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Abstract

The impact of software vulnerabilities on daily-used software systems is alarming. De-
spite numerous proposed deep learning-based models to automate vulnerability detection,
the detection of software vulnerabilities remains a significant issue. While some techniques
report high precision/recall scores of up to 99%, our experience leads us to believe that
these models may underperform in realistic settings, specifically when evaluating vulnera-
bility detection models on the entire source code repository of a project.

Therefore, in this thesis, we create a more comprehensive vulnerability detection dataset
(i.e., Comp-Vul), which aims to accurately represent the realistic settings where vulnera-
bility detection models are deployed. Then, we evaluate the performance of two state-of-
the-art deep learning-based models, LineVul and DeepWukong, on the Comp-Vul dataset.
Our results show that the performance of both models drops drastically, with precision
dropping by 86% - 95% and F1 score dropping by 88% - 91%. Our further investigation
shows that the ratio of vulnerable to non-vulnerable samples in the evaluation dataset
significantly impacts the performance metrics of these models. When we visualize the
embeddings produced by the models, we find that there is a substantial overlap between
vulnerable and non-vulnerable samples. This shows that these models have difficulty dis-
tinguishing between vulnerable and non-vulnerable samples in the Comp-Vul dataset,
resulting in a high number of false positives. We introduce a new program slice-level vul-
nerability detection technique named Slice Vul, which leverages the powerful capabilities
of Transformers and incorporates the semantic properties of source code programs such as
data and control flow information. Our approach outperforms the existing state-of-the-art
program slice-level vulnerability detection model, DeepWukong, when evaluated on the
Comp-Vul dataset. Our study argues that accurately identifying vulnerabilities using deep
learning remains a challenging task that requires improved approaches to model evalua-
tion and design. Further research and development, complemented by realistic evaluation
datasets, is required to enhance the performance of these methods.
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Chapter 1

Introduction

Software vulnerabilities have become a significant security concern due to the increasing
complexity of software and the widespread use of open-source software and third-party
components. Identifying and addressing vulnerabilities in complex systems with multiple
interconnected components can be a challenging task, making a comprehensive and sys-
tematic approach necessary. In recent years, machine learning models based on deep neural
networks (DNNs) have shown significant promise in identifying software vulnerabilities au-
tomatically. However, the reliability of these models in detecting vulnerabilities in the real
world depends on the evaluation methodology and dataset. Biases that can affect model
performance can arise from various sources, such as the way data is generated and labeled.
The generalizability of a model may be limited if the dataset contains implicit biases. For
instance, synthetic datasets such as SARD! are created through automated techniques like
fuzzing or genetic algorithms and are extensively used to evaluate the effectiveness of deep
learning models in detecting software vulnerabilities [7, 64, 38]. Despite the existence of
real-world datasets (e.g., Devign [67], Big-Vul [13], and REVFEAL [3]), these datasets only
include vulnerable and non-vulnerable samples extracted from vulnerability-related com-
mits and represent a limited subset of the project code. The use of such datasets can limit
the generalizability of the models when deployed in real-world systems.

Therefore, it is crucial to evaluate deep learning models using realistic and represen-
tative datasets to provide a more accurate evaluation of their effectiveness in detecting
vulnerabilities. In this thesis, we create Comp-Vul, a new vulnerability detection dataset
that aims to accurately depict the realistic settings in which vulnerability models would

Thttps://samate.nist.gov/SARD



be used. Our Comp-Vul dataset differs greatly from other existing datasets in that it
includes the entire project source code representing a realistic setting. In a realistic set-
ting, vulnerability detection models are used to scan the whole project repository to find
vulnerabilities.

To demonstrate the performance of deep learning models on the realistic dataset (i.e.,
the Comp-Vul dataset), we evaluate two state-of-the-art models (i.e., DeepWukong [7] and
LineVul [18]). Initially, we train and evaluate these models using their original datasets,
i.e., the SARD! and Big-Vul datasets [13], respectively. The models achieve notably high
precision (87% - 96%) and F1 (90% - 93%) scores. However, when we evaluate these models
using the Comp-Vul dataset, we surprisingly observe a substantial drop in performance,
with precision dropping by 86% - 95% and F1 scores dropping by 88% - 91%.

We perform further analysis to understand why these models produce a large number
of false positives when evaluated on the Comp-Vul dataset. Our analysis shows that the
ratio of vulnerable to non-vulnerable samples in the evaluation dataset greatly impacts
the performance metrics of these models, especially the precision and F1 scores. As the
ratio increased, the performance of these models decreased accordingly. When we visualize
the embeddings generated by these models for the vulnerable and non-vulnerable samples
in a two-dimensional space, we find that these models have difficulty in creating a clear
distinction between the two classes, leading to incorrect identification of vulnerabilities.
For example, models like LineVul, which primarily rely on lexical relationships between
tokens, face challenges in accurately modeling the intricate nature of vulnerabilities in
real-world software, leading to a high number of false positives.

We also propose a new Deep Learning-based program slice-level vulnerability tech-
nique called Slice Vul that integrates the strengths of Transformers and the semantic prop-
erties(data and control flow information) of source code programs to classify whether a
program slice is vulnerable or not. The accuracy, precision, recall, and F'1 scores of Slice-
Vul are up by 10%, 9%, 18%, and 15%, respectively, compared to DeepWukong when
evaluated using the Comp-Vul dataset.

In summary, the main contributions of this thesis are the following:

e We introduce a new realistic vulnerability detection dataset called Comp-Vul, which
can be used by the research community to evaluate and build vulnerability detection
models more effectively.

e We evaluate the performance of two latest state-of-the-art vulnerability detection
models on the Comp-Vul dataset and find a substantial decrease in the performance
of these models compared to their original performance.



e We propose a new Deep Learning-based technique called Slice Vul, that outperforms
DeepWukong, a state-of-the-art slice-level vulnerability detection model.

e To advance experimental and modeling approaches for vulnerability detection, we
release our Comp-Vul dataset along with the scripts used for the experiments to the
public.?

Thesis organization. The rest of the thesis is organized as follows: Chapter 2 describes
the limitation of existing datasets. Chapter 3 discusses previous studies related to our
work. We describe the datasets, the models used in the study, and the Research Questions
(RQs) in Chapter 4. In Chapter 5, we present the results of each RQ. Furthermore, we
discuss the key reasons for the results in Chapter 6. In Chapter 7, we identify potential
threats to the validity of our findings. Finally, in Chapter 8, we conclude the thesis and
describe potential future works.

Zhttps://git.uwaterloo.ca/kkarumug/evaluating-deep-learning-based-vulnerability-detection-models-
on-realistic-datasets



Chapter 2

Limitations of Existing Datasets

As software systems become more complex and larger, the potential for vulnerabilities also
increases. Therefore, it is crucial to have tools to discover and address these vulnerabilities.
Generally, machine learning models have proven to be effective in understanding code and
detecting vulnerabilities. However, obtaining and evaluating large datasets is challenging.
Despite extensive research on vulnerability detection, there is a shortage of high-quality,
real-world datasets in the field. Existing studies have relied on self-created datasets, which
are often based on various criteria and may not reflect reality accurately. These datasets
can be classified into three categories: Synthetic, Oracle-based, and Real-world Datasets.
Next, we discuss the limitations of these datasets and the need for a realistic dataset to
evaluate the effectiveness of deep learning models in vulnerability detection.

Synthetic datasets, such as SARD!, created through automated methods like fuzzing
or genetic algorithms, are widely used to assess and measure the efficacy of deep learning
models in detecting software vulnerabilities. Although synthetic datasets can facilitate the
swift production of numerous test cases, they are not without shortcomings in comparison
to real-world datasets. Synthetic datasets may lack the precision and diversity of real-world
datasets, rendering them less relevant. Additionally, synthetic vulnerabilities often possess
lower levels of intricacy than their real-world counterparts, which can lead to deep learning
models trained on synthetic datasets underperforming on real-world data.

Oracle-based datasets, unlike synthetic datasets, rely on third-party sources such as
static analysis tools to provide labels for collected data samples. Although they offer more
complexity than synthetic datasets, they may not fully represent real-world vulnerabilities

Thttps://samate.nist.gov/SARD



due to oversimplifications and isolations. The accuracy of the labeling source heavily
influences the dataset’s reliability, and incorrect labeling can lead to inaccurate results
when training a deep learning model. Prior works (e.g., Scandariato et al. [52] and Zheng
et al. [65]) used datasets generated using tools like the Fortify Static Code Analyzer and
Infer. However, using these datasets to build a real-world vulnerability detection model
may be problematic due to the potential for inaccurate labeling.

Real-world datasets for vulnerability detection, such as those used in Devign [67], Big-
Vul [13], and REVEAL [3], are more diverse than synthetic or Oracle-based datasets,
which are generated using the data available in issue-tracking systems and source code
repositories. These datasets contain only a small set of vulnerable and non-vulnerable
functions extracted from vulnerability-related commits. However, they have limitations
because they do not fully represent the realistic setting where the entire source code of
a project would typically be scanned, which is the scenario in which the vulnerability
detection models would be utilized in practical applications. Furthermore, the distribution
of vulnerable and non-vulnerable samples in the Devign dataset [(7] is not reflective of the
actual prevalence of vulnerable code in the real world. As the dataset contains an almost
equal number of vulnerable and non-vulnerable samples, it does not accurately represent
the real-world scenario where vulnerable code is relatively rare compared to non-vulnerable
code.

Deep learning models (e.g., [3, 18, 7, 37, (7]) evaluated using these datasets may not
reflect the real-world setting on how the model would be used. In a realistic setting, a de-
veloper would use the vulnerability detection model to scan the complete real-world source
code repository to identify vulnerabilities. Therefore, it is necessary to evaluate models on
whole source code repositories of several real-world projects to accurately assess their per-
formance. Evaluating models in a controlled or simulated environment may provide overly
optimistic misleading results, as real-world data is often more complex and varied than
simulated or controlled data, and models may not generalize well to new or unexpected
situations. Hence, realistic evaluation settings can provide a more accurate assessment of
a model’s performance by taking into account the complexity and variability of the data
that the model will encounter in practice.



Chapter 3

Related Works

In this chapter, we discuss the related works and reflect on how they compare with ours.
The works most related to our study fall into two main categories: 1) studies on vulnera-
bility detection datasets, and 2) studies on vulnerability detection techniques.

3.1 Vulnerability detection datasets

Grahn and Zhang [19] collected different existing C/C++ vulnerabiltiy datasets (e.g., Big-
Vaul [13], Draper VDISC [51]) and analyzed the representativity and duplicativeness of these
datasets. They showed that some of these datasets have limited usefulness for machine
learning-assisted vulnerability detection. They proposed a new dataset called Wild C' that
contains 10.3 million C/C++ files from numerous open-source projects. Grahn and Zhang
[19] listed down comment prediction, function name recommendation, code completion, and
variable name recommendation as the potential use cases for this dataset. The drawback of
this dataset is that they provide file-level data samples without any labels associated with
each file. Since it does not contain any labels for the collected files, it may not be useful for
building vulnerability detection classification models. This is because these models require
labels for each sample to learn the vulnerability patterns accurately. Our Comp-Vul dataset
contains the complete source code of the project along with vulnerable/non-vulnerable
labels for each sample.

The Big-Vul dataset [13] is a collection of C/C++ functions from 348 open-source
GitHub projects spanning from 2002 to 2019, containing 91 different Common Weakness



Enumerations (CWEs). The dataset comprises a total of 188,636 C/C++ functions, of
which 10,900 have been manually verified as vulnerable, and 177,736 are verified as non-
vulnerable. It has been widely used in several security vulnerability detection studies [35,

, 18, 6]. Tt is worth noting that the Big-Vul dataset only includes vulnerable and non-
vulnerable functions that have been extracted from vulnerability fixing commits [13]. As
a result, this dataset does not capture all functions within a project, and the dataset may
not represent the entire codebase. We build a more comprehensive realistic dataset called
Comp-Vul dataset on top of the Big-Vul dataset. Our Comp-Vul dataset differs from Big-
Vul dataset in that it includes all the source code for each of the top ten real-world projects
by vulnerability counts in the Big-Vul dataset. This comprehensive approach provides a
much more accurate representation of a realistic vulnerability detection setting, which is
essential for training and evaluating vulnerability detection models.

3.2 Studies on vulnerability detection techniques.

Coverity !, Fortify 2, Flawfinder *, RATS 4, and Checkmarx ° are some of the conventional
static program analyzers for examining big software systems. These techniques rely largely
on traditional static analysis theories such as data flow, abstract interpretation, and taint
analysis and require human experts to create effective detection criteria. They have ef-
ficiently identified well-defined low-level problems, such as memory issues. But when it
comes to detecting high-level vulnerabilities, they frequently suffer from a large number of
false positives and false negatives.

There are several works on discovering vulnerabilities statically using code similarity
analysis [16], [25], [27]. In most cases, code similarity analysis converts each code fragment
into an abstract representation and then computes the similarity between two abstractions.
They establish a similarity threshold and deem the target code susceptible if the similarity
between the target code fragment and the vulnerable ones exceeds the threshold. However,
these systems need the use of human specialists to identify characteristics in order to apply
appropriate code similarity algorithms for various sorts of vulnerabilities [19].

Several studies explored the effectiveness of traditional machine learning techniques [11,
, 64]. Neuhaus and Zimmermann [/1] investigated the prevalence of software vulnera-

thttps:/ /scan.coverity.com/

2https://www.hpfod.com

3https://dwheeler.com /flawfinder/
4https://code.google.com/archive/p/ rough-auditing-tool-for-security/
Shttps://www.checkmarx.com



bilities in Red Hat packages using Support Vector Machines (SVM) [22]. The study an-
alyzed the defect data from over 3,241 Red Hat packages and evaluates the effectiveness
of SVM in identifying vulnerabilities in software packages. Zheng et al. [64] examined
the effectiveness of different machine learning techniques, like Decision Tree [17], Random
Forests [1], k-nearest neighbors (KNN) [15], and SVM, in detecting software vulnerabil-
ities. The results of the study provided insights into the strengths and weaknesses of
different machine learning techniques for vulnerability detection. Yan et al. [01] proposed
a machine-learning-guided typestate analysis technique for static detection of use-after-free
vulnerabilities in software. The proposed method employs a combination of static analysis,
machine learning, and typestate modeling to identify use-after-free bugs in software pro-
grams accurately. Lomio et al. [39] investigated whether machine learning algorithms like
SVM, KNN, Decision Tree, and Boosting algorithms [16, 17, 5] could improve the perfor-
mance of Just-in-Time software vulnerability detection utilizing various software metrics
(process metrics, product metrics, and text metrics) from Java project files.

Other studies focused on exploring the potential of various deep learning methods to
detect vulnerabilities [32, 37, 8, 18, 67, 7, 36]. For example, Convolutional Neural Networks
(CNN) [31] have been used to forecast software defects and locate defective source code
[32]. Li et al. [36] made multiple kinds of deep neural networks such as CNN, LSTM [24],
and GRU [9] to detect vulnerabilities using syntax and semantic information of programs.
Vuldeepecker [37] detects resource management issues and buffer overflows by training an
LSTM model with code embedding and data-flow information of a program. VGDetector
[8] uses a control flow graph and a graph convolutional network [29] to detect control-
flow vulnerabilities. Zhou et al. [67] pinpointed bugs at the method level using Graph
Neural Networks and program dependence graph information of a source code program.
Cheng et al. [7] used program slices along with Graph Neural Networks to develop program
slice-level vulnerability detection models.

Much of the aforementioned work used either synthetic datasets (e.g., SARD), datasets
created using oracles like static analysis tools (e.g., [52, (65]), or real-world datasets that do
not accurately reflect the realistic settings where these models would be used for detecting
vulnerabilities (e.g., [67, 13, 3]). This motivated us to create the Comp-Vul dataset that
tackles the lack of realistic evaluation datasets in the existing techniques. Also, to the
best of our knowledge, we are the first to propose a slice-level vulnerability detection
technique(Slice Vul) that uses both transformers and semantic code information(control
and data flow information) of source code programs to detect vulnerabilities.

The work most closely related to ours is Chakraborty et al. [3]. Similar to our study,
they proposed REVEAL dataset to highlight the limitations of existing deep learning-based
vulnerability detection models (i.e., [37, 67, 30]). Based on their evaluation, they reported



that the studied models suffer from several issues, such as the model’s inability to learn
relevant features, data duplication, data imbalance, and unrealistic evaluation settings.
However, their evaluation still suffers from the same limitations as DeepWukong [7] and
LineVul [18] models, as they only consider functions present in selected vulnerability-related
commits, rather than considering all the functions within a project. Fu and Tantithamtha-
vorn [18] proposed LineVul, a CodeBERT-based model [11] to detect vulnerabilities. Their
model outperforms several techniques (e.g., [35, 67, 36, 37, 51]) including REVEAL [3].
This motivated us to include LineVul as one of the evaluated models in our study. Our
study differs from the prior work since we evaluate two state-of-the-art techniques (i.e., [7],
[18] ) on Comp-Vul dataset, which reflects realistic vulnerability detection settings.



Chapter 4

Study Design

In this chapter, we describe the datasets used in our study including our Comp-Vul dataset
(Section 4.1). Then, we present the models we evaluate using the datasets (Section 4.2).
Finally, we describe the research questions driving our investigation (Section 4.3), and the
evaluation metrics (Section 4.4).

4.1 Datasets

In this section, we provide an overview of the existing datasets, namely SARD ' and
Big-Vul [13], utilized in the two deep learning-based vulnerability detection techniques,
DeepWukong [7] and LineVul [18] along with their inherent limitations. Also, we outline
the process we undertook to generate our dataset: Comprehensive Real-World Vulnerability
Detection Datasets (Comp-Vul).

4.1.1 SARD

The Software Assurance Reference Dataset (SARD) SARD!contains a vast number of
artificially produced C/C++ programs containing numerous security vulnerabilities. It has
been frequently used by several research works to assess the effectiveness of vulnerability
detection methods [7, 37, 12, 33]. The SARD dataset labels code statements as good

Thttps://samate.nist.gov/SARD
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(code statements without vulnerabilities) or bad (code statements with vulnerabilities)
[7]. The limitation of the SARD dataset is that it comprises solely artificially generated
vulnerabilities, which may not provide an accurate representation of real-world software
vulnerabilities. Additionally, it fails to represent the real-world code written by developers.
As a result, the dataset may not be able to capture the full range of complexities and
variations that are found in real-world software. This may limit the ability of researchers
to evaluate the effectiveness of vulnerability detection methods in a realistic setting.

4.1.2 Big-Vul

The Big-Vul dataset [13] is composed of C/C++ functions collected from 348 open-source
GitHub projects spanning from 2002 to 2019, containing 91 different Common Weakness
Enumerations (CWEs). It has been frequently used by several security vulnerability de-
tection studies [35, 23, 18, 6]. The dataset comprises a total of 188,636 C/C++ functions,
of which 10,900 have been manually verified as vulnerable, and 177,736 are verified as
non-vulnerable. It also contains metadata of vulnerabilities such as line numbers of vul-
nerabilities present in a function, vulnerability fixing commit hash, CVE IDs, severity
rankings, and summaries from the public Common Vulnerabilities and Exposures (CVE)
database and related source code repositories. Both the vulnerable and non-vulnerable
functions present in the Big-Vul dataset are extracted from vulnerability fixing commits
[13]. The Big-Vul dataset has a limitation in that the vulnerability fixing commits used to
identify non-vulnerable functions only cover a limited number of functions within a project
rather than all the functions present in the project. In a realistic setting, a vulnerability
detection model is employed to scan the entire project repository that contains all the
functions of a project. The results might be misleading and elevated if the vulnerability
detection models are evaluated on a dataset like Big-Vul that contains only a subset of the
project functions.

4.1.3 Comp-Vul

In this study, we want to assess the performance of two recent vulnerability detection
models (i.e., DeepWukong and LineVul) using a comprehensive vulnerability dataset that
reflects a more realistic setting. To that end, we introduce a new dataset (i.e., Comp-Vul)
to overcome the limitations of the existing vulnerability detection datasets by constructing
a more realistic notion of vulnerability data containing real-world complex vulnerable and
non-vulnerable source code programs. Our Comp-Vul dataset differs from other datasets

11



like SARD or Big-Vul in that it includes all the source code for each real-world project.
This comprehensive approach provides a much more accurate representation of a realistic
production setting, which is essential for training and evaluating vulnerability detection
models. In contrast, SARD only contains artificially synthesized samples, and Big-Vul
includes only a subset of the project code. By providing a complete view of the project
code, the Comp-Vul dataset serves a more realistic dataset for vulnerability detection
model development.

Our Comp-Vul dataset includes a separate training and test dataset, which can be used
for training and evaluating the vulnerability detection models, respectively. We employ a
time-based strategy for creating the samples for the training and test datasets. This ap-
proach reflects the fact that vulnerability detection models need to be trained on historical
data and then used to identify new vulnerabilities that emerge over time. By simulating
this process, we aim to ensure that the models are evaluated on a dataset that reflects
how they would be used in a realistic production setting. This can help to ensure that the
models are detecting vulnerabilities in realistic settings before they can be deployed in a
production system. We explain how we obtain the vulnerable and non-vulnerable samples
present in the training and test datasets next.

To build a quality set of vulnerable samples for training and testing, we select the
top ten projects in the Big-Vul dataset [13] based on the number of vulnerabilities in the
projects. We extract the date on which the vulnerable functions were fixed using the
vulnerable fixing commit hashes present in the Big-Vul dataset. For each project, we order
the vulnerable functions based on the date on which they were fixed. We then take the
first 80% of the ordered vulnerability functions for the training dataset, with the remaining
20% used for the test dataset. For instance, in the case of the FFmpeg project, the first
80% of the vulnerability functions have vulnerability fixing dates between August 3, 2013,
and May 30, 2018. These functions belong to the training dataset. The remaining 20% of
the data have vulnerability fixing dates between June 28, 2018, and August 5, 2019. These
functions belong to the test dataset. In total, the ten projects in our dataset comprise
5,528 vulnerable functions, 4,418 functions of which we use for the training dataset and
1,110 functions for the test dataset.

To begin the process of creating non-vulnerable functions for the datasets, we first
clone the remote repository of each of the ten selected projects. Then, we check out the
project on two different snapshots, one for the training dataset and one for the test dataset.
We take the most recent snapshots for each dataset. For instance, in our example of the
FFmpeg project, we clone the FFmpeg repository on May 31, 2018, to create the non-
vulnerable samples of the training dataset. Recall that the last vulnerability fix date for
a vulnerable sample of the FFmpeg project in the training dataset is from May 30, 2018.

12



For the FFmpeg project in the test dataset, we take the second snapshot on August 6,
2019. In order to obtain a sample of non-vulnerable functions for each project, we first
extract all functions from the source code files that we have collected. We calculate the
MD5 hash of these collected functions and the vulnerable functions we have previously
collected. We then compare the MD5 hash of the collected functions to the MD5 hash
of vulnerable functions. If the MD5 hash of a collected function does not match with
any of the MDb5 hashes of the vulnerable functions, it is labeled as non-vulnerable. After
completing this process, we end up with a total of 1,682,713 non-vulnerable functions. Out
of these functions, 769,464 belong to the training dataset, and 913,249 belong to the test
dataset. Note that the number of non-vulnerable functions is more in the test dataset,
because they are extracted from a later version of the project compared to the version
used for the training dataset.

4.2 Models Employed in the Study

In this study, we choose LineVul [18] to conduct our experiments as Fu and Tantithamtha-
vorn [18] compare the performance of their model against other well-known vulnerability
detection works [35, 3, 67, 36, 37, 51]. Furthermore, we also choose DeepWukong [7] to

conduct our experiments as it reports state-of-the-art performance (up to 99% F1 score)
in detecting vulnerabilities at the program slice level using program semantics and graph
neural networks.

4.2.1 DeepWukong

DeepWukong [7] is a Deep Learning-based model built using a Graph Neural Network
(GNN) architecture [2], which takes XFGs as inputs and classifies them as vulnerable
or non-vulnerable XFG. XFGs are subgraphs extracted using the Program Dependence
Graphs (PDGs) [15] of the source code programs. PDGs are directed graphs where each
node in the graph represents a code statement in the source code, and each edge in the
graph represents a data or control flow dependence between two code statements. XFGs
are generated by performing forward and backward slicing [59] starting from a program
point of interest, such as an API call or an Arithmetic Expression in the PDG. If an XFG
contains at least one vulnerable code statement, it is labeled as vulnerable; otherwise, it is
labeled as non-vulnerable. The vulnerable and non-vulnerable XFGs are fed as inputs to
a Graph Neural Network (GNN) to train an effective vulnerability detection model.

13



4.2.2 LineVul

LineVul [18] is a Deep Learning-based model built using CodeBERT [11], which takes in
a chunk as input and classifies it as a vulnerable or non-vulnerable chunk. A chunk is
a sequence of code tokens generated from source code programs. First, the source code
statements in the programs are tokenized using the Byte Pair Encoding (BPE) subword
tokenization technique [53]. Then, the tokenized source code programs are split into chunks
of up to 512 tokens, which is the maximum input size accepted by the CodeBERT model.
If a chunk contains a vulnerable line, it is labeled as vulnerable; otherwise, it is labeled as
non-vulnerable. The code tokens in the chunks are converted to embedding vectors so that
they can be fed as input to the CodeBERT model. An embedding vector is a combination
of a word encoding vector and a positional encoding vector. The CodeBERT model is
made up of several multi-head self-attention layers and a feed-forward neural network that
is fully connected. Finally, the output vector from the CodeBERT is passed into a Dense
neural network layer, which classifies whether a chunk is vulnerable or non-vulnerable.

4.3 Research Questions

In this section, we introduce our research questions by explaining the motivation behind
each one.

RQ;:: To what extent can the findings of the Deep Wukong and Line Vul models be replicated
to confirm the results reported in the original studies?

Our study aims to evaluate the performance of the DeepWukong and LineVul models
in a more realistic setting. As a first step towards our goal, in this RQ, we run the Deep-
Wukong and LineVul models on the SARD and the Big-Vul datasets, respectively, and
verify the findings reported in the original papers. By doing so, we aim to ensure that
the results previously reported are reliable and can be replicated. Additionally, we use the
results obtained from these experiments as our baseline models, which we will compare to
the performance of the models in our introduced realistic settings.

RQs: How do the Deep Wukong and LineVul models perform in a realistic evaluation set-
ting compared to the evaluation setting used in the original studies?

DeepWukong and LineVul are two state-of-the-art vulnerability detection models that

14



have shown promising results in detecting security vulnerabilities. However, we argue
that the datasets with which these models have been evaluated may not reflect the realis-
tic setting for detecting security vulnerabilities. First, the DeepWukong model extensively
used the SARD dataset for evaluation. The SARD dataset contains artificially generated
samples, which may not represent the complexities present in real-world vulnerabilities.
Second, the dataset used for evaluation contains vulnerable and non-vulnerable samples
taken from the vulnerability-related commits, i.e., the non-vulnerable sample is limited
to the source code that is present in the vulnerability-related commits. A more realistic
setting for evaluation should consider the remaining source code (code not touched by the
vulnerability-related commits) for non-vulnerable samples. Similarly, the LineVul model
uses the Big-Vul dataset [13], which suffers from the same problem where the dataset used
for evaluation contains a limited number of non-vulnerable samples.

In summary, these evaluation settings do not accurately reflect how the vulnerability
detection models would be used in the realistic setting where the models would scan the
entire project source code files. Therefore, it is crucial to evaluate these models on a dataset
that accurately reflects a more realistic evaluation setting to assess their performance in
practical applications. In this RQ, we evaluate the DeepWukong and LineVul models on
our Comp-Vul test dataset.

RQ3: How do the Deep Wukong and LineVul models perform in a realistic evaluation setting
when trained using a similar realistic training dataset?

In RQq, we use Comp-Vul dataset to evaluate the models. However, we recognize that the
training dataset used to train these models (i.e., Big-Vul) may not be representative of
the same distribution as the Comp-Vul dataset used for evaluation. Doing so can lead to
poor model performance as the training and test datasets are from different distributions.
The training and test datasets are usually representative of the real-world data where the
model will be used to perform its task. Hence, it is crucial for both datasets to be se-
lected from the same distribution as the data in which the model will be used. Therefore,
if the training and test datasets are from the same distribution, the models may achieve
better results. In this RQ, we aim to investigate the impact of data distribution on the
performance of these models by training and testing them using our Comp-Vul dataset.
By doing so, we hope to determine whether using a training dataset that is representative
of the same distribution as the evaluation dataset can lead to better model performance.
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4.4 Evaluation metrics.

The evaluation metric should be able to accurately measure how well the model performs
on the task at hand. Vulnerability prediction is a binary classification task. One of the most
popular metrics used for binary classification is accuracy. However, it does not take into
account false positives and false negatives. Hence, we evaluate the models using additional
metrics (i.e., precision, recall, and Fl-score) [13].

Precision is the fraction of the vulnerabilities detected by the model that are actually
vulnerabilities, i.e., it measures often samples classified as vulnerable are truly vulnerable.
For example, in the case of the DeepWukong model, it will measure how many XFGs
that are predicted as vulnerable are truly vulnerable XFGs. The number of false positives
(falsely classified as vulnerable) affects the precision score greatly. If the precision score
is very low, it means the model is incorrectly predicting many non-vulnerable samples
as vulnerable resulting in a huge number of high false positives. A high precision means
that when the model detects a vulnerability, there is a high probability that it is a real
vulnerability.

The recall is the fraction of the actual vulnerabilities in a system that are detected by
the model, i.e., it measures how effective our model is at detecting vulnerabilities. For
example, in the case of the DeepWukong model, it will measure how many true vulnerable
XFGs are correctly identified as vulnerable XFGs by the model. The number of false
negatives(falsely classified as non-vulnerable) affects the recall score greatly. A high recall
means that the model is able to detect most of the vulnerabilities correctly, and the number
of false negatives is low. F1-score combines precision and recall to provide an overall picture
of how well these two measurements are balanced.
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Chapter 5

Experiments & Results

In this chapter, we present our experimental results with respect to each (RQ).

5.1 Research Question 1

Question: To what extent can the findings of the Deep Wukong and LineVul models be
replicated to confirm the results reported in the original studies?

Approach: We first download the SARD dataset ! and the Big-Vul dataset ? used in
DeepWukong [7] and LineVul [18] studies, respectively. We create the DeepWukong model
inputs (XFGs) and the LineVul model inputs (chunks) using the SARD dataset and the
Big-Vul dataset samples, respectively. We obtain a total of 14,261 vulnerable XFGs, 74,963
non-vulnerable XFGs from the Big-Vul dataset, and 9,733 vulnerable chunks, 216,568 non-
vulnerable chunks from the LineVul dataset. The generated XFG and the chunk datasets
are split into training and test datasets where 80% of the samples belong to the training
dataset and the remaining 20% samples belong to the test dataset. Following the author’s
original experiments, we train the DeepWukong model for 50 epochs and the LineVul model
for 10 epochs. We evaluate the models using the test datasets.

Thttps://github.com/jumormt /DeepWukong
2https://github.com/awsm-research /LineVul
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Figure 5.1: Replication results of DeepWukong and LineVul models

Results: Figure 5.1 shows the replication results of the DeepWukong and LineVul mod-
els. We can see that the DeepWukong model achieves 98%, 87%, 98%, and 93%, for
accuracy, precision, recall, and F1l-score, respectively. The accuracy and F1l-score for the
DeepWukong model differ by +1% and -2%, respectively, from the results reported by the
DeepWukong authors.

Our results for the LineVul model follow a similar trend. The accuracy, precision, recall,
and F1-score for the LineVul model are 96%, 96%, 84%, and 90%, respectively. Comparing
with the results reported by the authors of LineVul, we find that the precision, recall, and
Fl-score differ by -1%, -2%, and -1%, respectively.

Overall, we can observe that the differences in the metrics are negligible. The small
difference in the metrics can be because of the presence of different samples in the train-
ing/test datasets. When a dataset is split into a training set and a test set, the samples
in the two sets are chosen randomly. This means that the samples in the training set
and the test set will be different each time we split the dataset. As a result, the model’s
performance on the test set may vary from one split to the next. The model’s performance
on the test set may depend on the specific samples that are included in the test set. For
example, if the test set contains a particularly difficult or easy sample, this can affect the
model’s overall performance on the test set.
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ANSWER: Using the same methods as the DeepWukong and LineVul studies, we were
able to replicate their results for the SARD and Big-Vul datasets.

5.2 Research Question 2

Question: How do the Deep Wukong and LineVul models perform in a realistic evaluation
setting compared to the evaluation setting used in the original studies?

Approach: In this RQ, we evaluate the DeepWukong and the LineVul models using the
Comp-Vul test dataset described in section 4.1.3. We use the LineVul model trained in RQ;
for the evaluation, i.e., we train using the same method as the original LineVul study while
using Comp-Vul test dataset for evaluation. The DeepWukong model in RQ; is trained
using SARD, which contains artificially created samples. Since our Comp-Vul test dataset
contains complex real-world samples, we train a new DeepWukong model using the Big-Vul
dataset for evaluation. First, we generate the DeepWukong model inputs (XFGs) using the
Big-Vul dataset. We obtain a total of 28,294 vulnerable XFGs and 639,047 non-vulnerable
XFGs. Similar to RQq, we train the DeepWukong model for 50 epochs using the generated
XFGs. To evaluate the trained models (DeepWukong and LineVul) using the Comp-Vul
test dataset, we first generate the model inputs (XFG and chunks) for the Comp-Vul test
dataset. We obtain a total of 5,386 vulnerable XFGs, 4,844,728 non-vulnerable XFGs,
1,316 vulnerable chunks, and 1,020,801 non-vulnerable chunks. These samples are then
evaluated using the respective trained models.

Results: Figure 7.2 shows the results of the performance of the DeepWukong and LineVul
models, trained using the Big-Vul dataset and evaluated with the Comp-Vul test dataset.
For the DeepWukong model, we achieve an accuracy, precision, recall, and F1l-score of
91%, 1%, 87%, and 2%, respectively. When comparing these results to those obtained in
RQ; (i.e., compared to the results of the DeepWukong model trained and tested using the
SARD dataset), we observe a decrease of 7%, 86%, 11%, and 91% in accuracy, precision,
recall, and F1-score, respectively.

As for the LineVul model, we obtain an accuracy, precision, recall, and F1-score of 89%,
1%, 90%, and 2%, respectively. In comparison to the results obtained in RQ; (i.e., com-
pared to the results of the LineVul model trained and tested using the Big-Vul dataset), we
observe a decrease of 7%, 95%, and 88% in accuracy, precision, and F1-score, respectively.
However, we also observe an increase of 6% in recall.
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Figure 5.2: Results of the DeepWukong and LineVul models trained using the Big-Vul
dataset and evaluated using the Comp-Vul test dataset

Overall, our findings reveal a substantial decrease in precision for both the DeepWukong
and LineVul models. This suggests that the predictions made by these models contain a
considerable number of false positives, which can have a huge impact on the effectiveness
of vulnerability detection. Specifically, the DeepWukong model generated 439,494 false
positives, while the LineVul model produced 114,629 false positives. Such a large number
of false positives renders these models unusable.

Our study underscores the importance of evaluating vulnerability detection models
using datasets that reflect realistic settings. In this regard, our results demonstrate the
critical role played by the Comp-Vul dataset in understanding the true capabilities of such
models. By utilizing this dataset, we gain a more accurate understanding of the perfor-
mance of vulnerability detection models and can identify areas that require improvement.

ANSWER: Existing vulnerability detection models, such as DeepWukong and
LineVul, can produce a high number of false positives when tested using datasets that
represent more accurate real-world testing settings.
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5.3 Research Question 3

Question: How do the Deep Wukong and LineVul models perform in a realistic evaluation
setting when trained using a similar realistic training dataset?

Approach: In the previous RQ, we evaluate the effectiveness of our models using the
Comp-Vul dataset for evaluation only. However, in this question, we use the Comp-Vul
dataset for both model training and evaluation. The training dataset consisted of 2,699,492
XFGs (12,574 vulnerable XFGs and 2,686,918 non-vulnerable XFGs) and 887,455 chunks
(5,213 vulnerable chunks and 882,242 non-vulnerable chunks). This dataset is highly im-
balanced, with a disproportionate number of non-vulnerable samples compared to vulner-
able ones. Hence, we also investigate the impact of this imbalance on model performance
by training additional models on balanced datasets. We randomly select non-vulnerable
samples equal to the number of vulnerable samples present. We obtain a balanced XFG
dataset of size 25,148 (12,574 vulnerable XFGs + 12,574 non-vulnerable XFGs) and a
balanced chunk dataset of size 10,426 (5,213 vulnerable chunks + 5,213 non-vulnerable
chunks). Overall, we train a total of four models (one imbalanced-trained-DeepWukong,
one balanced-trained-DeepWukong, one imbalanced-trained-LineVul, and one balanced-
trained-LineVul) using the same training parameters used in RQ;. Finally, we evaluate the
trained DeepWukong and LineVul models using the same XFG and chunks test dataset
used in RQs (i.e., Comp-Vul test dataset).

Results: Figure 5.3 shows the results of the DeepWukong and LineVul models that are
trained using imbalanced datasets (XFGs and chunks). The accuracy is 99% for both the
models, while the precision, recall, and F1 scores are 0%. The precision, recall, and F1-
scores are extremely down for both the models compared to the results obtained in RQ;
and RQs. The reason for the high accuracy score is because of the imbalanced nature of
the XFG and chunk datasets. Due to the large number of non-vulnerable samples in the
datasets, the model consistently predicts that a sample is non-vulnerable, leading to a high
accuracy score but lower recall, precision, and F'1 scores. The models struggle to learn the
patterns in the minority samples(vulnerable samples) because the majority samples(non-
vulnerable samples) dominate the training process. The reason for this behavior is that the
models are optimized to minimize the loss function, which penalizes incorrect predictions.
In our imbalanced dataset, the non-vulnerable class has more samples than the vulnerable
class. As a result, the models learn to always classify a sample as non-vulnerable to
minimize the loss function, even if it is not the correct prediction.
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Figure 5.3: Results of the DeepWukong and LineVul models that are trained using the
imbalanced dataset(Comp-Vul dataset) and evaluated using the Comp-Vul test dataset
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Figure 5.4: Results of the DeepWukong and LineVul models that are trained using the
balanced dataset(Comp-Vul dataset) and evaluated using the Comp-Vul test dataset

Figure 5.4 shows the performance of the DeepWukong and LineVul models that are
trained using balanced datasets (XFGs and chunks). The results indicate that the Deep-
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Wukong model trained on the balanced dataset performs with 89% accuracy, 1% precision,
53% recall, and 2% F1 score, which is down by 9%, 86%, 45%, and 91%, respectively,
compared to the DeepWukong model evaluated in RQ;. The LineVul model trained on
the balanced dataset performs with 99% accuracy, 11% precision, 99% recall, and 20% F1
score. The precision and F1 scores are down by 85% and 70%, respectively, compared to
the LineVul model evaluated in RQ;.These results suggest that these models produce a
high number of false positives, even when trained using a dataset that is similar to the
realistic evaluation dataset.

Furthermore, the recall score of the DeepWukong model has decreased by 34% compared
to RQs, while for the LineVul model it has increased by 9%. The precision and F1 scores for
the DeepWukong model remain the same, while for the LineVul model, they have increased
by 10% and 18%. This variation in the performance metrics between the DeepWukong
and LineVul models can be due to several factors, such as model input structure (XFG vs.
chunks), model architecture (GNN vs. CodeBERT'), and more.

Additionally, the study shows that training the models using a balanced dataset leads
to a considerable improvement in their ability to identify vulnerable samples in the test
dataset. The DeepWukong model’s recall, precision, and F1 scores are up by 53%, 1%,
and 2%, respectively, when trained using a balanced dataset compared to an imbalanced
dataset. A similar pattern is observed for the LineVul model. However, the models still
produce a high number of false positives, similar to the models evaluated in RQs.

ANSWER: Despite training the DeepWukong and LineVul models with a realistic
training dataset that closely resembles the realistic test dataset, we observe that these
models still generate a high number of false positives
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Chapter 6

Discussion

In this chapter, we investigate a number of problems that LineVul and DeepWukong models
suffer from, which can explain some reasoning behind the failure on the Comp-Vul dataset.

6.1 Class Imbalance of Evaluation Dataset

Real-world datasets often suffer from imbalanced class distributions where the number of
non-vulnerable examples enormously outweighs the number of vulnerable ones. This class
imbalance can lead to models being biased towards the majority class, resulting in poor
performance on vulnerable examples. Therefore, we investigate the impact of class imbal-
ance on the performance metrics of the LineVul and DeepWukong models in the context
of vulnerability detection.

Approach: In RQ,, we observe extremely low precision and recall scores for both studied
models. To understand the influence of class balance on model performance, we conduct
an experiment using the Comp-Vul dataset from RQ,. We create test datasets by varying
the ratio of vulnerable to non-vulnerable samples using the XFG and chunk samples of the
Comp-Vul test dataset. The ratio between vulnerable to non-vulnerable samples is 899 for
the XFG dataset and 775 for the chunk dataset. We generate 900 XFG datasets (ranging
from 0 - 899) and 776 chunk datasets (ranging from 0 - 775) by randomly selecting non-
vulnerable samples based on the ratio numbers. The vulnerable samples are kept constant
across all datasets.
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Figure 6.1: Performance of the DeepWukong model evaluated on Comp-Vul test dataset
for different ratios of the non-vulnerable and vulnerable XFGs.

However, for non-vulnerable samples, we randomly select them based on the desired
ratio and the count of vulnerable samples in each dataset. As an example, in the XFG
dataset, we have 5,386 vulnerable XFGs and 4,844,728 non-vulnerable XFGs. To construct
the test XFG dataset with a ratio of 2, we randomly select 10,772 non-vulnerable XFGs
(2 times the number of vulnerable XFGs) from the 4,844,728 non-vulnerable XFGs, while
keeping all 5,386 vulnerable XFGs. This results in a total of 16,158 XFGs (5,386 vulnerable
XFGs + 10,772 non-vulnerable XFGs) in the test XFG dataset with a ratio of 2. We eval-
uate the DeepWukong and LineVul models on each dataset using the same experimental
setup from RQ, repeated 100 times with different randomly sampled datasets each time
to reduce sampling bias. We report the mean performance metrics obtained from running
the experiment 100 times to obtain more reliable metrics and reduce the variability of the
results.

Results: Figures 6.1 and 6.2 present line plots depicting the performance metrics of
LineVul and DeepWukong models when tested on the Comp-Vul dataset. The x-axis of
the line plots represents the ratios between non-vulnerable and vulnerable samples, while
the y-axis represents the performance scores in percentage for each metric.

As we can see from the figures, the recall metric remains constant across all ratios
since the number of vulnerable samples is constant, resulting in a steady number of false
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Figure 6.2: Performance of the LineVul model evaluated on Comp-Vul test dataset for
different ratios of the vulnerable and non-vulnerable chunks.

negatives and true positives. However, the precision and F1-score show a decreasing trend
with an increase in the ratio. The precision and F1 scores sharply decrease until the 600"
ratio for DeepWukong model and 500" ratio for LineVul model, after which the recall and
F1-score begin to flatten around the 1% and the 2% region for both models. The accuracy
metric has minimal variations, which are only visible in the fourth decimal place of the
percentage values, making them almost invisible in the line plots. These differences are
negligible and can be considered insignificant in the context of the experiment. In general,
an increase in non-vulnerable samples in the dataset results in a substantial increase in
false positives.

Our findings highlight the criticality of accounting for class imbalance in vulnerability
detection models to minimize the risk of erroneously labeling non-vulnerable samples as
vulnerable and incurring a high number of false positives. By evaluating the performance
of vulnerability models on a realistically imbalanced dataset such as Comp-Vul and con-
ducting a thorough analysis, developers can confidently use these models for vulnerability
detection tasks.
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6.2 Insufficient Class Separation

LineVul and DeepWukong are models that transform source code into fixed-size embed-
dings, which are utilized to train a neural network to classify vulnerable and non-vulnerable
samples accurately. The effectiveness of these models in vulnerability detection is influ-
enced by the degree to which the embeddings of the vulnerable and non-vulnerable classes
are distinct and separable. The greater the distinction and separability of the embeddings,
the more straightforward it is for the model to differentiate between the two classes. To
investigate this, we perform an experiment to visualize the ability of the models under
examination to clearly separate the vulnerable and non-vulnerable class samples.

Approach: We employ t-distributed Stochastic Neighbor Embedding (t-SNE) [56] to vi-
sualize the embeddings produced by the DeepWukong and LineVul models. t-SNE is a
powerful visualization tool for high-dimensional data that aids in the identification of clus-
ters and patterns by reducing data dimensionality while preserving local structure. First,
we extract the embeddings from the DeepWukong and LineVul models. The /CLS] embed-
ding vectors generated by the CodeBERT model represent the embeddings for the LineVul
model, while the final fixed vector produced by the Graph Neural Network represents the
embeddings for the DeepWukong model. We create four primary embeddings: the SARD
dataset (XFGs) for the DeepWukong model (i.e., the scenario in RQ; ), the BigVul dataset
(chunks) for the LineVul model (i.e., the scenario in RQy), the Comp-Vul test dataset
(XFGs) for the DeepWukong model (i.e., the scenario in the RQy), and the Comp-Vul test
dataset (chunks) for the LineVul model (i.e., the scenario in the RQs2). It is worth noting
that the embeddings are generated for the test datasets.

To reduce the dimensionality of the embeddings and plot them in two-dimensional
space, we use t-SNE. We create four scatter plots in total, each displaying the reduced em-
beddings along with their corresponding labels (vulnerable or non-vulnerable). The scatter
plots are presented in Figure 6.3.

Results: Both the LineVul and DeepWukong models studied in RQ; (refer to Figures 6.3a
and 6.3b) exhibit clear separation between vulnerable and non-vulnerable samples of the
SARD and Big-Vul datasets, respectively. However, for both the LineVul and DeepWukong
models studied in RQy (refer to Figures 6.3c and 6.3d), there is a substantial overlap
between vulnerable and non-vulnerable samples of the Comp-Vul dataset, which renders
it difficult for the models to distinguish between them clearly.

This lack of class separation explains the high number of false positives produced by
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Figure 6.3: Scatter plots showing the class separation between the vulnerable and non-
vulnerable samples. @ denotes vulnerable samples and @ denotes non-vulnerable samples

the DeepWukong and LineVul models in RQ,. We can infer that datasets like SARD
and Big-Vul are too simple, which allows these models to separate vulnerable and non-
vulnerable samples easily. However, when these models are evaluated on a realistic dataset
like Comp-Vul, they fail to distinguish between vulnerable and non-vulnerable samples.
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Figure 6.4: An example illustrating the pitfall of source code token-based models like
LineVul.

6.3 Pitfalls of Token-based Models

The LineVul model [18] is a source-code-token-based vulnerability detection model that
takes in a sequence of tokens as input. One of the main problems with the LineVul model is
its reliance on lexical relationships between tokens, which can result in the loss of important
semantic relationships that are critical for accurately identifying vulnerabilities. Many
vulnerabilities in software are caused by complex interactions between different modules
or by the programmer’s faulty assumptions about how the code will be used. This heavy
reliance on source-code tokens to detect vulnerabilities could be one of the reasons for the
large number of false positives produced by the LineVul model.

To test the theory that the LineVul model’s heavy reliance on lexical relationships
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between tokens may result in false positives, we conduct an analysis. We collect the
functions from the testing Comp-Vul dataset that are falsely classified as vulnerable(false
positive functions) by the LineVul model in RQ,. We extract all the vulnerable lines from
the vulnerable functions present in the Comp-Vul dataset. We then collect false positive
functions that contain at least one of the collected vulnerable lines. We randomly selected
a few of these functions and analyzed them, one of which is illustrated in Figure 6.4 along
with the corresponding matching vulnerable function.

The vulnerable lines that are common between these two functions are highlighted.
These functions in the figure are part of the Linux project '. The vulnerable function is
part of a code in Linux that would allow local users to bypass file-descriptor limits and
cause a denial of service attack by sending each descriptor over a UNIX socket before
closing it. More information about this vulnerability can be found in the NVD website?.
The highlighted lines in the figure are common to both the vulnerable and false positive
functions, but they are not vulnerable in the context of the false positive function. Since
the vulnerable lines spin_lock(&uniz_gc_lock) and spin_unlock(€uniz_gc_lock) from the vul-
nerable function uniz_notinflight are present in the uniz_gc function, the LineVul model
could have incorrectly classified the uniz_gc function as vulnerable. This analysis supports
the theory that models like LineVul, which rely heavily on lexical relationships between
tokens, may struggle to model the complex nature of vulnerabilities in real-world software
accurately.

Thttps://github.com/torvalds/linux
2https://nvd.nist.gov /vuln/detail/CVE-2013-4312
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Chapter 7

SliceVul

In this chapter, we explain the motivation behind Slice Vul and its architectural details
alongside the results we obtain when we evaluate Slice Vul using the Comp-Vul dataset.

7.1 Motivation

Despite lacking semantic information about the source code programs, LineVul [18] has
been shown to achieve better performance compared to the DeepWukong model [7] when
evaluated using the Comp-Vul dataset in RQs and RQ3 experiments. On the other hand,
DeepWukong utilizes control and data flow information from the source code programs to
detect vulnerabilities. We propose Slice Vul, a new Deep Learning-based technique that
combines the strengths of both these models by utilizing CodeBERT-C [66], a powerful
transformer-based model, to learn both the lexical and semantic information of the source
code programs. The lexical information is derived from the program slice’s source code
tokens, while the semantic information is learned from its control and data flow information.
Slice Vul classifies whether a program slice is vulnerable or non-vulnerable.

We compare the performance of SliceVul with DeepWukong. By comparing the per-
formance of Slice Vul and DeepWukong, we aim to answer whether the use of transformer-
based models with code semantics is more effective than Graph Neural Network-based
models with code semantics in vulnerability detection. Our focus is on program slice-level
vulnerability detection models, and therefore, we compare the performance of Slice Vul and
DeepWukong, rather than LineVul.
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Figure 7.1: An overview of the Slice Vul architecture

7.2 Model Architecture

Figure 7.1 shows an overview of the Slice Vul architecture. We explain how we generate
the program slices and their embeddings, along with the model training process next in
detail.

7.2.1 Generation of Program Slices

Slice Vul first computes the Program Dependence Graph(PDG) of the input source code
program. A PDG is a directed graph in which each node represents a source code state-
ment, and each edge denotes a data or control flow dependence between two statements.
The control dependence between two statements is determined using the control-flow graph
(CFG) of a program that captures the execution order of the instructions present in the
source code program. The data dependence of a program is determined by using the pro-
gram’s data flow graph that captures the relationship between the places where a variable
is assigned and where the assigned value is subsequently used.

Then, to generate the program slices, we conduct forward and backward slicing start-
ing from a program point of interest p; like method calls, arithmetic operations, pointer
expressions, and array indexing. For example, if a program has four method calls and
seven arithmetic operation instructions, eleven different program slices are generated for
this program. Each of the eleven instructions serves as a separate starting point from which
the program slicing is performed. During forward slicing, the program dependence graph
(PDG) is traversed forward until a fixed node is reached from p;, and all visited nodes
are added to the forward sliced statements set Sy. During backward slicing, the PDG is
traversed backward until a fixed node is reached from p;, and all visited nodes are added
to the backward sliced statements set S,. The final set of code statements for a program
slice is the union of Sy and Sy The resulting code statements are arranged sequentially
in the order they appear in the original source code program to form the input for the
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vulnerability detection model. A program slice is labeled as vulnerable if it contains at
least one vulnerable statement; otherwise, it is marked as non-vulnerable.

7.2.2 Generation of Program Slice Embeddings

We use CodeBERT-C [60] to generate the program slice embeddings. CodeBERT-C is a
CodeBERT-based [11] model that is exclusively pre-trained using a huge corpus of C-based
projects present in the CodeParrot dataset . The CodeParrot dataset has approximately
14.1M C files with a total size of 183.83GB. We opt for CodeBERT-C instead of CodeBERT
as the latter does not include C programs in its pre-training data. By using CodeBERT-C,
we can obtain better embeddings for the program slices, as all the projects in our dataset
are C/C++-based.

To get the embeddings, we first use the Byte Pair Encoding (BPE) subword tokenization
technique [53] to tokenize the source code statements present in the program slices. BPE is
an algorithm that separates a long uncommon word into several smaller common subwords.
It will aid in minimizing the vocabulary size when tokenizing different custom names rather
than immediately adding the whole custom name to the dictionary. For example, the
custom name RelinquishMagickMemory will be split into a list of subwords, i.e., [Rel,’
‘inqu,’ ’ish,” "Mag,” "ick,” "Memory’].

To feed these code tokens into the CodeBERT-C, we convert each token into an em-
bedding vector, a common practice in neural network training. The embedding vector is a
combination of a word encoding vector and a positional encoding vector. The word encod-
ing vector is used to represent the meaningful relationship between a given code token and
the other code tokens. The positional encoding vector is used to represent the position of
a given token in the input sequence. The neural network learns the word encoding vector
from scratch during training, while the positional encoding vector is calculated based on
the token’s position relative to the code sequence. Each code token is now mapped to an
embedding vector constructed by concatenating both the word encoding vector and the
positional encoding vector of the code token.

The embedding vectors are fed as input to CodeBERT-C, which contains twelve encoder
Transformer blocks, each with a bidirectional multi-head self-attention layer and a fully
connected neural network. The self-attention layer calculates the attention weight of each
code token, producing an attention vector. Bidirectional self-attention allows tokens to
attend to both left and right contexts. Attention weights indicate which statements the

Thttps://huggingface.co/datasets/codeparrot /github-code
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Transformer model should focus on. Self-attention is used to obtain global dependencies,
where weights show how each token is influenced by all others in the sequence. The final
layer of CodeBERT-C produces the embedding representation of the program slice input.

7.2.3 Model Training

The output embeddings obtained from CodeBERT-C are used to train a Multilayer Per-
ceptron (MLP) that will classify whether an input program slice is vulnerable or not. The
MLP is a feedforward neural network, which means the information flows from the input
layer through the hidden layers and then to the output layer without any loops or feedback
connections. It contains a series of dropouts and hidden layers. The hidden layers of the
MLP contain nonlinear activation functions(tanh function) that transform the input into a
more complex representation. A dropout layer is a regularization technique used in neural
networks to prevent overfitting during training. It randomly drops out (i.e., sets to zero) a
fraction of the input units of a layer during each training iteration. This forces the network
to learn more robust features and prevents it from relying too much on any one input unit.
The last layer of the MLLP outputs the probability of a program slice being vulnerable.

The training of the MLP involves adjusting the weights and biases of the neurons to
minimize the error between the predicted and actual output. This is accomplished through
backpropagation, a technique that computes the gradient of the error with respect to the
weights and biases and then adjusts them in the direction that minimizes the error. We
use backpropagation with AdamW optimizer [10], which is widely adopted to update the
model weights and minimize the loss function. We use the cross-entropy loss function to
measure the difference between the predicted and actual labels. The function gives high
loss values when the predicted probability is far from the true probability and lower loss
values when the predicted and actual values are close. The MLP is trained for multiple
epochs to generate a well-trained vulnerability detection model (SliceVul). The trained
model can then be used for further vulnerability detection.

7.3 Experiment

We evaluate our Slice Vul model using the Comp- Vul test dataset described in section 4.1.3.
We use the Comp-Vul training dataset in section 4.1.3 to generate the training program
slice samples. We use Joern? to generate the program dependence graphs. We follow

2https://github.com/octopus-platform/joern
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the steps described in section 7.2.1 to generate the program slices for both the Comp-Vul
training and Comp-Vul test datasets. After we obtain the program slices, we eliminate
the duplicate program slices present in the training Comp-Vul dataset. Finally, we obtain
a total of 2,961,029 program slices (15,3142 vulnerable program slices + 945,715 non-
vulnerable program slices) from the Comp-Vul training dataset and a total of 4,853,903
program slices (5,951 vulnerable program slices + 4,847,952 non-vulnerable program slices)
from the Comp-Vul test dataset. We create a balanced training dataset containing the
program slice samples following the same steps explained in section 5.3, which is then used
to train the Slice Vul model. We download the CodeBERT-C model® and use it to generate
the embeddings for the program slices present in the datasets. We use these embeddings
to train the MLP network described in 7.2.3 to classify the program slices as vulnerable or
non-vulnerable correctly. We train the model for ten epochs with a batch size of 16. After
training, we use the program slice samples from the Comp-Vul test dataset to evaluate the
trained SliceVul model. We use the Hugging Face* and PyTorch® libraries to train and
evaluate the Slice Vul model.

7.4 Results

Figure 7.2 shows the results of the performance of the Slice Vul model, trained and evaluated
using the Comp-Vul dataset. We achieve an accuracy, precision, recall, and F1-score of
99%, 71%, 10%, and 17%, respectively. The accuracy, precision, recall, and F1 scores are
up by 10%, 9%, 18%, and 15%, respectively, compared to the RQ3 DeepWukong model.
When comparing these results to the DeepWukong model in RQ,, we observe an increase
of 8%, 9%, and 15% in accuracy, precision, and F1 scores, respectively, while a decrease
of 16% in the recall score. Overall, the results suggest that incorporating both syntactic
and semantic features of the source code program with a Transformer architecture is more
effective than utilizing the semantic properties of the code with a Graph Neural Network.
Our study demonstrates that using CodeBERT-C, a pre-trained language model trained
on millions of GitHub repositories, specifically on C-based projects, along with the code
properties (control and data flow information) of the source code program, is beneficial in
achieving high performance for the Slice Vul model.

While the Slice Vul model performs better than the DeepWukong model, it still gen-
erates a large number of false positives. False positives can lead to a waste of time and

3https://huggingface.co/neulab/codebert-c
4https://huggingface.co/
Shttps://pytorch.org/
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Figure 7.2: Results of the Slice Vul model when evaluated using the Comp-Vul test dataset

resources as they require manual inspection and validation. Moreover, false positives can
reduce the confidence of developers in the model and discourage them from using it. There-
fore, further research should investigate innovative techniques for reducing false positives
in the Slice Vul model. One potential solution could be to incorporate additional features
about the source code that can improve the accuracy of the model. For example, incorpo-
rating information about the context in which the code is used, such as the purpose of the
function, could help the model make more informed predictions.

36



Chapter 8

Threats to Validity

Our study uses the Big-Vul dataset [13] to construct Comp-Vul. It is possible that some
vulnerable samples in the Big-Vul dataset are mislabelled. However, the labelled samples
in the dataset were manually verified by Fan et al. [13]. Also, the Comp-Vul dataset may
not fully represent all real-world scenarios since it is constructed using only ten open-
source projects. However, it is worth noting that these ten projects are well-established
and popular (e.g., Chrome ! and Linux ?) and have been extensively studied and utilized
in previous research [67, 3].

In RQ3, to tackle the class imbalance issue, we propose an undersampling technique
where we balance the class samples. Other techniques like oversampling and SMOTE
[1] could be used to address the class imbalance issue. Also, in RQs, we use balanced
datasets where the number of vulnerable and non-vulnerable samples is equal. However,
the random selection of samples for the balanced datasets may impact our results since
different random selections can lead to different findings [21]. To address this issue, it
is recommended to train the models multiple times with various sample sets and exam-
ine the outcomes. Unfortunately, this approach was not feasible due to our constrained
computational resources.

Another notable concern is the collective training of the DeepWukong and LineVul
models on all types of CWE present in the Comp-Vul dataset. The complexity and diversity
of CWE types could have made it challenging for the models to fully capture the unique
characteristics of each individual CWE type. To address this potential limitation, future

https://chromium.googlesource.com/chromium /src/
2https://github.com /torvalds/linux
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studies could explore the possibility of training separate models for each CWE type and
evaluating these models on a dataset like Comp-Vul. By adopting this approach, the
models could focus exclusively on the specific vulnerabilities associated with each CWE
type, potentially improving their detection capabilities.

Furthermore, we focus our work on assessing the efficacy of deep learning-based vulner-
ability detection models, which can limit the generalizability of our findings to other tech-
niques. Future works should consider evaluating other techniques like static and dynamic
analysis tools, traditional machine learning algorithms like SVM, and Random Forest on
the Comp-Vul dataset and analyze the results. It is important to recognize that potential
flaws in our code could have unintended effects on our findings. To minimize this risk, we
thoroughly examined and tested our code.

We did not consider the impact of hyperparameters on model performance due to the
high computational cost of hyperparameter tuning. Future research should investigate the
effect of different hyperparameters on model performance.
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Chapter 9

Conclusion and Future Work

In our thesis, we study the performance of deep learning-based vulnerability detection
models in realistic vulnerability detection settings. First, we create a new comprehensive,
realistic vulnerability detection dataset, called Comp-Vul. Comp-Vul contains complete
source code samples of ten diverse real-world open-source projects. Then, we evaluate
two state-of-the-art models, LineVul and DeepWukong, on the Comp-Vul dataset. Our
evaluation indicates a considerable decrease in the model’s performance, as evidenced by
a drop in precision and F1 scores of up to 95% and 91%, respectively. Furthermore, we
find that the ratio of vulnerable to non-vulnerable samples in the evaluation dataset has
a considerable impact on the performance metrics of these models. Our investigation
also reveals that the embeddings generated by these models depict a substantial overlap
between vulnerable and non-vulnerable samples. This suggests that such models struggle
to differentiate between vulnerable and non-vulnerable samples in the Comp-Vul dataset,
resulting in a high number of false positives. We also propose a new Deep Learning-based
program slice-level vulnerability technique called Slice Vul that integrates the strengths of
Transformers and the semantic properties(data and control flow information) of source code
programs to classify whether a program slice is vulnerable or not. The proposed Slice Vul
model outperforms DeepWukong, a state-of-the-art slice-level vulnerability detection model
when evaluated using the Comp-Vul dataset. Our study argues that when it comes to
identifying vulnerabilities in realistic vulnerability detection settings, things may not be
as good as they seem, and there is a need for improved model design and evaluation
approaches to achieve more accurate vulnerability detection performance.

Future works can focus on creating new techniques that will reduce the number of
false positives when evaluated using realistic datasets like Comp-Vul. In recent times,

39



large language models(LLMs) like GPT-4' produce state-of-the-art results in many tasks
like classification, recommendation, summarization, and code/text search, etc. They have
been trained using a wide range of sources, including books, websites, academic journals,
social media platforms, and even GitHub repositories. One possible approach is to use the
embeddings of large language models(LLMs) like GPT-4 for source code samples and use
these embeddings to build a vulnerability detection model. Another possible solution is to
combine the strengths of state-of-the-art static analysis vulnerability detection tools with
Deep Learning-based techniques that consider the semantics of the source code programs.
Another intriguing direction for future research involves training the vulnerability detection
models using a dataset where fixed versions of vulnerabilities are treated as non-vulnerable
samples. In this approach, the fixed versions would serve as negative examples providing
a contrasting perspective that enables the models to learn valuable patterns associated
with vulnerabilities. Also, future research is encouraged to explore realistic vulnerability
detection datasets from programming languages other than C/C++, such as Python, Java,
and JavaScript, in order to broaden our understanding of vulnerability detection in diverse
programming contexts.

thttps://cdn.openai.com/papers/gpt-4.pdf
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