
Modeling and State Estimation of
Bio-processes Using Dynamic Flux

Balances

by

Xin Shen

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Chemical Engineering

Waterloo, Ontario, Canada, 2023

© Xin Shen 2023



Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Radhakrishnan Mahadevan
Professor, Dept. of Chem. Eng. & App. Chem., University of Toronto

Supervisor(s): Hector Budman
Professor, Dept. of Chemical Engineering, University of Waterloo

Internal Member: William A. Anderson
Professor, Dept. of Chemical Engineering, University of Waterloo

Internal-External Member: Brian Ingalls
Professor, Dept. of Applied Mathematics, University of Waterloo

Internal Member: Luis Ricardez-Sandoval
A. Professor, Dept. of Chemical Engineering, University of Waterloo

ii



Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii



Statement of Contributions

Chapter 3 has been published as a paper in the journal computer & chemical engineering.
The author developed and implemented the documented methodologies, obtained the nu-
merical results, and completed the writing of the article. Hector Budman was involved in
the conceptualization, supervision, and writing of the work. All authors read and approved
the final manuscript.

Chapter 4 has been published as a special issue of bioreactor control in the journal Pro-
cesses. The author developed and implemented the documented methodologies, obtained
the numerical results, and completed the writing of the paper. Hector Budman was in-
volved in the conceptualization, supervision, and writing of the work. All authors read and
approved the final manuscript.

Chapter 5 has been published as a paper in the journal Computer & Chemical engineering.
The author implemented the documented methodologies, obtained the numerical results,
and completed the writing of the article. Hector Budman was involved in the supervi-
sion, conceptualization, and writing of the work. All authors read and approved the final
manuscript.

Chapter 6 is based on a paper that has been submitted and is currently under review. The
author developed and implemented the documented methodologies, obtained the numerical
results, and completed the writing of the paper. Hector Budman was involved in the
supervision, conceptualization, and writing of the work.

Chapter 7 is a summary of experiments and models developed by the author. The author
developed the experimental setup and collected the data. Hector Budman was involved in
the supervision and conceptualization of the work.

iv



Abstract

Due to the increasing demand for bio-pharmaceuticals, optimization of bio-processes’
productivity and reduction of process variability have become critical goals for manufac-
turers. Mathematical models of the fermentation processes are instrumental in achieving
these goals.

Dynamic flux balance analysis (DFBA), sometimes also referred to as dynamic flux bal-
ance modeling (DFBM), is a type of mechanistic modeling approach that can describe the
dynamic evolution of key metabolites based on the structure of metabolic networks. DFBA
predicts the dynamic evolution of metabolites based on the assumption that resources are
optimally allocated so as to maximize/minimize a biological objective function, e.g. max-
imization of cell growth. Accordingly, DFBA is formulated by a linear programming (LP)
problem to compute the metabolic fluxes at each time interval. Then, the evolution of
concentrations of different metabolites over time is obtained from the integration of mass
balances that are based on the calculated fluxes.

Generally, the LP used to solve a DFBM for a particular microorganism may have
multiple solutions. Mathematically, the multiplicity of solutions arises due to the under-
determinancy of the LP. On the other hand, from the biological point of view, the occur-
rence of multiple solutions may correctly describe the behavior of different strains of the
same microorganism or alternatively the occurrence of metabolism switches under different
operating conditions. The choice of one solution in the presence of multiplicity is further
complicated by the fact that different commercial solvers may lead to different solutions of
identical LPs. However, a good DFBA model should be solver-independent while it should
be able to correctly describe available data for a specific microorganism strain.

Following the above a good LP solver should choose the specific solution based on
the strain instead of choosing the solution ”randomly” as most commercial solvers do.
Hence, the first contribution of this research is to construct a solver that can select a
specific solution among all possible optima that is compatible with experimental data. The
weighted primal-dual method (WPDM) presented in Chapter 3, is a modified version of the
interior point method (IPM) which uses interior weights to solve the LP. By manipulating
these weights, the specific optimal solution can be obtained when multiple optimal solutions
occur. The interior weights can be found by fitting experimental data obtained for a specific
strain of a microorganism.

Although WPDM was able to select optimal solutions to fit the data, it was found to
be computationally expensive and thus less suitable for large networks. To address this, an
alternative fast and low-code algorithm called the ellipsoidal reflection method (ERM) was

v



developed as described in Chapter 6. This algorithm is able to select particular solutions
among all possible solutions based on the combination of quadratic programming (QP)
and LP problems. ERM plays the same role in DFBM but it can greatly reduce the
computations thus making it suitable for future real-time applications.

An important application of mechanistic models such as DFBM in bioreactors is for the
purpose of estimation of states that cannot be measured directly from available measure-
ments. The ability of estimate variables such as growth rate, productivity or key nutrients
are crucial for controlling and optimizing the process. State estimation for biochemical
systems is particularly difficult due to the lack of online measurements in industrial bio-
processes. While variables such as dissolved oxygen, temperature and pH are regularly
measured and controlled, most metabolites’ concentrations cannot be measured online.
Thus, lack of observability of unmeasured states from measured ones are a known chal-
lenge in bio-processes.

To address the lack of observability, set membership estimation (SME) is proposed
whereby the upper and lower bounds of each state are estimated based on limited mea-
surements. This approach is motivated by the fact that the cell culture media recipe is
generally fixed and the variations of the initial concentrations with respect to the nominal
recipe are within small ranges. The SME treats the variation of initial concentrations as a
set and propagates the initial bounds of the set onto the bounds of each metabolite at each
time step. In this research, two methods of SME are proposed to estimate the bounds of
metabolites.

The first state estimation method, described in chapter 4, is based on the identification
of active constraints and assumes that the solution is always unique in DFBA. Since the
concentration is varying with time, the LP problem in DFBA can be formulated as an
LP with varying parameters. Then, Multiparametric linear programming (mpLP) can be
used to convert the DFBA system into a variable structure system (VSS). VSS describes
the system as composed of multiple subsystems where each subsystem describes a differ-
ent region of the state space. For each subsystem, an extended Kalman filter (EKF) is
constructed to estimate the key states, and the remaining states are estimated by SME.
Moreover, the states crossing in or out of each region of the state space are monitored by
a special algorithm and switches between different EKFs are determined accordingly. In
the E. coli model, it was assumed that only biomass and culture volume are measured and
are used to estimate the bounds of the other states.

The second state estimation method presented in chapter 5 is an extension of the
first method but it explicitly considers the existence of multiple solutions. In this second
method, WPDM is used to replace the LP solver in DFBA and multiparametric nonlinear

vi



programming (mpNLP) is employed to solve the WPDM interior point-based algorithm.
To propagate the uncertain sets by nonlinear mapping, the sets are split into smaller sets
and are propagated separately by a linear mapping approximation. This is followed by an
assembly operation of all these mapped sets together into one set for each state. Again, for
the E. coli model, only biomass and culture volume are assumed to be measured and are
used to estimate bounds on the other states. This method is shown to generate bounds of
all states much faster than a Monte Carlo algorithm.

To test these methods proposed a platform of culturing B. pertussis has been set up.
In chapter 7, a batch culture of B. pertussis and modeling by DFBM are presented. The
protocols of shake flask, batch culture, and measurements of concentrations of amino acids
in the culture by HPLC are set up. To solve the multiplicity issue, ERM is used in the
modeling by DFBM. Based on the experimental data, DFBM adapted from the previous
model is used to fit. The DFBM model can roughly capture the dynamics of key amino
acids but not of all of them.

vii



Acknowledgements

First of all, I would like to thank my thesis supervisor Professor Hector Budman. It
is him that encourages me to challenge my knowledge and ability boundaries and surpass
myself. Each time when I felt stuck at some difficult point in my research, he devoted lots
of time to help me find a way out and to explore novel methods and innovative ideas. Each
time, when we had different opinions about methods, we hotly debated them but he was
forgiving about my occasional intense style of discussion. His passion and perseverance
influenced me a lot in life and work.

Receiving sponsorship from Sanofi was very fortunate for my career and helped to
achieve a dream since I was 20 years old. As a student majoring in pharmaceutical en-
gineering for my undergraduate study, the cooperative research with Sanofi presented me
with a precious opportunity to explore industrial problems. It is the first time that I feel
that my knowledge and skills could serve to improve processes that will directly affect peo-
ple’s health and happiness. I would also like to thank Dr. Melih Tamer who provided me
with very good guidance for my experiments so that I could set up a bioreactor experiment
from scratch and build a fully operational system.

I would like to express my gratitude to Mariana Carvalho, Piyush Agarwal, Michael
Vitelli, Ali Nikdel, Abhishek Mishra, and Charles Dal Castel. Mariana, Vitelli, Ali, and
Abhishek helped me a lot with experiments, from HPLC to bioreactor, from shake flask
experimentation and fluorescence spectroscopy. I also would like to thank Piyush for giving
me different advice about modeling and data analysis. I also would like to thank Professor
Valerie Ward and Marc G. Aucoin for letting me use their equipment.

During my four-year graduate studies and life, I received lots of useful suggestions,
friendship, love, and help from different colleagues. Here I can only name a few. I would
like to thank Yue Yuan, Tharun Subramanian, Honghao Zheng, Shuji Chang, Meghana
Chepuru, Ittisak Promma, Mohammad Aghaee, Alex Vasile, Ali Ghodba, Zahra Negahban,
and Arshia Fazeli.

I also would like to thank my friend Jiwu Huang and Yuxuan Zhou that providing
important advice about HPLC. Cherishing the affection and warmth I received, I sincerely
express my gratitude to Demin Yin, Haoyu Wu, Shuchen Liu, Yiming Zhu, Qingmin Zeng
for your support.

Finally, I would like to thank my parents, I really miss my family!

viii



Dedication

I dedicate this thesis to my grandparents and parents for their support and love.

I love you all dearly.

ix



Table of Contents

Examining Committee ii

Author’s Declaration iii

Statement of Contributions iv

Abstract v

Acknowledgements viii

Dedication ix

List of Figures xvi

List of Tables xx

1 Introduction 1

2 Theoretical Background and Literature Review 8

2.1 Dynamic Flux Balance Model . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Multiplicity in Dynamic Flux Balance Model . . . . . . . . . . . . . . . . . 10

2.3 Methods Proposed for the Multiplicity Problem . . . . . . . . . . . . . . . 11

2.4 Lack of Measurements and Lack of Observability . . . . . . . . . . . . . . . 12

x



2.5 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 Convex programming . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5.2 Linear programming . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5.3 Quadratic programming . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.4 Nonlinear programming . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5.5 Multiparametric programming . . . . . . . . . . . . . . . . . . . . . 17

2.5.6 Observer and Observability . . . . . . . . . . . . . . . . . . . . . . 18

2.5.7 Set Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 A Method for Tackling Primal Multiplicity of Solutions of Dynamic Flux
Balance Models 20

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3.1 Dynamic Flux Balance Analysis . . . . . . . . . . . . . . . . . . . . 22

3.3.2 Weighted Primal-Dual Method . . . . . . . . . . . . . . . . . . . . 25

3.3.3 Hierarchical Optimization . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.4 Minimization of Enzyme Cost . . . . . . . . . . . . . . . . . . . . . 29

3.3.5 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Theoretical Properties of WPDM . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5.1 Primal Multiplicity of the DFBA of B. pertussis . . . . . . . . . . . 35

3.5.2 Application of WPDM . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5.3 Model Calibration with alternative methods used to address Primal
Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

xi



4 A Type of Set Membership Estimation Designed for Dynamic Flux Bal-
ance Models 52

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3.1 Dynamic Flux Balance Models . . . . . . . . . . . . . . . . . . . . . 54

4.3.2 Multiparametric Linear Programming for DFBM . . . . . . . . . . 56

4.3.3 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . . . . . 60

4.3.4 Set Propagation and Error Compensation . . . . . . . . . . . . . . 61

4.3.5 Detecting the transition between critical regions . . . . . . . . . . . 65

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 DFBM Model of E.coli . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 Determination of Minimum Measurements . . . . . . . . . . . . . . 69

4.4.3 EKF for the Two Subsystems and Detection of Transition between
Subsystems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.4 Set Membership Estimation . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5 Online Estimation Using Dynamic Flux Balance Model and Multipara-
metric Programming 80

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.3.1 Dynamic Flux Balance Models . . . . . . . . . . . . . . . . . . . . . 82

5.3.2 Weighted Primal-Dual Method . . . . . . . . . . . . . . . . . . . . 83

5.3.3 Multiparametric Programming of DFBMs . . . . . . . . . . . . . . 85

5.3.4 Set Membership Estimation . . . . . . . . . . . . . . . . . . . . . . 99

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

xii



5.4.1 DFBM of E.coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4.2 Multiparametric Programming for E.coli Model . . . . . . . . . . . 107

5.4.3 Set Membership Estimation . . . . . . . . . . . . . . . . . . . . . . 111

5.4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6 A Method for Tackling Multiplicity in Dynamic Flux Balance Models by
an Ellipsoidal Reflection Operation 117

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.3 Dynamic Flux Balance Model . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Linear Programming and Multiplicity of solutions . . . . . . . . . . . . . . 120

6.4.1 Linear Programming . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4.2 Multiplicity Issue . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.4.3 Weighted Primal-Dual Method . . . . . . . . . . . . . . . . . . . . 122

6.5 Ellipsoidal Reflection Method . . . . . . . . . . . . . . . . . . . . . . . . . 124

6.5.1 Identification of the Optimal Face . . . . . . . . . . . . . . . . . . . 124

6.5.2 Selecting a particular solution . . . . . . . . . . . . . . . . . . . . . 126

6.5.3 Translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.5.4 Properties of ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.6 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.6.1 Example of Simple LP Problem with Multiple Optima . . . . . . . 133

6.6.2 Comparison of Computational Expense . . . . . . . . . . . . . . . . 136

6.6.3 Example of B. Pertussis Model . . . . . . . . . . . . . . . . . . . . 138

6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

xiii



7 Setting up an Experimental Platform for Online Estimation Based on
Dynamic Flux Balance Models 145

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.3 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.1 Setting up of Equipment . . . . . . . . . . . . . . . . . . . . . . . . 146

7.3.2 Culture Conditions and Operations . . . . . . . . . . . . . . . . . . 147

7.3.3 Analysis of Culture . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4 Dynamic Flux Balance Model . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.5.1 Determination of Contamination . . . . . . . . . . . . . . . . . . . 151

7.5.2 Determination of Biomass . . . . . . . . . . . . . . . . . . . . . . . 152

7.5.3 Determination of Metabolites . . . . . . . . . . . . . . . . . . . . . 152

7.5.4 Model Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

7.5.5 Difference between batch FER 1120 and F06 . . . . . . . . . . . . . 155

7.5.6 Analysis of lack of fitting . . . . . . . . . . . . . . . . . . . . . . . . 158

7.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

8 Conclusions and Future Work 162

8.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

8.1.1 Methods to Solve The Multiplicity Issue . . . . . . . . . . . . . . . 162

8.1.2 Methods of Set Membership Estimations . . . . . . . . . . . . . . . 164

8.1.3 Setting up A Platform for Culturing B. pertussis . . . . . . . . . . 166

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

References 169

Appendices 180

xiv



Appendix A Matlab Codes and Proof 181

A.1 Proof Related to Weighted Primal-Dual Method . . . . . . . . . . . . . . . 181

A.2 Example of WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.3 Proof related to ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.4 Codes related to WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.4.1 WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

A.4.2 Example of WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

A.5 SME under the Assumption of Unique Solution of LP . . . . . . . . . . . . 198

A.6 SME with WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

A.6.1 Multiparametric programming of WPDM . . . . . . . . . . . . . . . 212

A.6.2 Modified WPDM Used for SME . . . . . . . . . . . . . . . . . . . . 227

A.6.3 SME with WPDM . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.7 Codes related to ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.7.1 ERM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

A.7.2 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

Glossary 251

xv



List of Figures

3.1 Radar charts of optimal flux distribution in the first time interval obtained
by different solvers, including interior-point method and dual-simplex method
of MATLAB and CPLEX. There are 49 reactions in the metabolic networks,
but only reaction 1, 12, 25 and 37 are labeled in the radar plots. To facili-
tate the comparison, all fluxes were normalized within the interval [0, 1] by
dividing each flux by the maximum flux obtained for each reaction. Even
though the initial conditions are the same, the optimal flux distributions
arbitrarily selected by the solver are significantly different. . . . . . . . . . 37

3.2 Evolution of key metabolites concentrations with time obtained by four dif-
ferent LP solvers. Different LP solvers were used to solve the original DFBA
model for fed-batch fermentation of B. pertussis. Experiment 1 and 2 are
two replicate experiments used in building the original DFBA model. The
trajectories obtained by the dual-simple of MATLAB are discontinuous due
to infeasibility around 50h. All concentrations are divided by the initial
glutamate concentration so that concentrations are dimensionless. . . . . . 38

3.3 Evolution of biomass concentration with time obtained by four different LP
solvers. Different LP solvers were used to solve the original DFBA model for
fed-batch fermentation of B. pertussis. Experiment 1 and 2 are two replicate
experiments used in building the original DFBA model. The trajectories
obtained by dual-simple of MATLAB are discontinuous due to infeasibility
around 50h. All concentrations are divided by the initial glutamate concen-
tration so that concentrations are dimensionless. . . . . . . . . . . . . . . . 39

3.4 Control of interior-point weights w to approximate to different optima. The
polyhedron is a feasible space formed by three decision variables x1, x2 and
x3. Increasing a particular interior-point weight leads to an increase in the
corresponding slack variables z at the optimal solution so that any optimum
can be obtained by tuning w. . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvi



3.5 Evolution of metabolite concentrations with time as obtained by NPDM and
WPDM. The DFBA models are calibrated based on the tuning of the top 5
most sensitive parameters by NPDM and WPDM respectively. For confiden-
tiality, all concentrations are divided by the initial glutamate concentration
so that concentrations are dimensionless. . . . . . . . . . . . . . . . . . . . 44

3.6 Evolution of biomass concentration with time as obtained by NPDM and
WPDM based on tuning of the top 5 sensitive parameters. The biomass
trajectory with time for NPDM and WPDM are overlapping. For confiden-
tiality, all metabolites’ concentrations are divided by the initial glutamate
concentration so that concentrations are dimensionless. . . . . . . . . . . . 45

3.7 Comparison of the time evolution of metabolite concentrations with time
obtained by different methods for primal multiplicity, including minimiza-
tion of the total flux (MTF), minimization of the number of active reactions
(MNAR), hierarchical optimization (HO) and WPDM. The top 5 most sen-
sitive parameters are tuned for the calibration of the DFBA models used
with these methods. The ordering of the objectives used for HO are: maxi-
mum biomass yield, maximum ATP yield, minimum of the total flux, max-
imum carbon dioxide yield, maximum acetate yield, minimum fluxes 1 to
nr sequentially to assure the unique solution. The first five objectives are
reported as good fitting with experimental data in [93]. For confidentiality,
all concentrations are divided by the initial glutamate concentration so that
concentrations are dimensionless. . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 Comparison of the time evolution of biomass concentration by different
methods for primal multiplicity : minimization of the total flux (MTF),
minimization of the number of active reactions (MNAR), hierarchical opti-
mization (HO) and WPDM. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Comparison of time evolution of NH3 and CO2 obtained by different methods
for primal multiplicity, including minimization of the total flux (MTF), min-
imization of the number of active reactions (MNAR), hierarchical optimiza-
tion (HO) and WPDM. For confidentiality, all concentrations are divided by
the initial glutamate concentration so that concentrations are dimensionless. 50

4.1 Illustration of the interval set containing the distribution of states. . . . . . 62

4.2 Illustration of set propagation of SME by set operations. . . . . . . . . . . 64

4.3 Illustration of detecting critical region switch. . . . . . . . . . . . . . . . . 66

xvii



4.4 Posterior estimate sets projected onto glucose-oxygen subspace and acetate-
biomass subspace at different times. . . . . . . . . . . . . . . . . . . . . . . 74

4.5 Comparison between MCA with bounds of 4 components estimated by SME
in batch fermentation of E.coli. . . . . . . . . . . . . . . . . . . . . . . . . 75

4.6 Comparison between MCA with bounds of 4 components estimated by SME
with a loud noise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 K-d tree partition of a critical region . . . . . . . . . . . . . . . . . . . . . 90

5.2 Trimming of unnecessary critical regions and zones . . . . . . . . . . . . . 92

5.3 Relationship between different forms of P problem . . . . . . . . . . . . . . 94

5.4 Illustration of algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.5 Different Number of Batches Simulated by Monte Carlo Algorithm with
Parameter Space Projected to θ1 and θ2 for the E.coli model . . . . . . . . 111

5.6 Set of state projected onto glucose-oxygen-acetate subspace for fed-batch
operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

5.7 Comparison bounds estimated by SME with Monte Carlo Simulation for
fed-batch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.8 Comparison bounds estimated by SME with Monte Carlo Simulation for
batch operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.1 Schematic of Simplex and Interior-point methods for problems with multiple
solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.2 Relaxation of different constraints when the solution of the LP is not unique 125

6.3 Selecting the unique solution by a given direction . . . . . . . . . . . . . . 127

6.4 A special case for ERM that the semi-major axes do not point towards the
optimal face Θ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Reflecting elliptic contours by Householder transformation . . . . . . . . . 129

6.6 When the optimal hyperplane passes through the origin . . . . . . . . . . . 131

6.7 Translation of the optimal face . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.8 Control of elements of r1 to select different optima . . . . . . . . . . . . . 136

xviii



6.9 Comparison of average computation time of WPDM and ERM for different
numbers of constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.10 Evolution of key metabolite concentrations with time by WPDM and ERM 142

6.11 Evolution of biomass concentrations with time by WPDM and ERM . . . . 143

7.1 Setting up of Equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2 Sample inoculated on the Bordet-Gengou agar and tryptic soy agar . . . . 153

7.3 Comparison of normalized biomass of batch F06 with batch FER 1120 from
Sanofi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

7.4 Evolution of key metabolite and biomass concentrations with time fitted by
DFBM. All data are normalized and dimensionless . . . . . . . . . . . . . . 156

7.5 Shake flask interrupted by stopping rotation and cooling down the temperature157

7.6 DO control strategy of FER 1120 . . . . . . . . . . . . . . . . . . . . . . . 158

7.7 Foaming during the fermentation of batch F06 . . . . . . . . . . . . . . . . 159

7.8 HPLC analysis of amino acids in the initial culture sample . . . . . . . . . 160

A.1 Surfaces and contours of objective in WPDM as µ→ 0 . . . . . . . . . . . 185

xix



List of Tables

3.1 Parameters Used in the DFBA Model of B. pertussis . . . . . . . . . . . . 25

3.2 Summation of Squared Errors (SSE) of Fitting by Different LP Solvers . . 43

3.3 Summation of Squared Errors (SSE) of Fitting by Different Methods for
Primal Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Observable and Unobservable Subspace of Two Subsystems of DFBMModel
of E.coli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Different r1 can select different optimal solutions from Θ . . . . . . . . . . 135

6.2 Summation of Squared Errors (SSE) of Fitting by ERM and WPDM . . . 141

7.1 Gradient table of eluents for HPLC analysis . . . . . . . . . . . . . . . . . 150

7.2 Normalized amino acid concentrations in the culture by HPLC analysis . . 154

xx



Chapter 1

Introduction

The increasing demand for bio-pharmaceuticals has motivated pharmaceutical companies
to monitor and optimize their manufacturing processes. Mathematical models are cru-
cial for implementing effective monitoring and optimization approaches. A key limitation
for effective monitoring of bio-processes is a lack of analytical techniques for measuring
key process variables in real time. Thus, model based estimation of key variables from
available measurements is an attractive option for effective process monitoring. Despite
recent breakthroughs in artificial intelligence (AI) based data-driven models, mechanistic
modelling approaches are generally preferred due to their superior extrapolation ability as
compared to AI models since the latter are mostly accurate only within a neighborhood
of the training data. In the case of bio-processes, mechanistic modelling approaches use
prior knowledge about the process such as the balance of energy and mass, the occurrence
of particular metabolic reactions, kinetic rates of certain reactions etc.

Modeling approaches for bio-processes can be classified into 4 categories, segregated
and structured models, unsegregated and structured models, segregated and unstructured
models, and unsegregated and unstructured models [94, 61]. A model is segregated if
the cells in the system have different states. For example, computational fluid mechanics
models are segregated because these models assume cells are in a non-homogeneous envi-
ronment so cells at different locations have different states (metabolites’ concentrations)
[75]. A model is structured if it captures the conversion among different metabolites based
on biochemical or genomic information, or among different parts of the cells based on bi-
ological knowledge. For instance, a model describing the conversion of metabolites from
glucose to intermediate metabolites and then to ATP is considered as structured because it
describes known metabolic reactions among species. The most commonly used biochemical
models for bioreactor is unsegregated and unstructured. These models assume all cells are

1



at the same nominal state and approximate the behavior of the bio-system based on the
correlation between biomass and products with the substrates. The applications of these
models for optimization, monitoring, and control of bioreactor operations are limited.

Dynamic flux balances models (DFBM) are based on the dynamic extension of flux
balance analysis [64]. The resulting DFBM models are unsegregated and structured. From
the knowledge of biochemistry and genome, key metabolic networks are modeled so that
the conversion among metabolites in the models is structured. These models assume that
cells optimally distribute resources of metabolites so as to maximize/minimize a biological
objective such as the growth rate at each time step. Linear programming (LP) is com-
monly used to model the resulting optimization problem. The objective of the LP is the
maximization of a biological objective, such as biomass growth rate, ATP or other [33].
The decision variables are the metabolic reaction rates referred to as metabolic fluxes.
Since the stoichiometry of the metabolic networks, bounds of each reaction, and resources
available to the cell at each time interval pose restrictions on the fluxes, they are modeled
as constraints in the LP. By solving the LP at each time interval the fluxes can be ob-
tained. Then, the metabolites’ concentrations can be calculated at each time step based
on mass balances as functions of the calculated fluxes. In this way, DFBM can capture the
consumption or production of metabolites’ concentrations over time.

In metabolic networks, a metabolite can be converted into another metabolite through
one or more pathways, thus providing robustness and ability of cells to adapt and grow
in different environments. Different strains of the same species may distribute resources
differently across the metabolic network but still exhibit similar or same growth rate. Cor-
respondingly, the metabolic models describing different strains of the same microorganism
will exhibit multiple optimal solutions of their corresponding LP’s. The occurrence of
multiple optima of an LP is referred to as multiplicity which is widely observed in DFBM
[59, 63, 76, 77, 96]. Geometrically, the set of multiple solutions is given by an optimal
hyperplane where any solution on that hyperplane is an optimal solution. The choice of
the solution obtained for the LP depends on the choice of the LP solver. Different versions
of simplex and interior-point solvers can be used. Simplex methods will select solutions at
verteces of the feasible region of decision variables whereas interior-point methods will se-
lect interior points on the optimal hyperplane. Usually, vertex points correspond to sparse
solutions because more decision variables are zero. The trajectories of the metabolites’
concentrations with respect to time depend on the solutions chosen by the solver at each
time interval and thus they will be distinctively different for different solvers. Thus, the
model becomes solver-dependent due to multiplicity.

When multiplicity exists, all optimal solutions are mathematically correct but not nec-
essarily compatible with data. Thus, some of the optimal solutions do not correctly describe

2



the biological behaviour of the system. An ideal LP solver should find a unique solution
compatible with experimental data and find different solutions for different metabolism.
On the other hand, the solution is based on the key assumption that metabolism is efficient
owing to natural evolution [83]. While this could be a sensible assumption for wild strains
it may not be sufficient for describing engineered strains. A crucial novelty of this research
is to use a novel interior-point based algorithm referred to as weighted primal-dual method
(WPDM)1 to select optimal solutions that are compatible with experimental data.

The primal-dual method is a type of interior-point method. By introducing interior-
point weights into the primal-dual method, the weighted primal-dual method becomes a
strictly convex form of the original LP. The optimal solution of proposed WPDM is unique
and it leads to the same objective function value as the original LP. The minimum point
of the strictly convex surface of the WPDM can be changed along the optimal hyperplane
by varying the interior-point weights. Therefore, any optimal solution of the original LP
can be obtained by using different interior-point weights. In practice, the interior-point
weights can be found by fitting experimental data. Based on WPDM, the trajectories of
metabolites can be forced to fit experimental data better than commonly used LP solvers.

While WPDM was used for most of the studies conducted in this research, it was
found to be computationally expensive method thus making it unsuitable for very large
metabolic networks or for potential online applications. The computational expense is
related to the fact that the number of interior-point weights is the number of constraints.
In most DFBMs, each flux has an upper bound and a lower bound. Besides these bounds,
some extra constraints may be required. In total, the number of constraints is generally
much larger than the number of decision variables (fluxes). For large metabolic problems
with a large number of constraints, many corresponding interior-point weights are required
which makes the computation heavy.

To address the computational expense of WPDM, an alternative method referred to as
the ellipsoidal reflection method (ERM)2 is proposed. ERM involves the combined solution
of LP and QP problems to find the fluxes that fit experimental data. ERM first uses the
LP solver to identify the optimal hyperplane and then it constructs a QP to select the best
solution on that hyperplane. The QP problem defines the ellipsoidal contours of the convex
quadratic objective. Then, these ellipsoidal contours are rotated by a reflection operation
until they point and intersect the optimal hyperplane of multiple solutions at a solution
that best fits the experimental data. The fitting performance is evaluated by the sum of

1Paper has been published. Shen, X., & Budman, H. (2020). A method for tackling primal multiplicity
of solutions of dynamic flux balance models. Computers & Chemical Engineering, 143, 107070.

2A paper has been submitted to Computers & Chemical Engineering, which is currently under review.

3



square errors between model predictions and the data. A key advantage of this technique
as compared to WPDM is that the number of decision variables is equal to the number
of fluxes while WPDM is related to the number of constraints. Thus, the computation of
ERM does not increase with the number of constraints as in WPDM. Also, since both the
QP and LP are solved with commercial solvers, this method is low-code, fast, and accurate.

Bioprocess model-based monitoring is another key focus of the current research. Since
bio-processes are typically lacking in terms of available online measurements, state esti-
mation based on limited measurements is crucial for implementing online monitoring and
optimization algorithms. Although process monitoring using unstructured biochemical
models have been widely investigated in the literature, research on state estimation based
on DFBM is limited. State estimation algorithms are motivated by the premise that if a
feedback control can be designed based on the available measurements, the state estimation
error can be controlled to zero. Therefore, a necessary condition to design a state observer is
that enough measurements are available for observing (estimating) the unmeasured states.
Different observability conditions has been proposed for different type of dynamic systems
[110]. Observability tests for nonlinear systems can be classified as local observability and
global observability tests[15]. Local observability assesses whether a point in state space
can be estimated based on available measurements. Global observability assesses whether
state can be estimated in the entire space. Since in industrial practice bioreactors need
to be operated within a very narrow range of operating conditions, it is sufficient to test
observability within that range.

Due to lack of online measurements it is very difficult or impossible to satisfy observabil-
ity of all the states predicted by a DFBMmodel. The variables that are generally monitored
online in bio-processes include optical density for biomass, pH, dissolved oxygen, aeration
rate, agitation rate, and temperature. Most states of DFBM or other biochemical models
are concentrations of metabolites which are very difficult to be measured online [4]. For
instance, derivatizing agents are required to react with amino acids so that amino acids can
be detected by fluorescence sensors when using high-performance liquid chromatography.
This requirement generally rules out online monitoring of amino acids concentrations.

To overcome the observability problems, two types of set membership estimation meth-
ods (SME) are proposed in this research to estimate states based on DFBM with limited
measurements. The proposed estimation approaches are based on the premise that an
industrial bioprocess always uses the same media composition but the concentrations of
media components may vary due to inaccuracy in media preparation or unknown variability
in raw materials. On the other hand, based on experience and experiments, the variations
in initial media components’ levels can be generally quantified based on experience and
a priori knowledge. Based on this knowledge, the problem can be formulated as a state

4



estimation problem in the presence of uncertainty in initial media composition and limited
measurements where the latter can be used as feedback to reduce the uncertainty at each
time step. Thus, these SME methods are designed to propagate the initial uncertainty
over time onto the states such that the upper bounds and lower bounds of each state can
be estimated.

Propagating the initial uncertainty directly by the DFBMmodel is very difficult because
of its optimization-based nature. In DFBM the fluxes are solved at each time interval by
an LP solver or WPDM and then are substituted into the state equations to calculate the
states in the next time step. Multiparametric programming is introduced to address this
problem that arises from the fact that at each time interval, a different set of constraints
may become active [2]. If the varying states are regarded as parameters, the LP problem is
converted into a multiparametric linear programming (mpLP) problem at each time step.
MpLP can be solved offline so that explicit equations of optimal fluxes can be obtained
and then substituted into the state equations.

To apply mpLP, the feasible parameter space is partitioned into different critical regions
and then, explicit equations for calculating the fluxes can be obtained for each critical re-
gion. The biological interpretation of these critical regions is that cells have different
metabolic behaviors that are represented by different regions of state space. As different
regions have different equations of optimal fluxes and finally, a series of different state
equations, the system comprised of sub-systems is referred to as a variable structure sys-
tem (VSS). When the LP solution is unique, the application of mpLP is straightforward.
However, when the LP solution is not unique, a WPDM with varying parameters must be
solved to calculate fluxes. WPDM is especially modified for nonlinear programming so that
multiparametric nonlinear programming (mpNLP) is used to deal with varying parameters
instead of mpLP that is used for cases with unique solutions. The mpNLP proposed in this
research divides the feasible parameter space into different zones and quadratic program-
ming is then used to approximate the WPDM within the given zone. If the accuracy of
the approximation is not sufficient, the mpNLP finds the best direction to divide the zones
until the accuracy is satisfied or the zone is too small to be accounted for. In summary,
by the use of either mpLP or mpNLP, the DFBM can be converted into VSS whether the
solution is unique or not.

The first SME method3 proposed in Chapter 4 is only applicable when the LP solution
is unique so that mpLP is used to simplify DFBM into VSS. Once the states determining
the fluxes can be estimated, the dynamic of DFBM can be properly described. It is shown

3Paper has been published in Shen, X., & Budman, H. (2021). Set Membership Estimation with
Dynamic Flux Balance Models. Processes, 9(10), 1762.

5



that despite the existence of many critical regions only few of them are required to be
considered in practical cell culture applications. Then, an approach is presented to find
the minimum number of states so that fluxes for all these related critical regions can be
estimated. Furthermore, by using extended Kalman filters (EKFs) for each critical region
to estimate the observable states, the total number of states that need to be measured can
be further reduced. Hence, SME is used to estimate unobservable states, and EKF is used
to estimate observable states. As the fermentation continues, the state may enter from
one critical region to another region. Since the observable states are different for different
critical regions, an algorithm is deployed to detect switching states between regions.

The second SME method4 proposed in Chapter 5 is applied when the solution is not
unique. As mentioned above, the mpNLP can be used to solve off-line the WPDM with
varying parameters so that DFBM can be simplified into a Variable Structure System
(VSS). Inspired by the puzzle concept, the critical regions are disassembled into zones,
bounds on states are propagated within each zone, and then the zones and corresponding
bounds are assembled together and general bounds on states are calculated. The main
differences between SME in chapter 5 from chapter 4 are the occurrence of a unique versus
multiple solutions and the use of EKF for estimation of some states. The SME proposed in
chapter 5 is a general method and has fewer requirements compared with SME in chapter
4. It considers the influence of multiplicity issue by WPDM with mpNLP. It does not
require some states to be measured to construct the EKF. Therefore, this SME algorithm
has greater applicability.

To test the algorithms proposed in this thesis, an experimental platform was developed.
Since the research focuses on the metabolism of B. pertussis, a batch culture of B. pertussis
was chosen for the experiments. The current platform can be also used for other similar
cell lines or strains. The platform includes shake flasks for the seed, culture in a 2L
bioreactor, and HPLC for measuring the amino acids’ concentrations in the culture. The
current protocol for batch culture of B. pertussis in 2L bioreactor is a scale-down model
of Sanofi’s fermentation step of the whooping cough vaccine manufacturing process. Thus,
the results are expected to mimic their process for future process optimization and control.
In this research, a successful batch culture of B. pertussis was conducted and its purity was
verified by plating. The amino acids’ concentrations at different times were measured by
HPLC and used to calibrate a DFBM previously developed. While part of the amino acids
were fitted well to the data, some could not be fitted. The main possible reason for the
lack of fit is that the culture response was significantly different from the earlier Sanofi’s
experiments for which the DFBM was originally developed. The calibration of parameters

4Paper has been published. Shen, X., & Budman, H. (2022). Online estimation using dynamic flux
balance model and multiparametric programming. Computers & Chemical Engineering, 164, 107872.

6



cannot compensate for the possible differences in model structure errors.

Following the above, this work presents the following novel contributions:

i. A novel WPDM method is introduced to solve the multiplicity issue of linear pro-
gramming for dynamic flux balance analysis. Since WPDM is a data-driven method, it
can be applied for engineered strains with more flexibility than a typical LP solver. The
uniqueness and continuity of the solution by WPDM are proven.

ii. The mpLP and mpNLP methods are employed to simplify the LP and WPDM
inside the DFBM so that the state equations can be converted into VSS and used with
equations that are solved a priori off-line. Since each subsystem in VSS corresponds to
different metabolic patterns, the method is useful for the identification of the metabolism
bottleneck.

iii. Two types of SME tailored for DFBM are utilized to tackle the lack of observ-
ability and online measurements. Through the SME for DFBM, estimating the dynamic
of metabolites with limited measurements is available so that model-based process control
and model-based online optimization can be constructed.

iv. To tackle the multiplicity issue for large metabolic networks, the ERM method is
proposed. This method overcomes the expensive computation of WPDM but still preserve
the features of WPDM since it is data-drivenwhile ensuring uniqueness and continuity of
the optimal solution. On the other hand, the WPDM method remains relevant because it
served as the basis of the set-based model estimation method proposed in this thesis for
the case that multiple solutions exist.

v. The development of a platform for culturing B. pertussis and quantification of
amino acid concentrations in the culture is an important step to the application of these
state estimation methods proposed. It can be used for future research and development of
optimization and process control algorithms.

The thesis is organized as follows. Chapter 1 introduces the research and briefly de-
scribes each topic. Chapter 2 presents the background and a literature review. Chapter 3
presents the WPDM method for tackling the multiplicity issue of LP in DFBM. Chapter
4 introduces the SME with EKF to estimate concentrations based on the assumption of
a unique solution in DFBM. Chapter 5 presents the SME approach for the case that the
DFBM has multiple solutions. Chapter 6 introduces the ERM for model fitting when mul-
tiplicity occurs and the comparison of this method with WPDM. Chapter 7 presents the
development of the experimental platform for the batch culture of B. pertussis.

7



Chapter 2

Theoretical Background and
Literature Review

2.1 Dynamic Flux Balance Model

Dynamic modeling of the metabolism of a microorganism is challenging due to the complex-
ity of biological systems and very limited experimental data. Assumptions regarding model
structure and model segregation are often made based on the level of detail required for
the model and the data available for model calibration. Accordingly, four types of models
have been reported for describing cell cultures: segregated and structural, non-segregated
and structural, segregated and unstructured, and non-segregated and unstructured [94, 61].
Segregation means that cells are treated individually within the cell population and the
metabolic status of each cell is considered based on its environment. Structure means that
the metabolic reaction networks, as determined from genome information, is used to define
the interaction among different metabolites. For instance, the conversion of a specific sub-
strate to a particular product is modeled as a series of reactions based on the genome in
a structured model but it is modeled by only one macroscopic reaction in an unstructured
model.

Sets of ordinary differential equations are commonly used to model non-segregated and
unstructured models. The Monod equation is the most common type of equation to model
kinetic rates in such models [94]. Non-segregated and unstructured models oversimplify the
relationship between substrates, cells, and products so that these models are not suitable to
explain the metabolism and to optimize the process. DFBM is a type of non-segregated and
structured model that takes the structure of the metabolic network into consideration. It

8



assumes that cells can manipulate their metabolic fluxes to boost growth or other biological
objectives. DFBM is always comprised of two parts: governing equations and optimization.
There are two forms of DFBM [64] based on the use of a static optimization approach or
a dynamic optimization approach. The latter involves a dynamic optimization over the
entire time horizon of interest, e.g. the duration of a cell culture batch. Because of the
higher computation expense of the dynamic optimization approach, the static optimization
approach is more popular. In this approach the time domain of interest is divided into
several time steps and a static optimization is conducted at each step. Hence, the fluxes
solved by the DFBM are assumed to be piecewise constant along each sampling interval.

The basic DFBM combines a state space model with an LP as follows. The state space
model as the function of metabolic fluxes vk is defined in Eq. (2.1).

ψk+1 = ψk +∆tψbio,kSvk (2.1)

where subscript k indicates time step from 0, 1, 2 · · · and ∆t is the time step size. ψk is
a state vector of nψ state variables at time step k, including biomass concentration ψbio,k.
S ∈ Rnψ × Rnr is a matrix containing stoichiometric coefficients of all reactions involved
in the metabolic network, where nr is the number of reactions considered in the metabolic
network.

The metabolic flux vector vk ∈ Rnr is determined by a linear programming (LP)
problem according to Eq. (2.2). At each time step, vk is solved by the LP solver and
substituted into Eq. (2.1) to obtain the state vector values at the next time step.

min
vk

fTvk (2.2a)

subject to Gvk ≤ g(ψk) (2.2b)

Fvk = h(ψk) (2.2c)

where the constant vector f ∈ Rnr , the constant matrix G ∈ RnG × Rnr , the constant
matrix F ∈ RnF ×Rnr , vector-valued function g ∈ RnG of states ψk, vector-valued function
h ∈ RnG of states ψk. nG is the number of inequality constraints and nF is the number
of equality constraints. Eq. (2.2a) denotes the objective function of the LP. The most
commonly used objective is the maximization of biomass growth rate, or equivalently
the minimization of its negative value, as shown in Eq. (2.2a) but other objectives have
been also considered. Eqs. (2.2b) and (2.2c) describe balance equations and metabolic
constraints such as charge balance, reaction rate bounds, and available nutrient bounds.
Eq. (2.2) can be interpreted as the ability of the cells to regulate the metabolic fluxes vk
to boost growth at each time step.

9



2.2 Multiplicity in Dynamic Flux Balance Model

Due to a large number of reactions relative to the number of available constraints, the op-
timal solution to the linear programming problem defined in Eq. (2.2) is often not unique
[59, 63, 76, 77, 96]. This phenomenon is referred to as multiplicity (or primal multiplic-
ity). The multiplicity particularly hampers the potential application of DFBA models for
estimation, optimization, and process control for three major reasons: i- the selection of
different optima at each time interval generates different time trajectories for metabolite
concentrations. Although these alternative trajectories satisfy the constraints of DFBA,
only a few of them fit the experiments. ii- commercial LP algorithms generally do not
consider the existence of multiple optima thus converging to an optimal solution according
to chosen initial guesses or the hyper-parameters of the optimizer. The solution selected
may not match the experimental data over long time horizons. iii- optimal solutions found
by commonly used simplex methods are not continuous when the multiplicity exists. Thus,
if the model is used for model-based control, disturbances can cause discontinuous jumps
among solutions thus resulting in non-smooth trajectories.

A key question is whether specific flux distributions are more plausible than others.
Schuetz and his colleagues found that in different bacterial wild types E. coli the fluxes are
distributed in the near-optimal region of the Pareto surface of three objectives (maximum
ATP yield, maximum biomass yield, and minimum sum of absolute fluxes) so that cells
tend to achieve an optimal trade-off between metabolism and minimal flux adjustment to
different conditions [93]. However, this approach cannot explain why specific flux distribu-
tions for different conditions occur at a specific region of the Pareto surface. More recently,
the idea of minimal flux adjustment was further extended to consider a minimal enzyme
cost by [83]. Based on this idea, a solution that satisfies a parsimonious enzyme usage
FBA (pFBA) can be found from a bi-level optimization problem that searches fluxes with
the lowest overall sum of fluxes [60, 47]. This method is particularly suitable for describ-
ing wild-type strains’ behavior following the assumption that those strains must adapt to
various environments with limited nutrients. On the other hand, engineered strains are
selected or genetically modified for special operating conditions and productivity and thus
they may have an inefficient metabolism so that the pFBA principle may not correctly
capture the distribution of fluxes [98]. Hence, trying to fit data by applying the minimiza-
tion of enzyme cost in the presence of primal multiplicity may require the use of additional
kinetic constraints with many kinetic parameters that are difficult to obtain. Although
other enzyme cost functions based on ideal assumptions that need fewer parameters could
be used, e.g. the minimal total flux that assumes that all reactions need the same amount
of enzyme, the prediction accuracy resulting from such approximations may be poor [83].

10



2.3 Methods Proposed for the Multiplicity Problem

To solve the primal multiplicity issue of DFBA, different methods were reported that are
based on either auxiliary objectives or auxiliary rules. An efficient method for tackling
multiplicity should have the following properties: i- the uniqueness of the optimal solution
can be assured, ii- continuity of the optimal solution with respect to different possible
perturbations should be proven, iii- flexibility to select a unique optimal solution that is
consistent with experimental data, and iv- computational efficiency for large metabolic
networks.

Auxiliary objectives based methods involve the use of extra objectives for optimization
to reduce the feasible space. For example, minimal total (absolute) flux [47, 78, 83] or a
minimal number of active reactions [78] were used as auxiliary objectives to exclude inef-
ficient flux distributions, similar to the enzyme cost functions proposed by [83]. However,
these objectives may not be suitable for cells that were engineered towards a particular
purpose, e.g. for maximizing productivity. In the current study, it will be shown that
the application of these auxiliary objectives cannot fit experimental data well in the case
study of Bordetella pertussis. To further reduce the feasible space, hierarchical optimiza-
tion, sometimes referred to as lexicographic optimization, was applied using a series of
auxiliary biological objectives in priority order [36, 2, 46, 93]. To solve hierarchical op-
timization efficiently, equivalent weight method [2, 100] and Simplex-based method [42]
have been proposed. Hierarchical optimization can theoretically select a specific vertex
and non-vertex optimal solutions but finding a series of auxiliary objectives that assure
the uniqueness of the optimal solution, that are consistent with experimental data, and
that preserved continuity at the optimal solution is complex with this method. Auxiliary
objectives used in hierarchical optimization can be chosen based on the user’s prior knowl-
edge about the microorganism. Inverse optimization [115] has been proposed as a more
systematic way to find objectives. Given a vector of flux, constraints, and initial guesses
of objective coefficients, inverse optimization can find the best objective coefficients that
make the vector of flux optimal. This inverse optimization idea has been extended to
find a quadratic form and non-parametric form objectives for flux balance analysis [115].
However, inverse optimization has not been studied as yet for dynamic flux models.

Auxiliary rules based methods use special rules to select the optimal solution when
multiple optima occur. Smallbone and Simeonidis proposed two geometric methods to
select the center of the solution hull as the true optimal flux distribution [102]. Although
the center of the solution hulls is a unique flux distribution, there is no biological evidence
to justify that the resulting solution provides a good fitting of available data. The lexi-
cographic perturbation method is a modified simplex-based method [51] that was applied

11



to prevent dual degeneracy. However, this method can only find unique optimal solutions
located at vertexes.

2.4 Lack of Measurements and Lack of Observability

For most industrial fermentation processes the available online measurements are very
scarce. Commonly available online measurements include pH, dissolved oxygen, tempera-
ture, pressure, off-gas analysis, glucose, liquid level, foam amount, and weight. However,
online measurements of concentrations of metabolites which are most informative about
the process are very limited or not available altogether. Lack of measurements prevents
the use of DFBMs for model-based monitoring or optimization.

To address the lack of online measurements soft sensors have been proposed. Soft sen-
sors are algorithms that estimate the values of the states based on a few available online
measurements. Data-driven soft sensors are currently very popular driven by the recent
interest in the artificial intelligence research area. Reported data-driven soft sensors are
generally based on artificial neural networks [97], support vector machines [73], partial
least squares [85], genetic programming [53], principal component analysis [113] and fuzzy
inference [52, 54]. These machine learning and artificial intelligence (AI) methods com-
bined with different spectral-based devices have been used for inferring concentrations in
cell cultures. For example, near-infrared spectrometer and Raman spectroscopy, have been
applied to fermentation processes to estimate concentrations online [16]. However, despite
their popularity, the main drawback of data-driven soft sensors is that their accuracy is
limited to the region of data used for model training [24] and their prediction ability dete-
riorates due to the scarce data available for calibration [41]. Also, the lack of mechanistic
information on the black box models based soft-sensors introduces concerns about the
safety and reliability of controllers designed based on these sensors [41].

Another category of soft sensors is state observers based on mechanistic models such
as the Luenberger observer, Kalman filter, particle filter, and moving horizon estimation
[106]. These state observers estimate the values of some states based on the convergence
of state prediction errors provided that sufficient measurements are available [4]. A key
prerequisite of for designing these state observers is that observability can be satisfied
with respect to the estimated states. State observers can only partially solve the lack
of measurements because they still require a minimal number of measurements to satisfy
observability conditions. It will be shown later in the manuscript that unless enough
states of a DFBM model are measured online it is difficult to satisfy full observability for
all the states. In contrast with state observers, an interval observer is a special type of

12



state observer that can estimate the bounds of states but some type of observability or
convergence condition is still necessary [38] for their application. Some interval observers
exploit the order-preserving properties of cooperative systems to estimate the bounds of
states [28].

In the absence of observability of some states, instead of estimating their specific values,
it is possible to estimate intervals (ranges) of values based on a priori known range of
initial conditions, i.e. range of values at time = 0. This type of problem is referred to in
the literature as an initial values problem with parameter uncertainty or set-valued ODE
integration. The parameter here refers to either uncertain initial states or some model
parameter such as a kinetic constant. To bypass the strict observability requirement,
different set theory-based methods for estimation have been proposed, including interval
analysis [49], Taylor models [65] and set membership estimation (SME) [95, 17, 3, 66].
All these methods are based on models that are used to propagate uncertainty in model
parameters or/and in initial conditions to obtain sets of states’ values at different times
[9]. The main difference between these methods is in their approach to tightening the
resulting bounds, e.g. interval analysis is based on a multidimensional interval. Interval
analysis usually cannot capture the nonlinearity and correlation between different states
which may result in divergence of estimates fast [49]. SME algorithms [95] are based on
the use of convex sets and can capture nonlinearity and correlation between states but at
the expense of less tight bounds as compared to Taylor models. SME has been applied to
linear systems [17]. The propagation of uncertainty over time is performed by a series of
affine mapping operations over sets. Different shapes of sets have been used to contain the
uncertainty, including zonotopes [3], parallelotopes [17], and ellipsoids [66]. In contrast,
Taylor models are based on Taylor expansions and bounds on remainders to obtain very
tight nonconvex bounds [65]. However, because Taylor methods use non-convex bounds, it
is difficult to exploit the available measurements although some computationally expensive
relaxation methods have been proposed to achieve this goal [91]. Considering the limited
measurements’ availability and implementation convenience, this research focuses on a
set-membership estimation approach.

2.5 Theoretical Background

2.5.1 Convex programming

Convex programming involves optimization problems where the objective function and
feasible region are convex [12]. Let assume the objective function f(·) is a mapping from

13



Rn into R, and θ ∈ [0, 1]. The objective function f(·) is convex if for any x and y in the
domain of the objective function, f(θx+(1−θ)y) ≤ θf(x)+(1−θ)f(y)) holds. Similarly,
S is a convex set if for any element x, y ∈ S and θ ∈ [0, 1], θx + (1 − θ)y ∈ S. If the
feasible region of the objective function is within the convex set, then the corresponding
optimization problem is referred to as convex programming. A general convex programming
is defined as Eq. (2.3).

min
x

f(x) (2.3a)

subject to gi(x) ≤ 0 i = 1, ...,m (2.3b)

Ax = b (2.3c)

where the decision variable is x ∈ Rn; the objective function f(·) is a convex function;
the inequality constraints gi(x) ≤ 0, i = 1, ...,m are also convex functions; the equality
constraints Ax = b are affine transformation of x; A ∈ Rp × Rn with rank(A) = p < n.
The inequality and equality constraints define a convex set.

Convex programming has been widely applied in different areas of application such
as machine learning, data science, and control engineering [12]. Many problems can be
expressed or transformed into convex programming problems. In this research, linear
programming and quadratic programming are both convex programming problems that
are considered in the studies. Nonlinear programming and multiparametric programming,
both applied in this work, are also highly related to convex programming and thus convex
programming is a main platform of this research.

Interior-point Method

The interior-point method is a commonly-used general method for solving convex program-
ming problems [12, 29]. The KKT conditions for Eq. (2.3) are given in Eq. (2.4). Although
there are different versions of interior-point methods, the core idea of these methods is to

14



solve the KKT conditions by the Newton’s iterative method.

Ax = b (2.4a)

gi(x) ≤ 0 i = 1, ...,m (2.4b)

λ ≥ 0 (2.4c)

∇xf +
m∑
1

λi∇xgi(x) +A
Tµ = 0 (2.4d)

λigi(x) = 0 i = 1, ...,m (2.4e)

where λi and µi are the Lagrange multipliers of inequality and equality constraints respec-
tively. Eq. (2.4e) is referred to as the complementary slackness condition.

2.5.2 Linear programming

Linear programming problems is a special type of convex programming problems, where
both constraints and the objective function are linear [29, 68]. A typical example of linear
programming is defined in Eq. (2.5). Linear constraints include equality constraints as
in Eq. (2.5c) and inequality constraints as in Eq. (2.5b). The linear constraints define a
high-dimensional polyhedron in the space of the decision variables. The linear objective is
convex function but not strictly convex and thus the optimal solution is not always unique.

min
x

cTx (2.5a)

subject to Ax ≤ b (2.5b)

Aex = be (2.5c)

where A ∈ Rm×n is a matrix with rank m (m < n); b ∈ Rn and c ∈ Rn are vector; x ∈ Rn

are decision variables including slack variables.

Simplex Method

For brevity, only the geometrical interpretation of the simplex method is presented. The
linear constraints in the LP problem define a feasible region described by a convex poly-
hedron in the space of the decision variables. The direction of the vector c corresponds to
the gradient of the objective function with respect to the decision variables. The Simplex

15



method evaluates the objective function at the vertexes along the edges of the polyhedron
and iteratively seeks for the vertex with the smallest objective function value [6]. This
search procedure is referred to as “pivoting” and it is repeated until all neighboring ver-
texes have a larger objective function as compared to the candidate vertex. The optimal
vertex is referred to as a basic optimum. Although there are different versions of the
simplex methods, the key idea of pivoting through different vertexes remains the same.

2.5.3 Quadratic programming

Quadratic programming (QP) is an optimization problem involving a quadratic objective
function and linear constraints as per Eq. (2.6) [29, 74]. Without loss of generality, Q can
always be converted into a symmetric matrix by Q = 1

2
(Q+QT ). Since Q is the Hessian

matrix of the objective it determines the existence of a unique or multiple solutions. If
Q is positive definite or positive semidefinite, the objective is a convex function. If Q is
positive definite, there is at most one solution. If Q is positive semidefinite, the number
of solutions can be more than one. If Q is indefinite, the problem is no longer a convex
problem and thus there could be more than one local minimum. Different algorithms
can be used for solving quadratic programming problems, including the active set and
interior-point methods.

min
x

1

2
xTQx+ cTx (2.6a)

subject to Ax ≤ b (2.6b)

Aex = be (2.6c)

where Q ∈ Rn×n is a symmetric matrix; c ∈ Rn and x ∈ Rn are vectors; A and Ae are
matrices at proper dimension; b and be are vectors.

2.5.4 Nonlinear programming

Nonlinear programming is a type of optimization problem involving a nonlinear objective
function f(·) and nonlinear constraints gi(·) and hj(·), where i = 1, · · · ,m and j = 1, · · · , p
[12, 111]. It should be noticed that nonlinear programming can be non-convex. Therefore,
many optima and local optima can exist. If different initial values are used, different
solutions may be obtained. Commonly used algorithms for solving nonlinear programming
problems are based on the solution of KKT conditions, differentiability, and constraint
qualifications. However, since the nonlinear programming problem is not convex, KKT

16



conditions are merely necessary but not sufficient conditions for a solution to be optimal.
Typical algorithms for nonlinear programming include interior-point method and sequential
quadratic programming.

min
x

f(x) (2.7a)

subject to gi(x) ≤ 0 i = 1, ...,m (2.7b)

hj(x) = 0 j = 1, ..., p (2.7c)

2.5.5 Multiparametric programming

Multiparametric programming is inspired by the concept of sensitivity analysis of the right
hand side (RHS) of the constraints in an LP[10, 84]. When the RHS of the constraints
involve multiple parameters and these parameters are within some sets, such an optimiza-
tion problem can be tackled by multiparametric programming. In Eq. (2.8), θ and θe are
parameters. g and h are vector-valued functions. S1 and S2 are sets containing parameters.

min
x

f(x) (2.8a)

subject to g(x) ≤ θ (2.8b)

h(x) = θe (2.8c)

θ ∈ S1 (2.8d)

θe ∈ S2 (2.8e)

When the objective and constraints of multiparametric programming are linear, the
optimization is referred to as multiparametric linear programming (mpLP). QP or NLP
problems can be tackled by multiparametric quadratic programming (mQP) or multipara-
metric nonlinear programming (mpNLP) respectively. In the multiparametric program-
ming approach the parameters’ set is partitioned into piece-wise continuous sets and for
each of these sub-sets there are different expressions for calculating the optimal solution as
a function of the parameters’ values. Hence, multiparametric programming solves a priori
the optimization problem and provides a look-up table of analytical expressions for calcu-
lating the optima for different sets. After determining the given set and substituting the
parameters into expressions from the loop-up table, the optimal solution can be directly
calculated. Methods of mpLP and mpQP are developed and have been applied to different

17



problems. Using mpLP, the DFBM can be simplified from a system containing an inner
optimization problems into a variable structure system. However, most of the reported
algorithms of mpLP ignore important issues such as the existence of multiple solutions. In
contrast with mpLP and mpQP which do not involve any approximation, mpNLP is based
on an approximation which makes it computationally expensive.

2.5.6 Observer and Observability

When a dynamic mechanistic model such as DFBM is available a model-based observer
can be designed to estimate the states. The observer can be constructed to estimate the
concentrations from a limited set of online measurements. Let’s assume a general dynamic
system described by Eq. (2.9a) and a measurement function given by Eq. (2.9b).

ẋ = f(x) (2.9a)

y = h(x) (2.9b)

where x is the states and y is the measurements. An observer is a dynamic system defined
according to Eq. (2.10), such that, limt→+∞ ∥x− x̂∥ = 0. The observer is an adjoint
dynamic system of the system given in Eq. (2.9) to estimate x from a limited set of
measurements y and the estimated state is x̂. ξ is the observer state of the observer. For
very long time, the estimated value x̂ will converge to the true states x.

ξ̇ = ϕ(ξ,y) (2.10a)

x̂ = h(ξ,y) (2.10b)

The definition above is for an asymptotic observer for which the estimated value con-
verges to the true state asymptotically. In contrast with the asymptotic observer, the
parameters of some observers can be tuned to change the convergence speed. These ob-
servers are referred to as tunable observers [5]. If the system contains noise, the observer
may give different estimates of states. Some observers can provide the optimal estimate
and thus they are referred to as optimal observers. For example, the Kalman filter is an
optimal observer that has been widely used in motion control. It considers prior knowledge
of the process noise and measurement noise and based on this knowledge it calculates the
optimal estimate of states. The nonlinear version of the Kalman filter is the Extended
Kalman Filter (EKF).

Some measurements are necessary to construct the observer. Observability is a neces-
sary condition to construct a tunable observer [5]. For a n dimensional nonlinear system

18



defined in Eq. (2.9), the local observability condition at x0 is Eq. (2.11) [88].
h(x0)
Lfh(x0)

· · ·
Ln−1
f h(x0)

 = n (2.11)

where Lfh is first order Lie derivative of h with respect to f .

2.5.7 Set Theory

Set Operations

In topology theory, a connected space is a topological space that cannot be represented as
the union of two or more disjoint non-empty open subsets [101]. A subset of a topological
space S is a connected set if it is a connected space when viewed as a subspace of S [101].
The discussions of sets in this research are limited to connected sets.

Vector operations, like summation and multiplication, can be extended from vectors
to sets. Set operations are operations of sets and all elements in the sets are considered.
In contrast with vector operations that focus on individual elements of the vector, set
operations focus on populations. Commonly used set operations, include linear mapping,
projection, translation, Minkowski addition, intersection, union, lifting, and outer approx-
imation.

Set Membership Estimation

If the initial state x0 of the system in Eq. (2.9a) is a set X, the set propagation describes
how the set X(t) evolves with time. To calculate the set propagation, set operations are
required. By using these set operations, a larger set varying with time can be constructed
to contain the propagated set. Such a larger set can be interpreted as an estimate of
the boundary of the state. Instead of estimating the optimal value of states varying with
time, methods to estimate sets of states are referred to as set membership estimation [9].
By projecting the sets onto each dimension, the bounds of states can be estimated. The
difficulty of set membership estimation is that the set of states of nonlinear systems can
diverge. Different set membership methods and different shapes of sets have been proposed
[9, 17, 3, 66].

19



Chapter 3

A Method for Tackling Primal
Multiplicity of Solutions of Dynamic
Flux Balance Models

3.1 Overview

1 A method is presented to tackle primal multiplicity of Dynamic flux balance analysis
(DFBA) which is a Linear Programming (LP) based modeling approach that assumes that
the cell distributes fluxes such as to maximize a specific biological objective. When the
LP problem has multiple optima, the LP solvers usually only report the first optimum
that it is reached which may not fit well the experimental data. To tackle this primal
multiplicity problem, the weighted primal-dual method with auxiliary parameters is used
to calculate a unique time trajectory for a given set of initial conditions. Through tuning
of these auxiliary parameters, a unique optimal solution can be obtained and calibrated to
fit available experimental data. Beyond its capability to tackle multiplicity, the algorithm
is shown to significantly improve the prediction of some metabolites in a case study of the
fed-batch fermentation of Bordetella pertussis.

1Adapted from Shen, X., & Budman, H. (2020). A method for tackling primal multiplicity of solutions
of dynamic flux balance models. Computers & Chemical Engineering, 143, 107070.

20



3.2 Introduction

Quantitative methods to analyze metabolic processes occurring in microorganisms are cru-
cial for the improvement and optimization of bio-processes. Flux balance analysis (FBA)
refers to a steady-state modeling approach of genome-based metabolism [108]. FBA is for-
mulated as a linear programming problem involving the maximization of a biological objec-
tive function with respect to the flux distribution across the metabolic network. However,
FBA models are often under-determined thus resulting in primal multiplicity. Researchers
have proposed different algorithms to enumerate all vertex optima [59, 63, 76, 77, 96]. To
deal with dynamic bio-processes, researchers have successfully extended FBA to account
for dynamic behavior by using dynamic flux balance analysis (DFBA) [64, 86, 109]. DFBA
models describe the dynamic optimal flux distributions as a time sequence of LP problems.
Concentration-dependent rate constraints have been proposed to further regulate the dy-
namic behavior [69, 81, 82]. However, the primal multiplicity issue still remains due to the
underdeterminancy of the LP formulations.

The Weighted primal-dual method (WPDM) used in the current study to tackle multi-
plicity is a modified interior-point method based on auxiliary parameters. It was originally
proposed in the late 1980s to speed-up computation [30, 72]. In this research, the WPDM
is applied for the first time to address the primal multiplicity problem in DFBA mod-
els. WPDM approximates the LP by a strictly convex optimization problem with a set
of auxiliary parameters to control which optimal solution is selected. In the calibration of
the DFBA model, these auxiliary parameters are obtained by fitting of experimental data.
Pointwise approximation, uniqueness, and continuity are proved mathematically in the pa-
per. We show in the case study of Bordetella pertussis that the prediction accuracy can be
significantly improved as compared with other methods used in this investigation. WPDM
is data-driven and the auxiliary parameters can be found by fitting experimental data when
prior knowledge of the strain is not readily available. Two potential drawbacks for WPDM
are approximation error and computational expense. Being a type of interior-point method
WPDM finds a solution that is close to an actual optimum. However, WPDM can have the
same accuracy as a Simplex method if a sufficiently small penalty parameter is used. The
computational expense of WPDM is potentially high since it is based on the solution of a
set of algebraic equations by a Newton’s method. However, after the weights are identified
the computation for online implementation is fast as shown in the case study.

The paper is organized as follows. Section 2 presents background on dynamic flux
balance analysis, different methods for primal multiplicity and model calibration. Section
3 presents the main properties of of the WPDM method and related mathematical proofs.
Section 4 presents results of the application of WPDM to the modeling of a fed-batch

21



culture of B. pertussis and a comparison of WPDM to different methods reviewed above
that were used to address multiplicity. Section 5 presents the conclusions.

3.3 Methods

3.3.1 Dynamic Flux Balance Analysis

Dynamic flux balance analysis (DFBA) is a dynamic extension of steady-state flux balance
analysis (FBA). In both FBA and DFBA, cells are regarded as agents that optimally dis-
tribute metabolic fluxes to maximize a specific biological objective. There are two types
of DFBA models reported in literature. In the first type of models the metabolites are
described in intracellular and extracellular compartments and exchange fluxes are used to
relate concentrations among compartments [46]. Using the assumption that internal reac-
tions are generally much faster than cell growth, all intracellular metabolite concentrations
are assumed constant. Continuous dynamic mass balances of extracellular concentrations
are used to describe the dynamic evolution of the culture. It has been argued that in-
tracellular metabolite concentrations are not constant and may change over time [34]. To
address this limitation the second type of DFBA models [64], used in the current study,
considers both intracellular and extracellular dynamic changes of concentrations. The con-
centrations are assumed constant only during a single time interval of discretization and
discrete mass balance equations are used to describe the evolution of both intracellular and
extracellular metabolites over time. In this second type of model kinetic rate expressions
are used as upper bound of limiting reactions. Mass balance based constraints are used to
ensure positivity of concentrations.

The DFBA model formulation used in this work is defined in Eq. (3.1) in canonical
form. The evolution of metabolite concentrations with time is calculated by solving a
series of LP problems posed in canonical form over consecutive time intervals. It should
be noticed that in this type of DFBA model, for a given time step k, there are no equality
constraints since Eq. (3.2a) and Eq. (3.2b) are only used outside of the LP problem to
update the states for the solution of next time interval.

max
vk

dTvk (3.1a)

subject to f(ψk−1) ≤ Svk ≤ g(ψk−1) (3.1b)

ψk−1 + hk−1∆tSvk ≥ 0 (3.1c)

0 ≤ vk ≤ vmax (3.1d)

22



where sampling time instants are t0, · · · , tnt and ti − ti−1 = ∆t for ∀i = 1, · · · , nt;
k = 0, 1, · · · , nt is the corresponding index of the sampling time interval; nr is the number
of reactions; nm is the number of metabolites (excluding biomass) considered in the bio-
logical network; d ∈ Rnr is the vector of coefficients describing the relative contributions
of different metabolites to growth rate; vk ∈ Rnr is a flux vector at time interval k which
upper bound is vmax ∈ Rnr and fluxes corresponding to reversible reactions are treated
as two independent fluxes; ψk ∈ Rnm is the vector of metabolites’ concentrations at time
interval k; function f(vk) ∈ Rnm and function g(vk) ∈ Rnm are upper and lower bounds
given as functions of the corresponding metabolite concentrations and these may represent
kinetic rate or other biological constraints; hk is the biomass concentration at time interval
k; S ∈ Rnm×nr is the stoichiometry coefficients’ matrix of the metabolic network. Eq.
(3.1c) are constraints for ensuring that concentrations are positive.

Eqs. (3.2a) and (3.2b) are discrete mass balance based state equations describing
the evolution of metabolite and biomass concentrations over time. After fluxes vk−1 are
obtained by solving LP as Eq. (3.1), concentrations of biomass and metabolites at time
step k can be obtained.

ψk = ψk−1 + hk−1∆tSvk (3.2a)

hk = hk−1 + hk−1∆td
Tvk (3.2b)

For clarity, both the canonical form and standard form of the LP are given. While the
canonical formulation of DFBA as Eq.(3.1) is suitable for describing the biological meaning
of the model, the standard form is more convenient for describing the optimization solution
and the proofs. The main difference between the canonical form and the standard form
is in the inequality constraints. After adding non-negative slack variables to convert the
inequality constraints into equality constraints [6] the standard form is defined in Eq. (3.3).

min
x,z

cTx

subject to Ax+ z = b

z ≥ 0 (−Iz ≤ 0)

(3.3)

where A ∈ Rm×n is a matrix with rank m (m < n); b ∈ Rm and c ∈ Rn are vector; x ∈ Rn

are decision variables; z ∈ Rm are slack variables; I is identity matrix at proper dimension.
Using slack variables, the standard form of the DFBA model is in the following Eq. (3.4).

23



max
vk, ξ

dTvk + 0ξ (3.4a)

subject to
−S
S

−hk−1∆tS
I
−I

vk + ξ =


−f(ψk−1)
g(ψk−1)
ψk−1

vmax

0

 (3.4b)

ξ ≥ 0 (−Iξ ≤ 0) (3.4c)

where Eqs. (3.1b)-(3.1d) are converted to equality constraints as Eqs. (3.4b) by adding
slack variables ξ in proper dimension. Each element of slack variables ξ corresponds to an
inequality constraint in Eq. (3.1). vk corresponds to decision variable x in Eq. (3.3).

Experimental Data

In this paper, the experimental data and DFBA models of fed-batch fermentation of B.
pertussis reported in paper [13] were used to calibrate the model and for comparing different
solvers and different methods to address multiplicity. 17 amino acids are required for B.
pertussis biomass synthesis but the main limiting substrate and carbon source is glutamate.
Most amino acids can be biosythesized except histidine, methionine, phenylalanine, and
tryptophan. As later shown in the results section it was found that the depletion of
phenylalanine led to infeasible solutions. The bioreactor has a working volume of 6L.
The stirring rates were manipulated within 200 rpm to 600 rpm by a PI controller to
maintain a 35% dissolved oxygen (DO) target. The air flow was set constant at 6 slpm.
The pH was controlled at 7.1 by phosphoric acid. Feeding of glutamate at 4.3 g/h was
started following the depletion of glutamate that can be inferred from changes of DO.
The fermentation temperature was set at 36◦C. Biomass concentration was determined by
optical density measurements at 600nm using a spectrophotometer. HPLC with a high
efficiency Nova-Pak TM column was used to measure amino acids concentrations in the
supernatant. AccQ Fluor (6-aminoquinolyl-N-hydroxysuccinimidyl carbamate) was used
for precolumn derivatization and the separated derivatives were monitored by fluorescence
detection resulting in a measurement error of less than 5%. Ammonia, lactate, glucose,
and glutamine were measured in a Bio-profile Flex (Nova Biomedical). The experiments
were repeated two times, referred to as experiments 1 and 2 in this paper.

24



Table 3.1: Parameters Used in the DFBA Model of B. pertussis

Parameters Parameters
vmax,ala 2.67× 10−2 (h ·mmol cell)−1 vmax,phe 8.25× 10−4 (h ·mmol cell)−1

vmax,arg 1.12× 10−4 (h ·mmol cell)−1 vmax,pro 9.43× 10−2 (h ·mmol cell)−1

vmax,asp 5.66× 10−3 (h ·mmol cell)−1 vmax,ser 6.39× 10−2 (h ·mmol cell)−1

vmax,gly 8.09× 10−3 (h ·mmol cell)−1 vmax,thr 2.54× 10−3 (h ·mmol cell)−1

vmax,his 2.19× 10−3 (h ·mmol cell)−1 vmax,tyr 2.63× 10−4 (h ·mmol cell)−1

vmax,ile 9.20× 10−4 (h ·mmol cell)−1 vmax,val 2.41× 10−2 (h ·mmol cell)−1

vmax,leu 1.90× 10−2 (h ·mmol cell)−1 vmax,glu 8.80× 10−5 (h ·mmol cell)−1

vmax,lys 1.24× 10−2 (h ·mmol cell)−1 Kglu 1.341 mmol/L
vmax,met 1.20× 10−2 (h ·mmol cell)−1

In paper [13], only one kinetic expression Eq. (3.5) was used as a constraint according
to Eq. (3.1b) corresponding to the conversion of glutamate to tyrosine which was found to
be the limiting reaction. Kinetic parameters and other parameters of DFBA model used in
the paper are listed in Table (3.1). These parameters vmax listed in Table (3.1) are used in
constraints Eq. (3.1d). Additional details about the chosen metabolic network and model
formulation can be found in [13].

Styrvk ≤ vmax,gluψglu,k−1

Kglu + ψglu,k−1
(3.5)

where Styr is the row vector in the stoichiometric matrix corresponding to tyrosine; ψglu,k−1

is glutamate concentration at the time instant k − 1; vmax and K are the maximum flux
and kinetic parameter in the rate expression respectively.

3.3.2 Weighted Primal-Dual Method

The most commonly used interior-point method is the naive primal-dual method (NPDM).
The WPDM is a modified version of NPDM that was originally proposed to speed-up
computation [30, 72]. In this research, the WPDM is applied for the first time to address
the multiplicity problem [1, 20, 57]. Typically, in all interior-point methods, the standard
form of the LP problem Eq. (3.3) is augmented by adding a logarithmic barrier function
of constraints. The approximate LP formulation in the WPDM form is defined as per Eq.

25



(3.6),

inf
x,z,µ→0

cTx− µ
m∑
j=1

wjln(zj)

subject to Ax+ z = b

z > 0 (−Iz < 0)

(3.6)

where µ is a positive parameter controlling the pointwise approximation accuracy; x is
assumed to be bounded. As µ tends to zero, the objective function approximates to a
neighborhood of the optimum of the actual objective function Eq. (3.3). The bounded
vector w = [w1 · · ·wn]T > 0 is a vector of internal point weights that serve as auxiliary
parameters used for choosing a specific optimum among all possible optima. Each slack
variable zj corresponds to an interior-point weight wj in Eq. (3.6). When all the weights
are selected to be equal to one, the WPDM is reduced to the NPDM. The decision variables
z cannot be zero due to the presence of the logarithmic function. However, x can be made
infinitesimally small based on the choice of µ so that the accuracy can always satisfy users
requirements. It should be noticed that the objective is defined by the infimum instead of
the minimum since the infimum is achieved even though case x = 0 is not reached. The
case x = 0 can also be addressed systematically by the idea of field extension [22].

The optimization problem defined in Eq. (3.6) is a strictly convex optimization problem
so that the solution is unique if the feasible space is not empty. The standard KKT
conditions of Eq. (3.3) is:

c+ATλ = 0 (3.7a)

Ax+ z = b (3.7b)

−Iz < 0 (3.7c)

λj ≥ 0 ∀j = 1, · · · , n (3.7d)

λjzj = 0 ∀j = 1, · · · , n (3.7e)

where λi are positive multipliers for inequality constraints z > 0; Eq. (3.7e) is strong com-
plementary slackness conditions. For WPDM, the standard KKT is adapted by choosing
Lagrange multipliers λj = µwj/zj ≥ 0 and replacing Eq. (3.7e) by weak complementary
slackness conditions λjzj = µwj, µ → 0. Note that µ cannot be zero, otherwise multiplic-
ity issue relapses. Eq. (3.7) can be reformulated as Eq. (3.8) for calculation used in later

26



sections.

ATλ = −c (3.8a)

Ax+ z = b (3.8b)

ΛZ = µw (3.8c)

−Iz < 0 (3.8d)

λ ≥ 0 (3.8e)

where Z and Λ denote diagonal matrices, namely Z = diag(z), Λ = diag(λ); e =
[1 · · · 1]T ∈ Rn is a vector. Eqs. (3.8a)-(3.8c) are solved by the Newton method. A classic
line search algorithm is used to control the step size in the Newton method as done in most
interior-point methods such that Eqs. (3.8d)-(3.8e) are accounted [40].

The direct solution of Eq. (3.8) with a very small value of µ is often difficult to obtain
when calculating the inverse of an ill-conditioned Jacobian matrix of a nonlinear set of
equations. Instead, the WPDM algorithm adopts a path-following method that gradually
decreases the parameter µ [29]. The steps of the WPDM algorithm are shown in Algorithm
1 where σ is a scaling parameter between 0 and 1 that is controlling the decreasing rate of
µ.

The method used to solve Eq.(3.8) is a path-following method for linear programming
as described in [29]. In each iteration of the path following algorithm, Newton’s method is
used to search for the decreasing direction ∆λ, ∆x, and ∆z. The line search algorithm
is used to calculate the largest allowable step size αλ and αz so that λ and z are always
positive at each iteration. Then, the point (λi,xi, zi)T is the unique optimum for the
current µ. In the next iteration, the new optimum is used as an initial guess for the
next iteration. µ is progressively reduced from one iteration to the next to ultimately
approximate the true optimum of the original problem. Thus, the optima obtained at each
iteration follow a central path that finally approximates to the optimal solution. Interior-
point weights w can be used as auxiliary parameters to change the curvature of the strictly
convex surface of the objective function so that any optimal solution from multiple optima
can be placed at the minimum position through tuning of w. Algorithm 2 presents the
application of WPDM to solve the DFBA model.

3.3.3 Hierarchical Optimization

Hierarchical optimization (HO) has been used for tackling primal multiplicity [35, 42, 46].
Instead of solving a single LP, HO involves the solution of a series of LP problems with

27



Algorithm 1 WPDM (Path-following Method)

1: Given A, b, c, w, σ, µ, η0, tolerance and feasible initial interior point (λ0,x0, z0)
2: i = 0
3: repeat
4: Solve the following set of equations by the Newton method for ∆λi, ∆xi, and ∆zi:AT 0 0

0 A I
Zi 0 Λi


∆λi

∆xi

∆zi

 =

 −c−ATλi

b− zi −Axi

µw −Λizi

 (3.9)

5: Use line search algorithm to find the step size αλ and αz that satisfy :

λi + αλ∆λ
i ≥ 0 (3.10)

zi + αz∆z
i ≥ 0 (3.11)

6: Calculate η = max{η0, 1− µ}, αiλ = min{1, ηαλ} and αiz = min{1, ηαz}
7: Update λi+1 = λi + αiλ∆λ

i, xi+1 = xi + αiz∆x
i, and zi+1 = zi + αiz∆z

i

8: Update µ = µσ, i = i+ 1
9: until µ ≤ tolerance
10: Output λi, xi, zi

Algorithm 2 Apply WPDM to solve DFBA:

1: Given w, d, h0, ψ0, S, ∆t, nt, vmax, function f(·) and g(·).
2: k = 0
3: repeat
4: Calculate function f(ψk) and g(ψk)
5: Convert all inequality constraints Eqs. (3.1b), (3.1c), and (3.1d) into equality

constraints Ax+ z = b by adding slack variables
6: Apply WPDM to solve the standard LP problem and get vk from x
7: Calculate Eqs. (3.2a) and (3.2b) to update ψk and hk

8: k = k + 1
9: until k ≥ nt
10: output {hk}, {ψk}

28



different auxiliary objectives to reduce the optimal space and to find a unique solution.
Each of these LP problems have a specific biological objective and they are ranked according
to a user predefined priority order. HO is defined as per Eq. (3.12) in standard form.

p0 = min
x

cT0x

Ax+ z = b
p1 = min

x
cT1x

Ax+ z = b

cT0x = p0{
...

(3.12a)

(3.12b)

(3.12c)

where p0 and c0 are the minimum value and the vector of coefficients that define the
objective of the original DFBA model; Eq. (3.12b) are the constraints of DFBA model in
their standard form. Similarly, pi and ci ∀i ∈ N+ are the minimum values and vectors of
coefficients defining the different objectives with respect to fluxes of auxiliary LP problems
in a prescribed order. All auxiliary objectives and their ordering are defined by the user
according to the expected importance. It should be noticed that the auxiliary LP problems
at the lower priority levels do not only need to satisfy constraints as Eq. (3.12b), but they
also must satisfy all constraints in the higher priority levels. For instance, the second layer
LP does not only satisfies constraints as in the first layer LP, but also it must satisfy an
extra equality constraint cT0x = p0 to ensure the optimality of the first layer LP. HO cannot
always ensure the uniqueness of solution of DFBA even though all auxiliary objectives have
been used. The following priority order of objectives reported have been used in the case
study: 1-maximum biomass yield, 2-maximum ATP yield, 3-minimum of the total flux,
4-maximum carbon dioxide yield, 5-maximum acetate yield, 6-minimum fluxes 1 to nr
sequentially [93]. The dual-simplex method of CPLEX is used to solve this problem.

3.3.4 Minimization of Enzyme Cost

The idea of minimization of enzyme cost [83] is also close to the idea of minimal flux
adjustment. The method is based on the assumption that evolution has ruled out inefficient
pathways so that cells need to biosynthesize less total enzymes while distributing fluxes
in an efficient way. Minimization of enzyme cost or minimal flux adjustment are good
auxiliary objectives to maximize the efficiency of the fluxes. However, kinetic parameters
of reactions must be known to calculate exact enzyme cost. If these parameters are not

29



available, other auxiliary objectives have been used instead such as minimal total (absolute)
flux, minimal number of active reactions, minimal norm of flux. To compare this method
with WPDM in the case study, methods based on minimization of the total flux and
minimization of the number of active reactions were used. Methods based on minimization
of the total flux and minimization of the number of active reactions had been also referred
as to the principle of flux minimization [47, 78]. Both these methods can be regarded as
hierarchical optimizations with only two layers each. For the method of minimization of
the total flux, the second layer objectives can be expressed as

∑nr
i=1 vk,i in canonical form,

where vk,i is the flux of i-th reaction at the time interval k.

The method of minimization of the number of active reactions is outlined in Eq. (3.13)
using the canonical formulation.

p0 = max
vk

dTvk + 01×nrκk

f(ψk−1) ≤ Svk ≤ g(ψk−1)

ψk−1 + hk−1∆tSvk ≥ 0

0 ≤ vk ≤ vmax

κk are binary variables

ψk = ψk−1 + hk−1∆tSvk

hk = hk−1 + hk−1∆td
Tvk

p1 = min
κk

01×nrvk + 11×nrκk

− Ivk + ϵIκk ≤ 0

Ivk −MIκk ≤ 0

dTvk + 01×nrκk = p0

f(ψk−1) ≤ Svk ≤ g(ψk−1)

ψk−1 + hk−1∆tSvk ≥ 0

0 ≤ vk ≤ vmax

κk are binary variables

ψk = ψk−1 + hk−1∆tSvk

hk = hk−1 + hk−1∆td
Tvk

(3.13a)

(3.13b)

(3.13c)

(3.13d)

(3.13e)

(3.13f)

(3.13g)

(3.13h)

where κk is a vector of binary variables at time interval k, defining on-off switches for each
reaction; ϵ is a tolerance to determine whether a flux can be treated as zero or not; 0 and 1
are matrices whose elements are 0 and 1 respectively; M is a very large value, e.g. 100000

30



is used in the case study. When κk,i is zero, the i-th reaction is turned off while if κk,i is
one, the i-th reaction is turned on. In this research, the second layer problem is solved by
a mixed integer linear programming solver of CPLEX.

3.3.5 Model Calibration

To compare among solutions obtained with different solvers and different methods to ad-
dress multiplicity, two groups of replicate experimental data of fed-batch fermentation of
B. pertussis reported in the paper of [13] were used to calibrate the model. These two
groups of replicate experimental data are referred to experiment 1 and 2 in the following
sections. Additional details on the experimental data can be found in [13]. Although all
the parameters of the original DFBA model and auxiliary parameters w of WPDM could
be adjusted to fit the experimental data, this is very impractical because only a small sub-
set of the parameters has a significant impact on the solution [44, 69]. Thus, a sensitivity
analysis is conducted to determine the top 5 model parameters and the top 5 auxiliary pa-
rameters that have the largest effect on the solution. The sensitivity Sθi is the sensitivity
of parameter θi defined as in Eq. (3.14).

Sθi =
nm∑
m=1

nt∑
k=1

∣∣∣Sθiψm(tk)∣∣∣+ nt∑
k=1

∣∣∣Sθih (tk)∣∣∣ (3.14)

where Sθiψm(tk) is the sensitivity of concentrations ψm of metabolite m to the i-th parameter

θi at sampling time interval k. Similarly, Sθih (tk) is the sensitivity of biomass to i-th
parameter at sampling time interval k; and the calculations of sensitivities for biomass and
metabolites follow Eqs. (3.15) and (3.16) respectively.

Sθiψm(tk) =
∂ψm(tk)

∂θi

θi

ψm
(3.15)

where ψm is the average metabolite concentrations over all sampling time intervals accord-
ing to Eq. (3.16).

ψm =
1

nt

nt∑
k=1

ψm(tk) (3.16)

The sum of squared errors (SSE) of key metabolites and biomass as defined in Eq.
(3.17) is used for model calibration and for comparing the fitting accuracy of different LP
solvers and different methods for addressing multiplicity, where ψm,exp(tk) and hexp(tk) are

31



two sets of the experimental data of metabolites m and biomass at time tk respectively.

SSE =
nm∑
m=1

nt∑
k=1

(ψm(tk)− ψm,exp(tk))
2 +

nt∑
k=1

(h(tk)− hexp(tk))
2 (3.17)

The selected top 5 sensitive parameters are then adjusted to fit the experimental data
with different solvers, including the interior-point method (IPM) of CPLEX, the interior-
point method of MATLAB R2018a, and the NPDM; the aforementioned methods for ad-
dressing multiplicity, including minimization of the total flux, minimization of the number
of active reactions, and hierarchical optimization. For the WPDM, both the top 5 pa-
rameters of the DFBA model and the top 5 auxiliary parameters interior-point weights
that were obtained from the sensitivity analysis are tuned to fit the data. In principle, all
weights (over 200) can be tuned . But for simplicity, as comparison, only top 5 weights
. It should be emphasized that while the interior-point weights can be adjusted to obtain
different optima, the weights to be chosen for a particular DFBA problem are the ones
that result in a better fit of the experimental data. Thus, these auxiliary parameters do
not change the definition of the original DFBA problem, but only provide a means to
choose one particular flux distribution among all possible distributions. The selected top 5
sensitive parameters are then adjusted to fit the experimental data with different solvers,
including the interior-point method (IPM) of CPLEX, the interior-point method of MAT-
LAB R2018a, and the NPDM; the aforementioned methods for addressing multiplicity,
including minimization of the total flux, minimization of the number of active reactions,
and hierarchical optimization. For the WPDM, both the top 5 parameters of the DFBA
model and the top 5 auxiliary parameters interior-point weights that were obtained from
the sensitivity analysis are tuned to fit the data. In principle, all weights (over 200) can
be tuned . But for simplicity, as comparison, only top 5 weights . It should be empha-
sized that while the interior-point weights can be adjusted to obtain different optima, the
weights to be chosen for a particular DFBA problem are the ones that result in a better fit
of the experimental data. Thus, these auxiliary parameters do not change the definition
of the original DFBA problem, but only provide a means to choose one particular flux
distribution among all possible distributions. The selected top 5 sensitive parameters are
then adjusted to fit the experimental data with different solvers, including the interior-point
method (IPM) of CPLEX, the interior-point method of MATLAB R2018a, and the NPDM;
the aforementioned methods for addressing multiplicity, including minimization of the total
flux, minimization of the number of active reactions, and hierarchical optimization. For the
WPDM, both the top 5 parameters of the DFBA model and the top 5 auxiliary parameters
interior-point weights that were obtained from the sensitivity analysis are tuned to fit the

32



data. In principle, all weights (over 200) can be tuned . But for simplicity, as comparison,
only top 5 weights . It should be emphasized that while the interior-point weights can
be adjusted to obtain different optima, the weights to be chosen for a particular DFBA
problem are the ones that result in a better fit of the experimental data. Thus, these
auxiliary parameters do not change the definition of the original DFBA problem, but only
provide a means to choose one particular flux distribution among all possible distributions.
The selected top 5 sensitive parameters are then adjusted to fit the experimental data with
different solvers, including the interior-point method (IPM) of CPLEX, the interior-point
method of MATLAB R2018a, and the NPDM; the aforementioned methods for addressing
multiplicity, including minimization of the total flux, minimization of the number of active
reactions, and hierarchical optimization. For the WPDM, both the top 5 parameters of the
DFBA model and the top 5 auxiliary parameters interior-point weights that were obtained
from the sensitivity analysis are tuned to fit the data. In principle, all weights (over 220
weights in this example) can be tuned. But for simplicity, only top 5 weights were selected
as a comparison. It should be emphasized that while the interior-point weights can be
adjusted to obtain different optima, the weights to be chosen for a particular DFBA prob-
lem are the ones that result in a better fit of the experimental data. Thus, these auxiliary
parameters do not change the definition of the original DFBA problem, but only provide
a means to choose one particular flux distribution among all possible distributions.

3.4 Theoretical Properties of WPDM

As mentioned in the literature review, some desirable properties for a method that ad-
dresses the primal multiplicity issue in DFBA are: uniqueness and continuity of the optimal
solution, availability of tuning parameters to select a specific optimum among the multiple
optima so as to permit consistency with experimental data and computational efficiency.
In this section, WPDM is shown to have properties of uniqueness, continuity and tunability
to apprimate to a specific optimum. One drawback of WPDM as compared to other meth-
ods is the computational expense required due to the use of a Newton’s method to solve
a set of nonlinear equations. However, it should be noticed that the main computational
effort is required for off-line calibration of the weights of WPDM with experimental data
which, as shown later in the case study, it is not a factor for online applications where the
weights values are kept constant with time.

Lemma 1 For a convex optimization problem, if the objective is strictly convex, then
the optimal set contains at most one point [12].

33



Theorem 1 Uniqueness For given positive w and µ, the optimization problem in the
weighted logarithmic form defined in Eq. (3.6) has at most one optimal solution.

Proof The logarithmic function is a strictly concave function. Because µ > 0 and w > 0,
µ
∑n

j=1wjln(zj) is strictly concave function. The negative sign of the logarithmic term in

the objective function Eq. (3.6) makes the function strictly convex. cTx and Ax + z
are affine functions, which are convex but not strictly convex. The objective function is
still strictly convex because it is the summation of a strictly convex function and a convex
function.

Because the constraints are convex and the objective is strictly convex, the weighted
logarithmic form defined in Eq. (3.6) is a strictly convex optimization problem. According
to Lemma 1, this type of optimization problem with the weighted logarithmic formulation
defined in Eq. (3.6) has at most one optimal solution.

Remark 1 Theorem 1 proves that for a given µ, every w corresponds to at most one
optimal solution. Uniqueness is a key property of WPDM.

Theorem 2 Convergence to an approximate solution Assume the feasible space of
problems Eq. (3.3) and Eq. (3.6) is not empty, w, z, and x are bounded. ∃µ̄ > 0, so that
solution of Eq. (3.6) is also an approximate solution of Eq. (3.3) if µ ∈ [0, µ̄].

Proof Because
∑n

j=1wjln(zj) in the objective of Eq. (3.6) is a strictly convex function as
proven in Theorem 1, Theorem 2 can be regarded as a special case of the proof of Theorem
1 in [67].

Remark 2 Theorem 2 establishes the approximation property of WPDM. When multi-
ple optima exist, w can be tuned to obtain different bounded optima x. A bounded w
only influences which solution is selected among the multiple solutions but it cannot affect
the optimality of x. Thus, if the original LP problem has a unique solution, the solution
of Eq. (3.6) is still the solution of Eq. (3.3) for any bounded w. Following the approxi-
mation property proven in Theorem 2, once µ and w are specified, the resulting solution
of LP problem by the WPDM is unique. Thus a specific time trajectory for each metabo-
lite, among the many possible feasible trajectories, can be obtained by applying WPDM.
Additional proofs of approximation and other properties of WPDM are in [1, 20, 57].

34



Ideally the optimal solution is obtained when µ is infinitesimal. In practice, a very small
value (µ = 1e−8 in the case studies) is used. From Eq. (3.8c), the duality gap λT z = µ

∑
wj

of WPDM is a measure of the objective function error [20]. Thus the approximation error
is controllable by the value of µ selected by the user.

Theorem 3 Assume the solution set of Eq.(3.6) is not empty, the optimal solution is
locally continuous with respect to b, c,w. The proof of local continuity is given in Appendix
A and it is based on [90].

Remark 3 The optimal solutions found by Simplex methods are not continuous when
primal multiplicity occurs. If the DFBA model is to be used for control, small pertur-
bations due to disturbances or noise can cause discontinuity in solutions and non-smooth
trajectories. In the application of DFBA models in process control, it is necessary that the
WPDM will be robust to these perturbations, i.e. the resulting optimal solution is con-
tinuous in the presence of perturbations. Theorem 3 proves the continuity at the optimal
solution with respect to perturbations of b, c,w.

3.5 Results and Discussion

3.5.1 Primal Multiplicity of the DFBA of B. pertussis

First the same DFBA model of B. pertussis [13] is solved by different solvers to show
that different optima are arbitrarily chosen by these solvers. The tested LP solvers are the
dual-simplex method, the interior-point method of MATLAB R2018a and the dual-simplex
method and the interior-point method of CPLEX 12.8 (IBM). Commercial software such as
CPLEX uses an additional post-processing algorithm referred to as a crossover algorithm
that can find an optimum at a vertex starting from an optimum not located at a vertex
[48] Corporation, 2016). In this paper, all computations are conducted without crossover.

The DFBA model of B. pertussis reported in [13] was originally fitted using the interior-
point method of MATLAB version R2018a. To show the existence of multiple optima in the
original DFBA model, different LP solvers were used to calculate the optimal flux distribu-
tion at the first time interval. Fig. 3.1 displays the radar chart of the calculation results.
As shown in Fig. 3.1, even though the initial conditions and growth rates (objective) are
the same, significantly different flux distributions can be obtained in the first time interval
and thereafter. Moreover, the optimal flux distribution obtained is arbitrarily determined

35



by the particular algorithm while the user has limited ability to choose a different solution
from the one provided by the solver.

The variability in flux distributions obtained for the first time interval with the different
solvers is critical since it results in drastically different trajectories of metabolite concen-
trations over time in the fed-batch operation. For example, Fig. 3.2 and Fig. 3.3 show the
evolution of metabolites and biomass concentrations obtained with the different LP solvers
for the original DFBA model. For confidentiality reasons, all concentrations are divided by
the initial glutamate concentration so that concentrations are dimensionless. It can be seen
from these figures that the trajectories obtained with the two interior-point methods are
somewhat similar to each other and fit better to the experimental data as compared to the
trajectories calculated with the two dual-simplex methods. Furthermore, the dual-simplex
method of MATLAB R2018a was not able to find any feasible solution from 50 hours and
on due to the early depletion of phenylalanine which cannot be biosythesized while it is
essential for biomass synthesis. Hence, the choice of a commercial solver is critical not only
in terms of the accuracy of the optimal solutions but also in terms of the feasibility of the
optimization problem over time.

3.5.2 Application of WPDM

As established in the previous section, the WPDM can find a unique optimum once the
interior-point weights w and µ are chosen. First, a toy example reported in the literature
is used to illustrate the performance of the WPDM. Later, different solvers and different
methods for primal multiplicity are used to calibrate a DFBA model of B. pertussis. In
this paper, σ = 0.1 , tolerance=1e−8 , initial µ = 10, η0 = 0.995 are used for WPDM.

Example of Simple LP Problem with Multiple Optima

A linear programming problem with multiple optima from Motamedian’s paper is used as
a preliminary case study (Motamedian and Naeimpoor, 2018). The LP problem is defined
in Eq. (3.18). There are 4 vertex optima, [4 0 2]T , [0 4 4]T , [0 4 0]T , [4 0 0]T .

min
x

− 2x1 − 2x2

subject to x1 + x2 ≤ 4

x1 + 2x3 ≤ 8

x ≥ 0

(3.18)

36



12

1

37

25

0

0.2

0.4

0.6

0.8

1

Interior-Point Method of MATLAB

12

1

37

25

0

0.2

0.4

0.6

0.8

1

Dual-Simplex Method of MATLAB

12

1

37

25

0

0.2

0.4

0.6

0.8

1

Interior-Point Method of CPLEX

12

1

37

25

0

0.2

0.4

0.6

0.8

1

Dual-Simplex Method of CPLEX

Figure 3.1: Radar charts of optimal flux distribution in the first time interval obtained by
different solvers, including interior-point method and dual-simplex method of MATLAB
and CPLEX. There are 49 reactions in the metabolic networks, but only reaction 1, 12, 25
and 37 are labeled in the radar plots. To facilitate the comparison, all fluxes were normal-
ized within the interval [0, 1] by dividing each flux by the maximum flux obtained for each
reaction. Even though the initial conditions are the same, the optimal flux distributions
arbitrarily selected by the solver are significantly different.

37



0 50
0

0.02

0.04

A
la

0 50
0.01

0.02

0.03

A
rg

0 50
0

0.02

0.04

A
sp

0 50
0

1

2

3

G
lu

0 50
0

0.02

0.04

G
ly

0 50
0.005

0.01

0.015

0.02

H
is

0 50
0

0.02

0.04

Il
e

0 50
0

0.02

0.04

L
eu

0 50
0

0.02

0.04

0.06

L
y
s

0 50
0

0.005

0.01

0.015

M
et

0 50
0

0.02

0.04

P
h

e

0 50
0

0.05

0.1

P
ro

0 50
0

0.02

0.04

S
er

0 50
0

0.02

0.04

T
h

r

0 50
0

2

4

T
y
r

10
-3

0 50
0

0.05
V

a
l

Dual-Simplex Method of CPLEX

Interior-Point Method of CPLEX

Dual-Simplex Method of MATLAB

Interior-Point Method of MATLAB

Experiment 1

Experiment 2

Time (h)

Figure 3.2: Evolution of key metabolites concentrations with time obtained by four different
LP solvers. Different LP solvers were used to solve the original DFBA model for fed-
batch fermentation of B. pertussis. Experiment 1 and 2 are two replicate experiments
used in building the original DFBA model. The trajectories obtained by the dual-simple
of MATLAB are discontinuous due to infeasibility around 50h. All concentrations are
divided by the initial glutamate concentration so that concentrations are dimensionless.

38



0 10 20 30 40 50 60

Time (h)

0

1

2

3

4

5

6

B
io

m
a
ss

Dual-Simplex Method of CPLEX

Interior-Point Method of CPLEX

Dual-Simplex Method of MATLAB

Interior-Point Method of MATLAB

Experiment 1

Experiment 2

Figure 3.3: Evolution of biomass concentration with time obtained by four different LP
solvers. Different LP solvers were used to solve the original DFBA model for fed-batch
fermentation of B. pertussis. Experiment 1 and 2 are two replicate experiments used in
building the original DFBA model. The trajectories obtained by dual-simple of MATLAB
are discontinuous due to infeasibility around 50h. All concentrations are divided by the
initial glutamate concentration so that concentrations are dimensionless.

39



First, the original problem is converted into the standard form according to Eq. (3.19),
where z are slack variables. These five variables correspond to five interior-point weights
w1, · · · , w5.

min
x

− 2x1 − 2x2

subject to x1 + x2 + z1 = 4

x1 + 2x3 + z2 = 8

− x1 + z3 = 0

− x2 + z4 = 0

− x3 + z5 = 0

z ≥ 0

(3.19)

In Fig. 3.4, the polyhedron shows the feasible space of this LP problem as per Eq.
(3.18); the shaded hyperplane is the active optimal hyperplane defined by the constraint
x1 + x2 ≤ 4. The other boundaries of this polyhedron are defined by other inactive con-
straints. Four vertexes of this optimal hyperplane are basic optima while the remaining
part of the optimal hyperplane corresponds to optima not located at vertexes. Six pos-
sible paths denoted by different symbols are shown in Fig. 3.4. Every point of the path
corresponds to different optima obtained by using different interior-point weights. The
intersection of the six paths shown in the figure corresponds to the analytic center of the
optimal hyperplane when all the elements of w are set to 1. By increasing an interior-point
weight from 1 to 1000 while keeping the other weights constant, the obtained optimum can
be directed towards a specific optimum. From Fig. 3.4, it can be seen that increasing the
values of the weights lead to an increase of the corresponding values of the slack variables.
For example, as w2 increases, the corresponding slack variable z2 increases which means
that the optimum point stays away from the boundary of x1+2x3 ≤ 8. It is also found that
the ratio between different interior-points can be adjusted to determine which optimum is
obtained rather than adjusting the weights individually.

Model Calibration by Different Solvers

As shown in the previous example, different optima can be achieved by changing the
interior-point weights of the WPDM when multiple optima exist. This property can be
used to tackle the multiplicity of solutions occurring in the DFBA model of B. pertussis by
selecting a set of weights that result in solutions that best fit the experimental data. In this
case study, six solvers are compared in terms of their ability to fit the experimental data
reported in [13]. It is found that the dual-simplex method of CPLEX and the dual-simplex

40



Figure 3.4: Control of interior-point weights w to approximate to different optima. The
polyhedron is a feasible space formed by three decision variables x1, x2 and x3. Increasing
a particular interior-point weight leads to an increase in the corresponding slack variables
z at the optimal solution so that any optimum can be obtained by tuning w.

41



method of MATLAB cannot fit the experimental data and deviate significantly from the
experiments. Thus, for brevity, only the remaining four solvers have been presented here:
the interior-point method of CPLEX, the interior-point method (IPM) of MATLAB, the
NPDM, and the WPDM.

Table 3.2 lists the SSE values for all metabolites and biomass as calculated for the
different LP solvers. As shown in Table 3.2, the SSE obtained with WPDM is the smallest
among the four solvers. In particular, the prediction of biomass is significantly more
accurate by NPDM and WPDM than the values predicted with IPM of MATLAB and
CPLEX. In general, for most metabolites, NPDM and WPDM resulted in significantly
better fit. Although as shown in Fig. 3.5 and Fig. 3.6, there are no discernible differences
for biomass predictions by NPDM and WPDM, the SSE of some metabolites by NPDM
are much higher than for WPDM. For example, the SSE of isoleucine, leucine, threonine,
and valine by NPDM are much higher than WPDM, as much as 224% larger as compared
to WPDM. The fit is illustrated in Fig. 3.5 showing the profiles of these amino acids as
compared to the experimental data. This corroborates that WPDM can find a unique set of
trajectories among all possible optimal trajectories that best approximates the data. The
tuning of the interior-point weights can be viewed as a way to compensate for insufficient
information about the assumed DFBA model structure.

3.5.3 Model Calibration with alternative methods used to ad-
dress Primal Multiplicity

A comparison is conducted between models calibrated by different methods for tackling
primal multiplicity. These methods include WPDM, minimization of the total flux (MTF),
minimization of the number of active reactions (MNAR) as defined in Eq. (3.13), and
hierarchical optimization (HO) as defined in Eq. (3.12). For all methods the top 5 sensitive
model parameters for each model were adjusted to fit the data.

As shown in Tab. (3.3) and Figs. (3.7) and (3.8), models calibrated by MTF and MNAR
cannot fit well the metabolites and biomass concentrations. For example, for glutamate,
the main limiting substrate, the deviation from experimental data is significant. It can
be seen from Fig. (3.8), that the logarithmic phase of biomass occurs earlier than the
actual growth and the growth remains too fast even after 20h. From Figs. (3.7) and (3.8),
the model calibrated by HO can better describe the dynamics of metabolites and biomass

1IPM, interior-point method
2WPDM, weighted primal-dual method
3NPDM, naive primal-dual method

42



Table 3.2: Summation of Squared Errors (SSE) of Fitting by Different LP Solvers

SSE of

IPM2,

CPLEX

Compared

with

WPDM3

SSE of

IPM,

MATLAB

Compared

with

WPDM

SSE of

NPDM4

Compared

with

WPDM

SSE of

WPDM

Biomass 7419 123% 15446 363% 3345 0% 3333
Ala 0.181 1% 0.174 -3% 0.180 0% 0.180
Arg 0.484 -36% 0.970 29% 0.756 0% 0.754
Asp 3.401 95% 1.778 2% 1.670 -4% 1.746
Glu 2482 509% 457.4 12% 401.6 -1% 407.6
Gly 15.13 6% 13.98 -2% 14.30 0% 14.30
His 1.869 9% 1.519 -11% 1.713 0% 1.712
Ile 2.483 303% 1.333 116% 1.819 195% 0.616
Leu 8.112 355% 2.844 60% 5.778 224% 1.782
Lys 34.34 10% 28.79 -8% 31.16 0% 31.14
Met 7.094 4% 6.275 -8% 6.832 0% 6.831
Phe 8.599 4% 7.596 -8% 8.286 0% 8.284
Pro 1.139 -15% 0.821 -39% 1.394 4% 1.344
Ser 31.74 16245% 0.310 60% 0.193 0% 0.194
Thr 2.490 5% 6.979 193% 5.575 134% 2.381
Tyr 0.057 -24% 0.145 93% 0.075 0% 0.075
Val 13.17 137% 6.954 25% 9.776 76% 5.550
Total 10031 - 15983 - 3837 - 3818

43



0 50
0

0.05

A
la

0 50
0.02

0.025

0.03

A
rg

0 50
0

0.05

A
sp

0 50
0

0.5

1

G
lu

0 50
0

0.05

G
ly

0 50

0.01

0.02

H
is

0 50
0

0.02

0.04

Il
e

0 50
0

0.02

0.04

L
eu

0 50
0

0.05

L
y

s

0 50
0

0.01

M
et

0 50
0

0.02

0.04

P
h

e

0 50
0

0.05

0.1

P
ro

0 50
0

0.05

S
er

0 50
0

0.05

T
h

r

0 50
0

2

4

T
y

r

10
-3

0 50
0

0.05
V

a
l

Naive Primal-Dual Method

Weighted Primal-Dual Method

Experiment 1

Experiment 2

Time (h)

Figure 3.5: Evolution of metabolite concentrations with time as obtained by NPDM and
WPDM. The DFBA models are calibrated based on the tuning of the top 5 most sensitive
parameters by NPDM and WPDM respectively. For confidentiality, all concentrations are
divided by the initial glutamate concentration so that concentrations are dimensionless.

44



0 10 20 30 40 50 60

Time (h)

0

0.5

1

1.5

2

2.5

3

3.5

B
io

m
a

ss

Naive Primal-Dual Method

Weigted Primal-Dual Method

Experiment 1

Experiment 2

Figure 3.6: Evolution of biomass concentration with time as obtained by NPDM and
WPDM based on tuning of the top 5 sensitive parameters. The biomass trajectory with
time for NPDM and WPDM are overlapping. For confidentiality, all metabolites’ con-
centrations are divided by the initial glutamate concentration so that concentrations are
dimensionless.

45



as compared to the MTF and MNAR methods. However, from Tab. (3.3), the fitting
accuracy of HO is worse than WPDM, especially with respect to biomass. The SSE of
biomass predicted by the WPDM is 350% lower than the one obtained for HO. The model
based on HO fit well some amino acids’ concentrations with SSE values slightly lower as
compared to WPDM. However, for some amino acids the SSE obtained with HO is much
higher as compared to the corresponding SSE obtained with WPDM.

In general, it was found that the flux distributions obtained by these methods are sig-
nificantly different from each other. From Fig. (3.9), yield of CO2 and NH3 from 30h
and on are much higher when calculated with HO and WPDM as compared to the levels
calculated with MTF and MNAR. It was also observed that after the transition from rapid
growth to the stationary phase, the flux distributions selected by MTF and MNAR are
still dominated by anabolic reactions whereas for HO and WPDM they are dominated
by catabolic reactions. Because methods based on MTF and MNAR give preference to
efficient pathways, slow consumption of glutamate results in relatively abundant biomass
and accumulation of glutamate during feeding in fed-batch operation. Methods based on
HO and WPDM seem to better capture the transition from anabolism to catabolism and
glutamate is found to be effectively depleted as an energy source after 30h. Transcript
abundance regulation found between growth phase and nutrient-limited phase in experi-
ments of B. pertussis also supports the observed downregulated anabolism [79]. For the
HO method, the catabolism-dominated flux distribution is selected because of the objec-
tive considered in the fourth layer involving maximization of carbon dioxide yield. For
WPDM, the catabolism-dominated flux distribution is enforced by tuning of the interior-
point weights w. It should also be noticed that the fitting of the HO method could be
potentially improved by changing the auxiliary objectives and their ordering by either
trial-and-error or based on prior knowledge. However, the selection of auxiliary objectives
and their ordering for fitting is a relatively difficult combinatorial problem. In contrast,
the optimal interior-point weights w are found by fitting experimental data without any
prior-knowledge about the system. This data-driven feature makes WPDM attractive when
prior biological knowledge is not readily available.

On the other hand, WPDM is more computationally expensive as compared to the
other methods since it requires the solution of a set of nonlinear equations by a Newton’s
method. For example, 18.4h CPU time is needed for calibrating the weights by MATLAB as
compared to 12.3min for MTF by CPLEX, 14.4min for MNAR by CPLEX, and 10.9min
for HO by CPLEX. However, it should be remembered that the higher computational
effort is only a factor while calibrating the weights which may not be critical for not too
large networks since this step is performed off-line. After the weights are obtained, the
execution of the algorithm is relatively fast. For example, for a simulation of 60h fed-batch

46



fermentation, 45.1s CPU time is needed for execution of WPDM with Matlab, 2.3s CPU
time for MTF by CPLEX, 9.8s CPU time for MNAR by CPLEX and 8.4s CPU time
for HO by CPLEX. Thus the computational expense is not a major limitation for online
implementation of the WPDM algorithm, e.g. for online estimation or control. Also, it
should be remembered that WPDM was coded in MATLAB which may result in generally
slower code as compared to the other algorithms that were implemented with CPLEX.

Table 3.3: Summation of Squared Errors (SSE) of Fitting by Different Methods for Primal
Multiplicity

SSE of

MTF4

Compared

with

WPDM5

SSE of

MNAR

Compared

with

WPDM

SSE of

HO6

Compared

with

WPDM

SSE of

WPDM

Biomass 34287 929% 27683 730% 15010 350% 3333
Ala 0.376 109% 0.376 109% 0.123 -32% 0.180
Arg 3.731 395% 1.778 136% 2.043 171% 0.754
Asp 14.43 726% 13.72 686% 4.711 170% 1.746
Glu 277621 68013% 287331 70395% 4174 924% 407.6
Gly 13.89 -3% 13.90 -3% 13.84 -3% 14.30
His 1.275 -26% 1.362 -20% 1.765 3% 1.712
Ile 6.268 918% 6.907 1022% 1.743 183% 0.616
Leu 5.696 220% 6.931 289% 1.106 -38% 1.782
Lys 12.07 -61% 12.69 -59% 15.97 -49% 31.14
Met 5.919 -13% 6.064 -11% 6.645 -3% 6.831
Phe 7.529 -9% 7.557 -9% 7.786 -6% 8.284
Pro 597.7 44372% 603.2 44784% 0.153 -89% 1.344
Ser 0.144 -26% 0.144 -26% 0.232 20% 0.194
Thr 79.78 3251% 34.38 1344% 63.65 2573% 2.381
Tyr 0.243 223% 0.243 223% 0.182 142% 0.075
Val 19.56 253% 21.66 290% 5.365 -3% 5.550
Total 312678 - 315745 - 19309 - 3818

4MTF, minimization of the total flux
5MNAR, minimization of the number of active reactions
6HO, hierarchical optimization

47



0 50
0

0.02

0.04

A
la

0 50
0.01

0.02

0.03

A
rg

0 50
0

0.02

0.04

A
sp

0 50
0

2

4

G
lu

0 50
0

0.02

0.04

G
ly

0 50
0.005

0.01

0.015

0.02

H
is

0 50
0

0.02

0.04

Il
e

0 50
0

0.02

0.04

L
eu

0 50
0

0.02

0.04

0.06

L
y
s

0 50
0

0.005

0.01

0.015

M
et

0 50
0

0.02

0.04
P

h
e

0 50
0

0.05

0.1

P
ro

0 50
0

0.02

0.04

S
er

0 50
0

0.02

0.04

T
h

r

0 50
0

2

4

T
y

r

10
-3

0 50
0

0.05

V
a

l

Minimization of the Total Flux

Minimization of the Number of Active Reactions

Hierarchical Optimization

Weighted Primal-Dual Method

Experiment 1

Experiment 2

Time (h)

Figure 3.7: Comparison of the time evolution of metabolite concentrations with time ob-
tained by different methods for primal multiplicity, including minimization of the total flux
(MTF), minimization of the number of active reactions (MNAR), hierarchical optimiza-
tion (HO) and WPDM. The top 5 most sensitive parameters are tuned for the calibration
of the DFBA models used with these methods. The ordering of the objectives used for
HO are: maximum biomass yield, maximum ATP yield, minimum of the total flux, max-
imum carbon dioxide yield, maximum acetate yield, minimum fluxes 1 to nr sequentially
to assure the unique solution. The first five objectives are reported as good fitting with
experimental data in [93]. For confidentiality, all concentrations are divided by the initial
glutamate concentration so that concentrations are dimensionless.

48



0 10 20 30 40 50 60

Time (h)

0

1

2

3

4

5

B
io

m
a
ss

Minimization of the Total Flux

Minimization of the Number of Active Reactions

Hierarchical Optimization

Weighted Primal-Dual Method

Experiment 1

Experiment 2

Figure 3.8: Comparison of the time evolution of biomass concentration by different methods
for primal multiplicity : minimization of the total flux (MTF), minimization of the number
of active reactions (MNAR), hierarchical optimization (HO) and WPDM.

49



0 10 20 30 40 50 60
0

1

2

3

4

N
H

3

0 10 20 30 40 50 60
0

2

4

6

8

10

C
O

2

Minimization of the Total Flux

Minimization of the Number of Active Reactions

Hierarchical Optimization

Weighted Primal-Dual Method

Time (h)

Figure 3.9: Comparison of time evolution of NH3 and CO2 obtained by different methods
for primal multiplicity, including minimization of the total flux (MTF), minimization of
the number of active reactions (MNAR), hierarchical optimization (HO) and WPDM. For
confidentiality, all concentrations are divided by the initial glutamate concentration so that
concentrations are dimensionless.

50



3.6 Conclusions

The multiplicity of optimal solutions is common for dynamic flux balance analysis models
since the problems are often under-determined. The existence of multiple solutions results
in infinite possible time trajectories of metabolites’ concentrations. Thus, multiplicity poses
a challenge for the application of DFBA in model-based control, estimation, monitoring,
and optimization.

This paper proposes the use of a variant of the interior-point algorithm referred to as
the WPDM where approximation to a particular optimum among all possible optima can
be controlled by a proper choice of interior-point weights. The uniqueness, approximation,
and continuity of WPDM are proven mathematically. The algorithm is computationally
more expensive as compared to other methods since it requires the solution of a set of
nonlinear equations by Newton’s method. However, while the computations will extend
offline calibration of the model they are not a major limiting factor for online applications
with a fixed set of weights.

The methodology is illustrated for a DFBA model of B. pertussis. It is shown that the
choice of interior-point weights in the proposed method can be effectively used to improve
the fitting of the model predictions to data as compared to other solvers and other methods
used for tackling primal multiplicity.

Acknowledgements

This work was supported NSERC Discovery Grants Program under grant 50503-10882,
Sanofi-Pasteur and Mitacs.

51



Chapter 4

A Type of Set Membership
Estimation Designed for Dynamic
Flux Balance Models

4.1 Overview

1Dynamic flux balance models (DFBM) are used in this study to infer metabolite concen-
trations that are difficult to measure online. The concentrations are estimated based on a
few available measurements. To account for uncertainty in initial conditions the DFBM is
converted into a variable structure system based on multiparametric linear programming
(mpLP) where different regions of the state space are described by correspondingly different
state space models. Using this variable structure system a special set membership based
estimation approach is proposed to estimate unmeasured concentrations from few available
measurements. For unobservable concentrations upper and lower bounds are estimated.
The proposed set membership estimation has been applied to batch fermentation of E.coli
based on DFBM.

1Adapted from Shen, X., & Budman, H. (2021). Set Membership Estimation with Dynamic Flux
Balance Models. Processes, 9(10), 1762.

52



4.2 Introduction

The increasing demand for bio-pharmaceutical products requires continuous improvement
in monitoring and control strategies for fermentation processes. Model-based control and
optimization strategies are crucial to boost productivity. Unlike traditional unstructured
biochemical models, dynamic flux balance models (DFBM) have gained increasing atten-
tion since they contain more detailed information about the distribution of metabolic fluxes
[86, 46]. The strength of DFBM relies on its use of stoichiometric information about the
cell metabolic network. The use of this information often results in models that require a
smaller number of parameters as compared to other types of modeling approaches and thus
are less prone to over-fitting. However, regardless of the choice of model, monitoring, and
control of industrial fermentation processes remains challenging because feedback control
strategies require many states to be measured online. In reality, most states cannot be
measured online either due to the expense of measuring equipment and its maintenance
or the lack of online measurement devices [105, 52, 25]. Some states, including the con-
centration of amino acids, metals, vitamins, ATP, and precursors have great effect on the
fermentation process but are either difficult or impossible to be measured online.

In this research, a set membership estimation approach is proposed for nonlinear sys-
tems described by DFBM models. The DFBM is converted into a variable structure system
composed of several continuous systems in different regions of state space by multipara-
metric linear programming. To address the lack of measurements an Extended Kalman
Filter (EKF) is used to estimate nominal values of some states which are important for
determining metabolic fluxes. Then, a set membership estimation algorithm is applied for
DFBM to estimate the bounds of all states. A detector is proposed to detect the switch
between different subsystems.

The paper is organized as follows. Section 2.1 introduces the background of DFBM.
Section 2.2 describes the use of multiparametric linear programming to convert the DFBM
into a variable structure system composed of subsystems. Section 2.3 describes the EKF
used to estimate some states which are important for determining metabolic fluxes. Section
2.4 presents the main ideas of set propagation and error compensation for the calculation
of states’ bounds. Section 2.5 presents the algorithm for detecting the switch between
different subsystems. Section 3 provides the application of the proposed techniques to the
batch fermentation of E. coli. Section 4 presents a Discussion of the results followed by
Conclusions.

53



4.3 Materials and Methods

4.3.1 Dynamic Flux Balance Models

Dynamic flux balance models (DFBM) are structured genome-based metabolic models
developed from flux balance models. The key assumption of DFBM is that the cells act
as agents distributing resources through metabolic reaction networks to boost a biological
objective, e.g. growth rate [86]. Accordingly, the DFBM is formulated as an optimization
problem. In the literature [64], both dynamic and static optimization approaches are
reported. In the dynamic approach, the nonlinear programming problem is solved over a
relatively large time period which is computationally expensive and thus less convenient for
uncertainty propagation. In this investigation, a static optimization approach is adopted
for its simplicity. DFBM is interpreted as a local linear programming problem to maximize
a biological objective. In terms of the dynamics of intracellular metabolites, there are two
types of DFBM models in the literature. One type of DFBM differentiates intracellular
and extracellular environments and assumes that the intracellular metabolic reactions are
fast enough such as it can be assumed at a quasi-steady state [46, 45]. Accordingly, only
the extracellular metabolites and the biomass are described by dynamic state equations. It
has been argued that the intracellular metabolite concentrations are not constant and may
change over time [34]. Accordingly, there is a second type of DFBM, used in the current
study, which does not differentiate between intracellular and extracellular compartments
and the dynamics of all the metabolites are considered [64, 13]. The governing equations
of DFBM are based on discretized mass balances for all metabolites and these are defined
by Eq. (4.1).

xk+1 = Bxk +∆txbio,kAvk + h (4.1a)

yk = Cxk + rk (4.1b)

x0 ∈ P0 (4.1c)

rk ∼ TN(0,Σ, l,u) k = 0, 1, 2 · · · (4.1d)

Where xk is a vector of nx state variables at time step k. The state vector x includes
concentrations of metabolites and biomass xbio. y is a vector of ny measured variables.
B ∈ Rnx × Rnx is a constant diagonal matrix with diagonal elements bj, j = 1, · · · , nx.
∆t is constant discrete time step size. A ∈ Rnx ×Rnrct is stoichiometry coefficient matrix,
where nrct is the number of reactions considered in the metabolic network. v ∈ Rnrct is the
metabolic flux vector and its calculation is discussed below. h ∈ Rnx is a constant vector.
The initial state x0 is assumed to be bounded by a finite polyhedron P0 as Eq. (4.1c).

54



The underlying assumption is that in practice the initial concentrations of the culture
medium components are known to be within specific ranges of values P0. This assumption
is based on the fact that some variation in media formulation occurs due to human factors
and variability in raw materials. Hence, this research focuses on the initial uncertainty
and we assume all parameters in the state equations to be known accurately. In other
words, the method proposed in this research cannot deal with model structure uncertainty
like uncertainty in matrix A. But the method can be extended to deal indirectly with
uncertainty in parameter θ defined in the following paragraphs.

rk ∈ Rny are measurement noise vectors which elements follow the truncated multivari-
ate normal distribution (TN) [112, 11]. The probability density function p for TN(µ,Σ, l,u)
are defined as per Eq. (4.2).

p(x,µ,Σ, l,u) =
exp{−1

2
(x− µ)TΣ−1(x− µ)}∫ u

l
exp{−1

2
(x− µ)TΣ−1(x− µ)}

(4.2)

For rk, the mean vector of TN is 0 ∈ Rny ; the covariance is Σ ∈ Rny ×Rny ; corresponding
variance vector is σ2 ∈ Rny ; lower bound and upper bound are l ∈ Rny and u ∈ Rny

respectively. | · | indicates the absolute value of a vector. It is assumed that |l| ≤ 3σ and
|u| ≤ 3σ, which indicate that the absolute values of the lower bound and upper bound
respectively are within the range of 3σ. For simplicity, the current study assumes the
process noise to be zero. Process noise could be included as an additional state but this is
beyond the scope of the current work.

Following the assumption that the cell allocates resources optimally, the metabolic flux
v vector at each time step is obtained by solving a linear programming (LP) problem,
defined by Eq. (4.3).

max
vk

cTvk (4.3a)

subject to Gvk ≤ Fθk(xk) + z (4.3b)

where c ∈ Rnrct , F ∈ RnG × Rnθ , z ∈ RnG , G ∈ RnG × Rnrct , θ ∈ Θ ⊆ Rnθ . nG is the
number of linear constraints. The parameter vector θ is a nonlinear vector-valued function
of states x. nθ denotes the number of elements in the parameter vector θ. Usually,
each element θ is only a function of two states at most and one of these two states is
biomass concentration. Θ denotes the parameter space where the optimal solution of the
LP resides. Eq.(4.3a) denotes the objective of the LP that cells are optimizing where the
most commonly used objective is the biomass production rate, i.e. growth rate. Thus, cells
try to maximize growth rate by allocating limited resources. The LHS (left-hand-side) in

55



Eq.(4.3b) describes either the rate of change of metabolite concentrations or the change
of metabolite concentrations over a discretization time step ∆t. Matrices G are constant
matrices containing information on the stoichiometry of reactions. RHS in Eq.(4.3b) is
a function of xk, denoting the metabolic reaction bounds for each step. The matrix F
is a matrix in which elements are part of the right-hand side of the constraints that are
functions of states at the previous time interval. z is a vector containing constant values
such as constant uptake rate limits. Therefore, linear constraints of flux v in Eq.(4.3b) are
reaction rate limits or bounds on available resources (nutrients). Numerical examples of
these matrices and vectors are shown for the E.coli model in the results section.

4.3.2 Multiparametric Linear Programming for DFBM

Multiparametric Linear Programming [2, 10, 84]

While set-based methods are available for uncertainty propagation for linear state space
equations, these methods are not directly applicable to DFBM. The reason is that the
fluxes used in the state equations are obtained from an LP and thus the problem is non-
linear due to the nonlinear function θ(x) and the occurrence of different sets of active
constraints. To tackle the dependency of the state equations on the LP, the concept of
multiparametric linear programming (mpLP) is used to convert the DFBM into a variable
structure system that is composed of subsystems. Multiparametric linear programming
divides the parameter space (Θ) into different regions corresponding to different sets of
active constraints and generates explicit expressions for calculating optimal solutions (v)
for each region [2, 10, 84].

Let’s assume a given optimal solution v of the LP (Eq. (4.3)) where subscript A and
I denote indices of active and inactive constraints respectively. Using this notation Eq.
(4.3b) is decomposed into two parts, equalities GAvk = FAθk(xk) + zA and inequalities
GIvk ≤ FIθk(xk) + zI . Without loss of generality, let’s assume that GA is linearly
independent (linear redundant rows can always be removed by Gaussian elimination). Let
H = G−1

A FA and g = G−1
A zA, then the optimal solution can be obtained by Eq. (4.4).

Following the literature and our previous studies, for a given θ, multiple optimal solutions
can coexist [78, 98]. In other words, multiple Eq. (4.4) can coexist which results in different
ways to divide the parameter space Θ. When such a multiplicity issue occurs it results in
different time trajectories. For simplicity, multiplicity is not addressed in the current study
and it is addressed in a separate work by different methods from the one presented here.

56



The inverse of GA exists because here we assume that the solution to the LP is unique.

vk =Hθk(xk)+ g (4.4)

Substituting Eq. (4.4) into the inequality constraints results in Eq. (4.5).

(GIH − FI)θk(xk) < zI −GIg (4.5)

Eq. (4.5) defines a polyhedral region of θ where the existence of the optimal solution is
ensured by Eq. (4.4). The region defined by Eq. (4.5) is referred to as a critical region in the
multiparametric programming literature. Different critical regions are defined by different
combinations of A and I. Then, the entire parameter space Θ can be decomposed into
connected critical regions denoted by {Θi}, i = 1, · · · , nΘ. nΘ denotes the total number
of critical regions in Θ. In practice, critical regions that are very small are ignored and
assumed to be covered by the adjacent critical region. Correspondingly, superscript i is
used to denote the i -th critical region. Assume for a specific θ ∈ Θi, the optimal flux
v vector can be calculated analytically by vik = Hiθk + gi thus bypassing the need for
solving the LP.

By substituting the optimizer equation vik = Hiθk + gi into Eq. (4.1a), we obtained
a set of governing state equations as per Eq. (4.6). Since different θk are within different
critical regions as Eq. (4.6b), each critical region corresponds to different state equations
Eq. (4.6a). Thus the set {Θi} defines a family of state space models and this family
is referred to as a variable structure system. A variable structure system is a piecewise
continuous system composed of subsystems where each subsystem corresponds to a different
region of the state space. And the region of the state space corresponding to a specific
subsystem is referred to as a critical region. Each subsystem is described by a different
set of state equations. Accordingly, the state equations need to be changed as soon as
the states enter a new critical region. Here, the superscript i denotes the i-th subsystem
corresponding to critical region Θi. Eqs. (4.6c)-(4.6e) remain the same form as Eqs.
(4.1b)-(4.1d).

xk+1 = Bxk +∆txbio,kA(Hiθk(xk)+ g
i) + h (4.6a)

θk(xk) ∈ Θi i = 1, · · · , nΘ (4.6b)

yk = Cxk + rk (4.6c)

x0 ∈ P0 (4.6d)

rk ∼ TN(0,Σ, l,u) k = 0, 1, 2 · · · (4.6e)

57



Reaction Rate Estimability

To further simplify the system described by Eq. (4.6) it is possible to exploit the sparseness
(Columns are zeros) of the H matrix. For instance, to take advantage of zero columns of
H , Eq. (4.4) can be re-written as shown in Eq. (4.7). For conciseness, the subscript k is
omitted here because Eq. (4.7) applies for all time steps.

vi =Hiθ(x)+ gi =
[
Hi

N Hi
Z

] [θiN(xi
N)

θiZ(x)

]
+ gi =Hi

Nθ
i
N(xi

N)+ gi (4.7)

In Eq. (4.7) N and Z denote the indices of the nonzero and zero columns of theH matrix
respectively. Because HZ is a submatrix containing the zero columns of H , the flux v
is only a function of parameters θN(xN) according to Eq. (4.7). Moreover, while the
parameters θ are a function of states x (see Eq. (4.1) and (4.3)), only some elements
of x actually determine the entire flux vector v. The vector xN contains, according to
Eq. (4.7), the states that determine the flux vector. Notice that for different critical
regions flux-determining vector xN contains different states. Therefore, Eq. (4.6a) can be
simplified into Eq. (4.8).

xk+1 = Bxk +∆txbio,kA(Hi
Nθ

i
N(xi

N,k)+ g
i) + h (4.8)

The biological interpretation of the flux-determining state vector xN is that only some
resources are limiting the growth of cells, either because they are limited or because the
activity of enzymes in the related reactions (fluxes) is limiting. As the fermentation pro-
gresses, the states transit into new critical regions from old critical regions. Different
critical regions can be interpreted as different metabolic stages where xN are different.
Similar interpretations have been reported in [2] in the context of steady-state flux balance
analysis.

In Eq. (4.8), the term ∆txbio,kA(Hi
Nθ

i
N(xi

N,k)+ g
i) denotes the change of metabolite

concentrations contributed by metabolic reactions. Therefore, the reaction rates are
xbio,kA(Hi

Nθ
i
N(xi

N,k)+ g
i). It is noted that this nonlinear reaction rate term is not only

a function of the flux-determining states vector xN but also of biomass concentration xbio,
because the fluxes are defined per unit biomass, i.e. more biomass demands more nutrients
to satisfy the requirement of the growth. Once the states that determine the reaction
rates, i.e. the states xN together with the value of xbio, can be estimated, the estimation
problem can be simplified greatly. Since in some cases xN contains xbio but in some cases
it does not, we define a reaction-rate-determining state vector xM in Eq. (4.9). Hence,

58



the reaction-rate-determining state vector xM always contains the flux-determining states
xN and the biomass state xbio without any redundancy.

xM =


xN , if xN contains the biomass state xbio .[
xN

xbio

]
, otherwise.

(4.9)

The vector xM for critical region Θi is denoted by xi
M . We define reaction rate es-

timability as the ability to determine the reaction rates xbio,kA(Hi
Nθ

i
N(xi

N,k)+ g
i) in the

metabolic networks which are needed for the calculation of Eq. (4.8). Following the above,
once reaction-rate-determining state vector xM at time step k can be estimated, the dy-
namic evolution of the culture at step k+1 as per Eq. (4.8) can be predicted. Also, it should
be noticed that it is not necessary to measure all the reaction-rate-determining states for
reaction rate estimability and instead some states can be estimated by an observer from
available measurements. However, if an observer is used to estimate xi

M , some particular
combination of measurements is necessary for the observability of xi

M . Considering dif-
ferent measurement combinations Ωi

1, Ω
i
2... for critical region Θi, only some combinations

provide full observability of xi
M . Let define Ωi

O as a family of sets of measurements, which
contains all measurement combinations that fulfill the observability of xi

M .

Although many different critical regions and corresponding combinations of measure-
ments could be considered, in practice, the possibilities will be limited because industrial
fermentations usually operate in a narrow range of operating conditions. Thus, the dy-
namic trajectories of states only pass through a limited set of critical regions. Assume
for ∀x0 ∈ P0, the set of critical regions that the trajectories traverse are Γ. Then, the
minimum set of measurements required for reaction rate estimability of the critical region
set Γ is ΩΓ as per Eq. (4.10).

ΩΓ = min
j

|
⋃
i

Ωi
j| (4.10a)

subject to i ∈ Γ (4.10b)

Ωi
j ∈ Ωi

O (4.10c)

where | · | is the cardinality of a finite countable set, i.e. the number of elements of a
set. In Eq. (4.10c), Ωi

j ∈ Ωi
O indicates that the measurement combination Ωi

j can fulfill
the observability of reaction-rate-determining states xi

M of critical region Θi. If all states
in set ΩΓ are measured, the reaction rate term of any trajectory starting from P0 can be

59



estimated by an observer. In other words, although xi
M in different critical regions may

be different requiring different measurements for observability, xi
M is always observable if

the chosen set of measurements satisfies Eq. (4.10c).

4.3.3 Extended Kalman Filter (EKF)

Using the minimum required set of measurements ΩΓ defined in Eq. (4.10c), xM can be
estimated by an observer. xM corresponds to the observable subspace of the governing
equation (Eq. (4.1)) for each critical region. The state equation of the observable subspace
for critical region Θi is given by Eq. (4.11).

xi
M,k+1 = f i(xi

M,k) = Bx
i
M,k +∆txbio,kAM (Hi

Nθ
i
N(xi

N,k)+ g
i) + hM (4.11a)

yk = Ci
Mx

i
M,k + rk (4.11b)

rk ∼ TN(0,Σ, l,u) k = 0, 1, 2 · · · (4.11c)

Where xi
N,k and x

i
M,k are the flux-determining state vector and the reaction-rate-determining

state vector for critical region Θi respectively; AM is the stoichiometry submatrix corre-
sponding to xM ; similarly hM is sub-vector of h corresponding to xM . It should be
noticed that for different critical regions, xM involves different states. Accordingly, each
critical region requires the use of a different EKF. Also, it should be noticed that the Ci

M

matrices are different for each critical region but the measured variables ΩΓ are the same
since the same sensors are used for the entire fermentation.

To estimate xi
M , a standard EKF is used due to its effective and simple structure [103].

The estimate x̂i
M,k and covariance P i

k of xi
M for critical region Θi are described by Eq.

(4.12a) and Eq. (4.12b) respectively.

x̂i
M,k = f i(x̂i

M,k−1) +Kk(yk −Ci
M x̂

i
M,k) (4.12a)

P i
k

−1
= Φi

k−1P
i
k−1Φ

i
k−1

T
+Ci

M

T
(ΣΣT )−1Ci

M (4.12b)

Where

Kk = Φi
k−1P

i
k−1Φ

i
k−1

T
Ci

M

T
(Ci

MΦi
k−1Pk−1Φ

i
k−1

T
Ci

M

T
+ΣΣT )−1 (4.13a)

Φi
k =

∂f i

∂xi
M

(x̂i
M,k) (4.13b)

The measurement noise is assumed to be a truncated multivariate normal distribution

60



as Eq. (4.11c). This assumption is needed for estimating finite bounds as explained in
the following section. Recall in Eq. (4.2) that |l| ≤ 3σ and |u| ≤ 3σ, the lower and
upper bounds are located within the range of 3σ. The covariance matrix Pk is always
overestimated to ensure boundedness. Although the EKF resulting from this assumption
is sub-optimal it is still sufficient to estimate xi

M .

4.3.4 Set Propagation and Error Compensation

Since the minimum set of measurements defined by Eq. (4.10) can only ensure the ob-
servability of xM , the estimation of other states needs different estimation strategies.
The idea is to exploit the a priori knowledge of the initial ranges of initial conditions to
estimate all states. Instead of predicting specific values of states, the set membership
estimation (SME) approach is used to predict sets containing all possible states by a se-
ries of set operations. These set operations usually include linear mapping, projection,
translation, Minkowski addition, intersection, union, and outer approximation. In this re-
search, all sets and multiparametric linear programming operations are performed with the
Multi-Parametric Toolbox 3.0 (https://www.mpt3.org/) [43] and MATLAB R2018a. The
E.coli example can be found online (https://github.com/SetMembershipEstimationDFBM
∼/E.coliExample). For DFBM, SME propagates the initial set P0 by affine mapping as
Eq. (4.14). Affine mapping involves two operations: linear mapping of the previous set
and translation.

X̂k+1 ≈ BX̂k︸︷︷︸
linear mapping

+ ∆tx̂bio,kA(Hi
Nθ

i
N(x̂i

N,k)+ g
i) + h︸ ︷︷ ︸

translation

(4.14)

Where X̂k represents the set of states at time step k and X̂0 = P0, i.e. the set of initial
conditions assumed to be known. In Eq. (4.14), the translation term is approximated by
using the estimate x̂i

M,k obtained by the EKF. In the application of EKF, the estimate x̂i
M,k

needs several time steps to converge to the true flux-determining states xi
M,k. Thus the

SME described by Eq. (4.14) may underestimate bounds while the EKF is converging. To
mitigate this problem a correction is implemented to compensate for the estimate error as
described below. Since no extra information is available, the compensation of the estimate
error is based on the worst-case scenario.

The error in the estimate incurred by the observer for critical region Θi is eiM =
xi
M,k − x̂i

M,k. Since xi
M,k always contains biomass xibio,k and xi

N,k, the corresponding

estimate errors are defined as eiN,k = xi
N,k − x̂i

N,k and eibio = xibio,k − x̂ibio,k. Let’s assume

61



that the function θ is first-order differentiable and define Jacobian matrix ψi
k.

ψi
k =

∂θiN
∂xi

N

(x̂i
N,k) (4.15)

Substituting the estimate error eik, e
i
bio and Jacobian matrix ψi

k into Eq. (4.8), a corrected
state equation that accounts for the estimate error is obtained as Eq. (4.16). Eq. (4.16)
uses a first-order approximation to account for the state deviation ϵik caused by the estimate
error eiM,k while the EKF is converging. The error compensation based on linearization
provides satisfactory bounds because the error between the estimate and measured is small
and decreases quickly due to the convergence of EKF.

xk+1 = Bxk +∆tx̂bio,kA(Hi
Nψ

i
kx̂

i
N,k + g

i) + h+ ϵik (4.16a)

ϵik =Dke
i
N,k + ebio,kMke

i
N,k +Lkebio,k (4.16b)

Where

Dk = x̂bio,k∆tAH
i
Nψ

i
k + h (4.17a)

Mk = ∆tAHi
Nψ

i
k (4.17b)

Lk = ∆tA(Hi
Nθ

i
N,k(x̂

i
N,k)+ g

i) (4.17c)

Figure 4.1: Illustration of the interval set containing the distribution of states.

To formulate an error compensation operation scheme several set operations are intro-
duced first as follows. The n-dimensional interval set is S(p, q) with lower bound p and
upper bound q as S(p, q) = {x ∈ Rn : p ≤ x ≤ q}. The outer approximation operation

62



Q(·) of a bounded set W is denoted by Q(W), which involves the mapping of the set
W to a new interval set. If the infimum and supremum are denoted by inf(·) and sup(·)
respectively, the outer approximation of the set W is Q(W) = S(inf(W), sup(W)). The
operator ⊕ is the Minkowski addition of two sets. For example, for two sets α and β,
α⊕ β = {a+ b : a ∈ α, b ∈ β}.

Notice that the diagonal elements of P i
k are the variances of each state. Then, if the

standard deviation of eiN,k is ηi
N,k and of eibio,k is η

i
bio,k, two interval sets EN,k and Ebio,k can

be defined to bound ηi
N,k and ηibio,k respectively based on choice of 3 standard deviation

range, as eiN,k ∈ EN,k = S(−3ηi
N,k, 3η

i
N,k) and e

i
bio,k ∈ Ebio,k = S(−3ηibio,k, 3η

i
bio,k). In Eq.

(4.16b), since |eibio,k| < 3ηibio,k, we have ebio,kMke
i
N,k ∈ 3ηibio,kMkEN,k. Similarly, the other

two terms in Eq. (4.16b) can be bounded as Dke
i
N,k ∈ DkEN,k and Lkebio,k ∈ LkEbio,k

respectively. Therefore, the state deviation ϵik term can be contained within the interval
set Eϵ,k according to Eq. (4.18).

ϵik ∈ Eϵ,k = Q((Dk + 3ηibio,kMk)EN,k)⊕Q(LkEbio,k) (4.18)

where the sets DkEN,k and 3ηibio,kMkEN,k occurring in Eq. (4.18) are combined together.
On the other hand LkEbio,k originates from a different set Ebio,k and thus Minkowski ad-
dition must be used to add the different sets. However, linear mapping of interval sets
can lead to irregular convex sets. In computational geometry, traditional algorithms that
perform Minkowski addition for two convex irregular high-dimensional polytopes are com-
putationally expensive [23]. On the other hand, Minkowski addition of two interval sets is
computationally efficient because intervals are axis-aligned. Thus, the operator Q(·) that
converts the irregular set to an axis-aligned set is applied to speed up the computation of
the Minkowski addition.

Following the above, the set of states X̂k+1 is bounded by the prior estimate set P−
k+1

according to Eq. (4.19).

P−
k+1 = Q{ BP+

k︸ ︷︷ ︸
linear mapping

+∆tx̂bio,kA(Hi
Nθ

i
N(x̂i

N,k)+ g
i) + h︸ ︷︷ ︸

translation

} ⊕ Eϵ,k (4.19a)

X̂k+1 ⊂ P−
k+1 (4.19b)

Where the set of the posterior estimate is P+
k . BP+

k denotes the scaling of the set P+
k by

the diagonal matrix B. Then the set BP+
k is translated by the vector in the big curly

brackets. To compensate for the deviation during the convergence of EKF, the interval set
Eϵ,k is added by Minkowski addition.

63



Considering the truncated measurement noise rk = yk − Cxk is bounded by lower l
and upper bounds u, let define a set Mk = {xk ∈ Rnx : l < yk −Cxk < u}. Then, the
posterior estimate set P+

k+1 is given by Eq. (4.20). In this study, it is assumed that P+
k

and P−
k+1 are much smaller than the volumes of the critical regions.

P+
k+1 = P−

k+1

⋂
Mk+1 (4.20a)

X̂k+1 ⊂ P+
k+1 (4.20b)

P+
0 = P0 (4.20c)

Fig. (4.2) illustrates the set propagation using intervals for an example involving two
states, e.g. glucose and biomass concentrations. The initial set P0 contains all possible
initial values of glucose and biomass. Then P+

1 is generated through set operations by
computational geometry algorithms. Since an interval set is used, it is computationally
efficient to project the set P+

1 onto the biomass and glucose axes to obtain the corresponding
lower bounds lglc, lbio and upper bounds uglc, ubio as shown in the figure for the set P+

1 .

Figure 4.2: Illustration of set propagation of SME by set operations.

64



4.3.5 Detecting the transition between critical regions

The proposed use of multiparametric programming converts the DFBM into a variable
structure system composed of subsystems where each critical region corresponds to a sub-
system. Along a given time trajectory the states may transit from one critical region to
another. When the states estimated by the EKF leave a critical region Θi to enter into
another critical region Θj , the estimate x̂M,k and the covariance Pk must be reinitialized
because xM for different critical regions may be different, even though the measured states
are the same. Moreover, a criterion is required to detect whether the states are entering
into a new critical region.

When the system is traversing from one critical region to another, it needs to cross
a boundary between the critical regions. Over time the states may cross over several
boundaries along their trajectories and these crossings must be detected. Two neighboring
critical regions share a boundary where an active constraint will become inactive or vice
versa. The activation of a constraint may require the change of constraints related to
x̂N,k. For a given constraint, θ is usually the only function of two states at most because
of commonly used Michaelis–Menten kinetics [71] or constraints to prevent the depletion
of nutrients [13] and one of these two states is biomass. So two special cases should be
considered as follows when the system switches from one critical region to the next:

Case i- xi
N of the old critical region Θi have one more state observable than the xj

N of
the new critical region Θj . For this case, the switch between critical regions is determined
by Eq. (4.21). Eq. (4.21) calculates the norm of the difference between the flux estimates
obtained with Eq. (4.7) in the two neighboring regions. Notice that the flux estimate
of Θj is based on estimate x̂i

N,k of the old critical region. The value of γ(i, j, k) is used
to detect the occurrence of a switch. If the system is exactly at the boundary of these
two critical regions, the flux equation Eq. (4.7) for these two critical regions should result
in the same flux value, and γ(i, j, k) will be zero. A schematic example is shown in Fig.
(4.3). Polygons in different colors represent different critical regions in the parameter
space Θ. As the state evolves with time, the corresponding θ changes along the dashed
line in parameter space Θ. As the θ approaches the boundary of between the critical
region Θ1 and Θ2, γ(i, j, k) approaches zero. Correspondingly, a value of γ(i, j, k) smaller
than a user-specified tolerance indicates a switch between critical regions thus requiring
reinitialization of the EKF as follows: x̂j

N,k is set equal to x̂i
N,k and P j

k is set equal P i
k.

γ(i, j, k) =
∥∥∥v̂ik − v̂jk∥∥∥ =

∥∥∥Hi
Nθ

i
N(x̂i

N,k)+ g
i − (Hj

Nθ
j
N(x̂i

N,k)− gj)
∥∥∥ (4.21)

65



Figure 4.3: Illustration of detecting critical region switch.

Case ii- xj
N of the new critical region Θi have one more state observable than the xj

N of

the old critical region Θi. To reinitialize the EKF, x̂j
N,k and P j

k can be set to the old values
except for the new observable state that is not observable in the old critical region and
thus it needs to be estimated for calculating γ(i, j, k). By projecting the set P+

k , the lower
lun,k and upper bounds uun,k can be calculated. Since no extra information is available,
the mean value of the upper bound and the lower bound is used as the nominal value of
the unobservable state as per Eq. (4.22).

x̂iun,k =
1

2
(uun,k + lun,k) (4.22)

Eq. (4.23) is used to calculate γ(i, j, k). The flux estimate for the new critical region Θj

is based on the nominal values of the unobservable state x̂iun,k combined with x̂iN,k of the
old critical region.

γ(i, j, k) =
∥∥∥v̂ik − v̂jk∥∥∥ =

∥∥∥Hi
Nθ

i
N(x̂i

N,k)+ g
i − (Hj

Nθ
j
N(x̂iun,k, x̂

i
N,k)− gj)

∥∥∥ (4.23)

To reinitialize the EKF the estimate and covariance are used together with the estimate
of the new state that is added in the new critical region. Assuming the states are close

66



enough to the boundary between the critical regions, then equation (4.24) holds.∥∥∥Hi
Nθ

i
N(x̂i

N,k)+ g
i − (Hj

Nθ
j
N (x̂jN,k, x̂

i
un,0)− gj)

∥∥∥ = 0 (4.24)

The initial estimate of the new observable state x̂jun,0 in the new region can be calculated
by solving the equation (4.24). Since the new state is between the upper bound and lower
bound by SME, the half-length between uun,k and lun,k is the worst possible deviation.
Then, using a 3 standard deviation range, the initial variance η2un,k can be estimated
according to Eq. (4.25) and all other covariance terms related to the new state are assumed
to be zero.

ηun,k =
1

3
· 1
2
(uun,k − lun,k) (4.25)

Bounds of states estimated by the SME are rigorously guaranteed in each critical region
separately but subject to the accurate tuning of the tolerance that is used to switch between
the subsystems. The tolerance of γ(i, j, k) is the only user-specified parameter in this
research. If the tolerance is too large or small, the EKF may switch the subsystem too early
or too late. Accordingly, if the wrong state equations are used in estimation, the bounds
on the states may be violated. To avoid such a situation, exhaustive simulations that
are initialized with P0 are conducted to find the tolerance used to switch between critical
regions. As an alternative, an overestimated covariance can also be used to reinitialize the
EKF when a state enters a new critical region to avoid bound violations.

4.4 Results

4.4.1 DFBM Model of E.coli

A DFBM model of E. coli reported in [64] is used to illustrate the proposed methodology.
The DFBM in batch operation includes four states glucose concentration xglc, oxygen con-
centration xoxy, acetate concentration xace, and biomass concentration xbio as Eq. (4.26).

Thus the state vector is x =
[
xglc xoxy xace xbio

]T
. The substrates are glucose, oxygen,

67



and acetate.

xglc,k+1 = xglc,k +∆txbio,kAglcvk (4.26a)

xoxy,k+1 = (1− kLa∆t)xoxy,k +∆txbio,kAoxyvk + 0.21kLa∆t (4.26b)

xace,k+1 = xace,k +∆txbio,kAacevk (4.26c)

xbio,k+1 = xbio,k +∆txbio,kAbiovk (4.26d)

x0 ∈ P0 = S(
[
0.38 0.1995 0.19 0.00095

]T
,
[
0.42 0.2205 0.21 0.00105

]T
)

(4.26e)

Where kLa = 4 h−1 is the oxygen mass transfer coefficient. The initial state vector
x0 is defined by the interval set P0 according to Eq. (4.26d). The matrix A contains
the stoichiometric coefficients corresponding to four reactions according to Eq. (4.27).
Each column of this matrix corresponds to one reaction and each row corresponds to one
component.

A =


Aglc

Aoxy

Aace

Abio

 =


0 −9.46 −9.84 −19.23

−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

1 1 1 1

 (4.27)

The flux vector vk is obtained by solving the following linear programming problem as Eq.
(4.28):

max
vk

Abiovk (4.28a)

subject to −Aoxyvk ≤ OURmax (4.28b)

Aacevk ≤ 100 (4.28c)

−∆tAglcvk ≤ xglc,k
xbio,k

= θ1,k (4.28d)

−∆tAoxyvk ≤ (1− kLa∆t)xoxy,k + 0.21kLa∆t

xbio,k
= θ2,k (4.28e)

−∆tAacevk ≤ xace,k
xbio,k

= θ3,k (4.28f)

−Aglcvk ≤ GURmaxxglc,k
Km + xglc,k

= θ4,k (4.28g)

68



Where OURmax = 12mM/(g-dw·h) is the maximum oxygen uptake rate and g-dw is
grams of the dry weight of biomass; GURmax = 6.5mM/(g-dw·h) denotes the maximum
glucose uptake rate. Eq. (4.28a) describes that the objective of the cells is to maximize the
biomass growth rate. Eq. (4.28b) indicates that the oxygen consumption rate is limited
by a maximum uptake limit. Eq. (4.28c) indicates that the acetate generation rate is
bounded by 100mM/(g-dw·h). Eq. (4.28g) indicates that the glucose consumption rate is
bounded by an upper limit. All the other constraints are positivity constraints to prevent
the depletion of metabolites. To express these constraints in Eq. (4.28) compactly the
constraints in (4.28) can be expressed in the form of Eq. (4.3):

Gvk ≤ Fθk(xk)+ z (4.29a)

G =



−Aoxy

Aace

−∆tAglc

−∆tAoxy

−∆tAace

−Aglc


(4.29b)

F =



0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


(4.29c)

z =



OURmax

100
0
0
0
0


(4.29d)

4.4.2 Determination of Minimum Measurements

Due to the assumption that the initial state is contained in an interval, the problem in Eq.
(4.28) can be formulated as a multiparametric linear programming (mpLP) problem. The
vector θ is composed of four parameters which are nonlinear functions of states. Using

69



the Multi-Parametric Toolbox 3.0 it is found that the entire parameter space Θ can be
decomposed into a maximum of 24 critical regions. For each critical region, the mpLP
solver calculates the constraints that form the boundaries of the region and the equations
that generate the optimal solutions. In order to reduce the computational effort, extensive
simulations are conducted with randomly chosen initial values in set P0 to identify which
critical regions are relevant for the problem. It is found from these simulations that for the
chosen range of initial conditions the states only traverse through two neighboring critical
regions Θ1 and Θ2 assuming small critical regions are ignored. According to the results of
the mpLP solver, the two critical regions can be defined as Eq. (4.30a) and Eq. (4.30b).
Critical regions Θ1 and Θ2 share a boundary defined in Eq. (4.30c). Since θ is a function
of x, the critical regions are next to each other in the state space.

Θ1 :



−0.9988 0 0 0.0499 0
0 −1 0 0 0
0 0 −0.9971 −0.0767 0
0 0 0 −0.0033 −1
0 0 0 1 0
0 0 0 −1 0


θ(x) ≤



0
−0.6

−0.6740
0.0171
8.7864

0


(4.30a)

Θ2 :



−0.9988 0 0 0.0499 0
0 −0.7469 0.6630 0.0510 0
0 0 −0.0254 −0.0053 −0.9997
0 0 −1 0 0
0 0 0.9971 0.0767 0
0 0 0 −1 0


θ(x) ≤



0
0
0
0

0.6740
0


(4.30b)

Θ1
⋂

Θ2 :
[
0 0 0.9971 0.0767 0

]
θ(x) = 0.6740 (4.30c)

Accordingly, the mpLP solver also calculates the matrixH and g used in the flux equation
Eq. (4.7) for these two critical regions. By taking advantage of the sparseness of H for
these two critical regions, θN can be determined. The equations to calculate fluxes for
these two critical regions can be expressed as Eq. (4.31).

v1k =
[
−0.039 0.1057 0 0

]T
θ4(xglc,k) +

[
0.3429 0 0 0

]T
(4.31a)

v2k =
[
0.5072 0 0 0

]T
θ3(xace,k, xbio,k) +

[
0 0.1057 0 0

]T
θ4(xglc,k) (4.31b)

70



Where θN for critical region Θ1 is θ4 and θN for critical region Θ2 is θ3 and θ4. By
substituting the flux equation Eq. (4.31) into the Eq. (4.26), the simplified state equations
of E.coli model can be rewritten compactly as in Eq. (4.32).

xk+1 = Bxk +∆txbio,kAv
1
k(xglc,k) + h θ(xk) ∈ Θ1 (4.32a)

xk+1 = Bxk +∆txbio,kAv
2
k(xace,k, xbio,k, xglc,k) + h θ(xk) ∈ Θ2 (4.32b)

Following the calculations above the original E. coli model is simplified into an equiva-
lent system comprised of two subsystems of interest. Eq.(4.32a) and Eq.(4.32b) describe
subsystem 1 and subsystem 2 respectively. These two subsystems are continuous in the
state space and they share the same boundary as per Eq. (4.30c). Once the state crosses
the boundary between the two subsystems, the governing equation is switched from Eq.
(4.32a) to Eq. (4.32b). Because the initial state is randomly initialized in set P0, P0

corresponds to a set in Θ1. Thus, the state evolves within the region of subsystem 1 and
gradually approximates the region of subsystem 2 governed by Eq. (4.32b) until finally
crosses the boundary given by Eq. (4.30c). As only part of θ is known, a detector is used
to detect the crossing of the boundary thus ensuring that the switch between the regions
is done accurately.

Based on the flux equation Eq. (4.31), the reaction-rate-determining states vector
xi
M for Θ1 are biomass and glucose and for Θ2 are biomass, acetate, and glucose. Ac-

cordingly, the possible combinations of measurements needed for observing x1
M of Θ1

include Ω1
1 = {Bio}, Ω1

2 = {Glc} and Ω1
3 = {Bio,Glc}. Similarly, there are 7 possible

combinations of measurements for observing the vector x2
M in Θ2, namely Ω2

1 = {Ace},
Ω2

2 = {Bio}, Ω2
3 = {Glc}, Ω2

4 = {Ace,Bio}, Ω2
5 = {Bio,Glc}, Ω2

6 = {Ace,Glc}, and
Ω2

7 = {Ace,Bio,Glc}. To find a combination of measurements ΩΓ that will be suitable
for both critical regions, it is necessary to perform an analysis of observability for these
combinations. The Symbolic Toolbox calculation of MATLAB R2018a is used to develop
an analytical equation observability rank condition and rank of Φi

k of the nonlinear system
according to the criterion presented in [103]. Since the symbolic expressions of the rank for
each critical region for Eq. (4.11) are very complex it is very difficult to infer an analytical
condition of observability for all possible values of the states. Instead, the rank values are
calculated for different measurement combinations and rank of Φi

k using a Monte Carlo
algorithm based on 5 million samples of Θ1 and Θ2 respectively. According to these Monte
Carlo simulations, the only measurement required for observability of the vectors x1

M in
Θ1 and x2

M in Θ2 is the biomass concentration, namely ΩΓ = {Bio}.

71



4.4.3 EKF for the Two Subsystems and Detection of Transition
between Subsystems

Based on the aforementioned observability analysis the biomass concentration is the only
state that needs to be measured online as per Eq. (4.33a) for implementation of the EKF.
Measurement noise is assumed as a truncated normal distribution as described by Eq.
(4.33b). Since the initial P0 is assumed to be known, the EKF is initialized at the center
of P0 with a variance based on 3 standard deviations and zero covariance terms. The state
of the plant is initialized randomly by sampling a point within the region defined by P0.

yk =
[
0 0 0 1

]
xk + rk (4.33a)

rk ∼ TN(0, 0.0042,−0.0004, 0.0004) k = 0, 1, 2 · · · (4.33b)

Based on the assumed P0, in the batch process the EKF starts in the critical region Θ1

and later it transitions into critical region Θ2. Thus, two EKFs are required in this case
study to estimate the xM as summarized in Table. 4.1. Based on the biomass measurement
yk, the glucose and biomass concentrations are estimated by the EKF for Θ1 as x̂N,bio,k
and x̂N,glc,k. With the same biomass measurement, the second critical region Θ2 has one
more observable state which is the acetate concentration x̂N,ace,k.

Table 4.1: Observable and Unobservable Subspace of Two Subsystems of DFBM Model of
E.coli .

Subsystem of Θ1 Subsystem of Θ2

Observable Subspace (xM ) Glc, Bio Glc, Ace, Bio
Unobservable Subspace Ace, Oxy Oxy

Measurement Bio Bio

Since acetate and oxygen are unobservable in Θ1 they need to be estimated by bounds.
To find these bounds, SME propagates the initial set P0 by set operations to obtain a prior
estimate set P−

k as Eq. (4.19). After obtaining the measurement of biomass, a posterior
estimate set P+

k as in Eq. (4.20) is calculated by set operations. The error due to the lack
of convergence of the EKF is compensated by using Eq. (4.18). By projecting P+

k onto
the axis of acetate and oxygen respectively, the upper bound uun,k and lower bound lun,k

of these two states are obtained.

72



Since Θ2 has one more flux-determining state acetate that is not observable from the
measurement of biomass, it must be estimated as explained in Eq. (4.22). Using the
mean value of uun,ace,k and lun,ace,k the nominal values of the unobservable state x̂un,ace,k
is obtained. Using the EKF estimates of the observable flux-determining states x̂N,k

together with the nominal value of acetate x̂un,ace,k, the detection scheme explained in
subsection (4.3.5) can be implemented. Accordingly, γ(i, j, k) is calculated from Eq. (4.23)
to determine the switch from critical region Θ1 to critical region Θ2. The tolerance of
γ(i, j, k) to determine the switch between the critical regions is assumed as 0.08. This
tolerance is the only tuning parameter of the proposed method and it is determined by
trial and error. After the switch occurs the acetate concentration is initialized by the
solution of Eq. (4.24) and the variance of acetate is initialized based on Eq. (4.25). After
the switch to critical regionΘ2 the EKF continues to generate estimates of glucose, acetate,
and biomass concentrations in Θ2, and the SME approach is used to propagate the set P+

k

as done in critical region 1. Fig. (4.4) presents the posterior estimate sets P+ and true plant
state x at different times. Since the model is 4 dimensional, the posterior estimate sets
P+ are projected for visualization onto two-dimensional spaces: glucose-oxygen subspace
and acetate-biomass subspace. The 8 boxes denote the projected posterior estimate sets
between 0h to 7h and each box represents an hour. The arrows in Fig. (4.4) indicate the
direction of time evolution. The black dots denote the true plant state. Since biomass
is measured, the length of the boxes along the biomass dimension is relatively smaller
as compared to the other dimensions. The switch between the critical regions occurs at
around 5h.

73



Figure 4.4: Posterior estimate sets projected onto glucose-oxygen subspace and acetate-
biomass subspace at different times.

4.4.4 Set Membership Estimation

To verify the estimate and bounds generated by the proposed algorithm, we use a special
Monte Carlo Algorithm (MCA) that takes biomass measurements into account. MCA ran-
domly samples 100000 different points from P0 and uses them as initial states’ values, and
then calculates the corresponding trajectories with respect to time. Since for the measure-
ment of biomass a truncated normal distribution measurement noise was assumed, some
trajectories are not within the confidence interval of measurements. Once a trajectory is
found out of the measurement range, the evolution of the trajectory is stopped and the
corresponding trajectory is removed while trajectories that are still within the confidence
interval of measurements are kept. Accordingly, only a part (2581) out of the trajectories
starting from P0 are used for comparison to the bounds calculated by the proposed method.
It should be noticed that the fraction of trajectories kept for comparison is small because
only a very narrow set of solutions are within the measurement range from the beginning
to the end. In other words, only a small part of the samples considered in the simulation
is compatible with the biomass-measured trajectory that is assumed for the calculation of
bounds by the set-based approach. Using parallel computation, 4 hours and 4 minutes of
CPU time were required to complete all simulations. For comparison, the method proposed
in this work can generate bounds with only 41 sec of CPU time without parallel compu-
tation. It should be remembered that the MCA was conducted for a specific trajectory of
biomass measurements so as to enable a fair comparison with the method proposed in the

74



current study. While it could be argued that MCA could be used to calculate bounds for all
possible biomass trajectories this will be computationally prohibitive. Thus the proposed
technique is a practical and analytical approach to the online estimation problem.

In Fig. (4.5) the grey area denotes the trajectories randomly sampled and the two black
lines represent the upper and lower bounds by SME. It is clear that the SME contains all
the solutions generated by MCA, especially for the unobservable states. It can be observed
that the switch from one critical region to the other occurs at approximately 5 h as shown
in Fig. (4.2) shows. Before 5 h, the reactor has enough resources for cell growth and the
limiting step is glucose uptake as Eq. (4.31a) shows. Thus, critical region Θ1, corresponds
to the logarithmic phase of growth where the latter is driven by glucose consumption. At
about 5 h, the simultaneous depletion of acetate and glucose leads to a metabolic switch
from the logarithmic phase to the stationary phase. Following this metabolic switch, the
culture is also acetate limited, and thus acetate becomes a new flux-determining state.
Since the oxygen feed rate is maintained constant in the model, the fact that the growth
significantly decreases after the switch explains why the oxygen concentration bounces
back up.

0 2 4 6 8

Time (h)

0

0.2

0.4

G
lc

 (
m

M
)

0 2 4 6 8

Time (h)

0.1

0.15

0.2

O
x
y

 (
m

M
)

0 2 4 6 8

Time (h)

0

0.1

0.2

A
ce

 (
m

M
)

0 2 4 6 8

Time (h)

0

0.02

0.04

0.06

B
io

 (
m

M
)

Figure 4.5: Comparison between MCA with bounds of 4 components estimated by SME
in batch fermentation of E.coli.

75



To further verify the proposed scheme, similar MCA simulations were conducted with a
larger initial uncertainty and measurement noise. In Fig. (4.6), the bounds of 4 component
concentrations estimated by SME are shown. It is clear that the simulated trajectories
contained in the grey color band generated by MCA are within the bounds calculated by
the proposed methodology. From the comparison of Fig. (4.5) and Fig. (4.6), it is found
that the SME approach copes with the larger noise and initial uncertainty by generating
larger bounds.

0 2 4 6 8

Time (h)

0

0.2

0.4

G
lc

 (
m

M
)

0 2 4 6 8

Time (h)

0.1

0.15

0.2

O
x

y
 (

m
M

)

0 2 4 6 8

Time (h)

0

0.1

0.2

A
ce

 (
m

M
)

0 2 4 6 8

Time (h)

0

0.02

0.04

0.06

B
io

 (
m

M
)

Figure 4.6: Comparison between MCA with bounds of 4 components estimated by SME
with a loud noise.

4.5 Discussion

DFBM models are advantageous since they contain significant detail about cell metabolism
as compared to classical unstructured models. However, due to this level of detail, DFBM
contains many states thus resulting in a more difficult state estimation problem. The
challenge of dealing with a large number of states is further exacerbated by the fact that
online measurements of metabolites are generally difficult to obtain or not available. With
limited online measurements, it is often impossible to have observability for all the states.

76



Noticing that the diagonal matrix B in Eq. (4.19) is a linear mapping of states, if the
nonlinear term ∆txbio,kAvk can be estimated then it is possible to estimate the other states
of the DFBM.

Multiparametric LP is introduced to convert the original system into a series of piece-
wise continuous subsystems based on the partitioning of the parameter space into critical
regions. The availability of an explicit expression for the calculation of the LP optima for
each critical region significantly simplifies the solution of the problem. Although many
critical regions may be mathematically possible, industrial fermentation is operated in a
narrow range of initial operating conditions such as only a few critical regions need to be
considered.

Beyond their computational convenience, the critical regions identified by the Multi-
parametric LP approach can be interpreted as corresponding changes in cell metabolism.
The relative abundance of substrates i.e. glucose, acetate, and oxygen in E.coli model and
their consumption of biomass lead to the occurrence of different resources limitations at
any given time. Within some range of concentration, the limiting substrate remains the
same corresponding to a specific metabolism strategy.

In the E. coli example, four reactions can synthesize the biomass from glucose, acetate,
and oxygen. However, since the objective is to maximize growth subject to constraints, the
cell prioritizes these reactions differently at any given time due to their different efficiency
for biomass synthesis. The ratio of the stoichiometry coefficients in each column of matrix
A indicates the biomass yield of each substrate for each reaction. Reaction 1 is the only
reaction that consumes acetate to synthesize biomass. The yield of acetate to biomass
is 1

39.43
for reaction 1, which is very low compared with reaction 2 and reaction 3. The

biomass yield of reaction 2 and reaction 3 by glucose is 1
9.46

and 1
9.84

respectively. Reaction
4 is the only reaction that does not consume oxygen to generate biomass but it is very
inefficient. Because the biomass yield of these reactions is different, reaction 2 is preferred
over reaction 1 and reaction 3 when glucose and oxygen are abundant. When oxygen is
very low, the cells switch their metabolism from aerobic to anaerobic to generate biomass
through reaction 4.

To maximize the biomass growth rate, cells take advantage of reactions 1 and 2 to
consume as much acetate and glucose as possible when oxygen is sufficient. However, the
glucose amounts that can be consumed by the cells are limited by the glucose uptake rate,
which is θ4. Similarly, oxygen consumption is limited by a constant oxygen uptake rate as
Eq. (4.28b). The oxygen is consumed first with glucose in reaction 2 to synthesize biomass
and the remaining oxygen is consumed for reaction 1. Multiparametric LP captures the
relative priority of different reactions towards maximization of growth and identifies the

77



key limited resources. In critical region Θ1, glucose is the key resource that determines the
flux vector according to Eq. (4.31a). As glucose and acetate are consumed by reactions
1 and 2, biomass increases exponentially and the oxygen concentration drops fast due to
oxygen demands as in Figs. (4.5) and (4.6). At some point, the concentration of acetate
becomes very low but acetate is necessary for reaction 2 to synthesize biomass. Acetate
becomes the key limited resource and the system enters into a new critical region Θ2.
Then in Θ2, the metabolism is limited by the available acetate and glucose, and as they
deplete the growth of cells decreases and ultimately stops. Accordingly, Θ1 corresponds
to the logarithmic phase and Θ2 to the stationary phase of growth.

The use of EKF for each subsystem is used to estimate the reaction-rate-determining
states thus reducing the need for online measurements. Since biomass is highly correlated
with the reaction-rate-determining states, EKF can take advantage of biomass measure-
ment to estimate these states. Because some of these reaction-rate-determining states are
common to different critical regions, only a fewer states are required to be measured or
estimated, which greatly reduces the demand for online measurements of concentration.
In the E.coli example, only biomass need to be measured. Once the biomass is measured,
glucose can be estimated by the EKF in the critical region Θ1, and glucose and acetate
can be estimated in Θ2.

By using the SME upper and lower bounds for all states can be generated including
the unobservable ones such as acetate and oxygen in Θ1. Using the bounds of acetate and
biomass estimate it was possible to determine the switch from one critical region to another
and to re-initialize the estimates and covariance matrix for the EKF after the switch.

This research is helpful in DFBM-based control in bio-processes when many components
cannot be measured online. Using the upper and lower bounds calculated by SME of
unobservable states and estimated by EKF of observable states, robust control methods
can be applied to achieve optimal operation in the presence of uncertainty. The method
developed can also be extended to monitor the bio-processes and differentiate normal and
abnormal operations.

4.6 Conclusions

This research proposed a comprehensive DFBM-based approach to estimate the metabolite
concentrations with a minimal number of online measurements. The main idea is to convert
the DFBM model with uncertainty in initial conditions to an explicit variable structure
system that can be analyzed by multiparametric linear programming. A key finding of the

78



proposed work is that only a subset of the states referred to as reaction-rate-determining
states, is needed to calculate the flux vector. Identification of the reaction-rate-determining
states for each critical region permitted the determination of the minimum set of measure-
ments required for full-state estimation. EKFs were used to estimate the observable states
and set propagation by SME was used to identify the bounds of both the observable states
and unobservable states.

79



Chapter 5

Online Estimation Using Dynamic
Flux Balance Model and
Multiparametric Programming

5.1 Overview

1An approach is proposed for online estimation of bounds on metabolite’s concentrations
based on limited measurements and Dynamic Flux Balance Models (DFBM) which use
linear programming (LP) to model the evolution of metabolites with time. A Weighted
primal-dual method to address the multiplicity of solutions of DFBMs is combined with
multiparametric nonlinear programming (mpNLP) for set membership estimation. The
set membership estimation (SME) approach is used to propagate the uncertainty onto
metabolites’ concentrations over time. By only measuring biomass concentration and cul-
ture volume, the bounds of metabolites’ concentrations can be estimated online by SME
during the fermentation. The proposed algorithm is applied to batch and fed-batch fer-
mentation of E. coli.

1Adapted from Shen, X., & Budman, H. (2022). Online estimation using dynamic flux balance model
and multiparametric programming. Computers & Chemical Engineering, 164, 107872.

80



5.2 Introduction

Nowadays the production of bio-pharmaceuticals highly relies on process monitoring and
control. While model-based control is widespread in many process industries, its appli-
cation is more challenging in the pharmaceutical industry because of the lack of online
measurements [4, 52]. Online measurements of crucial variables in biochemical processes,
including concentrations of amino acids, vitamins, metals, and precursors, are often diffi-
cult to obtain.

Dynamic flux balance models (DFBMs) are genome-based models that have gained in-
creasing attention for modeling biochemical processes. A DFBM is formulated as a linear
programming (LP) problem based on the assumption that cells allocate available nutrients
to boost a biological objective such as growth or other. A key challenge for the solution of
the resulting LP is that the optimal solution is often not unique. Three main methods have
been proposed to solve the multiplicity of solutions, including the lowest overall flux parsi-
monious enzyme usage FBA (pFBA) [60, 47, 78], hierarchical optimization (lexicographic
optimization) [36, 2] and weighted primal-dual method (WPDM) [98]. WPDM converts
the LP into interior-point form nonlinear programming (NLP) and uses parameters interior
weights to determine which unique solution is obtained. Parameters interior weights can
be obtained by fitting experimental data which makes the method data-driven and widely
applicable. Because of the ability to adjust weights based on data, WPDM was also shown
to provide good fitting as compared to other approaches.

In this research, we combine WPDM to address multiplicity with the set membership
estimation (SME) approach to perform online estimation of the bounds of metabolites’
concentrations. Since WPDM converts the LP within the DFBMs into a nonlinear pro-
gramming problem, it is not possible to combine directly the SME approach with the
WPDM-based solution. Instead, multiparametric nonlinear programming (mpNLP) is ap-
plied to the resulting NLP which transforms the original DFBM into a variable structure
system. Then, set membership estimation is used to propagate the initial uncertainty
through the variable structure system to obtain the bounds of the states over time. The
proposed method has been applied to E. coli fermentation of batch and fed-batch pro-
cess. Section 2 presents the methods. Section 3 presents the experimental results and
discussions.

81



5.3 Methods

5.3.1 Dynamic Flux Balance Models

The DFBM is generally defined by a combination of a state space model with a static
optimization problem as follows. The state space model as a function of metabolic fluxes
is defined in Eq. (5.1).

xk+1 = B(xv,k, qk)xk +∆txbio,kSvk + h(xv,k, qk) (5.1a)

yk = Cxk + rk (5.1b)

rk ∼ TN(0,Σ, l,u) k = 0, 1, 2 · · · (5.1c)

x0 ∈ X0 (5.1d)

where subscript k indicates time step from 0, 1, 2 · · · and ∆t is the time step size. xk

is a vector of nx state variables at time step k, containing metabolites’ concentrations,
biomass concentration xbio,k and culture volume xv,k. S ∈ Rnx×Rnr is a matrix containing
stoichiometric coefficients of all reactions involved in the metabolic network, where nr is
the number of reactions considered in the metabolic network. qk is the feed flow rate (for
a batch process, qk = 0). vk ∈ Rnr denotes a metabolic flux vector defined below. The
matrix B ∈ Rnx × Rnx and vector h ∈ Rnx are functions of feed flow rate and culture
volume. yk is the vector of ny measured variables and C is the output state matrix. The
initial state x0 is assumed to be uncertain but within a known set X0. While in industrial
practice the initial media formulation and seed are kept the same, human factors and
raw material variability result in batch-to-batch fluctuations in the values of the initial
concentrations.

rk ∈ Rny denote a measurement noise vector which follows a truncated multivariate
normal distribution (TN) [112, 11]. The probability density function p for TN(µ,Σ, l,u)
are defined according to Eq. (5.2).

p(x,µ,Σ, l,u) =
exp{−1

2
(x− µ)TΣ−1(x− µ)}∫ u

l
exp{−1

2
(x− µ)TΣ−1(x− µ)}

(5.2)

For rk, the mean vector of TN is 0 ∈ Rny ; the covariance is Σ ∈ Rny ×Rny ; the lower and
upper bounds are l ∈ Rny and u ∈ Rny respectively.

The flux vector vk is determined by a local linear programming (LP) problem according
to Eq. (5.3). At each time step, vk is solved by the LP solver and substituted into Eqs.

82



(5.1) to obtain the state vector at the next time step.

min
vk

cTvk (5.3a)

P subject to Gvk ≤ Fθk(xk, qk) + b (5.3b)

where the constant vector c ∈ Rnr , the constant matrix F ∈ RnG×Rnθ , the constant vector
b ∈ RnG , the constant matrix G ∈ RnG × Rnr , θ(x, qk) ∈ Θ ⊆ Rnθ . For simplicity, the
subscript k will be omitted later because the same mathematical expressions apply for all
time steps. nG is the number of linear constraints. The parameter vector θ is a nonlinear
vector-valued function of state x and feed flow rate qk. nθ denotes the number of elements
in the parameter vector θ. Θ denotes the parameter space where the optimal solution of
the LP resides. Eq. (5.3a) denotes the objective function of the LP and maximization
of biomass growth rate, or equivalently minimization of its negative value, is used in the
current study. Eq. (5.3b) describes metabolic constraints such as reaction rates’ limits and
available nutrients’ limits. Here Eq. (5.3) is denoted as the P formulation of the LP. A
detailed E. coli example is presented in the results section.

5.3.2 Weighted Primal-Dual Method

Because of the insufficient number of constraints or possible correlations between con-
straints and the objective function, the optimal solution of Eq. (5.3) is often not unique.
Commonly used LP solvers are dual-simplex algorithms and naive interior-point algorithms.
These solvers can only obtain a particular solution from all possible solutions at each time
step and there is often no evidence that the solution chosen by the solvers is preferable over
other solutions. When these different solvers are used, only specific state trajectories over
time are obtained even though multiple trajectories can satisfy the DFBMs. To tackle the
multiplicity of solutions, we used a data-driven solver referred to as the weighted primal-
dual method (WPDM) in a previous study. This method calculates a particular optimal
solution based on the choice of interior-point weights that determine the search direction
of the interior-point algorithm toward the optimal solution. WPDM is defined in Eq. (5.4)
and it is denoted as the Pw form of the LP in Eq. (5.3). For each time step k, the flux
vk can be found from the WPDM and then the solution is substituted into Eqs. (5.1) to

83



obtain the states at the next time interval.

inf
µ→0,vk,zk

cTvk − µ

nG∑
i=1

wiln(zk,i) (5.4a)

Pw subject to Gvk + zk = Fθk(xk, qk) + b (5.4b)

zk > 0 (5.4c)

where µ is an infinitesimal constant, w is an interior-point weight vector and wi is the
i-th interior-point weight. z is a vector of slack variables that are added to convert the
inequality (5.3b) to equality. The i-th interior-point weight wi corresponds to a slack
variable zi and i-th constraint.

The suitability of WPDM for addressing the multiplicity of DFBMs is due to three
main properties as follows: i- WPDM in Eq. (5.4) can approximate the original LP in Eq.
(5.3) as µ tends to zero [98]. At the limit of µ equal to zero, the logarithmic barrier function
−µ

∑nG
i=1wiln(zk,i) vanishes, and the objective in Eq. (5.4a) tends to Eq. (5.3a) because

µ is controlled to decrease quicker than the increase of the logarithmic function. Since the
slack variables are only auxiliary variables, the constraints defined by Eq. (5.4b)-(5.4c) and
(5.3b) are equivalent. Therefore, when the optimal solution of the P form is unique, the
WPDM will tend to this solution and corresponding objective value once µ is sufficiently
small.

ii- WPDM provides a unique optimal solution [98]. WPDM is a variant of the interior-
point method where the objective of the original LP is augmented with a weighted logarith-
mic barrier function −µ

∑nG
i=1wiln(zk,i) of slack variables. Since the resulting augmented

objective of WPDM is strictly convex, the optimal solution is unique even though multiple
optima are possible for the P form.

iii- By manipulating the interior-point weights, the obtained optimum can be directed
towards a specific optimum when multiple optima coexist in the P form [98]. Even though
all these optima may have the same objective function value, there is generally one par-
ticular optimal solution that will best fit the available experimental data. Therefore, the
interior weights can be found by fitting experimental data. To the knowledge of the au-
thors, WPDM is the only method that can be easily tuned to favor a solution that results
in the best fitting of data. Most other methods for tackling multiplicity assume that the
flux should be efficient and parsimonious [60, 47, 78]. While this assumption may be suit-
able for wild-type strains it may not be accurate for engineered strains that are used in
pharmaceutical manufacturing processes [98].

The optimal solution v and z of the WPDM algorithm [98] can be obtained from the

84



K.K.T. condition according to Eq.(5.5) where for simplicity the subscript k is omitted.

GTλ = −c (5.5a)

Gv + z = Fθ+ b (5.5b)

λizi = µwi ∀i = 1, · · · , nG (5.5c)

z > 0 λ > 0 (5.5d)

where λi are positive multipliers for i-th constraint. Eq. (5.5c) is a weak complementary
slackness condition. The right-hand side µ is infinitesimal but not zero. To satisfy the
weak complementary slackness condition, either zi or λi should be infinitesimal for any
constraint but they cannot be infinitesimal at the same time.

5.3.3 Multiparametric Programming of DFBMs

Although WPDM can be used to calculate individual solutions of DFBMs for a particular
set of initial conditions, it is not effective for propagating uncertainty in initial condi-
tions since this will require solving many WPDM problems which will be computationally
prohibitive. To address this computational challenge a multiparametric programming ap-
proach is introduced [2].

In the current study, a special combination of multiparametric linear programming
(mpLP) and multiparametric nonlinear programming (mpNLP) is used to propagate un-
certainty in initial conditions onto the states. mpNLP is required since the WPDM method
converts the original LP into an NLP. The application of the parametric programming ap-
proach is motivated by the fact that θ is a vector-valued function of state x and, as the
state evolves, θ also varies. Then, θ is regarded as a varying parameter of the optimization
problem. Multiparametric programming algorithms divide the parameter space Θ into
different critical regions and find the optimal solution expression for each critical region.
If θ is within a critical region for which the solution to the corresponding LP is unique
then mpLP is used to pre-solve the corresponding LP problem. On the other hand, if θ
is within a critical region for which the solution to the LP is not unique then mpNLP is
used to pre-solve the corresponding WPDM problem. The detailed definition of a critical
region is given in a later section.

85



Criterion of Uniqueness and Multiplicity

For any feasible parameter value θ it is necessary to determine whether the corresponding
parameter space region of θ has a unique solution or not. To determine uniqueness some
concepts about active constraints and inactive constraints are introduced. For any optimal
solution v to LP in Eq. (5.3b), i-th constraint is active if Giv = Fiθ + bi holds. On the
other hand, for the optimal solution v of the WPDM in Eq. (5.4), it is not possible to
determine if i-th constraint is active based on the value of the corresponding slack variable
zi since this variable will only become infinitesimal but not exactly zero. Instead, to decide
whether the constraint is active when using WPDM, the weak complementary slackness
condition can be used where multiplier λi >> 0 if the constraint is active and λi → 0 if the
constraint is inactive. In practice, if the slack variable is smaller than a small value, the
i-th constraint is regarded as an active constraint. Otherwise, the constraint is inactive.

Let’s define A(θ) and I(θ) as the set of indices corresponding to active constraints and
inactive constraints respectively. Since a constraint being active or inactive is determined
by the parameter θ, sets A(θ) and I(θ) are functions of θ. Without loss of generality,
let assume GA(θ) are linearly independent active constraints (linear redundant rows can
always be removed by Gaussian elimination). Let define | · | as the cardinality of a finite
countable set, i.e. the number of elements of a set. If |A(θ)| = nr for WPDM, the optimal
solution to the original LP is unique. If |A(θ)| < nr for WPDM, multiple solutions to the
original LP exist. Further use and explanation of this criterion is shown in the following
section.

Multiparametic Linear Programming (mpLP)

For a given θ in LP Eq. (5.3), let define the set of indices of active constraints as A.
Without loss of generality, assume GA are linear independent active constraints (linear
redundant rows are removed by Gaussian elimination). If |A| = nr, namely GA is full
rank, the inverse of GA exists. For these active constraints, GAv = FAθ + bA holds.
Hence, for the given θ, the optimal solution v can be obtained through Eq. (5.6), which
defines an affine mapping with respect to θ [10].

vLP = Fθ + β (5.6a)

F = G−1
A FA (5.6b)

β = G−1
A bA (5.6c)

Then, by substituting Eq. (5.6) into the inactive constraints GIx ≤ FIθ + bI , a

86



polyhedral region ΘA described by Eq. (5.7) in the parameter space Θ can be obtained.

ΘA =
{
θ ∈ Θ | −FIθ < bI −GI(G

−1
A FAθ +G−1

A bA)
}

(5.7)

The resulting polyhedral region ΘA defined by Eq. (5.7) is referred to as a critical region.
For ∀θ ∈ ΘA (except the boundary of ΘA), the set of indices of the active constraints A is
same and Eq. (5.6) also applies for ∀θ ∈ ΘA (including the boundary of ΘA). For a given
θ, Eq. (5.7) can be used to verify whether θ is inside or outside. If it is within the ΘA, the
optimal solution can be calculated directly from Eq. (5.6). Therefore, the optimization
problem can be solved a priori as a function of θ. The mpLP algorithm consists in finding
all these critical regions and calculating their corresponding optimal solution expressions
as functions of θ for further use in control or prediction problems.

A particular challenge arises for the case |A| < nr where the rank of GA is deficient.
For this case, the critical region is defined by Eq. (5.8), which combines active and inactive
constraints to define a corresponding polyhedron.

ΘA =
{
θ ∈ Θ | −FAθ = bA −GAv,−FIθ < bI −GIv

}
(5.8)

Within this critical region, the active constraints GAv = FAθ + bA will have at least one
degree of freedom because of the rank deficiency and the optimal solution of v is not unique.
Typical mpLP algorithms are based on simplex solvers which cannot find such solutions
and critical regions. For these cases, the optimal solutions can be at interior points and
not only at the vertices of the feasible decision space. However, interior-point algorithms
seek an optimal solution within the feasible space and never reach the boundary exactly
so that WPDM can find the optimal solution in the interior that simplex solvers cannot.

When WPDM is used for a given θ, if the original solution of LP is unique, the solution
of WPDM will be within an infinitesimal neighborhood of the solution of LP at the vertex.
If exact zero tolerance is used for convergence, the number of active constraints is nr.
When the original solution of the LP is not unique, WPDM converges to an interior-point
optimum that is determined by the choice of the interior-point weights. Since the optimal
WPDM solution may be an interior point far from the vertices, the number of active
constraints is less than nr. Accordingly, a critical region for which the solution of the LP
is not unique can be identified according to Eq. (5.8). This property is used in the later
algorithm to determine whether a critical region has a unique solution or not.

87



Multiparametric Nonlinear Programming

If |A| = nr, mpLP can be used to obtain a critical region and the corresponding optimal
solution from Eq. (5.6) and Eq. (5.7). However, if |A| < nr, the critical region has multiple
solutions. In this case, WPDM is required to obtain a particular solution for such a critical
region with multiplicity. Since WPDM transforms the original LP into an NLP due to
the presence of the logarithmic term in the objective function, mpNLP is used instead of
mpLP to obtain the optimal solution expression. While different mpNLP methods have
been proposed [26], multiparametric quadratic programming (mpQP) is used in this study
to approximate the solution of the mpNLP in the critical region with multiplicity [50, 26].
The approximation involves dividing the critical region with multiplicity into zones and
solving local mpQPs for each zone. A typical nonlinear parametric programming with
linear constraints for a given polyhedral region Q is defined as Eq.(5.9). In this study, the
region Q refers to a critical region with multiplicity or a subset of the critical region with
multiplicity.

min
v

f(v,θ) (5.9a)

PNLP subject to Av <Kθ + d (5.9b)

Aev =Keθ + de (5.9c)

θ ∈ Q (5.9d)

where objective function is f : Rnθ × Rnr 7→ R; A, Ae, K and Ke are matrices at proper
dimension. Here, parameter θ denotes a point within the given region Q.

Let v∗ denotes the optimal solution of problem PNLP for given parameter θ∗. In this
study, the geometric center of a zone or critical region is used as the θ∗ to perform the
approximation of the original mpNLP because the geometric center is easy to calculate. A
local quadratic programming problem PQP defined as Eq.(5.10) is employed to approximate
Eq.(5.9) at θ∗ and v∗. Specifically, a quadratic convex surface is used to approximate the

88



nonlinear convex surface in the neighborhood of the parameter θ∗ and optimal point v∗.

min
v

1

2
(v − v∗)TH(v − v∗) + (LT + (θ − θ∗)TN )(v − v∗)

+ g(v∗,θ∗) (5.10a)

PQP subject to

Av <Kθ + d (5.10b)

Aev =Keθ + de (5.10c)

θ ∈ Q (5.10d)

where H = ∇2
vvf(v,θ∗) , L = ∇vf(v∗,θ∗), N = ∇2

θvf(v∗,θ∗), g(v∗,θ∗) = f(v∗,θ∗) +
∇T

θ f(v∗,θ∗)(v − v∗) + 1
2
(θ − θ∗)∇2

θθf(v∗,θ∗)(θ − θ∗).

Without loss generality, let’s assume A and Ae are linearly independent. Let assume

H is nonsingular and the active set of Eq.(5.10b) is A. Define AC =

[
AA
Ae

]
,KC =

[
KA
Ke

]
,

dC =

[
dA
de

]
. Then, the explicit solution vQP for a given optimal active set A is given by

Eq.(5.11), which is also an affine mapping of θ [7].

vQP = Fθ + β (5.11a)

F =H−1AT
C(ACH

−1AT
C)

−1(KC +ACH
−1NT )−H−1NT (5.11b)

β =H−1AT
C(ACH

−1AT
C)

−1(dC +ACH
−1P T )−H−1P T (5.11c)

where P = L−Hv∗ −NTθ∗.

In contrast with the optimal solution expression in Eq. (5.6), Eq.(5.11) only applies in
the neighborhood of θ∗ and v∗ because it is a local approximation. To improve accuracy,
Q needs to be divided into smaller zones until convergence. In the neighborhood of θ∗,
the error due to the approximation of the mpNLP is bounded by vQP (θ) − vNLP (θ) =
O(∥θ − θ∗∥22) [50]. Once a zone is small enough, the QP approximation at the geometric
center of the zone can reach high accuracy. To divide theQ efficiently so that fewer divisions
are required and high accuracy can be reached a k-d tree partition method is utilized in this
investigation which has been used for mpNLP [50]. Here, the original k-d tree partition
algorithm [39] has been modified for use with our WPDM. As shown schematically in
Fig.(5.1) the partition strategy is simple and efficient to implement. In this investigation,
critical regions and zones can be expressed as polyhedrons since all constraints are linear.

89



To partition a polyhedron of Q with nθ dimensions through its middle point, there are nθ
options for partition of Q into two polyhedrons Q1 and Q2.

For a given division, the larger the distance from the geometric center θ∗, the larger
the approximation error is because both the quadratic surface and the WPDM surface are
strictly convex surfaces with respect to v and θ. Therefore, the deviations at the vertices
between the approximated and actual values are good measures of the approximation
accuracy of a particular division. Assuming that the set of vertexes of polyhedron Q are
V(Q), the geometric center of polyhedron Q is C(Q), the division error ϵr through the r -th
dimension is defined as Eq.(5.12). |V(Q)| denotes the cardinality of set V(Q), namely the
number of vertices of Q. Because different polyhedrons have different numbers of vertices,
the division error needs to consider the number of vertices.

Figure 5.1: K-d tree partition of a critical region

ϵr =
1

|V(Q1)|
∑

θ ∈ V(Q1)
θ∗ = C(Q1)

∥vQP (θ)− vNLP (θ)∥+
1

|V(Q2)|
∑

θ ∈ V(Q2)
θ∗ = C(Q2)

∥vQP (θ)− vNLP (θ)∥

(5.12)
After calculating the partition-related error for all dimensions, the dimension with the
smallest error is the best dimension to divide a given polyhedron. Similarly, the approxi-
mation error of a given polyhedron Q is defined by Eq.(5.13).

ϵQ =
1

|V(Q)|
∑

θ ∈ V(Q)
θ∗ = C(Q)

∥vQP (θ)− vNLP (θ)∥
(5.13)

If the approximation error ϵQ is higher than the tolerance requirements specified by users
for polyhedron Q, the k-d tree partition method will continue dividing the polyhedron Q

90



into smaller zones until either the requirements are satisfied or a minimal volume tolerance
Vmin is achieved.

When using the k-d tree partition algorithm, most zones are rectangular because the
division of zones into sub-zones is axis-aligned and through the middle point of each di-
mension. Zones at the boundaries can be rectangular or general polyhedrons. There are
several reasons that rectangular zones are used in this research instead of general shape
polyhedrons. First, using general polyhedrons may not reduce the computation. For exam-
ple, heuristic splitting proposed by Johansen et al. for mpNLP needs extra computation to
define the boundaries of these general polyhedrons [39]. Second, online estimation requires
fast computation, and set operations with rectangles are faster than with general shape
polyhedrons. Third, when zones are not rectangular, the number of constraints defining
the set of states in the later sections increases dramatically with time to over 500, which
makes the calculation of set operations prohibitive and slow, such as vertexes. Many of the
constraints of sets that are being increasingly added are similar and redundant but cannot
be effectively removed by the algorithm because this requires precise control of numerical
tolerances. In contrast, set operations with rectangular zones add much fewer constraints
to the sets with small or no addition of redundant constraints.

Since the number of zones resulting from the k-tree approach may be very large, the
computational expense required for further propagation of uncertainty is prohibitive. Thus,
to reduce computations, regions in the parameter space that are not relevant can be
trimmed as shown schematically in Fig (5.2). Such trimming is also justified because
industrial fermentations are usually operated within a particular region of the parameter
space. To perform trimming, Monte Carlo simulations with different initial states in set X0

are conducted to identify possible θ at different times and different feeding policies. In Fig
(5.2) the dots denote different θ simulated by the Monte Carlo algorithm and rectangles
denote different critical regions and zones occurring in time. Critical regions and zones
that do not contain any assumed θ are discarded to reduce the computational expense. To
avoid leaving out possible θ and to clearly identify the boundaries of critical regions, two
actions are adopted in this research. First, 100000 batches simulated by Monte Carlo cor-
responding to about 40,100,000 θ points, are used to identify the boundaries. Second, we
check the connectivity between different CRs since θ should be contiguous to each other.

Approximation of WPDM

While local quadratic programming can be used to approximate WPDM, this approxi-
mation has severe numerical problems in the case that the Hessian matrix H is almost
singular. For this case, the quadratic programming solver cannot properly converge to

91



Figure 5.2: Trimming of unnecessary critical regions and zones

the optimal point v. Interior-point methods are ill-defined around the optimal solution
because the barrier function sharply increases to infinity towards the optimum. While the
objective function increases mildly in some directions of the decision variables, the objec-
tive increases by a large amount in specific directions. Accordingly, the Hessian matrix
has a large condition number and may become rank deficient thus resulting in a lack of
convergence of the QP solution. A simple example is presented in Appendix A to help
understand the numerical problems related to the Hessian matrix obtained from the QP
approximation of the WPDM formulation.

To address the Hessian singularity an alternative formulation of the optimization P ′
w is

proposed. Let’s assume for a given θ∗, the active and inactive constraint sets of the WPDM
are A and I respectively, the optimal solution of P ′

w is an approximation of problem Pw.
Eq. (5.14) defines the P ′

w form that is equivalent to problem Pw as shown below. Since the
active and inactive constraints are known, the key idea for approximating problem Pw is
that strong complementary slackness is used to replace the weak complementary slackness
in WPDM, and active barrier functions are regarded as 0.

inf
v,z

−
∑
i∈I

wiln(zi) (5.14a)

P ′
w subject to Gv+ z = Fθ+ b (5.14b)

zi = 0 ∀i ∈ A (5.14c)

zi > 0 ∀i ∈ I (5.14d)

Proof:

92



Based on knowledge of A and I, Eq.(5.4) can be rearranged as follows:

inf
µ→0,v,z

cTv − µ
∑
i∈A

wiln(zi)− µ
∑
i∈I

wiln(zi) (5.15a)

subject to Gv+ z = Fθ+ b (5.15b)

z > 0 (5.15c)

As shown above, the objective can be separated into the active and inactive constraints-
related terms as shown in Eq. (5.15a). Theoretically, for the active constraint, the term
−
∑m

i∈Awiln(zi) become infinity as zA → 0. However, in practice, the µ is controlled
to decrease steadily in each iteration and faster than the increase of −

∑m
i∈Awiln(zi) so

that −µ
∑m

i∈Awiln(zi) in Eq. (5.15a) become infinitesimal and can be ignored from the
objective [98].

Then, the KKT condition Eq.(5.5a) can be rearranged as in Eq.(5.16).

[
GT

A GT
I

] [λA
λI

]
= −c (5.16)

Using the weak complementary slackness condition in Eq. (5.5c), at the solution, zA → 0
(λA > 0) for the active constraints and λI → 0 (zI > 0) for the inactive constraints.
Assuming at the solution λI = 0 , Eq.(5.16) can be simplified to GT

AλA = −c. Also,
GAv = FAθ + bA is assumed to hold for the active constraints. Combining equations
GT

AλA = −c and GAv = FAθ + bA gives cTv = −λTA(FAθ + bA) is obtained. This
means that the term cTv is invariant with respect to the decision variables and thus it
can be eliminated from the objective function (5.15a). Hence −µ

∑
i∈I wiln(zi) is the only

term remaining in the objective Eq. (5.15a). Since the strong complementary condition
is assumed, constraints Eq. (5.15b) become constraints of Eqs. (5.14b)-(5.14d). Thus, P ′

w

form is an approximation of Pw.

Fig. (5.3) summarizes the relationship between different forms of the P problem and the
reason to construct different forms. NLP problem Pw is an approximation of LP problem
P to tackle a multiplicity of solutions. The QP problem PQP is used to approximate
the NLP problem Pw for multiparametric nonlinear programming. However, the use of a
logarithmic barrier function in Pw causes the Hessian matrix in QP problem PQP to be
almost singular resulting in convergence issues. To address the Hessian singularity a new
QP problem P ′

QP that approximates a new NLP P ′
w is used instead in multiparametric

nonlinear programming.

93



Figure 5.3: Relationship between different forms of P problem

The mpNLP algorithm itself cannot ensure the uniqueness of the optimal solution. On
the other hand, the approximation of the problem by P ′

QP and P ′
w has a unique optimal

solution. P ′
w is strictly convex because its objective function involves a summation of

logarithmic functions. The mpNLP algorithm uses local quadratic programming P ′
QP to

approximate P ′
w in the neighborhood of the unique optimal solution v∗ and correspond-

ing parameter θ∗. Therefore, since the local quadratic programming cost is also strictly
convex in the neighborhood of v∗ and θ∗ it tends to the same unique solution v∗ as the
approximation is refined.

Multiparametric Programming Algorithm for DFBMs

This section summarizes the multiparametric programming based algorithms needed to
find optimal solutions for different critical regions arising in the solutions of DFBMs. Set
operations on polyhedrons are performed with the Multi-Parametric Toolbox 3.0
(https://www.mpt3.org/ accessed on Nov 8, 2021), including calculation of vertexes, faces,
geometric center, and simplifying constraints of a polyhedron. Algorithm 1 is used to iden-
tify all critical regions occurring along the trajectories resulting from the DFBM solutions.
After finding the first feasible θ, algorithm 1 solves the WPDM to determine active con-
straints and the first critical region. Then for each boundary of the found critical region,
it finds a point outside of the current boundary corresponding to a new θ value. WPDM
is then used to find the optimum at the new θ and the algorithm proceeds until all critical
regions are found. If a replicate of a critical region is found, it is discarded and only new
critical regions are kept.

Fig. (5.4) is presented to illustrate the idea of algorithm 1. In Fig. (5.4a), the square
represents the space of θ. Based on the initial θ assumed, the first critical region in the
θ space is obtained by solving problem Pw. In Fig. (5.4b), the blue triangle denotes the

94



first critical region that was found with three boundaries. For each boundary, we can find
an outside point θ as explained in algorithm 1 line 7. For example, in Fig. (5.4c), the
red dot denotes an outsider point θ of a boundary of the blue triangle. Solving problem
Pw at this red dot θ a new critical region is found denoted by the green triangle in Fig.
(5.4d). Similarly, other outsider points are investigated for the other boundaries of the
blue triangle, and the same procedure is repeated to obtain the other two critical regions
denoted by the yellow and orange polyhedrons in Fig. (5.4e). Subsequently, For each
boundary of the newly obtained critical regions, additional outsider points are explored to
find new adjacent critical regions such as the one denoted by the purple triangle in Fig.
(5.4f). This procedure is repeated until all critical regions within the θ space are found.
For all the critical regions that were obtained, algorithm 2 is used to check whether a
given critical region has a unique solution expression or not. If the critical region under
investigation has a unique solution, mpLP is used to find a solution. On the other hand,
if the given critical region has multiplicity, the k-d tree partition algorithm is used to find
the best direction to divide the critical regions into smaller zones. Then, for each of these
smaller regions, QP approximations are made.

Algorithm 1 Multiparametric Programming for DFBMs

1: Initialize set S and M as ∅
2: Find a point θ where problem P is feasible and use it as an initial point
3: Solve problem Pw at θ and determine active constraint set A
4: Call critical region algorithm
5: Let ii = 1, number of critical region being explored nCR = 1
6: while ii ≤ nCR do
7: for each boundary of ii-th critical region do
8: Find an outside point θ in the neighbor of the current boundary
9: Solve problem Pw at θ and determine active constraint set A
10: Call critical region algorithm
11: end for
12: if new critical region is found then
13: ii = ii+ 1
14: end if
15: end while

Algorithm 2 is used to determine for a given set of active constraints whether the
corresponding solution is unique or not. If the solution is unique (|A| = nr), mpLP is used
to define the critical region and its optimizer. If multiple solutions exist (|A| < nr), the k-d

95



Figure 5.4: Illustration of algorithm 1

tree algorithm is applied to divide the current critical region into zones and mpNLP is used
to obtain optimizing expressions for each zone. For the special case with a unique solution
of |A| > nr, nr constraints are used to define a new critical region and corresponding
optimizer. If a duplicate critical region is found, the duplicate region is discarded.

Algorithm 3 is used to divide the critical region with multiplicity by using the k-d
tree partition algorithm. If the critical region found in algorithm 1 has multiplicity, k-d
tree partition algorithm is used to split the criterion region into many zones to construct
the QP approximation until the accuracy is sufficient. The polyhedron that needs to be
split is defined as Q. Divide Q into two polyhedrons Q1 and Q2 through the middle
point of each dimension. Select geometric centers of Q1 and Q2 as θ respectively. Solve
problem Pw to determine active constraints A. Based on active constraints A, determine
the corresponding optimizers for Q1 and Q2. Polyhedrons Q1 and Q2 need to be split until
a user’s defined convergence is satisfied or a minimum volume limit is achieved. Monte
Carlo simulations are conducted to simulate different initial values and feeding policies
with different θ. If the identified polyhedrons do not contain any simulated θ, they can be
trimmed to improve computational efficiency.

96



Algorithm 2 Critical Region Algorithm

1: if |A| = nr then
2: if A /∈ S then
3: Add A in set S
4: Determine the new critical region as Eq. (5.7)
5: Determine the optimal solution expression as Eq. (5.6) based on problem P
6: end if
7: else if |A| > nr then
8: Select the nr indices of active constraints from A as new A.
9: The new set A must satisfy the following conditions:
10: A /∈ S
11: ∀Ã ∈ M, Ã ⊈ A
12: if A ≠ ∅ then
13: Add A in set S
14: Determine the new critical region according to Eq. (5.7)
15: Determine the optimal solution expression as per Eq. (5.6) based on problem

P
16: end if
17: else
18: if A /∈ M then
19: Add A in set M
20: Determine the new critical region as Eq. (5.8)
21: Apply the k-d tree Algorithm to divide the newly found critical region into

smaller regions for QP approximations
22: end if
23: end if

97



Algorithm 3 k-d tree partition algorithm

1: Initialize set B as ∅ Identify the current critical region that needs to be split and add
it to set B

2: while if any polyhedron in set B need to be split do
3: Select the first polyhedron that needs to be split as Q
4: for each dimension of polyhedron Q do
5: Divide into Q1 and Q2 through its middle point along the current dimension
6: Calculate C(Q1) and C(Q2) respectively
7: Let θ∗ be C(Q1) and C(Q2) and solve problem Pw at θ∗ respectively to obtain
v∗

8: Construct problem P ′
w based on the active constraints A, θ∗ and v∗ for Q1 and

Q2 respectively as Eq. (5.14)
9: Use problem P ′

w to approximate the solution of problem PNLP and determine
the corresponding optimizer vQP for Q1 and Q2 respectively as Eq.(5.11)

10: Calculate ϵr for the current dimension according to Eq. (5.12)
11: Calculate ϵQ for Q1 and Q2 as Eq. (5.13)
12: if ϵQ is larger than convergence tolerance and volume is larger Vmin then Mark

the corresponding polyhedron that needs to be split
13: end if
14: end for
15: Select the dimension with smallest ϵr to divide Q into Q1 and Q2

16: Remove Q from from set B
17: Add the corresponding polyhedrons Q1 and Q2 in set B
18: Trim the irrelevant polyhedrons that do not contain any point simulated by Monte

Carlo Simulation for different initial values and feeding policies
19: end while

Conversion of DFBM into Variable Structure System

Using the multiparametric programming approach proposed above, the feasible parameter
space is ultimately divided into different critical regions. Each critical region with a unique
solution has one optimal solution expression as vLP = Fθ+β. Each zone in critical regions
with multiplicity also has one optimal solution expression vQP = Fθ + β. Both critical
regions with unique solutions and zones in critical regions with multiplicity have the same
type of expression v = Fθ + β, which is an affine mapping with respect to θ. Since
the critical regions with unique solutions and zones in critical regions with multiplicity do
not overlap, they can be individually denoted as regions {Θi}. Accordingly, the feasible

98



parameter space is divided into a series of regions {Θi} with an optimal solution expression
for the i-th region given by Eq. (5.17).

vi = F iθ + βi θ ∈ Θi (5.17)

The state equation Eq. (5.1a) can be expressed as a function of the uncertain parameters
by substituting Eq. (5.17) into v to obtain Eq. (5.18).

xk+1 = B(xv,k, qk)xk +∆txbio,kS(F iθk(xk, qk) + β
i) + h(xv,k, qk) θk(xk, qk) ∈ Θi

(5.18)
Such substitution simplifies the original problem by eliminating the inner optimization
problem and permitting the propagation of the uncertainty over time. It should be noticed
that θ is a function of both the states x and the feed flow rate qk where the latter is
assumed to be known at all times. The states x are described by different state equations
because θ resides within different regions at different time intervals. Thus, following the
substitution of the optimizers obtained with the multi-parametric approach, the original
state equations are converted into a family of state equations given by Eq. (5.18). The
latter state description is referred to in the literature as a variable structure system where
each state equation corresponds to a subsystem. Different regions of state space belong to
different subsystems.

5.3.4 Set Membership Estimation

Unlike classical observers, set membership estimation (SME) estimates the bounds of state
set under the uncertainty of initial states and parameters. In general, SME uses different
shapes of sets to contain all possible states and to propagate in time the state set by set
operations. Commonly used set operations include scaling, affine mapping, projection,
Cartesian product, translation, Minkowski addition, intersection, union, minimum, max,
and outer approximation. In this research, these set operations are performed with the
Multi-Parametric Toolbox 3.0 mainly (https://www.mpt3.org/ accessed on Nov 8, 2021)
[43] and Bensolve (http://bensolve.org/ accessed on Oct 28, 2021) [62]for some operations.
The state equation can be interpreted as combinations of different set operations and using
larger sets to overestimate the states is always a safe choice.

For the application of SME to DFMB, several notations of set operations are introduced
first. The Cartesian product of sets N and P is denoted by N × P = {(n, p) : n ∈
N and p ∈ P}. The Cartesian product can be interpreted as connecting sets along different
dimensions to generate a new set. The interval set is defined as R(l,u) = {x ∈ Rn : l ≤

99



x ≤ u}. An Interval set is a multi-dimensional axis-aligned interval, which is easy to use
for set propagation because of its simple shape. The outer approximation of the set P
is Out(P) = R(min(P),max(P)). An Outer approximation involves the use of a large
interval set for containing an irregularly shaped set. The operator ProjiP projects the set
P onto the i-th dimension. The Projection operator is the inverse of the Cartesian product
and it is used to simplify the geometry of a set. Similarly, if N is a set of dimensions,
ProjNP projects the set P onto the dimensions N . C(P) denotes the geometric center of
a set P . While for a given convex set different types of centers can be used, the geometric
center is used for simplicity.

Update States with Measurements

SME is used in this study to estimate bounds on metabolites’ concentrations at different
time intervals based on limited measurements. We assume that the initial state can be
bounded by a polyhedral set X0 as Eq. (5.1d). The measurements contain noise r bounded
by interval set R(l,u) as Eq. (5.1c).

xk+1 = B(xv,k, qk)xk +∆txbio,kS(F iθk(xk, qk) + β
i) + h(xv,k, qk) θk(xk, qk) ∈ Θi

(5.19)

Eq. (5.19) are the state equations describing the variable structure system obtained
in the previous section. The states x in DFBMs includes metabolites’ concentrations
xmet, biomass concentration xbio, and volume of culture xv. The matrix B and vector
h are functions of xv and flow rate qk. For fed-batch operation, xv is influenced by qk
while for batch operation, xv is constant. Biomass concentration scales the flux term
S(F iθk(xk, qk)+β

i) in Eq. (5.19). If the volume of culture xv and biomass concentrations
xbio can be measured, the propagation of the state set can be simplified. Therefore, the SME
proposed in this research assumes that volume of culture xv and biomass concentrations
xbio are measured values denoted by y = [ybio yv]

T . This is a reasonable assumption
since biomass concentration and volume of culture are easier to measure than metabolites’
concentrations xmet. the measured values with noise are Yk = R(yk + l,yk + u).

Let X−
k denote the prior-estimate set containing all possible states at time step k, which

is also a polyhedral set. To take advantage of measurements, the post-estimate set X+
k

that contain all possible state can be expressed as in Eq. (5.20).

X+
k = ProjmetX−

k × Yk (5.20)

where subscript “met” is used to denote dimensions of metabolites. The resulting set X+
k

100



is the post-estimate set.

Propagation of Post-estimate Set to Parameter Set

After X+
k is obtained, the set containing all possible θk needs to be calculated. Since θ is

a nonlinear function of state x and feed flow rate qk, a linearization of θ with respect to
the center of X+

k is performed. Let’s assume that θk is first-order differentiable and the
Jacobian matrix ψk is given by Eq. (5.21).

ψk =
∂θk
∂xk

∣∣∣∣
xk=C(X+

k )

(5.21)

If the linearization point is the center of X+
k , the θk can be expressed as Eq. (5.22).

Correspondingly, the polyhedral set Θ̃k containing possible θk can be defined as Eq. (5.23).

θk = ψk(xk − C(X+
k )) + θk(C(X

+
k ), qk) (5.22)

Θ̃k = ψk(X+
k − C(X+

k )) + θk(C(X
+
k ), qk) (5.23)

After the linearized θ is substituted into the state equation of variable structure system
Eq. (5.19), the new state equation is obtained as follows:

xk+1 = B(xv,k, qk)xk +∆txbio,kS(F i(ψk(xk − C(X+
k )) + θk(C(X

+
k ), qk)) + β

i) + h(xv,k, qk)

θk(xk, qk) ∈ Θi (5.24a)

= (B(xv,k, qk) + ∆txbio,kSF iψk)xk

+∆txbio,kS(−F iψkC(X+
k ) +F iθk(C(X+

k ), qk) + β
i) + h(xv,k, qk)

θk(xk, qk) ∈ Θi (5.24b)

It can be shown that Eq. (5.24b) generates tight sets since it combines terms containing
xk together.

Disassembly of X+
k into different regions

The SME procedure described below can be viewed as the disassembly/assembly of a
puzzle. For a given set of states, the set is initially broken into pieces for each region. For
each piece, set operations are employed to estimate a corresponding new set for the next

101



time step. Finally, the new sets obtained from the different set operations are assembled
again into a new set, and so forth.

Following the linearization in Eq. (5.23), the polyhedral set Θ̃k is generated that con-
tains all possible θk. Since Θ̃k can encompass many regions {Θi}, it needs to be divided
into pieces and propagated separately because different θ, with their correspondingly dif-
ferent state equations, must be used to propagate the uncertainty over time using set
operations. Let define Θ̃i

k as the intersection of Θ̃k with each region as per Eq. (5.25).

(5.25).
Θ̃i
k = Θ̃k ∩Θi; (5.25)

Then, two cases must be considered in terms of the feed flow rate: qk ̸= 0 (fed-batch)
or qk = 0 (batch operation). When the feed flow rate qk ̸= 0, ψk is full rank. The
corresponding polyhedral set of states for each region i can then be expressed as in Eq.
(5.26).

X i+
k = ψ−1

k (Θ̃i
k − θk(C(X+

k ), qk)) + C(X+
k ); (5.26)

When the feed flow rate qk = 0, ψk is rank deficient. Let’s assume ψ̃k is obtained by
eliminating the linearly dependent row and column from ψk. Then, the corresponding set
for each region i can be expressed as in Eq. (5.27).

X i+
k = (ψ̃−1

k (Θ̃i
k − θk(C(X+

k ), qk)) + Proj(Met,bio)C(X+
k ))× ProjvYk; (5.27)

Eq. (5.27) indicates that the set of metabolites’ concentrations and biomass can be recov-
ered from Eq. (5.22) and using the measurement of culture volume.

Eq. (5.25) separates Θ̃k into pieces for each region i. Eq. (5.26) and Eq. (5.27) are
used to relate the parameter region i to the corresponding state space set of equations.
Now, the state equation Eq. (5.24b) can be expressed as Eq. (5.28) and θi ∈ Θi can be
replaced by xk ∈ X i+

k .

xk+1 = (B(xv,k, qk) + ∆txbio,kSF iψk)xk

+∆txbio,kS(−F iψkC(X+
k ) +F iθk(C(X+

k ), qk) + β
i) + h(xv,k, qk)

xk ∈ X i+
k

(5.28)

Assembly of the sets of states from different regions into one set of states

Eq. (5.28) cannot be used for set propagation directly because xk+1 is a nonlinear function
of xk since (B(xv,k, qk) + ∆txbio,kSF iψk)xk is a nonlinear mapping of intervals of values

102



of xk, xv,k and xbio,k. Similarly, ∆txbio,kS(−F iψkC(X+
k ) + F iθk(C(X+

k ), qk) + β
i) and

h(xv,k, qk) are also defined as functions of intervals.

Assuming that the intervals of values covered by X i+
k are small in comparison to in-

tervals covered by X+
k , it is assumed that B(xv,k, qk) and h(xv,k, qk) can be approximated

by substituting x̂iv,k = C(ProjvX i+
k ), i.e. for each region i, B(xv,k, qk) = B(x̂iv,k, qk) and

h(xv,k, qk) = h(x̂
i
v,k, qk).

The uncertainty in xbio,k requires different treatment than the other states because
xbio,k scales the vectors ∆tSF iψkxk and ∆S(−F iψkC(X+

k )+F iθk(C(X+
k ), qk)+β

i) in Eq.
(5.28). This is general for all DFBMmodels where all the fluxes are defined per unit biomass
so that multiplying biomass is required to calculate metabolites’ concentrations. Following
this observation and for computational efficiency, a bounding set is obtained from an outer
approximation operation with respect to biomass values. Although such an operation may
be conservative it bypasses the need for nonlinear mapping scaling operations that are
time-consuming.

Using the minimum and maximum of xibio,k given by xibio,k and x
i
bio,k, the set propagation

can be approximated by affine mapping and outer approximation according to Eq. (5.29).

X i
k+1 = Out(X i

k+1 ∪ X i

k+1) (5.29a)

X i
k+1 = (B(x̂iv,k, qk) + ∆txibio,kSF iψk)X i+

k

+∆txibio,kS(−F iψkC(X+
k ) +F iθk(C(X+

k ), qk) + β
i) + h(x̂iv,k, qk) (5.29b)

X i

k+1 = (B(x̂iv,k, qk) + ∆txibio,kSF iψk)X i+
k

+∆txibio,kS(−F iψkC(X+
k ) +F iθk(C(X+

k ), qk) + β
i) + h(x̂iv,k, qk) (5.29c)

Using Eq. (5.29), the set of states for each region at the next time step can be estimated.
Then, an outer approximation is used to combine X i

k+1 for all regions to generate the prior-
estimate set X−

k+1. Because of the outer approximation operation, the set X−
k+1 is an interval

set.
X−
k+1 = Out(

⋃
i

X i
k+1); (5.30)

Starting from X−
0 = X0, the initial set of states can be propagated using the procedure

outlined above. Then, at any time step k, the bounds of states can be estimated by taking
the maximum and minimum values of X−

k .

103



5.4 Results and Discussion

5.4.1 DFBM of E.coli

The proposed estimation approach is applied to a modified version of the DFBM model
of E. coli reported in [64] for illustration. The DFBM includes five states glucose concen-
tration xglc in mM, oxygen concentration xoxy in mM, acetate concentration xace in mM,
biomass concentration xbio in g-dw/L, and volume of culture xv in L as Eq. (5.31) (g-dw
refers to grams of the dry weight of biomass.). Hence, the state vector is

x =
[
xglc xoxy xace xbio xv

]T
. The substrates are glucose, oxygen, and acetate. Glu-

cose is the only supplement nutrient used in fed-batch operations.

xglc,k+1 = (1− qk∆t

xv,k
)xglc,k +∆txbio,kSglcvk +

qk∆t

xv,k
xglc,in (5.31a)

xoxy,k+1 = (1− qk∆t

xv,k
− kLa∆t)xoxy,k +∆txbio,kSoxyvk + 0.21kLa∆t (5.31b)

xace,k+1 = (1− qk∆t

xv,k
)xace,k +∆txbio,kSacevk (5.31c)

xbio,k+1 = (1− qk∆t

xv,k
)xbio,k +∆txbio,kSbiovk (5.31d)

xv,k+1 = xv,k + qk∆t (5.31e)

x0 ∈ X0 = R(
[
0.38 0.1995 0.19 0.00095 0.285

]T
,
[
0.42 0.2205 0.21 0.00105 0.315

]T
)

(5.31f)

yk =

[
0 0 0 1 0
0 0 0 0 1

]T
xk + rk (5.31g)

rk ∼ TN(

[
0
0

]
,

[
5× 10−6 0
0 3× 10−8

]
,

[
−1× 10−3

−0.0150

]
,

[
1× 10−3

0.0150

]
) k = 0, 1, 2 · · · (5.31h)

Where kLa = 4 h−1 is the oxygen mass transfer coefficient and ∆t = 0.025 h. The
initial state vector x0 is assumed to be bounded by the interval set X0 as Eq. (5.31f). The
matrix S contains the stoichiometric coefficients corresponding to four reactions according
to Eq. (5.32). The last row of the stoichiometric matrix is made of zeros because the
culture volume, corresponding to that row in the stoichiometric matrix, is not influenced

104



by reactions. Each column corresponds to one reaction and each row corresponds to one
state. qk is the feed flow rate at time step k. For batch operation, qk = 0. For fed-batch
operation, before the feeding is started qk = 0 and qk = 0.02 L/h of glucose from time 7.3h
and on.

S =


Sglc

Soxy

Sace

Sbio

Sv

 =


0 −9.46 −9.84 −19.23

−35 −12.92 −12.73 0
−39.43 0 1.24 12.12

1 1 1 1
0 0 0 0

 (5.32)

The flux vector vk is obtained by solving the linear programming problem in Eq. (5.33):

max
vk

Sbiovk (5.33a)

subject to − Soxyvk ≤ OURmax (5.33b)

Sacevk ≤ 100 (5.33c)

−∆tSglcvk ≤ (
1

xbio,k
− qk∆t

xv,kxbio,k
)xglc,k +

qk∆txglc,in
xv,kxbio,k

= θ1,k (5.33d)

−∆tSoxyvk ≤ (
1

xbio,k
− kLa∆t

xbio,k
− qk∆t

xv,kxbio,k
)xoxy,k +

0.21kLa∆t

xbio,k

= θ2,k (5.33e)

−∆tSacevk ≤ (
1

xbio,k
− qk∆t

xv,kxbio,k
)xace,k = θ3,k (5.33f)

− Sglcvk ≤ GURmaxxglc,k
Km + xglc,k

= θ4,k (5.33g)

−∆tSbiovk ≤ 1− qk∆t

xv,k
= θ5,k (5.33h)

− v1,k ≤ 0 (5.33i)

− v2,k ≤ 0 (5.33j)

− v3,k ≤ 0 (5.33k)

− v4,k ≤ 0 (5.33l)[
1 1 1 1

]
vk ≤ 0.5 (5.33m)

Where OURmax = 12mM/(g-dw·h) is the maximum oxygen uptake rate; GURmax = 6.5

105



mM/(g-dw·h) denotes the maximum glucose uptake rate. Eq. (5.33a) describes that the
optimization objective of the cells is the maximization of the biomass growth rate. Eq.
(5.33b) and Eq. (5.33c) indicate that the oxygen consumption rate and acetate generation
rate are limited by maximal uptake limits respectively. Constraints Eqs. (5.33d), (5.33e),
(5.33f), and (5.33h) force the concentrations to be positive. Eq. (5.33g) indicates that the
glucose consumption rate is bounded by an upper limit that depends on glucose concen-
tration. Since the RHS of these constraints are functions of the states the RHS terms are
treated as time-varying parameters composing the vector θ. It should be noticed that θ5,k
is a function of the feed-rate qk. As explained in the previous section, before the feeding
starts or batch operation qk = 0 resulting in the Jacobian matrix ψk to be rank deficient
because θ5,k = 1 is a constant. Therefore, the volume cannot be estimated from θ5,k during
batch operation. Constraints Eq. (5.33i)-Eq. (5.33l) force the assumed directions of the
reactions (fluxes).

The constraint Eq. (5.33m) was added to the original E. coli model. Since the coeffi-
cients of the fluxes in the growth rate (5.32) and Eq. (5.33m) are the same (all ones) this
additional constraint imposes an upper bound on growth rate. The biochemical rationale
for this additional constraint is that during certain periods of the culture, the growth rate
may not be limited by the metabolites considered in the model, e.g. growth limitations
due to depletion of growth factors that cannot be modeled or measured. While in the orig-
inally reported E.coli model the solution is unique, the addition of Eq. (5.33m) introduces
multiplicity since the LHS coefficients of fluxes in Eq. (5.33m) are same as for Sbio. The

interior-point weights used in WPDM are w =
[
5 1 1 1 1 1 1 1 1 1 1 1

]T
. The constraints

106



in Eq. (5.33) can be expressed in the form of Eq. (5.34):

Gvk ≤ Fθk(xk)+ z (5.34a)

G =



−Soxy

Sace

−∆tSglc

−∆tSoxy

−∆tSace

−Sglc

−∆tSbio

−1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1
1 1 1 1



F =



0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0



(5.34b)

z =
[
OURmax 100 0 0 0 0 0 0 0 0 0 0.5

]T
(5.34c)

5.4.2 Multiparametric Programming for E.coli Model

Monte Carlo simulations are conducted for different feeding policies and initial state from
set X0 to determine the bounds of the parameter space Θ that should be considered for
multiparametric programming. The parameter space Θ corresponding to this DFBM is

Θ = R(
[
0 0 0 0 0.9

]T
,
[
500 250 250 6.5 1.005

]T
).

By treating both θ and v as decision variables of Eq. (5.3), an initial feasible θ in Θ

is obtained as θ =
[
491.24 241.24 241.24 6.41 0.919

]T
. This Θ is used as a starting point

for the exploration of all critical regions. Then, Problem Pw is solved for the θ found to
determine active constraints. Using 10−6 as tolerance, if the i-th slack variable zi ≤ 10−6 in
Pw problem, the constraint is treated as active. Only the constraint given by Eq. (5.33m)
is found active. For this DFBM, nr = 4 and thus at least 4 constraints need to be active
to result in a unique solution. If fewer than 4 constraints are active, the corresponding
critical region will involve multiple solutions. If the only active constraint is Eq. (5.33m),
the corresponding critical region is described by Eq.(5.35) and it is denoted by Θ12 based
on the index of the active constraint in Eq. (5.33).

107



Θ12 :



0 −1 0 −0.0331 0
−0.7976 −0.6032 0 0 0

0 0 −1 −0.1042 0
0 −1 0 −0.0584 0
0 0 0 −100 0

−0.9724 0 −0.2333 0 0
−0.9192 −0.3938 0 0 0

−1 0 0 0 0
0 0 0 0 100
0 0 0 100 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 0 −100
0 0 −1 0 0



θ(x) ≤



−0.3179
−0.1917
−0.4929
−0.4375
−235.6
−0.1150
−0.1723
−0.0589
100.5
650
250
250
500
−90
0



(5.35)

The critical region Θ12 involves 15 constraints. Some of these constraints are from Eq.
(5.8) and the rest are related to the boundaries of the parameter space Θ defined above.
The redundant constraints are eliminated by using the MPT3 toolbox. For the polyhedron
described by Θ12, each constraint defines the face of this polyhedron. Using the MPT3 tool-
box, the Chebyshev center of each face can be easily calculated and a point in the outward
direction from this face can always be found. For example, the Chebyshev center point

for face defined by the first constraint of Θ12 is
[
494.75 0.1047 244.75 6.4467 0.9525

]T
. By

introducing a small perturbation (10−5) in the normal outward direction, a point can be
found as new θ.

Then a Pw problem is solved at the new θ to determine the active constraints of the
new critical region. The corresponding active constraints are found to be {4, 6, 8, 10}.
Since the number of active constraints is 4, these constraints define a critical region with

108



a unique solution and the region denoted as Θ{4, 6, 8, 10} is given by Eq. (5.36).

Θ{4, 6, 8, 10} :



−1.6962 0 0 0.0424 0
0 1.5230 0 −0.052 0
0 0.7865 0 0.026 0
0 −1 0 0 0
0 0 −1 0 0
0 0 0 0 −100
1 0 0 0 0
0 0 1 0 0
0 0 0 100 0
0 0 0 0 100


θ(x) ≤



0
0

0.25
0
0

−90
500
250
650
100.5


(5.36)

Within critical region Θ{4, 6, 8, 10}, the optimal solution can be expressed as per Eq. (5.37),
which is an affine mapping of θ.

v =


0 0 0 0 0
0 3.096 0 0 0
0 0 0 0 0
0 −1.523 0 0.052 0

θ(x)+

0
0
0
0

 (5.37)

Following the steps given above, a new θ can be found for each constraint of the crit-
ical region Θ{4, 6, 8, 10}. After repeating the process many times and removing duplicated
critical regions, all critical regions within the feasible space can be defined and the corre-
sponding optimal solution expressions for each critical region with a unique solution are
obtained.

A crucial element of the current work is to address critical regions with multiple so-
lutions. As described in the previous section it is required to divide the critical region
with multiplicity into zones and to obtain an approximate solution for each zone. For
example, for the critical region Θ12 with multiplicity, the region is divided into two poly-
hedrons Q1 and Q2 through the middle point of θ1 dimension. For Θ12, the minimum
and maximum θ1 are 0.0589 and 500 respectively and thus the middle point of Θ12 in the
θ1 dimension is 250.03. Accordingly, constraint θ1 ≤ 250.03 and θ1 ≥ 250.03 are added
to the original constraints in Eq. (5.35) to divide the Θ12 into two polyhedrons respec-
tively. Using the MPT3 toolbox, the geometric center of Q1 and Q2 are found as C(Q1) =[
101.92 101.97 111.17 4.8789 0.9525

]T
and C(Q2) =

[
375.01 113.74 113.68 4.5105 0.9525

]T
109



respectively. Let denote C(Q1) as θ∗1 and C(Q2) be θ∗2. Then, problem Pw is solved at θ∗1

and θ∗2 to obtain v∗1 =
[
0.1073 0.1699 0.1517 0.0711

]T
and v∗2 =

[
0.1243 0.1699 0.1477 0.0581

]T
respectively. Since θ∗ and v∗ are known for Q1 and Q2 respectively then, problem P ′

w given
by Eq. (5.14) can be formulated. Instead of solving the resulting NLP, problem P ′

QP is
used to approximate P ′

w at θ∗ and v∗ for Q1 and Q2 respectively. The optimal solution
expressions for Q1 and Q2 are given in Eq. (5.38), which is also affine mapping of θ.

vQP1 =


0 0 0 −0.0416 0
0 0 0 0.0038 0
0 0 0 0.0069 0
0 0 0 0.0385 0

θ(x)+


0.3104
0.1883
0.1179
−0.1166

 (5.38a)

vQP2 =


0 0 0 −0.0508 0
0 0 0 0.0035 0
0 0 0 0.0148 0
0 0 0 0.0324 0

θ(x)+


0.3534
0.1541
0.0808
−0.0883

 (5.38b)

Comparing the solutions of WPDM at vertices of Q1 and Q2 with the solutions given
by Eq. (5.38) at vertices, the accuracy ϵr can be calculated for the case that division is
done through the middle point of the first dimension. After repeating the same procedures
above, ϵr for the division at middle points along other dimensions can also be calculated.
Then, the preferable way to divide the polyhedron is the one resulting in the smallest ϵr. ϵQ
is also calculated to determine whether the current polyhedron needs to be further divided
to increase accuracy up to certain tolerance.

In this investigation, 9 critical regions have been found relevant along the culture from
Monte Carlo simulations. Only one critical region exhibits multiplicity, which is the critical
region Θ12 defined in Eq. (5.35). Using the k-d tree partition algorithm, Θ12 has been
further divided into 127 polyhedrons (zones). Combining 8 critical regions with unique
solutions and 127 zones in critical regions with multiplicity, the parameter space is reduced
into 135 non-overlapped regions {Θi}. Each optimal expression for i-th region Θi is in affine
form given as vi = F iθ+βi, for each θi ∈ Θi. Following trimming of the parameter space
by the use of Monte Carlo simulations, the entire multiparametric programming approach
can be completed within 1.5 hours of CPU time.

To avoid the trimming of the parameter space will leave out some possible θ, a large
number of batches (up to 100,000 batches corresponding to 40,100,000 θ values) were
simulated by a Monte Carlo algorithm. Fig. (5.5) plots θ identified from an increasing

110



number of batches onto the θ1 and θ2 parameter subspace for the E. coli model. The
colored rectangles are critical regions and zones used by mpNLP. As the figure shows,
data of 1000 batches is enough to clearly define the boundaries of possible θ values, and
since conservative rectangular sets are used by mpNLP, all θ are expected to be contained
within the identified boundaries. Also, since the changes in the uncertain parameters are
contiguous, the corresponding critical regions and zones should be also contiguous to each
other. Hence, the connectivity among these rectangles is checked so that all related critical
regions and zones are contiguous.

Figure 5.5: Different Number of Batches Simulated by Monte Carlo Algorithm with Pa-
rameter Space Projected to θ1 and θ2 for the E.coli model

5.4.3 Set Membership Estimation

Following the application of multiparametric programming algorithms above, the entire
feasible parameter space has been reduced into 135 regions and the optimal solution for
each region is an affine mapping of θ. Accordingly, the original DFBM can be converted
into a variable structure system. This section shows the propagation of uncertainty from
the initial state X0 into a set of states X−

k at different time step k based on limited mea-
surements of biomass and culture volume. Since the state equation is nonlinear, different
set operations are applied to find bounds for the states at each time interval. Fig. (5.6)
presents the estimate set of state by the method proposed for fed-batch operation. Be-
cause the proposed method is based on assumptions that biomass and volume of culture
can be measured with bounded noises, only the estimates for the remaining three states,

111



i.e. glucose (Glc), oxygen (Oxy), and acetate (Ace) concentrations are shown in the figure.
The 9 colored boxes in Fig. (5.6) denotes the estimated set of state projected onto glucose-
oxygen-acetate subspace at 1.67h time interval between 0h to 15h. The black dots denote
the true state of the plant at the corresponding time. The estimates clearly contain the
true state of the plant well. The length of boxes in different dimensions is a measure of the
corresponding uncertainty. The uncertainty of acetate increases sharply during the culture
as indicated by the elongation of the boxes in the acetate direction but the uncertainty
shrinks towards the end of fermentation.

Figure 5.6: Set of state projected onto glucose-oxygen-acetate subspace for fed-batch op-
eration

To verify the calculations by the proposed approach, Monte Carlo Simulation is con-
ducted for comparison. For a fair comparison, a specially designed Monte Carlo Simulation
must be used. In a traditional Monte Carlo Simulation of a system with uncertainty in the
initial state, different initial states are sampled and propagated separately to obtain the
bounds of states at different times. However, since measurements of biomass concentration
and volume of culture at different times are considered, many of the trajectories simulated
by the traditional Monte Carlo Simulation are outside of the confidence intervals of the
biomass and volume measurements and thus they must be removed. In fact, only a small
part of the simulated trajectories are compatible with the measurement data. For exam-
ple, from more than 200000 simulated trajectories only 1000 trajectories were compatible

112



with the measurements. Of course, the number of acceptable trajectories can be further
increased by simulating a larger number of initial states. However, the number of accept-
able trajectories (1000) was deemed sufficient to test the method because the results did
not change significantly as the number of overall simulations was further increased. The
results of fed-batch operation and batch operation have been plotted in Fig. (5.7) and Fig.
(5.8) respectively. The grey color areas correspond to the 1000 trajectories sampled from
the initial set X0 compatible with the measurement y at all time steps. The sets of states
are projected onto each dimension, i.e. each metabolite’s concentrations, to obtain upper
and lower bounds. Clearly, the bounds obtained with the proposed method contain all the
trajectories compatible with the measurements without any bound violation for both cases.
It can be noticed that the simulations result in a narrower grey area for batch operation
(Fig. (5.8)) as compared to fed-batch (Fig. (5.7)). The difference in the Monte Carlo-
based bound between batch and fed-batch is that the uncertainty at the end of the batch
operation is narrower than for the end of the fed-batch operation. Thus, more trajectories
must be removed in batch as compared to fed-batch because they are incompatible with
the measurements. While Monte Carlo provides tighter bounds it is very time-consuming
requiring one day for the required 100,000 runs as compared to 8 min with the proposed
SME approach.

0 5 10

Time (h)

0

0.2

0.4

G
lc

 (
m

M
)

0 5 10

Time (h)

0

0.1

0.2

O
x
y
 (

m
M

)

0 5 10

Time (h)

0

0.1

0.2

A
ce

 (
m

M
)

Bounds estimated by SME

Possible states generated 

by Monte Carlo Simulation

Figure 5.7: Comparison bounds estimated by SME with Monte Carlo Simulation for fed-
batch operation

113



0 5 10

Time (h)

0

0.2

0.4
G

lc
 (

m
M

)

0 5 10

Time (h)

0

0.1

0.2

O
x

y
 (

m
M

)
0 5 10

Time (h)

0

0.1

0.2

A
ce

 (
m

M
)

Bounds estimated by SME

Possible states generated 

by Monte Carlo Simulation

Figure 5.8: Comparison bounds estimated by SME with Monte Carlo Simulation for batch
operation

5.4.4 Discussion

Applying an SME-based approach to DFBMs is challenging because of the need to solve an
inner optimization. While the inner optimization is an LP problem, multiple solutions are
prevalent in DFBM models. To apply SME, the multiplicity problem must be addressed.
WPDM is a type of interior-point method with extra parameter interior-point weights
introduced to solve the multiplicity issue. If the optimal solution of LP is unique, both
WPDM and LP solvers can be used to obtain the unique solution. However, if the optimal
solution of LP is not unique, WPDM can be implemented to obtain different optimal
solutions. Interior-point weights can be found by fitting experimental data, which makes
the method data-driven and especially suitable for addressing different engineered strains.

To bypass the need of solving the inner optimization, multiparametric programming
is introduced. For a critical region with a unique solution, there is no need to apply
WPDM and mpLP can be used to obtain the corresponding optimizer expression. For
critical regions with multiple solutions, WPDM and mpNLP need to be combined since
the former converts the problem into an NLP. To tackle the NLP problem, the critical
regions with multiplicity are divided into different zones by mpNLP. For each zone, local
quadratic programming is used to approximate a special P ′

w optimization formulation of
WPDM that addresses the singularity of the Hessian matrix.

114



Different metabolic reactions within a metabolic network exhibit different yields with
respect to biomass growth. The constraints of the DFBM model describe limitations in
terms of their availability and kinetic rate limitations. During different cell culture periods
some constraints are activated indicating the cell’s ability to take advantage of reactions
with higher yields. Once some resources are consumed, the cell will switch to the consump-
tion of other resources that have not been depleted. Different critical regions correspond to
different abundance of resources and different abundance of resources determine different
metabolism patterns.

The critical region with multiplicity corresponds to situations where cells have different
ways to distribute their resources or due to constraints that are needed because of insuf-
ficient knowledge about the metabolism, i.e. unknown limited substrates. The WPDM
method can be used to address multiplicity.

Once multiparametric programming is applied to the DFBMs, the explicit optimal
solution expression for each region can be used to simplify the inner optimization within
the state equation by converting the original problem into a variable structure system.
The set of states is broken into pieces for each region. Since the new state equations are
nonlinear, set propagation cannot be applied directly. Different methods are used to deal
with the nonlinearity. For x to θ, first order approximation is used. For scaling of the sets,
the outer approximation is used. For B(xv,k, qk) and h(xv,k, qk), the nominal value of each
set for each region is used. By applying these set operations and approximations, the set
of states at the new time interval can be estimated.

The bounds found by SME proposed are not strictly guaranteed. Different approxi-
mations are used in this research, including the first order approximation from x to θ,
approximation of Pw by P ′

w in multiparametric nonlinear programming, and approxima-
tion B(xv,k, qk) and h(xv,k, qk) by B(x̂iv,k, qk) and h(x̂

i
v,k, qk) respectively. However, despite

these approximations, exhaustive Monte Carlo simulations for different noise and feeding
policies have shown that the estimated bounds are not violated. A key reason for the lack
of violations is that the outer SME approximation overestimates the size of the set thus
compensating for the approximations.

5.5 Conclusions

The lack of measurements poses a challenge for the design of online estimators based on
DFBM models. An online estimator of bounds on states based on limited measurements is
proposed. Since multiplicity is a common occurrence in DFBM models, an interior point

115



method (WPDM) is used to calculate a unique solution. However, the resulting opti-
mization becomes an NLP instead of the original LP formulation. This NLP formulation
requires the use of both linear and nonlinear multiparametric programming to convert the
DFBM into a variable parameter system. This system is described by state equations
for each critical region defined in the uncertain parameter space. Then, a set member-
ship estimation is applied to the variable parameter system to propagate uncertainty in
initial conditions and to obtain bounds of unmeasured states. The bounds provided by
the method are compared and verified with extensive Monte Carlo simulations for batch
and fed-batch fermentation of E.coli. The proposed method is several orders of magnitude
faster than the Monte Carlo-based calculations of the bounds.

116



Chapter 6

A Method for Tackling Multiplicity
in Dynamic Flux Balance Models by
an Ellipsoidal Reflection Operation

6.1 Overview

1Dynamic Flux Balance Models (DFBM) can describe the evolution of metabolites’ con-
centrations with time by solving a linear programming (LP) problem at each time interval.
However, since multiple solutions of the LP commonly exist, different trajectories can be
obtained. An interior-point-based method (weighted primal-dual method), proposed in a
previous study that picks a specific solution from multiple solutions of LP is computation-
ally expensive for a large metabolic network. In this research, we propose an alternative
computationally efficient method based on an ellipsoidal reflection mathematical operation.
The method is applied to a test example and then to model B. pertussis fermentation result-
ing in excellent computational performance and accurate fitting of experimental dynamic
data.

1Adapted from a paper submitted to Computers & Chemical Engineering, which is currently under
review.

117



6.2 Introduction

The need to optimize bioprocesses has motivated the development of accurate models for
process investigation and model-based optimization. Classic biochemical models used in
earlier biotechnological research are generally macroscopic unstructured models of biomass,
product, and substrates. These unstructured models ignore the specific interconnections
of the metabolic network of the microorganisms. Instead, these unstructured models over-
simplify the structure of metabolic networks thus preventing useful interpretation of the
biochemical system [94].

Genome-based dynamic flux balance models (DFBMs) have gained increasing atten-
tion for modeling biochemical processes [64, 60, 36] since they formally consider key
metabolic interconnections and can capture the detailed correlations existent between dif-
ferent metabolites. A DFBM is formulated as a linear programming (LP) problem based on
the assumption that cells allocate available nutrients in metabolic networks to maximize a
biological objective such as growth rate or others. From the solution of the LP the fluxes,
i.e. the metabolic reaction rates, can be calculated and substituted into mass balances
to evolve the concentrations with time. However, being the LP problem generally under-
determined due to a lack of sufficient constraints, the solution may not be unique. This
results in a drastically different dynamic evolution of metabolites’ concentrations based on
the optimal solutions that are selected [98, 99]. This multiplicity of solutions is a critical
problem especially for DFBMs because metabolites’ concentrations evolve according to the
time integration of the vector of fluxes multiplied by the biomass. If the solution of the
fluxes chosen at different time steps is in error with respect to the data, these errors will
accumulate over time thus potentially resulting in concentration profiles that will diverge
significantly from the data.

Shen and Budman [98], have recently proposed the weighted primal-dual method (WPDM)
[98] to address multiplicity that was found more accurate than previous techniques specifi-
cally for matching experimental data for engineered strains. WPDM is an extension of the
interior-point method of LP that is based on the use of adjustable parameters (interior-
point weights) in the barrier terms of the objective function. This method converts the
LP into a nonlinear programming problem (NLP) to determine which solution is selected
based on the chosen weights. Because the objective function of WPDM is strictly convex,
the solution is unique. When multiple solutions of the LP are possible, WPDM can obtain
all these solutions by varying the weights. In DFBMs, parameters interior-point weights
can be obtained by fitting experimental data which makes the method data-driven and
widely applicable. Because of the ability to adjust the weights based on data, WPDM was
also shown to provide good fitting as compared to other approaches mentioned above [98].

118



On the other hand, WPDM has several limitations that hinder its application to large
metabolic networks with many constraints and metabolites as follows: i-the computation
expense is very high because the number of weights increases with the number of constraints
thus increasing computations for fitting with experimental data, ii- commercial solvers are
not available thus requiring the development of in-house software that is very slow and iii-
since the logarithmic barrier function in the objective is almost infinity at the boundary,
a matrix of large condition number results and the need to invert this matrix leads to
numerical issues.

To overcome these drawbacks of WPDM, we propose a novel method, the ellipsoidal re-
flection method (ERM), since it relies on an ellipsoidal reflection operation. As in WPDM,
ERM can select a specific unique solution from multiple solutions by tuning of certain
parameters. On the other hand, the proposed method has several new advantages as com-
pared to WPDM as follows: i-ERM can take advantage of fast and accurate commercial
LP and QP solvers, ii-it needs fewer parameters to tune compared with WPDM because
the number of parameters is not correlated to the number of constraints in the problem,
iii- ERM involves a very simple 100-line code thus resulting in efficient computation, iv-
the algorithmic structure and geometric meaning of ERM are far easier to understand than
WPDM, and v- it is simple to initialize fitting parameters of ERM when ERM is used in
the fitting with experimental data. The method is applied in the current work to a toy
example and then to the DFBM of B. pertussis resulting in an impressive performance as
compared to the previously reported WPDM.

The paper is organized as follows. Section 2 presents the background on the DFBM.
Section 3 explains the multiplicity problem in DFBM models and briefly describes WPDM
which is compared later to the new ERM method. Section 4 introduces the ERM and its
properties. Section 5 shows the comparison between WPDM and ERM for the toy example
and the B. pertussis dynamic flux model. Section 6 presents a summary and conclusions
of this research.

6.3 Dynamic Flux Balance Model

DFBM combines discrete mass balance equations for relevant metabolites with a static
optimization problem that solves fluxes among metabolites. The discrete mass balances as
a function of the metabolic fluxes vk are defined in Eq. (6.1).

ψk+1 = ψk +∆tψbio,kSvk (6.1)

119



where subscript k indicates time step from 0, 1, 2 · · · , ∆t is the time step size and ψk is
a state vector of nψ state variables at time step k that includes the biomass concentration
ψbio,k. Also, S ∈ Rnψ×Rnr is a matrix containing stoichiometric coefficients of all reactions
involved in the metabolic network, where nr is the number of reactions considered in the
metabolic network.

The metabolic flux vector vk ∈ Rnr is determined by a linear programming (LP)
problem according to Eq. (6.2). At each time step, vk is solved by the LP solver and
substituted into Eq. (6.1) to obtain the state vector at the next time step by Euler-based
integration as per Eq. (6.1).

min
vk

fTvk (6.2a)

subject to Gvk ≤ g(ψk,β) (6.2b)

Fvk = h(ψk,β) (6.2c)

where the constant vector f ∈ Rnr , the constant matrix G ∈ RnG × Rnr , the constant
matrix F ∈ RnF ×Rnr , vector-valued function g ∈ RnG of states ψk, vector-valued function
h ∈ RnF of states ψk, parameters β controlling the constaints. nG is the number of
inequality constraints and nF is the number of equality constraints. Eq. (6.2a) denotes
the objective function of the LP. The most commonly used objective is the maximization
of biomass growth rate or equivalently minimization of its negative value. Eqs. (6.2b)
and (6.2c) describe balance equations and metabolic constraints such as charge balance,
reaction rate bounds, and available nutrient bounds. The problem in Eq. (6.2) is based on
the assumption that the cells are able to regulate the metabolic fluxes vk to boost growth
at each time step.

6.4 Linear Programming and Multiplicity of solutions

6.4.1 Linear Programming

Eq. (6.2) describes a typical LP problem and the general form of the LP problem is defined
as Eq. (6.3). For comparison and simplicity, Eq. (6.3) is referred to as P problem in this

120



paper.

min
x

cTx (6.3a)

P subject to Ax ≤ b (6.3b)

Aex = be (6.3c)

6.4.2 Multiplicity Issue

Since the paper focuses on the multiplicity problem, we assume without loss of generality
that the LP problems discussed in this paper are feasible and bounded problems. The
constraints of Eqs. (6.3b) and (6.3c) define a convex polyhedron where the gradient of
objective Eq. (6.3a) is in the c direction. Along the negative gradient direction −c, the
objective is decreasing until it reaches the boundary of the polyhedron. Thus, the solution
of LP is unique at a vertex point, or all points onto an entire face of the polyhedron
are solutions. When the solution is not unique, the solutions on the entire face of the
polyhedron are either at vertexes or at interior points, also referred to as basic and non-
basic optima respectively. However, our goal is to identify from all the possible solutions
(including all basic or non-basic optima) which solution results in the best fit to the dynamic
experimental data. In our previous research [98], we found that if the optimal solutions
are arbitrarily picked at different time intervals out of all possible solutions, the resulting
trajectories of states ψ may largely diverge from the data. Hence, if the multiplicity
problem is not addressed, the model loses predictability.

Although different solvers have been proposed to solve LP problems, they are commonly
all variants of the Simplex method and interior-point method. For a minimization problem,
the simplex method starts from a vertex of the polyhedron and pivots along the edges of
the polyhedron to another vertex in the direction which has the smallest angle with the
−c direction. After a finite number of iterations, the algorithm reaches a vertex where all
edges have angles that are smaller or equal to 90◦ with respect to the c direction. This
vertex corresponds to the optimal solution to the LP problem since it has the smallest
objective value. Because the Simplex method only searches vertexes, it can only obtain
basic solutions even though other solutions may exist as shown in Fig. (6.1). The dash
lines are contours of the objective function. The red line sections are the optimal face of the
polyhedron, where any point is an optimal solution to the LP. The star represents different
solutions obtained by either the Simplex or interior point algorithms. The blue polyhedron
represents the feasible space, the boundaries of which are defined by constraints.

The interior-point method (IPM) starts the search for an optimal solution from an

121



interior point within the polyhedron. At each iteration, the shape of the convex surface
gradually becomes an hyperplane because of the linearity of the objective. Then, the
minimum point of this surface gradually approaches the optimal solution along the search
path. Since the IPM performs a search within the polyhedron, the resulting solution is
usually an interior point of the optimal face (non-basic solutions) even though the solutions
of the LP are not unique as Fig. (6.1) shows. CPLEX even includes a post-processing step
to convert the interior point solution to a vertex solution when solutions are not unique
[48]. It should be noticed that IPM can still provide solutions at the vertexes when multiple
solutions exist, even for solvers that do not apply any post-processing step. The specific
challenge tackled in the current study is to select a specific solution among all possible
solutions that will satisfy an additional objective such as fitting a given set of experimental
dynamic data. However, neither Simplex nor IPM is tailored to explicitly address this
multiplicity-related challenge.

Figure 6.1: Schematic of Simplex and Interior-point methods for problems with multiple
solutions

6.4.3 Weighted Primal-Dual Method

To deal with the multiplicity issue, a data-driven solver referred to in a previous study
as the weighted primal-dual method (WPDM) was utilized. For completeness, a brief
description of WPDM is provided here. WPDM is defined in Eq. (6.4) and it is denoted
as the Pw form of the LP in Eq. (6.3). WPDM is a variant of the interior-point method,
which selects a particular optimal solution based on the choice of interior-point weights

122



(w). When all weights are 1, WPDM becomes the traditional interior-point method. The
weights determine the curvature and the location of the desired optimum on the face that
contains the multiple optima. If the solution is unique, WPDM still can obtain the same
solution as the one obtained from the P optimization problem. The numerical method for
WPDM is based on a path-following approach, details of which are reported in a previous
study [98].

inf
τ→0,x,z

cTx− τ

nÃ∑
i=1

wiln(zi) (6.4a)

Pw subject to Ãx+ z = b̃ (6.4b)

z > 0 (6.4c)

where τ is an infinitesimal constant, w is an interior-point weight vector and wi is the
i-th interior-point weight. z is a vector of slack variables that are added to convert the
inequality Eq. (6.3b) to equality. The i-th interior-point weight wi corresponds to the slack
variable zi and i-th constraint. In particular, each equality constraint in Eq. (6.3c) needs
to be split into two inequality constraints and two additional slack variables. For instance,
2x1+x3 = 2 needs to be split into 2x1+x3 ≤ 2 and −2x1−x3 ≤ −2 first and compensated
with slack variables according to 2x1 + x3 + z1 = 2 and −2x1 − x3 + z2 = −2. Therefore,
the new constraints become Ãx+ z = b̃ and the total number of constraints is nÃ.

The suitability of WPDM for addressing the multiplicity of DFBMs is based on the
three following properties: i- WPDM in Eq. (6.4) can approximate the original LP in
Eq. (6.3) as τ tends to zero [98]. ii- WPDM provides a unique optimal solution for given
weights [98]. iii- By manipulating the interior-point weights, a specific optimum can be
selected if multiple optima coexist according to the P problem [98]. Fitting experimental
data is possible by tuning the set of weights’ values. To the knowledge of the authors,
WPDM is the only data-driven method to select a solution for the LP.

However, WPDM has drawbacks preventing its application in large metabolic networks
as follows: i- the computation expense is proportional to the number of constraints. For
example, for a metabolic network with 200 reactions and 2000 constraints, while the num-
ber of decision variables is only 200, the vector of weights w has 2000 elements. Hence,
for fitting with experimental data, the number of tuning weights is 2000 which is compu-
tationally expensive. ii- commercial solvers cannot be applied directly to such problems
requiring the use of an in-house code that is not optimized for computational efficiency.
iii- WPDM inherits the property of the original interior-point method that the logarithmic
barrier function in the objective tends to infinity at the boundary thus leading to numerical

123



problems in the inversion of the resulting almost singular matrix when searching for the
optimal direction. iv- the trial and error for initialization of tuning weights are necessary
and time-consuming.

6.5 Ellipsoidal Reflection Method

The ellipsoidal reflection method (ERM) maintains the advantages of WPDM as compared
to other methods but it improves over WPDM in several aspects as follows: i- fast and
accurate commercial solvers are used with ERM, namely commercial LP and QP solvers,
ii- as fewer tuning parameters are required as compared with WPDM, the computation
efficiency is significantly better than the latter, iii- ERM is based on a much simpler code
as compared to WPDM leading to easier geometric interpretation of the result, and iv-
initial tuning parameters of ERM are simple to find.

The ellipsoidal reflection method is inspired by the “rotating compass” concept. The
core idea of the algorithm is to change a “pointer” vector direction to point towards different
solutions. By changing the direction of a quadratic objective surface corresponding to the
“pointer” vector direction, a unique solution on the optimal face that best fits the data
is selected. The algorithm involves three main steps: i- identification of the optimal face,
ii- translation of the optimal face, and iii- selection of the solution that points to a given
direction.

6.5.1 Identification of the Optimal Face

To describe the method, some definitions are provided which are needed to describe the
multiplicity issue and the method. A constraint is referred to as “binding” if equality
holds. For a given solution, a binding constraint is active if the corresponding dual variable
(“shadow price”) is greater than 0, namely the complementary slackness condition. It
should be noticed that the inference cannot be made in the reverse direction [74], i.e. the
dual variable of a binding constraint can be 0 and the dual variable of an equality constraint
can also be 0. The geometric explanation is presented in Fig. (6.2). For a minimization
problem, the objective of the LP decreases along the inverse direction of c where the red
line represents the optimal face where all points along this line are optimal solutions. As the
figure shows, the relaxation of constraint 1 or constraint 3 cannot minimize the objective
because it is not in the −c direction. On the other hand, the relaxation of constraint 2,
which is parallel to the optimal face, can reduce the value of the objective.

124



Dual variables measure the marginal effect or sensitivity of the optimal value of the
primal objective function with respect to an infinitesimal change on the right-hand side of
the primal constraints. For example, if the optimal objective is p∗ and the dual variable
of i-th constraint is λi then λi =

∂p∗
∂bi

. Since the relaxation of constraint 1 or constraint 3
cannot minimize the objective according to Fig. (6.2), the corresponding dual variables
are zero. On the other hand, the dual variable of constraint 2 is greater than zero.

When the Simplex method is used for the problem described in Fig. (6.2), it may
calculate either the left corner vertex defined by constraints 1 and 2, or the right corner
vertex defined by constraints 2 and 3. For example, for the left corner vertex, constraint 1
is binding but the corresponding dual variable is zero. If IPM is applied and a non-vertex
optimum is obtained, the only binding constraint is 2. If IPM is applied and the left corner
vertex is obtained, the binding constraints are 1 and 2. The dual variable of constraint 2
is greater than zero but the dual variable of constraint 1 is a very small positive number
(weakly-activated constraint) because most commercial solvers use a non-zero tolerance
and IPM can only approximate the optimal solution from the interior domain but it never
reaches the boundary exactly.

Figure 6.2: Relaxation of different constraints when the solution of the LP is not unique

Without loss of generality, we assume the solution of LP discussed in this paper is
non-empty and bounded; and binding constraints are linearly independent. The main
application of the property of active constraints discussed above is to determine whether a
given LP has a unique solution or not. For an LP problem that has n decision variables, if
the number of active constraints is less than n, the solution is not unique and the dimension
of the optimal face containing the multiple solutions is equal to the number of degrees of
freedom, i.e. number of decision variables minus the number of active constraints. Let’s

125



define the set of indices of active constraints of inequality constraints as A, the inactive
inequality constraints are N and the optimal face Θ as per Eq. (6.5). The first step of
ERM is to solve the LP and determine whether it has a unique solution. If the solutions
are not unique, ERM calculates the optimal face Θ. It should be noticed that ERM is only
applicable when the dimensionality of Θ is less than n.

Θ =
{
x | AAx = bA,ANx ≤ bN ,Aex = be, c

Tx = p∗

}
(6.5)

For simplicity, Θ can be simplified as Eq. (6.6).

Θ =
{
x | Âx = b̂,ANx ≤ bN

}
(6.6a)

Â =

AA
Ae

cT

 (6.6b)

b̂ =

bAbe
p∗

 (6.6c)

6.5.2 Selecting a particular solution

Selecting a particular solution of a QP problem

For clarity, the third step of the algorithm is described before the second step. The third
step of ERM consists of selecting a particular solution from the optimal face Θ.

Inspired by the “rotating compass” concept, a pointer is used to select the solution.
In ERM, the pointer is along the major axes of concentric hyper-ellipsoids, which are
the contour lines of a quadratic function. By “rotating” these concentric hyper-ellipsoids
together, the major axes can point towards different solutions on the optimal face Θ. The
idea is shown schematically in Fig. (6.3). The optimal face Θ containing all the possible
solutions is a convex polyhedron, denoted by the red line in Fig. (6.3). The green dash
lines are “rotating” concentric ellipsoids corresponding to the contour lines of a quadratic
function to defined below. The semi-major axes of the concentric ellipsoids are in the r1
direction. The direction r1 determines the solution, represented by the stars in Fig. (6.3),
chosen among all possible solutions on Θ. Direction r1 are parameters to be tuned based
on experimental data.

126



Figure 6.3: Selecting the unique solution by a given direction

The procedure described above is formulated as a QP problem by Eq. (6.7).

min
x

1

2
xTQ(r1)x (6.7a)

PQP subject to x ∈ Θ (6.7b)

where Q is a positive definite matrix which is a function of the “rotation” direction r1.
Different matrix Q will result in different “rotation” directions of the objective. Additional
details about the construction of matrix Q are given in the following section.

An alternative to the QP for choosing a solution could be to elongate the r1 to intersect
Θ to obtain different solutions. However, if r1 is in the wrong direction (see Fig. (6.4)),
the elongation of r1 may not intersect Θ and no solution is obtained. It is numerically
difficult to define the range of r1 so that the intersection of the elongation r1 with Θ is not
empty. The use of the QP serves to avoid this problem. As shown in Fig. (6.4), although
the semi-major axes do not point towards the optimal face Θ (denoted by the red line
section), a solution (denoted by the star) can still be found. Mathematically, the existence
of the unique solution is assured by the strict convex objective constructed in Eq. (6.7a),
once the Θ is feasible and bounded. When the semi-major axes do not point towards the
optimal face Θ, the semi-major axes are no longer the pointer, and the solution obtained is
determined by the tangent point on the elliptical contours. Once the “rotation” direction
r1 varies, the tangent point also changes and a different solution is obtained. In other
words, ERM still works well in this special case and can provide different solutions by

127



varying the direction of r1. Ideally, it is preferable to have r1 in the direction of the semi-
major axes because of the resulting higher sensitivity to changes in the selected direction
as compared to the other axes.

Figure 6.4: A special case for ERM that the semi-major axes do not point towards the
optimal face Θ

Householder Transformation and Reflection Matrix

This section provides details about the construction of the matrix Q and the “rotation”
direction r1. Without loss of generality, assume initially the longest semi-major axes
of concentric hyper-ellipsoids are along the first coordinate and the other shorter semi-
minor axes are along the remaining coordinates. Thus, the initial pointer direction is
r0 ∈ Rn = [1 0 · · · 0]T . Let’s assume that the ideal solution is in the direction of r1 and
the semi-major axes of these concentric hyper-ellipsoids are “rotated” from r0 to r1 as
shown in Fig. (6.5a) to select a particular solution.

The construction of concentric hyper-ellipsoids with the longest semi-major axes aligned
along the first coordinate with the remaining semi-axes aligned along the remaining coor-
dinates, Q0 ∈ Rn×n is done according to Eq. (6.8).

Q0 =


1e−6

1
. . .

1

 (6.8)

The matrix Q0 is used to construct a QP as defined in Eq. (6.7). The objective of

128



the QP is 1
2
xTQ0x. The contours of

1
2
xTQ0x are concentric hyper-ellipsoids at the origin

with the longest semi-major axes aligned along the first coordinate. Hence, Q0 represents
the initial positions of the concentric hyper-ellipsoids before “rotation” and the semi-major
axes point initially towards the r0 direction.

(a) Reflecting elliptical contours (b) Householder transformation

Figure 6.5: Reflecting elliptic contours by Householder transformation

Notice Q0 is a positive definite matrix because all diagonal elements are positive.
Positive-definite matrix assures the strict convexity of the QP and thus the solution of
the QP is unique if the problem is feasible. Since all elements are on the main diago-
nal, these elements are also the eigenvalues of the matrix. The eigenvalues determine the
lengths of the semi-axes of concentric hyper-ellipsoids and the eigenvectors determine the
corresponding directions of semi-axes. The first element, e.g. 1e−6, in the matrix, deter-
mines that the first semi-axes of concentric hyper-ellipsoids are the longest ones because
the lengths of semi-axes are inversely proportional to the squared root of the eigenvalues.
A small value, e.g. 1e−6 in the case studies, is selected so as to force that the longest semi-
axes is much larger than the length of the other semi-axes resulting in higher sensitivity
with respect to rotations.

A reflection matrix R is introduced to express the “rotation” operation of these con-
centric hyper-ellipsoids. R is based on the Housholder transformation [32], which is used
to rotates the initial vector direction r0 to another direction r1 so that r1 = Rr0 as shown
in Fig. (6.5b). Notice that although the operation is described as a “rotation”, mathe-
matically the Householder transformation is a reflection with respect to r3 in Fig. (6.5b).
Thus, the contours are reflected from direction r0 to r1 about the hyperplane r3. The

129



direction r2 is defined as the normal vector to r3. Given direction r0 and direction r1, the
reflection matrix R is defined by Eq. (6.9), which is the key matrix of the Householder
transformation [32]. Since the initial direction is always fixed at r0, the reflection matrix
R is only a function of r1, denoted as R(r1).

r2 = r0 − r1 (6.9a)

R = I − 2
r2r

T
2

rT2 r2
(6.9b)

Before “rotation” the matrix Q isQ0, the matrixQ of the QP problem after “rotation”
in Eq. (6.7a) can be defined as per Eq. (6.10).

Q(r1) = R
T (r1)Q0R(r1) (6.10)

If different r1 are used, the resulting optimal solution is different. Accordingly, when
ERM is used for fitting experimental data for a DFBM problem, the elements of r1 are
the fitting parameters that determine which optimal solution is chosen among all possible
solutions. For simplicity, the vector r1 is assumed as a unit vector as ∥r1∥ = 1. In other
words, vector r1 is the direction vector of the optimal solution.

The geometric description given above can explain a key advantage of the proposed
ERM method is superior to the WPDM that requires trial and error for the initial guess
of the fitting parameters. To find the optimal solution that fits the data, the direction of
r1 must be initialized. For this purpose, any unit vector defined by Eq. (6.11) where xo is
one possible solution of the LP can be used to initialize the vector r1.

ro1 =
xo

∥xo∥
(6.11)

The reflection matrix instead of a rotation matrix is used in ERM because the generation
of an n-dimensional reflection matrix is computationally simpler than the corresponding
rotation matrix. A rotation matrix can be decomposed into the multiplication of two
reflection matrices [116].

6.5.3 Translation

The second step of ERM involves a translation of the optimal face of Θ. While in most cases
this translation is not needed, in a few special cases it is necessary or at least helpful in the

130



selection of different solutions. As shown in Fig. (6.6), for the special case that the optimal
face is on a hyperplane passing through the origin then the optimal solution obtained is
always the same regardless of the “rotation” direction r1. Mathematically, if the b̂ = 0 or
some elements of b̂ are zeros, the optimal face is either on the hyperplane passing through
the origin or very close to it. In these special situations, a small translation of Θ can
increase the sensitivity of the of solutions with respect to changes in model parameters.
The direction of translation that will most increase sensitivity is logically along the normal
to the original direction, i.e. in the c or −c directions as shown in Fig. (6.7). If the Θ
is translated by d = αc and α ̸= 0, the translated Θ is denoted by Θ′ and given by Eq.
(6.12). In Fig. (6.7), the red dash and red lines denote the Θ and Θ′ respectively. The
hollow and filled stars represent the solutions obtained before and after the translation
respectively.

Figure 6.6: When the optimal hyperplane passes through the origin

y = x+ d (6.12a)

Θ′ =
{
y | Ây = Âd+ b̂,ANy ≤ ANd+ bN

}
(6.12b)

The QP problem corresponding to the translated optimal face Θ is defined by Eq.
(6.13). After obtaining the optimal solution y∗ to the translated QP problem in Eq.
(6.13), the optimal solution x∗ to the original LP can be recovered back from x∗ = y∗−d.
This translation operation preserves all the geometric features of the original optimal face.

131



Figure 6.7: Translation of the optimal face

min
y

1

2
yTQ(r1)y (6.13a)

PQP
′ subject to y ∈ Θ′ (6.13b)

6.5.4 Properties of ERM

ERM has some advantageous properties as compared with the interior-point-based WPDM
method. A key property is that the number of fitting parameters does not change with
the number of constraints as in WPDM. When ERM is used to fit experimental data,
the only fitting parameters are the components of the vector r1. Thus, the maximum
number of tuning parameters is equal to n which is the dimension of r1 while the number
of constraints does not influence the number of fitting parameters. WPDM is based on
the constraints and the fitting parameter is w. Since each constraint corresponds to an
element of w, the number of tuning parameters in WPDM increases with the number of
constraints thus increasing the computations. Therefore, ERM is computationally more
efficient than WPDM in the fitting of experimental data.

Moreover, ERM needs to solve an LP to identify the optimal face Θ and a QP to
select the solution in the given direction. Since commercial solvers are available for solving
LP and QP problems, the implementation of ERM is very straightforward and robust.
WPDM cannot take advantage of commercial solvers and the in-house solver developed for
this purpose was found to be inefficient and inaccurate for large metabolic models. Also,

132



ERM preserves the uniqueness and continuity properties of WPDM as described by the
following theorems and remarks.

Theorem 4 (Uniqueness): A feasible QP problem defined in Eq. (6.13) has a unique
solution.

Proof : According to the properties of Householder transformation, the matrixR(r1) is
invertible [32]. By definition, Q0 is positive definite. Since Q(r1) = R

T (r1)Q0R(r1) and
matrix R(r1) is invertible, the matrix Q(r1) is positive definite [107]. For a QP problem,
if the Hessian matrix Q(r1) is a positive definite matrix, the objective function of the QP
problem is strictly convex [8]. For a feasible strictly convex optimization problem, the
optimal solution is unique [12].

Remark 4: The contour lines of the objective are initialized as concentric hyper-
ellipsoids, which are strictly convex. The Householder transformation of the ellipsoid
contour lines preserves convexity. Geometrically, the reflection operation on the ellipsoidal
contour lines and the translation of the feasible set cannot change the shape of the contour
lines. Since the strict convexity of the objective function is preserved, the feasible QP
problem only has one solution. This property ensures the choice of one solution out of the
multiple possible solutions of the original LP problem. A solution can be found provided
that the feasible space is not empty.

Theorem 5 (Continuity): If the linear independence constraint qualification (LICQ)
condition is satisfied, the optimal solution of the feasible QP problem defined in Eq. (6.13)
is locally continuous with respect to b̂ and bN .

Proof : See appendix.

Remark 5: Under the assumption of LICQ, the optimal solution is a bounded mapping
of b̂ and bN . The boundedness of the mapping ensures that infinitesimal changes in b̂ and
bN result in bounded changes in the optimal solution. Therefore, local continuity is assured.

6.6 Results and Discussions

6.6.1 Example of Simple LP Problem with Multiple Optima

A linear programming problem with multiple optima reported in the literature is used
as a preliminary case study [77] to illustrate the ERM. The LP problem is defined in
Eq. (6.14). The optimal face is the one with 4 vertex optima, [4 0 2]T , [0 4 4]T ,

133



[0 4 0]T , [4 0 0]T . Any point on that face is an optimal solution.

min
x

− 2x1 − 2x2 (6.14a)

subject to x1 + x2 ≤ 4 (6.14b)

x1 + 2x3 ≤ 8 (6.14c)

x1 ≥ 0 (6.14d)

x2 ≥ 0 (6.14e)

x3 ≥ 0 (6.14f)

As a first step, the LP in Eq. (6.14) is solved with IBM CPLEX. The solution obtained
is [0 4 0]T and the optimal objective is −8. The dual variables (Lagrange multipliers)
for constraints of Eqs. (6.14b)-(6.14f) are 2, 0, 0, 0, 0 respectively. Since the number of
decision variables is 3 and only the first constraint Eq. (6.14b) is active, this LP has two
degrees of freedom multiplicity. In other words, the optimal face is a two-dimensional face.
According to Eq. (6.5), the optimal face Θ is defined by Eq. (6.15).

Θ =
{
x ∈ R3 | x1 + x2 = 4, x1 + 2x3 ≤ 8,x ≥ 0,−2x1 − 2x2 = −8

}
(6.15)

Then we proceed to construct a QP to select different solutions from Θ. Since the
right-hand side of two equality constraints are 4 and −8 respectively in Eq. (6.15), the
second step of translation can be skipped because Θ does not pass close to the origin.

The third step involves the “rotation” operation. For initialization, the major axes of
concentric hyper-ellipsoids are aligned along the first coordinate, namely r0 = [1 0 0]T .
Given an arbitrary “rotation” direction r1 = [0.626 0.657 0.421]T , r2 can be calculated
as per Eq. (6.9a) to obtain r2 = [0.374 − 0.657 − 0.421]T . Then, the reflection
matrix R can be calculated according to Eq. (6.9b). The resulting R is given in Eq.
(6.16). Notice that the reflection matrix R is orthogonal with a −1 determinant indicating
that the Householder reflection flips the contour lines from one side to the opposite side.
However, since the hyper-ellipsoids are symmetric, such flipping is equivalent to a 180
degrees rotation and it does not influence the results.

R =

0.626 0.657 0.421
0.657 −0.153 −0.739
0.421 −0.739 0.527

 (6.16)

134



Before the “rotation” is implemented, a matrix Q0 is defined according to Eq. (6.17).

Q0 =

1e−6

1
1

 (6.17)

Based on the reflection matrix R calculated, the matrix Q can be obtained as Eq. (6.18)
from Q = RTQ0R. The eigenvalues value of Q are 1e−6, 1 and 1, which are the diagonal
elements of the matrix Q0. In other words, the reflection operation preserves the convexity
of the objective.

Q =

 0.608 −0.411 −0.263
−0.411 0.569 −0.276
−0.263 −0.276 0.823

 (6.18)

After the matrix Q and Θ are obtained, the QP in Eq. (6.13) can be solved by a
QP solver. Since no translation is applied, d = 0. The solution selected from the QP
is x∗ = [1.952 2.048 1.312]T and the optimal objective value is −8. It can be verified
that r1 = x∗

∥x∗∥ holds indicating that the semi-major axes of concentric ellipsoids in the r1
direction point towards the optimal solution x∗ on the optimal face Θ.

In the example presented above, the direction r1 is arbitrarily selected. If different r1
are used to construct the QP, different solutions will be obtained. Here, Tab. (6.1) shows
that by increasing the first element of the r1 an optimal solution with a larger first element
is obtained.

Table 6.1: Different r1 can select different optimal solutions from Θ

r1 Optimal Solution Optimal Objective
[0.626 0.657 0.421]T [1.952 2.048 1.312]T -8
[0.749 0.558 0.357]T [2.293 1.707 1.093]T -8
[0.952 0.258 0.165]T [3.147 0.853 0.547]T -8
[0.985 0.145 0.093]T [3.488 0.512 0.328]T -8
[1.000 0.020 0.013]T [3.922 0.078 0.050]T -8

The example in Eq. (6.14) is also geometrically illustrated in Fig. (6.8). The poly-
hedron shown in Fig. (6.8) describes the feasible space defined by the constraints in Eq.
(6.14) with respect to the three decision variables x1, x2 and x3. The blue surface denotes

135



Figure 6.8: Control of elements of r1 to select different optima

the optimal face Θ in Eq. (6.15). On the blue surface, any point is a solution and the
objective is −8.

For ERM, since the ∥r1∥ = 1, increasing one element of r1 means decreasing other
elements to keep ∥r1∥ = 1. Increasing a particular element of r1 of ERM leads to an
increase in the corresponding element of a solution x until the selected optimal solution
reaches the boundary of the optimal face. In Fig. (6.8), symbols in the figure denote
different trajectories of solutions selected by manipulating elements of r1. For instance,
the square denotes the trajectory of the solutions by increasing the first and second elements
and decreasing the third elements of r1 in ERM. As the first and second elements of r1
increase, the first and second elements of the selected solution also rise.

6.6.2 Comparison of Computational Expense

A comparative simulation study is conducted to illustrate the influence of the number
of constraints on the computational expense of ERM versus the interior point WPDM
method. An LP example referred to as “lp agg2” from a repository of models[21] was
used. The original example “lp agg2” contains 516 constraints and 758 decision variables.
Test examples were created by randomly selecting a different number of constraints and
keeping the same objective as the original example. In this research, test examples with

136



50, 100, 200, 300, 400, and 500 constraints were created from the original example. To
ensure that these test examples have multiple solutions, one inequality constraint with the
same coefficients as the objective of the original example is added. Then, these examples
were classified according to the number of constraints, and the average computation time
was calculated for each case.

Fig. (6.9) presents the average computation time of these created test examples. Since
many of the reported DFBMs have large constraints the effect of the number of constraints
on computations is critical. For both, ERM and WPDM, the average computation time
correlates with the number of constraints. However, the computation time of WPDM in-
creases faster than the ERM as the number of constraints increases. For WPDM, the fitting
parameter is w and the number of elements of w increases as the number of constraints
increases. For ERM, regardless of the number of constraints, the number of elements of
the vector r1 used to select an optimal solution remains the same. Thus, ERM provides a
significant advantage of computational time when the number of constraints is large. Fur-
thermore, this computational advantage is expected to be critical for problems involving
online estimation or adaptation based on metabolic flux models.

0 100 200 300 400 500

Number of Constraints

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

C
P

U
 T

im
e
 (

s)

WPDM

ERM

Figure 6.9: Comparison of average computation time of WPDM and ERM for different
numbers of constraints

137



6.6.3 Example of B. Pertussis Model

Model Calibration

The objective in this example is to compare the performance of our newly proposed method,
i.e. ERM, to our previously proposed approach, i.e. WPDM, for the problem of calibrat-
ing a DFBA model. To fairly compare ERM with WPDM when multiplicity occurs, this
research follows a bi-level optimization strategy as done with WPDM and it applies both
methods with the same experimental data used in [98]. Two groups of replicates’ experi-
mental data of B. pertussis reported in the paper of [13] were used to calibrate the dynamic
flux balance model, referred to experiments 1 and 2 in the following sections.

When ERM is used to solve the LP in Eq. (6.2), the flux vk can be express as a function
of β, ψk, r1. In DFBM, β are the parameters of the LP, e.g. parameters in kinetic rate
constraints expressions, and ψk is the state at each time step, i.e. the concentration of a
metabolite or biomass. The parameters r1 determine which solution is selected from the
multiple optima. Therefore, the flux will be a function vk = ERM(r1,β,ψk). During the
fitting with experimental data, r1 and β serve as tuning parameters for fitting the model
predictions to data.

Hence, the evolution of the state is determined by parameters β and r1 together. Model
calibration consists of tuning these parameters by optimization to fit the experimental
data. The problem of fitting the model to experimental data can be expressed as a bi-level
optimization problem as follows:

min
β,r1

∑
k

∑
m

(ψm,k − ψexpm,k)
2 (6.19a)

subject to ψk+1 = ψk +∆tψbio,kSvk (6.19b)

vk = ERM(r1,β,ψk) (6.19c)

ψ0 is initial states of DFBM (6.19d)

k = 0 · · · (6.19e)

where ψm,k is the value of the m-th state of ψk calculated by the model and ψexpm,k is the
value of the state interpolated from cubic splines fitted to the experimental data. Then,
the fitting procedure is based on the minimization of the summation of squared errors of
measured metabolites with respect to the tuning parameters β, r1.

The problem formulated in Eq. (6.19) is a bi-level optimization. The outer level
involves the minimization of the sum of square errors between model predictions. This

138



outer optimization is done with respect to model parameters β and the “rotation” vector
r1 as shown in the previous example where changes of r1 will serve to select a particular
solution that results in best fit of experimental data. The inner optimization assumes the
β and r1 are given so that the LP problem is solved by ERM over the duration of the
entire batch culture. On the other hand, for fitting the DFBM with the WPDM method,
the tuning parameters are β and the interior points weights w.

Although all the parameters of β and parameters w of WPDM or r1 of ERM could
be manipulated to fit the experimental data, this is very impractical because only a small
subset of the parameters has a significant impact on the solution [44, 69]. Thus, sensitivity
analysis is used to determine the top 5 elements of β and the top 5 elements ofw of WPDM
that have the largest effect on the solution. For ERM we also conduct a sensitivity analysis
and select the same 5 elements of β that were chosen for WPDM together with the top 5
elements of r1 of ERM that have the most impact on the fluxes.

To simplify the notation, δ is used to represent all parameters (β for DFBM, r1 for
ERM, w for WDPM) that can be tuned to fit experimental data. The sensitivity Sδi is
the sensitivity of parameter δi defined as Eq. (6.20).

Sδi =
∑
m

∑
k

∣∣∣Sδiψm,k∣∣∣ (6.20)

where Sδiψm,k is the sensitivity of m-th state ψm to the i -th parameter δi at sampling time
interval k. The biomass and the volume of culture are treated as states. The calculations of
sensitivity of the states with respect to tuning parameters are calculated with Eq. (6.21).

Sθiψm,k =
∂ψm,k
∂θi

θi

ψm
(6.21)

where ψm is the average of the m-th state over all sampling time intervals.

Comparison of ERM with WPDM

The fitting parameters of WPDM and ERM are elements of weights w and “rotation”
direction r1 respectively. After sensitivity analysis, 5 elements of w and 5 elements of r1
together with 5 elements of model parameters β are used to fit two groups of experimental
data for WPDM and ERM respectively. In the previous research [98], WPDM has shown
that 5 elements of model parameters β and 5 elements of w can fit the same experimental
data much better than other solvers, such as the dual-simplex methods and the naive

139



interior point method of IBM CPLEX and MATLAB. For the same experimental data,
WPDM was also shown to be superior to other methods that were specifically proposed
to address multiplicity, including the minimization of total flux, the minimization of the
number of active reactions, and hierarchical optimization (lexicographic optimization).

Table. (6.2) is the fitting result of the sum of squared errors for different methods. Figs.
(6.10) and (6.11) shows plots of the model predictions and data for different amino acids and
biomass evolutions with time respectively. For confidentiality reasons, all concentrations
are normalized so that concentrations are dimensionless. As shown in these figures, the
results of ERM and WPDM are very similar. Both methods can fit some amino acids well
but slightly worse in other amino acids. WPDM fits well the threonine and ERM fits well
with lysine. As SSE in shows Table. (6.2), the total SSEs for ERM and WPDM are very
close as well but ERM has relatively smaller errors than WPDM.

While ERM and WPDM show similar fitting performances for the multiplicity issue, the
two methods are significantly different in terms of computation time. For a fair comparison,
tests are conducted on the same computer and the same version of MATLAB and repeated
100 times to calculate the average computation time. On average, an LP with 50 decision
variables and 220 constraints requires 0.0676s by WDPM and 0.0116s by ERM. Thus,
ERM is 5.8 times faster than WPDM. One main reason for this computational efficiency is
that ERM can take advantage of commercial solvers to reach fast speed and high accuracy.
If more constraints are used in the DFBM, ERM still has the same number of parameters
but WPDM will have more parameters to fit, which greatly increases the computation. The
efficiency of ERM makes it possible to apply in the future to larger metabolic networks.

6.7 Conclusions

A novel ERM method is developed to address the multiplicity of LP problems. The method
is successfully applied to a toy example and for calibrating the DFBM of B. pertussis
during fermentation. The method scales well with the dimensions of the metabolic net-
work because the number of calibrating parameters does not increase with the number
of constraints. Since ERM is low-code and based on commercial LP and QP solvers, it
is computationally efficient and suitable for metabolic flux modeling of large metabolic
networks for which multiple solutions exist. The computational advantages are expected
to be particularly important for online DFBA-based estimation or optimization problems.

140



Table 6.2: Summation of Squared Errors (SSE) of Fitting by ERM and WPDM

SSE of ERM SSE of WPDM
Biomass 3073 3333

Ala 0.126 0.180
Arg 1.030 0.754
Asp 3.522 1.746
Glu 395.6 407.6
Gly 14.36 14.30
His 1.638 1.712
Ile 0.559 0.616
Leu 2.322 1.782
Lys 15.56 31.14
Met 6.708 6.831
Phe 8.274 8.284
Pro 0.210 1.344
Ser 1.428 0.194
Thr 18.80 2.381
Tyr 0.078 0.075
Val 5.96 5.55
Total 3549 3818

141



0 50
0

0.02

0.04

A
la

0 50

0.015

0.02

0.025

A
rg

0 50
0

0.02

0.04

A
sp

0 50
0

0.5

1

G
lu

0 50
0

0.02

0.04

G
ly

0 50
0.005

0.01

0.015

0.02

H
is

0 50
0

0.02

0.04

Il
e

0 50
0

0.02

0.04

L
eu

0 50
0

0.02

0.04

0.06

L
y
s

0 50
0

0.005

0.01

0.015

M
et

0 50
0

0.02

0.04

P
h

e

0 50
0

0.05

0.1

P
ro

0 50
0

0.02

0.04

S
er

0 50
0

0.02

0.04

T
h

r

0 50
0

2

4

T
y
r

10
-3

0 50
0

0.05

V
a
l

Weigted Primal-Dual Method

Ellipsoid Reflection Method

Experiment 1

Experiment 2

Time (h)

Figure 6.10: Evolution of key metabolite concentrations with time by WPDM and ERM

142



0 10 20 30 40 50 60

Time (h)

0

0.5

1

1.5

2

2.5

3

3.5

B
io

m
a
ss

Weigted Primal-Dual Method

Ellipsoid Reflection Method

Experiment 1

Experiment 2

Figure 6.11: Evolution of biomass concentrations with time by WPDM and ERM

143



Acknowledgements

This work was supported NSERC Discovery Grants Program under grant 50503-10882,
Sanofi-Pasteur and Mitacs.

144



Chapter 7

Setting up an Experimental Platform
for Online Estimation Based on
Dynamic Flux Balance Models

7.1 Overview

In the previous chapters, the weighted primal-dual method (WPDM) and the ellipsoidal
reflection method (ERM) have been proposed to solve the multiplicity issue of dynamic
flux balance models (DFBM). Based on the improved DFBM, different methods of set
membership estimation were designed to estimate the state of metabolism in the bioreactor
with limited measurements. To test these proposed ideas, an experimental platform was
required for future applications. Using available equipment in our laboratory, a batch
culture of B. pertusis was conducted, analyzed, and modeled with DFBM.

7.2 Introduction

This thesis focuses on the use of DFBM for process modeling and monitoring. However,
applying DFBM has two major problems. DFBM contains a linear programming (LP)
problem at each time step and the LP needs to be solved to proceed to the next time step.
The multiplicity of solutions of the LP poses a challenge for predicting the time evolution
of metabolites along a batch. In previous research, two data-driven methods WPDM and
ERM have been proposed to select the optimal solution that best fits experimental data.

145



Compared to methods that assume the metabolism of cells is efficient, these two methods
fit experimental data better because they can select specific solutions.

A second challenge for the use of DFBM for process monitoring is the lack of online
measurements. DFBM considers more metabolites than the classical unstructured models
traditionally used in bioprocess monitoring. Online measurements of most metabolites are
impossible to measure in real-time since they require time-consuming techniques such as
HPLC. The lack of online measurements hinders the ability to design an observer to esti-
mate unmeasured metabolites because their observability is not satisfied. To overcome this
scarcity of measurements, different set membership estimations for DFBM are constructed
in previous chapters.

While set membership estimation works well in simulations, it was important to further
prove its applicability in an experimental setting. In view that part of this research was
funded by a two-term MITACS scholarship, I developed a bench scale platform for batch
culturing of B. pertussis which is currently used by Sanofi for the manufacturing of the
whooping cough vaccine. The platform is a scale-down model (2L) of the industrial 20L
-2000 L reactors used by Sanofi.

This chapter includes three sections: materials and methods, calibration of dynamic
flux balance modeling, and results and discussion.

7.3 Materials and Methods

7.3.1 Setting up of Equipment

The entire platform can be classified into different parts, bioreactor, control console, probes,
pump, and camera as shown in Fig. (7.1). The bioreactor (Applikon, Netherlands) is
operated in a batch fermentation mode. The control console is composed of two parts, a
controller (ADI 1030; Applikon, Netherlands) and a console (ADI 1025; Applikon, Delft,
Netherlands). The controller receives the signals from probes, displays process variables
on the screen, and controls the key process parameters. The console has two mounted
peristaltic pumps controlled by the controller and one rotary knob to tune the speed of
agitation. Probes measure the dissolved oxygen (DO), pH, and temperature and send these
signals to the controller. The camera (C920S; Logitech, Switzerland) is used to capture the
experimental data on the screen of the controller by a program in Python, and the photos
captured are stored on the laptop (Dell, USA). The pump (MasterFlex®, Germany) is
used for inoculation and sampling.

146



Figure 7.1: Setting up of Equipment

7.3.2 Culture Conditions and Operations

The culture conditions of B. pertussis are adapted from a scaled-down model developed by
Sanofi. This scaled-down model is used to analyze industrial fermentation. This research
adapted similar conditions to the scaled-down model for simulating the industrial setting. A
B. pertussis strain from Sanofi was used in all experiments. The batch media is a modified
version of Stainer-Scholte media supplemented by casamino acids (BactoTM Casamino
Acids; Thermo Fisher Scientific, USA). The media was prepared, then sterilized in an
autoclave for 40 mins, and stored at 5◦C for the culture in the shake flask. Growth
factors include vitamins and salts combined together with media to promote better growth.
Growth factors were prepared, then sterilized through a filter and stored at 5◦C for culture
in the shake flask and bioreactor.

A cryovial containing 1 mL seed stored at−80◦C melt was inoculated in a sterile 500 mL
flask containing 60 mL media, 57.8 mL sterile ultrapure water, and 1.2 mL growth factors.
The shake flask is controlled at 200 rpm and 36◦C in an incubator (NU-5510/E; NuAire,
USA). The culture of the shake flask was conducted for 38 h until the OD600 (optical
density measurements at 600 nm) was within 4 to 6 for inoculation to the bioreactor. The
initial OD600 in the bioreactor was controlled at 0.3 by the amount of inoculation. Finally,
the culture volume after inoculation was approximately 1.6 L.

DO probe (InPro®6800; Mettler Toledo, OH, USA) was calibrated at its zero value
by nitrogen and at 100% value by air after the readings of DO were stable. A pH probe

147



(Applikon, Netherlands) was calibrated by standard buffers (Thermo Fisher Scientific,
USA) at pH values of 4.01 and 7 respectively. The temperature was controlled in a closed-
loop by a PI controller at a target of 36◦C by a heating jacket. The pH was controlled
in a closed-loop by a PID controller at a target of 7.2 by adding 2.5 M sterile phosphoric
acid. 1.5% sterile antifoam (Antifoam 1520; Dow Corning, USA) was added manually to
minimize the generation of foam. The dissolved oxygen was controlled in a closed loop by a
PID controller at a target of 35% by manipulating the aeration rate. The agitation rate was
manually controlled and increased from 200 rpm initially to 625 rpm at 29.5 hours. Once
the agitation could not satisfy the DO target, the agitation rate was manually increased.
During the first half of fermentation, the agitation rate increased roughly by 50 rpm every
two hours. During the second half of the fermentation, the agitation rate was increased
slower than for the first half. Sampling was conducted at 0 h, 4 h, 8 h, 16 h, 24 h, and at
the end of the fermentation. Each time a 2 mL sample of culture was collected and stored
in two 1.5 mL centrifuge tubes separately. The fermentation was stopped at about 29.5 h
when a peak of DO was observed corresponding to the complete depletion of glutamate.

7.3.3 Analysis of Culture

Determination of Contamination

To prevent contamination, tryptic soy agar (Millipore Sigma, USA) and Bordet-Gengou
agar (Thermo Fisher Scientific, USA) plates are used to confirm the absence of contami-
nation. B. pertussis can grow on Bordet-Gengou agar but cannot grow on tryptic soy agar
[31].

Determination of Biomass

Samples from the shake flask or from the bioreactor were diluted by 0.9% saline water
(Intermountain Life Sciences, USA) and mixed well. The biomass concentration was de-
termined by optical density measurements at 600 nm using a spectrophotometer [13].

Determination of Metabolites

AccQ.TagTM method with a pre-column is used to quantify the concentrations of amino
acids in the culture. AccQ.TagTM method uses overdosed AQC
(6-aminoquinolyl-N-hydroxysuccinimidyl carbomate) to derivatize the amino acids. The

148



is procedure generates highly stable fluorescent derivatives which can be measured by
fluorescence detectors to quantify the concentrations. The pre-column is used to separate
these amino acid derivatives.

Samples collected from the bioreactor were centrifuged 3 mins at 10000g to remove the
cells and then filtered by 0.2 µm MCE filter (Thermo Fisher Scientific, USA) to collect the
supernatant. The samples of supernatant were stored at −20◦C for later analysis. Frozen
samples of supernatant were thawed at room temperature and then diluted with ultrapure
water for HPLC. Further details of this analysis are provided below.

Following the Waters AccQ.FluorTM Reagent Kit instructions sheet, Waters
AccQ.FluorTM Reagent Kit was used to derivatize the supernatant. 1 ml of reagent diluent
was transferred to a reagent powder container and vortexed for 10 seconds to reconstitute
the AccQ.Fluor reagent. The container of AccQ.Fluor reagent was closed, sealed, put in a
55◦C water bath, and vortexed until the reagent powder was fully dissolved. 10 µL of the
sample and 70 µL of AccQ.Fluor Borate Buffer was vortexed in a centrifuge tube. Then,
20 µL reconstituted AccQ.Fluor reagent was added into the centrifuge tube, vortexed, and
incubated for 1 min at room temperature. The derivatized sample was transferred to a
clean autosampler vial with a 250 µL limited volume insert and closed with a silicone-lined
septum cap. This autosampler vial was then placed in the water bath at 55◦C for 10
minutes.

The Waters 1525 chromatography system (Waters Corporation, MA, USA) with a
fluorescence detector (W2475; Waters Corporation, MA, USA) was used to analyze amino
acids. The AQC pre-column (Waters AccQ.TagTM Amino Acid Analysis Column C18,
dimensions 4 µm, 3.9 mm × 150 mm) was preheated to 38◦C. For each analysis, 5 µL of
derivatized sample in the autosampler vial was injected into the column. The fluorescence
detector was set to an excitation wavelength of 248 nm and an emission wavelength of 395
nm.

The eluent A was an acetate-phosphate buffer solution prepared by mixing 100 mL
AccQ.TagTM Eluent A concentrate (Waters, MA.USA) with 1 L of ultrapure water. The
eluent B was HPLC-grade acetonitrile. The flow rate of each eluent at different times
for the HPLC run was adapted from the work of Cohen [19] and are presented in Tab.
(7.1). The HPLC analysis for each sample runs for 45 min. Before each run starts and in
between samples run, the column was equilibrated for 15 min using 99% of eluent A and
1% of eluent B for 15 minutes at 1 mL/min.

149



Table 7.1: Gradient table of eluents for HPLC analysis

Time
(min)

Flow rate
(mL/min)

Eluent A
Buffer
(%)

Eluent B
ACN
(%)

Gradient
Curve

0 1 99 1 -
0.5 1 98 2 6
18 1 95 5 6
19 1 91 9 6
30 1 80 20 6

7.4 Dynamic Flux Balance Model

Dynamic Flux Balance Model with the Ellipsoidal Reflection Method

A DFBM model was used for model fitting with the data generated in the experiments.
The DFBM is presented in detail in Eq. (6.2) and Eq. (6.1) of Chapter 6.

Model Calibration

The DFBM model previously developed [13] was used to calibrate for new experimental
data. The DFBM model was calibrated using the ERM method presented in Chapter 6
of this thesis. Given the DFBM with ERM, the evolution of the state is determined by
parameters S, β, and r1 together. Model calibration involves tuning these parameters
to optimize the fit to the experimental data. The fitting of experimental data can be
expressed as an optimization problem.

min
Sbio,r1,β

∑
k

∑
m

(ψm,k − ψexpm,k)
2 (7.1a)

subject to ψk+1 = ψk +∆tψbio,kSvk (7.1b)

vk = ERM(r1,β,ψk) (7.1c)

ψ0 is initial states of DFBM (7.1d)

k = 0 · · · (7.1e)

where ψm,k and ψexpm,k are m-th state of ψk calculated by the model and from cubic spline
interpolation of experimental data respectively. Sbio is the column of matrix S related to
the biomass synthesis. The goal is to minimize the sum of squared errors between predicted

150



and measured metabolites’ concentrations at all time steps by tuning parameters β, r1, and
Sbio. Notice that in this research and in most DFBM studies in general, the stoichiometry
coefficient matrix S is not considered a tuning parameter and instead is determined from
biochemical information sources. However, in our case Sbio is tuned because the biomass
composition can change due to the differences in the culture conditions. In Chapter 6, the
fitting parameters only include β and r1. Since the culture conditions of new experimental
data are not the same as the old experiments when the model was developed, it was
hypothesized that the composition of biomass can also change so it is added as a fitting
parameter. Once the biomass composition changes, the yields of substrates with respect
to biomass may vary so that Sbio may also change.

Since the total number of possible tuning parameters is very large, sensitivity analysis
was done to select the most sensitive parameters to reduce the computational expense.
For simplicity, δ is used to represent the tuning parameters vector (Sbio, β, and r1) that
can be varied to fit the experimental data. The sensitivity Lδi is the sensitivity of i -th
parameter of δ defined as in Eq. (7.2).

Lδi =
∑
m

∑
k

∣∣∣Lδiψm,k∣∣∣ (7.2)

where Lδiψm,k is the sensitivity of m-th state ψm with respect to the i -th parameter δi at
sampling time interval k. The calculations of sensitivity of the states are done according
to Eq. (7.3).

Lδiψm,k =
∂ψm,k
∂δi

δi

ψm
(7.3)

where ψm is the average of the m-th state over all sampling time intervals. According to the
sensitivity analysis, parameters with the largest L values are selected to fit experimental
data.

7.5 Results and Discussion

7.5.1 Determination of Contamination

The experimental data presented in this chapter is referred to as batch F06. To assure that
no contamination occurred during batch F06, sterile centrifuge tubes and sterile syringes
were used to extract samples from the bioreactor. When the DO peak (over DO setting
point 35 % for 5 mins) was observed at about 29.5 h, an event that was used as an indication

151



of complete depletion of glutamate, the last sample was collected. The sample at 29.5 h
was inoculated on a tryptic soy agar plate and a Bordet-Gengou agar respectively. Two
plates were cultivated at 35◦C for 3 days in the incubator. Fig. (7.2a) and (7.2a) show that
the bacteria could not grow on the tryptic soy agar but could grow on the Bordet-Gengou
agar and formed the colony in brown color. The colony formed on the Bordet-Gengou agar
was picked and further inoculated on a new tryptic soy agar, and incubated at 35◦C for 3
days in the incubator. Fig. (7.2c) shows that no colony was formed on the tryptic soy agar
(the marks are the scratches made by the inoculating loop). These experiments confirmed
that batch F06 succeeded and no contamination occurred.

7.5.2 Determination of Biomass

OD 600 was used in this research to quantify biomass concentration. F06 refers to a batch
of experiment conducted as per the description above. FER 1120 refers to typical experi-
mental data from a 2 L benchtop bioreactor. The data was extracted from figures shown in
a Sanofi report [92], which was used for comparison with F06. For confidential reasons, OD
600 data from F06 and FER 1120 were normalized with initial OD 600 respectively. The
initial OD 600 of FER 1120 and F06 were different. F06 was conducted with a working
volume of 1.6 L whereas FER 1120 was conducted with a working volume of 2L. As shown
in Fig. (7.3), it was evident that the biomass observed in F06 was much higher than the
FER 1120 after 24 h.

7.5.3 Determination of Metabolites

The calibration of the model relies on extracellular concentrations of amino acids. Most
amino acids in the media were from casaaminoacids, which are obtained from the hydrolysis
of milk and are a key part of the growth media used by Sanofi. The main carbon source
for B. pertussis is glutamate, which is consumed in the TCA cycle to generate ATP and
maintain cell growth and functions. In fact, it has been reported that B. pertussis can
grow with a basic media containing glutamate and proline. Other amino acids are used
for the synthesis of biomass and antigens. Different dilution factors were used to measure
the amino acids by HPLC and replicate measurements were conducted to verify accuracy.
For confidential reasons, the measured concentrations were normalized by the initial value
of glutamate concentration. The concentrations measured of batch F06 are presented in
Tab. (7.2).

152



(a) Sample at 29.5 h was inoculated on the
tryptic soy agar

(b) Sample at 29.5 h was inoculated on
the Bordet-Gengou agar

(c) The colony picked from the Bordet-
Gengou agar was inoculated onto the tryp-
tic soy agar

Figure 7.2: Sample inoculated on the Bordet-Gengou agar and tryptic soy agar

153



Figure 7.3: Comparison of normalized biomass of batch F06 with batch FER 1120 from
Sanofi

Table 7.2: Normalized amino acid concentrations in the culture by HPLC analysis

Time (h) 0 4 8 16 24 29.5
Asp 0.0718 0.0617 0.0606 0.0449 0.0412 0.0285
Ser 0.0462 0.0361 0.0333 0.0174 0.0003 0.0001
Glu 1.0000 0.8619 0.8401 0.5953 0.4652 0.2424
Gly 0.0213 0.0148 0.0128 0.0058 0.0000 0.0000
His 0.0127 0.0079 0.0079 0.0054 0.0084 0.0088
Arg 0.0137 0.0126 0.0122 0.0091 0.0105 0.0117
Thr 0.0225 0.0201 0.0194 0.0146 0.0178 0.0169
Ala 0.0438 0.0343 0.0308 0.0139 0.0017 0.0015
Pro 0.2352 0.2078 0.1871 0.1111 0.0996 0.1094
Val 0.0491 0.0418 0.0406 0.0294 0.0301 0.0280
Met 0.0129 0.0109 0.0109 0.0073 0.0073 0.0057
Lys 0.0707 0.0607 0.0586 0.0471 0.0508 0.0529
Ile 0.0280 0.0233 0.0226 0.0167 0.0178 0.0168
Leu 0.0415 0.0346 0.0339 0.0231 0.0224 0.0190
Phe 0.0172 0.0141 0.0134 0.0094 0.0093 0.0081

154



7.5.4 Model Calibration

The DFBM model is calibrated with respect to a set of tuning parameters that include θ, r,
and S. Only the elements related to the reaction of biomass synthesis in the matrix S were
considered for tuning. For all other reactions in the metabolic networks, the stoichiometric
coefficients are fixed and determined by biochemical information about the microorganism.
The rationale for tuning the coefficients related to biomass is that its composition can vary
for different culture conditions.

Since tuning all the possible parameters was computationally expensive sensitivity anal-
ysis with respect to the parameters was conducted to identify the ones that most affect the
fitting to data. The sensitivity L for each parameter is calculated as Eq. (7.2). In total,
30 parameters with the highest sensitivity were used to fit the experimental data of batch
F06.

The results of this fitting procedure are presented in Fig. (7.4), which is based on
normalized experimental. The states that are well-fitted include Ala, Asp, Glu, Gly, Pro,
Ser, and OD600 (biomass). States that could not be fitted by DFBM are Arg, His, Ile,
Leu, Lys, Met, Phe, Thr, and Val. An explanation for the inability of the model to fit part
of the data is discussed in the following section.

7.5.5 Difference between batch FER 1120 and F06

As shown in Fig. (7.3), there is a significant difference in OD 600 between FER 1120 and
F06. FER 1120 is a representative fermentation of 2L at Sanofi and its culture conditions
and operating conditions have been used as a scale-down model to analyze fermentations in
the industrial scale 2000L bioreactors. Following discussion with researchers and engineers
from Sanofi, several possible causes for the differences between our experiments and those
conducted by Sanofi were identified as follows:

i- there was a difference in the time between the end of the flask and the inoculation
into the bioreactor. At Sanofi, the inoculation from a shake flask into the bioreactor is
not always conducted immediately after the culture reaches the late logarithmic phase. To
preserve the culture in the late logarithmic phase, the temperature, mixing, and aeration
are reduced. Later, the preserved culture is used to inoculate the bioreactor. However,
from our experiments, it was observed that this delay period is harmful to the cell and could
be one important reason for a long lag phase and slower growth observed at the Sanofi
experiment as compared to ours. For example, experimental data collected from a shake
flask experiment at our lab is presented in Fig. (7.5). This flask culture was interrupted

155



0 10 20 30
0

0.02

0.04

A
la

0 10 20 30

0.01

0.02

0.03

A
rg

0 10 20 30
0.02

0.04

0.06

0.08

A
sp

0 10 20 30
0

0.5

1

G
lu

0 10 20 30
0

0.01

0.02

G
ly

0 10 20 30

6

8

10

12

H
is

10
-3

0 10 20 30

0.015

0.02

0.025

0.03

Il
e

0 10 20 30

0.02

0.03

0.04

L
eu

0 10 20 30

0.05

0.06

0.07

L
y

s

0 10 20 30

6

8

10

12

M
et

10
-3

0 10 20 30
0.008

0.01

0.012

0.014

0.016

P
h

e

0 10 20 30

0.1

0.15

0.2

P
ro

0 10 20 30
0

0.02

0.04

S
er

0 10 20 30

0.01

0.015

0.02

T
h

r

0 10 20 30
0.02

0.03

0.04

0.05

V
a

l

0 10 20 30
0

20

40

60

O
D

6
0

0

Dynamic Flux Balance Model Experiment F06

Time (h)

Figure 7.4: Evolution of key metabolite and biomass concentrations with time fitted by
DFBM. All data are normalized and dimensionless

156



at the late logarithmic phase by stopping rotation and by cooling down the temperature
for about 10 mins. After this short period, the flask was put back into the incubator
with the normal rotation speed and temperature. As the figure shows, the OD 600 drops
significantly and needs time to recover from the sudden interruption. Similar experiments
[87] have reported that the transcription of virulence genes is regulated by temperature.
Thus, if the inoculation of the bioreactor can not be conducted immediately after the end
of the flask culture, the drastic temporary decrease in dissolved oxygen and temperature
can significantly influence cell growth in the following bioreactor culture. This may explain
why F06 which was inoculated after a very short delay from the mature culture in the shake
flask reached a higher OD600 as compared to the bioreactor experiment at Sanofi.

Figure 7.5: Shake flask interrupted by stopping rotation and cooling down the temperature

ii- There are differences with respect to the DO control in the experiments. The DO
control strategy of FER 1120 was presented in Fig. (7.6) [92]. Essentially, this control
strategy is based on the split control idea where two manipulated variables, agitation and
aeration rates, are used to control one controlled variable, i.e. DO. The agitation rate is
manipulated to increase the DO when the DO demands of cells are low. Once the agitation
rate reaches a saturation limit, since the DO demands of cells are high the agitation rate
remains at its maximum value and the aeration rate is increased to satisfy the oxygen
demand. However, because of hardware limitations, the bioreactor in our laboratory could

157



not be operated like the one at Sanofi. As described before, the agitation is manually
controlled and aeration is controlled by a PID control with a DO probe. The difference in
DO control can also influence cell growth.

Figure 7.6: DO control strategy of FER 1120

iii- There were differences in the antifoam addition strategy. The antifoam in FER 1120
at Sanofi was added at a constant rate. The addition rate was so high at Sanofi that no
foam was observed. However, as Fig. (7.7) shows, foam formed on the inner surface of the
bioreactor in batch F06. Since the antifoam was added manually, the antifoam added in
our bioreactor was less as compared to FER 1120. Antifoam is known for its adverse effect
on cell growth thus possibly explaining the higher OD 600 observed in batch F06.

iv- Glutamate concentrations in F06 were higher than glutamate concentrations of FER
1120. In F06, the glutamate concentrations in the media are from glutamate and casamino
acids. On the other hand, according to Sanofi report [92], the presence of glutamate in
casamino acids is generally ignored in the calculation of the initial required amount. Since
glutamate is the main carbon source in the media, higher glutamate concentrations can
cause a difference in metabolism. Also, different brands or batches of casamino acids can
also contain differing glutamate concentrations.

7.5.6 Analysis of lack of fitting

Compared to fitting in previous chapters, the fitting of DFBM is less accurate. Different
methods, weights, and algorithms were tried to improve the fitting quality. Some amino
acids including His, Ile, Leu, Lys, Phe, Val, were difficult to fit even when the parameters
were assumed to be time-varying. Thus, the lack of fitting can only be explained by a
significant model structure error.

158



Figure 7.7: Foaming during the fermentation of batch F06

159



One important source of model structure error is related to metabolic differences oc-
curring for the two types of experiments used for model calibration. Although the culture
conditions and operating conditions are quite similar between the experiments, differences
were identified in the previous section that was due to limitations of equipment and fund-
ing. As shown in the previous section, the growth in F06 is faster than FER 1120, which
means that the metabolism is more efficient in F06. It should be remembered that the
model structure of the DFBM was originally determined for the experiments conducted
at Sanofi. The metabolic difference influences metabolic regulation and biomass compo-
sitions. For example, current constraints like g(ψk,β) and h(ψk,β) cannot capture the
metabolic regulation occurring in the current experiments as compared to the ones done
at Sanofi. Thus, a different set of kinetic constraints may be necessary to explain the new
experiments conducted at our laboratory that resulted in significantly higher growth. Even
the calibration of stoichiometric coefficients related to biomass synthesis was not sufficient
for improving the fitting. It is possible that the biomass equation should include a contri-
bution of ATP related to the fast synthesis of nucleotides that is not present in the current
composition considered for biomass.

Measurement error may be another important reason for the observed lack of fitting.
In particular, the HPLC results are not suspected to be in error due to column aging and
column preservation. Even though the column had been flushed with ethanol for about
24 hours before the experiments started, peak distortion was observed in all results for
different dilution factors and different replicate injections. Ideally, the peaks along the
elution time spectrum should be highly symmetric and narrowly distributed. The peaks
obtained have tails and are widely distributed as shown in Fig. (7.8). It should be noticed
from Fig. (7.8), that the distribution of small peaks is wide and tailing possibly indicating
that the column is aging or the column is not well preserved.

Figure 7.8: HPLC analysis of amino acids in the initial culture sample

160



7.6 Conclusions

To test fitting techniques and online estimation algorithms developed in this thesis an
experimental bioreactor platform of B. pertussis has been set up and successfully run.
Methods to quantify biomass and amino acid concentrations were tested. However, due to
limitations of equipment and funding, different metabolic pattern was observed in the batch
culture and consequently, the model could not accurately capture the dynamic behavior
of metabolites. Current hardware improvements, including the use of a newer bioreactor,
are currently underway. These improvements are expected to lead to more comparable
experimental results to the ones conducted by Sanofi.

161



Chapter 8

Conclusions and Future Work

8.1 Conclusions

DFBM is a type of unsegregated structural model that can capture the dynamics of the
metabolites. Research in this thesis is modifications and applications of the DFBM. The
main contribution of the thesis can be summarized in four parts, methods to solve the
multiplicity issue, methods of set membership estimations, methods to simplify the DFBM
and the development of an experimental platform for culturing B. pertussis.

8.1.1 Methods to Solve The Multiplicity Issue

The findings of this part of the research can be summarized as follows:

1. A key challenge of DFBM models is that the LP that is solved at each time step may
not be unique. This situation is referred to as the multiplicity issue. In this research,
we found that the solution that is randomly selected by different commercial solvers
can result in different trajectories of the states which may not fit the experiments. If
the multiplicity issue cannot be solved, it is very hard to use the DFBM model for
applications of DFBM to state estimation, control, and optimization problems.

Two new methods are proposed in this thesis for addressing multiplicity referred to as
the Weighted Primal-Dual Method (WPDM) and the Ellipsoidal Reflection Method
(ERM). Both methods can select a specific solution from all possible multiple optima
by manipulating internal parameters. WPDM is a type of weighted interior-point

162



method that can select a specific solution by weights. Since each weight corresponds
to a constraint, the number of parameters of WPDM increases with the number of
constraints. This leads to a drawback in the fitting of model predictions to experi-
mental data because more tuning parameters means more computation in the fitting
process. ERM is a newly proposed method, which solves the LP to find the opti-
mal face and constructs a QP to select a solution by a “rotation” operation of the
quadratic objective surface. More importantly, the number of tuning parameters is
independent of the number of constraints which is generally large in DFBM models.
Thus, ERM greatly reduces significantly the computation expense for large metabolic
networks which may contain many constraints. On the other hand, WPDM is still
useful since it is used as the basis of the set-based estimation method proposed in
Chapter 5. In the latter case, WPDM was combined with multiparametric nonlinear
programming (mpNLP) for set membership estimation based on an approximation
of the barrier function used in the interior point approach.

2. The applicability of DFBM largely depends on the ability to fit available data. Cells
from the same species may exhibit different metabolic patterns when exposed to
different experimental conditions. If a specific DFBM model lacks a sufficient number
of constraints multiple optima may occur but only one of these will best fit the
experimental data. Typical optimization solvers such as the Simplex or Interior-
point method are not tailored to select the specific optimal solution that correctly
captures the metabolism of a cell when different optimal solutions are possible.

Although different methods have been proposed to solve the multiplicity issue, most of
them are based on the assumption that cell behavior follows an efficient metabolism.
However, this may not be true for engineered strains used for specific industrial
purposes. WPDM and ERM are designed to be data-driven methods to capture
metabolic differences among multiple optima. These methods do not require the as-
sumption of prior knowledge of the strain. The optimal solution selected is controlled
by the parameters of the methods. For WPDM, the parameters are the interior-point
weights for each constraint. For ERM, the parameters are the reflection direction.
Since these methods are data-driven, the subtle differences in the genome for the
same species are captured by the manipulation of fitting parameters. By minimizing
the sum squared errors between the model and experimental data, optimal fitting
parameters can be found by optimization. Thus, our methodology is particularly
suitable for describing engineered strains such as the ones used in the industry.

3. The uniqueness of the optimal solution by WPDM and ERM is mathematically
guaranteed provided that the feasible space is not empty. To the author’s knowledge,

163



earlier methods reported for tackling the multiplicity of DFBM cannot guarantee
uniqueness. Because the objective functions of WPDM and ERM are designed to
be strictly convex functions, the solution is shown to be unique. The logarithmic
functions in WPDM and the positive definite matrix in the quadratic objectives play
an important role in the uniqueness of the optimal solution.

4. Before the introduction of WPDM and ERM into DFBM, it is noticed that the
fluxes solved by the Simplex method between two consecutive time steps can be
drastically different even though the differences between values of concentrations
(states) may be very small. The reason behind this is that the pivoting sequence
of the Simplex methods along the vertices is not fixed and thus the differences in
resulting fluxes obtained for two consecutive time steps can be large. To address
this issue, the continuity property was explicitly considered for our proposed WPDM
and ERM methods so that small changes in concentrations of metabolites will only
result in correspondingly small changes in the fluxes. The continuity property is
mathematically proven for both algorithms.

8.1.2 Methods of Set Membership Estimations

Two methods for DFBM model-based estimation are proposed. Both methods are based
on a set membership estimation approach. The first set membership estimation method,
presented in Chapter 4, is based on the assumption that DFBM always has a unique
solution for each time step. The findings of the first set membership estimation method
can be summarized as follows:

1. The governing equations of DFBM have two parts: state equations describing mass
balances and a linear programming (LP) optimization. The LP needs to needs to be
solved at each time step to calculate the fluxes and which are then used to calculate
the metabolites’ concentrations (states) at the next time step. Solving the LP at
each time step is challenging for real-time estimation due to computational expense.
One important finding of this research is that DFBM can be re-formulated by a
multiparametric linear programming approach as a variable structure system thus
eliminating the need to solve the LP in real-time at each time step.

By using multiparametric LP, the original DFBM system is split into a series of
subsystems, each corresponding to specific active constraints of the original LP. Each
subsystem has its own explicit state equation that can be rapidly solved without

164



optimization. This is particularly important for real-time applications, such as state
estimation and optimal control.

2. The identification of subsystems (or critical regions) provides an additional biological
understanding of the occurrence of different metabolic patterns. For example, the ac-
tive constraints can serve to identify the key metabolites that limit the growth of cells
under different conditions. Different subsystems represent different ways in which
cells relocate resources when different metabolites available are limited. Moreover,
the critical regions may serve to identify metabolic switches, optimal media design
for particular modes of operation (Batch/fed-batch), and optimal feeding strategies.

3. Lack of informative online measurements introduces a major observability challenge
for model estimation of bio-processes. When using DFBM for model estimation,
biomass is found to be the most informative state because it appears in all mass
balances multiplying specific consumption/production rates of metabolites. Thus,
for each subsystem (critical region) identified by the multiparametric LP approach,
biomass growth provides information on key limiting resources consumed. By ex-
amining of increase in biomass, the dynamic of other correlating metabolites can
be easily estimated for a particular subsystem. In this research, the construction of
EKFs is based on the idea that biomass is the most informative state. Once the
biomass is measured, other states can be estimated easily as shown in Chapter 3.

4. It is shown that multiple EKFs can be designed for the variable structure system.
Each subsystem (critical region) obtained from the multi-parametric LP needs one
EKF. A monitoring algorithm is designed to identify the state switch from one sub-
system to another subsystem.

The second set membership estimation method in Chapter 5 is a general method and
explicitly addresses the multiplicity of solutions. The findings of this method can be
summarized as follows:

1. When the multiplicity of the linear programming is considered, the DFBM solution
is based on the combination of a nonlinear programming (WPDM) approach and the
state equations. In this case, multiparametric nonlinear programming is applied to
the nonlinear programming (WPDM) formulation to convert the original system into
a variable structure system.

2. Multiparametric nonlinear programming is known to be computationally expensive
since the entire parameter space needs to be divided into zones that are sufficiently

165



small to obtain accurate solutions. As a result of this partition into small zones, the
number of divisions required is huge which greatly increases the computation. On
the other hand, the objective of this research is to estimate the state of industrial
bioreactors, which usually are operated within a narrow operating region. Hence,
several zones of the parameter space are irrelevant to state estimation. Then, a
pragmatic approach was followed where irrelevant parameter zones were pruned thus
reducing the computations.

3. Direct application of multiparametric nonlinear programming in our problem resulted
in numerical issues that are related to the sensitivity of the logarithmic function in the
barrier term of the interior point cost as the solution approaches the boundary of the
constraint. An approximation of WPDM was constructed to bypass the numerical
issues.

8.1.3 Setting up A Platform for Culturing B. pertussis

The contribution of this part research can be summarized as follows:

1. An experimental platform to cultivate the B. pertussis was developed to validate the
ideas of model fitting and set membership estimation proposed in the research. Con-
sidering that B. pertussis is pathogenic, the platform needs to be carefully designed
and developed for future applications. This involved shake flask experiments, cul-
turing in the bioreactor, incubation of plates to corroborate the purity of the culture
and measurement protocols of biomass and amino acid concentrations in the culture.

2. Comparison of the bioreactor experiments of B. pertussis in Sanofi and our lab,
showed significant differences in the evolution of the culture. From the examination
of the protocols of culturing and measurements and discussion with engineers from
Sanofi, possible reasons for the observed differences were identified. Culture condi-
tions are the most possible reasons, including different time delays in the inoculation
to the bioreactor after harvesting from the shake flask, different control strategies of
DO control, antifoam feeding policy, and the initial glutamate concentration.

8.2 Future Work

During my research, several possible future topics are identified. Computational efficiency
is a must for real-time applications of the proposed set estimation algorithms.

166



1. The current WPDM algorithm is not fast enough and the results are not stable
because of matrix invertibility problems. On the other hand, commercial interior-
point solvers deal efficiently with matrix inversions. Since WPDM is also a type of
interior-point method, there is a potential to modify commercial solvers to tackle
WPDM. Although we proposed an alternative ERM method as an alternative of
WPDM for fast model fitting, WPDM is still needed for the set estimation approach
in the presence of multiplicity.

2. Current mpNLP is very slow and computationally expensive for large problems. Ap-
plying mpNLP in DFBM with large metabolic networks is still prohibitive. The
development of a fast mpNLP is important not only for WPDM but also for other
potential applications such as nonlinear control problems.

3. Alternatively, instead of the development of mpNLP that is based on WPDM, it
may be possible to construct an mpQP approach based on the ERM algorithm that
is solved by a combination of commercial LP and QP solvers. The mpQP combined
ERM can be used to replace mpNLP with WPDM in set membership estimation.
The number of critical regions of mpQP with ERM is expected to be much lower if
mpNLP with WPDM is used. This will greatly reduce the computational expense
thus making it possible to tackle large metabolic networks like the ones describing
mammalian cells.

4. Set membership estimation should be tested by experimentally culturing of B. per-
tussis of bioreactors.

5. Economic model predictive control (EMPC) was a key initial research goal of the
current research. However, the lack of sensors motivated to shift the focus of the
work to model-based estimation. Therefore, methods of set membership estimation
were developed. Future research should be conducted to develop an EMPC based on
DFBM and the proposed set membership estimation techniques.

6. The current experimental platform is limited to testing different control strategies.
These limitations were related to the available hardware and budget. In the future,
software like LabView can be installed to control and automatically sample the biore-
actor. The SME developed can be deployed on LabView to evaluate the performance
of online state estimation algorithms.

7. DFBM model with SME can be combined with different spectroscopy like near-
infrared spectroscopy, fluorescence spectroscopy, and Raman spectroscopy to esti-
mate the metabolite concentrations. Since spectroscopy can provide more informa-

167



tion, the addition of sensors has the potential to improve the estimation performance.
For example, our group is currently testing an online spectro-fluorometer that is able
to provide online estimates of glutamate, biomass, and antigen concentrations. The
addition of such a sensor in the bioreactor will permit online estimation of limiting
nutrients and maximization of the amount of final product (antigen).

168



References

[1] Ilan Adler and Renato DC Monteiro. Limiting behavior of the affine scaling con-
tinuous trajectories for linear programming problems. Mathematical Programming,
50(1-3):29–51, 1991.

[2] Amir Akbari and Paul I Barton. An improved multi-parametric programming al-
gorithm for flux balance analysis of metabolic networks. Journal of Optimization
Theory and Applications, 178(2):502–537, 2018.

[3] Teodoro Alamo, José Manuel Bravo, and Eduardo F Camacho. Guaranteed state
estimation by zonotopes. Automatica, 41(6):1035–1043, 2005.

[4] Jarinah Mohd Ali, N Ha Hoang, Mohamed Azlan Hussain, and Denis Dochain. Re-
view and classification of recent observers applied in chemical process systems. Com-
puters & Chemical Engineering, 76:27–41, 2015.

[5] Vincent Andrieu, Gildas Besançon, and Ulysse Serres. Observability necessary con-
ditions for the existence of observers. In 52nd IEEE Conference on Decision and
Control, pages 4442–4447. IEEE, 2013.

[6] Mokhtar S Bazaraa, John J Jarvis, and Hanif D Sherali. Linear programming and
network flows. John Wiley & Sons, 2011.

[7] Alberto Bemporad, Manfred Morari, Vivek Dua, and Efstratios N Pistikopoulos. The
explicit linear quadratic regulator for constrained systems. Automatica, 38(1):3–20,
2002.

[8] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

[9] Franco Blanchini and Stefano Miani. Set-theoretic methods in control, volume 78.
Springer, 2008.

169



[10] Francesco Borrelli, Alberto Bemporad, and Manfred Morari. Geometric algorithm
for multiparametric linear programming. Journal of optimization theory and appli-
cations, 118(3):515–540, 2003.

[11] Zdravko I Botev. The normal law under linear restrictions: simulation and estimation
via minimax tilting. arXiv preprint arXiv:1603.04166, 2016.

[12] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[13] Hector Budman, Nilesh Patel, Melih Tamer, and Walid Al-Gherwi. A dynamic
metabolic flux balance based model of fed-batch fermentation of bordetella pertussis.
Biotechnology progress, 29(2):520–531, 2013.

[14] Anthony P Burgard, Priti Pharkya, and Costas D Maranas. Optknock: a bilevel
programming framework for identifying gene knockout strategies for microbial strain
optimization. Biotechnology and bioengineering, 84(6):647–657, 2003.

[15] CI Byrnes and CF Martin. Global observability and detectability: An overview.
In Modelling and Adaptive Control: Proceedings of the IIASA Conference Sopron,
Hungary, July 1986, pages 71–89. Springer, 2006.

[16] Albert E Cervera, Nanna Petersen, Anna Eliasson Lantz, Anders Larsen, and Krist V
Gernaey. Application of near-infrared spectroscopy for monitoring and control of cell
culture and fermentation. Biotechnology progress, 25(6):1561–1581, 2009.

[17] Luigi Chisci, Andrea Garulli, and Giovanni Zappa. Recursive state bounding by
parallelotopes. Automatica, 32(7):1049–1055, 1996.

[18] Anupam Chowdhury, Ali R Zomorrodi, and Costas D Maranas. k-optforce: integrat-
ing kinetics with flux balance analysis for strain design. PLoS computational biology,
10(2):e1003487, 2014.

[19] Steven A Cohen. Amino acid analysis using precolumn derivatization with 6-
aminoquinolyl-n-hydroxysuccinimidyl carbamate. Amino acid analysis protocols,
pages 39–47, 2000.

[20] Zsolt Darvay. A weighted-path-following method for linear optimization. Studia
Universitatis Babes-Bolyai, Series Informatica, 47(1):3–12, 2002.

[21] Timothy A Davis and Yifan Hu. The university of florida sparse matrix collection.
ACM Transactions on Mathematical Software (TOMS), 38(1):1–25, 2011.

170



[22] Jean-Pierre Dedieu and Mike Shub. Newton flow and interior point methods in linear
programming. International Journal of Bifurcation and Chaos, 15(03):827–839, 2005.

[23] Vincent Delos and Denis Teissandier. Minkowski sum of hv-polytopes in rn. arXiv
preprint arXiv:1412.2562, 2014.

[24] Maarten R Dobbelaere, Pieter P Plehiers, Ruben Van de Vijver, Christian V Stevens,
and Kevin M Van Geem. Machine learning in chemical engineering: strengths, weak-
nesses, opportunities, and threats. Engineering, 7(9):1201–1211, 2021.

[25] Denis Dochain. State and parameter estimation in chemical and biochemical pro-
cesses: a tutorial. Journal of process control, 13(8):801–818, 2003.

[26] Luis F Domı́nguez, Diogo A Narciso, and Efstratios N Pistikopoulos. Recent advances
in multiparametric nonlinear programming. Computers & Chemical Engineering,
34(5):707–716, 2010.

[27] Jeremy S Edwards and Bernhard O Palsson. Metabolic flux balance analysis and the
in silico analysis of escherichia coli k-12 gene deletions. BMC bioinformatics, 1(1):1,
2000.

[28] Denis Efimov, Wilfrid Perruquetti, Tarek Räıssi, and Ali Zolghadri. On interval
observer design for time-invariant discrete-time systems. In 2013 European Control
Conference (ECC), pages 2651–2656. IEEE, 2013.

[29] Michael C Ferris, Olvi L Mangasarian, and Stephen J Wright. Linear programming
with MATLAB, volume 7. SIAM, 2007.

[30] Anthony V Fiacco and Garth P McCormick. Nonlinear programming: sequential
unconstrained minimization techniques, volume 4. Siam, 1990.

[31] LH Field and CD Parker. Differences observed between fresh isolates of borde-
tella pertussis and their laboratory-passaged derivatives. In International Symposium
on Pertussis. US Department of Health, Education, and Welfare, Washington, DC,
pages 124–132, 1979.

[32] William Ford. Numerical linear algebra with applications: Using MATLAB. Aca-
demic Press, 2014.

[33] Carlos Eduardo Garćıa Sánchez and Rodrigo Gonzalo Torres Sáez. Comparison
and analysis of objective functions in flux balance analysis. Biotechnology progress,
30(5):985–991, 2014.

171



[34] Atefeh Ghorbaniaghdam, Jingkui Chen, Olivier Henry, and Mario Jolicoeur. Ana-
lyzing clonal variation of monoclonal antibody-producing cho cell lines using an in
silico metabolomic platform. PloS one, 9(3):e90832, 2014.

[35] Jose A Gomez, Kai Höffner, and Paul I Barton. Dfbalab: a fast and reliable matlab
code for dynamic flux balance analysis. BMC bioinformatics, 15(1):1–10, 2014.

[36] Jose A Gomez, Kai Höffner, and Paul I Barton. From sugars to biodiesel using
microalgae and yeast. Green Chemistry, 18(2):461–475, 2016.

[37] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LATEX Companion.
Addison-Wesley, Reading, Massachusetts, 1994.

[38] Jean-Luc Gouzé, Alain Rapaport, and Mohamed Zakaria Hadj-Sadok. Interval ob-
servers for uncertain biological systems. Ecological modelling, 133(1-2):45–56, 2000.

[39] Alexandra Grancharova and Tor Arne Johansen. Explicit nonlinear model predictive
control: Theory and applications, volume 429. Springer Science & Business Media,
2012.

[40] Osman Güler. Limiting behavior of weighted central paths in linear programming.
Mathematical Programming, 65(1):347–363, 1994.

[41] Henri Haimi, Michela Mulas, Francesco Corona, and Riku Vahala. Data-derived
soft-sensors for biological wastewater treatment plants: An overview. Environmental
Modelling & Software, 47:88–107, 2013.

[42] Stuart M Harwood, Kai Höffner, and Paul I Barton. Efficient solution of ordinary
differential equations with a parametric lexicographic linear program embedded. Nu-
merische Mathematik, 133(4):623–653, 2016.

[43] Martin Herceg, Michal Kvasnica, Colin N Jones, and Manfred Morari. Multi-
parametric toolbox 3.0. In 2013 European control conference (ECC), pages 502–510.
IEEE, 2013.

[44] Rubin Hille, Jasdeep Mandur, and Hector M Budman. Robust batch-to-batch op-
timization in the presence of model-plant mismatch and input uncertainty. AIChE
Journal, 63(7):2660–2670, 2017.

[45] Jared L Hjersted, Michael A Henson, and Radhakrishnan Mahadevan. Genome-scale
analysis of saccharomyces cerevisiae metabolism and ethanol production in fed-batch
culture. Biotechnology and bioengineering, 97(5):1190–1204, 2007.

172



[46] Kai Höffner, Stuart M Harwood, and Paul I Barton. A reliable simulator for dynamic
flux balance analysis. Biotechnology and bioengineering, 110(3):792–802, 2013.

[47] Hermann Georg Holzhütter. The principle of flux minimization and its application to
estimate stationary fluxes in metabolic networks. European journal of biochemistry,
271(14):2905–2922, 2004.

[48] IBM. IBM ILOG CPLEX Optimization Studio CPLEX User’s Manual. IBM ILOG
CPLEX Division, 2016.

[49] Luc Jaulin, Michel Kieffer, Olivier Didrit, and Eric Walter. Interval analysis. In
Applied interval analysis, pages 11–43. Springer, 2001.

[50] Tor A Johansen. On multi-parametric nonlinear programming and explicit nonlinear
model predictive control. In Proceedings of the 41st IEEE Conference on Decision
and Control, 2002., volume 3, pages 2768–2773. IEEE, 2002.

[51] Colin N Jones, Eric C Kerrigan, and Jan M Maciejowski. Lexicographic perturbation
for multiparametric linear programming with applications to control. Automatica,
43(10):1808–1816, 2007.

[52] Petr Kadlec, Bogdan Gabrys, and Sibylle Strandt. Data-driven soft sensors in the
process industry. Computers & chemical engineering, 33(4):795–814, 2009.

[53] Alex Kalos, Arthur Kordon, Guido Smits, and Sofka Werkmeister. Hybrid model
development methodology for industrial soft sensors. In Proceedings of the 2003
American Control Conference, 2003., volume 6, pages 5417–5422. IEEE, 2003.

[54] Pezhman Kazemi, Jean-Philippe Steyer, Christophe Bengoa, Josep Font, and Jaume
Giralt. Robust data-driven soft sensors for online monitoring of volatile fatty acids
in anaerobic digestion processes. Processes, 8(1):67, 2020.

[55] Steven M Kelk, Brett G Olivier, Leen Stougie, and Frank J Bruggeman. Optimal flux
spaces of genome-scale stoichiometric models are determined by a few subnetworks.
Scientific reports, 2:580, 2012.

[56] Donald Knuth. The TEXbook. Addison-Wesley, Reading, Massachusetts, 1986.

[57] Masakazu Kojima, Nimrod Megiddo, and Shinji Mizuno. A primal—dual infeasible-
interior-point algorithm for linear programming. Mathematical programming, 61(1-
3):263–280, 1993.

173



[58] Leslie Lamport. LATEX — A Document Preparation System. Addison-Wesley, Read-
ing, Massachusetts, second edition, 1994.

[59] Sangbum Lee, Chan Phalakornkule, Michael M Domach, and Ignacio E Grossmann.
Recursive milp model for finding all the alternate optima in lp models for metabolic
networks. Computers & Chemical Engineering, 24(2-7):711–716, 2000.

[60] Nathan E Lewis, Kim K Hixson, Tom M Conrad, Joshua A Lerman, Pep Charusanti,
Ashoka D Polpitiya, Joshua N Adkins, Gunnar Schramm, Samuel O Purvine, Daniel
Lopez-Ferrer, et al. Omic data from evolved e. coli are consistent with computed
optimal growth from genome-scale models. Molecular systems biology, 6(1):390, 2010.

[61] Henry C Lim and Hwa Sung Shin. Fed-batch cultures: principles and applications of
semi-batch bioreactors. Cambridge University Press, 2013.

[62] Andreas Löhne and Benjamin Weißing. The vector linear program solver bensolve–
notes on theoretical background. European Journal of Operational Research,
260(3):807–813, 2017.

[63] R Mahadevan and CH Schilling. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metabolic engineering, 5(4):264–
276, 2003.

[64] Radhakrishnan Mahadevan, Jeremy S Edwards, and Francis J Doyle III. Dynamic
flux balance analysis of diauxic growth in escherichia coli. Biophysical journal,
83(3):1331–1340, 2002.

[65] Kyoko Makino and Martin Berz. Taylor models and other validated functional inclu-
sion methods. International Journal of Pure and Applied Mathematics, 6:239–316,
2003.

[66] DG Maksarov and JP Norton. Computationally efficient algorithms for state esti-
mation with ellipsoidal approximations. International Journal of Adaptive Control
and Signal Processing, 16(6):411–434, 2002.

[67] Olvi L Mangasarian and RR Meyer. Nonlinear perturbation of linear programs.
SIAM Journal on Control and Optimization, 17(6):745–752, 1979.

[68] Costas D Maranas and Ali R Zomorrodi. Optimization methods in metabolic net-
works. John Wiley & Sons, 2016.

174



[69] Ricardo Martinez Villegas, Hector Budman, and Ali Elkamel. Identification of dy-
namic metabolic flux balance models based on parametric sensitivity analysis. In-
dustrial & Engineering Chemistry Research, 56(8):1911–1919, 2017.

[70] Frédéric Mazenc, Thach Ngoc Dinh, and Silviu-Iulian Niculescu. Robust interval
observers and stabilization design for discrete-time systems with input and output.
Automatica, 49(11):3490–3497, 2013.

[71] Adam L Meadows, Rahi Karnik, Harry Lam, Sean Forestell, and Brad Snedecor.
Application of dynamic flux balance analysis to an industrial escherichia coli fermen-
tation. Metabolic engineering, 12(2):150–160, 2010.

[72] Nimrod Megiddo. Pathways to the optimal set in linear programming. In Progress
in mathematical programming, pages 131–158. Springer, 1989.

[73] Yanmei Meng, Qiliang Lan, Johnny Qin, Shuangshuang Yu, Haifeng Pang, and
Kangyuan Zheng. Data-driven soft sensor modeling based on twin support vector
regression for cane sugar crystallization. Journal of food engineering, 241:159–165,
2019.

[74] H Ronald Miller. Optimization: Foundations and applications. John Wiley & Sons,
2011.

[75] Jérôme Morchain, Jean-Christophe Gabelle, and Arnaud Cockx. A coupled popula-
tion balance model and cfd approach for the simulation of mixing issues in lab-scale
and industrial bioreactors. AIChE Journal, 60(1):27–40, 2014.

[76] Ehsan Motamedian. A new algorithm to find all alternate optimal flux distributions
of a metabolic network. Computers & Chemical Engineering, 73:64–69, 2015.

[77] Ehsan Motamedian and Fereshteh Naeimpoor. Lamos: A linear algorithm to identify
the origin of multiple optimal flux distributions in metabolic networks. Computers
& Chemical Engineering, 117:372–377, 2018.

[78] Ettore Murabito, Evangelos Simeonidis, Kieran Smallbone, and Jonathan Swinton.
Capturing the essence of a metabolic network: a flux balance analysis approach.
Journal of theoretical biology, 260(3):445–452, 2009.

[79] Mari M Nakamura, Sin-Yee Liew, Craig A Cummings, Mary M Brinig, Christine
Dieterich, and David A Relman. Growth phase-and nutrient limitation-associated
transcript abundance regulation in bordetella pertussis. Infection and immunity,
74(10):5537–5548, 2006.

175



[80] Komi Nambou, Xingxing Jian, Xinkai Zhang, Liujing Wei, Jiajia Lou, Catherine
Madzak, and Qiang Hua. Flux balance analysis inspired bioprocess upgrading for
lycopene production by a metabolically engineered strain of yarrowia lipolytica.
Metabolites, 5(4):794–813, 2015.

[81] Ali Nikdel, Richard D Braatz, and Hector M Budman. A systematic approach for
finding the objective function and active constraints for dynamic flux balance anal-
ysis. Bioprocess and biosystems engineering, 41(5):641–655, 2018.

[82] Ali Nikdel and Hector Budman. Identification of active constraints in dynamic flux
balance analysis. Biotechnology progress, 33(1):26–36, 2017.

[83] Elad Noor, Avi Flamholz, Arren Bar-Even, Dan Davidi, Ron Milo, and Wolfram
Liebermeister. The protein cost of metabolic fluxes: prediction from enzymatic rate
laws and cost minimization. PLoS computational biology, 12(11):e1005167, 2016.

[84] Richard Oberdieck, Nikolaos A Diangelakis, Ioana Nascu, Maria M Papathana-
siou, Muxin Sun, Styliani Avraamidou, and Efstratios N Pistikopoulos. On multi-
parametric programming and its applications in process systems engineering. Chem-
ical engineering research and design, 116:61–82, 2016.

[85] Kaveh Ohadi, Raymond L Legge, and Hector M Budman. Intrinsic fluorescence-based
at situ soft sensor for monitoring monoclonal antibody aggregation. Biotechnology
progress, 31(5):1423–1432, 2015.

[86] Jeffrey D Orth, Ines Thiele, and Bernhard Ø Palsson. What is flux balance analysis?
Nature biotechnology, 28(3):245, 2010.

[87] Anna Prugnola, Beatrice Aricò, Riccardo Manetti, Rino Rappuoli, and Vincenzo
Scarlato. Response of the bvg regulon of bordetella pertussis to different temperatures
and short-term temperature shifts. Microbiology, 141(10):2529–2534, 1995.

[88] Klaus Röbenack and Kurt J Reinschke. An efficient method to compute lie derivatives
and the observability matrix for nonlinear systems. In Proc. Int. Symposium on
Nonlinear Theory and its Applications (NOLTA), volume 2, pages 625–628, 2000.

[89] Philipp Rumschinski, Steffen Borchers, Sandro Bosio, Robert Weismantel, and Rolf
Findeisen. Set-base dynamical parameter estimation and model invalidation for bio-
chemical reaction networks. BMC systems biology, 4(1):1–14, 2010.

176



[90] Bryan Rynne and Martin A Youngson. Linear functional analysis. Springer Science
& Business Media, 2007.

[91] Ali Mohammad Sahlodin and Benoit Chachuat. Convex/concave relaxations of para-
metric odes using taylor models. Computers & Chemical Engineering, 35(5):844–857,
2011.

[92] Sanofi. Report on 2000-l fermentor in building 89 (b89) 2-l small-scale model devel-
opment, Feb 2019.

[93] Robert Schuetz, Nicola Zamboni, Mattia Zampieri, Matthias Heinemann, and
Uwe Sauer. Multidimensional optimality of microbial metabolism. Science,
336(6081):601–604, 2012.

[94] Karl Schügerl and K-H Bellgardt. Bioreaction engineering: modeling and control.
Springer Science & Business Media, 2012.

[95] Fred Schweppe. Recursive state estimation: Unknown but bounded errors and system
inputs. IEEE Transactions on Automatic Control, 13(1):22–28, 1968.

[96] Onur Şeref, J Paul Brooks, Bernice Huang, and Stephen S Fong. Enumeration and
cartesian product decomposition of alternate optimal fluxes in cellular metabolism.
INFORMS Journal on Computing, 29(2):197–210, 2017.

[97] Chao Shang, Fan Yang, Dexian Huang, and Wenxiang Lyu. Data-driven soft sen-
sor development based on deep learning technique. Journal of Process Control,
24(3):223–233, 2014.

[98] Xin Shen and Hector Budman. A method for tackling primal multiplicity of solutions
of dynamic flux balance models. Computers & Chemical Engineering, 143:107070,
2020.

[99] Xin Shen and Hector Budman. Online estimation using dynamic flux balance
model and multiparametric programming. Computers & Chemical Engineering, page
107872, 2022.

[100] Hanif D Sherali. Equivalent weights for lexicographic multi-objective programs:
Characterizations and computations. European Journal of Operational Research,
11(4):367–379, 1982.

[101] George F Simmons. Introduction to topology and modern analysis, volume 44. Tokyo,
1963.

177



[102] Kieran Smallbone and Evangelos Simeonidis. Flux balance analysis: a geometric
perspective. Journal of theoretical biology, 258(2):311–315, 2009.

[103] Yongkyu Song and Jessy W Grizzle. The extended kalman filter as a local asymptotic
observer for nonlinear discrete-time systems. In 1992 American control conference,
pages 3365–3369. IEEE, 1992.

[104] J Spjøtvold, P Tøndel, and TA Johansen. Continuous selection and unique polyhedral
representation of solutions to convex parametric quadratic programs. Journal of
Optimization Theory and Applications, 134(2):177–189, 2007.

[105] Peter F Stanbury, Allan Whitaker, and Stephen J Hall. Principles of fermentation
technology. Elsevier, 2013.

[106] Mahshad Valipour and Luis A Ricardez-Sandoval. A robust moving horizon estima-
tion under unknown distributions of process or measurement noises. Computers &
Chemical Engineering, 157:107620, 2022.

[107] Adriaan Van den Bos. Parameter estimation for scientists and engineers. John Wiley
& Sons, 2007.

[108] Amit Varma and Bernhard O Palsson. Metabolic flux balancing: basic concepts,
scientific and practical use. Bio/technology, 12(10):994, 1994.

[109] Amit Varma and Bernhard O Palsson. Stoichiometric flux balance models quanti-
tatively predict growth and metabolic by-product secretion in wild-type escherichia
coli w3110. Applied and environmental microbiology, 60(10):3724–3731, 1994.

[110] Alejandro F Villaverde et al. Observability and structural identifiability of nonlinear
biological systems. Complexity, 2019, 2019.

[111] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical pro-
gramming, 106:25–57, 2006.

[112] Stefan Wilhelm and BG Manjunath. tmvtnorm: A package for the truncated multi-
variate normal distribution. sigma, 2(2):1–25, 2010.

[113] Eliana Zamprogna, Massimiliano Barolo, and Dale E Seborg. Optimal selection of
soft sensor inputs for batch distillation columns using principal component analysis.
Journal of process control, 15(1):39–52, 2005.

178



[114] Jürgen Zanghellini, David E Ruckerbauer, Michael Hanscho, and Christian Jun-
greuthmayer. Elementary flux modes in a nutshell: properties, calculation and ap-
plications. Biotechnology journal, 8(9):1009–1016, 2013.

[115] Qi Zhao, Arion Stettner, Ed Reznik, Daniel Segrè, and Ioannis Ch Paschalidis. Learn-
ing cellular objectives from fluxes by inverse optimization. In 2015 54th IEEE Con-
ference on Decision and Control (CDC), pages 1271–1276. IEEE, 2015.

[116] Ognyan Ivanov Zhelezov. N-dimensional rotation matrix generation algorithm.
American Journal of Computational and Applied Mathematics, 7(2):51–57, 2017.

179



Appendices

180



Appendix A

Matlab Codes and Proof

A.1 Proof Related to Weighted Primal-Dual Method

Lemma 2 Let X and Y be normed linear spaces and let T : X → Y be a linear
tansformation. T is continuous if there exists a positive real number r such that

∥∥T (x)∥∥ ≤
r ∥x∥ for all x ∈ X [90].

Theorem 6 Assume the problem of Eq.(3.6) is not empty, the optimal solution is locally
continuous with respect to b, c,w.

Proof:

Define a function F (λ,x, z) : Rnλ × Rnx × Rnz → Rnλ × Rnx × Rnz as Eq.(A.1).

F (λ,x, z) =

 ATλ+ c
Ax+ z − b
Λze− µw

 (A.1)

Let b = b0, c = c0,w = w0, let assume the unique solution to Eq.(A.1) exists and can be
expressed as [λ0, x0, z0]

T . Therefore, we have Eq.(A.2)

F (λ0,x0, z0) = 0 (A.2)

181



Apply Taylor expansion to F (λ,x, z) at the optimal solution [λ0, x0, z0]
T :

F (λ,x, z) = F (λ0,x0, z0) + J(F )

∆λ∆x
∆z

 = 0 (A.3a)

∆λ∆x
∆z

 = −J−1(F )F (λ0,x0, z0) (A.3b)

where J(·) is Jacobian matrix, ∆λ,∆x,∆z are deviations from the optimal solution.
Substitute parameters into Eq.(A.3):∆λ∆x

∆z

 =

AT 0 0
0 A I
Z0 0 Λ0


−1  −c0 −ATλ

b0 − z0 −Ax0

µw0 −Λ0z0e

 (A.4)

Note matrix A is an extended matrix of the original linear programming problem that
includes columns of slack variables. So that full rank of matrix A is assured and the
Jacobian matrix exists at the optimal solution and is nonsingular whenever λ0 > 0 and
z0 > 0. Define the function G: Rnλ ×Rnx ×Rnz → Rnλ ×Rnx ×Rnz as Eq.(A.5) mapping
the perturbation vector space into the deviation vector space.

G(ϵ) =

AT 0 0
0 A I
Z0 0 Λ0


−1

ϵ (A.5)

Let K be the metric-induced norm of the inverse of the Jacobian matrix.

K =

∥∥∥∥∥∥∥∥
AT 0 0

0 A I
Z0 0 Λ0


−1
∥∥∥∥∥∥∥∥ (A.6)

For any perturbation ϵ to [b, c,w]T , the deviation of the optimal solution is bounded as

182



per Eq.(A.7) ∥∥∥∥∥∥∥
∆λ∆x
∆z


∥∥∥∥∥∥∥ =

∥∥G(ϵ)∥∥ =

∥∥∥∥∥∥∥∥
AT 0 0

0 A I
Z0 0 Λ0


−1
∥∥∥∥∥∥∥∥ ∥ϵ∥ ≤K ∥ϵ∥ (A.7)

Therefore, the function G is locally continuous at the optimal solution [λ0, x0, z0]
T .

A.2 Example of WPDM

To explain the reason of rank deficient Hessian matrix clearly, an example of LP with
multiplicity is presented here as Eq. (A.8). v1 and v2 are decision variables. Multiple
optimal solutions exist on the hyperplane defined by constraint 2v1 + v2 = 8 from points
(4, 0) to (3, 2). If simplex solver is used, either vertex (4, 0) or (3, 2) can be obtained.
Any solution between (4, 0) to (3, 2) is also optimal solution but cannot be obtained by
simplex solver. And vertex (4, 0) or (3, 2) correspond to different active constraints and
inactive constraints. If (4, 0) is obtained by the simplex solver, the active constraints are
2v1 + v2 = 8, v1 = 4 and v2 = 0. Since only two of three active constraints can determine
the unique optimal solution, one of them is redundant and can be removed by Gaussian
elimination. If (3, 2) is obtained by the simplex solver, the active constraints are v1+3v2 = 9
and 2v1 + v2 = 8. Two active constraints determine the unique optimal solution. If the
problem has parameter θ in constraints, different active constraints determine different
critical regions. This is the reason that multiplicity issue influences the determination of
critical region and WPDM can avoid the problem.

min
vk

− 2v1 − v2 (A.8a)

subject to v1 + 3v2 ≤ 9 (A.8b)

2v1 + v2 ≤ 8 (A.8c)

v1 ≤ 4 (A.8d)

− v1 ≤ 0 (A.8e)

− v2 ≤ 0 (A.8f)

183



The corresponding WPDM with slack variables z is defined as Eq. (A.9).

inf
µ→0,v,z

− 2v1 − v2 − µ(w1ln(z1) + w2ln(z2) + w3ln(z3) + w4ln(z4) + w5ln(z5))

(A.9a)

subject to v1 + 3v2 + z1 = 9 (A.9b)

2v1 + v2 + z2 = 8 (A.9c)

v1 + z3 = 4 (A.9d)

− v1 + z4 = 0 (A.9e)

− v2 + z5 = 0 (A.9f)

If different interior-point weights w are used, different optimal solutions between line sec-
tion from (4, 0) to (3, 2) can be obtained through WPDM because these alternative optimal
solutions are interior points of the hyperplane 2v1 + v2 = 8. Points sufficiently close to
vertexes can also be obtained with high accuracy once the µ is sufficiently small. For all op-
timal solutions between (4, 0) to (3, 2) (excluding vertexes), only one constraint 2v1+v2 = 8
is active. While the simplex solver cannot find these optimal solutions, these points can
be found by the interior point algorithm with different w values.

The strictly convex surfaces of WPDM for µ = 1 and µ = 0.1 are presented in the
Fig. (A.1). And corresponding contours of the surfaces are plotted on the bottom. On
the contour plot, constraints Eqs. (A.8b)-(A.8f) or Eqs. (A.9b)-(A.9f) define the feasible

space. The red dots denote the optimal solution v =
[
3.52 0.96

]T
for givenw = [2 1 1 1 1]T

as µ → 0 and notice point (3.52, 0.96) is an interior point on the hyperplane 2v1 + v2 =
8. The ”zig-zag” boundaries of the convex surfaces are barrier functions defined by the
constraints. Since barrier functions are abruptly increasing to infinity at the boundary of
each constraint, the figure presents the abrupt increasing by ”zig-zag” shapes, which is also
the reason of illness of interior-point methods.

When µ = 1, the objective convex surface is like a ”bowl”. As µ decreases to 0.1, the
bowl-like surface become a super-linear plane but still strictly convex surface. When µ→ 0,
the convex surface will be sufficiently similar to the linear objective hyperplane −2v1 − v2
in Eq. (A.8a). The corresponding elliptical contours become super linear parallel contours
because the gradient of objective hyperplane −2v1 − v2 is a constant covector [−2 − 1].
Notice the condition number is the ratio of semi-major axis to the semi-minor axis of
the ellipse. When the condition number is very large, the rank of the Hessian matrix
is rank deficient. When µ → 0, super linear contours will have infinitesimal semi-minor
axis and rank deficient Hessian matrix. Therefore, local quadratic programming cannot

184



0

 v
1

2

O
b

je
ct

iv
e

0

0

5

1 2 4

10

 v
2

3

0

 v
1

2

O
b

je
ct

iv
e

0

0
1

5

2 v
2

43

10

(a) =1 (b) =0.1

Figure A.1: Surfaces and contours of objective in WPDM as µ→ 0

approximate WPDM well directly.

Back to the example of Eq. (A.9) above, since the active constraint is the second
constraint, it can be approximated by problem P ′

w defined in Eq. (A.10). The solution to

Eq. (A.10) is exactly optimal solution v =
[
3.52 0.96

]T
for given w.

inf
µ→0,v,z

− w1ln(z1)− w3ln(z3)− w4ln(z4)− w5ln(z5) (A.10a)

subject to v1 + 3v2 + z1 = 9 (A.10b)

2v1 + v2 = 8 (A.10c)

v1 + z3 = 4 (A.10d)

− v1 + z4 = 0 (A.10e)

− v2 + z5 = 0 (A.10f)

A.3 Proof related to ERM

Proof of theorem 5 continuity of ERM: As proved before, the QP problem defined in
Eq. (6.13) is a strict convex optimization problem regardless of the reflection direction r1
is. Therefore, the KKT condition holds for this case and and the Lagrangian is given by

185



Eq. (A.11).

L(y,λ,µ) =
1

2
yTQy + λT (ANy −ANd− bN ) + µT (Ây − Âd− b̂) (A.11)

The corresponding KKT condition is given by Eq. (A.12). Eqs.(A.12d)-(A.12f) is the
complementary condition and i is the index of inequality constraint. If the Lagrangian
multiplier λi > 0, the i-th inequality constraint is activated and AN iy −AN id− bN i = 0
holds (complementary slackness). |N | is the cardinality of set N , i.e. the number of
elements of set N .

Qy +AT
Nλ+ ÂTµ = 0 (A.12a)

Ây = Âd+ b̂ (A.12b)

ANy ≤ ANd+ bN (A.12c)

λ ≥ 0 (A.12d)

λi(AN iy −AN id− bN i) = 0 (A.12e)

i = 1 · · · |N | (A.12f)

Denote B the set of indices of all active inequality constraints defined by B =
{
i | λi > 0

}
.

If the active inequality constraints ANBy = ANBd + bNB and equality constraints Ây =
Âd+ b̂ are collected together as in Eq. (A.13).

Aηy = bη (A.13a)

Aη =

[
ANB

Â

]
(A.13b)

bη =

[
ANBd+ bNB

Âd+ b̂

]
(A.13c)

186



Correspondingly, define η =
[
λTB µT

]T
. Then, Eq. (A.12a) can be expressed as Qy +

AT
ηη = 0 resulting in Eq. (A.14).

R

[
y
η

]
=

[
0
bη

]
(A.14a)

R =

[
Q AT

η

Aη 0

]
(A.14b)

If the linear independence constraint qualification (LICQ) condition is satisfied, Aη is full
row rank. Then, the matrix R is also full rank because matrix Q is invertible. Then,[

y
η

]
= R−1

[
0
bη

]
(A.15)

If a pertubation ϵ is added into the RHS of (A.15)[
y′

η′

]
= R−1(

[
0
bη

]
+ ϵ) = R−1

[
0
bη

]
+R−1ϵ (A.16)

Then, [
∆y
∆η

]
= R−1ϵ (A.17)

Let K be the metric-induced norm of the matrix R−1, as K =
∥∥R−1

∥∥. For any

perturbation ϵ to b̂ and bN , the deviation of the optimal solution is bounded as per
Eq.(A.18) ∥∥∥∥∥∥

[
∆y
∆η

]∥∥∥∥∥∥ =
∥∥R−1ϵ

∥∥ ≤
∥∥R−1

∥∥ ∥ϵ∥ =K ∥ϵ∥ (A.18)

Therefore, the optimal solution is locally continuous according to the Lemma 2 in the
Appendix.

187



A.4 Codes related to WPDM

All Matlab codes are based on MATLAB 2018a version.

A.4.1 WPDM

The codes of WPDM are the following:

function [X,fval,exitflag,output] = PrimalDualMethod(c,A,b,w)

%% pretreatment

A_ = sparse([A eye(size(A,1))]);

c_ = [c; zeros(size(A,1),1)];

[tmp_m, tmp_n] = size(A_);

if size(c_,1) < size(c_,2) || size(b,1) < size(b,2) || ...

size(c_,1) ~= tmp_n || size(b,1) ~= tmp_m

error(’LP: data dimensions does not match.’);

end

%% parameter

maxIter = 1000;

verbose = 0;

tau = 1e-8;

maxDiag = 5.e+15;

etaMin = .995;

factor = 0.75;

iterN = 0;

mu=10;

exitflag = -1;

if verbose == 0

% warning(’off’,’MATLAB:nearlySingularMatrix’);

warning(’off’);

else

warning(’on’,’all’);

end

188



if isempty(w)

w = ones(size(A,1)+size(A,2),1);

end

%% initial solution

e = ones(tmp_n,1);

% solution for min norm(s) s.t. A’*y + s = c

y0 = (A_*A_.’)\(A_*c_);

s0 = c_-A_.’*y0;

% min norm(x) s.t. Ax = b

x0 = A_.’*( (A_*A_.’)\b );

% delta_x and delta_s

delta_x = max(-1.5*min(x0),0);

delta_s = max(-1.5*min(s0),0);

% delta_x_c and delta_s_c

pdct = 0.5*(x0+delta_x*e)’*(s0+delta_s*e);

delta_x_c = delta_x+pdct/(sum(s0)+tmp_n*delta_s);

delta_s_c = delta_s+pdct/(sum(x0)+tmp_n*delta_x);

% output

x = x0+delta_x_c*e;

s = s0+delta_s_c*e;

y = y0;

% x = rand(size(x0));

% s = rand(size(s0));

% y = rand(size(y0));

%% calculate residual

Rd = A_.’ * y + s - c_;

Rp = A_ * x - b;

Rc = x.*s - mu*w;

residual = norm([Rp;Rd;Rc]);

189



mu = factor * mu;

if verbose == 2

fprintf(’%4s %9s %9s\n’,’ITER’, ’MU’, ’RESIDUAL’);

end

%% iteratate

while true

% Check Tolerance

if mu < tau

exitflag = 1;

optx = x;

opty = y;

opts = s;

break;

end

% Check maxIter

if iterN >= maxIter

exitflag = 0;

optx = x;

opty = y;

opts = s;

break;

end

% Output

if verbose == 2

fprintf(’%4d %9.2e %9.2e\n’,iterN, mu, residual);

end

% Use augmented system to solve the directions

rhs = sparse([-Rp; -Rd + Rc ./ x]);

% Set up the scaling matrix and form the coef matrix for normal equations

190



DD = min(maxDiag,-s ./ x);

B = [sparse(tmp_m,tmp_m) A_; A_.’ sparse(1:tmp_n,1:tmp_n,DD)];

% ldl’ factorization

[L, D, pm] = ldl(B,’vector’);

% Solve linear system

dxy = zeros(tmp_m + tmp_n, 1);

dxy(pm, :) =L’\(D\(L\(rhs(pm, :))));

% Get the directions

dy = dxy(1:tmp_m);

dx = dxy( tmp_m + 1 : tmp_m + tmp_n );

ds = -( Rc + s .* dx ) ./ x;

% Get step length

eta = max(etaMin, 1-mu);

alphax = -1/min(min( dx ./ x),-1);

alphax = min(1, eta * alphax);

alphas = -1/min(min( ds ./ s),-1);

alphas = min(1, eta * alphas);

% Update the iterate

x = x + alphax*dx;

s = s + alphas*ds;

y = y + alphas*dy;

% Calculate residuals

Rd = A_.’ * y + s - c_;

Rp = A_ * x - b;

Rc = x.*s - mu*w;

residual = norm([Rp;Rd;Rc]);

mu = factor * mu;

% Increase counter

iterN = iterN + 1;

191



end

len = size(c,1);

X = optx(1:len);

fval = c_’ * optx;

if verbose == 2

fprintf(’Iteration = %u\n’,iterN);

fprintf(’Function value = %9.2e\n’,fval);

fprintf(’Residual = %9.2e\n’,residual);

fprintf(’mu = %9.2e\n’,mu);

if exitflag==1

disp(’Optimization is terminated by tolerance’);

else

disp(’Optimization is terminated by maxIter’);

end

end

if verbose == 1

fprintf(’Function value = %9.2e\n’,fval);

if exitflag==1

disp(’Optimization is terminated by tolerance’);

else

disp(’Optimization is terminated by maxIter’);

end

end

output.tau = mu;

output.x = optx;

output.y = opty;

output.s = opts;

end

192



A.4.2 Example of WPDM

Codes of example in (3.19) are the following:

%%

A = [1 1 0; 1 0 2];

b = [4 8].’;

Vertex = [4 0 2; 0 4 4; 0 4 0; 4 0 0; 0 0 0; 0 0 4];

fig = figure(’Position’,[100, 100, 452+300, 477]);

fig.Color = [1 1 1];

ax = axes(’Position’,[0.1 0.12 0.5 0.8]);

ax.ActivePositionProperty = ’outerposition’;

ax.GridLineStyle = ’--’;

ax.LineWidth = 1.5;

ax.FontSize = 16;

patch(’Faces’,[3 4 5],’Vertices’,Vertex,’EdgeColor’,’black’,...

’FaceColor’,[0.259 0.526 0.957],’LineWidth’,0.1,’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[5 4 1 6],’Vertices’,Vertex,’EdgeColor’,’black’,...

’FaceColor’,[0.259 0.957 0.467],’LineWidth’,0.1,’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[6 2 3 5],’Vertices’,Vertex,’EdgeColor’,’black’,...

’FaceColor’,[0.957 0.945 0.259],’LineWidth’,0.1,’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[3 4 1 2],’Vertices’,Vertex,’EdgeColor’,’black’,...

’FaceColor’,[0.3010 0.7450 0.9330],’LineWidth’,0.1,’FaceAlpha’,0.5,’EdgeAlpha’,1);

patch(’Faces’,[2 6 1],’Vertices’,Vertex,’EdgeColor’,’black’,...

’FaceColor’,[0.679 0.259 0.957],’LineWidth’,0.1,’FaceAlpha’,0,’EdgeAlpha’,1);

xlabel(’\it x_1’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[2.34 -0.456 -0.254]);

ylabel(’\it x_2’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[-0.70 2.24 -0.135]);

zlabel(’\it x_3’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[-1.6 2.17 3.41]);

hold on;

grid on;

193



view(-32.2,32.8);

hold on;

%% path 1

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [klist(ii) 1 1 1 1].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

sct1 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’p’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 2

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [1 klist(ii) 1 1 1 ].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

194



sct2 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’*’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,0.5);

%% path 3

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [1 1 klist(ii) 1 1].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

sct3 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’*’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,3);

%% path 4

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [1 1 1 klist(ii) 1 ].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

195



sct4 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’O’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 5

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [1 1 1 1 klist(ii)].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

sct5 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’s’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,2);

%% path 6

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [klist(ii) 1 1 1 klist(ii)].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

196



sct6 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’d’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 7

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

klist = logspace(log10(1),log10(1000),num);

list = zeros(num,5+3+1);

count = 1;

for ii = 1:num

w = [klist(ii) klist(ii) klist(ii) 1 1 ].’;

[x,fval,exitflag,output] = PrimalDualMethod(c,A,b,w);

list(count,:) = [w; x; fval].’;

count = count + 1;

end

sct7 = scatter3(list(:,6),list(:,7),list(:,8),50,[0 0 0],’x’,...

’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%%

hL = legend([sct1,sct2,sct3,sct4,sct5,sct6,sct7],{’Increasing w_1’,...

’Increasing w_2’,’Increasing w_3’,’Increasing w_4’,’Increasing w_5’,...

’Increasing w_1 and w_5’,’Increasing w_1, w_2 and w_3’});

hL.EdgeColor = [1 1 1];

hL.FontSize = 14;

hL.FontName= ’Times New Roman’;

hL.FontWeight= ’bold’;

% Programatically move the Legend

newPosition1 = [0.67 0.35 0.2 0.25];

newUnits1= ’normalized’;

set(hL,’Position’, newPosition1,’Units’, newUnits1);

197



A.5 SME under the Assumption of Unique Solution

of LP

The related codes of SME in chapter 3 in MATLAB. More codes can be found on the
website: https://github.com/SetMembershipEstimationDFBM/E.coliExample.

% Shen, X., & Budman, H. (2021). Set Membership Estimation with Dynamic

% Flux Balance Models. Processes, 9(10), 1762.

% https://www.mdpi.com/2227-9717/9/10/1762

% Copyright 2021 Xin Shen

% Copyright 2021 Hector Budman

% Multi-Parametric Toolbox 3.0 is required

% Algorithm has been tested on MATLAB R2018a.

%% Parameter calculations

clear;

clc;

startTime = datetime(’now’);

% stoichiometry coefficient

A = [0 -9.46 -9.84 -19.23;... %glc

-35 -12.92 -12.73 0;... %o2

-39.43 0 1.24 12.12;... %ace

1 1 1 1]; %X

% objective vector

c = ones(4,1);

% true plant initial concentration

z0 = [0.4 0.21 0.2 0.001]’; %(glc [mM], o2[mM], ace[mM], X[mM])

vol = 0.3; % initla volume V[L]

% lower bound and upper bound

lb = [0.38; 0.1995; 0.19; 0.00095];

ub = [0.42; 0.2205; 0.21; 0.00105];

198



z = lb + (ub-lb).*rand(length(z0),1);

% define initla set

Box = Polyhedron(’lb’,lb,’ub’,ub);

Km = 0.015; % [mM]

GUR_max = 6.5; % [mM/g-dw/hr]

OUR_max = 12; % [mM/g-dw/hr]

kla = 4; % [hr^-1]

z_fd = 5;

nstep = 160;

tend = 8; % h, total time of cell culture growth, guess

dt = tend/nstep; % h, time, guess

Timeseries = (1:nstep)*dt;

Constr = [-A(2,:); A(3,:); -A(1:3,:)*dt;-A(1,:);-A(4,:)*dt];

MptOptions.fastbreak = true;

b0 = [OUR_max; 100];

flux = sdpvar(4,1); % decision variables

theta = sdpvar(5,1); % parameters variables

obj = -c.’*flux; % LP objective

G = [zeros(2,5);eye(5)];

B = [b0;zeros(5,1)];

Con1 = [Constr*flux <= B+G*theta, flux>=0];

plp = Opt(Con1, obj, theta, flux);

% solve the mpLP to obtain different critical regions

Solution = plp.solve();

% Only critical region 12 and 14 are related to this research.

% when concentration is very low, MPT toolbox may locate the state coexist

% in several critical regions because of tolerance issue.

% 12 and 14 are the true critical regions.

%% Observer Initialization

% rng(’default’);

% sigma = [0.025,0.0033,0.0200,0.004].’;

nstate = length(z0);

199



mindex = [4]; %measurements

nmeas = length(mindex);

oindex = cell(14,1); %observable state(subsystem), include bio and volume

oindex{12} = [1,4];

oindex{14} = [1,3,4];

modmsindex = cell(24,1); %model measurements index

modmsindex{12} = [2];

modmsindex{14} = [3];

CRindex = [12];

C = [0 0 0 1];

% noise

Q0 = diag(zeros(4,1));

% NO process noise covariance (5 states)!!!

P0 = diag((z0*0.05/3).^2);

%initial state convariance (5 states)

R = diag((sigma(mindex)).^2);

%measurement noise covariance

Q = Q0(oindex{12},oindex{12});

%process noise covariance (3 states for CR12)

P = P0(oindex{12},oindex{12});

%initial state convariance (3 states for CR12)

%range

% This research assume no process noise.

Qlb = sigma*0;

%No process noise !!!

Qub = sigma*0;

%No process noise !!!

Mlb = -sigma*0.1;

Mub = sigma*0.1;

RBox = Polyhedron(’lb’,Mlb(mindex),’ub’,Mub(mindex));

plantstate = z;

Obserstate = z0(oindex{CRindex});

200



xPlant = zeros(nstate,nstep);

xPlant(:,1) = plantstate;

switchpoint = [];

xlb = zeros(nstate,nstep);

xub = zeros(nstate,nstep);

xlb(:,1) = lb;

xub(:,1) = ub;

y = zeros(nmeas,nstep);

xPre = cell(nstep,1);

PPre = cell(nstep,1);

xCrr = cell(nstep,1);

PCrr = cell(nstep,1);

Amatrix = cell(nstep,1);

PhdSet = cell(nstep,1);

xCrr{12} = Obserstate;

xCrr{14} = [];

PCrr{1} = P0(oindex{CRindex},oindex{CRindex});

BoxSet = cell(nstep,2);

BoxSet{1,1} = Box;

BoxSet{1,2} = [];

PlantStateWrap = @(z,rf,rp)PlantState(z,rf,rp,OUR_max,z_fd,dt,...

GUR_max,Km,kla,A,c,Constr,Q0,Qlb,Qub,vol);

SensorWrap = @(plantstate)Sensor(plantstate,mindex,R,Mlb,Mub);

tol = 0.08;

IsSwitched = false;

method = ’vrep’;

fig = figure;

fig.Color = [1 1 1];

subplot(2,2,1)

ylabel(’Glucose’);

hold on;

201



h1 = animatedline;

h1l = animatedline(’Color’,’r’);

h1u = animatedline(’Color’,’r’);

h1e = animatedline(’Color’,’g’);

xlim([0 8]);

subplot(2,2,2)

ylabel(’Oxygen’);

hold on;

h2 = animatedline;

h2l = animatedline(’Color’,’r’);

h2u = animatedline(’Color’,’r’);

xlim([0 8]);

subplot(2,2,3)

ylabel(’Acetate’);

hold on;

h3 = animatedline;

h3l = animatedline(’Color’,’r’);

h3u = animatedline(’Color’,’r’);

h3e = animatedline(’Color’,’g’);

xlim([0 8]);

subplot(2,2,4)

ylabel(’Biomass’);

hold on;

h4 = animatedline;

h4l = animatedline(’Color’,’r’);

h4u = animatedline(’Color’,’r’);

h4e = animatedline(’Color’,’g’);

xlim([0 8]);

flag = false;

%%

for k=2:nstep

if IsSwitched

% check observablility

202



if rank(ObFun14(Obserstate))~=3 || rank(AFun14(Obserstate))~=3

disp(Obserstate);

end

end

%batch process

rf = 0;

rp = 0;

%--------------------PLANT----------------------

plantstate = PlantStateWrap(plantstate,rf,rp);

xPlant(:,k) = plantstate;

ym = SensorWrap(plantstate);

y(:,k) = ym;

%------------------Montinor--------------------

if IsSwitched

else

[IsSwitched,CRindex,est] = Monitor(Obserstate,GUR_max,Km,Solution,...

tol,CRindex,xlb(:,k-1),xub(:,k-1),rf,dt,vol);

if IsSwitched && (flag == false)

disp(’Montior switch critical region!’);

switchpoint = [switchpoint k];

temp = zeros(3,1);

temp(1) = Obserstate(1);

temp(3) = Obserstate(2);

temp(2) = est;

Obserstate = temp;

Ptemp = zeros(3);

Ptemp([1 3],[1 3]) = P;

Ptemp(2,2) = ((xub(2,k-1)-xlb(2,k-1))/2/3)^2;

P = Ptemp;

P = P*1.1;

%If necessary, the covariance can be initilized

%larger to deal with the early or late swtich issue

Q = Q0(oindex{CRindex},oindex{CRindex});

%no process noise has been set as 0

203



flag = true;

xCrr{14} = [xCrr{14} Obserstate];

end

end

%----------Set-Membership-Estimation-----------------

[Box] = BoxPropogate(Box,ym,Obserstate,rf,rp,z_fd,dt,GUR_max,Km,kla,A,...

Solution,Qlb,Qub,RBox,C,CRindex,method,sigma,P,vol);

BoxSet{k,1} = Box;

BoxSet{k,2} = []; %scaling

xlb(:,k) = Box.Internal.lb;

xub(:,k) = Box.Internal.ub;

%------------------Kalman Filter--------------------

ModelStateWrap = @(z,rf,rp)ModelState(z,rf,rp,z_fd,dt,GUR_max,Km,...

A,Solution,CRindex,vol);

ModelMeasureWrap = @(state)ModelMeasure(state,modmsindex{CRindex});

[xPre{k},PPre{k},Obserstate,P,Amatrix{k}] = ekf(@(z)ModelStateWrap...

(z,rf,rp),Obserstate,P,ModelMeasureWrap,ym,Q,R);

if ~IsSwitched

xCrr{12} = [xCrr{12} Obserstate];

else

xCrr{14} = [xCrr{14} Obserstate];

end

PCrr{k} = P;

%---------------------Plot--------------------

addpoints(h1,k*dt,plantstate(1));

addpoints(h2,k*dt,plantstate(2));

addpoints(h3,k*dt,plantstate(3));

addpoints(h4,k*dt,plantstate(4));

204



addpoints(h1l,k*dt,xlb(1,k));

addpoints(h2l,k*dt,xlb(2,k));

addpoints(h3l,k*dt,xlb(3,k));

addpoints(h4l,k*dt,xlb(4,k));

addpoints(h1u,k*dt,xub(1,k));

addpoints(h2u,k*dt,xub(2,k));

addpoints(h3u,k*dt,xub(3,k));

addpoints(h4u,k*dt,xub(4,k));

drawnow;

end

endTime = datetime(’now’);

function stateobserved = Sensor(plantstate,mindex,R,Mlb,Mub)

stateobserved = plantstate(mindex);

% add bounded Gaussian noise

if length(mindex)>1

noise = mvrandn(Mlb(mindex),Mub(mindex),R,1);

else

while true

noise = normrnd(0,R);

if noise>=Mlb(mindex) && noise<=Mub(mindex)

break ;

end

end

end

stateobserved = plantstate(mindex) + noise;

end

function stateobserved = ModelMeasure(state,index)

stateobserved = state(index);

end

function z = ModelState(z,rf,rp,z_fd,dt,GUR_max,Km,A,Solution,CRindex,vol)

switch CRindex

case 12

b = zeros(5,1);

205



b(4) = GUR_max*z(1)/(Km+z(1));

flux = round(Solution.xopt.Set(12).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(12).Functions(’primal’).g,6);

z(1) = z(1) - rf*dt*z(1)/vol + A(1,:)*flux*z(2)*dt + rf*dt/vol*z_fd;

z(2) = z(2) - (rf - rp)*dt/vol*z(2) + A(4,:)*flux*z(2)*dt;

case 14

b = zeros(5,1);

b(3) = z(2)/z(3) - rf/vol*z(2)/z(3)*dt;

b(4) = GUR_max*z(1)/(Km+z(1));

flux = round(Solution.xopt.Set(14).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(14).Functions(’primal’).g,6);

z(1) = z(1) - rf*dt*z(1)/vol + A(1,:)*flux*z(3)*dt + rf*dt/vol*z_fd;

z(2) = z(2) - rf*dt*z(2)/vol + A(3,:)*flux*z(3)*dt;

z(3) = z(3) - (rf - rp)*dt/vol*z(3) + A(4,:)*flux*z(3)*dt;

end

end

function z = PlantState(z,rf,rp,OUR_max,z_fd,dt,GUR_max,Km,kla,A,...

c,Constr,Q,Qlb,Qub,vol)

global b1

b0 = [OUR_max; 100];

b1 = z(1:3)/z(4) - rf/vol*z(1:3)/z(4)*dt;

b1(1) = b1(1) + rf/vol*z_fd/z(4)*dt;

b1(2) = b1(2) + kla*(0.21 - z(2))/z(4)*dt;

b2 = GUR_max*(z(1)/(Km + z(1)));

b3 = 1 - (rf-rp)*dt/vol;

global nu

problem = Opt(’f’,-c,’A’,Constr,’b’,[b0;b1;b2;b3],’lb’,zeros(4,1));

solution = problem.solve;

nu = round(solution.xopt,6);

z = z + ODE(0,z,nu,rf,z_fd,rp,A,kla,vol)*dt;

z(z<=0)=0;

206



function dzdt = ODE(t,z,nu,rf,z_fd,rp,A,kla,vol)

dzdt = zeros(4,1);

dzdt(1:4) = A*nu*z(4) - rf/vol*z(1:4);

dzdt(1) = dzdt(1) + rf/vol*z_fd;

dzdt(2) = dzdt(2) + kla*(0.21 - z(2));

dzdt(4) = dzdt(4) + z(4)*rp/vol;

end

end

function [BoxNew] = BoxPropogate(Box,ym,Obserstate,rf,rp,z_fd,dt,GUR_max,...

Km,kla,A,Solution,Qlb,Qub,RBox,C,CRindex,method,...

sigma,P,vol)

switch CRindex

case 12

b = zeros(5,1);

bhat = zeros(5,2);

[b(4),bhat(4,1)]=jaccsd(@(x)(GUR_max*x/(Km+x)),Obserstate(1));

flux = round(Solution.xopt.Set(12).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(12).Functions(’primal’).g,6);

bffHat = zeros(4,2);

translate = [z_fd*rf*dt/vol; 0.21*kla*dt; 0; 0];

bff = A*flux*Obserstate(2)*dt + translate;

Aff = [1 - rf*dt/vol; 1 - rf*dt/vol-kla*dt;...

1 - rf*dt/vol; 1 - (rf-rp)*dt/vol];

T = diag(Aff);

termB = (3*P(2,2)^0.5 + Obserstate(2))*dt*A*round(...

Solution.xopt.Set(12).Functions(’primal’).F,6)*bhat + bffHat;

termD = dt*A*flux;

var = 3*diag(P).^0.5;

Err = Polyhedron(’lb’,-var,’ub’,var);

Errbio = Polyhedron(’lb’,-var(2),’ub’,var(2));

term1 = PolyUnion(termB*Err).outerApprox;

term2 = PolyUnion(termD*Errbio).outerApprox;

207



safetyl = term1.Internal.lb + term2.Internal.lb;

safetyu = term1.Internal.ub + term2.Internal.ub;

Prior0 = Box.affineMap(T,method) + bff;

Prior1 = PolyUnion(Prior0);

Prior1Box = Prior1.outerApprox;

Prior1Boxlb = Prior1Box.Internal.lb + Qlb + safetyl;

Prior1Boxub = Prior1Box.Internal.ub + Qub + safetyu;

BoxPrior = Polyhedron(’lb’,Prior1Boxlb,’ub’,Prior1Boxub);

case 14

b = zeros(5,1);

bhat = zeros(5,3);

[b(3),bhat(3,:)]=jaccsd(@(x)x(2)/x(3) - rf/vol*x(2)/x(3)*dt,...

Obserstate);

[b(4),bhat(4,1)]=jaccsd(@(x)(GUR_max*x/(Km+x)),Obserstate(1));

flux = round(Solution.xopt.Set(14).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(14).Functions(’primal’).g,6);

bffHat = zeros(4,3);

translate = [z_fd*rf*dt/vol; 0.21*kla*dt; 0; 0];

bff = A*flux*Obserstate(3)*dt + translate;

Aff = [1 - rf*dt/vol; 1 - rf*dt/vol-kla*dt;...

1 - rf*dt/vol; 1 - (rf-rp)*dt/vol];

T = diag(Aff);

termB = (3*P(3,3)^0.5 + Obserstate(3))*dt*A*round(...

Solution.xopt.Set(14).Functions(’primal’).F,6)*bhat + bffHat;

termD = dt*A*flux;

var = 3*diag(P).^0.5;

208



Err = Polyhedron(’lb’,-var,’ub’,var);

Errbio = Polyhedron(’lb’,-var(3),’ub’,var(3));

term1 = PolyUnion(termB*Err).outerApprox;

term2 = PolyUnion(termD*Errbio).outerApprox;

safetyl = term1.Internal.lb + term2.Internal.lb;

safetyu = term1.Internal.ub + term2.Internal.ub;

Prior0 = Box.affineMap(T,method) + bff;

Prior1 = PolyUnion(Prior0);

Prior1Box = Prior1.outerApprox;

Prior1Boxlb = Prior1Box.Internal.lb + Qlb + safetyl;

Prior1Boxub = Prior1Box.Internal.ub + Qub + safetyu;

BoxPrior = Polyhedron(’lb’,Prior1Boxlb,’ub’,Prior1Boxub);

end

R = Polyhedron(’A’,-RBox.A*C,’b’,RBox.b-RBox.A*ym);

BoxPost = intersect(R,BoxPrior);

U = PolyUnion(BoxPost);

OutBox = U.outerApprox;

% When the state interval is very small. Numerical issue can happen. So

% a very tiny interval is given artifically to let the algorithm

% continue.

lb = OutBox.Internal.lb - sigma.*0;

lb(lb<0) = 0;

ub = OutBox.Internal.ub + sigma.*0 ;

ub(ub<0) = 0;

lb1 = lb;

ub1 = ub;

distance = 0.000001;

conver = abs(ub-lb)<=distance & lb>0;

lb1(conver) = (lb(conver) + ub(conver))*0.5 - distance*0.01;

ub1(conver) = (lb(conver) + ub(conver))*0.5 + distance*0.01;

209



conver1 = abs(ub-lb)<=distance & lb<=0;

lb1(conver1) = 0;

ub1(conver1) = distance*0.01;

BoxNew = Polyhedron(’lb’,lb1,’ub’,ub1);

BoxNew.computeVRep();

end

function [IsSwitched,CRindex,est] = Monitor(z,GUR_max,Km,Solution,tol,...

CRindex,xlb,xub,rf,dt,vol)

theta3lb = xlb(3)/z(2) - rf/z(2)*xlb(3)/vol*dt;

theta3ub = xub(3)/z(2) - rf/z(2)*xub(3)/vol*dt;

theta3p = (theta3lb+theta3ub)/2;

b = zeros(5,1);

b(3) = theta3p;

b(4) = GUR_max*z(1)/(Km+z(1));

vLeft = round(Solution.xopt.Set(12).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(12).Functions(’primal’).g,6);

vRight = round(Solution.xopt.Set(14).Functions(’primal’).F,6)*b +...

round(Solution.xopt.Set(14).Functions(’primal’).g,6);

diff = norm(vLeft-vRight);

% detect switch

if norm(diff)<=tol

CRindex = 14;

IsSwitched = true;

Theta = sym(’Theta’,[5,1]);

F = (round(Solution.xopt.Set(12).Functions(’primal’).F,6)-...

round(Solution.xopt.Set(14).Functions(’primal’).F,6))*Theta...

+(round(Solution.xopt.Set(12).Functions(’primal’).g,6)-...

round(Solution.xopt.Set(14).Functions(’primal’).g,6));

theta4 = b(4);

F0 = subs(F,Theta(4),theta4);

theta3 = eval(solve(F0==0));

% estimate the unobserved concetration

210



est = theta3./(1/z(2)- rf/z(2)/vol*dt);

else

IsSwitched = false;

est = [];

end

end

function [x1,P,x2,P2,A]=ekf(fstate,x0,P,hmeas,y,Q,R)

% Extended Kalman Filter

[x1,A]=jaccsd(fstate,x0);

P=A*P*A’+Q;

[y1,C]=jaccsd(hmeas,x1);

P12=P*C’;

K=P12/(C*P12+R);

x2=x1+K*(y-y1);

P2=P-K*P12’;

end

function [z,A]=jaccsd(fun,x)

% Jacobian Matrix

z=fun(x);

n=numel(x);

m=numel(z);

A=zeros(m,n);

h=n*eps;

for k=1:n

x1=x;

x1(k)=x1(k)+h*1i;

A(:,k)=imag(fun(x1))/h;

end

end

function A = AFun14(in1)

%AFUN14

% A = AFUN14(IN1)

% This function was generated by the Symbolic Math Toolbox version 8.1.

211



% 30-Jul-2021 16:34:00

Z_01 = in1(1,:);

Z_04 = in1(3,:);

A = reshape([(Z_04.*(-3.24999246e-1))./(Z_01+3.0./2.0e2)...

+Z_01.*Z_04.*1.0./(Z_01+3.0./2.0e2).^2.*3.24999246e-1+1.0,...

0.0,Z_04.*(3.43551e-2./...(Z_01+3.0./2.0e2)-Z_01.*1.0./...

(Z_01+3.0./2.0e2).^2.*3.43551e-2),0.0,-2.000000024038329e-9,...

2.53614e-2,(Z_01.*(-3.24999246e-1))./(Z_01+3.0./2.0e2),0.0,...

(Z_01.*3.43551e-2)./(Z_01+3.0./2.0e2)+1.0],[3,3]);

A.6 SME with WPDM

A.6.1 Multiparametric programming of WPDM

Codes of mpNLP of WPDM for the E. coli example.

clear;

date = datetime(’now’,’TimeZone’,’local’,’Format’,’MMdd_HHmm’) ;

name = [’rfine’ char(date) ’.mat’];

load(’paradataMP’); % simulation data to trim critical regions

mu = 1.01020837395261e-08;

C = -ones(4,1);

wc = [5 1 1 1 1 1 1 1 1 1 1 1]’;

GUR_max = 6.5; % [mM/g-dw/hr]

OUR_max = 12; % [mM/g-dw/hr]

nstep = 600;

tend = 15; % h, total time of cell culture growth, guess

dt = tend/nstep; % h, time, guess

Coeff = [0 -9.46 -9.84 -19.23;... %glc

-35 -12.92 -12.73 0;... %o2

-39.43 0 1.24 12.12;... %ace

1 1 1 1]; %X

Constr = [-Coeff(2,:); Coeff(3,:); -Coeff(1:3,:)*dt;-Coeff(1,:);...

-Coeff(4,:)*dt];

212



Ac = [Constr;-eye(4);1 1 1 1];

bc = [OUR_max;100;0;0;0;0;0;zeros(4,1);0.5];

Fc = [zeros(1,5);zeros(1,5);eye(5);zeros(4,5);zeros(1,5)];

Fc(:,[4 5]) = Fc(:,[4 5])/100;

Len = sqrt(sum(Ac.^2,2));

Ac = Ac./Len;

bc = bc./Len;

Fc = Fc./Len;

% Parameter Space

z_lb = [0,0,0,0,0.9]’;

z_ub = [500,250,250,GUR_max,1.005]’;

z_lb([4 5]) = z_lb([4 5]) * 100;

z_ub([4 5]) = z_ub([4 5]) * 100;

Q = [-eye(5);eye(5)];

q = [-z_lb;z_ub];

Len1 = sqrt(sum(Q.^2,2));

Q = Q./Len1;

q = q./Len1;

xtol = 0.001;

v_tol = 250;

zero_tol = 1e-6;

maxRespectRatio = inf;

maxNRegions = 100000;

safegap = 1e8*eps;

quadoptions = optimoptions(’quadprog’);

quadoptions.ConstraintTolerance = 1e-16;

quadoptions.Display = ’off’;

quadoptions.MaxIterations = 5000;

quadoptions.OptimalityTolerance = 1e-16;

quadoptions.StepTolerance = 1e-20;

%% containers and parameters

Ground = Polyhedron(’A’,Q,’b’,q);

213



MultiActiveSet = {};

SingActiveSet = {};

clear MultiRegion

clear SingRegion

MultiRegion(1) = Polyhedron();

MultiRegion(1) = [];

SingRegion(1) = Polyhedron();

SingRegion(1) = [];

MultiRegionRefined(1) = PolyUnion();

if zero_tol<=safegap

error(’zero_tol should be greater than safegap’);

end

%% find initial point

nx = length(C);

nth = size(Fc,2);

nCons = size(Ac,1);

wpdmObjFun = @(U)C’*U(1:nx)+sum(-mu*wc.*log(bc+[-Ac Fc]*U));

Acmb = [Ac -Fc;zeros(length(q),size(Ac,2)) Q];

bcmb = [bc; q];

Poly0 = Polyhedron(’A’,Acmb,’b’,bcmb);

Pnt0 = Poly0.interiorPoint.x;

[x0,fval0,exitflag0,output0,lambda0,~,~] = fmincon(wpdmObjFun,Pnt0,...

Acmb,bcmb);

if exitflag0<0

disp(’The problem is infeasible.’);

end

Point = x0(nx+1:end);

[x1,fval1,exitflag1,output1,lambda1] = NewPrimalDualMethod(C,Ac,...

bc+Fc*Point,wc);

active = find(abs(Ac*x1-bc-Fc*Point)<=zero_tol);

if length(active)<nx

inactive = setdiff(1:nCons,active);

214



A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],...

’Ae’,[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

P = P.normalize();

MultiRegion = [MultiRegion;P];

MultiActiveSet{length(MultiActiveSet)+1,1} = active;

w = wc(inactive,:);

[Explored] = ExploreMultiplicity(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,B,P,...

nx,zero_tol,xtol,quadoptions,v_tol,maxRespectRatio);

if length(MultiRegionRefined)==1

if isempty(MultiRegionRefined(1).Set)

len = 0;

else

len = 1;

end

else

len = length(MultiRegionRefined);

end

MultiRegionRefined(len+1) = PolyUnion(Explored);

elseif length(active)==nx

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],...

’Ae’,[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

SingRegion = [SingRegion;P];

SingActiveSet{length(SingActiveSet)+1,1} = active;

else

215



flag = true;

while flag

purDirc = randn(1,nth)’;

purDirc = purDirc/sqrt(sum(purDirc.^2));

thPerturbed = Point + purDirc*safegap*1e3;

if ~any(contains(Ground,thPerturbed))

continue;

end

[x2,fval2,exitflag2,output2,lambda2] = NewPrimalDualMethod(...

C,Ac,bc+Fc*thPerturbed,wc);

if exitflag2<0

continue;

end

active = find(abs(Ac*x2-bc-Fc*thPerturbed)<=zero_tol);

if length(active)>nx

continue;

end

flag = false;

if length(active)<nx

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],’Ae’,...

[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

P = P.normalize();

MultiRegion = [MultiRegion;P];

MultiActiveSet{length(MultiActiveSet)+1,1} = active;

w = wc(inactive,:);

[Explored] = ExploreMultiplicity(C,Ae,be,Fe,A,b,F,Ac,bc,...

Fc,w,wc,B,P,nx,zero_tol,xtol,quadoptions,v_tol,maxRespectRatio);

if length(MultiRegionRefined)==1

if isempty(MultiRegionRefined(1).Set)

len = 0;

216



else

len = 1;

end

else

len = length(MultiRegionRefined);

end

MultiRegionRefined(len+1) = PolyUnion(Explored);

else

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],’Ae’,...

[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

thC = mean(P.V)’;

w = wc(inactive,:);

[xFun] = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,thC,nx,zero_tol,...

quadoptions);

P.addFunction(xFun,’opt’);

Region = [Region;P];

SingRegion = [SingRegion;P];

SingActiveSet{length(SingActiveSet)+1,1} = active;

nRegions = nRegions + 1;

end

end

end

%%

currentregion = 1;

nRegions = 1;

Region = [SingRegion;MultiRegion];

while currentregion <= nRegions & nRegions <= maxNRegions

Region(currentregion).normalize();

FacePoints = Region(currentregion).facetInteriorPoints’;

FaceDirc = Region(currentregion).A;

217



nBords = size(FacePoints,2);

for bord = 1:nBords

xOut = FacePoints(:,bord) + FaceDirc(bord,:)’/norm(FaceDirc(bord,:))...

*safegap*1e3;

if ~any(contains(Ground,xOut))

continue;

end

if any(contains(Region,xOut))

continue;

end

[x3,fval3,exitflag3,output3,lambda3] = NewPrimalDualMethod(C,Ac,...

bc+Fc*xOut,wc);

if exitflag3<0

continue;

end

active = find(abs(Ac*x3-bc-Fc*xOut)<=zero_tol);

isRepeated = false;

if length(active)<nx

for ii=1:length(MultiActiveSet)

if isempty(setdiff(active,MultiActiveSet{ii}))

isRepeated = true;

break;

end

end

if isRepeated

continue;

end

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],’Ae’,...

[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

P = P.normalize();

MultiRegion = [MultiRegion;P];

218



MultiActiveSet{length(MultiActiveSet)+1,1} = active;

Region = [Region;P];

nRegions = nRegions + 1;

w = wc(inactive,:);

[Explored] = ExploreMultiplicity(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,...

wc,B,P,nx,zero_tol,xtol,quadoptions,v_tol,maxRespectRatio);

if length(MultiRegionRefined)==1

if isempty(MultiRegionRefined(1).Set)

len = 0;

else

len = 1;

end

else

len = length(MultiRegionRefined);

end

MultiRegionRefined(len+1) = PolyUnion(Explored);

elseif length(active)==nx

for ii=1:length(SingActiveSet)

if isempty(setdiff(active,SingActiveSet{ii}))

isRepeated = true;

break;

end

end

for ii=1:length(MultiActiveSet)

if all(ismember(MultiActiveSet{ii},active))

isRepeated = true;

break;

end

end

if isRepeated

continue;

end

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

219



F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],’Ae’,...

[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

thC = mean(P.V)’;

w = wc(inactive,:);

[xFun] = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,thC,nx,zero_tol,...

quadoptions);

P.addFunction(xFun,’opt’);

Region = [Region;P];

SingRegion = [SingRegion;P];

SingActiveSet{length(SingActiveSet)+1,1} = active;

nRegions = nRegions + 1;

else

xOut1 = FacePoints(:,bord) + 0.5*FaceDirc(bord,:)’/...

norm(FaceDirc(bord,:))*safegap*1e3;

[x4,fval4,exitflag4,output4,lambda4] = NewPrimalDualMethod(...

C,Ac,bc+Fc*xOut1,wc);

[~,active] = maxk(Ac*x4-bc-Fc*xOut1,nx);

active = sort(active);

for ii=1:length(SingActiveSet)

if isempty(setdiff(active,SingActiveSet{ii}))

isRepeated = true;

break;

end

end

for ii=1:length(MultiActiveSet)

if all(ismember(MultiActiveSet{ii},active))

isRepeated = true;

break;

end

end

if isRepeated

continue;

220



end

inactive = setdiff(1:nCons,active);

A = Ac(inactive,:);

b = bc(inactive,:);

F = Fc(inactive,:);

Ae = Ac(active,:);

be = bc(active,:);

Fe = Fc(active,:);

P = Polyhedron(’A’,[A -F;zeros(length(q),nx) Q],’b’,[b;q],’Ae’,...

[Ae -Fe],’be’,be).projection(nx+1:nx+nth);

thC = mean(P.V)’;

w = wc(inactive,:);

[xFun] = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,thC,nx,zero_tol,...

quadoptions);

P.addFunction(xFun,’opt’);

Region = [Region;P];

SingRegion = [SingRegion;P];

SingActiveSet{length(SingActiveSet)+1,1} = active;

nRegions = nRegions + 1;

end

end

currentregion = currentregion + 1;

end

Space = SingRegion;

for ii=1:length(MultiRegionRefined)

Space = [Space;MultiRegionRefined(ii).Set];

end

save(name,Space)

function [xFun] = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,thC,nx,zero_tol,...

quadoptions)

[xC,fvalC,exitflagC,outputC,lambdaC] = NewPrimalDualMethod(C,Ac,bc+Fc*thC,wc);

if exitflagC<0

221



error(’infeasbile!’);

end

L = (sum(w.*A./(b+F*thC-A*xC),1))’;

H = (w.*A./(b+F*thC-A*xC))’*(A./(b+F*thC-A*xC));

G = -(w.*F./(b+F*thC-A*xC))’*(A./(b+F*thC-A*xC));

P = L - H*xC - G’*thC;

bue = Ae*H^-1*P + be;

Fue = Ae*H^-1*G’ + Fe;

bu = A*H^-1*P + b;

Fu = A*H^-1*G’ + F;

Right = bu+Fu*thC;

Righte = bue+Fue*thC;

[xQP,fvalQP,exitflagQP,outputQP,lambdaQP] = quadprog(H,zeros(nx,1),...

A,Right,Ae,Righte,[],[],xC,quadoptions);

if exitflagQP<0

error(’QP is infeasible’);

end

%find active constraints

act=find(abs(A*xQP-Right)<=zero_tol, 1);

if ~isempty(act)

error(’Equality constraint should be the only active constraint’);

end

HAact = H^-1*Ae’;

AHAinv = (Ae*HAact)^-1;

temp = H^-1*Ae’*AHAinv;

S = temp*Fue;

R = temp*bue;

%explicit solution for current CR

GHinv = G*H^-1;

xFun = AffFunction (S-GHinv’,R - H^-1*P); %solution to original mpQP

end

222



function [Space] = ExploreMultiplicity(C,Ae,be,Fe,A,b,F,Ac,bc,...

Fc,w,wc,B,Space,nx,zero_tol,xtol,quadoptions,v_tol,maxRespectRatio)

Split = Function;

Space.addFunction(Split,’Split’);

flag = true;

while flag

flag = false;

if any(Space.hasFunction(’Split’))

flag = true;

count = 1;

while any(Space.hasFunction(’Split’))

splitId = find(Space.hasFunction(’Split’)==1,1);

[L, U] = SplitRegion(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,...

Space(splitId),nx,zero_tol,xtol,Split,quadoptions,...

v_tol,maxRespectRatio);

Space(splitId) = [];

len = length(Space);

Space(len+1) = L;

Space(len+2) = U;

if mod(count,50)

position = zeros(length(B),1);

parfor ii=1:length(B)

[isin,inwhich,~] = isInside(Space,B(:,ii));

if isin

position(ii) = inwhich;

end

end

set = unique(position);

Space0 = Space;

Space = Polyhedron;

Space(1:length(set)) = Space0(set);

Space0 = [];

end

223



count = count + 1;

end

end

end

end

function [L, U]= SplitRegion(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,region,...

nx,zero_tol,xtol,Split,quadoptions,v_tol,maxRespectRatio)

dim = region.Dim;

if ~region.hasVRep

region.computeVRep();

end

lb = region.Internal.lb;

ub = region.Internal.ub;

mid = 0.5 * (lb + ub);

shape = ub-lb;

[~,id] = sort(shape);

id = flip(id);

rA = region.A;

rb = region.b;

rAe = region.Ae;

rbe = region.be;

Err = zeros(dim,1);

FunL = cell(dim,1);

FunU = cell(dim,1);

PolyLows = cell(dim,1);

PolyUps = cell(dim,1);

needSplitL = zeros(dim,1);

needSplitU = zeros(dim,1);

errid = ones(dim,1);

parfor ii = 1:dim

high = inf*ones(dim,1);

224



high(ii) = mid(ii);

low = zeros(dim,1);

low(ii) = mid(ii);

PolyLows{ii} = Polyhedron(’A’,rA,’b’,rb,’Ae’,rAe,’be’,rbe,’ub’,...

high,’lb’,zeros(dim,1));

PolyUps{ii} = Polyhedron(’A’,rA,’b’,rb,’Ae’,rAe,’be’,rbe,’lb’,low);

PolyLows{ii}.computeVRep();

PolyUps{ii}.computeVRep();

if ~(region.contains(PolyLows{ii}) & region.contains(PolyUps{ii}))

errid(ii) = 0;

end

LowCenter = mean(PolyLows{ii}.V)’;

UpCenter = mean(PolyUps{ii}.V)’;

FunL{ii} = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,LowCenter,nx,...

zero_tol,quadoptions);

FunU{ii} = qpApp(C,Ae,be,Fe,A,b,F,Ac,bc,Fc,w,wc,UpCenter,nx,...

zero_tol,quadoptions);

[errL,needSplitL(ii)] = SplitErr(C,Ac,bc,Fc,wc,PolyLows{ii},...

FunL{ii},xtol,v_tol);

[errU,needSplitU(ii)] = SplitErr(C,Ac,bc,Fc,wc,PolyUps{ii},...

FunU{ii},xtol,v_tol);

Err(ii) = 0.5 * (errL + errU);

end

if any(errid==0)

flag = false;

for jj = id’

if ismember(jj,find(errid>0))

minID = jj;

ErrMin = Err(jj);

flag = true;

break;

end

end

if ~flag

error(’No dimesion is suitable for division!’);

end

else

225



[ErrMin, minID ] = min(Err,[],1);

end

shapeL = PolyLows{minID}.Internal.ub - PolyLows{minID}.Internal.lb;

shapeU = PolyUps{minID}.Internal.ub - PolyUps{minID}.Internal.lb;

respectRatioL = max(shapeL)/min(shapeL);

respectRatioU = max(shapeU)/min(shapeU);

if needSplitL(minID) | (respectRatioL >= maxRespectRatio)

PolyLows{minID}.addFunction(Split,’Split’);

end

if needSplitU(minID) | (respectRatioU >= maxRespectRatio)

PolyUps{minID}.addFunction(Split,’Split’);

end

L = PolyLows{minID}.addFunction(FunL{minID},’opt’);

U = PolyUps{minID}.addFunction(FunU{minID},’opt’);

end

function [err,needSplit] = SplitErr(C,Ac,bc,Fc,wc,region,xFun,xtol,v_tol)

Points = region.V’;

np = size(Points,2);

derr = zeros(np,1);

parfor ii=1:np

xQp = xFun.Handle(Points(:,ii));

[x,fval,exitflag,output,lambda] = NewPrimalDualMethod(C,Ac,bc+Fc...

*Points(:,ii),wc);

if exitflag < 0

error(’Infesible theta’);

end

derr(ii) = norm(xQp-x);

end

err = sum(derr) / np;

needSplit = any(derr>=xtol);

try

if region.volume <= v_tol

226



needSplit = false;

end

catch

needSplit = false;

end

end

A.6.2 Modified WPDM Used for SME

Modified WPDM for the E. coli example.

function [opty,fval,exitflag,output,lambda] = NewPrimalDualMethod(c,A,b,w)

c_ = b;

A_ = A’;

b_ = -c;

[tmp_m, tmp_n] = size(A_);

if size(c_,1) < size(c_,2) || size(b_,1) < size(b_,2) ||...

size(c_,1) ~= tmp_n || size(b_,1) ~= tmp_m

error(’LP: data dimensions does not match.’);

end

%% parameter

maxIter = 1000;

verbose = 0;

tau = 1e-10;

maxDiag = 5.e+6;

etaMin = .995;

factor = 0.7;

iterN = 0;

mu=10;

exitflag = 0;

227



if verbose == 0

% warning(’off’,’MATLAB:nearlySingularMatrix’);

warning(’off’);

else

warning(’on’,’all’);

end

if isempty(w)

w = ones(size(A_,2),1);

end

%% initial solution

e = ones(tmp_n,1);

% solution for min norm(s) s.t. A’*y + s = c

y0 = (A_*A_.’)\(A_*c_);

s0 = c_-A_.’*y0;

% min norm(x) s.t. Ax = b_

x0 = A_.’*( (A_*A_.’)\b_ );

% delta_x and delta_s

delta_x = max(-1.5*min(x0),0);

delta_s = max(-1.5*min(s0),0);

% delta_x_c and delta_s_c

pdct = 0.5*(x0+delta_x*e)’*(s0+delta_s*e);

delta_x_c = delta_x+pdct/(sum(s0)+tmp_n*delta_s);

delta_s_c = delta_s+pdct/(sum(x0)+tmp_n*delta_x);

% output

x = x0+delta_x_c*e;

s = s0+delta_s_c*e;

y = y0;

if any(isnan(x)) || any(isnan(s)) || any(isnan(y))

x = x0;

s = s0;

y = y0;

228



end

%% calculate residual

Rd = A_.’ * y + s - c_;

Rp = A_ * x - b_;

Rc = x.*s - mu*w;

residual = norm([Rp;Rd;Rc]);

mu = factor * mu;

if verbose == 2

fprintf(’%4s %9s %9s\n’,’ITER’, ’MU’, ’RESIDUAL’);

end

%% iteratate

while true

% Check Tolerance

if mu < tau | residual<=1e-8

exitflag = 1;

mu = mu / factor;

optx = x;

opty = y;

opts = s;

break;

end

% Output

if verbose == 2

fprintf(’%4d %9.2e %9.2e\n’,iterN, mu, residual);

end

% Use augmented system to solve the directions

rhs = sparse([-Rp; -Rd + Rc ./ x]);

229



% Set up the scaling matrix and form the coef matrix for normal equations

DD = min(maxDiag,-s ./ x);

B = [zeros(tmp_m,tmp_m) A_; A_.’ diag(DD)];

% ldl’ factorization

[L, D, pm] = ldl(B,’vector’);

% Solve linear system

dxy = zeros(tmp_m + tmp_n, 1);

dxy(pm, :) = L’\(D\(L\(rhs(pm, :))));

if any(isnan(dxy))

dxy = B^-1*rhs;

end

% Get the directions

dy = dxy(1:tmp_m);

dx = dxy( tmp_m + 1 : tmp_m + tmp_n );

ds = -( Rc + s .* dx ) ./ x;

% Get step length

eta = max(etaMin, 1-mu);

alphax = -1/min(min( dx ./ x),-1);

alphax = min(1, eta * alphax);

alphas = -1/min(min( ds ./ s),-1);

alphas = min(1, eta * alphas);

% Update the iterate

x = x + alphax*dx;

s = s + alphas*ds;

y = y + alphas*dy;

% Calculate residuals

Rd = A_.’ * y + s - c_;

Rp = A_ * x - b_;

Rc = x.*s - mu*w;

residual = norm([Rp;Rd;Rc]);

230



mu = factor * mu;

% Increase counter

iterN = iterN + 1;

if norm(dx)>=1e16 | any(isnan([Rp;Rd;Rc]))

break;

end

end

if norm(dx)>=1e16 | any(isnan([Rp;Rd;Rc]))

exitflag = -1;

opty = NaN(size(y));

fval = NaN;

output = [];

lambda = [];

return;

end

if verbose == 2

fprintf(’Iteration = %u\n’,iterN);

fprintf(’Function value = %9.2e\n’,fval);

fprintf(’Residual = %9.2e\n’,residual);

fprintf(’mu = %9.2e\n’,mu);

if exitflag==1

disp(’Optimization is terminated by tolerance’);

else

disp(’Optimization is terminated by maxIter’);

end

end

if verbose == 1

fprintf(’Function value = %9.2e\n’,fval);

if exitflag==1

disp(’Optimization is terminated by tolerance’);

else

disp(’Optimization is terminated by maxIter’);

231



end

end

output.tau = mu;

output.s = opts;

lambda = optx;

fval = -b_’ * opty;

end

A.6.3 SME with WPDM

SME with WPDM for the E. coli example in fed-batch operation.

clc

startTime = datetime(’now’);

%% parameters calculation

syms y_bio y_vol z_glc z_oxy z_ace

syms rf dt z_fd kla GUR_max Km

Th = sym(’Th’,[5,1]);

Th(1) = (-rf*dt/(y_bio*y_vol)+1/y_bio)*z_glc + rf*dt*z_fd/(y_bio*y_vol);

Th(2) = ((1-kla*dt)/y_bio-rf*dt/(y_bio*y_vol))*z_oxy + 0.21*kla*dt/y_bio;

Th(3) = (-rf*dt/(y_bio*y_vol)+1/y_bio)*z_ace;

Th(4) = 100*GUR_max*z_glc/(Km+z_glc);

Th(5) = 100*(1-rf*dt/y_vol);

ThEq = matlabFunction(Th,’Vars’,{z_glc,z_oxy,z_ace,y_bio,y_vol,...

GUR_max,Km,dt,kla,rf,z_fd});

z2Th = jacobian(Th, [z_glc;z_oxy;z_ace;y_bio;y_vol]);

z2ThEq = matlabFunction(z2Th,’Vars’,{z_glc,z_oxy,z_ace,y_bio,y_vol,...

GUR_max,Km,dt,kla,rf,z_fd});

Coeff = [0 -9.46 -9.84 -19.23;... %glc

-35 -12.92 -12.73 0;... %o2

-39.43 0 1.24 12.12;... %ace

232



1 1 1 1]; %X

Km = 0.015; % [mM]

GUR_max = 6.5; % [mM/g-dw/hr]

OUR_max = 12; % [mM/g-dw/hr]

kla = 4; % [hr^-1]

Fmax = 0.003; % L/h

z_fd = 5;

% # of time steps and step size

nstate = 5;

nstep = 600;

tend = 15; % h, total time of cell culture growth, guess

dt = tend/nstep; % h, time, guess

maps = zeros(6,nstep);

Timeseries = (1:(nstep+1))*dt;

Constr = [-Coeff(2,:); Coeff(3,:); -Coeff(1:3,:)*dt;-Coeff(1,:);-Coeff(4,:)*dt];

b0 = [OUR_max; 100];

rng(’default’)

x0 = [0.4 0.21 0.2 0.001 0.3]’; %(glc [mM], o2[mM], ace[mM], X[mM], V[L])

lb = x0 - x0*0.05;

ub = x0 + x0*0.05;

x = lb + (ub-lb).*rand(length(x0),1);

Box.lb = lb;

Box.ub = ub;

mindex = [4 5]; %measurements, include volume

sigma = [0.02,0.0047,0.0100,0.01,7.5e-4].’;

R = 0.05*diag((sigma(mindex)).^2); %measurement noise covariance

Mlb = -[0.002 0.00105 0.001 1e-03 0.015];

Mub = [0.002 0.00105 0.001 1e-03 0.015];

SensorWrap = @(plantstate)Sensor(plantstate,mindex,R,Mlb,Mub);

state = zeros(nstate,nstep+1);

233



xlb = zeros(nstate,nstep+1);

xub = zeros(nstate,nstep+1);

y = zeros(length(mindex),nstep+1);

state(:,1) = x;

BoxSet = cell(nstep,2);

BoxSet{1,1} = Box;

ym = SensorWrap(x);

y(:,1) = ym;

scaling = 1;

xlb(:,1) = Box.lb;

xub(:,1) = Box.ub;

fig = figure(’Position’,[100, 100, 800, 220]);

fig.Color = [1 1 1];

subplot(1,3,1)

ylabel(’Glucose’);

hold on;

h1 = animatedline;

h1l = animatedline(’Color’,’r’);

h1u = animatedline(’Color’,’r’);

subplot(1,3,2)

ylabel(’Oxygen’);

hold on;

h2 = animatedline;

h2l = animatedline(’Color’,’r’);

h2u = animatedline(’Color’,’r’);

subplot(1,3,3)

ylabel(’Acetate’);

hold on;

h3 = animatedline;

h3l = animatedline(’Color’,’r’);

h3u = animatedline(’Color’,’r’);

flag = false;

global ii th time

234



time = 0;

dtflag = false;

Time = time;

ii = 2;

Set = [];

while time<=10

if x(1)<=0.03

flag = true;

end

if flag==false

F = 0;

P = 0;

else

F = 0.02;

P = 0;

end

if time>=7.3 && dtflag == false

dt = dt;

dtflag = true;

end

time = time + dt;

Time = [Time time];

[x,~] = Plant(x,F,P,OUR_max,z_fd,dt,GUR_max,Km,kla,Coeff,Constr);

state(:,ii) = x;

[Box,set] = BoxPropogation(Box,ym,F,P,OUR_max,z_fd,dt,GUR_max,...

Km,kla,Coeff,Constr,xlb(:,ii-1),xub(:,ii-1),Space,Mlb,Mub,z2ThEq,ThEq);

Set = unique([Set; set]);

BoxSet{ii,1} = Box;

xlb(:,ii) = Box.lb;

xub(:,ii) = Box.ub;

235



if ~(all(xlb(:,ii)<=x) && all(xub(:,ii)>=x))

disp([’Crossover: ’ num2str(time)]);

end

ym = SensorWrap(x);

y(:,ii) = ym;

addpoints(h1,time,x(1));

addpoints(h2,time,x(2));

addpoints(h3,time,x(3));

addpoints(h1l,time,xlb(1,ii));

addpoints(h2l,time,xlb(2,ii));

addpoints(h3l,time,xlb(3,ii));

addpoints(h1u,time,xub(1,ii));

addpoints(h2u,time,xub(2,ii));

addpoints(h3u,time,xub(3,ii));

drawnow;

ii = ii + 1;

end

disp(datetime(’now’)-startTime);

function [z,lambda] = Plant(z,rf,rp,OUR_max,z_fd,dt,GUR_max,Km,...

kla,A,Constr)

global th nu state0 state1

b1 = zeros(3,1);

b0 = [OUR_max; 100];

b1(1) = z(1)/z(4) - rf/z(5)*z(1)/z(4)*dt + rf/z(5)*z_fd/z(4)*dt;

b1(2) = z(2)/z(4) - rf/z(5)*z(2)/z(4)*dt + kla*(0.21 - z(2))/z(4)*dt;

b1(3) = z(3)/z(4) - rf/z(5)*z(3)/z(4)*dt;

b2 = GUR_max*(z(1)/(Km + z(1)));

b3 = 1 - (rf-rp)*dt/z(5);

w = [5 1 1 1 1 1 1 1 1 1 1 1]’;

th = [b1;b2*100;b3*100];

236



[nu,mu,exitflag,output,lambda] = NewPrimalDualMethod(-ones(4,1),...

[Constr;-eye(4);1 1 1 1],[b0;b1;b2;b3;zeros(4,1);0.5],w);

state0 = z;

z = z + ODE(0,z,nu,rf,z_fd,rp,A,kla)*dt;

z(z<=0)=0;

state1 = z;

function dzdt = ODE(t,z,nu,rf,z_fd,rp,A,kla)

dzdt = zeros(5,1);

dzdt(1:4) = A*nu*z(4) - rf/z(5)*z(1:4);

dzdt(1) = dzdt(1) + rf/z(5)*z_fd;

dzdt(2) = dzdt(2) + kla*(0.21 - z(2));

dzdt(4) = dzdt(4) + z(4)*rp/z(5);

dzdt(5) = rf - rp;

end

end

function [BoxNew,NonemptID] = BoxPropogation(Box,y,rf,rp,OUR_max,z_fd,...

dt,GUR_max,Km,kla,A,Constr,xlb,xub,CRs,Mlb,Mub,z2ThEq,ThEq)

global ii th nu state0 state1 time

yB_lb = y(1)-Mub(4) ;

if yB_lb<0

yB_lb = eps;

end

yB_ub = y(1) - Mlb(4);

yV_lb = y(2) - Mub(5) ;

yV_ub = y(2) - Mlb(5) ;

ub = Box.ub;

lb = Box.lb;

lb(lb<0) = 0;

ub(ub<0) = eps*1e6;

lb(4) = yB_lb;

ub(4) = yB_ub;

lb(5) = yV_lb;

ub(5) = yV_ub;

237



Perm = de2bi(0:31,5,’left-msb’);

Perm(Perm(:,1)==0,1) = lb(1);

Perm(Perm(:,1)==1,1) = ub(1);

Perm(Perm(:,2)==0,2) = lb(2);

Perm(Perm(:,2)==1,2) = ub(2);

Perm(Perm(:,3)==0,3) = lb(3);

Perm(Perm(:,3)==1,3) = ub(3);

Perm(Perm(:,4)==0,4) = lb(4);

Perm(Perm(:,4)==1,4) = ub(4);

Perm(Perm(:,5)==0,5) = lb(5);

Perm(Perm(:,5)==1,5) = ub(5);

Box = Perm.’;

boxV = 0.5*(lb+ub);

Th = ThEq(boxV(1),boxV(2),boxV(3),boxV(4),boxV(5),GUR_max,...

Km,dt,kla,rf,z_fd);

z2Th = z2ThEq(boxV(1),boxV(2),boxV(3),boxV(4),boxV(5),GUR_max,...

Km,dt,kla,rf,z_fd);

theta = z2Th*(Box-boxV) + Th;

thetaVmax = max(theta,[],2);

thetaVmin = min(theta,[],2);

thetaLen = thetaVmax - thetaVmin;

Box = Polyhedron(’lb’,lb,’ub’,ub);

theta = z2Th*(Box-boxV) + Th;

theta.minVRep();

theta.computeHRep();

r = rank(z2Th);

ASet = [A;0 0 0 0] * dt;

len = size(CRs,1);

determinant = zeros(len,1);

index = 1;

thetaCR = {};

for jj = 1:len

intersection = intersect(CRs(jj),theta);

238



intersection.computeVRep();

determinant(jj) = ~intersection.isEmptySet;

intV = intersection.V’;

if determinant(jj)

if any(max(intV,[],2)>=thetaVmax*1.00001)

scaleIn = [100;100;100;100;100]./thetaLen;

scaleIn(isinf(scaleIn)) = 1;

ScaleIn = diag(scaleIn);

ScaleInInv = ScaleIn^-1;

thetaScaledIn = ScaleIn*theta;

intersection = intersect(ScaleIn*CRs(jj),thetaScaledIn);

intersection.computeVRep();

determinant(jj) = ~intersection.isEmptySet;

if determinant(jj)

intV = ScaleInInv * intersection.V’;

if any(max(intV,[],2)>=thetaVmax*1.00001)

warning(’Obev bounds’);

end

thetaCR{index} = intV;

index = index + 1;

end

else

thetaCR{index} = intV;

index = index + 1;

end

end

end

NonemptID = find(determinant>0);

Nonemptlen = length(NonemptID);

thetaDecmpTrans = cell(Nonemptlen,1);

thetaDecmpTransProj = cell(Nonemptlen,1);

zRecover = {};

z = {};

pseg = {};

for kk=1:Nonemptlen

thetaDecmpTrans{kk} = thetaCR{kk} - Th;

239



if r==4

thetaDecmpTransProj{kk} = thetaDecmpTrans{kk}(1:4,:);

zRecover{kk} = (z2Th(1:4,1:4)^-1 * thetaDecmpTransProj{kk}...

+ boxV(1:4))’;

z{kk} = [zRecover{kk} repmat(yV_lb,size(zRecover{kk},1),1);...

zRecover{kk} repmat(yV_ub,size(zRecover{kk},1),1)];

elseif r==5

z{kk} = (z2Th^-1 * thetaDecmpTrans{kk} + boxV)’;

else

error(’rank problem!’);

end

F = CRs(NonemptID(kk)).getFunction(’opt’).F;

g = CRs(NonemptID(kk)).getFunction(’opt’).g;

BioL = min(z{kk}(:,4));

BioU = max(z{kk}(:,4));

xest = mean(z{kk},1);

term1 = F*z2Th;

TSet = diag([1 - rf*dt/xest(5); 1 - rf*dt/xest(5)-kla*dt;...

1 - rf*dt/xest(5); 1 - (rf-rp)*dt/xest(5); 1]);

TransSet = [z_fd*rf*dt/xest(5); 0.21*kla*dt; 0; 0; (rf-rp)*dt];

Conv = {};

Conv{1} = (TSet+BioL*ASet*term1)*z{kk}’ + BioL*ASet*...

(-term1*boxV+F*Th+g)+TransSet;

Conv{2} = (TSet+BioU*ASet*term1)*z{kk}’ + BioU*ASet*...

(-term1*boxV+F*Th+g)+TransSet;

pseg{1}(:,kk) = min([Conv{1} Conv{2}],[],2);

pseg{2}(:,kk) = max([Conv{1} Conv{2}],[],2);

end

lb0 = min(pseg{1},[],2);

240



lb0(lb0<0) = eps;

ub0 = max(pseg{2},[],2);

ub0(ub0<0) = eps;

lb1 = lb0;

ub1 = ub0;

conver = lb0<=1e-6;

lb1(conver) = eps;

conver1 = ub0<=9e-3;

ub1(conver1) = 9e-3;

BoxNew.lb = lb1;

BoxNew.ub = ub1;

end

function stateobserved = Sensor(plantstate,mindex,R,Mlb,Mub)

stateobserved = plantstate(mindex);

noise = mvrandn(Mlb(mindex),Mub(mindex),R,1);

stateobserved = plantstate(mindex) + noise;

end

A.7 Codes related to ERM

A.7.1 ERM

function [x,fval,exitflag] = ER6(C,A,b,Ae,be,lb,ub,dir2)

if length(C)>1

if size(lb,2)>1

lb = lb.’;

end

if size(ub,2)>1

ub = ub.’;

end

if size(C,2)>1

C = C.’;

end

end

241



try

ConstraintTolerance = 1e-6;

options = optimoptions(’linprog’,’Algorithm’,’dual-simplex’,...

’Display’,’off’,’ConstraintTolerance’,ConstraintTolerance);

[x0,fval0,exitflag,output,lambda] = linprog(C,A,b,Ae,be,lb,ub,options);

catch

[x0,fval0,exitflag,output,lambda] = cplexlp(C,A,b,Ae,be,lb,ub);

end

if exitflag>=0 && ~isempty(x0)

n_ine = length(b);

n_lb = length(lb);

n_ub = length(ub);

if n_lb

act_lb = find(lambda.lower>0);

else

act_lb = [];

end

if n_ub

act_ub = find(lambda.upper>0);

else

act_ub = [];

end

if n_ine

act_ine = find(lambda.ineqlin>0);

else

act_ine = [];

end

iact_ine = setdiff( 1:n_ine, act_ine);

iact_lb = setdiff( 1:n_lb , act_lb);

iact_ub = setdiff( 1:n_ub, act_ub);

242



Idm = eye(length(C));

A_ = [A(iact_ine,:); -Idm(iact_lb,:); Idm(iact_ub,:)];

b_ = [b(iact_ine,:); -lb(iact_lb,:); ub(iact_ub,:)];

Ae_ = [A(act_ine,:); Idm(act_lb,:); Idm(act_ub,:); Ae;C.’];

be_ = [b(act_ine,:); lb(act_lb,:); ub(act_ub,:); be;fval0];

QPoptions = optimoptions(’quadprog’,’Algorithm’,...

’interior-point-convex’,’Display’,’off’,’ConstraintTolerance’,...

ConstraintTolerance*100,’StepTolerance’,1e-10,...

’OptimalityTolerance’,1e-6);

warning(’off’,’optim:quadprog:HessianNotSym’);

if any(abs(be_)<=1)

scaledir = Ae_*C;

v_min = min(abs(be_));

idx_min = find(abs(be_)==v_min);

if min(abs(scaledir(idx_min)))==0

scale = 100;

else

scale = 1./min(abs(scaledir(idx_min)));

end

b_ = A_*C*scale + b_;

be_ = scaledir*scale + be_;

y0 = x0+C*scale;

if isempty(dir2)

dir2 = y0./norm(y0);

else

if norm(dir2)~=0

dir2 = dir2 +C*scale;

dir2 = dir2./norm(dir2);

else

dir2 = y0./norm(y0);

243



dir2 = dir2 +C*scale;

dir2 = dir2./norm(dir2);

end

end

dir1 = zeros(length(C),1);

dir1(1) = 1;

dir = dir1 - dir2;

H = eye(length(C)) - 2*(dir*dir.’)*(dir.’*dir)^-1;

base = Idm;

base(1,1) = 1e-6;

Q = H*base*H.’;

Q = 0.5*(Q+Q.’);

try

y = quadprog(Q,zeros(length(C),1),A_,b_,Ae_,...

be_,[],[],y0,QPoptions);

catch

y = cplexqp(Q,zeros(length(C),1),A_,b_,Ae_,be_,...

[],[],y0);

end

try

x = y - C*scale;

catch

x = x0;

end

exitflag = 1;

fval = C.’*x;

else

if isempty(dir2)

dir2 = x0./norm(x0);

else

if norm(dir2)~=0

dir2 = dir2./norm(dir2);

else

dir2 = x0./norm(x0);

244



dir2 = dir2./norm(dir2);

end

end

dir1 = zeros(length(C),1);

dir1(1) = 1;

dir = dir1 - dir2;

H = eye(length(C)) - 2*(dir*dir.’)*(dir.’*dir)^-1;

base = Idm;

base(1,1) = 1e-6;

Q = H*base*H.’;

Q = 0.5*(Q+Q.’);

try

try

x = quadprog(Q,zeros(length(C),1),A_,b_,Ae_,...

be_,[],[],x0,QPoptions);

catch

x = cplexqp(Q,zeros(length(C),1),A_,b_,Ae_,...

be_,[],[],x0);

end

catch

x = x0;

end

fval = C.’*x;

exitflag = 1;

end

else

x = x0;

fval = [];

exitflag = -1;

return;

end

end

245



A.7.2 Example

Example of

Vertex = [4 0 2; 0 4 4; 0 4 0; 4 0 0; 0 0 0; 0 0 4];

fig = figure(’Position’,[100, 100, 452+300, 477]);

fig.Color = [1 1 1];

ax = axes(’Position’,[0.1 0.12 0.5 0.8]);

ax.ActivePositionProperty = ’outerposition’;

ax.GridLineStyle = ’--’;

ax.LineWidth = 1.5;

ax.FontSize = 16;

patch(’Faces’,[3 4 5],’Vertices’,Vertex,’EdgeColor’,...

’black’,’FaceColor’,[0.259 0.526 0.957],’LineWidth’,0.1,...

’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[5 4 1 6],’Vertices’,Vertex,’EdgeColor’,...

’black’,’FaceColor’,[0.259 0.957 0.467],’LineWidth’,0.1,...

’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[6 2 3 5],’Vertices’,Vertex,’EdgeColor’,...

’black’,’FaceColor’,[0.957 0.945 0.259],’LineWidth’,0.1,...

’FaceAlpha’,0,’EdgeAlpha’,1);

patch(’Faces’,[3 4 1 2],’Vertices’,Vertex,’EdgeColor’,...

’black’,’FaceColor’,[0.3010 0.7450 0.9330],’LineWidth’,0.1,...

’FaceAlpha’,0.5,’EdgeAlpha’,1);

patch(’Faces’,[2 6 1],’Vertices’,Vertex,’EdgeColor’,...

’black’,’FaceColor’,[0.679 0.259 0.957],’LineWidth’,0.1,...

’FaceAlpha’,0,’EdgeAlpha’,1);

xlabel(’\it x_1’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[2.34 -0.456 -0.254]);

ylabel(’\it x_2’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[-0.70 2.24 -0.135]);

zlabel(’\it x_3’,’FontSize’,18,’FontName’,’Times New Roman’,...

’FontWeight’,’bold’,’position’,[-1.6 2.17 3.41]);

246



hold on;

grid on;

view(-32.2,32.8);

hold on;

%% path 1

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44+2^(ii-1); 2.56; 1.64];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

end

sct1 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’p’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 2

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44; 2.56+2^(ii-1); 1.64];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

247



end

sct2 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’*’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,0.5);

%% path 3

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44; 2.56; 1.64*1.08^(ii-1)];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

end

sct3 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’O’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 4

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44+2^(ii-1); 2.56+2^(ii-1); 1.64];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

end

248



sct4 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’s’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,2);

%% path 5

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 20;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44+2*(ii-1); 2.56; 1.64+1*(ii-1)];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

end

sct5 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’d’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

%% path 6

c = [-2 -2 0].’;

A = [1 1 0; 1 0 2];

b = [4 8].’;

num = 10;

list = zeros(num,3+3+1);

count = 1;

for ii = 1:num

r1 = [1.44; 2.56*1.5^(ii-1); 1.64*1.57^(ii-1)];

[x,fval,exitflag] = ER6(c,A,b,[],[],[0;0;0],[],r1);

list(count,:) = [r1; x; fval].’;

count = count + 1;

end

sct6 = scatter3(list(:,4),list(:,5),list(:,6),50,[0 0 0],...

’x’,’MarkerEdgeColor’,[0 0 0],’LineWidth’,1);

249



%%

hL = legend([sct1,sct2,sct3,sct4,sct5,sct6],{’Increasing r_1(1)’,...

’Increasing r_1(2)’,.’Increasing r_1(3)’,’Increasing r_1(1) and r_1(2)’,...

’Increasing r_1(1) and r_1(3)’,’Increasing r_1(2) and r_1(3)’});

hL.EdgeColor = [1 1 1];

hL.FontSize = 14;

hL.FontName= ’Times New Roman’;

hL.FontWeight= ’bold’;

newPosition1 = [0.7 0.35 0.2 0.25];

newUnits1= ’normalized’;

set(hL,’Position’, newPosition1,’Units’, newUnits1);

250



Glossary

DFBA Dynamic Flux balance analysis v

DFBM Dynamic Flux balance model v

DO Dissolved oxygen 24

EKF Extended Kalman filter vi

ERM Ellipsoidal reflection method v

FBA Flux balance analysis 21

HO Hierarchical optimization 27

IPM Interior point method v

KKT Karush–Kuhn–Tucker conditions 14

LP Linear programming v

MCA Monte Carlo algorithm 74

MNAR Minimization of the number of active reactions 42

mpLP Multiparametric linear programming vi

mpNLP Multiparametric nonlinear programming vii, 5

mQP Multiparametric quadratic programming 17

251



MTF Minimization of the total flux 42

NLP Nonlinear programming 81

NPDM Naive primal-dual method 25

QP Quadratic programming vi

SME Set membership estimation vi

SSE Summation of Squared Errors 42

TN Truncated multivariate normal distribution 82

VSS Variable structure system vi

WPDM Weighted primal-dual method v

252


	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Theoretical Background and Literature Review
	Dynamic Flux Balance Model
	Multiplicity in Dynamic Flux Balance Model
	Methods Proposed for the Multiplicity Problem
	Lack of Measurements and Lack of Observability
	Theoretical Background
	Convex programming
	Linear programming
	Quadratic programming
	Nonlinear programming
	Multiparametric programming
	Observer and Observability
	Set Theory


	A Method for Tackling Primal Multiplicity of Solutions of Dynamic Flux Balance Models
	Overview
	Introduction
	Methods
	Dynamic Flux Balance Analysis
	Weighted Primal-Dual Method
	Hierarchical Optimization
	Minimization of Enzyme Cost
	Model Calibration

	Theoretical Properties of WPDM
	Results and Discussion
	Primal Multiplicity of the DFBA of B. pertussis
	Application of WPDM
	Model Calibration with alternative methods used to address Primal Multiplicity

	Conclusions

	A Type of Set Membership Estimation Designed for Dynamic Flux Balance Models
	Overview
	Introduction
	Materials and Methods
	Dynamic Flux Balance Models
	Multiparametric Linear Programming for DFBM
	Extended Kalman Filter (EKF)
	Set Propagation and Error Compensation
	Detecting the transition between critical regions

	Results
	DFBM Model of E.coli
	Determination of Minimum Measurements
	EKF for the Two Subsystems and Detection of Transition between Subsystems
	Set Membership Estimation

	Discussion
	Conclusions

	Online Estimation Using Dynamic Flux Balance Model and Multiparametric Programming
	Overview
	Introduction
	Methods
	Dynamic Flux Balance Models
	Weighted Primal-Dual Method
	Multiparametric Programming of DFBMs
	Set Membership Estimation

	Results and Discussion
	DFBM of E.coli
	Multiparametric Programming for E.coli Model
	Set Membership Estimation
	Discussion

	Conclusions

	A Method for Tackling Multiplicity in Dynamic Flux Balance Models by an Ellipsoidal Reflection Operation
	Overview
	Introduction
	Dynamic Flux Balance Model
	Linear Programming and Multiplicity of solutions
	Linear Programming
	Multiplicity Issue
	Weighted Primal-Dual Method

	Ellipsoidal Reflection Method
	Identification of the Optimal Face
	Selecting a particular solution
	Translation
	Properties of ERM

	Results and Discussions
	Example of Simple LP Problem with Multiple Optima
	Comparison of Computational Expense
	Example of B. Pertussis Model

	Conclusions

	Setting up an Experimental Platform for Online Estimation Based on Dynamic Flux Balance Models
	Overview
	Introduction
	Materials and Methods
	Setting up of Equipment
	Culture Conditions and Operations
	Analysis of Culture

	Dynamic Flux Balance Model
	Results and Discussion
	Determination of Contamination
	Determination of Biomass
	Determination of Metabolites
	Model Calibration
	Difference between batch FER 1120 and F06
	Analysis of lack of fitting

	Conclusions

	Conclusions and Future Work
	Conclusions
	Methods to Solve The Multiplicity Issue
	Methods of Set Membership Estimations
	Setting up A Platform for Culturing B. pertussis

	Future Work

	References
	Appendices
	Appendix Matlab Codes and Proof
	Proof Related to Weighted Primal-Dual Method
	Example of WPDM
	Proof related to ERM
	Codes related to WPDM
	WPDM
	Example of WPDM

	SME under the Assumption of Unique Solution of LP
	SME with WPDM
	Multiparametric programming of WPDM
	Modified WPDM Used for SME
	SME with WPDM

	Codes related to ERM
	ERM
	Example


	Glossary

