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Abstract

Due to the increasing demand for bio-pharmaceuticals, optimization of bio-processes’
productivity and reduction of process variability have become critical goals for manufac-
turers. Mathematical models of the fermentation processes are instrumental in achieving
these goals.

Dynamic flux balance analysis (DFBA), sometimes also referred to as dynamic flux bal-
ance modeling (DFBM), is a type of mechanistic modeling approach that can describe the
dynamic evolution of key metabolites based on the structure of metabolic networks. DFBA
predicts the dynamic evolution of metabolites based on the assumption that resources are
optimally allocated so as to maximize/minimize a biological objective function, e.g. max-
imization of cell growth. Accordingly, DFBA is formulated by a linear programming (LP)
problem to compute the metabolic fluxes at each time interval. Then, the evolution of
concentrations of different metabolites over time is obtained from the integration of mass
balances that are based on the calculated fluxes.

Generally, the LP used to solve a DFBM for a particular microorganism may have
multiple solutions. Mathematically, the multiplicity of solutions arises due to the under-
determinancy of the LP. On the other hand, from the biological point of view, the occur-
rence of multiple solutions may correctly describe the behavior of different strains of the
same microorganism or alternatively the occurrence of metabolism switches under different
operating conditions. The choice of one solution in the presence of multiplicity is further
complicated by the fact that different commercial solvers may lead to different solutions of
identical LPs. However, a good DFBA model should be solver-independent while it should
be able to correctly describe available data for a specific microorganism strain.

Following the above a good LP solver should choose the specific solution based on
the strain instead of choosing the solution "randomly” as most commercial solvers do.
Hence, the first contribution of this research is to construct a solver that can select a
specific solution among all possible optima that is compatible with experimental data. The
weighted primal-dual method (WPDM) presented in Chapter 3, is a modified version of the
interior point method (IPM) which uses interior weights to solve the LP. By manipulating
these weights, the specific optimal solution can be obtained when multiple optimal solutions
occur. The interior weights can be found by fitting experimental data obtained for a specific
strain of a microorganism.

Although WPDM was able to select optimal solutions to fit the data, it was found to
be computationally expensive and thus less suitable for large networks. To address this, an
alternative fast and low-code algorithm called the ellipsoidal reflection method (ERM) was



developed as described in Chapter 6. This algorithm is able to select particular solutions
among all possible solutions based on the combination of quadratic programming (QP)
and LP problems. ERM plays the same role in DFBM but it can greatly reduce the
computations thus making it suitable for future real-time applications.

An important application of mechanistic models such as DFBM in bioreactors is for the
purpose of estimation of states that cannot be measured directly from available measure-
ments. The ability of estimate variables such as growth rate, productivity or key nutrients
are crucial for controlling and optimizing the process. State estimation for biochemical
systems is particularly difficult due to the lack of online measurements in industrial bio-
processes. While variables such as dissolved oxygen, temperature and pH are regularly
measured and controlled, most metabolites’ concentrations cannot be measured online.
Thus, lack of observability of unmeasured states from measured ones are a known chal-
lenge in bio-processes.

To address the lack of observability, set membership estimation (SME) is proposed
whereby the upper and lower bounds of each state are estimated based on limited mea-
surements. This approach is motivated by the fact that the cell culture media recipe is
generally fixed and the variations of the initial concentrations with respect to the nominal
recipe are within small ranges. The SME treats the variation of initial concentrations as a
set and propagates the initial bounds of the set onto the bounds of each metabolite at each
time step. In this research, two methods of SME are proposed to estimate the bounds of
metabolites.

The first state estimation method, described in chapter 4, is based on the identification
of active constraints and assumes that the solution is always unique in DFBA. Since the
concentration is varying with time, the LP problem in DFBA can be formulated as an
LP with varying parameters. Then, Multiparametric linear programming (mpLP) can be
used to convert the DFBA system into a variable structure system (VSS). VSS describes
the system as composed of multiple subsystems where each subsystem describes a differ-
ent region of the state space. For each subsystem, an extended Kalman filter (EKF) is
constructed to estimate the key states, and the remaining states are estimated by SME.
Moreover, the states crossing in or out of each region of the state space are monitored by
a special algorithm and switches between different EKFs are determined accordingly. In
the E. coli model, it was assumed that only biomass and culture volume are measured and
are used to estimate the bounds of the other states.

The second state estimation method presented in chapter 5 is an extension of the
first method but it explicitly considers the existence of multiple solutions. In this second
method, WPDM is used to replace the LP solver in DFBA and multiparametric nonlinear
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programming (mpNLP) is employed to solve the WPDM interior point-based algorithm.
To propagate the uncertain sets by nonlinear mapping, the sets are split into smaller sets
and are propagated separately by a linear mapping approximation. This is followed by an
assembly operation of all these mapped sets together into one set for each state. Again, for
the E. coli model, only biomass and culture volume are assumed to be measured and are
used to estimate bounds on the other states. This method is shown to generate bounds of
all states much faster than a Monte Carlo algorithm.

To test these methods proposed a platform of culturing B. pertussis has been set up.
In chapter 7, a batch culture of B. pertussis and modeling by DFBM are presented. The
protocols of shake flask, batch culture, and measurements of concentrations of amino acids
in the culture by HPLC are set up. To solve the multiplicity issue, ERM is used in the
modeling by DFBM. Based on the experimental data, DFBM adapted from the previous
model is used to fit. The DFBM model can roughly capture the dynamics of key amino
acids but not of all of them.
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Chapter 1

Introduction

The increasing demand for bio-pharmaceuticals has motivated pharmaceutical companies
to monitor and optimize their manufacturing processes. Mathematical models are cru-
cial for implementing effective monitoring and optimization approaches. A key limitation
for effective monitoring of bio-processes is a lack of analytical techniques for measuring
key process variables in real time. Thus, model based estimation of key variables from
available measurements is an attractive option for effective process monitoring. Despite
recent breakthroughs in artificial intelligence (AI) based data-driven models, mechanistic
modelling approaches are generally preferred due to their superior extrapolation ability as
compared to Al models since the latter are mostly accurate only within a neighborhood
of the training data. In the case of bio-processes, mechanistic modelling approaches use
prior knowledge about the process such as the balance of energy and mass, the occurrence
of particular metabolic reactions, kinetic rates of certain reactions etc.

Modeling approaches for bio-processes can be classified into 4 categories, segregated
and structured models, unsegregated and structured models, segregated and unstructured
models, and unsegregated and unstructured models [94, 61]. A model is segregated if
the cells in the system have different states. For example, computational fluid mechanics
models are segregated because these models assume cells are in a non-homogeneous envi-
ronment so cells at different locations have different states (metabolites’ concentrations)
[75]. A model is structured if it captures the conversion among different metabolites based
on biochemical or genomic information, or among different parts of the cells based on bi-
ological knowledge. For instance, a model describing the conversion of metabolites from
glucose to intermediate metabolites and then to ATP is considered as structured because it
describes known metabolic reactions among species. The most commonly used biochemical
models for bioreactor is unsegregated and unstructured. These models assume all cells are



at the same nominal state and approximate the behavior of the bio-system based on the
correlation between biomass and products with the substrates. The applications of these
models for optimization, monitoring, and control of bioreactor operations are limited.

Dynamic flux balances models (DFBM) are based on the dynamic extension of flux
balance analysis [04]. The resulting DFBM models are unsegregated and structured. From
the knowledge of biochemistry and genome, key metabolic networks are modeled so that
the conversion among metabolites in the models is structured. These models assume that
cells optimally distribute resources of metabolites so as to maximize/minimize a biological
objective such as the growth rate at each time step. Linear programming (LP) is com-
monly used to model the resulting optimization problem. The objective of the LP is the
maximization of a biological objective, such as biomass growth rate, ATP or other [33].
The decision variables are the metabolic reaction rates referred to as metabolic fluxes.
Since the stoichiometry of the metabolic networks, bounds of each reaction, and resources
available to the cell at each time interval pose restrictions on the fluxes, they are modeled
as constraints in the LP. By solving the LP at each time interval the fluxes can be ob-
tained. Then, the metabolites’ concentrations can be calculated at each time step based
on mass balances as functions of the calculated fluxes. In this way, DFBM can capture the
consumption or production of metabolites’ concentrations over time.

In metabolic networks, a metabolite can be converted into another metabolite through
one or more pathways, thus providing robustness and ability of cells to adapt and grow
in different environments. Different strains of the same species may distribute resources
differently across the metabolic network but still exhibit similar or same growth rate. Cor-
respondingly, the metabolic models describing different strains of the same microorganism
will exhibit multiple optimal solutions of their corresponding LP’s. The occurrence of
multiple optima of an LP is referred to as multiplicity which is widely observed in DFBM
[09, 63, 76, 77, 96]. Geometrically, the set of multiple solutions is given by an optimal
hyperplane where any solution on that hyperplane is an optimal solution. The choice of
the solution obtained for the LP depends on the choice of the LP solver. Different versions
of simplex and interior-point solvers can be used. Simplex methods will select solutions at
verteces of the feasible region of decision variables whereas interior-point methods will se-
lect interior points on the optimal hyperplane. Usually, vertex points correspond to sparse
solutions because more decision variables are zero. The trajectories of the metabolites’
concentrations with respect to time depend on the solutions chosen by the solver at each
time interval and thus they will be distinctively different for different solvers. Thus, the
model becomes solver-dependent due to multiplicity.

When multiplicity exists, all optimal solutions are mathematically correct but not nec-
essarily compatible with data. Thus, some of the optimal solutions do not correctly describe



the biological behaviour of the system. An ideal LP solver should find a unique solution
compatible with experimental data and find different solutions for different metabolism.
On the other hand, the solution is based on the key assumption that metabolism is efficient
owing to natural evolution [33]. While this could be a sensible assumption for wild strains
it may not be sufficient for describing engineered strains. A crucial novelty of this research
is to use a novel interior-point based algorithm referred to as weighted primal-dual method
(WPDM)! to select optimal solutions that are compatible with experimental data.

The primal-dual method is a type of interior-point method. By introducing interior-
point weights into the primal-dual method, the weighted primal-dual method becomes a
strictly convex form of the original LP. The optimal solution of proposed WPDM is unique
and it leads to the same objective function value as the original LP. The minimum point
of the strictly convex surface of the WPDM can be changed along the optimal hyperplane
by varying the interior-point weights. Therefore, any optimal solution of the original LP
can be obtained by using different interior-point weights. In practice, the interior-point
weights can be found by fitting experimental data. Based on WPDM, the trajectories of
metabolites can be forced to fit experimental data better than commonly used LP solvers.

While WPDM was used for most of the studies conducted in this research, it was
found to be computationally expensive method thus making it unsuitable for very large
metabolic networks or for potential online applications. The computational expense is
related to the fact that the number of interior-point weights is the number of constraints.
In most DFBMs, each flux has an upper bound and a lower bound. Besides these bounds,
some extra constraints may be required. In total, the number of constraints is generally
much larger than the number of decision variables (fluxes). For large metabolic problems
with a large number of constraints, many corresponding interior-point weights are required
which makes the computation heavy.

To address the computational expense of WPDM, an alternative method referred to as
the ellipsoidal reflection method (ERM)? is proposed. ERM involves the combined solution
of LP and QP problems to find the fluxes that fit experimental data. ERM first uses the
LP solver to identify the optimal hyperplane and then it constructs a QP to select the best
solution on that hyperplane. The QP problem defines the ellipsoidal contours of the convex
quadratic objective. Then, these ellipsoidal contours are rotated by a reflection operation
until they point and intersect the optimal hyperplane of multiple solutions at a solution
that best fits the experimental data. The fitting performance is evaluated by the sum of

'Paper has been published. Shen, X., & Budman, H. (2020). A method for tackling primal multiplicity
of solutions of dynamic flux balance models. Computers & Chemical Engineering, 143, 107070.
2A paper has been submitted to Computers & Chemical Engineering, which is currently under review.



square errors between model predictions and the data. A key advantage of this technique
as compared to WPDM is that the number of decision variables is equal to the number
of fluxes while WPDM is related to the number of constraints. Thus, the computation of
ERM does not increase with the number of constraints as in WPDM. Also, since both the
QP and LP are solved with commercial solvers, this method is low-code, fast, and accurate.

Bioprocess model-based monitoring is another key focus of the current research. Since
bio-processes are typically lacking in terms of available online measurements, state esti-
mation based on limited measurements is crucial for implementing online monitoring and
optimization algorithms. Although process monitoring using unstructured biochemical
models have been widely investigated in the literature, research on state estimation based
on DFBM is limited. State estimation algorithms are motivated by the premise that if a
feedback control can be designed based on the available measurements, the state estimation
error can be controlled to zero. Therefore, a necessary condition to design a state observer is
that enough measurements are available for observing (estimating) the unmeasured states.
Different observability conditions has been proposed for different type of dynamic systems
[L10]. Observability tests for nonlinear systems can be classified as local observability and
global observability tests[!5]. Local observability assesses whether a point in state space
can be estimated based on available measurements. Global observability assesses whether
state can be estimated in the entire space. Since in industrial practice bioreactors need
to be operated within a very narrow range of operating conditions, it is sufficient to test
observability within that range.

Due to lack of online measurements it is very difficult or impossible to satisfy observabil-
ity of all the states predicted by a DFBM model. The variables that are generally monitored
online in bio-processes include optical density for biomass, pH, dissolved oxygen, aeration
rate, agitation rate, and temperature. Most states of DFBM or other biochemical models
are concentrations of metabolites which are very difficult to be measured online [1]. For
instance, derivatizing agents are required to react with amino acids so that amino acids can
be detected by fluorescence sensors when using high-performance liquid chromatography.
This requirement generally rules out online monitoring of amino acids concentrations.

To overcome the observability problems, two types of set membership estimation meth-
ods (SME) are proposed in this research to estimate states based on DFBM with limited
measurements. The proposed estimation approaches are based on the premise that an
industrial bioprocess always uses the same media composition but the concentrations of
media components may vary due to inaccuracy in media preparation or unknown variability
in raw materials. On the other hand, based on experience and experiments, the variations
in initial media components’ levels can be generally quantified based on experience and
a priori knowledge. Based on this knowledge, the problem can be formulated as a state
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estimation problem in the presence of uncertainty in initial media composition and limited
measurements where the latter can be used as feedback to reduce the uncertainty at each
time step. Thus, these SME methods are designed to propagate the initial uncertainty
over time onto the states such that the upper bounds and lower bounds of each state can
be estimated.

Propagating the initial uncertainty directly by the DFBM model is very difficult because
of its optimization-based nature. In DFBM the fluxes are solved at each time interval by
an LP solver or WPDM and then are substituted into the state equations to calculate the
states in the next time step. Multiparametric programming is introduced to address this
problem that arises from the fact that at each time interval, a different set of constraints
may become active [2]. If the varying states are regarded as parameters, the LP problem is
converted into a multiparametric linear programming (mpLP) problem at each time step.
MpLP can be solved offline so that explicit equations of optimal fluxes can be obtained
and then substituted into the state equations.

To apply mpLP, the feasible parameter space is partitioned into different critical regions
and then, explicit equations for calculating the fluxes can be obtained for each critical re-
gion. The biological interpretation of these critical regions is that cells have different
metabolic behaviors that are represented by different regions of state space. As different
regions have different equations of optimal fluxes and finally, a series of different state
equations, the system comprised of sub-systems is referred to as a variable structure sys-
tem (VSS). When the LP solution is unique, the application of mpLP is straightforward.
However, when the LP solution is not unique, a WPDM with varying parameters must be
solved to calculate fluxes. WPDM is especially modified for nonlinear programming so that
multiparametric nonlinear programming (mpNLP) is used to deal with varying parameters
instead of mpLP that is used for cases with unique solutions. The mpNLP proposed in this
research divides the feasible parameter space into different zones and quadratic program-
ming is then used to approximate the WPDM within the given zone. If the accuracy of
the approximation is not sufficient, the mpNLP finds the best direction to divide the zones
until the accuracy is satisfied or the zone is too small to be accounted for. In summary,
by the use of either mpLP or mpNLP, the DFBM can be converted into VSS whether the
solution is unique or not.

The first SME method?® proposed in Chapter 4 is only applicable when the LP solution
is unique so that mpLP is used to simplify DFBM into VSS. Once the states determining
the fluxes can be estimated, the dynamic of DFBM can be properly described. It is shown

3Paper has been published in Shen, X., & Budman, H. (2021). Set Membership Estimation with
Dynamic Flux Balance Models. Processes, 9(10), 1762.



that despite the existence of many critical regions only few of them are required to be
considered in practical cell culture applications. Then, an approach is presented to find
the minimum number of states so that fluxes for all these related critical regions can be
estimated. Furthermore, by using extended Kalman filters (EKFs) for each critical region
to estimate the observable states, the total number of states that need to be measured can
be further reduced. Hence, SME is used to estimate unobservable states, and EKF is used
to estimate observable states. As the fermentation continues, the state may enter from
one critical region to another region. Since the observable states are different for different
critical regions, an algorithm is deployed to detect switching states between regions.

The second SME method? proposed in Chapter 5 is applied when the solution is not
unique. As mentioned above, the mpNLP can be used to solve off-line the WPDM with
varying parameters so that DFBM can be simplified into a Variable Structure System
(VSS). Inspired by the puzzle concept, the critical regions are disassembled into zones,
bounds on states are propagated within each zone, and then the zones and corresponding
bounds are assembled together and general bounds on states are calculated. The main
differences between SME in chapter 5 from chapter 4 are the occurrence of a unique versus
multiple solutions and the use of EKF for estimation of some states. The SME proposed in
chapter 5 is a general method and has fewer requirements compared with SME in chapter
4. Tt considers the influence of multiplicity issue by WPDM with mpNLP. It does not
require some states to be measured to construct the EKF. Therefore, this SME algorithm
has greater applicability.

To test the algorithms proposed in this thesis, an experimental platform was developed.
Since the research focuses on the metabolism of B. pertussis, a batch culture of B. pertussis
was chosen for the experiments. The current platform can be also used for other similar
cell lines or strains. The platform includes shake flasks for the seed, culture in a 2L
bioreactor, and HPLC for measuring the amino acids’ concentrations in the culture. The
current protocol for batch culture of B. pertussis in 2L bioreactor is a scale-down model
of Sanofi’s fermentation step of the whooping cough vaccine manufacturing process. Thus,
the results are expected to mimic their process for future process optimization and control.
In this research, a successful batch culture of B. pertussis was conducted and its purity was
verified by plating. The amino acids’ concentrations at different times were measured by
HPLC and used to calibrate a DEFBM previously developed. While part of the amino acids
were fitted well to the data, some could not be fitted. The main possible reason for the
lack of fit is that the culture response was significantly different from the earlier Sanofi’s
experiments for which the DFBM was originally developed. The calibration of parameters

4Paper has been published. Shen, X., & Budman, H. (2022). Online estimation using dynamic flux
balance model and multiparametric programming. Computers & Chemical Engineering, 164, 107872.



cannot compensate for the possible differences in model structure errors.
Following the above, this work presents the following novel contributions:

i. A novel WPDM method is introduced to solve the multiplicity issue of linear pro-
gramming for dynamic flux balance analysis. Since WPDM is a data-driven method, it
can be applied for engineered strains with more flexibility than a typical LP solver. The
uniqueness and continuity of the solution by WPDM are proven.

ii. The mpLP and mpNLP methods are employed to simplify the LP and WPDM
inside the DFBM so that the state equations can be converted into VSS and used with
equations that are solved a priori off-line. Since each subsystem in VSS corresponds to
different metabolic patterns, the method is useful for the identification of the metabolism
bottleneck.

iii. Two types of SME tailored for DFBM are utilized to tackle the lack of observ-
ability and online measurements. Through the SME for DFBM, estimating the dynamic
of metabolites with limited measurements is available so that model-based process control
and model-based online optimization can be constructed.

iv. To tackle the multiplicity issue for large metabolic networks, the ERM method is
proposed. This method overcomes the expensive computation of WPDM but still preserve
the features of WPDM since it is data-drivenwhile ensuring uniqueness and continuity of
the optimal solution. On the other hand, the WPDM method remains relevant because it
served as the basis of the set-based model estimation method proposed in this thesis for
the case that multiple solutions exist.

v. The development of a platform for culturing B. pertussis and quantification of
amino acid concentrations in the culture is an important step to the application of these
state estimation methods proposed. It can be used for future research and development of
optimization and process control algorithms.

The thesis is organized as follows. Chapter 1 introduces the research and briefly de-
scribes each topic. Chapter 2 presents the background and a literature review. Chapter 3
presents the WPDM method for tackling the multiplicity issue of LP in DFBM. Chapter
4 introduces the SME with EKF to estimate concentrations based on the assumption of
a unique solution in DFBM. Chapter 5 presents the SME approach for the case that the
DFBM has multiple solutions. Chapter 6 introduces the ERM for model fitting when mul-
tiplicity occurs and the comparison of this method with WPDM. Chapter 7 presents the
development of the experimental platform for the batch culture of B. pertussis.



Chapter 2

Theoretical Background and
Literature Review

2.1 Dynamic Flux Balance Model

Dynamic modeling of the metabolism of a microorganism is challenging due to the complex-
ity of biological systems and very limited experimental data. Assumptions regarding model
structure and model segregation are often made based on the level of detail required for
the model and the data available for model calibration. Accordingly, four types of models
have been reported for describing cell cultures: segregated and structural, non-segregated
and structural, segregated and unstructured, and non-segregated and unstructured [941, G1].
Segregation means that cells are treated individually within the cell population and the
metabolic status of each cell is considered based on its environment. Structure means that
the metabolic reaction networks, as determined from genome information, is used to define
the interaction among different metabolites. For instance, the conversion of a specific sub-
strate to a particular product is modeled as a series of reactions based on the genome in
a structured model but it is modeled by only one macroscopic reaction in an unstructured
model.

Sets of ordinary differential equations are commonly used to model non-segregated and
unstructured models. The Monod equation is the most common type of equation to model
kinetic rates in such models [94]. Non-segregated and unstructured models oversimplify the
relationship between substrates, cells, and products so that these models are not suitable to
explain the metabolism and to optimize the process. DEFBM is a type of non-segregated and
structured model that takes the structure of the metabolic network into consideration. It



assumes that cells can manipulate their metabolic fluxes to boost growth or other biological
objectives. DFBM is always comprised of two parts: governing equations and optimization.
There are two forms of DFBM [(4] based on the use of a static optimization approach or
a dynamic optimization approach. The latter involves a dynamic optimization over the
entire time horizon of interest, e.g. the duration of a cell culture batch. Because of the
higher computation expense of the dynamic optimization approach, the static optimization
approach is more popular. In this approach the time domain of interest is divided into
several time steps and a static optimization is conducted at each step. Hence, the fluxes
solved by the DFBM are assumed to be piecewise constant along each sampling interval.

The basic DFBM combines a state space model with an LP as follows. The state space
model as the function of metabolic fluxes vy is defined in Eq. (2.1).

Y41 = Y + Atthyio . Svg (2.1)

where subscript k£ indicates time step from 0, 1, 2--- and At is the time step size. ¥y, is
a state vector of n, state variables at time step k, including biomass concentration ¥y, -
S € R™ x R"™ is a matrix containing stoichiometric coefficients of all reactions involved
in the metabolic network, where n, is the number of reactions considered in the metabolic
network.

The metabolic flux vector v, € R" is determined by a linear programming (LP)
problem according to Eq. (2.2). At each time step, vy is solved by the LP solver and
substituted into Eq. (2.1) to obtain the state vector values at the next time step.

min froy (2.2a)
subject to G, < g(¢r) (2.2b)

where the constant vector f € R" ., the constant matrix G € R"¢ x R, the constant
matrix F' € R"" x R" | vector-valued function g € R"¢ of states 1, vector-valued function
h € R"¢ of states 1. ng is the number of inequality constraints and np is the number
of equality constraints. Eq. (2.2a) denotes the objective function of the LP. The most
commonly used objective is the maximization of biomass growth rate, or equivalently
the minimization of its negative value, as shown in Eq. (2.2a) but other objectives have
been also considered. Egs. (2.2b) and (2.2¢) describe balance equations and metabolic
constraints such as charge balance, reaction rate bounds, and available nutrient bounds.
Eq. (2.2) can be interpreted as the ability of the cells to regulate the metabolic fluxes vy
to boost growth at each time step.



2.2  Multiplicity in Dynamic Flux Balance Model

Due to a large number of reactions relative to the number of available constraints, the op-
timal solution to the linear programming problem defined in Eq. (2.2) is often not unique
[59, 63, 76, 77, 96]. This phenomenon is referred to as multiplicity (or primal multiplic-
ity). The multiplicity particularly hampers the potential application of DFBA models for
estimation, optimization, and process control for three major reasons: i- the selection of
different optima at each time interval generates different time trajectories for metabolite
concentrations. Although these alternative trajectories satisfy the constraints of DFBA,
only a few of them fit the experiments. ii- commercial LP algorithms generally do not
consider the existence of multiple optima thus converging to an optimal solution according
to chosen initial guesses or the hyper-parameters of the optimizer. The solution selected
may not match the experimental data over long time horizons. iii- optimal solutions found
by commonly used simplex methods are not continuous when the multiplicity exists. Thus,
if the model is used for model-based control, disturbances can cause discontinuous jumps
among solutions thus resulting in non-smooth trajectories.

A key question is whether specific flux distributions are more plausible than others.
Schuetz and his colleagues found that in different bacterial wild types E. coli the fluxes are
distributed in the near-optimal region of the Pareto surface of three objectives (maximum
ATP yield, maximum biomass yield, and minimum sum of absolute fluxes) so that cells
tend to achieve an optimal trade-off between metabolism and minimal flux adjustment to
different conditions [93]. However, this approach cannot explain why specific flux distribu-
tions for different conditions occur at a specific region of the Pareto surface. More recently,
the idea of minimal flux adjustment was further extended to consider a minimal enzyme

cost by [83]. Based on this idea, a solution that satisfies a parsimonious enzyme usage
FBA (pFBA) can be found from a bi-level optimization problem that searches fluxes with
the lowest overall sum of fluxes [00, 17]. This method is particularly suitable for describ-

ing wild-type strains’ behavior following the assumption that those strains must adapt to
various environments with limited nutrients. On the other hand, engineered strains are
selected or genetically modified for special operating conditions and productivity and thus
they may have an inefficient metabolism so that the pFBA principle may not correctly
capture the distribution of fluxes [98]. Hence, trying to fit data by applying the minimiza-
tion of enzyme cost in the presence of primal multiplicity may require the use of additional
kinetic constraints with many kinetic parameters that are difficult to obtain. Although
other enzyme cost functions based on ideal assumptions that need fewer parameters could
be used, e.g. the minimal total flux that assumes that all reactions need the same amount
of enzyme, the prediction accuracy resulting from such approximations may be poor [33].
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2.3 Methods Proposed for the Multiplicity Problem

To solve the primal multiplicity issue of DFBA, different methods were reported that are
based on either auxiliary objectives or auxiliary rules. An efficient method for tackling
multiplicity should have the following properties: i- the uniqueness of the optimal solution
can be assured, ii- continuity of the optimal solution with respect to different possible
perturbations should be proven, iii- flexibility to select a unique optimal solution that is
consistent with experimental data, and iv- computational efficiency for large metabolic
networks.

Auxiliary objectives based methods involve the use of extra objectives for optimization

to reduce the feasible space. For example, minimal total (absolute) flux [17, 78, 83] or a
minimal number of active reactions [78] were used as auxiliary objectives to exclude inef-
ficient flux distributions, similar to the enzyme cost functions proposed by [33]. However,

these objectives may not be suitable for cells that were engineered towards a particular
purpose, e.g. for maximizing productivity. In the current study, it will be shown that
the application of these auxiliary objectives cannot fit experimental data well in the case
study of Bordetella pertussis. To further reduce the feasible space, hierarchical optimiza-
tion, sometimes referred to as lexicographic optimization, was applied using a series of
auxiliary biological objectives in priority order [36, 2, 16, 93]. To solve hierarchical op-
timization efficiently, equivalent weight method [2, 100] and Simplex-based method [12]
have been proposed. Hierarchical optimization can theoretically select a specific vertex
and non-vertex optimal solutions but finding a series of auxiliary objectives that assure
the uniqueness of the optimal solution, that are consistent with experimental data, and
that preserved continuity at the optimal solution is complex with this method. Auxiliary
objectives used in hierarchical optimization can be chosen based on the user’s prior knowl-
edge about the microorganism. Inverse optimization [I15] has been proposed as a more
systematic way to find objectives. Given a vector of flux, constraints, and initial guesses
of objective coefficients, inverse optimization can find the best objective coefficients that
make the vector of flux optimal. This inverse optimization idea has been extended to
find a quadratic form and non-parametric form objectives for flux balance analysis [115].
However, inverse optimization has not been studied as yet for dynamic flux models.

Auxiliary rules based methods use special rules to select the optimal solution when
multiple optima occur. Smallbone and Simeonidis proposed two geometric methods to
select the center of the solution hull as the true optimal flux distribution [102]. Although
the center of the solution hulls is a unique flux distribution, there is no biological evidence
to justify that the resulting solution provides a good fitting of available data. The lexi-
cographic perturbation method is a modified simplex-based method [51] that was applied
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to prevent dual degeneracy. However, this method can only find unique optimal solutions
located at vertexes.

2.4 Lack of Measurements and Lack of Observability

For most industrial fermentation processes the available online measurements are very
scarce. Commonly available online measurements include pH, dissolved oxygen, tempera-
ture, pressure, off-gas analysis, glucose, liquid level, foam amount, and weight. However,
online measurements of concentrations of metabolites which are most informative about
the process are very limited or not available altogether. Lack of measurements prevents
the use of DFBMs for model-based monitoring or optimization.

To address the lack of online measurements soft sensors have been proposed. Soft sen-
sors are algorithms that estimate the values of the states based on a few available online
measurements. Data-driven soft sensors are currently very popular driven by the recent
interest in the artificial intelligence research area. Reported data-driven soft sensors are

generally based on artificial neural networks [97], support vector machines [73], partial
least squares [$5], genetic programming [53], principal component analysis [113] and fuzzy
inference [52, 54]. These machine learning and artificial intelligence (AI) methods com-

bined with different spectral-based devices have been used for inferring concentrations in
cell cultures. For example, near-infrared spectrometer and Raman spectroscopy, have been
applied to fermentation processes to estimate concentrations online [16]. However, despite
their popularity, the main drawback of data-driven soft sensors is that their accuracy is
limited to the region of data used for model training [24] and their prediction ability dete-
riorates due to the scarce data available for calibration [11]. Also, the lack of mechanistic
information on the black box models based soft-sensors introduces concerns about the
safety and reliability of controllers designed based on these sensors [11].

Another category of soft sensors is state observers based on mechanistic models such
as the Luenberger observer, Kalman filter, particle filter, and moving horizon estimation
[106]. These state observers estimate the values of some states based on the convergence
of state prediction errors provided that sufficient measurements are available [1]. A key
prerequisite of for designing these state observers is that observability can be satisfied
with respect to the estimated states. State observers can only partially solve the lack
of measurements because they still require a minimal number of measurements to satisfy
observability conditions. It will be shown later in the manuscript that unless enough
states of a DFBM model are measured online it is difficult to satisfy full observability for
all the states. In contrast with state observers, an interval observer is a special type of
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state observer that can estimate the bounds of states but some type of observability or
convergence condition is still necessary [33] for their application. Some interval observers
exploit the order-preserving properties of cooperative systems to estimate the bounds of
states [28].

In the absence of observability of some states, instead of estimating their specific values,
it is possible to estimate intervals (ranges) of values based on a priori known range of
initial conditions, i.e. range of values at time = 0. This type of problem is referred to in
the literature as an initial values problem with parameter uncertainty or set-valued ODE
integration. The parameter here refers to either uncertain initial states or some model
parameter such as a kinetic constant. To bypass the strict observability requirement,
different set theory-based methods for estimation have been proposed, including interval
analysis [19], Taylor models [65] and set membership estimation (SME) [95, 17, 3, 60].
All these methods are based on models that are used to propagate uncertainty in model
parameters or/and in initial conditions to obtain sets of states’ values at different times
[9]. The main difference between these methods is in their approach to tightening the
resulting bounds, e.g. interval analysis is based on a multidimensional interval. Interval
analysis usually cannot capture the nonlinearity and correlation between different states
which may result in divergence of estimates fast [19]. SME algorithms [95] are based on
the use of convex sets and can capture nonlinearity and correlation between states but at
the expense of less tight bounds as compared to Taylor models. SME has been applied to
linear systems [17]. The propagation of uncertainty over time is performed by a series of
affine mapping operations over sets. Different shapes of sets have been used to contain the
uncertainty, including zonotopes [3], parallelotopes [17], and ellipsoids [06]. In contrast,
Taylor models are based on Taylor expansions and bounds on remainders to obtain very
tight nonconvex bounds [65]. However, because Taylor methods use non-convex bounds, it
is difficult to exploit the available measurements although some computationally expensive
relaxation methods have been proposed to achieve this goal [91]. Considering the limited
measurements’ availability and implementation convenience, this research focuses on a
set-membership estimation approach.

2.5 Theoretical Background

2.5.1 Convex programming

Convex programming involves optimization problems where the objective function and
feasible region are convex [12]. Let assume the objective function f(-) is a mapping from
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R™ into R, and 6 € [0,1]. The objective function f(-) is convex if for any  and y in the
domain of the objective function, f(6x+(1—60)y) < 0f(x)+(1—6)f(y)) holds. Similarly,
S is a convex set if for any element z,y € S and 6 € [0,1], x + (1 — 0)y € S. If the
feasible region of the objective function is within the convex set, then the corresponding
optimization problem is referred to as convex programming. A general convex programming
is defined as Eq. (2.3).

min f(x) (2.3a)
subject to gi(x) <0 i=1,..,m (2.3b)
Ax=0» (2.3¢)

where the decision variable is @ € R”"; the objective function f(-) is a convex function;
the inequality constraints g;(x) < 0,7 = 1,...,m are also convex functions; the equality
constraints Ax = b are affine transformation of x; A € R? x R" with rank(A) =p < n.
The inequality and equality constraints define a convex set.

Convex programming has been widely applied in different areas of application such
as machine learning, data science, and control engineering [12]. Many problems can be
expressed or transformed into convex programming problems. In this research, linear
programming and quadratic programming are both convex programming problems that
are considered in the studies. Nonlinear programming and multiparametric programming,
both applied in this work, are also highly related to convex programming and thus convex
programming is a main platform of this research.

Interior-point Method
The interior-point method is a commonly-used general method for solving convex program-

ming problems [12, 29]. The KKT conditions for Eq. (2.3) are given in Eq. (2.4). Although
there are different versions of interior-point methods, the core idea of these methods is to
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solve the KK'T conditions by the Newton’s iterative method.

Ax =b (2.4a)

gi(x) <0 i=1,...m (2.4b)

A>0 (2.4¢)

Vof + Y AiVegi(x) + AT =0 (2.4d)
1

where \; and pu; are the Lagrange multipliers of inequality and equality constraints respec-
tively. Eq. (2.4e) is referred to as the complementary slackness condition.

2.5.2 Linear programming

Linear programming problems is a special type of convex programming problems, where
both constraints and the objective function are linear [29, 68]. A typical example of linear
programming is defined in Eq. (2.5). Linear constraints include equality constraints as
in Eq. (2.5¢) and inequality constraints as in Eq. (2.5b). The linear constraints define a
high-dimensional polyhedron in the space of the decision variables. The linear objective is
convex function but not strictly convex and thus the optimal solution is not always unique.

min c'x (2.5a)
subject to Ax <b (2.5b)
A.x = b, (2.5¢)

where A € R™*" is a matrix with rank m (m < n); b € R" and ¢ € R™ are vector; € R”
are decision variables including slack variables.

Simplex Method

For brevity, only the geometrical interpretation of the simplex method is presented. The
linear constraints in the LP problem define a feasible region described by a convex poly-
hedron in the space of the decision variables. The direction of the vector ¢ corresponds to
the gradient of the objective function with respect to the decision variables. The Simplex
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method evaluates the objective function at the vertexes along the edges of the polyhedron
and iteratively seeks for the vertex with the smallest objective function value [6]. This
search procedure is referred to as “pivoting” and it is repeated until all neighboring ver-
texes have a larger objective function as compared to the candidate vertex. The optimal
vertex is referred to as a basic optimum. Although there are different versions of the
simplex methods, the key idea of pivoting through different vertexes remains the same.

2.5.3 Quadratic programming

Quadratic programming (QP) is an optimization problem involving a quadratic objective
function and linear constraints as per Eq. (2.6) [29, 71]. Without loss of generality, Q can
always be converted into a symmetric matrix by Q = %(Q + Q7). Since Q is the Hessian
matrix of the objective it determines the existence of a unique or multiple solutions. If
Q is positive definite or positive semidefinite, the objective is a convex function. If Q is
positive definite, there is at most one solution. If @ is positive semidefinite, the number
of solutions can be more than one. If @ is indefinite, the problem is no longer a convex
problem and thus there could be more than one local minimum. Different algorithms
can be used for solving quadratic programming problems, including the active set and
interior-point methods.

1
min §ZETQ£B +cl'x (2.6a)
subject to Ax <b (2.6b)
A.x = b, (2.6¢)

where Q € R"™™ is a symmetric matrix; ¢ € R" and & € R" are vectors; A and A, are
matrices at proper dimension; b and b, are vectors.

2.5.4 Nonlinear programming

Nonlinear programming is a type of optimization problem involving a nonlinear objective
function f(-) and nonlinear constraints g;(-) and h;(-), wherei =1,--- ;mandj=1,--- ,p
[12, 111]. It should be noticed that nonlinear programming can be non-convex. Therefore,
many optima and local optima can exist. If different initial values are used, different
solutions may be obtained. Commonly used algorithms for solving nonlinear programming
problems are based on the solution of KKT conditions, differentiability, and constraint
qualifications. However, since the nonlinear programming problem is not convex, KKT
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conditions are merely necessary but not sufficient conditions for a solution to be optimal.
Typical algorithms for nonlinear programming include interior-point method and sequential
quadratic programming.

min f(x) (2.7a)
subject to gi(x) <0 i=1,....,m (2.7b)
hi(x) =0 j=1,..,p (2.7¢)

2.5.5 Multiparametric programming

Multiparametric programming is inspired by the concept of sensitivity analysis of the right
hand side (RHS) of the constraints in an LP[10, 81]. When the RHS of the constraints
involve multiple parameters and these parameters are within some sets, such an optimiza-
tion problem can be tackled by multiparametric programming. In Eq. (2.8), 8 and 6, are
parameters. g and h are vector-valued functions. S; and S, are sets containing parameters.

Ir;in f(x) (2.8a)
subject to glx) <6 (2.8b)
h(z) =06, (2.8¢)
0cS (2.8d)
0. €5, (2.8¢)

When the objective and constraints of multiparametric programming are linear, the
optimization is referred to as multiparametric linear programming (mpLP). QP or NLP
problems can be tackled by multiparametric quadratic programming (mQP) or multipara-
metric nonlinear programming (mpNLP) respectively. In the multiparametric program-
ming approach the parameters’ set is partitioned into piece-wise continuous sets and for
each of these sub-sets there are different expressions for calculating the optimal solution as
a function of the parameters’ values. Hence, multiparametric programming solves a priori
the optimization problem and provides a look-up table of analytical expressions for calcu-
lating the optima for different sets. After determining the given set and substituting the
parameters into expressions from the loop-up table, the optimal solution can be directly
calculated. Methods of mpLP and mpQP are developed and have been applied to different
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problems. Using mpLP, the DFBM can be simplified from a system containing an inner
optimization problems into a variable structure system. However, most of the reported
algorithms of mpLP ignore important issues such as the existence of multiple solutions. In
contrast with mpLP and mpQP which do not involve any approximation, mpNLP is based
on an approximation which makes it computationally expensive.

2.5.6 Observer and Observability

When a dynamic mechanistic model such as DFBM is available a model-based observer
can be designed to estimate the states. The observer can be constructed to estimate the
concentrations from a limited set of online measurements. Let’s assume a general dynamic
system described by Eq. (2.9a) and a measurement function given by Eq. (2.9b).

& = f(x) (2.9a)
y = h(z) (2.9b)

where @ is the states and y is the measurements. An observer is a dynamic system defined
according to Eq. (2.10), such that, lim;, o || — | = 0. The observer is an adjoint
dynamic system of the system given in Eq. (2.9) to estimate x from a limited set of
measurements y and the estimated state is . & is the observer state of the observer. For
very long time, the estimated value & will converge to the true states a.

£=0(¢y) (2.10a)
& = h(¢,y) (2.10b)

The definition above is for an asymptotic observer for which the estimated value con-
verges to the true state asymptotically. In contrast with the asymptotic observer, the
parameters of some observers can be tuned to change the convergence speed. These ob-
servers are referred to as tunable observers [5]. If the system contains noise, the observer
may give different estimates of states. Some observers can provide the optimal estimate
and thus they are referred to as optimal observers. For example, the Kalman filter is an
optimal observer that has been widely used in motion control. It considers prior knowledge
of the process noise and measurement noise and based on this knowledge it calculates the
optimal estimate of states. The nonlinear version of the Kalman filter is the Extended

Kalman Filter (EKF).

Some measurements are necessary to construct the observer. Observability is a neces-
sary condition to construct a tunable observer [5]. For a n dimensional nonlinear system
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defined in Eq. (2.9), the local observability condition at xq is Eq. (2.11) [35].

h(zo)
th(fvo) (2.11>

L?ilh(wo)

where L¢h is first order Lie derivative of h with respect to f.

2.5.7 Set Theory

Set Operations

In topology theory, a connected space is a topological space that cannot be represented as
the union of two or more disjoint non-empty open subsets [101]. A subset of a topological
space S is a connected set if it is a connected space when viewed as a subspace of S [101].
The discussions of sets in this research are limited to connected sets.

Vector operations, like summation and multiplication, can be extended from vectors
to sets. Set operations are operations of sets and all elements in the sets are considered.
In contrast with vector operations that focus on individual elements of the vector, set
operations focus on populations. Commonly used set operations, include linear mapping,
projection, translation, Minkowski addition, intersection, union, lifting, and outer approx-
imation.

Set Membership Estimation

If the initial state &g of the system in Eq. (2.9a) is a set X, the set propagation describes
how the set X (t) evolves with time. To calculate the set propagation, set operations are
required. By using these set operations, a larger set varying with time can be constructed
to contain the propagated set. Such a larger set can be interpreted as an estimate of
the boundary of the state. Instead of estimating the optimal value of states varying with
time, methods to estimate sets of states are referred to as set membership estimation [9].
By projecting the sets onto each dimension, the bounds of states can be estimated. The
difficulty of set membership estimation is that the set of states of nonlinear systems can
diverge. Different set membership methods and different shapes of sets have been proposed

[7 r ]
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Chapter 3

A Method for Tackling Primal
Multiplicity of Solutions of Dynamic
Flux Balance Models

3.1 Overview

1A method is presented to tackle primal multiplicity of Dynamic flux balance analysis
(DFBA) which is a Linear Programming (LP) based modeling approach that assumes that
the cell distributes fluxes such as to maximize a specific biological objective. When the
LP problem has multiple optima, the LP solvers usually only report the first optimum
that it is reached which may not fit well the experimental data. To tackle this primal
multiplicity problem, the weighted primal-dual method with auxiliary parameters is used
to calculate a unique time trajectory for a given set of initial conditions. Through tuning
of these auxiliary parameters, a unique optimal solution can be obtained and calibrated to
fit available experimental data. Beyond its capability to tackle multiplicity, the algorithm
is shown to significantly improve the prediction of some metabolites in a case study of the
fed-batch fermentation of Bordetella pertussis.

! Adapted from Shen, X., & Budman, H. (2020). A method for tackling primal multiplicity of solutions
of dynamic flux balance models. Computers & Chemical Engineering, 143, 107070.
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3.2 Introduction

Quantitative methods to analyze metabolic processes occurring in microorganisms are cru-
cial for the improvement and optimization of bio-processes. Flux balance analysis (FBA)
refers to a steady-state modeling approach of genome-based metabolism [105]. FBA is for-
mulated as a linear programming problem involving the maximization of a biological objec-
tive function with respect to the flux distribution across the metabolic network. However,
FBA models are often under-determined thus resulting in primal multiplicity. Researchers

have proposed different algorithms to enumerate all vertex optima [59, 63, 76, 77, 96]. To
deal with dynamic bio-processes, researchers have successfully extended FBA to account
for dynamic behavior by using dynamic flux balance analysis (DFBA) [64, 80, |. DFBA

models describe the dynamic optimal flux distributions as a time sequence of LLP problems.
Concentration-dependent rate constraints have been proposed to further regulate the dy-
namic behavior [09, 81, 82]. However, the primal multiplicity issue still remains due to the
underdeterminancy of the LP formulations.

The Weighted primal-dual method (WPDM) used in the current study to tackle multi-
plicity is a modified interior-point method based on auxiliary parameters. It was originally
proposed in the late 1980s to speed-up computation [30, 72]. In this research, the WPDM
is applied for the first time to address the primal multiplicity problem in DFBA mod-
els. WPDM approximates the LP by a strictly convex optimization problem with a set
of auxiliary parameters to control which optimal solution is selected. In the calibration of
the DFBA model, these auxiliary parameters are obtained by fitting of experimental data.
Pointwise approximation, uniqueness, and continuity are proved mathematically in the pa-
per. We show in the case study of Bordetella pertussis that the prediction accuracy can be
significantly improved as compared with other methods used in this investigation. WPDM
is data-driven and the auxiliary parameters can be found by fitting experimental data when
prior knowledge of the strain is not readily available. Two potential drawbacks for WPDM
are approximation error and computational expense. Being a type of interior-point method
WPDM finds a solution that is close to an actual optimum. However, WPDM can have the
same accuracy as a Simplex method if a sufficiently small penalty parameter is used. The
computational expense of WPDM is potentially high since it is based on the solution of a
set of algebraic equations by a Newton’s method. However, after the weights are identified
the computation for online implementation is fast as shown in the case study.

The paper is organized as follows. Section 2 presents background on dynamic flux
balance analysis, different methods for primal multiplicity and model calibration. Section
3 presents the main properties of of the WPDM method and related mathematical proofs.
Section 4 presents results of the application of WPDM to the modeling of a fed-batch
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culture of B. pertussis and a comparison of WPDM to different methods reviewed above
that were used to address multiplicity. Section 5 presents the conclusions.

3.3 Methods

3.3.1 Dynamic Flux Balance Analysis

Dynamic flux balance analysis (DFBA) is a dynamic extension of steady-state flux balance
analysis (FBA). In both FBA and DFBA, cells are regarded as agents that optimally dis-
tribute metabolic fluxes to maximize a specific biological objective. There are two types
of DFBA models reported in literature. In the first type of models the metabolites are
described in intracellular and extracellular compartments and exchange fluxes are used to
relate concentrations among compartments [16]. Using the assumption that internal reac-
tions are generally much faster than cell growth, all intracellular metabolite concentrations
are assumed constant. Continuous dynamic mass balances of extracellular concentrations
are used to describe the dynamic evolution of the culture. It has been argued that in-
tracellular metabolite concentrations are not constant and may change over time [34]. To
address this limitation the second type of DFBA models [64], used in the current study,
considers both intracellular and extracellular dynamic changes of concentrations. The con-
centrations are assumed constant only during a single time interval of discretization and
discrete mass balance equations are used to describe the evolution of both intracellular and
extracellular metabolites over time. In this second type of model kinetic rate expressions
are used as upper bound of limiting reactions. Mass balance based constraints are used to
ensure positivity of concentrations.

The DFBA model formulation used in this work is defined in Eq. (3.1) in canonical
form. The evolution of metabolite concentrations with time is calculated by solving a
series of LP problems posed in canonical form over consecutive time intervals. It should
be noticed that in this type of DFBA model, for a given time step k, there are no equality
constraints since Eq. (3.2a) and Eq. (3.2b) are only used outside of the LP problem to
update the states for the solution of next time interval.

max d" vy, (3.1a)
v

subject to F(Yr—1) < Svr < g(¢r—1) (3.1b)

wk—l + hk_lAtSvk Z 0 (31C)

0 S Vi S VUmax (Bld)
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where sampling time instants are tg,--- ,t,, and t; — ;1 = At for Vi = 1,--- ny
k=0,1,---,n; is the corresponding index of the sampling time interval; n, is the number
of reactions; n,, is the number of metabolites (excluding biomass) considered in the bio-
logical network; d € R™ is the vector of coefficients describing the relative contributions
of different metabolites to growth rate; vx € R™ is a flux vector at time interval £ which
upper bound is Ve € R™ and fluxes corresponding to reversible reactions are treated
as two independent fluxes; 19, € R™" is the vector of metabolites’ concentrations at time
interval k; function f(vg) € R™ and function g(vg) € R"" are upper and lower bounds
given as functions of the corresponding metabolite concentrations and these may represent
kinetic rate or other biological constraints; hy is the biomass concentration at time interval
k; § € R™*" is the stoichiometry coefficients” matrix of the metabolic network. Eq.
(3.1c) are constraints for ensuring that concentrations are positive.

Egs. (3.2a) and (3.2b) are discrete mass balance based state equations describing
the evolution of metabolite and biomass concentrations over time. After fluxes vi_; are
obtained by solving LP as Eq. (3.1), concentrations of biomass and metabolites at time
step k£ can be obtained.

Y = Pr—1 + hi_1AtSvy (3.2a)
hk = hk—l + hk_lAth’Uk

For clarity, both the canonical form and standard form of the LP are given. While the
canonical formulation of DFBA as Eq.(3.1) is suitable for describing the biological meaning
of the model, the standard form is more convenient for describing the optimization solution
and the proofs. The main difference between the canonical form and the standard form
is in the inequality constraints. After adding non-negative slack variables to convert the
inequality constraints into equality constraints [0] the standard form is defined in Eq. (3.3).

T

min c'x
subject to Ax+2z=5b (3.3)

z>0 (-Iz<0)

where A € R™*™ is a matrix with rank m (m < n); b € R™ and ¢ € R" are vector; x € R”
are decision variables; z € R™ are slack variables; I is identity matrix at proper dimension.
Using slack variables, the standard form of the DFBA model is in the following Eq. (3.4).
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max d’ vy, + 0€ (3.4a)

sul’)ject to
s ] [ f (1)
S 9(Yr—1)
—hp_1AtS v+ & = Vi1 (3.4b)
I vma:l:
—TI 0
£>0 (1€ <0) (3.4c)

where Eqgs. (3.1b)-(3.1d) are converted to equality constraints as Eqs. (3.4b) by adding
slack variables & in proper dimension. Each element of slack variables & corresponds to an
inequality constraint in Eq. (3.1). v corresponds to decision variable x in Eq. (3.3).

Experimental Data

In this paper, the experimental data and DFBA models of fed-batch fermentation of B.
pertussis reported in paper [13] were used to calibrate the model and for comparing different
solvers and different methods to address multiplicity. 17 amino acids are required for B.
pertussis biomass synthesis but the main limiting substrate and carbon source is glutamate.
Most amino acids can be biosythesized except histidine, methionine, phenylalanine, and
tryptophan. As later shown in the results section it was found that the depletion of
phenylalanine led to infeasible solutions. The bioreactor has a working volume of 6L.
The stirring rates were manipulated within 200 rpm to 600 rpm by a PI controller to
maintain a 35% dissolved oxygen (DO) target. The air flow was set constant at 6 slpm.
The pH was controlled at 7.1 by phosphoric acid. Feeding of glutamate at 4.3 g/h was
started following the depletion of glutamate that can be inferred from changes of DO.
The fermentation temperature was set at 36°C. Biomass concentration was determined by
optical density measurements at 600nm using a spectrophotometer. HPLC with a high
efficiency Nova-Pak TM column was used to measure amino acids concentrations in the
supernatant. AccQ Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) was used
for precolumn derivatization and the separated derivatives were monitored by fluorescence
detection resulting in a measurement error of less than 5%. Ammonia, lactate, glucose,
and glutamine were measured in a Bio-profile Flex (Nova Biomedical). The experiments
were repeated two times, referred to as experiments 1 and 2 in this paper.
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Table 3.1: Parameters Used in the DFBA Model of B. pertussis

Parameters Parameters
Umaz.ala 2.67 x 1072 (h-mmol cell)™  Vnmaz phe 8.25 x 107 (h - mmol cell)™*
Umaz,arg 1.12x 107 (h-mmol cell)™  Vmazpro 9.43 x 1072 (h - mmol cell)™*
Urnaz.asp 5.66 x 1072 (h-mmol cell)™  vmaz ser 6.39 x 1072 (h - mmol cell)™!
Umaz.gly 8.09 x 1073 (h-mmol cell)™  vmaz.inr 2.54 x 1072 (h - mmol cell)™?
Vrmaz his 219 x 107 (h-mmol cell)™  Vmaz.tyr 2.63 x 107 (h - mmol cell)™*
Urnaa.ile 9.20 x 107*  (h-mmol cell)™  Vpmazwal 2.41 x 1072 (h - mmol cell)™*
Umaz,leu 1.90 x 1072 (h-mmol cell)™  Umaz.giu 8.80 x 107> (h - mmol cell)™*
Umnaz.lys 1.24 x 1072 (h-mmol cell)™" Ky, 1.341 mmol /L
Umnaz met 1.20 x 1072 (h - mmol cell)™!

In paper [13], only one kinetic expression Eq. (3.5) was used as a constraint according

to Eq. (3.1b) corresponding to the conversion of glutamate to tyrosine which was found to
be the limiting reaction. Kinetic parameters and other parameters of DFBA model used in
the paper are listed in Table (3.1). These parameters v,,q4 listed in Table (3.1) are used in
constraints Eq. (3.1d). Additional details about the chosen metabolic network and model
formulation can be found in [13].

Umaa:,gluqu)glu,k—l
K g, 4 Ygiu -1
g g

Styrvk S (35)

where Sty is the row vector in the stoichiometric matrix corresponding to tyrosine; ¥y, k-1
is glutamate concentration at the time instant £ — 1; v,,4, and K are the maximum flux
and kinetic parameter in the rate expression respectively.

3.3.2 Weighted Primal-Dual Method

The most commonly used interior-point method is the naive primal-dual method (NPDM).
The WPDM is a modified version of NPDM that was originally proposed to speed-up
computation [30, 72]. In this research, the WPDM is applied for the first time to address
the multiplicity problem [I, 20, 57]. Typically, in all interior-point methods, the standard
form of the LP problem Eq. (3.3) is augmented by adding a logarithmic barrier function
of constraints. The approximate LP formulation in the WPDM form is defined as per Eq.
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(3.6),

a:;%f—m c’'x — uijln(zj)
=1 (3.6)
subject to Ax+z=0b

z>0 (—Iz<0)

where p is a positive parameter controlling the pointwise approximation accuracy; x is
assumed to be bounded. As p tends to zero, the objective function approximates to a
neighborhood of the optimum of the actual objective function Eq. (3.3). The bounded
vector w = [wy ---w,]’ > 0 is a vector of internal point weights that serve as auxiliary
parameters used for choosing a specific optimum among all possible optima. Each slack
variable z; corresponds to an interior-point weight w; in Eq. (3.6). When all the weights
are selected to be equal to one, the WPDM is reduced to the NPDM. The decision variables
z cannot be zero due to the presence of the logarithmic function. However, & can be made
infinitesimally small based on the choice of i so that the accuracy can always satisfy users
requirements. It should be noticed that the objective is defined by the infimum instead of
the minimum since the infimum is achieved even though case = 0 is not reached. The
case = 0 can also be addressed systematically by the idea of field extension [22].

The optimization problem defined in Eq. (3.6) is a strictly convex optimization problem
so that the solution is unique if the feasible space is not empty. The standard KKT
conditions of Eq. (3.3) is:

c+ATA=0 (3.7a)
Ax+2z=0>b (3.7b)
—Iz<0 (3.7¢)

A >0 V=1, n (3.7d)
Nzj=0 Vj=1,---,n (3.7¢)

where ); are positive multipliers for inequality constraints z > 0; Eq. (3.7e) is strong com-
plementary slackness conditions. For WPDM, the standard KKT is adapted by choosing
Lagrange multipliers \; = pw;/z; > 0 and replacing Eq. (3.7e) by weak complementary
slackness conditions \;z; = pw;, u — 0. Note that ;1 cannot be zero, otherwise multiplic-
ity issue relapses. Eq. (3.7) can be reformulated as Eq. (3.8) for calculation used in later
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sections.

ATX = —¢c (3.8a)
Ax+z=b (3.8b)
AZ = pw (3.8¢)
I2<0 (3.84)
A>0 (3.8¢)

where Z and A denote diagonal matrices, namely Z = diag(z), A = diag(\); e =
[1---1]7 € R™ is a vector. Egs. (3.8a)-(3.8¢) are solved by the Newton method. A classic
line search algorithm is used to control the step size in the Newton method as done in most
interior-point methods such that Eqs. (3.8d)-(3.8e) are accounted [10].

The direct solution of Eq. (3.8) with a very small value of p is often difficult to obtain
when calculating the inverse of an ill-conditioned Jacobian matrix of a nonlinear set of
equations. Instead, the WPDM algorithm adopts a path-following method that gradually
decreases the parameter p [29]. The steps of the WPDM algorithm are shown in Algorithm
1 where o is a scaling parameter between 0 and 1 that is controlling the decreasing rate of
L.

The method used to solve Eq.(3.8) is a path-following method for linear programming
as described in [29]. In each iteration of the path following algorithm, Newton’s method is
used to search for the decreasing direction AAX, Az, and Az. The line search algorithm
is used to calculate the largest allowable step size oy and o, so that A and z are always
positive at each iteration. Then, the point (A, x’, z)T is the unique optimum for the
current p. In the next iteration, the new optimum is used as an initial guess for the
next iteration. g is progressively reduced from one iteration to the next to ultimately
approximate the true optimum of the original problem. Thus, the optima obtained at each
iteration follow a central path that finally approximates to the optimal solution. Interior-
point weights w can be used as auxiliary parameters to change the curvature of the strictly
convex surface of the objective function so that any optimal solution from multiple optima
can be placed at the minimum position through tuning of w. Algorithm 2 presents the
application of WPDM to solve the DFBA model.

3.3.3 Hierarchical Optimization

Hierarchical optimization (HO) has been used for tackling primal multiplicity [35, 12, 16].
Instead of solving a single LP, HO involves the solution of a series of LP problems with
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Algorithm 1 WPDM (Path-following Method)
0

1: Given A, b, ¢, w, o, i1, N9, tolerance and feasible initial interior point (A°, 2, 2%)
2:1=0

3: repeat

4: Solve the following set of equations by the Newton method for AX!, Ax?, and Az*:

AT 0 o] [AX —c— AT\
0 A I| |Ax'| = |b—2'— Az’ (3.9)
Zt 0 A |AZ pw — Atz
5: Use line search algorithm to find the step size a, and «, that satisfy :
A+ ayAX >0 (3.10)
2+ o, Az >0 (3.11)

6: Calculate n = maz{no, 1 — u}, a4 = min{l,nay} and o' = min{1, na,}
7. Update X = A"+ of AN, '™ = ' + ol Az’ and 27! = 27 + ol AZ?
8: Update p=po, 1 =i+ 1

9: until p < tolerance

10: Output \¢, x¢, 2¢

Algorithm 2 Apply WPDM to solve DFBA:

1: Given w, d, hg, 1o, S, At, Ny, Umae, function f(-) and g(-).
2. k=0
3: repeat
4
5

Calculate function f(1) and g(k)

Convert all inequality constraints Egs. (3.1b), (3.1c), and (3.1d) into equality
constraints Ax + z = b by adding slack variables

Apply WPDM to solve the standard LP problem and get vy from x

Calculate Eqgs. (3.2a) and (3.2b) to update ¥ and hy

E=k+1
until k£ > n,
10: output {h*}, {¢p*}
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different auxiliary objectives to reduce the optimal space and to find a unique solution.
Each of these LP problems have a specific biological objective and they are ranked according
to a user predefined priority order. HO is defined as per Eq. (3.12) in standard form.

(po =min clz (3.12a)
Ax+z=0> (3.12Db)
.
p1=min clz
Ax+z=0»>
n (3.12¢)
CoT = Po

LT

where pg and cg are the minimum value and the vector of coefficients that define the
objective of the original DFBA model; Eq. (3.12b) are the constraints of DFBA model in
their standard form. Similarly, p; and ¢; Vi € N* are the minimum values and vectors of
coefficients defining the different objectives with respect to fluxes of auxiliary LP problems
in a prescribed order. All auxiliary objectives and their ordering are defined by the user
according to the expected importance. It should be noticed that the auxiliary LP problems
at the lower priority levels do not only need to satisfy constraints as Eq. (3.12b), but they
also must satisfy all constraints in the higher priority levels. For instance, the second layer
LP does not only satisfies constraints as in the first layer LP, but also it must satisfy an
extra equality constraint ¢} @ = py to ensure the optimality of the first layer LP. HO cannot
always ensure the uniqueness of solution of DFBA even though all auxiliary objectives have
been used. The following priority order of objectives reported have been used in the case
study: I-maximum biomass yield, 2-maximum ATP yield, 3-minimum of the total flux,
4-maximum carbon dioxide yield, 5-maximum acetate yield, 6-minimum fluxes 1 to n,
sequentially [93]. The dual-simplex method of CPLEX is used to solve this problem.

3.3.4 Minimization of Enzyme Cost

The idea of minimization of enzyme cost [33] is also close to the idea of minimal flux
adjustment. The method is based on the assumption that evolution has ruled out inefficient
pathways so that cells need to biosynthesize less total enzymes while distributing fluxes
in an efficient way. Minimization of enzyme cost or minimal flux adjustment are good
auxiliary objectives to maximize the efficiency of the fluxes. However, kinetic parameters
of reactions must be known to calculate exact enzyme cost. If these parameters are not
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available, other auxiliary objectives have been used instead such as minimal total (absolute)
flux, minimal number of active reactions, minimal norm of flux. To compare this method
with WPDM in the case study, methods based on minimization of the total flux and
minimization of the number of active reactions were used. Methods based on minimization
of the total flux and minimization of the number of active reactions had been also referred
as to the principle of flux minimization [17, 78]. Both these methods can be regarded as
hierarchical optimizations with only two layers each. For the method of minimization of
the total flux, the second layer objectives can be expressed as » " vg; in canonical form,
where vy, ; is the flux of i-th reaction at the time interval k.

The method of minimization of the number of active reactions is outlined in Eq. (3.13)
using the canonical formulation.

( Py = rrquzix d"vp, + O14n, Kk (3.13a)
F(Yr—1) < Svp < g(Yr—1) (3.13b)
br_1 -+ he_1 AtSvg > 0 (3.13¢)
0 < v < Vyman (3.13d)
Ky are binary variables (3.13e)
P = Yr_1 + hp_1AtSvy (3.13f)
hi = h_1 + hp_1 AtdT vy (3.13g)

() = Héin 01xn,Vk + Lixn, Kk
—Tvp+elk, <0
Tvy, — MIk, <0
d" v + 015, Kk = Do
f(he—1) < Svi, < g(¢Pr—1) (3.13h)
WY1 + hy_1 AtSv, > 0
0 < v, < Vmax
K are binary variables
VY = Yr—1 + hi_1AtSvg
hi = hy_1 + hy_1 AtdT vy,

\ \

where Ky, is a vector of binary variables at time interval k, defining on-off switches for each
reaction; € is a tolerance to determine whether a flux can be treated as zero or not; 0 and 1
are matrices whose elements are 0 and 1 respectively; M is a very large value, e.g. 100000
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is used in the case study. When xj; is zero, the i-th reaction is turned off while if ky; is
one, the i-th reaction is turned on. In this research, the second layer problem is solved by
a mixed integer linear programming solver of CPLEX.

3.3.5 Model Calibration

To compare among solutions obtained with different solvers and different methods to ad-
dress multiplicity, two groups of replicate experimental data of fed-batch fermentation of
B. pertussis reported in the paper of [13] were used to calibrate the model. These two
groups of replicate experimental data are referred to experiment 1 and 2 in the following
sections. Additional details on the experimental data can be found in [13]. Although all
the parameters of the original DFBA model and auxiliary parameters w of WPDM could
be adjusted to fit the experimental data, this is very impractical because only a small sub-
set of the parameters has a significant impact on the solution [11, 69]. Thus, a sensitivity
analysis is conducted to determine the top 5 model parameters and the top 5 auxiliary pa-
rameters that have the largest effect on the solution. The sensitivity S% is the sensitivity
of parameter 6, defined as in Eq. (3.14).

3D AR S AT (3.14)
m=1 k=1 k=1

where Szim (tr) is the sensitivity of concentrations v, of metabolite m to the i-th parameter

0; at sampling time interval k. Similarly, Szi(tk) is the sensitivity of biomass to i-th
parameter at sampling time interval £; and the calculations of sensitivities for biomass and
metabolites follow Eqs. (3.15) and (3.16) respectively.

ST (1) = %g—f)g— (3.15)

where 1, is the average metabolite concentrations over all sampling time intervals accord-
ing to Eq. (3.16).

B = = Z U (i) (3.16)

The sum of squared errors (SSE) of key metabolites and biomass as defined in Eq.
(3.17) is used for model calibration and for comparing the fitting accuracy of different LP
solvers and different methods for addressing multiplicity, where ¢y, exp(t) and heg,(tx) are
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two sets of the experimental data of metabolites m and biomass at time ¢, respectively.

SSE = Zm Zt@/’m(tk) = Ym.exp(tr))” + Zt(h(tk) — heap(r))’ (3.17)

The selected top 5 sensitive parameters are then adjusted to fit the experimental data
with different solvers, including the interior-point method (IPM) of CPLEX, the interior-
point method of MATLAB R2018a, and the NPDM; the aforementioned methods for ad-
dressing multiplicity, including minimization of the total flux, minimization of the number
of active reactions, and hierarchical optimization. For the WPDM, both the top 5 pa-
rameters of the DFBA model and the top 5 auxiliary parameters interior-point weights
that were obtained from the sensitivity analysis are tuned to fit the data. In principle, all
weights (over 200) can be tuned . But for simplicity, as comparison, only top 5 weights
. It should be emphasized that while the interior-point weights can be adjusted to obtain
different optima, the weights to be chosen for a particular DFBA problem are the ones
that result in a better fit of the experimental data. Thus, these auxiliary parameters do
not change the definition of the original DFBA problem, but only provide a means to
choose one particular flux distribution among all possible distributions. The selected top 5
sensitive parameters are then adjusted to fit the experimental data with different solvers,
including the interior-point method (IPM) of CPLEX, the interior-point method of MAT-
LAB R2018a, and the NPDM; the aforementioned methods for addressing multiplicity,
including minimization of the total flux, minimization of the number of active reactions,
and hierarchical optimization. For the WPDM, both the top 5 parameters of the DFBA
model and the top 5 auxiliary parameters interior-point weights that were obtained from
the sensitivity analysis are tuned to fit the data. In principle, all weights (over 200) can
be tuned . But for simplicity, as comparison, only top 5 weights . It should be empha-
sized that while the interior-point weights can be adjusted to obtain different optima, the
weights to be chosen for a particular DFBA problem are the ones that result in a better fit
of the experimental data. Thus, these auxiliary parameters do not change the definition
of the original DFBA problem, but only provide a means to choose one particular flux
distribution among all possible distributions. The selected top 5 sensitive parameters are
then adjusted to fit the experimental data with different solvers, including the interior-point
method (IPM) of CPLEX, the interior-point method of MATLAB R2018a, and the NPDM;
the aforementioned methods for addressing multiplicity, including minimization of the total
flux, minimization of the number of active reactions, and hierarchical optimization. For the
WPDM, both the top 5 parameters of the DFBA model and the top 5 auxiliary parameters
interior-point weights that were obtained from the sensitivity analysis are tuned to fit the
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data. In principle, all weights (over 200) can be tuned . But for simplicity, as comparison,
only top 5 weights . It should be emphasized that while the interior-point weights can
be adjusted to obtain different optima, the weights to be chosen for a particular DFBA
problem are the ones that result in a better fit of the experimental data. Thus, these
auxiliary parameters do not change the definition of the original DFBA problem, but only
provide a means to choose one particular flux distribution among all possible distributions.
The selected top 5 sensitive parameters are then adjusted to fit the experimental data with
different solvers, including the interior-point method (IPM) of CPLEX, the interior-point
method of MATLAB R2018a, and the NPDM; the aforementioned methods for addressing
multiplicity, including minimization of the total flux, minimization of the number of active
reactions, and hierarchical optimization. For the WPDM, both the top 5 parameters of the
DFBA model and the top 5 auxiliary parameters interior-point weights that were obtained
from the sensitivity analysis are tuned to fit the data. In principle, all weights (over 220
weights in this example) can be tuned. But for simplicity, only top 5 weights were selected
as a comparison. It should be emphasized that while the interior-point weights can be
adjusted to obtain different optima, the weights to be chosen for a particular DFBA prob-
lem are the ones that result in a better fit of the experimental data. Thus, these auxiliary
parameters do not change the definition of the original DFBA problem, but only provide
a means to choose one particular flux distribution among all possible distributions.

3.4 Theoretical Properties of WPDM

As mentioned in the literature review, some desirable properties for a method that ad-
dresses the primal multiplicity issue in DFBA are: uniqueness and continuity of the optimal
solution, availability of tuning parameters to select a specific optimum among the multiple
optima so as to permit consistency with experimental data and computational efficiency.
In this section, WPDM is shown to have properties of uniqueness, continuity and tunability
to apprimate to a specific optimum. One drawback of WPDM as compared to other meth-
ods is the computational expense required due to the use of a Newton’s method to solve
a set of nonlinear equations. However, it should be noticed that the main computational
effort is required for off-line calibration of the weights of WPDM with experimental data
which, as shown later in the case study, it is not a factor for online applications where the
weights values are kept constant with time.

Lemma 1 For a convex optimization problem, if the objective is strictly convex, then
the optimal set contains at most one point [12].
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Theorem 1 Uniqueness For given positive w and p, the optimization problem in the
weighted logarithmic form defined in Eq. (3.6) has at most one optimal solution.

Proof The logarithmic function is a strictly concave function. Because ;> 0 and w > 0,
L 2?21 w;ln(z;) is strictly concave function. The negative sign of the logarithmic term in
the objective function Eq. (3.6) makes the function strictly convex. ¢’ and Az + z
are affine functions, which are convex but not strictly convex. The objective function is
still strictly convex because it is the summation of a strictly convex function and a convex
function.

Because the constraints are convex and the objective is strictly convex, the weighted
logarithmic form defined in Eq. (3.6) is a strictly convex optimization problem. According
to Lemma 1, this type of optimization problem with the weighted logarithmic formulation
defined in Eq. (3.6) has at most one optimal solution.

Remark 1 Theorem 1 proves that for a given u, every w corresponds to at most one
optimal solution. Uniqueness is a key property of WPDM.

Theorem 2 Convergence to an approximate solution Assume the feasible space of
problems Eq. (3.3) and Eq. (3.6) is not empty, w, z, and @ are bounded. 3 > 0, so that
solution of Eq. (3.6) is also an approximate solution of Eq. (3.3) if u € [0, f].

Proof Because ) 7, w;ln(z;) in the objective of Eq. (3.6) is a strictly convex function as
proven in Theorem 1, Theorem 2 can be regarded as a special case of the proof of Theorem
1in [67].

Remark 2 Theorem 2 establishes the approximation property of WPDM. When multi-
ple optima exist, w can be tuned to obtain different bounded optima . A bounded w
only influences which solution is selected among the multiple solutions but it cannot affect
the optimality of @. Thus, if the original LP problem has a unique solution, the solution
of Eq. (3.6) is still the solution of Eq. (3.3) for any bounded w. Following the approxi-
mation property proven in Theorem 2, once p and w are specified, the resulting solution
of LP problem by the WPDM is unique. Thus a specific time trajectory for each metabo-
lite, among the many possible feasible trajectories, can be obtained by applying WPDM.
Additional proofs of approximation and other properties of WPDM are in [1, 20, 57].
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Ideally the optimal solution is obtained when u is infinitesimal. In practice, a very small
value (p = 1le™® in the case studies) is used. From Eq. (3.8¢), the duality gap Nz = 1w
of WPDM is a measure of the objective function error [20]. Thus the approximation error
is controllable by the value of u selected by the user.

Theorem 3 Assume the solution set of Eq.(3.6) is not empty, the optimal solution is
locally continuous with respect to b, ¢, w. The proof of local continuity is given in Appendix
A and it is based on [90].

Remark 3 The optimal solutions found by Simplex methods are not continuous when
primal multiplicity occurs. If the DFBA model is to be used for control, small pertur-
bations due to disturbances or noise can cause discontinuity in solutions and non-smooth
trajectories. In the application of DFBA models in process control, it is necessary that the
WPDM will be robust to these perturbations, i.e. the resulting optimal solution is con-
tinuous in the presence of perturbations. Theorem 3 proves the continuity at the optimal
solution with respect to perturbations of b, ¢, w.

3.5 Results and Discussion

3.5.1 Primal Multiplicity of the DFBA of B. pertussis

First the same DFBA model of B. pertussis [13] is solved by different solvers to show
that different optima are arbitrarily chosen by these solvers. The tested LP solvers are the
dual-simplex method, the interior-point method of MATLAB R2018a and the dual-simplex
method and the interior-point method of CPLEX 12.8 (IBM). Commercial software such as
CPLEX uses an additional post-processing algorithm referred to as a crossover algorithm
that can find an optimum at a vertex starting from an optimum not located at a vertex
[18] Corporation, 2016). In this paper, all computations are conducted without crossover.

The DFBA model of B. pertussis reported in [13] was originally fitted using the interior-
point method of MATLAB version R2018a. To show the existence of multiple optima in the
original DFBA model, different LP solvers were used to calculate the optimal flux distribu-
tion at the first time interval. Fig. 3.1 displays the radar chart of the calculation results.
As shown in Fig. 3.1, even though the initial conditions and growth rates (objective) are
the same, significantly different flux distributions can be obtained in the first time interval
and thereafter. Moreover, the optimal flux distribution obtained is arbitrarily determined
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by the particular algorithm while the user has limited ability to choose a different solution
from the one provided by the solver.

The variability in flux distributions obtained for the first time interval with the different
solvers is critical since it results in drastically different trajectories of metabolite concen-
trations over time in the fed-batch operation. For example, Fig. 3.2 and Fig. 3.3 show the
evolution of metabolites and biomass concentrations obtained with the different LP solvers
for the original DFBA model. For confidentiality reasons, all concentrations are divided by
the initial glutamate concentration so that concentrations are dimensionless. It can be seen
from these figures that the trajectories obtained with the two interior-point methods are
somewhat similar to each other and fit better to the experimental data as compared to the
trajectories calculated with the two dual-simplex methods. Furthermore, the dual-simplex
method of MATLAB R2018a was not able to find any feasible solution from 50 hours and
on due to the early depletion of phenylalanine which cannot be biosythesized while it is
essential for biomass synthesis. Hence, the choice of a commercial solver is critical not only
in terms of the accuracy of the optimal solutions but also in terms of the feasibility of the
optimization problem over time.

3.5.2 Application of WPDM

As established in the previous section, the WPDM can find a unique optimum once the
interior-point weights w and g are chosen. First, a toy example reported in the literature
is used to illustrate the performance of the WPDM. Later, different solvers and different
methods for primal multiplicity are used to calibrate a DFBA model of B. pertussis. In
this paper, o = 0.1 , tolerance=1e~® , initial p = 10, 179 = 0.995 are used for WPDM.

Example of Simple LP Problem with Multiple Optima

A linear programming problem with multiple optima from Motamedian’s paper is used as
a preliminary case study (Motamedian and Naeimpoor, 2018). The LP problem is defined
in Eq. (3.18). There are 4 vertex optima, [4 0 2|7, [0 4 47 [0 4 0T, [4 0 0]

min — 221 — 219

subject to T+ a0 <4 (3.18)
r1 + 2.7)3 < 8
x>0
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Interior-Point Method of MATLAB Dual-Simplex Method of MATLAB
1 1

25 25
Interior-Point Method of CPLEX Dual-Simplex Method of CPLEX
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Figure 3.1: Radar charts of optimal flux distribution in the first time interval obtained by
different solvers, including interior-point method and dual-simplex method of MATLAB
and CPLEX. There are 49 reactions in the metabolic networks, but only reaction 1, 12, 25
and 37 are labeled in the radar plots. To facilitate the comparison, all fluxes were normal-
ized within the interval [0, 1] by dividing each flux by the maximum flux obtained for each
reaction. Even though the initial conditions are the same, the optimal flux distributions
arbitrarily selected by the solver are significantly different.
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Figure 3.2: Evolution of key metabolites concentrations with time obtained by four different
LP solvers. Different LP solvers were used to solve the original DFBA model for fed-
batch fermentation of B. pertussis. Experiment 1 and 2 are two replicate experiments
used in building the original DFBA model. The trajectories obtained by the dual-simple
of MATLAB are discontinuous due to infeasibility around 50h. All concentrations are
divided by the initial glutamate concentration so that concentrations are dimensionless.
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Figure 3.3: Evolution of biomass concentration with time obtained by four different LP
solvers. Different LP solvers were used to solve the original DFBA model for fed-batch
fermentation of B. pertussis. Experiment 1 and 2 are two replicate experiments used in
building the original DFBA model. The trajectories obtained by dual-simple of MATLAB
are discontinuous due to infeasibility around 50h. All concentrations are divided by the
initial glutamate concentration so that concentrations are dimensionless.
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First, the original problem is converted into the standard form according to Eq. (3.19),
where z are slack variables. These five variables correspond to five interior-point weights
Wy, -+, Ws.

min —2x1 — 229
€T

subject to rT1+a0+21=4
T4+ 203+ 29 =38
—a1+2=0 (3.19)
—2o+24=0
—23+25=0
z>0

In Fig. 3.4, the polyhedron shows the feasible space of this LP problem as per Eq.
(3.18); the shaded hyperplane is the active optimal hyperplane defined by the constraint
x1 + w9 < 4. The other boundaries of this polyhedron are defined by other inactive con-
straints. Four vertexes of this optimal hyperplane are basic optima while the remaining
part of the optimal hyperplane corresponds to optima not located at vertexes. Six pos-
sible paths denoted by different symbols are shown in Fig. 3.4. Every point of the path
corresponds to different optima obtained by using different interior-point weights. The
intersection of the six paths shown in the figure corresponds to the analytic center of the
optimal hyperplane when all the elements of w are set to 1. By increasing an interior-point
weight from 1 to 1000 while keeping the other weights constant, the obtained optimum can
be directed towards a specific optimum. From Fig. 3.4, it can be seen that increasing the
values of the weights lead to an increase of the corresponding values of the slack variables.
For example, as ws increases, the corresponding slack variable z; increases which means
that the optimum point stays away from the boundary of z; +2x3 < 8. It is also found that
the ratio between different interior-points can be adjusted to determine which optimum is
obtained rather than adjusting the weights individually.

Model Calibration by Different Solvers

As shown in the previous example, different optima can be achieved by changing the
interior-point weights of the WPDM when multiple optima exist. This property can be
used to tackle the multiplicity of solutions occurring in the DFBA model of B. pertussis by
selecting a set of weights that result in solutions that best fit the experimental data. In this
case study, six solvers are compared in terms of their ability to fit the experimental data
reported in [13]. Tt is found that the dual-simplex method of CPLEX and the dual-simplex
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Figure 3.4: Control of interior-point weights w to approximate to different optima. The
polyhedron is a feasible space formed by three decision variables x1, x5 and x3. Increasing
a particular interior-point weight leads to an increase in the corresponding slack variables
z at the optimal solution so that any optimum can be obtained by tuning w.
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method of MATLAB cannot fit the experimental data and deviate significantly from the
experiments. Thus, for brevity, only the remaining four solvers have been presented here:
the interior-point method of CPLEX, the interior-point method (IPM) of MATLAB, the
NPDM, and the WPDM.

Table 3.2 lists the SSE values for all metabolites and biomass as calculated for the
different LP solvers. As shown in Table 3.2, the SSE obtained with WPDM is the smallest
among the four solvers. In particular, the prediction of biomass is significantly more
accurate by NPDM and WPDM than the values predicted with IPM of MATLAB and
CPLEX. In general, for most metabolites, NPDM and WPDM resulted in significantly
better fit. Although as shown in Fig. 3.5 and Fig. 3.6, there are no discernible differences
for biomass predictions by NPDM and WPDM, the SSE of some metabolites by NPDM
are much higher than for WPDM. For example, the SSE of isoleucine, leucine, threonine,
and valine by NPDM are much higher than WPDM, as much as 224% larger as compared
to WPDM. The fit is illustrated in Fig. 3.5 showing the profiles of these amino acids as
compared to the experimental data. This corroborates that WPDM can find a unique set of
trajectories among all possible optimal trajectories that best approximates the data. The
tuning of the interior-point weights can be viewed as a way to compensate for insufficient
information about the assumed DFBA model structure.

3.5.3 Model Calibration with alternative methods used to ad-
dress Primal Multiplicity

A comparison is conducted between models calibrated by different methods for tackling
primal multiplicity. These methods include WPDM, minimization of the total flux (MTF),
minimization of the number of active reactions (MNAR) as defined in Eq. (3.13), and
hierarchical optimization (HO) as defined in Eq. (3.12). For all methods the top 5 sensitive
model parameters for each model were adjusted to fit the data.

Asshown in Tab. (3.3) and Figs. (3.7) and (3.8), models calibrated by MTF and MNAR
cannot fit well the metabolites and biomass concentrations. For example, for glutamate,
the main limiting substrate, the deviation from experimental data is significant. It can
be seen from Fig. (3.8), that the logarithmic phase of biomass occurs earlier than the
actual growth and the growth remains too fast even after 20h. From Figs. (3.7) and (3.8),
the model calibrated by HO can better describe the dynamics of metabolites and biomass

ITPM, interior-point method
2WPDM, weighted primal-dual method
3NPDM, naive primal-dual method
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Table 3.2: Summation of Squared Errors (SSE) of Fitting by Different LP Solvers

SSE of Compared SSE of Compared Compared

IPM?2, with IPM, with ;SEDE/; with VSVSPEDCI’\Z
CPLEX WPDM? MATLAB WPDM WPDM

Biomass 7419 123% 15446 363% 3345 0% 3333
Ala 0.181 1% 0.174 -3% 0.180 0% 0.180
Arg 0.484 -36% 0.970 29% 0.756 0% 0.754
Asp 3.401 95% 1.778 2% 1.670 -4% 1.746
Glu 2482 509% 457.4 12% 401.6 -1% 407.6
Gly 15.13 6% 13.98 -2% 14.30 0% 14.30
His 1.869 9% 1.519 -11% 1.713 0% 1.712
Ile 2.483 303% 1.333 116% 1.819 195% 0.616
Leu 8.112 355% 2.844 60% 5.778 224% 1.782
Lys 34.34 10% 28.79 -8% 31.16 0% 31.14
Met 7.094 4% 6.275 -8% 6.832 0% 6.831
Phe 8.599 4% 7.596 -8% 8.286 0% 8.284
Pro 1.139 -15% 0.821 -39% 1.394 4% 1.344
Ser 31.74 16245% 0.310 60% 0.193 0% 0.194
Thr 2.490 5% 6.979 193% 5.575 134% 2.381
Tyr 0.057 -24% 0.145 93% 0.075 0% 0.075
Val 13.17 137% 6.954 25% 9.776 76% 5.550
Total 10031 - 15983 - 3837 - 3818
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Figure 3.5: Evolution of metabolite concentrations with time as obtained by NPDM and
WPDM. The DFBA models are calibrated based on the tuning of the top 5 most sensitive
parameters by NPDM and WPDM respectively. For confidentiality, all concentrations are
divided by the initial glutamate concentration so that concentrations are dimensionless.
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Figure 3.6: Evolution of biomass concentration with time as obtained by NPDM and
WPDM based on tuning of the top 5 sensitive parameters. The biomass trajectory with
time for NPDM and WPDM are overlapping. For confidentiality, all metabolites’ con-
centrations are divided by the initial glutamate concentration so that concentrations are
dimensionless.
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as compared to the MTF and MNAR methods. However, from Tab. (3.3), the fitting
accuracy of HO is worse than WPDM, especially with respect to biomass. The SSE of
biomass predicted by the WPDM is 350% lower than the one obtained for HO. The model
based on HO fit well some amino acids’ concentrations with SSE values slightly lower as
compared to WPDM. However, for some amino acids the SSE obtained with HO is much
higher as compared to the corresponding SSE obtained with WPDM.

In general, it was found that the flux distributions obtained by these methods are sig-
nificantly different from each other. From Fig. (3.9), yield of COy and NHj from 30h
and on are much higher when calculated with HO and WPDM as compared to the levels
calculated with MTF and MNAR. It was also observed that after the transition from rapid
growth to the stationary phase, the flux distributions selected by MTF and MNAR are
still dominated by anabolic reactions whereas for HO and WPDM they are dominated
by catabolic reactions. Because methods based on MTF and MNAR give preference to
efficient pathways, slow consumption of glutamate results in relatively abundant biomass
and accumulation of glutamate during feeding in fed-batch operation. Methods based on
HO and WPDM seem to better capture the transition from anabolism to catabolism and
glutamate is found to be effectively depleted as an energy source after 30h. Transcript
abundance regulation found between growth phase and nutrient-limited phase in experi-
ments of B. pertussis also supports the observed downregulated anabolism [79]. For the
HO method, the catabolism-dominated flux distribution is selected because of the objec-
tive considered in the fourth layer involving maximization of carbon dioxide yield. For
WPDM, the catabolism-dominated flux distribution is enforced by tuning of the interior-
point weights w. It should also be noticed that the fitting of the HO method could be
potentially improved by changing the auxiliary objectives and their ordering by either
trial-and-error or based on prior knowledge. However, the selection of auxiliary objectives
and their ordering for fitting is a relatively difficult combinatorial problem. In contrast,
the optimal interior-point weights w are found by fitting experimental data without any
prior-knowledge about the system. This data-driven feature makes WPDM attractive when
prior biological knowledge is not readily available.

On the other hand, WPDM is more computationally expensive as compared to the
other methods since it requires the solution of a set of nonlinear equations by a Newton’s
method. For example, 18.4h CPU time is needed for calibrating the weights by MATLAB as
compared to 12.3min for MTF by CPLEX, 14.4min for MNAR by CPLEX, and 10.9min
for HO by CPLEX. However, it should be remembered that the higher computational
effort is only a factor while calibrating the weights which may not be critical for not too
large networks since this step is performed off-line. After the weights are obtained, the
execution of the algorithm is relatively fast. For example, for a simulation of 60h fed-batch
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fermentation, 45.1s CPU time is needed for execution of WPDM with Matlab, 2.3s CPU
time for MTF by CPLEX, 9.8s CPU time for MNAR by CPLEX and 8.4s CPU time
for HO by CPLEX. Thus the computational expense is not a major limitation for online
implementation of the WPDM algorithm, e.g. for online estimation or control. Also, it
should be remembered that WPDM was coded in MATLAB which may result in generally
slower code as compared to the other algorithms that were implemented with CPLEX.

Table 3.3: Summation of Squared Errors (SSE) of Fitting by Different Methods for Primal
Multiplicity

Compared Compared Compared

SSE o4f with SSE of with SSE g)f with SSE of
MTF WPDM> MNAR WPDM HO WPDM WPDM

Biomass 34287 929% 27683 730% 15010 350% 3333
Ala 0.376 109% 0.376 109% 0.123 -32% 0.180
Arg 3.731 395% 1.778 136% 2.043 171% 0.754
Asp 14.43 726% 13.72 686% 4.711 170% 1.746
Glu 277621 68013% 287331 70395% 4174 924% 407.6
Gly 13.89 -3% 13.90 -3% 13.84 -3% 14.30
His 1.275 -26% 1.362 -20% 1.765 3% 1.712
Ile 6.268 918% 6.907 1022% 1.743 183% 0.616
Leu 5.696 220% 6.931 289% 1.106 -38% 1.782
Lys 12.07 -61% 12.69 -59% 15.97 -49% 31.14
Met 5.919 -13% 6.064 -11% 6.645 -3% 6.831
Phe 7.529 -9% 7.557 -9% 7.786 -6% 8.284
Pro 997.7 44372% 603.2 44784% 0.153 -89% 1.344
Ser 0.144 -26% 0.144 -26% 0.232 20% 0.194
Thr 79.78 3251% 34.38 1344% 63.65 2573% 2.381
Tyr 0.243 223% 0.243 223% 0.182 142% 0.075
Val 19.56 253% 21.66 290% 5.365 -3% 5.550
Total 312678 - 315745 - 19309 - 3818

4MTF, minimization of the total flux
SMNAR, minimization of the number of active reactions
SHO, hierarchical optimization
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Figure 3.7: Comparison of the time evolution of metabolite concentrations with time ob-
tained by different methods for primal multiplicity, including minimization of the total flux
(MTF), minimization of the number of active reactions (MNAR), hierarchical optimiza-
tion (HO) and WPDM. The top 5 most sensitive parameters are tuned for the calibration
of the DFBA models used with these methods. The ordering of the objectives used for
HO are: maximum biomass yield, maximum ATP yield, minimum of the total flux, max-
imum carbon dioxide yield, maximum acetate yield, minimum fluxes 1 to n, sequentially
to assure the unique solution. The first five objectives are reported as good fitting with
experimental data in [93]. For confidentiality, all concentrations are divided by the initial
glutamate concentration so that concentrations are dimensionless.
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Figure 3.8: Comparison of the time evolution of biomass concentration by different methods
for primal multiplicity : minimization of the total flux (MTF), minimization of the number
of active reactions (MNAR), hierarchical optimization (HO) and WPDM.
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Figure 3.9: Comparison of time evolution of NH3 and CO, obtained by different methods
for primal multiplicity, including minimization of the total flux (MTF), minimization of
the number of active reactions (MNAR), hierarchical optimization (HO) and WPDM. For
confidentiality, all concentrations are divided by the initial glutamate concentration so that
concentrations are dimensionless.
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3.6 Conclusions

The multiplicity of optimal solutions is common for dynamic flux balance analysis models
since the problems are often under-determined. The existence of multiple solutions results
in infinite possible time trajectories of metabolites’ concentrations. Thus, multiplicity poses
a challenge for the application of DFBA in model-based control, estimation, monitoring,
and optimization.

This paper proposes the use of a variant of the interior-point algorithm referred to as
the WPDM where approximation to a particular optimum among all possible optima can
be controlled by a proper choice of interior-point weights. The uniqueness, approximation,
and continuity of WPDM are proven mathematically. The algorithm is computationally
more expensive as compared to other methods since it requires the solution of a set of
nonlinear equations by Newton’s method. However, while the computations will extend
offline calibration of the model they are not a major limiting factor for online applications
with a fixed set of weights.

The methodology is illustrated for a DFBA model of B. pertussis. It is shown that the
choice of interior-point weights in the proposed method can be effectively used to improve
the fitting of the model predictions to data as compared to other solvers and other methods
used for tackling primal multiplicity.
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Chapter 4

A Type of Set Membership
Estimation Designed for Dynamic
Flux Balance Models

4.1 Overview

'"Dynamic flux balance models (DFBM) are used in this study to infer metabolite concen-
trations that are difficult to measure online. The concentrations are estimated based on a
few available measurements. To account for uncertainty in initial conditions the DFBM is
converted into a variable structure system based on multiparametric linear programming
(mpLP) where different regions of the state space are described by correspondingly different
state space models. Using this variable structure system a special set membership based
estimation approach is proposed to estimate unmeasured concentrations from few available
measurements. For unobservable concentrations upper and lower bounds are estimated.
The proposed set membership estimation has been applied to batch fermentation of E.coli
based on DFBM.

!Adapted from Shen, X., & Budman, H. (2021). Set Membership Estimation with Dynamic Flux
Balance Models. Processes, 9(10), 1762.
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4.2 Introduction

The increasing demand for bio-pharmaceutical products requires continuous improvement
in monitoring and control strategies for fermentation processes. Model-based control and
optimization strategies are crucial to boost productivity. Unlike traditional unstructured
biochemical models, dynamic flux balance models (DFBM) have gained increasing atten-
tion since they contain more detailed information about the distribution of metabolic fluxes
[86, 46]. The strength of DFBM relies on its use of stoichiometric information about the
cell metabolic network. The use of this information often results in models that require a
smaller number of parameters as compared to other types of modeling approaches and thus
are less prone to over-fitting. However, regardless of the choice of model, monitoring, and
control of industrial fermentation processes remains challenging because feedback control
strategies require many states to be measured online. In reality, most states cannot be
measured online either due to the expense of measuring equipment and its maintenance
or the lack of online measurement devices [105, 52, 25]. Some states, including the con-
centration of amino acids, metals, vitamins, ATP, and precursors have great effect on the
fermentation process but are either difficult or impossible to be measured online.

In this research, a set membership estimation approach is proposed for nonlinear sys-
tems described by DFBM models. The DFBM is converted into a variable structure system
composed of several continuous systems in different regions of state space by multipara-
metric linear programming. To address the lack of measurements an Extended Kalman
Filter (EKF) is used to estimate nominal values of some states which are important for
determining metabolic fluxes. Then, a set membership estimation algorithm is applied for
DFBM to estimate the bounds of all states. A detector is proposed to detect the switch
between different subsystems.

The paper is organized as follows. Section 2.1 introduces the background of DFBM.
Section 2.2 describes the use of multiparametric linear programming to convert the DFBM
into a variable structure system composed of subsystems. Section 2.3 describes the EKF
used to estimate some states which are important for determining metabolic fluxes. Section
2.4 presents the main ideas of set propagation and error compensation for the calculation
of states’ bounds. Section 2.5 presents the algorithm for detecting the switch between
different subsystems. Section 3 provides the application of the proposed techniques to the
batch fermentation of E. coli. Section 4 presents a Discussion of the results followed by
Conclusions.
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4.3 Materials and Methods

4.3.1 Dynamic Flux Balance Models

Dynamic flux balance models (DFBM) are structured genome-based metabolic models
developed from flux balance models. The key assumption of DFBM is that the cells act
as agents distributing resources through metabolic reaction networks to boost a biological
objective, e.g. growth rate [306]. Accordingly, the DFBM is formulated as an optimization
problem. In the literature [6], both dynamic and static optimization approaches are
reported. In the dynamic approach, the nonlinear programming problem is solved over a
relatively large time period which is computationally expensive and thus less convenient for
uncertainty propagation. In this investigation, a static optimization approach is adopted
for its simplicity. DFBM is interpreted as a local linear programming problem to maximize
a biological objective. In terms of the dynamics of intracellular metabolites, there are two
types of DFBM models in the literature. One type of DFBM differentiates intracellular
and extracellular environments and assumes that the intracellular metabolic reactions are
fast enough such as it can be assumed at a quasi-steady state [16, 45]. Accordingly, only
the extracellular metabolites and the biomass are described by dynamic state equations. It
has been argued that the intracellular metabolite concentrations are not constant and may
change over time [31]. Accordingly, there is a second type of DFBM, used in the current
study, which does not differentiate between intracellular and extracellular compartments
and the dynamics of all the metabolites are considered [, 13]. The governing equations
of DFBM are based on discretized mass balances for all metabolites and these are defined
by Eq. (4.1).

Tp+1 = Bxy + Aty Avg + h (
Yy = Cxp + 1g (4.1b
xo € Py (4.1c
r,~TN(0,Xl,u) k=0,1,2--- (4.1d

Where xj, is a vector of n, state variables at time step k. The state vector & includes
concentrations of metabolites and biomass xy,. ¥y is a vector of n, measured variables.
B € R" x R" is a constant diagonal matrix with diagonal elements b;, 7 = 1,--- ,n,.
At is constant discrete time step size. A € R" x R" <t is stoichiometry coefficient matrix,
where n,; 1s the number of reactions considered in the metabolic network. v € R™ < is the
metabolic flux vector and its calculation is discussed below. h € R"= is a constant vector.
The initial state xg is assumed to be bounded by a finite polyhedron Py as Eq. (4.1c).
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The underlying assumption is that in practice the initial concentrations of the culture
medium components are known to be within specific ranges of values Py. This assumption
is based on the fact that some variation in media formulation occurs due to human factors
and variability in raw materials. Hence, this research focuses on the initial uncertainty
and we assume all parameters in the state equations to be known accurately. In other
words, the method proposed in this research cannot deal with model structure uncertainty
like uncertainty in matrix A. But the method can be extended to deal indirectly with
uncertainty in parameter @ defined in the following paragraphs.

T € R™ are measurement noise vectors which elements follow the truncated multivari-
ate normal distribution (TN) [112, 11]. The probability density function p for TN (u, X, 1, u)
are defined as per Eq. (4.2).

Dl S L) = fea:p{—%(w —w)"E (@ — )} (42)

L erp{—g(z — p)TE "z — p)}
For 7, the mean vector of TN is 0 € R™; the covariance is 3 € R™ x R™; corresponding
variance vector is 2 € R™; lower bound and upper bound are I € R™ and u € R™
respectively. |- | indicates the absolute value of a vector. It is assumed that |I| < 3o and
|lu| < 3o, which indicate that the absolute values of the lower bound and upper bound
respectively are within the range of 3o. For simplicity, the current study assumes the
process noise to be zero. Process noise could be included as an additional state but this is
beyond the scope of the current work.

Following the assumption that the cell allocates resources optimally, the metabolic flux

v vector at each time step is obtained by solving a linear programming (LP) problem,
defined by Eq. (4.3).

max cvy (4.3a)
Vg
subject to Gup < FOr(xg) + 2 (4.3b)

where ¢ € R™, F € R"¢ x R, z € R"¢, G € R"¢ x R 0 € @ C R™. ng is the
number of linear constraints. The parameter vector @ is a nonlinear vector-valued function
of states . mny denotes the number of elements in the parameter vector 6. Usually,
each element 6 is only a function of two states at most and one of these two states is
biomass concentration. ® denotes the parameter space where the optimal solution of the
LP resides. Eq.(4.3a) denotes the objective of the LP that cells are optimizing where the
most commonly used objective is the biomass production rate, i.e. growth rate. Thus, cells
try to maximize growth rate by allocating limited resources. The LHS (left-hand-side) in
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Eq.(4.3b) describes either the rate of change of metabolite concentrations or the change
of metabolite concentrations over a discretization time step At. Matrices G are constant
matrices containing information on the stoichiometry of reactions. RHS in Eq.(4.3b) is
a function of xj, denoting the metabolic reaction bounds for each step. The matrix F
is a matrix in which elements are part of the right-hand side of the constraints that are
functions of states at the previous time interval. z is a vector containing constant values
such as constant uptake rate limits. Therefore, linear constraints of flux v in Eq.(4.3b) are
reaction rate limits or bounds on available resources (nutrients). Numerical examples of
these matrices and vectors are shown for the E.coli model in the results section.

4.3.2 Multiparametric Linear Programming for DFBM
Multiparametric Linear Programming [2, 10, 84]

While set-based methods are available for uncertainty propagation for linear state space
equations, these methods are not directly applicable to DFBM. The reason is that the
fluxes used in the state equations are obtained from an LP and thus the problem is non-
linear due to the nonlinear function @(x) and the occurrence of different sets of active
constraints. To tackle the dependency of the state equations on the LP, the concept of
multiparametric linear programming (mpLP) is used to convert the DFBM into a variable
structure system that is composed of subsystems. Multiparametric linear programming
divides the parameter space (®) into different regions corresponding to different sets of
active constraints and generates explicit expressions for calculating optimal solutions (v)
for each region [2, 10, 84].

Let’s assume a given optimal solution v of the LP (Eq. (4.3)) where subscript A and
7 denote indices of active and inactive constraints respectively. Using this notation Eq.
(4.3b) is decomposed into two parts, equalities G q4vy = F 40k () + 24 and inequalities
Grvr < Fr0O(x) + zz. Without loss of generality, let’s assume that G4 is linearly
independent (linear redundant rows can always be removed by Gaussian elimination). Let
H = G;tlFA and g = G:tle, then the optimal solution can be obtained by Eq. (4.4).
Following the literature and our previous studies, for a given @, multiple optimal solutions
can coexist [78, 98]. In other words, multiple Eq. (4.4) can coexist which results in different
ways to divide the parameter space ®. When such a multiplicity issue occurs it results in
different time trajectories. For simplicity, multiplicity is not addressed in the current study
and it is addressed in a separate work by different methods from the one presented here.
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The inverse of G 4 exists because here we assume that the solution to the LP is unique.
v = HOp(xk) + 9 (4.4)
Substituting Eq. (4.4) into the inequality constraints results in Eq. (4.5).
(GTH — F1)0(xg) < zr — Gzg (4.5)

Eq. (4.5) defines a polyhedral region of @ where the existence of the optimal solution is
ensured by Eq. (4.4). The region defined by Eq. (4.5) is referred to as a critical region in the
multiparametric programming literature. Different critical regions are defined by different
combinations of A and Z. Then, the entire parameter space ® can be decomposed into
connected critical regions denoted by {@‘}, i=1,--- ,ne. ne denotes the total number
of critical regions in ®. In practice, critical regions that are very small are ignored and
assumed to be covered by the adjacent critical region. Correspondingly, superscript i is
used to denote the i-th critical region. Assume for a specific & € @¢, the optimal flux
v vector can be calculated analytically by vi = H®0 + g* thus bypassing the need for
solving the LP.

By substituting the optimizer equation vi = H'6), + g* into Eq. (4.1a), we obtained
a set of governing state equations as per Eq. (4.6). Since different 8y, are within different
critical regions as Eq. (4.6b), each critical region corresponds to different state equations
Eq. (4.6a). Thus the set {©%} defines a family of state space models and this family
is referred to as a variable structure system. A variable structure system is a piecewise
continuous system composed of subsystems where each subsystem corresponds to a different
region of the state space. And the region of the state space corresponding to a specific
subsystem is referred to as a critical region. Each subsystem is described by a different
set of state equations. Accordingly, the state equations need to be changed as soon as
the states enter a new critical region. Here, the superscript ¢ denotes the i-th subsystem
corresponding to critical region @% Eqs. (4.6¢)-(4.6e) remain the same form as Egs.

(4.1b)-(4.1d).

Tpy1 = By, + Atay,  A(H O, (x1) + g°) + h (4.6a)
Op(xr) €O i=1,-- ng (4.6b)
Yk = Cog + 1p (4.6¢)
xo € Po (4.6d)
re ~TN(0,Xl,u) k=0,1,2--- (4.6¢)
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Reaction Rate Estimability

To further simplify the system described by Eq. (4.6) it is possible to exploit the sparseness
(Columns are zeros) of the H matrix. For instance, to take advantage of zero columns of
H, Eq. (4.4) can be re-written as shown in Eq. (4.7). For conciseness, the subscript k is
omitted here because Eq. (4.7) applies for all time steps.

+g' = HyOn(zh) +9° (47)

In Eq. (4.7) N and Z denote the indices of the nonzero and zero columns of the H matrix
respectively. Because Hz is a submatrix containing the zero columns of H, the flux v
is only a function of parameters On(xn) according to Eq. (4.7). Moreover, while the
parameters 0 are a function of states  (see Eq. (4.1) and (4.3)), only some elements
of x actually determine the entire flux vector v. The vector & contains, according to
Eq. (4.7), the states that determine the flux vector. Notice that for different critical
regions flux-determining vector & contains different states. Therefore, Eq. (4.6a) can be
simplified into Eq. (4.8).

Tit1 = Bwy + Atwy, n A(Hy O () +9°) + R (4.8)

The biological interpretation of the flux-determining state vector v is that only some
resources are limiting the growth of cells, either because they are limited or because the
activity of enzymes in the related reactions (fluxes) is limiting. As the fermentation pro-
gresses, the states transit into new critical regions from old critical regions. Different
critical regions can be interpreted as different metabolic stages where x are different.
Similar interpretations have been reported in [2] in the context of steady-state flux balance
analysis.

In Eq. (4.8), the term Atay,, A(H Ok (2l ;) +g°) denotes the change of metabolite
concentrations contributed by metabolic reactions. Therefore, the reaction rates are
Toio e A(H Ok (2ly ) + g°). Tt is noted that this nonlinear reaction rate term is not only
a function of the flux-determining states vector & but also of biomass concentration xy;,,
because the fluxes are defined per unit biomass, i.e. more biomass demands more nutrients
to satisfy the requirement of the growth. Omnce the states that determine the reaction
rates, i.e. the states & together with the value of x;,, can be estimated, the estimation
problem can be simplified greatly. Since in some cases @ contains xy;, but in some cases
it does not, we define a reaction-rate-determining state vector xps in Eq. (4.9). Hence,
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the reaction-rate-determining state vector s always contains the flux-determining states
xpn and the biomass state zy;, without any redundancy.

TN, if & contains the biomass state xp;, .
, otherwise.
Lvio

The vector @y for critical region @ is denoted by x%,. We define reaction rate es-
timability as the ability to determine the reaction rates p;o . A(Hj 0% (€l ;) +9g°) in the
metabolic networks which are needed for the calculation of Eq. (4.8). Following the above,
once reaction-rate-determining state vector xp; at time step k can be estimated, the dy-
namic evolution of the culture at step k+1 as per Eq. (4.8) can be predicted. Also, it should
be noticed that it is not necessary to measure all the reaction-rate-determining states for
reaction rate estimability and instead some states can be estimated by an observer from
available measurements. However, if an observer is used to estimate x¥,, some particular
combination of measurements is necessary for the observability of x%,. Considering dif-
ferent measurement combinations Q%, ... for critical region ®%, only some combinations
provide full observability of x%,. Let define Q% as a family of sets of measurements, which
contains all measurement combinations that fulfill the observability of .

Although many different critical regions and corresponding combinations of measure-
ments could be considered, in practice, the possibilities will be limited because industrial
fermentations usually operate in a narrow range of operating conditions. Thus, the dy-
namic trajectories of states only pass through a limited set of critical regions. Assume
for Vxg € Py, the set of critical regions that the trajectories traverse are I'. Then, the
minimum set of measurements required for reaction rate estimability of the critical region
set I' is Qr as per Eq. (4.10).

Qr = min | UQ;| (4.10a)

subject to z'le r (4.10b)

Q) € O (4.10c)

where | - | is the cardinality of a finite countable set, i.e. the number of elements of a

set. In Eq. (4.10c), % € Q, indicates that the measurement combination €} can fulfill
the observability of reaction-rate-determining states @%, of critical region @¢. If all states
in set Qr are measured, the reaction rate term of any trajectory starting from Py can be
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estimated by an observer. In other words, although %, in different critical regions may
be different requiring different measurements for observability, &%, is always observable if
the chosen set of measurements satisfies Eq. (4.10c).

4.3.3 Extended Kalman Filter (EKF)

Using the minimum required set of measurements Qr defined in Eq. (4.10c), s can be
estimated by an observer. @xps corresponds to the observable subspace of the governing
equation (Eq. (4.1)) for each critical region. The state equation of the observable subspace
for critical region ©¢ is given by Eq. (4.11).

Ty pr = ' (@hgs) = Bxhygy, + Atayio Ap (Ha O (T ) +9°) + b (4.11a)
Yr = ChrThrs, + T (4.11D)
i~ TN(0,S,Lu) k=012 (4.11c)

Where zc}\, , and :c}lw, i are the flux-determining state vector and the reaction-rate-determining
state vector for critical region @ respectively; Ay is the stoichiometry submatrix corre-
sponding to xps; similarly hps is sub-vector of h corresponding to xps. It should be
noticed that for different critical regions, xp; involves different states. Accordingly, each
critical region requires the use of a different EKF. Also, it should be noticed that the C?%,
matrices are different for each critical region but the measured variables () are the same
since the same sensors are used for the entire fermentation.

To estimate x¥,, a standard EKF is used due to its effective and simple structure [103].
The estimate .’i‘fw’k and covariance P{ of x%, for critical region @ are described by Eq.
(4.12a) and Eq. (4.12b) respectively.

Eopr = F (@ 1) + Kilyr — Cogars) (4.12a)
P =@l P, ®._, +Ci (%7)7'CY, (4.12b)
Where
i i i Tovi Tovi i i T T -
K, =®; P;_®,_, Cy (Cyy®;_ P 1®,_, Ciy +3%7)7" (4.13a)
9t .
P, = (@] 4.13b
k 8:1:3\/1(33]\4"“) ( )

The measurement noise is assumed to be a truncated multivariate normal distribution
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as Eq. (4.11c). This assumption is needed for estimating finite bounds as explained in
the following section. Recall in Eq. (4.2) that |I| < 36 and |u| < 3o, the lower and
upper bounds are located within the range of 3o. The covariance matrix Py is always
overestimated to ensure boundedness. Although the EKF resulting from this assumption
is sub-optimal it is still sufficient to estimate x¥,.

4.3.4 Set Propagation and Error Compensation

Since the minimum set of measurements defined by Eq. (4.10) can only ensure the ob-
servability of xps, the estimation of other states needs different estimation strategies.
The idea is to exploit the a priori knowledge of the initial ranges of initial conditions to
estimate all states. Instead of predicting specific values of states, the set membership
estimation (SME) approach is used to predict sets containing all possible states by a se-
ries of set operations. These set operations usually include linear mapping, projection,
translation, Minkowski addition, intersection, union, and outer approximation. In this re-
search, all sets and multiparametric linear programming operations are performed with the
Multi-Parametric Toolbox 3.0 (https://www.mpt3.org/) [13] and MATLAB R2018a. The
FE.coli example can be found online (https://github.com/SetMembershipEstimation DFBM
~/E.coliExample). For DFBM, SME propagates the initial set Py by affine mapping as
Eq. (4.14). Affine mapping involves two operations: linear mapping of the previous set
and translation.

X1~ BX,  +  Atdy A(HNON (3 ,) +9°) +h (4.14)

linear mapping translation

Where X}, represents the set of states at time step k and Xy = Po, i.e. the set of initial
conditions assumed to be known. In Eq. (4.14), the translation term is approximated by
using the estimate aﬁ'}'v[,k obtained by the EKF. In the application of EKF, the estimate :i}'\/f,k
needs several time steps to converge to the true flux-determining states :B}'\/[’k. Thus the
SME described by Eq. (4.14) may underestimate bounds while the EKF is converging. To
mitigate this problem a correction is implemented to compensate for the estimate error as
described below. Since no extra information is available, the compensation of the estimate
error is based on the worst-case scenario.

The error in the estimate incurred by the observer for critical region ®°* is e}, =
Thrp — Tprp Since xh,, always contains biomass xy,,, and X}y, the corresponding

: i i i i i i )
estimate errors are defined as ey ), = @iy, — T and €, = Ty, — Tp, - Let’s assume
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that the function @ is first-order differentiable and define Jacobian matrix }.

o0y
oz,

Vi (Zx) (4.15)
Substituting the estimate error el ei. and Jacobian matrix 9} into Eq. (4.8), a corrected
state equation that accounts for the estimate error is obtained as Eq. (4.16). Eq. (4.16)
uses a first-order approximation to account for the state deviation €}, caused by the estimate
error efw’k while the EKF is converging. The error compensation based on linearization
provides satisfactory bounds because the error between the estimate and measured is small
and decreases quickly due to the convergence of EKF.

Tr+1 = Bzck + At.@bw,kA(H]ZV’lp;;@';V’k + gz) + h + 6;:6 (416&)
6;’; = Dke}'\nk + ebio,kMke}'\,,k + Lkebio,k (416b)
Where
Dy, = o) AtAH G} + h (4.17a)
M, = AtAH; (4.17b)
Ly, = AtA(H{O (2 ,1) + G°) (4.17¢)

True Distribution

Standard EKF Distribution

m—— [nterval Set

+ 6 standard- deviations -

Figure 4.1: Ilustration of the interval set containing the distribution of states.

To formulate an error compensation operation scheme several set operations are intro-
duced first as follows. The n-dimensional interval set is S(p, g) with lower bound p and
upper bound q as S(p,q) = {x € R" : p < x < q}. The outer approximation operation
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Q(-) of a bounded set W is denoted by Q(W), which involves the mapping of the set
W to a new interval set. If the infimum and supremum are denoted by inf(-) and sup(-)
respectively, the outer approximation of the set W is Q(W) = S(inf(W),sup(W)). The
operator & is the Minkowski addition of two sets. For example, for two sets a and [,
adf={a+b:acabecj}

Notice that the diagonal elements of P{ are the variances of each state. Then, if the
standard deviation of el  is %, and of e}, . is 7}, ., two interval sets Ey x and Eyioj can
be defined to bound nk , and 7, , respectively based on choice of 3 standard deviation
range, as e € Eng = S(=3Np, 3Np) and €hiop € Eviok = S(=3Mji0 1 3o ). I Eq.
(4.16D), since |e};, x| < 31b0 4 We have eyior Miely p € 30, MrEn . Similarly, the other
two terms in Eq. (4.16b) can be bounded as Dke}'\,,,g € Dp&ny and Lgepior, € Lipiok
respectively. Therefore, the state deviation €} term can be contained within the interval
set & according to Eq. (4.18).

€ € Eep = Q((Dx + 377£Z~0’,€Mk)5]v,k) ® Q(Liviok) (4.18)

where the sets D&y and 3n},, , MiEn occurring in Eq. (4.18) are combined together.
On the other hand L&, originates from a different set &, and thus Minkowski ad-
dition must be used to add the different sets. However, linear mapping of interval sets
can lead to irregular convex sets. In computational geometry, traditional algorithms that
perform Minkowski addition for two convex irregular high-dimensional polytopes are com-
putationally expensive [23]. On the other hand, Minkowski addition of two interval sets is
computationally efficient because intervals are axis-aligned. Thus, the operator Q(-) that
converts the irregular set to an axis-aligned set is applied to speed up the computation of
the Minkowski addition.

Following the above, the set of states Xkﬂ is bounded by the prior estimate set P,
according to Eq. (4.19).

= Q{ BPl 4 Aty A(Hy O (@) +9°) +hY @ & (4.19a)
N~ \ ~~ -
linear mapping translation
Xk—f—l - k_+1 (419b)

Where the set of the posterior estimate is P;f. BP," denotes the scaling of the set P by
the diagonal matrix B. Then the set BP; is translated by the vector in the big curly
brackets. To compensate for the deviation during the convergence of EKF, the interval set

&1 is added by Minkowski addition.
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Considering the truncated measurement noise r, = yr — Cxy is bounded by lower 1
and upper bounds u, let define a set My = {xy € R™ : I < yp, — Cxy, < u}. Then, the
posterior estimate set Py, is given by Eq. (4.20). In this study, it is assumed that P,
and P, ; are much smaller than the volumes of the critical regions.

P = P m M1 (4.20a)
Xer1 C Py (4.20b)
Py ="Po (4.20c)

Fig. (4.2) illustrates the set propagation using intervals for an example involving two
states, e.g. glucose and biomass concentrations. The initial set Py contains all possible
initial values of glucose and biomass. Then P; is generated through set operations by
computational geometry algorithms. Since an interval set is used, it is computationally
efficient to project the set P} onto the biomass and glucose axes to obtain the corresponding
lower bounds Iy, lyi, and upper bounds ., Usio as shown in the figure for the set P

Xg1 w
gic :PO
Affine Mapping
uglc'l _ . —.. .
Py
lgeq —| - INAffine Mapping
| i\ X
i -
|
I Xbio

lbion  Upio1

Figure 4.2: Hlustration of set propagation of SME by set operations.
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4.3.5 Detecting the transition between critical regions

The proposed use of multiparametric programming converts the DFBM into a variable
structure system composed of subsystems where each critical region corresponds to a sub-
system. Along a given time trajectory the states may transit from one critical region to
another. When the states estimated by the EKF leave a critical region ®* to enter into
another critical region @7, the estimate £p7 and the covariance Py, must be reinitialized
because x s for different critical regions may be different, even though the measured states
are the same. Moreover, a criterion is required to detect whether the states are entering
into a new critical region.

When the system is traversing from one critical region to another, it needs to cross
a boundary between the critical regions. Over time the states may cross over several
boundaries along their trajectories and these crossings must be detected. Two neighboring
critical regions share a boundary where an active constraint will become inactive or vice
versa. The activation of a constraint may require the change of constraints related to
TNk For a given constraint, ¢ is usually the only function of two states at most because
of commonly used Michaelis-Menten kinetics [71] or constraints to prevent the depletion
of nutrients [13] and one of these two states is biomass. So two special cases should be
considered as follows when the system switches from one critical region to the next:

Case i- &’ of the old critical region © have one more state observable than the &, of
the new critical region @7. For this case, the switch between critical regions is determined
by Eq. (4.21). Eq. (4.21) calculates the norm of the difference between the flux estimates
obtained with Eq. (4.7) in the two neighboring regions. Notice that the flux estimate
of ®7 is based on estimate :fc}'\,’k of the old critical region. The value of ¥(i, j, k) is used
to detect the occurrence of a switch. If the system is exactly at the boundary of these
two critical regions, the flux equation Eq. (4.7) for these two critical regions should result
in the same flux value, and 7(4, 7, k) will be zero. A schematic example is shown in Fig.
(4.3). Polygons in different colors represent different critical regions in the parameter
space ©. As the state evolves with time, the corresponding @ changes along the dashed
line in parameter space ®. As the 6 approaches the boundary of between the critical
region ®' and ©2, (i, 7, k) approaches zero. Correspondingly, a value of (4, j, k) smaller
than a user-specified tolerance indicates a switch between crltlcal regions thus requiring
reinitialization of the EKF as follows: &7, is set equal to &%, and P,z is set equal P{.

1. k) = |0k — @ (@) +9 — (HLOA @) — )| @2
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Figure 4.3: Hlustration of detecting critical region switch.

Case ii- 2 of the new critical region @ have one more state observable than the &%, of
the old critical region ®%. To reinitialize the EKF, & z'v,  and P,Z can be set to the old values
except for the new observable state that is not observable in the old critical region and
thus it needs to be estimated for calculating v(4, j, k). By projecting the set P;", the lower
lun; and upper bounds u,,; can be calculated. Since no extra information is available,
the mean value of the upper bound and the lower bound is used as the nominal value of
the unobservable state as per Eq. (4.22).

A 1
un,k = §(uun,k + lun,k) (422)

Eq. (4.23) is used to calculate (i, j, k). The flux estimate for the new critical region @7
is based on the nominal values of the unobservable state i, , combined with &%, of the
old critical region.

o — 0| = | Hi Ok (#iva) + o — (HLOL (0,0 @) — )| (423)

v(i, 4, k) = )

To reinitialize the EKF the estimate and covariance are used together with the estimate
of the new state that is added in the new critical region. Assuming the states are close
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enough to the boundary between the critical regions, then equation (4.24) holds.
| HO (@ 0) + 9 — (HRON (0 #h0) — )| = 0 (4:24)

The initial estimate of the new observable state jin,o in the new region can be calculated
by solving the equation (4.24). Since the new state is between the upper bound and lower
bound by SME, the half-length between w,,  and l,, is the worst possible deviation.
Then, using a 3 standard deviation range, the initial variance ngmk can be estimated
according to Eq. (4.25) and all other covariance terms related to the new state are assumed

to be zero.
1 1

Nun,k = g : _(Uun,k - lun,k:) (425)

Bounds of states estimated by the SME are rigorously guaranteed in each critical region
separately but subject to the accurate tuning of the tolerance that is used to switch between
the subsystems. The tolerance of (i, j, k) is the only user-specified parameter in this
research. If the tolerance is too large or small, the EKF may switch the subsystem too early
or too late. Accordingly, if the wrong state equations are used in estimation, the bounds
on the states may be violated. To avoid such a situation, exhaustive simulations that
are initialized with P, are conducted to find the tolerance used to switch between critical
regions. As an alternative, an overestimated covariance can also be used to reinitialize the
EKF when a state enters a new critical region to avoid bound violations.
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