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SUMMARY 17 

INTRODUCTION: Analysis of muscle composition using ultrasound requires standardization 18 

of several equipment settings (i.e. gain). However, the influence of image resolution, which is 19 

altered by imaging depth, on measures of muscle composition is unknown.   20 

METHODS: We analyzed rectus femoris muscle composition using ultrasound images captured 21 

from 32 males and females (aged 28±5 years) at depths of 9.0, 7.3, 5.9, and 4.7 cm. The 22 

transducer’s orientation was fixed using a clamp during image acquisition to minimize 23 

movement. Across each image resolution, a region of interest encompassing the same anatomical 24 

area within the muscle was used for muscle composition analysis. Muscle composition was 25 

analyzed using a combination of first, second, and higher order texture features. Muscle 26 

composition agreement across image resolutions was evaluated using a one-way ANOVA and 27 

intraclass correlation coefficients (ICC).  28 

RESULTS: Most muscle composition features displayed differences due to image resolution 29 

(p<0.05). ICCs demonstrated poor to good agreement across different image resolutions. In 30 

general, higher resolution images (i.e. shallower imaging depth) demonstrated better agreement 31 

(ICC>0.90) compared to lower resolution images.  32 

CONCLUSIONS: Ultrasound image resolution influences muscle composition analysis. Image 33 

resolution should be fixed within and between individuals when evaluating muscle composition 34 

using ultrasound. 35 

Keywords: ultrasound, skeletal muscle composition, muscle quality, echo intensity, echogenicity, 36 
body composition  37 
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INTRODUCTION 38 

Skeletal muscle mass decreases with advancing age and several disease states (e.g. 39 

diabetes, cancer cachexia, and others) (Mitchell et al. 2012, Parry et al. 2015). The loss of 40 

skeletal muscle mass contributes to impairments in strength and physical function (Visser et al. 41 

2005), however, these adverse changes cannot be entirely accounted for by changes in muscle 42 

mass (Goodpaster et al. 2006). The composition or quality of skeletal muscle tissue also 43 

deteriorates with age and disease (Frank-Wilson et al. 2018), and poor skeletal muscle 44 

composition (i.e. a high degree of inter- or intra-muscular adipose, or connective tissue 45 

infiltration) contributes to functional and metabolic impairments (Goodpaster et al. 2001). 46 

Measuring the infiltration of non-muscle tissue into skeletal muscle is challenging, and 47 

established reference methods are invasive (e.g. muscle biopsies), inaccessible (e.g. magnetic 48 

resonance imaging), or expose the individual to ionizing radiation (e.g. computed tomography). 49 

Ultrasound has emerged as a non-invasive, accessible, and safe modality that can provide 50 

surrogate measures of skeletal muscle composition (Paris and Mourtzakis 2016). 51 

Muscle composition can be assessed from ultrasound images via texture analysis, a 52 

process by which mathematical features are used to describe the composition of tissues 53 

(Castellano et al. 2004). Several texture features may be used to characterize skeletal muscle 54 

composition, the most common of which is echo intensity. Echo intensity quantifies the average 55 

pixel intensity in a defined region of interest (ROI), with higher values (brighter images) 56 

indicating increased adipose and connective tissue infiltration (Harris-Love et al. 2014). Higher 57 

echo intensity has previously been shown to be associated with reduced strength (Wilhelm et al. 58 

2014), functional capacity (Rech et al. 2014), and cardiorespiratory fitness (Cadore et al. 2012) 59 

in older adults. While echo intensity is a useful measure, more complex texture features may 60 
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have greater utility in characterizing skeletal muscle composition from ultrasound images. Echo 61 

intensity is considered a first order texture feature, as it only accounts for individual pixel 62 

intensities. Second and higher order texture features account for both pixel intensity as well as 63 

their spatial distribution (i.e. the relative location of each pixel throughout the muscle). These 64 

more complex texture features are emerging as suitable surrogates for skeletal muscle 65 

composition, which, compared with echo intensity, may better discriminate between males and 66 

females (Molinari et al. 2015), different muscle groups (Molinari et al. 2015), and neuromuscular 67 

diseases (König et al. 2015).   68 

Given that ultrasound texture analysis of skeletal muscle composition is based on pixel 69 

intensity and spatial distribution, equipment settings that influence pixel intensity (i.e. gain, time-70 

gain-compensation) must be standardized when comparing muscle composition across 71 

individuals. Within the existing literature, the majority of studies examining ultrasound muscle 72 

composition standardize these equipment settings for image acquisition. However, scanning 73 

depth is often changed between and within participants to optimize the field of view due to 74 

differences in muscle size or adipose tissue thickness. For example, a greater scanning depth is 75 

required to fully capture the anterior thigh muscles of a muscular or obese individual compared 76 

to a smaller-framed person. Altering the scanning depth changes the image resolution (i.e. 77 

number of pixels/area); but, the influence of image resolution on muscle composition texture 78 

analysis has yet to be comprehensively evaluated.  79 

This study sought to examine the effect of image resolution on ultrasound measures of 80 

rectus femoris muscle composition (e.g. echo intensity and others) in healthy adults. We 81 

hypothesized that different image resolutions would alter muscle composition texture analysis, 82 

but that some features may be influenced to a lesser degree.  83 
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MATERIALS AND METHODS 84 

Study design and participants – We conducted a prospective cross-sectional study which 85 

evaluated 32 healthy adults (≥ 18 years, n=16 males, n=16 females) recruited from the University 86 

of Waterloo campus community. Participants were instructed to refrain from strenuous lower 87 

body exercise for 24 h prior to their study visit. This study was approved by a human research 88 

ethics committee at the University of Waterloo. Written informed consent was obtained from all 89 

participants in accordance with established protocols for human research.  90 

Anthropometry and landmarking – Weight and height were measured using a beam scale and 91 

stadiometer, respectively. Limb dominance was indicated by participant self-report. During 92 

landmarking, participants lay supine with their feet hip width apart and secured in position using 93 

a foot strap to prevent excessive internal or external hip rotation. We used a flexible tape 94 

measure and pen to mark the position 2/3 of the distance from the anterior superior iliac spine to 95 

the superior pole of the patella. We also measured the circumference of the thigh at this 96 

landmark. All measurements were made on the right leg. 97 

Ultrasound image acquisition – Transverse images were taken using a real-time B-mode 98 

ultrasound imaging device (M-Turbo, SonoSite; Markham, ON) equipped with a multi-frequency 99 

linear array transducer (L38xi: 5-10 MHz). The imaging mode was set to “resolution” and the 100 

following settings were held constant throughout the study: gain (default), time-gain 101 

compensation (default), and dynamic range (50%). The transducer was generously coated with 102 

water-soluble transmission gel to minimize tissue depression. Previously, we have shown that 103 

minimal tissue compression is strongly correlated with appendicular lean tissue measured using 104 

dual-energy X-ray absorptiometry (Paris et al. 2017). Minimal compression was confirmed 105 

visually by ensuring that: 1) a layer of ultrasound gel remained between the probe and the skin 106 
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during imaging, and 2) the natural curvature of the skin, subcutaneous adipose tissue, and muscle 107 

tissue was maintained. The transducer was oriented in the medial-lateral plane to centre the 108 

rectus femoris and femur within the field of view and then tilted in the cranial-caudal plane to 109 

achieve the brightest femur bone echo (i.e. neutral transducer tilt). Once the correct orientation 110 

was achieved, the transducer was fixed in place using a flexible gooseneck clamp (Figure 1), 111 

and this position was maintained throughout the entire image acquisition process. Images of the 112 

rectus femoris were captured at discrete depths of 9.0, 7.3, 5.9, and 4.7 cm, which on our 113 

equipment correspond to image resolutions of 0.0234, 0.0189, 0.0153, and 0.0123 cm/pixel, 114 

respectively. All ultrasound images were saved in the Digital Imaging and Communications in 115 

Medicine (DICOM) format and transferred to a computer for analysis. Image resolution was 116 

determined from manufacturer information contained with the DICOM metadata. 117 

Thickness measurements – For all participants, muscle and subcutaneous adipose tissue 118 

thicknesses were analyzed using the 9.0 cm depth images (ImageJ, version 1.52a, NIH; 119 

Bethesda, MD). Muscle thickness (which included both the rectus femoris and vastus 120 

intermedius) was obtained by measuring the perpendicular distance between the upper margin of 121 

the femur and the lower boundary of the rectus femoris fascia, as previously described (Paris et 122 

al. 2017). Subcutaneous adipose tissue thickness was obtained by measuring the perpendicular 123 

distance between the superior border of the rectus femoris fascia and the inferior border of the 124 

skin at three locations: the medial, center, and lateral sections of the ultrasound image. The 125 

average of these three subcutaneous adipose tissue measurements was used in the analysis. A 126 

single trained analyst performed all thickness measures.   127 

Muscle texture analysis – During texture analysis, placement of the ROI impacts muscle 128 

composition analysis (Caresio et al. 2014). Therefore, it is critical to select the same physical 129 
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area within the muscle of interest across all image resolutions. To minimize inconsistencies in 130 

ROI placement across images of differing resolutions, the initial ROI was manually selected in 131 

the 9.0 cm depth image and then automatically scaled to the remaining images (Figure 2). The 132 

ROI was selected to capture as much of the rectus femoris as possible, while excluding the 133 

surrounding muscle fascia. ROI scaling was successful for all participants across all depths, with 134 

the exception of one participant whose rectus femoris did not fully fit within the field of view at 135 

the 4.7 cm imaging depth. 136 

At each image resolution, we evaluated several different texture features representing 137 

first, second, and higher order analysis. First order features account for individual pixel intensity, 138 

independent of spatial distribution. Second order and higher order features account for pixel 139 

intensities and the spatial relationships between pairs of pixels (second order) or three or more 140 

pixels (higher order). First order features were extracted from the ROI pixel intensity histogram 141 

and included mean echo intensity, kurtosis, and energy. Second order features were extracted 142 

from the grey-level co-occurrence matrix (GLCM), which encodes the frequency of pixel pair 143 

occurrences for a given intensity and spatial relationships (distance and angle) (Castellano et al. 144 

2004). From the GLCM, measures of energy, correlation, and contrast were calculated and 145 

averaged across distances of 1 to 10 pixels and angles 0, 45, 90, and 135º (symmetric matrix) 146 

(Hall-beyer 2017). Higher order features were evaluated using local binary patterns (LBP), 147 

which Molinari et al. (2015) have demonstrated as being useful for muscle texture 148 

characterization. LBP evaluate the local spatial patterns of edges, points, and spots of an image. 149 

A LBP image, derived using a circular radius of 5 and 8 sampling points, was used to extract 150 

measures of energy for texture characterization (Molinari et al. 2015). 151 
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The mean echo intensity of muscle can range from 0 to 255 (black to white). Histogram 152 

kurtosis represents the peakedness of the pixel intensity distribution. A value of 3 for kurtosis 153 

represents a normal distribution, values above 3 indicate leptokurtic (sharper peak) and values 154 

below 3 indicate platykurtic (flatter peak). Histogram energy, GLCM energy, and LBP energy 155 

range from a minimum of 0 to a maximum of 1. GLCM correlation can range from -1 to 1. The 156 

minimum value of GLCM contrast is 0, whereas the upper range is dependent on the bit depth of 157 

the image. For an 8-bit ultrasound image, the range is from 0 to 65 025.  158 

Statistical analysis – Differences between males and females were compared using independent 159 

samples Student’s t-tests. A repeated measures one-way ANOVA was used to test for differences 160 

in muscle composition features between images obtained at the following depths: 9.0, 7.3, 5.9, 161 

and 4.7 cm. Post hoc pairwise comparisons were performed using a Bonferroni correction. We 162 

used intraclass correlations coefficients (ICC) to evaluate the agreement between muscle 163 

composition texture features across different image resolutions. ICC (2,1) (Koo and Li 2016) for 164 

absolute agreement were used to evaluate combined and all pairwise permutations of 9.0, 7.3, 165 

5.9, and 4.7 cm depths. ICC values <0.5 indicate poor reliability; values between 0.5 – 0.75 166 

indicate moderate reliability; values between 0.75 – 0.9 indicate good reliability; and values >0.9 167 

indicate excellent reliability (Koo and Li 2016). All statistics analyses were performed using 168 

SPSS (version 24, IBM, USA). Statistical significance was set as p<0.05. 169 

RESULTS 170 

On average, participants were normal weight according to BMI (24.4 ± 3.4 kg/m2), and 171 

84% (n=27) were right leg dominant. Compared with females (n=16), males (n=16) presented 172 

with greater weight (p<0.001), height (p<0.001), BMI (p=0.011), and muscle thickness 173 
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(p<0.001), but lower adipose tissue thickness (p=0.004) (Table 1). The minimum imaging depth 174 

required to fully visualize the rectus femoris in all participants was 5.9 cm (Table 1).  175 

We observed a significant effect of image resolution across all muscle composition 176 

texture features (all p<0.05), with the exception of GLCM energy (p=0.115) (Table 2). Post-hoc 177 

pairwise comparisons demonstrated that across each image resolution, muscle composition 178 

features displayed heterogeneous differences depending on the feature and image resolution 179 

evaluated (Table 2).  180 

Across all image resolutions, kurtosis, histogram energy, and GLCM contrast displayed 181 

moderate-to-good/excellent ICC scores, whereas the remaining features displayed poor-to-182 

moderate/good agreement (Table 3). Generally, the lowest resolution image (9.0 cm imaging 183 

depth) revealed the poorest agreement with other imaging depths (ICC ranges 0.087 – 0.794); 184 

whereas agreement amongst the higher resolution images (7.3, 5.9, and 4.7 cm imaging depths) 185 

was stronger (ICC ranges 0.377 – 0.992). Interestingly, the first order histogram features 186 

displayed stronger agreement (ICC ranges 0.894 – 0.992) amongst the higher resolution images 187 

compared with second and higher order texture features (ICC ranges 0.377 – 0.934) (Table 3).  188 

DISCUSSION 189 

In the current study, we show that ultrasound image resolution, which is altered by 190 

scanning depth, significantly influences texture analysis of skeletal muscle tissue. For all muscle 191 

composition texture features, we observed a wide range of agreement (from poor to excellent) 192 

amongst the various image resolutions. In general, higher resolution images displayed better 193 

agreement compared to lower resolution images, indicating the importance of accounting for 194 

image depth between and within participants when evaluating muscle composition. 195 
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Surrogates of skeletal muscle composition are increasingly being evaluated using 196 

ultrasound (Correa-de-Araujo et al. 2017). Since muscle composition is characterized using 197 

image pixel intensities and spatial distributions, several ultrasound equipment settings require 198 

standardization to ensure consistency in analysis between and within individuals. Equipment 199 

settings such as gain, time-gain-compensation, dynamic range, and manufacturer proprietary 200 

settings are known to influence pixel intensities and require standardization (Pillen and van 201 

Alfen 2011). Imaging depth is a parameter that is often altered between and within individuals to 202 

fully visualize muscles and account for differences in muscle size and subcutaneous adipose 203 

tissue thickness. While some studies report the use of a single ultrasound imaging depth for 204 

muscle composition analysis (Zaidman et al. 2012, Wilhelm et al. 2014), this is not universally 205 

implemented (Young et al. 2015, Minetto et al. 2016). Because the influence of ultrasound image 206 

resolution on analysis of skeletal muscle composition is not well understood, interpretation of 207 

muscle composition across different imaging depths can be challenging. 208 

To our knowledge, only one other study has evaluated the influence of ultrasound image 209 

resolution (at depths of 2.46, 3.71, and 4.93 cm) on texture characterization, however, this was 210 

performed on malignant and benign breast lesion scans (Lefebvre et al. 2000) rather than muscle 211 

tissue. In this study, Lefebvre et al. (2000) examined 12 different first and second order texture 212 

features and observed high coefficients of variation (CVs) between the three image depths: six 213 

features displayed CVs greater than 20%, and the remaining six features displayed CVs between 214 

10-20%. These large deviations support our findings and suggest that image resolution has a 215 

significant impact on texture analysis. However, we observed better agreement between the 216 

higher resolution scans (at depths of 7.3, 5.9 and 4.7 cm), whereas, Lefebvre et al. (2000) 217 

observed poor agreement even at relatively shallow imaging depths (i.e. higher resolution scans) 218 
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(Lefebvre et al. 2000). This discrepancy between the current study at Lefebvre et al. (2000) may 219 

be due to differences in image resolution (i.e. cm/pixel) across different ultrasound 220 

manufacturers, rather than specific imaging depths (i.e. cm). In future analyses, it may be useful 221 

to report both image resolution and depth, to assist readers with interpretation and comparison of 222 

muscle composition analysis.  223 

When comparing ICC’s across different texture features, first order analyses (e.g. echo 224 

intensity, histogram kurtosis, and histogram energy) exhibited the highest degree of agreement 225 

for higher resolution images (image depths 7.3, 5.9, and 4.7 cm). Given the technical nature of 226 

measurement and interpretation of second and higher order texture features, it may be that 1st 227 

order texture features are sufficient for describing muscle composition. However, our analysis 228 

solely evaluated agreement between different image resolutions. Additional analyses are needed 229 

to evaluate which of these texture features are most useful for characterizing muscle composition 230 

relative to reference measures of intramuscular adipose tissue (e.g. magnetic resonance imaging). 231 

 Given the influence of image resolution on texture features, it is critical for researchers to 232 

select a single, fixed depth with a high image resolution when analyzing muscle composition 233 

between and within participants in a single study. In our young healthy cohort, a depth of 4.7 cm 234 

fully captured the cross-sectional area of the rectus femoris at our landmark (the lower 2/3 of the 235 

anterior thigh) in 97% of our participants. However, due to our relatively small sample size and 236 

lack of participants with higher BMIs (and likely greater thigh circumferences and/or 237 

subcutaneous adipose tissue thickness), 4.7 cm may not be deep enough to capture the entire 238 

rectus femoris cross-sectional area in all individuals of a more heterogeneous cohort. Therefore, 239 

at the lower 2/3 anterior thigh landmark and with our equipment, a depth of ~6.0 cm may better 240 

capture the entire rectus femoris and be more appropriate for muscle composition analysis. 241 
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However, it should be noted that this depth will likely be insufficient to capture the femur within 242 

the field of view for all participants, limiting concurrent analysis of muscle thickness and 243 

composition. Furthermore, since image resolution and scanning depth are unique to each 244 

ultrasound and transducer combination, we recommend that researchers familiarize themselves 245 

with the capabilities and limitations of their equipment to ensure consistency within a study. 246 

A limitation of the current study is that our participant cohort consisted solely of 247 

apparently healthy younger adults. It is unknown whether image resolution has a similar 248 

influence on skeletal muscle from older adults or clinical populations, who tend to present with 249 

poorer muscle composition (Strasser et al. 2013). Furthermore, we only evaluated the agreement 250 

of muscle composition across different image resolutions, thus the usefulness of specific texture 251 

features in differentiating individuals with good or poor muscle composition requires further 252 

investigation. This limitation is particularly important for determining if the differences due to 253 

image resolution represents a clinically meaningful change, rather than just a statistically 254 

significant difference. For example, our previous work has shown that the mean difference in 255 

rectus femoris echo intensity between older and younger adults is 15.1 arbitrary units (Paris et al. 256 

2017). The 3.0 unit difference in echo intensity between depths of 7.3 and 4.7 cm is statistically 257 

significant, but may not be clinically meaningful. However, the 13.1 unit difference between 9.0 258 

and 4.7 cm would represent a clinically meaningful influence. Lastly, the exact depths and image 259 

resolutions used in this study may not be reproducible on other ultrasound devices, limiting 260 

direct comparisons with our findings and further supporting the need for intra-study report of 261 

depth analysis. 262 

In conclusion, our study demonstrates that ultrasound image resolution significantly 263 

influences analysis of skeletal muscle composition. The depth of ultrasound imaging should be 264 
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held constant (or at least accounted for) between and within participants to ensure comparable 265 

measurements are obtained. 266 
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Figure 1 335 
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Figure 2 337 

  338 
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Figure captions list 339 

Figure 1. Transducer apparatus. Once the correct medial-lateral and cranial-caudal 340 

orientations were achieved, and minimal tissue compression was confirmed, the transducer was 341 

fixed in place with flexible gooseneck clamp. This position was maintained while transverse 342 

images of the thigh were captured at discrete depths of 9.0, 7.3, 5.9, and 4.7 cm.     343 

Figure 2. Automatic region of interest selection across different image resolutions. The 344 

region of interest was manually selected in the 9.0 cm depth image and automatically scaled to 345 

the remaining images. 346 

  347 
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Table 1. Demographic and physical characteristics.  348 

 All  

(n=32) 

Males  

(n=16) 

Females 

(n=16) 

p-value 

Age, years 28 ± 5 27 ± 3 28 ± 7 0.315 

Weight, kg 70.6 ± 13.0 78.3 ± 10.9 63.0 ± 10.7 <0.001 

Height, m 1.70 ± 0.07 1.74 ± 0.05 1.66 ± 0.06 <0.001 

BMI, kg/m2 24.4 ± 3.4 25.8 ± 3.3 22.9 ± 3.0 0.011 

Right leg dominant, n 27 13 14 - 

Muscle thickness, cm 3.97 ± 0.86 4.61 ± 0.62 3.36 ± 0.61 <0.001 

Adipose tissue thickness, cm 0.91 ± 0.56 0.64 ± 0.39 1.19 ± 0.59 0.004 

Minimum imaging depth, cm 5.9 4.7 5.9 - 

Data are presented as mean ± SD 349 
Minimum imaging depth refers to depth required to fully visualize the inferior fascia of the 350 
rectus femoris 351 
Abbreviations: BMI, body mass index.  352 

 353 

  354 
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Table 2. Comparison of muscle texture features between different resolution images 355 

Image 

depth 

9.0 cm 

(n=32) 

7.3 cm 

(n=32) 

5.9 cm 

(n=32) 

4.7 cm 

(n=31) 

ANOVA 

p-value 

Echo 

intensity 
52.9 ± 9.0a 42.8 ± 7.1b 40.6 ± 7.7c 39.8 ± 7.9d <0.001 

Histogram 

kurtosis 
2.42 ± 1.65a 3.57 ± 3.31ab 3.97 ± 3.16b 4.08 ± 3.36b 0.001 

Histogram 

energy 
0.130 ± 0.011a 0.135 ± 0.014b 0.137 ± 0.012c 0.134 ± 0.014b <0.001 

GLCM 

energy 
0.025 ± 0.007 0.023 ± 0.003 0.023 ± 0.003 0.022 ± 0.003 0.115 

GLCM 

contrast 
304.5 ± 161.8ab 311.1 ± 95.4a 329.0 ± 99.0b 370.4 ± 120.9c <0.001 

GLCM 

correlation 
0.63 ± 0.09a 0.57 ± 0.08b 0.53 ± 0.08c 0.51 ± 0.10d <0.001 

LBP 

energy 
0.168 ± 0.007ab 0.169 ± 0.005a 0.165 ± 0.005b 0.164 ± 0.005b <0.001 

Data are presented in arbitrary units as mean ± SD. 356 
Within each row, values that do not share a letter are statistically dissimilar.  357 
First order features: echo intensity, histogram kurtosis, histogram energy; second order features: GLCM 358 
energy, GLCM contrast, GLCM correlation; higher order feature: LBP energy. 359 
Corresponding depths and image resolutions: 9.0 cm – 0.0234 cm/pixel, 7.3 cm – 0.0189 cm/pixel, 5.9 cm 360 
– 0.0153 cm/pixel, 4.7 cm – 0.0123 cm/pixel. 361 
Abbreviations: ANOVA, analysis of variance; GLCM, grey-level co-occurrence matrix; LBP, local 362 
binary pattern. 363 

 364 
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Table 3. Intraclass correlation coefficients across different image resolutions. 

 All 9.0 vs 7.3 cm 9.0 vs 5.9 cm 9.0 vs 4.7 cm 7.3 vs 5.9 cm 7.3 vs 4.7 cm 5.9 vs 4.7 cm 

Echo intensity 0.606       
(0.120, 0.839) 

0.492               
(-0.066, 0.825) 

0.467                          
(-0.016, 0.825) 

0.450                 
(-0.012, 0.817) 

0.919             
(0.546, 0.974) 

0.894                
(0.284, 0.969) 

0.992                
(0.962, 0.997) 

Histogram kurtosis 0.750            
(0.592, 0.861) 

0.427             
(0.111, 0.669) 

0.481                       
(0.108, 0.723) 

0.474                          
(0.098, 0.720) 

0.941                  
(0.878, 0.972) 

0.935               
(0.853, 0.970) 

0.988               
(0.974, 0.994) 

Histogram energy 0.844             
(0.698, 0.922) 

0.706               
(0.393, 0.858) 

0.724                 
(0.007, 0.908) 

0.794                
(0.497, 0.909) 

0.927                
(0.824, 0.967) 

0.945                    
(0.889, 0.973) 

0.949                   
(0.681, 0.984) 

GLCM energy 0.373          
(0.196, 0.572) 

0.283                
(-0.053, 0.566) 

0.183               
(-0.159, 0.491) 

0.190                   
(-0.144, 0.495) 

0.909                 
(0.821, 0.954) 

0.874                   
(0.756, 0.937) 

0.883              
(0.765, 0.943) 

GLCM contrast 0.696                
(0.540, 0.822) 

0.572            
(0.281, 0.766) 

0.600                  
(0.328, 0.782) 

0.592                  
(0.273, 0.787) 

0.934                 
(0.824, 0.971) 

0.807                  
(0.059, 0.941) 

0.876               
(0.362, 0.960) 

GLCM correlation 0.595              
(0.175, 0.817) 

0.726               
(-0.069, 0.921) 

0.469                  
(-0.077, 0.807) 

0.390                
(-0.079, 0.752) 

0.818             
(0.003, 0.949) 

0.717                      
(-0.072, 0.921) 

0.813                 
(0.597, 0.912) 

LBP energy 0.430             
(0.243, 0.625) 

0.546            
(0.246, 0.750) 

0.371                        
(0.052, 0.627) 

0.087                             
(-0.199, 0.390) 

0.638             
(0.114, 0.847) 

0.377                  
(-0.038, 0.668) 

0.746             
(0.525, 0.871) 

All data are presented in arbitrary units as ICC (95% CI). 
Comparisons with excellent agreement (ICC > 0.90) are bolded. 
First order features: echo intensity, histogram kurtosis, histogram energy; second order features: GLCM energy, GLCM contrast, GLCM 
correlation; higher order feature: LBP energy. 
Corresponding depths and image resolutions: 9.0 cm – 0.0234 cm/pixel, 7.3 cm – 0.0189 cm/pixel, 5.9 cm – 0.0153 cm/pixel, 4.7 cm – 0.0123 
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cm/pixel. 
Abbreviations: GLCM, grey-level co-occurrence matrix; ICC, intraclass correlation coefficient; LBP, local binary pattern. 

 

 


