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Abstract

A hole in a graph G is an induced cycle of length at

least four, and a k‐multihole in G is the union of k

pairwise disjoint and nonneighbouring holes. It is

well known that ifG does not contain any holes then

its chromatic number is equal to its clique number.

In this paper we show that, for any integer k 1≥ , if

G does not contain a k‐multihole, then its chromatic

number is at most a polynomial function of its clique

number. We show that the same result holds if we

ask for all the holes to be odd or of length four; and if

we ask for the holes to be longer than any fixed

constant or of length four. This is part of a broader

study of graph classes that are polynomially χ ‐
bounded.
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1 | INTRODUCTION

A function ϕ : ℕ ℕ→ is a binding function for a graph G if χ G ϕ ω G( ) ( ( ))≤ , where
χ G ω G( ), ( ) denote the chromatic number of G and the size of the largest clique of G,
respectively. A class  of graphs is hereditary if for every G ∈ , every graph isomorphic to an
induced subgraph ofG also belongs to  . A hereditary class  is χ ‐bounded if there is a function
ϕ that is a binding function for eachG ∈ , and if so, we call ϕ a binding function for the class;
if there exists a polynomial binding function, we say that  is poly‐χ ‐bounded (see [12] for a
survey on χ ‐bounded classes, and [9] on poly‐χ ‐bounded classes). While many classes are
known to be χ ‐bounded, the proofs frequently give quite fast‐growing functions, and it is
natural to ask whether this is necessary. A remarkable conjecture of Louis Esperet [6] asserted
that every χ ‐bounded hereditary class is poly‐χ ‐bounded. But this was recently disproved by
Briański, Davies and Walczak [2]. So the question now is: Which hereditary classes are
poly‐χ ‐bounded?

A hereditary graph class is defined by excluding some induced subgraphs. A graph is H ‐free
if it has no induced subgraph isomorphic to H , and H H{ , }1 2 ‐free means both H1‐free and
H2‐free. There is a mass of results on χ ‐bounded classes where one of the excluded graphs is a
forest, but in this paper we consider some classes where every excluded graph has a cycle.
A hole is an induced cycle of length at least four, and odd‐hole‐free means containing no odd
hole. A four‐hole means a hole of length four. Let us say a k‐multihole of a graph G is an
induced subgraph with k components, each a cycle of length at least four. We denote the k‐
vertex path by Pk and the k‐vertex cycle by Ck.

Graphs with no 1‐multihole are chordal and hence perfect. The class of graphs with
no k‐multihole in which all the cycles have odd lengths is shown in [10] to be χ ‐bounded, but it
contains the class of P C{ , }5 5 ‐free graphs, and we cannot yet prove it is poly‐χ ‐bounded (see [16]
for the best current bounds). If we replace “odd” by “long”, the same applies: It is shown in [11]
that for every ℓ 0≥ , the class of graphs with no k‐multihole in which all the cycles have length
at least ℓ is χ ‐bounded (and we cannot yet prove it is poly‐χ ‐bounded, for the same reason).
But we can if we permit cycles of length four to be components of the multiholes we are
excluding. We will show:

1.1. For each integer k 1≥ , let  be the class of all graphsG with no k‐multihole in which
every component either has length four or odd length. Then  is poly‐χ ‐bounded.

Incidentally, there is a similar‐looking theorem due to Dvořák and Pekárek [5], the
following:

1.2. For each integer k 1≥ , let  be the class of all graphs G with no induced subgraph
that consists of k cycles of odd length. Then  is poly‐χ ‐bounded.

But here the cycles of odd length may have length three, and this makes a huge difference.
If we change “odd” to “long”, there is a result parallel to 1.1:

1.3. For all integers k 1≥ and ℓ 4≥ , let  be the class of all graphs G with no
k‐multihole in which every component either has length four or length at least ℓ. Then  is
poly‐χ ‐bounded.
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This second one we can make stronger (we could not prove the corresponding
strengthening of the first):

1.4. For all integers k s, 1≥ , and ℓ 4≥ , let  be the class of all graphs G such that no
induced subgraph of G has exactly k components, each of which is either isomorphic to Ks s,
or a cycle of length at least ℓ. Then  is poly‐χ ‐bounded.

(In general, Ks t, denotes the complete bipartite graph with parts of cardinality s and t .) Both
these results derive from a theorem about Ks s, , which we will explain in Section 2.

2 | EXCLUDING A DISJOINT UNION, AND SELF ‐
ISOLATION

If A V G( )⊆ , G A[ ] denotes the subgraph of G induced on A; and we write χ A( ) for χ G A( [ ])

and ω A( ) for ω G A( [ ]). Two disjoint subsets of V G( ) are anticomplete if there are no edges
between them, and complete if every vertex of the first subset is adjacent to every vertex of the
second. A graph G contains a graph H if some induced subgraph of G is isomorphic to H , and
such a subgraph is a copy of H . A function ϕ : ℕ ℕ→ is nondecreasing if ϕ x ϕ y( ) ( )≤ for all
x y, ℕ∈ with x y≤ .

Let us say a graph H is self‐isolating if for every nondecreasing polynomial ψ : ℕ ℕ→ , there
is a polynomial ϕ : ℕ ℕ→ with the following property. For every graph G with
χ G ϕ ω G( ) > ( ( )), there exists A V G( )⊆ with χ A ψ ω A( ) > ( ( )), such that either

• G A[ ] is H ‐free, or
• G contains a copy H′ of H such that V H( ′) is disjoint from and anticomplete to A.

Self‐isolation is of interest in considering polynomial χ ‐boundedness for the class of H ‐free
graphs, where H is a forest. Say a forest H is good if the class of H ‐free graphs is polynomially
χ ‐bounded. It might be true that every forest is good (strengthening the Gyárfás‐Sumner
conjecture [7, 17] from χ ‐boundedness to polynomial χ ‐boundedness), but this has only been
proved for a few simple kinds of tree H , and some (not all) of the forests that are disjoint unions
of these trees. It is not known that if trees H H,1 2 are good, then the disjoint union of H1 and H2

is good. For instance, trees of diameter three are good [15], but disjoint unions of them might
not be as far as we know. But self‐isolation helps here: if H1 and H2 are good forests, and one of
them is self‐isolating, then the disjoint union of H1 and H2 is good. Some good trees are known
to be self‐isolating (namely, stars and four‐vertex paths), so we can happily take disjoint unions
with them and preserve goodness.

Which graphs are self‐isolating? We know very little at the moment: There are very few
graphs that we know to have the property, and none that we know not to have the property.
(Could it be that all graphs are self‐isolating? Certainly, if we change the definition of
self‐isolating, replacing the polynomials ϕ ψ, by general functions, it is easy to show that all
graphs have the property, by induction on ω G( ).) A graph is self‐isolating if all its components
are self‐isolating, but the only connected graphs that we know are self‐isolating are complete
graphs (proved below), paths of arbitrary length (proved in [4]), and complete bipartite graphs
(proved in Section 3). The main result of [14] was that stars are self‐isolating, so our result that
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complete bipartite graphs are self‐isolating generalizes this. The last takes up the main part of
this paper, and is most of what we need to prove 1.1 and 1.4.

First, complete isolation:

2.1. Every complete graph is self‐isolating.

Proof. (This proof was derived from a similar proof in [8]). Let ψ : ℕ ℕ→ be a
nondecreasing polynomial, and let H be a k‐vertex complete graph. Let ϕ be the
polynomial ϕ x x ψ x x( ) = ( + 1) ( ) +k for x ℕ∈ . Now let G be a graph with chromatic
number more than ϕ ω G( ( )), and let K be a clique of G with cardinality ω G( ).
If ω G k( ) < , then the first bullet in the definition of self‐isolating holds, so we assume
that ω G k( ) ≥ . For each X K⊆ with X k=  , let AX be the set of vertices inV G K( )⧹ that
are nonadjacent to every vertex in X ; and for every Y K⊆ with Y k= − 1  , let BY be the
set of vertices in V G K( )⧹ that are adjacent to every vertex in K Y⧹ . Thus V G K( )⧹ is the

union of the ( )ω G

k

( ) sets AX and the ( )ω G

k

( )

− 1
sets BY ; and since

ω G

k

ω G

k

ω G

k
ω G

( )
+

( )

− 1
=

( ) + 1
( ( ) + 1) ,k≤



 


 


 


 


 




and χ G K ω G ψ ω G( ) > ( ( ) + 1) ( ( ))k⧹ , one of the sets AX or BY has chromatic number
more than ψ ω G( ( )). If χ A ψ ω G( ) > ( ( ))X for some X , then G X[ ] is a copy of H
anticomplete to AX , and since ψ ω G ψ ω A( ( )) ( ( ))X≥ , the second bullet in the definition
of self‐isolating holds. If χ B ψ ω G( ) > ( ( ))Y for someY , then since K Y ω G k= ( ) − + 1⧹ 
and BY is complete to K Y⧹ , it follows that ω B k( ) <Y and soG B[ ]Y is H ‐free, and the first
bullet in the definition of self‐isolating holds. This proves 2.1. □

3 | COMPLETE BIPARTITE ISOLATION

We turn to the proof that

3.1. Every complete bipartite graph is self‐isolating.

We will in fact prove something a little stronger. Let ψ : ℕ ℕ→ be some nondecreasing
function. An induced subgraph H of a graph G is ψ‐nondominating if there exists a set
A V G( )⊆ disjoint from and anticomplete to V H( ), with χ A ψ ω A( ) ( ( ))≥ . If ψ : ℕ ℕ→ is a
nondecreasing function and q 0≥ is an integer, a ψ q( , )‐sprinkling in a graph G is a pair P Q( , )

of disjoint subsets of V G( ), such that

• χ P ψ ω P( ) > ( ( )); and
• χ Q ψ ω Q qr( ) > ( ( )) + , where r is the maximum over v P∈ of the chromatic number of the
set of neighbours of v in Q.

(This is closely related to what was called a “ ψ q( , )‐scattering” in [4].) We denote the number of
vertices of a graph H by H . We will prove:

4 | CHUDNOVSKY ET AL.
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3.2. Let s 1≥ and q 0≥ be integers, and let ψ : ℕ ℕ→ be a nondecreasing polynomial.
Then there is a polynomial ϕ : ℕ ℕ→ with the following property. For every graph G with
χ G ϕ ω G( ) > ( ( )), either:

• there is a ψ‐nondominating copy of Ks s, in G, or
• there is a ψ q( , )‐sprinkling in G.

Proof. (Proof of 3.1, assuming 3.2). Let s s, ′ 1≥ be integers, where s s′ ≤ . We will show
that Ks s, ′ is self‐isolating. (It is not enough to show this when s s= ′, because we do not
know that every induced subgraph of a self‐isolating graph is self‐isolating.) Let
ψ : ℕ ℕ→ be a nondecreasing polynomial, let q s s= + ′, and let ϕ satisfy 3.2. Let G be a
graph with χ G ϕ ω G( ) > ( ( )). We claim that either there is a ψ‐nondominating copy of
Ks s, ′ in G, or there exists A V G( )⊆ with χ A ψ ω A( ) > ( ( )) such that G A[ ] is Ks s, ′‐free. If
there is a ψ‐nondominating copy of Ks s, in G, then there is also one of Ks s, ′, so by 3.2, we
may assume that there is a ψ q( , )‐sprinkling P Q( , ) in G. If G P[ ] is Ks s, ′‐free, the claim
holds, so we assume that there is a copy H of Ks s, ′ in G P[ ]. Thus H q=  . Let r be the
maximum over v P∈ of the chromatic number of the set of neighbours of v inQ. The set
of vertices in Q with a neighbour in V H( ) has chromatic number at most H r qr=  ; and
χ Q ψ ω Q qr( ) > ( ( )) + from the definition of a ψ q( , )‐sprinkling. Consequently H is
ψ‐nondominating, and hence Ks s, ′ is self‐isolating. □

To prove 3.2 we will need the following lemma:

3.3. For every graphG that is not a complete graph, there is a vertex v such that the set of
vertices different from and nonadjacent to v has chromatic number at least χ G ω G( ) ( )∕ .

Proof. Let X be a maximum clique ofG, and for each x X∈ , let Dx be the set of vertices
of G different from and nonadjacent to x . Since G is nonnull, it follows that X ≠ ∅. But
V G( ) is the union of the sets D x{ }x ∪ over x X∈ , because of the maximality of X ; and so
there exists v X∈ such that χ D v χ G ω G( { }) ( ) ( )v ∪ ≥ ∕ . Choose such a vertex v with
Dv ≠ ∅ if possible. If Dv ≠ ∅, then χ D v χ D( { }) = ( )v v∪ , since there are no edges
between v and Dv, and so the theorem holds. Thus we may assume (for a contradiction)
that D =v ∅, and so χ D v χ G ω G1 = ( { }) ( ) ( )v ∪ ≥ ∕ . Since χ G ω G( ) ( ) 1∕ ≥ , equality
holds, and so χ D x χ G ω G( { }) ( ) ( )x ∪ ≥ ∕ for every x X∈ ; and so D =x ∅ for all x X∈ ,
from the choice of v. Consequently V G X( ) = , and G is a complete graph, a
contradiction. This proves 3.3. □

The proof of 3.2 will be by examining the largest “template” in G. Let us say that, for all
integers t k s, , 1≥ , a t k s( , , )‐template in G is a sequence A A( , …, )k1 of pairwise disjoint subsets
of V G( ), each of cardinality t , such that for i j k1 <≤ ≤ , and for every stable set S Aj⊆ with
S s=  , every vertex in Ai has a neighbour in S. (Thus, this last condition is trivially satisfied if
t s< .) The next result will enable us to find a t s( , 2, )‐template. If v V G( )∈ , we denote the set
of neighbours of a vertex v by N v( ) or N v( )G .

3.4. Let s t, 1≥ and q 0≥ be integers, and let ψ : ℕ ℕ→ be a nondecreasing
polynomial. Let G be a graph with

CHUDNOVSKY ET AL. | 5
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χ G ω G s t ψ ω G t

and

χ G q t q q q ψ ω G

( ) > ( ) (( + ) ( ( )) + )

( ) > + (2 + + + + ) ( ( )) + 1.

s s

s s2 −1⋯

Then either

• there is a ψ‐nondominating copy of Ks s, in G, or
• there is a ψ q( , )‐sprinkling in G, or
• G contains a t s( , 2, )‐template.

Proof. Define p ψ ω G= ( ( )). For i s0 ≤ ≤ , define

m ω G t p t ω G ω G p

n q t q q q p

= ( ) ( + ) + (1 + ( ) + + ( ) ) ,

= + (1 + + + + ) .

i
s i s s i

i
s i s i

− − −1

− 2 − −1

⋯

⋯

Thus m t p t= +s
s , and m ω G m p= ( ) +i i+1 for i s0 <≤ ; and n t=s and

n qn p= +i i+1 for i s0 <≤ . By hypothesis, χ G m( ) > 0 and χ G n p( ) > + + 10 . We
claim we may assume that:

(1) There is a vertex v1 such that χ N v n( ( )) >1 1 and χ M v m( ( )) >1 1, where
M v V G N v v( ) = ( ) ( ( ) { })1 1 1⧹ ∪ .

Let S be the set of all vertices v with χ N v n( ( )) 1≤ . If χ S p( ) > , choose a subset P S⊆

with χ P p( ) = + 1, and let Q V G P= ( )⧹ . Then

χ Q χ G p n p qn( ) ( ) − ( + 1) > = + ,0 1≥

and so P Q( , ) is a ψ q( , )‐sprinkling. We therefore assume that χ S p( ) ≤ . Let
R V G S= ( )⧹ . Thus

χ R χ G p m p ω G m ω G( ) ( ) − > − = ( ) ( ),0 1≥ ≥

and so R is not a clique. By 3.3, there exists v R1 ∈ such that the set of vertices in R

different from and nonadjacent to v1 has chromatic number at least χ R ω G m( ) ( ) > 1∕ ,
and so χ M v m( ( )) >1 1. This proves we may assume that (1) holds.

Choose a stable set S V G( )⊆ with S s≤  , maximal such that χ N S n( ( )) > S  and
χ M S m( ( )) > S , where N S( ) denotes the set of all vertices in V G S( )⧹ that are adjacent to
every vertex in S, andM S( ) denotes the set of all vertices inV G S( )⧹ that are nonadjacent to
every vertex in S. From (1), S 1≥  . Now there are two cases, S s<  and S s=  .

Suppose first that S s<  . Let A be the set of all vertices v M S( )∈ such that the set of
neighbours of v in N S( ) has chromatic number at most n S +1  . Since χ N S n( ( )) > =S 
qn p+S +1  , we may assume that χ A p( ) ≤ , because otherwise A N S( , ( )) is a ψ q( , )‐
sprinkling. Hence

χ B χ M S p m p ω G m( ) ( ( )) − > − = ( ) ,S S +1≥    

6 | CHUDNOVSKY ET AL.
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where B M S A= ( )⧹ . Sincem 1S +1 ≥  (because t 1≥ ), it follows that B is not a clique, and
so from 3.3, there is a vertex v B∈ such that the set of vertices in B, different from and
nonadjacent to v, has chromatic number at least χ B ω G m( ) ( ) > S +1∕   . But then adding v
to S contradicts the maximality of S.

Now suppose that S s=  . Since χ N S n t( ( )) > =s , we may choose T N S( )⊆ with
T t=  . Let A be the set of vertices in M S( ) that have s nonneighbours in T that are
pairwise nonadjacent, and let B M S A= ( )⧹ . For each stable set S T′ ⊆ with S s′ =  , we
may assume that the set of vertices in M S( ) with no neighbour in S′ has chromatic
number at most p, because otherwise G S S[ ′]∪ is a ψ‐nondominating copy of Ks s, .
The number of such sets S′ is at most t s, and so χ A t p( ) s≤ . Hence

χ B χ M S t p m t p t( ) ( ( )) − > − = ,s
s

s≥

and so there exists M B⊆ with M t=  . But then M T( , ) is a t s( , 2, )‐template.
This proves 3.4. □

We also need the following version of Ramsey's theorem (proved for instance in [14]).

3.5. For all integers s 1≥ and r 2≥ , if a graph G has no stable subset of size s and no
clique of size more than r , then V G r( ) < s  .

Now we use 3.4 to prove 3.2, which we restate in a strengthened form:

3.6. Let s 1≥ and q 0≥ be integers, and let ψ : ℕ ℕ→ be a nondecreasing polynomial.
Let ϕ ϕ, ′ : ℕ ℕ→ be the polynomials defined by

ϕ x x sψ x s x ψ x s x

q s x q q q ψ x

and

ϕ x s x ψ x s x ϕ x x s x

′( ) = ( ( ) + ( + 1) ( ) + ( + 1) )

+ ( + 1) + (2 + + + + ) ( ) + 2

( ) = ( + 1) ( ) + ( + 1) ′( ) + ( + 1)( + 1)

s s s s s

s s s

s s s s s s s

( +1) +1

+1 2 −1

2 2+2 ( +1) 1+ ( +1) +1

⋯

for all x ℕ∈ . Let G be a graph with χ G ϕ ω G( ) > ( ( )). Then either:

• there is a ψ‐nondominating copy of Ks s, in G, or
• there is a ψ q( , )‐sprinkling in G.

Proof. Suppose that neither of the two bullets of the theorem holds. Let
t s ω G= ( + 1) ( )s+1. Thus

χ G ω G t ψ ω G ω G t ϕ ω G ω G t( ) > ( ) ( ( )) + ( ) ′( ( )) + ( ( ) + 1) .s s2 2

We claim:

(1) If A V G( )⊆ with χ A ϕ ω G( ) > ′( ( )) then G A[ ] contains a t s( , 2, )‐template.

Let G G A′ = [ ]. Since χ A ϕ ω G( ) > ′( ( )) and ψ is nondecreasing, it follows that

CHUDNOVSKY ET AL. | 7
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χ G ω G s t ψ ω G t( ′) > ( ′) (( + ) ( ( ′))) + )s s

and

χ G q t q q q ψ ω G( ′) > + (2 + + + + ) ( ( ′)) + 1.s s2 −1⋯

By 3.4 applied to G′, either

• there is a ψ‐nondominating copy of Ks s, in G′ (and hence in G), or
• there is a ψ q( , )‐sprinkling in G′ (and hence in G), or
• G′ contains a t s( , 2, )‐template.

By assumption, neither of the first two bullets hold, so the third holds. This proves (1).

For k ω G2 ( ) + 1≤ ≤ , define t s ω G s k ω G= ( + 1) ( ) − ( − 2) ( )k
s s+1 . Thus t t=2 , and

t t0 k≤ ≤ for k ω G2 ( ) + 1≤ ≤ . By (1) applied to G, there is a t s( , 2, )2 ‐template in G.
Choose an integer k with k ω G2 ( ) + 1≤ ≤ , maximum such that there is a t k s( , , )k ‐
template in G, and let A A( , …, )k1 be such a template.

(2) k ω G( )≤ .

Suppose that k ω G= ( ) + 1. Inductively for i k= 1, …, , suppose that vertices
a a, …, i1 −1 are defined, and define ai as follows. For h i1 <≤ , the nonneighbours of ah
in Ai do not include a stable set of cardinality s, from the definition of a t k s( , , )k ‐template.
Hence by 3.5 (taking r ω G= ( )), there are at most ω G( )s vertices in Ai nonadjacent to ah,
and hence at most ω G( )s+1 vertices in Ai that are nonadjacent to at least one of a a, …, i1 −1.
Since

A t s ω G s ω G ω G ω G= ( + 1) ( ) − ( ( ) − 1) ( ) > ( ) ,i k
s s s+1 +1≥ 

some vertex a Ai i∈ is adjacent to all of a a, …, i1 −1. This completes the inductive
definition. But then a a{ , …, }ω G1 ( )+1 is a clique in G, a contradiction. This proves (2).

Let Z V G A A= ( ) ( )k1⧹ ∪ ⋯ ∪ . For i k1 ≤ ≤ , let i be the set of all stable sets
contained in Ai with cardinality s. For each S i∈ , let DS be the set of vertices in Z with
no neighbour in S, and let Yi be the union of the sets DS over S i∈ .

(3) Z Y Y t( ) <k k1 +1⧹ ∪ ⋯ ∪  .

Suppose not, and choose A Z Y Y( )k1⊆ ⧹ ∪ ⋯ ∪ with A t= k+1  . For i k1 ≤ ≤ , choose
B Ai i⊆ with B t=i k+1  . Then A B B B( , , , …, )k1 2 is a t k s( , + 1, )k+1 ‐template, contrary to
the maximality of k. This proves (3).

For each v Y Yk1∈ ∪ ⋯ ∪ , choose i k{1, …, }∈ minimum such that v Yi∈ , and choose
S i∈ such that v DS∈ . We call S the home of v.

(4) Let i k1 ≤ ≤ , and let S i∈ . The set of vertices in DS with home S has chromatic
number at most ω G t ψ ω G ϕ ω G( ) ( ( )) + ′( ( ))s .

8 | CHUDNOVSKY ET AL.
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Let F be the set of vertices in DS with home S. By 3.5, as in the proof of (2), for
i j k+ 1 ≤ ≤ there are at most sω G( )s vertices in Aj with a nonneighbour in S, and since
A t t sω G= = + ( )j k k

s
+1  , there exists B Aj j⊆ with B t=j k+1  complete to S. For

h i1 <≤ , choose B Ah h⊆ with B t=h k+1  arbitrarily. Let F′ be the set of vertices
v F∈ such that v has no neighbour in S′ for some j i k{ + 1, …, }∈ and some S′ j∈ with
S B′ j⊆ . For i j k+ 1 ≤ ≤ , and each S′ j∈ with S B′ j⊆ , the chromatic number of the
set of vertices in F with no neighbour in S′ is at most ψ ω G( ( )), since the copy of Ks s,
induced on S S′∪ is not ψ‐nondominating; and so χ F ω G t ψ ω G( ′) ( ) ( ( ))s≤ , since there
are at most ω G t( ) s choices for the pair j S( , ′). Let F F F″ = ′⧹ . If G F[ ″] contains a
t s( , 2, )‐template, then it contains a t s( , 2, )k+1 ‐template C C( , )1 2 say; and then

C C B B B B( , , , …, , , …, )i i k1 2 1 −1 +1

is a t k s( , + 1, )k+1 ‐template in G, from the definition of a home, a contradiction. Thus
G F[ ″] contains no such template, and so χ F ϕ ω G( ″) ′( ( ))≤ by (1). Hence
χ F ω G t ψ ω G ϕ ω G( ) ( ) ( ( )) + ′( ( ))s≤ . This proves (4).

Now every vertex in Y Yk1 ∪ ⋯∪ has a home, and there are only at most ω G t( ) s

choices of a home; so by (4),

χ Y Y ω G t ψ ω G ω G t ϕ ω G( ) ( ) ( ( )) + ( ) ′( ( )).k
s s

1
2 2∪ ⋯ ∪ ≤

Hence by (3),

χ G ω G t ψ ω G ω G t ϕ ω G Z Y Y A A

ω G t ψ ω G ω G t ϕ ω G ω G t

( ) ( ) ( ( )) + ( ) ′( ( )) + ( ) +

( ) ( ( )) + ( ) ′( ( )) + ( ( ) + 1) ,

s s
k k

s s

2 2
1 1

2 2

≤ ⧹ ∪ ⋯ ∪ ∪ ⋯ ∪

≤

   

a contradiction. This proves 3.6. □

4 | ODD HOLES

Now we deduce 1.1. Let us say a hole inG is special if its length is either four or odd. We need a
result proved in [10], the following:

4.1. Let x ℕ∈ , and letG be a graph such that χ N v x( ( )) ≤ for every vertex v V G( )∈ . If
C is a shortest odd hole in G, the set of vertices of G that belong to or have a neighbour in
V C( ) has chromatic number at most x21 .

We deduce:

4.2. Let ψ : ℕ ℕ→ be some nondecreasing polynomial, let n ℕ∈ , and let G be a graph
such that χ N v n( ( )) ≤ for every vertex v V G( )∈ . If χ G ω G n ψ ω G( ) > max( ( ), 21 + ( ( )))

then G contains a ψ‐nondominating special hole.

Proof. Since χ G ω G( ) > ( ),G is not perfect, and so contains either a four‐hole or an odd
hole (by the strong perfect graph theorem [3], since odd antiholes of length at least seven

CHUDNOVSKY ET AL. | 9
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contain four‐holes). Let C be either a four‐hole, or a shortest odd hole of G. Let A be the
set of vertices inV G V C( ) ( )⧹ that have no neighbour inV C( ), and B V G A= ( )⧹ . IfC has
length four then χ B n( ) 4≤ , and if C is a shortest odd hole ofG, then χ B n( ) 21≤ by 4.1.
Consequently χ A ψ ω G ψ ω A( ) > ( ( )) ( ( ))≥ , and so C is a ψ‐nondominating special hole.
This proves 4.2. □

We also need:

4.3. Let G be a graph containing no four‐hole, let n ℕ∈ , and let X V G( )⊆ be the set of
all v V G( )∈ with χ N v n( ( )) > . If χ X ω G( ) > ( ), then there exist disjoint sets
A B V G, ( )⊆ , anticomplete, with χ A χ B n ω G( ), ( ) > 2 − ( )∕ .

Proof. Let us say an edge xy of G is rich if χ N x N y n ω G( ( ) ( )) > 2 − ( )⧹ ∕ and
χ N y N x n ω G( ( ) ( )) > 2 − ( )⧹ ∕ . Since there is no four‐hole, it is enough to prove that
there is a rich edge.

Since χ X ω G( ) > ( ), the graph G X[ ] is not perfect, and so contains a four‐vertex
induced path with vertices v v v v‐ ‐ ‐1 2 3 4 in order. Let

A N v N v N v

A N v N v N v N v

A N v N v N v N v

A N v N v N v

= ( ) ( ( ) ( )),

= ( ) ( ( ) ( ( ) ( ))),

= ( ) ( ( ) ( ( ) ( ))) and

= ( ) ( ( ) ( )).

1 1 3 4

2 2 4 1 3

3 3 1 2 4

4 4 2 1

⧹ ∪

⧹ ∪ ∩

⧹ ∪ ∩

⧹ ∪

Since there is no four‐hole, N v N v( ) ( )1 3∩ is a clique, and so is N v N v( ) ( )1 4∩ , and
therefore χ A n ω G( ) > − 2 ( )1 . Since N v N v( ) ( )2 4∩ and N v N v( ) ( )1 3∩ are cliques, it also
follows that χ A n ω G( ) > − 2 ( )2 , and similarly χ A n ω G( ) > − 2 ( )i for i1 4≤ ≤ .

Now v2 is anticomplete to A A1 2⧹ , and v1 is anticomplete to A A2 1⧹ , so if
χ A A n ω G( ) 2 − ( )1 2∩ ≤ ∕ , then χ A A n ω G( ) > 2 − ( )1 2⧹ ∕ and χ A A n ω G( ) > 2 − ( )2 1⧹ ∕ ,
and so the edge v v1 2 is rich.

Thus we may assume that χ A A n ω G( ) > 2 − ( )1 2∩ ∕ , and similarly
χ A A n ω G( ) > 2 − ( )3 4∩ ∕ . But A A N v N v( ) ( )1 2 2 3∩ ⊆ ⧹ , and A A N v N v( ) ( )3 4 3 2∩ ⊆ ⧹ ,
and so the edge v v2 3 is rich. This proves 4.3. □

We put 4.2 and 4.3 together to prove the following:

4.4. Let ψ : ℕ ℕ→ be some nondecreasing polynomial. If G is a C4‐free graph with

χ G ω G ψ ω G( ) > 85 ( ) + 43 ( ( ))

then G contains a ψ‐nondominating odd hole.

Proof. Let G be a C4‐free graph with χ G ω G ψ ω G( ) > 85 ( ) + 43 ( ( )). Define
n ω G ψ ω G= 4 ( ) + 2 ( ( )).

Let A be the set of all vertices v ofG such that χ N v n( ( )) ≤ , and B V G A= ( )⧹ . By 4.2
applied to G A[ ], we may assume that

10 | CHUDNOVSKY ET AL.
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χ A ω A n ψ ω A n ψ ω A ω G ψ ω G( ) max( ( ), 21 + ( ( ))) = 21 + ( ( )) 84 ( ) + 43 ( ( ))≤ ≤

and so χ B χ G χ A ω G( ) ( ) − ( ) > ( )≥ . By 4.3 there exist disjoint sets
X Y V G, ( )⊆ , anticomplete, with χ X χ Y n ω G ω G ψ ω G( ), ( ) > 2 − ( ) ( ) + ( ( ))∕ ≥ .
Since χ X ω G ω X( ) > ( ) ( )≥ , G X[ ] is not perfect and so contains a special hole C, and
hence an odd hole since G has no four‐holes. Since V C( ) is anticomplete to Y , and
χ Y ψ ω G ψ ω Y( ) > ( ( )) ( ( ))≥ , C is ψ‐nondominating. This proves 4.4. □

This in turn is used to prove:

4.5. Let ψ : ℕ ℕ→ be some nondecreasing polynomial. Then there is a nondecreasing
polynomial ϕ : ℕ ℕ→ such that if χ G ϕ ω G( ) > ( ( )) then G contains a ψ‐nondominating
special hole.

Proof. Let ψ x x ψ x′( ) = 85 + 43 ( ) for x ℕ∈ , and let ϕ satisfy 3.2 with ψ replaced by ψ′,
taking s = 2 and q = 4. We will show that ϕ satisfies 4.5. Let G be a graph with
χ G ϕ ω G( ) > ( ( )). By 3.2, either there is a ψ′‐nondominating four‐hole in G, or there is a
ψ( ′, 4)‐sprinkling in G. In the first case, this four‐hole is also ψ‐nondominating, since
ψ x ψ x( ) ′( )≤ for x ℕ∈ , so we assume the second case holds. Let P Q( , ) be a
ψ( ′, 4)‐sprinkling in G, and let r be the maximum chromatic number over v P∈ of the
set of neighbours of v in Q. Thus χ Q r ψ ω Q( ) > 4 + ′( ( )), from the definition of a ψ( ′, 4)‐
sprinkling. If G P[ ] has a four‐hole H , the set of vertices in Q with a neighbour in V H( )

has chromatic number at most r4 , and so there is a subset of Q with chromatic number
more than ψ ω Q ψ ω Q′( ( )) ( ( ))≥ anticomplete to H , and so H is ψ‐nondominating.
Thus we may assume that G P[ ] has no four‐hole. By 4.4, G P[ ], and hence G, contains a
ψ‐nondominating odd hole. This proves 4.5. □

We deduce 1.1, which we restate:

4.6. For each integer k 1≥ , let  be the class of all graphsG with no k‐multihole in which
every component is special. Then  is poly‐χ ‐bounded.

Proof. Let us say a k‐multihole is special if each of its components is a special hole.
We proceed by induction on k. The result is true when k = 1, because graphs containing
no special hole are perfect; so we assume that k 2≥ , and there is a polynomial binding
function ψ : ℕ ℕ→ for the class of all graphs with no special k( − 1)‐multihole k−1 (and
we may assume ψ is nondecreasing). Let ϕ satisfy 4.5; we claim that ϕ is a binding
function for the class of all graphs with no special k‐multihole. Thus, let G be a graph
with χ G ϕ ω G( ) > ( ( )); we must show that G contains a special k‐multihole.
By the choice of ϕ, G contains a ψ‐nondominating special hole H say. Choose
A V G V H( ) ( )⊆ ⧹ , anticomplete to V H( ), such that χ A ψ ω A( ) > ( ( )). From the
inductive hypothesis, G A[ ] contains a special k( − 1)‐multihole, and so G contains a
special k‐multihole. This proves 4.6. □

CHUDNOVSKY ET AL. | 11

 10970118, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jgt.22987 by U

niversity O
f W

aterloo D
ana Porter L

ibrary, W
iley O

nline L
ibrary on [26/05/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



5 | LONG HOLES

In this section we will prove 1.4. The proof is similar to that of 1.1. Fix an integer ℓ 4≥ , and we
say a hole is long if its length is at least ℓ. Let τ G( ) denote the largest integer t such that G
contains Kt t, as a subgraph. We need a result proved in [1] (see also [13]), the following:

5.1. There exists an integer c > 0 such that χ G τ G( ) ( ) + 1c≤ for every graph G with no
long hole.

We deduce:

5.2. Let s ℕ∈ ; then the class of Ks s, ‐free graphs with no long hole is poly‐χ ‐bounded.

Proof. Let c 1≥ be as in 5.1, and let ϕ be the polynomial ϕ x x( ) = cs for x ℕ∈ . LetG be a
Ks s, ‐free graph with no long hole. We will show that ϕ is a binding function for G. Suppose
that τ G ω G( ) ( )s≥ , and let A B, be disjoint subsets of V G( ), both of cardinality at least
ω G( )s and complete to each other. By 3.5, there exist stable sets A A′ ⊆ and B B′ ⊆ both of
cardinality s; but thenG A B[ ′ ′]∪ is a copy of Ks s, , a contradiction. So τ G ω G( ) < ( )s. By 5.1,

χ G ω G ω G ϕ ω G( ) ( ( ) − 1) + 1 ( ) = ( ( )),s c cs≤ ≤

and so ϕ is a binding function for G, and hence for the class of Ks s, ‐free graphs with no
long hole. This proves 5.2. □

Next we need an analogue of 4.1, the following:

5.3. Let n ℕ∈ , and letG be a graph such that χ N v n( ( )) ≤ for every vertex v V G( )∈ . If
C is a shortest long hole in G, the set of vertices of G that belong to or have a neighbour in
V C( ) has chromatic number at most n(ℓ + 1) .

Proof. Let C have vertices c c c c‐ ‐ ‐ ‐k1 2 1⋯ in order. Let P be the path c c c‐ ‐ ‐1 2 ℓ−3⋯ , and let
Q be the path C V P( )⧹ .

(1) If v V G V C( ) ( )∈ ⧹ has no neighbour in V P( ), then all neighbours of v in V Q( )

belong to a three‐vertex subpath of Q.

Suppose not, and choose i j, minimum and maximum, respectively, such that
c c V Q, ( )i j ∈ are neighbours of v. Thus j i− 3≥ , and so

c c c v c c c c‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐i j j k1 2 +1 1⋯ ⋯

is a long hole (because j ℓ − 2≥ ) that is shorter than C, a contradiction. This proves (1).
For i k1 ≤ ≤ , let Ai be the set of vertices in V G V C( ) ( )⧹ that are adjacent to ci and to

none of c c, …, i1 −1.

(2) Ai is anticomplete to Aj for i j kℓ − 2 <≤ ≤ with j i− 4≥ .

12 | CHUDNOVSKY ET AL.
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Suppose that u Ai∈ and v Aj∈ are adjacent. Choose j j′ ≥ maximum such that cj′ is
adjacent to v; thus j j i′ + 4≥ ≥ , and so by (1), u is nonadjacent to c c, …,j k′ . Hence

c c c u v c c c c‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐ ‐i j j k1 2 ′ ′+1 1⋯ ⋯

is a long hole shorter than C, a contradiction. This proves (2).
For t = 1, 2, 3, 4 let It be the set of all integers i k{ℓ − 2, …, }∈ such that i t− is

divisible by four. Thus I I I I, , ,1 2 3 4 form a partition of k{ℓ − 2, …, }. Moreover, for all
t {1, …, 4}∈ , and all distinct i j I, t∈ , there is no edge between A c{ }i i+1∪ and A c{ }j j+1∪ ,
by (1) and (2); and so A c{ }i I i i+1t

∪∈ has chromatic number at most n. Hence the set of all
vertices inV G( ) that belong to or have a neighbour inV C( ) has chromatic number at most

n(ℓ + 1) , since those that belong to or have a neighbour in P have chromatic number at
most n(ℓ − 3) , and the others have chromatic number at most n4 . This proves 5.3. □

Now we need an analogue of 4.3, the following:

5.4. Let s ℕ∈ , let G be a Ks s, ‐free graph, with no long hole of length at most s2 ℓ. Let
n ℕ∈ , and let B V G( )⊆ be the set of vertices v of G such that χ N v n( ( )) > . If G B[ ]

contains a long hole, then there exist disjoint sets X Y B, ⊆ , anticomplete, with
χ X χ Y n s ω G( ), ( ) > − (2 ℓ) ( )s s.

Proof. We may assume thatG B[ ] has a hole of length more than s2 ℓ, and so contains an
induced path P with r s= 2 ℓ − 2 vertices. Let the vertices of P be p p p‐ ‐ ‐ r1 2 ⋯ in order. For
each stable subset S V P( )⊆ with S s=  , let DS be the set of vertices in V G V P( ) ( )⧹ that
are adjacent to every vertex in S. SinceG is Ks s, ‐free, it follows from 3.5 that D ω G( )S

s≤  .
Let D be the set of vertices in V G V P( ) ( )⧹ that have s pairwise nonadjacent neighbours
in V P( ). Since there are at most s(2 ℓ)s choices of S, it follows that χ D s ω G( ) (2 ℓ) ( )s s≤ .
Let F V G V P D= ( ) ( ( ) )⧹ ∪ .

(1) For each v F∈ , if i j, are minimum and maximum such that v is adjacent to p p,i j,
then j i s− ( − 2)(ℓ − 2) + 1≤ .

Let v F∈ . Choose t 0≥ maximum such that there exist i i r1 < < t1≤ ⋯ ≤ satisfying:

• i1 is the least i such that v is adjacent to pi;
• v is adjacent to pik for k t1 ≤ ≤ ;
• i i + 2k k+1 ≥ for k t1 − 1≤ ≤ ;
• v is nonadjacent to pj for k t1 − 1≤ ≤ and for each j i i{ + 2, …, − 1}k k+1∈ .

Since p p p{ , , …, }i i it1 2
is a stable set, and v F∈ , it follows that t s< . Moreover, for

k t1 <≤ , v is nonadjacent to each pj for each j i i{ + 2, …, − 1}k k+1∈ ; so one of

v p p p‐ ‐ ‐ ‐ ,i i i+1k k k+1
⋯

v p p p‐ ‐ ‐ ‐i i i+1 +2k k k+1
⋯

CHUDNOVSKY ET AL. | 13
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is an induced cycle. This cycle has length at most s2 ℓ, since P has only r s= 2 ℓ − 2

vertices; and so the cycle has length less than ℓ, since G has no long hole of length at
most s2 ℓ. Consequently i i− ℓ − 2k k+1 ≤ , and so i i s− ( − 2)(ℓ − 2)t 1 ≤ . From the
maximality of t , v is nonadjacent to pj for all j i + 2t≥ . This proves (1).

Let X be the set of neighbours of p1 in V G D( )⧹ , and let Y be the set of neighbours of
pr in V G D( )⧹ .

(2) X is disjoint from and anticomplete to Y .

Since r s− 1 > ( − 2)(ℓ − 2) + 1, (1) implies that X Y =∩ ∅. Suppose that u X∈ and
v Y∈ are adjacent. Choose i r{1, …, }∈ maximum such that u is adjacent to pi, and choose
j r{1, …, }∈ minimum such that v is adjacent to pj. By (1), i s− 1 ( − 2)(ℓ − 2) + 1≤ , and
r j s− ( − 2)(ℓ − 2) + 1≤ . Hence i r j s− 1 + − 2(( − 2)(ℓ − 2) + 1)≤ , and so

j i r s s− ( − 1) − 2(( − 2)(ℓ − 2) + 1) = 4ℓ + 4 − 13.≥

But then u p p p v u‐ ‐ ‐ ‐ ‐ ‐i i j+1⋯ is a hole of length at least s4ℓ + 4 − 10 ℓ≥ and at most
s2 ℓ, a contradiction. This proves (2).
But χ N p n( ( ))1 ≥ , and so χ X n χ D n s ω G( ) − ( ) − (2 ℓ) ( )s s≥ ≥ , and the same for Y .

This proves 5.4. □

Next, combining 5.3 and 5.4, we have an analogue of 4.4:

5.5. Let s ℕ∈ , and let ψ : ℕ ℕ→ be some nondecreasing polynomial. There is a
nondecreasing polynomial ϕ : ℕ ℕ→ with the following property. IfG is a Ks s, ‐free graph with
no long hole of length at most s2 ℓ, and no ψ‐nondominating long hole, then χ G ϕ ω G( ) ( ( ))≤ .

Proof. By 5.2, there is a nondecreasing polynomial θ : ℕ ℕ→ that is a binding function
for the class of Ks s, ‐free graphs with no long hole. Define ϕ by

ϕ x θ x ψ x s x θ x ψ x( ) = 2 ( ) + ( ) + (ℓ + 1)((2 ℓ) + ( ) + ( )).s s

We claim that ϕ satisfies 5.5. Thus, let G be a Ks s, ‐free graph with no long hole of
length at most s2 ℓ, and no ψ‐nondominating long hole. Let

n s ω G θ ω G ψ ω G= (2 ℓ) ( ) + ( ( )) + ( ( )).s s

Let A be the set of vertices v V G( )∈ such that χ N v n( ( )) ≤ , and B V G A= ( )⧹ .

(1) χ A θ ω G ψ ω G n( ) ( ( )) + ( ( )) + (ℓ + 1)≤ .

Suppose not. Then by 5.2, G A[ ] has a long hole; let C be a shortest long hole of G A[ ].
By 5.3 applied toG A[ ], the set of vertices of A that belong to or have a neighbour inV C( )

has chromatic number at most n(ℓ + 1) , and so there is a subset of A V C( )⧹

anticomplete to V C( ) with chromatic number more than χ A n ψ ω G( ) − (ℓ + 1) ( ( ))≥ .
Hence C is ψ‐nondominating, a contradiction. This proves (1).

14 | CHUDNOVSKY ET AL.
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(2) χ B θ ω G( ) ( ( ))≤ .

Suppose not. Then G B[ ] has a long hole by 5.2. By 5.4, there exist disjoint sets X Y B, ⊆ ,
anticomplete, with χ X χ Y n s ω G( ), ( ) > − (2 ℓ) ( )s s. Since χ X θ ω G( ) ( ( ))≥ , G X[ ] has a
long hole, and it is ψ‐nondominating since χ Y ψ ω G( ) ( ( ))≥ , a contradiction. This proves (2).

From (1) and (2), it follows that

χ G θ ω G ψ ω G n( ) 2 ( ( )) + ( ( )) + (ℓ + 1) .≤

This proves 5.5. □

This implies:

5.6. Let s ℕ∈ , and let ψ : ℕ ℕ→ be some nondecreasing polynomial. Then there is a
nondecreasing polynomial ϕ : ℕ ℕ→ such that if χ G ϕ ω G( ) > ( ( )) then G contains either
a ψ‐nondominating copy of Ks s, , or a ψ‐nondominating long hole.

Proof. By 5.5, there is a nondecreasing polynomial ψ′ : ℕ ℕ→ with the following
property. If G is a Ks s, ‐free graph with no long hole of length at most s2 ℓ, and
χ G ψ ω G( ) > ′( ( )), then G contains a ψ‐nondominating long hole.

Let ϕ satisfy 3.2 with ψ replaced by ψ′, taking q s= 2 ℓ. We claim that ϕ satisfies 5.6. Thus,
let G be a graph with χ G ϕ ω G( ) > ( ( )). By 3.2, either there is a ψ′‐nondominating copy of
Ks s, in G, or there is a ψ s( ′, 2 ℓ)‐sprinkling in G. In the first case, this copy of Ks s, is also ψ‐
nondominating, since ψ x ψ x( ) ′( )≤ for x ℕ∈ , so we assume the second case holds. Let
P Q( , ) be a ψ s( ′, 2 ℓ)‐sprinkling in G, and let r be the maximum chromatic number over
v P∈ of the set of neighbours of v inQ. Thus χ Q s r ψ ω Q( ) > 2 ℓ + ′( ( )), from the definition
of a ψ s( ′, 2 ℓ)‐sprinkling. IfG P[ ] contains H where H is either a copy of Ks s, or a long hole of
length at most s2 ℓ, the set of vertices inQ with a neighbour inV H( ) has chromatic number
at most H r s r2 ℓ≤  , and so there is a subset of Q with chromatic number more than
ψ ω Q ψ ω Q′( ( )) ( ( ))≥ anticomplete to H ; and therefore H is ψ‐nondominating. Thus we
may assume that G P[ ] is Ks s, ‐free and has no long hole of length at most s2 ℓ. By 5.5, G P[ ],
and hence G, contains a ψ‐nondominating long hole. This proves 5.6. □

Finally, we prove 1.4, which we restate:

5.7. For all integers k s, 1≥ and ℓ 4≥ , let  be the class of all graphs G such that no
induced subgraph of G has exactly k components, each of which is either a copy of Ks s, or a
cycle of length at least ℓ. Then  is poly‐χ ‐bounded.

Proof. (The proof is just like that of 4.6). Let us say an induced subgraph H of a graphG is a
k‐object if it has exactly k components, and each is either a copy of Ks s, or a cycle of length at
least ℓ. Thus k is the class of graphs with no k‐object. We prove by induction on k that k is
poly‐χ ‐bounded. The result is true when k = 1, by 5.2, so we assume that k 2≥ , and there is a
polynomial binding function ψ : ℕ ℕ→ for k−1 (and we may assume ψ is nondecreasing).
Let ϕ satisfy 5.6; we claim that ϕ is a binding function for k . Thus, let G be a graph with
χ G ϕ ω G( ) > ( ( )); we must show thatG contains a k‐object. By the choice of c,G contains a
ψ‐nondominating induced subgraph H , where H is either a copy of Ks s, or a long hole. Choose
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A V G V H( ) ( )⊆ ⧹ , anticomplete to V H( ), such that χ A ψ ω A( ) > ( ( )). From the inductive
hypothesis,G A[ ] contains a k( − 1)‐object, and soG contains a k‐object. This proves 5.7. □
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