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Abstract

Many statistical tools are built upon a specific set of assumptions on the distribution of the
data at hand. However, the distribution of the observations in the dataset may not remain
constant and may change due to some external events. For a sequence of observations,
the points after which the distribution function has changed are commonly referred to
as change points. Identifying such points can also be critical in gaining insights into the
distributional behaviour of random variables and constructing statistical models. Thus,
the change points analysis potentially applies to almost all data-driven disciplines, such as
biology, finance, and public policies.

Change points analysis is categorized into online and offline analysis. The online change
points analysis is designed to detect changes in the distribution of random variables as
new observations are introduced. On the other hand, offline analysis is concerned with
recovering change points within a historical dataset. In this thesis, we are only concerned
with offline change point analysis; for simplicity, we refer to offline change points analysis
as change points analysis.

Change point analysis was born 70 years ago from the quality control discipline Page
(1954). Initially, the main focus of the change points literature was on the single change
point scenario in which, at most, one change point exists within a sequence of random vari-
ables. However, with the advent of computers, the focus has switched to multiple change
point detection problems. This shift does not imply that single change point detection
methods are irrelevant. For instance, many multiple change point detection methods re-
cover change points by conducting a single change point test locally. This class of change
point detection methods is called local search methods.

One of the primary concerns of local search methods is the application of a single change
point test statistic within the largest possible segment of the sequence of random variables
with exactly one change point. Obtaining such intervals is a difficult task. For instance,
wild binary segmentation Fryzlewicz et al. (2014) extracts the change points from intervals
containing multiple change points. On the other hand, the narrowest over threshold Bara-
nowski et al. (2019) estimates the change points within the narrowest intervals in which a
predefined threshold is satisfied. Thus, the accuracy of the estimated locations of change
points may suffer due to the shortness of these intervals. In this thesis, we propose two local
search methods that attempt to infer locations of change points within the desirable in-
tervals. The first method, enhanced backward detection (EBD), recovers the change points
by eliminating unlikely candidates sequentially. The second method, i.e., narrowest over
threshold via interval selection with shortened exhaustive search (NOT-IS.SES), estimates
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the location of change points by following a top-down approach. That is, the change points
are added to the active set sequentially. EBD and NOT-IS.SES are general procedures that
can be applied to a wide range of change point problems by simply changing the underlying
single change point test statistics.
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Chapter 1

Introduction to Change Point
Analysis

The statistical methods are constructed based on the assumptions on the probability dis-
tribution function from which the random variables are generated. If these assumptions are
violated, then the statistical inference about the characteristics of the model based on the
data at hand would be meaningless or, at best, misleading. For instance, in the introduc-
tory statistical courses, it is common to assume that random variables follow an identical
probability distribution function. Subsequently, statistical inferences are conducted based
on this assumption. Any significant change in the probability distribution function of the
random variables leads to misleading conclusions and data analysis. Another important
example is time series forecasting. For example, to build an ARMA model, the mean and
variance of the data must be constant and independent of time. Otherwise, the ARMA
model leads to erroneous forecasts.

Unfortunately, in many real-world scenarios, the probability distribution function does
not remain constant and may change throughout data collection. The points that the
distribution of random variables change are referred to as change points. Since the ac-
curacy of the statistical inference often depends on the fulfilment of the assumptions on
distribution functions of the random variables, disregarding the presence of change points
results in misleading statistical inference. Thus, the change point analysis is an essential
component of robust statistical data analysis. Providing a sound statistical inference is
not the only application of the change point analysis. Often, detecting the points in which
the distribution of random variables is altered is the problem of interest by itself. After
recovering the locations of change points, one may have to interpret the events that may
have influenced the distribution of the data.
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One of the simplest change-point problems is the single normal mean change point
scenario. In the single normal mean change-point problem, only one change occurs in the
mean of the normally distributed random variables while the variance remains constant.
In other words:

Xt ∼ N(µ1, σ
2), for t = 1, · · · , τ,

Xt ∼ N(µ2, σ
2), for t = τ + 1, · · · , T,

where µ1 ̸= µ2 and σ2 <∞. This scenario can be demonstrated by the Nile river dataset in
Figure 1.1, which was first investigated by Cobb (1978). The Nile dataset is the collection
of the measurements on the Nile river’s annual flow between the years 1871 to 1970. By
simply observing the scatter plot of the Nile river data in 1.1, one can identify a change in
mean around the year 1898. Ignoring the change in the mean of annual flow will lead to an
inaccurate and erroneous inference. For instance, if the variance of the annual volume of the
flow is estimated by the least-squares method while the mean change point is ignored, then
the variance will be overestimated. Moreover, any further statistical inference on the Nile
river data set, which is built upon the estimated variance, may lack sufficient accuracy and
result in misleading inference on the Nile river data set. Note that, recovering the location
of the change in the mean of annual flow of river Nile is also the problem of interest by
itself and can be used to interpret the geographical events surrounding the Nile river.

The change point analysis is often conducted in scenarios where the data configuration
is more complicated than the single normal mean change-point model. For instance, the
change in distribution may occur in multiple instances concerning several parameters of
the distribution function or even the form of the distribution function. Consider the mo-
torcycle data set Silverman (1985) in Figure 1.2, which contains the accelerations of the
head at different times during the simulated motorcycle accident. Unlike the Nile dataset
containing only one change point, the motorcycle dataset indicates changes in the mean at
several points. Moreover, the mean functions between the change points are not necessarily
constant. In certain segments of the data, the mean is a polynomial function of time. As
a result, the number of the parameters that are required to be estimated is larger. This
observed behaviour adds to the computational and theoretical complexity of this change
point problem compared to the Nile dataset. In both the Nile and Motorcycle datasets,
the change points occur in the mean. The change in the mean is only the particular case
of the change point problem. Other characteristics of the probability distribution function
or the family of the probability distribution functions may change.

To demonstrate and compare the behaviour of different change-point models, we sim-
ulate multiple datasets from six distinct change-point models. The observations in each
dataset are drawn independently from a normal distribution.
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Figure 1.2: Unlike the Nile river dataset, the mean is a piecewise polynomial function of
time in the motorcycle dataset.
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Scenario 1. No change points present within the data set.

Scenario 2. Observations are generated from the normal distribution with a piece-
wise constant mean and a constant variance.

Scenario 3. The dataset is generated from a normal distribution with mean zero
and a piecewise constant variance.

Scenario 4. Changes in the distribution are due to both mean and variance, and
both mean and variance are piecewise constant functions.

Scenario 5. Changes occur in the mean, where the mean is a piecewise linear
function of time while the variance remains constant.

Scenario 6. Changes in the distribution occur in both the mean and variance. The
mean and variance are piecewise linear and constant functions of time, respectively.

In Scenarios 2 - 6, the locations of change points are at 50th, 100th, and 150th observations.
We plotted the datasets for each scenario in Figure (1.3). The red dashed vertical lines
represent the location of change points. In the case with no change point, the pattern of
the dataset in different segments is very similar. In contrast, the change in the distribution
of the random variables in other scenarios is evident.

As mentioned earlier, not only the change point analysis plays a vital role in statistical
inference, but also, identification of the location of change points can be a problem of
interest. The change point analysis was initially proposed by page Page (1954, 1955)
to identify the point in which the quality of a product has deteriorated. Application of
the change point analysis is not confined within the field of quality control. It has been
extended to many other disciplines such as biology, economics, public policy. In biology,
the change point methods has been applied to identify the copy number variation. Another
application of the change point analysis is in financial data analysis. Many of the financial
models on the behaviour of stock prices are constructed based on the variance of the return
of the stock. Thus, discovering a point in time that the volatility of a stock price changes
plays an important role. In terms of public policy, the change point methods are applied to
verify whether a particularly desirable or undesirable change occurred after setting a new
law into motion. For instance, a difference in car crash fatality rate can be investigated
after introducing a new seat-belt law. Reduction of the rate of fatality in car crashes implies
the effectiveness of a seat-belt law. A notable contemporary example of the application
of change point analysis in public policy is assessing the effectiveness of the public health
measures concerning the spread of the COVID-19 pandemic. Slow down in the rate of the

4
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Figure 1.3: Change points in six simulated models are demonstrated by red vertical line.

new cases of COVID-19 implies the effectiveness of the public health measures that are
designed to stop the spread of the disease. It is reasonable to assume that the daily new
COVID 19 cases’ mean function is a piecewise linear function based on Figure 1.4. The
reduction in the slop of the linear models demonstrates the level of the effectiveness of the
public health policies about the spread of COVID 19 disease.

The change points are the indexes of the observations such that the entire or some aspect
of the underlying probability distribution which the random variables are generated from,
changes afterwards. To clarify what we mean, consider the sequence of random variables
{X1, X2, · · · , XT} with the probability distribution function F1, F2, · · · ,FT , respectively.
Change points are the subset of the indexes of the random variables, {1, 2, . . . , T −1} such
that the distribution of the random variables change afterward. In other words, the set of
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Figure 1.4: After the introduction of lockdown policies, the number of new daily cases and
deaths decreased significantly.

indexes {τ1 , · · · , τN} of the sequence of random variables X1 , · · · , XT
are change points if

F1 = · · · = Fτ1
̸= Fτ1+1 = · · · = Fτ

N
̸= Fτ

N+1
· · · = FT . (1.1)

The change point definition in (1.1) is the most general from of the problem. The change
point literature often assumes the random variables are generated from a common family of
distribution functions and changes occur with respect to the parameters of the distribution
function. In other words, the indexes τ1 , · · · , τN of the sequence of random variables
{Xt}Tt=1 with probability distribution function {Fθt}Tt=1 (i.e, Xt ∼ Fθt

) are change points,
if

θ1 = · · · θτ1
̸= θτ1

+1 = · · · = θτ
J
̸= θτ

N
+1 = · · · = θ

T
. (1.2)

One of the most popular versions of (1.2) is the normal mean change-points model. In
this setting, the random variables are generated from Gaussian process with a piecewise
constant mean and a constant variance. Even though, the assumptions of the normal
mean change points model are too strong and seem to be unrealistic, this problem has
been studied extensively. Despite this strong assumption, the normal mean change-point
problem resembles some of the real-world applications of the change points analysis. One
notable example is the copy number variation problem. Based on recent research, the copy
number variation provides diagnostic tools and treatment regimens for cancer and other
genetic diseases. Therefore, identifying the copy number variation is a crucial task. Many
multiple change-point methods have been motivated by the copy number variation problem.
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Figure 1.5: aCGH dataset of the chromosome one.

Moreover, the normal mean change point models can assess the effectiveness of the different
change-point detection methods. Due to the simplicity of the normal mean change point
model, if a change point method fails to provide a reasonable solution in the normal mean
change point model, it would not be effective in other configurations. Moreover, many of
the change point methods that were proposed for the normal mean change point model
can be extended to more generalized settings with a simple modification in the algorithm.

As we previously mentioned, the change point analysis initially arose from the discipline
of quality control and branched out to other applied disciplines such as biology, genomics,
economy, and finance. The change point analysis can be applied to almost all data-driven
fields. Due to its wide range of applications, much literature exists on the topic and
several methods have been introduced over the past 70 years. With the advancements
in computing, the change point problem attracted more attention. The methods that
were deemed to be computationally infeasible are more manageable now. Despite of a
significant progress in change point problem, many aspects of the change points analysis
have remained untouched, and further investigation is required. In Chapter 2, some of the
popular change point methods are introduced and reviewed. In Chapter 3, we introduce the
sweeping process and enhanced backward selection and then evaluate our proposed methods
under the assumption of the normal mean change-points model. In Chapter 4, we extend
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the enhanced backward detection to a non-Gaussian setting using rank-based procedures.
In Chapter 5, a different multiple change point detection method which we call narrowest
over threshold with interval selection via shorten exhaustive search is introduced. Finally
in Chapter 6, we introduce the hybrid enhanced backward detection which incorporates
both enhanced backward detection and interval selection via shortest exhaustive search
methods.
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Chapter 2

A selective overview of off-line
change point detection techniques

Early change point analysis literature assumed the presence of at most one change point
within the sequence of random variables. Thus, many change point detection procedures
such as CUSUM statistic Page (1954, 1955) and likelihood-based methods Hinkley (1970)
were devised to tackle this particular problem. Despite the appeared simplicity of the single
change-point problem, this problem is still an active area of research Horváth and Rice
(2014), Horváth et al. (2020) and Barassi et al. (2020) . With the advances in computing,
the focus has been shifted from a single change-point to more complicated multiple change-
point problems. Although the multiple change-point research has dominated the change-
point literature in recent years, single change-point literature maintains its relevance, since
it is a building block of many multiple change point detection techniques.

Multiple change-point detection techniques are concerned with estimating the number
of change points and their location. They consist of search methods that estimate locations
of the change points and a stoppage rule that estimates the number of change points. One
may categorize multiple change point detection methods to local and global search methods.
Local search methods estimate each change point individually by conducting a single change
point detection test concerning a segment of data. On the other hand, global search
methods estimate change points simultaneously by minimizing a predefined loss function.
Another concern of multiple change point detection techniques is the estimation of the
number of change points. In global search methods, the number of change points is decided
by adding a penalty function to the underlying loss function to avoid overestimation. While
in local search methods, we set up a threshold based on the probability distribution of
a single change point statistic such as CUSUM. If the magnitude of a change point test
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statistic with respect to a certain interval exceeds a predefined threshold, then the presence
of change point within the aforementioned interval is confirmed.

One of the primary concerns of local search change point detection techniques is con-
ducting a change point test within a long interval of the random variables that contains
precisely one change point. If the search domain of a single change point test is contam-
inated with more than one change points, the test may fail to detect any change in the
distribution of the random variables. For instance, if the change points are too close to
each other, they may offset each other and become invisible to single change point tests.
Local search methods are grouped into top-down and bottom-up categories. Top-down
change point detection techniques are initiated under the assumption that no change point
exists. Then throughout the procedure, the change points are estimated sequentially by a
single change point test. One of the early examples of top-down change point detection
is binary segmentation Scott and Knott (1974). Binary segmentation conducts a single
change point test on the entire sequence of random variables. If no change point is de-
tected, then the procedure is stopped. Otherwise, the data is segmented with respect to
the recently detected change point. A similar process is repeated within each segment. The
binary segmentation procedure is continued until no new change point can be detected.
In binary segmentation, a single change point detection procedure is conducted regardless
of the number of change points in the search area. Thus, the binary segmentation fails
to detect the change points that are too close to each other. One of the attractions of
binary segmentation is its computational efficiency. Thus, the binary segmentation is still
popular. Building upon the success of binary segmentation, different variations of binary
segmentation such as circular binary segmentation Olshen et al. (2004), wild binary seg-
mentation Fryzlewicz et al. (2014) and narrowest over threshold Baranowski et al. (2019)
have been introduced over the years.

Unlike top-down methods, the bottom-up change point detection methods assume every
single index of the random variables is a potential change point. Then change point
candidates are eliminated sequentially until a desirable set of change point candidates is
obtained.By desirable set, we mean a set of change points candidate which satisfied a
predetermined criteria. At the early stages of the bottom-up methods, the change point
candidates are assessed based on the relatively narrow segment of the data. Thus, the
possibility of the removal of the true change points is diminished.
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2.1 Single Change Point Test

As we mentioned previously, early change-point literature focused mainly on the single
change-point scenarios in which at most one change-point occurs within the sequence of
random variables. In other words, assuming the sequence of random variables {Xt}Tt=1

are generated from the probability distribution function {Ft}Tt=1, respectively, the single
change-point detection problem aims to verify the existence of the point τ where

F1 = · · · = Fτ ̸= Fτ+1 = · · · = FT . (2.1)

When the existence of a change point is confirmed, the location τ is estimated. The
majority of the single change point literature narrows down the focus to the special case
that the change in distribution occurs in terms of a parameter vector. That is, considering
the sequence of random variables {Xt}Tt=1 are generated from the common parametric
family of the distribution F with parameter vectors θ1, · · · , θT , respectively. Then the
change point tests are designed to conduct the following hypothesis testing:

H0 : θ1 = · · · = θT versus H1 : θ1 = · · · = θτ ̸= θτ+1 = · · · = θT . (2.2)

If the null hypothesis is rejected, then the location of τ is estimated. One of the most
exhaustively studied variations of the problem (2.2) is the Gaussian mean change-point
problem. In a single Gaussian mean change-point problem, the random variables are
generated from Gaussian process with a constant known variance and mean function µt,
where

µ1 = · · · = µτ ̸= µτ+1 = · · · = µT . (2.3)

With the advancements in computing, the change points literature has gradually shifted
its attention to multiple change point problems. However, despite the recent popularities
of the multiple change-point detection problems, the single change point analysis retains
its importance. They are the main ingredient of many of the recent multiple change point
detection techniques. Thus, single change point methods are still worth exploring.

2.1.1 CUSUM Statistic

As we mentioned, change-point analysis arose from the quality control discipline. The
goal was to estimate the point of time in which the quality of the products started to
deteriorate. Page (1954, 1955) proposed a CUSUM statistic to tackle this problem. The
earliest variations of the CUSUM statistic were designed to detect a change-point in the
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mean of the sequence of independently distributed random variables. Consider the sequence
of independently and normally distributed random variables X1, . . . , XT with mean µt and
a known common variance σ2. Then the CUSUM statistic is calculated as follow:

D(i, T ) = 1√
T

i∑
t=1

(
Xt −

1

T

T∑
ℓ=1

Xℓ

)
, (2.4)

Assuming exactly one change point lies within the sequence of random variables, the point
in which the partial cumulative sum deviates the most from zero is highly likely to be
the mean change point. In other words, if there is exactly one change point within the
sequence of random variables X1, X2, . . . , XT and

τ = argmax
0<i<T

| D(i, T ) | , (2.5)

then τ is assigned to be the estimated location of the change point. If the value of the
CUSUM statistic deviates substantially from zero, then the CUSUM test confirms the
change in the mean of the random variables. In other words, if the CUSUM statistic (2.5)
exceeds a predefined threshold, then the change in the mean of the random variables is
verified. A suitable threshold is obtained based on the probability distribution of CUSUM
statistic under the assumption that no change point lies within the sequence of random
variables. Assuming that a sequence of random variables is generated identically from a
Gaussian distribution, the CUSUM statistic converges in distribution to a Brownian Bridge
process. Thus, we can construct the threshold function accordingly.

CUSUM statistic has been investigated within more complicated change-point models.
Brown et al. (1975) studied the change in parameters of a regression model under the
assumption that the residuals are uncorrelated. Inclan and Tiao (1994) proposed apply-
ing the CUSUM statistic to detect a change in the variance of independently distributed
random variables. Bai (1994), Lee et al. (2003), and Zhou and Liu (2009) adjusted the
CUSUM statistic to be applied to a sequence of random variables with dependency. For
more information, we refer the reader to Aue and Horváth (2013).

2.1.2 Likelihood Based Method

Suppose observations are generated from a member of a parametric family of distributions
and a change in distribution function occurs only in the underlying parameter vector.
A single change point detection test statistic can be derived from the generalized log-
likelihood ratio test in this setting. Nevertheless, unlike the standard log-likelihood ratio
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test for a two-sample test, the point at which the distribution of the observations changes is
unknown. Therefore, the generalized log-likelihood ratio (GLR) statistic for change-point
detection is more complicated than the standard log-likelihood ratio, both theoretically
and computationally.

Consider a sequence of random variables that are generated from a common paramet-
ric probability distribution function f(·, ·) with parameter vectors θ1, · · · , θT . Suppose the
problem of interest is testing whether the parameter vector changes after the τth observa-
tion or not. The standard log-likelihood ratio test is calculated as follow:

R(τ) = R(τ, θa, θb, θ0 , X1, · · · , Xt) = log

(
f(X1, · · · , Xτ ; θa)f(Xτ+1, · · · , XT ; θb)

f(X1, · · · , XT ; θ0)

)
, (2.6)

where θa and θb are the parameter vectors under the assumption of the alternative hy-
pothesis (i.e., θa ̸= θ

b
) and θ0 is the parameter vector under the null hypothesis. If the

log-likelihood ratio is substantially large, the null hypothesis is rejected and the change in
parameter vector is confirmed (i.e; θa ̸= θb). In the context of the change point problem,
the existence and location of change point are unknown. Thus, at first, the presence of
change point is required to be verified; then, if the existence of change point is confirmed,
the point which maximizes the log-likelihood ratioR(·) in (2.6) is assigned to be the change
point estimate. In other words, assuming the presence of exactly one change point within
the sequence of random variables X1, · · · , XT , the location of change point is estimated
as follow:

τ̂ = argmax
d≤t≤T−d

R(t), (2.7)

where d is the dimension of the parameter vector (i.e; θ ∈ Rd) and τ̂ is the estimated
change point. Recall that, each of the parameter vectors θ0, θa, and θb are estimated by
the maximum likelihood method. In summary, the likelihood ratio R(t) is calculated for
all the possible change point candidates (t = d, · · · , T − d) and if the generalized log
likelihood ratio test is substantially large, the point that is associated with the largest R(·)
is assigned to be the change point estimate.

To demonstrate an application of the generalized log-likelihood ratio test on the change
point problem, we provide the following example. Assuming a sequence of random variables
is generated independently from the normal mean change point model (2.3) ; one can show
that the generalized log-likelihood ratio statistic (2.7) is equivalent to:

τ = argmax
1≤i≤n−1

∣∣X1:i −X(i+1):T

∣∣√
1
i
+ 1

T−i

, (2.8)
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where Xa:b is the sample mean of Xa, · · · , Xb segment of the random variables. In the
context of the mean change-point problem, test statistic (2.8) is the building block of
many recent multiple change-point detection methods such as wild binary segmentation
Fryzlewicz et al. (2014) Fryzlewicz (2020a), narrowest over threshold Baranowski et al.
(2019) and isolated point detection Anastasiou and Fryzlewicz (2019) to name a few.
In (2.8), the variance is assumed to be equal to one. In practice, the variance of the
random variables must be estimated with the methods which are robust to change in the
mean of the random variables. Examples of such methods are median absolute deviation
Hampel (1974) and kernel-based estimators Eichinger et al. (2018). Note that, median
absolute deviation can be applied if the random variables are independently distributed. An
alternative approach for estimating the variance is kernel based method. One of the main
drawbacks of kernel-based estimators is the difficulty in bandwidth selection. Shao and
Zhang (2010) proposed a self normalized single change point test statistic for the location
parameter change-point model. Unlike the traditional single change point tests, the self-
normalized test of Shao and Zhang (2010) utilizes an inconsistent variance estimator. Since
the inconsistent variance estimator is proportional to the true variance, then the nuisance
parameter of the variance is cancelled out in the limiting distribution of the single change
point test statistic. The self-normalized test was incorporated within the narrowest over
the threshold by Jiang et al. (2020) to track the number of daily new COVID-19 cases.
The self-normalized narrowest over threshold was designed to estimate the change in the
mean function of daily new cases. This particular self-normalized change point test was
designed under the assumption that the mean is a piecewise linear function of time.

To verify the existence of a change point within the sequence of random variables,
the test statistic (2.6) must exceed a predefined threshold. In the ordinary likelihood
ratio test, for two sample test, the test statistic (2.6) converges in distribution to χ2

d,
where d is the dimension of the parameter space. In the context of the change point
problem, the asymptotic distribution of the standard likelihood ratio test is not valid ,
since the location at which the parameter vector changes is unknown. Hawkins (1977)
obtained the exact distribution of the generalized log-likelihood ratio test statistic under
the assumptions of normal mean change point model (2.3) and known variance. Worsley
(1979) extended the results from Hawkins (1977) to the scenario in which the variance
is unknown. Yao and Davis (1986) calculated the asymptotic distribution of generalized
log likelihood ratio test statistic under the normal mean change point model (2.3). Jen
and Gupta (1987) investigated the change in variance of the sequence of independently
and normally distributed random variables with constant mean. They also calculated the
exact distribution of the generalized log-likelihood ratio test under the null hypothesis of
no change. Horváth (1993) investigated the behaviour of the generalized log-likelihood
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ratio test under two distinct normal change point model:

i:) change occurs in the variance, but the mean remains the same throughout the data,

ii:) change occurs in the mean and variance simultaneously.

Horváth (1993) derived the asymptotic distribution of the generalized log-likelihood ratio
test statistic under the null hypothesis for both cases. Single change point analysis is also
investigated in the context of multivariate data analysis. The generalized log-likelihood
ratio test and its properties have been investigated in the framework of the following
change-point models:

i: change in the mean vector while the covariance matrix remains constant (Srivastava
and Worsley (1986)),

ii: the mean vector is constant but the covariance matrix changes (Chen and Gupta
(2004)),

iii: the mean vector and the covariance matrix change simultaneously (Chen and Gupta
(2011)).

Davis et al. (1995) derived the single change point test statistic from the generalized log-
likelihood for the AR(p) process, constructed by the weakly stationary Gaussian white noise
process with the finite fourth moment. This particular single change point test statistic
is designed to identify a change in variance of white noise process and parameters of the
AR(p) time series process. The asymptotic distribution of the obtained single change point
test statistic is derived under the assumption of no change.

2.1.3 Information Criteria

Information Criteria can also be used as a single change point detection method. As before,
consider the sequence of independent random variables {Xt}Tt=1, assume only one change
point lays within the sequence of random variables. A general information criteria is:

IC(λ(T ; d)) = min
d≤τ≤T−d

[
−

τ∑
t=1

log(f(Xt; θa)−
T∑

t=τ+1

log(f(Xt, θb)) + λ(T ; d)
]
, (2.9)

where d is the dimension of the parameter vector and λ(T ; d) is the penalty function.
Note that, θa and θb are estimated by the maximum likelihood method based on the

15



sub-sequences X1, . . . , Xτ and Xτ+1, . . . , XT , respectively. Moreover, the location τ of
the change point is also obtained by the maximum likelihood estimate. Calculating the
information criteria under the assumption that the parameter vector has not changed
through out the sequence of random variables is equivalent to maximizing the log likelihood
function of the identically and independently distributed random variables. Information
criteria under the assumption of no change point is denoted by IC(0), where λ(T ; d) = 0.
If the information criteria of the single change point model is less than the information
criteria of the zero change point model (i.e., IC(λ(T ; d)) < IC(0)), then the presence of
the change point is verified by information criteria.

One of the main considerations in the information criteria is how to choose the penalty
function. The penalty function must be large enough to avoid the false discovery of a
change point and small enough to be sensitive to change in distribution. One of the most
popular information criteria is the Schwarz information criteria or Bayesian information
criteria (BIC) Schwarz et al. (1978). The penalty function in BIC is:

λ(T ; d) = d · log(T ).

Information criteria can also be applied in multiple change-point detection problems for
estimating the number of change points. For a review on applications of information
criteria in the context of single change point detection, we refer to Gupta and Chen Chen
and Gupta (2011).

2.1.4 Rank-based single change point test

The accuracy of the information criteria and generalized log-likelihood ratio test-based
single change point detection methods depends on whether the distribution of the random
variables is specified accurately or not. Therefore, non-parametric approaches are attractive
alternatives to parametric methods when the specification of the underlying distribution of
the random variables is not possible. This thesis focuses on the location parameter (mean)
change-point model where the random variables are generated independently.

Here, we develop a new variation of the rank-based single change point test statistic
from Wilcoxon sum-rank or equivalently a two sample Kruskal and Wallis one-way analysis
of variance. These particular tests are designed to verify whether multiple samples are
generated from the same distribution or not. Suppose we want to verify whether the
sub-samples X1, . . . , Xτ and Xτ+1, · · · , XT have common distribution or not. Before
conducting the test, the random variables are ranked as follow:

rt = #{Xℓ | Xℓ ≤ Xt, ℓ = 1, · · · , T}. (2.10)
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Then the Kruskal–Wallis statistic with respect to the index τ is calculated as follow:

H(τ) = (T − 1)
τ(r1:τ − r1:T )

2 + (T − τ)(r(τ+1):T − r1:T )
2∑T

t=1(rt − r1:T )2
,

where ra:b is the sample mean rank of the sub-sequence {Xt}bt=a; that is

ra:b =
1

b− a+ 1

b∑
t=a

rt .

A significantly large value of H implies that two sub-samples are generated from two
distinct probability distribution functions. With simple algebraic manipulation, following
can be shown:

R(τ) =
√
H(τ) =

|r1:τ − r(τ+1):T |√
σ2
r

(
1
τ
+ 1

T−τ

) , and σ2
r =

1

T − 1

∑
(rt − r1:T )

2.

As mentioned earlier, the location of change is often unknown and required to be estimated.
Assuming exactly one change point is located within the sequence of random variables
{Xt}Tt=1, the point in which R is maximized is the estimated location of the change point;
that is

τ = argmax
0<i<T

R(i). (2.11)

Unlike the parametric approaches that we mentioned earlier in this section, the rank-based
change point test statistic (2.11) can detect the change in mean whether the variance
remains constant throughout the sequence of random variables or not Chenouri et al.
(2020).

2.2 Multiple Change Point Detection Techniques

2.2.1 Estimating the Number of Change Points

In recent years, most change point analysis literature has investigated the scenarios in
which the number of change points is unknown. In the context of local search methods,
the number of change points is sometimes estimated by a threshold function that is ob-
tained based on the probability distribution of a single change point test statistic ( Chen
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and Gupta (2011) & Brodsky and Darkhovsky (1993)). Another popular approach is infor-
mation criteria.Yao (1988) demonstrated the consistency of the estimation of the number
of change points by the Bayesian information criterion. Bayesian information criteria are
calculated as follow:

BIC(M(K); θ) = −log
(
L(M(K); θ)

)
+K d log(T ), (2.12)

where L(M(K); θ) is the likelihood function of the change point model M(K) with K
change points and d is the dimension of the parameter vector θ. The set of change point
candidates that minimizes (2.12) is assigned to be the set of estimated change points.
Note that, to derive a consistent estimate of the number of change points by BIC, one
must bound the number of change points from above. The specified upper bound for
number of change points is much smaller than the number of observations. Since the
regularity conditions of the likelihood function are not satisfied in context of the change
point problem, BIC may not be an effective tool for estimating the number of change
points. Therefore, Zhang and Siegmund (2007) proposed a new variation of the Bayesian
information criteria referred to as modified Bayesian information criteria (mBIC), which
is better suited for the change-point problem.

Fryzlewicz (2020a) argued that threshold-based methods and information criteria do
not accurately estimate the number of change points in models with frequent change points.
As mentioned earlier, information criteria do not provide a consistent estimation for the
number of change points when changes in the distribution of the random variables occur
frequently. In other words, the number of change points is required to be much less
than the number of observations. Moreover, constructing a reliable threshold function
in the context of a frequent change-point model is not practical. Recall that, to build a
threshold function, the probability distribution function of the test statistic is required to
be estimated accurately. However, such a task is not possible in the data configuration
with frequent change points. Thus, Fryzlewicz (2020a) proposed the steepest drop to
lowest level model selection in which threshold function plays a secondary role. Therefore,
overestimation or underestimation of the threshold will not be troublesome. Later on, we
will describe the steepest drop to lowest level model selection in more detail alongside wild
binary segmentation 2.

18



2.2.2 Local Search Methods

Binary Segmentation

One of the earliest multiple change-point detection methods is binary segmentation (Scott
and Knott (1974)). Binary segmentation initially searches the entire sequence of observa-
tions for a single change point. If no change point is detected, then the procedure stops.
Otherwise, the dataset is divided into two segments based on the detected change point.
For instance, if the index τ is assigned to be the estimated change point, then the data set
is segmented into two intervals I1 = (0, τ ] and I2 = (τ, T ]. A similar search is conducted
within both of I1 and I2. This procedure is continued until no new change point can be
obtained. The number of change points can be estimated by either information criteria
or threshold-based approaches. In the threshold-based approach, binary segmentation is
continued until none of the single change point tests statistic exceeds a predefined thresh-
old. To estimate the number of change points by BIC, the upper bound for the number of
change points Kmax is required to be specified before the launch of the procedure. Unlike
binary segmentation via thresholding, at most one change point candidate enters the active
set at each stage of the binary segmentation via BIC. To be more precise, the change point
candidate with the largest calculated single change point test statistic enters the active
set at each stage of the procedure. This process continues until all Kmax change point
candidates are collected. So far, throughout the binary segmentation, Kmax +1 active sets
are obtained including the null model. The active set with the smallest BIC is assigned to
be the set of estimated change points.

In threshold based search, the main ingredient of the binary segmentation approach
is the single change point test statistic. The performance of the binary segmentation
depends on the power of the single change point test. As long as the true change points
are sufficiently far from each other, a single change point test retains its power in the region
with more than one true change point. On the other hand, when the true change points are
too close to each other, they may offset one another and become undetectable to a single
change point test statistic. Therefore, a change point test should be conducted within
the data segment that contains one change point and is bounded by other change points.
Despite this particular drawbacks of binary segmentation, it remains popular due to its
simplicity and computational efficiency. Many local search methods have been developed
to build upon the desirable properties of binary segmentation while improving its accuracy.
The main concern of these methods is detecting the individual change points within the
longest intervals of the observations that contain precisely one change point and at the
same time, avoid adding to the computational complexities significantly.
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Circular Binary Segmentation

Throughout the binary segmentation, change point tests are performed regardless of their
corresponding intervals. That is, many of the intervals which are defined for the tests
contain more than one change points. Thus, binary segmentation may fail to recover
the data segments which are created by closely located change points. One of the most
investigated examples of such a scenario is the copy number variation in genomics. The
copy number variation has become the motivation behind many of the multiple change
point detection techniques such as circular binary segmentation ((Olshen et al. (2004))).
Circular binary segmentation is adjusted in a way to recover the buried narrow changed
segments of the data. Initially the sequence of random variables is clustered into the
following two groups: {X1, . . . , Xi, Xj+1, . . . , XT} and {Xi+1, . . . , Xj}. Similar to the
regular binary segmentation, a single change point test is conducted to verify whether the
segment Xi+1, . . . , Xj has a different parameter vector from the rest of the observations
or not. Assuming that the random variables are distributed normally and independently
with unit variance, the single change point test statistic is calculated as follow:

Zi,j =

∣∣ST−Sj+Si

T−j+i
− Sj−Si

j−i

∣∣√
1

T−j+i
+ 1

j−i

, (2.13)

where Sℓ =
ℓ∑

t=1

Xt. The largest value of the statistic is obtained and denoted by

ZC = max
1≤i<j≤T

Zi,j .

If the observed ZC exceeds a predefined threshold, then the change in the mean is con-
firmed. For instance, if Zi,j = ZC and ZC exceeds a pre-specified threshold, then i and
j are signalled as mean change points. This procedure is conducted recursively to detect
the remaining change points. When the random variables are generated from the nor-
mal mean change point model, we can calculate the threshold function with Monte Carlo
simulations. To decrease the computational complexity of circular binary segmentation,
Venkatraman and Olshen (2007) proposed a hybrid approach to construct the threshold
function in almost linear time. They demonstrate that the new version of the circular
binary segmentation is significantly faster and nearly as accurate as of the original circular
binary segmentation.
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Wild Binary Segmentation

One of the most popular variations of binary segmentation is wild binary segmentation
(Fryzlewicz et al. (2014)). Wild binary segmentation is explicitly designed for mean change-
point models where the variance is constant, and the mean is a piecewise constant function
of time. This procedure is initiated with drawing a large number of randomized intervals
within a sequence of random variables. Next, a single change point test statistic (CUSUM
statistic (2.8)) is calculated concerning each of the random intervals. We refer to the points
which maximize the weighted CUSUM statistic in their respective intervals as change
point candidates. The change point candidate with the most significant CUSUM statistic
in the respective interval is assigned to be the estimated change point. After adding
the estimated change point to the active set, the randomized intervals that contain the
estimated change point are discarded. This process is stopped when all of the randomly
drawn data segments are discarded. Similar to binary segmentation, the number of change
points can be estimated with some variations of the Schwarz information criterion (Schwarz
et al. (1978)) or thresholding. Both approaches were studied by Fryzlewicz et al. (2014)
thoroughly.

One of the primary considerations of wild binary segmentation is the choice of the
number of randomized intervals. As the number of observations increases, the number of
the required randomized intervals increases as well. The longer the sequence of observations
becomes, the more computationally complex or inaccurate the wild binary segmentation
method becomes.

At each stage of the wild binary segmentation, the change point candidate with the most
prominent weighted CUSUM statistic enters the active set. The hope is that, the interval
with the largest CUSUM statistic contains at most one change point. However, this wishful
situation may not be fulfilled. Figure (2.1) demonstrates the data configuration in which
the interval with the largest weighted CUSUM statistic may contain multiple true change
points. This particular flaw of the binary segmentation and wild binary segmentation may
not influence their performance in the context of the mean change-point model. However,
Baranowski et al. (2019) argued against the use of binary segmentation and wild binary
segmentation when the mean between the change points is the polynomial function of time.

Narrowest over threshold

In wild binary segmentation, the intervals that are used for estimating the locations of
change points within data may contain more than one change point. Baranowski et al.
(2019) demonstrated that the accuracy of generalized likelihood ratio tests is compromised
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Figure 2.1: The conducted weighted CUSUM statistic concerning the entire dataset may
be larger than the weighted CUSUM statistic calculated within other intervals of the data.
Thus, the estimated change point is obtained from the contaminated interval.

when the search domain is contaminated with multiple change points and the mean is a
piecewise polynomial function of time. Therefore, wild binary segmentation can not be
extended beyond the simple piecewise constant mean change-point model. The narrowest
over threshold (NOT) proposed by Baranowski et al. (2019) emphasizes extracting the
estimated change points from narrow intervals.

Similar to wild binary segmentation, first, a large number of intervals are randomly
drawn, and then the narrowest over threshold procedure is launched. A single change
point test statistic is calculated concerning each of the randomized intervals. The intervals
in which a predefined threshold is satisfied are kept, and the rest of the intervals are
discarded. The narrowest interval among the recorded intervals is selected and the point
that maximizes the single change point test statistic within the aforementioned interval
is assigned to enter the active set. After the entrance of each estimated change point to
the active set, the intervals that contain the estimated change points are eliminated. This
procedure is continued until no intervals are left. Since the change points are extracted
from the narrowest available interval, the possibility of inference on the location of change
points within the intervals that are contaminated with multiple change points is diminished
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significantly. Thus, the narrowest over threshold can be applied to a significantly larger
spectrum of the change point problems in comparison to binary segmentation or wild
binary segmentation. Baranowski et al. (2019) primarily investigated the performance of
narrowest over threshold concerning several change point models under the assumption
that random variables are generated independently. Jiang et al. (2020) conducted the
narrowest over threshold to detect change in trends of the new COVID-19 cases. Due to
the dependency of daily new cases, Jiang et al. (2020) replaced the generalized likelihood
ratio test with a self-normalized test (Shao and Zhang (2010)). This particular variation of
the narrowest over threshold is referred to as self-normalized narrowest over threshold. The
threshold for self normalized narrowest over threshold is obtained by parametric bootstrap
resampling as follow:

• A large number of the replications of the Gaussian white noise are generated ;

• For each of the generated replications,

– The self normalized change point test statistic is calculated with respect to the
sufficient number of the randomly drawn intervals;

– The largest value of the calculated test statistic with respect to the randomized
intervals in the replication is recorded;

• The (1 − α) percentile of the recorded test statistic values is assigned to be the
threshold function.

The practitioners’ value of α is chosen depending on the desired sensitivity to the false
discovery of change points.

Even though the risk of estimating the change points within the interval that contains
multiple change points is reduced significantly in narrowest over threshold, these intervals
are still far from ideal. For instance, due to the short length of this interval, the estimated
location of the change point may lack sufficient accuracy. Moreover, conducting the gener-
alized likelihood ratio test in narrow intervals is prone to misdiagnosing the fluctuation of
the observations with the change in the distribution of the random variables. The vulner-
ability of narrowest over threshold to the false discovery of change points is demonstrated
in the following simulation study:

• M sequence of identically and independently distributed random variables with T
observations are generated and each sequence is denoted with {Xm

t }Tt=1 for m =
1, · · · ,M .
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• For each of the M replications, do the following:

– The (weighted) CUSUM test (2.8) is conducted for the entire sequence of ob-
servations. The value of the test statistic is recorded and referred to as a global
test value.

– B randomized intervals are drawn, and the single change point test (2.8) is
conducted within each of the randomized intervals.

– The largest value of underlying single change point statistic that is calculated
within the randomized intervals is recorded and called the local test value.

At the end of this process, two separate histograms of the local CUSUM and global CUSUM
statistics are plotted in Figure 2.2. Based on Figure 2.2, the global CUSUM statistic is
less likely to pick the variation in random noises as the change in the distribution of the
random variables in comparison to the local test. That is, the global test is less susceptible
to false discovery of change points.

MOSUM and its variants

The primary ingredient of local search methods is the single change point test statistic
that recovers the individual change points. Some of the multiple change-point methods,
such as binary segmentation, estimate changes points by maximizing a single change point
test statistic within data segments. An alternative approach among local search methods
is the MOSUM (moving sum) statistic (Hušková and Slabỳ (2001)). For convenience, we
describe an application of the MOSUM statistic in the normal mean change-point model.
Recall that, the normal mean change-point model is the scenario in which a sequence of
independent random variables is generated from a Gaussian process with piecewise constant
mean and unit variance. Suppose we want to discover the points in which the mean of
the random variables changed. The MOSUM procedure starts with guessing the minimum
distances among the true change points. Next, the new parameter called bandwidth (h)
is specified. The length of the bandwidth is ideally half of the minimum distance among
true change points. The MOSUM statistic is calculated as follow:

D(i, h) =
√

h

2

∣∣X(i−h+1):i −X(i+1):h

∣∣ , for i = h, . . . , T − h,

where X(a+1):b =
1

b−a+1

∑b
j=a+1 Xj and h is the bandwidth. All data points with MOSUM

statistic that exceeds a predefined threshold are recorded. Then among the collected
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Figure 2.2: The global and local CUSUM statistics are plotted in two separates his-
tograms. The blue and red lines represent the threshold functions λ1 =

√
2log(T ) and

λ2 = 1.3
√

2log(T ), respectively. Based on these histograms, a larger portion of the cal-
culated local CUSUM statistic exceeds both thresholds compared to the global CUSUM
statistic. Thus, methods such as narrowest over threshold and wild binary segmentation
are more likely to overestimate the number of change points.
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points, the indexes such as τ is selected to be the change point if D(τ, h) > D(η, h) for
every η ∈ (τ − h, τ + h). Selection of the bandwidth h is very important. The MOSUM
with a short bandwidth lacks the power to detect the change points. On the other hand,
if the bandwidth is too wide, more than one change point may hide within the intervals
defined for the MOSUM statistic. Subsequently, change points may offset or mask each
other and become undetectable to the MOSUM statistic.

When the distance between the adjacent change points varies, a single bandwidth MO-
SUM statistic cannot recover all the change points. Thus, Multi-Filter algorithm (Messer
et al. (2014)), and Multi-Scale Localized Pruning (Cho and Kirch (2019)) incorporate
multiple single bandwidth mosum and aggregate the estimated change points. In the
multi-filter algorithm, all change point candidates extracted by the MOSUM statistic with
the shortest bandwidth are selected to be change points. Then all change point candidates
that are within the bandwidth of the chosen change points are discarded. This process
continues until no change point candidates left. Like narrowest over threshold algorithm,
the multi-filter algorithm prioritizes the change point candidates that are extracted from
shorter segments of data. Hence the estimated change points may not be accurate due to
insufficient data points within segments. Moreover, when bandwidth is too short, random
noise fluctuation may be mistaken with a change in mean as demonstrated in Figure 2.2.

Localized pruning was proposed as an alternative approach to combine several single
bandwidth MOSUM statistics. At first, all the change point candidates alongside their
corresponding bandwidths and magnitude of MOSUM statistic are recorded and sorted
with respect to the magnitude of MOSUM statistic in the decreasing order. Notice that
these are γ, h, |D(γ, h)|, where γ is the index, h is the bandwidth, and |D(γ, h)| is the
magnitude of the MOSUM statistic. Then the change point candidate with the largest
MOSUM is selected and denoted by τ . All the change point candidates that are conflicted
with τ are collected. Note that change point candidates η and τ with corresponding
bandwidths g and h are conflicted if

∣∣η − τ
∣∣ ≤ min(g, h). Suppose the points η

ℓ
and

ηr are the smallest and largest indexes that are conflicted with τ , respectively. Next,
the change point candidate with the largest index to the left of η

ℓ
and the change point

candidate with the smallest index to the right of ηr are identified and denoted by η
L
and

η
R
, respectively. The segment between η

L
and η

R
is referred to as a local environment of

the change point candidate τ . This process is repeated for the remaining change point
candidates. For each of the designated local environments, the subset of the change point
candidates that minimizes the Bayesian information criteria is assigned to the active set.
Recall that to estimate the number of change points with BIC consistently; we must specify
the maximum number of change points. However, in the localized pruning algorithm, the
upper bound for the number of change points is not required to be specified. Even though
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the localized pruning seems to be more innovative and sophisticated compared to the
multi-filter algorithm, this algorithm is extremely flawed. As the number of bandwidth
increases, the computational time increases significantly and may even become infeasible.
Moreover, the accuracy of the multiple change-point approaches decreases significantly if
every single possible bandwidth is incorporated into the algorithm. The latter claim will
be demonstrated in the simulation study section in the Chapter 3.

Wild Binary Segmentation 2 and Steepest Drop to Lowest Level

Recall that, in wild binary segmentation, a large number of randomized intervals are drawn
prior to the launch of the procedure. This way, the computational complexity of the
procedure remains independent from the number of change points. Unfortunately, this
approach is not practical in frequent change-point models. Therefore, Fryzlewicz (2020a)
proposed an alternative sampling approach that can be effective regardless of the frequency
of the change points. Instead of drawing the randomized intervals prior to the start of the
change point analysis, a smaller number of randomized intervals are drawn from each of
the segments that are obtained throughout the procedure.

Consider the sequence of random variables {Xt}Tt=1 that may contain change points. To
locate the first change point candidate, we draw a relatively small number of randomized
intervals. Next, we calculate the underlying single change point test statistic for each of
the randomly drawn intervals. The point that is associated with the largest value of the
single change point test statistic is declared as a change point candidate. Subsequently, the
dataset is segmented into two partitions with respect to the recently obtained change point
candidate. Then similar search is conducted concerning the newly constructed segments.
This procedure is continued until no new sub-samples can be drawn. That is, there is no
segment between the change point candidates with more than one data point. In other
words, every observations is a change point candidate.

Wild binary segmentation 2 was designed to locate the undetected change points effi-
ciently regardless of the frequency of the change points. Furthermore,Fryzlewicz (2020a)
argued that the traditional tools for estimating the number of change points are not effec-
tive in data configuration with frequent change points. For instance, information criteria
are proven to be too conservative in models with frequent change points. Moreover, obtain-
ing a desirable threshold function is not practical in a dataset with many change points.
For instance, a good quality variance estimate is critical to get a reliable threshold in the
normal mean change-point model. In the data configuration with a low number of mean
changes, the median absolute deviation can estimate the variance with a reasonable ac-
curacy as long as the random variables are generated independently. However, variance
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is often overestimated by median absolute deviation in the setting with frequent change
points. Subsequently, the constructed threshold will become too large, and the single
change point test becomes less sensitive to change in mean. Thus Fryzlewicz (2020a) pro-
posed a new approach called Steepest Drop to Lowest Level. Fryzlewicz (2020a) claimed
since the threshold function plays a secondary role in estimating the change points in this
method, a poorly chosen threshold function will not decrease the accuracy of the estimated
number of change points.

The change point candidates which were obtained by wild binary segmentation 2 are
recorded alongside with their respective intervals that they are extracted from and the
values of the test statistic. Then the change point candidates are sorted in the decreasing
order of the test statistic values. Suppose bk is the change point candidate with kth largest
single change point test statistic value which is extracted from the interval (sk, ek], and
the quantity U(bk| sk, ek)) is the maximized change point test statistic with respect to the
interval (sk, ek], then bk is recorded in the following row vector:

(bk, sk, ek, U(bk| sk, ek)) , (2.14)

where U(b1| s1, e1)) > · · · > U(bT−1| sT−1, eT−1)). The difference of logarithm of the
consecutive test statistic is calculated. Suppose wild binary segmentation 2 is conducted
within the sequence of random variables {Xt}Tt=1 and T − 1 change point candidates are
obtained. These change point candidates are recorded in the row vector (2.14) as mentioned
earlier and then

ZK = log
(
U(bk| sk, ek))

)
− log

(
U(bk+1| sk+1, ek+1))

)
.

Suppose Zℓ is associated with the largest difference. If X bl+1
sl+1,el+1 is smaller than the pre-

specified threshold, then set of estimated change points is {b1, . . . , bℓ}. Otherwise, the
second largest drop in the difference logs is identified, and the single change points test
statistic associated with the drop is inspected. Suppose Zd represents the largest drop,
where U(bd+1| sd+1, ed+1)) is smaller than a predefined threshold, then all the change
point candidates such as bi with the single change point test statistic U(bi| si, ei)) >
U(bd+1| sd+1, ed+1)) are assigned to be the change points.

One of the main features of wild binary segmentation 2 is the re-sampling method
which generates the randomized intervals. This modification can increase the accuracy of
the estimated change points in comparison to wild binary segmentation. Note that the
re-sampling process applied in wild binary segmentation 2 can also be incorporated in the
narrowest over threshold method.
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Detecting Multiple Change Points With Isolating Single Points

Isolated Detection methods byAnastasiou and Fryzlewicz (2019) is a novel approach that
is computationally efficient and avoids the unpredictability of the randomized intervals
in methods such as narrowest over threshold or wild binary segmentation. At first, the
segments (0, L) and (T−L, T ), where 0 < L < T are searched. Suppose no change point is
detected, then similar search is repeated within (0, 2L) and (T − 2L, T ) intervals. Let say
the first change point is identified within the interval (0, 2L), then the next two segments
that are searched for the change points are (2L, 3L) and (T − 3L, T ). This procedure
is continued until the search areas from both sides coincide, and no further interval is
available. Note that, the change point location is detected within the segments of the data
that are not symmetrical, and one side of the true change point may contain more data
points than the other side. Thus, the inference on the position of change point may not
be accurate enough.

Narrowest Significant Pursuit

Narrowest Significant Pursuit (Fryzlewicz (2020b)) was proposed by Fryzlewicz to locate
the confidence regions of the change points within the sequence of random variables. Similar
to other local search methods, the single change point test is derived based on the assumed
change-point model. In the same fashion as wild binary Segmentation 2, several randomized
intervals are drawn at the start of each stage of the procedure. Then a single change point
test statistic is calculated within each of the randomly drawn intervals. The narrowest
randomized interval in which a single change point test indicates to presence of a change
point is identified. Multiple sub-intervals are drawn with respect to the selected interval
and the single change point test is conducted within each of the randomly drawn intervals.
Among the sub-intervals in which the change point test confirms the alteration of the
distribution, the narrowest one is assigned to be the confidence region. The confidence
regions of change points may overlap with each other. The extent that confidence regions
coincide with each other is allowed by parameters dℓ and dr. Suppose the interval (s, e) is
assigned to be the first confidence region. Then similar search for the confidence regions
is conducted within the interval (0, s+ dℓ) and (e− dℓ, T ). This procedure stops when no
new confidence region is obtained.
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Wild Energy Maximization with Gappy Schwarz Criterion

Another local search method that relies on randomly drawn intervals is Wild Energy Maxi-
mization with Gappy Schwarz (WEM.GSC) Cho and Fryzlewicz (2020). The main concern
of WEM.GSC is to estimate the locations of mean change points within the sequence of
the random variables with serial dependencies. That is, the goal of the WEM.GSC is
to identify the indexes {τ1 , · · · , τJ} within the sequence of the random variables that is
generated from:

Xt = µt + ϵt, (2.15)

where µτj
̸= µτj+1 and ϵt is a mean zeroAR(p) stationary process. One of the main difficulty

of detecting mean change points in model (2.15) is that the fluctuations of the random noise
are likely to be mistaken by mean change points. Hence, the long range variance of the
process (2.15) is required to be estimated. Two general approaches are the kernel based
methods and self normalizing test. One of the challenges associated to kernalized variance
estimator is selecting the length of the bandwidth. On the other hand, self normalized
change point test is not concerned with determination of any nuisance parameter such as
bandwidth. Unfortunately, the consistency of the self normalized change point test has
not been investigated sufficiently outside the single change point setting.

The WEM.GCP consists of two components: (i) wild energy maximisation (WEM)
which searches for the locations of mean change points and (ii) the gappy schwarz criterion
(GSC) that estimates the number of change points. The intervals generation mechanism in
the wild energy maximisation is similar to wild binary segmentation 2 (Fryzlewicz (2020a)).
That is, relatively small number of the randomized intervals are generated and subse-
quently a weighted CUSUM statistic (2.8) is calculated with respect to each interval. The
indexes which maximize the change point test statistic within the aforementioned intervals
alongside their corresponding intervals and the maximized change point test statistic are
recorded in the row vector. For instance, suppose the index τ maximizes the change point
test statistic within the interval with lower bound α and upper bound β and U(τ |α, β) is
the maximized test statistic with respect to the interval (α, β], then a row vector

[τ, α, β,U(τ |α, β)]

is recorded. Suppose the maximized change point test statistic which corresponds to the
index τ is larger than rest of the recorded change point test statistic in the recorded row
vectors, then the sequence of the random variables is divided to two segments which are
jointed by the index τ . Subsequently , similar procedure continues within the sub-intervals
X1, · · · , Xτ and Xτ+1, · · · , XT . That is, with respect to each of these segments:
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• Relatively small number of randomized intervals are drawn. These intervals are
denoted by I;

• The change point test statistic (2.8) is calculated for each of the randomized intervals
in the set I;

• Suppose the change point test statistic U(τ ∗|α∗, β∗) is larger than all of the maximized
change point test statistic within the interval set I, then the row vector

[τ ∗, α∗, β∗, U(τ ∗|α∗, β∗)] (2.16)

is collected;

• The entire interval is segmented with respect to the index τ ∗;

The WEM.GSC continues until no more randomized intervals with more than one obser-
vation can be drawn.

Similar to many of the local search methods, the number of change points is estimated
by Schwartz information criterion in WEM.GSC. Recall that, in order to estimate the
number change points consistently by information criteria, the upper bound for the number
of change points denoted by Kmax is required to be specified by the practitioner. Given
the time series dependencies in the change point model (2.15), calculating the information
criteria for all of the Kmax+1 is an infeasible task. Fortunately, Cho and Fryzlewicz (2020)
proposed a modification to the Schwarz Criterion that reduces the change point model
space. This variation of Schwarz criterion is named gappy Schwarz criterion (GSP).

In order to implement the Gappy Schwarz Criterion, the recorded row vectors (2.16)
are collected in the matrix W in the manner that the row vectors with the larger change
point test statistic are located in the top rows of the matrixW . Furthermore, the elements
of the matrix W are relabeled with respect to the magnitude of the recorded change point
test statistic . That is, the i-th row of the matrix W is

[τ (i), α(i), β(i), U(τ (i)|α(i), β(i))],

where τ (i) maximizes the change point test statistic within the sub-sequence of random
variables Xα(i)+1, · · · , Xβ(i) and U(τ (i)|α(i), βi) is the ith largest recorded change point test
statistic. Then, the change point test statistic is replaced with the log of the change point
test statistic (2.8); That is ,

Y(τ (t)|α(t), β(t)) = log
[
U(τ (t)|α(t), β(t))

]
, for t = 1, · · · , T. (2.17)
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The recorded indexes in the matrix W are referred to as change point candidates. Ei-
ther double CUSUM statistic (DC) (Cho (2016)) or the largest difference (LD)(Fryzlewicz
(2020a)) are applied to decide which of the candidates set to be in the model space. The
aim of the LD and DC is to identify the indexes in the matrixW after which the magnitude
of the change point test statistic has dropped the most. Next, these sets are assigned to
be the candidate sets in the model space to be defined for GSC. Note that, the number
of the indexes in the candidate sets are required to be smaller than the predefined upper
bound of the number of change points. To calculate the Schwartz Criterion, the AR(p)
time series model is fitted, where the order p of the autoregressive process is unknown.
The parameter of the AR process are estimated with respect to the longest segment in
the proposed change point model. Among the available change point candidate sets in the
model space and the null model, the one with the smallest Schwartz criterion is assigned
to be the estimated change point set.

Since the wild energy maximisation prioritize change point candidate with the largest
change point test statistic value, the possibility of the false discovery change points is
reduced significantly. Furthermore, by estimating the number of change points with gappy
Schwartz criteria, the long range variance is not required to be estimated. In other words,
the problem is reduced to obtaining the variance of the white noise which constructs the
linear process.

Seeded Binary Segmentation

The common theme of local search methods is to obtain intervals of sequence of random
variables which are relatively long and contains exactly one change point. For instance,
wild binary segmentation and narrowest over threshold attempt to obtain such intervals by
constructing large number of randomized intervals. Seeded binary segmentation (Kovács
et al. (2020)) proposes an alternative approach to search for intervals in a deterministic
manner. This approach is generic and can be applied to wide spectrum of change point
models. One of the main attraction of the seeded binary segmentation is that the computa-
tional complexity of the method is independent of the data configuration. This property of
the Seeded Binary Segmentation method does not hold true for methods which utilize the
randomized intervals. For instance, the wild binary segmentation requires a significantly
larger number of the randomized intervals in the frequent change points datasets.

The seeded binary segmentation constructs the search intervals in multiple layers, where
the number of layers is defined by decay parameter a. The collection of the intervals in
the k-th layer (Ik), where

1 ≤ k ≤ ⌈log 1
a
(T )⌉,
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is generated as follow:

Ik =
nk⋃
i=1

{(⌊(i− 1)sk⌋, ⌈(i− 1)sk + lk⌉]}, (2.18)

where nk = 2 ⌈
(
1
a

)k−1⌉ − 1, lk = T ak−1 and sk = T−lk
nk−1

. Moreover, a is selected by the

practitioner from the interval [1
2
, 1). The overall interval collection is

I =

⌈log 1
a
(T )⌉⋃

k=1

Ik. (2.19)

Note that, ⌈m⌉ are the ceiling value of m and ⌊m⌋ is the floor value of m. As the value of
the decay parameter increases, the number of constructed intervals and the computational
complexity of the seeded binary segmentation increase. From the practical perspective,
the decay parameter is recommended to be 1√

2
.

Rank based Wild Binary Segmentation

So far, we have discussed the wild binary segmentation method (Fryzlewicz et al. (2014))
and its variations in a parametric setting (1.2). In this problem, the sequence of the random
variables is assumed to be generated from a common and known parametric family of
distribution functions. However, in many real world scenarios, the distribution function is
unknown and hard to approximate. Thus, rank based non-parametric approaches seems to
be attractive alternatives. Ross (2021) proposed alteration of the generalized log-likelihood
ratio test statistic (2.7) with a Lepage (Lepage (1971)) like statistic which combine the
Mann-Whitney (Mann and Whitney (1947)) and Mood statistic Mood (1954).

Similar to wild binary segmentation (Fryzlewicz et al. (2014)) or wild binary segmen-
tation 2, a single change point test statistic is calculated within intervals of the random
variables. In other words, a rank based single change point statistic is calculated locally.
To do this, we first rank the observations Xp+1, Xp+2, . . . , Xq in the interval (p, q]; That
is, rank of Xi with respect to the interval ( p, q] is:

r
i
=

q∑
j=p+1

1(Xi ≥ Xj).

After ranking the sequence of observations in the interval (p, q], we compute the value
of the rank change point statistic. One of the advantages of a rank based change point
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detection methods is that they are non-parametric. Thus, the threshold function can be
constructed in a distribution free manner. Ross (2021) constructed the threshold function
by parametric bootstrap re-sampling similar to Jun Shin et al. (2020) and Jiang et al.
(2020). Another variation of rank based wild binary segmentation was proposed by Padilla
et al. (2019) which differs from the aforementioned rank based wild binary segmentation
Ross (2021) with respect to the rank based change point test statistic and the constructed
threshold.

Bottom Up Multiple Change Point Detection Methods

A common feature of all of the change point detection methods which has been discussed
so far is that they are initiated with no change points and then change points are recovered
sequentially by conducting a change point test. This category of the local search method is
known as the top-down approach. The earliest top-down technique is binary segmentation.
One of the main drawbacks of binary segmentation is searching for the individual change
points within the data segments with multiple change points. Thus, binary segmentation
may fail to detect change points when they are too close to each other. This particular
drawback of binary segmentation has been one of the main motivations behind many
more sophisticated top-down methods. The primary concern of the more recent top-down
approaches has been circumventing the interference of the undetected change points with
each other. These attempts lead to a rigorous search for the longest possible observation
segments that contain precisely one change point. Thus the computational cost of the top-
down change point detection techniques increases in comparison to binary segmentation.

Another category of local search methods is the bottom-up change point detection
techniques. Bottom-up change point detection techniques initially regard every single
index of observations as a potential change point candidate. Then change point candidates
are sequentially eliminated from consideration until the desirable active set is obtained.
Unlike the top-down approach, very few bottom-up change point detection techniques
have been proposed over the years. The two examples that we know of are backward
selection (Jun Shin et al. (2020)), and tail-greedy-bottom (Fryzlewicz et al. (2018)). Both
of these methods follow a very similar scheme.

In this chapter, backward selection and bottom-up-tail-greedy change point techniques
are investigated. The backward selection method was introduced in the context of the
copy number variation. Thus, it was constructed under the assumptions of the normal
mean change-point model. To decide which change point candidates to be removed from
an active set, the importance of each candidate is measured by a quantity called scaled
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jump size (2.20). Suppose the current set of change point candidates is {τ1 , . . . , τN}, then
the scaled jump size is calculated as follow:

U(τ
i
|τ

i−1
, τ

i+1
) =

∣∣X(τi−1+1):τi
−X(τi+1):τi+1

∣∣√
1

τi+1−τi
+ 1

τi−τi−1

for i = 1, · · · , N, (2.20)

where τ0 = 0 and τ
N+1

= T . At each run, the change point candidate with the smallest
scaled jump size is removed from the active set. Subsequently, the scaled jump size of
the change point candidates adjacent to the eliminated candidates are updated according
to the renewed active set. Backward selection stops when the scaled jump size of the
remaining change point candidates exceeds a predefined threshold. The threshold is con-
structed by estimating the probability distribution of the scaled jump size with a bootstrap
re-sampling. That is, multiple replications of Gaussian process with constant mean and
variance are generated. The mean of the random variables is estimated by maximum like-
lihood methods. However, the variance must be estimated by methods which are robust to
change in mean of the random variables. The examples of such methods are kernel meth-
ods and median absolute deviation. Then multiple replications of the random variables
are generated from Gaussian distribution with the estimated mean and variance. Back-
ward selection is executed for each of the replicated sequences of random variables, and
the largest calculated scaled jump size is recorded. Among the recorded scaled jump size,
(1 − α) × 100th percentile of the scaled jump size is assigned to be the threshold. The
value of α ∈ (0, 1) is decided by the practitioner.

Another variation of the bottom-up search methods is Tail Greedy Bottom Up, in
which, unlike backward selection, more than one change points may be eliminated after
each run as long as each segment is merged at most once. Prior to launch of the algorithm,
maximum number of change point candidates which are eliminated in each run is specified
and denoted by rmax . The set of change point candidates which are obtained after the jth
run is denoted byM(N(j)) = {τ (j)

1
, · · · , τ (j)

N(j)
}, where N(j) is the number of change point

candidates after the jth run. For example, every single observations is initially regarded as
a potential change point candidate; thus, the designated active set prior to launch of the
algorithm is M(N(0)) = {1, · · · , T − 1} = {τ (0)

1
, . . . , τ (0)

N(0)
}, where N(0) = T − 1. One

major difference between the backward selection and bottom-up-tail-greedy is the way each
change point candidate is assessed. Suppose the current active set isM(N(j)) and τ (j)

ℓ
is

getting inspected. The importance of τ (j)
ℓ

is inspected by the scaled jump sizes which were

calculated within the sub-intervals of (τ (j)
ℓ−1

, τ (j)
ℓ+1

] in the previous runs. Then the largest

scaled jump size is recorded and denoted by U(τ (j)
ℓ

). That is:

U(τ (j)
ℓ

) = max
i=0, ..., j

U(τ (j)
ℓ
|τ (i)

a
, τ (i)

b
) , (2.21)
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where τ (i)
a

and τ (i)
b

were adjacent change point candidates to τ (j)
ℓ

in the active set that
was obtained after the ith run, for i = 0, . . . , j. At each run of of the bottom-up-tail-
greedy approach, up to rmax change point candidates with the smallest scaled jump size are
eliminated from the active set. Moreover, test statistic (2.21) of all the eliminated change
point candidates are smaller than a predefined threshold and none of them were adjacent
with each other in the previous active set. The mth run would be the last run, if either

U(τ (m)
ℓ

) ≥ λ for ℓ = 1, . . . , N(m),

for a predefined threshold λ or no change point candidate left in the active set.

Both backward selection and bottom-up-tail-greedy follow the same scheme more or
less with some minor differences. One of the most critical concerns of both methods
is deciding on the threshold function. The threshold function is constructed based on
the estimated probability distribution of the scaled jump sizes. If the selected threshold
is oversized, then the backward selection is more likely to underestimate the number of
change points compared to bottom up tail greedy. Assuming the scaled jump size of a true
change point is less than a predefined threshold, the true change point is eliminated from
the active set according to the backward selection procedure. Unfortunately, the search
domains defined for the true change points adjacent to the eliminated true change point
are contaminated with multiple change points. Therefore, the scale jump size may become
less pronounced and subsequently backward procedure may eliminate more true change
points. Thus, bottom up tail greedy method is more robust to oversized threshold. On the
other hand, since the bottom-up-tail-greedy applies local change point test, it is prone to
misdiagnosis of fluctuation of the randomized noise with change in the distribution of the
random variables. As demonstrated in (2.2), the narrowness of the segment in which the
scaled jump size is calculated leads to an overestimation of the scaled jump size and even
a false discovery of the change points.

2.2.3 Global Search Methods

In global search methods, the locations of change points are estimated simultaneously and
often by finding an optimal solution for a minimization problem. Note that the objective
function of the optimization problem is devised based on the assumed change-point model.
Here we categorize global search methods into exact search methods and LASSO-type
estimator. In the exact search methods, the set of change point candidates that minimizes
an objective function is assigned to be the set of estimated change points. The search for
the optimal solution is ideally conducted by comparing all possible sets of change point
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candidates. The candidate change point set, which minimizes the objective function, is
assigned to be the set of estimated change points. This process is proven to be highly time-
consuming and even infeasible for large datasets. Thus, exact search methods utilize the
dynamic programming algorithm to reduced the computational complexity. The prominent
examples of such a method are segmented neighbourhood search algorithm (Auger and
Lawrence (1989)), and optimal partitioning algorithm (Jackson et al. (2005)). Another
approach among the global search methods is the application of the LASSO type estimators
called fused lasso. This approach will be discussed later on in this section.

Exact Search Methods

Consider the sequence of random variables {Xt}Tt=1 that are generated from a common
family of distribution with p.d.f. f and the m-dimensional parameter vector θ1, · · · , θT .
To estimate locations of the possible changes in the distribution, the following optimization
problem is conducted:

(τ1 , · · · , τN )t = argmin
0=η0<η1<···<η

N
<η

N+1
=T
L(0, η1 , · · · , ηN

, T ) +N mλT , (2.22)

L(η1 , · · · , ηN
) =

N∑
ℓ=0

C(η
ℓ
+ 1, η

ℓ+1
), (2.23)

where C(η
ℓ
+ 1, η

ℓ+1
) is the cost function associated to the random variables {Xt}

η
ℓ+1

t=η
ℓ
+1.

Moreover, N is the number of change points, m is the dimension of the parameter vector
and λT is the function of the number of observation. One of the most popular choices for
the penalty function is λ = log(T ) that is the penalty function for Bayesian information
criterion. A data driven approach for choice of the penalty function was proposed by
Haynes et al. (2017). Another consideration is the choice of the loss function L(·) which is
selected according to the assumptions of the change point model. In parametric settings,
the loss function is derived from the likelihood function. For instance, in the normal mean
change point model with unit variance, the cost function based on the likelihood function
is given by mean of square errors, i.e:

C(η
ℓ
+ 1, η

ℓ+1
) =

η
ℓ+1∑

t=η
ℓ
+1

(
Xt −X(η

ℓ
+1):η

ℓ+1

)2
.

Fortunately, a unique solution exists for problem (2.22). The optimization problem (2.22)
can be defined as either a constrained minimization problem or a penalised minimization
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problem. In the constrained minimization problem, the upper bound for the number of
change points denoted by Kmax is specified. Next, the loss function is minimized for the
given number of change points ,N , for N = 0, 1, . . . , Kmax. The set of indexes that mini-
mizes the function in (2.22) is assigned to be the estimated locations of change points. The
other version of the optimization problem (2.22) is the penalized minimization problem.
In the penalized minimization problem, the penalty function is the linear function of the
number of segments in (2.22). The optimal partitioning (Jackson et al. (2005)) search
method is applied to solve the penalized minimization problem.

Segment neighbourhood search algorithm (Auger and Lawrence (1989)) is designed to
solve the constrained minimization problem. In this algorithm, first, the upper bound
for the number of change points ,Kmax, is specified. Next, all of the sub-intervals of the
sequence of random variables such as {Xs}ts=1 for t = 2, · · · , T are partitioned into two
non-overlapping segments in a way that the loss function L is minimized. Then all of
the sub-intervals such as {Xs}ts=1 for t = 3, . . . , T are partitioned to three segments with
the help of segmentation in the previous stages. This procedure continues until all of
the possible sub-intervals are segmented to Kmax + 1 segments in a manner that the loss
function L is minimized. Then among the obtained segmentation, the one that minimizes
the objective function in (2.22) is assigned to be the optimal solution for the constrained
minimization problem. Consider a sub-interval of random variables {Xs}ts=1 with N change
points and denote the minimum of the loss function with N+1 segmentation by LN,t. Due
to the additivity of the loss function, LN, t can be obtained from the previous segmentation
in the following

LN, t = min
N≤s≤t−1

{
LN−1,s + C(s+ 1, t)

}
. (2.24)

The segment neighbourhood search is computationally expensive. To reduce the compu-
tational cost of the algorithm, Rigaill (2010) introduces a novel method called pruned
dynamic programming for pruning the candidate change point sets in segment neighbour-
hood search.

In penalized minimization problem, the new segment and the penalty function are
added to the penalized cost function simultaneously. As mentioned earlier, the optimal
partitioning search algorithm is designed to obtain the optimal solution for a penalized
minimization problem. The function which is required to be minimized by the optimal
partitioning search is called a penalized cost function. The minimum penalized cost func-
tion by the iteration t is denoted by F (t):

F (t) = min
η1 ,··· ,ηN

{ N∑
ℓ=0

[
C(η

ℓ
, η

ℓ+1
) + λT

]
−m λT

}
(2.25)
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where η
N+1

= t and t is called the endpoint. In optimal partition, the global minimum
in problem (2.25) is obtained recursively for all the possible end points such as t for
t = 0, . . . , T . The problem (2.25) can be rewritten as follow:

F (t) = min
0≤τ≤T−1

(
F (τ) + C(τ + 1, t) +mλT

)
, (2.26)

where F (0) = −mλT and τ is referred to as the last change point. The minimum penalized
cost function is calculated for all possible endpoints. Therefore, the optimal partitioning
search algorithm can be computationally expensive for the long sequence of random vari-
ables. To reduce the computational complexity of the optimal partitioning search algo-
rithm, Killick et al. (2012) proposed a pruning algorithm called PELT which eliminates
some of the indexes of random variables from any consideration in (2.26). Assuming the
following is true for some κ

C(s+ 1, t) + C(t+ 1, T ) + κ ≤ C(s+ 1, T ) for s < t < T, (2.27)

where κ is a positive constant, then if

F (s) + C(s+ 1, t) + κ > F (t) , (2.28)

s can not be the last change points for any end point larger than t. Thus, by incorporating
(2.28) into the optimal partitioning algorithm, many of the indexes that are not likely to
be the last change points are identified and discarded in the optimization problem (2.26).
Therefore, computational cost of PELT is significantly better than the optimal partitioning
search algorithm. Moreover, under certain configuration, the computational cost of PELT
is a linear function of time.

LASSO-Type Change Point Detection Methods

Another variation of the global search method is the LASSO-type methods. The main
difference between LASSO-type change point detection methods and exact search methods
is the penalty function which is relaxed from ℓ0 to ℓ1 norm penalization in the LASSO type
methods. In this section, we mainly focus on the use of LASSO on the normal mean change-
point model. Consider the sequence of random variables {Xt}Tt=1 with piecewise constant
mean and unit variance. The LASSO is launched to locate the time in which the mean of
the random variables changes afterwards. Suppose the mean of the random variable at time
t is µt. Then the mean change points are obtained by solving the following optimization
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problem:

(µ1, · · · , µT )
t = argmin

µ1,··· ,µT

T∑
t=1

(Xt − µt)
2 + λ

T−1∑
t=1

∣∣µt+1 − µt

∣∣. (2.29)

Application of LASSO on the change-point problem was initially proposed by Huang et al.
(2005) in the context of copy number variation. They obtained the solution for (2.29) by
modifying the optimization problem (2.29) to the standard model selection with LASSO
(Tibshirani (1996)).Harchaoui and Lévy-Leduc (2010) investigated the multiple change-
point detection methods via LASSO. There are several other literature on this topic, such
as Harchaoui and Lévy-Leduc (2010) and Bleakley and Vert (2011) to name a few.

Rank Based Global Search Methods

In the global search methods, the locations of change points are often estimated by mini-
mizing a loss function which is determined based on the underlying parametric distribution
of the random variables. One of the most notable examples of the parametric penalized loss
function is Shwartz information criterion which is closely related to log-likelihood function.
Therefore, to use this procedure, the underlying parametric distribution is required to be
specified accurately. To avoid the difficult task of determining the distribution of the ran-
dom variables, Wang et al. (2020) proposed a rank based Schwartz information criterion
with respect to the mean change point problem. Recall that in mean change point model,
the sequence of random variables {Xt}Tt=1 are generated from a common but unknown
family of distribution function as follow:

Xt = µt + ϵt , where µτj
̸= µτj+1,

and τ1 , . . . , τN are the location of changes in the mean. Moreover, ϵ1 , . . . , ϵT are indepen-
dently and identically distributed noises with mean zero and constant variance.

The main role of the rank based Schwartz criterion in Wang et al. (2020) is to determine
the number of change points. Prior to start of the procedure, the sequence of the random
variables are ranked as follow:

Rt =
T∑
i=1

I(Xi < Xt) +
T∑
i=1

I(Xi = Xt) + 0.5,

where I(A) is the indicator function of A. Similar to the other variation information
criteria, the rank based method consists of a loss function and a penalty term that cir-
cumvents overestimation of the number of change points. That is, the rank based Schwarz
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information criterion with respect to the candidate set {τ1 , τ2 , . . . , τK} is calculated as
follow:

rSIC(τ1 , τ2 , . . . , τK ) = LR(τ1 , τ2 , . . . , τK ) +K C T 2 log(T ). (2.30)

Note that LR is calculated based on the designated rank of the random variables and C
is a fixed constant. Wang et al. (2020) proposed several rank based loss functions. One
example is:

LR;LAD =
K∑
j=0

τj+1∑
t=τj+1

∣∣Rt − R̃(τj+1):τj+1

∣∣,
where R̃(τj+1):τj+1

is the median of the rank Rτj+1, . . . , Rτj+1
. Another consideration is

setting up a penalty term or more specifically determining the constant C in (2.30). They
determined C by conducting an extensive simulation study and assigned C to be 0.1.

As mentioned earlier in this chapter, multiple change point detection methods consist of
a search method and a mechanism which determines the number of change points. The rank
based Schwartz criteria can be applied in order to determine the number of mean change
points regardless of the underlying distribution family of the random variables. Moreover,
rank based Schwarz criteria can be implemented in local or global search methods. For
instance, Wang et al. (2020) proposed application of the rank based Schwarz criteria into
PELT algorithm (Killick et al. (2012)).

2.3 Comparison of Global and Local Search Methods

Single change point tests are constructed under the assumption that at most one change
point exists within the sequence of random variables. If an interval which is defined for a
change point test contains multiple change points, then the power of the test may diminish.
In other words, if a change point test is performed within the sequence of random variables
with multiple change points, then the test may fail to recover any change points. An alter-
native approach to single change point methods is multiple change point methods which
have been investigated extensively in the recent years. As mentioned earlier, to perform
a multiple change point detection analysis, local search methods conduct a single change
point test within a region of sequence of random variables. Thus, local search methods
may also fail when the aforementioned assumption in the implemented single change point
test is not satisfied (existence of at most one change point within local interval). One local
search method which manages to diminish the risk of the interference of change points
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with each others is the narrowest over threshold (Baranowski et al. (2019)). Note that,
as a consequence of drawing insufficient number of intervals, the narrowest over threshold
may also fail to detect a change in distribution of the random variables in some segment
of the dataset.

As noted, the primary component of the local search methods is a single change point
test. In fact, the accuracy of a local search method depends highly on the performance of
the single change point test which is implemented into the method. Single change point
tests are sometimes constructed from some sort of a loss function. In other words,

U(τ |α, β) = L(α, β)− L(α, τ, β), (2.31)

where U(τ |α, β) is the single change point test statistic which measures the change in dis-
tribution of the random variables at the point τ within the sub-sequence of the random
variables Xα+1, · · · , Xβ and L() is some sort of a loss function. Note that, the corre-
sponding loss function with respect to the candidate set {τ1 , · · · , τN} (L(0, τ1 , · · · , τN , T ))
is calculated as follow:

L(0, τ1 , · · · , τN , T ) =
N∑
l=0

C((τ
l
+ 1) : τ

l+1
).

where C((a + 1) : b) is the cost function between indexes a and b. One of the most
prominent examples of such a single change point test statistic is the generalized log-
likelihood ratio test statistic. Since single change point test statistics and the loss functions
are related here, one can conclude that the global search methods are much more vulnerable
to underestimation of the number of change points in comparison to their local search
counterparts. To demonstrate this claim, the following scenario is constructed. Consider
the candidate sets {η} and {γ1 , γ2} such that

{η} = argmin
i∈{1,··· ,T−1}

L(0, i, T )

{γ1 , γ2} = argmin
(α,β)∈{(i,j)| d≤i<T−d & i+d≤j<T}

L(0, α, β, T ).
(2.32)

As a result of equations (2.31) and (2.32),

U(γ2|γ1 , T ) = L(0, γ1 , T )− L(0, γ1 , γ2 , T ) ≥ L(0, η, T )− L(0, γ1 , γ2 , T ),

where d is the dimension of the changing parameter vector. Since the single change point
test statistic (2.31) is larger than the difference of the two loss function, local search
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methods are more likely to accept the possibility of a change in distribution of the random
variables in comparison to global search methods. Moreover, if some of the true change
points get eliminated due to the oversized penalty function, then the remaining change
points may get offset by eliminated ones. To demonstrate this observation, let us return
to the earlier scenario. Suppose the global search method is conducted with respect to the
sequence of the random variables with two change points. Moreover, the upper bound for
the number of change points is assigned to be two, and the penalty function is set to be
the function of number change points (i.e, λ(N), where N is the number of change points).
Suppose, equation (2.32) holds in the aforementioned sequence of random variables. Since
the maximum number of change points is assumed to be two, according to (2.32), the
estimated change point set is selected among the sets {}, {η} and {γ1 , γ2} (2.32). Suppose
U(γ2 |γ1 , T ) < λ(2) − λ(1), then L(0, η, T ) + λ(1) < L(0, γ1 , γ2 , T ) + λ(2). Therefore,
the set {γ1 , γ2} is rejected in favour of the set {η}. Since the candidate set {γ1 , γ2} is
removed from any further considerations, then the estimated change point set is selected
between the sets {} and {η}. The comparison between these two candidate sets is similar
to conducting a single change point test (2.31). Recall that, a single change point test
may fail to detect a change in distribution of random variables, if an interval which is
defined for the test is contaminated with closely located change points. Thus, the global
search methods may fail to locate any change points in this scenario. In other words, as
a result of the oversized penalty function and interference of the change points with each
other, global search methods may fail to detect any change points regardless of the value
of U(γ1|0, γ2). On the other hand, local search methods such as wild binary segmentation
or narrowest over threshold are more likely to recover a change point, since they are more
likely to conduct a change point test in an interval of the random variables with exactly
one change point. In summary, the local search methods such as wild binary segmentation
or narrowest over threshold are more robust to a large threshold than the global search
methods to an oversized penalty function.
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Chapter 3

Enhanced Backward Detection

3.1 Introduction

As we discussed in Section 2.2.2, throughout the bottom-up methods, the change point
candidates are eliminated sequentially. In parametric settings, the change point candidates
are often assessed with the log-likelihood ratio statistics. Consider the sequence of random
variables {Xt}Tt=1 that are generated from a common family of distributions with p.d.f.
f and d-dimensional parameter vectors θ1 , · · · , θT

. Suppose the log-likelihood ratio test
is conducted to decide on the elimination of the change point candidate τ . Moreover,
let assume the change point candidates which are adjacent to τ are the indexes a and b.
Thus, the log-likelihood ratio test is conducted within the sub-sequence of random variables
{Xt}bt=a+1 where 0 ≤ a < b ≤ T for testing a change at τ . In this case, the log-likelihood
ratio test is calculated as follow:

U(τ |a, b) = log

(
f(Xa+1, · · · , Xτ ; θa)f(Xτ+1, · · · , Xb; θb)

f(Xa+1, · · · , Xb; θ0)

)
, (3.1)

where θa, θb, and θ0 are estimated by the maximum likelihood method within the intervals
of random variables {Xt}τt=a+1, {Xt}bτ+1 and {Xt}bt=a+1, respectively. The change point
candidates with the smaller test statistic (3.1) are less likely to be true change points.

The common feature of the bottom-up methods is the sequential elimination of the
change point candidates throughout the procedure. To decide on removing a change point
candidate, we evaluate all of the change point candidates in the current active set based
on the test statistic (3.1). Then one or multiple change-point candidates with the smallest
value of the test statistic (3.1) are discarded. The collection of the change point candidates
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that are retained after removing the unlikely change point candidates make up the new
active set. Throughout the execution of the bottom-up change point detection methods,
multiple active sets are obtained. Among the active sets, the most desirable one is assigned
to be the set of estimated change points. Note that, the elements of an active set may
not maximize the log-likelihood ratio statistic (3.1) within their corresponding intervals.
In this chapter, we introduce a novel bottom up change point detection method called
enhanced backward detection (EBD). Unlike other variations of the bottom-up change
point methods, EBD ensures that all of the elements of the active sets are the solutions to
the optimization problem (2.7) within their corresponding intervals. In other words, the
set of change point candidates {τ1 , . . . , τN} is an active set in context of EBD, if

τ
j
= argmax

τj−1<t<τj+1

U(t|τ
j−1

, τ
j+1

) for j = 1, · · · , N, (3.2)

where τ0 = 0 and τ
N+1

= T . The condition (3.2) is referred to as a sweeping requirement.
The procedure that ensures the satisfaction of sweeping requirement (3.2) by all of the
change point candidates in an active set is called the sweeping process. Throughout this
chapter, the active set with N change point candidates is denoted byM(N). After elim-
inating a change point candidate with the smallest value of the generalized log-likelihood
test statistic from the active set, we launch the sweeping process to obtain another active
set. Similar to other variations of the bottom-up change point detection methods, the ac-
tive sets that are obtained during EBD are recorded. Finally, the estimated change point
set is selected among the recorded active sets by the help of Bayesian Information Criteria.

The motivation for sweeping process is that the generalized log-likelihood ratio test
is much more accurate than the backward detection in the single change point detection
problem. To demonstrate the superior performance of the generalized log likelihood ratio
test over the backward detection, we constructed the following simulation study in the
single normal mean change point setting. Consider a sequence of independently normally
distributed random variables {X}40t=1 with unit variance and a piecewise constant mean µt

where µt = 0 for t = 1, . . . , 20 and µt = 2 for t = 21, . . . , 40. Note that, the number of
change points is known and assumed to be one in this particular simulation study. Thus,
the only concern is estimating the location of the mean change point. For the backward
detection method, the change point candidates are eliminated based on the magnitude of
the scaled jump size quantity (2.20), until one change point candidate remains. This point
is the estimated location of the change point by the backward detection. To assess the
accuracy of the backward detection, we subtract the true change point from the estimated
location of the change in the mean by backward detection. A similar procedure is repeated
for the generalized log-likelihood ratio test. The number of trails in this simulation study
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≤ −3 -2 -1 0 1 2 ≥ 3
Generalized log-likelihood ratio test Error

τc − τ
360 366 1139 6201 1134 413 387

Backward detection Error
τbws − τ

787 484 1056 5499 1060 459 655

Table 3.1: Estimates of the true change point i.e., τ are denoted with τc for the CUSUM
method and with τbws for the backward detection.

is 10000. Based on the simulation results in Table (3.1), the generalized log-likelihood ratio
test outperforms the backward detection significantly. This flaw of the backward detection
is more problematic in multiple change-point detection cases. Thus, the sweeping process
is necessary to be added to backward detection to improve the accuracy of this method.

In the next section (3.2), the sweeping process is described more precisely. Moreover,
the conditions by which the sweeping process is guaranteed to converge are introduced.
Next, we present EBD in Section (3.3). The performance of EBD is compared to some of the
most well-known multiple change-point detection methods in Section (3.4). Furthermore,
the role of the sweeping process in boosting the accuracy of EBD is demonstrated by
comparing the precision of EBD before and after adding the sweeping process.

3.2 Sweeping Process

EBD is differentiated from other bottom-up methods by the sweeping process. The hope is
that, the accuracy of EBD improves compared to other bottom-up change point methods
by adding this procedure. In this section, the sweeping process is described more pre-
cisely. Later on, the condition in which the sweeping process is guaranteed to converge is
presented.

To clarify the steps of the sweeping process, we construct the following example. Sup-
pose the current active set isM(K) = {τ1 , . . . , τK}, where τ1 < · · · < τ

K
. Recall that the

set of change point candidates is considered to be an active set in the context of EBD, if all
of the change point candidates satisfy the sweeping requirement (3.2). Suppose the change
point candidate τ

j
has the smallest value of the test statistic (3.1) among the members

of the active set M(K). Subsequently, τ
j
is eliminated from the active set M(K). The

remaining change point candidates may not satisfy the sweeping requirement (3.2). Thus,
the sweeping process is launched to obtain the next active set. To simplify the explanation
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of the sweeping process in the context of this example, we relabel the remaining elements
of the setM(K) as follow:

τ ∗
ℓ
= τ

ℓ
for ℓ = 1, . . . , j − 1,

τ ∗
ℓ
= τ

ℓ+1
for ℓ = j, . . . , K − 1.

Moreover, the current change point candidates set is denoted byM∗(K − 1). Note that,
after removing τ

j
, only portion of the remaining change point candidates are required to be

verified whether they satisfy the sweeping requirement(3.1) or not. In this example, τ ∗
j−1

and τ ∗
j
are the only change point candidates that may violate the sweeping requirement and

must be investigated by the sweeping process. Note that, since the sweeping requirement
is satisfied by the members of M(K), then the change point candidates which are not
adjacent to τ

j
will maximize the change point test statistic within their corresponding

intervals after removal of the change point candidate τ
j
. The current and last change point

candidates which are required to be verified are referred to as the count c = max(j − 1, 1)
and the maximum count m.c = min(K − 1, c+ 1)), respectively. Note that, the count and
the maximum count variables are subject to change throughout the process. For example,
if τc does not satisfy the sweeping requirement, then the count and maximum count are
updated as follow:

c = max(c− 1, 1),

m.c = min(K − 1, max(c+ 2, m.c)).

Otherwise, the count is added by one (c = c+ 1). The sweeping process is continued until
the count exceeds the maximum count (i.e., c > m.c). The steps of the sweeping process are
presented in the algorithm (1). The sweeping process is denoted by SP({Xt}t ,M∗(K −
1), c, m.c), where M∗(K − 1) is the set which consists of the change point candidates
before the launch of the sweeping process.

By adding the sweeping process to backward detection, the accuracy of the backward
detection improves significantly while the computational complexity does not increase by
much. One concern is that, the sweeping process may keep oscillating between multiple set
of change point candidates and subsequently does not converge. Here, this scenario is ex-
plored in a very simple example. Consider the indexes of the random variables τ1 , τ2 , τ

∗
1
, τ ∗

2
,
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Result: M(K − 1)
INITIALIZATION c, m.c andM∗(K − 1) ;
while c ≤ m.c do

Obtain τ = argmax
τc−1<t<τc+1

U(t|τc−1 , τc+1) where τ0 = 0 &τ
K
= T ;

if τ ̸= τc then
τc = τ ;
c = max(1, c− 1);
m.c = min(K − 1,max(c+ 2,m.c));

else
c = c+ 1;

end

end
Algorithm 1: Sweeping process.

such that

τ1 = argmax
0<i<τ2

U(i | 0, τ2),

τ2 = argmax
τ∗
1
<i<T

U(i | τ ∗
1
, T ),

τ ∗
1
= argmax

0<i<τ∗
2

U(i | 0, τ ∗
2
),

τ ∗
2
= argmax

τ1<i<T
U(i | τ1 , T ).

(3.3)

Suppose the sweeping process is launched on the set {τ1 , τ2}, where count is set to 1
and maximum count is 2. Since based on the assumptions in (3.3), τ1 maximizes the
generalized log-likelihood ratio test statistic within the interval (0, τ2), then count c is
added by 1 and the maximum count m.c remains 2. Now the point τ2 is getting inspected.
Since U(τ ∗

2
| τ1 , T ) is larger than U(τ2 | τ1 , T ), the τ2 is replaced by τ ∗

2
. Subsequently, the

count and maximum count are updated (c = 1&m.c = 2). However, τ ∗
1
maximizes the

generalized log-likelihood test statistic within the interval (0, τ ∗
2
), so τ ∗

1
replaces τ1 . Since,

U(τ2 | τ ∗1 , T ) is larger than U(τ
∗
2
| τ ∗

1
, T ), then τ ∗

2
is replaced with τ2 . Since the point τ1

maximizes the generalized log-likelihood ration test statistic in the segment (0, τ2), then
τ ∗
1
is replaced with τ1 . Thus, if the assumptions in (3.3) hold, then the sweeping process

keeps oscillating between multiple sets and subsequently algorithm fails to converge.

Recall that, the loss function in (2.22) can be derived from the maximum likelihood
function, given the random variables are generated from a common and known parametric
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family of distribution. The likelihood based loss function of the change point candidates
set {τ1 , · · · , τN} is calculated as follow:

L(0, τ1 , · · · , τN , T ) =
N∑
ℓ=0

C((τ
ℓ
+ 1) : τ

l+1
),

C((τ
ℓ
+ 1) : τ

ℓ+1
) = log

[
f(Xτ

ℓ
+1, . . . , Xτ

ℓ+1
)
]
,

(3.4)

where θ
ℓ
is estimated by maximum likelihood estimator within the sequence of random

variables {Xt}
τ
ℓ+1

t=τ
ℓ
+1. The log-likelihood ratio test for the change point candidate τ

ℓ
with

respect to the sub-sequence of the random variables {Xt}
τ
ℓ+1

t=τ
ℓ−1+1

can be represented as

follow:

U(τ
ℓ
| τ

ℓ−1
, τ

ℓ+1
) = C((τ

ℓ−1
+ 1) : τ

ℓ+1
)−

[
C((τ

ℓ−1
+ 1) : τ

ℓ
) + C((τ

ℓ
+ 1) : τ

ℓ+1
)
]
, (3.5)

for ℓ = 1, · · · , T . The relationship between the cost function (3.4) and the single change
point test statistic (3.1) is instrumental for the convergence of the sweeping process. Sup-
pose the set {τ1 , τ2} is the change point candidates set within the sequence of the random
variables {Xt}Tt=1, then

L(0, τ1 , τ2 , T ) = L(0, τ2 , T )− U(τ1 | 0, τ2) = C(1 : τ2) + C((τ2 + 1 : T ))− U(τ1 |0, τ2) ,
L(0, τ1 , τ2 , T ) = L(0, τ1 , T )− U(τ2 | τ1 , T ) = C(1 : τ1) + C((τ1 + 1 : T ))− U(τ2 | τ1 , T ) .

(3.6)

Let us return to the example in which the sweeping process did not converge. Assuming
the equation (3.3) is true, the sweeping process keep oscillating between multiple change
point candidates sets. Suppose the sweeping process is launched on the change point
candidate set {τ1 , τ2}, then the candidates sets rotate in the following manner:

{τ1 , τ2} ⇒ {τ1 , τ ∗2 } ⇒ {τ
∗
1
, τ ∗

2
} ⇒ {τ ∗

1
, τ2} ⇒ {τ1 , τ2} ⇒ · · · . (3.7)

In this example, the algebraic relationship between the loss function of the different change
point candidates sets is as follow:

L(0, τ1 , τ2 , T ) = C(1 : τ1) + C((τ1 + 1) : τ2) + C((τ2 + 1) : T )

= C(1 : τ1) + C((τ1 + 1) : T )− U(τ2 | τ1 , T )
= C(1 : τ1) + C((τ1 + 1) : τ∗

2
) + C((τ∗

2
+ 1) : T )

+ U(τ∗
2
| τ1 , T )− U(τ2 | τ1 , T )

= L(0, τ1 , τ∗2 , T ) + U(τ
∗
2
| τ1 , T )− U(τ2 | τ1 , T ).

(3.8)
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Similarly, the following can be shown:

L(0, τ1 , τ∗2 , T ) = L(0, τ
∗
1
, τ∗

2
, T ) + U(τ∗

1
| 0, τ∗

2
)− U(τ1 | 0, τ∗2 ) ,

L(0, τ∗
1
, τ∗

2
, T ) = L(0, τ∗

1
, τ2 , T ) + U(τ2 | τ∗1 , T )− U(τ∗

2
| τ∗

1
, T ) ,

L(0, τ∗
1
, τ2 , T ) = L(0, τ1 , τ2 , T ) + U(τ1 | 0, τ2)− U(τ∗

1
| 0, τ2) .

(3.9)

Based on the assumptions in the example (3.3) and results obtained in (3.8) and (3.9),
the following holds:

L(0, τ1 , τ2 , T ) > L(0, τ1 , τ∗2 , T ) > L(0, τ
∗
1
, τ∗

2
, T ) > L(0, τ∗

1
, τ2 , T ) > L(0, τ1 , τ2 , T ). (3.10)

The result in the equation (3.10) points out that assumptions in the equation (3.3) are
impossible to be fulfilled, and the sweeping process will eventually converge as long as the
single change point statistic is derived from some sort of a loss function. This example can
be extended to more general scenarios with larger change point candidates set.

3.3 Enhanced backward detection via BIC

Enhanced Backward Detection (EBD) starts with an active set with large number of change
point candidates. Then, the change point candidates with the smallest test statistic (3.1) is
identified and eliminated from the active set. To ensure that the sweeping requirement (3.2)
is satisfied by all the remaining change point candidates, the sweeping process is launched.
Throughout the procedure, multiple active sets are obtained. Finally, the estimated set of
change points is selected among the recorded active sets. In the context of EBD, selecting
the most desirable active set is equivalent to estimating the number of change points.

Two of the most frequently used approaches for estimating the number of change points
are the information criteria and threshold based methods. In this chapter, the number of
change points is estimated by Bayesian information criteria. In order to estimate the
number of change points consistently, the upper bound for the number of change points
, Nmax, is required to be specified. Consider the sequence of random variables {X1, . . . , XT}
and the active set M(N) = {τ1 , . . . , τN}, then the corresponding Bayesian information
criterion is calculated by:

BIC(M(N)) = −
N+1∑
j=1

log
[
f(Xτj−1+1, . . . , Xτj

)
]
+N · d · log(T ) , (3.11)

where d is the dimension of the parameter vectors. During the execution of EBD, Nmax+1
active sets are recorded. The active set which minimizes (3.11) is assigned to be the
estimated change points set and denoted byM.
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Result: M
INPUTS: X1, · · · , XT andM(Nmax) = {τ1 , · · · , τNmax

};
M =M(N)← SP({Xt}Tt=1

,M(Nmax), c,m.c);
BIC ← BIC(M(Nmax)));
N ← Nmax;
while N ≥ 0 do

j ← arg min
τ∈M(N)

U(τ
j
|τ

j−1
, τ

j+1
), where τ0 = 0 and τ

N+1
= T ;

M∗(N − 1)← {τ ∗
1
, · · · , τ ∗

N−1
} where

τ ∗
l
= τ

l
for l = 1, · · · , j − 1;

τ ∗
l
= τ

l+1
for l = j, · · · , N − 1;

N ← N − 1;
c← max(2, j − 1);
m.c← min(N,max(c+ 1,m.c));
M(N)← SP({Xt}Tt=1

,M∗(N), c,m.c);
if BIC(M(N)) < BIC then

BIC ← BIC(M(N));
M←M(N);

end

end
Algorithm 2: Enhanced backward detection via BIC.
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3.4 Simulation Study

In this section, performance of EBD is compared to several popular change points detection
methods under normal mean change points model. The normal mean change points model
can be rewritten as follow:

Xt = µt + ϵt ,

µ1 = · · · = µτ1
̸= µτ1+1 = · · · = µτ2

̸= µτ2+1 = · · · = µτ
N
̸= µτ

N
+1 = · · · = µτ

T
,

ϵt ∼ N(0, σ2) for t = 1, · · · , T,

where the mean of the random variables is a piecewise constant function of time and
variance is constant. Two classes of simulation studies are presented here:

• In class 1, the locations of the change points and the mean between the change points
are randomized and the sequence of random variables are generated as follow :

– The number of observations T is randomly drawn from the set

{100, 200, 500, 1000, 2000} .

– The maximum number of change points is set to Nmax = ⌊ T
10
⌋.

– Number of change points is selected randomly from the set {0, 1, 2, . . . , Nmax}
and denoted by N .

– Locations of change points are obtained by randomly drawing N points from
the set {1, 2, . . . , T − 1}.

– Difference in the mean before and after each change point is drawn from the
normal distribution with mean zero and standard deviation σ

js
, where σ

js
is

sampled from the set {1, 2, 5}.
– Finally, random noises are added to the data sequence, where the randomized

errors are generated independently and identically from the standard normal
distribution;

– The randomized change point model is referred to as random scenario and is
denoted by R.

• In the second class, the parameters of the change point models remain constant in
each trial. This class of the simulation study consists of the following change point
models:
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– In the normal mean change point Model 1 (M1), 2048 data points are generated.
The locations of the mean change points are

(205, 267, 308, 472, 512, 820, 902, 1332, 1557, 1598, 1659) .

The mean between the change points are

(0, 14.64, −3.66, 7.32, −7.32, 10.98, −4.39, 3.29, 19.03, 7.68, 15.37, 0) .

The standard deviation is set to σ = 10.

– In the normal mean change point Model 2 (M2), 497 data points are generated.
The locations of the mean change points are

(0, 139, 226, 243, 300, 309, 333, 497) .

The mean between the change points are

(−0.18, 0.08, 1.07, −0.53, 0.16, −0.69, −0.16) .

The standard deviation is set to σ = 0.4.

– In the normal mean change point Model 3 (M3), 560 data points are generated.
The locations of the mean change points are

(0, 11, 21, 41, 61, 91, 121, 161, 201, 251, 301, 361, 421, 491, 560) .

The mean between the change points are

(7, −7, 6, −6, 5, −5, 4, −4, 3, −3, 2, −2, 1, −1) .

The standard deviation is set to σ = 4.

– In the normal mean change point Model 4 (M4), 140 data points are generated.
The locations of the mean change points are

(0, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 140) .

The mean between the change points are

(0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1) .

The standard deviation is set to σ = 0.4.
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– In the normal mean change point Model 5 (M5), 150 data points are generated.
The locations of the mean change points are

(0, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 150) .

The mean between the change points are

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) .

The standard deviation is set to σ = 0.3.

The accuracy of the fitted change points models is assessed by the mean square error:

MSE =
1

T

T∑
t=1

(
µt − µ̂t

)2
, (3.12)

where µt and µ̂t are the true mean and the estimated mean of the random variable Xt,
respectively.

The performance of EBD is compared with other multiple change points detection
techniques such as simple binary segmentation (SBS) (Scott and Knott (1974)), wild binary
segmentation (WBS) (Fryzlewicz et al. (2014)), isolated detection (ID) (Anastasiou and
Fryzlewicz (2019)), MOSUM with localized pruning (MLP) (Cho and Kirch (2019)), tail
greedy bottom-up (TGUH) (Fryzlewicz et al. (2018)), SMUCE (Frick et al. (2014)), PELT
(Killick et al. (2012)) and pruned dynamic programming (DPP) (Rigaill (2010)). For
simple binary segmentation and PELT, the R package change point is used. In order
to decide the number of change points, the Bayesian information criteria is applied for
both PELT and binary segmentation. The R package breakfast is used for wild binary
segmentation and tail greedy bottom-up. The number of change points for wild binary
segmentation is also estimated with BIC. The package not (Baranowski et al. (2019)) is
used for narrowest over threshold. Similar to wild binary segmentation, the number of
change points is estimated by BIC. The package MOSUM (Cho and Kirch (2019) ) is used
for multi-scaled moving sum with localized pruning. For SMUCE (Frick et al. (2014)), the
package Step FDRseg is applied. Finally, the package Segmentor3IsBack (Rigaill (2010))
is used for pruned dynamic programming, and the number of change points is estimated
with Bayesian information criteria. The maximum number of change points is selected to
be 20 for change point models with fixed parameters and Nmax in the randomized scenario
for dynamic pruning programming.

Based on the simulation studies in Table (3.2), the dynamic pruned programming is
more accurate than other methods. However, dynamic pruned programming is proven to
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M1 M2 M3 M4 M5 R

MSE

EBD 2.4125 0.0035620 1.5105 0.059196 0.15413 0.15413
PELT 2.3850 0.0036211 1.5346 0.070008 0.021162 0.15678
ID 2.6038 0.0037935 1.5698 0.061695 0.021162 0.17614
DDP 2.4036 0.0037782 1.5219 0.052067 0.022073 0.14925
WBS 2.5418 0.0037327 1.4901 0.059667 0.02471 0.1786
TGUG 3.215 0.0046856 1.8711 0.064325 0.025101 0.17753
NOT 2.5641 0.0036122 1.5627 0.064230 0.021640 0.36156
SMUCE 4.86 0.0104288 4.0255 0.22824 0.177337 0.2651
MLP 2.5852 0.0047585 1.4430 0.0444 0.018839 0.23184
SBS 3.6345 0.0082395 2.3657 0.17298 0.025064 0.17985

Table 3.2: M1, M2, M3, M4 and M5 are the models 1, 2, 3, 4 and 5 for scenarios with
fixed parameters. R represents the result for the randomized scenario. In this table, EBD
stands for our proposed enhanced backward detection procedure.

be too time-consuming. Therefore, the dynamic pruned programming approach is ideally
conducted in scenarios with a small number of change points. According to Table 3.2,
EBD is the second most accurate change point detection technique. Thus, EBD can be a
reliable approach when the dynamic pruned programming is not feasible. Moreover, the
adaptability of EBD has made it more applicable to a more complicated range of change
point scenarios.

3.4.1 The Performance of EBD with respect to Zero Change
Point Models

In this section, we investigate the susceptibility of EBD to false discovery of change point.
EBD is conducted with respect to the sequence of Gaussian white noise with unit variables
and T = 100, 200, 500, 1000, 2000 observations. For each of the designated number of
observations T , one thousand observations are generated. Then we applied EBD with
respect to each generated sequence of random variables in order to estimate number of
change points. Note that, since the generated models contain zero change point, the
estimated number of change points ideally should be zero. The results of the simulation
study is summarized in Table 3.3. Based on the result in Table 3.3, as the number of
observations has increased, the risk of false discovery of change points is reduced.
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T=100 T=200 T=500 T=1000 T=2000
τ̂ = 0 912 946 969 989 989
τ̂ = 1 53 36 21 11 9
τ̂ = 2 32 14 6 0 2
τ̂ ≥ 3 3 4 4 0 0

Table 3.3: As the length of sequence of observations increases, the rate of false discovery
of change points decreases.

Mean square error (MSE)
Change point model M1 M2 M3 M4 M5

Enhanced backward detection 2.935 0.0035896 1.5319 0.05681 0.021956
backward detection 3.147 0.0045520 1.8796 0.064495 0.025162

Table 3.4: The mean square error for both enhanced backward detection and backward
detection is estimated. As it is seen, adding sweeping process to backward detection
improves the accuracy of the method significantly.

3.4.2 Does adding the sweeping process improves the accuracy
of the backward detection?

EBD is distinguished from other bottom-up change point detection techniques by a sweep-
ing process. To demonstrate the effectiveness of the sweeping process, we compared the
performance of EBD with backward detection in the scenarios M1, M2, M3, M4, and M5.
To evaluate these methods under identical circumstances, we estimated the number of
change points by BIC for both methods. The results of these simulation studies are exhib-
ited in Table 3.4 which indicate the superiority of EBD over ordinary backward detection.
In all of the simulated change point scenarios, EBD is proven to be more accurate than
backward detection.

3.4.3 Performance of the Multi-Scale Localized Pruning

Based on our simulation studies in Table 3.2, multi-scale localized pruning performs the
best for some of the change points models and unperforms for the rest of the scenarios. In
this section, we conduct simulation studies with respect to the M4 and M5 change point
models in order to compare the performance of the multi-scaled localized pruning with the
default set of bandwidths in the mosum (Cho and Kirch (2019)) package versus all possible
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Mean of the Square Error
M4 M5

Defult Bandwidth in mosum Package 0.04540 0.01870
All Possible Bandwidth 0.06142 0.03306

Table 3.5: As the number of bandwidths has increased, the mean of the square error
increases as well.

bandwidths. Note that, all possible bandwidths for mosum change points detection method
are

h = 2, · · · ,
⌊T
2

⌋
− 1.

Intuitively, as the number of bandwidths increases, the accuracy of the estimated change
points must increase as well. However, in terms of the mean of the square error, the multi-
scale localized pruning with default set of bandwidths is overwhelmingly superior according
to the results in Table 3.5. That means, by increasing the number of bandwidths and the
computational complexity of the localized pruning, the accuracy of the methods would
not increase necessarily. Therefore, the multiple-scale localised pruning is not suitable for
combining the results that are obtained from multiple single bandwidth mosum statistic.
Moreover, by increasing the number of bandwidths in multi-scale localized pruning, the
computational time increases significantly and even the method became infeasible in M1,
M2 and M3 scenarios.

3.4.4 Frequency of the Estimated Change Points by Enhanced
Backward Detection

In this section, we conducted simulation studies in order to obtain the distribution of the
estimated change points with respect to the models M1 to M5, which were introduced in
the previous simulation studies. For each change point model

• One thousand replications are generated according to the aforementioned change
point models;

• The enhanced backward detection is conducted with respect to each of the generated
data sets;

• Estimated change points of all of the generated data sets are collected;

57



• The histogram of the estimated change points are plotted in Figure (3.1);

As we expected, most of the estimated change points are clustered near the true change
points. In the other words, the enhanced backward detection is proven to be robust to
false discovery of change points and yet sensitive enough to identify the change in mean.
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Figure 3.1: The frequency of the estimated locations of the change points are presented
here by Histogram.

3.4.5 Computational Complexity of EBD

The computational complexity of algorithms is often calculated under the assumptions
of the worst case scenarios. That is, in the worst case scenario, the sweeping process
investigates all current change point candidates multiple times at each run of EBD. In other
words, after elimination of each change point candidate, the change point test statistic (3.1)
is re-calculated with respect to remaining candidates multiple times. However, this scenario
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O(
√
T ) O(T ) O(T log(T )) O(T 2) O(T 3)

1 91 670 223 15

Table 3.6: Empirical computational complexity of the enhanced backward detection suggest
O(T log(T )).

is unlikely to occur in our experience. Therefore, assessing the computational complexity
of EBD by traditional approaches is not insightful. In this section, the computational
complexity of EBD is obtained with the help of the R package GuessCompx (Agenis-Nevers
et al. (2021)). For this purpose, several replications of the random variables are generated.
Then EBD is conducted with respect to each generated dataset and the computational
complexity of EBD is guessed by the function CompEst in the package GuessCompx (Agenis-
Nevers et al. (2021)).

The configuration of random variables may influence the computational complexity
of EBD. Therefore, each generated dataset is constructed from the randomized model in
which the number and locations of change points and mean between the change points are
determined randomly. More precisely, the randomized change point model are constructed
as follow:

• The number of observations is set to be 1000.

• The number of change points is selected from a Poisson distribution, where the rate
is sampled from the set {4, 8}.

• Locations of change points are drawn randomly and uniformly from the set {1, 2
. . . , T − 1}.

• The mean difference after occurrence of change points are selected from Gaussian
distribution with mean zero and variance which is drawn randomly from the set
{1, 3, 5}.

• Gaussian white noise with unit variance is added to the constructed mean function.

The result of the simulation study is recorded in the Table (3.6). based on the afore-
mentioned simulation study, the computational complexity of EBD is most likely to be
O(T log(T )).
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3.5 Data Analysis

In this section, the change point analysis is conducted for various datasets. We assume
that, the random variables are normally and independently distributed. The mean is either
constant, piece-wise constant or piece-wise linear function of time and variance is either
constant or piece-wise constant. The problem of interest is to figure out the instances after
which mean or variance functions change. Since the datasets are assumed to be normally
distributed, the underlying change point test statistics are constructed from generalized
log-likelihood ratio test.

3.5.1 Housing Price Index (HPI)

Since the housing expenditure such as rents and mortgage covers a large portion of the
household expenses, the change in the housing price can affect the other economical activ-
ities. Thus, investigating the change in housing price is beneficial for understanding the
effect of economical events on the households and society. In this section, we conduct a
change point analysis via enhanced backward detection on the housing price indexes of the
three boroughs of the city of London and then we link the estimated change points to the
events that might have influenced the housing price.

For each dataset, a change point model is fitted based on the estimated locations after
which mean or variance of the random variables has changed. To assess the goodness of
the fits of the proposed change point model:

• First, we compute the residuals of the estimated change point models by

r̂t =
Xt − µ̂t

σ̂t

.

• Then, we verify the normality and stationarity of the calculated residuals via QQ-plot
and time series plot, respectively.

We assume the HPI datasets are normally and independently distributed. Through out
our analysis, We consider the following scenarios:

S1: The mean is piecewise constant and variance is constant.

S2: The mean is constant and variance is piecewise constant.
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S3: The mean and variance are piecewise constant and both mean and variance change
simultaneously after each change point.

Notice that, assuming the normality of HPI datasets, a single change point test statistic can
be derived from the corresponding generalized log-likelihood ratio test (3.1). The change
point analysis is conducted with respect to the datasets from the borough of Hackney,
Newham and Tower Hamlets. For more information on these datasets, we refer the reader
to data analysis section of Baranowski et al. (2019).
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Figure 3.2: The increase of the variance of the change in the housing price index in the
borough of the Hackney is visible between the year 2009 and 2010, while the mean remains
constant throughout the dataset. The increase of the variance can be explained by world-
wide financial crises during 2007-2009.

In the Borough of Hackney, the changes in variance is detected by enhanced backward
detection. Based on the result demonstrated in Figure 3.2, the variance within the period
between the years 2009-2010 increased significantly. This particular change in the housing
price overlapped imperfectly with the global financial crisis period. Note that, the enhanced
backward detection on the borough of Hackney is conducted under the assumption of the S2
change point model. Based on the QQ-plot and time series plot of the estimated residuals
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by S2 based enhanced backward detection, our presumed assumptions on this data set
seem to be reasonable.
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Figure 3.3: The sudden rise of the variance of the change in the housing price index for the
borough of Newham is visible between the year 2009 and 2010. The change in the variance
can be explained by world wide financial crises during 2007-2009. In other change points
locations, the change in distribution occurs only with respect to mean and variance has
remained constant.

To perform a change point analysis on Newham data set, enhanced backward detection
is conducted under the assumptions of S1 and S3 change point models. The changes in
mean and variance are detected with respect to 2008-2010. As mentioned earlier, the sharp
increase in the variance of the random variables may be explained with 2007-2009 financial
crisis. Also, the results in Figure 3.3 demonstrate the sharp fall in the housing prices of
that period. Note that, the other estimated change points are only associated with change
in the mean while the variance remains constant. Note that, the time series plots in Figure
3.3 points out to stationarity of the estimated residual. Furthermore. QQ-plot in Figure
3.3 confirm the normality assumption. Thus, our proposed change point model regarding
the rate of change in the HPI of the borough of Newham seems to be reasonable.

The change point analysis is conducted on housing price index of the borough of the
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Tower Hamlets by S3 based enhanced backward detection. Similar to previous two bor-
oughs, the significant rise of the variance is detected within the period 2008-2010 which
may be attributed to the 2007-2009 financial crisis. Fortunately, based on the Figure 3.4,
the normality assumption is justifiable.
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Figure 3.4: Enhanced backward detection is applied on the Tower Hamlets dataset via the
assumptions of the change point model S3.

3.5.2 Global Surface Temperature

This data set consists of the yearly average of the monthly temperature anomalies recorded
from January 1880 to June 2018. The anomalies here are defined as the difference between
the global temperature average in a given month and the baseline value. The baseline value
is obtained by averaging the temperature data collected over the 30 years starting from 1951
to 1980. By simply looking at Figure 3.5, one can realize the change in distribution occurs
only with respect to the mean which is a piecewise linear function of time. To conduct
a change point analysis in this data set, we assumed the random variable are generated
independently and normally. Moreover, the mean is assumed to be piecewise linear and

63



variance is constant function of time. We referred to this change points model and the
variation of the enhanced backward detection which is devised based on the aforementioned
change point model as S4 change point model and S4 based enhanced backward detection,
respectively.

The estimated change points are located in the years 1903, 1946 and 1964. Based on
Figure 3.5, the surface temperature anomalies remain constant from 1880 to 1903. Another
notable observation in Figure 3.5 is the consistent rise of surface temperature anomalies
since 1964. Moreover, the global surface temperature rose at a much sharper rate in
this period in comparison to other periods which are designated by enhanced backward
detection.

Similar to HPI datasets, the accuracy of the fitted change point model is assessed via
the estimated residuals. The recorded residuals are inspected in order to check whether
they follow a normal distribution or not. Note that the normality of the data set is verified
by the help of Shapiro test and QQ-plot. Both methods indicate that the sequence of
residuals is normally distributed. The normality of the residuals is evident to the goodness
of the fitted model by enhanced backward detection.

3.5.3 Covid-19 Daily Cases

One of the main events of 2020 was the worldwide spread of the Covid-19 which is attributed
to the high contingency of the disease. Due to high transmission rate, the public health
resources have been become overwhelmed. In order to mitigate the risk of the depletion
of the public health resources, the local and central governments devised extreme public
policies such as public lockdown. Economic lockdown is proven to put heavy tolls on the
economical and mental health of the society. Thus, the effectiveness of these policies are
required to be evaluated. This assessment can be done by estimating the change in the
trends of the daily new cases. Obviously, the decreasing trends imply the effectiveness
of the policies and increasing trends points out otherwise. In this section, we conducted
the enhanced backward detection on the daily Covid-19 cases from March/31/2020 to
Jun/02/2021 in Ontario.

We assumed the random variables are generated normally and independently with
piecewise linear mean and piecewise constant variance. The parameter vector of the mean
and variance functions changes simultaneously after occurrence of each change point. We
call this change point model and the variation of the enhanced backward detection which is
devised based on the presumed distribution of the daily new cases, S5 change point model
and S5 based enhanced change point model, respectively. The mean and variance function
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Figure 3.5: The simple linear model is fitted between the estimated change points for the
global surface temperature dataset. One notable observation is that the temperature has
been risen in a sharper rate since mid 1960s.
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Figure 3.6: The trend of the daily new Covid-19 cases changes after the introduction of
the public health policies.

are fitted according to the estimated change points by enhanced backward detection. Based
on the Figure 3.6, after introducing each lock down in the province of Ontario, the trend
in the daily new cases had decreased significantly. This observation implies the effective of
these public health measures in controlling the spread of Covid-19.
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Chapter 4

Rank Based enhanced backward
detection

4.1 Introduction

In Chapter 3, the enhanced backward detection method (EBD) was introduced in the
parametric setting. EBD estimates the locations of change points by using the generalized
log-likelihood ratio test statistic locally. Throughout the procedure, multiple active sets
are obtained. The active set which minimizes the Bayesian information criteria is assigned
to be the estimated change points set. To perform a generalized log-likelihood ratio test
effectively, a parametric family of distributions for the random variables must be specified
with a reasonable accuracy. Otherwise, the change point analysis via EBD would not be
sound. Therefore, non-parametric change point tests are reasonable alternatives to the
generalized log-likelihood ratio test, when the distribution family of the random variables
can not be determined with a reasonable accuracy.

This chapter mainly focuses on detecting changes in location and/or scale parame-
ters of independently distributed random variables. In other words, considering the ran-
dom variables X1, X2, . . . , XT are generated independently from distribution functions
F1, F2, . . . , FT with location parameters µ1 , µ2 , . . . , µT

and scale parameters σ2
1
, σ2

2
, . . . , σ2

T
,

respectively. The problem of interest is to recover the location change points τ1 , τ2 , . . . , τN
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and scale change points η1 , η2 , . . . , ηM
such that:

Xt = µt + σtϵt for t = 1, · · · , T, where

µ1 = · · · = µτ1
̸= µτ1+1 = · · · = µτ2

̸= · · · = µτ
N
̸= µτ

N
+1 = · · · = µ

T
,

σ2
1
= · · · = σ2

η1
̸= σ2

η1+1
= · · · = σ2

η2
̸= · · · = σ2

η
M
̸= σ2

η
M

+1
= · · · = σ2

T
, and

(4.1)

the sequence of random variables ϵ1 , ϵ2 , . . . , ϵT are independently and identically dis-
tributed with location zero and scale 1. Note that, the location and scale change points
are not identical, that is generally:

{τ1 , τ2 , . . . , τN} ≠ {η1 , η2 , . . . , ηM
}.

To identify the location and scale change points in model 4.1, we propose substituting
the generalized log-likelihood ratio test with a suitable rank based single change point test
statistic in the EBD. We refer to this variation of EBD as rank based enhanced backward
detection (REBD). To ensure the convergence of REBD, the underlying change point test
statistic is required to be derived from a loss function as demonstrated in (3.5). The im-
plemented test statistic in REBD algorithm will be elaborated more precisely in Section
4.2. Then REBD will be introduced formally in Section 4.3. Finally, change point analysis
is conducted with respect to real world datasets via REBD algorithm. Moreover, perfor-
mance of the rank based and parametric enhanced backward detection are compared in
term of accuracy.

4.2 Rank Based Change Point Test

Suppose the sequence of random variables X1, X2, . . . , XT is segmented into N + 1 non-
overlapping partitions as follow:

{Xt}
τ1
t=1, {Xt}

τ2
t=τ1+1, · · · , {Xt}Tt=τ

N
+1,

where the random variables in each segment have a common location parameter. Note
that, the location parameter of the adjacent segments may be equal or unequal with each
other. To verify, whether the location parameter remains constant throughout the sequence
of random variables or not, the following test is conducted:

H0 : µ1 = µ2 = · · · = µ
T

versus H1 : otherwise.
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This investigation can be conducted by the help of Kruskal–Wallis test statistic (Kruskal
and Wallis (1952)). Note that, Kruskall-Wallis test is a ranked based test. Thus, prior to
calculating the Kruskall-Wallis test statistic, the observations are ranked as follow:

rt =
T∑

s=1

1{Xs<Xt} + 0.5
T∑

s=1

1{Xt=Xs} + 0.5 for t = 1, 2, . . . , T. (4.2)

Then, Kruskall-Walls test statistic is obtained as follow:

H(0, τ1 , · · · , τN , T ) =
N+1∑
i=1

(τ
i
− τ

i−1
)(r

i
− r)2, (4.3)

where

r
i
=

1

τ
i
− τ

i−1

( τi∑
t=τi−1+1

rt

)
and r =

1

T

T∑
t=1

rt .

The large value of the test statistic H implies that some location parameters or center of
sub-population are different from one another.

Now we switch our attention to the special case in which the dataset is partitioned into
two segments: {Xℓ}tℓ=0 and {Xℓ}Tℓ=t+1. In this scenario, the Kruskal–Wallis test can be
reduced to:

H(0, t, T ) =

(
|r1 − r2 |√(
1
t +

1
T−t

))2

=

[ T∑
ℓ=1

(rℓ − r)2 −
( t∑

ℓ=1

(r
ℓ
− r1)

2 +
T∑

ℓ=t+1

(r
ℓ
− r2)

2
)]

. (4.4)

Suppose the index after which the location parameter of the random variables changes is
unknown. The point which maximizes the test statistic (4.4) is the most likely candidate
for the location parameter change point. That is, the location change point within the
sequence of the independently distributed random variables X1, X2, . . . , XT is estimated
as follow:

τ = argmax
0<t<t

U(t | 0, T ), where U(t | 0, T ) =
√

H(0, t, T ). (4.5)

The test statistic in (4.5) is referred to as rank CUSUM statistic in this chapter. Note
that, since rank CUSUM statistic is derived from sum of the square error of the rank of
observations (aka, a loss function), we can conclude the sweeping process in REBD will
terminates.
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In the context of multiple change point detection problem, we compute the rank
CUSUM statistic (4.5) locally and with respect to intervals of the random variables. The
local rank CUSUM statistic with respect to the sub-sequence of the random variables
Xe+1, . . . , Xs is calculated as follow:

τ = argmax
s<t<r

∣∣∣∣∣ r1 − r2√
1

t−e
+ 1

s−t

∣∣∣∣∣, (4.6)

where

r1 =
1

t− e

t∑
i=e+1

r
i

and r2 =
1

s− t

s∑
i=t+1

r
i
.

Note that, the sequence of random variables {Xt}Tt=1 is ranked globally as shown in (4.2).
In other words, to conduct the rank CUSUM statistic with respect to the interval (e, t],
the random variables Xe+1, Xe+2, . . . , Xs are ranked as follow:

rt =
T∑

ℓ=1

1{Xℓ<Xt} + 0.5
T∑

ℓ=1

1{Xt=Xℓ} + 0.5 for t = e+ 1, 2, . . . , s.

If the maximized change point test statistic (4.6) is sufficiently large, then the index which
maximizes the change point test statistic (4.6) within the interval (e, s] is assigned to be
the location change point. In this setting, the underlying probability distribution function
of the random variables is not required to be known. However, since the rank CUSUM
statistic (4.6) is derived from Kruskal-Wallis test, the random variables in the adjacent
segments are assumed to have the same variability or shape.

4.3 Rank based enhanced backward detection

The rank based enhanced backward detection (REBD) utilizes the rank CUSUM statistic
(4.5) to recover the location change points. At first, the sequence of the observations are
ranked globally as shown in Equation (4.3). Then EBD is launched with respect to the
rank of the observations. Throughout the execution of the rank based enhanced backward
detection, multiple active sets are obtained. In the context of REBD, an active set is
referred to the set of change point candidates {τ1 , . . . , τN} such that

τ
j
= argmax

τj−1<t<τj+1

U(t | τ
j−1

, τ
j+1

) , (4.7)
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where τ1 < · · · < τ
N
, τ0 = 0, τ

N+1
= T and the change point test U is the rank CUSUM

statistic in equation (4.6). An active set with N change point candidates is denoted by
M(N).

Prior to the launch of REBD, the upper bound for the number of change points is
specified and denoted by Nmax. Next, the set of change point candidates with at most Nmax

elements is constructed in a manner that the distance between change point candidates
is at least 2 (i.e, τ

j
− τ

j−1
≥ 2 for j = 1, 2, . . . , Nmax + 1). Then the sweeping process

is launched with respect to the global ranks of random variables and the aforementioned
set of change point candidates. After run of the sweeping process, the first active set (i.e.,
M(Nmax)) is obtained. At each run of REBD, the change point candidate with the smallest
rank CUSUM statistic is eliminated and subsequently the sweeping process is launched to
obtain a new active set. This procedure continues until a null active set is obtained. After
the execution of REBD algorithm, Nmax+1 distinct active sets are obtained. The penalized
loss function in equation (4.8) with respect to each active set is calculated. The penalized
loss function with respect to the active setM(N) = {τ1 , . . . , τN} is obtained by:

L(M(N)) =
(N+1∑

j=1

τj∑
t=τj−1+1

(rt − r
j
)2
)
+ 0.1N T 2 log(T ), (4.8)

where rj is the mean of {rτj−1+1, · · · , rτj }. The loss function in (4.8) was proposed as a

rank based variation of Schwartz Information Criteria (Wang et al. (2020)). Among the
recorded active sets, the one with the smallest penalized loss function (4.8) is assigned to
be the estimated change points set. The estimated change points set by the rank based
enhanced backward detection is denoted byM. The REBD algorithm is demonstrated in
Algorithm 3.

The REBD algorithm is primarily designed to recover the potential change points in
location of the distribution. More precisely, the rank CUSUM statistic (4.6) is not sensitive
to change in scale or variability of the random variables. Fortunately, the ranked based
enhanced backward detection can recover scale change points by modifying the ranking
procedure. One way to recover the scale change points by REBD is as follow:

Step1: The location change points model is estimated by REBD.

Step2: The residuals of the estimated change points model is calculated:

Rt = Xt − µ̂t .
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Result: M
INPUTS: X1, · · · , XT andM(Nmax) = {τ1 , · · · , τNmax

};
{rt}Tt=1 ← rank({Xt}Tt=1);
M =M(N)← SP({rt}Tt=1

,M(Nmax), 1, Nmax);
L ← L(M);
N ← Nmax;
while N ≥ 0 do

j ← argmin
τ
ℓ
∈M(N)

[
U(τ

ℓ
|τ

ℓ−1
, τ

ℓ+1
)
]
, where τ0 = 0 and τ

N+1
= T ;

M∗(N − 1)← {τ ∗
1
, · · · , τ ∗

N−1
} where

τ ∗
l
= τ

l
for l = 1, · · · , j − 1;

τ ∗
l
= τ

l+1
for l = j, · · · , N − 1;

N ← N − 1;
c← max(2, j − 1);
m.c← min(N, c+ 1);
M(N)← SP({rt}Tt=1

,M∗(N), c,m.c);
if L(M(N)) < L then
L ← L(M(N));
M←M(N);

end

end
Algorithm 3: Rank based enhanced backward detection.

Step3: The location change points within the squared residuals ( i.e., R2
t ) are estimated by

REBD. The estimated location change points with respect to squared residuals are
assigned to be scale change points with respect to the original dataset.

Step4: The scale change points model is fitted with respect to the original sequence of
random variables X1, X2, . . . , XT .

Step5: The residuals of the proposed model are obtained as follow:

R∗
t = Xt/σ̂t .

Step6: REBD is conducted with respect to the R∗
t in order to update the estimated location

change points model. The estimated locations change points with respect to R∗
t
T
t=1

are assigned to be the location change points of the original dataset.
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Step7: Steps 2-7 are repeated until the location and scale change points models can not be
updated.

4.4 Simulation Study

4.4.1 Assessing the Accuracy of REBD

In this section, REBD is conducted with respect to replications of the location change
points scenarios which were introduced in details in Section 3.4. Recall that, all of the
synthesized datasets in this section are generated from M1 to M5 change points models.
Moreover, these datasets are constructed under the assumption of normality. For each
of the change points models, 1000 replications are generated. Then REBD procedure
is performed with respect to each replication and estimated location change points are
collected and plotted in Figure 4.1. Ideally, the estimated location change points in Figure
4.1 should cluster around the true mean change points.

Based on the histogram in Figure 4.1, REBD underperformed in comparison to the
likelihood based EBD. The relative inferiority of REBD in comparison to the paramet-
ric approach is expected, since the underlying assumptions of EBD are satisfied in this
particular simulation study. In the location change points models M1, M2, M3 andM4,
the parametric enhanced backward detection performs slightly better. Unlike the results
in the aforementioned change points models, the relative underperformance of the rank
based enhanced backward detection is more visible under the M5 change points model.
The rank based enhanced backward detection grossly underestimated the number of the
change points in M5 scenario. The poor accuracy of rank based enhanced backward detec-
tion with respect to M5 location change points model can be attributed to the choice of the
Schwartz information criteria (4.8). Thus, we recommend different variation of the rank
based penalized loss function which is inspired by Schwarz information criterion (Schwarz
et al. (1978)). Our proposed rank based penalized loss function with respect to the candi-
date setM(N) = {τ1 , τ2 , . . . , τN} and the sequence of random variables X1, X2, . . . , XT
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Figure 4.1: The spike in the histogram corresponds to true locations of the change points.
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is calculated:

L2(M(N)) =
T

2
log

(N+1∑
j=1

τj∑
t=τj−1+1

(
rt − rj

)2
T

)
+N log(T ), where

r
j
=

1

τ
j
− τ

j−1

τj∑
t=τj−1

rt , and

(4.9)

and rt is the rank of the t-th observations (i.e., rt =
∑T

s=1 1(Xs < Xt) + 0.5
∑T

s=1 1(Xt =
Xs) + 0.5). After replacing the Shwarz information criterion (4.8) with the penalized loss
function L2 (4.9), the performance of rank based enhanced backward detection is boosted
according to Figure 4.2. More precisely, the rank based enhanced backward detection has
become more sensitive to change in location parameter.

According to the results from Figures 4.1 and 4.2, the performance of the rank based
enhanced backward detection has improved after replacing the rank based BIC (4.8) with
the penalized loss function (4.9). To further compare the performance of both approaches,
we design a simulation study under more general scenarios, so that, the number of observa-
tions and change points, locations parameters between the change points and locations of
change points are determined randomly. In this study, ten thousands sequence of random
variables are generated. Then both rank based enhanced backward detection via rank
Schwarz Information criterion (4.8) (REBD1) and the ranked based enhanced backward
detection via loss function (4.9) (REBD2) are performed with respect to each generated
dataset. Each sequence of random variables are generated as follow:

• The number of observations is randomly selected from the set {100, 200, 500, 1000,
2000} and denoted by T .

• The number of change points N is drawn from a Poisson distribution with a rate
which is randomly selected from the set {4, 8}.

• The locations of the change points are selected randomly from the indexes of the
random variables, i.e., {1, 2, . . . , T − 1}.

• Jump size after each change point is randomly drawn from a Gaussian distribution
with mean zero and variance σ2

J which is randomly selected from the set {1, 2, 10}.

• Finally the Gaussian white noise with the unite variance is added to the constructed
mean function.
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Figure 4.2: Performance of the rank based enhanced backward detection has improved
after replacing the Bayesian Information Criteria (4.8) with the loss function (4.9).
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Note that, this simulation study was designed by Fryzlewicz to determine the value of
threshold for wild binary segmentation (Fryzlewicz et al. (2014)). The results of this
simulation study is recorded in Table 4.1. Table 4.1 indicates the vast superiority of
REBD2 over REBD1. Thus, the rank based loss function (4.9) is applied within the rank
based enhanced backward detection from now on.

REBD1 REBD2
MSE 0.97 0.40

Table 4.1: REBD1 is referred to the rank based enhanced backward detection with the
rank based BIC (4.8). REBD2 is referred to the rank based enhanced backward detection
with the loss function (4.9).

4.4.2 Performance of REBD on non-Gaussian data

Due to optimally of the test statistic used in the parametric EBD, the parametric enhanced
backward detection is supposed to perform better than REBD, when the underlying dis-
tributions of the random variables are Gaussian. Here, we investigate the accuracy of the
enhanced backward detection in non-parametric setting. More precisely, we inspect the
performance of the enhanced backward detection when underlying distribution function
is not Gaussian. Then the accuracy of the estimated location change points models by
parametric and rank based enhanced backward detection methods are compared with each
other. In the following simulation study, the additive normally distributed randomized
noise in the change points models which were introduced in Section 3.4 is replaced with
non Gaussian error terms. The aforementioned change points models are represented by
M1, M2, M3, M4 and M5 in Table 4.2. Moreover, the rank and likelihood based enhanced
backward detection methods are launched with respect to the sequence of random variables
with no change points. We refer to this particular change points model as null model and
it is denoted by M0. Even though, the simulated datasets are not normally distributed,
the parametric enhanced backward detection is constructed based on the assumptions of
the normal mean change points model to study its robustness to non-normalized datasets.
Both variations of the enhanced backward detection are conducted with respect to the
generated data and mean square errors of the estimated location change points models are
calculated

1

T

T∑
t=1

(µt − µ̂t)
2,
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where µt and µ̂t are true and estimated mean of the random variable Xt.The average
of mean square errors are recorded in Table 4.2. Based on the results in Table 4.2, the
enhanced backward detection is outperformed by the rank based enhanced backward detec-
tion when the underlying distributions are not Gaussian. Moreover, REBD is competitive
with enhanced backward detection in normal mean change points models.

MSE
Enhanced
Backward
Detection

Change
Point
Model

Standard
Normal

Scaled
t10

Scaled
t5

Laplace
Skewed
Normal

Skewed
t10

Skewed
t5

EBD
M0

0.00615 0.0303 0.146 0.00543 0.0126 0.0296 14.7
REBD 0.00373 0.00442 0.00593 0.000304 0.00383 0.00345 2.09
EBD

M1
2.44 4.27 15.5 5.26 2.66 5.268 0.0167

REBD 2.54 3.16 3.98 2.16 2.43 2.318 0.00653
EBD

M2
0.00361 0.00636 0.0182 0.00792 0.00407 0.00752 3.79

REBD 0.00587 0.00714 0.00893 0.00597 0.00609 0.00567 1.22
EBD

M3
1.57 2.30 4.88 2.33 1.64 2.18 0.0756

REBD 1.45 1.80 2.28 1.25 1.39 1.31 0.0563
EBD

M4
0.0572 0.105 0.182 0.0648 0.0596 0.0655 0.0353

REBD 0.0535 0.0922 0.145 0.0556 0.0567 0.0580 0.0291
EBD

M5
0.0219 0.0326 0.0564 0.0297 0.0221 0.0269 0.164

REBD 0.0193 0.0300 0.0522 0.0256 0.0201 0.0230 0.00372

Table 4.2: The rank based enhanced backward detection (REBD) is much more accurate
than the enhanced backward detection (EBD), if the random variables are generated from
non-Gaussian distribution.

4.4.3 Performance of REBD under no-change point model

One concern in the change points detection problem is false discovery of change points.
In this section, we study the performance of the rank based enhanced backward detection
in the models with zero change points. In our experiments, we consider datasets of size
T = 100, 200, 500, 1000, and 2000 generated under the assumption of no-change point
from a Gaussian distribution. Note that, since these models contain no change points,
they are defined based on the number of observations. For each of these change points
model, 10000 replications are generated. Finally, the estimated number of change points
by EBD and REBD are recorded and the results are summarized in Table 4.3.
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The Number
of Detected
Change Points
by rank based
Enhanced Backward

Detection (N̂)

T=100 T=200 T=500 T=1000 T=2000

N̂ = 0 10000 10000 10000 10000 10000

Table 4.3: The rank based enhanced backward detection is not susceptible to false discovery
of change points.

According to Tables 3.3 and 4.3, REBD is more robust to false discovery of change points
in comparison to the parametric enhanced backward detection. Although the recorded
results in Table 4.3 seems to be desirable at first look, one may worry about the potential
insensitivity of REBD to detecting location change points. In other words, the magnitude of
a change in a location parameter must be more significant when the rank based enhanced
backward detection is applied in comparison to the occasions in which the parametric
enhanced backward detection is the method of choice.

4.5 Data Analysis

4.5.1 Housing Price Indexes

In this section, the rank based enhanced backward detection is applied with respect to
the housing price index datasets. We compare the estimated change points by rank based
enhanced backward detection with our findings in Section 3.5.1. Furthermore, the esti-
mated mean and variance change points by the rank based enhanced backward detection
are aligned to the events that may have influenced the rise or fall of the housing price.

Although the changes in location and scale parameters are visible in some segments of
the HPI of Hackney, the rank enhanced backward detection has not recovered any change
points according to Figure 4.3. This observation implies the rank based enhanced backward
detection method is more conservative than the enhanced backward detection. Recall that,
enhanced backward detection recovered the increase in variance during the financial crisis.

With regard to HPI of the borough of Newham, the rank based enhanced backward
detection has not recovered any scale change points. However, the rank based enhanced
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Figure 4.3: The top two plots indicates the variance change points. However, after elimi-
nating the apparent outliers, the adjusted HPI of Hackney is stationary.
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backward detection has recovered multiple location change points. One notable observation
is that, the rank based enhanced backward detection has not recovered any change points
during the financial crisis. This potential failure of the rank based enhanced backward
detection can be due to the fact that scale change points which are associated with the
financial rescission are too close to each other. In other words, the rank based enhanced
backward detection has misidentified the significant increase in the scale parameter of
random variables during the financial rescission as a cluster of outliers. This failure of the
rank based enhanced backward detection is visible on the time series plot of the residuals
of the fitted change points model in Figure 4.4.

Finally, the rank based enhanced backward detection is conducted with respect to HPI
of the borough of Tower Hamlets. Unlike likelihood based enhanced backward detection,
no change in location or scale parameters is detected by rank based enhanced backward
detection. Similar to the HPI of the borough of Hackney and Newham, the rank based
enhanced backward detection fails to recover the locations of change points due to nar-
rowness of the segments which are constructed by change points. This shortcoming of the
rank based enhanced backward detection can be attributed to the global ranking of the
random variables.

4.5.2 Copy Number Variation

According to Wang et al. (2020), ”the gene copy number (CN) is the number of copies of
a particular gene in the genotype of an individual, which can be measured by microarray
experiments. In healthy cells, there are two copies of DNA. In tumor cells, parts of chro-
mosomes may be deleted or amplified several times and it will lead to the copy number
of such regions being different from 2”. The multiple change point detection methods can
be applied to a copy number variation dataset in order to determine the region in which
a copy number changes. Most often, the random variables are assumed to be generated
from the normal mean change points model. Chen & Wang proposed a variation of the
circular binary segmentation (Chen and Wang (2008)) which is sensitive to both change in
mean and variance of the random variables. That is, the problem of interest is to identify
the points in which both mean and variance have changed simultaneously. However, the
copy number variation is mainly concerned with the change in the location parameter of
the random variables and identifying the points that scale parameter changes is not the
problem of interest. Thus, the rank based enhanced backward detection seems to be an
attractive approach. In this section, the datasets GSE11976 and GSE29172 are uploaded
from the package acnr. The estimated location change points model is represented with
the red line in Figure 4.6.
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Figure 4.4: Rank based enhanced backward detection has failed to to recover change in
variance.
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Figure 4.5: After elimination of the apparent outliers, the adjusted data looks weakly
stationary.
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Figure 4.6: The fitted mean of CNV by REBD is represented by red line.

4.5.3 Polls

In this section, we have investigated the raw data from the national polls during the 2016
election term. The goal of the change point analysis on this dataset is comparing the
popularity of the candidates of the mainstream parties throughout the various periods
according to the national polls. These candidates are Hillary Clinton and Donald Trump.
To assess the relative popularity of the two main presidential candidates, Trump’s share
vote is subtracted from Clinton’s vote in each poll. The resulting quantity is denoted
by H-T. Next, the mean of the votes difference H-T is estimated by the sample mean
based on the recovered mean change points via rank based enhanced backward detection.
The positive estimated mean implies the overall popularity of Hilary Clinton over Donald
Trump and negative estimated mean suggests otherwise. In this section, we only use the
surveys from Ipsos polling organization. We obtained this data set from dslabs R package.
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Figure 4.7: The solid red lines indicates the estimated mean,

Based on Figure 4.7, Hillary Clinton consistently had a larger share of the votes ac-
cording to the national poll. Moreover, the mean of the last recovered segment is 5.6 %.
That is, according to the national polls, Hillary Clinton’s share of total vote would have
exceeded Trump’s vote by 5.6% in the election day. However, Hillary Clinton had only
2.8% more votes than Trump in 2016 US presidential election. Thus, the national polls
had overestimated the popularity of Hillary Clinton.

Similar to HPI datasets, after fitting the estimated local change points models and
obtaining the residuals, the scale change points are obtained. For this purpose, the rank
based enhanced backward detection is launched with respect to the squared value of the
residuals. However, no scale change points was detected by the rank based enhanced
backward detection. According to Figure 4.8, the residual of the estimated mean change
points has a constant variance.
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Figure 4.8: No change in variance is visible with respect to the residuals of the estimated
mean change points model.

4.6 Final Remarks on REBD

As we discussed in Section 3.2, the sweeping process terminates, if the underlying rank
based single change point test statistic in REBD is derived from some sort of a loss function
as shown in equation (4.4). It is import to note that, a sequence of random variables are
ranked globally prior to launch of the rank based enhanced backward detection. Otherwise,
if the random variables are ranked locally, then the sweeping process and consequently
REBD will not converge. Unlike REBD, the local search rank based methods are most
often ranked locally. For instance, the observations in each of the randomly drawn intervals
are ranked separately in context of the rank based wild binary segmentation (Ross (2021)).
As a result of global ranking, the rank based enhanced backward detection is less likely
to recover the locations of closely located change points. For example, the rank based
enhanced backward detection did not perform accurately in the HPI datasets. Note that,
ranking of the random variables locally can be time consuming. Since the sequence of
random variables is ranked only once at the beginning of the rank based enhanced backward
detection, this approach is more computationally efficient in comparison to other rank
based local search methods. Therefore, despite of the loss of accuracy due to global ranking,
the rank based enhanced backward detection remains competitive to locally ranked based
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methods.

As demonstrated in Section 4.5, the rank based enhanced backward detection is much
easier to use in comparison to the parametric enhanced backward detection. No assumption
on the distribution function is required in the rank based enhanced backward detection. As
demonstrated in Table 4.2, REBD is proven to be superior to EBD, when the underlying
distribution of the random variables is non-Gaussian and competitive in the normal mean
change point scenarios. Thus, when the parametric distribution of random variables cannot
be specified accurately, the use of rank based enhanced backward detection is preferred.
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Chapter 5

Narrowest Over Threshold via
Interval Selection with Shorten
Exhaustive Search

Local search methods estimate the positions of change points by performing a test within
the intervals of random variables. If a change point test statistic is conducted within an in-
terval with multiple change points, then the aforementioned change points may offset each
other and become undetectable to the conducted test. Thus, one of the main concerns of
local search methods is obtaining intervals with exactly one change point. The narrowest
over threshold method attempts to obtain such intervals by constructing large number of
randomized intervals. Since some of the intervals in which a predefined threshold is satis-
fied may contain multiple change points, the narrowest over threshold prioritizes shorter
intervals over the longer ones. In other words, among the randomized intervals that are
associated with substantially large test statistics, change points are estimated based on the
narrower ones. As the number of change points or observations increases, larger number
of randomized intervals is required. Note that, as a result of drawing insufficient number
of randomized intervals, the number of change points may get underestimated. Since de-
termining an appropriate number of randomized intervals is a challenging and yet crucial
task, we propose a data adaptive interval generating mechanism which we name inter-
val selection via shorten exhaustive search (IS.SES). IS.SES algorithm generates intervals
based on the data configuration of the random variables. Thus, the number of intervals
is not required to be determined by practitioners. Later on in this chapter, we propose
substituting the randomized intervals with IS.SES generated ones in the narrowest over
threshold. We call the resulting change point detection method narrowest over threshold
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with interval selection via shorten exhaustive search (NOT-IS.SES).

IS.SES method relies on a single change point test statistic for recovering the locations
of change points candidates. In the context of IS.SES algorithm, a single change point test
must be derived from an additive loss function. Such a loss function is calculated as follow:

L(0, τ1 , τ2 , . . . , τN , T ) =
N∑
j=0

C(τ
j
+ 1 : τ

j+1
), where τ0 = 0, τ

N+1
= T, (5.1)

and the set {τ1 , τ2 , . . . , τN} is a change point candidate set. Moreover, the function C(a+
1, b) is referred to as the cost function between indexes a and b. One notable example of
the loss function (5.1) is sum of square errors. Consider the sequence of random variables
X1, X2, . . . , XT with piece-wise constant mean and constant variance, then sum of square
errors of the mean change points candidate set {τ1 , τ2 , . . . , τN} is calculated as follow:

LSSE(0, τ1 , τ2 , . . . , τN , T ) =
N∑
j=0

C(τ
j
+ 1 : τ

j+1
), where

C(τ
j
+ 1 : τ

j+1
) =

τj+1∑
t=τj+1

(Xt −Xj)
2, and Xj =

1

τ
j+1
− τ

j

τj+1∑
t=τj+1

Xt .

By simple algebraic manipulations, the loss function (5.1) can be represented as follow:

L(0, τ1 , τ2 , . . . , τN , T ) = L(0, τ1 , . . . , τℓ−1
, τ

ℓ
) + L(τ

ℓ
, τ

l+1
, . . . , τ

N
, T ).

This property of the loss function is referred to as the additive property. For the additive
loss function L, the corresponding change point detection test statistic U(· | a, b) with
respect to the sub-sequence Xa+1, Xa+2, . . . , Xb is calculated as follow:

U(t | a, b) = L(a, b)− L(a, t, b) = C(a+ 1 : b)−
[
C(a+ 1 : t) + C(t+ 1 : b)

]
, (5.2)

and a candidate change point estimate is

τ̂ = argmax
t∈{a+d, ..., b−d}

[
U(t | a, b)

]
,

where d is the number of parameters that may change throughout random variables. For
instance, consider the normal mean change point model (2.3); since the variance remains
constant and change in distribution occurs with respect to the mean, then d is set to be
one.
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Consider the change point candidate set {α, β}, the relationship between a loss function
(5.1), aka L(0, α, β, T ) and change point test statistics (5.2) (U(α | 0, β) and U(β | α, T ))
is as follow:

L(0, α, β, T ) = L(0, α β) + L(β, T )

=
[
C(1 : α) + C(α + 1 : β)

]
+ C(β + 1 : T )

=
[
C(1 : β)− U(α | 0, β)

]
+ C(β + 1 : T )

=
[
C(1 : β) + C(β + 1 : T )

]
− U(α | 0, β)

= L(0, T )− U(α | 0, β)− U(β | 0, T ),

(5.3)

and equivalently

L(0, α, β, T ) = L(0, T )− U(β | α, T )− U(α | 0, T ).

Therefore,
U(β | α, T ) = U(α | 0, β) + U(β | 0, T )− U(α | 0, T ). (5.4)

Equation (5.4) is the main motivation of the IS.SES algorithm. By running the IS.SES
algorithm, large number of intervals are discarded prior to conducting the change point test.
According to equation (5.4), the calculated change point test statistic in the eliminated
intervals will be smaller than a predefined threshold. Furthermore, IS.SES algorithm is
able to reduce the search space of the change point test statistic. That is, the point which
maximizes the change point test statistic is selected among the smaller set of indexes.
Thus, the computational complexity of IS.SES is reduced in comparison to an exhaustive
search. In the next section, IS.SES algorithm is elaborated more precisely.

5.1 Interval Selection via Shorten Exhaustive Search

The goal of the IS.SES algorithm is to generate relatively narrow intervals in which a
predefined threshold is satisfied. One of the main component of IS.SES is the shorten
exhaustive search (SES) algorithm which discards some of the unnecessary intervals and
reduces the search space of the test. The SES algorithm searches for a single interval in
which a predefined threshold is satisfied. After obtaining each interval, the SES algorithm
is relaunched on the remaining dataset to recover another change point candidate. This
process continues, until the SES algorithm can not recover any interval or change point
candidate. Note that, if the SES algorithm does not recover any interval in which a
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predefined threshold is satisfied, then we can conclude such an interval does not exist. We
will discuss this property of the SES algorithm in more detail.

Suppose the SES algorithm is launched with respect to the sequence of random variables
X1, X2, . . . , XT , where the threshold is set to be λ. Consider the interval (α, τ ] with data
points Xα+1, Xα+2, . . . , Xτ , where α ≥ d. To calculate the change point test statistic
within the interval (α, τ ], the following condition is required to be satisfied:

max
i∈{α+d, ...,τ}

[
U(α | 0, i)

]
+ max

j∈{α, ..., τ−d}

[
U(j | 0, τ)

]
− U(α | 0, τ) ≥ λ. (5.5)

If the condition (5.5) is not met and α ≥ d, then the maximum of the change point test
statistic (5.2) will not exceed a predefined threshold, since

U(β | α, τ) = U(α | 0, β) + U(β | 0, τ)− U(α | 0, τ)

≤ max
i∈{α+d, ...,τ}

[
U(α | 0, i)

]
+ max

j∈{d, ..., τ−d}

[
U(j | 0, τ)

]
− U(α | 0, τ) < λ,

for α + d ≤ β ≤ τ − d. Note that, if α < d, then the change point test statistic will be
calculated without examining condition (5.5).

Suppose condition (5.5) is satisfied with respect to the interval (α, τ ] and α ≥ d. The
index such β ∈ {α+ d, α+ d+ 1, . . . , τ − d} will be in the search space of the test, if the
following conditions are hold true:

max
i∈{α+d, ..., τ}

[
U(α | 0, i)

]
+U(β | 0, τ)− U(α | 0, τ) ≥ λ and

max
j∈{d, ..., β−d}

[
U(j | 0, β)

]
+U(β | 0, τ)− U(α | 0, τ) ≥ λ.

(5.6)

If α ≥ d and the condition (5.6) is not satisfied, then U(β | α, τ) < λ by equation (5.4) and
hence elimination of the index β from the search space of the test. Assuming none of the
indexes in the set {α+d, α+d+1, . . . , τ−d} satisfies the condition (5.6) and α ≥ d, then no
test will be conducted with respect to the interval (α, τ ]. Note that, if α < d, then a change
point test is performed within the interval (α, τ ] and the search space of the test includes
all possible indexes within the aforementioned interval (i.e. {α+ d, α+ d+1, . . . , τ − d}).

Recall that the SES algorithm investigates all possible intervals within the sequence of
random variables. . This search is conducted as follow:

• Set t = 2 d.
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• While t ≤ T and the desirable interval has not been recovered yet do:

– Set η = α = t− d.

– Set Umax = 0.

– while the desirable interval has not been recovered and α > 0 do:

∗ if α ≥ d:

· Calculate the test statistic U(α | 0, t) and subsequently update the
following quantity:

max
i∈{α+d, ..., t}

[
U(α | 0, i)

]
= max

(
U(α | 0, t), max

i∈{α+d, ..., t−1}

[
U(α | 0, i)

])
,

max
j∈{α, ..., t−d}

[
U(j | 0, t)

]
= max

(
U(α | 0, t), max

j∈{α+1,...,t−d}

[
U(j | 0, t)

])
.

· If U(α | 0, t) > Umax, then

Umax = U(α | 0, t) and η = α.

· If the condition in (5.5) is satisfied with respect to the interval (α, t],
then collect all of the indexes which meet the requirements (5.6) in the
set S.

· If S ≠ ∅, then estimate the change point as follow:

τ̂ = argmax
i∈S

[
U(i | α, t)

]
.

Otherwise, if S = ∅, then the interval (α, t] can be ignored and the
change point test is not conducted with respect to the aforementioned
interval.

On the other hand, if α < d, estimate the change point as follow:

τ̂ = argmax
i∈{α+d, ..., t−d}

[
U(i | α, t)

]
∗ If the interval (α, t ] is selected and U(τ | α, t) ≥ λ, then stop the proce-
dure and assign the row vector

[τ, α, t, U(τ | α, t)]

to be the output of SES. Otherwise, set α = α− 1.
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– If SES has not stopped yet, then if Umax ≥ λ, stop the procedure and set the
output to be

[η, 0, t, Umax].

On the other hand, if Umax < λ, then set t = t+ 1.

Note that, if i− j < d, k − i < d or k − i < 2d, then the test statistic U(i | j, k) = 0.

The SES algorithm stops, when either the value of t exceeds the number of observations
or an interval in which a predefined threshold is satisfied, is obtained. Therefore, the SES
algorithm returns either no outcome or a row vector. For instance, if the SES algorithm
recovers an interval (α, t], where τ maximizes the change point test statistic within the
aforementioned interval and U(τ | α, t) ≥ λ, then the output of the SES is

[τ, α, t, U(τ | α, t)].

On the other hand, if the SES algorithm returns no output, then we conclude that the
threshold is not satisfied within any of the intervals in the sequence of random variables.
That is,

U(i | j, k) < λ,

where i, j, and k are indexes of the random variables.

To facilitate the computation of the SES algorithm, a T × 4 matrix R is constructed
prior to launch of the procedure. The first column of the matrix R contains the indexes of
the random variables. The remaining entries are filled up during the execution of the SES
algorithm. For instance, after calculating the quantity U(α | 0, t) in the SES algorithm,
the entries of the matrix R are updated as follow:

R[α, 2] = max
(
R[α, 2], U(α | 0, t)

)
,

R[t, 3] = max
(
U(α | 0, t), R[t, 3]

)
,

R[α, 4] = U(α | 0, t).

(5.7)

Recall that, the change point test statistic is conducted with respect to the interval (α, τ ],
if the condition (5.5) is satisfied. The requirement (5.5) can be rewritten in terms of the
matrix R:

R[α, 2] +R[t, 3]−R[α, 4] ≥ λ . (5.8)
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Furthermore, the conditions in (5.6) can be written as follow:

R[α, 2]+R[β, 4]−R[α, 4] ≥ λ ,

R[β, 3]+R[β, 4]−R[α, 4] ≥ λ .
(5.9)

The SES algorithm is a prominent component of IS.SES algorithm and recovers a
single interval in which a predefined threshold is satisfied. To obtain the locations of
the remaining change point candidates, the SES is called frequently within the IS.SES
algorithm. More precisely, the IS.SES algorithm is performed with respect to the sequence
of random variables X1, X2, . . . , XT as follow:

• Set ℓ = 0.

• Construct the matrixM0×4.

• Set STOP = 0;

• While STOP = 0 do:

– Conduct the SES algorithm with respect to the sub-sequence of random variables
Xℓ+1, Xℓ+2, . . . , XT .

– If no change point is recovered by SES algorithm, then stop the procedure
(STOP = 1).

– Otherwise, if the SES algorithm recovers a change point τ from the interval
(α, β], then

∗ record the row vector [τ, α, β, U(τ | α, β)] in the matrixM.

∗ set ℓ = α + 1.

The output of the IS.SES is a matrix M. Each row of the matrix M contains lower
and upper bounds of intervals in which a predefined threshold is satisfied, a change point
candidate and the value of change point test statistic. Suppose IS.SES identifies that the
calculated change point test statistic (5.2) in the interval (α, τ ] is larger λ and the index
β is the change point candidate within the aforementioned interval, then the row vector

[β, α, τ, U(β | α, τ)]

is recorded in the matrixM. Note that, the index β maximizes the test statistic U(· | α, τ)
within the interval (α, τ ]. Generally, we refer to the indexes that maximize the test statistic
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(5.2) within the recovered intervals as change point candidates. Suppose the change point
candidates β and η are extracted from the intervals (α, τ ] and (γ, δ], respectively. Then
we say indexes β and η are conflicted, if β ∈ (γ, δ) or η ∈ (α, τ).

Notice that IS.SES-generated intervals can be used as replacements to randomized
intervals in a narrowest over threshold (Baranowski et al. (2019)). Similar to the traditional
narrowest over threshold (Baranowski et al. (2019)), the change point candidate which is
extracted from the narrowest IS.SES-generated interval is assigned to be a change point
estimate. Next, all of the change points candidates which are conflicted with the estimated
change point are discarded. This procedure continues until all recorded change point
candidates in the matrixM are either assigned to be change point estimates or discarded
due to their conflict with the estimated change points. We refer to this variation of the
narrowest over threshold algorithm as the narrowest over threshold with interval selection
via shorten exhaustive search (NOT-IS.SES).

5.2 Ultimate Test Statistic Maximizer

In the previous section, the interval selection via shorten exhaustive search (IS.SES) was
introduced. Then IS.SES was implemented in the narrowest over threshold algorithm
as sort of an interval generating mechanism. We call the resulting method narrowest
over threshold with interval selection via shorten exhaustive search (NOT-IS.SES). As we
discussed, a primary component of IS.SES which is responsible for recovering intervals in
which a predefined threshold is satisfied, is the shorten exhaustive search (SES) algorithm.
In this section, we propose some modifications to SES algorithm in order to find the largest
maximized change point test statistic value within all possible intervals of the random
variables. That is, the modified variation of the SES algorithm is applied with respect to
the sequence of random variables X1, X2, . . . , XT in order to obtain the quantity Λ∗ such
that:

Λ∗ = max
(i, j, k)

[
U(j | i, k)

]
where |i− j| ≥ d , |k − j| ≥ d. (5.10)

and the single change point test statistic U is derived from a loss function as demon-
strated in (5.2). We refer to this variation of the SES algorithm as Ultimate Test Statistic
Maximizer (UTSM).

Recall that, the SES algorithm stops as soon as an interval in which a predefined
threshold λ is satisfied, is obtained. In the UTSM algorithm, a predefined threshold λ
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is replaced with the largest calculated change point test statistic up to the current stage
of the UTSM algorithm. This quantity is denoted by Λ

∗
in this thesis. The quantity

Λ
∗
which can be regarded as a threshold in the context of the UTSM algorithm may not

remain constant. Suppose, the single change point test statistic is calculated with respect
to the interval (α, τ ] as follow:

β = argmax
i∈S

[
U(i | α, τ)

]
,

where S is defined as a search space of the test. If U(β | α, τ) > Λ
∗
, then the quantity Λ

∗

is updated as follow:
Λ

∗
= U(β | α, τ).

Thus, unlike the SES algorithm in Section (5.1), the UTSM algorithm stops only when
all of the possible intervals are examined. Similar to the SES algorithm, the satisfaction
of the conditions (5.5) and (5.6) are assessed with respect to each interval and then the
single change point test statistic (5.2) is calculated within the intervals that satisfy the
aforementioned conditions. UTSM is conducted as follow:

• Set t = 2 d.

• Set Λ
∗
= 0.

• The output vector is assinged to be

O = [0, 0, 0, 0].

• While t ≤ T do:

– Set η = α = t− d.

– Set Umax = 0.

– while α > 0 do:

∗ if α ≥ d:

· Calculate the test statistic U(α | 0, t) and update the entries of the
matrix R as demonstrated in (5.7).

· If U(α | 0, t) > Umax, then

Umax = U(α | 0, t) and η = α.
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· If condition in (5.8) is satisfied with respect to the interval (α, t], then
collect all of the indexes which meet the requirements (5.9) in the set
S.

· If S ≠ ∅, then evaluate the change point test statistic U in S and find:

τ = argmax
i∈S

[
U(i | α, t)

]
On the other hand, if α < d, calculate the change point test statistic as
follow:

τ = argmax
i∈{α+d, ..., t−d}

[
U(i | α, t)

]
∗ If U(τ | α, t) > Λ

∗
, then output vector and Λ

∗
are updated as follow:

Λ
∗
= U(τ | α, t) and

O = [τ, α, t, Λ
∗
].

∗ Set α = α− 1.

– If Umax ≥ Λ
∗
, the output vector O and Λ

∗
are updated as follow:

Λ
∗
= U(η | 0, t) and

O = [η, 0, t, Λ
∗
].

– Set t = t+ 1.

In addition to estimating the locations of change points, another concern of the local
search methods is setting up a threshold for avoiding false discovery of change points.
The threshold is supposed to be constructed based on the probability distribution of the
random variables. This goal can be achieved by a bootstrap re-sampling method. The
general scheme of the threshold selection by parametric bootstrap re-sampling is as follow:

• Draw B bootstrap replications;

• Perform the underlying local search method with respect to each replication and
record the largest calculated change point test statistic;

• The (1−α)× 100-th percentile of the recorded change point test statistic is assigned
to be the threshold;
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The value of α is selected based on the sensitivity of the practitioner to overestimation
of the number of change points. As the value of α decreases, the threshold size increases
and subsequently the estimated number of change points decreases. The largest calculated
change point test statistic which is obtained by a local search method may not be equal to
the quantity Λ∗ in (5.10). Here, we propose obtaining the quantity Λ∗ in each replication
of the random variables by UTSM algorithm. Then (1 − α) × 100-th percentile of the
obtained Λ∗ by UTSM is assigned to be the threshold. Our hope is that, by implementing
UTSM within the parametric bootstrap re-sampling, the quality of the threshold will be
improved and the false discovery of change points is reduced.

5.3 Alternative Exhaustive Search

The IS.SES and UTSM algorithms perform similarly to conducting exhaustive search.
However, some of the intervals in which a predefined threshold is not satisfied are eliminated
prior to conducting a change point test. These intervals are identified by the help of
equation (5.5). Moreover, the search space of the conducted tests in the aforementioned
algorithms is reduced with the help of the conditions in equation(5.6). Here, we propose
an alternative algorithm to exhaustive search. That is, similar to the exhaustive search, all
of the possible intervals are examined; However, a single change point test statistic is often
calculated differently. We refer to this approach as alternative exhaustive search (AES).

Similar to IS.SES and UTSM algorithms, the underlying assumption of AES is that a
single change point test statistic is derived from some sort of a loss function as shown in
equation (5.2). In the AES algorithm, the single change point test statistic is required to
be calculated, if either lower or upper bounds of the interval of interest are either 0 or T ,
respectively. That is, the single change point test statistic is calculated with respect to
the interval (α, β], if α = 0 or β = 0. The remaining intervals are calculated by equation
(5.4). More precisely, consider the interval (α, β], where α ̸= 0 and β ̸= T , then the single
change point test statistic with respect to the index τ and interval (α, β] is calculated as
follow:

U( τ | α, β) = U(α | 0, τ) + U(τ | 0, β)− U(α | 0, β),

or equivalently,

U( τ | α, β) = U(β | τ, T ) + U(τ | α, T )− U(β | α, T ).
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Prior to the launch of AES, the following quantities are calculated and recorded:

U(i | 0, k) for i = d, d+ 1, . . . , k − d and k = 2d, 2d+ 1, . . . , T and

U(i | j, T ) for i = j + d, j + d+ 1, . . . , T − d and j = 1, 2, . . . , T − 2d,
(5.11)

where d is the dimension of the underlying parameter vector. The remaining values of
change point test statistic are built upon the previously calculated change point test statis-
tic in Equation (5.11) as shown in Equation (5.4). In summary AES algorithm is conducted
as follow:

S1: Calculate all of the change point test statistics in Equation (5.11).

S2: Initiate the matrixM0×4.

S3: For β = 2d+ 1, 2d+ 2, . . . , T and α = β − 2d, β − 2d+ 1, . . . , 1 do:

– Defined the search space for the test with respect to the interval (α, β] as follow:

S = {α + d, α + d+ 1, . . . , β − d}.

– If α ≥ d, maximize the change point test statistic with respect to the interval
(α, β] as follow:

argmax
t∈S

[
U(t | α, β)

]
= argmax

t∈S

[
U(α | 0, t) + U(t | 0, β)− U(α | 0, β)

]
.

If α < d, maximize the change point test statistic with respect to the interval
(α, β] as follow:

argmax
t∈S

[
U(t | α, β)

]
= argmax

t∈S

[
U(β | t, T ) + U(t | α, T )− U(β | α, T )

]
.

– If max
t∈S

[
U(t | α, β)

]
≥ λ, then add the row vector

[
argmax

t∈S

[
U(t | α, β)

]
, α, β, max

t∈S

[
U(t | α, β)

]]
,

into the matrixM.
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By the end of this procedure, all of the intervals in which a predefined threshold is satisfied
are collected in the matrixM. These intervals can be used in local search methods such
as wild binary segmentation and narrowest over threshold.

Occasionally, the underlying single change point test statistic within the local search
method are computationally expensive. For instance, consider sequence of random vari-
ables with time series dependency which are generated from a normal mean change point
model. Even though, the variance is assumed to be constant through out the sequence of
random variables, estimating the variance is a challenging task due to the dependency of
the random variables and disruptions in mean. As long as the underlying change point
test statistic is extracted from a loss function as shown in Equation (5.4), the single change
point change point test statistic is not required to be calculated by traditional means in
most instances. For instance, consider the interval (α, β], where α ≥ d, then change point
test statistic with respect to the index τ can be obtained as follow:

U(τ | α, β) = U(α | 0, τ) + U(τ | 0, β)− U(α | 0, β).

Therefore, a single change point test statistic is obtained with simpler calculation and
without a loss of accuracy.

5.4 Computational Complexity

5.4.1 NOT-IS.SES and UTSM

Since the IS.SES algorithm is a data adaptive interval generating mechanism, the com-
putational complexity of this procedure depends on the data configuration. That is, the
computational complexity of IS.SES increases or decreases based on the number and lo-
cations of change points, the magnitude of the change after each change point and a
predefined threshold. Thus, the computational complexity of NOT-IS.SES algorithm can
not be assessed by the traditional means. To address this problem, the computational
complexity of NOT-IS.SES is guessed by GuessCompx package Agenis-Nevers et al. (2021).
To estimate the computational complexity of NOT-IS.SES, multiple datasets, each with
one thousand observations are generated. Each sequence of random variables is generated
as follow:

• The number of observations is set to be 1000.

• The number of change points is selected from Poisson distribution, where the rate is
sampled from the set {4, 8}.
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O(
√
T ) O(T ) O(T log(T )) O(T 2) O(T 3)

α = 0.1 45 292 381 273 9
α = 0.05 38 297 346 306 13
α = 0.01 34 258 345 348 34

Table 5.1: The estimated computational complexities of NOT-IS.SES.

O(T ) O(T log(T )) O(T 2) O(T 3)
UTSM Computational
Complexities

2 95 892 11

Table 5.2: The estimated computational complexity of UTSM.

• The locations of the change points are drawn randomly and uniformly from the set
{1, 2 . . . , T − 1}.

• The change in mean of the random variables after each change points is selected from
Gaussian distribution with mean zero and variance which is selected randomly from
the set {1, 3, 10}.

• The Gaussian white noise with unit variance is added to the constructed mean func-
tion.

The NOT-IS.SES algorithm is conducted with respect to each generated sequence of ran-
dom variables. As mentioned earlier, the magnitude of a predefined threshold can effect the
computational complexity of the NOT-IS.SES algorithm. Thus, for each trial, the NOT-
IS.SES algorithm is conducted with respect to three distinct thresholds. These thresholds
are constructed by the help of a parametric bootstrap re-sampling and UTSM, where
α = 0.1, 0.05, and 0.01. The estimated computational complexities of NOT-IS.SES are
recorded in Table 5.1.

To investigate the computational complexity of UTSM, a different simulation study
is performed. Since UTSM is mainly applied for defining the threshold by parametric
bootstrap re-sampling, one thousands data points are randomly drawn from the Gaussian
white noise process with unit variance for each replication. Then the UTSM algorithm is
launched with respect to the generated datasets. Based on Table (5.2), the computational
complexity of UTSM procedure seems to be quadratic. In the next section, we compare
the computational complexity of UTSM to the exhaustive search (ES).
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5.4.2 Computational Complexity of the UTSM versus the ES

The ultimate goal of the UTSM algorithm is to identify the maximum value of a change
point test statistic with respect to all possible intervals within the sequence of random
variables without an exhaustive search. Thus, An alternative approach to the UTSM
is to evaluate the statistic with respect to all possible intervals within the sequence of
random variables, namely the exhaustive search. Then, the largest calculated change
point test statistic is assigned to be the maximized change point test statistic Λ∗ (5.10).
In this section, we want to demonstrate the computational efficiency of UTSM algorithm
in comparison to the exhaustive search. For this purpose, the following simulation study
is conducted:

• Ten thousands replications of a sequence of Gaussian white noise with unite variance
are generated.

• Each replication contains 1000 data points.

• Total number of available intervals is calculated as follow:

T.I =
999× 1000

2
= 499500.

• UTSM is launched with respect to each replication and the number of calculated
change point test statistic by UTSM is divided by T.I.

• The calculated proportions of conducted tests by the UTSM algorithm over total
number of possible distinct change point tests are plotted in the histogram in Figure
5.1.
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Portion of conducted tests over T.I
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Figure 5.1: Overwhelming majority of the intervals are discarded by UTSM prior to con-
ducting a change point test.

Based on the results in Figure 5.1, large number of available intervals are eliminated prior
to conducting a change point test statistic in the UTSM algorithm. Therefore, although
the UTSM finds the exact solution for the maximization problem (5.10), the computational
complexity of the UTSM is reduced significantly in comparison to the exhaustive search
method. Moreover, the search space of the conducted tests by UTSM algorithm is reduced
significantly.

5.5 Simulation Study

In this section, we have designed multiple sets of simulation studies to access the perfor-
mance of the NOT-IS.SES algorithm. We assume that the sequence of random variables
are generated from the normal mean change points model. In this setting, the sequence
of random variables are generated independently from normal distribution with unknown
but fixed variance and either constant or piece-wise constant mean. Thus, the underlying
change point test in the applied NOT-IS.SES procedure is generalized log-likelihood ratio
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test Furthermore, the threshold is set to be 1.3
√

(2 log(T )). Note that, this threshold is
the recommended threshold for wild binary segmentation in normal mean change point
setting (Fryzlewicz et al. (2014)).

5.5.1 Estimated Locations of Change Points by NOT-IS.SES

One of the main concerns of the multiple change point methods is estimating the locations
of change points accurately. To assess the accuracy of the proposed change point method,
the NOT-IS.SES algorithm is conducted with respect to the normal mean change point
models in Section 3.4. Then the estimated mean change points are collected and plotted
in the form of histogram in Figure 5.2. Ideally, the estimated change points are supposed
to cluster around the true change points.

5.5.2 NOT-IS.SES and False Discovery of Change Points

Change point methods can suffer from false discovery of change points. To assess the
susceptibility of NOT-IS.SES to false discovery of change points, the following simulation
study is performed:

• Multiple sequence of random variables with T = 100, 200, 500, 1000, 2000 observa-
tions are generated from Gaussian white noise with unit variance.

• NOT-IS.SES is conducted with respect to each generated dataset and the number of
the estimated change points are collected in Table 5.3.

• The threshold is set to λ = 1.3
√
2 log(T ).

As the number of observations increases, NOT-IS.SES is less likely to point out to the
existence of mean change points in the white noise process.

5.5.3 NOT-IS.SES versus NOT

The narrowest over threshold (NOT) obtains change point candidates by conducting a
test (usually generalized log-likelihood ratio test) with respect to randomized intervals.
In this chapter, we propose replacing randomized intervals with IS.SES generated ones.
Thus, comparing the accuracy of NOT-IS.SES and NOT through a simulation study seems
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Figure 5.2: The estimated change points are concentrated about the locations of the true
change points.
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T=100 T=200 T=500 T=1000 T=2000

N̂ = 0 736 804 870 895 907

N̂ = 1 147 107 89 77 65

N̂ = 2 79 64 30 26 25

N̂ ≥ 3 38 25 11 2 3

Table 5.3: As the number of the observations increases, the risk of false discovery of change
points reduces.

reasonable and worth the investigation. The narrowest over threshold and NOT-IS.SES
are applied with respect to the generated sequence of random observations which are
constructed based on the introduced mean change point models in Section 3.4. To equalize
the circumstances for the narrowest over threshold and NOT-IS.SES, the threshold is set
to 1.3

√
2 log(T ) for both methods. Similar to some of the previous simulation studies,

the accuracy of these methods are evaluated by the mean square error. The results of
this simulation study is recorded in Table 5.4. Based on the recorded results in Table 5.4,
NOT-IS.SES performs slightly better in term of the mean square error.

MSE
M1 M2 M3 M4 M5

NOT 3.282 0.00663 1.827 0.0928 0.0890
NOT-IS.SES 3.014 0.00453 1.786 0.0822 0.0253

Table 5.4: IS.SES interval generating mechanism has boosted the performance of the nar-
rowest over threshold procedure.

5.6 Data Analysis

In this section, the random variables are assumed to be independently distributed with
either constant or piece-wise constant location and scale parameters. The aim is to locate
the points within the sequence of independently distributed random variables after which
the location and scale parameters have changed. In other words, consider the sequence of
independently distributed random variables X1, X2, . . . , XT with a location parameter µt

and scale parameter σ2
t , then the problem of interest is to find the indexes {τ1 , τ2 , . . . , τN}
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and {η1 , η2 , . . . , ηM
} such that:

µ1 = · · · = µτ1
̸= µτ1+1 = · · · = µτ2

̸= µτ2+1 = · · · = µτ
N
̸= µτ

N
+1 = · · · = µT and

σ2
1
= · · · = σ2

η1
̸= σ2

η1+1 = · · · = σ2
η2
̸= σ2

η2+1 = · · · = σ2
η
M
̸= σ2

η
M

+1 = · · · = σ2
T .

Since the underlying distribution function is not specified, the rank based approach seems
to be a reasonable choice. To conduct a rank based change point test via the NOT-IS.SES
procedure, the sequence of random variables X1, X2, . . . , XT are ranked globally as follow:

rt =
T∑
i=1

1(Xi < Xt) + 0.5
T∑
i=1

1(Xi = Xt) + 0.5.

Through the application of NOT-IS.SES algorithm in this section, the locations of change
points are estimated by a rank change point test statistic. Recall that, the rank based
single change point test statistic U(t | a, b) is conducted with respect to the interval with
data points Xα+1, Xα+2, . . . , Xβ as follow:

U(t | α, β) =

∣∣∣r(α+1):t
− r

(t+1):β

∣∣∣√
1

t−α
+ 1

β−t

, (5.12)

where, the ranking of the random variables is done with respect to entire sequence of
random variables and not the interval in which the test is conducted. The rank CUSUM
statistic (5.12) is mainly designed to recover the location change points (i.e, the points
after which the location parameters has changed) within the sequence of random variables.
Thus, the change point analysis is conducted in multiple stages here. The first stage is
conducted to estimate the location change points. Next, the observations between the
location change points are averaged and the residuals are obtained accordingly. Then,
the calculated residuals are squared and subsequently the squared residuals are ranked
globally. Finally, the rank based NOT-IS.SES is launched to recover the change in the
underlying location parameter of the squared residuals. Note that, the change in the
location parameter of the squared residuals is equivalent to change in the scaled parameters
of the original dataset.

The threshold is set up by a parametric bootstrap re-sampling procedure. Since the rank
based CUSUM statistic is distribution free, the replications of the random variables are
generated from standard normal distribution. For each generated replication, the quantity
Λ∗ (5.10) is calculated by the UTSM algorithm. The quantity Λ∗ which is associated with
the b-th replication is denoted by Λ∗

b . The (1−α)× 100 percentile of the calculated Λ∗
bs is

assigned to be the threshold aka λ. In this section, we set α to be 0.1.
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5.6.1 Housing Price Index

In this section, we analysed the monthly percentage of the changes in the housing price
index (HPI) of three boroughs of the city of London, UK (Hackney, Newham and Tow-
erhamlets) from January 1996 to October 2018. The HPI provides an overall measure
of completed house sale transactions on the monthly bases. For more information about
the HPI dataset, we refer you to Fryzlewicz et al. (2018). To demonstrate the result, the
estimated location and scale change point models are fitted with red lines in Figure 5.3.
The location change point model is fitted with respect to the original data and the scale
change point model is fitted with respect to the squared value of the residuals of the fitted
locations parameters.
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Figure 5.3: The red horizontal lines represent the fitted change point models. The rank
based NOT-IS.SES seems to be less sensitive to detecting narrow segments.

One of the most recent evens that affect the world economy was 2007-2009 financial
crisis. During this period, the scale parameter of the HPI increased in the Hackney and
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Newham boroughs. However, no change in the location parameter has occurred in the afore-
mentioned boroughs. On the other hand, no change in the scale parameter corresponding
to the great rescission is recovered in the borough of Towerhamlets. The proposed model
by NOT-IS.SES indicates to the negative changes in the housing price of this borough
during the financial recession period. In comparison to the proposed models in Chapter 4
i.e., ranked based enhanced backward detection, NOT-IS.SES is proven to be more con-
servative. This quality of NOT-IS.SES can be attributed to the way that the threshold is
set up.

5.6.2 2016 USA Presidential Election National Poll

In this section, we investigate the raw data from the US national polls during the 2016
election term. The goal of the change point analysis on this dataset is comparing the pop-
ularity of the candidates of the mainstream parties throughout various periods according
to the national polls. These candidates are Hillary Clinton and Donald Trump. To as-
sess the relative popularity of the two main presidential candidates, Trump’s vote share is
subtracted from that of Clinton in each poll. The resulting quantity is denoted by (H-T).
Next, the the location parameter of the vote differences is estimated based on the estimated
location change points by the rank based NOT-IS.SES. The positive estimated location pa-
rameter implies the overall popularity of Hilary Clinton over Donald Trump and negative
estimated location parameter suggests otherwise. In this section, we only use the surveys
from Ipsos polling organization. We obtained this data set from dslabs R package.
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Figure 5.4: From August of 2016, the popularity of the both candidates remained the same.
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As demonstrated in Figure 5.4, Hillary Clinton had consistently enjoyed a relative
popularity over Trump according to the national polls. Furthermore, the estimated lo-
cation parameter of H-T in the last segment is 4.11%. That is, on average, Clinton was
4.11% ahead of Trump according to the national polls in the last days of 2016 presidential
campaign. This result is close to the popular votes in election day. Although the final
prediction of the vote difference between Clinton and Trump is close to the final result,
but NOT-IS.SES seems to miss out the last two mean change points in the months of
September and October. In conclusion, the estimated location change point model by the
rank based enhanced backward detection seems to be more accurate than the one that is
extracted from rank based NOT-IS.SES .

5.7 Discussion

One of the main challenges of the IS.SES and UTSM algorithms is their computational
complexities. One difficulty that we have faced, is recording the calculated test statistic
values

U(i | 0, j) for j = 2 d . . . , T and i = d, . . . , j − d. (5.13)

Since recording the aforementioned change point test statistic values requires large memory
space in R statistical software, we decided to simply eliminate some of the intervals in which
a predefined threshold is not satisfied (5.5), and reduce search space of the conducted
tests (5.6). If a developer manages to find an efficient way to store test statistics value
(5.13), SES and IS.SES will become much more computationally efficient. Although in
this thesis, IS.SES algorithm is applied as an interval generating mechanism in narrowest
over threshold, it can also be applied as a supplement to other local search methods.
For instance, the IS.SES algorithm can be applied between the detected change points in
order to recover the change points which were missed by the originally applied local search
method.

The IS.SES interval generating mechanism can be applied in the narrowest significant
pursuit (Fryzlewicz (2020b)) as well. The narrowest significant pursuit estimates the con-
fidence regions within the sequence of random variables by drawing randomized intervals
in two stages. Unlike the randomized intervals, IS.SES generated intervals contain no sub-
intervals in which a predefined threshold is satisfied. For instance, suppose the interval
(α, τ ] is recovered by IS.SES, then the predefined threshold will not be satisfied within
any of the sub-intervals of the interval (α, τ ]. Thus, the NOT-IS.SES algorithm can also
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be applied for extracting confidence regions. That is, the intervals which are used for
estimating the locations of change points can also be regarded as confidence regions.

One of the concern of the NOT-IS.SES algorithm is setting up a threshold based on the
probability distribution of the underlying change point test statistic. Setting up a large
threshold can result in underestimation of the number of change points. Moreover, in some
cases eliminated change points may offset the remaining change points. The NOT-IS.SES
algorithm is designed with the concern that the assigned threshold is overstated. Recall
that, even if a threshold is satisfied within only one interval, the NOT-IS.SES is able to
recover such an interval without conducting an exhaustive search. Thus, the NOT-IS.SES
algorithm is ideal, when the goal is to recover the mean change points that are associated
with a significant change.
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Chapter 6

Hybrid Enhanced Backward
Detection

In Chapter 3, enhanced backward detection via Bayesian information criteria (EBD) was
introduced. In the EBD, the number of change points is estimated by Bayesian information
criteria (BIC) (Schwarz et al. (1978)). In this chapter, we propose a new variation of EBD
which estimates the number of change points by setting up a threshold based on the prob-
ability distribution of the underlying change point test statistic. We refer to this method
as threshold based enhanced backward detection (λ-EBD). Similar to EBD, in λ-EBD, the
locations of change points are estimated individually by conducting a single change point
test within intervals of random variables. The λ-EBD method will be elaborated more
precisely in Section 6.1.

Recall that, the local search methods estimate the locations of change points by con-
ducting a test within the intervals of the random variables. Ideally, these intervals contain
exactly one change point. However, some of the intervals which are selected by λ-EBD for
estimating change points may contain multiple change points. Generally, to obtain change
point estimates from desirable intervals, some of the local search methods such as narrow-
est over threshold (Baranowski et al. (2019)) attempt to estimate the locations of change
points based on relatively short intervals. In this approach, all of the intervals in which
a predefined threshold is satisfied are collected and change points estimates are extracted
from the shortest intervals. As a result of prioritizing the narrowest intervals, the locations
of change points are much more likely to be estimated based on the intervals with exactly
one change point. Therefore, to obtain change point estimates form narrower intervals,
IS.SES algorithm is launched with respect to the intervals from which change point es-
timates were extracted during the execuation of λ-EBD. Then the narrowest generated
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sub-intervals by IS.SES replaces the intervals in which the IS.SES procedure performed.
The shortening of the intervals which are used for locating the change point estimates will
be discussed in Section 6.1

To recover change point estimates which λ-EBD may have failed to detect, IS.SES
algorithm is launched with respect to the segments between the change point estimates from
λ − EBD. The application of IS.SES algorithm alongside with λ-EBD will be discussed
more precisely in Section 6.1. Since the resulting method employs λ-EBD and IS.SES
in combination with each other, we refer to this approach as hybrid enhanced backward
detection (HEBD). In Section (6.2), HEBD is performed with respect to a real world
dataset. This dataset is the collection of all Ipsos national polls with regard to 2016 USA
presidential election polls.

6.1 Hybrid Enhanced Backward Detection

Similar to EBD, λ-EBD is a member of bottom up detection methods. Recall that the
bottom-up process eliminates the change point candidates sequentially. Therefore, in en-
hanced backward detection, the change point candidate with the smallest value of the
change point test statistic is eliminated at each stage. However, in λ-EBD, the change point
candidates are scored slightly differently. To track down which change point candidate to
be eliminated next, the matrix R is constructed in the following manner. Suppose the
current set of change point candidates is {τ1 , τ2 , . . . , τN}, then the matrix R is (N +2)×4
dimensional and its entries in each row are as follow:

[0, −1, 1, ∞], for the first row

[T, T − 1, T + 1, ∞], for the last row, and

[τ
j
, τ

j−1
, τ

j+1
, U(τ

j
| α

j−1
, β

j−1
)] for (j+1)-th row,

where α
j
and β

j
are the lower and upper bounds of the interval from which change point

candidate τ
j
is extracted. Note that, the interval (α

j
, β

j
] is a sub-interval of (τ

j−1
, τ

j+1
]

and index τ
j
is the point which maximizes the change point test statistic U within the

interval (α
j
, β

j
]. Throughout this chapter, we refer to the elements in the fourth column

of the matrix R as scores. For instance, the score of the change point candidate τ
j
is

U(τ
j
| α

j
, β

j
). Similar to the methods in the previous chapters, the underlying single

change point test statistic is derived from some sort of a loss function as demonstrated in
equation (5.2).

At each stage of λ-EBD, the change point candidate with the smallest score is eliminated
and then a variation of the sweeping process, which is modified to suit λ-EBD is launched.
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We call this variation of the sweeping process threshold based sweeping process (TSP). To
describe λ-EBD and TSP algorithms, the following example is constructed. Suppose the
change point candidate τ

j
is associated with the smallest score in the matrix R. Therefore,

the change point candidate τ
j
and subsequently the (j + 1) row from the matrix R are

eliminated. After eliminations of the change point candidate τ
j
, TSP is launched. For

this purpose, the first and last change point candidates which are required to be inspected
by TSP are determined. We call the first and last change point candidates which are set
to be examined, count (c) and maximum count (m.c), respectively. In this scenario, since
the change point candidate τ

j
is eliminated, the count and maximum count indexes are

determined as follow:

c = min(c− 1, 1) and m.c = min(c+ 2, N − 1).

TSP algorithm with regard to the change point candidate τc is performed as follow:

• Examination of the change point candidate τc depends on its score and its corre-
sponding interval in the matrix R. These scenarios are as follow:

Case 1: If R[ c+ 1, 4] ≥ λ and R[c+ 1, 2] < τc−1 or R[c+ 1, 3] > τc+1 , then

∗ The single change point test statistic is maximized with respect to the
interval (τc−1 , τc+1 ] as follow:

τ = argmax
τc−1<j<τc+1

U(j | τc−1 , τc+1).

∗ The entries in the (c+ 1) row of the matrix R are updated as follow:

[ τ, τc−1 , τc+1 , U(τ | τc−1 , τc+1)].

Case 2: If R[ c+ 1, 4] < λ, and R[c+ 1, 2] ̸= τc−1 or R[c+ 1, 3] ̸= τc+1 then

∗ The single change point test statistic is maximized with respect to the
interval (τc−1 , τc+1 ] as follow:

τ = argmax
τc−1<j<τc+1

U(j | τc−1 , τc+1).

∗ The entries in the (c+ 1) row of the matrix R are updated as follow:

[ τ, τc−1 , τc+1 , U(τ | τc−1 , τc+1)].

Case 3: If neither Case 1 or Case 2 occur, then TSP ignores the (c+ 1)-th row.
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• If τc ̸= R[c, 1], then

c = max(1, c− 1) and and m.c = min(N − 1, c+ 1).

Otherwise, the count index is incremented with one i.e., c = c+ 1.

• TSP is stopped as soon as c > m.c.

The elimination of change point candidates through λ-EBD procedure continues until all
of the recorded scores in the matrix R exceeds a predefined threshold.

Suppose the change point estimates τ1 , τ2 , . . . , τN are extracted by λ-EBD from the
intervals (α1 , β1 ], (α2 , β2 ], . . . , (αN

, β
N
], respectively. Note that, the recorded intervals in

the matrix R at the end of the run of λ-EBD contain exactly one change point estimate. In
other words, the interval such as (α

j
, β

j
]m which contains the change point estimate τ

j
, is

a sub-interval of (τ
j−1

, τ
j+1

]. However, the recorded intervals in the matrix R may contain
more than one true change points. Thus, narrowing down these intervals is beneficial, since
the narrower intervals are less likely to contain multiple change points. For this purpose, the
IS.SES procedure is performed with respect to the intervals which are used by λ-EBD for
estimating the locations of change points. For example, consider the change point estimate
τ
j
which is obtained by λ-EBD from the interval (α

j
, β

j
], then the IS.SES procedure is

launched with respect to the aforementioned interval. The narrowest generated interval
by IS.SES replaces the interval (α

j
, β

j
] and the point which maximizes the change point

test statistic within the updated interval substitutes the change point estimates τ
j
. Not

only the IS.SES algorithm can narrow down the intervals in the matrix R, but also, it
can recover the change points which λ-EBD has failed to detect. Note that, the estimated
change points must not conflict each other. Recall that, the change point candidates τ1
and τ2 which are extracted from the intervals (α1 , β1 ] and (α2 , β2 ], respectively, conflict
with each others, when τ1 ∈ (α2 , β2) or τ2 ∈ (α1 , β1).

Suppose the indexes τ1 , τ2 , . . . , τN are change point estimates within the sequence of
random variables X1, X2, . . . , XT . Moreover, the change points estimates τ1 , τ2 , . . . , τN
and their corresponding intervals are recorded in the matrix R. IS.SES generated intervals
are added to the matrix R as follow:

Step 0: The matrix R∗ is introduced and set equal to R.

Step 1: IS.SES procedure is performed with respect to every recorded intervals in the matrix
R.

115



Step 2: IS.SES generated intervals along side with their corresponding change point candi-
dates and the value of maximized change point test statistic are added as a row vector
to the matrix R∗. For instance, suppose the interval (α, β] is an IS.SES generated
interval, where the underlying change point test statistic is maximized by the index
τ , then the row vector

[τ, α, β, U(τ | α, β)]

is recorded in the matrix R∗.

Step 3: The row vectors in the matrix R∗ are arranged with respect to the length of their
corresponding intervals in the increasing order. That is, the row which contains an
interval with the shorter length are located on the top rows of the matrix R∗.

Step 4: The change point candidate in the matrix R∗ which is extracted from the narrowest
interval is assigned to be a change point estimate.

Step 5: The rows in the matrix R∗ with a change point candidate which conflicts with esti-
mated change points are eliminated.

Step 6: Steps 4 and 5 are repeated, until all of the change point candidates in the matrix R∗

are either assigned to be change point estimates or eliminated due to their conflict
with the estimated change points.

Step 7: Set the matrix R equal to the matrix R∗.

As mentioned earlier, the change points which were not detected by λ-EBD can be
identified by the help of the IS.SES procedure. For instance, suppose the indexes η and τ
are assigned to be change points based on the previous analysis, then the remaining change
points within the interval (η, τ ] are obtained by IS.SES procedure as follow:

1: The IS.SES procedure is performed within the interval (η, τ ].

2: The IS.SES generated intervals which conflict with change point estimates η and τ
are eliminated.

3: The remaining IS.SES generated intervals are sorted in an increasing manner with
respect to their length.

4: The change point estimate is extracted from the narrowest remaining IS.SES gener-
ated intervals.
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5: All of the IS.SES generated change point candidates which conflict with the recently
recovered change point estimate are eliminated.

6: Steps 4 and 5 are repeated until all of the IS.SES generated change point candidates
are either assigned to be change point estimates or eliminated.

Similar to NOT-IS.SES, the intervals which are used for estimating the location of change
points do not contain any sub-intervals in which a predefined threshold is satisfied other
than themselves.

In this section, HEBD multiple change point detection method was introduced. In
Section 6.2, the applicability of HEBD procedure is demonstrated with respect to a real
world dataset.

6.2 Data Analysis

In this section, the change point analysis via HEBD is conducted with respect to the 2016
presidential election national polls from Ipsos. At first, vote difference between Hillary
Clinton and Donald Trump in each poll is calculated. That is, Trump’s share of the votes
in each poll is subtracted from Clinton’s. We refer to this dataset as H-T. Then the mean
change point model with regard to H-T dataset is estimated. The segment of H-T with
positive means implies that Hillary Clinton had captured the larger share of votes during
that particular period. On the other hand, Negative estimated mean implies Donald Trump
was ahead of Hillary Clinton according to the national election polls.

In this chapter, we assume the random variables in H-T dataset are independently and
normally distributed with a unit variance. Therefore, the variance of the random variables
is stabilized by box-cox transformation. Next, the transformed dataset is centered and
scaled. To search the location of change points individually, the underlying change point
test statistic is derived from the generalized log-likelihood ratio test under the assumption
of normality and independency of the random variables. That is, the underlying single
change point test statistic in HEBD is calculated with respect to the sub-sequence of
random variables Xα+1, Xα+2, . . . , Xβ as follow:

τ = argmax
α<t<β

[∣∣X(α+1):t −X(t+1):β

∣∣√
1

t−α
+ 1

β−t

]
.

Similar to Chapter 5, the threshold is determined with the help of a parametric bootstrap
re-sampling and the UTSM procedure.
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According to the QQ-plot in Figure 6.1, the residuals which are obtained from the pro-
posed mean change point model by HEBD is normally distributed. Furthermore, according
to the time series plot in Figure 6.1, estimated residuals is weakly stationary. HEBD es-
timated mean change point model implies that Hillary Clinton was almost consistently
ahead of Donald Trump during 2016 USA presidential election period, according to the
Ipsos national polls. Note that, at the last segment, Hillary Clinton was ahead of Donald
Trump by 5% . However according to the election results, Clinton had captured 3% more
votes than Trump. In other words, the national polls may have overestimated Hillary
Clinton’s vote.
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Figure 6.1: Time series and QQ plots indicates that our proposed change point model is
accurate.
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Chapter 7

Conclusion and Future Works

In this thesis, we introduce enhanced backward detection (EBD) and narrowest over thresh-
old with interval selection via shorten exhaustive search (NOT-IS.SES). The fundamental
requirement for these methods is that the single change point statistic must be extracted
from a loss function. The generalized log-likelihood ratio test is one example of such a sin-
gle change point test statistic. Enhanced backward detection is a member of the bottom
of change point detection techniques, in which an estimated change point set is obtained
by sequential elimination of change point candidates. On the other hand, the narrow-
est over threshold with interval selection via shorten exhaustive search is a member of
top-down methods. The fundamental ingredient of NOT-IS.SES is the shorten exhaustive
search (SES) algorithm, which is responsible for recovering an interval when a predefined
threshold is satisfied. One significance of SES is that if SES recovers no interval, then we
can conclude that there is no interval within the sequence of random variables in which a
predefined threshold is satisfied.

Further, we introduce a modified version of the SES algorithm designed to calculate
the largest change point test statistic within the sequence of random variables. That is,
the single change point test statistic is maximized with respect to the possible location of a
change point and the interval in which the test is calculated. We also propose a rank-based
variation of our proposed methods. Using a rank-based single change point test statistic
extracted from a loss function, EBD and NOT-IS.SES can also be applied to nonparametric
problems.

EBD and NOT-IS.SES can be applied to a wide variety of problems, as long as the
single change point test statistic is extracted from a loss functions as demonstrated in 3
and 5. However, in this thesis, we have only investigated the performance of these methods

119



concerning univariate datasets. Thus, applying EBD and NOT-IS.SES to multivariate and
high-dimensional datasets is worth investigating. Moreover, the application of EBD and
NOT-IS.SES concerning the dataset with time-series dependency can be an exciting topic
for further research.
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rényi type’, Journal of Business & Economic Statistics 38(3), 570–579.
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