
‘on’ and 'has’. Both of these pairs are likely a result of a symmetric possessive relationship
that is getting encoded (e.g. wing of bird/bird has wing or car has wheel /wheel on car).
This is likely due to the formulation of stacked motif networks [158] which honed on
certain repeated 'subgraphs’ in the ground truth. In the case of relationship subset 2 of
spatial predicates, some inverse relationships are more prevalent (such as the large class
of ’on’ having an ’under’ inverse relationship 15% of the time), however other incorrect
relationships also show up (such as 'behind’ being its own inverse).
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Original Relationships

Relationship Subset 1

Relationship Subset 2

above
across
against
along

and

at

attached to
behind
belonging to
between
carrying
covered in
covering
eating
flying in
for

from
growing on
hanging from
has
holding

in

in front of
laying on
looking at
lying on
made of
mounted on
near

of

on

on back of
over
painted on
parked on
part of
playing
riding

says
sitting on
standing on
to

under
using
walking in
walking on
watching
wearing
wears

with

above
across
against
along

attached to
behind
between
carrying
covered in
covering

n

from
growing on
hanging from
has
holding

in

in front of
laying on
laying on
mounted on
on

on back of
over
painted on
parked on
using
riding
sitting on
standing on
under
using
walking in
walking on
wearing
wearing

above

inside
on
on

inside
in front of
on top of

on top of

on

on
on top of
above

on top of

on top of
on top of
on top of

under
inside
on top of

Table 4.1: A breakdown of the relationships used in each of our 3 experiments. A -’
means the relationship from the original set was removed entirely. Italicised text is used
to indicate that a relationship has been kept but its label was modified.
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Predicate Classification Scene Graph Classification Scene Graph Generation

Model Detector Relationship Set mR@20 _mRG50 mROI00 mRG20 mRG50 mROI100 mRG20 mRG50 mRG100
VCTree [130] VGG-16 [120] Original 50 Relationships (Reported in [59]) 14.0 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8.0
MOTIF [155] RESNeXt-101-FPN [145]  Original 50 Relationships (Reported in [59]) 14.1 18.0 19.4 8.0 9.9 10.6 5.8 7.7 9.0

Baseline

MOTIF [158] RESNeXt-101-FPN [147] 12.0 15.4 16.7 5.9 7.2 8.9 48 6.1 7.2

(Original 50 Relationships)
Relationship Subset 1
MOTIF [158] RESNeXt-101-FPN [115] (Less Vague 174 21.2 22.6 8.5 10.2 10.7 5.8 77 8.9
36 of Original Relationships)
Relationship Subset 2
MOTIF [158] RESNeXt-101-FPN [115] (Spatial Prepositions 46.1 55.7 59.1 22.2 25.9 27.1 14.4 18.8 21.6
20 of Original Relationships)

Table 4.2: The results of our three experiments with different VG150 predicate subsets.
Our code implementation was adapted by starting with the implementations of [59, 129].
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Figure 4.8: Inverse relationship proportions in the scene graph predictors trained on differ-
ent data subsets evaluated on the predicate classification task using the top 50 predictions.
The numbers in parenthesis indicate the number of correctly recalled instances of each
predicate, the numbers in the grid are the portion of those recalled instances that had an
inverse relationship with the column predicate class (whether that relationship was in the
ground truth or not).

If anything the results of both of our experiments seem to indicate that there is still
much to be done in the field of scene graph generation even outside of the dataset domain.
Stacked motif networks [158] are an impressive approach to generating scene graphs, that
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managed to push the field forward by paying attention to the underlying data. Since then,
a few other works have taken interesting approaches as well. For instance, segmentation
grounded scene graph generation [59] demonstrates the utility of moving away from solely
bounding boxes for scene graph generation and shows that even mask annotations obtained
via zero-shot transfer can improve scene graph generation performance. Grounding con-
sistency [21] on the other hand demonstrated how a lack of negative training examples in
the data and the reliance on recall alone in the evaluation led most scene graph predictors
to learn very biased representations.

4.5 Conclusions

In this chapter we explored the lack of representation of both sides of symmetric relation-
ships in the VG dataset, which likely resulted from the asymmetric spatial representations
humans (and thus human labellers) exhibit. However, we noticed even with the ‘cleaned’
relationship sets, scene graph performance was still relatively subpar. We explore this
further in Chapter 5 as we attempt to understand how ‘visual’ the scene graph generation
is. We also utilize the topological configurations discussed in this chapter in two separate
approaches to scene graph generation.
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Chapter 5

Naive Scene Graphs and Topological
Relationship Affinity Fields

5.1 Chapter Summary

This chapter focuses on connecting visual relationship detection to the visual signal in the
images themselves (i.e., the pixels). We reiterate the main contributions:

e We describe and implement a new ‘statistical baseline’ for scene graph generation and
demonstrate that a classical machine learning approach, one as simple as a categorical
Naive Bayes classifier, can perform relationship detection in a manner that achieves
comparable performance to that of state of the art scene graph generators.

e We describe and discuss how modern approaches to scene graph generation are being
held back from a data, evaluation and algorithmic standpoint .

e We describe, implement and evaluate topological relationship affinity fields a novel
representation for scene graph generation grounded in the image pixels themselves.

o We qualitatively demonstrate the visual nature of the learned relationships and how
they pertain to specific pixel regions.
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5.2 The ‘Visualness’ of Visual Relationship Detection

Visual relationship detection in humans is a complex process requiring us to identify the
objects we see and understand how they interact with each other. Some complexity comes
from the fact that the same two objects don’t always share the same relationship, for
example during business hours, a chair at a restaurant is likely next to or tucked under
a table, whereas after closing time, the chair is possibly above the table (an unusual
configuration, but one that we as humans can understand the reasoning behind). The
same relationship can also manifest itself differently depending on the subject and the
object of it, for example the relationship ‘on’ manifests itself differently in the statements
“fruit on a tree” and “cup on a table”. This vagueness in what a relationship predicate
really means is further exacerbated by the overloaded language we use to describe these
relationships which we explored in Chapter 4.

Our human cognitive biases, gained via living in and experiencing the world, often can
give us a good idea of what relationships will exist between two objects without seeing the
objects themselves [1 19, 34]. If we were told that there is a scene involving a relationship
between a ‘person’ and their ’clothes’; it’s fair to assume that the person is ‘wearing’ the
clothes without necessarily seeing the scene or image. These biases are not entirely bad, as
they often weed out unlikely relationships between two objects (e.g., a person is likely not
‘riding’ their clothes). Further, when humans look at a scene they are capable of overriding
their biases and identifying the correct relationship despite how unusual it may be.

Relationship prediction algorithms appear to be relatively capable of the former form of
prediction where, after training with relevant data, they appear to be able to filter out likely
and unlikely relationships between objects [158, , ]. The current state of performance
on Scene Graph Generation [10] may indicate they aren’t doing much past that. While
machines appear to be capable of learning the ‘bias’ that aids them in narrowing down
what relationships are most likely, they are less capable of overcoming this bias and reliably
predicting the sometimes unseen and unusual visual relationships in a scene and usually
default to the broader and more trivial relationships. This behaviour is often attributed
to imbalances in the training data (e.g., in the VG dataset [01] where vague relationship
predicates such as ‘on’ or ‘has’ dominate the dataset), and a ‘long tailed distribution’ of
visual relationships and its effect can be seen in the stark difference between Scene Graph
Generator’s recall performance and their mean recall performance.

Scene Graph Generation is a relatively recent task in computer vision with the earliest
methods for performing it appearing around 2017 [1416], and its approaches in the literature
always utilize some form of ‘deep learning’ [10]. Section 2.5 delves into an overview of
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modern Scene Graph Generation. The scene graph generators (i.e., the networks) take in
an image as input and must output the scene graph that details the relationships they
observed in the image. Object detection is its own unsolved task in computer vision
(see Chapter 3), and certain modes for scene graph generation also supply the networks
with the locations of the object bounding boxes. This allows researchers to measure the
performance of networks on relationship prediction alone regardless of how well object
detection is being done. One of the critiques cited by Marcus [89] is that the usually
complex nature of deep learning approaches makes their decision-making rationale less
straightforward to understand. In the case of Scene Graph Generation, we often don’t
know why a certain relationship predicate was predicted and how much of an influence the
object labels play versus the observed visual stimuli themselves.

In this chapter we first explore the extent to which visual relationship detection can
be done ‘non-visually’ and with an extremely simplistic approach: Naive Bayes. At first
glance it may seem almost futile to compare the results of a simplistic and basic statistical
approach to what a deep network with hundreds of millions of parameters trained for
hundreds of thousands of iterations could achieve. However, as we show in Section 5.3,
without the use of any pixel data a simple probability based approach can still compete
even with more recent approaches to Scene Graph Generation. This is not due to our Naive
Bayes approach and features being particularly well suited for the task, but similar to what
we showed was the case with object detection in Section 3.5.2 (and as discussed in [10]
for toy problems), scene graph generating networks may in fact be ‘fixating’ on the easiest
feature to learn (the statistical biases of the data) and hindering their own performance.

We build on these findings and our findings from Chapter 4, and design an approach
to scene graph generation that is, by design, grounded in the visual data. Building on the
work in [81], we propose a novel representation for visual relationships where relationships
are grounded in image pixels using the topology of their relevant bounding boxes. Our
approach does not perform at the level of existing scene graph generation methods, how-
ever it shows promise as a step towards a different paradigm for approaching scene graph
generation. During training time we leverage the topological configuration of the objects
connected by a relationship, however during inference the representation is regressed by
networks without the need to first identify the classes or the bounding boxes of the subject
and object in the relationship triplet. Effectively, our approach is a ‘single stage’ scene
graph generation approach that regresses both objects and relationships using the same
backbone but independently of each other. Our approach is explainable by design, with
every inferred relationship being grounded in the image pixels that led to its inference.
This also allows our representation to be used to extend scene graph generation past us-
ing bounding boxes for objects and into using object instance masks. Furthermore, much
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like in [81], our representation can be regressed using less computationally and memory
intensive fully convolutional networks without the need for multiple ‘stages’.

5.3 Naive Scene Graphs

In effectively all scene graph generation approaches, objects are detected first, then rela-
tionships are inferred between pairs of objects in an image. After the objects are detected,
visual features from object the object detection backbone are used and further refined by
the relationship detection networks/heads. This happens differently in various scene graph
generation paradigms (e.g., some methods use the strict areas of the bounding boxes of
the objects themselves, others use the visual features in the smallest ‘union’ box that con-
tains both objects, one method even uses weakly learned ‘masks’ [59]). The underlying
assumption of these approaches is that networks are learning valuable visual features and
representations that eventually allow for visual relationship detection in the images.

Using the same ground truth data (e.g., the Visual Genome dataset [6]), scene graph
generation networks are trained using 3 different data ‘settings’ each using the same im-
ages, but some also relaying additional data at train and inference time. When training
and evaluating under the ‘Predicate Classification’ (PredCl) setting, networks are given
the bounding boxes and class labels of all objects a priori and they must only infer the
correct relationships. Whereas when training and evaluating under the ‘Scene Graph Clas-
sification’ (SGCI) data setting, the ground truth bounding box locations are given, but
networks must first classify the object labels of the objects within the bounding boxes be-
fore predicting relationships. Finally, under the ‘Scene Graph Detection’ (SGDet) setting
networks are only given the image with no additional information. In practice the same
network architecture is used in all three settings, noting that in the literature networks are
often trained under each data setting individually for optimal performance.

In all three data settings, the object detection network generates the visual features
needed for relationship detection as well. The ‘relationship detection’ portion of the scene
graph generation networks’ inputs are the visual features from the backbone network as well
as the class labels and bounding boxes, and this relationship detection portion must then
infer the most likely relationships among all bounding box pairs. In the cases where some
a priori information is known, this information overrides the object detection network’s
predictions for object class label, bounding box location or both, but the relationship
detector still receives similar inputs. The strong correlations that exist between the object
class combinations and the possible relationships [129, , , 31] along with a heavily
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imbalanced dataset can possibly lead to scene graph generation networks suffering from a
similar over-reliance on ‘simple’ features as previously seen in [10] and Section 3.5.2.

Ideally, scene graph generation networks are utilizing the additional information from
the visual features they have access to. However in order to truly understand how well scene
graph generators are performing, we aim to baseline how much information can potentially
be extracted from the input data given to networks devoid of any visual features. We
utilize a simple approach that relies solely on the relatively basic correlations that could
be drawn from utilizing the bounding box information (be it given a priori or inferred by
the backbone network).

5.3.1 Experimental Approach

In this experiment, we perform scene graph generation in a manner similar to existing
approaches [10] (with objects being detected first, followed by relationship detection on
those objects), and on all 3 data settings, with the key difference being how we approach
relationship detection. In our case, relationship detection intentionally only utilizes the
non-pixel data that the bounding box information carries with it. For every image this
data always contains the corners of all the detected (or ground truth) bounding boxes in the
image as well the detected (or ground truth) classes of the objects in these bounding boxes
whether this information is given from the ground truth (fully in the case of PredCl and
partially in the case of SGCI) or from the object detection head (SGDet). Our relationship
classifier is also not deep learning-based, but is actually a simple naive Bayes classifier
conditioned on a small set of hand crafted features generated from this input data. No a
priori information on which objects share a relationship is given to our predictor (or any
traditional scene graph generation method in the literature). Our predictor is tasked with
determining which bounding boxes share relationships, and what those relationships are,
to eventually generate a scene graph of the image.

5.3.1.1 Classifier and Feature Selection

For this set of experiments we utilize a Categorical Naive Bayes classifier [150, 96]. This
classifier can be seen as a generalization of a Bernoulli Naive Bayes classifier where instead
of the input features being strictly [False, True] (or [0,1]), the input features are discrete and
have a a known lower and upper bound but can belong to any number of categories ([0,...,n-
1] for n categories). Multiple works [158, , 130] validate the correlations that exist
between object classes and relationship classes between them. In addition, our findings in
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Chapter 4 indicated that topological configurations and relative bounding box positions
may be discriminative indicators of the type of relationship between two objects. Finally,
the areas of the bounding boxes may also help in determining the relationship between
the objects they contain. We propose 7 simple categorical features based on these findings
that we use in conjunction with our classifier:

1. Head Class: The class of the head object in the relationship triplet <head, predi-

cate, tail>. In our experiments this feature can be one of the 150 object categories
in the VG150 Dataset.

2. Tail Class: The class of the tail object in the relationship triplet <head, predicate,
tail>. In our experiments this feature can be one of the 150 object categories in the
VG150 Dataset.

3. Topological Configuration: The topological configuration of the head and tail of
the relationship triplet. This can be one of 8 possible categories as shown in in Figure
4.3.

4. Angular Configuration: The location of the object relative to the subject in the
relationship triplet binned into the 8 cardinal directions.

5. Relative Head to Tail Area: The ratio of the area of the head bounding box to

that of the tail bounding box (I{T‘;?flégoouu&diirgg]foix /frzza). This feature is logarithmically

scaled, rounded, and clipped to convert it to discrete/categorical ‘bins’ between |-
9,...,9]. Where a category of -9 implies that the head object is extremely small
compared to the tail object, 0 implies they are roughly equal in area, and 9 implies
the head object is extremely large compared to the tail object. The total number of
categories is therefore 19.

6. Head Area Ratio: The ratio of the area of the head bounding box to the whole

image (Head B&‘;ggnjfrl:;’x Area). This feature is logarithmically scaled, rounded, clipped

and shifted to convert it to discrete/categorical ‘bins’ between [0,...,9]. Where a
category of 0 implies that the head box is roughly extremely smaller than the whole
image, and 9 implies the head object is roughly of the same size as the whole image.
The total number of categories is 10.

7. Tail Area Ratio: The ratio of the area of the tail bounding box to the whole image

(Ladl B‘I’;I;iieniizx Area) - Thyis feature is also logarithmically scaled, rounded, clipped and

shifted to convert it to discrete/categorical ‘bins’ between [0,...,9]. Where a category
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of 0 implies that the tail box is roughly extremely smaller than the whole image, and
9 implies the tail object is roughly of the same size as the whole image. The total
number of categories is 10.

One of the main assumptions made when utilizing a classifier from the Naive Bayes
family, the ‘naive’ assumption, is that the features used are independent. This is not fully
the case with our proposed features. As shown in [155], head classes and tail classes can
be somewhat predictive of each other, with certain tail classes almost exclusively being
associated with certain head classes (e.g., such as tail classes that pertain to clothing being
in triplets with human-related head classes). Features such as head class and head area
ratio (or tail class and tail area ratio) are also correlated due to the nature of the data in
the visual genome dataset [6]. The object classes themselves are also redundant in the VG
dataset and the VG150 subset, for example boy, child, kid and person all exist as separate
object classes. Despite this, in practice we find that our Naive Bayes classifier is still well
suited to the task of relationship detection while utilizing our selected set of features.

We also note that features 4 through 7 could have been represented as continuous
instead of categorical variables, and even utilized with a Naive Bayes classifier. Angular
configuration could have been replaced with the exact angle instead of a binned representa-
tion, and the area ratios could have been represented as continuous variables with decimal
numbers. We opted for a simpler approach with binning these features into categories
since the bins still represent the essence of the features, and allow us to pursue a purely
categorical classifier.

5.3.1.2 Experiment Details

For our experiments we utilize 3 different subsets of our features which we utilize both in
isolation in different combinations together:

1. Class Feature Subset: Comprised of features 1-2, this feature set is used to measure
the predictability of relationship predicates when the head and tail classes are known.
Note that a similar 2 feature set was used in [158] with a different classifier.

2. Topological Feature Subset: Comprised of features 3-4, this feature set allows
us to validate whether topological and angular configurations carry additional infor-
mation that is informative to relationship prediction between two object bounding
boxes.
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3. Area Feature Subset: Comprised of features 5-7, this feature set allows us to
observe whether the area-related features are also discriminative in a manner different
than the topological and angular configurations.

For all proposed feature subsets, and all combinations between them, we evaluate scene
graph generation under the three scene graph generation data settings (PredCL, SGCI,
SGDet). In the case of PredCl, we extract our proposed features from the ground truth
bounding box class and bounding box data (available in this data setting), then train and
evaluate our classifier using that data. In the case of SGCl and SGDet, we must first
get the missing bounding box information for the image, we utilize a pre-trained Faster
R-CNN with a ResNeXt-101-FPN backbone trained in [129], which is the same one used
to benchmark several of the scene graph generation approaches we compare against [129,

]. In our case, this network is used solely for the purpose of generating bounding box
information and no visual features from the backbone are used for relationship prediction.
For the SGCI data setting, the bounding box corners from the ground truth are utilized
(which are available in this setting), and no ground truth information is used in the SGDet
data setting. We train a separate Naive Bayes classifier for each feature set and data setting
as is common practice in scene graph literature. We evaluate the recall, mean recall and
zero-shot recall @ 20, 50 and 100 permitted predictions and perform our evaluation with
the graph constraint! for a fair comparison with the literature.

Zero shot recall measures how well an approach detects a relationship triplet that has
never been seen in the training set. So while the individual objects and the relationship
predicates in the <head, predicate, tail>triplet will exist in the training set, the specific
combinations that zero shot recall is measured on have not been seen by the detector.
Sometimes this means that the head object and the relationship predicate have always had
a different tail object (or vice versa), but it could also mean that for a specific relationship
predicate either the head object, the tail object or both will have a zero frequency of
occurrence in the train set. This will cause a problem for a Naive Bayes type classifier since
it would cause certain objects to have a zero posterior probability with certain relationship
predicates. We mitigate the zero occurrence problem by using a Laplacian correction on the
frequency table which effectively adds 1 to every occurrence, eliminating zero occurrences
and giving every object even a slim chance at being in a triplet with any relationship in a
zero shot setting.

We train two separate categorical Naive Bayes classifiers using our training data, one for
detecting the existence of relationships and another for classifying the relationship between

No two objects are allowed multiple relationship predictions in the same direction.
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the 50 possible predicates. We could have alternatively trained one classifier by adding an
additional ‘background’/‘no relationship’ class, but we empirically found our approach to
be superior. The first of our two classifiers detects the presence of a relationship between
two bounding boxes and outputs the probability that the two objects share a relationship.
It is trained by examining all possible combinations of two bounding boxes per image in the
training set ground-truth, and assigning a positive label (1) to the combinations that share
a relationship triplet and a negative label (0) to the combinations that don’t share a rela-
tionship. The corresponding features are extracted for every combination in the training
set, after which we train the ‘existence’ classifier. The relationship classifier is trained only
on the positive relationship samples, and it predicts the most likely relationship predicate
between two bounding boxes (out of 50 in the VG150 data set). During inference time,
we are allowed 20/50/100 guesses at the relationship triplets (depending on the evaluation
mode), and so we usually require a method of ranking the predicted relationships. We
experimentally found that utilizing the existence probability to rank the relationships (and
choosing the top k based on that ranking) provided the best overall results. We experi-
mented with combining the relationship type probabilities into the ranking and found a
very small, but mostly negative effect on the overall results.

5.3.2 Results and Discussions

Our mean recall results are presented and compared with other modern scene graph gen-
eration approaches in Table 5.1, our recall results are presented in Table 5.2, and our zero
shot recall results are presented in Table 5.3.

First, we compare between our different classifiers defined by the features they utilize.
Since our classifier is a simple one that utilizes statistics, comparing between performance
of the classifier when utilizing different feature combinations can give us a good idea about
which features seem to carry more information based on their prior statistics.

As expected, bounding box classes were the biggest contributors to improving recall and
mean recall performance, knowing the head and tail classes alone the classifier still performs
reasonably well. Head and tail classes in relationship prediction can be quite biasing to
humans [119, 34] and it’s no surprise their statistics are informative as well. Topological
and area features did not seem to allow classifiers to recall relationships as well as class
features did, and even when combined, the classifier utilizing topological and area features
together did not measure up to the one utilizing class features only in terms of recall and
mean recall. When a classifier was able to use topological and class features, however,
recall and mean recall improved significantly further highlighting the utility of these types
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Table 5.1: Mean recall rates @ 20/50/100 on the VG150 dataset for our Naive Bayes
approach as well as modern approaches to scene graph generation. The approaches denoted
by * utilize a ResNeXt-101-FPN backbone. For SGCl and SGDet we utilize this same
|, backbone choice does

backbone as the object detector with its weights taken from |

not affect our PredCl results.

| PredCl | SGCl | SGDet
| Year | mR@20 mR@50 mR@100 | mR@20 mR@50 mR@100 | mR@20 mR@50 mR@100

IMP [146, 129] 2017 - 9.8 10.5 - 5.8 6 - 3.8 4.8
Motif * [158, 129] 2018 | 10.8 14 15.3 6.3 7.7 8.2 4.2 5.7 6.6
VCTree * [130, ] 2019 14 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8
KERN [10] 2019 - 17.7 19.2 - 9.4 10 - 6.4 7.3
VCTree+TDE * [129] 2020 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3
GPSNet [78] 2020 - - 22.8 - - 12.6 - - 9.8
GB-Net [150] 2020 - 19.3 20.9 - 9.6 10.2 - 6.1 7.3
VCTree + EBM [125] 2021 | 14.2 18.2 19.7 10.4 12.5 13.4 5.7 7.7 9.1
Segmentation Grounded Motif * [59] 2021 | 145 18.5 20.2 8.9 11.2 12.1 6.4 8.3 9.2
Segmentation Grounded VCTree * [29] | 2021 15 19.2 21.1 9.1 11.6 12.3 6.3 8.1 9
RAAL [80] 2021 14.4 18.3 19.9 7.9 6.6 10.3 4.9 6.5 7.4
Schemata [115] 2021 - 19.1 20.7 - 10.1 10.9 - - -
FCSGG [31] 2021 4.2 5.7 6.7 2.2 2.9 3.3 1.9 2.7 3.3
VCTree + NICE * [73] 2022 - 29.9 32.3 - 19.9 21.3 - 11.9 14.1
VCTree + EBM + NARE * [32] 2022 21 24.9 26.5 14 16.2 17.1 7.8 10.1 11.8
HL-Net [79] 2022 - - 22.8 - - 13.5 - - 9.2
Naive Bayes With Feature Set:

Class Only * 8.70 13.38 16.58 5.30 7.59 9.08 4.04 5.75 7.10
Topological Only * 2.44 3.52 3.97 1.45 2.06 2.40 0.98 1.48 1.83
Area Only * 1.27 2.32 3.12 0.81 1.39 1.85 0.33 0.63 1.01
Class + Topological * 12.03 17.43 20.62 6.60 9.43 11.34 4.49 6.93 9.00
Class + Area * 9.49 14.39 17.76 5.43 7.96 9.68 3.53 5.73 7.53
Topological + Area * 2.40 3.92 4.77 1.42 2.27 2.82 0.73 1.34 1.90
Class + Topological + Area * 11.93 17.39 20.81 6.58 9.38 11.47 4.15 6.55 8.78
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Table 5.2: Recall rates @ 20/50/100 on the VG150 dataset for our Naive Bayes approach
as well as modern approaches to scene graph generation. The approaches denoted by *
utilize a ResNeXt-101-FPN backbone. For SGCI and SGDet we utilize this same backbone
as the object detector with its weights taken from [129], backbone choice does not affect
our PredCl results. Blank rows left in to correspond with Table 5.1.

PredCl SGCl SGDet

Year | R@20 R@50 R@100 | R@20 R@50 R@100 | R@20 R@50 R@100
IMP [146, ] 2017 | 54.34 61.05 63.06 | 34.01 3748  38.5 18.09 2594  31.15
Motif * [158, ] 2018 | 58.46 65.18 67.01 | 35.63 38.92 39.77 | 25.48 32.78 37.16
VCTree * [130, ] 2019 | 59.02 65.42 67.18 | 42.77 46.67 47.64 | 2453 31.93  36.21
KERN [10] 2019 - 65.8 67.6 - 36.7 374 - 27.1 29.8
VCTree+TDE * [129] 2020 | 39.1 49.9 54.5 22.8 28.8 31.2 14.3 19.6 23.3
GPSNet [78] 2020 | 67.6  69.7 69.7 41.8 423 42.3 223 289 33.2
GB-Net [156] 2020 - 59.3 61.3 - 34.6 35.4 - 20.7 27.6
VCTree + EBM [125] 2021 - - - - - - - - -
Segmentation Grounded Motif * [59] 2021 - - - - - - - - -
Segmentation Grounded VCTree * [59] | 2021 - - - - - - - - -
RAAL [30] 2021 | 59.1 66.2 68.4 33.5 36.7 37.6 217 273 29.9
Schemata [115] 2021 - 66.9 68.4 - 39.1 39.8 - - -
FCSGG [31] 2021 | 28.0 35.8 40.2 13.9 17.7 19.6 11.4 15.7 19.0
VCTree + NICE * [73] 2022 - 55.0 56.9 - 37.8 39.0 - 27 30.8
VCTree + EBM + NARE * [32] 2022 - - - - - - - - -
HL-Net [79] 2022 | 60.7 67 68.9 38.8  42.6 43.5 26 33.7 38.1
Naive Bayes With Feature Set:
Class Only * 29.98 42,51 5041 | 17.86 24.76 29.48 | 12.01 17.11 20.90
Topological Only * 25.01 37.03 4244 | 1490 21.23 2494 8.59  13.86 17.89
Area Only * 1712 2771 35.09 | 1042 16.02 20.33 4.95 8.38 12.08
Class + Topological * 40.40 52.05 5737 | 22.62 29.65 33.72 | 15.36 21.29  25.68
Class 4+ Area * 2783 41.53 50.10 | 16.27 23.55 28.62 | 10.01 15.70 20.34
Topological + Area * 2446 3597 41.70 | 14.09 20.50 24.46 7.51  12.50 16.72
Class + Topological + Area * 3742 496 55.34 | 21.16 28.16 32.31 | 13.39 19.33 24.07
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Table 5.3: Zero shot recall rates @ 20/50/100 on the VG150 dataset for our Naive Bayes
approach as well as modern approaches to scene graph generation. The approaches denoted
by * utilize a ResNeXt-101-FPN backbone. Zero shot recall is not always reported on, and
we included the approaches from Table 5.1 and 5.2 that do report on this metric.

| | PredCl | SGCl | SGDet

| Year | 2sR@20 zsR@50 zsR@100 | zsR@20 zsR@50 zsR@100 | zsRG@20 zsR@50 zsR@100
Motif* [158, 129] 2018 1.9 - 7.2 0.3 - 1.2 0 0.5
VCTree* [130, | 2019 1.8 - 7.1 0.4 - 1.2 0.1 - 0.7
VCTree+TDE* [129] 2020 - 14.3 17.6 - 3.2 4 - 2.6 3.2
Segmentation Grounded Motif* [59] 2021 4.1 - 10.5 0.8 - 2.5 0.1 - 1
Segmentation Grounded VCTree* [59] | 2021 4.6 - 10.6 0.8 - 2.5 0.3 - 1.5
FCSGG [81] 2021 - 8.2 10.6 - 1.3 1.7 - 0.8 1.1
VCTree + TDE [129] + NARE* [32] | 2022 | 9.11 13.52 - 4.26 6.2 - 2.24 3.25 -
IMP [146] + NARE [32] 2022 | 7.12 10.5 - 1.57 2.32 - 1.52 2.48 -
Naive Bayes With Feature Set:
Class Only * 3.44 6.59 9.16 0.79 1.56 2.19 0.2 0.55 0.77
Topological Only * 6.56 10.88 13.35 0.92 1.82 2.72 0.36 0.74 1.37
Area Only * 5.07 8.55 10.89 0.75 1.51 2.18 0.34 0.92 1.27
Class + Topological * 6.94 11.6 14.46 1.26 2.57 3.53 0.29 0.79 1.33
Class + Area * 5.20 8.65 11.19 1.10 1.92 2.63 0.36 0.65 1.10
Topological + Area * 7.23 10.83 12.94 1.10 1.93 2.80 0.37 0.83 1.40
Class + Topological + Area * 7.49 11.9 14.49 1.35 2.55 3.53 0.37 0.82 1.36

of features. The area and class classifier did show an improvement over the class only
classifier, however to a lesser degree than what topological features added. Even utilizing
all three types of features together, recall and mean recall performance were comparable
between the classifier using class and topological features, and the classifier using class,
topological and area features.

The trends we observed with recall and mean recall did not extend to the zero shot
recall evaluation mode. This mode evaluates the recall performance on never before seen
relationship triplets, so object class labels may not be as helpful. This is in fact the case,
where the classifier trained with only class features performed significantly worse in this
mode than the ones trained with topological or area features alone. Topological and area
features of bounding boxes are clearly informative for this mode with the best performing
classifier being the one trained on class, topological and area features. Topological features
appeared to be the most informative to classifiers in the zero shot recall mode, likely due to
the statistics of configurations of bounding boxes being predictive of a relationship between
classes that never shared this relationship in the training set.

We present our statistical baselines as a new minimum achievable target for scene graph
generation done in the traditional 2-stage approach (where objects are detected first, fol-
lowed by relationship prediction). This is the case for effectively every scene graph approach
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we present and, to our knowledge, every scene graph generation approach in the literature
except for FCSGG [81]. Statistics alone contributed to our presented classification results,
and no visual signals in the form of image pixels contributed to our final results. We cannot
certainly determine which aspects of the compared approaches are causing them to under-
perform or exceed our presented baselines, however we highlight each compared method’s
uniqueness to frame and understand what could be causing this method to succeed.

Our Naive Bayes approach effectively models the relationships in the image as a fully
connected graph, where every detected object is connected to every other detected object.
This is similar to how IMP [140], one of the earliest approaches to scene graph generation,
tackles the task. In the case of IMP, relationship prediction between two objects was done
via a Gated Recurrent Unit that passed information about the objects and context. In
our case the ‘existence’ and ‘type’ of relationship connecting the two objects is inferred by
our classifier based on prior probabilities. This is a poor assumption to make on our end,
on top of an exceptionally oversimplified classification approach. Both Motifs [158] and
VCTree [130] design their approaches to not utilize a fully connected graph but instead
capitalize on certain aspects of the nature of relationships in the Visual Genome Dataset.
These approaches are quite well designed and both approaches are still widely used as a
baseline approach for several other methods [129, 59, 73, 32] that augment certain aspects of
them to improve their overall performance. Motifnet [158] was explicitly designed with the
knowledge that commonly occurring relationship subgraphs (the titular ‘motifs’) permeate
the Visual Genome dataset. While the approach taken was sound, with image context
being utilized and refined among relevant bounding boxes for predicting relationships.
VCTree [130] moves towards a hierarchical tree structure as opposed to a fully connected
graph and also weights its relationship predictions based on the objects that are sharing
this relationship. Despite the more logical representations for their data, performance of
both these approaches was oddly still below that of our statistical approach.

Several modern approaches opt to build upon the core approaches proposed in VCTree
[130] and Motifs [158], such as [125, 59, 129, 152, 73, 32] among many others. ‘Unbiasing’
scene graph generation using Total Direct Effect (TDE) appears to be one of the most
reliable methods for improving performance. It is likely that with TDE the removal of noisy
relationships resulting from irrelevant contributions from the context of the image was key
to allowing networks to start relying on the relevant pixel level data that is informative
of relationship classes. This likely pushed TDE-utilizing approaches past the threshold of
our statistical approach. EBM [125] modified the loss function used into an energy-based
one that they designed to be aware of the structure of scene graphs, as opposed to a cross
entropy loss that had been used previously which treated objects and relationship labels
as independent entities. Though EBM did improve upon the baseline VCTree, the overall
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performance still did not exceed our baselines. The segmentation grounded approaches
[09] also don’t appear to improve upon their respective baselines and only hover around
the statistical baseline we present. Since no segmentation ground truth data exists for the
VG dataset, this approach generates pseudo masks based on the object class similarity to
the object classes in an alternate dataset (COCO), and there are no guarantees that the
eventually produced object masks for the VG dataset are in fact accurate. We expected
this approach to be better grounded in the pixel data and possibly exceed the statistical
baselines we present as a result of it being forced to rely on additional visual information,
however it’s possible that performance of these approaches was hindered by the noisiness
of the VG dataset. NARE [32] modifies its loss function during training depending on
the type of label being predicted, guiding the network to predict the more ‘implicit’, verb-
based, classes over the abundant ‘explicit’, spatial preposition-based ones. This targets and
improves the mean recall performance directly and allowed NARE’s approach to perform
well on this metric, since it favours predicting the rarer classes. The more successful
approach appeared to be NICE [73] that attempts to train the baseline VCTree model
with better data. NICE [73] targets the ground truth data itself and refines it to allow
the scene graph generators to perform better. NICE seemed to improve performance most
significantly between the approaches we surveyed, and its refined VCTree exceeded our
statistical baseline by a large margin.

Looking at the difference between recall and mean recall performance of our statistical
classifiers in comparison to the other approaches shows an interesting trend as well. Despite
the recall performance of our statistical approaches being significantly lower than a majority
of other surveyed approaches, our mean recall performance (the more important metric)
is actually on par with these other approaches. This is a somewhat troubling finding
which implies that approaches such as GPSNet [75], GB-Net [156], HL-Net [79] along with
others such as KERN [16], RAAL [30], and Schemata [115] are still favouring the larger,
more common predicates (such as ‘on’ or ‘has’) thereby pushing their recall score up, but
overall, still don’t detect the lesser represented predicates (e.g., ‘riding on’) well causing
their mean recall to remain lower. GPSNet [78] prioritizes certain combinations of nodes
and relationships by way of a focal loss and attempts to improve overall performance in
that manner, so we are surprised to see this approach may not be improving mean recall.
Prior knowledge approaches such as GB-Net [156], which utilizes an augmented message
passing approach that is also fed information from knowledge bases (e.g., ConceptNet
[121]), appear to have a similar behaviour. Though we do not know the recall performance
of EBM [125], the approach of HL-Net [79] also attempts to impose certain structure on
the proposed scene graphs (utilizing homophily and heterophily in the case of HL-Net),
however on its own the approach still appears to be falling into the trap of predicting the
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more common predicates. Notably, the opposite behaviour is observed with TDE [129]
and NICE [73] where their recall score is actually lower than our statistical baselines, but
their mean recall scores are higher. This implies that these methods appear to truly be
performing less biased relationship prediction and certainly indicates that they are gaining
a more robust understanding of relationships that goes deeper than statistics.

Overall, the statistical baselines strangely hold up quite well compared to even recent
approaches. Note that effectively the number of ‘learned’ parameters for relationship pre-
diction in our statistical baselines does not exceed 20,000 for the most complex baseline we
show, this is in stark difference to the millions, and tens of millions of learnable parameters
that can be found in the relationship detection portions of the approaches we compare
with. Our relationship prediction models are trained in a matter of seconds, again con-
trasted with the hours and days required by the more complex approaches. Furthermore,
we only train our classifiers on the ground truth bounding box data, and hence train a
single model that performs all 3 subtasks (PredCL, SGCI, and SGDet) whereas a com-
mon trend in the literature is training with the non gold-standard bounding box data that
emerges from the object detector in each of the 3 models leading to even longer training
times and hyperparameter tuning. In the case of SGCI and SGDet, we were still able to
show meaningful results when we coupled a deep learning based object detector with our
simple relationship detectors, even if the classifiers were not trained with the likely noisy
boxes that the detector outputs.

A common justification for the performance of scene graph generation approaches is
that the long tailed distribution of the data in the VG dataset caused low performance.
Approaches such as [129, , 32] demonstrate how this can be overcome at an algorithmic
level, with [73] even demonstrating how refining the ground truth can yield better results.
Our classifiers also show that the VG data, while not exceptionally clean from noise, still
can be used in its current form for better or equivalent performance than what had been
achieved even in recent years simply by observing its statistics.

The main conclusion we can draw from our experiments is not that scene graph research
is performing poorly, it’s that the more successful approaches appear to understand the
Visual Genome data and its limitations significantly better and account for it in their
approaches. In a newly burgeoning field like scene graph generation it is important to
explore alternative approaches and identify what strategies appear to be working, and
why they do. One observation is that that approaches that tended to also utilize more
of the ‘visual’ signal also perform better. This is done by TDE [129] which modifies its
underlying VCTree [130] approach by utilizing causality and comparing the visual signal
of the counterfactual with what is being observed in an image in terms of visual features.
It is also emphasized in NICE [73] that operates on the ground truth data explicitly. Also
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noteworthy is that scene graph generation is done on a 3D world by models that have only
observed and understood 2D images. Topological relationships and angular configurations
seemed to be a discriminatory feature even in this 2D space, allowing predictions about
even unseen triplets. It’s possible they will also serve as a powerful feature when looking at
the 3D topology of relationships if that data were available. We don’t believe it’s possible
to predict whether the performance improvements of successive approaches to scene graph
generation would translate to a cleaner dataset than the Visual Genome. Finally, there
are more paradigms to scene graph generation that warrant further exploration as there
may be alternative approaches that could yield more robust, explainable and generalizable
relationship generation.

5.4 Scene Graph Generation With Topological Rela-
tionship Fields

Our results from Section 5.3 highlight just how informative class labels can be for rela-
tionship detection. This is not an unexpected result in and of itself, after all even humans
exhibit a bias in choosing a statistically likely relationship just based on knowing what
objects are sharing that relationship [119, 34]. There is certainly value in predicting the
objects first, and the relationship bias networks build is not a completely bad bias since
certain relationships are quite unlikely or even impossible between certain objects. The
drawback is that scene graph generation networks appear to heavily rely on these class
labels for their relationship predictions. Unlike humans who are capable of overcoming
their biases if faced with an unusual relationship between objects (e.g., a zebra wearing
a hat), networks are unlikely to do so (the zero shot recall metric is a good indicator of
this). The correlations between object labels and relationships also likely serve as an ‘easy’
cue for them to hone in on during training [16] and this could be causing networks to
bypass building a more robust understanding of visual relationships. We also noticed a
trend where more ‘visual’ models appeared to perform more predictably, with approaches
like TDE [129] being more able to predict less frequently occurring labels a lot better.

To this end we aim to explore whether it’s possible to predict visual relationships solely
based on visual data (image pixels) and completely devoid of object labels. We modify the
relationship detection portion of scene graph generation to remove the reliance on class
labels and allow for a separate representation for objects and relationships. We specifically
design a data representation to be used in a deep learning setting in a manner such that
the networks cannot rely on the aforementioned bias. In our representation, relationships
are converted from triplets that must be predicted, to pixel level annotations that can be
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regressed in a per pixel fashion. In a nutshell, we encode a relationship that connects two
objects using a pixel-level ‘vector field’ that acts in the regions that the relationship is
occurring. This data is not available in the Visual Genome dataset, and we therefore must
approximate the location of the relationships by utilizing the topological information of
the bounding boxes connected by it.

During training we convert the existing relationship triplets in the ground truth into
our representation, and the networks are trained to regress that representation only. We
then compare that representation with the locations of the detected objects after both are
generated by the network to create the relationship triplets for scene graph generation. A
benefit of this regressed output is its explainablity, where networks output a representation
that can allow us to localize and understand where the inferred relationships are occurring.
Building on the work in [81], we also utilize a fully convolutional approach to scene graph
generation, an approach that is still relatively unexplored. This carries with it the ben-
efit of being significantly less computationally intensive than contemporary scene graph
approaches. Our results show promise, however even with our refined representation, the
fully convolutional and ‘single stage’ approach to scene graph generation still lags behind
its counterparts.

5.4.1 Topological Relationship Fields

Effectively all approaches to scene graph generation operate in two ‘stages’, the first stage
is concerned with detecting the objects and the second is concerned with finding possible
relationships between the objects. Approaches first utilize a ‘detector’ backbone (e.g.,
Resnet) to generate feature maps for the image, then detect the object bounding boxes and
labels (whether predicted in SGDet mode, or partially or fully given in SGCI and PredCl
respectively). The object labels and feature maps (and in some cases the feature maps
originating from the union box containing both objects) are then re-used as the ‘input’ to
the relationship detection portion and one of many approaches is utilized to predict the final
scene graph (Section 2.5 describes some of these approaches in more detail). In FCSGG
[31], the authors propose the first, and to our knowledge only, ‘single stage’ scene graph
generator opting to utilize a fully convolutional network approach to generate scene graphs
from images. Their proposed ‘detector’ is a simple additional prediction head appended to
a Centernet [1060] type architecture, which generates object predictions in an anchor-free
manner.
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(a) cup sitting on table (b) children under umbrella (¢) sign hanging on post

(d) bus has window (e) car behind bus (f) woman wearing shirt

Figure 5.1: Examples of our Topological Relationship Fields. The generating relationship
predicates are italicised. Areas of action of the TRFs are exaggerated for better viewing.
In every relationship the fields point from the subject towards the object and occur within
an area that is defined by the topological configuration of both objects.
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5.4.1.1 Part Affinity Fields in Relationship Detection

They key to FCSGG’s approach is in the manner they represent their data for single stage
prediction. In FCSGG, the authors take influence from Part Affinity Fields (PAF) [8], an
approach to perform 2D human pose estimation. In PAF, every limb is represented by a
vector pointing from the start of the limb to the end of it, this vector is then broken down
by pixel into a vector ‘field” of pixels along the direction of the limb. This per pixel vector
fields representation is used to model the limbs of humans, and as a representation learned
by a pose estimation network. In FCSGG, a relationship triplet (<subject, predicate,
object>) is modeled as a vector originating from the center of the subject and pointing
towards the center of the object. This same vector is broken down into smaller vectors in
a per pixel manner to create a vector ‘field’, referred to as a Relationship Affinity Field
(RAF), representing the relationship. For a limb or a relationship in the PAF and the
RAF representations respectively, the fields are 2D per pixel unit vectors on the segment
connecting their start and end points, and zero vectors outside this segment?.

The start and end points of a limb are a logical start and end point of the vector field
for limb detection, mainly because the ‘limbs’ detected in PAF [] are rigid sub-parts of the
human body, e.g., from shoulder to elbow. The vector itself is aligned with a human bone
or rigid system of bones and it usually lies within the pixels of the limb it’s describing. On
the other hand, subject and object centers in a relationship don’t usually obey the same
rigidity. A vector directed from the center of the bounding box containing the subject to
the center of the bounding box containing an object may not align with the the acting
area of the relationship or even with the visual or pixel data of either object. While the
work done in FCSGG [%1] showed that the PAF formulation can be utilized for scene graph
generation and allowed for a fully convolutional approach to it, their data representation
may not be ideal. Not all relationships, even the ones present in the VG dataset or VG150
subset, can be represented in the same manner. Some relationships, such as ‘holding’,
imply a support relationship between one object and another, whereas other relationships,
e.g., ‘next to’, act from a distance, finally, as we show in Chapter 4 some coarse and
overloaded relationships such as ‘has’ can imply several different finer relationships. While
the PAF representation is applicable for pixel-wise regression when determining human
parts in [8], the same representation shouldn’t be directly used when if attempting to
perform pixel-wise regression for relationships.

In a 3D representation of a 3D world, the acting locations of these relationships are
usually definable, e.g., using real world physics. When looking at a 2D image of the 3D

2Functionally, these segments can have a width of 1 or more pixels and are effectively long rectangles
with a small width.
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world, these same relationship locations may become slightly less intuitive to define and
represent on a 2D pixel grid, for example a support relationship may be hidden from
view. However if pixel level data about the objects is known (i.e., segmentation masks),
the relationship locations may be easier to parse. The VG dataset does not offer any
such data, and all that it contains are object bounding boxes in 2D images. Our work
in Chapter 4 and Section 5.3 highlighted the utility of 2D bounding box topology in
relationship detection. As a result, we propose Topological Relationship Fields (TRF),
a novel vector field representation that is grounded in bounding box topology to represent
the relationships present in an image in a pixel-wise manner. In TRFs we represent a
relationship as a directed vector field between two objects that changes depending on the
topological configuration of the bounding boxes of the objects. While this may not be as
complete of a representation as the one we can get from perfectly annotated 3D data, it
does allow us to capture the structure of visual relationships given the data we have. For a
given image with known bounding boxes of the objects in that image and the relationships
between those objects, we can generate the Topological Relationship Field representation
of those relationships. This TRF representation is an alternative representation of those
relationships that we can utilize with a fully convolutional neural network for relationship
detection.

5.4.1.2 TRF Definition and Generation

For every image our TRFs, F, are a set of P two dimensional vector fields, {F},}, of the
same width and height as the original image, with P being the number of relationship
predicate classes in the dataset (e.g., P = 50 for the VG150 dataset). In the case an image
of width w and height h in a dataset with P relationship predicate classes, our TRFs
F = {F,} € RP*wxhx2 where for every predicate class p, we generate a 2D vector field
spanning the whole image and represented by a vector’s  and y components at every pixel.
All of the relationships in one image are represented using one set of TRF's corresponding
to that image, with every Fj, encoding all relationships that correspond to predicate class

D .
For a given relationship triplet <subject, predicate, object>, we observe the bounding

boxes Bg and Bp corresponding to its subject and object respectively, and the bounding
box centers C's and Cp representing the geometric centers of subject and object bounding

boxes respectively. The unit vector C/SC\O in the direction of CsCy is defined using the
pixel coordinates of the subject and object centers, Cs and Cp respectively, as:

(5.1)



The TRF F, describing the relationship with predicate p at pixel location X = (z,y) €
(w, h) depends on the 2D topological configuration of the bounding boxes:

e Disjoint: This likely means that the two objects do not touch in the real world
and we borrow the RAF [21]/PAF [8] representation to represent the relationship
between them for this configuration. A field composed of unit vectors pointing in
the direction of (iC\o and on the segment C'sCp connecting the centers of the two
objects is used to represent the relationship.

F,

p

(5.2)

0, otherwise

{éﬁz,ﬁXe@a>
X =

e Touching: This implies the two objects may be interacting somewhere around the
edge of the bounding boxes where they touch. A vector field composed of unit vectors
pointing in the direction of C/SC\O on an area surrounding the touching edges of the
bounding boxes is used.

(5.3)

C/SC\O, if X is around Bg N Bp
pX = .
0, otherwise

e Overlap: This implies the two objects may be interacting somewhere within the
area of overlap. A vector field composed of unit vectors pointing in the direction of

(i(To within the area of overlap is used.

CsCo. ifX e BsNB
p,XZ{ sto, A E BsllBo (5.4)

0, otherwise

e Subject Fully Contains Object: This occurs in 2 separate topological configura-
tions [Object In Subject] and [Subject Covers Object], the difference between them
is that in the latter configuration, the object touches an internal boundary of the
subject bounding box. In both cases, the relationship is likely occurring somewhere
within the boundaries of the object bounding box. A vector field composed of unit
vectors pointing in the direction of C/S\Co all throughout the smaller, object, bound-
ing box is used to represent this relationship.

F,

p

(5.5)

0, otherwise

{GRB,ﬁXeBO
X =
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e Object Fully Contains Subject: This is the inverse of the ‘Subject Fully Con-
tains Object’ case and occurs in the topological configurations [Subject In Object]
and [Object Covers Subject|, again the difference between these configurations is that
in the latter configuration, the subject touches an internal boundary of the object
bounding box. In both topological configurations, the relationship is likely occurring
somewhere within the boundaries of the subject bounding box. A vector field com-
posed of unit vectors pointing in the direction of C/SC\O all throughout the smaller,
subject, bounding box is used to represent this relationship.

(5.6)

~ [CsCo, ifX € Bg
X 0, otherwise
Note that aside from the Disjoint case, the TRFs all occur within the area of intersection
between Bg and Bo?, with this area getting larger and smaller depending on how the two
boxes are configured. We opted to define the cases individually for clarity when encoding
and decoding the TRFs, and generality in case they are used with non bounding box data
as well, e.g., pixel-wise mask object data. Utilizing a vector representation is necessary to
distinguish between the object and the subject in a given relationship. Opting to use a
scalar value per predicate channel may indicate whether a relationship of that predicate
exists at the specific pixel location but will not be able to relay information about which
‘direction’ this relationship is occurring and which of the bounding boxes correspond to its
subject or object.

5.4.1.3 Decoding TRF's

These vector fields are encoded according to the above rules for every relationship triplet
in the ground truth to create the training set of TRFs for every image independently. In
some cases when generating the ground truth TRFs, the vectors of multiple relationship
triplets may overlap at certain pixel locations, when this occurs we take the mean vector
at that location. Similarly, we can decode the TRFs representation in an inverse manner,
to get back to the triplet representation found in the ground truth dataset. We decode the
TRF's by integrating the vector fields in the relevant areas.

Specifically, for two detected objects O; and O; in the image, we denote their detected
bounding boxes B; and Bj;, with centers ¢; and ¢;, and predicted object class probabilities
d; and d; (given by an object detector). We calculate a relationship scores between O; and

3Around the area of intersection in the case of Touching
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O; by summing the projections of the TRF vectors onto the unit vector in the direction of
the unit vector ¢;c; within the relevant topological region 7;; as defined by the topological
configuration of B; and B;. The relationship scores are found by the pixel-wise summation:

dit;jdj Z Z Fpx - €iG (5.7)

pERP XeET;;

Kij =

Where t;; is the number of pixels in 7;;. K;; € R” and every element kij in Kj; is the
probability of a relationship x between O; and Oj, specifically a triplet <O;, k;;, O;>.
The product d; - d; weights the summation by the scores of the bounding box detection.
The values in K;; may be negative, implying an inverse relationship, and Kj; can simply
be calculated as Kj; = —Kj; to find the triplets with flipped subject and object <O, Kji,
O, >rather than recomputing the same pixel-wise summation in equation 5.7.

5.4.1.4 Benefits, Drawbacks and Viability

Our proposed TRF representation of relationship data carries with it many benefits. The
representation is in fact an interim representation that is explicitly explainable. A network
trained with TRFs does not output relationship triplets directly, but is trained to output
this interim representation that is then converted to the final scene graph. The TRF pin-
points the exact pixel locations corresponding to exact acting boundaries/areas between
objects that led to classifying any relationship it eventually predicts. This visual represen-
tation shows exact visual evidence of where predicted relationships are occurring. This may
serve to alleviate some of the impossible relationships predicted by two stage approaches,
as noted in [241], where, for example, networks have learned that humans tend to wear
glasses, and hence predict a ‘wearing’ relationship between every human and every pair
of glasses in an image to maximize their performance. On the other side, TRF's can only
represent relationships that are supported with visual, pixel level, data more effectively.

Our TRF representation allows relationships to be represented spatially in closer prox-
imity to the pixels that are likely causing them. Intuitively, with TRFs relationships are
localized closer to the acting boundaries of their respective subjects and objects, for ex-
ample, a plate is not on the entirety of the table, but its relationship is really localized to
whether the plate touches the table. While this doesn’t happen in a pixel perfect manner
given the data constraints and the fact that we don’t know where the relationships are
really occurring, utilizing the bounding box topology gives a good guess. The represen-
tation is flexible enough to be able to incorporate and be improved upon further with
object mask data, or even 3D data, where the relationships can be represented with more
precision spatially.
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The TRF representation can utilize and model inverse relationships. While the data
in the VG dataset does not take this into consideration and current approaches to scene
graph generation do not utilize this, a small modification can allow the TRF representation
to be used to specifically identify when inverse relationships are occurring, e.g., a strong
‘negative’ integral between two objects in the ‘under’ predicate implying that an ‘above’
relationship is the case, with an ‘under’ relationship occurring in the inverse direction.
Instead of predicting inverse relationships as two separate classes, they can be predicted
as a a single class that can occurs in two directions.

It compliments a fully convolutional scene graph generation approach, which, as dis-
cussed in [21], is a significantly less computationally intensive approach to scene graph
generation. Since the TRF representation does not rely on object classes, it can also be
included in a single stage scene graph generation approach. Furthermore, training a sep-
arate models for each evaluation mode (PredCl, SGCI, SGDet) is not necessary, unlike
traditional scene graph generation approaches which utilize a separate model to improve
performance in each mode.

On the other hand, the TRF representation has a few drawbacks as well. Out of all the
possible 2D topological configurations for bounding boxes, we cannot represent the case
of ‘Equal’. In this case the two bounding boxes are of the exact same dimension and are
exactly overlapping, the unit vector CsCo = 0, and our TRF representation will exhibit
a vagueness regarding which bounding box corresponds to the subject and which to the
object. Note that this also occurs in the RAF/PAF representation. However the case of
exactly overlapping bounding boxes and an Equal topological configuration is quite rare
in the VG150 dataset, as we show in Chapter 4 and does not affect our performance.

The TRF representation also does not directly utilize object class information. While
this information appears to bias other approaches quite significantly, as we demonstrated
in Section 5.3, this bias does serve a purpose in relationship detection and accounting for
it would certainly improve performance.

Finally, we demonstrate the viability of the TRF representation by showing that it is in
fact invertable, and relationship triplets encoded using TRF's can be decoded successfully.
We design an oracle experiment, where we encode the relationships in the VG150 ground
truth and measure how well the oracle can decode these relationships. For every image in
the validation set, our oracle receives the ground truth encoded TRF's directly along with
all the ground truth bounding boxes and classes. The oracle does not know which objects
are connected by a relationship, or which relationships are present in the given image and
must decode this information from the given TRF. Our oracle achieves a R@20/50/100 of
88.0/92.3/93.1 with graph constraints and a R@20/50/100 91.9/97.5/98.8 without graph
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constraints, as well as a mR@20/50/100 of 87.2/90.5/91.0 with graph constraints and a
mR@20/50/100 of 93.6/98.6/99.4 without graph constraints. Note that a recall or mean
recall of 100% is not possible on the VG 150 dataset (with graph constraints) due to the
fact that some objects have multiple relationships connecting them in the ground truth
and only one of them is allowed to be predicted. The recalls and mean recalls of the oracle
are an upper bound on the possible performance of a detector that utilizes TRFs as an
intermediate representation. This experiment shows that the original relationship triplets
can in fact be decoded from our TRFs.

5.4.2 Generating TRFs with Deep Learning

Our oracle experiment results demonstrate that our proposed Topological Relationship
Fields can be inverted back into scene graphs (composed of <subject, predicate, ob-
ject>triplets). We now aim to generate this intermediate representation from images using
deep learning. As discussed in Section 5.4.1, the TRF representation lends itself well to
the relatively unexplored single stage paradigm for scene graph generation. Building on
the work presented in [31], we opt to utilize a fully convolutional approach for scene graph
generation with our new representation.

Our network architecture is based on CenterNet [166, 81], an anchor free and single
stage object detector similar to FCOS [135] discussed in Chapter 2. A 2D object detection
CenterNet uses an interchangeable backbone network (for example, a Resnet [15]) for
feature extraction from the image, and then predicts three separate dense feature maps
that correspond to the bounding box characteristics of the detected objects. These feature
maps are actually a dense, pixel-wise, prediction of the object’s bounding box center, its
center offsets (for recovering exact locations in down-sampled images and feature maps),
and its size. We simply add an additional head to CenterNet that is tasked with regressing
TRFs. A schematic of our proposed modification to CenterNet is presented in Figure 5.2.

Following the formulation of [166], we also model object detection as a dense prediction
task. We denote an input image as I € R"W>*#>3 where W and H correspond to the
image width and height respectively with 3 color channels. The image [ is processed by a
backbone network to produce a downsampled feature map with the new width and height
w = %] and h = [%] where R denotes the backbone output stride. The feature maps
generated by the backbone network are then processed by four fully convolutional networks,
the prediction ‘heads’, where each head is responsible for outputting one of the required
predictions. Three of the four heads are responsible for object detection, and the fourth

head is responsible for regressing the TRF's.
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Figure 5.2: A schematic of a modified CenterNet [166] for use with relationship detection.
Similarly to [31], we utilize an additional prediction head, on top of the 3 object detection
heads of CenterNet, that is specifically tasked with outputting our TRFs for every image.
The backbone and neck produce feature maps at multiple scales which the heads process.
Prediction heads are shared across all scales. During inference, we combine the object
predictions and the TRF predictions in a post processing step to generate the final scene
graphs. Our naive Bayes approach can optionally be used to boost performance.

The object detection heads predict the object bounding box center heatmaps ® &
RE*wxh where C' denotes the number of object classes in the dataset, the object center
local offsets A € R?*¥*" which are used to undo the discretization errors caused by the
feature map downsampling, and the object bounding box sizes S € R?*“*" which holds
the width and the height of the predicted bounding boxes.

Denote a set of ground truth objects in the image as B = {b’}, where for each ground
truth object b' = (z}, yi, x5, yb, ¢*), (¢}, yt) are the coordinates of the top left corner of the
bounding box, and (x},y}) are the coordinates of the bottom right corner of the bounding
box, and ¢ is the class of the object.

The center of the bounding box is

i i g6 Ty +xh Y+
¢:<x7¢y):(1 2 1 2

) (5-8)

2 72
The center offset of the bounding box due to using a stride of R is
A AN ¢’ ¢’
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The size of the bounding box is
s' = (wh — 1,95 — yi) (5.10)

For each object center with its location modified to match the stride R by gz?’ = L%J
the value of ®.i , , = 1 at this center point. ®.: ,, is also ‘splatted’ using a Gaussian kernel
to obtain the ground truth heat map for training. Specifically, following Law and Deng
[72] and [166, 81], the object center is ‘splatted’ using a bivariate Gaussian distribution in
the x and y axes, where for an object center ¢’ of class ¢* the object center heatmap ® is
modified for the object class in the region of the object center as

2 ¢,
e — LB [y — LRII3
202 202

i, = exp(— ) (5.11)

Where R is the stride and o, and o, control the spread of the distribution in the x and y
direction. o, and o, are computed based on the object size s'.

(000 = S 20Ty

. (5.12)

Since multiple objects of the same class may exist in close proximity, the Gaussian spreads
are found for each object and an element-wise maximum value is taken for every point in
the ground truth.

During training time the predicted center heatmaps d e [0, 1]CX%X% are supervised
using a pixel-wise regression with focal loss [76] as in [166, 81]. Specifically

-~

—(1 = ey)” 10g( D) if ey =1

3 ~ 5.13
—(®ppy))(1 — By )P log(l — @) otherwise ( )

Ecen - Eéc,zyy - {

Where the hyperparameters o = 2 and 8 = 4 are set following [72, , 81].

The loss for the predicted center offsets S and box size A heatmaps are calculated using
L1 loss only at the center locations:

Losr=Lna,, = |£xy — §'| wherever ®,,, = 1 for any ¢ (5.14)

Lize = Ls,, = |§my — 5| wherever ®.,, =1 for any c (5.15)

Where 5 = L%J are the sizes scaled by the stride.
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The object detection loss is

1
Lt = N Z(['cen + )\off»coff + Asizeﬁsize) (516>

C7x?y

Where N is the total number of objects in the image and the weighting parameters A\,¢s = 1
and A,sf = 0.1 are set empirically following [166, &1].

We utilize a fourth head in parallel to the existing object detection heads specifically to
produce the TRF for the input image. Similarly to how the three fully convolutional heads
in the original CenterNet [L06] receive features extracted using the backbone network and
are tasked with outputting object centers, offsets, and sizes, in our case, and in a similar
manner to [31], we utilize a fourth head tasked with outputting the image TRF. This
additional head receives the same feature map input and is a simple fully convolutional
head trained to regress the TRF F.

For a predicted TRF F we calculate the loss in a per pixel manner, and use an L1
regression loss, though £,., can be any regression loss (e.g., L2 or smooth L1). This loss
is also weighted by a weighting tensor A € RP*®*hx2 depending on the ground truth
relationships at specific locations. Specifically:

Lyo = ALey(F,F) (5.17)

Where the weighting tensor A scales the loss inversely to the distance or area where the
relationship occurs

1

where a disjoint relationship exists

ICsColl2
A= m where a non disjoint relationship exists (5.18)
Wieg where no relationship exists

and W, is a hyperparameter that controls the penalty for predicting erroneous relation-
ships, which we empirically set to 1.

The total training loss for the model accounts for both TRF regression and object
detection:

'Ctot - ‘Cdet + )\rel*c’/‘el (519)

with A, controlling the weight of the relationship loss in the total loss which we keep at
1.
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A backbone network takes in the input image and outputs a feature map that is pro-
cessed by each of the heads separately. This backbone network can be combined with a
‘neck’ for multiscale predictions. In our case, we experiment with two common backbone
networks: a ResNet50 [15] and an HRNet [110] backbone. We utilize a ResNet-50 back-
bone [15] with a Bidirectional FPN as a neck [75, 128] which we discussed in Chapter
3 and has been successfully used in object detection by [135, , , 81] and for rela-
tionship detection in [$1]. We also experiment with utilizing an HRNet [110] (specifically
HRNet48) which was also used in [31]. This backbone maintains a High Resolution feature
map throughout its structure (where its HR namesake comes from), and may be able to
preserve specific image-level details better.

In order to compare with [$1], we perform our ResNet predictions at 4 scales using a
FPN with strides R = [8, 16, 32, 64] with the prediction heads shared across all 4 scales, and
our HRNet predictions at 5 scales with strides R = [8, 16, 32, 64, 128]. In multi-scale predic-
tion the ground truth for both object detection and TRF's is modified to include only the ob-
jects and relationships that exist at the specific scale. In the case of our ResNet objects and
relationships objects and relationships fall into the respective stride scale R = [8, 16, 32, 64]
if their longest bounding box edge is within {[0,64],[64,128],[128,256],[256,1024]} pixels re-
spectively in the original image. Whereas in the case of the HRNet objects and relationships
fall into the respective stride scale R = [8, 16, 32, 64, 128] if their longest bounding box edge
is within {[0,64],[64,128],[128,256],(256,512],[512,1024]} pixels respectively in the original
image.

The four prediction heads are each composed of 4 convolution blocks (consisting of:
3x3 conv - Batch Norm - ReLU), with each head followed by a 1x1 convolution to get
to the required number of channels: C for ® € RE***" where C' denotes the number of
object classes in the dataset, 2 for A € R?***" to account for the center offsets in the z
and y direction, 2 for S € R2*%¥*" to account for box length and width, and P x 2 for
F € RP>*wxhx2 where P is the number of relationship predicates in the dataset and 2 is to
represent the TRE vector in the x and y directions.

Training is done on the VG150 training set until convergence is observed, and the
trained model is evaluated on the VG150 test set. We train one model using each backbone
and evaluate on all three standard scene graph generation tasks: PredCl, SGCI, and SGDet.
During training the target outputs are the TRFs generated from the ground truth scene
graphs for the specific image. During inference and evaluation time these TRF's are post-
processed and decoded using the pixel-wise summation in equation 5.7 to produce the
image scene graph. This summation is done efficiently in code for every pair of detected
objects (a maximum of 100 objects for every scale) and does not impede performance.
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Noting the utility of ‘non-visual’ features in Section 5.3, we also choose to measure
whether utilizing these statistics can boost the performance of the network for relationship
detection. In these experiments we modify the summation in equation 5.7 to add a Naive
Bayes MAP probability given the object classes and their topological configuration. Both
object class and topological configuration are known at post-processing time since all the
network heads (including the object detection heads) have already produced their outputs.
Equation 5.7 is modified as follows:

d; - d

Ki' = . ]P(p € Rp‘giagjthBj) © Z Z Fp,X ’ C/lEJ (520)

v pERP XGTU

Where the detected bounding boxes are denoted by B; and B;, and their predicted classes
are g; and g;, and P(p|g;, g;, Bi, Bj) € R” is the MAP probability of every predicate given
the box classes and bounding box configuration, and ® is an element-wise multiplication
operation. This probability function does not aid in detecting new relationships but serves
to reorder and re-prioritize already detected visual relationships using the TRF's.

5.4.3 Results and Discussions

Our mean recall results are presented and compared with other scene graph generation
approaches in Table 5.4, our recall results are presented in Table 5.5, and our zero shot
recall results are presented in Table 5.6. We also present sample TRF outputs in Figure
5.3.

Overall our networks trained to output TRFs perform relatively consistently regardless
of backbone choice. Small improvements can be seen with the more complex backbone
(HRNet-48), which become more apparent in the SGCL and SGDet modes where object
detection is of more importance. It appears the larger capacity of HRNet-48 in comparison
to ResNetb0 may be able to learn a representation that is better suited to both object
detection and relationship detection. However we argue the ResNet50 is learning a more
robust relationship representation as evidenced by its zero shot recall performance where
it sometimes outperforms the larger and more complex HRNet-48.

Boosting detected relationships using the prior knowledge Naive Bayes model also al-
most consistently improves recall performance across all modes. In the boosted modes, the
Naive Bayes predictor is treated as a simple "prior knowledge’ model. Unlike in Section
5.3, we do not utilize it for direct prediction instead it simply ‘confirms or denies’ what
our TRF trained networks predicted. This also justifies the discrepancy in performance
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Figure 5.3: Examples of predicted Topological Relationship Fields. Each figure is the di-
rect, unmodified, TRF output and offers justification for where and why a relationship
could be predicted. In figure (a), the clock tower exhibits ‘above’-ness (in a specific direc-
tion) with respect to its surroundings, whereas the bike in (b) exhibits ‘behind’-ness with
respect to the turkeys. Even though nobody is laying on the bench in figure (c), it still
is primed to predict this relationship but won’t do so without another object interacting
with it in the specific zone, and the car is figure (d) shows a strong ‘parked on’ response
with the street.
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Table 5.4: Mean recall rates @ 20/50/100 on the VG150 dataset for our single stage scene
graph generation approach that utilizes TRF's as well as modern approaches to scene graph
generation. We isolate the only other single stage scene graph generation approaches and
indicate the backbone architectures for both our and their approaches in parenthesis. Our
boosted models are indicated by ‘+NB’.

‘ PredCl ‘ SGCl ‘ SGDet

| mR@20 mR@50 mR@100 | mR@20 mR@50 mR@100 | mR@20 mR@50 mR@100
IMP [146, 129] - 9.8 10.5 - 5.8 6 - 3.8 4.8
Motif [158, 129] 10.8 14 15.3 6.3 77 8.2 4.2 5.7 6.6
VCTree [130, ] 14 17.9 19.4 8.2 10.1 10.8 5.2 6.9 8
KERN [10] - 17.7 19.2 - 9.4 10 - 6.4 7.3
VCTree+TDE [129] 17.2 23.3 26.6 8.9 11.8 13.4 6.3 8.6 10.3
GPSNet [79] - - 22.8 - - 12.6 - - 9.8
GB-Net [156] - 19.3 20.9 - 9.6 10.2 - 6.1 7.3
VCTree + EBM [127] 14.2 18.2 19.7 10.4 12.5 13.4 5.7 7.7 9.1
Segmentation Grounded Motif [59] 14.5 18.5 20.2 8.9 11.2 12.1 6.4 8.3 9.2
Segmentation Grounded VCTree [59] 15 19.2 21.1 9.1 11.6 12.3 6.3 8.1 9
RAAL [80] 14.4 18.3 19.9 7.9 6.6 10.3 4.9 6.5 74
Schemata [115] - 19.1 20.7 - 10.1 10.9 - - -
VCTree + NICE [73] - 29.9 32.3 - 19.9 21.3 - 11.9 14.1
VCTree + EBM + NARE [32] 21 24.9 26.5 14 16.2 17.1 7.8 10.1 11.8
HL-Net [79] - - 22.8 - - 13.5 - - 9.2
SOTA Single Stage Approaches:
RAF (ResNet-50) [81] 4.2 5.7 6.7 2.2 2.9 3.3 1.9 2.7 3.3
RAF (HRNet-48) + freq [31] 4.9 6.3 7.1 2.9 3.7 4.1 2.7 3.6 4.2
Our Single Stage Approaches:
TRF (ResNet-50) 4.6 6.0 6.9 24 3.1 3.4 2.1 2.9 3.3
TRF (HRNet-48) 5.3 6.6 7.5 3.2 3.8 4.1 2.6 3.6 4.0
TRF (ResNet-50) + NB 5.0 6.3 7.1 2.9 3.6 3.9 2.5 3.3 3.8
TRF (HRNet-48) + NB 5.9 7.0 7.9 3.6 4.2 4.5 3.0 3.9 4.3
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Table 5.5: Recall rates @ 20/50/100 on the VG150 dataset for our single stage scene
graph generation approach that utilizes TRF's as well as modern approaches to scene graph
generation. We isolate the only other single stage scene graph generation approaches and
indicate the backbone architectures for both our and their approaches in parenthesis. Our
boosted models are indicated by ‘+NB’. Blank rows left in to correspond with Table 5.4.

PredCl SGCl SGDet

R@20 R@50 R@100 | R@20 R@50 R@100 | R@20 R@50 R@100
IMP [146, 129] 54.34 61.05 63.06 | 34.01 3748 385 | 18.09 2594  31.15
Motif [158, 129] 58.46 65.18 67.01 | 35.63 3892 39.77 | 2548 3278  37.16
VCTree [130, ] 59.02 6542 67.18 | 42.77 46.67 47.64 | 24.53 31.93 36.21
KERN [16] - 65.8 67.6 - 36.7 37.4 - 27.1 29.8
VCTree+TDE [129] 39.1 49.9 54.5 22.8 28.8 31.2 14.3 19.6 23.3
GPSNet [78] 67.6 69.7 69.7 41.8 42.3 42.3 22.3 28.9 33.2
GB-Net [150] - 59.3 61.3 - 34.6 35.4 - 20.7 27.6
VCTree + EBM [125] - - - - - - - - -
Segmentation Grounded Motif [59] - - - - - - - - -
Segmentation Grounded VCTree [59] - - - - - - - - -
RAAL [30] 59.1  66.2 68.4 335 36.7 37.6 21.7 273 29.9
Schemata [115] - 66.9 68.4 - 39.1 39.8 - - -
VCTree + NICE [73] - 55.0 56.9 - 37.8 39.0 - 27 30.8
VCTree + EBM + NARE [32] - - - - - - - - -
HL-Net [79] 60.7 67 68.9 38.8 426 43.5 26 33.7 38.1
SOTA Single Stage Approaches:
RAF (ResNet-50) [81] 28.0  35.8 40.2 13.9 177 19.6 114 157 19.0
RAF (HRNet-48) + freq [31] 33.4 41.0 45.0 19.0 235 25.7 16.1 21.3 25.1
Our Single Stage Approaches:
TRF (ResNet-50) 28.9 37.3 41.3 13.9 18.1 19.9 12.1 16.5 19.6
TRF (HRNet-48) 34.1 42.0 45.6 19.3 24.0 26.0 15.8 21.0 24.6
TRF (ResNet-50) + NB 30.9 38.2 44.3 15.1 20.2 24.9 14.8 18.8 21.5
TRF (HRNet-48) + NB 35.0 44.4 48.1 20.7 26.2 28.1 174 23.4 26.0
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Table 5.6: Zero shot recall rates @ 20/50/100 on the VG150 dataset for our single stage
scene graph generation approach that utilizes TRFs as well as some modern approaches
to scene graph generation. We isolate the only other single stage scene graph generation
approaches and indicate the backbone architectures for both our and their approaches in
parenthesis. Our boosted models are indicated by ‘+NB’. We include the results for ‘no
graph constraint’ zero shot recall rates @ 20/50/100 (ng-zsR@20/50/100) where multiple
relationships between objects are allowed since we discuss this in our results section.

\ PredCl \ saal \ SGDet

| ZsR@20/50/100 ng-zsR@20/50/100 | zsR@20/50/100 ng-»sR@20/50/100 | zsR@20/50/100 ng-zsR@20/50/100
Motif [155, 120] 1.9/-/7.2 - 0.3/-/1.2 - 0/-/0.5
VCTree [130, 129] 1.8/-/7.1 - 0.4/-/1.2 - 0.1/-/0.7
VCTree+TDE [120] J/14.3/17.6 . -/3.2/4 . -/2.6/3.2
Segmentation Grounded Motif [59] 4.1/-/10.5 - 0.8/-/2.5 - 0.1/-/1
Segmentation Grounded VCTree [59] 4.6/-/10.6 - 0.8/-/2.5 - 0.3/-/1.5
VCTree + TDE [129] + NARE [32] 9.1/13.5/- - 4.2/6.2/- - 2.2/3.2/-
IMP [146] + NARE [32] 7.1/10.5/- - 1.6/2.3/- - 1.5/2.5/-
SOTA Single Stage Approaches:
RAF (ResNet-50) [31] -/8.2/10.6 -/11.7/18.1 /13/1.7 -/24/3.8 -/0.8/1.1 -/1.0/1.7
RAF (HRNet-48) + freq [21] -/7.8/10.0 /11.4/17.6 /1.6/2.0 /2.8/4.8 /0.8/1.4 /1.4/2.3
Our Single Stage Approaches:
TRF (ResNet-50) 6.0/8.9/11.0 7.1/13.2/19.5 0.5/1.4/2.1 1.1/2.5/4.2 0.6/0.9/1.3 0.7/1.2/2.0
TRF (HRNet-48) 6.1/9.1/11.2 7.3/13.5/19.9 0.8/1.7/2.5 1.4/3.0/4.6 0.8/1.3/1.9 1.2/1.6/2.3
TRF (ResNet-50) + NB 6.5/9.4/11.7 7.7/14.0/22.0 0.6/1.4/2.2 1.3/2.9/45 0.7/1.1/1.4 1.0/1.4/2.1
TRF (HRNet-48) + NB 6.4/9.4/11.6 7.6/14.0/21.0 1.0/1.8/2.6 1.6/3.3/5.0 0.9/1.4/1.9 1.4/1.8/2.4

between when it was used in isolation and its inclusion in this experiment as a performance
‘booster’.

In comparison to the only other approaches that perform relationship detection in a
single stage, TRFs appear to be a better representation. Our TRF trained networks almost
consistently outperform the RAF trained networks across all modes. In some cases our
smaller ResNet-50 models trained with TRFs are able to outperform the larger HRNet-48
models trained with RAFSs, indicating that the TRF representation may be more ‘learnable’
by networks.

Our aim for these experiments is to demonstrate that the TRF representation is learn-
able and useable by a deep learning network, and we do not fully optimize performance
of our networks by tweaking hyperparameters. While we expect overall performance can
be fine tuned slightly, though notably, even with our TRF representation, and even when
boosted with a statistical approach, performance of single stage relationship detectors still
lags heavily behind their multistage counterparts. With regards to recall and mean recall,
our approaches are still not at the level of modern scene graph generation approaches. This
may be a result of convolutional networks not being able to contextualize relationships at
the same level of message passing approaches, LSTM based approaches or energy-based
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approaches [110, , ]. Even in PredCl mode, our representation is unaware of the
object classes for which its assigning TRFs which may be to its detriment, since we’ve
shown how powerful of a bias these can be in Section 5.3.

Despite this, our TRF trained networks show a lot of promise on the zero shot recall
mode. In this mode, networks and approaches are tested on their generalizability as they’re
tasked with predicting triplet combinations they have never seen. Our models actually
compete with the state of the art in this mode, which is quite impressive given their low
overall recall and mean recall performances. This may indicate that while our networks
trained with TRFs are still not able to fully model all relationships in the VG150 dataset,
the representations they do learn are quite robust and transferable. This is evidenced by
the smaller drop in performance our models exhibit between their recall and their zero
shot recall rates. Our TRF representation certainly shows its utility in this mode, as the
networks trained with it perform better than the RAF representation networks by a larger
margin. Examples of this positive behaviour are shown in Figures 5.3 and 5.4.

Some of the key benefits of fully convolutional approaches are their smaller network size,
and faster inference and training time. As noted by [21], both our tested backbones have a
quarter of the parameters of the other SOTA networks for scene graph generation, and in
the case of ResNetb0, a tenth. This leads to significantly faster inference which can make
our networks useful for deploying in real-time relationship detection, though their recall
performance may not be up to par just yet. Furthermore, in our case it’s not necessary
to retrain the network for every data mode (PredCl, SGCI and SGDet), whereas this is
usually common practice in other scene graph generation approaches [130, , 32, 10] since
they must adapt to the boxes their object detector outputs in each mode. In our case,
we could decouple object detection completely and perform it separately, with a dedicated
TRF producing approach for relationship detection.

Our TRF intermediate representation is also useful in and of itself. Utilizing the same
TRF generated only once, a user can perform relationship detection on the fly between 2
objects of their choice. Effectively, for whichever 2 objects a user chooses, the processing
summation of equation 5.7 can produce a relationship prediction. Objects can be chosen
at any time even after the TRFs have been generated. TRFs can be easily adapted to
other data types as well, for example, 3D data. Since CenterNet [166] can be used in 3D
object detection too, we can also utilize it as a network for 3D relationship detection, with
3D topological configurations and 3D TRFs. Furthermore, TRFs can be easily adapted to
utilize segmentation masks instead of bounding boxes. With a new scene graph detection
dataset that provides segmentation masks for its objects rather than bounding boxes,
the TRF regions presented in Section 5.4.1.2 can be easily modified to incorporate more
meaningful topological configurations between objects. This can be especially beneficial to

117



boosting relationship classes that rely on object contact (such as ‘riding on’, ‘in’, etc.) and
further disambiguating relationship predicates that are overloaded, as the ones discussed
in Chapter 4. The examples we show in Figures 5.3 and 5.4 may also point to TRF-based
models learning a representation akin to the way humans conceptualize relationships [126].
Recall that [120] cited our brain’s tendency towards conceptualizing notions spatially, which
extends even to non-spatial concepts (e.g., hot, high temperature vs low, cold temperature).
In the case of scene graph generation, TRF's appear to be encoding spatial concepts rather
well, and the models predicting them demonstrated good generalization performance which
possibly stems from their conceptual representations being robust.

Overall, we believe the TRF representation is a powerful representation worth exploring
further for relationship detection. Our oracle experiments in Section 5.4.1 demonstrated
that the representation is invertible and can be used to return to the scene graph represen-
tation. We demonstrated that it is capable of being learned by a fully convolutional deep
learning approach in this section, though recall performance still requires improvement.
We also showed the utility of this representation specifically in how networks can utilize it
to build more robust representations, and in its inherent explainability and possible utility
in other data modes.

5.5 Conclusions

In this chapter we split the relationship detection problem into two halves which we tackled
separately. First, in Section 5.3, we explored relationship detection in a purely non-visual
approach, Naive Bayes, and demonstrated how powerful biases can be learned and leveraged
without ever looking at a single image pixel. We then explored the other end of the
spectrum with Topological Relationship Fields, Section 5.4, a purely visual representation
that grounds relationships in the image pixels they likely occur in.

Trained fully convolutional networks utilizing TRFs still did not reach the performance
achieved by larger, multi-stage, predictors, even when combined with a Naive Bayes-based
booster. However, TRF-based approaches showed significant promise on zero shot recall,
indicating they may be learning more robust representations. Qualitatively, TRF-based
approaches are able to justify their decisions using the specific pixels they used to make
those decisions, and they also appear to be learning past the specific training data such as
gaining an understanding of inverse relationships that was not in the ground truth.
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Figure 5.4: Examples of specific behaviours of the predicted Topological Relationship
Fields. Figures (a) and (b) show an example of the TRFs learning the same representation
for two similar classes in VG150. Both wears and wearing are used in different predicate
triplets in the VG150, however the learned TRF generators appear to be able to connect
them to each other and generalize over both. Figures (c) and (d) show an example of inverse
relationships above and below, and how the predicted TRFs also appear to be learning to
connect them without explicitly being told to.
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Chapter 6

Conclusions and Future Directions

In our approach to research, and specifically our approach to this thesis, our focus was on
understanding why DL networks behave the way they do more-so than how to improve
their performance. We answer questions related to the failure modes of networks, whether
these stem from architecture design, data or otherwise. We also incorporate this type
of thinking when designing our novel approaches in Chapter 5, prioritizing explainability
over raw performance. We don’t aim to exceed the current scene graph generation state
of the art, but instead opted to build an approach that is a step towards a more complete
understanding of images.

We opted to tackle the problem of visual relationship detection by breaking it down
into its sub-parts and identifying the failure modes in each of them. First we tackled the
biases and unpredictability found in instance segmentation and object detection alone,
then the data bias and poor performance of relationship detection using scene graph gen-
erators. Finally, we presented an approach that leverages our findings to allow for a better
representation of relationships, grounded in the parts of the image they occur.

6.1 The Role of Object Shape, Content and Context
in Instance Segmentation

We quantified the effect that object shape, content and context play in instance seg-
mentation networks of various architectures and under different training and architecture
paradigms [11, 83, , , ]. Our experiments allowed us to disentangle the effects
of shape, content and context from each other in this task. We empirically demonstrated

120



that much like what research has shown is the case in networks operating on various other
tasks across the field of computer vision [1141, 6, , ], networks trained and utilized
for instance segmentation also suffer from their own task-specific pitfalls and biases. We
reveal and empirically show the existence of these biases.

Instance segmentation networks appear to be memorizing a shape bias based on in-
stance label data. While at first glance networks utilizing object shape without being
explicitly trained to do so may seem desirable, in our experiments we show that this shape
memorization actively works against these networks. DL networks’ rigid memorization of
shape, which we demonstrated gets fooled by simply adding a few pixels to the border of
the object, is not robust enough to be of help to them. Shape could be a useful cue when
detecting rigid objects, however the tendency for object hallucination from shape only is
more likely to be a failure mode. The instance segmentation networks (and by extension
object detection networks) that we experimented on are often used ‘off the shelf’ by prac-
titioners. This even extends within computer vision research such as in the field of scene
graph detection where these kinds of networks are used as-is as part of a more complex
task. Special attention needs to be paid when utilizing these networks, as these biases are
unpredictable (as seen in the isolation dilation experiments) and could likely work against
the networks when given out of distribution data. For example, what happens in low light
settings when a vision system for a self driving car mistakes 2 objects of similar shapes?
Is it also possible that these shape biases can allow for malicious adversarial attacks?

An interesting question that we would like to explore further is why network bias around
certain class groups seems to be behave similarly. For example, why is it that networks
seem to be able to correctly predict the content class for land vehicles in the Content Swap
experiments (Section 3.5.6)7 It’s very possible that the underlying feature extractor, which
likely is the one imparting these biases, extracts similar features for all these classes hence
they fail or succeed together. While this may make sense in the case of land vehicles, which
share similar overall features, it starts to make less sense in the case of food classes (which
are semantically similar, but visually different) yet seem to exhibit a similar behaviour. It
would also be interesting to explore whether utilizing data augmentations similar to these
experiments at train time can help networks form a more robust understanding of objects.
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6.2 The Topology and Language of Relationships in
the Visual Genome Dataset

We also revealed the role human labellers play in biasing relationship detection data-sets,
and subsequently relationship detection networks. The Visual Genome dataset [01] is
the most ubiquitous natural image dataset that includes relationship data and is used to
train and evaluate a large majority scene graph generators presented in the literature [10].
Identifying these biases is the key first step to remedying them, whether these biases stem
from how data is collected and labelled, where data is collected and labelled, or even how
algorithms are being designed and used [92]. With these dataset biases now known in the
case of the VG dataset, both training and evaluation processes with the dataset can be
revisited. We presented a basic evaluation of what the result of weeding out less ‘reliable’
relationship classes in the Visual Genome dataset can achieve (through the 2 modified
datasets), however this is only a first step in how to remedy the issues that exist in the

VG dataset.

The lack of representation of both sides of symmetric relationships in the VG dataset
means that inverse relationships such as ‘above’ and ‘under’ are not encoded in the dataset,
and could potentially be used as a measure of generalizability of models or to improve
performance. We also discussed the topological and directional configurations exhibited
by relationships in the Visual Genome Dataset and showed how overloaded predicate classes
(such as ‘on’) exhibit topological vagueness which may confuse trained models. Even scene
graph generators predicting the relationship ‘on’ may not grasp the full meaning of this
relationship unless we somehow encode the ability to disambiguate the multiple meanings
of this predicate, along with other predicate classes.

An interesting avenue for future exploration is a compositional analysis of the objects
and relationships in the VG dataset. It would be quite interesting to see how well hierar-
chical relationships hold and whether more conceptual understandings can be garnered by
utilizing a combination of language, topology and a hierarchy of parts.

6.3 Naive Scene Graphs and Topological Relationship
Fields for Scene Graphs

Dataset bias is not the only cause for the poor performance scene graph generators appear
to exhibit. We designed and evaluated a simple, statistical (Naive Bayes based) relationship
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classifier, this classifier operates on the object bounding box classes and locations only
without paying any notice to the image pixels or features extracted from those pixels. This
simple classifier being comparable in performance to relatively recent works while being an
order of a million times less complex than its deep learning based counterparts (compared
to the number of weights and biases that are learned by scene graph generation networks)
is quite alarming. Effectively, we were able to build a competitive scene graph generator by
utilizing an object detector and basic statistics, in some cases performing either better or
more consistently (in terms or recall and zero shot recall) than deep learning approaches.
This could be an indicator that ‘visual relationship detection’ may not be relying on what it
sees visually in images and instead building its own statistical correlations based on subject
and object classes. Unfortunately, we don’t really know if this is the case or not due to
the ‘black box’-y nature of the relationship detectors which is part of their drawbacks.

This motivated us to build towards an alternative scene graph generator that is grounded
and localized in the image regions it describes. Our proposed Toplogical Relationship Fields
build upon fully convolutional scene graph generation approaches and despite their lack-
lustre mean recall and recall performance, they appear to be capable of learning a robust
and generalizable representation (as demonstrated by their zero shot recall performance).
Furthermore, they offer several benefits including explainability, adaptability to other data
types as well as less computationally intensive training and inference.

An future avenue we believe is of value to explore is the combination of our TRFs with
segmentation masks. While no scene graph datasets currently exist that would allow for
directly incorporating object segmentation into scene graph generation, it’s possible that
exploring a weakly supervised approach such as ones built on top of [134] may be fruitful.
This is in contrast to the approach taken by [59], which poses segmentation as a zero-shot
transfer learning problem via language similarity. We are curious to explore how a weak
supervision signal for both instance segmentation and pixel level masks for relationships
would fare. Furthermore other future avenues could be learning object detection through
triplets where the subject and predicate are known. For example, if a TRF-based predictor
is capable of predicting an object (e.g., ‘person’) and a relationship (e.g., ‘sitting on’)
robustly enough, a user could define an unknown object for object detection (e.g., a scooter)
by supplying images with known instances of ‘person sitting on scooter’ and teach networks
to detect a ‘scooter’ in a weakly supervised manner.
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6.4 Limitations

Throughout our research, we contended with a few limitations that we did our best to
circumvent. However, despite our best effort, these still limited the scope of our research
and steered us away from questions we would have liked to answer within this thesis.

Dataset limitations are not uncommon in DL research, and this was no different in our
case. In a perfect world, we would have liked to have a clean and unbiased, pixel annotated
visual relationship dataset that allowed us to immediately train without needing to resort
to topological relationships as an intermediate step. Though, the lack of the dataset for
this sort of task forced us to opt for engineering more creative solutions, and embrace the
mindset of how best to utilize the data available to us in a logical and relevant way to make
progress towards better relationship detection. We also were unable to continue building
on TRFs to utilize them in a segmentation coupled scene graph approach as we discussed
in Section 6.3.

Vision transformer-based architectures have rapidly gained momentum in computer
vision and become one of the most popular topics in DL based computer vision research
today [58]. While we were aware of their existence and followed their literature we were
wary of fully committing to utilizing transformers for multiple reasons. Up until recently,
the field of vision transformers was not mature and developed enough for us to utilize
their breakthroughs, nor was it accessible enough to us to reasonably believe we could
contribute to it. Between their data hungriness, and longer training schedules they seemed
to come with drawbacks we were intending to avoid. They were, relatively successfully, also
very recently were applied to relationship detection [71] and we do believe that a common
text-vision representation may come in handy in relationship detection. This extends to
multi-modal neurons such as the CLIP neurons [33] which were integral to DALLE 2, and
we would have liked to explore some of these alternate representations as well. We also
hoped to explore further research directions with utilizing generative models [69, 97] and
auto-encoders [7, 18] and the representations that they seem to excel at learning in our
work as well.

6.5 Concluding Remarks

Relationship detection is only a sliver of what human cognition encompasses. We are
very curious as to how other cognitive abilities humans possess such as reasoning about
hierarchies and compositions, reasoning about physical systems, gaining prior knowledge
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through language among other abilities can progress the field of computer vision. As we
reviewed in Chapter 2, there has been a rising number of work taking influence from one or
more cognitive functions human possess. We believe that as long as we are still trying to
solve human-related problems, human intelligence is a source of inspiration that we cannot
ignore. As the field of Artificial Intelligence and Deep Learning grows more and more, we
cannot help but wonder whether Al will eventually converge to human-like intelligence,
or whether it will form its own optimal intelligence that is vastly different, and maybe
superior?!
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Appendix A

Appendix A : The Role of Shape,
Content, and Context in Modern
Instance Segmentation

A.1 Full Result Tables

We present pictorial examples of all experiments in Figures A.1, A.2, A.3, A.4. We present
the expanded results for our experiments in the following Tables:

e We present the maskAPs for all experiment modes (except for the ContentSwap
experiments) in Table A.1.

e We present a per-class maskAP breakdown of all architectures on the Baseline
and IsolatedInstance-Mean-0 modes in Table A.2.

e We present a per mask size breakdown of the maskAP results in Tables A.3
and A.4. Mask size ranges are taken from the COCO dataset API.

e We present the ContentSwap maskAPs on a per-class basis for every network in
Tables A.5, A.6, A.7, and A.S.
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Figure A.1: Our Baseline and IsolatedInstance experiment modes shown on one sample
image. The experiment mode name is listed first, then the values after the ‘-’ represent
mode details. Black/Mean/Noise are the color of the pixels used to replace any removed
pixels. Numbers represent how many maximum pixels are added during the dilation oper-
ations (when applicable).
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Figure A.2: Our BoundingBox, Alllnstances, Globallnstance and Silhouette exper-
iment modes shown on one sample image. The experiment mode name is listed first, then
the values after the ‘-’ represent mode details. Black/Mean/Noise/Inpaint are the color of
the pixels used to replace any removed pixels.
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Figure A.3: Our Hallucination experiment modes shown on one sample image. The
experiment mode name is listed first, then the values after the ‘-’ represent mode details.
Black/Mean/Noise/Inpaint are the color of the pixels used to replace any removed pixels.
Numbers represent how many maximum pixels are added during the dilation operations

(when applicable).
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Figure A.4: Our BlurredlIsolation, BlurredLocal, BlurredGlobal, Back-
groundSwap and ContentSwap experiment modes shown on one sample image. The
experiment mode name is listed first, then the values after the ‘-’ represent mode details.
Black/Mean/Noise are the color of the pixels used to replace any removed pixels. Other
adjectives describe experiment specific modes (e.g., sharp or soft for edge blurring).
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Table A.1: Full maskAP results for all eight architectures. The experiment mode name is
listed first, with values after the ‘-’ representing mode details. Black/Mean/Noise are the
color of the pixels used to replace any removed pixels. Numbers represent how many maxi-
mum pixels are added during the dilation operations. Other adjectives describe experiment
specific modes.
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Baseline 37.2% 42.6% 35.2% 38.6% 41.8% 39.4% 34.5% 37.6%
IsolatedInstance-Black-0 42.8%  47.0%  433%  42.7%  44.7%  46.8%  431%  44.7%
IsolatedInstance-Black-6 29.1% 30.8% 28.3% 28.0% 28.3% 28.2% 27.3% 27.6%
IsolatedInstance-Black-12 29.8%  34.9%  285%  299%  31.7%  29.2%  274%  28.6%
IsolatedInstance-Black-20 32.8% 38.4% 31.0% 33.3% 35.1% 32.4% 30.0% 31.8%
IsolatedInstance-Mean-0 44.0%  45.2%  44.7%  45.9%  46.1%  49.3%  47.3%  51.7%
IsolatedInstance-Mean-6 32.0%  30.7%  302%  314%  324%  29.8%  29.1%  31.2%
IsolatedInstance-Mean-12 31.7%  33.3%  29.8%  32.5%  34.8%  30.7%  27.9%  30.1%
TsolatedInstance-Mean-20 33.7%  374%  318%  34.7%  37.0%  335%  29.9%  32.6%
IsolatedInstance-Noise-0 42.9%  48.3%  41.8%  43.7%  45.6%  48.4%  43.7%  45.3%
IsolatedInstance-Noise-6 273%  288%  26.6%  27.6%  29.3%  26.7%  26.9% = 27.3%
IsolatedInstance-Noise-12 26.5%  30.5%  25.1%  26.9% @ 304%  26.3%  25.1%  26.1%
IsolatedInstance-Noise-20 29.8%  35.6%  283%  302%  34.1%  304%  27.5%  29.6%
BoundingBox-Black 32.0%  36.0%  31.3%  328%  35.7%  324%  29.5%  31.8%
BoundingBox-Mean 33.5%  36.3%  32.0%  34.7%  37.0%  33.6%  30.0%  33.7%
BoundingBox-Noise 29.0%  33.3%  27.6%  302%  33.0%  29.9%  274%  29.4%
AllInstances-Black 39.6% 43.9% 39.3% 40.7% 42.9% 45.4% 40.8% 42.4%
Alllnstances-Mean A1.1%  43.7%  40.9%  43.3%  44.2%  48.0%  43.5%  48.1%
Alllnstances-Noise 40.1% 45.4% 38.8% 41.2% 43.2% 47.0% 40.6% 43.3%
Globallnstance-Inpaint 26.9% 28.6% 26.2% 27.2% 29.0% 29.0% 25.6% 28.4%

Silhouette-Mean-Black 1.4% 1.6% 1.4% 2.4% 3.1% 7.4% 4.2% 1.8%
Silhouette-Black-Mean 8.5% 9.8% 9.3% 10.6% 9.9% 12.7% 18.4% 13.2%

SilhouetteNoiseNoise 5.3% 9.6% 2.5% 3.4% 2.9% 11.9%  9.0% 4.1%

GlobalHallucination-Inpaint-0  2.8% 4.9% 2.7% 3.2% 3.6% 3.8% 2.9% 2.9%
LocalHallucination-Black 16.1%  20.6% 15.4% 17.5% 19.3% 19.5% 16.8%  15.0%

GlobalHallucination-Black-0 ~ 22.7%  27.8%  21.3%  24.6%  26.5%  27.9%  21.2%  23.2%
GlobalHallucination-Black-2 ~ 10.4% 12.9% 10.1% 11.9% 12.3% 13.9% 10.5% 11.3%
GlobalHallucination-Black-4 ~ 5.9% 7.6% 5.9% 6.9% 7.3% 8.3% 6.1% 6.4%
GlobalHallucination-Black-6 ~ 4.0% 5.2% 4.0% 4.6% 5.0% 5.8% 4.2% 4.2%
LocalHallucination-Mean 6.1% 8.9% 6.1% 71% 7.5% 16.4% 8.2% 5.0%
GlobalHallucination-Mean-0 ~ 10.4%  13.8%  101%  114%  13.3%  22.7% 11.7%  8.0%
GlobalHallucination-Mean-2  4.0% 5.5% 4.2% 4.8% 5.3% 12.4% 5.9% 3.5%
GlobalHallucination-Mean-4 ~ 1.7% 3.0% 1.9% 2.3% 2.8% 7.5% 3.0% 1.3%
GlobalHallucination-Mean-6 0.9% 2.0% 0.9% 1.2% 1.7% 5.2% 2.0% 0.6%
LocalHallucination-Noise 9.4% 11.2%  9.1% 8.3% 8.7% 10.4% 11.2%  8.9%
GlobalHallucination-Noise-0 15.8% 18.6% 15.4% 15.5% 16.2% 18.9% 15.5% 16.8%
GlobalHallucination-Noise-2  8.3% 8.7% 8.1% 8.1% 8.1% 10.1%  8.8% 8.9%
GlobalHallucination-Noise-4 ~ 5.2% 5.2% 5.1% 5.1% 51% 6.5% 5.7% 5.4%
GlobalHallucination-Noise-6  3.7% 3.5% 3.8% 3.7% 3.8% 4.7% 4.3% 3.9%
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BlurredIsolation-Black 26.2% 29.8% 27.1% 28.2% 29.4% 32.8% 28.7% 29.5%
BlurredIsolation-Mean 30.8%  322%  31.6%  26.0%  33.8%  382%  28.7%  30.7%
BlurredIsolation-Noise 31.4% 32.9% 30.8% 25.3% 34.4% 38.5% 27.4% 27.7%
BlurredLocal 31.1% 35.2% 29.8% 31.8% 33.6% 32.2% 28.7% 30.7%
BlurredGlobal-Sharp 36.8%  422%  34.8%  383%  41.0%  39.9%  34.1%  38.0%
BlurredGlobal-Soft 29.0% 33.7% 27.0% 30.4% 33.0% 31.9% 27.5% 30.2%
BlurredBackground-Soft 35.8%  40.0%  34.4%  371%  40.0%  39.1%  34.2%  38.0%
BackgroundSwap-Sharp 32.8%  36.5%  32.5%  33.5%  34.3%  33.3%  29.5%  32.6%
BackgroundSwap-Soft 25.8%  287%  25.5%  26.3%  27.0%  255%  23.6%  25.6%
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Table A.2: Per class breakdown of the maskAP in the Baseline and IsolatedInstance-
Mean-0 experiment modes for all eight architectures.

MRCNNS50-3x | MRCNN50-Jitter | MRCNN50-1x | MRCNN101-3x Swin-T CondlInst MEInst SOLO
3 @ 3 3 @ 3 3
S &S S S &S S S s &S
& & & & & & & & & & & & &
< 5 R 5 < 5 < 5 4 Q < ¥ <

person 4T7%  674% | 51.7%  70.3% 46.0%  68.4% | 48.6%  69.6% 72.1% | 48.4% 42.7%  62.5% | 45.9%

bicycle 18.0%  34.4% | 25.5%  29.7% 16.3%  32.2% | 19.9%  33.6% 33.3% | 19.9% 14.8%  28.6% | 18.3%

car 41.8%  51.2% | 46.4%  45.6% 39.1%  53.1% | 424%  50.0% 47.2% | 42.9% 40.6%  48.7% | 38.2%

motorcycle 33.0%  50.8% |39.9%  55.0% 308%  49.3% | 35.1%  51.2% 52.8% | 36.5% 29.6%  45.7% | 33.8%

airplane 49.3%  56.6% | 56.1%  72.7% 49.0%  61.3% | 51.2%  62.9% 70.7% | 53.7% 36.7%  44.5% | 56.0%

bus 63.7%  63.8% |69.4% 73.8% 61.7%  67.5% | 65.1%  68.4% 72.9% | 67.5% 62.6%  73.2% | 65.6%

train 61.0%  65.1% |682%  752% 57.6%  63.6% |62.7%  68.8% 70.0% | 63.3% 59.3%  69.8% | 65.7%

truck 35.1%  588% | 42.7%  63.2% 31.5%  63.1% |36.3%  61.3% 63.2% | 39.7% 34.4%  628% | 36.9%

boat 23.0%  31.3% | 284%  34.6% 22.0%  374% | 251%  39.1% 39.1% | 24.9% 20.6%  35.7% | 22.6%

traffic light 26.8%  46.5% | 30.9%  55.2% 26.0% 51.6% |27.9% 51.1% 52.6% | 27.4% 25.7%  63.7% | 23.6%  52.8%
fire hydrant 62.4%  682% | 68.6% 73.7% 63.1%  704% | 64.9%  70.7% 68.0% | 63.5% 584%  685% | 621%  76.8%
stop sign 66.2%  68.4% | 66.9%  67.3% 64.3%  69.1% | 68.9%  70.6% 74.6% | 64.6% 62.0%  84.4% |61.2%  68.4%
parking meter | 45.0%  49.3% | 52.1%  45.3% 46.4%  47.9% | 48.3%  51.1% 58.5% | 48.9% 47.8%  59.0% | 45.1%  55.5%
bench 17.3%  23.7% | 225%  21.7% 15.6%  23.6% | 184%  24.1% 25.1% | 18.4% 13.8%  24.3% | 18.0%  39.8%
bird 30.3%  47.1% | 34.4%  62.8% 29.2%  53.4% | 323%  52.7% 56.5% | 29.9% 24.9%  44.1% | 285%  47.1%
cat 66.9%  76.5% | 69.8%  82.3% 65.3%  T4.7% | 67.8%  79.3% 81.0% | 69.6% 60.4%  74.6% | 69.8%  85.2%
dog 57.2%  67.1% | 62.3%  71.9% 56.3%  65.1% | 59.5%  69.4% 70.1% | 62.1% 50.1%  61.7% | 59.7%  76.3%
horse 41.6%  46.6% | 482%  56.7% 39.2%  48.4% | 42.0%  49.4% 56.5% | 44.5% 34.1%  43.7% | 453%  61.3%
sheep 43.7%  524% | 51.0%  471% 41.1%  57.7% | 46.2%  58.1% 53.7% | 48.6% 41.9%  53.0% | 47.4%  69.6%
cow 46.9%  49.3% | 53.5%  62.4% 44.0%  55.3% | 482%  56.6% 57.0% | 49.6% 45.8%  55.4% | 48.6%  58.3%
elephant 55.8%  59.3% | 62.7%  59.9% 55.6%  57.6% | 56.9%  61.5% 64.7% | 61.8% 54.7%  62.5% | 61.8%  69.9%
bear 69.4%  75.2% | 70.0% 78.1% 64.8%  T7.8% | 70.0% T4.7% 76.6% | 75.1% 66.8%  80.1% | 72.8%  83.4%
zebra 56.3%  T1.9% | 60.2%  75.4% 55.1%  732% | 58.7%  73.7% 72.8% | 62.3% 50.2% 62.8%  8L.7%
giraffe 51.5%  672% | 554%  72.3% 49.1%  67.3% | 51.4%  67.5% 70.5% | 57.4% 41.5% 57.3%  78.6%
backpack 164%  31.1% | 21.2%  12.9% 13.8%  27.9% | 18.0%  29.8% 19.7% | 17.7% 15.6% 13.8%  27.1%
umbrella 44.7%  50.1% | 50.1%  54.8% 42.6%  57.0% | 46.8%  57.6% 57.3% | 49.9% 41.4% 471%  65.9%
handbag 14.9% 17.8% | 20.8% 12.6% 12.6% 16.0% | 16.6% 17.5% 3% | 17.3% 12.9% 13.9% 18.9%
tie 31.2%  145% | 38.8%  18.0% 30.3%  17.7% | 354%  16.7% 14.2% | 32.5% 26.9% 30.1%  21.2%
suitcase 39.4%  38.6% |485%  39.0% 36.1%  37.0% | 423%  39.5% 38.3% | 46.9% 41.3% 39.5%  50.5%
frisbee 62.3%  55.5% | 66.5%  57.8% 61.6%  60.0% | 64.2%  50.9% 55.3% | 63.5% 63.7% 61.4%  65.9%
skis 3.2% 4.5% 7.2% 6.4% 2.0% 4.1% 4.3% 7.6% 6.8% 5.1% 0.7% 5.8% 10.4%
snowboard 22.0% 16.6% | 32.1% 12.0% 20.3% 13.7% | 21.5% 15.6% 9.3% 23.3% 14.5% 22.9%  20.4%
sports ball 46.8%  57.9% |50.0%  61.8% 46.5%  62.9% | 484%  59.8% 68.2% | 44.4% 45.5% 38.1%  56.7%
kite 30.9%  46.8% | 35.0%  69.4% 20.3%  51.8% |31.6%  54.1% 64.3% | 30.6% 25.1% 29.5%  52.7%
baseball bat 24.7%  28.0% | 324%  29.6% 20.1%  40.0% | 25.3%  31.2% 20.2% | 25.1% 16.8% 25.4%  39.3%
baseball glove | 38.6%  33.5% | 42.8%  23.3% 36.9%  36.7% | 41.3%  29.1% 31.8% | 40.1% 38.0% 38.2%  38.3%
skateboard 315%  28.7% | 39.9%  28.9% 27.3%  31.4% | 33.6%  26.5% 34.3% | 35.1% 24.4% 37.0%  35.3%
surfboard 31.2%  21.6% | 39.0% 19.8% 28.9% 19.9% | 32.0%  221% 21.2% | 32.3% 24.0% 30.5% 271%
tennis racket | 53.7%  56.2% | 60.8%  48.8% 52.3%  54.1% | 56.3%  54.8% 52.8% | 52.7% 47.6% 53.7%  61.9%
bottle 382%  54.4% |431%  431% 36.2%  52.8% |39.8%  52.2% 57.1% | 37.4% 35.8% 31.0%  56.3%
wine glass 30.9%  45.5% | 38.3%  35.4% 29.1%  42.7% | 33.8%  46.6% 46.3% | 33.8% 30.3% 29.0%  49.0%
cup 41.3%  521% | 494%  38.9% 404%  51.9% | 43.8%  53.6% 49.6% | 43.7% 41.4% 37.3%  51.8%
fork 15.3%  21.4% | 23.9%  30.7% 134%  224% | 183%  27.3% 211% | 20.7% 9.6% 17.9%  26.4%
knife 12.8% 10.3% | 19.0% 11.9% 9.0% 11.4% | 13.5% 14.5% 10.5% | 14.4% 10.2% 12.3% 11.2%
spoon 122%  134% | 19.0%  14.7% 9.1% 12.2% | 13.9%  16.3% 14.2% | 13.9% 7.4% 11.5%  11.1%
bowl 40.0%  50.1% | 43.8%  40.4% 38.2%  48.7% |39.9%  51.2% 50.0% | 39.3% 37.2% 36.2%  50.7%
banana 19.4%  45.3% | 24.3%  44.8% 17.2%  49.3% | 194%  46.3% 48.5% | 24.9% 19.0% 20.0%  52.4%
apple 202%  39.8% |21.7%  44.1% 18.0%  42.3% |208%  40.7% 45.3% | 24.4% 19.3% 19.5%  44.8%
sandwich 36.7%  482% | 41.4%  55.9% 324%  48.9% | 38.0% 51.4% 56.5% | 37.2% 33.7% 35.3%  60.4%
orange 304%  42.6% |352%  37.3% 29.0%  442% | 31.8%  42.5% 44.2% | 33.1% 29.9% 28.7%  59.4%
broccoli 21.6%  47.4% | 24.0%  52.0% 221%  55.8% |23.0%  43.1% 52.4% | 24.4% 20.7% 22.2%  63.0%
carrot. 18.6%  24.4% | 20.4% 14.3% 181%  24.7% | 194%  21.1% 21.1% | 23.4% 16.3% | 18.6% 19.1%  30.4%
hot dog 274%  43.6% |33.7%  48.2% 20.6%  49.8% |30.5%  49.3% 45.7% | 33.2%  51.2% | 28.0%  51.5% |29.9%  43.0%
pizza 50.3%  67.5% | 53.7%  70.1% 49.3%  64.5% | 50.7%  63.8% TL9% | 51.9%  73.0% |48.6%  69.2% | 48.7%  70.4%
donut 45.3%  522% | 50.3%  47.9% 43.5%  58.5% | 46.4%  55.6% 57.3% | 50.0%  52.9% |46.9%  75.7% | 43.7%  52.6%
cake 35.0%  424% | 41.9%  47.8% 34.2%  46.8% | 37.7%  45.8% 46.4% | 38.8%  554% |351%  65.0% | 36.6%  57.4%
chair 181%  33.7% | 244%  20.7% 164%  29.6% | 19.7%  34.7% 27.4% | 23.7%  30.3% | 178%  23.2% | 20.6%  39.6%
couch 36.1%  388% |394%  36.3% 32.8%  36.8% |36.1%  41.5% 36.8% | 42.9%  48.7% |34.2%  39.5% | 40.7%  50.0%
potted plant | 22.7%  47.1% | 27.8%  39.9% 21.6%  48.5% | 232%  49.4% 47.5% | 24.0%  54.2% | 20.8%  43.4% | 22.0%  57.0%
bed 32.0%  38.9% |34.0%  46.3% 30.7%  36.5% | 33.8%  43.7% 44.4% | 35.6%  56.8% |278%  47.8% | 36.6%  58.9%
dining table 16.1%  26.5% | 183%  27.9% 141%  262% | 171%  29.4% 27.6% | 17.0%  321% |143%  26.1% | 17.9%  35.8%
toilet 574%  66.2% |61.1%  67.2% 55.2%  65.4% | 59.6%  65.6% 64.2% | 62.2%  724% |56.2% 68.3% |635% 74.7%
tv 57.3%  615% | 62.1%  70.6% 55.1%  58.3% | 60.4%  62.4% 66.1% | 62.5%  72.7% |56.4%  66.0% |58.1%  69.2%
laptop 59.2%  61.4% | 65.5%  60.7% 58.0%  584% | 608%  63.5% 57.6% |60.2%  64.4% | 54.7%  58.8% |59.9%  66.5%
mouse 64.2%  46.6% | 63.6%  53.8% 62.6%  46.0% | 63.9%  53.6% 34.7% | 61.5%  389% |60.7%  37.1% | 56.8%  41.9%
remote 28.4% 19.6% | 36.5% 17.1% 25.2%  214% | 324%  20.6% 18.0% | 30.8% 15.3% | 24.9%  21.3% | 27.2%  22.5%
keyboard 50.8%  55.9% | 53.6%  60.2% 473%  51.0% | 50.4%  58.6% 56.5% | 49.6%  59.6% |44.7%  61.5% | 50.7% = 66.7%
cell phone 34.0%  25.7% | 40.9%  27.2% 32.6%  26.3% |36.7%  29.9% 24.5% | 344%  27.9% | 30.1% 32.0%  30.0%
microwave 56.0%  54.4% | 61.1%  48.9% 55.9%  52.8% | 57.0%  51.9% 55.0% | 59.5%  64.9% | 57.7% 57.8%  61.9%
oven 311%  36.0% |34.9%  37.4% 28.8%  34.4% |322%  44.9% 43.4% | 35.1%  47.9% | 30.9% 351%  51.3%
toaster 43.3%  40.7% | 56.7%  48.8% 425%  205% | 40.4% 18.8% 37.2% [291%  21.7% | 45.7% 36.7%  22.8%
sink 35.8%  281% |40.3%  24.4% 32.7%  268% |36.2%  30.4% 24.8% | 38.9%  35.8% |36.1% 35.8%  47.8%
refrigerator 57.0%  59.9% | 61.6%  65.4% 53.8%  60.4% | 58.8%  63.8% 64.7% | 59.0%  72.8% | 52.0% 55.3%  74.9%
book 102%  8.3% 131%  4.1% 9.0% 7.4% 10.9%  92% 7.6% 10.0%  9.1% 8.6% 6.2% 10.4%
clock 50.3%  53.4% | 54.2%  54.8% 50.0%  55.8% | 51.7%  52.7% 59.4% | 521%  61.1% | 49.7% 484%  60.5%
vase 36.6%  43.7% | 43.8%  42.1% 34.7%  451% | 38.7%  45.3% 48.4% | 39.1%  49.5% | 35.9% 33.7%  58.4%
scissors 20.6%  29.9% |269%  36.7% 151%  28.2% | 224%  31.2% 34.3% | 21.3%  394% | 14.6% 22.0%  43.0%
teddy bear 43.6%  61.7% | 48.4%  69.1% 42.5%  64.1% | 447%  67.2% 65.6% |48.3%  76.2% | 41.3% 46.8%  78.3%
hair drier 0.6% 13.6% | 7.5% 0.0% 0.0% 5.0% 2.2% 28.8% 10.6% | 1.3% 0.0% 4.6% 124%  24.3%
toothbrush 15.0%  21.3% | 234%  30.0% 13.6%  274% | 152%  23.7% 22.0%  214% | 151% 121% | 8.7% 26.4% | 162%  34.6%
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Table A.3: Per mask size breakdown of the maskAP results across the Resnet-based MaskR-
Mask size ranges are taken from the COCO dataset API. Small
instances are instances with a total mask area <= 1024 pixels, Medium instances are
instances with a total mask_area 1024 <mask area<= 9216 pixels, Large Instances are
instances with a total mask_area> 9216 pixels.

CNN architectures.

MRCNN50-3x | MRCNN50-Jitter | MRCNN50-1x | MRCNN101-3x

8 = 8 8 = 8 8 = 8 8 8

E = = ) S = = o E} = =t I 4 = 2 o

= £ 2 |5 I £ 2|z : %I ¢ |5 : % %

< @ = = < @ = — < @» = = < %) = |
Baseline 37.2% 18.6% 39.5% 42.6% 238% 45.0% 60.1% | 35.2% 17.2% 37.7% 50.3% | 38.6% 19.5% 41.3% 55.3%
IsolatedInstance-Black-0 42.8% 15.9% 48.4% 47.0% 20.9% 52.2% 73.2% | 43.3% 17.6% 50.1% 67.0% | 42.7% 13.6% 47.9% 71.9%
IsolatedInstance-Black-6 20.1% 4.6%  28.2% 30.8% 6.5% 29.6% 59.8% | 28.3% 4.5%  27.4% 57.1% | 28.0% 3.8%  26.4% 58.5%
IsolatedInstance-Black-12 20.8% 8.7%  29.9% 34.9% 13.4% 35.5% 56.5% | 28.5% 8.8%  27.6% 50.7% | 29.9% 9.3%  29.4% 52.2%
IsolatedInstance-Black-20 32.8% 12.7% 33.8% 384% 17.7% 40.1% 57.8% | 31.0% 12.2% 31.8% 49.3% | 33.3% 134% 34.5% 52.2%
IsolatedInstance-Mean-0 44.0% 18.5% 50.8% 45.2% 185% 48.1% 72.7% | 44.7% 19.5% 51.5% 65.6% | 45.9% 19.9% 52.3% 69.8%
IsolatedInstance-Mean-6 32.0% 7.2%  33.6% 30.7% 7.4%  29.0% 59.2% | 30.2% 5.6%  30.9% 57.8% | 31.4% 6.0%  32.3% 59.9%
IsolatedInstance-Mean-12 3L.7% 10.2%  32.2% 33.3% 13.0% 33.1% 55.0% | 29.8% 9.0%  29.4% 51.3% | 32.5% 10.9% 33.2% 54.3%
IsolatedInstance-Mean-20 33.7% 13.3% 34.5% 37.4% 17.8% 39.1% 56.1% | 31.8% 12.9% 32.0% 50.5% | 34.7% 14.6% 35.8% 54.2%
IsolatedInstance-Noise-0 42.9% 13.1% 50.9% 48.3% 18.5% 56.0% 77.8% | 41.8% 12.0% 49.9% 69.1% |43.7% 13.8% 50.4% 73.8%
IsolatedInstance-Noise-6 27.3% 52%  25.2% 28.8% 5.7%  25.8% 59.0% | 26.6% 3.3%  24.7% 56.2% | 27.6% 4.0%  25.5% 58.7%
IsolatedInstance-Noise-12 26.5% 7.9%  24.6% 30.5% 10.6% 29.5% 52.7% | 25.1% 6.7%  23.2% 46.5% | 26.9% 8.3%  24.9% 49.5%
IsolatedInstance-Noise-20 29.8% 11.8% 30.2% 35.6% 16.3% 36.7% 54.9% | 28.3% 11.4% 28.6% 45.6% | 30.2% 12.9% 30.3% 48.4%
BoundingBox-Black 32.0% 8.0%  34.3% 36.0% 12.1% 38.1% 60.8% | 31.3% 8.8%  33.6% 52.7% | 32.8% 9.4%  35.1% 57.2%
BoundingBox-Mean 33.5% 104% 35.7% 36.3% 12.9% 38.1% 60.7% | 32.0% 9.5%  33.9% 53.4% |34.7% 11.1% 37.5% 57.7%
BoundingBox-Noise 20.0% 8.0%  29.5% 33.3% 9.9%  34.0% 58.4% | 27.6% 6.5% 28.1% 49.5% | 30.2% 8.5% 31.1% 53.7%
AllInstances-Black 39.6% 14.5% 44.1% 43.9% 18.8% 48.7% 69.2% | 39.3% 154% 44.7% 61.6% | 40.7% 14.8% 44.8% 67.3%
AllInstances-Mean 41.1% 18.0% 46.5% 43.7% 19.8% 46.6% 68.5% | 40.9% 18.2% 46.0% 61.1% | 43.3% 20.3% 48.4% 65.9%
AllInstances-Noise 401% 13.2% 46.8% 45.4% 18.1% 52.2% 73.2% | 38.8% 12.0% 454% 64.1% |41.2% 14.1% 47.1% 68.6%
Globallnstance-Inpaint | 26.9% 74% 26.1% | 28.6% 9.5% 27.9% 49.9% | 26.2% 6.7% 25.8% 46.2% | 27.2% 7.2%  26.7% 49.2% |
Silhouette-Mean-Black 14%  1.9% 1.8% 1.6% 0.8% 1.7% 2.7% |14% 1.1% 20% 1.2% |24% 1.7% 34% 2.7%
Silhouette-Black-Mean 85% 4.7%  10.5% 98% 57% 101% 158% | 9.3%  5.0% 114% 12.9% | 10.6% 5.0% 11.7% 16.5%
SilhouetteNoiseNoise 53% 03%  6.0% 9.6% 0.8% 11.6% 21.1% | 2.5% 0.0% 2.0% 6.0% |34% 02% 45% 6.2%
GlobalHallucination-Inpaint-0 | 2.8%  1.9%  4.4% 4.9%  24% 73%  83% |27% 15% 44% 44% |32% 18% 51% 4.6%
LocalHallucination-Black 16.1% 6.4%  18.5% 20.6% 10.0% 22.6% 34.9% | 154% 7.0% 17.5% 25.8% | 17.5% 7.9% 19.1% 29.2%
GlobalHallucination-Black-0 | 22.7% 17.0% 25.4% 27.8% 20.4% 30.6% 36.8% | 21.3% 16.2% 24.4% 26.0% | 24.6% 17.2% 28.1% 30.8%
GlobalHallucination-Black-2 | 10.4% 3.1%  13.7% 12.9% 3.0% 15.7% 28.8% | 10.1% 2.8%  13.0% 20.6% | 11.9% 3.0% 154% 24.5%
GlobalHallucination-Black-4 | 5.9% 0.3% 6.1% 7.6% 04% 71% 221% | 59% 03% 59% 16.1% | 6.9% 0.3% 6.8% 19.9%
GlobalHallucination-Black-6 | 4.0%  0.0%  2.5% 52% 0.0% 3.0% 17.2% | 4.0% 0.0% 24% 12.7% | 4.6% 0.0% 2.9% 15.3%
LocalHallucination-Mean 6.1% 32% 8.8% 89% 44% 10.0% 16.7% | 6.1% 2.6% 94% 102% | 71% 31% 105% 12.2%
GlobalHallucination-Mean-0 | 104% 7.7%  15.4% 13.8% 102% 16.3% 19.3% | 10.1% 7.6% 15.0% 12.2% | 11.4% 7.7% 16.8% 15.3%
GlobalHallucination-Mean-2 | 4.0%  1.6%  7.3% 55%  11%  7.9% 14.2% | 42% 17% 7.6% 81% |4.8% 1.3% 85% 11.2%
GlobalHallucination-Mean-4 | 1.7%  0.1%  2.9% 3.0% 01% 3.3% 10.8% | 1.9% 0.1% 3.2% 6.3% |23% 01% 3.6% 82%
GlobalHallucination-Mean-6 | 0.9%  0.0%  0.9% 2.0% 0.0% 14% 85% |09% 0.0% 1.2% 41% |12% 0.0% 13% 59%
LocalHallucination-Noise 94% 17% 8.1% 11.2% 2.7%  11.6% 22.7% | 91% 1.7% 7.9% 19.2% | 83% 1.8% 6.9% 17.7%
GlobalHallucination-Noise-0 15.8% 7.8% 17.2% 18.6% 11.1% 20.9% 26.7% | 15.4% 7.8% 17.0% 24.1% | 15.5% 7.8% 16.4% 25.4%
GlobalHallucination-Noise-2 | 8.3%  1.5%  8.3% 8.7% 2.0% 102% 20.3% | 81% 14% 84% 18.9% | 8.1% 1.4% 82% 19.8%
GlobalHallucination-Noise-4 | 5.2%  0.3%  3.7% 52% 0.2% 4.3% 16.0% | 51% 0.1% 3.7% 148% | 51% 01% 38% 15.7%
GlobalHallucination-Noise-6 | 3.7%  0.0%  1.6% 3.5%  0.0% 1.6% 124% | 38% 0.0% 1.6% 11.7% | 3.7% 0.0% 1.7% 12.4%
BlurredIsolation-Black 26.2% 3.1%  25.6% 53.7% | 29.8% 3.7%  29.9% 60.7% | 27.1% 3.9%  28.4% 53.2% | 28.2% 3.5%  28.1% 58.4%
BlurredIsolation-Mean 30.8% 55% 33.9% 58.2% | 32.2% 54%  32.6% 64.5% | 31.6% 6.4% 35.0% 59.4% | 26.0% 3.3%  26.1% 55.0%
BlurredIsolation-Noise 31.4% 52%  34.8% 61.1% | 32.9% 4.8%  34.4% 67.3% | 30.8% 5.4%  34.6% 58.7% | 25.3% 4.0%  24.6% 54.4%
BlurredLocal 311% 7.7%  31.2% 57.1% | 35.2% 9.7%  35.9% 62.8% | 29.8% 8.2% 29.8% 54.5% | 31.8% 7.8% 31.9% 58.7%
BlurredGlobal-Sharp 36.8% 151% 39.1% 57.4% | 42.2% 18.8% 45.2% 63.6% | 34.8% 13.7% 37.2% 54.7% | 38.3% 15.3% 40.8% 60.1%
BlurredGlobal-Soft 20.0% 7.9% 29.8% 51.9% | 33.7% 9.7%  354% 58.0% | 27.0% 6.3% 27.9% 49.1% | 30.4% 7.3%  31.4% 54.9%
BlurredBackground-Soft 35.8% 13.1% 38.8% 57.1% | 40.0% 15.9% 43.5% 62.7% | 34.4% 12.0% 37.6% 55.0% | 37.1% 13.9% 39.7% 59.6%
BackgroundSwap-Sharp 32.8% 9.2%  34.8% 55.2% | 36.5% 12.5% 38.6% 61.4% | 32.5% 9.5%  35.3% 53.7% | 33.5% 9.0%  35.5% 58.2%
BackgroundSwap-Soft 25.8% 2.5%  254% 51.6% | 28.7% 3.1%  27.9% 57.5% | 25.5% 2.5%  25.6% 49.6% | 26.3% 2.6%  25.6% 52.7%
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Table A.4: Per mask size breakdown of the maskAP results across Swin-T and the Non-
ROI based architectures. Mask size ranges are taken from the COCO dataset API. Small
instances are instances with a total mask area <= 1024 pixels, Medium instances are
instances with a total mask_area 1024 <mask area<= 9216 pixels, Large Instances are
instances with a total mask_area> 9216 pixels.

Swin-T ‘ CondlInst MElInst SOLO

8 = 8 8 g 8 8 g 5 8 8

=l — =1 @ =l = = 19 g — = o = = = o

= £ 2 |5 I £ 2|z : %I ¢ |5 : % %

= 2 = — < % = = < ) = = < 2 = =
Baseline | 41.8% 234% 44.2% 59.9% | 39.4% 19.6% 43.0% 56.9% | 34.5% 184% 37.1% 48.5% |37.6% 155% 41.1% 56.9% |
IsolatedInstance-Black-0 44.7% 15.7% 49.1% 73.3% | 46.8% 15.9% 53.0% 76.8% | 43.1% 17.4% 49.3% 64.2% | 44.7% 14.9% 50.3% 73.7%
IsolatedInstance-Black-6 28.3% 4.6% 254% 58.4% | 282% 4.1%  26.6% 57.8% | 27.3% 4.3%  26.6% 55.4% | 27.6% 3.1% 26.0% 57.1%
IsolatedInstance-Black-12 3L.7% 11.8% 30.2% 53.1% | 29.2% 9.2% 285% 50.9% | 274% 7.9% 26.6% 49.3% | 28.6% 7.0% 27.9% 52.4%
IsolatedInstance-Black-20 35.1% 15.7% 354% 53.5% | 324% 14.5% 33.1% 50.6% | 30.0% 12.5% 31.1% 46.8% |31.8% 10.7% 32.9% 52.4%
IsolatedInstance-Mean-0 46.1% 19.9% 51.6% 68.9% | 49.3% 19.0% 56.9% 77.3% | 47.3% 23.8% 53.2% 65.9% | 51.7% 23.7% 59.7% 76.9%
IsolatedInstance-Mean-6 324% T7%  31.9% 61.2% | 29.8% 4.8% 29.7% 59.6% | 29.1% 5.3% 29.5% 58.5% |31.2% 4.9% 31.4% 61.2%
IsolatedInstance-Mean-12 34.8% 13.3% 34.8% 56.3% | 30.7% 9.9%  302% 52.8% | 27.9% 9.1%  26.5% 50.4% | 30.1% 81% 29.3% 54.4%
IsolatedInstance-Mean-20 37.0% 17.2% 37.3% 56.5% | 33.5% 15.1% 34.0% 52.5% | 29.9% 14.0% 29.9% 47.3% |32.6% 11.6% 33.3% 53.3%
IsolatedInstance-Noise-0 45.6% 15.0% 52.6% T75.4% | 48.4% 16.3% 56.0% T79.7% | 43.7% 154% 52.9% 67.4% |45.3% 14.8% 52.0% 75.1%
IsolatedInstance-Noise-6 29.3% 5.7% 26.8% 59.3% | 26.7% 3.8% 24.3% 56.8% | 26.9% 5.0% 25.7% 55.1% | 27.3% 44% 24.9% 56.5%
IsolatedInstance-Noise-12 30.4% 11.6% 28.3% 51.5% | 26.3% 7.9% 24.0% 482% | 25.1% 7.6% 23.0% 46.7% | 26.1% 6.8%  23.5% 48.9%
IsolatedInstance-Noise-20 34.1% 16.5% 34.1% 51.6% | 30.4% 14.1% 30.5% 48.2% | 27.5% 12.0% 27.7% 44.4% | 29.6% 10.6% 29.2% 49.4%
BoundingBox-Black 35.7% 12.0% 37.6% 59.6% | 324% 9.2%  34.9% 56.4% | 29.5% 8.3% 31.1% 50.5% | 31.8% 7.7% 33.9% 57.2%
BoundingBox-Mean 37.0% 13.9% 39.0% 59.8% | 33.6% 10.6% 35.8% 57.1% | 30.0% 9.6% 314% 51.3% | 33.7% 9.4% 35.8% 58.9%
BoundingBox-Noise 33.0% 114% 33.7% 56.6% | 29.9% 88% 30.5% 54.0% | 27.4% 84% 27.8% 48.3% | 294% T1% 29.3% 54.3%
AllInstances-Black 42.9% 17.8% 46.1% 68.9% | 45.4% 18.5% 50.9% 72.1% | 40.8% 18.4% 45.6% 60.2% |424% 155% 47.0% 69.4%
Alllnstances-Mean 44.2% 21.5% 48.1% 65.7% | 48.0% 22.2% 54.0% T72.3% | 43.5% 21.8% 485% 61.8% |48.1% 22.8% 54.8% T7L7%
AllInstances-Noise 43.2% 16.5% 48.9% 70.6% | 47.0% 18.8% 54.3% T4.7% | 40.6% 15.3% 48.0% 62.7% |43.3% 14.9% 492% 70.1%
Globallnstance-Inpaint [29.0% 85% 28.6% 51.9%]29.0% 9.0% 29.1% 504% | 25.6% 7.2% 24.9% 45.9% | 284% 6.5% 27.6% 50.7% |
Silhouette-Mean-Black 31% 35% 38% 24% |74% 27% 92% 14.0%|42% 3.7% 57% 35% |18% 2.0% 24% 0.7%
Silhouette-Black-Mean 9.9%  73% 117% 122% | 127% 72%  14.0% 20.7% | 184% 125% 229% 24.9% | 13.2% 82% 17.0% 20.1%
SilhouetteNoiseNoise 29% 0.7% 45% 45% [11.9% 14% 12.9% 28.6% | 9.0% 1.9% 11.6% 16.3% |41% 04% 47% 8.7%
GlobalHallucination-Inpaint-0 | 3.6% 1.9% 53% 5.6% |38% 17% 5.6% 73% |29% 24% 43% 45% |29% 1.6% 48% 4.6%
LocalHallucination-Black 19.3% 10.5% 20.6% 28.8% | 19.5% 7.8% 20.6% 36.2% | 168% 7.1% 19.0% 28.6% | 15.0% 6.5% 18.3% 25.2%
GlobalHallucination-Black-0 | 26.5% 18.6% 29.2% 33.2% | 27.9% 17.8% 31.9% 39.0% | 21.2% 15.8% 23.7% 26.9% | 23.2% 15.1% 27.6% 30.6%
GlobalHallucination-Black-2 | 12.3% 29% 15.0% 26.0% | 13.9% 34% 162% 30.0% | 10.5% 2.8% 13.3% 21.8% |11.3% 32% 14.1% 23.4%
GlobalHallucination-Black-4 | 7.3%  04% 6.6% 20.6% | 8.3% 04% 72% 22.7% | 6.1% 03% 59% 17.7% |64% 04% 6.1% 17.5%
GlobalHallucination-Black-6 | 5.0% 0.0% 2.8% 15.8% | 58% 0.0% 3.3% 18.0% | 42% 0.0% 24% 145% |42% 0.0% 2.6% 13.7%
LocalHallucination-Mean 75%  3.7% 8.6% 13.6% | 164% 41% 16.3% 34.8% |82% 3.1% 9.1% 18.5% |5.0% 22% 87% T7.1%
GlobalHallucination-Mean-0 | 13.3% 8.6% 16.8% 18.5% | 22.7% 10.7% 26.1% 37.8% | 1.7% 8.0% 14.3% 17.0% |8.0% 6.1% 135% 7.1%
GlobalHallucination-Mean-2 | 5.3%  1.7% 7.4% 12.8% | 124% 26% 13.8% 29.0% | 59% 18% 8.0% 13.8%|35% 15% 6.8% 5.1%
GlobalHallucination-Mean-4 | 2.8%  0.1% 3.2% 94% |75% 04% 64% 21.9%|3.0% 02% 34% 105%|13% 02% 27% 3.8%
GlobalHallucination-Mean-6 | 1.7%  0.0% 1.3% 7.3% |52% 0.0% 27% 17.0% | 2.0% 0.0% 14% 89% |0.6% 0.0% 09% 2.9%
LocalHallucination-Noise 87% 1.9% 6.6% 195% | 104% 24% 89% 23.3% | 11.2% 1.7% 93% 262% |89% 21% 85% 18.6%
GlobalHallucination-Noise-0 | 16.2% 82% 16.7% 27.0% | 18.9% 89% 20.3% 33.4% | 155% 74% 16.1% 26.9% | 16.8% 7.3% 19.1% 28.2%
GlobalHallucination-Noise-2 | 8.1%  14% 7.9% 20.5% | 10.1% 21% 104% 25.6% | 8.8% 14% 9.1% 21.1% |8.9% 14% 9.7% 22.1%
GlobalHallucination-Noise-4 | 5.1% 0.1% 3.6% 15.9% | 6.5% 02% 4.8% 20.0% | 5.7% 0.1% 42% 17.6% |54% 01% 42% 17.1%
GlobalHallucination-Noise-6 | 3.8%  0.0% 1.6% 12.7% | 47% 0.0% 2.0% 15.7% | 4.3% 0.0% 1.8% 144% |3.9% 0.0% 18% 13.0%
BlurredIsolation-Black 29.4% 35% 28.9% 60.3% | 32.8% 6.8% 34.8% 61.2% |28.7% 6.4% 31.5% 51.7% |29.5% 4.5% 28.6% 58.4%
BlurredIsolation-Mean 33.8% T2% 35.7% 64.3% |382% 11.1% 41.6% 68.5% |28.7% 6.7% 29.7% 54.8% |30.7% 6.0% 30.9% 61.5%
BlurredIsolation-Noise 344% 73% 36.6% 65.8% | 385% 10.3% 431% 68.3% | 27.4% 6.9% 29.6% 52.0% |27.7% 54% 27.7% 56.8%
BlurredLocal 33.6% 9.3% 32.6% 61.0% | 322% 82% 321% 59.5% | 28.7% T.3% 28.9% 51.8% | 30.7% 6.0% 30.4% 58.5%
BlurredGlobal-Sharp 41.0% 17.8% 44.0% 62.9% | 39.9% 16.1% 434% 62.1% | 34.1% 14.6% 37.0% 52.3% | 38.0% 12.6% 41.2% 61.7%
BlurredGlobal-Soft 33.0% 9.0% 34.3% 57.9% | 31.9% 89% 33.8% 55.6% | 27.5% T.9% 28.8% 47.5% |302% 6.7% 31.2% 54.6%
BlurredBackground-Soft 40.0% 16.8% 43.1% 62.3% | 39.1% 15.9% 42.6% 61.6% | 34.2% 13.8% 37.4% 52.8% |38.0% 13.2% 41.4% 61.8%
BackgroundSwap-Sharp 34.3% 11.0% 36.2% 56.9% | 33.3% 9.3% 35.1% 55.3% | 29.5% 9.0% 31.8% 48.0% |32.6% 8.1% 34.4% 55.2%
BackgroundSwap-Soft 27.0% 31%  25.7% 534% | 255% 3.1% 24.7% 494% | 23.6% 2.8% 23.9% 44.8% | 25.6% 2.5% 24.3% 50.2%
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T.able A.5: The per class breakdown of maskAP on MRCNN50-3x and MRCNN50-
Jitter and multiple ContentSwap experiment and evaluation modes. Bolded experiments
in the table are the more interesting results.

MRCNN50-3x MRCNN50-Jitter
]
J
&
g v
g =
§ §
ol 7
g g
5 s
S 5
H £
¢ ¢
s s
person
bicycle 8.1%
car 48%
15.7%
9.6%
11.6%
21.0%
11.4%
20.2%
traffic light 11.6%
fire hydrant 25.3%
stop sign 9.6%
parking meter 30.5%
bench 10.1%
bird 3.5%
cat 12.6%
dog 7.2%
horse 7.9%
sheep 5.0%
cow 6.5%
clephant 11.2%
bear 9.8%
zebra 11.3%
giraffe 9.3%
backpack 1.9%
umbrella 9.5%
handbag 115%
tie 43%
suitcase 5.5%
frisbee 10.2%
skis 12.2%
snowboard 0.5%
sports ball 2.1%
kite 12.0%
baseball bat 33.7%
baseball glove 0.2%
skateboard 11.0%
surfboard 1.7%
tennis racket 5.9%
bottle 4.0%
wine glass 4.5%
cup 3.7%
fork 8.0%
knife 0.4%
spoon 0.8%
bowl 0.5%
banana 111%
apple 9.2%
sandwich 13.4%
orange 14.1%
broceoli 11.6%
carrot 12.0%
hot, dog 5.7%
pizza 9.2%
domut 17.4%
cake 15.0%
chair 16.2%
couch 47%
potted plant 5.6%
bed 8.1%
dining table 7.5%
toilet 5.9%
tv 9.6%
laptop 18.0%
mouse 9.0%
remote 115%
keyboard 5.8%
cell phone 9.2%
microwave 11.3%
oven 14.0%
toaster Pt 8.4%
sink 21.3% 8.1%
refrigerator 13.2% 15.6% 0.1% 5.7%
book 20.1% 18.3% 4.5% 8.3%
clock 7.8% 6.7% 3.4% 2.2%
Jase 14.9% 12.0% 2.4% 20.7%
» 28.9% 26.5% 6.2% 11.3%
teddy bear 39% 3.2% 26% 3.1%
hair drier 1.8% 2.0% 4.2% 10.5%
toothbrush 5.6% 5.6% 0.0% 1.0%
18.5% 16.0% 8.7% 1.2%



Table A.6: The per class breakdown of maskAP on MRCNN50-1x and MRCNN101-
3x and multiple ContentSwap experiment and evaluation modes. Bolded experiments in
the table are the more interesting results.

MRCNNS50-1x MRCNN101-3x
=4
R
I
I
%
g
$

person 16.5%
bicycle 11%
car 8.3%
motorcycle | 3.9%
airplane 19.3%
bus 7.1%
train 17.6%
truck 10.2%
boat, 16.9%
traffic light 19.9%
fire hydrant | 36.9%
stop sign 29.5%
parking meter | 17.4%
bench 7.6%
bird 13.2%
cat 1.9%
dog 8.9%
horse 13.6%
sheep 3.3%
cow 15.6%
elephant 9.0%
bear 3.7%
zebra 0.7%
giraffe 14.3%
backpack 43%
umbrella 23.1%
handbag 14.8%
tie 35.1%
suitcase 9.7%
frishee 25.5%
skis 4.6%
snowboard 28.9% 28.2%
sports ball 17.1% 17.3%
kite 29.4% 28.5%
baschall bat | 28.4% 27.4%
baseball glove | 29.1% 26.5%
skateboard 17.6%
surfboard 26.4%
tennis racket | 18.9%
bottle 14.1%
wine glass 7.8%
cup 12.0%
fork 5.5%
knife 8.3%
spoon 8.4%
bowl 10.2%
banana 0.5%
apple 0.3%
sandwich 4.4%
orange 0.3%
broccoli 0.5%
carrot 0.2%
hot dog 1.2%
pizza 3.4%
donut 4.0%
cake 21.7%
chair 5.9%
couch 4.0%
potted plant | 1.6%
bed 47%
dining table | 3.4%
toilet 5.0%
tv 13.1%
laptop 3.7%
mouse 23.1%
remote 12.0%
keyboard 4.9%
cell phone 13.9%
microwave 11%
oven 3.1%
toaster 25.0%
sink 8.8%
refrigerator | 14.5%
book 8.0%
clock 13.4%
vase 21.3%
s 0.9%
teddy bear | 2.1%
hair drier 4.6%
toothbrush | 8.7%




Table A.7: The per class breakdown of maskAP on Swin-T and CondInst and multiple
ContentSwap experiment and evaluation modes. Bolded experiments in the table are the
more interesting results.

CondlInst
&
2 g
i g
5 §
& ©
§
b
§ g
g ¢
$ S

person 19.2%
bicycle 0.6%
car 6.3%
motoreycle | 4.2%
airplane 26.9%
bus 8.5%
train 22.9%
truck 7.0%
boat 20.5%
traffic light 21.4%
fire hydrant | 31.5%
stop sign 24.8%
parking meter | 20.2%
bench 7.8%
bird 16.6%
cat 1.8%

dog 8.6%

horse 17.2%
sheep 3.2%

cow 19.2%
clephant 6.1%

bear 4.6%

zebra 1.0%

giraffe 17.5%

backpack 16%

umbrella 20.7%

handbag 14.8%

tie 36.0%

suitcase 5.2%

frisbee 25.9%

skis 10.3% .

snowboard | 33.8% 34.7% 1.8%

sports ball 20.2% 20.8% 11.8%

kite 36.3% 35.8% 16.6%

baseball bat | 37.9% 35.5% 1.8%

baseball glove | 30.3% 2.4%

skateboard | 26.3% 0.3%

surfboard 35.2% 2.6%

tennis racket | 26.3% 0.5%

bottle 14.8% 7.0%

wine glass 7.9% 2.7%

cup 9.8% 17%

fork 10.7% 2.4%

knife 16.4% 1.3%

spoon 131% 0.5%

bowl 13.5% 2.0%

banana 0.4% 0.2%

apple 0.4% 1.2%

sandwich 5.4% 17%

orange 0.4% 0.2%

broceoli 0.5% 0.0%

carrot 0.3% 0.1%

hot, dog L7% 0.6%

pizza 41% 1.4%

domut 1.7% 1.6%

cake 22.5% 5.8%

chair 6.2% 1.2%

couch 5.8% 0.3%

potted plant 1.5% 0.9%

bed 2% 2.7%

dining table | 5.5% 1.3%

toilet 7.3% 1.3%

tv 16.9% 24%

laptop 45% 0.7%

mouse 21.6% 0.3%

remote 13.0% 0.4%

keyboard 4.9% 0.4%

cell phone 19.9% 0.3%

microwave 7.8% 0.9%

oven 10% 1.0%

toaster 28.8% 0.1%

sink 12.0% 0.1%

refrigerator | 16.2% 1.8%

book 6.2% 3.4%

clock 12.9% 2.9%

vase 22.7% 6.8%

s 3.6% 0.9%

teddy bear 0.9% 2.3%

hair drier 6.2% 0.0%

toothbrush 14.1% 1.0% 2.2%
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Table A.8: The per class breakdown of maskAP on MEInst and SOLO and multiple
ContentSwap experiment and evaluation modes. Bolded experiments in the table are the
more interesting results.

Ly

i

§
person
bicycle
car
motoreycle
airplane
bus
train
truck
boat
traffic light b
fire hydrant | 35.4% 38.7% 26.5%
stop sign 26.7% 28.8% 31.4%
parking meter | 19.6% 22.2% 10.0%
bench 4.7% 5.1% 3.0%
bird 10.6% 10.2% 11.9%
cat 4.5% 5.0% 3.7%
dog 10.8% 10.8% 7.5%
horse 10.7% 9.6% 6.8%
sheep 5.6% 6.1% 5.6%
cow 16.6% 18.1% 12.1%
elephant 12.3% 12.7% 5.2%
bear 14.8% 17.4% 81%
zebra 1.9% 1.6% 11%
giraffe 14.7% 14.4% 8.7%
backpack 4.7% 3.8% 3.3%
umbrella 20.5% 18.7% 24.1%
handbag 14.7% 13.0% 7.3%
tie 25.6% 24.8% 11.1%
suitcase 9.4% 10.1% 7.4%
frishee 33.0% 31.8% 25.6%
skis 11% 11% 0.5%
snowboard 18.5% 19.0% 15.1%
sports ball 19.9% 20.0% 19.0%
kite 23.4% 22.7% 30.0%
bascball bat | 20.9% 21.1% 27.5%
baseball glove | 30.5% 27.9% 17.7%
skateboard 15.4% 9.2%
surfboard 20.1% 9.0%
tennis racket | 26.2% 6.9%
bottle 15.2% 18.2%
wine glass 10.2% 5.6%
cup 9.2% 5.2%
fork 5.3% 5.0%
knife 8.2% 8.0%
spoon 6.8% 1.9%
bowl 10.1% 5.0%
banana 1.0% 3.4%
apple 6.1%
sandwich 5.3%
orange 4.2%
broccoli 0.7%
carrot 0.7%
hot, dog 2.9%
pizza 6.0%
donut 8.5%
cake 17.6%
chair 2.9%
couch 2.0%
potted plant 3.5%
bed 5.7%
dining table 3.7%
toilet 7.3%
tv 8.6%
laptop 2.7%
mouse L7%
remote 5.2%
keyboard 5.1%
cell phone 41%
microwave 8.5%
oven 5.2%
toaster 10.8%
sink 3.9%
refrigerator 10.2%
book 3.4%
clock 16.1%
vase 21.3%
s 6.7%
teddy bear 15.1%
hair drier 15.9%
toothbrush 9.8%




Appendix B

Appendix B : The Topology and
Language of Relationships in the
Visual Genome Dataset

B.1 Full Figures

In this appendix we provide the full figure for the inverse relationship analysis on all 50
relationship predicates, see Figure B.1. We also provide the full topological analysis in
Figure B.2 and the directional analysis in Figure B.3. These figures are best viewed on a
screen where you can zoom into them.
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above (11602) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
across (364) -0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
against (318) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
along (683) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

and (933) -0.00 0.00 0.00 0.00 . 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02

at (3030) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

attached to (2689) -0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 .0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
behind (18159) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
belonging to (1518) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
between (765) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
carrying (2504) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
covered in (705) -0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 W 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

covering (828) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.01

eating (1063) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
flying in (30) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 oco.u.uu 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

for (1507) -0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 (RE! 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

from (306) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02
growing on (296) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
hanging from (1296) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
has (97473) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0,03.000 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
holding (16514) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
in (37914) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

in front of (5609) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
laying on (1138) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
looking at (1410) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.03 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
lying on (561) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01
made of (172) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mounted on (486) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
near (30331) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

of (53761) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

on (196495) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01

on back of (547) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
over (1871) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.01
painted on (263) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
parked on (1162) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

part of (624) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

playing (166) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
riding (6335) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

says (62) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0400ouoouoonoonceoeeoeeouuouuounon 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
sitting on (8003) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01
standing on (4068) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
to (519) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

under (6687) —. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 S}kl 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

using (822) ~0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00

walking in (426) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

walking on (2343) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

watching (1327) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
wearing (71121) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
wears (7471) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

with (18428) -0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 . 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

Figure B.1: A heatmap of the occurrence of inverse relationships for all 50 predicates in the
VG200 dataset. The numbers in parentheses are the total occurrences for this predicate
in the dataset. For every row the value in the heat map reflects the ratio of: (inverse
relationship occurrences of the row predicate with the predicate in the column) to (total
occurrences of the predicate in the row).
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Figure B.2: A heatmap of the occurrence of topological relationships between bounding
boxes related by all 50 predicates in the VG200 dataset. The values shown in the heatmap
are the portions of the total occurrences of the row predicate that exhibit the specific
topological configuration in the column. The values in parenthesis next to the predicate

names are the total occurrences of that predicate.
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Figure B.3: A heatmap of the angles between subject and object for all 50 relationship
predicates in the VG200 dataset. The values shown in the heatmap are the portions of the
total occurrences of the row predicate that exhibit the specific directional configuration in
the column.
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