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Abstract

In the study of geophysical fluid dynamics, predictability of dynamics at
different scales still stands in the foreground of interest as one of the primary
challenges. Following Lorenz’s pioneering framework, several results from
homogeneous and isotropic turbulence have suggested that flows with many
scales of motion present limited predictability due to the inevitable contam-
ination of error from small to large scales, even if initially confined to small
scales. In this work, we investigate the predictability of freely decaying strati-
fied turbulence, which is representative of small-scale geophysical turbulence
where rotational effects are neglected.

Predictability of stratified turbulence is studied using direct numerical sim-
ulations by analyzing the error growth in pairs of realizations of velocity fields
departing from almost identical initial conditions. Previous studies have indi-
cated that the finite range of predictability is determined by the slope of the
flow’s kinetic energy spectrum. In stratified turbulence, the shape of the en-
ergy spectrum depends on the buoyancy Reynolds numberReb, at least when
Reb is not too large. We perform a comparative analysis of spectra and pertur-
bation upscale growth behaviour in different regimes of stratified turbulence
from O(10) to unitary order of buoyancy Reynolds number.

Furthermore, we explore the sensitivity of our experimental outcomes with
respect to error introduction. There were no discernible changes between the
behavior of the systems and their associated error dynamics while modifying
the geometrical shape of the error introduction, going from a spherical do-
main complement to a cylindrical complement. Likewise, the experiments
were insensitive to adjusting the cutoff wavenumber kc at which the error
is introduced while keeping the same initial error kinetic energy, obtaining
similar results for kc ∈ {20, 40, 60, 80}.
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Chapter I

Introduction

You must study turbulence
Martin. The study of turbulence
is the perfect type of a perfect
pleasure. It is exquisite, and it
leaves one unsatisfied. What more
can one want?

(paraphrased) Michael Waite

I . 1 Turbulence

Hauntingly beautiful, that would be the best description that the au-
thor of this text could ever give to such a phenomenon, which beyond

requiring a sterile understanding, demands above all aesthetic admiration. As
we profess much respect and affection to our subject of study, we will be re-
luctant to adopt the fearful and unfortunately predominant position to avoid
giving a definition to the concept of turbulence for the sake of not disturbing
certain areas of the scientific community. Conversely, in order to do it justice
and provide a decent definition it is necessary to first take a step back and
identify the principal characteristics that outline its phenomenology.

It is the author’s strong believe that the subject of turbulence could not be
first approached in any other way than from real life experiences. Hence, in
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an exercise that aims to bottle up in the context of fluid dynamics framework
the grace and beauty of the phenomenon that we perceive with our eyes, we
will discuss the properties and origins of turbulence starting each time with
the illustrative nature of an example.

• Randomness: Whether we are admiring the dance generated by the
smoke of a cigarette, or the flow of water in a river after it meets a rock,
turbulence always arises in an erratic manner. Certainly, when we are
analysing the motion of real fluids, it may seem that turbulence encapsu-
lates that inevitable tendency of disrupting any kind of stable or laminar
flow. This is translated experimentally in the incapacity to replicate in
two different occasions the exact same turbulent flow.

With that in mind, it is natural to assess that the velocity field of a tur-
bulent flow presents large spatial and temporal fluctuations and, as an
immediate consequence, our capacity for predictability under these con-
dition would always be limited. The origin of this feature may be puz-
zling at first glance; if we think that at the end it is just a macroscopic
phenomenon subject to classical continuum mechanics interactions
and described by deterministic equations such as Navier-Stokes (or one
of their multiple sub-versions), where does the chaotic or random be-
havior come from?

The answer to the previous question is usually attributed to the pres-
ence of the advective term inside the Navier-Stokes equations:

∂u

∂t
+ (u · ∇u)︸ ︷︷ ︸

advective term

= −∇p+ ν∇2u, (I.1)

where u is the velocity field, p and ν are the kinematic pressure and
viscosity respectively. In this introductory discussion of turbulence, we
are assuming constant density, but buoyancy and stratification will be
incorporated below. As pointed out by Davidson (2004)1, it is rather
frequent to find that non-linear differential equations present extreme
sensitivity to initial conditions giving place to a chaotic regime; in fact,

1It is worth noting that even though this work primarily relies on primary sources, textbooks
have also been cited as they provide a concise and organized context.
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the origin of turbulence may be regarded as the consequence of an infi-
nite sequence of bifurcations (Landau, 1944), each of them adding ran-
dom components to the velocity field. The reason why turbulence is not
commonly approached within the context of complex system theory is
because of the near-infinite and strongly coupled degrees of freedom
that the problem possess.

On the other hand, the random nature of turbulence instinctively leads
to the need for a statistical treatment, which consists of decomposing
the velocity field into a characteristic mean flow and the contributions
of turbulent (stochastic) fluctuations. Much of the study of turbulence
could be summarized as the attempt to understand the statistical corre-
lation of turbulent fluctuations between two different points in space
and the endeavor to solve the closure problems that arise from it.

Finally, it is important to note that, regardless of the fact that the Navier-
Stokes equation basically encapsulates the essence of Newton’s second
law for a lump of fluid, a huge difference is that the former one is not
time-reversible (Davidson, 2004).

• Range of scales: From the air exhaled by my supervisor’s lungs to the rage
of the wind in a storm, turbulence seems to be a phenomenon that spans
a wide range of scales. This broad spectrum of motion gives turbulence
some kind of universality but still certain conditions must be fulfilled in
order to have it. As Reynolds (1883) famously addressed with his study
on the conditions in which the flow of fluid in pipes transitioned from
laminar flow to turbulent flow, it is necessary to have a “sufficiently high”
Reynolds number, which is a dimensionless parameter that quantifies
the ratio between the inertial and viscous forces of a fluid, being defined
as

Re =
uL

ν
, (I.2)

where L and u are, respectively, the characteristic length and velocity.
Therefore, fluids with higher viscosity but regular velocities and char-
acteristic lengths tend to be less turbulent. That is the reason why it is
so difficult to generate turbulence when playing with maple syrup over
the kitchen table.
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• Mixing nature: Everyone who enjoys drinking coffee with cream or
adds milk to their tea will be familiar with the extraordinary capacity
that turbulent flows possess for mixing momentum, heat and other
types of scalars. The prevalence of agitations due to the fluctuations of
the velocity field give turbulence a great efficiency for distributing the
components of a fluid. This turbulent diffusion depends entirely on
the flow conditions, but it is not a property of the fluid itself.

In a similar note, turbulent flow tends to be associated with the concept
of dissipation, nonetheless we have to be meticulous and notice that the
presence of viscosity is the one responsible for the dissipative quality of
any type of flow, not just turbulent flow. In regions of the space where
the instantaneous gradient of velocity is particularly large, the shear
stress within a fluid would be great as well, giving way to a pronounced
dissipation of energy.

• Vorticity: It is hard to find someone who is not immediately hypnotized
by the majesty of Jupiter’s atmosphere, or at least point out with intrigue
how its great red spot stands out just below the northern hemisphere.
This example leads us to one of the most essential features of turbulence,
the presence of vorticity (ω = ∇ × u). As expressed by Davidson
(2004) and Lesieur (2014) there are great advantages on working directly
with the vorticity field, beginning with a relatively simpler governing
equation

Dω

Dt
= (ω · ∇)u+ ν∇2ω, (I.3)

again assuming constant density and flow. Furthermore, the dynamics
of vorticity provide us with useful tools for describing the constitution
and evolution of turbulent flows such as vortex tubes and vortex stretch-
ing. As stated by Lesieur (2014) turbulence can be regarded as a collec-
tion of thin vortex tubes stretched by the induced velocity field as shown in
Figure I.1. This vortex-tube stretching might lead to the formation of
regions of space characterized by a high vorticity surrounded by regions
of low vorticity, corresponding to the intermittency that we observe
frequently in turbulent flows. In fact, coming back to the energy dis-
tribution topic, it is believed that dissipation occurs due to the action
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of viscosity on the smaller vortices created by vortex stretching which
transfers energy to smaller scales from the larger ones.

Figure I.1: Turbulence as a tangle of vortical structures.

This is a good moment to remark that most of the literature use the
term “eddy” to a fault in order to ascribe nearly anything related with
turbulence. The main problem about this term is that, in practice, it
can draw a misleading picture that reduces the “spinning nature” of
vorticity to whirlpool-like arrangements 2, when the topology of vor-
tical structures can be far more intricate (and interesting!). Hence, for
the means of this work we will avoid confusion using instead blobs of
vorticity (or “blovs” for short) to refer to those vortical structures (vor-
tices sheets, rings, tubes, etc.) of different sizes that predominate within
turbulent flows.

Gathering the fore description and analysis of turbulence we can finally
present the next:

Definition I.1.1. Incompressible turbulence is a spatially complex distribution
of vorticity which evolve in a random manner in accordance to equation I.3,
resulting from a fluid flow on a high Reynolds number regime. The vorticity
field is stochastic in both time and space, and exhibits a vast and continuous
distribution of length and time scales as well as intermittency.3

2The very etymology of the word eddy points to that fact: from ed- (“turning, back, reverse”)
+ ēa (“water”).

3This should not be taken as a mathematical definition, but as a formal and well rounded
definition nonetheless.
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I . 1 . 1 Energy cascade: Kolmogorov-Obukhov
theory

As turbulence is characterized by a wide range of scales of motion (gracefully
described by definition I.1.1), an almost instinctive question arises when we
ask ourselves if there is any particular way of interaction between the different
scales of motion on a turbulent flow or, to be more precise, how exactly is the
distribution and transfer of energy across all those scales?

We can infer that the largest blovs, due to the amount of mass and associated
larger velocity, contain most of the kinetic energy in a turbulent system. We
also know that three dimensional vortical structures tend to change in size
primarily through vortex stretching. If we imagine the spatial coexistence of
different sized blovs, it is natural to think that there should be some kind of
interaction between them. At this point it is customary to resort to the poetic
abilities of L.F. Richardson4, and postulate a cartoon where the main energy
interaction amidst blovs occurs when they have similar sizes. Therefore, it
is thought that the kinetic energy of a turbulent flow is continually passed
down from large scale blovs to smaller ones. This multi-step process or cascade
is principally driven by inertial forces due to the strain field stretching and
deforming blovs as marked out by Davidson (2004).

Now, in order to acknowledge the dissipative nature of turbulence, it is
necessary to relate the end of this cascade with the role of viscosity, damping
away turbulence at small scales. With this in mind, a reasonable hypothesis
would be that the smallest possible length scale of blovs (η) would just be a
function of viscosity (ν) and viscous dissipation of kinetic energy per unit of
mass (ϵ = 2ν⟨sijsij⟩ where sij is the strain rate tensor and we are averaging
over the entire domain). In 1941, using the previous hypothesis and stratagem
of dimensional analysis, A.N. Kolmogorov (1941) proposed that

η ∼
(ν3
ϵ

) 1
4 , (I.4)

thus, η is commonly known as the Kolmogorov scale. Despite its heuristic
deduction, equation I.4 has been widely corroborated experimentally (Sad-
doughi and Veeravalli, 1994) and accepted within the turbulence community.

4Big whirls have little whirls that feed on their velocity, and little whirls have lesser whirls
and so on to viscosity. - L.F. Richardson

6



In order to characterize the energy cascade, it is convenient to translate the
velocity field to its Fourier representation. At a first glance, the use of the
Fourier transform may look like the compulsory need of using that tool for ev-
erything in physics, but there are several phenomenological reasons for doing
so. As suggested by Batchelor (1953) and Davidson (2004), the recurring use
of spectral analysis is coupled with the ability to easily discern different scales
of motion. Moreover, the energy additivity of each component of motion is
well represented by an orthogonal decomposition giving place subsequently
to spectral energy decomposition. It also converts differential operators into
multipliers and allows us to better define the degrees of freedom of a turbulent
system (McComb, 1990).

Nevertheless, the use of such a powerful implement should always be han-
dled with a couple of fair warnings. For instance, we need to keep in mind that
turbulence consists primarily in the distribution of blovs, not a set of waves,
which may lead to a phenomenological misconception, although some may
suggest that it gives a relatively simpler picture of turbulence (McComb, 1990).
Likewise, an infinite number of Fourier configurations may lead to the same
energy spectrum, loosing some information regarding the real space turbulent
pattern.

In the context of Fourier analysis, we shall first consider whether there may
be a range of wavenumbers where the inertial transfer of energy is predominant.
At this stage, we can assert that the smallest wavenumbers (biggest scales of
motion due to the reciprocal relationship between wavenumber and spatial
variables) are completely determined by the nature or source of turbulence; in
this realm, the turbulent flow draws most of the energy from the mean flow.
On the other hand, the largest wavenumbers should be determined by the
translated Kolmogorov scale

kd =
1

η
=

( ϵ

ν3
)1/4

. (I.5)

G.K. Batchelor (1953) has a great discussion regarding the independence of
Fourier components for high wave numbers, giving arguments of how the pres-
ence of pressure forces tend to eliminate any directional preferences induced
by large scale components of motion, giving rise to isotropic turbulence in
the so called equilibrium range of wavenumbers. The reason for that name
is because the statistical quantities in that range are independent of the large
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scale components of turbulence and the forces are in approximate statistical
equilibrium.

As summarized by Lesieur (2014), for stationary isotropic turbulence, the
energy flux throughout different scales of motions is independent of the wave-
number k and equal to the viscous dissipation rate ϵ. Relying heavily on di-
mensional analysis, Kolmogorov’s theory predicts that the energy spectrum
for the inertial range should take the form

E(k) = Kϵ2/3k−5/3, (I.6)

where K ≈ 1.5 is a universal constant. This result is usually associated or
interpreted as a consequence of having a constant spectral energy flux through
the inertial range.

There is another way to reach the same result, which will be helpful in the
near future, by means of what it is generally called matched asymptotic anal-
ysis (Lundgren, 2003). In this approach, Kolmogorov’s spectrum can be in-
terpreted as an overlap between a large scale range, where the two relevant
parameters are u and the integral scale L (the scale containing most of the
kinetic energy), and a small scale range, where the the two critical parameters
are ϵ and η. Taking Re ≫ 1, both η and L become widely distanced and
the overlap range only share as a common parameter ϵ5, in this range using
dimensional analysis we should return to the same expression in I.6.

I .2 Stratified Turbulence

For this work (as the title may already have hinted), it is within our main in-
terest to study the effects of stratification on the development of turbulence.
While the subject of stratification arises almost organically at the classification
of the different layers composing the Earth’s atmosphere, it is a rather preva-
lent consequence of having a fluid immersed in a strong and homogeneous
gravitational field.

Heretofore we have discussed in some extent the aspects that character-
ize statistically isotropic turbulence, including what could be easily called the
biggest achievement in understanding turbulence so far (in Kolmogorov’s 1941

5Here we have used the well renowned Taylor (1935) hypothesis for the integral scale L ∼
u3/ϵ.
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theory). However, the isotropic condition arises from the fact that, in the ab-
sence of external forces, if we carry out a set of simulations or replicate the same
experiment several times, the average behavior of a turbulent flow should not
have any directional preferences6, or as stated by Lesieur (2014) all the mean
quantities concerning a finite set of spatial points are invariant under any si-
multaneous arbitrary rotation of the points with respect to the coordinate
axes. In contrast, the case of stratified turbulence is a clear example where the
presence of the gravitational field immediately imposes a favoured direction.

A stratified fluid can be broadly defined as a fluid with a background (or,
average) density profile that decreases continuously with height. As a conse-
quence of the density differences, any immersed fluid parcel would be subject
to buoyancy forces and to related displacements. The simplest model for a con-
tinuously stratified fluid uses the Boussinesq approximation, which assumes
that the density of a fluid varies only slightly, such that it can be considered
constant except when it appears in a buoyancy related term, i.e. the density
only appears when it is multiplied by the gravitational acceleration. In a nut-
shell, the Boussinesq approximation applies if the Mach number of the flow
is small, propagation of sound or shock waves is not considered, the vertical
scale of the flow is not too large, and the temperature differences in the fluid
are small. Then the density can be treated as a constant in both the continuity
and the momentum equations, except in the gravity term (Kundu and Cohen,
2002).

Considering the above, a reasonable attribute to further quantify (or mea-
sure) the amount of stratification is the buoyancy frequencyN defined for the
Boussinesq approximation by

N2(z) ≡ − g

ρ0

∂ρ̄(z)

∂z
, (I.7)

which is usually presented as the frequency at which a vertically and adiabat-
ically displaced parcel will oscillate within a statically stable stratified fluid
(Davidson, 2013). Here the density ρ = ρ̄(z) + ρ′ is split into a background
profile ρ̄(z), which is only a function of height, and a fluctuation ρ′; ρ0 is the

6The importance of the statistical approach to turbulence is fundamental in this as-
pect, since in a single experiment (or simulation) any turbulent region is notoriously highly
anisotropic.
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reference density of the parcel and g is the gravitational acceleration, yet it may
also be defined in terms of other scalars, like potential temperature.

In the real world, the presence of external forces is ubiquitous, but the signif-
icance of said forces vary according to each specific situation. Without a doubt,
the impact of external forces is entirely dependent of the phenomenon’s scale.
Even though we are all immersed in the same gravitational field, the fall of an
ant from the second floor of a building is not met with the same outcome as
the respective fall from a human being because the dynamics of air resistance
at the ant’s scale is fundamentally different from that on the metre scale. At
this point, it is natural to consider independently the effects on the dynamics
of two characteristic length scales inside a stratified fluid: the vertical (l↑) and
the horizontal (l↔).

With the aim of constituting a solid framework where we would be able to
discuss the consequences of stratification in turbulence, we need to impose
certain restrictions by the means of dimensionless quantities; hence, we ask
for the following requirements to be fulfilled as in Riley and Lindborg (2012):

• The ratio of the flow inertial forces with respect to buoyancy forces to
be considerably small, which is outlined by the Froude number

F↔ =
u

Nl↔
≪ 1. (I.8)

This is a basic condition that imposes that stable stratification effects
are the prevailing ones.

• Weak rotational effects, which implies a large Rossby number

Ro↔ =
u

fl↔
≥ 1, (I.9)

where f is the local inertial frequency which accounts for the influ-
ence of Coriolis forces. On Earth’s atmosphere, the range of scales
where Ro↔ ≫ F↔ (i.e. f

N ≪ 1) is usually denoted as the mesoscale
(O(100)km and smaller), here the effects of stratification are greater
than the ones of rotation.

• Large buoyancy Reynolds number

Reb ≡ F 2
↔Re↔ =

u3

νN2l↔
≫ 1. (I.10)
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We have already discussed the essential role of large Reynolds numbers
for the development of turbulence; nonetheless, it is important to notice
that, as indicated by Brethouwer et al. (2007), for a fixed Re the stratifi-
cation condition may suppress turbulence as F↔ decreases, coming to
the conclusion that strong stratification requires even larger Reynolds
numbers. For that reason the fore quantity is able to recover the essence
of high Reynolds numbers within the realm of stratified fluids.

Throughout this work we have tried to continuously emphasize the rele-
vance of the experimental roots embedded in the study of turbulence. Never-
theless, we cannot ignore the notorious ascendancy of numerical simulations
during the last decades and its current role in fluid dynamics. Due to the in-
creased accessibility to greater computational power, numerical simulations
have become one of the preferred tools to observe, qualify and quantify the
myriad aspects related to turbulence, constituting another type of laboratory
that allows us to easily modify parameters and visualize the consequences.

Taking into account the previous reflection, let us start presenting some of
the experimental work that have shed light towards understanding the phe-
nomenology of stratified turbulence. Lin and Pao (1979) in their review of
wakes in stratified fluids recollected results of the stratified variation of classi-
cal turbulence experiments, like towing spheres or grid-flows. In the majority
of the cases, turbulence grows in the usual chaotic manner, but after some time,
the stratification appears to give place to some kind of regularity or organiza-
tion to the vorticity structures (while keeping its stochastic nature). They con-
cluded that vertical motions in a stratified fluid were generally inhibited, high-
lighting the emergence of quasi-two-dimensional structures. It is also worth
mentioning the work exhibited by Billant and Chomaz (2000a), where they
studied how a vertical columnar vortex present a new kind of zig-zag instability
due to being immersed in a stratified fluid, noting the formation of horizontal
structures as well.

These experimental observations coexist in agreement with a lot of their
numerical simulation counterparts. For instance, Kimura and Herring (1996)
found scattered "pancake-shaped" vortex patches lying in the horizontal plane
suggesting them as a good candidate for the final structures in decaying strati-
fied turbulence. The presence of these horizontal layers of blovs is shared across
multiple references (e.g. Riley and deBruynKops (2003); Waite and Bartello
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(2004); Brethouwer et al. (2007); Maffioli and Davidson (2016)) regardless of
the different initial conditions or the use of forcing7.

In summary, some of the distinguishing features found either experimen-
tally or numerically about stratified turbulence is the decrease of the vertical
scale (l↑) giving way to a predominance of horizontal layers of blovs. As a
consequence of that, we would expect the primary velocity components to be
horizontal, which are associated with a strong vertical component of vorticity
(Davidson, 2004). Nevertheless, the intense shearing between layers leads to a
strong horizontal component of vorticity as well, responsible for most of the
energy dissipation. We need to remember that even though we are working
with high Reynolds numbers, that does not necessarily imply a decorrelation
between horizontal layers (Waite, 2014).

We have to acknowledge, based on both experiments and simulations, that
there exists some transition where stratified turbulence gets organized in a
quasi-two-dimensional manner. Nonetheless, if we continue to observe the
evolution of blovs and recall the alleged universality of isotropic turbulence, it
is natural to wonder if there exists a small enough scale of motion such that the
turbulence would no longer be affected by the effects of stratification. Indeed,
as marked by Lesieur (2014), if we take the hypothesis from Taylor (1935) for the
energy dissipation rate (ϵ ∼ u3/l) and search for a length scale lO such that the
associated Froude number is unitary (at this scale buoyancy no longer reigns as
the main actor in the balance of forces), this yields what it is commonly known
as the Ozmidov scale

lO ≡
( ϵ

N3

)1/2
. (I.11)

According to Riley and Lindborg (2008) this scale can also be interpreted
as well as the largest horizontal scale possessing sufficient kinetic energy to
overturn. Notice that with the introduction of the Ozmidov scale, we can re-
visit our stratification conditions and see how the dimensionless quantities are
translated in terms of lO. For instance, the Froude number may be presented

7In general, the term decaying turbulence makes reference to setting initial conditions of
the simulation and letting the system evolve and eventually die out due to dissipation; while
forced turbulence makes allusion to the continuous injection of energy to the system in order
to reach some kind of stationary state. Both cases are frequently used accordingly to the aspect
of turbulence under study.
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(with the help of the Taylor (1935) hypothesis) as

F =
( lO
l

)2/3
, (I.12)

which tells us that the effect of stratification on turbulence is imperceptible
whenever l ≪ lO and becomes dynamically important whenever the char-
acteristic lengths of the blovs are greater than the Ozmidov scale (Ozmidov,
1965). Likewise, for the buoyancy Reynolds number, if we consider again Tay-
lor’s hypothesis, along with the definitions of the Kolmogorov and Ozmidov
scales, we get that

Reb ∼
( lO
η

)3/4
, (I.13)

therefore, a large Reb immediately implies that there exists a vast range of
separation between the scales lO and η and, in this range, it is expected that
the energy distribution should be the same as in I.6. As a final note, we need to
acknowledge the fact that numerical simulations that fulfill at the same time
the two conditions Reb ≫ 1 and F↔ ≪ 1 are extremely demanding, mainly
because of the need to be able to resolve Kolmogorov’s scale, it can be shown
that the total number of grid points ends up scaling as Re

9/4
b F

−7/2
↔ (Riley

and Lindborg, 2012).

Figure I.2: Graphical representation of the horizontal structures or “pancake-
blovs” in a stratified fluid.

Finally, there is still a legitimate question concerning the collapse of the
vertical scale within the arrangement of turbulence into pancake-blovs (as they
are schematically displayed in figure I.2): how is the ultimate size of l↑ settled or,
to rephrase it in another way, how do the dimensionless parameters influence
the vertical size of the blovs? In order to answer this question, it is rather useful
and frequent to consider the equations of motion subject to the Boussinesq
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approximation and follow the non-dimensionalization performed by Riley
and Lelong (2000). In doing so it comes to light that even though strong
stratification is defined by F↔ ≪ 1, the magnitude of its vertical counterpart,
F↑, restricts much of the behavior of turbulence. According to Billant and
Chomaz (2001) the vertical Froude number tends to auto-adjust in order to
have a balance between horizontal and vertical advection (Fr↑ ∼ 1), while
conserving the anisotropy. Therefore, the vertical scale would be set by

l↑ ∼
u

N
. (I.14)

Consequently, several authors have named u/N the buoyancy scale (Waite,
2014).

I .2 . 1 Energy cascade in stratified turbulence

The next instinctive step, given our previous experience with isotropic turbu-
lence regarding Kolmogorov’s theory, is to discuss now the energy spectrum
for the stratified case. An intuitive approach would be to exploit the distinc-
tive anisotropy of the problem by introducing a decomposition that handles
the vertical and horizontal components of the velocity field independently,
preferably in their Fourier representation. Bearing that in mind, notice that
when we translate the incompressibility condition (∇ · u = 0) to its Fourier
counterpart, we find that

k · û = 0, (I.15)

where û is the Fourier transform of the velocity field, and k = (kx, ky, kz)

is the standard wave vector. Therefore, we can express the velocity field as a
linear combination of two vectors orthogonal to the wave vector in what it
is usually referred as the Craya-Herring representation (Kimura and Herring,
2012). For stratified turbulence, we can take advantage of the distinction of
the vertical direction defining

êv =
k× ẑ

∥k× ẑ∥
and êw =

k× êv
∥k× êv∥

, (I.16)

for allk ∦ ẑ8, in this way it can be shown that the inverse Fourier transform of
ϕvêv accounts exclusively for the horizontal and vortical behavior while the

8Flow with k ∥ ẑ corresponds to vertically sheared, horizontally uniform horizontal flow,
which is neither a wave nor a vortex (Smith and Waleffe, 2002)
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one with ϕwêw encompasses only the vertical and wavy nature of the velocity
field (giving meaning to the original subscripts)(Lesieur, 2014).

It is important to mention at this point that the vortical component of
the velocity field may satisfy, under certain conditions, a two-dimensional
Navier–Stokes equation in the limit of both Froude numbers being small. This
is one of the substantial premises by which Lilly (1983) proposed an inverse en-
ergy cascade (i.e. from small to large scales), as it is the case for two dimensional
turbulence (Kraichnan, 1967). In that picture, stratified turbulence would be
constituted by vertically decoupled two-dimensional layers; on the other hand,
if we consider the scaling arguments of Billant and Chomaz (2001) the vertical
collapse ends up setting F↑ ∼ 1, in that regard, we can no longer consider
both Froude numbers to be negligible and Lilly’s hypothesis does not keep
standing. Likewise, the inverse cascade hypothesis has not received support
from numerical simulations as indicated in Waite (2014).

Carrying on with the results from the Craya-Herring decomposition it is
reasonable to consider independently the distribution of kinetic energy over
the horizontal wave number components (k↔ =

√
k2x + k2y) and the ver-

tical component (k↑ = kz), besides the usual full kinetic energy spectrum
E(∥k∥). Employing asymptotic analysis for the horizontal spectrum (Riley
and Lindborg, 2012), at intermediate scales where viscous effects are weak, the
only relevant parameters are ϵ and lO, but when F↔ ≪ 1 both the horizontal
integral length and Ozmidov scale tend to become separated and the overlap
region ends up characterized again only by ϵ, as it is the only shared parameter,
resulting in a similar spectrum as for the isotropic turbulence

E(k↔) = C1ϵ
2/3k−5/3

↔ . (I.17)

Analogously, for the vertical spectrum, the large scale range is defined mainly
by u and N , while in the small scale range the main parameters are ϵ and N

(Riley and Lindborg, 2012). As N is the only shared parameter, dimensional
analysis yields the next result

E(k↑) = C2N
2k−3

↑ . (I.18)

The same relation can be obtained by means of a self-similarity argument
(Billant and Chomaz, 2001). If we believe that the vertical scale is determined
by l↑ ∼ u/N throughout any scale of motion then converting this condition
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in Fourier space, we have that

1

k↑
∼

√
k↑E(k↑)

N
, (I.19)

which returns the same expression when we solve for the horizontal energy
spectrum. Finally, we need to address the fact that the question of atmospheric
mesoscale turbulence cascade its still widely open to this day and it is in the
front row of the stratified turbulence problems.

I . 3 Predictability

Now that we have settled the boundaries of the yard court where we would
like to play (namely, stratified turbulence), it is necessary to come full circle
and reprise the first attribute of turbulence that we have enlisted previously: its
intrinsic chaotic nature. This characteristic, although some may argue beauti-
ful in itself, seem to be troublesome to a species so deeply obsessed with trying
to foretell on the basis of observation, experience, or scientific reason what
happens next? Whether it is sports or weather, we have an innate tendency to
search for predictability. Unfortunately, based on what we have discussed, we
recognize that such a search may look fruitless when it comes to turbulence9.

In our contemporary society, we have become accustomed to hold faithful
weather forecasts that extend their accuracy to several days at the reach of our
fingertips. At first glance, this poses an apparent contradiction: how is it pos-
sible to pull out predictability from such a chaotic system that houses a wide
range of motions and is so sensitive to disturbances? With that question in
mind, we will walk in a chronological fashion through some of the results and
developments on the subject of turbulence predictability, in an attempt to give
a complete background for the understanding of this work. It is necessary to
acknowledge that the following reference trail aims to be, at best, representa-
tive of some of the work done within this field and any absent contribution is
due to the lack of pages required to do them proper justice.

Even though weather forecasting has technically existed since the invention
of the telegraph by allowing decent communication between observation sta-

9We have metaphorically sat the oracle itself at the desk and the only thing he has been able
to do so far is to write the equations of motion and shrug to the ubiquitous presence of non
linearity.
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tions, the founder of modern weather forecasting is irrevocably L. F. Richard-
son in the early 20th century. At a time when the mere existence of computers
eluded us from our most extroverted dreams, Richardson (1922) constructed
a systematic numerical method for predicting the weather and showed its ap-
plication by implementing a trial forecast, carrying each of the computations
by hand!10 Albeit that forecast attempt was far from accurate, missing the cal-
culation of pressure by a couple of orders of magnitude, his work gave way
to the basic methodological structure for the Numerical Weather Prediction
(NWP) used to this date.

Richardson’s fruitless results are understandable (in fact, they are quite ad-
mirable, given the limitations) when we take into account that the complete
weather forecasting problem is exorbitantly difficult due to the myriad of intri-
cate factors involved (e.g. cloud dynamics, topographical forcing, etc). While
the practical development of meteorology and NWP continued to grow on its
own11, driven mainly by the technological advances of the subsequent decades,
it was pertinent to give a step aside and return to some unresolved theoretical
questions of turbulence at large scales. In that way, the goal was to tackle a
slightly different problem, filled with a plethora of idealizations but without
forgetting the meteorological motivation of what these theoretical toy models
can tell us about the characteristics of the planetary-scale motions.

Thompson (1957), concerned about the uncertainty of the atmosphere’s
future state could be restricted just by the economic incapacity of not having
enough observation stations and the possible consequences of measuring er-
rors, undertook a statistical study of the growth rate of small initial errors. He
concluded that with the existing station network, small errors in observing the
earth’s atmosphere would tend to double in just a couple of days, but that the
growth rate could be considerably reduced by increasing the density of obser-
vations. His results inspired some hope that accurate atmospheric predictions
were reachable because unobserved errors at the small scales would not disrupt
the large scale features.

More than a decade after, the forefather of chaos theory himself, E. N.
Lorenz, published a seminal paper discussing the predictability of a flow which

10Presumably at the back of an ambulance in France while the Great War was unfolding
(Lynch, 2006).

11This is a good time to emphasize that in this manuscript, our primary interest is not focused
in the NWP predictability problem, but it is rather used as a starting point to our study.
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possesses many scales of motion. In his work, Lorenz (1969) proposed to clas-
sify deterministic systems (systems with well established equations of motion)
into different categories depending on how they statistically evolve with re-
spect to errors imposed at the initial conditions. The main distinction between
categories rest on whether at subsequent times the magnitude of the error be-
tween the “real or reference” and the “observed or predictor” system can always
be tamed by making the initial error sufficiently small or whether it is inevitable
that the discrepancy will become large, for any arbitrarily small initial error (i.e.
unavoidable lost of predictability!). In the later case, for practical purposes,
Lorenz (1969) argued that the behavior of the system is indistinguishable from
that of an indeterministic one.

Taking inspiration from Thompson (1957), Lorenz (1969) dealt with ensem-
bles of pairs of states (the real and the observed systems) of an isotropic and
homogeneous two dimensional fluid; with the aid of simplifying assumptions,
he proposes a statistical (quasinormal12) closure to develop a system of equa-
tions whose dependent variables are the ensemble average kinetic energies of
the difference velocities at different scales, obtaining at the end solutions via
numerical integration of these equations. The signature conclusion of Lorenz
(1969), when analyzing several experiments, is that errors initially confined ex-
clusively to the smallest scales of motion (i.e. the kinetic energy of the real and
observed systems only differ at an specific range of high wavenumber vectors)
may lead, by a continual process, to errors at the largest scales. This is what it is
usually referred in the subsequent literature as an inverse cascade for the prop-
agation of error and it basically says that errors at small scales tend to gradually
contaminate the larger scale dynamics. This is then a deterministic system
that posses an intrinsic range of predictability; that is, there is an inherent time
interval within which errors surpass any prechosen magnitude. As shown in
Experiment (C) from Lorenz (1969), in these kind of systems there is a point
where cutting the initial error in half fails to boost the range of predictability in
a significant way. In fact, Lorenz presented as a conclusion that the maximum
range of meaningful predictability (the large scales are still not changed in a
relevant way) for atmospheric models would be around 5-8 days.

12Throughout this section we will try to enunciate the specific type of statistical closure for
that kind of reader filled with curiosity or well-versed within these techniques.
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Lorenz’s groundbreaking work gave birth to the classical school of turbu-
lence predictability, where numerous researchers tried to expand his model
or make a distinctive contribution within the subject (Leith, 1971; Lilly, 1972;
Leith and Kraichnan, 1972; Herring et al., 1973). Most of these studies shared
some similar results that can be gracefully summarized in the following points:

• Any scalek, belonging to the inertial range, is bound to be contaminated
by error initially confined at high wavenumbers (we will use kE(t0) to
characterize the cutoff wavenumber at which the error is introduced in
the initial conditions).

• The existence of an inverse cascade of error propagation from small to
large scales is a direct consequence of the characteristic shape of the
power law in the inertial range of the energy spectrum.

• The amount of predictability (whether a turbulent flow system falls in
either of Lorenz’s categories) described by the rate of error propagation
has a direct association with the steepness of the slope of the inertial
range.

• As both systems are, at the initial time, statistically correlated for all
k < kE(t0) in the inertial range, the decorrelation time due to the
error propagation at k is, in some cases, independent of kE(t0).

• The error-spectrum E∆(k, t), which is the spectrum of the kinetic en-
ergy of the difference of the velocitiesup−ur in systems p and r, grows
with time in a self-similar fashion, where is the spatial average over the
domain. This is a dimensional consequence of really being a function
of {k, kE , t}.

Lilly (1972) made special emphasis on the fact that whenever the energy
spectrum presents a negative power law of the form E(k) ∼ k−n, on dimen-
sional grounds, the timescale associated with the growth of the error (or loss
of predictability at scale k) is

τ(k) ∼ k(n−3)/2, (I.20)

which may be considered proportional to the blov turnover time (l/u(k)).
Among his conclusions, Lilly (1972) stated that the error amplitude tends to
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grow exponentially while maintaining a shape preserving energy spectrum.
Likewise, he concluded that the forcing mechanisms did not seem to make
any relevant difference to the lost of predictability. Returning to the original
concern of Thompson (1957),Lilly (1972) suggested that, as the growth of in-
stabilities seems to be controlled by small scales, an increased resolution may
still increase predictability.

Leith and Kraichnan (1972), while making use of a EDQNM13 closure, com-
pared the predictability between three and two dimensional isotropic turbu-
lence with a stationary energy spectrum (i.e. with forcing). In their work, they
determined that the predictability time could be extended as much as desired
for 2D turbulence with −3 spectrum, while 3D turbulence with −5/3 still
presented the same limited predictability time. On the phenomenological part
of the error propagation, they argued that at the discontinuity between corre-
lated and uncorrelated spectral regions, initially there is a downward sweeping
out process to higher wavenumbers (due to the energy cascade), but then the
error spectrum when it is fully developed moves toward lower wavenumbers
at a rate consistent with scaling laws, blaming the upward inverse cascade to a
convective defasing mechanism. For experiments with atmospheric parameters,
they found that much of the knowledge remains beyond one week for large
scale motions.

In the following decade, we can say that there was a transition period where
the closure models began to coexist with the development of large eddy sim-
ulations (LES). Métais and Lesieur (1986) postulated that statistical closure
theories, such as EDQNM, present an intrinsic problem on accurately repre-
senting the error spectrum, whenever nonlocal interactions between scales of
very different sizes are not considered, or properly modeled. Likewise, Métais
and Lesieur (1986), asserted in a comparative study that freely evolving three
dimensional turbulence is more predictable than its stationary counterpart
(up to 50% more predictable!); nonetheless, freely evolving turbulence still pre-
sented a similar contamination within large structures by an inverse cascade
of error. Consequently, they argued that large coherent structures (such as the
ones produced by barotropic instabilities, mixing layers or isolated vortices)
immersed in turbulent flows present an experimentally extended predictabil-

13Which stands for Eddy Damped Quasi-Normal Markovian.
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ity due to an increase with time of the large blov turnover time in the case of
freely evolving turbulence.

Thereafter, Chollet and Métais (1989) carried large eddy simulations show-
ing an agreement between their results and the ones obtained from EDQNM,
in the same frame of homogeneous isotropic turbulence. This was a relevant
result, because it pointed out that the inverse error cascade was not just a clo-
sure artifact. In this work, Chollet and Métais (1989) compared pairs of realiza-
tions of velocity fields departing from nearly the same initial conditions and
assemble the most pertinent techniques to quantify error growth. From a phe-
nomenological point of view, they interpreted the unpredictability growth as
a combination of the shift in time, or space, of identified blovs and the shape,
or size, evolution of blovs. Among their conclusions, they confirmed the back-
transfer of error towards larger scales. However, they characterized the process
of error spreading as mainly local (in terms of spectral space) and justified that
interactions between similar scales are the first contributors to the existence
of this phenomena, which may differ from 2D turbulence.

At this point, the classical picture of turbulence predictability seemed to
be almost complete, with minor contributions added every now and then. Re-
gardless, as the climate models continued to develop exponentially over time,
Tribbia and Baumhefner (2004) considered pertinent to reexamine certain
questions of the interscale influence in predictability error growth but in the
framework of NWP. With their implementation of identical and imperfect
twin experiments they found distinctive differences with the classical inverse
cascade error growth and its mechanism. Its most important contribution is
to be able to displace the everlasting attention from the inverse cascade pro-
cess as the main participant to the loss of predictability. In their study, they
concluded that errors grow preferentially at intermediate scales and that the
primary role of the inverse cascade is to seed disturbances in the baroclinically
active region of the spectrum. From there, errors tend to organize within syn-
optic14 structures and amplify.

In contrast with the previous apparent rupture with the classical picture,
Rotunno and Snyder (2008) went to the other extreme reprising the origi-
nal statistical treatment developed in Lorenz’s (almost to a mimeographical

14The synoptic scale is generally associated with a horizontal length scale of the order of 1000
kilometers or more. At this scale it is typical to find mid-latitude depressions such as cyclones.
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but pedagogical extent), considering a surface quasigeostrophic (SQG) ap-
proach as a driving model instead of the plain two-dimensional vorticity equa-
tion (2DV) taken by Lorenz (1969). There are several advantages in doing so;
mainly, SQG flow has the ability to replicate a “−5/3” spectrum seen at the
mesoscale while sharing lots of the mathematical benevolences of 2DV. In
other words, it is basically 2D turbulence but with 3D turbulence spectrum.
In contrast, Lorenz’s model has the physical inconsistency of using arbitrarily
different spectra, when it has been experimentally and theoretically confirmed
that the inertial range in 2D turbulence is only consistent with a “−3” spec-
trum (Kraichnan, 1967). In Rotunno and Snyder (2008), the error growth
analysis reintroduced the critical importance of downscale error as a differetia-
tor between−5/3 and−3 spectrum. In the former, downscale error spreading
is much stronger than in the later, providing an explanation of how the contin-
uous feedback generates a rapidly growing small-scale maximized error spec-
trum in 3D turbulence, while its absence allows the extension of predictability
in the 2D case.

Shortly after, Morss et al. (2009) handed over a more realistic study regard-
ing the link between the importance of the steepness of the spectral slope and
the error growth dynamics, in isotropic homogeneous turbulence. Their mo-
tivation resides on the observations that the atmospheric kinetic energy has a
transition from a −3 slope at synoptic scales to −5/3 at the mesoscale (Gage,
1985) and the capacity to address the problem with a model simpler than NWP
models but able to encompass complex atmospheric flows: a multilevel quasi-
geostrophic model with high resolution. For their model, the error doubling
time in the linear regime of error growth was approximately 1.2 days which was
a substantial upgrade compared with doubling times on the order of minutes
in Lorenz’s model. They concluded that the main difference between the error
behavior tied to a shallow slope (like a −5/3 regime) and a steeper one (like
−3) is that the error spectra initially peaked at the smallest resolved scales for
the former while it peaked at the energy containing scales for the later. In the
first case, error saturation of small scales causes the peak in the error spectrum
to shift towards larger scales.

At the same year, Ngan et al. (2009) highlighted the importance of revisit-
ing the results of the classical picture with a modern approach. They preferred
to use a Boussinesq model to study the predictability of rotating stratified tur-
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bulence15. Ngan et al. (2009) analysed two limiting cases: subsynoptic scales
where the effects of strong stratification are predominant and synoptic scales
dominated by rotation with weak stratification. Doing twin simulations, they
noticed that the evolution of the error spectra was significantly faster in the
synoptic case. Furthermore, they did not find a self-similar decay in the sub-
synoptic flow, nor find a complete loss of predictability for this case. In resem-
blance with Tribbia and Baumhefner (2004), they postulated that beyond the
Ozmidov scale, as we expect to have 3D isotropic turbulence, errors may serve
as seeds for an inverse cascade to larger scales. One of their most important
contributions was to emphizese how for anisotropic turbulence predictability
may be strongly dependent of scale, subjugated to the value of the Rossby and
Froude numbers. Likewise, they build a strong case to assert that predictabil-
ity decay is mainly driven by turbulence but slowed by the presence of inertial
waves. From their perspective, waves help to mitigate non-linear energy trans-
fers and acknowledging the fact that as inertial waves dominate the dynamics
of the larger scales, they provide an explanation for why such scales become
more predictable.

Subsequently, Durran and Gingrich (2014) return their attention to what
they believe was a fairly overlooked result from Lorenz (1969) himself: in experi-
ment (B) Lorenz added the perturbations restricted to larger scales and showed
that doing so it produces a comparable range of predictability to the experi-
ment where errors were confined to small scales. With that in mind, Durran
and Gingrich (2014) used a slightly modified version of the SQG model from
Rotunno and Snyder (2008) to study the difference of adding error restricted
to small scales and having a uniform relative error distribution throughout
all scales. They stated that the loss of predictability by initial error with fixed
amplitude was independent of their spatial scale when dealing with a −5/3

spectrum. Therefore, small relative errors at large scales could have a similar
impact on the lost of predictability as large relative errors at small scales. Their
results point to the fact that the mesoscale inherits its intrinsic predictability
from the motion at large scales. Which leaves a satisfactory reply to the possi-
bility that weather forecasting may be limited by perturbations as trivial as the

15The reader is strongly advised to at least skim over this particular reference due to its con-
spicuous closeness to the objectives and general framework of this thesis.
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flapping of butterfly wings; in the end, said contributions should be dwarfed
by errors in the larger scales.

Ngan et al. (2009) called for an implementation of modern statistical di-
agnostics (such as relative entropy or finite-size Lyapunov exponents), taken
out from the interdisciplinary fields like information theory and complex sys-
tems analysis, to act as a much needed complement to the classical picture
of turbulence predictability. Boffetta and Musacchio (2017), following a fa-
miliar scheme used in some of their previous work (Boffetta and Musacchio,
2001), responded to Ngan’s call. In their work, Boffetta and Musacchio (2017)
studied the predictability of isotropic homogeneous stationary turbulence on
the basis of high resolution direct numerical simulation (DNS) at different
Reynolds numbers by measuring the separation between near identical real-
izations and computing the leading Lyapunov exponent to indicate the rate
of exponential growth of said separation. From their point of view, the strong
chaoticity of turbulence does not spoil completely its predictability because of
the ratio between the very fast time scales where perturbations originate and
the time scale related for small perturbations to affect significantly the dynam-
ics of the large scales; giving birth to a strange marriage between chaoticity and
predictability time. In their results, they showed that the Lyapunov exponent
has a dependency with the Reynolds number but with an unexpected scaling
exponent, larger than the one suggested by dimensional analysis.

At the end of this reference carousel, we have the work of Yoshimatsu and
Ariki (2019). They conducted a theoretical analysis based on a self-similarity
assumption for the large-scale error field evolution, showing that the growth
of the error energy spectrum is characterized by both the total error energy and
the integral length scales of the error field. They corroborated their theoreti-
cal analysis with DNS simulations of 3D homogeneous isotropic turbulence.
Their work is a modern retake to replicate some of the classical closure results.
The amount of computational resources available nowadays allow us to use
DNS to conduct our experiment with high definition simulations; that is one
of the main reasons why we will continue with this approach in order to study
the effects of stratification within the predictability framework.
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I .4 Thesis objectives and format

As we can appreciate with the previous literature review, there is a broad pre-
dictability scheme and the areas of research are quite diverse within such a
field. However, the main purposes of this manuscript can be summarized as
follows:

• To unthread some of the general properties of stratified decaying tur-
bulence numerical experiments and to examine them under various
predictability diagnostics and to further extend the analysis behind the
classical picture of isotropic turbulence predictability to this particular
regime.

• To study the effects of the buoyancy Reynolds number on the pre-
dictability of stratified flows. First, by comparing the range of pre-
dictability by increasing Reb. And then, comparing numerical experi-
ments with different fluid parameters (such as stratification) but with
similar Reb.

• To unravel the global and local error dynamics on vertical and horizontal
scales16 and study their individual contributions on the predictability
of the three-dimensional phenomenon as a whole.

• To examine the weight of the error introduction on the final outcome
of the experiments by investigating the dependence of the results with
respect to the geometry of the added perturbations in the numerical do-
main and the effects of initially restricting such perturbations to smaller
scales.

After this chapter, the numerical scheme, simulation framework, and
methodology are presented in chapter II. The dissection of the respective out-
comes is exposed in chapter III. At the end, the corresponding conclusions
with a summary of the results and the insight for future related works are
shown in chapter IV.

16This alludes to the general growth of the error at different wavenumbers and the respective
repercussions, as a whole, of the propagation of the error within the entire domain of the
experiments.
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Chapter II

Methodology

II . 1 Equations of motion

Neglecting the effects of planetary rotation or any other external
forces, the Boussinesq equations for a uniformly stratified fluid are:

∂u

∂t
+ u · ∇u = − 1

ρ0
∇p+ bêz + ν∇2u, (II.1)

∂b

∂t
+ u · ∇b+N2w = κ∇2b, (II.2)

∇ · u = 0, (II.3)

where u = (u, v, w) is the velocity field, êz is the unitary vector in the verti-
cal direction, p is the dynamic pressure, κ is the thermal diffusivity and we
define the buoyancy as b = − g

ρ0
ρ′, where the density is decomposed as

ρ = ρ̄(z) + ρ′, with |ρ′| ≪ ρ̄ and ρ0 is a constant reference density. We
take the buoyancy frequency N2 = g

ρ0
dρ̄
dz to be constant. Many assumptions

play an important role on the validity of such equations. For instance, the basis
of this approximation is that we can encounter quite a few scenarios where the
temperature and density do not present significant variations, yet the buoyancy
force drives the motion. Hence, in the first equation, the density only affects
the buoyancy term of the momentum equations and is taken constant for all
the other terms (Kundu and Cohen, 2002). The second equation is the result
of the usual thermodynamic diffusion equation for fluids. And the last one is
the incompressibility condition, for which we usually require that the Mach
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number (defined as u/c, where u is the characteristic flow speed and c is the
speed of sound in the medium) be small enough, we neglect the propagation
of sound or shock waves (those tend to carry unpleasent pressure variations)
and we consider a sufficiently small vertical scale so that hydrostatic changes in
pressure do not affect the density (Kundu and Cohen, 2002). At a first glance,
all these conditions may seem too restrictive but keep into consideration that
it is largely satisfied at small scales, and it’s the simplest model for studying
effects of continuous stratification on turbulence.

Analogously to the treatment of the Navier-Stokes equations we can present
the momentum equation II.1 in terms of the vorticity:

∂ω

∂t
= ∇× (u× ω) + α

 ∂T/∂y

−∂T/∂x

0

+ ν∇2ω. (II.4)

Notice that the term in square brackets is commonly associated with the baro-
clinic generation of vorticity. As a consequence, the vertical component of
vorticity is not directly influenced by the buoyancy force.

II .2 Numerical model

The main advantage of equation II.4 is that if we are able to solve it (undoubt-
edly via a numerical method), we can always return to our original velocity
variable by solving the associated Poisson equation:

∇2u = −∇× ω. (II.5)

At this point, we are presented with an ideal opportunity to resume our pre-
vious discussion on the importance of spectral decomposition as a vehicle to
better understand turbulence, especially when we notice that elliptic equations
such as II.5 are conveniently solved in its associated Fourier domain. Hence,
for an arbitrary wave vector k = (kx, ky, kz), equation II.5 takes the form:

−||k||2û = ik× ω̂, (II.6)

where the hatted variables represent the Fourier counterpart of the original
velocity and vorticity. We can readily see that the velocity is obtained by simply
dividing the previous expression by the ||k||2 factor. Now, in order to avoid
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problems at the origin (k = 0), we can consider all variables to be zero at the
zero wave vector, which can be interpreted as the absence of a mean flow.

On this basis, our numerical model1 presents the application of a spectral
transform method with periodic boundary conditions on a cubic domain of
sizeL3 and an isotropic grid. To summarize, our goal is to integrate in time and
in Fourier space equations II.2-II.4 (with an adequate time stepping scheme)
while storing the model variables in physical space, using the Fast Fourier Trans-
form (FFT) as the bridge to go back and forth. In this way, we can benefit from
calculating certain quantities in the domain that is most convenient. For exam-
ple, we can exploit the fact that quadratic nonlinearities are easiest to evaluate
in the physical domain by simple point-wise multiplication. Whereas, differ-
entiation is best computed in Fourier space, here we just need to multiplicate
by a factor of “ik”, with k being an arbitrary wavenumber.

Just as we have outlined the advantages within this approach, there are some
downsides along the way. Dealing with pointwise multiplication, aliasing er-
rors arise as they can be generated in attempting to evaluate the product of
two poorly resolved waves on a numerical mesh (Durran, 2010). Furthermore,
aliasing tends to incite numerical instabilities causing solutions to blow up.
The immediate solution to this problem is to restrict the range of scales by
truncating the amount of Fourier coefficients. We use the “two-thirds rule”
which corresponds to truncate at Kj = nj/3 (with j ∈ {x, y, z} and nj is
the number of discrete wavenumbers in each direction) instead of using the
natural choice of truncation wavenumbers Kj = nj/2 given that this later
option is not enough to counter all aliasing error (Durran, 2010).

Going back to the time stepping scheme, the equations are solved using a
third order Adams Bashford method (AB3), with the viscous and diffusion
terms treated with a Cranck-Nicolson approach. As discussed by Durran
(2010), we only need to ensure the stability of the linear and advective terms
(with a sufficiently small timestep) to also tame the numerical instabilities from
the diffusion and viscous terms.

As a final remark, it is important to notice that, given the nature of our stud-
ied subject and the computational capabilities at the time, we are interested
in resolving at every point of the grid the whole range of spatial and temporal

1We used the same spectral transform model that has been employed in several previous
investigations of stratified turbulence (e.g. Waite (2011); Legaspi and Waite (2020)).
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scales associated with turbulence, from the Kolmogorov scale, up to the inte-
gral scale. By this means, our numerical set up is commonly classified as a Direct
Numerical Simulation (DNS) (Orszag, 1970), which in practice translates to
having ηKj ≳ 1 for all j ∈ {x, y, z}.

II . 3 Procedure

Following in the footsteps of several previous numerical studies of predictabil-
ity (eg. Lilly (1972); Ngan et al. (2009)), our general objective is to characterize
the predictability error that arises from the divergence between almost identi-
cal twin experiments that sprout from a common precursor run. Each of the
parent runs presented in this work are initialized with isotropic random-phase
velocity fields in close agreement to Maffioli and Davidson (2016)2 which sat-
isfies:

E(k) = µk4 exp
(
−k2/k2p

)
, (II.7)

where E(k) = 1
2⟨û

∗ · û⟩ is the three dimensional energy spectrum which is
calculated averaging over spherical shells of radius k and µ is the amplitude
of the initial spectrum. This amplitude is selected to ensure that the initial
domain-averaged kinetic energy is normalized, meaning that the velocity scale
is O(1). We also set kp = 5, which sets the amplitude of the peak of the initial
spectrum, located at

√
2kp. The length scale of our experiments is character-

ized by this peak, in that way we have that l = 2π/
√
2kp. Likewise, from

the initial conditions we can estimate the characteristic flow speed using the
normalization of kinetic energy and the isotropic set up as follows

E =
1

2
(u2 + v2 + w2) =

3

2
u2,

therefore u =
√
2/3 and the associated turn over time is l/u ∼ 1. Notice

that we make use of these initial conditions quantities in order to calculate the
Froude and Reynolds numbers.

We let the parent simulation run until nearly reaching full development of
turbulence, from 0 to 0.5 time units which is roughly half a turn over time,

2We take their initial condition set-up as the base of our simulations mainly because, as they
briefly point out, they initialize both potential vorticity and internal gravity waves in stratified
turbulence, without giving a particular preference to either of them.
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and gather all the respective model variables. We take those outputs and use
them as the initial conditions for the kickoff of the twins3 simulations, running
for an additional 5 time units with the same overall parameters as their parent
simulation. Keep in mind that the runs are taken sufficiently long (in terms of
the characteristic turn over time) that they are able to capture adequately the
the development and then decay of turbulence). The key point in the twins’ set
up is that we introduce error to one of them (Artemis), while leaving the other
one (Apollo) unperturbed, playing the role of the reference simulation. In this
regard, the latter differs initially from the former on account of a small random
perturbation introduced at all wavenumbers beyond a defined wavenumber
cutoff.

ν N Re Reb F kO kd kmax/kd

Jupiter (256) 2.0× 10−3 10 363 2.4 0.09 46 88 0.97

Zeus (512) 8.0× 10−4 10 907 4.6 0.09 52 163 1.04

Leto (1024) 3.1× 10−4 10 2285 12.1 0.09 51 331 1.03

Latona (2048) 1.2× 10−4 10 5758 35.5 0.09 47 688 0.99

Suez (512) 8.0× 10−4 6.5 907 11.4 0.14 27 166 1.03

Otel (1024) 3.1× 10−4 15 2285 4.1 0.06 107 309 1.10

Table II.1: Simulation parameters, non-dimensional numbers, and wavenum-
bers for all numerical experiments. The number next to the name of the nu-
merical experiment alludes to its resolution (e.g. Jupiter (256) was set up with
a resolution of 2563).4

The first section of our experiments gravitates towards the inquiry of the
significance of the Reynolds number and buoyancy Reynolds number for
the predictability of stratified turbulence. To be concise, we conducted several
experiments where we change, for different resolutions, the value of viscosity in
accordance with resolving the Kolmogorov scale, while keeping the buoyancy
frequency fixed, thus obtaining different values of Reb. Consequently, we
have changed the amplitude of the introduced error so we could have the same

3In order to avoid unimaginative reference calling, throughout this work we have named
the twins Apollo and Artemis, while identifying the precursor simulation (used as the reference
name for each numerical experiment) as different versions of their respective mythological
parents ( eg. Zeus, Leto).

4Notice that simulations with the same resolution share the same Reynolds number, which
can work as a mnemonic trick at the moment of reading the results.
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initial total error for all the experiments. In this way we can analyse the effects
of having different Re and Reb with same stratification. Next, we consider
a set of experiments keeping the same viscosity and resolution as before but
changing the buoyancy frequency. In this part we can study predictability of
simulations with similar buoyancy Reynolds numbers resulting from different
stratifications. In the final section, we explore in depth the effects of error
introduction, since it is, by itself, a key factor over all the fore mentioned studies.
Here, we emphasize on the implications of the geometry and range of error
introduction. Taking our base experiment, Leto(1024), we carry out similar
simulations, keeping the same general model parameters and just changing the
wavenumber cutoff of error introduction (keeping the same initial total error
energy), passing through the Ozmidov wavenumber as it characterizes two
separate regions of the stratified turbulence spectrum. Likewise, we conduct
an experiment where we add the error in a cylindrical portion of the domain
instead of having it introduced by the domain complement of a sphere, making
sure that the total amount of initial error keeps the same magnitude as in
the base experiment. The advantage of studying so, in the frame of stratified
turbulence, is to appraise if a cylindrical geometry would significantly change
the results in the horizontal and vertical energy spectrum, as there is an initial
contribution of error at every horizontal plane.

II .4 Diagnostics

In order to assess and quantify the amount of error propagation, we used a
compilation of diagnostics presented across the numerical predictability liter-
ature (such as Leith and Kraichnan (1972); Chollet and Métais (1989); Ngan
et al. (2009)). As we have advocated for the case that turbulence is better un-
derstood via a statistical and spectral analysis, an immediate first tool, having
the velocity fields of each twin, is to calculate the (3D, horizontal and vertical)
ensemble energy spectrum E(k) at each timestep. Although this does not tell
us much about predictability, we can compute in a similar manner the error
energy spectrumE∆(k), which measures the wavenumber distribution of the
decorrelation between the two fields. Given our periodic boundary conditions,
we can define this quantity as the kinetic energy spectrum of the difference of
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the velocity fields as follows

E∆(k, t)δ =
1

2

∑
k′∈I

| ûp(k, t)︸ ︷︷ ︸
Apollo

− ûr(k, t)︸ ︷︷ ︸
Artemis

|2, (II.8)

where
I = {k′|k − δ

2
≤ k′ < k +

δ

2
},

δ = 2π/L, û corresponds to the velocity in the Fourier domain and the
subscripts p and r denote Apollo and Artemis, respectively. The next natural
step would be to quantify the proportionality between the ensemble and error
spectra. Thus, the ratio energy spectrum is defined by

R(k, t) =
E∆(k, t)

E(k, t)
. (II.9)

It is important to recall that Leith and Kraichnan (1972) showed that in both
isotropic 2D and 3D turbulence this ratio spectrum develops and moves to-
wards lower wavenumbers in a “self-similar” form (i.e. it retains its shape and
scaling properties as it evolves in time). Notice that for an arbitrary wave vector
k0, we can express the error kinetic energy as

2 · 1
2

( |ûp(k0, t)|2

2
+

|ûr(k0, t)|2

2

)
︸ ︷︷ ︸

Ensemble KE

−Re{ûp(k0, t) · û∗
r(k0, t)}︸ ︷︷ ︸

Correlation

, (II.10)

where the ensemble KE refers to the average of the kinetic energy of each of
the twins. Therefore as the fields reach full decorrelation at a given scale, the
preceding function reaches its maximum value atR(k, t) = 2, in that case we
will consider that the error has hit full saturation.

As it is rather challenging to interpret all the implications and subtleties by
looking just at spectra, it is convenient to incorporate a handful of time series
analysis that would let us understand the overall error evolution. For instance,
the total error kinetic energy with respect to time is expressed by

e(t) =
∑
k

E∆(k, t), (II.11)

which describes the total amount of dissimilitude between velocity fields. Now,
the associated time series of II.9 would be given by

σ(t) =

∑
k E∆(k, t)∑
k E(k, t)

. (II.12)
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Both of these temporal development representations are great summaries of
the global error propagation. However, for practical purposes, they tell a some-
what similar story. Let’s not lose sight of the fact that our main interest lies
in the local error dynamics since the existence of an inverse error cascade is
usually attributed to the interaction between neighboring scales (chapter I).
For that reason, we have replaced σ(t) from our repertoire of tools, and in-
stead incorporated the time series of the error ratio at a given scale of interest,
namely: rK(t) = R(K, t).

The last implemented diagnostic is also heavily inspired by the error in-
verse cascade. Under the premise of a progressive phenomenon, given the in-
sertion of error at small scales, we would be interested in characterizing the
wavenumber from which the error has contaminated all the subsequent scales
at any given time. This is commonly referred as the error wavenumber or error
wavefront (Chollet and Métais, 1989; Ngan et al., 2009) and is defined by the
wavenumber at which the ratio spectra reaches a pre-established threshold:

κe(t) : R(κe, t) = γ, (II.13)

with γ ∈ (0, 1). One immediate advantage is that κe describes the time evo-
lution of error locally.

Even though several studies take γ = 1
2 (inspired by Lorenz’s original in-

terest in the doubling error time), Chollet and Métais (1989) argue that this
quantity should be small enough in order to place the wavenumberκe both in
the correct range of error spectrum (k4 for isotropic decaying turbulence) and
in the rage of explicitly computed wave numbers. Following Chollet and Mé-
tais (1989), we have taken γ = 0.01 for all the experiments as well. Note that
κe(t) is expected to be a monotonically decreasing function as the front propa-
gates to larger scales and previous studies have obtained a respective power-law
scaling for this quantity (Leith and Kraichnan, 1972; Chollet and Métais, 1989).
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Chapter III

Results

III . 1 Leto (1024) , in depth

In an attempt to better understand the overall study of the various con-
ducted experiments and the contrast between them, it is important to first

devote the beginning of this chapter to a complete dissection of just one experi-
ment: Leto (1024) . In that way, the reader has an opportunity to become better
familiarized with stratified turbulence simulations and the interpretation of
the following results.

Even though most of our results heavily rely on spectral analysis, we cannot
forget the visual nature of turbulence and its significance in understanding
the evolution of the underlying phenomena. With that in mind, we begin by
presenting a proper visualization of the velocity and vorticity fields in figures
III.1 and III.2. Without a doubt, the velocity fields are a great launching anal-
ysis pad since regardless of our background, it is one of the quantities with
which we are certainly most familiar. At the first row of figure III.1 we can
basically observe the general initial evolution of all our numerical experiments.
The isotropic random-phase velocity fields have just barely developed and, as a
result, we encounter a similar picture across the different planes at t = 0.5. In
other words, at the time of the conception of the twins, the turbulence has not
significantly lost its isotropic nature inherited from the initial conditions. At
the subsequent times (t = 2.9 and t = 5.30), the full display of anisotropy is
observed, as the vertical slices (in the last two columns) show how the turbu-
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lence unfolds and organizes in horizontal layers. The horizontal slice (in the
first column) doesn’t present any particular type of directional preference in
its development. One important thing to notice is that each of the panels has
its own colorbar. As time goes by, the overall velocity magnitudes decrease as
expected when dealing with decaying turbulence. If we kept the initial color-
bar, the second and third row would no longer look so dramatic and would
have lighter colors instead. Now, as previously discussed in chapter I, the vor-

Figure III.1: Two-dimensional slices showing the y-component of the velocity
at different planes in the middle of the domain of Leto (1024) . From left to
right, the ΠXY , ΠXZ , ΠY Z planes are respectively displayed, marking their
temporal development with each row (from top to bottom: t = 0.5, 2.9, 5.3).

ticity is a prime quantity to unravel and discern the nature of turbulence. In
figure III.2, we compare the time progression of the y-component of vorticity
in the ΠXY , ΠY Z planes. At the initial times (t = 0.5), we get the same kind
of outcome as in the velocity field analysis. However, there is no noticeable di-
rectional preference in any of the two panels. At t = 2.9 we can contemplate
the mixing nature of turbulence. On the right panel, layers of strong shear
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are clearly visible, especially at later times, along with disturbances resembling
shear instabilities. Lastly, on the third row, we can identify that the stratifica-
tion has organized those instabilities in wider horizontal layers on the right
panel, which is a direct reference to the famous pancake blovs addressed earlier.

Figure III.2: Slices of the y-component of vorticity taken at the middle of the
domain of Leto (1024) . From left to right column, the ΠXY , ΠXZ planes are
respectively displayed, with their temporal development at the same times as
in figure III.1.
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Figure III.3: Time series of domain averaged kinetic energy dissipation rate
and kinetic energy of each twin simulation for Leto (1024) .

Next, we discuss the time series of two important quantities that charac-
terize turbulence. In the left panel of figure III.3 we have the dissipation rate
of both twins. As expected, the time series are identical for t ∈ [0, 0.5] (as
this part represent the parent run), but once the error is introduced we can
see a significant jump for the perturbed twin Artemis. This shouldn’t be sur-
prising, as we have abruptly changed the small scales by introducing the error,
some of the noise is dissipated, leading to a short increase in dissipation in the
perturbed twin. After that jump, we can distinguish that both graphs share a
similar path, this is well explained by Taylor’s hypothesis (Taylor, 1935) because
one of its consequences is that the dissipation is subject mainly to large scales
that do not directly perceive the effects of viscosity after a turn over time.

In other words, the dissipation rate of Artemis returns to the expected value
as determined by the unperturbed large scales. If we go to the right panel of
III.3, we can appreciate the hierarchy of the large scales as well. There we can
see that in spite of altering the domain averaged energy while adding the per-
turbations, as they are introduced over the small scales, they do not represent a
significant change as the mean energy is largely contained in by the large scales.
So far, we have outlined general aspects of stratified turbulence simulations,
such as field visualization, kinetic energy and dissipation. Now, we are going
to explore some of the predictability diagnostics, starting with the ensemble
kinetic energy spectra. If we concentrate our attention on the first couple of
outputs at times t = 0.5 and t = 1 , we can observe that in figure III.4 the ini-
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Figure III.4: 3D ensemble kinetic energy spectra of Leto (1024) , the time pro-
gression is given by the color gradient at each spectral line, from lighter to
darker tones. The spectra are plotted each 0.5 time units from 0.5 to 5.5, high-
lighting the spectrum at t=0.5 with a different color. The reference slope is cal-
culated at the time of maximum dissipation for the unperturbed twin (which
roughly coincides with one turnover time).

tial spectrum is steep and then, as the dissipation increases, the spectrum gets
shallower, which is characteristic of decaying turbulence. We can also notice
that the spectra are equally spaced at the beginning and then they start to get
closer, for large wavenumbers. As these figures are set in a logarithmic scale,
given the spacing between lines, we may infer an exponential decay in early
times.
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Figure III.5: Horizontal and vertical ensemble spectra of Leto (1024) , each
line represent the kinetic energy spectrum at a different time and the time
progression is given by the associated color gradient, from light to dark. The
spectra are plotted each 0.5 time units from 0.5 to 5.5, highlighting the spec-
trum at t=0.5 with a different color. The reference slope is calculated at the
time of maximum dissipation for the unperturbed twin (which roughly coin-
cides with one turnover time).

Moving on to the horizontal and vertical counterparts of the ensemble spec-
tra, there is a clear distinction with respect to the general shape and slopes. For
instance, the horizontal spectra resembles in both aspects the 3D spectra, hav-
ing that concentration of spectra at large scales (there is less decay at the small-
est wavenumbers and more distance between spectra as k↔ gets larger) and a
somewhat similar slope. On the other hand the distinctive shape of the vertical
spectra, helps us to understand the anisotropy of this type of turbulence as
well, here the spacing between lines is similar across all vertical wavenumbers
at early times.

As discussed in chapter II, we can begin exploring the real consequences of
the addition of perturbations regarding predictability by referring to the error
spectra. Spectra of error KE are shown in figure III.6. We can observe how
the initial error is introduced by looking at the lightest spectra located at the
bottom-right of figure III.6. Keeping in mind that the error is introduced at
k ≥ 20, then the initial spectrum has naturally the shape of a step function.
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Moreover, the error grows hastily over all possible wavenumbers in a rather
explosive fashion. Right away, the error grows very high at large k, but it’s
relatively low for small wavenumbers. We can also see that the spectra develops
in a “self-similar” fashion, which alludes to the fact that it retains the same
shape as the error propagates towards larger scales. As discussed by Ngan et al.
(2009), the self-similar nature of the turbulence cascade of energy most likely
yields the self-similar behavior of the error spectra.

Figure III.6: 3D error kinetic energy spectra of Leto (1024) , the auxiliary arrows
are added to make emphasis on the time evolution direction of the spectra.
The spectra are plotted each 0.5 time units from 0.5 to 5.5, highlighting the
spectrum at t=0.5 with a different color.

Following the time evolution of the spectra, we can appreciate the emer-
gence of two distinctive regions due to their contrasting behavior. As it is
highlighted by the arrows in III.6: at large scales the error grows progressively
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(characterizing the famous inverse error cascade!), while at small scales, the
error saturates quickly and then decreases (mainly because of the decaying
nature of our experiment). Even though it is difficult to assign a clear separa-
tion between those regions, notice that there is an intermediate range of scales,
around k ∼ 10, where both components balance out. This intermediate scale
may be a function of the buoyancy Reynolds number and its meaning could
become relevant for further research.

Figure III.7: Horizontal and vertical error spectra for Leto (1024) . The spectra
are plotted each 0.5 time units from 0.5 to 5.5, highlighting the spectrum at
t=0.5 with a different color.

An interesting story unfolds when we decompose the error spectra in its hor-
izontal and vertical wavenumber components as shown in figure III.7. Start-
ing with the shape of the initial error spectrum, we have a line with positive
slope for the horizontal wavenumbers, while it is a constant for all the vertical
wavenumbers. This is a direct consequence of the geometry involved with the
error introduction. Remember that we have introduced random noise with a
constant amplitude for all wave vectors such that k ≥ 20 (i.e. filling the cube
in Fourier space with error outside the sphere of radius 20). In that way, if
we sweep through vertical wavenumbers, we would find the same amount of
error in each plane with exception of those planes that pass through the empty
sphere; however, the cross-section of the sphere space is negligible with respect
to the total amount of wavenumbers, the result is an almost constant distribu-
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tion for the initial error spectrum. Analogously, as we go to larger k↔ (now
with cylinders) the amount of error grows proportionally to the radius, having
as a result a linear initial horizontal spectrum. After the initial error introduc-
tion, we have two completely different stories. For the horizontal spectra, there
is a similar inverse cascade of error using the same arguments as in the isotropic
case. Whereas for the vertical spectra, the error grows uniformly and instan-
taneously to all possible vertical scales, and then it relaxes uniformly as well.
here is no visible inverse cascade of error for this case.

Figure III.8: 3D error ratio spectra of Leto (1024) . The dotted reference line is
a constant at R(k) = 2, which denotes the saturation value of the error ratio.
The spectra are plotted each 0.5 time units from 0.5 to 5.5, highlighting the
spectrum at t=0.5 with a different color.
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Lastly, we have the error ratio spectra presented in figures III.8 and III.9.
These figures complete the picture of predictability on stratified turbulence
due to their discernible and fathomable nature. Starting with the 3D case
(III.8), the error propagation towards larger scales is evident, as the spectra
move to smaller wavenumbers. In fact, we can appreciate that the error sat-
urates rather quickly for k ≳ 70, which means that for small scales there is
a (almost instantaneous) complete loss of predictability as both twin fields
present total decorrelation between each other. If we were dealing with forced
turbulence instead, it is likely that the error would have had the opportunity
to contaminate and saturate even larger scales.

Figure III.9: Horizontal and vertical error ratio spectra for Leto(1024). The
dotted line is the reference constant, which denotes the error saturation value.
The spectra are plotted each 0.5 time units from 0.5 to 5.5, highlighting the
spectrum at t=0.5 with a different color.

The horizontal and vertical decomposition of error ratio spectra neatly cor-
roborates the assertion of an inverse error cascade for the horizontal case, and
the lack of it for the vertical case. That is due to the fact that in the left panel of
figure III.9, we can notice the same type of self-similar and continuous growth
of error towards smaller horizontal wavenumbers, while in the right panel the
relative error grows just in the first couple of outputs, then it stabilizes and
remains practically the same for the subsequent times.
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For the vertical case, the error dynamics are mostly driven by the decaying
nature of turbulence instead. Even though the error dynamics are different,
we still observe error saturation for the small scales in both cases. Indeed, for
the horizontal ratio spectra the range of saturated wavenumbers is even wider
than in the three-dimensional case, beyondk↔ ∼ 30 there is full saturation of
error; whereas in the vertical ratio spectra, the saturation interval starts around
k↑ ∼ 80. These results are consistent with our stratified turbulence cartoon
of pancake blovs. If we think on the imposed layer organization of turbulence
due to the presence of the gravitational field, we would have expected the ver-
tical component to be more predictable, as the velocity fields are somewhat
restricted to freely evolve and reach higher values in the vertical direction. On
the other hand, the horizontal components of the velocity field enjoy more
sovereignty and, as a result, its error dynamics tend to be closer to the classi-
cal isotropic inverse cascade frame. We can argue that the overall amount of
predictability in the three-dimensional case is therefore the addition of the pre-
dictability contributions from the vertical and horizontal components, and
the balance between them.
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III .2 Predictability dependency on
buoyancy Reynolds number

Now that we are familiarized with the schematic methodology and analysis,
the next step is to present the main results of our study of predictability within
stratified turbulence. First, we exhibit four experiments with the same strat-
ification, keeping the buoyancy frequency at N = 10, while decreasing the
viscosity (and therefore increasing the resolution) in order to gradually increase
Re and Reb as displayed in table II.1. After discussing the associated results,
the next section gives a comparison between experiments with similar Reb ob-
tained with different stratification and viscosity. In that way, we can objectively
quantify the weight that the buoyancy Reynolds number has with respect to
the amount of predictability obtainable.

III .2 . 1 Different Reb with same stratification

Following the footprint traced in section III.1, we start by looking at the en-
semble energy spectra in figure III.10. Here, we can see that as the buoyancy
Reynolds number increases, from Jupiter (256) with Reb = 2.4 to Latona
(2048) with Reb = 35.5, the slope of the ensemble spectra gets shallower as
well. Otherwise, there is a similar behavior across the panels.

Figure III.10: Ensemble kinetic energy spectra of Jupiter (256) , Zeus (512) ,
Leto (1024) and Latona (2048) . The time progression is given by the color
gradient at each spectral line, from lighter to darker tones. The spectra are
plotted each 0.5 time units from 0.5 to 5.5. The reference slope is calculated at
the time of maximum dissipation for the unperturbed twin (which roughly
coincides with one turnover time) from k = 5 to k = kd.
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Next, we have the horizontal and vertical ensemble spectra in figures III.11
and III.121. Notice that the reference slopes for the horizontal spectra of the
experiments with high Reb tend to a value in close agreement with the Lind-
borg (2006) and Brethouwer et al. (2007) theoretical −5/3 slope for strongly
stratified turbulence. In fact, we can appreciate how this power law region
becomes better defined as the experiments present more stratification, with
Latona (2048) being the most recognizable case. However, we are unable to
corroborate the−3 slope for the vertical wavenumber distribution, this is con-
sistent to other studies like Maffioli and Davidson (2016).

Figure III.11: Horizontal kinetic energy spectra ensemble of Jupiter (256) , Zeus
(512) , Leto (1024) and Latona (2048) . The reference slope is calculated at
the time of maximum dissipation for the unperturbed twin (which roughly
coincides with one turnover time).

Regarding the predictability insight that these experiments can offer us, we
would beforehand expect all of them to exhibit an inevitable loss of predictabil-
ity. That is because they would fall into the third predictability category of
Lorenz (1969), which states that the error of flows with spectrum slope shal-
lower than−3 cannot be reduced no matter how small the initial error is taken.
At first sight, this premise could be further extended to the horizontal and
vertical ensemble spectra. However, there is a clear distinction between the
behavior of these last two. Keep in mind that numerous studies indicate the
existence of an energy cascade for the horizontal spectrum (Lindborg, 2006;
Brethouwer et al., 2007), whereas it is not the same case for the vertical scales.
Therefore, even though the vertical spectra present a shallow slope (compared

1Throughout this entire section, the vertical and horizontal spectra will be depicted in
grayscale to to distinguish them from the isotropic wavenumber spectra.
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Figure III.12: Vertical kinetic energy spectra ensemble of Jupiter (256) , Zeus
(512) , Leto (1024) and Latona (2048) . The reference slope is calculated at
the time of maximum dissipation for the unperturbed twin (which roughly
coincides with one turnover time).

to −3), this does not automatically implies the existence of an inverse cascade
of error as set out in Lorenz’s framework.

Next, we present the error (or difference) spectra in figure III.13 with its hor-
izontal and vertical counterparts in figures III.14 and III.15, respectively. We
identify the same shape preserving evolution as previously discussed in sec-
tion III.1. All of them present two distinguishing regions: one characterized
by the decaying nature where the error spectra progressively decrease and the
other characterized by the contamination of error towards larger scales. The
scale at which these two regions reach some kind of balance, moves modestly
towards larger wavenumbers as we change from experiment with higher buoy-
ancy Reynolds numbers, from k ∼ 7 in Jupiter (256) to k ∼ 12 in Latona
(2048) . This is certainly intriguing given that the range of wavenumbers in-
creases significantly at each subsequent experiment (consequence of increasing
the resolution while decreasing the viscosity to obtain higher Reb).

Furthermore, we can appreciate that the spectra get closer to each other
as Reb increases, particularly at the decaying region. Sharing a similar line of
thought with Morss et al. (2009), in flows with shallow spectral slope, small
scales initially experience a faster error growth rate until the perturbations grow
large enough that small-scale errors begin to saturate (i.e. the velocity fields
present total statistical decorrelation at those scales). After that, the large scales
start to take over the perturbation growth dynamics and, as a consequence,
the error growth rate slows down.
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Figure III.13: Error kinetic energy spectra of Jupiter (256) , Zeus (512) , Leto
(1024) and Latona (2048) . The spectra are plotted each 0.5 time units from
0.5 to 5.5.

Moving on to the horizontal and vertical error spectra decomposition, the
presented outcome clearly corroborates the existence of an inverse cascade of
error for the horizontal error spectra in figure III.14. There is a strong prop-
agation of error from the first spectral line to the second in all the iterations.
The strength of the inverse cascade of error can be examined by looking at
the amplitude of the final spectral distribution and compare it with the initial
spectrum (without forgetting that we are dealing with decaying turbulence).
Comparing the furthest cases, Jupiter (256) and Latona (2048) , the global
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Figure III.14: Horizontal error kinetic energy spectra of Jupiter (256) , Zeus
(512) , Leto (1024) and Latona (2048) .

maximum of the spectrum decreases as it shifts towards smaller k↔ for Jupiter
(256) . Whereas, in Latona (2048) , the global maximum of the final distribu-
tion is actually slightly greater than the initial one. This means that more error
energy is being transferred to the largest scales in a shorter period of time. The
propagation of error is different in figure III.15, instead of a local phenomenon,
there is a global propagation of error on the vertical error spectrum that spans
rapidly across all possible scales and then dwindles uniformly accordingly to
the decaying nature of the experiments. Here, the distance between spectra is
practically constant throughout every vertical scale.
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Figure III.15: Vertical error energy spectra of Jupiter (256) , Zeus (512) , Leto
(1024) and Latona (2048) .

We can complete the spectral analysis picture once we pass to the ratio en-
ergy distribution presented in figure III.16, as this diagnostic allows us to quan-
tify the growth of the relative error normalized by the amount of ensemble
kinetic energy. For this quantity, the effects of the buoyancy Reynolds number
are most contrasting, as we don’t see the exact same story unveiling through
the panels. At first glance, the Jupiter (256) behavior is notably different. That
is because the error at large wavenumbers has not been able to saturate as in the
case of Leto (1024) or even more evidently in the case of Latona (2048) . This
aspect is difficult to discern by looking at the ensemble spectra and error spectra
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on their own; however, with the ratio spectra we are able to observe the speed
at which a wide range of small scales end up decorrelated and the progression
of error contaminating neighbouring scales. Even though the relative amount
of saturated scales with respect to the total range of wavenumbers grows as
Reb increases, we can recognize that the region dominated mainly by decaying
error (which was unable to reach full saturation) is in 10 ≲ k ≲ 100 for
all the experiments. Likewise, we can appreciate how the relative error of the
largest scales (take k = 1 for example) gets gradually bigger. This break down
allow us to state that the stratified flows are less predictable as the buoyancy
Reynolds number increases.

Proceeding with the horizontal ratio spectra in figure III.17, the predictabil-
ity trend of the isotropic case is well preserved as expected. Starting with Jupiter
(256) , which does not exhibit any horizontal scale with error saturation, there
is still a backward propagation of error at small horizontal wavenumber. It
seems that the relative error tends to a rather linear distribution instead of a
self-similar curve as in the other experiments with higher Reb.

Moving on to the rest of the experiments, we still can see that there is a wider
range of saturated scales in comparison to the isotropic case. In fact, unlike the
three dimensional case of error ratio spectra, in figure III.17 the horizontal en-
ergy ratio spectra of all the experiments trace a continuous evolution towards
larger scales (as smaller scales become completely decorrelated) without any
visible decaying region. Besides that, all the experiments share qualitatively the
same behavior.

Finally, in figure III.18 we present the vertical relative error spectra. Here, as
Reb increases, the final spectrum seems to stay constant at large scales, with
a linear distribution for intermediate scales and it ends with the saturation
region. Even though the dissipative nature of turbulence plays a leading role
on predictability (or the loss of it to be more precise), we can observe that it
presents a stronger influence on the vertical scales than in the horizontal ones.
Notice that the saturation region is practically entirely defined in the second
spectral line, which corresponds to t = 1, or around half a turnover time after
the birth of the twins.

All of these results are a direct consequence of the characteristic anisotropy
presented in stratified flows. Let’s resume our discussion from section III.1,
regarding the extent of the saturation regions with respect to k, k↔ and k↑. In
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Figure III.16: Error ratio kinetic energy spectra of Jupiter (256) , Zeus (512) ,
Leto (1024) and Latona (2048) . The spectra are plotted each 0.5 time units
from 0.5 to 5.5.

the case of Latona (2048) , structures with k↔ ∼ 20 (where the error starts
to saturate) must be associated, because of anisotropy, to larger k↑ ∼ 60 in
order to reconcile the outcome of the isotropic wavenumber.

Lastly, we present the time series analysis, starting with figure III.19, which
displays the total error kinetic energy for each of the four experiments of this
section as a function of time. In that figure, we can observe how the spatial
average of the difference energy between fields increases at first and reaches a
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Figure III.17: Horizontal error ratio spectra of Jupiter (256) , Zeus (512) , Leto
(1024) and Latona (2048) . The spectra are plotted each 0.5 time units from
0.5 to 5.5.

global maximum. That is a straight consequence of the propagation and sat-
uration of error in general. Notice that the global maxima gets higher and is
reached at earlier times as the buoyancy Reynolds number increases. The am-
plitude increment may be attributed to the wider range of small scales (which
saturate faster) existing in the higher resolution experiments; nevertheless, we
have to acknowledge that this diagnostic only contains global information, so
there is likely a shared contribution across scales. Subsequently, the function
decreases as expected given the energy draining feature of decaying turbulence.
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Figure III.18: Vertical energy ratio spectra of Jupiter (256) , Zeus (512) , Leto
(1024) and Latona (2048) . The spectra are plotted each 0.5 time units from
0.5 to 5.5.

One important thing to remember looking back at the spectral analysis is
that we have a wider range of wavenumbers as simulations grow in resolu-
tion (as a result of decreasing the viscosity to increase the Reynolds number),
which can represent an inconvenience when trying to directly compare them
by eye. For that reason we have in figure III.20 the time series of the relative
error rK(t) at three different scales shared by all experiments which gives us
a more detailed picture of what is happening at a local scope. For instance, at
the smallest wavenumber k = 1, r1(t) just exhibits a steady growth, as the
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Figure III.19: Total kinetic energy error time series for Jupiter (256) , Zeus (512),
Leto (1024) and Latona (2048) .

cumulative result of the backwards error propagation to the largest scales. At
k = 10, after the initial surge of relative error, we see that the growth of the
error ratio stagnate across all the experiments, resulting in a concave function.
Going back to figure III.16, it is around this scale where we were able to identify
the fore mentioned balance scale. The similar shape, but different amplitude
between the cases is remarkable, as they present consistent local error dynamics
apparently modulated by the amount of total error.

Figure III.20: Relative kinetic energy error as a function of time at a fixed
wavenumber for Jupiter (256) , Zeus (512), Leto (1024) and Latona (2048) .
From left to right, k ∈ {1, 10, 60}.
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Finally, at k = 60 the error ratio immediately reaches values close to satura-
tion followed by a progressive decrease after approximately one turn-over time.
It is important to notice that there is a considerable jump in the behavior of
the functions as we go from Zeus (512) to Leto (1024) across the last two panels.
On the other hand, it is remarkable how close Leto (1024) and Latona (2048)
functions are to one another, even though there is a significant difference in
their buoyancy Reynolds numbers and in their total error.

In conclusion, Figure III.20 is an excellent visual summary of the three dis-
tinctive regions presented throughout the experiments.

Figure III.21: Isotropic, horizontal and vertical error wave front for Zeus (512),
Leto (1024) and Latona (2048) . The reference line is a linear fit of Leto (1024).

At the end of this section, we turn our attention to the cross-over wavenum-
ber or error wavefront in figure III.21, that is the scale at which the error ratio
reaches a certain threshold as it propagates towards larger scales. Given that
Jupiter (256) is not able to exhibit the full development of an inverse cascade,
we only display the diagnostic on Zeus (512) , Leto (1024) and Latona (2048).
Both the isotropic and horizontal wavefronts present a negative power law
progression with κe(t) ∼ t−1, in close agreement with previous studies such
as Leith and Kraichnan (1972) and Chollet and Métais (1989). There is no
similar behavior for the vertical wavenumbers as the error propagation perish
rapidly, which we would expect as there is no inverse cascade of error in vertical
wavenumber. Despite having a similar behavior, we can observe how there is a
stronger backwards propagation of error for k↔ inasmuch as having a steeper
slope in comparison with the isotropic wavefront. In fact, the horizontal wave-
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front posses a slope closer to the stationary isotropic turbulence studied by
Métais and Lesieur (1986) than their decaying case, which could be a direct
consequence of the anisotropy of our experiments. We can appreciate that
both Leto (1024) and Latona (2048) present a faster propagation compared
with Zeus (512) , this mirror our previous discussion indicating that there may
exist a phenomenological jump from Zeus (512) to Leto (1024) .
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III .2 .2 Similar Reb with different
stratification.

In order to have an adequate evaluation of the dependence of the predictabil-
ity of the stratified turbulence on the buoyancy Reynolds number, it is neces-
sary to compare experiments with similar Reb obtained alternatively through
different parameters. One way to handle this is to change the amount of strat-
ification by changing the buoyancy frequency while maintaining the same
viscosity for experiments with same resolution. For this section, we took as
base the cases of Zeus (512) and Leto (1024) and only modified their respec-
tive buoyancy frequencies to obtain Suez (512) and Otel (1024) . Notice that
experiments with the same resolution also share the same Reynolds number.
As shown in table II.1, Zeus (512) and Otel (1024) have a comparable buoyancy
Reynolds number of Reb ∼ 4, while Leto (1024) and Suez (512) feature a
Reb ∼ 11.5.

For this part, instead of showing the ensemble and error spectra, we will
focus on the relative error spectra as it neatly summarizes the information of
the previous two. Starting with the isotropic wavenumber spectra, in figure
III.22 the error ratio of the aforementioned experiments is exhibited. Even
though all the experiments share a similar behavior, there are certain differences
that are worth noticing. For example, if we centre our attention on the error
saturation, at first sight we can appreciate that experiments with higher Re

present a wider range of error saturation. However, we have to remember that
they have a wider range of available scales. In fact if we calculate the lowest
wavenumber at which there is full saturation of error, i.e. the first wavenumber
ks such thatR(ks, t) = 2, we obtain that Zeus (512) hasks = 177, Otel (1024)
has ks = 217, Suez (512) has ks = 158 and Leto (1024) has ks = 126. Which
indicates that experiments with similar buoyancy Reynolds are closer with
respect to this parameter. Therefore, we still obtain that highReb experiments
present less predictability altogether. We can analyse the strength of the inverse
error cascade by focusing on the impact of the relative error over the large scales
(from k = 1 to k = 10). There is a striking disparity between Otel (1024)
and Zeus (512) as the former one differs from the later in almost an order of
magnitude. As it is difficult to evaluate the cascade by looking at the spectra, we
need to rely on the later displayed time series analysis in order to make further
observations.
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Furthermore, an interesting remark is that Suez (512) presents a slower prop-
agation of error, which we can see when we compare the space between the
first two spectra. In most of the cases the error expands rather quickly and
saturates the smallest scales from t = 0.5 to t = 1. Suez (512) , in contrast,
takes a little longer, which may be a consequence of having less stratification.

Figure III.22: Error ratio kinetic energy spectra of Zeus (512,Reb = 4.6), Otel
(1024, Reb = 4.1), Suez (512, Reb = 11.4), Leto (1024, Reb = 12.1). The
spectra are plotted each 0.5 time units from 0.5 to 5.5.

We present the horizontal error ratio spectra in figure III.23. Qualitatively,
the experiments with the same Re possess more resemblance than the ones
with similarReb. For instance, there is an accentuated concentration of spectra
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at k = 1 in both Zeus (512) and Suez (512) . Likewise, the range of saturated
wavenumbers is wider for Leto (1024) and Otel (1024) , starting at k↔s = 42

and k↔s = 51 respectively, while Suez (512) starts at k↔s = 68 and Zeus
(512) at k↔s = 86. A similar story unfolds with the vertical ratio spectra

Figure III.23: Horizontal error ratio kinetic energy spectra of Zeus (512) , Otel
(1024) , Suez (512) and Leto (1024) . The spectra are plotted each 0.5 time units
from 0.5 to 5.5.

(not shown), the spectral evolution of R(k↑) error is qualitatively unchanged,
though the predictability loss is delayed in the case of Suez (512) as well.

Next, we pass to the time series analysis starting with figure III.24. Here, as
most of the kinetic energy error is concentrated at large k, the initial growth,
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up to the maximum, is due to rapid error saturation at the smallest scales. In
section III.2 we concluded that experiments with higher Reb present a wider
range of small scales and, with so, the amplitude of their associated total error
grows proportionally.

Figure III.24: Total (kinetic energy) error time series for Zeus (512) , Suez (516),
Leto (1024) and Otel (1024) .

Having said that, notice that neither Otel (1024) and Leto (1024) nor Zeus
(512) and Suez (512) present the same total error maxima. This fact suggests
that viscosity plays a significant role in the global error dynamics, since at a
fixed Reb, simulations with larger Re have greater total kinetic energy error.
Moreover, Suez (512) reaches its maximum error at a later time than the others,
possibly because it has a higher Froude number.

Moving on to the local diagnostics, in figures III.25 and III.26 we display the
relative error at a given isotropic and horizontal wavenumber. The selected
wavenumbers are representative of small, intermediate and large scale error
dynamics. At k = 1, where we arguably have at the initial times a positive
power law behavior, Otel (1024) exhibits a faster growth, while Suez (512) and
Leto (1024) share a closer evolution compared to Zeus (512) . At k = 10, the
relative error of both Suez (512) and Otel (1024) have a comparable distance
to both Zeus (512) and Leto (1024) . At k = 60, which is a good reference
of the small scale dynamics that saturate and then relaxes as the turbulence
decays, the experiments with similar Reb show greater congruence in their
overall development than the ones with same Reynolds number.
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Figure III.25: Relative kinetic energy error as a function of time at a fixed
wavenumber for Zeus (512) , Suez (512) , Leto (1024) and Otel (1024). From left
to right, k ∈ {1, 10, 60}.

Now, atk↔ = 1 in figure III.26, there is a clear resemblance between the ex-
periments with the sameRe: Suez (512) and Zeus (512) present the same modest
rate of change, while Otel (1024) and Leto (1024) have a stronger relative error
increment. However, at k↔ = 10 the ratio error of the experiments unfolds
on par with the isotropic case at k = 10, where there is no clear distinction as
to whether Reb or Re play a more critical role in error dynamics.

Figure III.26: Relative kinetic energy error as a function of time at a fixed
horizontal wavenumber for Zeus (512) , Suez (512) , Leto (1024) and Otel (1024).
From left to right, k↔ ∈ {1, 10, 60}.
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At k↔ = 60 all the experiments are in the near saturation range with Leto
(1024) and Otel (1024) displaying closer values with respect to each other. No-
tice that Leto (1024) presents the highest values in every single panel of III.25
and III.26 with the exception of k = 1, becoming in this way the experiment
with less predictability. On the other hand, Zeus (512) is consistently the exper-
iment with the highest predictability having the least amount of relative error
throughout these comparisons. In summary, at a fixed Re, increasing Reb via
a decrease in stratification results on reduced predictability. Likewise at a fixed
Reb, increasing Re (and decreasing the Froude number) we end up with less
predictability as well.

Finally, we have the three dimensional and horizontal error wave front in
figure III.27. As expected, Otel (1024) and Suez (512) continue the trend of pre-
vious experiments having a negative power law as the rate of error propagation
towards larger scales. In both panels, Leto (1024) and Otel (1024) present a
slightly steeper slope, which translates into faster error propagation. The error
wave front at earlier times differs to its behavior in later times. For example, at
the beginning Suez (512) seems to be above all the other graphs, later on Zeus
(512) takes that place, which is related with slower rate of error contamination
and, consequently, with more predictability.

Figure III.27: Isotropic and horizontal error wave front for Zeus (512), Suez
(512) , Leto (1024) and Otel (1024) . The reference line is a linear fit of Leto
(1024).
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III . 3 Error introduction

Up to this point, a number of fair questions may have arisen in the reader’s
mind while avidly perusing the above results and their range of validity under
different conditions. In particular, it is a valid concern to wonder how exactly
the specific choice of noise addition may influence the final outcome of the numer-
ical experiments? In any predictability study, the implications of this issue are
crucial, as they provide robustness and generality to the results. This final sec-
tion is concerned with dissecting that question and providing a reply to some
of the natural inquiries related with error introduction. For instance, all the
experiments in section III.2 have shared the same wavenumber error cutoff at
kc = 20, while changing the amplitude of the random perturbations accord-
ingly so that all experiments roughly share the same amount of initial error.
In the stratified turbulence realm this could have great significance given the
existence of a transitional scale such as the Ozmidov wavenumber. It may be
the case that the error dynamics present some kind of conversion if the cutoff
wavenumber is placed behind or ahead of that threshold.

III . 3 . 1 Wavenumber cutoff dependency

Let’s start exploring the sensitivity of the predictability results with respect
to the wavenumber cutoff selection. Our approach is fairly simple, taking the
base experiment, Leto (1024) , and selecting a different cutoff wavenumber
kc ∈ {20, 40, 60, 80}2, while still keeping the same amount of total initial
error and the same fluid variables such as stratification, viscosity, etc. In figure
III.28 we have the error spectra using the aforementioned cutoff wavenumbers.
At a first sight, the reader may be wondering if his/her eyes are seeing the exact
same figure repeated across the panels. However, we can appreciate how the
initial error spectrum (accentuated in a different color) effectively distinguishes
each experiment. Note that the characteristic step function changes in height
as a mere consequence of the condition of having the same total initial error.
Besides that initial spectral line, the strong resemblance of the following spectra
is uncanny. This fact lead us to figure III.29, which shows the error ratio spectra.
Instead, we obtain an identical story, the highlighted initial spectra in III.29 is

2An important remark is that we keep the same unperturbed twin (Apollo) for all the
following experiments, and we just run modified versions of Artemis.
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Figure III.28: Error energy spectra of the modified Leto (1024) experiment
with cutoff wavenumbers at k = 20, 40, 60, 80. The initial error spectrum is
highlighted in blue.

the only distinctively different and the rest of the spectra are virtually the same.
We have omitted the horizontal and vertical decomposition of the error and
ratio spectra, as the nearly indistinguishable tendency continues within the
spectral analysis of this quantities as well. Conversely, it is worth remembering
that the Ozmidov wavenumber for these experiments takes a value ofkO = 50

and there is no discernible change at either of the spectral diagnostics when
we sweep the cutoff wavenumber through that value.
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Figure III.29: Ratio energy spectra of the modified Leto (1024) experiment
with cutoff wavenumbers at k = 20, 40, 60, 80. The initial ratio spectrum is
highlighted in blue.
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Moving on, in figure III.30 we present the total error and error wavefront
time series. As the figures almost speak for themselves, the total error of each
experiments ends up being identical again, as is the case with the error wave-
front. This is quite remarkable, as they provide the conclusion that both on
the local and global scale, the experiments undeniably share the same error
propagation characteristics.

Figure III.30: Time series of the total error and error wavefront for the modi-
fied Leto (1024) experiment with cutoff wavenumbers at k = 20, 40, 60, 80.

The overall conclusion is straightforward: there is no correlation or depen-
dency whatsoever between the studied range of cutoff wavenumbers and the
final outcome of the experiments. One is definitely tempted to push a little fur-
ther the studied range, insomuch as to know what would be the consequences
of inserting the perturbations at the region mostly characterized by the inverse
cascade of error (setting kc ∼ 10 for instance).
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III . 3 .2 Geometrical implications: Cylinder v.
Sphere

Another legitimate question corresponds to the geometrical nature of the er-
ror introduction. Our numerical experiments add random noise with a pre-
established amplitude for all wavenumbers beyond the cutoff wavenumber
(kc). This means that we are uniformly adding random perturbations to the
velocity field at each grid-point of our cubic Fourier domain outside the sphere
of radius kc, which is reasonable given the isotropic initial conditions but
presents a clear asymmetry when dealing with stratified turbulence. Now, it
is natural to ponder whether this geometry can expressively alter the amount
of error that is injected into each level of what would later become the layered
structure. This inquiry leads us to present another modification to our base
case, changing the geometry of the error introduction from the complement
of a sphere, to the complement of a cylinder while modifying the noise ampli-
tude in order to keep the same total initial error as our reference experiment.
In that way, all the horizontal planes in the wave vector domain are supplied
with approximately the same amount of initial error.

Figure III.31: Error energy spectra of Leto (1024) with spherical and cylindrical
complement error addition. The initial error spectrum is highlighted in blue.

The error energy spectra presented in figure III.31 shows us the first compari-
son between the spherical and cylindrical complement error introduction. Sim-
ilarly to the case of the modified cutoff wavenumbers in subsection III.3.1, we
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see that the spectra maintain almost identical similarity at all times except the
initial error spectrum. As highlighted in blue, the initial spectrum of the cylin-
drical case presents a smoother step function but notice that both curves visibly
encapsulate a similar area. In figure III.32 we have the horizontal wavenumber

Figure III.32: Horizontal error energy spectra of Leto (1024) with spherical
and cylindrical complement error addition. The initial error spectrum is high-
lighted in black.

spectra of error energy, which effectively shows that there is a uniform amount
of initial error insertion at each horizontal plane. In the spherical case we have
a continuous and linear initial spectrum as discussed in section III.1, while in
the cylindrical case we observe a step function as there is no error contribution
at any k↔ < 20. Regardless, we obtain a similar result in every subsequent
spectrum. For the vertical error spectra, even the initial spectrum is indistin-
guishable. The ratio error spectra were calculated accordingly, but they are
not displayed due to its inability to add something different to this discussion.
We still present III.33 to complete the picture that both at the local and global
scales, the experiments present the same error growth characteristics. There is
no visible dependence on the geometry of the error introduction both on the
total error time series nor in the error wavefront.
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Figure III.33: Total error and error wavefront time series of Leto (1024) with
spherical and cylindrical complement error addition.

In summary, the overall results presented in this section strongly suggest that
the total amount of error likely carries a more significant weight in the error
dynamics compared to the geometrical implications of error introduction and
wavenumber cutoff.
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Chapter IV

Conclusions

Predictability studies have been built upon Lorenz’s original
scheme since its conception and they have been developed to analyse

predictability on a wide variety of fluid systems. Such a framework establishes
that there are certain systems that posses an intrinsic range of predictability
which cannot be further extended by reducing the initial error of observation.
In those cases, errors at the smallest scales of motion lead to a progressive er-
ror propagation toward larger scales in what it is commonly referred to as
an inverse cascade of error. The existence of this inverse cascade is closely re-
lated with the slope of the kinetic energy spectrum exhibited by the system.
Now, given the natural anisotropy of stratified turbulence and its characteris-
tic to present different slopes for the isotropic and horizontal kinetic energy
spectrum at different buoyancy Reynolds numbers, there is an opportunity to
expand the classical predictability picture to this particular type of turbulence.

Near-identical twin simulations were carried to study in detail the effects of
the buoyancy Reynolds number on the predictability of decaying stratified tur-
bulence. Our simulations qualitatively display the vortical layered structures
(pancake blovs) associated with stratified turbulence. Similarly, we have been
able to show that the energy spectra in such systems, appear to be approaching
k
−5/3
↔ as Reb increases while analysing the slope of the ensemble spectrum

at the time of maximum dissipation. The horizontal ensemble spectrum ar-
guably presents as well a power law cascade of kinetic energy, which does not
occur in the case of vertical wavenumbers.
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Moving on to predictability diagnostics, we were able to determine the ex-
istence of an inverse cascade of error on both the isotropic and horizontal
wavenumbers with the analysis of the error kinetic energy spectra. Both of
these cases present two characteristic regions: at large physical scales the error
spectrum development is dominated by the inverse cascade of error, while at
intermediate scales the decaying nature of the system takes a major role. We
postulated the existence of a particular scale which denotes the balance be-
tween both regions and whose location barely changes with respect to Reb.

Furthermore, we qualitatively corroborated the self-similar evolution of the
error spectra. Without a doubt the self-similar nature of the energy cascade
yields a self-similar error spectra. However there is a clear distinction between
the local error dynamics on the vertical scales. For this case, the error is propa-
gated uniformly across all possible scales without the existence of a local (and
gradual) contamination of error towards larger scales.

The error ratio spectra shows another striking feature within the predictabil-
ity frame, which is the range of wavenumbers with error saturation (with
complete decorrelation between velocity fields). This feature is shared for the
isotropic, horizontal and vertical spectra regardless of the existence of the in-
verse cascade of error and extends to a wider range of scales as we increase the
buoyancy Reynolds number. At the smallest k there is an exponential growth
of error.

We can quantify the scale at which the error is propagating via the error
wavefront. This diagnostic showed that both the isotropic and horizontal
wavefronts presented a negative power law progression κe(t) ∼ t−1, in close
agreement with previous scaling studies. Likewise, experiments with higher
Reb displayed faster rate of error propagation. The overall conclusion of the ex-
periments with same stratification is that predictability is reduced with respect
to higher buoyancy Reynolds number.

Moving on to the section with similar Reb with different stratification, we
observed thatRe also plays a significant role in predictability of stratified flows.
Some key diagnostics tip the balance towards Re being a more significant
parameter as simulations with same Re have a closer resemblance both in the
isotropic and horizontal ratio spectra. Nonetheless, our results suggest that
the predictability picture is more complex. There is a multi-factor dependency
which cannot be restricted solely to the buoyancy Reynolds number or to
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Re by itself. As a general conclusion for this part, we obtained that at a fixed
Re, increasing Reb via a reduction on the stratification results in reduced
predictability. On the other hand at a fixed Reb, increasing Re and increasing
the stratification ended up with less associated predictability as well.

A noteworthy result was the repeated independence that presented the ex-
perimental outcomes with respect to the diversification of error introduction.
We noted how the behavior of the system and its error dynamics are impervi-
ous to changing the cutoff wavenumber at which the error is introduced when
the initial error kinetic energy is the same. An important remark is that this
type of error introduction could be considered a bit artificial, as in closer to
real life scenarios, the addition of error from observations is shared throughout
all the spectrum and the amplitude of such perturbation may not be uniform
as well.

Moreover, there were no discernible changes on the results of the exper-
iments when we modify the geometry of said error introduction from the
domain complement of a sphere to the domain complement of a cylinder.
The propagation of error stayed the same at both local and global diagnostics.
These results point to the fact that the total amount of initial error possess
greater importance than the explored caveats of error introduction.

Some of the considerations that may be worth pursuing for future work in
this particular line of research would be:

• To extend the same scheme to forced stratified turbulence in order to
further analyse the effects of the buoyancy Reynolds number under
stationary conditions. This would remove the decay phase and allow us
to ultimately achieve saturation of error at the largest scales.

• To explore different regimes of stratification with a fixed Re, in that
way we can broaden the conclusions of predictability dependency with
respect to Re and Reb

• To consider more variants of errors introduction such as anisotropical
perturbations or addition of colored noise. For instance, the application
of Ornstein–Uhlenbeck process as perturbations to the velocity fields
could exhibit interesting and more realistic implications.
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