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Abstract 

The 2019 Coronavirus disease COVID-19 is an infectious respiratory disease caused by 

severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It undoubtedly poses a huge 

challenge in terms of public health and social impact worldwide. The Ontario government 

implemented a series of non-pharmaceutical interventions (NPIs) prior to vaccination to prevent 

large-scale outbreaks in the Great Toronto Area (GTA), which is the most densely populated region 

in Ontario. Detecting and analyzing human mobility during the pandemic can help decision makers 

assess the effectiveness of policy implementation, in order to better respond to similar events in 

the future.  

Geotagged Twitter data serves as an important source of volunteered geographic 

information (VGI). Anonymized geotagged tweet in the GTA in 2020 using the Twitter Academic 

API are used to analyze inner-city human mobility. The results provide a longer-term insight into 

how human activity is affected by the pandemic as well as government orders.  

In this thesis, human mobility spatiotemporal patterns in the GTA are found to be close to 

patterns founded in the previous studies. People are affected more by the severeness of the first 

outbreak. More people stay at home rather than in commercial areas, schools, and workplaces. 

Human mobility in open spaces is affected by seasons besides policy effects. Human mobility in 

utility and transportation areas is related to the properties of the areas they connect. Most of the 

policies received significant reflections within one week of release, but milder policies resulted in 

insignificant human mobility changes. Human mobility patterns in most land use types have 

moderate correlation with the Google Community Mobility Report. Even so, some limitations still 

exist. 
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Chapter 1  

Introduction 

1.1 Problem Statement 

COVID-19, the Coronavirus disease 2019 is a contagious respiratory disease caused by 

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). The disease is first reported 

in late 2019 and quickly broke out in most countries and territories until March 2020. Thus, World 

Health Organization (WHO) accessed COVID-19 as a pandemic. The COVID-19 pandemic brings 

not only health risks, but also significant and ongoing impacts on global economic and social 

activities. By the end of 2022, the COVID-19 pandemic caused more than 732 million confirmed 

cases and more than 6.7 million death cases. Among them, there are approximate 4.5 million 

confirmed cases and 49,000 death cases in Canada (World Health Organization, 2020). Industries 

dependent on trade, labor, and global industrial chains suffered severe damage during the pandemic 

(Wei et al., 2021). People's lifestyles have undergone structural changes; therefore, consumer 

behaviors changed according to their psychology, income, market supply and demand (Habibi et 

al., 2022). Almost all businesses in Canada were affected by the shutdown in Spring 2020, until 

the end of 2020, overall economic activity is still lower than the pre-pandemic levels. The 

economic downturn caused a rise in unemployment. The loss of jobs and working hours has 

affected more than one million workers in Canada (Statistics Canada, 2021). The COVID-19 

pandemic also had negative impacts on people's mental health in a variety of ways, such as reduced 

contact with family and friends (Okan et al., 2021), changes in demographic characteristics (Lei 

et al., 2020), vulnerability of special groups (Twenge & Joiner, 2020), etc. In addition, crime 

opportunities and observations changed with pandemic and policy implementation, which calls for 

law enforcement to update its focus and resource allocation to different types of crime (Díaz et al., 
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2022; Abrams, 2021). Overall crime level in Canada decreased during the pandemic but some 

types of crime increased due to lack of sightings. Hate crimes peaked in 2020, reflecting the 

discrimination caused by the COVID-19 pandemic (Statistics Canada, 2022).  

The challenge is to reduce the spread of the COVID-19 pandemic and its negative effects 

while safeguarding the productive lives of people as much as possible. Before vaccine became 

widely available, non-pharmaceutical interventions (NPIs) were implemented in various countries 

and regions to prevent large outbreaks of the COVID-19 pandemic, including but not limited to 

masking, social distancing and limiting the number of people gathered at the individual level, to 

city-scale lockdowns or curfews, to nationwide border closures. Those NPIs have been shown to 

significantly reduce the growth rates in Spain (Orea & Álvarez, 2022), the USA (Li et al., 2021), 

Italy (Bertuzzo et al., 2020), Japan (Yabe et al., 2022), China (Fang et al., 2020) and many other 

countries. However, the measure and its strictness of implementation can vary tremendously from 

country to country. A typical example is the Zero-COVID strategy implemented in many parts of 

China, where residents are banned from leaving their communities if there is any confirmed case 

within the community. This measure protected more healthy people from the potential risk of 

infection, but its strict enforcement over a long period has also led to mood swings and protests by 

residents (Bai et al., 2022). Most Western countries, on the other hand, have not implemented such 

long and severe lockdown strategies, which has led to a continuous presence of confirmed numbers 

and risk of close contact in these areas. Through a review the literature of health impact by NPIs 

during the pandemic, although most studies focused on the direct health impact of the COVID-19 

pandemic, a small number of studies focused on the social impact and economic harm that NPIs 

may cause in terms of reduced life happiness and lack of social welfare (Chiesa et al., 2021). 

Therefore, the stringency of policy implementation should balance effectiveness and social impact.
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The Greater Toronto Area (GTA) is an urban cluster consisting of 25 cities in four 

surrounding regions, with the City of Toronto as its centre. It is the most densely populated area in 

Ontario as well as in Canada, also contributes significantly to the financial and manufacturing 

sectors of North America. On the one hand, the GTA presents cultural diversity and a high level of 

inclusiveness towards new immigrants, with the benefit that international immigration has 

contributed to the transition to a post-industrial phase and to the development of a knowledge-

based economy. On the other hand, diversity brings more vulnerabilities to pandemics. As early as 

2003, Toronto was the only non Asian city to be severely affected by the SARS (Brail & Kleinman, 

2022). During the pandemic, the infection and mortality rate in Toronto was disproportionate 

compared to its population (Crawley, 2020). In studies of US states and England and Wales during 

the pandemic, significant differences in mortality and infection rates are observed between races 

and communities. Differences between cultures, labor market, housing condition, and other diverse 

characteristics may cause those bias (Polyakova et al., 2021; Nathan, 2021). Connectivity and 

diversity between municipalities cause more difficulties and challenges to the response to the 

COVID-19 pandemic in the GTA. Therefore, the research on the GTA can provide some 

suggestions of urban clusters dealing with crisis events in future. 

Human mobility patterns present the characteristics of people moving through space. It has 

a high application value in several fields. In epidemiology, it is common to monitor human 

mobility to predict models of infection and assess the effectiveness of policies (Santamaria et al., 

2020; Chinazzi et al., 2020; Rahman & Thill, 2022). Most NPIs developed for respiratory 

infectious diseases such as the COVID-19 pandemic are designed to reduce human-to-human 

contact to cut off the route of infection. Therefore, NPIs with this goal can use human mobility 
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change as a criterion for assessing whether the policy is effective. Human mobility data can be 

accessed through social media (Bisanzio et al., 2020), mobile network operators (Yabe et al., 2022), 

public transport travel records such as bike-sharing (Song et al., 2022), metro and flight 

information and so on (Sy et al., 2021; Li et al., 2021). However, from existing research, when 

mobility data with distinct origin and destination locations are used to analyze changes in mobility, 

travel distance and travel time are usually extracted from the raw data to calculate changes in 

mobility index, with origin-distance matrices and radius of gyration being the more commonly 

used methods. These approaches allow different distance thresholds to be set for a wider range of 

spatial scales, but it eliminates some of the spatial detail, such as the types of places people visit, 

when extracting movement distances. In contrast, in some cases exploring 'where people go', 

researchers usually extract the coordinates of user or their posts directly for spatiotemporal analysis. 

For example, Jiang et al. (2021) used geotagged tweets to track spatiotemporal variation in human 

mobility on land use polygons within New York City, also validated against the categories provided 

by the Google Community Mobility Report. Heo et al. (2020) used the most common locations of 

Facebook users to investigate changes in human mobility within parks and forests in Maryland 

and California, which identifying green spaces as providing good options for keeping social 

distances and outdoor activities during the pandemic. Both Jiang et al. (2021) and Heo et al. (2020) 

used the number of active users within a given area to represent human mobility. 

In the current study, there are a small number of applications of human mobility analysis 

during pandemics in Canada, an example is that Klar (2022) used mobile device data provided by 

Telus Insight to represent human mobility in Ontario by calculating the radius of gyration. There 

are no published studies that have applied human mobility analysis at the sub-city level or used 

social media to capture human mobility in Canada. Therefore, this study will focus on monitoring 
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spatial and temporal variation in human mobility based on different land use types during the 

COVID-19 pandemic and use this to assess the effectiveness of NPIs in the GTA. 

1.2 Research Questions and Objectives 

The aim of this study is to address the following questions: 

• How does each wave of the COVID-19 pandemic and corresponding policies affect the 

spatial patterns of human mobility within the GTA? 

• Do the types of destinations people choose to visit change over time? 

• What are the differences between the patterns of human mobility detected by Twitter and 

the community mobility reports provided by Google? 

This study enriches the analysis of spatial and temporal variation in human mobility in 

terms of ‘where people go’ and informs the use of voluntary geographical information (VGI) to 

assess the effectiveness of GTA policy implementation during pandemics. The goal of this study 

is to explore the spatial and temporal variation in human mobility in the GTA during the COVID-

19 pandemic particularly in 2020 based on different land use types. To achieve this goal, the 

following objectives are designed: 

• To explore spatial pattern variation of human mobility within the GTA in both monthly 

and weekly during the pandemic based on land use polygons. 

• To determine if there is a correlation between this pattern of change and the number of 

confirmed cases and measures issued by the Ontario government. 

• To explore the temporal change pattern of human mobility based on land use type and 

validate using the Google Community Mobility Report. 
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1.3 Thesis Structure 

This thesis consists of five chapters. 

Chapter 1 describes the problems and motivations of the study, follow by the research 

questions and objectives as well as the structure of the study.   

Chapter 2 reviews the existing literature on the use of changes in human mobility to assess 

policy effectiveness and briefly reviews the methods used to assess policy effectiveness during the 

COVID-19 pandemic.  

Chapter 3 describes the study area (the GTA), the dataset used, and detailed spatiotemporal 

analysis methods.  

Chapter 4 presents the results of spatiotemporal analysis and provides a discussion of the 

findings. 

Chapter 5 concludes the key findings and identifies some of the limitations of this study, 

also provides recommendations for future research. 
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Chapter 2  

Background and Related Studies 

This chapter reviews existing literature and focuses on research work related to the 

application of Volunteered Geographical Information (VGI) to crisis response, especially in 

epidemiology. Section 2.1 discusses the value of VGI. Section 2.2 focuses on the application of 

human mobility in epidemiology. Section 2.3 discusses some research gaps. Section 2.4 provides 

a summary of this chapter. 

2.1 Value of Volunteered Geographical Information 

Volunteered Geographical Information can be defined as geographic information that is 

voluntarily created, collected, and disseminated by individuals using digital technologies 

(Goodchild, 2007). Compared to traditional labor- and financial-intensive data collection methods, 

encouraging citizens to observe the world as sensors allows for timely data collection with 

experiential aspects (Ferster et al., 2018). This is benefit from citizens who are more familiar with 

the local environment and more sensitive to what is happening there. Theoretically, every citizen 

can synthesize and interpret local information intelligently (Goodchild, 2007). As a result, the 

potential of VGI for applications within multiple domains is receiving increasing attention from 

social scientists, especially in crisis response (Haworth et al., 2016; Haworth B. T., 2018; Hicks et 

al., 2019; Joshi et al., 2020), smart cities (Basiouka et al., 2015; Mozas-Calvache, 2016; Attard et 

al., 2016), and biodiversity studies (Jacobs & Zipf, 2017; Brown et al., 2018). Goranson et al. 

(2013) indicated that VGI has contribute to public health through allowing users to provide detailed 

location-based information to fit customized study areas. In epidemiology, VGI allows users to 

track their historical locations, which is helpful to identify weak spatial relationships. The local 

tapestry carried by VGI can also use to reflect users’ opinions in food services or new policies.    
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The value of geographic information (GI) is usually measured by assessing its economic 

value through quantitative methods (Longhorn & Blakemore, 2008), such as cost-benefit analysis 

(Hall et al., 2000) or value chain methods (Mancini, 2013), also, analyzing its social benefits 

through qualitative fields. It is much more complicated to qualify the social value of GI than 

quantifying the economic value. The social value of GI can be evaluated by whether services are 

improved, decision-making is more informed, and there is an increase in the ability of vulnerable 

groups to use public geographic information and spatial technologies (Feick & Roche, 2012). VGI 

is applied in some commercial software as a supplement to private authoritative GI to reduce data 

collection cost. For example, the reporting problem function in Google Maps effectively reduces 

the cost of data maintenance. Besides, Open Street Map, as a mature VGI project, also provides a 

stable economic basis for the company to broaden its business scope. In addition to the economic 

value of VGI mentioned above, the social value of VGI comes to highlight in some special cases. 

After the Haiti earthquake, when the map resources available in the affected areas are insufficient 

to address the demands of rescue and resource allocation, VGI is the only way that can be updated 

timely in a crisis scenario. Its social and economic value cannot be compared with private 

authoritative GI in the traditional way (Roche et al., 2013). In addition, citizens by participating in 

VGI activities are able to increase their awareness, expression and use of geographic information 

and location technologies, as well as improve their spatiality by activate spatial skills. This is a 

great improvement to the spatial support proposed by Williamson et al (2010). 

While VGI has demonstrated distinct economic and social value in many areas, especially 

in crisis management, there are still some negative aspects. As a relatively new source of GI, the 

quality of data is a major challenge of VGI. During a disaster, people may send a large number of 

messages to request or donation. However, filtering inappropriate or unnecessary information can 
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be costly, which may block emergency services and affect the resource allocation for emergency 

response (Holguín-Veras et al., 2014). Therefore, integrating the information provided by informal 

volunteers requires much carefulness to avoid weakening the adaptability and response capacity 

contribute to emergency management (Whittaker et al., 2015). In addition, social medias serve as 

one of the primary sources of VGI. The spread of fake news can affect community disaster 

resilience (Haworth et al., 2018). Vosoughi et al. (2018) found that the false news always spread 

faster and farther than the real news, and the bots spread the real news and the false news at the 

same rate. This means that real users are more likely to accelerate the spread of fake news. 

Overall, VGI still has great potential in crisis management as the technology evolves and 

algorithms update. The next section will focus on reviewing the usage of VGI to calculate human 

mobility in epidemiology. 

 

2.2 Human Mobility in Public Health 

  The social value of VGI is not only shown in crisis management, such as natural disasters 

and man-made incidents, but also in public health. The main data sources of VGI are social media, 

cell phone location information, public transportation statistics and so on (Hu et al., 2021). Social 

media, in particular, can record not only people’s aspects but also the location of users near real 

time. This makes social media as a major data source for many studies in public health. Social 

media data are widely used in studies of (1) infectious diseases such as H1N1 (Signorini et al., 

2011), Ebola (Hossain et al., 2016), Zika (Abouzahra & Tan, 2021), Dengue (Souza et al., 2019), 

COVID-19 (Liu et al., 2022), etc., (2) non-infectious diseases such as obesity (Waring et al., 2018), 

pollen allergies (Gesualdo et al., 2015), etc., and (3) mental health such as suicidal tendencies 

(McClellan et al., 2017) and so on.  
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 Human mobility is an important element in monitoring disease spreading in 

epidemiological studies, especially for human-mediated diseases. It is commonly used in studies 

of disease spreading model prediction (Zheng et al., 2021; Hu et al., 2021) and policy effectiveness 

evaluation (Xiong et al., 2020; Nguyen et al., 2021). Assessing the effectiveness of policies is 

important when responding to a pandemic. Under-react policies are not effective in limiting the 

spread of disease, and the increasing case numbers will bring the health care system under 

enormous pressure. On the other hand, overly strict policies are unhelpful to the proper functioning 

of society and the economy, also tend to create negative emotions among the population under 

strict control. Lai et al. (2020) generated a model of susceptible-exposed-infectious-removed 

(SEIR) based on travel network and found that the case numbers in China would increase 

exponentially without the influence of NPIs. Also, an earlier implementation of the policy would 

have greatly reduced the number of people and cities affected by the COVID-19 pandemic. In 

addition, NPI during the COVID-19 pandemic has the potential to cut off transmission routes for 

other infectious diseases. Wu et al. (2022) studied how the NPI implemented in Guangzhou during 

the COVID-19 pandemic affected the transmission of hand, foot, and mouth disease and found 

that there was an increase in hand, foot, and mouth disease cases after the relaxation of the NPI for 

the COVID-19 pandemic. This indicated that the effectiveness of NPI was not only done for the 

current epidemic but also for the prevention of potential epidemics. 

The main data sources for acquiring human mobility are geotagged tweets and cell phone 

location data. Mobility reports from Google and Apple are sometimes used as a standard to validate 

the results. There are three main approaches to calculating human mobility; the first is to calculate 

the frequency of people’s movement, such as the OD matrix. The second is to calculate the size of 

people movement through the radius of gyration (ROG) and travel distance, and the third is to 
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represent human mobility using active user numbers. OD matrix and the radius of gyration are two 

primary methods use cellphone location data. The principle of the OD matrix is to calculate the 

directional flow between a series of positions, which represent the frequency of people move from 

a given origin to a given destination. Figure 2.1 shows the most basic OD matrix generation method 

(Rodrigue et al., 2006). 

 

Figure 2.1 Schematic of Origin-Destination Matrix (Source: Rodrigue et al., 2006).  

 

Static OD flows are estimated by three main methods, maximum likelihood (Cascetta & 

Nguyen, 1988), generalized least squares (Cascetta, 1984), and Bayesian (Maher, 1983). Dynamic 

OD is divided into n unit times over a period of time using n vectors of link counts to estimate n 

o-d matrices (Cascetta et al., 1993).  

Travel distance and the radius of gyration indicates the distance and characteristic distance 

a person travels over a period of time, respectively. Liu et al. (2018) calculated the human radius 

of gyration (rg) using cell phone movement data by the following equation: 

𝑟𝑔 = √
1

𝑁
∑ 𝑛𝑖(𝑟𝑖⃗⃗ − 𝑟𝑐𝑚⃗⃗⃗⃗⃗⃗  )2
𝑁
𝑖=1      (2.1) 

where N is the total number of places, 𝑛𝑖 means the visit frequency or spending time at the ith 

location,  𝑟𝑖⃗⃗  is the geographic coordinate for the ith location, and the 𝑟𝑐𝑚⃗⃗⃗⃗⃗⃗   represents the coordinates 



 12 

of the weighted trajectory center of mass. These two approaches prefer a dataset that records 

origins and destinations, usually using cellphone location data. Some studies have also used tweet 

data for the calculation, but it is necessary to extract users who tweeted multiple times in a unit 

time. The amount of data required is larger, so it is often used for studies on a city scale or larger. 

Also, some details may be lost during them, such as what locations humans visited at what times. 

During a pandemic, understanding the purpose of people's travel is an important factor in 

risk prediction. As a simple example, a person who travels to a store or a park within 5 km has a 

different risk of infection. Therefore, focusing on where people visit can theoretically lead to a 

better understanding of the risk of infection. Policy adjustments can also be made to encourage 

economic recovery in the post-epidemic era based on the types of hot destinations people visit. In 

addition to those two measures of human mobility based primarily on cell phone mobile data, a 

subset of studies using social media data to monitor human mobility though another qualitative 

approach based on point of interest (POI).  

This approach used to classify social media check-in data by specific time periods and 

destination types, depending on the temporal and spatial scale of the study interested in. The 

number of active users at each epoch is used as a representative of human mobility. The amount 

of change is derived as a percentage using the difference between the observed value and the 

baseline value, divided by the baseline value. This method is used in several studies focus on close 

to or smaller than city scale (Yang et al., 2019; Jiang et al., 2021; Heo et al., 2020 & Chen et al., 

2019). Yang et al. (2019) used geo-tagged Sina Weibo messages to discover patterns of human 

mobility in the Wuhan China Address University community. Jiang et al. (2021) used geotagged 

tweets to explore changes in human mobility based on land use type in New York City during the 

pandemic. Check-in data from an app based on Foursquare called Swarm was used to analyze the 
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spatial and temporal variation of human mobility in Melbourne (Singh et al., 2018). Heo et al. 

(2020) studied in green spaces within Maryland and California state also using the similar method 

because a large green space can across more than one city. These studies achieve good results in 

using geotagged social media data to explore inner-city human mobility changes while focusing 

on destination types, as well as verify this qualitative approach is also effective to analysis human 

mobility change in a finer spatial granularity. 

 

2.3 Gaps in Research  

Most of the existing studies using the first two methods apply in municipal-scale to global-

scale studies. Most of them focus on how the range of human activity impacted by the COVID-19 

pandemic, such as people reduced inter-city or long-distance travel in response to the COVID-19 

pandemic. These methods have been developed over time to obtain more realistic results in 

representing human mobility, which require higher data quality and a large amount of data, also 

preferably collect data using certain time intervals. There are a few studies that have used mobile 

network data to explore human mobility changes in Canada and Ontario, such as Klar (2022) used 

cellphone location data provided by Telus to calculate ROG and travel time to analyze human 

mobility changes in Ontario during a pandemic. Xue, et al. (2021) used Google Community 

Mobility to assess the impact of NPI on the spread of the COVID-19 pandemic within nine 

Canadian provinces. Dainton and Hay (2021) also used Google Community Mobility report to 

explore the relationship between polices, human mobility, and the spread of the COVID-19 

pandemic in the GTA. Google Community Mobility Report is an aggregated dataset with a low 

spatial resolution that only reaches the regional scale, which makes it difficult to study in municipal 

human mobility analysis. However, these studies focus less on the purpose of people's travel, their 
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spatial scale is also relatively larger. Some necessary intercity travels may not be reduced by the 

pandemic, and the destinations people travel may be influenced by the pandemic or policies. 

Existing studies barely produced spatiotemporal analysis of human mobility below the city 

scale in Canada, but there are some previous studies using geotagged social media data for 

qualitative human mobility analysis in other cities such as Wuhan and New York. Those studies 

explained human mobility patterns in a finer spatial scale with a higher flexibility in study areas 

and study periods. Using the number of check-in data from Sina Weibo in The Chinese University 

of Geosciences Wuhan (CUG Wuhan) community, Yang et al. (2019) found that human mobility 

within the community was significantly influenced by vacation and gender. This study shows 

human mobility among university students in general and explores the potential of using the 

number of check-in data as a proxy for human mobility. Jiang et al. (2021) used geotagged tweets 

to explore human mobility changes in New York City during the early stages of the pandemic, 

which took advantages of the timeliness of geotagged tweet data. However, due to the short study 

period between February 16 and May 30, 2020, it is not available to explore the human mobility 

change patterns during the recovery phase and follow-up outbreaks. In addition, only one 

representative policy is mentioned in their study, which is the stay-at-home order issued in New 

York on March 22, 2020. Therefore, the relationship between policies and human mobility over a 

longer period of time is still a topic worthy of study. 

To date, most studies applied in Canada use the Google Community Mobility Report 

directly as a proxy for human mobility at large spatial scales. Also, there is no precedent using 

geo-tagged tweet counts to explore human mobility changes at suburban scales for the time being. 

This thesis plans to draw on the approach proposed by Jiang et al. (2021), uses the number of 

geotagged tweets to represent human mobility changes based on land use polygons within the GTA 
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over a longer period during the COVID-19 pandemic, which is over two outbreaks in 10 months 

from March to December in total, as well as studies in the impact on intra-city human mobility 

caused by the strictness of policies over a longer period.  

 

2.4 Chapter Summary 

In this chapter, the value of VGI and the applications of human mobility in public health 

are recognised. Meanwhile, three basic approaches to defining human mobility from existing 

research are discussed. Finally, some research gaps are indicted.  

 In the field of public health, the usage of VGI to explore human mobility patterns is 

becoming a general approach. Although VGI data sources have some biases, they are undeniably 

more efficient and flexible than community-based surveys and other traditional methods. The 

social medias, as one type of the main data sources for VGI, have the advantages of VGI but also 

some limitations. Geotagged social media data represents only a small fraction of all social media 

data. However, when the base is large enough, geotagged data is equivalent to a sub-sample that 

can represent almost the entire population. This makes social media data to be an emerging data 

source due to its easy accessibility and less privacy concerns.  

Human mobility is primarily used in pandemics to model disease transmission and analyze 

the effectiveness of policies. The existing literatures indicate that the implementation of NPIs can 

be effective in reducing the spread of disease. However, the strictness of NPIs can have significant 

social and economic impacts. Therefore, assessing the effectiveness of NPIs plays an important 

role in responding to the pandemic and other public health crisis. 

During the pandemic, social media data and mobile network location data are the two main 

raw data sources to explore human mobility patterns according to requirement of the study. The 
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methods for calculating human mobility are divided into three main types: frequency of people 

movement, distance of people movement, and the number of visitors for one space. The first two 

methods, typically the OD matrix and ROG, used to require a large amount of data to achieve 

better results, also may loss some details in spatial analysis. The third method uses active user 

number on social media, or the geo-tagged posts count as a representation of human mobility in 

customized areas and periods. This method does not require the starting and ending points of user 

movement. Compared to Google Community Mobility Report, the results may differ somewhat 

because common social media data only records where people stay, but not how long they stay 

there. 

In addition, some gaps in research are identified. The existing human mobility studies 

applied in Canada during the COVID-19 pandemic are mainly using Google Mobility Reports and 

mobile network location data in a large spatial scale. Jiang et al.’s (2021) approach of using geo-

tagged tweets to observe human mobility within New York City can be drawn on and applied to 

the GTA. This thesis builds on their approach to observe human mobility changes along the 

severeness of the pandemic over a longer epoch, as well as the impact of policy updates on human 

mobility until the end of 2020. 

  



 17 

Chapter 3  

Human Mobility Analysis based on Geotagged Tweet 

 This chapter introduces the GTA as the study area of this thesis in Section 3.1. Section 3.2 

describes the data sources of geotagged tweets, land use data, and Google Community Mobility 

Report. Section 3.3 details the general framework of the proposed methodology, including the data 

pre-processing approaches for both geotagged tweets and land use data, and the proposed methods 

of monthly and weekly spatial analysis and daily temporal analysis, respectively. Section 3.4 

summarizes this chapter. 

 

3.1 Study Area 

The Greater Toronto Area, commonly referred to as the GTA, is an economic zone in 

southern Ontario, Canada. It starts from Burlington on the western shore of Lake Ontario, through 

the City of Toronto, and extends to the Clarington on the northern shore of Lake Ontario. From the 

lake shore northwards to the Township of Georgina and Township of Brock areas along Lake 

Simcoe. It consists of the City of Toronto, and its four surrounding regional municipalities, Halton 

Region, Peel Region, York Region, and Durham Region, 25 cities in total, which covers an area of 

approximately 7,125 square kilometers. According to the 2021 Census data, the GTA region has 

more than 6.76 million population, which is the most densely populated region in Ontario.  

One of the reasons of the dense population of the GTA is influx of labor, attracted by the 

large number of job opportunities available. The GTA is the largest regional economy in Canada, 

contributing approximately one-fifth of Canada's Gross Domestic Product (GDP) each year. The 

City of Toronto is the second largest financial centre in North America, after New York, but it is 

the fastest growing financial center in North America. All of Canada's five largest banks have their 

headquarters in downtown Toronto. The financial services sector is the largest industry in Toronto 
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that contributing more GDP and jobs each year than the average of all other industries (The 

Conference Board of Canada, 2020). It is also the center of business in Canada, with many 

companies locating their Canadian headquarters in the GTA. Tourism is also one of the key 

industries supporting economic development in the GTA. Since 2013, visitor arrivals and total 

spending have continued to trend upwards. In 2018, Toronto's Census Metropolitan Area (CMA) 

hosted over 40 million visitors who spent over $10 billion Canadian dollars (Tourism Economics, 

n.d.).  

 

Figure 3.1 Map of the study area, the Greater Toronto Area in Ontario, Canada. 

 

It is worth noting that the GTA area is defined as an economic zone and slightly different 

from the Toronto CMA. As a result, many official surveys do not provide complete coverage of 
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the GTA. for example, Oshawa in the Durham Region is a separate CMA, but it is part of the GTA, 

while some areas of Simcoe County and Dufferin County are part of the Toronto CMA, but not the 

GTA. therefore, some GTA data can be roughly estimated through data from the Toronto CMA. To 

be more specific, the 2021 Census data provides a total population within the Toronto CMA that 

is approximately half a million less than the sum of the populations provided by each region within 

the GTA.  

During a pandemic, the GTA shows its vulnerability to risk. According to the Ontario 

Epidemiology summary, in early April 2020, more than half of all new cases were in the GTA 

(Public Health Ontario, 2020), and by early June 2020, the proportion is more than two-thirds 

(Public Health Ontario, 2020), while the total population of the GTA was less than half of the total 

population of Ontario. Compared to the GTA's population as a proportion of Ontario's population, 

the number of new cases and population was disproportionate. In 2020 alone, more than 134,000 

GTA residents have been infected by the COVID-19 pandemic, with more than 45% of confirmed 

cases reported from the City of Toronto, more than 30% from the Peel region, 13% from the York 

region, and the remaining 10% from the less populated Halton and Durham regions. The COVID-

19 pandemic was directly or indirectly responsible for the deaths of over three thousand people. In 

addition, the social impact can take a long time to recover from. It is obvious that the COVID-19 

pandemic causes a decrease in employment in the Toronto CMA, particularly in the retail and 

restaurant sectors. In the first half of 2020 alone, the unemployment rate in the City of Toronto 

almost tripled (Mowat & Raf, 2020). At the same time, the industrial structure of the GTA dictates 

that many people would take up remote work. The reliance on tourism and the number of student 

groups would lead to a reduction in tourist traffic. 
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3.2 Data 

3.2.1 Geotagged Tweets Data 

 This study uses the Twitter API for academic research. The commonly used Twitter API 

randomly selects the 1% of all tweets that meet the filtering criteria. The Twitter API for academic 

research can access to a comprehensive geotagged tweet dataset. If Twitter users chooses to add 

geotags when they post the original tweet, the tweet is given a location ID and records accurate 

coordinate information if applicable. The tweets dataset was filtered by original tweets posted in 

2020 and posted in 25 cities within the GTA. A total of 4,464,251 geo-tagged tweets are collected. 

However, those tweets require further cleaning because one user may post multiple times in one 

place. In order to protect user privacy, tweet information will not be displayed in the final results, 

but some user information such as user ID, will be retained during the data cleaning phase in order 

to clean up excess data. Whereas several temporal scales are designed in spatiotemporal analysis 

of human mobility changes based on land uses, for monthly analysis, data from January and 

February are used to calculate the baseline value. For the weekly and daily analysis, data for the 

five weeks from January 3 to February 6 will be used for baseline calculation. This helps to 

compare with the Google Community Mobility Report more conveniently. The rest of the data will 

be used for the calculation of in human mobility changes. 

 

3.2.2 Land Use Data  

 Land use data for the GTA area is not aggregated at the regional level. Therefore, it needs 

to be obtained from the city's open data portal, the ArcGIS online portal, or other sources. The 

quality of the data may vary at different municipalities and requires some basic operations such as 

clip, merge, etc., before analysis. Most cities do not make a clear distinction between land use data 
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and zoning data. Therefore, the term "zoning" is used as an interchangeable keyword when 

searching for land use data. For the purposes of this study, land use types will be categorized into 

residential, commercial, workplace, open space and transport based on the primary function of the 

land, with reference to the By-law Zoning guidelines provided by each city. Some cities have 

opened up free access to their land use data, but upon review these data may be too detailed, for 

example by dividing residential areas into more detailed parcels by density or main building type. 

In this study, land use types are classified according to the function of the land only, and those 

categories that are too detailed needed to be consolidated. Zoning data for most municipalities is 

collected through the above process, with one exception, Township of Brock does not have 

interactive zoning data available to the public yet, nor does it have access to integrated data from 

other common sources over a larger area. In addition, some of the protected areas within the city 

and its surrounding buffer zones are under the authority of other departments that have taken over 

from the municipality. Therefore, these areas are not included in the city's land use data. Table 3.1 

shows the summary of original land use data into different regions. 

Table 3.1 Summary of original land use data in Greater Toronto Area and 5 regions. 

Region Name Number of Polygons Area (km2) 

City of Toronto 11,444 519.71 

Peel Region 16,007 1,186.36 

York Region 54,697 1,685.78 

Halton Region 7,940 870.97 

Durham Region 33,352 1,989.83 

GTA 123,440 6,285.08 

 
 

3.2.3 Google Community Mobility Report  

 Google publishs mobility reports covering 135 countries or regions worldwide, but most 

reports are limited to the spatial scale of the country or region (Google, 2022). Fortunately, data at 
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the regional level for Canada is available through filtered data tables. The report is generated by 

comparing daily visitor number and baseline data for different location during the pandemic. The 

baseline data uses seven values corresponding to the day of the week instead of a fixed value. Each 

value is the median of each day of the week from January 3 to February 6, 2020, five weeks in 

total. This dynamic baseline data avoids the need for day-to-day comparisons, especially between 

weekday and weekend. In Google's Community Mobility Report, human mobility data are grouped 

into six categories of places, including retail and entertainment, grocery and drug shops, parks, 

transit stations, workplaces and residences. The report provides the percentage change in human 

mobility for each type, which does not mean that large changes correspond to more visitors and 

vice versa. 

 

3.3 Proposed Methodology 

 Figures 3.2 and 3.3 show the flowchart to introduce the process of both spatial and temporal 

analysis of human mobility in different time units, respectively. Figure 3.2 presents the data 

preprocessing and analysis approaches of monthly and weekly spatial analysis. As shown in Figure 

3.2, the input and output datasets of monthly spatial analysis are marked in deep blue, and those 

for weekly spatial analysis are in light blue. Figure 3.3 represents the process of daily temporal 

analysis. As shown in Figure 3.3, the green parallelogram means the input tweet datasets for both 

regional analysis and the GTA analysis. Light violet parallelogram shows the output of regional 

analysis, and the deep violet parallelogram shows the output of the GTA analysis. As shown in 

both Figures 3.2 and 3.3, the white polygons show the raw data and datasets that are preliminary 

organized. Red parallelogram means the input land use dataset for spatial join. Yellow rounded 

rectangles are the process of analysis.   
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Figure 3.2 Flowchart of monthly and weekly spatial analysis based on land use polygons. 
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Figure 3.3 Flowchart of daily temporal analysis based on land use types. 

 

3.3.1 Geotagged Tweets Data Processing 

All geotagged tweets posted in the GTA in 2020 are collected using the Twitter Academic 

API, including many duplicate tweets and tweets posted by bots. They are stored in the respective 

datasets based on their posting dates. In order to eliminate the influence of these bots and 

commercial accounts on the results, collected data is required to be pre-processed before they used 
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in analysis. There is only one tweet posted by a user in the same place will be remained in a daily 

geo-tagged tweet dataset. To be more specific, if a user posts multiple tweets from the same 

location in a single day, only one of them will be used in following analysis, which represents a 

user who was active at that location. If a user posts more than one tweets from multiple locations 

in one day, one tweet from each site will be held, which infer that the user had visited multiple 

locations during the day. This step uses the 'Remove Duplicates' tool in Microsoft Excel. After this 

step, a total of 1,463,790 tweets are remained. The next step is to transform the tweet location 

information into coordinates that can be easily mapped within the GTA's land use polygons. A part 

of the tweets is posted with accurate coordinates, which can map directly into the land use polygon. 

More tweets only have an encoded location ID with mixed number and alphabet, which need to 

find the appropriate JSON file provided by Twitter, then it can extract accurate coordinates of the 

location centroid from it. The location information contained in tweets may change over time. A 

small number of locations available when posting may become inaccessible when querying. For 

example, some shops and restaurants are replaced quickly are registered when the user posted the 

tweet with this location in 2020, but when querying the coordinates, the location information is no 

longer available. These tweets that cannot acquire the coordinates will also be deleted. Once this 

step has been completed, all tweets should have a pair of accurate coordinates. Next, tweets will 

be mapped to the land use polygon. A small percentage of data is deleted due to user error or system 

error. For example, confusing Richmond Hill in the York Region with Richmond in Vancouver. 

For those tweets that cannot be mapped to any polygon will be excluded from the spatiotemporal 

analysis.  
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3.3.2 Land Use Data Processing 

For monthly and weekly spatial analysis of human mobility, land use polygons are used as 

a minimal spatial separation to project geotagged tweets and calculate human mobility changes. 

Therefore, the land use data collected for each municipality is simply merged in ArcGIS Pro except 

the lake polygons.  

For daily temporal analysis, land use types for each region and the whole GTA are proposed. 

According to Section 3.2.2, some municipalities provide too detailed land use information to fit 

the requirement. Therefore, the municipal land use data need to be reclassified to primary land use 

types first. In detailed, Mississauga splits their residential areas into different building structures 

such as single-detached house, semi-detached house and so on. Milton classifies their residential 

zones by different residential densities from low to high. In daily temporal analysis, all those areas 

are reclassified as residential areas based on their primary purpose. After reclassified, there are 

several land use types, including residential areas, commercial areas, employment areas, industrial 

areas, institutional areas, open spaces, rural areas and so on. After reclassification, each city will 

have some or all of these classes. These reclassified land use types are then merged to each region 

and then to the entire GTA for counting geotagged tweets in each class. Figure 3.4 shows the 

distribution of main land use types in different regions and the GTA.  
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Figure 3.4 Land use distribution in the Greater Toronto Area. 

 

3.3.3 Spatial Analysis of Human Mobility Changes 

Monthly Analysis 

The spatial analysis of human mobility is divided into two scales: monthly and weekly. The 

total number of users within each land use polygon for January and February need to be calculated 

independently first, then calculate their average that the sum of January tweet number and January 

tweet number divided by two. The total number of monthly tweets for the remainder of 2020 is 

used to calculate the change in human mobility. The total number of monthly tweets for rest of the 

month in 2020 are used to calculate the change in human mobility. The monthly tweets for the 

remaining months are spatial joined to the land use polygons. Then use the following formula to 

calculate the monthly human flow change for each polygon:   
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𝑀𝑜𝑛𝑡ℎ𝑙𝑦 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 = 

{
  
 

  
 
𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −  𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒

𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒
× 100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≠ 0

0, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0

100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 ≠ 0

 

   (3.1) 

Weekly Analysis 

Weekly baseline values are calculated using weekly total tweet number for five weeks 

between January 3 and February 6, 2020. Then spatial join the weekly tweets to the land use 

polygons and get join count for each polygon. The middle value from those five values for each 

polygon is the baseline value for weekly analysis. The weekly spatial analysis of human mobility 

covers seven stages, 17 weeks in total. Those time windows are chosen based on the policy released 

by Ontario government in response to the COVID-19 pandemic, which consider stages of the first 

outbreak in March 2020, recovery period between May and July, the second wave from September 

until mid-October, the implementation of colour-coded COVID-19 system in November, and 

finally the province-wide lockdown after boxing day (December 26). The specific timeline and 

key events are listed in Table 3.2. Overall, the policies in the Stage 1 are strict, people's production 

and life are shut down for two weeks. The policies from the Stage 2 to the Stage 4 are gradually 

relaxed. Stage 5 and 6 have moderately strict policies. The lockdown order from Stage 7 is strict 

again. 
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Table 3.2 17 Weekly time windows in 7 stages and important events. 

Stage Week  Date Important Events 

1 First 

outbreak 

1 Mar 13 to 19 - March Break starting from Mar 16 

- A state of emergency in Ontario declared on Mar 17 

- Provincial parks shuttered on Mar 19 

2 Mar 20 to 26 - School continuously closed for two weeks 

- Non-essential business closure for two weeks 

3 Mar 27 to Apr 2 - School & non-essential business continuously closed  

- Shutdown of all outdoor recreation amenities 

2 Initial 

Recovery 

4 May 8 to 14 - Provincial parks opened on May 11 

- Retail stores allowed curbside pickup on May 11 

5 May 15 to 21 - Campgrounds, marinas and golf courses opened on May 16 

- More businesses reopened on May 19 

6 May 22 to 28 - Warmer weather caused people clustered in parks 

3  

Stage 2 of 

Recovery Plan 

7 Jun 12 to 18 - Region of Durham, York & Halton moved to Stage 2 

8 Jun 19 to 25 - Peel Region & Toronto moved to Stage 2 

4 

Stage 3 of 

Recovery Plan 

9 Jul 24 to 30 - Region of Durham, York & Halton moved to Stage 3 

10 Jul 31 to Aug 6 - Peel Region & Toronto moved to Stage 3 

5 

Second 

Outbreak 

11 Sep 18 to 24 - The number of people allowed at private gathering limits in Toronto 

and Peel Region reduced on Sep 17, and expanded to whole Ontario 

on Sep 19 

12 Sep 25 to Oct 1 - Food and drink business asked to stop serving between 12-5am on 

Sep 25 

- People gathered on Wasaga beach for a car rally on Sep 26 

13 Oct 2 to 8 - Restricted custom number in bar, restaurant, gym etc. on Oct 2 

14 Oct 9 to 15 - No indoor dining, closure of gyms and other recreation places starting 

from Oct 9 

6 

Colour-coded 

System 

15 Nov 6 to 12 - Durham & Halton Region in yellow, Peel & York Region in Orange 

on Nov 7 

- Toronto in red on Nov 11 

16 Nov 13 to 19 - Durham Region moves to orange; Toronto, Peel Region, York Region 

& Halton Region in red on Nov 13 

7  

Lockdown 

17 Dec 25 to 31  - Christmas Holiday (Dec 25) 

- Provincial-wide Lockdown from Dec 26 

 

The observed tweet number within each time window are spatial joined to the land using 

polygons, resulting in a weekly sum of tweets number on each polygon. The weekly change of 

human mobility in percentage is calculated from the following equations: 

𝑊𝑒𝑒𝑘𝑙𝑦 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 = 

{
  
 

  
 
𝑤𝑒𝑒𝑘𝑙𝑦 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 −  𝑤𝑒𝑒𝑘𝑙𝑦 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒

𝑚𝑜𝑛𝑡ℎ𝑙𝑦 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒
× 100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 ≠ 0

0, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0

100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 ≠ 0

 

  (3.2) 
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It is worth nothing that when the baseline value is zero, but the observed value does not 

equal to zero, the equation does not make sense because the denominator is equal to zero. In this 

case, the change in percentage is assigned to 100%. For another case, if a polygon has a baseline 

value equal to zero, and the observed value also equal to zero. It is not difficult to understand that 

its human mobility has not changed during this period. Therefore, the change in percentage should 

be equal to zero. This idea will also be used in temporal analysis in below.  

 

3.3.4 Temporal Changes in Human Mobility based on Land Use Types 

The baseline data used in this study comes from the same five weeks from January 3 to 

February 6, 2020, as the weekly spatial analysis, but is calculated differently than in the previous 

subsection. This section uses the same matrix from the Google Community Mobility Report, with 

seven values corresponding to the dynamic baseline values for a particular land use type on a 

weekly cycle, resulting in a 6 × 7 matrix for each week, where 6 represents the six land use types 

of interest to this study and 7 represents the seven days of the week (Eq.3.3).  

𝑊𝑒𝑒𝑘𝑙𝑦 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑀𝑎𝑡𝑟𝑖𝑥𝑛(𝑛 ∈ [1,5]) =

(

  
 

𝑅𝑀 𝑅𝑇𝑢 𝑅𝑊 𝑅𝑇ℎ 𝑅𝐹 𝑅𝑆𝑎 𝑅𝑆𝑢
𝐶𝑀 𝐶𝑇𝑢 𝐶𝑊 𝐶𝑇ℎ 𝐶𝐹 𝐶𝑆𝑎 𝐶𝑆𝑢
𝑊𝑀 𝑊𝑇𝑢 𝑊𝑊 𝑊𝑇ℎ 𝑊𝐹 𝑊𝑆𝑎 𝑊𝑆𝑢
𝐼𝑀 𝐼𝑇𝑢 𝐼𝑊 𝐼𝑇ℎ 𝐼𝐹 𝐼𝑆𝑎 𝐼𝑆𝑢
𝑂𝑀 𝑂𝑇𝑢 𝑂𝑊 𝑂𝑇ℎ 𝑂𝐹 𝑂𝑆𝑎 𝑂𝑆𝑢
𝑈𝑀 𝑈𝑇𝑢 𝑈𝑊 𝑈𝑇ℎ 𝑈𝐹 𝑈𝑆𝑎 𝑈𝑆𝑢)

  
 

 

(3.3) 

where the first letter for each value in the matrix means the land use type: R – Residential Areas, 

C – Commercial Areas, W – Workplaces, I – Institutional Areas, O – Open Spaces, U – Utility and 

Transportation. The second letter to the third letter (if applicable) means the day of the week from 

Monday to Sunday, respectively. Since there are 5 weeks for baseline calculation, it produced 5 

matrices in total. The final baseline matrix is a 6 × 7 matrix where each element in the matrix is 
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the median of five weekly matrices. 

Daily human mobility changes are calculated using the same theory with monthly changes 

and weekly changes, however, the baseline value for each day is not equal. Eq. 3.4 introduces two 

new variables, land use type and day of week, to reflect the dynamic baseline algorithm in human 

mobility temporal analysis. Another thing needs to be reminded is that the daily human mobility 

change analysis is based on the different land use types instead of land use polygon. Therefore, the 

sum of tweet number should be calculated based on each land use type before calculating the 

change in percentage. 

𝐷𝑎𝑖𝑙𝑦 𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 𝐶ℎ𝑎𝑛𝑔𝑒 = 𝑓(𝑥)

=

{
 
 

 
 
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑(𝐿𝑈𝑖𝐷𝑗) − 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝐿𝑈𝑗𝐷𝑗)

𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒(𝐿𝑈𝑖𝐷𝑗)
× 100%,  𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 ≠ 0

0, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0

100%, 𝑖𝑓 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑣𝑎𝑙𝑢𝑒 = 0 𝑎𝑛𝑑 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 = 0

 

   (3.4) 

The results of the temporal analysis of human mobility are presented in line charts with a 

trend line where the horizontal axis is the date, the vertical axis represents the percentage change 

in human mobility for each land use type. 

The regional data obtained from the Google Community Mobility Report are used to create 

line charts based on the different regions to show trends in human mobility. The same or similar 

class are selected for comparison with the trends derived using the Twitter data. 

 

3.4 Chapter Summary 

 

In this chapter, the methodology of spatiotemporal analysis of human mobility change 

based on land use data is presented in detail. The workflow of spatiotemporal analysis includes 
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three main steps: data preprocessing, spatial join, and human mobility change calculation. In data 

preprocessing, geotagged tweets are stored in different datasets based on their posting time. Land 

use data are reclassified and merged to fit the requirement of spatial and temporal analysis in 

ArcGIS Pro. After spatial join the geotagged tweets with land use polygons or types, the baseline 

value of monthly, weekly, and daily analysis is calculated using mean, median, and dynamic 

baseline matrix. Finally, the human mobility change is calculated using proposed equations.  
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Chapter 4  

Results and Discussion 

This chapter presents and discusses the results obtained using proposed methodologies. 

Section 4.1 presents the monthly spatial analysis results and discusses how the human mobility 

change among the pandemic severeness. Section 4.2 shows the weekly spatial analysis results in 

7 stages with different policies. Furthermore, Section 4.3 presents the daily temporal analysis 

results. The results are compared to Google Community Mobility Report and discussed the 

possible reasons of differences in this section. Section 4.4 summarizes this chapter. 

4.1 Monthly Spatial Analysis based on Land Use Polygons 

 The results of the monthly analysis of human mobility based on land use polygons in the 

GTA are shown in Figures 4.1 to 4.5. Each figure shows the results of two months from March to 

December 2020, respectively. A deeper blue colour means the human mobility decreased more, 

and a deeper red colour means the human mobility increased more. 

According to the daily epidemiological summary published by Public Health Ontario 

(Public Health Ontario, 2020), the 2020 pandemic has three phases. The first outbreak peaks in 

April 2020. July and August are a recovery period with relatively few confirmed cases. The second 

outbreak begins in September 2020 and continuously growths until mid-January 2021 then 

gradually decreases. As shown in Figure 4.1, human mobility in most areas is basically remain the 

same during 2020, with the exception in Toronto, Vaughan and Brampton. The first response to 

the COVID-19 pandemic is introduced in mid-March 2020, when the human mobility in the GTA 

begin to fluctuate. Two residential areas in Vaughan and Richmond Hill experiences the change in 

human mobility exceeding 100%, otherwise, most urban areas except open spaces have their 

human mobility changes limited to 25% more or less. Rural areas and inner-city open spaces show 
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increases in human mobility, in some places by more than 75% or even 100%. Toronto Pearson 

International Airport shows a 40% human mobility reduction in March. In late January 2020. the 

Canadian government issued a travel advisory, and Air Canada discontinued all direct flights to 

China. 

 According to the report, April is the most severe time of the first outbreak. Provincial parks, 

and outdoor recreation areas including beaches, playgrounds, sports fields, picnic areas and a 

portion of community parks are closed, but remain some other parks, trails, ravines and reserves 

for residents to walk. Human mobility in some conservation areas in the northern part of the GTA 

declines by more than 75%. In contrast, open spaces around the city have at least 50% increases 

in human mobility. In addition, downtown Toronto, Mississauga's downtown core, Oshawa's 

downtown, and the commercial areas of Vaughan and Richmond Hill have no less than 60% 

decreases in human mobility. No less than 25% decreases in human mobility are observed in the 

industrial areas of Vaughan and Richmond Hill. Reductions in human mobility are also observed 

in the work zones of Brampton, Mississauga and Oshawa, but the actual human mobility 

fluctuations may not be statistically significant due to the small baseline value. The human 

mobility at the transportation utility decreases very quickly during the first outbreak, almost 

doubling in April when human mobility decreases by almost 80% compared to March when it 

decreases by only about 40%. Even human mobility on provincial highways reduce to about 50%. 

This may be because people no longer need to commute to work or school and cancel their travel 

plans because of health concerns. 
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Figure 4.1 Monthly human mobility change pattern between March and April 2020. 
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Figure 4.2 Monthly human mobility change pattern between May and June 2020. 
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Figure 4.3 Monthly human mobility change pattern between July and August 2020. 
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Figure 4.4 Monthly human mobility change pattern between September and October 2020. 
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Figure 4.5 Monthly human mobility change pattern between November and December 2020. 
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The warmer weather is a shock to the virus in the summer. As a result, a recovery program 

starts in Ontario while the number of confirmed cases gradually declined. The recovery of human 

mobility in commercial areas receives some success in early July. It is observed that in downtown 

Mississauga, human mobility increases by about 20% in July compared to its April level, and by 

September is essentially at the same level as it before the outbreak. Human mobility in Vaughan's 

commercial areas reaches a stage peak in July but is still 43% lower than that before the outbreak. 

However, it does not continue to vary with the confirmed case number in the second half of the 

year, instead experiences a fluctuation and finally stabilized at around -56%. Human mobility in 

the Richmond Hill commercial area is more sensitive to the severity of the COVID-19 pandemic. 

After the April peak, human mobility recovers significantly in May, but shrink at the same time as 

a small rebound in June. As the number of confirmed cases fall in July and August, human mobility 

in the commercial area is slowly recovered. The lowest point of this period reaches in September, 

when roughly 40% of human mobility is restored. The reduction of human mobility in the 

downtown Toronto commercial areas also decreases gradually with the recovery plan, which can 

be seen to cross a color class over several months. Due to the scattered land use classification, it 

is not consolidated to calculate the trend. 

 As the weather warmed up, parks and green spaces become an ideally place for people to 

relieve the stress of the COVID-19 pandemic while keeping a social distance. In July, some 

environmental areas in the City of Toronto have a change in human mobility exceeding 500%. 

Another interesting observation is that human mobility on some agricultural lands increases from 

June to October and starts to fall back until November. The trend curve for the COVID-19 

pandemic, on the other hand, has rising rapidly since September and has already surpasses the 

peak of the first outbreak in October. There are even some agricultural lands that had a growing 
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human mobility during the first outbreak in April 2020. This shows that the difference between 

human mobility change patterns on agricultural land and the COVID-19 pandemic spread patterns 

cannot be explained simply by a potential lag time. After reviewing Ontario's harvest schedule 

(Foodland Ontario, n.d.), we find that June to October is the main harvest period for crops in 

Ontario. During this period, tourism and jobs developed from harvesting may be an important 

factor that determines the human mobility change patterns on agricultural lands. 

 The human mobility change patterns observed in December are broadly the same as it in 

April. However, without the restrictions placed on provincial parks and others in April, more 

environmental areas are observed to have increased human mobility in December. The majority of 

open spaces within the City of Toronto exhibits an increase in human mobility in excess of 100%. 

Unlike the performance of inner-city open space, agricultural lands experience a sharp decline in 

human mobility due to the harvest schedule. Also, although the second outbreak is much more 

severe than the first, the figure shows that the human mobility change in the Vaughan residential 

area gradually decreases from September onwards, whereas the human mobility change in the 

Richmond Hill residential area, just down the street, continue to increase from September onwards.  

 

4.2 Weekly Spatial Analysis based on Land Use Polygons 

Prior to this, we assume the human mobility change is not only be influenced by the 

severity of the COVID-19 pandemic, but also policies updates. Analysis on a monthly scale does 

not provide a strong explanation of changes in human mobility before and after policy 

implementation, and therefore a finer temporal granularity is needed to help understand the 

effectiveness of the policy. Figures 4.6 to 4.10 represent weekly human mobility changes over a 

seven observation windows based on the policy releases, for a total of 17 discrete weeks, between 
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March 13 and December 31. 

 

Figure 4.6 Human mobility changes in the second stage from March 13 to April 2. 

 

Figure 4.6 presents the change in human mobility over the first three weeks. The first week 

shows an increase in human mobility in the open spaces and residential areas, mostly above 75%. 

There is a decrease of approximately 20% in human mobility in the commercial areas prior to the 

pandemic, with some exceptions, which may be due to the rush for necessities. Human mobility 

in the employment areas is also reduced from pre-pandemic period, but less significantly. The 

order to close provincial parks is issued at the end of the first week. It makes the human mobility 

in some open spaces decreases compared to the previous week, while others increase in the second 

week. Also, schools are continuously closed, and some non-essential businesses are shut down, 
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forcing people to stay at home to stop the spread of the COVID-19 pandemic. Human mobility in 

institutional and commercial areas continuously declines to less than a half before the outbreak. 

More outdoor recreation facilities are closed during the third week. Human mobility at a beach in 

Scarborough is decreased, meanwhile, there is an increase in nearby residential areas. 

 

Figure 4.7 Human mobility changes in the second stage from May 8 to 28. 

 

The fourth observation week allows retail stores to curbside pick-up, but human mobility 

in commercial areas is still far worse than it before the pandemic. Provincial parks are allowed to 

reopen, as a result, some open spaces receive a significant increase in human mobility, even 

surpassing the pre-pandemic level more than one times. More outdoor amenities are opened in 

Week 5, and beaches, parks with campgrounds become popular destinations, and even the 

highways that connect them have a significant increase in human mobility. In addition, human 
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mobility in commercial areas gradually returns to around 40% of pre-pandemic levels during the 

week. Increased human mobility is in more residential areas within the City of Toronto in Week 6, 

but it is difficult to interpret this based on the policy of the recovery period. Thus, this anomalous 

increase may related to the discussions of the deaths of Regis Korchinski-Paquet (Special 

Investigations Unit, 2020) and George Floyd (The New York Times, 2022). 

 

Figure 4.8 Human mobility changes in the third stage from June 12 to 25 (upper two) and it in the 4th stage from July 

24 to August 6 (lower two). 

 

The GTA is fully in Stage 2 in Weeks 7 and 8 and in Stage 3 in Weeks 9 and 10. Greater 

human mobility than pre-pandemic level is observed in the commercial area in some cities in the 

Durham Region, York Region and Halton Region in Week 7. The commercial areas of Toronto and 

Markham, Richmond Hill are also gradually recovering, but they are not reaching pre-pandemic 
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levels yet. A trend towards increased human mobility in the commercial areas within Toronto is 

observed in Week 8. The highways through Toronto also recover to half of their pre-pandemic 

level of human mobility. Human mobility in some residential areas is slightly less than before the 

pandemic. By Week 9, the highways almost recover to pre-pandemic human mobility, and human 

mobility in the commercial areas of Vaughan and Richmond Hill have returned to nearly 60%. The 

highways through the City of Toronto have less human mobility in Week 10, but the highways to 

downtown Toronto show more human mobility. Downtown Toronto has more human mobility than 

in Week 9. 

Human mobility increases in residential areas and open spaces during Week 11. Human 

mobility in commercial areas drops to 50% of its original level in Week 12. Highway 401 

experiences an increase in mobility, but the roads and railways leading to downtown Toronto are 

emptier than before. Other cities also show a significant increase in residential area and a decrease 

in commercial area. Nevertheless, there are some rural areas in the Durham Region that received 

more visitors. The industrial areas of Vaughan experience a significant mobility decrease in Week 

13. Residential areas in the City of Toronto and Brampton show an increase in mobility. However, 

the open spaces in western Toronto have decreases in human mobility. Week 14 features a 

somewhat different change. Human mobility decreases in the residential areas of Vaughan and the 

southern part of Toronto. However, it increases in the rural and environmental areas of the 

surrounding cities, as well as in open spaces within the City of Toronto. 
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Figure 4.9 Human mobility changes in the 4th stage from September 18 to October 15. 

 

There is still a human mobility growth in Week 15 in rural areas of the cities surrounding 

Toronto and in Toronto's open spaces. Human mobility in commercial areas declines to less than 

50% of pre-outbreak levels. Less than 25% mobility is observed on main transportation routes in 

York Region and over 50% reduction in highway mobility within the City of Toronto, but over 25% 

growth in mobility is observed on Queen Elizabeth Way (QEW) within the City of Oakville. York 

Region and Peel Region residences show increases in mobility. Week 16 experiences a 50% 

decrease in mobility in the York Region's commercial areas. Human mobility in rural and 

environmental areas reduce compared to Week 15. More residential areas within the City of 

Toronto show an increase in human mobility. The QEW in Oakville experiences continuously 

increased human mobility. Some residential areas in Brampton no longer show an increasing trend 
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in human mobility. 

Week 17 is another independent observation period. Human mobility increases in some 

rural areas. Residential areas in Vaughan show an increase in human mobility over 100%. 

Commercial areas in the Durham Region show a decreased human mobility for more than 50%. 

More residential areas in the City of Toronto show a decrease in mobility than those showing an 

increase in mobility. Residential areas in Brampton show a decline in mobility as well. 

 

Figure 4.10 Human mobility changes in the 6th stage from November 6 to 12 (upper two) and it in the 7th stage from 

December 25 to 31 (lower one). 

 

4.3 Daily Temporal Analysis based on Land Use Types 

 The daily human mobility change analysis uses a dynamic baseline matrix applied to the 6 

major land use types in the GTA. Figure 4.11 shows the changes in human mobility for these land 
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use types. The black line is the day-by-day human mobility derived using the Twitter data, and the 

red line is the trend line after Gaussian kernel smoothing, which is a type of weighted moving 

average that gives the values closer to kernel a higher weight when calculating the average. All 

trend charts in this section are presented in this style and will not be explained repetitively in the 

subsequent sub-sections. 

Human mobility in residential areas rises 20% in the first outbreak, then declines and 

stabilizes around baseline levels from May to June. There is a slight decline of less than 10% on 

average from August to the November 2020, although there are fluctuations in November. There 

is a significant drop in December and there is no significant rebound until the lockdown after the 

boxing day. Human mobility in the commercial areas trends upward prior to the first outbreak but 

declined significantly during the first outbreak. After that, it remains at a slightly lower level than 

the baseline value, with an average decline of less than 10%. Both October and December see 

varying degrees of decline and bottlenecks until reaching the lowest point at Christmas. Human 

mobility in employment areas is reduced to less than 70% of the baseline value during the first 

outbreak. It then rebounds marginally as the number of new confirmed cases decrease but is still 

nearly 30% below the baseline value. With the growth of the second outbreak, human mobility in 

the employment areas decreases again until the end of 2020. Human mobility in the institutional 

areas declines significantly in late March, continuously declining to below 70% of the baseline 

value by the end of 2020. During the first outbreak, a significant decrease in human mobility in 

open spaces is observed, afterwards, a significant weather and severity driven change is observed, 

even weather becoming the primary driver instead of the pandemic severeness. This is similar to 

the trend observed in previous monthly analyses, where the warmer the weather, the more people 

engage in outdoor activities, and as temperatures cooled, human mobility in open spaces declines. 
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Figure 4.11 Daily Human mobility change in six land use types in the Greater Toronto Area from March to 

December 2020. 

 

 The changes in human mobility in the utility and transportation areas combine the trends 

in the commercial, employment, institutional, and open space areas. It shows an increase in human 

mobility in the second half of March and then decreases until May, which is consistent with the 

trend in institutional areas. There is a brief rebound from June to August, similar to the human 

mobility change in open spaces. Around 80% of baseline values are stabilized in September and 
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October, with a significant pickup from mid to late October. A small peak is observed at 

Thanksgiving and a large peak is observed at Halloween, presumably resulting in a different travel 

demand due to different holiday habits. December is a new low-mobility period, with a decrease 

of around 30% in human mobility in the utility and transportation areas. The increase is more likely 

to the pre-Christmas trend in the employment areas. The last week of 2020 shows a rebound in 

human mobility in utility and transportation areas, probably because open spaces become better 

choices of trip destinations after the lockdown order between December 26, 2020, and January 23, 

2021. 

 

4.3.1 City of Toronto  

A total of four land use types in the City of Toronto, residential, employment, open space, 

and utilities and transportation areas, are selected to compare with the Google Community 

Mobility Report. Figure 4.12 illustrates the daily human mobility changes in Toronto from March 

to December 2020 derived by Twitter compared to the daily mobility changes provided by Google. 

The left column charts represent the human mobility change by land use type calculated from tweet 

data, and the right column charts represent the change provided from Google mobility data. 

As shown in Figure 4.12, Twitter-derived human mobility in the residential areas trends 

upward at the beginning of the first outbreak but declines in April and then stabilizes consistently 

at about 120% of the baseline level for several months until November. There is a brief rebound 

in the week of the lockdown. A peak occurs in late-June, but it is not supported by Google's 

mobility report. It can be determined that this peak may be due to some hot topics that caused 

people to discuss more on social medias, which can only represent more stay-at-home people 

posting tweets during this period, but do not represent more people visited residential areas.  In 
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contrast, Google Community Mobility Report indicates that even though a downward trend began 

in April, the residential human mobility still 20% above the baseline value. A significant weather-

driven change in human mobility can be seen in the rest of the year, reaching a valley in July and 

August and rebounding by December to slightly below the baseline level.  

Human mobility in employment areas calculated from tweet data observes the same trends 

as in the Google report, only some different in ranges. Human mobility calculated using the number 

of tweets decreases by 40% in the first outbreak, while Google shows a 60% decrease in that period. 

Although human mobility tends to increase or decrease depends on the confirmed cases number 

after the first outbreak, human mobility derived by Twitter decreases on average by 30%, while 

human mobility provided by Google decreases by about 50% compared to the baseline value. 

Similar trends between Twitter-derived pattern and Google provided pattern are also found within 

the open space in Toronto, but the range of variation calculated using the tweet data is still smaller 

than that provided by Google. 

Similar decreasing trends in human mobility are observed in the utility and transportation 

zones during the first outbreak, with less apparent weather-driven trends observed in the rest of the 

time. The uncertainty of the tweets data causes large fluctuations in the human mobility change 

patterns. 
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Figure 4.12 Daily human mobility change in four land use types in the City of Toronto. 
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4.3.2 Peel Region  

The Peel Region also has four land use types, residential areas, employment areas, open 

spaces, and utilities and transportation areas, can be used to validate against the Google 

Community Mobility Report. As shown in Figure 4.13, similar trends of most land use types used 

for comparison are observed. The difference is that their range of variation is generally smaller 

than the data provided by Google. 

A significant upward trend in residential human mobility in the Peel Region is observed 

during the first outbreak, but afterwards it declines continuously until 10% less than the baseline 

level. As the winter come, there is a slight increase in human mobility in the residential area, but 

it falls sharply again in December. Google mobility trend also shows a seasonal variation, it is 

always about 10% higher than the baseline value even in summer. The potential reason of this 

phenomenon is that people to lose something interesting in their lives, so the desire to share 

decreases tremendously, which leads to a lower human mobility in residential areas during the 

pandemic rather than the pre-pandemic level. Changes in human mobility in employment areas are 

closer to that provided by Google. Both observe a cliff-like decline during the first outbreak, after 

that a slight seasonal variation was found, but basically fluctuated around 50% of the baseline 

value. Human mobility in open spaces shows a significant downward trend during the first 

outbreak, also followed by a seasonal variation. Human mobility in open space calculated by tweet 

number is essentially equal to the baseline value from June to October, but the seasonal variation 

found by Google brings human mobility up to nearly twice the baseline value. Human mobility in 

the utilities and transportation areas experiences a significant decline during the first outbreak, 

then remains stable at less than 50% of the baseline value.  
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Figure 4.13 Daily human mobility change in four land use types in Peel Region. 

 

The human mobility in the utility and transportation areas is related to travel demands, thus, 
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the intensity of seasonal impacts on it is related to the seasonal variance in employment areas and 

open spaces. The pattern of human mobility change calculated using the number of tweets does 

not reflect strong seasonal variation in both employment areas and open spaces, so it is difficult to 

see the seasonal variation in utilities and transportation areas. In contrast, Google exhibits strong 

seasonal variances in the mobility change in employment areas and open spaces, the seasonal 

effects on utility and transportation areas can be found more easily. 

 

4.3.3 York Region 

 

Figure 4.14 Daily human mobility change in three land use types in York Region. 
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There are three land use types in York Region that can be used for comparison with the 

Google Community Mobility Report, residential areas, employment areas, and utility and 

transportation areas, respectively. The changing patterns of human mobility in York Region and 

the comparison results are shown in Figure 4.14. 

Human mobility in the York residential areas rises rapidly during the first outbreak, but 

then falls rapidly and remained below baseline values. No significant seasonal variation is 

observed. Two peaks in human mobility are found in the employment area, occurring in April and 

October, and a valley in July. In contrast, Google finds a more easily explained change pattern. 

There is a significant decrease during the first outbreak and then a gradual recovery to about 70% 

of the baseline value, with the Christmas holidays and lockdown causing a significant decrease in 

human mobility in the employment areas. Compared to other regions where have explainable 

human mobility changes in employment areas, this phenomenon may be due to the separation of 

industrial and employment areas in land use classification. Employment areas in other regions are 

typically larger than industrial areas, however, the industrial area in York Region is significantly 

larger than employment area. Therefore, this pattern may not be representative of overall working 

conditions of York Region residents. 

 

4.3.4 Halton Region 

 A total of four land use types are selected for validation in the Halton Region, residential 

areas, employment areas, open spaces, and utilities and transportation areas. Figure 4.15 shows the 

variation in human mobility on those four land use types, with similar change patterns found on 

most of the land use type. 

 As shown in Figure 4.15, human mobility in the Halton residential areas rises 40% during 
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the first outbreak, which is higher than the results from the Google Community Mobility Report. 

However, it does not remain at a higher level after the first outbreak, but slowly declines below 

the baseline. Human mobility calculated using the tweets number does not observe an upward 

trend after September. Google Community Mobility Report only found a marginally rebound less 

than a 5%, which is used to be 10% or more in other regions, so that the seasonal impact on human 

mobility in the Halton residential areas is too small to find easily. 

Human mobility in the employment area rapidly decreases to below 50% of the baseline 

value during the first outbreak. This is followed by a quarterly change, rising between April and 

June, but then falling rapidly again in early July, with the process repeating again from July to 

September. This pattern is also reflected in the Google Community Mobility Report, but it is hard 

to detect. Currently, there is no information can explain this phenomenon yet. There is no 

significant trend is found for human mobility in open spaces calculated by the tweets number, but 

Google found a decrease during the first outbreak and seasonal impacts in the rest of the year. 

Human mobility derived from Twitter was broadly above the baseline value between May and 

October, and a significant increase was found in May, with a relatively significant downward trend 

also found after September. The reason for this phenomenon may be due to low data volume, which 

causes dramatically fluctuations. The human mobility change pattern in Halton utility and 

transportation areas is not similar to what is reported by Google, but rather closer to the trend in 

residential areas. Upon checking the map, the utility and transportation areas in land use maps are 

closer to residential areas. Therefore, the human mobility trends in utility and transportation areas 

are similar to the trend in residential areas. 
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Figure 4.15 Daily human mobility change in four land use types in Halton Region. 
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4.3.5 Durham Region 

Durham Region provides three land use types to verify, which are residential areas, 

employment areas, and utilities and transportation areas, respectively. Figure 4.16 presents the 

pattern of human mobility change calculated by the tweets number and the change pattern provided 

by Google, respectively. 

 

Figure 4.16 Daily human mobility change in three land use types in Durham Region. 

 

The chart demonstrates that human mobility in the Durham residential areas remains at 

approximately 50% above the baseline value since the first outbreak until September. Also, a slight 
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seasonal variation is observed with a slight decrease from June to August and a rebound from 

September to December. Human mobility in the employment area decreases to below 50% of the 

baseline value during the first outbreak while Google report shows only a 40% decrease in human 

mobility. Both Google-reported and twitter-derived human mobility patterns find an upward trend 

after June. However, Twitter-derived human mobility declines significantly after September while 

Google mostly remains constant. No significant trends are observed in human mobility in the 

utilities and transportation areas. Human mobility is primarily above the baseline value of 

approximately 50% in the first half of the year and falls back to above the baseline value in the 

second half of the year. Viewing the map of land use types identifies that Durham's utilities and 

transportation areas cover only a few of the city's road network and utilities. Therefore, the results 

produce a large inaccuracy with the Google Community Mobility Report.  

 

4.4 Chapter Summary 

This chapter addresses monthly and weekly spatial changes in human mobility based on 

land use polygons, and daily trends in human mobility based on land use types and dynamic 

baseline matrices. The roles are to explore how human mobility on land use polygons within the 

GTA is affected by pandemic severity, by policies, and to validate and identify issues with the 

Google Community Mobility Report, respectively. 

Human mobility is found to be influenced by new confirmed cases in most areas in the 

monthly change patterns. Human mobility in residential areas increases significantly during the 

first outbreak. Then it decreases as the weather turned warmer and rebounds at the arrival of winter. 

Human mobility in some outdoor amenities declines during the first outbreak due to policy 

restrictions, but areas such as parks that remains open experiences a significant increase in human 
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mobility. Human mobility in open spaces and rural areas show a significant seasonal increase from 

June to October. The qualities of open space and rural areas that allow for outdoor activities while 

keeping social distances make them be good destinations for trips during the pandemic. Human 

mobility in employment and institutional areas is typically lower than the baseline value during 

2020 due to the shift to online teaching and work from home for all schools and non-essential 

businesses starting in late March. Thus, although the confirmed case number are relatively low 

during the summer, human mobility in employment areas and institutional areas are generally 

lower than before the pandemic. Human mobility in commercial areas is more sensitive to changes 

in the number of confirmed cases and policies, which receive a visible response almost within a 

week after release a new policy. Essential retail stores remain open even during the most severe 

period of the pandemic and provide curbside pickup and delivery services to stores. Therefore, the 

decline in human mobility in commercial areas is limited to a relatively small amount. The human 

mobility change in the utilities and transportation areas within the GTA depends mainly on what 

kind of land use types it connects to. Taking Highway 401 within the City of Toronto and the QEW 

within the Halton Region as examples, human mobility change on the road that connects open 

spaces and residential areas depend on the human mobility change in those areas. The number of 

commuters is significantly reduced in 2020, which leads to the human mobility in the utility and 

transportation areas is generally lower than the baseline value. 

From the weekly study, most areas respond to the policy implementation within a week. It 

proves that most policies play a role in the fight against the pandemic, but some policies, such as 

limiting the number of people gathering, does not get a significant reflection in human mobility. 

While analyzing daily human mobility change patterns and comparing them with the Google 

Mobility Report, common patterns of mobility change are found for most land use types. Pearson 
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correlation coefficients were attempted to be calculated to verify whether Twitter-derived human 

mobility obtained similar results to Google Community Mobility Report. Most land use types in 5 

regions have a Pearson correlation coefficient between 0.1 to 0.4 where the p-value is less than 

0.05, which means moderate positive correlations between Twitter- and Google-derived temporal 

human mobility patterns. Due to the sharing properties of tweets, the range of human mobility 

changes calculated using the tweets number is always smaller than that shown in the Google 

Community Mobility Report. In addition, differences in land use classification led to differences 

between the human mobility change patterns calculated by the tweets number and those provided 

by Google. Some additional information such as population and industrial structure are needed to 

explain those differences. Based on the charts of Google Mobility Report, differences between 

weekdays and weekends are more frequent. There are some spikes appear on public holidays, 

which means the human mobility during the public holidays is significantly different from the 

norm. However, those spikes impact the smoothed results. Comparison with the results of Jiang et 

al. (2021) found, the human mobility change patterns within the GTA using geotagged tweets are 

not identical to those found in New York City and are generally smaller in magnitude. These 

differences may be due to the demographic characteristics of New York are different from the GTA, 

and the division of land use types may also be different. 
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Chapter 5  

Conclusions and Recommendations 

5.1 Conclusions 

 In this thesis, the number of geotagged tweets is used to explore human mobility changing 

patterns based on either land use polygons or land use types in the GTA. Baseline data is selected 

from pre-pandemic period, which is January and February 2020. The mean and median are used 

to calculate monthly and weekly human mobility changes. A dynamic baseline matrix based on 

land use types is drawn upon to calculate the daily baseline values in order to facilitate comparison 

with the Google Community Mobility Report. 

 The analysis of monthly human mobility change patterns observed that the patterns are 

generally consistent with those found in previous studies. In the GTA, human mobility increases 

20% rapidly then quickly fall down to pre-pandemic level during the first outbreak. Employment 

area and commercial area experiences a 30% and 10% decrease in human mobility, respectively. 

Human mobility in institutional areas and utility and transportation areas continuously decrease 

until 40% at the end of 2020. A special finding is that human mobility changes in open space and 

rural areas are also related to weather when there are no strict policies. In contrast to the results of 

human mobility in New York City, the human mobility patterns within the GTA and each region 

are similar, but rarely show a decline of more than 60%, even during the first outbreak, which is 

the most severely affected by the pandemic (Jiang et al., 2021). Despite some differences in the 

results, the epoch of this study provides a supplement to the human mobility change patterns during 

the second outbreak. 

Most of the policies receive a relatively strong response in human mobility within one 

week. Human mobility in Weeks 1 to 10 responds quickly to new policy releases. The new policies 
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issued for the second outbreak are relatively mild. As a result, it is difficult to observe significant 

changes in human mobility as reflected in these relatively mild policies. According to statistics 

provided by the Canadian government, the type of virus that caused the first two outbreaks are the 

same. The difference is that indoor contact rates may be the reason that cause the second outbreak 

being more severe than the first (Public Health Agency of Canada, 2022). Most policies for the 

second outbreak are also aimed at reducing indoor contacts, but they are too mild to control the 

transmission of the COVID-19 pandemic. Combining the human mobility changes in Stages 5 and 

6, we can speculate that the more moderate policy did not strongly block the spread of the COVID-

19 pandemic. Besides, the human mobility changes in the 7th stage observed a decrease in 

residential areas in some cities, which is conflict with theoretical results. Therefore, we assumed 

that the human mobility in Stage 7 not only influenced by policies but also by holidays. 

The daily human mobility analysis provides human mobility change patterns across land 

use types within the GTA and each region. The first outbreak has a higher impact on human 

mobility for all land use types than the second. In general, human mobility changes in residential 

areas decreased after a rapid rise in the first outbreak. Human mobility in employment areas 

declines and then stays low. Human mobility in open spaces declines significantly during the first 

outbreak, but it is subsequently influenced by weather. Most human mobility trends calculated by 

the tweets number are similar to those provided by Google, but the magnitude is generally smaller 

than it provided by Google. The human mobility in utility and transportation areas is different from 

Google except the Peel Region, which may be due to the different land use classification. The 

closure of non-essential businesses or repetitive life routines may result in decreased sharing desire.  

 Overall, Twitter, a more accessible data source with high timeliness and few privacy 

concerns, obtains human mobility change patterns close to Google, especially in the early stages 
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of the pandemic. In addition, human mobility derived using geo-tagged tweets can indicate the 

strictness and effectiveness of the policy. However, more variables should be comprehensively 

considered to determine whether the policy is applicable to the current situation. Some limitations 

to the present used approach will be described in detail in the next subsection, it makes a 

foreshadowing for crisis response and public health in future, especially for timely assessment of 

crisis and policy effectiveness. 

 

5.2 Limitations  

 Although the research objectives of this thesis have all been achieved, there are still some 

limitations and space for improvement in both data and methods used at present, mainly in data 

quality and algorithm. 

The first is that in cross-municipality studies, the quality of data provided by different 

municipalities varies greatly. Since the GTA is not an official authority, most of the land use data 

used in this study are provided by the government of each municipality. This makes the quality of 

land use data inconsistent. Some municipalities have not finish digitizing and interacting their land 

use data, the only way to collect data is to find land use data from higher-level administrative areas 

that cover the region, such as Caledon. This results in coarser land use data in a small part of cities, 

and detailed land use data in others.  In addition, most cities are not merged their land use data to 

multi-polygon features, which allows researchers to observe more details such as human mobility 

increased in parks that remained open after the closure of provincial parks. A small number of 

cities, such as Vaughan and Richmond Hill, merged their land use data, so only the average human 

mobility change on that land use type can be observed.  

Next limitation is because of the nature of social media data. Sampling bias in social media 
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data are proposed in almost all studies that use social media data. Social media user groups usually 

bias toward to younger users. The detailed user ratio dependent on demographic variables such as 

age, income, ethnicity, and educational level. Some aging and marginalized groups use social 

media in a less frequency (Zhang et al., 2021). In Canada, young people aged from 18 to 24, and 

from 25 to 34 are two main Twitter user groups, 65% and 54% of these two age groups have Twitter 

accounts respectively. While older people have less penetration rate on Twitter, only 27% of people 

aged greater than 55 have a Twitter account. Annual household income between $60,000 and 

$99,999 are most likely to use Twitter, as well as people with a bachelor’s degree or higher (49%) 

(Gruzd & Mai, 2020). It is difficult to recognize the real demands of aging and other marginal 

groups in crisis response. In addition to the sampling bias, the data volume from Twitter has also 

been questioned before. The reason is that the number of geotagged tweets is even less than 1% of 

the total tweets. However, due to the large base volume, the volume and velocity of management 

and storage become one of the challenges in processing big data, and collecting sub-sample data 

is a common method to optimize data collection strategies for social science research currently.  

Therefore, only collect geotagged tweets may be reasonable according to Sloan and Morgan (2015). 

Furthermore, the fundamentals of social media are about sharing, but people's desire to share will 

change over time. However, when working from home becomes the norm, people share in a lower 

frequency (Akan, 2022). Combined with the passage of the daily mobility analysis, the results of 

using the tweet count to calculate human mobility in the early stages of the pandemic are more 

similar to the Google Community Mobility Report. 

 For the existing algorithm for daily human mobility analysis, data for the dynamic baseline 

matrix are only taken from the five weeks between January and February 2020. It is not available 

to separately analyze the impact of human mobility by pandemic severity or seasonality for both 
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Google and Twitter yet. As the time period becomes longer, the classification of some locations 

may also change. The sampling range of the baseline matrix should also be updated in time to 

obtain more accurate results. These limitations may provide some ideas to subsequent works, it is 

hoped to improve the results in future. 

 

5.3 Recommendations for Future Research 

Based on the limitation mentioned in the previous subsection, future work can focus on 

improving the data quality and updating the algorithm. The data quality is not uniform across 

municipality as mentioned above. The heterogeneity of land use data across municipalities is 

mentioned above. To address this issue, future work can use a grid or hexagon network with pre-

defined cell size to classify land use according to the main land use types within the cell. Different 

cell sizes can be applied to human mobility studies at different spatial scales. Since the same land 

use types are not merged, it is still possible to observe fine variations between different grids 

instead of assuming that human mobility is evenly distributed among a particular land use type. 

For sampling bias in social media data between different groups, information can be 

collected through other channels as a supplement, such as using social media data commonly used 

by different ethnic groups, or encouraging users from different groups to collect accurate location 

data as volunteers, etc. Expanding data capacity from Twitter can extract textual information from 

tweet contents, for example, if a user posts a tweet about cooking, computer games, etc., we can 

determine whether the user is staying in a residential area based on the context. For the problem 

that share desire changes over time, the percentage of tweets with particular hashtags or contents 

in the total tweets can be calculated to track changes. More specifically, for example, when people 

just begin working from home, calculate the percentage of tweets with "work from home" or 
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"WFH" as part of the total tweets. When work from home becomes the norm, the percentage of 

tweets that mention work from home should calculated again. The difference between two ratios 

represents the change of work from home. 

The existing algorithm using dynamic baseline matrix from January to February 2020 does 

not consider the seasonal change in human mobility. Therefore, the baseline data should be 

changed among the temporal scale to eliminate the seasonal impact on human mobility. For a 

longer study period, a year-on-year comparison may be useful to reduce seasonal effects. Even use 

a regression model calculated by the data from several past years to estimate the human mobility 

in 2020, then compare with the data during the pandemic to extract the effect due to the COVID-

19 pandemic. If future works can obtain better results based on these points suggested above, a 

better understanding of the impact of pandemics on changes in human mobility and a more 

comprehensive assessment of the effectiveness of policies may be available, which may contribute 

to the application of VGI in epidemiology and other crisis response domains. 

  



 69 

 References 

Abouzahra, M., & Tan, J. (2021). Twitter vs. Zika—The role of social media in epidemic outbreaks 

surveillance . Health Policy and Technology, 10(1), 174-181. 

Abrams, D. S. (2021). COVID and crime: An early empirical look. Journal of Public Economics, 

194, 104344-104344. 

Akan, M. (2022, October 12). Working from home in the media - A quick summary. Retrieved April 

2023, from https://www.dropbox.com/s/7qpsrbpgrn350pt/WFH_Oct_11_Mert.pdf?dl=0 

Attard, M., Haklay, M., & Capineri, C. (2016). The potential of volunteered geographic 

information (VGI) in future transport systems. Urban Planning, 1(4).doi: 

https://doi.org/10.17645/up.v1i4.612 

Bai, W., Sha, S., Cheung, T., Su, Z., Jackson, T., & Xiang, Y.-T. (2022). Optimizing the dynamic 

zero-COVID policy in China. International Journal of Biological Science, 18(14), 5314–

5316. 

Basiouka, S., Potsiou, C., & Bakogiannis, E. (2015). OpenStreetMap for cadastral purposes: An 

application using VGI for official processes in urban areas. Survey Review - Directorate of 

Overseas Surveys, 47(344), 333-341. 

Bertuzzo, E., Mari, L., Pasetto, D., Miccoli, S., Casagrandi, R., Gatto, M., & Rinaldo, A. (2020). 

The geography of COVID-19 spread in Italy and implications for the relaxation of 

confinement measures. Nature Communications, 11(1), 4264-4264. 

Bisanzio, D., Kraemer, M. U., Bogoch, I. I., Brewer, T., Brownstein, J. S., & Reithinger, R. (2020). 

Use of twitter social media activity as a proxy for human mobility to predict the 

spatiotemporal spread of COVID-19 at global scale. Geospatial Health, 15(1), doi: 

10.4081/gh.2020.882. 



 70 

Brail, S., & Kleinman, M. (2022). Impacts and implications for the post-COVID city: the case of 

Toronto. Cambridge Journal of Regions, Economy and Society, 15(3), 495–513. 

Brown, G., McAlpine, C., Rhodes, J., Lunney, D., Goldingay, R., Fielding, K., . . . Vass, L. (2018). 

Assessing the validity of crowdsourced wildlife observations for conservation using public 

participatory mapping methods. Biological Conservation, 227, 141-151. 

Cascetta, E. (1984). Estimation of trip matrices from traffic counts and survey data: A generalized 

least squares estimator. Transportation Research. Part B: Methodological, 18(4), 289-299. 

Cascetta, E., & Nguyen, S. (1988). A unified framework for estimating or updating 

origin/destination matrices from traffic counts. Transportation Research. Part B: 

Methodological, 22(6), 437-455. 

Cascetta, E., Inaudi, D., & Marquis, G. (1993). Dynamic estimators of origin-destination matrices 

using traffic counts. Transportation Science, 27(4), 363-373. 

Chen, T., Hui, E., Wu, J., Lang, W., & Li, X. (2019). Identifying urban spatial structure and urban 

vibrancy in highly dense cities using georeferenced social media data. Habitat 

International, 89, 102005. 

Chiesa, V., Antony, G., Wismar, M., & Rechel, B. (2021). COVID-19 pandemic: Health impact of 

staying at home, social distancing and ‘lockdown’ measures - A systematic review of 

systematic reviews. Journal of Public Health, 43(3), e462–e481. 

Chinazzi, M., Davis, J. T., Ajelli, M., Gioannini, C., Litvinova, M., Merler, S., . . . Longini Jr., I. 

(2020). The effect of travel restrictions on the spread of the 2019 novel coronavirus 

(COVID-19) outbreak. Science, 368(6489), 395-400. 

Crawley, M. (2020, May 27). COVID-19 in Ontario is now primarily a Toronto-area problem, 

figures show. CBC News. Retrieved from 



 71 

https://www.cbc.ca/news/canada/toronto/covid19-ontario-gta-coronavirus-new-

infections-1.5584693 

Dainton, C., & Hay, A. (2021). Quantifying the relationship between lockdowns, mobility, and 

effective reproduction number (Rt) during the COVID-19 pandemic in the Greater Toronto 

Area. BMC Public Health, 1658-1658. 

Díaz, C., Fossati, S., & Trajtenberg, N. (2022). Stay at home if you can: COVID‐19 stay‐at‐home 

guidelines and local crime . Journal of Empirical Legal Studies, 19(4), 1067-1113. 

Fang, H., Wang, L., & Yang, Y. (2020). Human mobility restrictions and the spread of the Novel 

Coronavirus (2019-nCoV) in China. Journal of Public Economics, 191, 104272. 

Feick, R., & Roche, S. (2012). Understanding the value of VGI. Crowdsourcing Geographic 

Knowledge (pp. 15-29). Springer. 

Ferster, C. J., Nelson, T., Robertson, C., & Feick, R. (2018). 1.04 - Current themes in volunteered 

geographic information. Comprehensive Geographic Information Systems (pp. 26-41). 

Elsevier. 

Foodland Ontario. (n.d.). Availability guide. Retrieved Apr 1, 2023, from 

https://www.ontario.ca/foodland/page/availability-guide 

Gesualdo, F., Stilo, G., D'Ambrosio, A., Carloni, E., Pandolfi, E., & Velardi, P. (2015). Can twitter 

be a source of information on allergy? Correlation of pollen counts with tweets reporting 

symptoms of allergic rhinoconjunctivitis and names of antihistamine drugs. PloS ONE, 

10(7), e0133706-e0133706. 

Gruzd & Mai. (2020). The state of social media in Canada 2020. Ryerson University Social Media 

Lab. Version 5. DOI: 10.5683/SP2/XIW8EW 

Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 



 72 

69(4), 211-221. 

Google. (2022). COVID-19 community mobility reports. Retrieved July 10, 2022, from 

https://www.google.com/covid19/mobility/ 

Goranson, C., Thihalolipavan, S., & Tada, N. d. (2013). VGI and public health: Possibilities and 

pitfalls. In Crowdsourcing Geographic Knowledge (pp. 329-340). Dordrecht: Springer. 

Habibi, Z., Habibi, H., & Mohammadi, M. (2022). The potential impact of COVID-19 on the 

Chinese GDP, trade, and economy. Economies, 10(4), 73. 

Hall, J. P., Kim, T. J., & Darter, M. I. (2000). Cost-benefit analysis of geographic information 

system implementation: Illinois Department of Transportation. Transportation Research 

Record, 1719, 219-226. 

Haworth, B. T. (2018). Implications of volunteered geographic information for disaster 

management and GIScience: A more complex world of volunteered geography. Annals of 

the American Association of Geographers, 108(1), 226-240. 

Haworth, B. T., Bruce, E., Whittaker, J., & Read, R. (2018). The good, the bad, and the uncertain: 

Contributions of volunteered geographic information to community disaster resilience. 

Frontiers in Earth Science, 6. doi: 10.3389/feart.2018.00183 

Haworth, B., Whittaker, J., & Bruce, E. (2016). Assessing the application and value of participatory 

mapping for community bushfire preparation. Applied Geography, 76, 115-127. 

Heo, S., Lim, C. C., & Bell, M. L. (2020). Relationships between local green space and human 

mobility patterns during COVID-19 for Maryland and California, USA. Sustainability, 

12(22), 9401. 

Hicks, A., Barclay, J., Chilvers, J., Armijos, M. T., Oven, K., Simmons, P., & Haklay, M. (2019). 

Global mapping of citizen science projects for disaster risk reduction. Frontiers in Earth 



 73 

Science, 7, doi: 10.3389/feart.2019.00226. 

Holguín-Veras, J., Jaller, M., Van Wassenhove, L. N., Pérez, N., & Wachtendorf, T. (2014). 

Material convergence: Important and understudied disaster phenomenon. Natural Hazards 

Review, 15(1), 1-12. 

Hossain, L., Kam, D., Kong, F., Wigand, R. T., & Bossomaier, T. (2016). Social media in Ebola 

outbreak. Epidemiology and Infection, 144(10), 2136-2143. 

Hu, S., Xiong, C., Yang, M., Younes, H., Luo, W., & Zhang, L. (2021). A big-data driven approach 

to analyzing and modeling human mobility trend under non-pharmaceutical interventions 

during COVID-19 pandemic. Transportation Research. Part C, Emerging Technologies, 

124, 102955-102955. 

Hu, T., Wang, S., She, B., Zhang, M., Huang, X., Cui, Y., . . . Li, Z. (2021). Human mobility data 

in the COVID-19 pandemic: characteristics, applications, and challenges. International 

Journal of Digital Earth, 14(9), 1126 - 1147. 

Jacobs, C., & Zipf, A. (2017). Completeness of citizen science biodiversity data from a volunteered 

geographic information perspective. Geo-spatial Information Science , 20(1), 3-13. 

Jiang, Y., Huang, X., & Li , Z. (2021). Spatiotemporal patterns of human mobility and its 

association with land use types during COVID-19 in New York City. ISPRS International 

Journal of Geo-Information, 10(5), 344. 

Joshi, A., Sparks, R., Karimi, S., Yan, S.-L. J., Chughtai, A. A., Paris, C., . . . Forgoston, E. (2020). 

Automated monitoring of tweets for early detection of the 2014 Ebola epidemic. PloS ONE, 

15(3), e0230322-e0230322. 

Klar, B. (2022). Understanding changes to human mobility patterns in Ontario, Canada during the 

COVID-19 pandemic. Electronic Thesis and Dissertation Repository, 8953. 



 74 

Lai, S., Ruktanonchai, N. W., Zhou, L., Prosper, O., Luo, W., Floyd, J. R., Wesolowski, A., 

Santillana, M., Zhang, C., Du, X., Yu, H., & Tatem, A. J. (2020). Effect of non-

pharmaceutical interventions to contain COVID-19 in China. Nature, 410-413. 

Lei, L., Huang, X., Zhang, S., Yang, J., Yang, L., & Xu, M. (2020). Comparison of prevalence and 

associated factors of anxiety and depression among people affected by versus people 

unaffected by quarantine during the COVID-19 epidemic in southwestern China. Medical 

Science Monitor, e924609-e924609. 

Li, Y., Li, M., Rice, M., Zhang, H., Sha, D., Li, M., . . . Yang, C. (2021). The impact of policy 

measures on human mobility, COVID‐19 cases, and mortality in the US: A spatiotemporal 

perspective. International Journal of Environmental Research and Public Health, 18(3), 

1-25. 

Li, Z., Li, H., Zhang, X., & Zhao, C. (2021). Estimation of human mobility patterns for forecasting 

the early spread of disease. Healthcare, 9(9), 1224. 

Liu, L., Wang, R., Guan, W. W., Bao, S., Yu, H., Fu, X., & Liu, H. (2022). Assessing reliability of 

Chinese geotagged social media data for spatiotemporal representation of human mobility. 

ISPRS International Journal of Geo-information, 11(2), 145. 

Liu, T., Yang, Z., Zhao, Y., Wu, C., Zhou, Z., & Liu, Y. (2018). Temporal understanding of human 

mobility: A multi-time scale analysis. PloS ONE, 13(11), e0207697. 

Longhorn, R. A., & Blakemore, M. J. (2008). Geographic Information: Value, pricing, production, 

and consumption. CRC Press. 

Maher, M. (1983). Inferences on trip matrices from observations on link volumes: A Bayesian 

statistical approach. Transportation Research. Part B: Methodological, 17(6), 435-447. 

Mancini, M. C. (2013). Geographical indications in Latin America value chains: A “branding from 



 75 

below” strategy or a mechanism excluding the poorest? Journal of Rural Studies, 32, 295-

306. 

McClellan, C., Ali, M. M., Mutter, R., Kroutil, L., & Landwehr, J. (2017). Using social media to 

monitor mental health discussions − Evidence from Twitter. Journal of the American 

Medical Informatics Association, 24(3), 496–502. 

Mowat , D., & Raf, S. (2020). COVID-19: impacts and opportunities. Toronto: City of Toronto. 

Retrieved April 2023,  from 

https://www.toronto.ca/legdocs/mmis/2020/ex/bgrd/backgroundfile-157346.pdf 

Mozas-Calvache, A. T. (2016). Analysis of behaviour of vehicles using VGI data. International 

Journal of Geographical Information Science, 30(12), 2486-2505. 

Nathan, M. (2021). The city and the virus . Urban Studies, 4209802110583. 

Nguyen, T. D., Gupta, S., Andersen, M. S., Bento, A. I., Simon, K. I., & Wing, C. (2021). Impacts 

of state COVID-19 reopening policy on human mobility and mixing behavior. Southern 

Economic Journal, 88(2), 458-486. 

Okan, C., Weidemann, G., & Bailey, P. E. (2021). “Alone, but not lonely”: The impact of COVID-

19 on older persons and the role of technology in staying connected. In Moustafa A. A (ed.) 

Mental Health Effects of COVID-19, pp. 117-131. London: Academic Press. 

Orea, L., & Álvarez, I. C. (2022). How effective has the Spanish lockdown been to battle COVID‐

19? A spatial analysis of the coronavirus propagation across provinces. Health Economics, 

31(1), 154-173. 

Polyakova, M., Udalova, V., Kocks, G., Genadek, K., Finlay, K., & Finkelstein, A. N. (2021). 

Racial disparities in excess all-cause mortality during the early COVID-19 pandemic 

varied substantially across states. Health Affairs, 40(2), 307-316. 



 76 

Public Health Agency of Canada. (2022). Federal, provincial, territorial public health response 

plan for ongoing management of COVID-19. Retrieved April 2023, from 

https://www.canada.ca/content/dam/phac-aspc/documents/services/diseases/2019-novel-

coronavirus-infection/federal-provincial-territorial-public-health-response-plan-ongoing-

management-covid-19/fpt-response-plan-eng.pdf 

Public Health Ontario. (2020, December). Daily epidemiologic summary COVID-19 in Ontario: 

January 15, 2020 to December 17, 2020. Retrieved April 2023, from 

https://files.ontario.ca/moh-covid-19-report-en-2020-12-18.pdf 

Public Health Ontario. (2020). Epidemiologic summary COVID-19 in Ontario: January 15, 2020 

to June 9, 2020. Retrieved April 2023, from https://files.ontario.ca/moh-covid-19-report-

en-2021-06-10.pdf 

Public Health Ontario. (2020). Epidemiological summary: COVID-19 in Ontario: January 15, 

2020 to April 7, 2020 . Retrieved April 2023, from https://files.ontario.ca/moh-covid-19-

report-en-2022-04-08.pdf 

Rahman, M., & Thill, J.-C. (2022). Associations between COVID-19 pandemic, lockdown 

measures and human mobility: Longitudinal evidence from 86 countries. International 

Journal of Environmental Research and Public Health, 19(12), 7317. 

Roche, S., Propeck-Zimmermann, E., & Mericskay, B. (2013). GeoWeb and crisis management: 

issues and perspectives of volunteered geographic information. GeoJournal, 78, 21-40. 

Rodrigue, J.-P., Comtois, C., & Slack, B. (2006). The geography of transport systems. Abingdon, 

Oxon, England ; New York: Routledge. 

Santamaria, C., Sermi, F., Spyratos, S., Iacus, S. M., Annunziato, A., Tarchi, D., & Vespe, M. 

(2020). Measuring the impact of COVID-19 confinement measures on human mobility 



 77 

using mobile positioning data. A European regional analysis. Safety Science, 132, 104925-

104925. 

Signorini, A., Segre, A. M., & Polgreen, P. M. (2011). The use of twitter to track levels of disease 

activity and public concern in the U.S. during the influenza A H1N1 Pandemic. PLoS ONE, 

6(5), e19467-e19467. 

Singh, R., Zhang, Y., & Wang, H. (2018). Exploring human mobility patterns in Melbourne using 

social media data. In Australasian Database Conference on Databases Theory and 

Applications, pp. 328-335. 

Sloan, L., & Morgan, J. (2015). Who tweets with their location? Understanding the relationship 

between demographic characteristics and the use of geoservices and geotagging on twitter. 

PLoS ONE, 10(11), e0142209. 

Song, J., Zhang, L., Qin, Z., & Ramli, M. A. (2022). Spatiotemporal evolving patterns of bike-

share mobility networks and their associations with land-use conditions before and after 

the COVID-19 outbreak. Physica A: Statistical Mechanics and its Applications, 592, 

126819. 

Souza, R. C., Assunção, R. M., Oliveira, D. M., Neill, D. B., & Meira, W. (2019). Where did I get 

dengue? Detecting spatial clusters of infection risk with social network data. Spatial and 

Spatio-temporal Epidemiology, 29, 163-175. 

Special Investigations Unit. (2020). SIU director’s report - case # 20-TCD-124. Retrieved April 

2023, from https://www.siu.on.ca/en/directors_report_details.php?drid=908 

Statistics Canada. (2021, March 11). COVID-19 in Canada: A one-year update on social and 

economic impacts. Retrieved from https://www150.statcan.gc.ca/n1/pub/11-631-x/11-631-

x2021001-eng.htm#a5 



 78 

Statistics Canada. (2022, March 10). COVID-19 in Canada: A two-year update on social and 

economic impacts. Retrieved from https://www150.statcan.gc.ca/n1/pub/11-631-x/11-631-

x2022001-eng.htm 

Sy, K. T., Martinez, M. E., Rader, B., & White, L. F. (2021). Socioeconomic disparities in subway 

use and COVID-19 outcomes in New York City. American Journal of Epidemiology, 

190(7), 1234-1242. 

The Conference Board of Canada. (2020, March). The impact of Toronto’s financial sector. 

Retrieved March 2023, from https://www.conferenceboard.ca/in-fact/the-impact-of-

torontos-financial-

sector/#:~:text=Toronto%20is%20ranked%20sixth%20globally%20in%20total%20bank

%20assets%20by%20The%20Banker. 

The New York Times. (2022, July). How George Floyd died, and what happened next. Retrieved 

April 2023, from https://www.nytimes.com/article/george-floyd.html 

Tourism Economics. (n.d.). Toronto’s visitor economy: An economic catalyst for the city and the 

region. Toronto. Retrieved April 2023, from https://s3.amazonaws.com/tourism-

economics/craft/Latest-Research-Docs/Toronto-Visitor-Economy-final.pdf 

Twenge, J. M., & Joiner, T. E. (2020). Mental distress among U.S. adults during the COVID-19 

pandemic. Journal of Clinical Psychology, 76(12), 2170-2182. 

Vosoughi, S., Roy, D., & Aral, S. (2018). The spread of true and false news online. Science, 

359(6380), 1146-1151. 

Waring, M. E., Jake-Schoffman, D. E., Holovatska, M. M., Mejia, C., Williams, J. C., & Pagoto, 

S. L. (2018). Social media and obesity in adults: A review of recent research and future 

directions. Current Diabetes Reports, 18(6), 34-9. 



 79 

Wei, P., Jin, C., & Xu, C. (2021). The influence of the COVID-19 pandemic on the imports and 

exports in China, Japan, and South Korea. Frontiers in Public Health, 9, 682693-682693. 

Whittaker, J., McLennan, B., & Handmer, J. (2015). A review of informal volunteerism in 

emergencies and disasters: Definition, opportunities and challenges. International Journal 

of Disaster Risk Reduction, 13, 358-368. 

Williamson, I., Rajabifard, A., & Holland, P. (2010). Spatially enabled society. FIG Congress 2010, 

“Facing the Challenges – Building the Capacity”. Sydney. 

World Health Organization. (2020). WHO coronavirus (COVID-19) dashboard. Retrieved March 

1, 2023, from https://covid19.who.int/table 

Wu, K., Ma, X., Liu, H., Zheng, J., Zhou, R., Yuan, Z., Huang, Z., Zhong, Q., Huang, Y., Zhang, 

Z., & Wu, X. (2022). Effects of different levels of non-pharmaceutical interventions on 

hand, foot and mouth disease in Guangzhou, China. BMC Public Health, 2398-2398. 

Xiong, C., Hu, S., Yang, M., Younes, H., Luo, W., Ghader, S., & Zhang, L. (2020). Mobile device 

location data reveal human mobility response to state-level stay-at-home orders during the 

COVID-19 pandemic in the USA. Journal of the Royal Society Interface, 17(173), 

20200344. 

Xue, L., Jing, S., & Wang, H. (2021). Evaluating the impacts of non-pharmaceutical interventions 

on the transmission dynamics of COVID-19 in Canada based on mobile network. PLoS 

ONE, 16(12), e0261424. 

Yabe, T., Tsubouchi, K., Fujiwara, N., Wada, T., Sekimoto, Y., & Ukkusuri, S. V. (2022). Non-

compulsory measures sufficiently reduced human mobility in Tokyo during the COVID-

19 epidemic. Scientific Reports, 10(1), 18053-18053. 

Yang, C., Xiao, M., Ding, X., Tian, W., Zhai, Y., Chen, J., . . . Ye, X. (2019). Exploring human 



 80 

mobility patterns using geo-tagged social media data at the group level. Journal of Spatial 

Science, 64(2), 221-238. 

Zhang, C., Yang, Y., & Mostafavi, A. (2021). Revealing unfairness in social media contributors’ 

attention to vulnerable urban areas during disasters. International Journal of Disaster Risk 

Reduction, 58, 102160. 

Zheng, Z., Xie, Z., Qin, Y., Wang, K., Yu, Y., & Fu, P. (2021). Exploring the influence of human 

mobility factors and spread prediction on early COVID-19 in the USA. BMC Public Health, 

21(1), 615. 

 


	Author’s Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1
	Introduction
	1.1 Problem Statement
	1.2 Research Questions and Objectives
	1.3 Thesis Structure

	Chapter 2
	Background and Related Studies
	2.1 Value of Volunteered Geographical Information
	2.2 Human Mobility in Public Health
	2.3 Gaps in Research
	2.4 Chapter Summary

	Chapter 3
	Human Mobility Analysis based on Geotagged Tweet
	3.1 Study Area
	3.2 Data
	3.2.1 Geotagged Tweets Data
	3.2.2 Land Use Data
	3.2.3 Google Community Mobility Report

	3.3 Proposed Methodology
	3.3.1 Geotagged Tweets Data Processing
	3.3.2 Land Use Data Processing
	3.3.3 Spatial Analysis of Human Mobility Changes
	3.3.4 Temporal Changes in Human Mobility based on Land Use Types

	3.4 Chapter Summary
	Chapter 4
	Results and Discussion
	4.1 Monthly Spatial Analysis based on Land Use Polygons
	4.2 Weekly Spatial Analysis based on Land Use Polygons
	4.3 Daily Temporal Analysis based on Land Use Types
	4.3.1 City of Toronto
	4.3.2 Peel Region
	4.3.3 York Region
	4.3.4 Halton Region
	4.3.5 Durham Region

	4.4 Chapter Summary

	Chapter 5
	Conclusions and Recommendations
	5.1 Conclusions
	5.2 Limitations
	5.3 Recommendations for Future Research

	References

