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Abstract

We consider the problem of matroid prophet inequalities. This problem has been ex-
tensively studied in case of adaptive prices, with [KW12] obtaining a tight 2-competitive
mechanism for all the matroids.

However, the case non-adaptive is far from resolved, although there is a known constant-
competitive mechanism for uniform and graphical matroids (see [Cha+20]).

We improve on constant-competitive mechanism from [Cha+20] for graphical matroids,
present a separate mechanism for cographical matroids, and combine those to obtain
constant-competitive mechanism for all regular matroids.
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Chapter 1

Introduction

Let us consider the classical prophet inequality problem [KS77]. A gambler observes a
sequence of non-negative independent random variables X1, X2, . . . , Xn, which correspond
to a sequence of values for n items. The gambler knows the distributions of X1, X2, . . . ,
Xn. The gambler is allowed to accept at most one item; and the gambler is interested in
maximizing the value of the accepted item. However, the gambler cannot simply select an
item of the maximum value, because the values of the n items are revealed to the gambler
one by one; and each time a value of the current item is revealed the gambler has to make
an irrevocable choice whether to accept the current item or not.

What stopping rule the gambler should use to maximize the expected value of the
item they accept? The gambler knows only the distributions of X1, X2, . . . , Xn while a
prophet knows the realization of X1, X2, . . . , Xn. Thus, in contrast to the gambler the
prophet can always obtain the maximum item’s value. The seminal result of Krengel and
Sucheston [KS77] showed that the gambler can obtain at least a half of the expected value
obtained by the prophet.

The classical prophet inequality problem led to a series of works on different variants of
the problem. A natural variant of the problem is the generalization of the problem where
a gambler can buy more than one item, but the set of bought items should satisfy a known
feasibility constraint. Formally, let us be given a collection S ⊆ 2[n] of item sets. Then both
gambler and prophet can select any item set S from S. So S defines a feasibility constraint
for selecting items. In most standard examples of feasibility constraints, S can be defined
as a collection of all item sets with cardinality at most k for some natural number k. More
generally S can be defined as a collection of all independent sets in some matroid, in this
case we speak about the matroid prophet inequality problem.
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The result in [Sam84] showed that in the single-item setting a gambler can obtain at
least half of the prophet value by using the following threshold-rule: determine a constant
T as a function of known distributions and accept the first item exceeding T . This rule
results in a 2-competitive mechanism, similar to the adaptive approach of [KS77]. Note,
that this approximation guarantee is known to be tight. There is also another method
to set a threshold presented in [KW12], which also results in a 2-competitive mechanism.
This was extended by Chawla et al. in [Cha+10] and [Cha+20] to the setting of several
items.

The results presented in [KW12] further extend to the matroid prophet inequalities,
where accepted items need to form an independent set in a known matroid. It leads
to a 2-competitive mechanism for every matroid, matching the single-item setting result.
However, unlike the mechanism in the single-item setting, the mechanism for matroids is
adaptive: the thresholds for items are computed based on the previously accepted items.
By [KW12], there also exists a constant-competitive adaptive mechanism for feasibility
constraints defined as an intersection of constant number of matroids. The mechanism by
Kleinberg and Weinberg was further extended to a 2-competitive mechanism for polyma-
troids by Dütting and Kleinberg in [DK15].

Gravin and Wang [GW19] studied the bipartite matching version of this problem: in
their version, the arriving items are the edges of the (known) bipartite graph. Gravin and
Wang obtained a 3-competitive non-adaptive mechanism, which assigns thresholds to each
vertex in the graph and an edge is accepted only if its weight is at least the sum of the
thresholds associated with its endpoints.

Feldman, Svensson and Zenklusen [FSZ16] studied online item selection mechanisms
called “online contention resolution schemes" (OCRS). They showed that given special
properties, OCRS translate directly into a constant-competitive prophet inequality for
the same problem against almighty adversary, i.e. an adversary which knows in advance
realizations of all the items and the random bits generated by an algorithm. As a result,
they develop a constant-competitive mechanism for prophet inequalities of the intersection
of a constant number of matroids, knapsack and matching constraints. Those mechanisms
are “almost” non-adaptive in a sense that they fix thresholds for all items, however their
mechanisms also impose a subconstraint: an item cannot be accepted if together with
previously accepted items it forms one of the fixed forbidden sets.

Finally, in a later version of their paper [FSZ21], they prove that pure non-adaptive
mechanisms cannot achieve a constant-competitive approximation even against a “nor-
mal” adversary. They construct a family of gammoid matroids showing a lower bound
of Ω(log n/ log log n) for a guarantee of non-adaptive mechanisms on gammoids with n
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elements.

There have been works studying similar setups with other goals. Chawla et al. [Cha+10]
studied a Bayesian item selection process in a fixed item arrival order or against an adver-
sary in control of the order. They studied it from a perspective of the revenue maximization
for the auctioneer. The performance is constant-competitive compared to the well-known
Myerson mechanism [Mye81], which achieves the largest possible expected revenue among
truthful mechanisms. The mechanism by Chawla et al. [Cha+10] has an advantage that
it determines static thresholds together with a subconstraint so that each agent can be
offered take-it-or-leave-it prices in an online fashion.

Recently, Chawla et al. [Cha+20] developed a 32-competitive non-adaptive mechanism
for graphic matroids against adversary item ordering.

1.1 Our results

First, we list the known results for non-adaptive mechanism that were mentioned in the
previous section.

Theorem 1 (Uniform Rank 1 Matroid [Sam84]). There exists a 2-competitive non-
adaptive mechanism for single-item setting.

Theorem 2 (Graphic Matroid [Cha+20]). There exists a 32-competitive non-adaptive
mechanism for graphic matroids.

Now let us list our results. In case of a simple graph, i.e. a graph with no parallel edges
or loops, we can slightly improve the above theorem by considering essentially the same
mechanism as [Cha+20] but considering a different scaling of a point from the matroid
polytope. We provide this result for the sake of completeness.

Theorem 3. There exists a 16-competitive non-adaptive mechanism for graphic matroids
in the case of simple graphs.

Furthermore, the mechanism [Cha+20] can be generalized to the setting of k-column
sparse matroids. This result we need later to obtain Theorem 8.

Theorem 4 (k-Column Sparse Matroids). There exists a (2k+2k)-competitive non-
adaptive mechanism for k-column sparse matroids.
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Note, that Theorem 2 of [Cha+20] follows from Theorem 4, since a graphic matroid is
also a 2-column sparse matroid over F2.

Using analogous approach to the one in [Sot13], we also develop a mechanism for
cographic matroids.

Theorem 5 (Cographic Matroids). There exists a 6-competitive non-adaptive mecha-
nism for cographic matroids.

The approach in [Sot13] immediately leads to the following result for γ-sparse matroids.

Theorem 6 (γ-Sparse Matroids). There exists a γ-competitive non-adaptive mechanism
for γ-sparse matroids.

Combining the above results and using classic Seymour’s decomposition results we
obtain the following theorem.

Theorem 7 (Regular Matroids). There exists a 256-competitive non-adaptive mecha-
nism for regular matroids.

Subject to the Structural Hypothesis 1 due to Geelen, Gerards and Whittle, which is
stated later, we can also derive the following result.

Theorem 8. Subject to the Structural Hypothesis 1, for every prime number p there exists
a constant-competitive mechanism for every proper minor-closed class of matroids repre-
sentable over Fp.

We also would like to observe that some of the recent results on “single sample prophet
inequalities” (SSPI) lead to non-adaptive constant-competitive mechanisms. For this, the
single sample required by the gambler in SSPI can be directly sampled by our gambler from
the available distributions. In particular, the results in [AKW19] and [Car+21] on laminar
matroids and truncated partition matroids inspired by the mechanism in [MTW16] lead
to non-adaptive mechanisms for prophet inequalities. To obtain these results, it is crucial
that the mechanism in [MTW16] does not involve subconstraints, i.e. each item is accepted
as long as the item is not in the “observation phase”, the item passes its threshold based
only on the “observation phase” and the item forms an independent set with previously
accepted items. In comparison, it is not clear how from the results on regular matroids
in [AKW19] based on the mechanism in [DK14] one can obtain non-adaptive mechanisms.

So the following results can be directly obtained from [AKW19] and [Car+21], respec-
tively.
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Theorem 9 (Laminar Matroid). There exists a 9.6-competitive non-adaptive mechanism
for laminar matroids.

Theorem 10 (Truncated Partition Matroid). There exists an 8-competitive non-
adaptive mechanism for truncated partition matroids.

1.2 Comparison to known results

Our results for cographic matroids and k-column sparse matroids are obtained through
modifications of the arguments in [Sot13] and [Cha+20], respectively. The results on regu-
lar matroids and minor-closed families of matroids follow the approach outlined in [HN20]
for the secretary problem. As necessary building blocks we use our results for cographic
and 2-column sparse matroids. Note that a biggest challenge for us is the compatibility of
non-adaptive thresholds with contractions. Indeed, standard tools for deriving mechanisms
for contraction minors need subconstraints, while subconstraints are not permitted in non-
adaptive mechanisms. To obtain our results, we resolve this issue only in the context of
matroids representable over finite fields, see arguments in Lemma 13. It would be interest-
ing to see whether analogous results for contraction minors hold with no assumption about
representability over finite fields.

1.3 Preliminaries

In this thesis, we consider the matroid prophet inequality problem, where items arrive
online in adversarial order. Here, the adversary knows the distributions of all X1, X2, . . . ,
Xn and knows the gambler’s mechanism, but the realization of X1, X2, . . . , Xn is not
known to the adversary. Based on the available information, the adversary can decide on
the order in which items and their values are observed by the gambler.

1.3.1 Prophet inequality

Def 1. Let M be a matroid on the ground set [n] := {1, . . . , n}, where [n] corresponds to n

items. Let X⃗ := (X1, . . . , Xn) be non-negative independent random variables representing
the values of these n items.
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• For every subset of items S ⊆ [n] we define its weight as follows

w(S) :=
∑
i∈S

Xi.

• Let PROPHM be the random variable corresponding to the value obtained by the
prophet

PROPHM := max
S∈I(M)

w(S) ,

where I(M) is a collection of independent sets for M .

• Let EPROPHM be the expectation of the value obtained by prophet

EPROPHM := E[PROPHM ] .

Def 2. Let us be given a number α > 0.

• We call a mechanism α-competitive (alternatively, we say that the mechanism guar-
antees an α-approximation) on the matroid M if the expected value obtained by the
gambler via this mechanism is at least 1

α
EPROPHM .

• We call a mechanism α-competitive (alternatively, we say that the mechanism guar-
antees an α-approximation) on the matroid class M if this mechanism is α-competitive
for every matroid M ∈ M.

1.3.2 Non-adaptive mechanism

We say that a mechanism is non-adaptive if it has the following structure:

• Given the distributions of X⃗ = (X1, . . . , Xn), the mechanism determines the values
of thresholds T⃗ = (T1, . . . , Tn), where each Ti, i ∈ [n] is a real number or +∞.

• If the value of item i ∈ [n] is observed, the gambler accepts the item i if and only
both conditions hold:

1. the observed value of Xi is at least Ti

2. the item i together with all previously selected items forms an independent set
with respect to the matroid M .

6



Note, that a non-adaptive mechanism does not change thresholds during its course. So,
none of the thresholds depends on the realization of X⃗ = (X1, . . . , Xn).

Another crucial feature of a non-adaptive mechanism is that the mechanism works only
with the original matroid M . A non-adaptive mechanism does not allow us to define a new
matroid M ′, such that a set of items is independent in M ′ only if it is independent in M ,
and modify the condition (2) based on M ′.

In this work, we focus on non-adaptive mechanisms. From here and later we use the
term mechanism to refer to non-adaptive mechanisms exclusively.

Remark 1. In this work, non-adaptive mechanisms are allowed to make non-deterministic
decisions. Hence, we allow a non-adaptive mechanism to construct the thresholds T⃗ =
(T1, . . . , Tn) non-deterministically.

To measure the performance of such a mechanism we use the expected total value, where
the expectation is taken not only with respect to X⃗ = (X1, . . . , Xn) but also with respect to
T⃗ = (T1, . . . , Tn).

1.3.3 Matroids

We provide a review of matroids here. Experienced readers should consider skipping or
skimming this section. For further results about matroids, consider consulting [Oxl06].

A matroid M = (E,S) is a pair of a finite ground set E and a collection S ⊆ 2E of
independent sets. The collection S ⊆ 2E of subsets of E satisfies the following conditions:

(i) Empty set is an independent set, so ∅ ∈ S.

(ii) The collection S is closed with respect to taking subsets, so for all A ⊆ B ⊆ E if B
is in S then A is in S.

(iii) The collection S satisfies so called augmenation property. In other words, for all
A,B ⊆ E such that A,B ∈ S and |A| > |B|, there exists c ∈ A \ B such that
B ∪ {c} ∈ S.

A subset of E is called dependent if it is not in S. The inclusion-maximal independent
sets are called bases and the inclusion-minimal dependent sets are called circuits. For every
two bases, their cardinalities are equal: for every bases A and B of M we have |A| = |B|.
A rank function for the matroid M is a function rM : 2E → N such that for every A ⊆ E
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the value rM(A) equals the cardinality of an inclusion-maximal independent subset of A.
In the cases when the choice of the matroid is clear from the context, we write r instead
of rM .

Given a matroid M , we can define the dual matroid M∗ over the same ground set E. A
set A is independent for matroid M∗ if and only if E \A contains a basis of M . An element
c ∈ E is called a loop in M if rM(c) = 0. An element c ∈ E is called a free element in M if
rM∗(c) = 0. To put it another way, an element c is free, if and only if for every set A, which
is independent in M , A∪{c} is also independent in M . We say that elements c and d ∈ E
are parallel in matroid M , denoted by c ∥ d, if rM(c) = rM(d) = rM({c, d}) = 1. One can
show that “being parallel” defines an equivalence relation on the non-loop elements of M .
A matroid is called simple if it has no loops and no parallel elements.

Let M = (E,S) be a matroid and A ⊆ E. The contraction of M by A, denoted as
M/A, is a matroid over ground set E \ A with the following independent sets

{S ⊆ E \ A : S ∪ A′ ∈ S} ,

where A′ is an inclusion-maximal independent subset of A.

The restriction of M to A, denoted as M |A or M \A, is a matroid over the ground set
A where a set S ⊆ A is independent in M |A if and only if it is independent in M .

A matroid M ′ is called a simple version of M if M ′ is obtained from M by deleting all
loops and contracting every parallel class of elements into a single element.

For matroids M , N , we say that N is a minor of M = (E,S) if N is isomorphic to
M/A\B for some disjoint sets A,B ⊆ E. A matroid class M is called minor-closed if for
any M ∈ M every minor of M is also in M.

Let us now list some of the classical examples of matroids, which were extensively
studied in the context of various mathematical fields.

• A uniform matroid M = (E,S) of rank k is matroid where

S := {A ⊆ E : |A| ≤ k} .

When |E| = n, we denote the uniform matroid of rank k as Uk,n.

• A graphic matroid over graph G = (V,E) is a matroid M = (E,S), where

S := {A ⊆ E : A is acyclic} .

The graphic matroid over graph G is denoted as M(G).
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• A cographic matroid over graph G = (V,E) is a dual matroid M = (E,S) to the
graphic matroid over the same graph G. In this case we have

S := {A ⊆ E : (V,E \ A) has the same number of components as (V,E)} .

• A vector matroid M = (E,S) is a matroid such that there is a vector space V and
a map ϕ : E → V satisfying

S := {A ⊆ E : multiset ϕ(A) is linearly independent} .

Given a field F, we say that M is representable over field F if M is isomorphic to the
vector matroid where V is a vector space over field F.

A matroid is called regular if it is representable over every field. A matroid is called
binary if it is representable over F2.

• A k-column sparse matroid M = (E,S) is a matroid such that there is a field F and
dimension m and a map ϕ : E → Fm such that

S := {A ⊆ E : multiset ϕ(A) is linearly independent over F} ;

and moreover ϕ(c) ∈ Fm has at most k nonzero coordinates for every c ∈ E.

• A γ-sparse matroid M = (E,S) is a matroid such that the inequality |S| ⩽ γrM(S)
holds for every S ⊆ E.

• A laminar matroid M = (E,S) is a matroid such that there exists a laminar family
F over the ground set E and there are numbers cF ∈ N, F ∈ F such that

S := {A ⊆ E : |A ∩ F | ≤ cF for every F ∈ F} .

Moreover, if F = {E,E1, . . . , Ek}, where E1, . . . , Ek form a partition of the ground
set E, then M is called a truncated partition matroid. Recall, that a family F is
called laminar if for every A, B ∈ F we have A ⊆ B or B ⊆ A or A ∩B = ∅.

Given a matroid M = (E,S) we can define the corresponding polytope PM ⊆ RE as
the convex hull of points corresponding to the characteristic vectors of independent sets.
The polytope PM is known to admit the following outer description [Sch03b].

PM = {x ∈ RE : x ≥ 0 and
x(S) ≤ rM(S) for every S ⊆ E} ,

9



where x(S) stands for
∑

c∈S xc.

For a matroid M = (E,S) and a set A ⊆ E we can define the closure of A as the
following set

clM(A) := {c ∈ E | rM(A ∪ {c}) = rM(A)} .

For a matroid M = (E,S), we call the following function ⊓M : E × E → Z a local
connectivity function

⊓M(X, Y ) = r(X) + r(Y )− r(X ∪ Y ) .

The following function λM : E → Z⩾0 is called a connectivity function

λM(X) := ⊓M(X,E \X) = r(X) + r(E \X)− r(E) .

Informally, connectivity functions measure dependence with respect to the matroid
between parts of the ground set. To illustrate it, let us consider the connectivity function
for vector matroids. Suppose M = (E,S) is a vector matroid defined by a vector space V
and a map ϕ : E → V . Then we have

λM(S) =r(S) + r(E \ S)− r(E) =

dim(spanϕ(S)) + dim(spanϕ(E \ S))− dim(ϕ(E)) =

dim ((spanϕ(S)) ∩ (spanϕ(E \ S))) .

1.3.4 Ex-ante relaxation to the matroid polytope

The goal of ex-ante relaxation [FSZ16] or [Cha+20] is to reduce the original problem to
the problem where item values are distributed as independent Bernoulli random variables.
Note, that both problems are using the same matroid.

In the original problem item values X⃗ = (X1, . . . , Xn) are independent random variables
with known distributions. For i ∈ [n] let Fi be the cumulative distribution function of Xi.
The reduction of the original problem to a new problem is done using a point p in the
matroid polytope PM . Let us first show that there is a point p ∈ PM with properties that
prove to be desirable later following the argumentation in [Cha+20].

Lemma 1. Given a matroid M over the ground set [n] and random variables X⃗ =
(X1, . . . , Xn), there exists p ∈ PM such that

EPROPHM ⩽
n∑

i=1

piti ,
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where ti := E[Xi | Xi ⩾ F−1
i (1− pi)] for every i ∈ [n]1.

Proof. Let Iopt be a random variable indicating an optimal independent set in M with
respect to X⃗ = (X1, . . . , Xn). In case when for some realization of X⃗ = (X1, . . . , Xn) there
are several optimal independent sets, Iopt can be selected as any of these sets. For i ∈ [n],
let pi be the probability that element i is in Iopt. Note that p = (p1, . . . , pm) is a convex
combination of independent sets of M , and so lies in PM .

Due to EPROPHM = E[
∑

i∈Iopt Xi], it remains to show that

E[
∑
i∈Iopt

Xi] ⩽
n∑

i=1

piti .

We have

E[
∑
i∈Iopt

Xi] =
n∑

i=1

P [i ∈ Iopt]E[Xi | i ∈ Iopt] =
n∑

i=1

piE[Xi | i ∈ Iopt] .

For every i ∈ [n] we have that ti and E[Xi | i ∈ Iopt] are expectations of the same random
variable Xi but conditioned on the event Xi ⩾ F−1

i (1 − pi) and on the event i ∈ Iopt,
respectively. Note, that the probability of both these events equals pi. However, the
expectation of Xi conditioned on Xi ⩾ F−1

i (1− pi) is the “largest” conditional expectation
of Xi on an event of probability pi. Thus, we have piE[Xi | i ∈ Iopt] ⩽ piti for every i ∈ [n]
and so we get the desired inequality

n∑
i=1

piE[Xi | i ∈ Iopt] ⩽
n∑

i=1

piti .

Let us show how one can use the point p = (p1, . . . , pn) guaranteed by Lemma 1
to reduce the original problem. Let us define independent Bernoulli random variables
X⃗ ′ = (X ′

1, . . . , X
′
n) as follows, for each i ∈ [n]

X ′
i =

{
ti with probability pi

0 with probability 1− pi ,

1Here, we assume that for every i ∈ [n] the event Xi = F−1
i (1− pi) happens with the zero probability,

which is true for all continuous distributions. In case of discrete distributions one needs to introduce
appropriate tie-breaking.
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where ti := E[Xi | Xi ⩾ F−1
i (1− pi)].

Let us assume that we have a non-adaptive mechanism for the original matroid M and
item values X⃗ ′ = (X ′

1, . . . , X
′
n), which sets nonnegative thresholds T⃗ ′ = (T ′

1, . . . , T
′
n). By

definition of X⃗ ′ = (X ′
1, . . . , X

′
n), for every i ∈ [n] the exact value of T ′

i is not relevant
per se, but it is crucial whether ti ≥ T ′

i or ti < T ′
i . If for some i ∈ [n] we have T ′

i > ti
then this item i is “inactive” and so is never selected by the gambler working with M and
X⃗ ′ = (X ′

1, . . . , X
′
n).

The key is to construct a non-adaptive mechanism for the original matroid M and item
values X⃗ ′ = (X ′

1, . . . , X
′
n) with positive thresholds T⃗ ′ = (T ′

1, . . . , T
′
n) such that for each item

i ∈ [n] the probability that i is selected by the gambler is at least αpi. Now we can use such
a non-adaptive mechanism for the original matroid M and item values X⃗ ′ = (X ′

1, . . . , X
′
n)

to construct a non-adaptive α-competitive mechanism for the same matroid M and random
variables X⃗ = (X1, . . . , Xn). Let us define the thresholds T⃗ = (T1, . . . , Tn) as follows, for
every i ∈ [n]

Ti :=

{
+∞ if ti < T ′

i

F−1
i (1− pi) otherwise .

To see that the thresholds T⃗ = (T1, . . . , Tn) lead to an α-competitive mechanism for
M and X⃗ = (X1, . . . , Xn), let us couple random variables X ′

i with random variables Xi as
follows

X ′
i :=

{
ti if Xi ≥ F−1

i (1− pi)

0 otherwise .

Note that X⃗ ′ = (X ′
1, . . . , X

′
n) are independent Bernoulli random variables, where for each

i ∈ [n] the variable X ′
i equals ti with probability pi and equals 0 with probability 1 − pi.

When X⃗ ′ are coupled with X⃗ this way, Xi and X ′
i have the same expected value when

conditioned on X ′
i being ti. The mechanism with thresholds T⃗ selects an item i ∈ [n] when

run for X⃗ only if the mechanism with thresholds T⃗ ′ selects the item i when run for X⃗ ′.
Moreover, for both of these algorithms, conditionally on the event that the item i is selected
the expected value of i equals ti. Now, α-competitiveness guarantee of the thresholds T⃗
for M and X⃗ follows from Lemma 1.
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Chapter 2

2-competitive adaptive mechanism

Here, we recap the 2-competitive adaptive mechanism for matroid prophet inequalities
problem presented by Kleinberg and Weinberg in [KW12].

In their approach, n items are presented one by one to the mechanism in adversarial
order — the adversary can adaptively select item arrival order based on information of
what’s happened so far, but not based on the unknown realizations of item valuations. Let
w : [n] → R+ be the assignment of weights, as selected from random distribution. Let
w′ : [n] → R+ be another sample from the same distribution, selected independently from
w and all other random variables.

Let A be a variable of the item set, accepted by the mechanism. Naturally, A depends on
random variables of item weights, as well as decisions made by mechanism and adversary.
Let B be the maximum-weight basis of matroid M in weights w′.

Given A, let us define C = C(A) and R = R(A) as follows. The matroid exchange
axiom ensures that there is at least one way to select a subset R of B and combine it
with A so that A ∪ R is a basis, and R is disjoint from A. We select R so that w′(R) is
maximum, given constraints above. Let C = B \R.

Lemma 2. R is a maximum-weight basis in M/A with respect to weights w′.

Proof. Observe that by definition R is a maximum-weight basis in M/A among those
contained in B. So if R is not a maximum basis in M/A, then such a maximum is attained
on a set not contained in B.

Let the ground set of M be {e1, . . . , ek}, where elements are sorted in decreasing order,
i.e. w′(ei) ⩾ w′(ei+1), and the equal elements are ordered so that B is obtained by greedy

13



Rado-Edmonds algorithm by going over elements ei in that order and by accepting each
element ei it is possible to accept.

Let the ground set of M/A be {c1, . . . , ct}, where elements c1, c2, . . . , ct form a subse-
quence of e1, . . . , ek.

Let R′ be the maximum-weight basis of M/A obtained by Rado-Edmonds using the
order c1, c2, . . . , ct.

We claim that R′ ⊆ B. Observe that Rado-Edmonds select ci into R′ if and only if
ci ̸∈ clM/A{c1, . . . , ci−1}, which happens if and only if ci ̸∈ clM(A ∪ {c1, . . . , ci−1}). Thus if
ci is in R′, the greedy algorithm also puts ci in B.

Observe that R′ is a feasible choice when selecting R, and R is a feasible choice when
selecting R′, thus w′(R) = w′(R′), and R is a maximum-weight basis in M/A.

Now consider a class of deterministic threshold-based algorithms: an item i is accepted
if Xi ⩾ Ti, where threshold Ti can depend on the previously seen elements and their
valuations. Since the mechanism can’t know the arrival order in advance, this implies that
the adaptive mechanism might need to recompute the thresholds before each further item
arrives. If the mechanism is unable or unwilling to accept an item, it can set Ti to be
infinity. This way threshold Ti is a function of a of sequence elements revealed previously.

From here and further, for analysis purposes, let us use Ti as the value of the threshold
at the moment item i arrives.

Def 3. For a constant α > 1, the deterministic threshold-based algorithm is α-balanced, if
for every possible arrival order of the items, and for every set V disjoint from A so that
A ∪ V is independent, we have that

∑
i∈A

Ti ⩾ (1/α)E[w′(C)],

∑
i∈V

Ti ⩽ (1− 1/α)E[w′(R)].

Informally, the first property guarantees that the mechanism obtains a good fraction
of the part of the optimum, and the second property guarantees that mechanism doesn’t
waste much of the other part of optimum.

Lemma 3. If a deterministic threshold-based algorithm is α-balanced, it’s α-competitive.
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Proof. By definition, OPT = E[w′(B)] = E[w′(C)] + E[w′(R)].
To prove the lemma, we use two inequalities:

E

[∑
i∈A

Ti

]
⩾ (1/α)E[w′(C)], (2.1)

E

[∑
i∈A

(w(i)− Ti)
+

]
⩾ (1/α)E[w′(R)]. (2.2)

Where c+ denotes max(c, 0). Observe that for each item we have w(i) ⩽ Ti+(w(i)−Ti)
+.

Moreover, for each i ∈ A we have an equality, since those items are accepted by the
mechanism, and thus exceed the threshold.

Assuming we have 2.1, 2.2, we prove the lemma in one line:

E[w(A)] = E

[∑
i∈A

Ti

]
+ E

[∑
i∈A

(w(i)− Ti)
+

]
⩾

E[w′(C)] + E[w′(R)]

α
=

OPT

α

The inequality 2.1 is immediate by definition of α-balanced mechanism, and now the
proof of the inequality 2.2 follows. We split it into claims.

Claim 1. E
[∑

i∈A(w(i)− Ti)
+
]
⩾ E

[∑
i∈R(w

′(i)− Ti)
+
]
.

Proof. First, note that since mechanism accepts any item satisfying w(i) ⩾ Ti, we have

E

[∑
i∈A

(w(i)− Ti)
+

]
= E

∑
i∈[n]

(w(i)− Ti)
+

 .

Since w(i) and w′(i) have identical distribution, we have

E

∑
i∈[n]

(w(i)− Ti)
+

 = E

∑
i∈[n]

(w′(i)− Ti)
+

 .

Finally we note, that since R ⊆ [n], we have

E

∑
i∈[n]

(w′(i)− Ti)
+

 ⩾ E

[∑
i∈R

(w′(i)− Ti)
+

]
.

Combining all the inequalities, we obtain the goal.
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Claim 2. E
[∑

i∈R(w
′(i)− Ti)

+
]
⩾ (1/α)E[w′(R)].

Proof. Recall we have w′(i) ⩽ Ti + (w′(i)− Ti)
+, ∀i ∈ [n]. Summing up, we have:

E

[∑
i∈R

w′(i)

]
⩽ E

[∑
i∈R

Ti

]
+ E

[∑
i∈R

(w′(i)− Ti)
+

]

Using definition of mechanism being α-balanced, we have:

E

[∑
i∈R

Ti

]
+ E

[∑
i∈R

(w′(i)− Ti)
+

]
⩽ (1− 1/α)E[w′(R)] + E

[∑
i∈R

(w′(i)− Ti)
+

]

Let us combine the above:

E

[∑
i∈R

w′(i)

]
⩽ (1− 1/α)E[w′(R)] + E

[∑
i∈R

(w′(i)− Ti)
+

]

Regrouping summands, we obtain

E

[∑
i∈R

(w′(i)− Ti)
+

]
⩾ (1/α)E[w′(R)]

The claims combined give the inequality we needed to show.

Now we can discuss the mechanism itself. We will show that for every matroid there
exist 2-balanced thresholds for it.

Let Ai be the set of items the mechanism accepted after i steps. This way, A = An.

Suppose we are at the point where mechanism adjusts thresholds after the first i items
have already been processed (thus, it knows Ai). Naturally, if item j no longer can be
accepted (i.e. Ai ∪ {j} is dependent set), Tj = ∞. Otherwise, let us set

Tj = 0.5E[w′(R(Ai))− w′(R(Ai ∪ {j}))] = 0.5E[w′(C(Ai ∪ {j}))− w′(C(Ai))],

where the second equality comes from the following considerations:

w′(R(Ai)) + w′(C(Ai)) = w′(B) = w′(R(Ai ∪ {j})) + w′(C(Ai ∪ {j}))
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The idea here is that E[w′(R(Ai))] is equal to the expected value the prophet can obtain
if they are forced to start with Ai being taken.

This way E[w′(R(Ai))− w′(R(Ai ∪ {j}))] equals the expected loss in prophet’s utility
if they commit to take j, given Ai. The mechanism then accepts the item if it’s weight is
at least half of the expected prophet loss.

The main downside of Kleinberg and Weinberg’s mechanism is that not only mechanism
is forced to recompute the thresholds after every subsequent item, but also that those
computations might not be tractable depending on the distributions of the items.

Theorem 11. The above-described threshold mechanism is 2-balanced (and consequently
2-competitive).

To prove the theorem, we need to prove two properties from the definition of being
2-balanced (Def 3). The two lemmas below prove them separately. Let xi be the i-th
arrived item.

Lemma 4. ∑
j∈A

Tj ⩾ (1/α)E[w′(C)]

Proof. Inserting the definition of thresholds, we have that sum of theholds is equal to the
following. ∑

xi∈A

Txi
= 0.5

∑
xi∈A

E[w′(C(Ai−1 ∪ {xi}))− w′(C(Ai−1)]

However, this sum is a sum of telescopic series and most terms cancel out:∑
xi∈A

Txi
= 0.5E[w′(C(A))]− 0.5E[w′(C(∅))] ⩾ 0.5E[w′(C(A))]

Lemma 5. Suppose V is disjoint from A, and A ∪ V is independent. Then∑
xi∈V

Txi
⩽ (1− 1/α)E[w′(R)]

Before we can prove the lemma, we need to state necessary proposition.
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Proposition 1. Suppose that M is a matroid and X and Y are two bases.

Then there is a bijection φ : X → Y , so that (Y \ {φ(x)}) ∪ {x} is an independent set
for each x ∈ X.

If we remove the requirement of φ being bijection, this statement is known as strong
basis exchange property. However, it’s possible to argue that φ can be made a bijection.
See Corollary 39.12a to Theorem 39.12 in [Sch03a], section 39.3.

Lemma 6. For any independent subset I, function f(S) = w′(R(S)) is a submodular
function on subsets of I.

Proof. To prove submodularity, it’s sufficient to show the property of diminishing returns
(for all S, x, y, where x ̸= y, and neither of x or y is in S):

f(S)− f(S ∪ {x}) ⩽ f(S ∪ {y})− f(S ∪ {x, y}) (2.3)

Consider matroid M/S instead. Then the property above becomes

f(∅)− f({x}) ⩽ f({y})− f({x, y})

Consider a sequence of elements in ground set of M/S, ordered largest to small by
weight w′. Due to Rado-Edmonds algorithm, the basis of M/S can be determined by going
over the elements in M/S in that order, and greedily selecting each element it’s possible to
add due to matroid constraints.

Similarly, set RM/S(T ), which is a max-weight basis in M/S∪T , can be determined by
the same greedy procedure, if we start this procedure with a set, which is a basis of T .

Let us define B as the max-weight basis in M/S, i.e. B = RM/S(∅), and let B =
{b1, b2, . . . , bk}, where elements bi are ordered in the same order they are considered by the
greedy algorithm.

Then when we consider f(T ), which is weight of RM/S(T ), it is obtained by going over
b1, b2, . . . , bk, and taking elements if they are independent when combined with already
taken elements and basis of T . Note that we don’t need to consider going over elements
which are in M/S, but not in B, since those were not taken by greedy algorithm into
RM/S(∅), so they wouldn’t be taken into RM/S(T ) as well.

Let Bx, By, Bxy be the sets RM/S(T ), with T being {x}, {y} and {x, y} correspondingly.
We need to show w′(B)− w′(Bx) ⩽ w′(By)− w′(Bxy).
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We considered function f only on subsets of independent set I, thus all S, S ∪ {x},
S ∪ {y}, S ∪ {x, y}, are independent. Then x is not a loop in neither M/S, nor MS∪{y},
and y is not a loop in MS. Since S ∪{x} is an independent set, Bx being the w′-maximum
basis of M/S∪{x}, satisfies Bx = B \ {bi}, for some bi, where i is smallest index so that set
{b1, b2, . . . , bi, x} either has duplicate elements (that is, bi = x), or is a dependent set in
M/S. For simplicity, below we refer to both of those situations as multiset being dependent.

By the same argument, By = B \ {bj} for some bj determined likewise.

Without loss of generality assume j ⩽ i (inequality 2.3 we need to show is invariant
when swapping x and y, and thus swapping i and j). Then Bxy = B \ {bj, bi′} for some
bi′ — since j ⩽ i, the element j gets removed in both By, Bxy, but other removed element
bi′ might not be the same as bi.

Claim 3. i′ ⩽ i.

Proof. Suppose for the sake of contradiction i′ > i. Then by definition of bi, set {b1, b2, . . . , bi, x}
is dependent in M/S.

However, by definition of the bi′ , set {b1, b2, . . . , bi, x, y} \ {bj} is independent in M/S.

But then {b1, b2, . . . , bi, x} is also independent: consider set {b1, b2, . . . , bi, x, y}. By
above, it contains at most one circuit, and it also contains the same circuit as the set
{b1, b2, . . . , bj, y} contains, and thus removing y from {b1, b2, . . . , bi, x, y} makes it indepen-
dent set.

This way {b1, b2, . . . , bi, x} has to be simultaneously dependent and independent, which
is a contradiction.

Consequently, w′(bi′) ⩾ w′(bi).

This way,
f(∅)− f({x}) = w′(bi) ⩽ w′(bi′) = f({y})− f({x, y})

Now let us prove lemma 5.

Proof. Applying the definition of thresholds, we actually need to prove the following:

0.5
∑
xi∈V

E[w′(R(Ai−1)− w′(R(Ai−1 ∪ {xi}))] ⩽ 0.5E[w′(R)]
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We see that 0.5 cancels out. We proceed to prove that the inequalities holds not merely
in expectation, but for every weight assignment:∑

xi∈V

w′(R(Ai−1))− w′(R(Ai−1 ∪ {xi})) ⩽ w′(R)

Since w′(R(S)) is submodular on subsets of A ∪ V , using Lemma 6, we have∑
xi∈V

w′(R(Ai−1)− w′(R(Ai−1 ∪ {xi})) ⩽
∑
xi∈V

w′(R(A))− w′(R(A ∪ {xi}))

By definition, R(A) is a basis in M/A. Without loss of generality assume that V is also
a basis in M/A: recall that V is independent in M/A, and in case it is not a basis, we can
arbitrarily extend V to be a basis in M/A, since this can only increase the left hand side
of the goal inequality.

By Proposition 1, we have bijection φ : V → R(A), so that (R(A) \ φ(x)) ∪ {x} is
independent in M/A, or in other words, (R(A)\φ(x)) is independent in M/A∪{x}. However,
R(A ∪ {x}) is the max-weight basis in M/A∪{x}. Thus we have

w′(R(A))− w′(φ(x)) ⩽ w′(R(A ∪ {x})).

Rewriting, we have

w′(R(A))− w′(R(A ∪ {x})) ⩽ w′(φ(x)).

This way, we can bound∑
xi∈V

w′(R(Ai−1))− w′(R(Ai−1 ∪ {xi})) ⩽
∑
xi∈V

w′(φ(x)) = w′(R),

which completes the proof.
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Chapter 3

Graphic and k-column sparse matroids

First, we construct a 16-competitive non-adaptive mechanism for graphic matroids without
parallel edges. Our construction is done through the ex-ante relaxation to the matroid
polytope, following the works in [FSZ16] or [Cha+20]. Later, we present a constant-
competitive non-adaptive mechanism for k-column sparse matroids whenever k is constant.

3.1 Graphic matroids

Now we are ready to provide a 16-competitive non-adaptive mechanism for graphic matroid.
The provided mechanism is essentially the one constructed in [Cha+20] but with saving
a factor of 2 in the guarantee, which is achieved by rescaling the point from the matroid
polytope by 2 and not by 4.

Let us be given a simple graph G = (V,E) and let us consider the corresponding graphic
matroid M over the ground set E. Recall that a subset of E is independent with respect
to M if and only if it is acyclic in G. Let us also assume that the graph G has n edges and
so E = {e1, e2, . . . , en}.

Lemma 7. Let p = (p1, . . . , pn) be a point in the polytope PM . Thus we assume that
for every i ∈ [n] the coordinate pi of p corresponds to the edge ei. Then there exists an
orientation of edges E = {e1, e2, . . . , en} in the graph G = (V,E) such that for every vertex
v ∈ V we have

∑
i∈[n]:ei∈δ−(v) pi ≤ 2.

Proof. Observe that the average degree of a vertex in a forest on |V | vertices is at most
(2|V | − 2)/|V | = 2− 1/|V | ⩽ 2.
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Let us use this fact to prove the desired statement by induction on the number of
vertices in the graph G.

If the graph G has at most two vertices then the orientation is trivial. Otherwise, since
p is a convex combination of points corresponding to forests in G, we have that the average
of the value

∑
i∈[n]:ei∈δ(v) pi over all vertices v ∈ V is at most 2. Thus there exists a vertex

v ∈ V such that we have
∑

i∈[n]:ei∈δ(v) pi ≤ 2. We orient all edges incident to v as edges in
δ−(v), so these edges are incoming with respect to v. Then we remove the vertex v and all
edges incident to it and orient the remaining edges according to the orientation guaranteed
by the inductive hypothesis.

Now we present an algorithm for graphic matroids of simple graphs.

Algorithm 1 A non-adaptive 16-competitive mechanisms for graphic matroids of a simple
graph
1: Let p be a point in the polytope PM so that the statement of Lemma 1 is satisfied.
2: Let the edges of the original graph G = (V,E) be oriented so that the statement of

Lemma 7 is satisfied.
3: For every edge ei ∈ E, i ∈ [n], mark the edge ei as “discarded" independently at

random with probability 1/2.
4: Select a cut S ⊆ V uniformly at random, mark all edges not in [S;S] as “discarded".

Here, [S;S] stands for the set of edges which are oriented such that their tail is in S
and their head is in S.

5: Set thresholds T⃗ = (T1, . . . , Tn) as follows, for each i ∈ [n]

Ti :=

{
+∞ if ei is “discarded”
F−1
i (1− pi) otherwise .

Lemma 8. For every i ∈ [n], we have

P [ei is selected | Xi ≥ Ti and ei is not “discarded”] ≥ 1/2 .

Proof. Let us assume that the vertex v is the head of the oriented edge ei. Let us also
assume that ei is not marked as “discarded” and Xi ≥ Ti.

Since the edge ei is not “discarded”, the edge ei is in the selected set [S;S]. Hence,
every not “discarded” edge incident to v has the vertex v as its head.
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Thus, as long as no other edge with the head at the vertex v is selected by the gambler,
the gambler has to select ei. We claim, that with probability at least 1/2 no other edge
with the head at v was selected by the gambler.

Let I be the event indicating that "the gambler selected an edge ej, j ̸= i such that
v is the head of ej", in other words “there is j ∈ [n], j ̸= i such that v is the head of ej
and Xj ≥ Tj and ej is not “discarded”". Let J indicate the event that "ei is not marked as
“discarded” after the selection of the cut", in other words, "the head of ei is in S and the
tail of ei is in S".

Let us show
P [I | J ] ≤ 1/2 .

By the union bound, we have

P [I | J ] ⩽
∑

j∈[n]\{i}:ej∈δ−(v)

P [Xj ≥ Tj and ej is not “discarded” | J ]

Note that for each edge ej ∈ δ−(v) we have P [Xj ≥ Tj|J ] = pj and we also have
P [ej is not “discarded”|J ] = 1/4. Note that any edge is not “discarded” in Step 3 of
Algorithm 1 with probability 1/2, and not “discarded” in Step 4 of Algorithm 1 with
probability 1/4. However, since the probabilities are with respect to the edge ej ∈ δ−(v)
and are counted conditioned on the event J , the conditioned probability of not being “dis-
carded” in Step 4 of Algorithm 1 is 1/2. Moreover, even conditioned on J the events
"Xj ≥ Tj" and "ej is not “discarded”" are independent events. Thus we have∑

j∈[n]\{i}:ej∈δ−(v)

P [Xj ≥ Tj and ej is not “discarded” | J ] ≤

∑
j∈[n]\{i}:ej∈δ−(v)

pj/4 ⩽ 1/2 ,

where the last inequality follows from the orientation.

We are ready to prove Theorem 3 by showing that Algorithm 1 is a 16-competitive for
graphic matroids without parallel edges.

Proof of Theorem 3. By Lemma 8 for every i ∈ [n] the probability of edge ei being accepted
conditional on Xi ≥ Ti and being not “discarded” is at least 1/2.

Overall, the probability of edge ei being accepted is at least 1
16
pi. Thus mecha-

nism guarantees at least
∑n

i=1
1
16
piti of the expected total value. By Lemma 1, we have∑

i∈[n]
1
16
piti ⩾ 1

16
EPROPHM , finishing the proof.
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3.2 k-column sparse matroids

There are known constant-competitive mechanisms for k-column sparse matroids in the
context of the secretary problem [Sot13]. However they do not immediately lead to a non-
adaptive mechanism of constant competitiveness guarantee. The reason for that are not
the updated thresholds but implicit changes to the considered matroid.

Here, we present a constant competitive mechanism for k-column sparse matroid class
for each constant k. Note, graphic matroids form a subclass of 2-column sparse matroids
. Because of their significance, 2-column sparse matroids are also known in literature as
represented frame matroids. Later, we use 2-column sparse matroids to prove results in
Section 5.4.

Suppose M is a k-column sparse matroid over field F. In this section, we prove that
there exists a (2k+2k)-competitive mechanism for M .

Suppose a k-sparse representation of M = (E,S) is defined by a map ϕ : E → Fd. Note,
if for some element t ∈ E the vector ϕ(t) is a zero vector then c is a loop and therefore can
be removed from consideration.

Now we consider an undirected hyper-multigraph G with vertex set [d]. Each matroid
element t ∈ E induces a hyperedge et in this graph between non-zero coordinates of ϕ(t).
Formally, the hyperedge et is defined as follows et := {i ∈ [d] : ϕ(t)i ̸= 0}. We say that a
vertex i ∈ [d] of the hyper-multigraph G is incident to every edge e of G such that i ∈ e.
For a vertex i ∈ [d] we denote the collection of incident hyperedges by δ(i). The degree of
a vertex i in the hyper-multigraph G equals |δ(i)|.

Claim 4. Suppose I is an independent set of the matroid M . Then the average degree
of a vertex is at most k when one considers the hyper-multigraph with vertices [d] and
hyperedges {et : t ∈ I}.

Proof. Observe that |I| ⩽ d because having more than d vectors in d-dimensional vector
space Fd leads to a a linear dependency.

Since M is k-column sparse, we have that every edge in {et : t ∈ I} is incident to at
most k vertices in [d]. Hence, the total degree is at most kd and thus the average degree
of a vertex is at most k.

Now we consider orientations of the graph G. An orientation of the graph G is a
function φ which maps every edge et into one vertex of G incident to et. We call φ(et) to
be the head of the edge et, and all other vertices, if any, to be tails. For every vertex i ∈ [d]
we denote the set of incoming edges by δ−(i), formally δ−(i) = {et : φ(et) = i, t ∈ E}.
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Lemma 9. Let p be a point in the polytope PM . We assume that for every t ∈ E, the coor-
dinate pt of p corresponds to the element t. Then there exists an orientation φ of hyperedges
in the hyper-mulrigraph G such that for every vertex i ∈ [d] we have

∑
t∈E:et∈δ−(i) pt ⩽ k.

The proof of Lemma 9 is analogous to the proof of Lemma 7. Now let us describe an
algorithm for k-column sparse matroids.

Algorithm 2 A non-adaptive 2k+2k-competitive mechanisms for k-column sparse matroids
1: Let p be a point in the polytope PM so that the statement of Lemma 1 is satisfied.
2: Let the edges of the hyper-multigraph G be oriented so that the statement of Lemma 9

is satisfied.
3: For every edge ei ∈ E, i ∈ [n], mark the edge ei as “discarded" independently at

random with probability 1− 1
2k

.
4: Select a cut S ⊆ [d] uniformly at random, mark all edges not in [S;S] as “discarded”.

Here, [S;S] stands for the set of edges which are oriented such that all their tails are
in S and their head is in S. In particular, for t ∈ E we say that et lies in a cut [S;S]
with respect to the orientation φ if φ(et) ∈ S and for every i ∈ et \ {φ(et)} we have
i ∈ S.

5: Set thresholds {Tt : t ∈ E} as follows, for each t ∈ E

Tt :=

{
+∞ if t is “discarded”
F−1
t (1− pt) otherwise .

Lemma 10. For every t ∈ E we have

P [t is selected | Xt ≥ Tt and t is not “discarded”] ≥ 1/2 .

Proof. Note that item t ∈ E is accepted whenever Xt ≥ Tt and no other item was selected
from non-discarded edges in δ−(φ(t)). By the union bound, for every event J we can upper
bound the probability that

P [there j ∈ E \ {t} such that j is selected and ej ∈ δ−(φ(t)) | J ] ⩽∑
j∈E\{t}:ej∈δ−(φ(t))

P [ej is not “discarded” and Xj ≥ Tj | J ] .

Let J indicate the event that "et is not marked as “discarded” after the selection of the
cut". Then for each j ∈ E \ {t} we have P [ej is not “discarded” and Xj ≥ Tj | J ] ≤ 1

2k
pj.

By Lemma 9, we have
∑

j∈E:ej∈δ−(φ(t)) pj ⩽ k, leading to the desired inequality.

25



Note that the proof of Lemma 10 is analogous to the proof of Lemma 8. We are ready
to prove Theorem by showing that the Algorithm 2 is a 2k+2k-competitive for k-column
sparse matroids.

Proof of Theorem 4. For every item t ∈ E we have P [Xt ≥ Tt] = pt and P [t is not “discarded”] ≥
1

2k+1k
. By Lemma 10, we have that with probability at least 1/2 the item t is selected when

it is not “discarded” and Xt ≥ Tt. Thus the expected total value of Algorithm 2 is at least∑
j∈E

1
2k+2k

pjtj which is at least 1
2k+2k

EPROPHM by Lemma 1.
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Chapter 4

Cographic and gamma-sparse matroids

4.1 Cographic matroids

Let us revisit a mechanism of Soto [Sot13] for the cographic matroid secretary prob-
lem which is based on the following corollary of Edmond’s matroid partitioning theo-
rem [Edm65]. This mechanism leads to a non-adaptive mechanism for cographic matroids.

Proposition 2. Let G = (V,E) be a three edge-connected graph. Then there exist spanning
trees H1, H2, H3 in G such that the union of their complements contains all the edges E,
i.e. E = (E \H1) ∪ (E \H2) ∪ (E \H3).

Algorithm 3 A non-adaptive 3-competitive mechanisms for cographic matroids in the
case of three edge-connectivity
1: Let H1, H2 and H3 be the spanning trees as in Proposition 11.
2: Uniformly at random select a spanning tree H∗ from H1, H2 and H3. Set thresholds

{Te : e ∈ E} as follows, for each e ∈ E

Te :=

{
+∞ if e is not in H∗

0 otherwise .

Lemma 11. Let G = (V,E) be a three edge-connected graph and let M be the cographic
matroid over G. Then Algorithm 3 is a 3-competitive non-adaptive mechanism for the
matroid M .
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Proof. The expected total value of the mechanism provided by Algorithm 3 equals E[
∑

e∈E\H∗ Xe]
which can be estimated as follows

E[
∑

e∈E\H∗

Xe] =
1

3
E[
∑
i∈[3]

∑
e∈E\Hi

Xe] ≥
1

3
E[
∑
e∈E

Xe] ≥
1

3
EPROPHM .

Algorithm 4 A non-adaptive 6-competitive mechanisms for cographic matroids
1: Delete all loops of M to obtain a matroid M ′. Remove all bridges from G = (V,E)

and obtain a graph G′ = (V ′, E ′).
2: Let C1,. . . , Ck be equivalence classes of M ′ with respect to the relation of being parallel.

Construct the matroid M ′′ from M ′ by contracting all but one edge in each class C1,
C2, . . . , Ck. Note, that the ground set of M ′′ has k elements and matroid M ′′ is the
cographic matroid over a graph G′′, where each connected component of G′′ is three
edge-connected. Abusing the notation we refer to the elements of the ground set of
M ′′ as C1, C2, . . . , Ck.

3: Let H1, H2 and H3 be forests in G′′ such that the restriction of H1, H2 and H3 to
each connected component of G′′ satisfies Proposition 11 for the respective connected
component.

4: Uniformly at random select a forest H∗ from H1, H2 and H3.
5: For each i ∈ [k] select thresholds T e, e ∈ Ci according to Theorem 1 when the gambler

is allowed to accept only one item of Ci and the distributions of Xe, e ∈ Ci are the
same as original distributions of values for e ∈ Ci.

6: Set thresholds {Te : e ∈ E} as follows, for each e ∈ E

Te :=

{
T e if e ∈ Ci and Ci ∈ H∗ for some i ∈ [k]

+∞ otherwise .

The next theorem provides a proof for Theorem 5.

Theorem 12. Let G = (V,E) be a graph and let M be the cographic matroid over G.
Then Algorithm 4 is a 6-competitive non-adaptive mechanism for the matroid M .

Proof. We can assume that G does not have bridges, because every such bridge is a loop
in M . Thus these edges can be selected neither by the gambler nor by the prophet. So we
can assume G = G′ and M = M ′.
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In the case when each connected component of G is three edge-connected, then Al-
gorithm 4 runs Algorithm 3 for each component to obtain a 3-competitive non-adaptive
mechanism.

Otherwise, there is one or more pairs of edges e,e′ such that {e, e′} corresponds to a cut
in G. In this case, the edges e,e′ correspond to parallel elements of the cographic matroid
M .

Algorithm 4 considers the partition of E into classes of parallel elements C1, C2, . . . ,
Ck. Let us construct the matroid M ′′ from M by contracting all but one edge in each class
C1, C2, . . . , Ck. Note, that the ground set of M ′′ has k elements. Abusing the notation we
refer to these elements of the ground set as C1, C2, . . . , Ck. The matroid M ′′ is isomorphic
to the cographic matroid over a graph G′′, where each connected component of G′′ is three
edge-connected. Following Lemma 11, Algorithm 4 constructs forests H1, H2, H3 for the
graph G′′.

So Algorithm 4 leads us to a 6-competitive mechanism. Indeed, the prophet with M
and with the original distributions of Xe, e ∈ E performs exactly as the prophet with M ′′

and with the corresponding distributions of X ′′
i := maxe∈Ci

Xe, i ∈ [k]. By selecting forests
in Algorithm 4 the gambler acheives in expectation E[

∑
i∈[k] X

′′
i ]/3 when all classes C1, C2,

. . . , Ck are singletons. However, for classes that are not singletons we need to take into
account another 2 approximation factor with respect to the prophet, who can achieve the
expected value E[X ′′

i ] for each i ∈ [k], while the gambler is guaranteed in expectation to
achieve only E[X ′′

i ]/2 for each i ∈ [k].

4.2 Gamma-sparse matroids

Let us also revisit a mechanism of Soto [Sot13] for γ-sparse matroids to verify that it
directly leads to a non-adaptive mechanism.

Theorem 13. Let M = (E,S) be a γ-sparse matroid. There exists a γ-competitive non-
adaptive mechanism for M .

Proof. First observe that the point x := 1/γ lies in the matroid polytope PM . Indeed, it
is non-negative and for every set S ⊆ E(M) we have x(S) = |S|/γ ⩽ rM(S).

Then x can be expressed as a convex combination of indicator variables corresponding
to the independent sets of M . In other words, we have x =

∑
S∈S αS1S for some α ⩾ 0,∑

S∈S αS = 1, where 1S refers to the characteristic vector of S.
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Now sample an independent set S in matroid M randomly with probability αS. Let the
gambler select all items in S and let the gambler leave all the items not in S unselected.

If Xe is the random variable corresponding to the weight of element e ∈ E(M), then
this mechanism results in a total expected value as follows∑

S∈S

αS

∑
e∈S

E[Xe] =
∑
e∈E

(1/γ)E[Xe] = E[
∑
e∈E

Xe]/γ ⩾ EPROPH/γ ,

finishing the proof.

Observe that Proposition 2 implies that for a three edge-connected graph G, the co-
graphic matroid of G is 3-sparse. Thus Lemma 11 is a corollary of Theorem 13.

Similarly, for a planar graph G the graphic matroid is 3-sparse, leading us to the
following corollary.

Corollary 1. Let G is a planar graph and let M be the corresponding graphic matroid.
There is a 3-competitive non-adaptive mechanism for M .

30



Chapter 5

Representable matroids

Many results in the theory of matroids make use of minors coming from restrictions and
contractions. To get access to the toolbox provided by matroid theory, we need to under-
stand how prophet inequality guarantees change when we consider minors.

5.1 Preliminaries

Lemma 12. Let M be a matroid and let matroid N be a restriction of the matroid M . If
there exists an α-competitive non-adaptive mechanism on M , then there is an α-competitive
non-adaptive mechanism for N .

Proof. To obtain a mechanism for the matroid N , we can impose thresholds +∞ for
the items that were removed from the ground set to obtain the restriction N from the
matroid M . The remaining items are assigned the same thresholds in both mechanisms.

A similar result for contractions is harder to obtain in the case of non-adaptive mecha-
nisms. Indeed, a straightforward approach would require us to impose the thresholds +∞
for the contracted items, while using the given mechanism on the remaining items. Unfor-
tunately, this would also require us to “change" the underlying matroid, in other words a
gambler might be forced to reject an item even though its value is over the assigned thresh-
old and its addition to the currently selected items keeps the selected set independent with
respect to M .
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Because of this difficulty, in this work we provide a matching result for contractions
only for matroids representable over a finite field. This result is sufficient for the purpose
of this work.

Lemma 13. Let M = (E,S) be a matroid representable over the field Fp for some p. Let
T ⊆ E be a subset of the ground set such that λM(T ) ⩽ k for some k.

Then there exists S ⊆ T so that every set that is independent in M |S is also independent
in M/T and

EPROPHM |S ⩾
1

pk+1
EPROPHM/T

.

Recall that T stands for the complement of T with respect to the ground set E.

Proof. Consider the representation of the matroid M over Fp. Let ϕ : E → Fm
p be the

map describing the representation of M . Thus, for every S ⊆ E we have that the set
ϕ(S) = {ϕ(e) ∈ Fm

p : e ∈ S} is independent over the field Fp if and only if S is an
independent set for the matroid M .

Since λM(T ) ⩽ k holds, by definition of λM we have

rM(T ) + rM(T )− rM(E) ⩽ k .

We have rM(R) = dim span(ϕ(R)) for every R ⊆ E. Thus, we have

dim spanϕ(E) = dim spanϕ(T ) + dim spanϕ(T )− dim
(
(spanϕ(T )) ∩ (spanϕ(T ))

)
.

and so
dim

(
(spanϕ(T )) ∩ (spanϕ(T ))

)
⩽ k .

Since we are working over the field Fp, the linear space L := (spanϕ(T ))∩ (spanϕ(T )) has
at most pk vectors. Let C be the orthogonal complement of the linear space L in the space
spanϕ(T ). Thus, we can represent spanϕ(T ) as L⊕C. For every vector v ∈ spanϕ(T ) we
denote v orthogonal projection to L and C by v |L and v |C , respectively.

For each vector a ∈ L, define the set Ta := {t ∈ T : ϕ(t) |L= a, ϕ(t) ̸= a}. Note that
by definition for every a ∈ L we have Ta∩L = ∅. Now let us select a uniformly at random
from L.

Claim 5. Ea[EPROPHM |Ta ] ≥
1
pk

EPROPHM/T
.
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Proof. To prove the desired inequality, we prove the corresponding inequality for any re-
alization of item values. From now on we consider the realization of item values fixed and
thus we prove the following inequality

Ea[PROPHM |Ta ] ≥
1

pk
PROPHM/T

Let us consider the set Iopt on which the prophet achieves PROPHM/T
. Note that the

set Iopt does not contain any item e such that ϕ(e) is in L, because every such an item e is
a loop in M/T . Thus, the set Iopt can be partitioned into sets Iopt,a, a ∈ L where Iopt,a is a
subset of Ta.

The set Iopt is independent in M/T and so Iopt is also independent in M . Hence the sets
Iopt,a, a ∈ L are also independent in M . Thus for every a ∈ L, PROPHM |Ta ⩾ w(Iopt,a).
Then we have

Ea[PROPHM |Ta ] ⩾

∑
a∈L w(Iopt,a)

|L|
=

1

|L|
w(Iopt) ⩾

1

pk
PROPHM/T

,

finishing the proof of the claim.

Let us now select a∗ ∈ L such that EPROPHM |Ta is maximized. By the previous
claim, we have

PROPHM |Ta∗
⩾

1

pk
PROPHM/T

.

Now for every c ∈ C define set Hc := {t ∈ Ta∗ : (ϕ(t) |C) · c = 1}. Now let us select c
uniformly at random from C.

Claim 6. Ec[EPROPHM |Hc
] ≥ 1

p
EPROPHM |Ta∗

.

Proof. To prove the desired inequality, we prove the corresponding inequality for any re-
alization of item values. From now on we consider the realization of item values fixed and
thus we prove the following inequality

Ec[PROPHM |Hc
] ≥ 1

p
PROPHM |Ta∗

.
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Let Iopt be the set corresponding to PROPHM |Ta∗
. Thus, we have that for every

e ∈ Iopt, ϕ(e) is not in L and hence ϕ(e) |C is not the zero vector. Due to Pc[c ·t = 1] = 1/p,
for every t ∈ Ta∗ , we have

Ec[w(Iopt ∩Hc)] =
∑
t∈Iopt

Pc[c · t = 1]w(t) =
1

p

∑
t∈Iopt

w(t) =
1

p
w(Iopt) = PROPHM |Ta∗

.

Finally, since Iopt is independent in M so is Iopt ∩Hc. Thus, we have

Ec[PROPHM |Hc
] ≥ 1

p
PROPHM |Ta∗

,

finishing the proof of the claim.

Now let us select c∗ so that EPROPHM |Hc
is maximized and let S∗ := Hc∗ . Then we

have EPROPH(M |S∗) ⩾ 1
pk+1EPROPH(M/T ).

Finally, we need to show that every set independent in M |S∗ is an independent set in
M/T . Suppose the contrary, i.e. there exists a set that is independent in M |S∗ but is not an
independent set in M/T . Then spanS∗ has a non-trivial intersection with spanT , suppose
x ∈ (spanϕ(S∗))∪ (spanϕ(T )). Let us show that x is a zero vector. Since x ∈ spanS∗, we
have x =

∑
s∈S∗ αsϕ(s) for some αs ∈ Fp, s ∈ S∗.

Let us consider the projections of x on C and L. Since x ∈ spanϕ(T ) we have that x
lies in L and so x |C is the zero vector. Thus x |C=

∑
s∈S∗ αs(ϕ(s) |C) is the zero vector.

Note that by definition, ϕ(s) |L= a∗ and c∗ · (ϕ(s) |C) = 1 hold for every s ∈ S∗ . Thus
over the field Fp we have∑

s∈S∗

αs =
∑
s∈S∗

αs(c
∗ · (ϕ(s) |C)) = c∗ ·

(∑
s∈S∗

αs(ϕ(s) |C)

)
=

c∗ · (x |C) = 0 .

Now let us consider x |L. We have

x |L=
∑
s∈S∗

αs(ϕ(s) |L) =

(∑
s∈S∗

αs

)
a∗ ,

where the last expression equals the zero vector since
∑

s∈S∗ αs = 0. Thus we have a vector
x ∈ L⊕C such that both projections x |L and x |C are the zero vector. Hence, the vector
x is the zero vector, finishing the proof.
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5.2 Tree Decompositions

Similarly to the approach [HN20] for the matroid secretary problem, we extensively use
the tree decomposition of matroids. A tree decomposition of bounded thickness allows us
to construct non-adaptive mechanisms with good approximation ratios. Before proceeding
with these constructions, let us introduce tree decompositions.

A tree decomposition of a matroid M = (E,S) is a pair (T,X ) where T is a tree and
X = {Xv ⊆ E : v ∈ V (T )}, where sets in X form a partition of E. Here, we refer to the
vertex and edge sets of the tree T as V (T ) and E(T ), respectively.

Given an edge e = {v1, v2} ∈ E(T ) of the tree T , let T1 and T2 be two connected
components of T−e, in other word the removal of the edge e from T leads to two connected
components T1 and T2. The thickness of the edge e = (v1, v2) is denoted as λ(e) and is
defined as follows

λ(e) := λM(∪v∈V (T1)Xv) .

The thickness of the tree decomposition is the maximum thickness of the edge e in E(T ).

Let M be a family of matroids, M be a matroid and (T,X ) be a tree decomposition of
M . We say that tree decomposition (T,X ) is M-tree decomposition if M |clM (Xv)∈ M holds
for every v ∈ V (T ). Let tk(M) be a set of matroids which have M-tree decomposition of
thickness at most k.

Theorem 14. Let Mα,p be the family of matroids which admit α-competitive non-adaptive
mechanisms and are representable over the finite field Fp. Then for every natural number k
and every matroid M in tk(Mα,p), the matroid M has an (αpk+1)-competitive non-adaptive
mechanism.

Proof. For a natural number m, let tk,m(Mα,p) be the set of matroids which have an
Mα,p-tree decomposition (T,X ) of thickness at most k satisfying |V (T )| = m.

Let us prove the statement of the lemma by induction on m. The base case follows
from the definition of the family Mα,p and the fact that Mα,p = tk,1(Mα,p).

Let us now show how to do the inductive step. Let us assume m ≥ 2 and consider a
matroid M = (E,S) in tk,m(Mα,p) with its Mα,p-tree decomposition (T,X ) of thickness
at most k and with |V (T )| = m. Let ℓ be a leaf of the tree T and let u be the neighbour
of the vertex ℓ in the tree T .

Observe that the tree (V (T ) \ {ℓ}, E(T ) \ {ℓu}) together with the subfamily {Xw :
w ∈ V (T ) \ {ℓ}} defines an Mα,p-tree decomposition of the matroid M \ Xℓ. Thus the
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matroid M \ Xℓ is in M ∈ tk,m−1(Mα,p). Hence, by the inductive hypothesis there are
thresholds T ′

e, e ∈ E\Xℓ guaranteeing αpk+1-competitiveness of the gambler in comparison
to the prophet on the matroid M \Xℓ.

Claim 7. There are thresholds T ′′
e , e ∈ Xℓ leading to an (α ·pk+1)-competitive non-adaptive

mechanism for matroid M |Xℓ
, such that the gambler always selects a set that is independent

in M/Xℓ
.

Proof. By Lemma 13 there exists a set S ⊆ Xl such that every set independent in M |S is
also independent in the matroid M/Xℓ and

EPROPHM |S ⩾
1

pk+1
EPROPHM/Xℓ

.

By definition of Mα,p and the appearance of Xℓ in the tree decomposition, we have that
M |Xℓ

is in the family Mα,p. By Lemma 12, since S is a subset of Xℓ the matroid M |S is
also in the family Mα,p. Thus, there are thresholds T ′′

e , e ∈ S that lead to an α-competitive
non-adaptive mechanism on M |S. The thresholds T ′′

e , e ∈ Xℓ \ S can be defined as +∞,
finishing the proof of the claim.

Now we can define thresholds Te, e ∈ E for all elements of the matroid M as follows

Te :=

{
T ′
e if e ̸∈ Xℓ

T ′′
e otherwise .

Let us now demonstrate that such thresholds Te, e ∈ E lead to an (αpk+1)-competitive
non-adaptive mechanism for M .

First, by the above claim the selected items from Xℓ always form an independent set in
M/Xℓ when used with the thresholds Te, e ∈ Xℓ on the matroid M |Xℓ

. Thus the definition
of the thresholds guarantees that in expectation the value of selected items from Xℓ is at
least EPROPHM |Xℓ

/(αpk+1); and in expectation the value of selected items from E \Xℓ

is at least EPROPHM\Xℓ
/(αpk+1).

To finish the proof, note that we have

PROPHM |Xℓ
+ PROPHM\Xℓ

≥ PROPHM

and so
EPROPHM |Xℓ

+ EPROPHM\Xℓ
≥ EPROPHM .
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5.3 Regular matroids

In this section, we prove Theorem 7. Before we proceed to the proof, let us define key
notions related to regular matroids.

A subset of the matroid’s ground set is called a circuit, if it is an inclusion-minimal
dependent set. A cycle is a subset of the ground set which can be partitioned into a disjoint
union of circuits.

Let M1 = (E1,S1), M2 = (E2,S2) be two binary matroids. Then the matroid sum
M1△M2 has the ground set E1△E2 and the cycles of M1△M2 are all sets of the form
C1△C2, where C1 is a cycle for M1 and C2 is a cycle for M2.

Def 4. Consider two binary matroids M1 = (E1,S1), M2 = (E2,S2) and M = M1△M2.

1. If |E1 ∩ E2| = 0, and E1 ̸= ∅, E2 ̸= ∅, M is called a 1-sum of M1 and M2.

2. If |E1 ∩ E2| = 1, |E1| ≥ 3, |E2| ≥ 3 and E1 ∩ E2 is not a loop of M1 or M2 or their
dual matroids, M is called a 2-sum of M1 and M2.

3. If |E1 ∩E2| = 3, |E1| ≥ 7, |E2| ≥ 7 and E1 ∩E2 is a circuit in both M1 and M2, and
E1 ∩ E2 does not contain a circuit in their dual matroids, then M is called a 3-sum
of M1 and M2.

Proof of Theorem 7. By Seymour’s regular matroid decomposition theorem [Sey80], every
regular matroid M can be obtained from graphic, cographic or a special matroid R10

through a sequence of 1-sums, 2-sums or 3-sums.

This gives a tree decomposition (T,X ) of thickness at most 2 so that each M |Xv ,
v ∈ V (T ) is either a graphic, cographic or a special matroid R10.

By performing parallel extensions of the elements to be deleted before each 2-sum and
3-sum, we construct a matroid M ′, so that M is a restriction of M ′ and M ′ has a tree
decomposition (T,X ′) so that each M ′ |clM′ (X′

v), v ∈ V (T ) is either graphic, cographic or
a parallel extension of R10.

By Theorem 2, every graphic matroid has a 32-competitive non-adaptive mechanism.
By Theorem 5, every cographic matroid has a 6-competitive non-adaptive mechanism.
Since matroid R10 has ground set of size 10, by Theorem 1 every parallel extension of R10

has a 20-competitive non-adaptive mechanism.
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Note that by definition every regular matroid is representable over finite field F2. Thus,
by Theorem 14 with p = 2, k = 2 and α = 32 there is a 256-competitive non-adaptive
mechanism for matroid M ′. Since M is a restriction of M ′, by Lemma 12, there is a
256-competitive non-adaptive mechanism for M , finishing the proof.

5.4 Minor-closed representable matroid families

In this section we show that every minor-clossed subclass of matroids representable over
Fp has a constant-competitive non-adaptive mechanism, where the constant is a function
only of p. The proof of this fact is analogous to the proof in [HN20].

Theorem 15 (Theorem 4.3 in [Gee11]). Given natural numbers q ⩾ 2 and n ⩾ 1, let
M = (E,S) be a matroid with no U2,q+2 or M(Kn) minors. Then we have |E| ≤ qq

3n
rM(E).

Corollary 2. Given natural numbers q ⩾ 2 and n ⩾ 1, let M = (E,S) be a matroid with
no U2,q+2 or M(Kn) minors. Then there exists a qq

3n-competitive non-adaptive mechanism
for M .

Proof. If M has no U2,q+2 or M(Kn) minors, then every restriction of M also has no U2,q+2

or M(Kn) minors. Thus for every X ⊆ E we have |X| ⩽ qq
3n
rM(X). So, M is a qq

3n-
sparse matroid and by Theorem 13 there exists a qq

3n-competitive non-adaptive mechanism
for M .

Projections and lifts

Let M be a matroid and x be an element of the ground set, which is a not a loop and not
a free element of the matroid M . Then M/x is called a projection of M \x; M \x is called
a lift of M/x. Note that here and later we write M/x and M \ x instead of M/{x} and
M \ {x}, repsectively.

Let M and N be two matroids with the same ground set. We say that the distance
between M and N is t, denoted by dist(M,N) = t if t is the smallest integer such that
there exists a sequence of matroids P0, P1, . . . , Pt where P0 = M and Pt = N and for
every i ∈ [t] the matroid Pi is either a lift or a projection of Pi−1.

Lemma 14. Let N be a lift of the matroid M . If there is an α-competitive non-adaptive
mechanism for M then there exists a (2α+2)-competitive non-adaptive mechanism for N .
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Proof. Since N is a lift of M , there exists a matroid L = (E,S) and an element x of its
ground set, such that M = L/x, N = L\x. Here, x is not a loop and not a free element of
L.

Let P be the set of elements in L that are parallel to x, in other words P := {x′ ∈ E :
x′ ∥ x}. Note that N |P\{x} is a uniform matroid of rank 1. Note also that elements in
P \ {x} are loops in M and so EPROPHM = EPROPHM\P .

Let T ′
e, e ∈ E \ {x} be the thresholds imposed by an α-competitive non-adaptive

mechanism for the matroid M . Let T ′′
e , e ∈ P be the thresholds guaranteeing 2-competitive

non-adaptive mechanism as in Theorem 1 for the uniform matroid of rank 1 on the ground
set P\{x}; and let T ′′

e , e ∈ E\(P∪{x}) be +∞. We select one of these two sets of thresholds
for the matroid N as described below. The constructed mechanism for the matroid N
selects one of those two sets at random, where first set of thresholds T ′

e, e ∈ E \ {x} is
selected with probability γ := α/(α+1) and the second set T ′′

e , e ∈ E\{x} with probability
1− γ = 1/(α + 1).

Next part is dedicated to the analysis of how thresholds T ′
e, e ∈ E \ {x} perform on

the matroid N . Note, that these thresholds are coming from a mechanism for the matroid
M , while they are used for the matroid N with probability γ. We show that the total
expected value achieved by thresholds T ′

e, e ∈ E \ {x} on N is at least the total expected
value achieved by these thresholds on M . For this we can assume that for every realization
of item values, the orders of items in matroid N and M are the same. To see that this
assumption is valid, we can assume that the order for N is chosen in an adversarial way
and is used also as the items order for M .

Claim 8. Let us assume that the items order for M and N is the same for a given real-
ization of item values. Let us also assume that for every item e ∈ E \ {x} the threshold T ′

e

is used. Then the gambler with matroid N selects all items that the gambler with matroid
M selects.

Proof. We fix the item values realization and items order. Let e1, e2,. . . , ek be the items
with their values being at least their threshold and with the corresponding order.

Now we need to show that if the gambler with matroid N selects items greedily from e1,
e2,. . . , ek starting from e1, then the set of selected items is a superset of the items greedily
selected by the gambler with matroid M . If both gamblers end up selecting exactly the
same set of items, then proof of the claim is complete. Otherwise consider the first index
i ∈ [k] such that the item ei is selected by exactly one of the two gamblers. Since N = L\x
and M = L/x we have that it is only possible if ei is selected by the gambler with the
matroid N and rejected by the gambler with the matroid M .
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Now we claim that every subsequent item, in other words an item in ei+1, . . . , ek, is
either selected by both gamblers or rejected by both gamblers. Suppose the contrary and
consider the first item ej, i + 1 ≤ j ≤ k that is selected by one gambler and rejected by
another gambler. Let S := {e1, e2, . . . , ej−1} and let T be the set of items selected by the
gambler with M from the set S. Thus the gambler with N selected T ∪ {ei} from the set
S. So T ∪ {ei} is a basis of (L \ x) |S and T is a basis of (L/x) |S. Thus, both T ∪ {ei}
and T ∪ {x} are bases of L |S. If only one of the two gamblers accepts the item sj then
the matroid L |S∪{sj} has two bases of different cardinality, attaining a contradiction and
finishing the proof.

Thus we have that the thresholds T ′
e, e ∈ E \ {x} guarantee at least EPROPHM as

the expected total value of the gambler with N . To prove that the constructed mechanism
is 1/(2α + 2)-competitive it is enough to show the following claim. Note that in our
construction we used α-competitive non-adaptive mechanism for the matroid M and 2-
competitive non-adaptive mechanism for the uniform matroid of rank 1 on P \ {x}.

Claim 9. γ 1
α
EPROPHM + (1− γ)1

2
EPROPHP\{x} ⩾ 1

2α+2
EPROPHN

Proof. Let us consider the inclusion-maximal set Iopt on which the prophet achieves PROPHN .
Let Copt be a random variable corresponding to the unique circuit of Iopt∪{x} in L. Recall
that x is not a free element of L so such a circuit exists and is unique and contains x.

First consider the events when |Copt| ⩾ 3. Note that by definition of a circuit, for every
y ∈ Copt \{x} the set (Iopt∪{x})\{y} is independent in L. Hence, for every y ∈ Copt \{x}
the set Iopt \ {y} is independent in M . So we have that conditioned on |Copt| ⩾ 3 we
have PROPHM ≥ w(Iopt \ {y}) for every y ∈ Copt \ {x}. Let yopt be the random variable
representing the element in Copt \ {x} of smallest value. Then conditioned on |Copt| ⩾ 3,
we have w(Copt \ {yopt, x}) ≥ w(C \ {x})/2. Thus, conditioned on |Copt| ⩾ 3 we have

PROPHM ⩾ w(Iopt \ {yopt}) = w(Iopt \ Copt) + w(Copt \ {yopt})

≥ w(Iopt \ Copt) +
1

2
w(Copt \ {x}) ≥

1

2
w(Iopt) =

1

2
PROPHN .

Second consider the event that |Copt| < 3. Since x is not a loop of L by definition, we
have |Copt| = 2 and so Copt = {x, xopt} for some random variable element xopt ∈ P \ {x}.
For the event |Copt| ≥ 3 let us define the random variable element xopt to be an arbitrary
element in Copt \ {x}. Thus, if |Copt| < 3 we have PROPHP\{x} ≥ w(xopt). Now let us
define Jopt := Iopt \ {xopt} and note that Jopt is independent in the matroid M . Moreover,
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since Iopt is the set on which the prophet achieves PROPHN , we have that conditioned
on |Copt| < 3 the prophet achieves PROPHM on the set Jopt.

Combining everything together we have

γ
1

α
EPROPHM + (1− γ)

1

2
EPROPHP\{x} =

1

α + 1
EPROPHM +

1

2α + 2
EPROPHP\{x} ≥

E

[
w(xopt)

2α + 2
+

PROPHM

α + 1

∣∣∣∣ |Copt| < 3

]
P [|Copt| < 3]

+ E

[
PROPHM

α + 1

∣∣∣∣ |Copt| ⩾ 3

]
P [|Copt| ⩾ 3] =

E

[
w(xopt)

2α + 2
+

w(Iopt \ {xopt})
α + 1

∣∣∣∣ |Copt| < 3

]
P [|Copt| < 3]

+ E

[
PROPHM

α + 1

∣∣∣∣ |Copt| ⩾ 3

]
P [|Copt| ⩾ 3] ≥

E

[
PROPHN

2α + 2

∣∣∣∣ |Copt| < 3

]
P [|Copt| < 3]

+ E

[
PROPHM

α + 1

∣∣∣∣ |Copt| ⩾ 3

]
P [|Copt| ⩾ 3] ≥ 1

2α + 2
EPROPHN .

Lemma 15. Let N be a matroid obtained from a matroid M by a sequence of t projections.
Let L be the set of loops in the matroid N . Let there exist an α-competitive non-adaptive
mechanism for the matroid M . Then there exists a non-adaptive mechanism for N\L such
that the expected total value of this mechanism is at least 1

α·3tEPROPHM\L.

In the context of Lemma 15, every set that is independent for the matroid N \ L is
also independent for the matroid M \L. Hence, we have EPROPHM\L ≥ EPROPHN\L.
Thus in case t = 1, Lemma 15 leads us to the following corollary.

Corollary 3. Let N be a projection of the matroid M . If there is an α-competitive non-
adaptive mechanism for M then there exists a 3α-competitive non-adaptive mechanism for
N .
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Proof of Lemma 15. Let us prove the statement by induction. Of course, in case t = 0 we
have M = N and the statement is trivially true.

Let us now assume that t is at least 1. Let N ′ be a matroid such that N ′ is obtained
from the matroid M by a sequence of t− 1 projections and N is a projection of N ′. Since
N is a projection of N ′ there is a matroid P = (E,S) and x ∈ E such that P \ x = N ′

and P/x = N . Let L′ be the set of loops in the matroid N ′.

By induction hypothesis, there exist thresholds T ′
e, e ∈ E \ (L′ ∪ {x}) such that the

gambler with the matroid N ′\L′ achieves at least 1
α·3t−1EPROPHM\L′ as the expected

total value. Let us assume that to compute thresholds T ′
e, e ∈ E \ (L′ ∪ {x}) the values

of items in L were set to be 0 while the distribution of values for other items remain the
same. Since L′ ⊆ L, analogously to Lemma 12 we can define thresholds

T ′′
e :=

{
+∞ if e ∈ L

T ′
e otherwise

such that the gambler with the matroid N ′\L achieves at least 1
α·3t−1EPROPHM\L as

the expected total value. Let T ′′′
e , e ∈ E \ (L ∪ {x}) be the thresholds guaranteeing 2-

competitive non-adaptive mechanism as in Theorem 1 for the uniform matroid of rank 1
on the ground set E \ (L ∪ {x}).

The constructed mechanism for the matroid N \L selects one of two threshohold sets at
random, where first set of thresholds T ′′

e , e ∈ E \ (L∪{x}) is selected with probability 1/3
and the thresholds T ′′′

e , e ∈ E \ (L ∪ {x}) with probability 2/3. Note that the thresholds
T ′′
e , e ∈ E \ (L ∪ {x}) were designed for the matroid N ′ \ L but are used for the matroid

N \ L; hence less items might be selected than when it is used for N ′ \ L. Also note, that
the thresholds T ′′′

e , e ∈ E \ (L∪ {x}) are used for N \L but were designed for the uniform
matroid of rank 1.

For the analysis, let Ialg be the random variable indicating the items set selected by
the gambler with matroid N ′ \ L when the thresholds T ′′

e , e ∈ E \ (L ∪ {x}) are used.
Analogously to a claim in the proof of Lemma 14, we can assume that when the thresholds
T ′′
e , e ∈ E \ (L ∪ {x}) are used the gambler with N \ L select all items in Ialg with an

exception for possibly one item. Let xopt be the random variable indicating the element of
maximum value in E \ (L ∪ {x}).

To finish the proof it is enough to show the following inequality

1

3
E[w(Ialg)− w(xopt)] +

2

3

1

2
E[w(xopt)] ≥

1

α · 3t
EPROPHM\L .
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To obtain this inequality we can do estimations as follows

1

3
E[w(Ialg)− w(xopt)] +

2

3

1

2
E[w(xopt)] =

1

3
E[w(Ialg)] ≥

1

3

1

α · 3t−1
EPROPHM\L .

Now let us combine Corollary 3 and Lemma 14.

Lemma 16. Let M and N be matroids such that dist(M,N) ≤ t. If there exists an α-
competitive non-adaptive mechanism for the matroid M with α ≥ 2 then there exists a
3tα-competitive non-adaptive mechanism for the matroid N .

Proof. Note that for α ≥ 2 we have 3α ≥ 2α + 2. Since N can be obtained from M by
a sequence of t projection and lift steps, we can use Corollary 3 or Lemma 14 for each of
these steps to obtain the desired competitiveness ratio.

Minor-closed families theorem

Lemma 17 (Lemma 6 in [HN20]). Let p and n be integers such that p ⩽ n − 2 and p is
prime. The matroid U2,n is not representable over the field Fp.

The following Structural Hypothesis is due to Geelen, Gerards and Whittle. The proof
of this Structural Hypothesis has not appeared in print.

Hypothesis 1. Let p be a prime number and M is a proper minor-closed class of matroids
representable over Fp.

Then there exist k, n, t such that every M ∈ M is a restriction of an Fp-representable
matroid M ′ having a full tree-decomposition (T,X ) of thickness at most k so that for every
v ∈ V (T ) if M ′ |clM′ (Xv) has a M(Kn) minor, then there exists a 2-column sparse matroid
N with dist(M ′ |clM′ (Xv), N) ⩽ t.

Proof of Theorem 8. Let k, n, t are as stated in the Structural Hypothesis 1 on M.

Let M1 be the set of matroids on distance t or less from some 2-column sparse matroid
and are representable over Fp. By Theorem 4 all 2-column sparse matroids have a 32-
competitive non-adaptive mechanism. By Lemma 16 there exists a (3t · 32)-competitive
mechanism for matroids in M1.
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Let M2 be the set of matroids without M(Kn) minor and are representable over Fp.
By Lemma 17 all matroids in M2 do not have U2,p+2 as a minor. Then by Corollary 2, we
have that there is a pp

3n-competitive non-adaptive mechanism for every matroid in M2.

By the Structural Hypothesis 1 we have that every M ∈ M is a restriction of some M ′

with a full tree-decomposition (T,X ) of thickness at most k so that for every v ∈ V (T )
M ′ |clM′ (Xv)∈ M1 ∪M2.

Thus by Theorem 14, matroid M ′ has a γ := (max(3t · 32, pp3n) ·pk+1)-competitive non-
adaptive mechanism. By Lemma 12 the matroid M has also a γ-competitive non-adaptive
mechanism.
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