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Abstract

This thesis focuses on the roles of causal propagator—the expectation value of the field
commutator — in relativistic quantum information. Consider two observers Alice and
Bob, each carrying a two-level quantum system (“qubit”) interacting with a common
relativistic quantum field environment in spacetime. Since the interaction occurs for a
finite duration and has a finite spatial extent, we can think of Alice and Bob’s qubits
as being essentially localized in spacetime. We say that Alice and Bob can signal or
communicate to one another via the field if the protocol they use depends on the field
commutator evaluated around Alice’s and Bob’s interaction regions. The main tool we
use to deal with signaling issues is the so-called Unruh-DeWitt particle detector model.

The main content of the thesis is organized into four chapters (Chapter 4-7). Chap-
ter 4 and 5 are concerned with the entanglement harvesting protocol, where Alice and Bob
attempt to extract vacuum entanglement from the relativistic environment by locally
coupling their qubits to the field. In Chapter 6 we revisit a problem involving entan-
glement dynamics of two qubits subjected to Unruh acceleration and ask whether the
existing results are perturbatively reliable. Finally, in Chapter 7 we discuss a slightly
different but related topic that we call modest holography, a form of metric reconstruction
in asymptotically flat spacetimes that relies on a bulk-to-boundary correspondence be-
tween the correlators of two different quantum field theories. Wewill see that the causal
propagator plays different but essential roles in all of these subjects, possibly inways that
aremore important thanwhat itmay seem at first sight. There is a sense inwhich one can
argue that what makes relativistic quantum information relativistic is indeed the signal-
ing component: it is about the causal structure of spacetime, and spacetime curvature
provides the “details”.
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Nomenclature

e The spacetime is a D-dimensional Lorentzian manifold (M, gab) with metric gab (ab-
stract index notation). Here D = n + 1 where n is the number of spatial dimensions.

e The signature of themetric is “mostly plus” (signature D− 2). For (1+1)-dimensional
models where D − 2 = 0, this corresponds to the one where g(V, V) = gabVaVb < 0
for V a timelike vector.

e The Fourier transform convention is the one that has no prefactor when going into the
Fourier space:

χ̃(ω) :=
∫

dt χ(t)e−iωt , F̃(k) :=
∫

dnx F(x)eik·x .

e Especially for Chapter 7, in order tomatch both the physics and themathematics liter-
ature without altering each other’s conventions toomuch, wewill make the following
compromises. In most places we follow “physicist’s convention”, writing Hermitian
conjugation as A† and complex conjugation as B∗. There are three exceptions using
“mathematician’s convention”:

(1) C∗-algebra, where ∗ here means (Hermitian) adjoint/Hermitian conjugation;
(2) Complex conjugate Hilbert space H;
(3) Complex stereographic coordinates (z, z), where complex conjugation is denoted

by a bar.

We remind the reader again when the time comes.
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Quotes

「誰かの期待に応えるために悲しくなるなんて、
つまんないって。居場所はある。」
To feel sad over trying to meet someone else’s expectation,
that’s so boring! You always have a place you belong to.

— 錦木千束、「リコリス・リコイル」
Chisato Nishikigi, Lycoris Recoil

「まくとぅそーけー、なんくるないさ」1.
Strive to do the right thing, and everything will work out.

— 宮沢風花、「白い砂のアクアトープ」
Fuuka Miyazawa, The Aquatope on White Sands

「この先は暗い夜道だけかもしれない。
それでも信じて進むんだ。
星がその道を少しでも照らしてくれるのを。
さぁ、旅に出よう。」
There may only be a dark road ahead.
However, we still have to believe and keep going.
Believe that the stars will light our paths, even if just a little.
Come, let us go on a journey.

— 宮園かをり、「四月は君の嘘」
Kaori Miyazono, Your Lie in April

1Okinawan dialect
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「貴方はきっと、たくさんの人々に出会うでしょう。
そこで本当の意味での強さを知るでしょう」
You will certainly meet a lot of people in your journey.
There you will find out what it really means to be strong.

— 知世姫、「ツバサ-RESERVoir CHRoNiCLE-」
Princess Tomoyo, Tsubasa - RESERVoir CHRoNiCLE

「この世に偶然なんてない、あるのは必然だけ」
There are no coincidences in life, only inevitability.

— 壱原侑子「ツバサ-RESERVoir CHRoNiCLE-」
Yuuko Ichihara, Tsubasa - RESERVoir CHRoNiCLE

xxvi



Part I

Overture

1





Chapter 1

Introduction

「ここから、あなたの百年旅が始まるんです」
This is where your 100-year journey begins.

マツモト、「Vivy - Fluorite Eyes’ Song」
Matsumoto, Vivy - Fluorite Eyes’ Song

1.1 Signaling, quantum information, and relativity

Quantum information theory is, strictly speaking, agnostic to relativity. The reason is
straightforward: we work with states, density matrices, expectation values of observ-
ables, etc., none of which know a priori that there is a background spacetime on top of
which physical processes take place. In fact, a large part of quantum information the-
ory is kinematical: one does not require any Hamiltonian, hence any dynamics, to make
progress (e.g., in the study of complexity theory, quantum algorithms, or entanglement
theory) until the stage when one wishes to actually implement it on a specific physi-
cal platform, such as superconducting qubits or trapped ions. At the kinematical level,
relativity can be enforced ‘only in name’ in exactly one way: it goes under the name
“no-signaling principle”, which proclaims that there can be no faster-than-light (FTL)
or superluminal signaling.
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The no-signaling principle is at the core of many important quantum communication
protocols and forms the basis of some no-go theorems. One famous example is the state-
ment that the existence of a universal quantum cloner implies superluminal signaling
[1, 2]. The usual argument exploits the Einstein-Podolsky-Rosen (EPR) pair, which is
a maximally entangled state, and then one proceeds to show that if two experimenters
each hold onto one qubit of the EPR pair, then they cannot use any local measurement
of the EPR pair to send any useful information to one another if they are spacelike-
separated. This result was shortly followed by a proof that a universal cloning machine
does not exist [3] (see also [4–6]). Experimental tests of the no-signaling principle are
highly non-trivial but have been attempted [7–9].

From the dynamical standpoint, however, these results cannot be the full story for at
least two reasons. First, note that non-relativistic physical theories can be viewed as the
limit where the speed of light is infinite, thus allowing for instantaneous propagation of
information. Therefore, theoretically speaking it is already impossible in standard quan-
tum mechanics to perform superluminal signaling since the speed of light is infinite. Of
course, experimentally the story is slightly different: classical experiments demonstrate
that relativity is the correct description of light propagation and that the speed of light
is finite. The problem really arises becausewe demand that (1) the quantum-mechanical
degrees of freedom can be described using standard non-relativistic quantummechanics,
while (2) the motional degrees of freedom associated with light propagation in space-
time is described using relativistic mechanics. All optical-based experiments essentially
require (1) and (2) to work, and it is this requirement that the relevance of imposing the
no-signaling principle is manifest.

In light of the above discussion, the no-signaling principle is really an add-on to quan-
tum mechanics: that is, if the background spacetime is relativistic, then some properties
of quantum mechanics (such as the no-cloning theorem) forbid FTL signaling. Even for
light (or a photon), often it is only their polarization that is subject to the quantum-
mechanical treatment and not the full relativistic wave property. From a fundamental
standpoint, this is not ideal because the electromagnetic field is known to be described
by relativistic quantum field theory (RQFT), and it is a well-known result of Wigner that
we cannot separate the spin andmomentum degrees of freedom literally unless we work
in some non-relativistic limit [10].

Second, and perhaps more importantly, the no-signaling principle is really a state-
ment about the causal structure of spacetime. Given two spacetime events, relativity tells
us that they can be either spacelike-separated, timelike-separated, or null-separated. This sep-
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aration does not exist in Galilean or Newtonian mechanics1. What is less obvious to
practitioners of quantum information is that in order to specify the spacetime geometry
completely, it is not enough to only specify the causal structure because it only determines
the spacetime metric up to a spacetime-dependent conformal rescaling. If we are only
handed a fixed causal structure, we cannot distinguish spacetimes that are “conformally
equivalent”: for example, we cannot distinguish flat Minkowski spacetime (without
gravity) from curved Friedmann-Robertson-Walker (FRW) spacetime that is isotropic
and homogeneous, which forms the basis of our understanding of cosmology2.

The moral of the story is that a fuller understanding of how relativity impacts quan-
tum information theory and its applications requires the geometrical content of relativity
to be included in some form beyond just its causal structure — relativity is more than
the light cone. It turns out that there is no natural way to include the full information
about spacetime geometry or to talk about localization of quantum systems in space-
time within standard quantum mechanics. Among many reasons, the obstruction can
be traced to two deep and related results: Malament’s theorem, which shows that there
is no position operator that is relativistically consistent [12, 13]; Reeh-Schlieder theorem
[14, 15], which shows that even in RQFT it is impossible to write the total Hilbert space
of the field as a tensor product over all spatial points in analogy to lattice models in
quantum many-body systems.

If we believe that the two reasons above need to be accounted for in order for both
quantum information theory and relativity to form a cogent framework, what options
do we have? There are at least two main directions:

(1) Abstract paradigm. Onewould like to encode relativity in some high-level framework
that is ideally model-dependent (and hence also device-independent). See, e.g.,
[16–21], for some of these approaches. One famous application of such an approach
is the relativistic cryptographic protocol known as relativistic bit commitment [22–25].
We will not follow this route in this thesis.

(2) Concrete paradigm. The idea is to implement relativistic constraints directly in a
model-dependent way, with all dynamical degrees of freedom built-in from first
principles. In practice, this means either including relativistic corrections to the
Hamiltonian and observables, or considering relativistic quantum fields as one of the
components for quantum information theory.

1This causal structure requires that the speed of light is finite and is constant in all local inertial frames.
2The FRW spacetime provides the simplest description of an expanding universe driven dynamically by

the gravitational field, with an expansion rate controlled by the Hubble’s constant [11].
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Clearly, both paradigms have their strengths and weaknesses. In this thesis, we will
follow the second route where quantum fields are part of the description of the total
system under study.

The inclusion of RQFT as part of quantum information theory forms one of the pillars
of a relatively youngfield knownas relativistic quantum information (RQI). The subject can
be said to begin with the observation in the 2000s by Peres and Terno that spin and mo-
mentum entanglement in the electromagnetic field, which is already a fully relativistic
quantum field theory, is not Lorentz-invariant [26, 27]. Although this observation re-
mains controversial and in many ways not fully understood to this day [28–30], it forced
the community to re-think what it means to be relativistic and observable. Dowker fa-
mously drew attention to the fact that some “obvious moves”, such as treating the vac-
uum and one-particle state of the field as qubit states, are not valid even if the field is
relativistic: in this case, it follows from Fourier theory that one-particle state in QFT is
completely delocalized over all space, hence no local idealized measurement can ever
access such a “qubit system” [31]. Sorkin also showed that one of the most cherished
principles in quantum mechanics — the projection postulate— leads to superluminal sig-
naling [32].

Even in the concrete approach where we explicitly use relativistic components (i.e.,
quantum fields) in quantum information theory, it is important to be aware of what car-
ries over from standard quantum information theory and what needs to be changed or
bypassed in the relativistic framework. In fact, signaling is often the first gatekeeping
one needs to consider in order to check for the overall consistency of any framework:
in most cases, any problematic moves we take in RQI will result in superluminal signal-
ing. Conversely, since RQFTs are by construction relativistic (modulo some caveats), we
should be able to obtain the no-signaling principle for free: it should arise directly from
the equation ofmotion of the field. For linear fields such as the free electromagnetic field,
signaling will be governed purely by the structure of the hyperbolic partial differential
equations (PDE) describing the wave propagation of the fields and is completely encoded
in the Green’s function of the relativistic wave equation.

1.2 The core of the thesis

This thesis will focus on the role of causal propagators in RQI. In physical terms, the causal
propagator is nothing but the expectation values of the field commutator. It is precisely
the object that encodes relativistic causality and it appears in the canonical commutation
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relations of bosonic QFTs (at least for non-interacting theories such as the free electro-
magnetic field). Causal propagators are essential in understanding how relativity plays
a role in RQI, and we will cover four topics where the causal propagator takes the center
of the stage. The main outline of the thesis is as follows:

e In Chapter 2 we will briefly recap the basic formalism of QFT in curved spacetimes.
However, we will shift the focus towards a more algebraic description in the spirit
of algebraic quantum field theory (AQFT). Although not immediately obvious, AQFT
has much less conceptual baggage than canonical quantization, even though in many
cases canonical quantization is the place where most calculations take place.

e In Chapter 3, wewill study a family of detectormodels thatwewill collectively call the
Unruh-DeWitt detector model. At the core of it is the use of non-relativistic quantum-
mechanical probes (“detectors”) interacting with a relativistic quantum field via ‘lo-
cal’ interactions. In most cases the detectors are taken to be qubit detectors, i.e., when
the Hilbert space of each detector is two-dimensional. These models form the main
conceptual tool that will be used in the subsequent chapters.

e In Chapter 4, we will first study the entanglement harvesting protocol in the context of
Vaidya spacetime and understand how different choices of (inequivalent) vacua are
manifest at the level of qubit detectors interacting with the field. We will see that the
behaviour of the field commutator casts doubt onwhether two qubits interactingwith
a quantum field truly “harvest entanglement” from the field or not. The content of
this chapter is lifted from our work in [33].

e This brings us to Chapter 5, where we show that indeed even in Minkowki (flat)
spacetime, the entanglement harvestingprotocol should really be regarded as a proper
harvesting protocol when the qubit detectors are not allowed to “signal” or “commu-
nicate” through the field — that is, through the causal propagator. Such results can-
not be derived (easily, if at all) in non-relativistic quantum information settings. The
content of this chapter is lifted from our work in [34].

e We cover a somewhat related problem in Chapter 6, namely the entanglement gen-
eration between two accelerating qubits using the open master equation framework.
Crucially, we will show that many of the results in the literature are strictly speaking
incorrect because the results are outside the domain of applicability of the approxi-
mations employed. One such problem amounts to ignoring the causal propagator’s
short-distance behaviour. The content of this chapter is lifted from our work in [35].
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e Finally, in Chapter 7 we will study a different problem that at first sight has noth-
ing to do with RQI, namely modest holography, which is a metric reconstruction using
the bulk-to-boundary correspondence between correlation functions in the bulk and
in the null boundary of asymptotically flat spacetimes. This was motivated in part
by the recent results on bulk metric reconstruction using Feynman propagator and
Wightman two-point functions and how it may be potentially accomplished using
qubit detector models. The content of this chapter is lifted from our work in [36, 37].

d f e f d

Relativity was developedmore than 100 years ago, and quantummechanics is exactly
100 years old if we count from de Broglie hypothesis. Interestingly, the seminal work of
Nyquist and Hartley also began in 1920s, so information theory is essentially 100 years
old. If we count Shannon as the father of modern information theory, then classical in-
formation theory is about 75 years old. Quantum information theory can be said to begin
with the work of Gordon [38] in 1962 and Holevo in 1973 [39], so quantum information
theory is only about half a century old and there are more open problems, theoretically
and experimentally, than the pioneers — in relativity, quantum theory, and information
theory — could ever imagine.

For uswho belong to the current generation of quantum information physicists, math-
ematicians, computer scientists and engineers, this is where our 100-year journey begins.
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Chapter 2

Quantum field theory in curved
spacetimes

「常識なんていう言葉は嫌いよ。あらゆる角度から世界を眺めてみて。
残酷で滑稽で、美しいこの世界を—」

I despise common sense. I have witnessed the world from every possible angle.
This cruel, absurd, beautiful world—

レイシー＝バスカヴィル、「パンドラハーツ」
Lacie Baskerville, Pandora Hearts

Cruelty aside1, practitioners of quantum field theory and general relativity know that
to the best of our knowledge, indeed we live in an absurd, beautiful world. It is the
world where at its core some of our cherished common sense, built through centuries of
classical physics of Newton andMaxwell, do not hold. It is the world where the number
of particles depends on the motion of observers who try to count them. It is the world
where a gravitational field canproduce particles. It is theworldwhere black holes are not
truly black, the vacuum of one observer looks like a thermal bath for another, and many
more. We may rightfully despise common sense when confronted with these physical
predictions, since it often prevents us from seeing the simpler explanation underlying
these phenomena. This is our current understanding of quantum field theory in curved
spacetimes.

1Unfortunately, the world is indeed cruel, as we can already see from the news around the world.
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In this chapter we will briefly review the quantization of scalar field theory in curved
spacetimes. However, wewill go about this from the perspective of algebraic quantum field
theory (AQFT) instead of the more commonly used canonical quantization. This will be
very useful especially for the Chapter 7, but more importantly the algebraic methods
will turn out to be much cleaner and conceptually simpler2. The fact that there is no
preferred vacuum state in QFT is much easier to understand in the algebraic framework,
where this is a simple consequence of the fact that the unique specification of a vacuum
state in the Hilbert space requires us to specify both the algebra of observables and the
“algebraic” state.

Wewill keep the technical discussion to aminimumwhilemaking sure that important
components are not left out: formore complete rigorous description, see [11, 40–43] from
which this section is heavily based on.

2.1 Algebra of observables

Let ϕ be a real scalar field in (n + 1)-dimensional globally hyperbolic Lorentzian space-
time (M, gab). The field obeys the Klein-Gordon equation

P̂ϕ = 0 , P̂ = ∇a∇a − m2 − ξR , (2.1)

where ξ ≥ 0, R is the Ricci scalar and ∇ is the Levi-Civita connection with respect to
gab. Global hyperbolicity means that M ∼= R × Σ where Σ is a Cauchy surface: in such
spacetimes, the Klein-Gordon equation (2.1) admits a well-posed initial value problem
throughout and we also have a good notion of “constant-time slices”. For example, in
Minkowski spacetime we can take the Cauchy surfaces Σt ∼= R3 to be any codimension-
1 spacelike hypersurfaces: in terms of the natural (global) inertial coordinate system
(t, x), these would be the constant-t surfaces.

In the large scheme of things, quantization in the algebraic framework exploits much
of the structure available in the classical field theory. The idea is that we need to con-
struct algebra of observablesA(M) for the field theory as well as quantum states on which
A(M) acts. We will see that the building blocks of the QFT arise from constructing so-
lutions of the wave equation (2.1). These solutions can be built using appropriate choice
of Green’s functions, and we need to provide a “symplectic structure” to realize the dy-
namical content of the theory and the canonical commutation relations (CCR). Finally, we

2For physicists anyway, since we are not facing the functional-analytic subtleties.
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need to construct quantum states without reference to any Hilbert space structure, due
to the well-known existence of many unitary inequivalent Hilbert space representations.
It turns out that there are a priori too many options, and the consensus is to pick a sub-
class of algebraic states known asHadamard states, which encode the notion that all states
should look “the same” locally and as close to flat space QFT as possible.

Let f ∈ C∞
0 (M) be a smooth compactly-supported test function on M. Given the re-

tarded and advanced propagators/Green’s functions E± ≡ E±(x, y) associatedwith the Klein-
Gordon operator P̂, we can define the smeared advanced/retarded propagators as

E± f ≡ (E± f )(x) :=
∫

dV′ E±(x, x′) f (x′) , (2.2)

where dV′ = dDx′
√
−g′ is the invariant volume element (here g′ ≡ det gab(x′) < 0).

These solve the inhomogeneous wave equation P(E± f ) = f . The causal propagator is
defined to be the advanced-minus-retarded propagator E = E− − E+. The relevant fact
for us is the following: if O is an open neighbourhood of some Cauchy surface Σ and
φ ∈ SolR(M) is any real solution to Eq. (2.1) with compact Cauchy data, then there
exists f ∈ C∞

0 (M) with supp( f ) ⊂ O such that φ = E f [42], where E f is defined
analogously to Eq. (2.2).

In AQFT, the quantization of the real scalar field theory ϕ on M is viewed as an R-
linearmapping from the space of smooth, compactly-supported test functions to a unital
∗-algebra A(M) given by3

ϕ̂ : C∞
0 (M) → A(M) , f 7→ ϕ̂( f ) , (2.3)

that satisfies the following properties:

(a) (Hermiticity) ϕ̂( f )† = ϕ̂( f ) for all f ∈ C∞
0 (M);

(b) (Field equation) ϕ̂(P̂ f ) = 0 for all f ∈ C∞
0 (M);

(c) (Canonical commutation relations (CCR)) Defining the commutator [a, b] := ab − ba
for a, b ∈ A(M), we have

[ϕ̂( f ), ϕ̂(g)] = iE( f , g)1 for all f , g ∈ C∞
0 (M) . (2.4)

3A ∗-algebra is a complex algebra with involution (physicists call it Hermitian adjoint). It is unital if it
contains the unit (identity), see [43, 44] for more details.
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E( f , g) is the smeared causal propagator

E( f , g) :=
∫

dV f (x)(Eg)(x) . (2.5)

(d) (Time slice axiom) A(M) is generated by the unit element 1 and the smeared field
operators ϕ̂( f ) for all f ∈ C∞

0 (M) with supp( f ) ⊂ O, where O a fixed open neigh-
bourhood of some Cauchy slice Σ.

We say that the ∗-algebraA(M) is the algebra of observables of the field onM. The smeared
field operator ϕ̂( f ) reads

ϕ̂( f ) =
∫

dV ϕ̂(x) f (x) . (2.6)

The (unsmeared) field operator ϕ̂(x) commonly used in canonical quantization (see,
e.g., [45–48]) should be thought of as an operator-valued distribution.

The dynamical content of the field theory is reflected in the symplectic structure as
follows. The vector space of solutions SolR(M) to the Klein-Gordon equation (2.1) can
be equipped with a symplectic form σ : SolR(M)× SolR(M) → R, defined as

σ(ϕ1, ϕ2) :=
∫

Σt
dΣa

[
ϕ1∇aϕ2 − ϕ2∇aϕ1

]
, (2.7)

where dΣa = −tadΣ, −ta is the inward-directed unit normal to the Cauchy surface Σt,
and dΣ =

√
h dnx is the induced volume form on Σt [49, 50]. As is well-known, this

definition is independent of the choice of Cauchy surface we use in (2.7). The field
operator ϕ̂( f ) can be expressed as symplectically smeared field operator [11]

ϕ̂( f ) ≡ σ(E f , ϕ̂) , (2.8)

and the CCR algebra can be written as

[σ(E f , ϕ̂), σ(Eg, ϕ̂)] = iσ(E f , Eg)1 = iE( f , g)1 , (2.9)

where σ(E f , Eg) = E( f , g) in the second equality follows from Eq. (2.6) and (2.8).
While in our case it is not directly necessary to construct A(M) with explicit reference
to σ (except in Chapter 7), the symplectic form (2.7) will be essential when we want
to make connection to standard canonical quantization. In particular, we will need to
define Klein-Gordon inner product for the one-particle Hilbert space associated with
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“positive-frequency solutions”. We collect some results regarding symplectic smearing
in Appendix A.

Since ϕ̂( f ) ∈ A(M) are unbounded operators, for free fields it is often more conve-
nient technically to work with its “exponentiated version” which forms a Weyl algebra
W(M), whose elements are bounded operators. The Weyl algebra W(M) is a unital
C∗-algebra generated by elements that formally take the form

W(E f ) ≡ eiϕ̂( f ) = eiσ(E f ,ϕ̂) , f ∈ C∞
0 (M) . (2.10)

These elements satisfy Weyl relations:

W(E f )† = W(−E f ) , W(E(P̂ f )) = 1

W(E f )W(Eg) = e−
i
2 E( f ,g)W(E( f + g))

, (2.11)

where f , g ∈ C∞
0 (M). Note that relativistic causality (or microcausality) is given by the

third Weyl relation, where the Weyl elements commute if and only if supp( f ), supp(g)
are spacelike-separated, i.e., when σ(E f , Eg) ≡ E( f , g) = 0. Indeed, in certain non-
perturbative approaches in RQI, the Weyl algebra is directly relevant in some of the
information-theoretic calculations such as the channel capacity and the analysis of causal
behaviour of relativistic communication channels [51–55].

2.2 Algebraic states, Hadamard states, andquasifree states

In AQFT, an algebraic state is a C-linear functional from a ∗-algebra A to C, denoted ω :
A → C, such that

ω(1) = 1 , ω(A† A) ≥ 0 ∀A ∈ W(M) . (2.12)

The state ω is pure if it cannot be written as ω = αω1 + (1 − α)ω2 for any α ∈ (0, 1) and
any two algebraic states ω1 6= ω2; otherwise we say that the state is mixed.

The relationship with the canonical quantization comes from the Gelfand-Naimark-
Segal (GNS) reconstruction theorem [11, 42, 43]:

Theorem 1 (Gelfand, Naimark, Segal). Given a C∗-algebra A and state ω, we get a unique
GNS triple (πω,Hω, |Ωω〉) such that
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e πω : A → B(Hω) is ∗-representation where πω(A) is a bounded operator on Hω for all
A ∈ A;

e |Ωω〉 is a unit cyclic vector, i.e., πω(A) |Ωω〉 is dense in Hω.

e The action of the state is given by

ω(A) = 〈Ωω|πω(A)|Ωω〉 .

This representation is unique up to unitary equivalence.

Note that in its GNS representation, any algebraic state ω is realized as a vector state
|Ωω〉 ∈ Hω and A ∈ A are realized as bounded operators Â := πω(A) ∈ B(Hω). We
can thus write ω(A) = 〈Ωω|Â|Ωω〉. In our case the C∗-algebra would correspond to
W(M); forA(M), the GNS theorem requires also identifying a dense subset Dω ⊂ Hω

and the statement is slightly modified (e.g., πω(A) |Ωω〉 = Dω) since the elements are
not bounded in general (see [42, 43] for details).

If the field or the underlying spacetime admits any symmetries in the form of some
symmetry group G (including asymptotic symmetries — see Chapter 7), they are de-
scribed as follows. The group action acts via automorphism on A(M) via unitary im-
plementation: that is, for g ∈ G we have an automorphism4 αg : A(M) → A(M) such
that in the Hilbert space representation π we have [43]

π(αg(A)) = Ûgπ(A)Û†
g ∀A ∈ A(M) . (2.13)

If the automorphism can be implemented unitarily as above, then we say that the repre-
sentation is G-covariant. A state is said to be G-invariant if

ω(αg(A)) = ω(A) ∀A ∈ A(M) , g ∈ G . (2.14)

We can equivalently rephrase this in terms of the pullback map on the state as α∗gω = ω
for all g ∈ G. In this case, we say that αg is unitarily implemented in the GNS represen-
tation of ω by a unitary that leaves the GNS cyclic vector |Ωω〉 invariant (see [43] for
the proof). For example, when G is the (connected component of the) Poincaré group,
theMinkowski vacuum |0M〉 is the Poincaré-invariant state, and the GNS representation
is Poincaré-covariant. Symmetries play very important roles in AQFT — the standard

4The automorphism is also required to obey αg(1) = 1 and αg(αh(A)) = αgh(A) where the product
gh is obtained from the binary operation in G corresponding to composition of group actions.
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proof of Reeh-Schlieder theorem requires the use of translation symmetries on the local
algebras πω(A(O)) where O is a causally convex bounded open region [43, 56].

Recall that the Weyl algebra gives a concrete realization of “exponentiation of ϕ̂( f )”.
However, the exponentiation in Eq. (2.10) is only formal: we cannot literally regard the
smeared field operator ϕ̂( f ) as the derivative ∂t

∣∣
t=0W(tE f ) since the Weyl algebra itself

does not have the right topology [43]; instead one takes the derivative at the level of the
GNS representation: that is, if Πω : W(M) → B(Hω) is a GNS representation with
respect to ω, then we do have

πω(ϕ̂( f )) = −i
d
dt

∣∣∣∣∣
t=0

Πω(eitϕ̂( f )) ≡ −i
d
dt

∣∣∣∣∣
t=0

eitπω(ϕ̂( f )) , (2.15)

where now ϕ̂( f ) is smeared field operator acting on Hilbert space Hω and πω is the
GNS representation for A(M). We can then define the formal n-point functions to be
the expectation value in its GNS representation5. For example, in the case of two-point
functions we have

ω
(
ϕ̂( f )ϕ̂(g)

)
:= 〈Ωω|πω(ϕ̂( f ))πω(ϕ̂(g))|Ωω〉

≡ − ∂2

∂s∂t

∣∣∣∣∣
s,t=0

〈Ωω|eisπω(ϕ̂( f ))eitπω(ϕ̂(g))|Ωω〉 . (2.16)

Inwhat followswewill thus write the formal two-point functions ω(ϕ̂( f )ϕ̂(g))with this
understanding that the actual calculation is (implicitly) done with respect to the GNS
representation in question.

In QFT, the class of objects we are interested to calculate is the n-point correlation func-
tions6, since many other quantities can be built from them. Given a fixed algebraic state

5Strictly speaking, the algebraic state for W(M) for which Eq. (2.15) holds is different from the one
for A(M), but they are naturally in one-to-one correspondence — see [57] for details. This technicality
will not matter for the rest of this thesis.

6This is also known as Wightman n-point functions to distinguish it from other types of correlation
functions (e.g., the time-ordered Feynman propagators).
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ω, the Wightman n-point functions/distributions7 is defined by

W( f1, ..., fn) := ω(ϕ̂( f1)...ϕ̂( fn)) (2.17)

where f j ∈ C∞
0 (M). It is to be understood that the RHS is computed within some GNS

representation of A(M). Recall that in terms of the GNS representation of the corre-
sponding Weyl algebra, the correlation functions are obtained by differentiation: for ex-
ample, we have

W( f , g) ≡ − ∂2

∂s∂t

∣∣∣∣∣
s,t=0

ω(eiϕ̂(s f )eiϕ̂(tg)) , (2.18)

where the RHS is a shorthand for its GNS representation (so we leave out Πω or πω).
The general agreement among AQFT practitioners is that physically reasonable states

should beHadamard states [58, 59]. Very roughly speaking, these states respect local flat-
ness and finite expectation values of all observables appropriately [58]. A particularly
nice subclass of Hadamard states is quasifree states: for these states, all odd-point func-
tions in the sense of (2.17) vanish and all higher even-point functions can bewritten as in
terms of just two-point functions8. Well-known quasifree states are (squeezed) vacuum
and thermal states; coherent states are non-quasifree Gaussian states.

The definition of quasifree states is somewhat tricky to work with, so we review it
here (following the exposition in [36]). Any quasifree state ωµ is associated with a real
inner product µ : SolR(M)× SolR(M) → R satisfying the inequality

|σ(E f , Eg)|2 ≤ 4µ(E f , E f )µ(Eg, Eg) , (2.19)

for any f , g ∈ C∞
0 (M). The state is pure if it saturates the above inequality appropriately

[11]. Then the quasifree state ωµ is defined as

ωµ(W(E f )) := e−µ(E f ,E f )/2 . (2.20)

We will drop the subscript µ and simply write ω in what follows. As stated, however,
Eq. (2.20) is not helpful because it does not provide a way to calculate µ(E f , E f ).

7The unsmeared version is a distribution, sowe should call themWightman n-point distributions. How-
ever, since we always integrate them over some smearing functions, we will use the words ‘distributions’
and ‘functions’ interchangeably — after all, distributions are generalizations of regular functions.

8The term Gaussian states refers to generalization when the one-point functions need not vanish and
higher-point functions only depend on one- and two-point functions.
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In order to obtain practical expression for the norm-squared ||E f ||2 := µ(E f , E f ), we
first make the space of solutions of the Klein-Gordon equation into a Hilbert space9. In
[58] it was shown that we can always construct a one-particle structure associated with a
quasifree state ωµ, namely a pair (K,H), whereH is a Hilbert space (H, 〈·, ·〉H) together
with an R-linear map K : SolR(M) → H such that for ϕ1, ϕ2 ∈ SolR(M)

(a) KSolR(M) + iKSolR(M) is dense in H;

(b) µ(ϕ1, ϕ2) = Re〈Kϕ1, Kϕ2〉H;

(c) σ(ϕ1, ϕ2) = 2 Im〈Kϕ1, Kϕ2〉H.

In the more usual language of canonical quantization, the linear map K projects out the
“positive frequency part” of real solution to the Klein-Gordon equation. The smeared
Wightman two-point function W( f , g) is then related to µ, σ by [43, 58]

W( f , g) := ω(ϕ̂( f )ϕ̂(g)) = µ(E f , Eg) +
i
2

E( f , g) , (2.21)

where we have used the fact that σ(E f , Eg) = E( f , g).
Finally, by antisymmetry we have E( f , f ) = 0, hence

||E f ||2 = W( f , f ) = 〈KE f , KE f 〉H . (2.22)

Therefore, we can compute µ(E f , E f ) if either (i) we know the (unsmeared) Wightman
two-point distribution of the theory associated with some quantum field state, or (ii) we
know the inner product 〈·, ·〉H and how to project using K.

The Hilbert space inner product 〈·, ·〉H is precisely given by the Klein-Gordon inner
product (·, ·)KG : SolC(M)× SolC(M) → C restricted to H, defined by

(ϕ1, ϕ2)KG := iσ(ϕ∗
1 , ϕ2) , (2.23)

where the symplectic form is now extended to complexified solutions SolC(M) of the
Klein-Gordon equation. The restriction to H is necessary since (·, ·)KG is not an inner
product on SolC(M). In particular, we have

SolC(M) ∼= H⊕H , (2.24)
9We will assume that the Hilbert space is already completed via its inner product.
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where H is the complex conjugate Hilbert space10 of H [11]. It follows that Eq. (2.20)
can be written as

ω(W(E f )) = e−
1
2 W( f , f ) = e−

1
2 ||KE f ||2KG . (2.25)

The expression in Eq. (2.25) gives us a concrete way to calculate ||E f ||2 more explicitly.
The most important algebraic state is the vacuum state ω0: we can write the (un-

smeared) vacuum Wightman two-point function as

W0(x, y) =
∫

dnk uk(x)u∗
k(y) , (2.26)

where uk(x) are (positive-frequency) modes of Klein-Gordon operator P̂ normalized
with respect to the Klein-Gordon inner product Eq. (2.23):

(uk, uk′)KG = δn(k − k′) , (uk, u∗
k′)KG = 0 , (u∗

k, u∗
k′)KG = −δn(k − k′) . (2.27)

If we know the set {uk}, we can calculate the symmetrically smeared two-point function

W0( f , f ) =
∫

dV dV′ f (x) f (x′)W0(x, x′) . (2.28)

From the perspective of the projection map K, what we are doing is projecting out the
positive-frequency part of E f and expressing this in the positive-frequency basis {uk}:
that is, we have

E f =
∫

dnk (uk, E f )KGuk + (uk, E f )∗KGu∗
k , (2.29)

so that using Eq. (2.27) we get

KE f =
∫

dnk (uk, E f )KGuk(x) . (2.30)

It follows that the restriction of the Klein-Gordon inner product to H gives

〈KE f , KE f 〉H = (KE f , KE f )KG =
∫

dnk |(uk, E f )KG|2 . (2.31)

10At the technical level, note that H is only canonically isomorphic to its double dual (H∗)∗, and the
complex conjugate Hilbert spaceHwith the dual Hilbert spaceH∗. The isomorphismsH ∼= H∗ orH ∼= H
are not canonical because they depend on the basis chosen.
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Therefore, using the fact that [11, Lemma 3.2.1] (See Appendix A for details)

σ(E f , ϕ) = −σ(ϕ, E f ) =
∫

dV f (x)ϕ(x) , (2.32)

we can recast (uk, E f )KG as

(uk, E f )KG = iσ(u∗
k, E f ) = −i

∫
dV u∗

k(x) f (x) , (2.33)

so that indeed we recover 〈KE f , KE f 〉H = W0( f , f ).
One nice thing about the algebraic formulation is that if we wish to consider another

algebraic state, such as the thermal KMS state ωβ where β labels the inverse KMS tem-
perature, we will obtain a different one-particle structure (K′,H′). Hence the only thing
that changes in the calculations so far is the replacement of ||E f ||2 in terms of the new
one-particle structure. For thermal states, there is a nice expression for this in terms of
the vacuum one-particle structure (K,H) [58]:

||E f ||2β = Wβ( f , f ) ≡ 〈K′E f , K′E f 〉H′ = 〈KE f , coth
(

βĥ/2
)

KE f 〉H , (2.34)

where Wβ( f , f ) is the smeared thermal Wightman distribution (see, e.g., [45, Chp. 2]
for unsmeared version) and ĥ is the “one-particle Hamiltonian” (see also [52]).

The upshot of the above discussion is that at the practical level, we can simply take

ω(W(E f )) = e−
1
2 W( f , f ) (2.35)

as the definition of quasifree states instead of Eq. (2.20). This is very useful because
for most practical computations, we do know how to calculate the smeared Wightman
function especially if one is familiar with canonical quantization (many examples of the
calculations can be found in standard texts such as [45]). Furthermore, while in prin-
ciple we can compute any Wightman n-point functions for any algebraic state in their
GNS representation, it is oftenmost convenient to obtain the expression for non-vacuum
states in relation to the vacuum representation. At the level of the n-point functions, this
always takes the form

W( f , g) = W0( f , g) + ∆W( f , g) , (2.36)

where ∆W( f , g) accounts for deviations from the vacuum Wightman function [11, 58,
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60]. For Hadamard states this decomposition is always possible. Some explicit calcula-
tions of ∆W(x, y) in flat spacetime for Fock states, thermal states, coherent and squeezed
states, can be found in [61, 62], among many others.

Finally, we remark that in the AQFT framework the existence of unitarily inequivalent
representations of the CCR algebra amounts to the statement that there are many alge-
braic states that qualify as the vacuum state for the field theory. One example is when
we consider quantization associated with accelerated observers on the right Rindler
wedge R+ ⊂ M. The Rindler vacuum is constructed by choosing an algebraic state
ω0,R : A(R+) → C with appropriate symmetries11 such that the GNS representation
for the pair (A(R+), ω0,R) gives rise to a Hilbert space Hω,R that is not unitarily equiv-
alent to the one constructed using A(M) and Minkowski vacuum ω0,M. This gives rise
to the Unruh effect. The AQFT framework makes clear why there are many inequiv-
alent representations: there are many choices of algebraic states and (sub-)algebras of
observables.

2.3 Canonical quantization

In this section we briefly review the canonical quantization procedure and how it con-
nects to the algebraic framework. The key takeaway is that in the standard canonical
quantization, the choice of quantization frame and hence a particular representation of
the CCR algebra is unavoidable as the creation and annihilation operators require us to
single out a preferred Fock space (and hence a vacuum state) of the theory from the
outset. In the algebraic framework one does not need to do this until the very last step,
since the algebraic framework deals with all representations of the CCR algebra simul-
taneously.

2.3.1 Textbook version

First let us write down the expressions for canonical quantization of a real scalar field
that is “not manifestly covariant” as is presented in standard textbooks in QFT (see, e.g.,
[45]). The idea is that if the spacetime has some sort of time-translation symmetry12,

11Note that the Rindler vacuum breaks Poincaré symmetry: in fact, it breaks the full conformal symme-
try to a subalgebra of the conformal algebra. We thank Petar Simidzija for this insight.

12It does not have to be true time-translation symmetry: in the Friedmann-Robertson-Walker (FRW)
model of an expanding universe, canonical quantization only requires conformal timelike Killing vector,
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such as having a timelike Killing vector ξ, we can perform the Fourier mode decompo-
sition of the field

ϕ(x) =
∫

dnk akuk(x) + a∗ku∗
k(x) (2.37)

where themodes {uk} are eigenmodes of theKlein-Gordonoperator P definedbyEq. (2.1)
and they are positive-frequencywith respect to ξa: that is, uk satisfies the eigenvalue equa-
tion

iLξuk(x) = ωkuk(x) , ωk > 0 . (2.38)

where Lξ is the Lie derivative with respect to ξ. With the mode decomposition (2.37),
we promote the field into an operator-valued distribution

ϕ̂(x) =
∫

dnk âkuk(x) + â†
ku∗

k(x) , (2.39)

where the operators âk, â†
k are now ladder operators satisfying the canonical commuta-

tion relations (CCR) [âk, â†
k′ ] = δn(k − k′)1. The vacuum state |0〉 is then an element

of the Fock space such that âk |0〉 = 0 for all k. One can check that if this quantization
is performed in the quantization frame (t, x) based on some constant-t foliation R × Σt
where Σt is a spacelike Cauchy surface, then this reproduces the usual equal-time CCR

[ϕ̂(t, x), π̂(t, x′)] = iδn(x − x′)1 , (2.40a)
[ϕ̂(t, x), ϕ̂(t, x′)] = [π̂(t, x), π̂(t, x′)] = 0 , (2.40b)

where the canonical conjugate momentum is defined (in curved spacetime) by

π(t, x) =
√

hna∇aϕ(t, x) (2.41)

where h = det hij|Σt is the determinant of the inducedmetric hij(x) on Σt. In Minkowski
space and taking Σt to be the usual constant-t surfaces, this reduces to π = ∂tϕ.

The slight disadvantage of thinking with canonical quantization is that it is not obvi-
ous a priori from the procedure why there are many unitarily inequivalent representa-
tions of the CCR algebra [11, 45], but indeed there are many. For example, inMinkowski

which defines the so-called conformal vacuum for the theory. One can also define an adiabatic vacuum
state by relaxing the time translation requirement into the demand that the geometry is “slowly-varying”
[45].
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space the quantization based on themodes {uk(t, x)}which are positive frequencywith
respect to time-translation Killing vector ξ = ∂t defines the so-called Minkowski vacuum
|0M〉. However, we could try to quantize the field in Rindler frame (η, x̃) associated with
constantly accelerating observers (say, in x-direction) and obtain another mode decom-
position

ϕ̂(η, x̃) =
∫

dnk b̂kvk(η, x̃) + b̂†
kv∗k(η, x̃) . (2.42)

In this case, the modes {vk(η, x̃)} are eigenmodes of Klein-Gordon operator P that is
positive frequency with respect to the boost Killing vector K = x∂t + t∂x:

iLKvk = ωkvk , ωk > 0 . (2.43)

The ladder operators b̂k, b̂†
k also obeys the usual CCR given by [b̂k, b̂†

k′ ] = δn(k − k′)1.
TheRindler vacuum |0R〉 is defined by b̂k |0R〉 = 0 for allk. The two vacua are not unitarily
equivalent because the number operator of one quantization does not register zero for
another [45]:

〈0R|â†
k âk|0R〉 6= 0 , 〈0M|b̂†

kb̂k|0M〉 6= 0 , (2.44)

hence the two observers disagree on the particle content of each other’s vacuum state.

2.3.2 Manifestly covariant version

The equal-time CCR is not manifestly covariant as it singles out a preferred time direc-
tion from the outset. The way to do this more covariantly is by first considering the full
complexified space of solutions to the Klein-Gordon equation. The Fock space is essen-
tially viewed as an “analogy” with infinitely many harmonic oscillators with frequency
ωk (one oscillator per k ∈ Rn): starting from the one-particle Hilbert space (H, (·, ·)KG),
the Fock space of the real scalar field is then given by the symmetrized direct sum

Fs(H) :=
∞⊕

n=0
H⊗sn = C ⊕H⊕ (H⊗s H)⊕ ... (2.45)

where the subscript in ⊗s denotes the symmetrization since the field is bosonic. The
smeared field operator ϕ̂( f ) then acts on the Fock space Fs(H): the Hilbert space ob-
tained from the GNS representation corresponds to a particular Fock space.
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In this language, the (unsmeared) field operator is usually written as [11]

ϕ̂(x) =
∫

dnk
[

â(u∗
k)uk(x) + â†(uk)u∗

k(x)
]

, (2.46)

where the annihilation and creation operators are really viewed as linear operators taking
elements of H and H respectively to a linear operator acting on Fs(H). Formally, we
write this as

â : H → End(Fs(H)) , â† : H → End(Fs(H)) , (2.47)

where End(V) is a linear endomorphism (i.e., linear isomorphism from vector space V
to itself). Note that the operators â(u∗

k), â†(uk) : Fs(H) → Fs(H) are what gives the
“shorthand” âk, â†

k in the standard version. The covariant CCR then reads

[â(u∗), â†(v)] = (u, v)KG1 , u, v ∈ H . (2.48)

The field operator with these ladder operators then define a representation of the CCR
algebra and the vacuum state is the vector |0〉 ∈ Fs(H) with the property

â(u) |0〉 = 0 ∀u ∈ H . (2.49)

Finally, the smeared field operator can be written using the above as [11]

ϕ̂( f ) = i
[
â((KE f )∗)− â†(KE f )

]
, (2.50)

and we recover the standard unsmeared expression using Eq. (2.30). Crucially, notice
that in this case, two inequivalent quantizations can be viewed as choosing different
one-particle structures.

Remark: Note that different sources use different notation for the creation and an-
nihilation operators, which affects the presentation of the smeared field operator in
Eq. (2.50). The convention here is basically that of Wald [11] (also used by [51]), where
â is viewed as a linear map acting on H, so it reads a(u∗

k). In contrast, in [43] they write
â(uk) so they view â as antilinear map on H. In [42], they take â as a map acting on
SolR(M) instead of H or H, so they write â(E f ) for the annihilation operators (since
any solution can be written as E f for some f ∈ C∞

0 (M)). Therefore, we have for in-
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stance (in [42] and [43] respectively)

ϕ̂( f ) = â(E f ) + â†(E f ) , (2.51a)
ϕ̂( f ) = a(KE f ) + a†(KE f ) , (2.51b)

In these versions, the complex number i in Eq. (2.50) is effectively absorbed into the
definition of â, â†.

It is now clear that the reason why the algebraic approach is preferable in some sense
is because one does not need to pick a preferred representation of the CCR algebra, hence
the vacuum state, until the very end; the canonical quantization requires this choice very
early because one needs the creation and annihilation operators. That said, canonical
quantization is the platformwhere all practical calculations take place—or equivalently,
we always perform most calculations in a particular representation. For this thesis, this
is all we need for the quantization of the free scalar field theory.
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Chapter 3

Detector models in relativistic quantum
information

「理解出来るほうが偉いか、出来なかったらマズイとか、ないんだから」
This is not the story where it is only good if you understand, or always bad if you do not.

壱原侑子、「xxxHolic」
Yuuko Ichihara, xxxHolic

In this chapter we review some detector models that are commonly used in relativis-
tic quantum information (RQI). We will consider the so-called Unruh-DeWitt (UDW)
detector models [63, 64]. In the UDW model, one couples locally a qubit (which acts as
a localized quantum-mechanical ‘detector’) to a quantum field living on top of a fixed
background spacetime. It is a simplified model of light-matter interactions in quantum
optics, where one uses a monopole-scalar model instead of the more realistic interaction
between an atomic dipole and the electromagnetic field (for comparison with quantum-
optical models, see [65, 66]). This model has been refined to admit a fully covariant
description that allows for arbitrary trajectories and finite-size effects [67, 68], as well
as quantized centre of mass degrees of freedom [69], higher multipoles and spins. The
UDW model is also useful for studying fundamental physics associated with relativis-
tic trajectories or genuine quantum effects in curved spacetimes, such as the Unruh and
Hawking effects.

The more important advantage of the UDW model is that it is versatile enough to
provide some answers to fundamental questions that cannot be directly settled within
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quantum field theory in curved spacetimes. For example, it allows us to define local
measurement theory [70] for quantum fields even though projective measurements in
quantum field theory violate relativistic causality [71]. Furthermore, since the UDW
model is easily generalized to include multiple detectors, it is straightforward to apply
it to study relativistic quantum communication (RQC) between two localized parties in
curved spacetimes [51–53, 72–76]. There are numerous other applications of the UDW
model in other contexts (see, e.g., [33, 34, 77–85] and references therein).

In Section 3.1 we first introduce the UDW model and show how the model is used to
obtain physical quantities of interest. In Section 3.4 we connect the UDW model to the
more commonly used spin-boson model in non-relativistic settings, such as the Jaynes-
Cummings model. In Section 3.2 we introduce the variant known as the derivative cou-
pling models1 which are recently used in [80, 87] and generalized in [88]. In Section 3.3
we review the covariant generalization of the UDW model first proposed in [67, 68].

3.1 Unruh-DeWitt detector model

The UDW detector model consists of a pointlike two-level quantum system (“qubit”)
interacting with a relativistic scalar field environment along its timelike trajectory x(τ)
in spacetime, where τ is the proper time parametrizing the trajectory. The joint system is
assumed to have the Hilbert space tensor product structure HD ⊗Hϕ, where the field’s
Hilbert space is the one obtained from canonical quantization (c.f. Chapter 2). Without
loss of generality, the free Hamiltonian of the qubit can be taken to be

ĥD = Ω|1〉〈1| = Ω
2
(σ̂z + 1) , (3.1)

so that the ground and excited states |g〉 , |e〉 corresponds to energy 0, Ω respectively. The
UDW model prescribes the following interaction Hamiltonian (given in the interaction
picture)

Ĥ I
I (τ) = λχ(τ)σ̂x(τ)⊗ ϕ̂(x(τ)) , (3.2)

1These used to be called “chronal models” [86].
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where χ(τ) is the switching function prescribing the duration of the interaction, λ is the
coupling constant, and the monopole operator σ̂x(τ) can be computed to be

σ̂x(τ) = σ̂+eiΩτ + σ̂−e−iΩτ . (3.3)

Here σ̂± = 1
2(σ̂

x ± iσ̂y) are the su(2) raising and lowering operators. Using the Fourier
decomposition of the field

ϕ̂(x) =
∫

dnk
(

âkuk(x) + â†
ku∗

k(x)
)

, (3.4)

we can view theUDWmodel as the coupling of the qubit observablewith a continuumof
field modes indexed by ‘momentum’ k. Since the model assumes that the qubit detector
is pointlike, we should regard this trajectory as the center-of-mass (COM) trajectory of
a very small detector (relative to other length scales of the problem such as acceleration
and spacetime curvature).

Given the interaction Hamiltonian (3.2), we can calculate the unitary time evolution
in the interaction picture:

Û = T exp
[
−i
∫

dτ ĤI(τ)

]
, (3.5)

where T is the time-ordered exponential and we have dropped the interaction picture
superscript I to reduce notational clutter. The time-ordering operation is independent
of the time coordinates used to parametrize the interaction Hamiltonian [68], hence the
unitary is fully time-reparametrization invariant. This is not generally the case for the
spatially smeared generalization where the detector is not pointlike: the full analysis is
given in [68]. The unitary Û can then be used to calculate the time-evolved state of the
joint detector-field system.

For initial detector-field state ρ̂0 ∈ D(HD ⊗Hϕ), where D(H) denotes the space of
density operators acting on H = HD ⊗Hϕ, we have

ρ̂ = Ûρ̂0Û† . (3.6)

Often the state we are interested in is that of the detector, in which case we trace out the
field to obtain the final state of the detector:

ρ̂D = Trϕ ρ̂ = Trϕ(Ûρ̂0Û†) . (3.7)
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If we assume that the initial joint state is uncorrelated, i.e., ρ̂0 = ρ̂D,0 ⊗ ρ̂ϕ,0, then ρ̂D can
be written in terms of a quantum channel Φ : D(HD) → D(HD)

ρ̂D = Φ(ρ̂D,0) = trϕ(Û(ρ̂D,0 ⊗ ρ̂ϕ,0)Û†) . (3.8)

Eq. (3.8) is said to be in a Stinespring-like form2.
In general, Eq. (3.8) cannot be solved exactly because the interaction Hamiltonian

does not commute with the detector’s free Hamiltonian: [ĥD, ĤI(τ)] 6= 0. Therefore, as
is customary, one resorts to perturbation theory. However, since the field operator ϕ̂
(suitably smeared) is an unbounded operator, we cannot perform a perturbative expan-
sion by requiring that the argument of the exponent in (3.5) is small in operator norm
since by definition the operator norm does not exist. However, for a fixed initial state
that is physically reasonable3, we can provide a measure of smallness as follows. Let T
be the characteristic timescale of the interaction and define the dimensionless coupling
λ̃ := λT(3−n)/2. Formally, we first expand Û as a Dyson series in the “weak coupling”
(which we will make precise) λ̃ and write

Û =
∞

∑
j=0

Û(j) , (3.9)

where Û(j) are terms of order λ̃j. In this thesis wewill only concern ourselves with terms
up to second order, so we have

Û(0) = 1 , (3.10a)

Û(1) = −i
∫

dτ ĤI(τ) , (3.10b)

Û(2) = −
∫

dτ
∫ τ

dτ′ ĤI(τ)ĤI(τ
′) . (3.10c)

The final state of the detector is then expressed as a perturbative correction to the initial
2The Stinespring representation of an arbitrary quantum channel requires that ρ̂ϕ,0 = |Ψ〉〈Ψ| for some

pure state |Ψ〉. Thuswhile the RHS of Eq. (3.8) always defines a quantum channel, it is not always possible
to write an arbitrary quantum channel in the form given in the RHS for a mixed environment state.

3By physically reasonable we mean states that we can, to a good approximation, realize in the lab-
oratory such as vacuum state, Fock states, coherent states, thermal states, etc. In AQFT, the physically
reasonable states have to be (at least) Hadamard states.
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state:

ρ̂D = ρ̂D,0 + ρ̂
(1)
D + ρ̂

(2)
D +O(λ̃3) , (3.11)

where

ρ̂
(1)
D = trϕ(Û(1)ρ̂0 +H.c.) , (3.12a)

ρ̂
(2)
D = trϕ(Û(2)ρ̂0 +H.c.) + trϕ(Û(1)ρ̂0Û(1)†) , (3.12b)

and ρ̂
(j)
D is a correction term of order λ̃j. Higher-order corrections proceed in a similar

fashion.
Given the perturbative corrections to the detector’s density matrix in Eq. (3.11), what

we need for the perturbative calculation to be trusted is∣∣∣∣ρ̂(j)
D
∣∣∣∣ ∼ O(λ̃j) (3.13)

for all j with ρ̂
(j)
D 6= 0 and λ̃ � 1. Since ρ̂

(j)
D are finite-dimensional, we can take the

operator norm to be any of the Schatten p-norms:

||Â||p :=
∣∣∣∣tr (Â† Â

)p/2
∣∣∣∣1/p

. (3.14)

We stress that we have to bound the size of the corrections to the detector state because
we cannot check the validity of the perturbative expansion from the unitary directly4.
More importantly, and this is often glossed in the literature, the requirement in (3.13)
is necessary precisely because of potential UV divergences that arise in perturbative cal-
culations. When UV divergences appear in the Dyson expansion, the smallness of λ̃ has
to be commensurate with the UV regularization.

Overall, the main physical content of the UDW model is encoded in the matrix ele-
ments of the detector ρ̂D in Eq. (3.11). Consequently, in many computations of interest,
the goal is to find tractable situations where ρ̂D can be computed reasonably straight-
forwardly and then one attempts to extract the underlying physics. This often means
that one specializes to analytically tractable trajectories (e.g., constant accelerations) or
simple switching functions such as Gaussian functions (smooth adiabatic switching) or

4Basically, unlike the usual exponential ex where we can just take |x| � 1, we do not have any notion
of “small exponent” for the unitary (3.5) since the exponent is an unbounded operator.
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rectangular functions (sharp non-adiabatic switching). Most importantly, in most cases
how tractable the computations are is very closely tied to the difficulty of calculating the
field’s unsmeared Wightman n-point function (c.f. Chapter 2)

W(x1, x2, ..., xn) := tr
(
ρ̂ϕ,0ϕ̂(x1)...ϕ̂(xn)

)
(3.15)

and its integrals, since they feature in the detector’s matrix elements. Even for Gaussian
states where all n-point functions are reducible to one-point and two-point functions,
often these are explicitly calculable for very special subclass of Gaussian states (such
as vacuum, thermal, squeezed, coherent states) or highly symmetric and simplified set-
tings such as inertial or constantly accelerating detectors in flat spacetimes.

Multiple detectors

One of the nice features of the UDW model is that it admits a straightforward gener-
alization to include multiple detectors, so that the joint Hilbert space is now given by
(
⊗

j HD,j)⊗Hϕ. All we need is to prescribe the following interaction Hamiltonian for
each detector j:

ĤI,j(τ) = λjχj(τ)σ̂
x
j (τ)⊗ ϕ̂(xj(τ)) . (3.16)

Eq. (3.16) assumes that the interaction is local in each detector’s Hilbert spaces, so that
σ̂x

j (τ) acts non-trivially only on the Hilbert space of detector j and does nothing on the
rest of the detectors5.

Since each detector may be in relative motion and the spacetime curvature is not nec-
essarily uniform, it is useful to use a common time parameter t to parametrize the local
interaction Hamiltonian of each detector. It follows from time-reparametrization invari-
ance that the total interaction Hamiltonian is given by (see, e.g., [89])

Ĥt
I(t) = ∑

j

dτj

dt
ĤI,j(τj(t)) , (3.17)

where the superscript t in Ĥt
I signifies the fact that theHamiltonian generates time trans-

lation (in the interaction picture) with respect to t, unlike ĤI which generates time trans-
5There may be situations where one may wish to prescribe non-local interactions of the form, say,

σ̂x
1 (τ1) ⊗ σ̂x

2 (τ2), which represents some form of ‘interatomic interactions’. In non-relativistic settings,
such non-local terms model, for instance, the van der Waals interaction.

30



lation with respect to τ. Furthermore, each local Hamiltonian is indexed by τj since in
general dτi/dτj 6= 1 for i 6= j associated with relative redshift or gravitational redshift.
The total unitary time evolution is

Û = T exp
[
−i
∫

dt Ĥt
I(t)
]

. (3.18)

The perturbative calculation proceeds exactly as per the single-detector case. Wewill see
many applications of two-detector calculations in the subsequent chapters in this thesis
that involve the causal propagator between the two parties.

Remarks on the pointlike model

It is worth stressing that while the pointlike model is very versatile and is relativistically
covariant, it has several subtle drawbacks. First, for arbitrary initial states of the detector,
the model suffers from some ultraviolet (UV) divergences even for a single detector. In
particular, this occurs for any initial state with nonzero coherence in the energy eigenba-
sis of the detector’s free Hamiltonian. This can be traced to the fact that the pullback of
the Wightman two-point function along the trajectory of the detector, which we write as
W(τ, τ′) := W(x(τ), x(τ′)), can have distributional singularities that coincide with the
singularity of the Heaviside step function Θ(τ − τ′) from the time-ordering (which in
turn originates from Û(2))6.

In fact, provided the initial state of the detector has nonzero coherence in the energy
eigenbasis, even for a UDW detector at rest in (3 + 1)-dimensional flat spacetime this
already occurs. More precisely, the off-diagonal component, whichwe denote by [ρ̂D]coh,
is UV-divergent:

|[ρ̂D]coh| ∝

∣∣∣∣∣limϵ→0

∫
dτdτ′ Θ(±(τ − τ′))χ(τ)χ(τ′)

eiΩ(τ+τ′)

(τ − τ′ − iϵ)2

∣∣∣∣∣→ ∞ (3.19)

for any switching function χ(τ). The ad hoc solution will be to impose a UV cutoff (by
setting ϵ > 0 finite), or more physically we require that the detector be spatially smeared
— i.e., demanding that the detector has finite size. In this thesis, we will not investi-
gate separately the spatially smeared detector model in its full generality and we refer

6Actually, even in the diagonal component we do end up with integrals involving Û(2), but for a two-
level system the problem can be sidestepped by making use of the fact that the state has unit trace.
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the reader to [67, 68, 89] for fuller analysis. In Part II when we discuss the entangle-
ment harvesting protocol, we will be working with initial states that have zero coherence
in the energy eigenbasis, so these problems will not concern us even as we use pointlike
detector models.

Another related problem is the fact that the pointlike model gives unphysical results
in the regime where the interaction timescale is very short. In the limit where the inter-
action timescale T → 0 (switching function with vanishing area), it can be checked by
direct computation that the excitation probability of the pointlike detector interacting
with the field vacuum is not zero. In contrast, for finite-sized detector models the limit
T → 0 does give vanishing excitation probability. In essence, since a pointlike detec-
tor models a very small atomic system, the pointlike limit is not reliable for interaction
timescales T � a0 where a0 is the effective radius of the atom. For such a short-time
interactions, the effective size of the detector has to be accounted for.

3.2 Derivative coupling model

The derivative coupling model is very similar to the pointlike UDW model, but with
slightly modified interaction Hamiltonian below:

ĤI(τ) = λχ(τ)σ̂x(τ)⊗ uµ∇µϕ̂(x(τ)) , (3.20)

where uµ is the 4-velocity of the detector parametrized by proper time τ; λ denotes the
coupling strength and σ̂x is the monopole moment, and χ(τ) the switching function as
defined earlier.

The reasonwhy thismodel is useful ismainly due to the fact that in (1+1)-dimensional
spacetime, massless fields will suffer fromwell-known infrared (IR) divergences. At the
same time, since all two-dimensional spacetimes are conformally flat and conformally
coupled massless fields coincide with minimally coupled scalar fields (c.f. 2), massless
fields enjoy powerful conformal techniques that allow us to calculate two-point func-
tions of the field in closed form for a large class of spacetime geometries. It is therefore
desirable that one could get rid of the IR divergence while keeping the desirable prop-
erties afforded through the massless fields in two dimensions. It is also noteworthy that
the usual dipole coupling in quantum optics is somewhat similar to the derivative cou-
pling, since the dipole operator of the atom couples to the time derivative of the vector
potential (see [66, 69]).
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In order to better understand the problem, let us consider a massless scalar field in
(1+1)-dimensional Minkowski spacetime where the field is prepared in the Minkowski
vacuum ρ̂ϕ,0 := |0M〉〈0M|. In this case, the IR divergence in the massless scalar theory
arises because the vacuumWightman two-point function (as defined in Eq. (3.15)) has a
logarithmic divergence in the momentum (or equivalently frequency) power counting:

W(x, x′) =
∫ −Λ

−∞
+
∫ ∞

Λ

dk
4π|k| e

−i|k|(t−t′−iϵ)+ik(x−x′) , (3.21)

which diverges (even distributionally) near ω = |k| → 0 unless one puts a finite IR
cutoff Λ > 0. One can also see this by rewriting Eq. (3.21) as [45]

W(x, x′) = − 1
4π

log
(
−Λ2(∆u − iϵ)(∆v − iϵ)

)
, (3.22)

where u = t − x, v = t + x are the double null coordinates with ∆u = u − u′ (resp. for
v). Clearly, the Wightman two-point function does not exist even as a distribution for
Λ → 0.

The derivative coupling model essentially solves this problem by taking derivatives.
In this model, the two-point function that appears in the computation of the detector’s
density matrix (c.f. Section 3.1) is instead the proper-time derivatives of the Wightman two-
point function along two (possibly equal) trajectories x(τ), x′(τ′), i.e.,

A(x(τ), x′(τ′)) := ∂τ∂τ′W(x(τ), x′(τ′)) . (3.23)

What happens is that the derivative coupling essentially brings extra powers of ω via
time derivatives on each argument:

A(x(τ), x′(τ′)) ∼
∫ ∞

0
dω ωeiω(t(τ)−t′(τ′))±iω(x(τ)−x′(τ′)) . (3.24)

Alternatively, one can also take proper-time derivative of Eq. (3.22) and see that the con-
stant additive term due to the IR cutoff Λ vanishes under taking τ-derivatives. Observe
that the expression in Eq. (3.24) has the same power counting as a (3+1)-dimensional
massless scalar field that indeed has no IR divergence.

In the context of the derivative couplingmodel, we will callA(x(τ), x′(τ′)) the deriva-
tive coupling two-point function or derivative couplingWightman function. We will see in
Chapter 4 how this model can be usefully employed in the context of two-dimensional
models of black hole spacetimes. In fact, there we will see that there is a surprising ad-
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ditional dividend compared to the non-derivative model, namely numerical tractability:
the derivative model behaves much better in numerical calculations when one tries to
compute the detector’s final state, which forms the basis of our results in [33]. Further-
more, we will see that this model also enjoys good behaviour when it comes to ther-
mal properties associated with Unruh and Hawking-type phenomena: the derivative-
coupling two-point functions can be shown to have all the hallmarks of thermal two-
point functions in the sense of Kubo-Martin-Schwinger (KMS) conditions [88].

3.3 Covariant finite-sized UDW detector model

Let us now review the covariant generalization of the Unruh-DeWitt (UDW) detector
model that was developed in [67, 68]. By covariant, we mean that we prescribe the in-
teraction in the language consistent with differential-geometric formulation of general
relativity. At the same time, there is something “non-covariant” about this prescription:
in general, since the detector is a non-relativistic entity, we must pay the price some-
where — indeed, the (mild) violation of general covariance occurs generically because
a spatially smeared detector model must couple ‘non-locally’ in its own rest frame. We
will see that this will not cause problems for our purposes, and there are instanceswhere
indeed this problem does not occur.

Let τ be the proper time of a spatially smeared detector whose COM travels along the
worldline x(τ). We consider the so-called Fermi normal coordinates (FNC) x̄ := (τ, x̄)
along the COM trajectory (for the construction, see [49]). In the FNC, the COM is
parametrized by (τ, x̄ = 0) and any point p in the neighbourhood of the curve can
be written as some x̄p = (τp, x̄p), such that

e Along the COM trajectory, τ defines the proper time of the observer;

e The spacelike curve from (τp, 0) to x̄p is a geodesic;

e The geodesic distance from the point (τp, 0) to p is precisely the Euclidean distance
r =

√
x̄p · x̄p.

Note that if the COM follows a timelike geodesic, then the FNC will coincide with the
Riemann normal coordinates [49]. The point is that the FNC is a coordinate system
naturally adapted to the trajectory x(τ).
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One way to prescribe the interaction is to define the interaction Hamiltonian volume
form7 in the FNC of the observer:

ĥI := f (x̄)σ̂x(τ)⊗ ϕ̂(x(x̄)) dV , (3.25)

where dV := dDx̄√−ḡ ≡ dDx√−g is the invariant volume element, x is some arbitrary
coordinate system, and f (x̄) ∈ C∞

0 (M) is some compactly supported smooth function
on M. Furthermore, we demand that in the FNC it is possible to factorize the spacetime
smearing as

f (x̄) = λχ(τ)F(x̄) . (3.26)

Here we require that F(x̄) is an L1-normalized function. Physically, this means we are
demanding that in the rest frame of the detector, the observer can distinguish a switching
function χ(τ) that prescribes the duration of interaction from its spatial profile F(x̄) of
the detector, and that the detector is essentially rigid (i.e., F(x̄) is time-independent in
the FNC)8.

This prescription is covariant in the sense that the interaction Hamiltonian is given as
an operator-valued volume form that transforms covariantly under arbitrary diffeomor-
phisms. In particular, by construction the unitary operator is invariant under general
diffeomorphism on M:

Û = Tτ exp
[
−i
∫
M

ĥI

]
(3.27)

The non-relativistic aspect of this model — hence the slight non-covariant aspect of this
prescription— lies in the fact that the monopole is only a function of τ: that is, at fixed τ
the detector couples non-locally tomanypoints in its own rest frame (constant-τ surface)
via the spatial smearing F(x̄). If we write ĥI = ĥI(x)dV, mathematically this manifests
as the fact that [67, 68]

[ĥ(x), ĥ(x′)] 6= 0 (x − x′)2 > 0 , (3.28)

i.e., the operator ĥ(x) acting on the joint Hilbert space violates relativistic microcausality
7We choose to define it this way instead of using the concept of Hamiltonian weight (as done in [67])

for clarity and also to avoid distinguishing a tensor weight vs a tensor density [11].
8If this is not enforcable in the detector’s rest frame, it signals the breakdown of the model, i.e., we are

in the regime where we cannot model light-matter interactions using “spin-boson models” of this type.
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in the “interior” of the detector. A fuller analysis of this issue is given in [67, 68], but for
our purposes it is sufficient to mention two scenarios where this does not occur: (1) for
a pointlike detector, the model is fully covariant because the non-local nature is purely
due to spatial smearing; (2) for certain settings involving non-perturbative computations
in quantum communication protocols, where the spacetime smearing is can be shifted
completely towards the field operator rather than being “shared” between the field and
the detector.

At this point, it is apt to remark that there are situations where the detector model
admits a non-perturbative solution, in the sense that we can evaluate the unitary (3.28)
without resorting to any weak-coupling expansion in terms of truncation of the Dyson
series (or Magnus expansion, if we choose to do so), following the same procedures
outlined in Section 3.1. In this thesis we deal only with the perturbative calculations —
see, e.g., [51–54, 75, 85, 90, 91] for some non-perturbative examples.

3.4 Non-relativistic spin-boson model

It is worth noting that the UDWdetector model is very closely related tomanymodels in
non-relativistic settings. To better illustrate the differences, we start with the model that
comes closest to the UDW model: this is typically known as the spin-boson model. In the
spin-boson model, we consider a spin system with Hilbert space HS interacting with an
(possibly infinite-dimensional) environment with Hilbert space HE. In the Schrödinger
representation, the coupling takes the form

ĤI = ∑
j

αj Âj ⊗ B̂j , (3.29)

where Âj acts on HS, B̂j acts on HE, and αj are some unspecified coupling parameters
that can be time-dependent. The interaction picture representation can be obtained by
unitary rotation with respect to the free Hamiltonian ĥS, ĥE:

ÂI
j (t) = eiĥSt ÂjeiĥSt , B̂I

j (t) = eiĥEtB̂jeiĥEt , (3.30)

Since in non-relativistic quantum mechanics there is a notion of absolute time and ab-
solute simultaneity, there is no ambiguity as to what the time parameter means9. The

9However, there is still time-reparametrization ambiguity associated with the fact that we can always
redefine t → t′ = f (t), which reflects our choice in “labelling ticks” of our clocks. This will not matter to
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generalization of Eq. (3.29) to multiple spin systems is straightforward.
The simplest spin-boson interaction is furnished by the following interaction:

ĤI(t) = λχ(t)σ̂x ⊗ (â + â†) , (3.31)

where σ̂x is the Pauli-X operator, â, â† are ladder operators of a quantum harmonic os-
cillator (QHO) satisfying [â, â†] = 1, λ is some fixed coupling constant. The function
χ(t) is a function which we call switching function, which governs the effective duration
of interaction. We can write (3.31) in the interaction representation:

Ĥ I
I = λχ(t)σ̂x(t)⊗ (âe−iωt + â†eiωt) , (3.32)

where ω is the natural frequency of the oscillator. It is worth noting that in quantum
optics, the spin-boson interaction (3.32) is essentially a scalarized, two-level version of
dipole interaction between an atomic dipole and a single-mode electromagnetic field:

Ĥ I
I,QO(t) = d̂(t) · Ê(t) , (3.33)

where d̂ = −ex̂ is the dipole operator of the atomand Ê(t) is the quantized, single-mode
electric field operator (essentially a vector version of QHO).

Unless otherwise stated, we will always work in the interaction picture: in the non-
relativistic case it does not buy us much advantage, but in a relativistic setting it is very
unwieldy to work with the Schrödinger representation from the beginning.

Remark on continuum limit and irreversibility

The spin-bosonmodel is often used to study thermalization in theweak coupling regime
via the master equation approach [92]. Suppose that we have one qubit that couples
instead to countably infinitely many QHOs, i.e.,

Ĥ I
I (t) = λχ(t)σ̂x(t)⊗ ∑

k
gk(âke−iωkt + â†

keiωkt) , (3.34)

where each oscillator has k-dependent frequencies and each gk is a parameter that allows
for a k-dependent coupling strength. It can be shown that the qubit will not thermalize
even in this case. If one replaces σ̂x(t) with σ̂z(t) so that [ĥS, ĤI(t)] = 0, one can even

us in standard quantum mechanics, but is indispensable in relativistic settings.
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solve the dynamics exactly and show that the evolution of the qubit state is periodic in
time. This periodicity can be viewed as the consequence of the Poincaré recurrence the-
orem which applies to systems with discrete energy states.

In the standard treatment (see, e.g., [92, 93]), the irreversible dynamics required for
thermalization is typically obtained by ad hoc modification of the density of states: that
is, one modifies the interaction to be

Ĥ I
I (t) = λχ(t)σ̂x(t)⊗

∫ ∞

0
dω J(ω)

(
âωe−iωt + â†

ωeiωt
)

, (3.35)

where J(ω) is a function called the spectral density. This effectively makes the qubit cou-
ple to a continuum of QHOs with frequency-dependent coupling strength. Furthermore,
often one assumes that the spectral density takes the form [93]:

J(ω) = ωζe−ω/ωc , η, ζ > 0 , (3.36)

where ωc is some (high) cutoff frequency (we can absorb λ into the definition of J(ω)
if we like). For ζ = 1 we say that the spectral density is Ohmic; for ζ ∈ (0, 1) it is sub-
Ohmic and ζ > 1 we say that it is super-Ohmic. The original countable model (3.34) is
obtained by choosing a different spectral density given by

J0(ω) = ∑
k

gkδ(ω − ωk) . (3.37)

The irreversible dynamics will then occur with the modification of the spectral density
from (3.37) to (3.36).

Recovering spin-boson model from UDW model

Now we can see how we can recover something close to (3.34) from the UDW model.
First, suppose that the detector is pointlike and is at rest at the origin for all times, i.e.,
t(τ) = τ, x(τ) = 0, and assume that the field is massless with relativistic dispersion
ωk = |k|. We can then rewrite (3.2) as

Ĥ I
I (τ) = λ̃n χ(τ)σ̂x(τ)⊗

∫ ∞

0
dω J(ω)(âωe−iωt + â†

ωeiωt) , (3.38)

which is precisely the non-relativistic spin-boson model whose spectral density (3.36)
is given by ζ = n − 2 and ωc = ∞. This matching is interesting because it shows that

38



the UDW model gives Ohmic spectral density only in (3 + 1) dimensions, and that the
pointlike detector model is the regime where there is no UV cutoff (as we may expect).

In order to recover the full spectral density (3.36) that includes the exponential fre-
quency cutoff, we need to consider the spatially smeared UDW detector model as de-
scribed in Section 3.3. More specifically, we consider the special case of Eq. (3.25) where
the spacetime is flat and the detector is at rest but with non-pointlike spatial smearing.
This is then equivalent to modifying the interaction Hamiltonian of the pointlike model
(3.2) to include spatial integration [89]:

Ĥ I
I (t) = λχ(t)σ̂x(t)⊗

∫
Σt

dnx F(x)
∫ dnk√

2(2π)nωk

(âke−iωkt+ik·x +H.c.) , (3.39)

where Σt is some constant-t surface and F(x) is the spatial smearing function. The point-
like detector is obtained by setting F(x) = δn(x) and without loss of generality we take
the COM to be at the origin.

Now let us suppose that F(x) is spherically symmetric, i.e., its Fourier transform
F̃(k) = F̃(|k|). By performing an analogous computation leading to (3.38), the spa-
tially smeared UDW model corresponds to choosing the spectral density to be

JF(ω) := ωn−2F̃(ω) , (3.40)

where F̃ is the Fourier transform of F. It is now clear that the spectral density (3.36)
is obtained by setting ζ = n − 2 and picking a spherically symmetric F such that the
n-dimensional Fourier transform is a one-dimensional exponential e−ω/ωc with cutoff
scale ωc (i.e., a Lorentzian spatial profile). Here ωc would set the scale for the effective size
of the detector with finite spatial extent of the order ω−1

c .
The upshot is that the non-relativistic spin-boson model can be viewed in two ways:

either as a (0+1)-dimensional UDW model with ad hoc spectral density (3.36), or as a
spatially smeared UDW model with spherically symmetric Lorentzian profile and re-
stricting the detector to be at rest relative to the quantization frame. Therefore, there
is a sense in which the UDW model’s relativistic nature comes from the fact that (1)
the environment is a relativistic field, and (2) the coupling with the system’s degrees of
freedom must be explicitly spacetime-dependent, either through time-dependent rela-
tivistic motion or through non-trivial spacetime curvature. Relativity can only feature
through the explicit spacetime-dependent couplings.
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Remark on the Jaynes-Cummings model

The interaction Hamiltonian (3.32) can be rewritten as

Ĥ I
I (t) = λχ(t)

(
σ̂+ âei(Ω−ω)t + σ̂− â†e−i(Ω−ω)t + σ̂+ â†ei(Ω+ω)t + σ̂− âe−i(Ω+ω)t

)
. (3.41)

The last two terms are often called the counter-rotating terms, while the first two terms
are the co-rotating terms. Since |Ω+ω| ≥ |Ω−ω|, the last two terms are said to “oscillate
quickly” compared to the first two terms. If the qubit is in resonance with the oscillator
environment (Ω ≈ ω), we have |Ω + ω| � |Ω − ω| ≈ 0, and so the standard argument
is that if we integrate over long enough times the last two terms tend to average to zero.
Dropping the last two terms gives us the Jaynes-Cummings model [65, 66]:

Ĥ I
I,JC(t) = λχ(t)

(
σ̂+ âei(Ω−ω)t + σ̂− â†e−i(Ω−ω)t

)
. (3.42)

The approximation where the co-rotating terms are dropped is known as the rotating
wave approximation (RWA).

This model has at least two nice properties. First, it is exactly solvable in the sense that
one can find the joint ground state of the full interacting Hamiltonian (dressed ground
state). Second, it has a rather intuitive excitation-exchange behaviour: for example, one
can speak of “energy conservation” simply by observing the fact that any excitation from
the spin must come from the oscillator and vice versa, since the raising/lowering oper-
ator of the qubit always comes with an annihilation/creation operator of the oscillator
respectively10.

The point of this discussion is that the Jaynes-Cummings model can be derived from
the spin-boson model in the regime where the qubit is in near-resonance with the os-
cillator and when the interaction time is sufficiently long. Of course, as an indepen-
dent model we are free to pick any off-resonant frequencies and any switching func-
tions. However, in this case, the model cannot then be viewed as the restriction of the
spin-boson Hamiltonian (3.32). Therefore, at the level of physical implementation the
off-resonant and short-interaction Jaynes-Cummings model will not represent the stan-
dard light-matter interaction. This subtle fact is important in relativistic settings, since
the analogous version of Jaynes-Cummings model in the full UDW model is known to

10In general, energy conservation cannot be checked by looking at the interactionHamiltonian only since
energy conservation is a statement about the total Hamiltonian. However, this is possible in the Jaynes-
Cummingmodels because the interaction Hamiltonian commutes with the free Hamiltonian. In quantum
thermodynamics, unitaries generated by such Hamiltonians are called energy-conserving unitaries.
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violate relativistic causality, i.e., it leads to superluminal signaling [94]. We will also
see how a version of rotating-wave approximation influences physical predictions at the
level of master equations in Chapter 6.

Remark on sharp switching functions

In the usual treatment in quantummechanics and open dynamics, it is customary to take
χ to be the indicator function on the interval [t0, t0 + t]:

χ(t) = 1[t0,t0+t] , (3.43)

where1A over some set A ⊂ R means it is equal to 1 for points in A and is zero otherwise.
This switching models interactions that are sharply turned on and off from some initial
time t0 to some final time t0 + t. In this case, one usually drops χ from the expression of
the interaction Hamiltonian and write

ĤI = λσ̂x ⊗ (â + â†) , (3.44)

with the understanding that all time integrals are evaluatedwithin the interval [t0, t0 + t].
For example, the time integral of the interaction Hamiltonian reads∫

R
dt′ Ĥ I

I (t
′) = λ

∫ t

t0

dt′ σ̂x(t′)⊗ (âe−iωt′ + â†eiωt′) . (3.45)

Sharp switching models often lead to a more convenient computations in some contexts
andwewill use sharp switching (as is customary in open system literature) in Chapter 6.
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Part II

Entanglement harvesting protocol
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Chapter 4

Entanglement harvesting in dynamical
black hole spacetime

「シンギュラリティ計画、遂行しましょう」
Let us carry out the Singularity Project.

ディーヴァ/ヴぃヴぃ、「Vivy - Fluorite Eyes’ Song」
Diva/Vivy, Vivy - Fluorite Eyes’ Song

In simple terms, the entanglement harvesting protocol is the following setup: we have
two external quantum-mechanical probes, such as qudits or harmonic oscillators, ini-
tially prepared in a joint separable state. Each system interacts locally with a common
environment whose ground state is entangled, where ‘local’ here refers to spacetime local-
ity— i.e., the interaction only occurs in the “vicinity” of the probes (a bounded region in
spacetime or some lattice sites). The simplest model that realizes this protocol is given
by two probe systems modeled as UDW detectors interacting with a quantized scalar
field via the UDW interaction Hamiltonian (c.f. Chapter 3). This protocol can extract
entanglement from the entangled ground state of the environment even if the probes
are spacelike-separated.

The entanglement harvesting protocol has been extensively studied in the literature,
first pioneered by [95–97] andmore thoroughly investigated in [77]. In [78] the protocol
was studied in a more realistic setup involving a hydrogenlike atom interacting with the
electromagnetic field, showing that the scalar model shares many of its general features.
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Follow-up work involved studying how the entanglement generated in the two-probe
system, typically taken to be two qubits, depended on the probes’ acceleration [98], local
curvature [33, 81, 91, 99, 100], spacetime topology [79], field states [61], and boundary
conditions [101, 102] (see also, [103–107]).

In this chapter (lifted from our work in [33]) we will discuss a particular setting of
the entanglement harvesting protocol, where the background geometry is a dynamical
black hole spacetime. The spacetime we will consider is a two-dimensional reduction
of Vaidya spacetime that describes the geometry of a collapsing null shell. The two-
dimensional truncation is very useful because it provides us with a way to obtain a
closed-form expression for the Wightman two-point distribution of the field living in this
dynamical black hole spacetime. To get a sense of why this geometry is valuable, note
that aUDW-type calculation in the full (3+1)-dimensional calculation of two-point func-
tions in a static Schwarzschild background is already notoriously difficult numerically
(see, e.g., [108]), and it was only very recently that the two-point function for station-
ary background of Kerr type can be numerically controlled for computations of other
observables such as the renormalized stress-energy tensor (RSET) [109, 110].

From a more fundamental standpoint, the two-dimensional model allows us to an-
swer some questions that are expected to be robust in higher dimensions, namely those
that do not depend on the angular direction. For example, while this model does not
allow us to knowwhat happens to two qubits moving along stationary orbits, in general
we expect that the physics that depends on the gravitational field along the radial direc-
tions will be faithfully reproduced1. We will see that the thermalization of detectors due
toHawking radiation can be captured in the two-dimensional models (see also [80, 87]).

Our work constitutes the first study of the entanglement harvesting protocol in a dy-
namical black hole spacetime (albeit a simplified version). The setup we consider was
first studied in [80] where the RSET and the detector’s transition rate were computed.
There they were interested in whether the Unruh state is truly (as the folklore goes) rep-
resentative of late-time dynamics of collapsing matter forming a black hole, and they
showed quantitatively that the answer is yes. Our result will further confirm this by
showing that indeed for entanglement harvesting protocol the same holds true. How-
ever, we will achieve more on three fronts:

e First, we will argue that in [80] the transition rate is really about the “long-time”
regime than the late-time regime, hence setups like the entanglement harvesting pro-
1Up to some ‘greybody factor’ that arises from the effective potential due to the angular component of

the wave equation.
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tocol — which involves finite, effectively short-time interactions — is a better proxy
for comparing the Unruh vacuum with what we will call the Vaidya vacuum.

e Second, we will see that at the core of both our results and [80], is the fact that the
Vaidya vacuum is the state that interpolates between the Unruh vacuum near the
horizon and the Boulware vacuum near the future null infinity. In hindsight this
is obvious, however the UDW setup demonstrates this in a very concrete manner.
We believe this is interesting because there is the folklore that Boulware vacuum is
unphysical: our result suggests that in a collapsing background the Boulware vacuum
is the far-from-black hole, early-time approximation and Unruh vacuum is the near-
horizon, late-time approximation of the full state.

e Our result is the first to cast doubt on the issue whether in curved spacetimes the
entanglement between the twoUDWdetectors truly comes from ‘noisy entanglement
swapping’ with the vacuum (which is a way to view the entanglement harvesting
protocol). We achieve this by showing that the field commutator seems to have strong
influence on the detectors’ density matrix, highlighting the difficulty of ensuring that
the detectors’ interactions are truly causally disconnected from each other.

This chapter is organized as follows. In Section 4.1 we first review the Klein-Gordon
QFT in a Schwarzschild background to facilitate comparison with the Vaidya case. In
Section 4.2 we will review QFT in the Vaidya background, following closely the expo-
sition in [80]. In Section 4.3 we review the entanglement harvesting protocol where we
use the derivative coupling UDW detector model in order to avoid the IR divergences
arising from massless field calculations in two dimensions (c.f. Section 3.2). We close
our discussion with the problem of communication and signaling in curved spacetime
which will motivate our results in Chapter 5.

4.1 Klein-Gordon field in Schwarzschild spacetime

In the next two sections we follow the exposition in [80] to review the geometrical and
quantum field-theoretic aspects of a quantized massless scalar field on Schwarzschild
and Vaidya background spacetimes2.

2At the time of writing we still believe [80] is one of the most concise yet clearest exposition about QFT
in a black hole background suitable for our purposes, thus we follow closely their notation as well.

47



4.1.1 Schwarzschild spacetime: geometry

We will start from the maximal extension of Schwarzschild spacetime, also known as
Kruskal-Szekeres extension (MK, gK), where MK = R2 × S2. In terms of Kruskal-
Szekeres coordinates (U, V, θ, ϕ), the metric reads

gK = −32M3e−r/(2M)

r
dUdV + r2(dθ2 + sin2 θdϕ2) , (4.1)

where U, V ∈ R are dimensionless, θ ∈ [0, π], and ϕ ∈ [0, 2π). For convenience we
define M := GM, where M > 0 is the ADM mass of the black hole, and r > 0 can be
written in terms of U, V, i.e.(

r(U, V)

2M
− 1
)

er(U,V)/(2M) = −UV =⇒ r(U, V) = 2M
(

1 +W
(
−UV

e

))
(4.2)

where W(z) is the Lambert W-function3 [111]. This spacetime is static, spherically sym-
metric, asymptotically flat and globally hyperbolic. The point r = 0 is a curvature sin-
gularity.

The Schwarzschild spacetime (MK, gK) admits four Killing vector fields. Three of
these vector fields, which we denote by ζ1, ζ2, ζ3, are globally spacelike and generate
spherical symmetry:

ζ1 = ∂ϕ , (4.3a)
ζ2 = sin ϕ∂θ + cot θ cos ϕ∂ϕ (4.3b)
ζ3 = cos ϕ∂θ − cot θ sin ϕ∂ϕ , (4.3c)

while the fourth Killing field, denoted ξ, is given by

ξ =
1

4M
(−U∂U + V∂V) . (4.4)

This Killing field ξ is timelike for r > 2M, spacelike for 0 < r < 2M and null at the
hypersurface r = 2M. The null hypersurface r = 2M thus defines a bifurcate Killing
horizon. This bifurcate Killing horizon separates MK into four regions, conventionally
labelled Region I, II, III, and IV as shown in Figure 4.1.

3The Lambert-W function is defined by the implicit equation z = W(z)eW(z). This a multi-valued
complex function [111].
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Figure 4.1: Conformal diagram for Schwarzschild spacetime.

Regions I and II are defined by V > 0 and part of the Killing horizon H + that sep-
arates the two regions. In this region, one can use ingoing Eddington-Finkelstein coor-
dinates (U, v, θ, ϕ) defined by V = ev/(4M), with v ∈ R. In this coordinate system, we
can view regions I and II as an asymptotically flat and globally hyperbolic spacetime
in itself, denoted (ME, gE), where ME is a submanifold of MK and gE is the induced
metric obtained from inclusion map i : ME ↪→ MK by pullback, i.e. gE = i∗gK. In this
coordinate system, the metric reads

gE = −8M2

r
e−

r
2M+ v

4M dUdv + r2
(

dθ2 + sin2 θdϕ2
)

. (4.5)

The Killing vectors for ME are ζ1, ζ2, ζ3, and also ξ under the restriction V > 0, which
can now be written as ξ = − 1

4M U∂U + ∂v.
Finally, Region I of Schwarzschild spacetime describing the exterior of a static spher-

ically symmetric star or eternal black hole is defined by U < 0 and V > 0. Thus in
addition to the ingoing Eddington-Finkelstein coordinates v, one can also introduce the
outgoing Eddington-Finkelstein coordinates u defined by U = −e−u/(4M). Now using
the so-called tortoise radial coordinate r∗ we can construct two null coordinates

u = t − r∗ , v = t + r∗ , r∗ = r + 2M log
( r

2M
− 1
)

. (4.6)
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We can thus regard Region I as a standalone asymptotically flat and globally hyperbolic
spacetime, denoted (MS, gS), where MS is a submanifold of MK and gS is the induced
metric obtained from the inclusion map i : MS ↪→ MK by pullback, i.e. gS = i∗gK. In
this coordinate system, the metric reads

gS = − f (r)dt2 +
dr2

f (r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, f (r) = 1 − 2M

r
. (4.7)

The Killing vectors for MS are ζ1, ζ2, ζ3, and also ξ under the restriction U < 0 and
V > 0, which can now be written as ξ = ∂t.

4.1.2 Massless Klein-Gordon field in Schwarzschild geometry

Recall from Chapter 2 that a real, massless Klein-Gordon field ϕ : M → R in (n + 1)-
dimensional spacetime M conformally coupled to gravity satisfies the Klein-Gordon
equation (2.1), which can be expressed as

1√−g
∂µ

(√
−ggµν∂ν

)
ϕ − n − 1

4n
Rϕ = 0 , (4.8)

where R is the Ricci scalar curvature and ξ ≥ 0. Following the canonical quantization
procedure, we need to solve for the classical mode solutions in order to construct an
appropriate vacuum state of the theory. The operator-valued distribution ϕ̂(x) can be
formally expressed as

ϕ̂(x) =
∫

dnk
(

âkuk(x) + â†
ku∗

k(x)
)

, (4.9)

where the mode functions are the (improper) eigenfunctions {uk(x)} that satisfy the
orthonormality conditions

(uk, uk′)KG = δn(k − k′) , (u∗
k, u∗

k′)KG = −δn(k − k′) , (uk, u∗
k′)KG = 0 , (4.10)

and ( f , g)KG is the Klein-Gordon inner product of f , g given by

( f , g)KG = i
∫

Σ
dΣa ( f ∗∇ag − g∇a f ∗) (4.11)

where the integral is with respect to a Cauchy surface Σ.
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In the presence of a timelike Killing field, wewill be able to define a preferred vacuum
state for the theory. More specifically, the definition of a vacuum state of the field de-
pends on the choice of timelike Killing vector field used to define the positive-frequency
solutions (resp. negative-frequency solutions). That is, given a timelike Killing vector
ξ, the mode function uk is said to be positive frequency with respect to ξ if uk(x) solves
the eigenvalue equation

iLξuk = ωkuk , (4.12)

where Lξ is the Lie derivative with respect to ξ and ωk = |k| > 0. Similarly, uk(x) is
negative frequency if iLξuk = −ωkuk.

For our purposes, there are three distinguished vacuumstates that are invariant under
the Killing vector ξ:

(a) Boulware vacuum |0B〉: it is defined in Region I and has modes that are positive
and negative frequency with respect to Schwarzschild timelike Killing field ∂t (re-
striction of ξ to Region I). It is considered unphysical as it is not regular on both
future and past horizons H ±. However, this state will be useful for the discussion
of the vacuum in the Vaidya background later.

(b) Unruh vacuum |0U〉: it is defined in Region I and II whose positive frequency
modes are defined with reference to the Cauchy surface Σ = I − ∪H −, the union
of past null infinity and past horizon. The positive frequency modes on the past
horizon H − are obtained with respect to the null generator ∂U of H − (U being
the null affine parameter along H −); the positive frequency modes on the past
null infinity I − are obtained with respect to the null generator ∂v of I −.

(c) Hartle-Hawking-Israel (HHI) vacuum |0H〉: it is defined on the full Kruskal-
Szekeres extension and has modes that are positive frequency with respect to both
past and future horizon generators ∂U and ∂V . This is a state representing a black
hole in thermal equilibrium with a radiation bath, such that the restriction of the
state to Region I is KMS at the Hawking temperature TH = (8πM)−1. Note that
TH is the temperature measured by an observer at infinity.

It is worth noting that physically relevant vacuum among the three is generally taken
to be the Unruh vacuum, since physical black holes are expected to be not in a thermal
equilibrium and undergo evaporation via Hawking effect.

Let us now restrict our attention to the (1+1)-dimensional truncated Schwarzschild
spacetime by removing the angular part of the metric in (3+1) dimensions. This allows
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us to obtain the closed-form expression of the Wightman two-point distributions for the
vacua by invoking conformal invariance of the Klein-Gordon equation in (1+1) dimen-
sions. The positive frequency modes associated with each vacuum read [45]

Hartle-Hawking-Israel : e−iωŪ , e−iωV̄ , (4.13a)
Unruh : e−iωŪ , e−iωv , (4.13b)

Boulware : e−iωu , e−iωv , (4.13c)

where Ū = −(4M)−1U and V̄ = (4M)−1V. The Wightman two-point distribution for
each vacuum state, denoted |0α〉, is defined by

Wα(x, x′) := tr
(
ϕ̂(x)ϕ̂(x′)|0α〉〈0α|

)
, (4.14)

so that for each vacuum state (here α = B, U, H) we have4

WB(x, x′) = − 1
4π

log
[
−Λ2(∆u − iϵ)(∆v − iϵ)

]
, (4.15a)

WU(x, x′) = − 1
4π

log
[
−Λ2(∆Ū − iϵ)(∆v − iϵ)

]
, (4.15b)

WH(x, x′) = − 1
4π

log
[
−Λ2(∆Ū − iϵ)(∆V̄ − iϵ)

]
, (4.15c)

where Λ > 0 is an IR cutoff inherent in (1+1) massless scalar field theory.

4.1.3 Comment on IR ambiguity and derivative coupling

It is well-known that a two-dimensional massless scalar field in Minkowski space ex-
hibits an infrared (IR) ambiguity. More specifically, from Eq. (2.1) one can show that
in (1+1)-dimensional Minkowski space, a massless scalar field quantized in Minkowski
coordinates (t, x) corresponding to inertial laboratory frame has Fourier mode decom-
position given by

ϕ̂(x) =
∫ dk√

2(2π)|k|

(
âke−i|k|t+ikx + â†

kei|k|t−ikx
)

. (4.16)

4Note that in [45] the IR cut-off has been removed by hand.
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This decomposition allows us to define Minkowski vacuum |0M〉: the Wightman dis-
tribution associated with Minkowski vacuum WM(x, x′) can then be shown to have a
logarithmic divergence:

WM(x, x′) = − 1
4π

log
(
−Λ2(∆u − iϵ)(∆v − iϵ)

)
, (4.17)

where ϵ > 0 is a ultraviolet (UV) regulator and Λ > 0 is an infrared (IR) regulator.
Notice that this is structurally very similar to the Wightman distributions we derived
earlier in Eqs. (4.15a)-(4.15c). The IR divergence can also be seen from the Fourier mode
decomposition, where the integral in Eq. (4.16) is divergent for k = 0. We can choose
the principal branch of the logarithm so that

WM(x, x′) = − 1
4π

log ((∆u − iϵ)(∆v − iϵ))−
log
(
−Λ2)

4π
, (4.18)

where u = t − x and v = t + x. The second term is formally divergent5 as Λ → 0. This
IR divergence will also appear for the Schwarzschild spacetime as all two-dimensional
spacetimes are conformally flat and the Klein-Gordon equation (2.1) is conformally in-
variant for n = 1; hence the same IR divergence appears in Eqs. (4.15a)-(4.15c).

A priori, this IR divergence is problematic for detector dynamics as the density matrix
for the detector(s) would depend on the IR cut-off chosen (see e.g. [77, 87, 112]). Typ-
ically, one either chooses Λ based on a characteristic length scale of the system under
consideration, or removes it by hand via other arguments. For example, the additive con-
stant that appears in Eq. (4.18) can be dropped using the argument that entanglement
measures such as concurrence and negativity are by definition infrared-safe [101]: they
involve subtraction of two matrix elements that contain the same IR-divergent additive
constant. Therefore the formally infinite additive constant drops out of the entanglement
calculation. This is analogous to how entanglement entropy in QFT in general contains
state-dependent divergences, but a quantity such as relative entropy is finite since the
divergences cancel (see e.g. [113]).

The results in our work [33] follows the approach by [80] by circumventing the is-
sues with IR divergences with the derivative coupling variant of the UDW model (c.f.
Chapter 3, which we will briefly review in Section 4.3 in the context of entanglement
harvesting protocol.

5Taking the principal branch, the real part diverges as− 1
2π log Λ and the imaginary part is exactly− i

4 .
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4.2 Klein-Gordon field in Vaidya spacetime

The geometry of Vaidya spacetime is given by the Lorentzian manifold (MV , gV) with
topology MV = R2 × S2, with the metric written in terms of the ingoing Eddington-
Finkelstein-type coordinates (v, r, θ, ϕ):

gV = −
(

1 − 2M(v)
r

)
dv2 + 2dvdr + r2(dθ2 + sin2 θdϕ2) , (4.19)

where v ∈ R is a null coordinate, r > 0, θ ∈ [0, π], ϕ ∈ [0, 2π). The Vaidya metric
allows for a general class of mass function M(v), and a particularly simple model for
null collapse is prescribed by the mass function

M(v) := MΘ(v) =

{
0 v < 0 ,
M v ≥ 0 .

(4.20)

where Θ(v) is theHeaviside step function and M ≥ 0 is amass parameter corresponding
to ADM mass of the black hole when it is formed by the null shell. The spacetime is
isometric to the Minkowski spacetime for v < 0 and to the Schwarzschild spacetime
for v > 0. The conformal diagram is shown in Figure 4.2. For convenience, we shall
simply call this particular class of Vaidya metric with mass function (4.20) as the Vaidya
spacetime.

Similar to the Schwarzschild case, the (1+1)-dimensional model for null collapse is
obtained by removing the angular coordinates in Eq. (4.19). This will enable us to find
the vacuumWightman distributionwith respect to the vacuum state of the theory, which
wewill call theVaidya vacuum state |0V〉, analytically. Solving for the Klein-Gordon equa-
tion and imposing the Dirichlet boundary condition at r = 0, theWightman distribution
for Vaidya spacetime is given by [80]

WV(x, x′) = − 1
4π

log
(ū − ū′ − iϵ)(v − v′ − iϵ)
(ū − v′ − iϵ)(v − ū′ − iϵ)

, (4.21)

where ū is related to the Kruskal (dimensionless) null coordinate U by

ū(U) = −4M (1 +W(−U/e)) , (4.22)

with W(z) the Lambert W-function. The function ū(U) can be obtained by matching
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Figure 4.2: Conformal diagram for Vaidya spacetime.

modes along the null shockwave v = 0 [80], making use in particular the expression for
r(U, V) in Eq. (4.2) at the junction.

4.3 Entanglement harvesting with derivative coupling

For the entanglement harvesting protocol that we would like to consider, Alice and Bob
are set to be on non-inertial, static trajectories at fixed radii Rj > 2M outside the black
hole horizon with RA ≤ RB. Consequently, the detectors experience different gravita-
tional redshifts at their respective locations. They couple to the field via the derivative-
coupling Hamiltonian6

Ĥt
I(t) = Ĥt

A(t) + Ĥt
B(t) , (4.23)

where t is a time coordinate for the spacetime. The superscript t is to make clear that
the Hamiltonian generates time translations with respect to t. The local interaction be-

6Since the derivative couplingmodel is pointlike, it is simpler to workwith theHamiltonian, which can
be viewed as the the Hamiltonian density integrated over the spatial section in Fermi normal coordinates.
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tween each detector and the field Ĥt
j (t) is simpler when it is written as Hamiltonian that

generate time translations with respect to the proper time τ (c.f. Chapter 3):

Ĥτ
j (τ) = λjχj(τ)σ̂

x
j (τ)⊗ uµ∇µϕ̂(xj(τ)) , j = A, B . (4.24)

Here xj(τj) are the timelike trajectories of eachdetector parametrized by their ownproper
times τj, uµ is the 4-velocity of the detector. The two Hamiltonians that generate time
translations with respect to t and τ are related by time-reparametrization [67]

Ĥt
j (t) ≡ Ĥt

j (τ(t)) =
dτ

dt
Ĥτ

j (τ(t)) . (4.25)

The detectors are assumed to have the same internal dynamics given by the free Hamil-
tonian ĥ0,j =

Ωj
2 (σ̂z

j + 1). For simplicity we will consider both detectors to be identical,
i.e. λj = λ, Ωj = Ω, with the same Gaussian switching functions

χj(τ) = χ(τ) = e−
(τ−τ0)

2

σ2 , (4.26)

where σ prescribes the duration of interaction and τ0 defines the peak of the switching.
Since we are interested in the detector dynamics in the black hole exterior, we can use

the Schwarzschild time t as a common time coordinate. The time evolution operator is
then given by

Û = T exp
(
−i
∫

dt
[

dτA

dt
Ĥ

τA
A (τA) +

dτB

dt
Ĥ

τB
B (τB)

])
, (4.27)

where we have used Eq. (4.25) and τA and τB are proper times parametrizing different
timelike trajectories xA and xB respectively7. We also fix the proper times of each detector
τA, τB such that τA = τB = 0 when the Schwarzschild time t = 0, which is possible
because the spacetime admits a Cauchy surface given by constant-t slices.

For the weak coupling regime, we can perform a Dyson series expansion

Û = 1+ Û(1) + Û(2) +O(λ3) , (4.28)
7This does not mean that there are two different definitions of proper time: the proper time of any

observer is the time measured in the observer’s rest frame, which is unique. However, given two timelike
trajectories xA, xB, they are parametrized by twodifferent affineparameters τA, τB that are a prioriunrelated
without further information (e.g. Alice synchronizing with Bob by sending light rays).
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whose first two terms are

Û(1) = −i
∫ ∞

−∞
dt Ĥt

I(t) , (4.29a)

Û(2) = −
∫ ∞

−∞
dt
∫ t

−∞
dt′ Ĥt

I(t)Ĥt′
I (t

′) (4.29b)

andwhere Û(k) is of order λk. Note that the second order correction Û(2) is time-ordered
with respect to coordinate time t.

Our interest is in the vacuum entanglement harvesting, so the initial state is taken to
be the uncorrelated state

ρ̂0 = |gA〉〈gA| ⊗ |gB〉〈gB| ⊗ |0α〉〈0α| , α = B, U, K, V , (4.30)

where
∣∣gj
〉
and

∣∣ej
〉
are the ground and the excited states of detector j. The vector state

|0α〉 is a vacuum state of the field described in Section 4.1 and 4.2. The time evolved
density matrix is given by ρ̂ = Ûρ̂0Û†, and using the Dyson series expansion (4.28) we
obtain

ρ̂ = ρ̂0 + ρ̂(1) + ρ̂(2) +O(λ3) , (4.31)

where ρ̂(k) is of order λk:

ρ̂(1) = Û(1)ρ̂0 + ρ̂0Û(1)† , (4.32a)
ρ̂(2) = Û(1)ρ̂0Û(1)† + Û(2)ρ̂0 + ρ̂0Û(2)† . (4.32b)

Since the vacuum state is quasifree, we have trϕ ρ̂(1) = 0: the leading order contribution
to the detector dynamics after tracing out the field’s degree of freedom is therefore ρ̂(2).

In order to compute the entanglement between the two detectors, we find the joint
reduced density matrix of the detectors by tracing out the field’s degrees of freedom:

ρ̂AB := trϕ

(
Ûρ̂0Û†

)
. (4.33)

Using the ordered basis {|gAgB〉 , |gAeB〉 , |eAgB〉 , |eAeB〉}, the matrix representation of
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ρ̂AB to leading order reads

ρAB =


1 −LAA −LBB 0 0 M∗

0 LBB LBA 0
0 LAB LAA 0
M 0 0 0

+O(λ4) , (4.34)

where the matrix elements are given by

Lij = λ2
∫

dτi

∫
dτ′

j χ(τi)χ(τ
′
j )e

−iΩ(τi−τ′
j )Aα(xi(τi), xj(τ

′
j )) , (4.35a)

M = −λ2
∫ ∞

−∞
dτA

∫ γBAτA

−∞
dτB χ(τA)χ(τB)eiΩ(τA+τB)Aα(xA(τA), xB(τB)) +

− λ2
∫ ∞

−∞
dτB

∫ γABτB

−∞
dτA χ(τB)χ(τA)eiΩ(τB+τA)Aα(xB(τB), xA(τA)) (4.35b)

where the derivative-couplingWightmandistributionAα(xi(τi), xj(τj)) is given by (3.23).
The local ‘noise’ terms Lii correspond to the transition probability of detector j, so some-
times we will write this as Prj(Ω, σ) := Ljj. The non-local term M depends on the
trajectories of both detectors. In the expression for M, we have defined

γij :=

√
f (ri)

f (rj)
, i, j ∈ {A, B} . (4.36)

In particularwe have γBA = γ−1
AB . For conveniencewe choose the convention that rB ≥ rA

(detector B is at larger radial coordinate than detector A). The constant γAB in the upper
limit of M appears because the time-ordering in Û(2) needs to account for the redshift
factor τj(t) =

√
f (rj)t. More explicitly, if t = t(τA) and t′ = t′(τB), it follows from the

time-ordering of Û(2)ρ0 (and also ρ0Û(2)†) that

t − t′ > 0 =⇒ τA√
f (rA)

− τB√
f (rB)

> 0 =⇒ γBAτA > τB , (4.37a)

t − t′ < 0 =⇒ τA√
f (rA)

− τB√
f (rB)

< 0 =⇒ γABτB > τA , (4.37b)

hence the upper limit in the expression for M in Eq. (4.35b).
Finally, in order to measure the amount of entanglement between the two qubit de-
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tectors, there are several faithful entanglement measures we can use. For simplicity, we
will use concurrence C[ρAB] [114]. For the time-evolved density matrix in our scenario,
this has the form [79, 81]

C[ρAB] = 2 max{0, |M| −
√
LAALBB}+O(λ4) (4.38)

to leading order in the coupling. One could also consider entanglement negativity [115]
(see e.g. [61, 77] for its use in the harvesting setup), but we choose concurrence because
it cleanly separates the effect of the non-local termM and local noise Lii on bipartite en-
tanglement. For two qubits, the concurrence is a faithful entanglement monotone [114].
We make a passing remark that for brevity we do not cover the harvesting of mutual
information in this thesis — see [33] for details.

Let us comment about the choice of switching function peaks: in practice, we can
demand the detectors to be switched on such that the peak agrees in two ways: (1) at
the same constant t0 slice (which means the peaks are at different values of individual
proper times, or (2) at the same constant τ0 (which means the peaks are at different val-
ues of coordinate time t). So long as the coordinate time and the proper times are aligned
beforehand (e.g. Alice and Bob agree that their own τ = 0 corresponds to some fixed
t = t0), these two choices will lead to different protocols in the sense that the causal re-
lationships between the detectors may be different. Our choice in this work corresponds
to (2); one could easily consider (1), which is done in the same spirit as [99].

Two-point Wightman distributions for the derivative coupling

The remaining task is to calculate the derivative-coupling Wightman distribution for
each of the four vacua |0α〉 where α = B, U, H, V. Let us use the shorthand Aα(τ, τ′) ≡
Aα(x(τ), x′(τ′)), ẏ ≡ ∂τ[y(τ)], and ẏ′ ≡ ∂τ′ [y(τ′)]. Taking a proper-time derivative of
Eqs. (4.15a)-(4.15c) and Eq. (4.21), we obtain for the Schwarzschild vacua

AB(τ, τ′) = − 1
4π

[
u̇u̇′

(u − u′ − iϵ)2 +
v̇v̇′

(v − v′ − iϵ)2

]
, (4.39a)

AU(τ, τ′) = − 1
4π

[
U̇U̇′

(U − U′ − iϵ)2 +
v̇v̇′

(v − v′ − iϵ)2

]
, (4.39b)

AH(τ, τ′) = − 1
4π

[
U̇U̇′

(U − U′ − iϵ)2 +
V̇V̇′

(V − V′ − iϵ)2

]
. (4.39c)
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Note that for simplicity we have written AU and AH in terms of U instead of Ū. For the
Vaidya vacuum the two-point distribution has two additional terms

AV(τ, τ′)

= − 1
4π

[ ˙̄u ˙̄u′

(ū − ū′ − iϵ)2 +
v̇v̇′

(v − v′ − iϵ)2 −
˙̄uv̇′

(ū − v′ − iϵ)2 − v̇ ˙̄u′

(v − ū′ − iϵ)2

]
(4.40)

due to the boundary condition imposed at r = 0. Note that these closed-form distribu-
tional expressions are not available for higher-dimensional black hole spacetimes, and
even the case for the Bañados-Teitelboim-Zanelli (BTZ) black holes require image sums
[81].

Comments on switching time and computation of joint density matrix

We pause here to make several comments on the procedure of computing the time-
evolved density matrix ρ̂AB to leading order in perturbation theory.

First, note that in our construction the collapsing null shell occurs at v = 0 (this could
be generalized to arbitrary v = v0 butwe do not do this here). In terms of the Eddington-
Finkelstein coordinates, this means that t + r∗ = 0. Due to the matching condition at
v = 0, it is imperative that for detectors in Region I, the switching time τ = τ0 is chosen
such that it respects v > 0. In particular, if Alice’s detector is located at r = krH for k > 1
and rH = 2M, then inverting the null coordinate v we get the constraint

v > 0 =⇒ t > −2(kM + M log(k − 1)) . (4.41)

Accounting for redshift, this constraint can be written in terms of detector’s proper time:

τ > −2(kM + M log(k − 1))
1 − 1/k

. (4.42)

Therefore, if we demand that the Gaussian strong support to be bσ (b > 0), the require-
ment that this support is contained entirely in Region I imposes the constraint that

τ0 > bσ − 2(kM + M log(k − 1))
1 − 1/k

. (4.43)

In this chapter we consider 5σ (analogous to “five-sigma standard deviation” in particle
physics) to be appropriate and useful for ensuring (4.41), so we set b = 5, though this
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standard is mathematically somewhat arbitrary8.
Second, we know that the three standard Schwarzschild vacua have time-translation

invariant Wightman functions with respect to the Killing time ξ. Therefore, the exci-
tation probability Prj(Ω, σ) is invariant under a constant shift of the switching time τ0.
However, this is not the case for the non-local terms, as the two detectors at two different
radii experience different gravitational redshift. Therefore the pullback of theWightman
functions to each detector’s trajectory W(xA(τ), xB(τ

′))will not be stationary, i.e., it is not
a function of τ − τ′.

Third, to our knowledge most of the literature on the UDW model to date involves
sufficiently simple settings in which numerical integration can be performed relatively
straightforwardly, and in some nice cases closed-form expressions can be obtained (see
e.g. remarkable calculations in [77, 78] for harvesting scenario, or [80, 87] for transition
rate calculations). In these cases, often the symmetry of the problem allows exact ex-
pressions, and in the case of Unruh effect calculations, transition rate is simpler because
it is a one-dimensional integral obtained using stationarity of the Wightman distribu-
tions. In other contexts such as [81, 99, 100], the nice properties of AdS3 spacetime allow
analytic computation of both the Wightman functions and reduction of numerical inte-
grals to one-dimensional integrals. The most formidable calculations of the two-point
functions of this kind are done e.g. in [108, 116], though the objectives are different.

Here we are working with (1) a derivative coupling Wightman distribution, and also
(2) a time-dependent collapsing spacetime, which renders the density matrix elements
intractable analytically. Therefore a numerical approach is required to make progress.
However, it is not hard to check by direct computation that the usual iϵ prescription eas-
ily leads to numerical instabilities, and for the Vaidya spacetime where the Wightman
function has a very complicated pole structure, this is practically impossible without
very careful and deliberate control of the integration schemes around the poles. In cer-
tain cases, such as the flat space Minkowski vacuum, it may be possible to deal with this
by a suitable rewriting of the response function (see e.g. [87, 117, 118]) in such a way
that the iϵ prescription is completely eliminated. However this is an exception to the
rule; for example, a spacetime with a static mirror at the origin cannot be dealt with this
way as the mirror introduces new poles [101].

8In principle, we could simply consider a compactly supported function from the outset, but we choose
this function for convenience since it is commonly used in the literature. Furthermore, in practice we
will integrate numerically only over the strong support so it is effectively compactly supported; see e.g.
[102] for the most recent work for harvesting with compact switching. We have checked that the essential
physics is unchanged whether we use strong support or compactly supported switching functions.
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In view of the above difficulties, we will compute the joint detector density matrix
elements ρ̂AB using numerical contour integration. Formally, this is equivalent to the iϵ
prescription but instead of ‘shifting the poles’ and taking ϵ → 0 (which is numerically
unstable in general), we will perform numerical integration that involves a contour in
the complex plane. By making a suitable choice of contour that takes into account the
exponential suppression of the Gaussian switching functions, wewill be able to simplify
the numerical integration considerably so that no complicated scheme is required. Fur-
thermore, this also serves as a simple demonstration of how contour integration can be
useful in a multi-dimensional integral settings that is relatively straightforward to im-
plement as compared to bottom-up numerical schemes9. We describe this procedure in
Appendix C and outline its limitations.

4.4 Main results

In this section we will calculate the amount of correlations that can be extracted by the
two qubit detectors and compare the differences between the three preferred states for
Schwarzschild background, namely Boulware vacuum |0B〉, Unruh vacuum |0U〉 and
Hartle-Hawking-Israel (HHI) state |0H〉. Wewill then compare this to the casewhere the
two detectors are in the black hole exterior Region I of Vaidya spacetime, corresponding
to detectors interacting after the black hole collapse has occurred. We will consider both
concurrence and mutual correlations as measures of classical and quantum correlations
between the two detectors.

For numerical computations, we need to choose the nearest distance to the horizon
for illustrating the physics very close to the horizon. Let dij := d(ri, rj) be the proper
distance between two radial coordinates ri, rj. We will impose the condition that the
closest Alice’s detector could be placed outside the horizon is given by the proper dis-
tance10 dA := d(rA, rH) ≥ 0.1σ, where rH = 2M is the Schwarzschild radius and σ
is the switching timescale. We can therefore effectively think of dA = 0.1σ as having
Alice’s detector to be just above the horizon and we will measure distances in units of

9Furthermore, in the Vaidya case most computations do not require us to evaluate the ūv′ and vū′ con-
tribution toAV in Eq. (4.40) as they turn out to be subleading compared to the ū ū′ and vv′ contributions,
thus cutting down some computation time.

10In principle, we could go nearer to, say, dA ≲ 0.01σ (since we cannot numerically evaluate the density
matrix at r = rH); however this would takemuchmore optimization and computational time toworkwith
whilst not providing new insights. Our choice is simply amatter of (practical) convenience and simplicity
that still includes the relevant physics.
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σ. As a side note, we mention that for the derivative coupling UDW model, the (bare)
coupling constant λ has units of [Length] n−1

2 while for amplitude coupling λ has unit
[Length] n−3

2 . Consequently, our results will be in terms of the dimensionless coupling
constant λ̃ := λσ

1−n
2 , where n denotes the number of spatial dimensions. It happens

that for derivative coupling in (1+1) dimensions, we have λ̃ = λ and we will write λ̃
throughout to remind ourselves that in general the (bare) coupling constant of the UDW
model has dimension-dependent units.

4.4.1 Harvesting entanglement

In Figure 4.3 we show the concurrence as a function of proper distance of Alice’s detec-
tor from the horizon dA. Both Alice and Bob are static, non-inertial observers at fixed
Schwarzschild radii rA, rB respectively, separated by a fixed proper distance d(rA, rB) =
2σ in 4.3(a,b) and d(rA, rB) = 3σ in in Figure 4.3(c,d). We first compare how the four
vacua can entangle the two qubits after finite-time interaction.

First, observe that from Figure 4.3(a) that there is an inhibition of entanglement ex-
traction close to the horizon for all states, a result conjectured to hold in general [81]
based on a study of this scenario for (2+1) BTZ black holes. Our results support the
claim that this is a generic feature of a black hole background, since our choice of detector-
field coupling and the choice of states are vastly different, and our example includes the
Vaidya vacuum, which is not time-translation invariant in both the state and the black
hole background. We also note that the region where concurrence is zero is slightly
smaller for the Boulware vacuum and slightly larger for HHI vacuum, which is an indi-
cation that all black hole vacua do not have equal ‘entangling power’ (to use the phrase
in [119]).

Second, we see that the Unruh vacuum approximates the Vaidya vacuum very well
near the horizon even for finite interactions: this result therefore extends the utility of the
Unruh vacuum in modelling the vacuum state for collapsing spacetime. For complete-
ness, we note as well that with larger proper separation between the two detectors, en-
tanglement harvesting is diminished and since each vacuum entangles differently, it is
possible for some vacua to not be able entangle at some distance but other vacua could,
as shown in Figure 4.3(d). This result is the black hole equivalent of that found both for
accelerating detectors and for comoving detectors in an expanding universe [98, 119].

Third, for finite time interactions the Unruh vacuum no longer approximates well the
Vaidya vacuumas the detectorsmove far away from the horizon. In Figure 4.3(b), we see
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Figure 4.3: The concurrence as a function of proper distance of Alice’s detector away
from the horizon (in units of σ) for various choice of vacua. Here λ̃ = λσ

1−n
2 = λ is

dimensionless coupling constant. We set Ωσ = 2, M/σ = 1
2 . The detectors are turned on

at τ0 = 12σ so that theGaussian switching peak is very far from the shell. (a) d(rA, rB) =
2σ, near the horizon. (b) d(rA, rB) = 2σ, far from the horizon. (c) d(rA, rB) = 3σ, near
the horizon. (d) d(rA, rB) = 3σ, far from the horizon.
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Figure 4.4: The nonlocal contributionM and excitation probability of detector A, PrA ≡
LAA, as a function of proper distance of detector A away from the horizon (in units of
σ) for various choice of vacua. Here λ̃ = λσ

1−n
2 = λ is dimensionless coupling constant.

We set Ωσ = 2, M/σ = 1
2 and d(rA, rB) = 2σ. The detectors are turned on at τ0 = 12σ

so that the Gaussian switching peak is very far from the shell. (a) the nonlocal termM.
(a) and (c): Near the horizon. (b) and (d): Far from the horizon.
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Figure 4.5: The concurrence as a function of proper distance of Alice’s detector away
from the horizon (in units of σ) for different black hole masses (in units of σ). In
both figures, solid is Boulware, dotted is Hartle-Hawking-Israel, dot-dash is Unruh, and
dashed is Vaidya. When the curves are indistinguishable, a solid curve is drawn. Here
λ̃ = λσ

1−n
2 = λ is dimensionless coupling constant and we set Ωσ = 2, with the two

detectors separated by a proper distance d(rA, rB) = 2σ. The detectors are turned on at
τ0 = 12σ. (a) the entanglement death zone is saturated for large masses, at dA ∼ 4σ
for M/σ ≥ 10, and at large masses the concurrence tends to the zero-temperature Boul-
ware limit. (b) Shrinking of the difference in entangling power between the four vacua
as mass increases.

that all four vacua distinguish themselves and all have different entangling power, and
in particular we note that the Vaidya vacuum is an interpolation of the Unruh and the
Boulware vacua. That is, the Vaidya vacuum is well-approximated by Boulware vacuum
as measured by faraway observers, while it is well-approximated by the Unruh vacuum
near the horizon. In Figure 4.4 we separate the local noise contribution due to detector
A’s excitation and non-local contribution M. In this particular example, the entangling
power of the Vaidya vacuum is larger than the Unruh vacuum further from the horizon
because the Boulware vacuumhas a larger non-local term and smaller local noise. Again
we observe that both local noise and non-local terms associatedwith the Vaidya vacuum
interpolate between the Unruh and Boulware vacua; this suggests that the excellent ap-
proximation of the Vaidya vacuum by either the Unruh or Boulware vacuum is generic
and not unique to the entanglement dynamics of the two detectors.

In Figure 4.5 we depict how concurrence varies with black hole mass. From Fig-
ure (4.5)(a), we can make two observations. First, we see that as black hole mass in-
creases, the entanglement “death zone” (the proper distance from the horizon where

66



the entanglement vanishes) increases until at some point it is saturated for large enough
mass. In our example, all vacua for M/σ ≥ 10 have the same death zone, given by
dA ∼ 4σ. Second, for large masses, the differences between the different vacua shrinks
very quickly: in our example, for M/σ ≥ 2 the four vacua (marked by different line
style11) are practically indistinguishable from one another in the plot. Figure 4.5 shows
how a small increase in mass (in units of σ) already shrinks the difference considerably.
Therefore, increasing the mass reduces the difference in entangling power of the four
vacua. Note that for large masses, the curves for the four vacua overlap and approach
the Boulware limit at large distances. This phenomenon has a natural interpretation: it
can be understood from the fact that as the black hole mass increases, the Hawking tem-
perature decreases: in the limit of very large mass, the concurrence approaches that of
zero-temperature vacuum in the sense of KMS condition [86], i.e., the Boulware vacuum.
Such small-mass distinctions are also present for the BTZ black hole [81].

We remark that in [33]we also analysed the variations ofmutual information between
the two detectors in an analogous fashion and similar results and interpretations are
obtained. For brevity we do not cover them in this thesis, but what is true is that for
static detectors, mutual information also decreases quickly as both detectors are placed
closer to the horizon (though it only vanishes exactly at the horizon). In effect, as the
detectors get closer to the horizon, the local noise of each detector due to the switching
is sufficiently large to wash out any correlations between them and the noise is amplified
due to the large gravitational redshift the closer the detectors are to the horizon.

4.4.2 Vaidya vacuum: near/far fromhorizon and early/late time limits

Our results thus far suggest that the Vaidya vacuum is an interpolation of the Unruh
and Boulware vacua as we move from the horizon towards infinity. In order to better
understand these, let us study the late-time and large distance limit of the respective
Wightman distributions. We stress that our notion of ‘late time’ is not the same as [80]:
late-time means the detectors are turned on for finite duration (σ < ∞) but the peak of
the switching function occurs at some large time parameter (τ0 → ∞ or t → ∞).

First, note that by taking the limit r � 2M at fixed coordinate time t (or proper time
11Solid line: Boulware, dot-dashed line: Unruh, dotted: HHI, dashed: Vaidya.
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τ), the pullback of the Wightman distribution for the Boulware state reads

AB
(
xA(τ), xB(τ

′)
)
∼ − 1

4π

(
1

(rA − rB − (τ − τ′ − iϵ))2 +
1

(rA − rB + (τ − τ′ − iϵ))2

)
≡ AM(xA(τ), xB(τ

′)) , (4.44)

whereAM(xA(τ), xB(τ
′)) is the derivative couplingWightman function for theMinkowski

vacuum (i.e. derivative version of Eq. (4.17) and [87]). Second, for the HHI vacuum the
Wightman distribution would approach that of a thermal bath inMinkowski space with
temperature TH = (8πM)−1 (c.f. [120]):

AH
(
xA(τ), xB(τ

′)
)
∼ − 1

4π

csch2
(

rA−rB−(τ−τ′−iϵ)
8M

)
+ csch2

(
rA−rB+(τ−τ′−iϵ)

8M

)
64M2 . (4.45)

For the Unruh vacuum, theWightman function approaches the “average” of Minkowski
vacuum and thermal bath:

AU
(
xA(τ), xB(τ

′)
)
∼ − 1

4π

 1
(rA − rB + (τ − τ′ − iϵ))2 +

csch2
(

rA−rB−(τ−τ′−iϵ)
8M

)
64M2

 .

(4.46)

This averaging makes sense because theWightman function is constructed by removing
“half” of the HHI vacuum’s radiation (the ingoing flux).

Let us try to make sense of the early time and far from horizon limits. For the Vaidya
vacuum, we recall from Eq. (4.22) that the Wightman function involves variable ū =
−4M (1 +W(−U/e)), whereW(z) is the Lambert-W function. For fixed coordinate time
t (or proper time τ) and large radial coordinate r, which corresponds to large −U, the
asymptotic behaviour of the principal branch of the Lambert-W function is [111]

W(−U/e) ∼ log
(
−U

e

)
= − t − r

4M
− 1 , (4.47)

and hence ū ∼ t − r = u, where u is a null coordinate in Minkowski space. Therefore,
we conclude that in the large −U limit the Vaidya vacuum is well-approximated by the
Boulware vacuum (and hence also by Minkowski vacuum of flat space). This happens
when either (1) detectors are very far from the horizon (r is very large), or (2) τ0 is very
small (hence t(τ) along the strong support is small), i.e. detectors turned on very early
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but still within Schwarzschid exterior Region I shown in Figure 4.2. In particular, this
calculation shows that for fixed switching peak τ0, once the detectors are sufficiently far
away, the detectors cannot tell whether a black hole will form or not because they have
the same joint density matrix as if the vacuum were Minkowski, even if they lie within
Region I of Figure 4.2.

Let us nowmake sense of the late-time and near-horizon limit. When the detectors are
switched on very late (very large τ0), the behaviour increasingly approaches the Unruh
limit. To see this, note that for any large but fixed radius r, one can always make U very
small by taking t (or τ) very large. This happens when wemake the Gaussian switching
peak τ0 very large12 (hence t(τ) along the strong support is large). In this case, one looks
for the other branch of the Lambert-W function and the asymptotic behavior for small
−U is [111]

W(−U/e) ∼ − log
( e

U

)
= −1 + log U ≈ −1 + U , (4.48)

hence ū ∼ −4MU = Ū. This is precisely the null coordinate used for the definition of
the Unruh vacuum (see Eq. (4.15b) and Eq. (4.39b)) Therefore, we conclude that the
Vaidya vacuum is well-approximated by the Unruh vacuum when−U is very small, i.e.
either (1) when the detectors are very close to the horizon, or (2) when the detectors are
switched on at very late times (even for finite, short interaction timescale σ).

The early/late time limit affecting the Boulware/Unruh approximation of Vaidya vac-
uum can be visualized in Figure 4.6. We find that the primary factor governing the point
at which the approximation breaks down is when the detector is switched on, i.e. the
switching peak τ0. The earlier the switching time is, the Unruh/Vaidya difference be-
comes manifest nearer to the horizon. In Figure 4.6, we see that this ‘bifurcation’ point
now begins when detector A is at proper distance of dA ≈ 3σ away from the horizon13,
as compared to dA ≈ 8σ when τ0 = 12σ. In other words, for finite-time interaction, how
far away from the horizon the Unruh vacuum well-approximates the Vaidya vacuum
depends on how early/late the detectors are turned on relative to the null collapse time.
This is precisely what we obtained earlier from the asymptotic analysis of theWightman
functions.

12This also occurs when we make σ large, though we need to make sure the strong support of the
switching lies within the Schwarzschild exterior (which may involve increasing τ0).

13The value of τ0 ≈ 5.5σ in Figure 4.6 we chose is approximately the smallest for which the strong
support of the Gaussian is entirely contained in Region I, and we do not push this earlier to avoid artifacts
of shell-crossing where detector A’s switching becomes highly non-Gaussian due to discontinuity of the
redshift factor across the shell.
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Figure 4.6: The concurrence for the Unruh and Vaidya vacua when the switching func-
tion is peaked at τ0 = 5.5σ (early) and τ0 = 12σ (late). Here λ̃ = λσ

1−n
2 = λ is dimen-

sionless coupling constant. We set Ωσ = 2, Mσ = 1
2 and d(rA, rB) = 3σ. The ‘bifurcation

point’ at which the two states begin to show differences in concurrence is now at about
dA ≈ 3σ when τ0 = 5.5σ, as compared to dA ≈ 8σ when τ0 = 12σ, indicated by the
vertical dashed lines.
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4.4.3 Signaling between two detectors

Another natural question to ask in the harvesting protocol is how much of the extracted
correlations come from mutual signaling between the two detectors. So far in the lit-
erature, little attention has been paid to the communication between the two detectors
when it comes to harvesting correlations in curved spacetimes. The ability of the detec-
tors to communicate via the intervening medium — the scalar field they couple to — is
important because two uncorrelated quantum systems can be correlated or entangled
via signaling or their mutual interactions14.

In the UDW model, although two detectors interact locally with a common quantum
field, due to relativistic causality (through the causal propagator) the twodetectors’ abil-
ity to signal depends on their spacetime separations. In flat space, the notion of spacelike
and timelike separation is straightforward and can be given in terms of the coordinate
separation Yµ := xµ

A − xµ
B. In other words, if YµYµ ≤ 0 then the two points are causally

connected (see e.g. [77]). When non-compact switching or smearing is involved (such
as via Gaussian functions), then one can define two detectors to be spacelike-separated
whenever the strong support of the switching or smearing functions of one detector is
within another detector’s causal complement. Relativistic causality of the underlying
quantum field then demands that if the two points are spacelike-separated, then the any
local observables constructed out of the field operators vanish:

[Ô(xA), Ô(xB)] = 0 . (4.49)

Consequently, communication between detectors can be measured in terms of ‘signal-
ing estimators’ constructed out of the field commutators [122]. In flat spacetime the
spacelike-separation condition can be easily checked by showing that YµYµ > 0, but in
curved spacetime this is highly complicated without some symmetries.

It is worth noting that the microcausality condition (4.49) is quite simple to compute
even when the background spacetime is curved if the Fourier mode decomposition of
the underlying quantum field is known. This is interesting because in curved space-
times it is generically very difficult in practice to characterize spacelike separation even
classically: in the presence of spacetime curvature, one has to show that the two points
cannot be connected by any causal curve [50]. This is especially prohibitive in practice
for our detectors because we have to check how the entire Gaussian strong supports of

14In order to generate entanglement, one would need nonlocal operations in general [121]. For example
any LOCC (local operations and classical communications) cannot generate entanglement from uncorre-
lated state or increase the entanglement rank.

71



the detectors are contained in each other’s causal complement. Here we have a situation
where quantum theory simplifies our task of quantifying communication between two
detectors at two causally disjoint spacetime regions.

Let us construct a signaling estimator inspired by the construction in [122]: we define

E := −1
2

λAλBIm
(∫

dτAdτB χA(τA)χB(τB)〈0α|[∂τA ϕ̂(xA(τA)), ∂τB ϕ̂(xB(τB))]|0α〉
)

,

(4.50)

where α = B, U, H, V label different vacua and we take the imaginary part since E is
purely imaginary. The factor −1/2 is arbitrarily chosen so that in Figure 4.7 the mag-
nitude of E is comparable to the concurrence, non-negative near the horizon and aids
visualization. Note that we have used the proper time derivative ∂τϕ̂(x(τ)) instead of
the field operator ϕ̂(x(τ)) because the commutator can be easily computed from the
derivative Wightman function: as a distribution, this is given by

〈0α|[∂τA ϕ̂(xA(τA)), ∂τB ϕ̂(xB(τB))]|0α〉 = Aα(xA(τA), xB(τB))−Aα(xB(τB), xA(τA)) ,
(4.51)

and this is the correct commutator for the derivative coupling model. Since the field
commutator is state-independent we can drop the label α, and also we assumed that the
two detectors are identical. Therefore, the estimator can be simplified into

E = −1
2

λ2Im
(∫

dτAdτB χ(τA)χ(τB)〈[∂τA ϕ̂(xA(τA)), ∂τB ϕ̂(xB(τB))]〉
)

. (4.52)

Certainly one could construct other estimators using operators associated with the field,
but due to Eq. (4.49) all observables constructed out of the field operators will behave
similarly for spacelike-separated regions. The estimators will only be different for other
choices of field observables when the detectors are causally connected by the field15.

We superimpose the concurrence for various detector separations with the signaling
estimator E as shown in Figure 4.7(a)-(c), using the Unruh vacuum as a reference state
for concurrence. We can make two important observations here. First, when the de-
tectors become increasingly spacelike, the signaling estimator E is strongly confined to
where the concurrence is nonzero. Therefore, at large distances the estimator vanishes
for spacelike separation. This is especially manifest in Figure 4.7 where dAB = 8σ would

15By this we mean that if Sj is the strong support of the Gaussian switching of the detector j, then
timelike-separated here means SA is contained within within causal past/future of SB.
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Figure 4.7: Concurrence C[ρAB] and signaling estimator E as a function of proper dis-
tance of Alice’s detector from the horizon for various detector separations dAB. Here
Ωσ = 2, M/σ = 1/2. The concurrence is computed using the Unruh vacuum case as
a reference. (a) dAB = 2σ/ (b) dAB = 4σ. (c) dAB = 8σ. (d) the signaling estima-
tors for various dAB. Note that the dominant part of E is increasingly concentrated to a
small region where entanglement can be extracted by the detectors as they becomemore
spacelike-separated.
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correspond to spacelike-separated detectors if the spacetime were flat. In Figure 4.7(d)
we plot the estimators together for different spacelike separation and we see that the
dominant part gets more concentrated to smaller spatial regions.

Second, the estimator suggests that as we bring the two detectors very close to the
black hole, the detectors very quickly become spacelike — the estimators fall off very
quickly near the horizon. There are two ways to make sense of this result. Taking the
estimator result literally, this is very remarkable because it shows that curvature modi-
fies signaling in highly non-trivial way: the signaling estimator E is effectively zero near
the horizon, followed by an intermediate region the signaling is significantly enhanced
(large |E |), before eventually falling off again as one moves towards spatial infinity16.
This observation demonstrates that in the entanglement harvesting protocol, curvature
and signaling between detectors are very much related. However, one can also question
whether the estimator breaks down near the horizon: sincewe are in (1+1)-dimensional
spacetime, there seems to be no way for things to be spacelike near the horizon when
they are not farther away. One possibility, which we did not explore in [33], is the idea
that the estimator is in away computing the commutator of momentum-like observables
(i.e., analogous to [π(x), π(x′)], which do not share the same properties as the field com-
mutator imposed by the CCR algebra, so E may not be reliable when it is zero.

Overall, while we do not explore the (extremely vast) parameter space of our setup,
the signaling analysis highlights a mechanism through which entanglement harvesting
between two detectors at the black hole exterior occurs: the efficiency of the protocol
depends strongly on the ability of detectors to signal between them. The very specific
issue of quantum communication in a (3+1)D Schwarzschild black hole where angu-
lar variables of the metric have important role has been very recently investigated us-
ing state-of-the-art calculations in [108]. In Chapter 5 we will better understand the
signaling mechanism in the entanglement harvesting protocol by thorough analysis in
Minkowski spacetime that circumvents the derivative coupling limitations above.

4.5 Conclusion

In this chapter we discussed entanglement harvesting by two detectors from the vac-
uum state of a massless scalar field in background Vaidya spacetime, and compared the

16We have also checked the estimator when compact switching in [102] with approximately equal area
as the Gaussian switching is used instead and the signaling estimator remains very similar. This provides
an indication that despite the non-compact property of the Gaussian switching, the calculations done here
work as required.
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results to those associated with the three preferred vacua (Boulware, Unruh, Hartle-
Hawking-Israel vacua) in Schwarzschild spacetime. We use the derivative coupling
particle detector model where the Wightman functions have similar short-distance be-
haviour as the Wightman functions in the (3+1)-dimensional counterpart, as well as
to resolve the infrared ambiguities associated with massless scalar fields in (1 + 1)-
dimensional spacetimes. We perform these studies using a straightforward implemen-
tation of numerical contour integration, outlined in Appendix C.

Let us summarize our results. First, we showed that from the operational perspective
using the detector model, near the horizon the Unruh vacuum agrees very well with
the Vaidya vacuum even for finite-time interactions, complementing the long-interaction
result from [87]. Second, all four vacua have different capacities for creating correlations
between the detectors, with the Vaidya vacuum’s capacity interpolating between that of
theUnruhvacuumnear the horizon and the Boulware vacuum far from the horizon. Last
but not least, the efficiency of the harvesting protocol depends strongly on the signaling
ability of the two detectors, which is highly non-trivial in the presence of curvature.
In [33], we also examinated harvesting of mutual information — we showed that for
static detectors, the black hole horizon inhibits any correlations, not just entanglement,
complementing the results found in [81].

Wehave also studied the asymptotic behavior of theVaidya vacuumanalytically to see
how it approximates the Boulware/Minkowski vacuum in the early time/large distance
limit, and approximates the Unruh vacuum in the late time/near-horizon limit. Our
asymptotic analysis clarifies the distinction between the late-time and long-time limits
in transition rate calculations [80, 87].

A natural extension to our results would be to analyze the correlations between two
detectors, one of which (or both) free-falling through the horizon during the interac-
tions. Since our results on the exterior region show that the horizon inhibits all forms
of correlations from being extracted from the vacuum, how free-falling detectors break
correlations between them is an operational question related to the information problem
in black hole thermodynamics — our results are given in [91] (see Ref. [16] in the State-
ment of Contribution). Another related question concerns the effect of null shockwaves
from the perspective of supertranslations [123–125]: it would be interesting to study the
correlations between two detectors in presence of supertranslations—our results on this
front are given in [82] (see Ref. [14] in the Statement of Contribution).
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Chapter 5

Entanglement harvesting vs signaling

「それでも俺は、本物が欲しい」
Even so, I want something genuine.

比企谷八幡、「俺ガイル」
Hachiman Hikigaya, Oregairu

In general, interactions between two quantum systems generate entanglement be-
tween them — this is already true even in non-relativistic settings. Of course, for quan-
tum computing applications, the issue has more to do with the quality of the entangle-
ment: we need either near-maximal entanglement or high-fidelity entangling quantum
gates (e.g., the CNOT gates), and this is where all the complications occur that lead to
the need for quantum error corrections or better architectural designs. Furthermore, in
these cases, it is not necessary to understand how the entanglement is generated: the
ends justify the means. In the context of entanglement harvesting protocol, the narra-
tive is somewhat different: in a way, the protocol is a very inefficient way of generating
entanglement, and hence it is not a practical way of producing useful entangled states.

From a more fundamental standpoint, it is interesting to know where the entangle-
ment comes from. The entanglement harvesting protocol, at its core, imagines that two
external probes (detectors) prepared in an initially separable state become entangled by
“extracting” entanglement from the highly entangled ground state of the intervening
medium (the ‘environment’) it interacts with. In other words, entanglement harvest-
ing protocol should amount to “noisy” entanglement swapping with the environment.
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However, how do we know that the entanglement generated is due to swapping and
not from, say, inter-detector interactions mediated by the wave propagation of the field
(i.e., by signaling between detectors)? In relativistic settings, the minimum requirement
to answer this question is to compare the entanglement between the detectors that are
spacelike-separated and those that are causally connected by the field. This question
cannot be cleanly answered in non-relativistic setting because while the ground state of
such a many-body system is also entangled, there is no well-defined notion of spacelike-
ness in non-relativistic regime1.

When twodetectors are spacelike-separated, it is clear that the entanglement obtained
by the detectors must come from its interaction with the field state, since the two detec-
tors cannot communicate through the field. That said, it is not uncommon in the study
of entanglement harvesting protocols to consider the regimes where the detectors are
causally connected via the field2 (see, among many others, [77, 78, 126–129], etc). How-
ever, the question whether these detectors are harvesting correlations between timelike
or lightlike separated regions of the field is not obviously clear, since causally connected
detectors can potentially get entangled through two mechanisms: (1) genuinely har-
vesting correlations from the field, or (2) communicating with each other via the field
without harvesting any pre-existing field correlations.

In this chapter (lifted from our work in [34]) we provide a quantitative estimator of
how to separate the two mechanisms. This is based on the observation that the correla-
tions acquired between the detectors can be separated in two (sub-additive) contribu-
tions from the field anti-commutator and the commutator. On the one hand, it has been
shown that the leading order contribution to communication between the detectors is ex-
clusively given by the field commutator, and this contribution enters the final state of the
detectors at the same leading order as the harvesting contribution [75, 108, 122, 130, 131].
Secondly, and more importantly, the commutator contribution is state-independent: any
entanglement that comes from the commutator contribution cannot be ascribed to the
field state (hence is unrelated to entanglement structure of the field theory) and will be
the same even if there are no correlations in the field state. Consequently, genuine vac-
uum entanglement harvesting must necessarily come from the (state-dependent) anti-
commutator contribution. This is particularly important in light of recent results where
one can suspect that some (possibly significant) amount of the detectors’ entanglement
may be due to field-mediated communication (see, e.g., [33, 77, 91, 129, 132]).

1Actually, this is not quite true andwewill discuss about how this can be formulated using the so-called
Lieb-Robinson bound at the end of this chapter.

2If the field is massless, the detectors’ interaction can still be causally disconnected when they are
timelike-separated.
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This chapter is organized as follows. In Section 5.1 we review the standard UDW
model and the entanglement harvesting protocol. In Section 5.2 we review the Wight-
man function, its splitting into anti-commutator and commutator and the strong Huy-
gens’ principle. In Section 5.3 we calculate explicitly the density matrix elements for two
detectors that interact with a scalar field through the harvesting protocol analogous to
the construction in Chapter 4, and then proceed to build the communication-mediated
entanglement estimator. In Section 5.4 we present our main results for massless scalar
fields in (2+ 1) and (3+ 1) dimensions. In Section 5.5 we discuss how the results change
in higher spacetime dimensions and when the field is massive, ending the section with
a comparison between the cases of compact switching vs non-compact switching.

5.1 Entanglement harvesting protocol

Recall that two detectors interacting with a quantum field can get entanglement through
two mechanisms: they can exchange signals, or they can swap the entanglement already
present in the state of the quantum field [133, 134], allowing them to get entangled even
when they are spacelike-separated [77, 95, 97]. In the canonical quantization framework,
a quantized scalar field of mass m in (n + 1)-dimensional Minkowski spacetime can be
expressed as

ϕ̂(t, x) =
∫ dnk√

2(2π)nωk

(
âke−iωkt+ik·x +H.c.

)
, (5.1)

where ωk =
√
|k|2 + m2 is the relativistic dispersion relation and the annihilation and

creation operators obey the CCR [âk, â†
k′ ] = δn(k− k′). Here, the canonical quantization

of the field is carried out with respect to inertial observers with coordinates x = (t, x),
where t is the standard Killing time. Following Section 4.3, we consider two observers
Alice and Bob, each carrying a pointlike Unruh-DeWitt detector consisting of a two-level
system interacting locally with the quantum field via interaction Hamiltonian

Ĥt
I(t) =

dτA
dt

ĤτA
A (τA(t)) +

dτB
dt

ĤτB
B (τB(t)) , (5.2a)

Ĥ
τj
j (τj) = λjχj(τj)σ̂

x
j (τj)⊗ ϕ̂(t(τj), xj(τj)) . (5.2b)

For simplicity we will again consider identical detectors so that λj = λ and Ωj = Ω.
For our purposes, it suffices to consider detector trajectories that are at rest relative to
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the quantization frame (t, x), so we can replace xj(τj) = (t(τj), xj(τj)) in Eq. (5.2) with
(tj, xj) where xj are constants for j = A, B. Since the detectors are taken to be pointlike,
without loss of generality we set the trajectories to be

xA(t) = (t, 0, 0, 0) , xB(t) = (t, L, 0, 0) , (5.3)

where L = |xB − xA| is the proper distance between the detectors. The detector-field in-
teraction for a given initial state ρ̂0 is implemented by unitary time evolution ρ̂ = Ûρ̂0Û†,
where the time evolution operator U is given by the time-ordered exponential

Û = T e−i
∫

dt Ĥt
I(t) . (5.4)

In general we can evaluate this perturbatively via a Dyson series expansion (c.f. Chap-
ter 3, 4). The final state of the full system can then be described by a perturbative Dyson
expansion about the initial state:

ρ̂ = ρ̂0 + ρ̂(1) + ρ̂(2) +O(λ3) , ρ̂(j) = ∑
k+l=j

Û(k)ρ̂0Û(l)† , (5.5)

where ρ̂(j) is of order λj. The final state of the two detectors is obtained by tracing out
the field:

ρ̂AB = trϕ ρ̂ = ρ̂AB,0 + ρ̂
(1)
AB + ρ̂

(2)
AB +O(λ3) , (5.6)

where ρ̂
(j)
AB = trϕ ρ̂(j) and ρ̂AB,0 = trϕ ρ̂0.

For the purpose of analyzing entanglement harvesting protocol, we will again make
the assumption that both detectors are initially uncorrelated and are in their own respec-
tive ground states with respect to their free Hamiltonian and the field is in the vacuum
state:

ρ̂0 = |gA〉〈gA| ⊗ |gB〉〈gB| ⊗ |0〉〈0| . (5.7)

Recall that since the vacuum state is quasifree, the leading order correction to the joint
bipartite density matrix ρ̂AB,0 is of order λ2. Under these assumptions, we can show that
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to leading order and in the ordered basis {|gAgB〉 , |gAeB〉 , |eAgB〉 , |eAeB〉} we get

ρ̂AB =


1 −LAA −LBB 0 0 M∗

0 LBB LAB 0
0 LBA LAA 0
M 0 0 0

+O(λ4) , (5.8)

where the matrix elements are given by

Lij = λ2
∫

dt dt′ χi(t)χj(t′)e−iΩ(t−t′)W(t, xi; t′, xj) (5.9a)

M = −λ2
∫

dt dt′ eiΩ(t+t′)χA(t)χB(t′)

×
(

Θ(t − t′)W(t, xA; t′, xB) + Θ(t′ − t)W(t′, xB; t, xA)
)

, (5.9b)

W(xi(τi), xj(τ
′
j )) is the pullback of the Wightman function along the detectors’ trajec-

tories and Θ(z) is the Heaviside function. Note that the matrix elements are function-
ally the same as the derivative-coupling variant in Eq. (4.34), except for the choice of
the field’s two-point functions W(x(τ), x′(τ′)) replacing A(x(τ), x′(τ′)) in Eqs. (4.35a)-
(4.35b).

In this chapter, we will opt for the negativity N for the density matrix ρ̂ instead of
concurrence, which is a faithful entanglement monotone defined by [115]

N [ρ̂] :=

∣∣∣∣ρ̂Γ
∣∣∣∣

1 − 1
2

, (5.10)

where ρ̂Γ is the partial transpose of ρ̂ and ||·||1 is the trace norm. For the final density
matrix ρ̂AB in Eq. (5.8), negativity takes the form

N [ρ̂AB] = max{0,−E}+O(λ4) , (5.11)

where

E =
1
2

(
LAA + LBB −

√
(LAA −LBB)2 + 4|M|2

)
. (5.12)

Since the detectors are identical and the Minkowski spacetime is invariant under space-
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time translations, we have that LAA = LBB and hence the negativity reduces to

N [ρ̂AB] = max
{

0, |M| − Ljj
}
+O(λ4) . (5.13)

In this highly symmetric context, the concurrence and negativity are proportional to one
another.

5.2 Wightman function and strong Huygens’ principle

For (n+ 1)-dimensionalMinkowski spacetime, the vacuumWightman function W(x, x′)
reads

W(x, x′) =
∫ dnk

2(2π)nωk
e−iωk(t−t′)+ik·(x−x′) , (5.14)

where it is understood that theWightman function is a (bi-)distribution. TheWightman
function can be split into its real and imaginary parts3:

W(x, x′) :=
1
2
(
C+(x, x′) + C−(x, x′)

)
, (5.15)

where

C+(x, x′) ≡ Re W(x, x′) = 〈0|{ϕ̂(x), ϕ̂(x′)}|0〉 , (5.16a)
C−(x, x′) ≡ Im W(x, x′) = 〈0|[ϕ̂(x), ϕ̂(x′)]|0〉 . (5.16b)

This splitting is motivated by three important facts:

(i) The expectation value of the field commutator [ϕ̂(x), ϕ̂(x′)] is state-independent.
This follows immediately from the CCR algebra for the scalar field (c.f. Chap-
ter 2). In particular, it means that C−(x, x′) for the vacuum state will be the same
as the one computed using an unphysical field state which has no correlations what-
soever.

(ii) In contrast, the expectation value of the anti-commutator {ϕ̂(x), ϕ̂(x′)} is state-
dependent. Assuming that all physically reasonable states are Hadamard states,

3More rigorously, the real and imaginary parts should be understood at the level of smearedWightman
two-point functions: W( f , g) = Re W( f , g) + i Im W( f , g) for two spacetime smearing functions f , g.
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this follows directly from the properties of Hadamard states (c.f. Chapter 2).

(iii) The anti-commutator C+ has non-zero support for spacelike-separated events, un-
like the commutator C−. In other words, only C+ can contribute to entanglement
harvesting for spacelike-separated detectors.

The decomposition into commutator and anti-commutator is very helpful to disen-
tangle entanglement harvesting (no pun intended) from the entanglement that is not
harvested, but rather generated through field-mediated communication of the two de-
tectors. Since the field commutator is state-independent, the bipartite entanglement of
the detectors cannot be associated with pre-existing (vacuum) correlations of the field.

In order to better understand the role of communication/signaling in generating en-
tanglement between two detectors, we need some results about classical Green’s func-
tions for wave propagation. The strong Huygens’ principle states that the Green’s func-
tions (hence the general solutions) of a second-order linear partial differential equation
of normal hyperbolic type has support only along the null direction (the boundary of
the domain of dependence, e.g., the light cone) [135]. For a massless Klein-Gordon field
in flat spacetimes, a classic result shows that this wave equation satisfies the strongHuy-
gens’ principle for odd n ≥ 3 [136]. When the principle is violated, the Green’s function
also has support in the interior of the light cone. The principle is known not to hold for
massless fields in generic curved spacetimes and for fieldswith nonzeromass [137, 138].

In the next section we will build an estimator of how much of the entanglement ac-
quired between twodetectors is due to signaling via the field commutator and howmuch
is coming through the anti-commutator. In light of the strong Huygens’ principle, we
will also generalize the entanglement harvesting protocol in [77] to arbitrary (n + 1)-
dimensional spacetimes and also for massive scalar fields with m > 0.

5.3 Signaling and entanglement harvesting in arbitrary di-
mensions

Our first task is to obtain explicit expressions for the matrix elements LAA (LBB) and M
for arbitrary field mass m and any number of spacetime dimensions.

Let us take the switching function j to be Gaussian

χj(t) = e−
(t−tj)

2

T2 , j = A,B , (5.17)
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where T prescribes the effective duration of the interaction and tj denotes the switching
peak of detector j. With this choice, the matrix elements of ρ̂AB will greatly simplify. In
this work, we define the strong support of the detectors to be the interval

Sj = [−3.5T + tj, 3.5T + tj] , j = A,B , (5.18)

which contains 99.9999% of the total area of the Gaussian4. This allows us to think of
the switching as effectively compactly supported within an interval of 7T centered at tj.
Detector B can then be considered spacelike-separated from detector A when SB does
not intersect any light rays emanating from SA, as we show schematically in Figure 5.1.

The matrix element Ljj, which corresponds to the vacuum excitation probability of
detector j, is given by

Ljj = λ2
∫ dnk

2(2π)nωk
|χ̃j(Ω + ωk)|2 , (5.19)

where χ̃ is the Fourier transform of the switching function. For a massless scalar field
with ωk = |k| and Gaussian switching (5.17), this can be solved exactly:

Ljj =
π

2−n
2 T3−n

2
n+3

2 Γ
(n

2

)[Γ
(

n − 1
2

)
1F1

(
2 − n

2
;

1
2

;−T2Ω2

2

)
−
√

2TΩ Γ
(n

2

)
1F1

(
3 − n

2
;

3
2

;−T2Ω2

2

) ]
, (5.20)

where 1F1(a; b; z) is Kummer’s confluent hypergeometric function and Γ(z) is the gamma
function [111, 139]. This expression is valid for n > 1 since there is awell-known infrared
(IR) divergence in (1+1) dimensions5 [45, 77]. For massive scalar fields where ωk =√
|k2|+ m2 with m > 0, there is no closed form expression for (5.19) as far as we are

aware.
For the matrix element M that depends on the trajectories of both detectors, we de-
4As we will see in Section 5.4, the choice of ±3.5T about the centre of Gaussian is based on numerical

evidence involving the field commutator.
5If we were to continue using this expression for (1+ 1)D case, then one should use n = 1+ ϵ for some

0 < ϵ � 1, which amounts to dimensional regularization of the IR divergence. One can also use mass
regularization (small non-zero mass) or a hard IR cutoff as in [77].
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Figure 5.1: Spacetime diagram for Alice and Bob’s detectors. The grey rectangles are
the (strong) support of their detectors’ switching functions, denoted SA, SB. Alice and
Bob are separated by proper distance L. The time delay tAB = tB− tA marks the difference
between their switching peaks. The red shaded regions are null-separated from SA.
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compose it into two parts

M = M+ +M− , (5.21)

where M± depends on the (anti-)commutator C±(x, x′) in Eqs. (5.16a) and (5.16b).
Using the shorthand k ≡ |k|, they are given by (see Appendix B.1)

M+ = −λ2e2iΩtA
∫ ∞

0

dk kn−1
√

k2 + m2
(K1(k) +K2(k)) , (5.22)

M− = −λ2e2iΩtA
∫ ∞

0

dk kn−1
√

k2 + m2
(K3(k) +K4(k)) . (5.23)

where each Kj (j = 1, 2, 3, 4) reads

K1(k) = 2−n−1π1− n
2 T2

0F̃1

(
n
2

;−k2L2

4

)
e−

1
2 T2(k2+Ω2)+itAB(Ω−k) , (5.24a)

K2(k) = 2−n−1π1− n
2 T2

0F̃1

(
n
2

;−k2L2

4

)
e−

1
2 T2(k2+Ω2)+itAB(k+Ω) , (5.24b)

K3(k) = −i2−nπ
1−n

2 T2eitABΩ− t2AB
2T2 −

T2Ω2
2 F

(
kT2 + itAB√

2T

)
0F̃1

(
n
2

;−k2L2

4

)
, (5.24c)

K4(k) = −i2−nπ
1−n

2 T2eitABΩ− t2AB
2T2 −

T2Ω2
2 F

(
kT2 − itAB√

2T

)
0F̃1

(
n
2

;−k2L2

4

)
, (5.24d)

where F (z) = e−z2 ∫ z
0 dy ez2 is Dawson’s integral and p F̃q(b; z) is the regularized gener-

alized hypergeometric function or the Bessel-Clifford function6 [111, 139, 140]. Here we
use the shorthand tAB := tB− tA for the time delay. As there is no closed form expressions
for M for arbitrary m and tAB, we will evaluate M numerically.

The splitting in Eq. (5.21) motivates us to define harvested negativity N+[ρ̂AB] and
communication-assisted negativity N−[ρ̂AB] as

N±[ρ̂AB] := max
{

0, |M±| − Ljj
}
+O(λ4) . (5.25)

6The non-regularized, generalized hypergeometric function is related to the regularized one by
Γ(b)p F̃q(b; z) = pFq(a; z) [140]. Note that another commonly used expression for 0 F̃1 involves the Bessel
function of the first kind, often called the Bessel-Clifford function Cn. They are related by Cn(−z2/4) ≡
0 F̃1(n + 1;−z2/4) = (2/z)n Jn(z) [139].
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The idea is that if the two detectors are spacelike-separated, then M− = 0 and hence
N = N+ (N− = 0). When the detectors are not spacelike-separated, they still can in
principle harvest entanglement. Indeed, the modern understanding based on algebraic
framework suggests that physically reasonable states, including the vacuum state, there
are precise notions of what it means for the state to have quantum correlations between
any two regions of spacetime7 [133, 134, 141]. Comparing the contributions of the com-
mutator and anti-commutator to negativity will hence allow us to see how much of the
entanglement between the detectors is due to bipartite communication and how much
is possibly harvested from the scalar field vacuum.

To compare both contributions, we define a communication-mediated entanglement esti-
mator I [ρ̂AB] given by

I [ρ̂AB] :=


N−[ρ̂AB]

N [ρ̂AB]
N [ρ̂AB] > 0

0 N [ρ̂AB] = 0
(5.26)

The estimator’s role can be summarized as follows:

e If I [ρ̂AB] ≈ 1, then essentially all of the entanglement is dominated by the commu-
nication/signaling between two detectors through the field and not from swapping
entanglement with the scalar field vacuum.

e If 0 < I [ρ̂AB] < 1, then some of the entanglement is communication-assisted, and
vacuum entanglement also has nonzero contribution to the bipartite entanglement.

e If I [ρ̂AB] = 0 then either there is no entanglement (N [ρ̂AB] = 0) or all entanglement
comes from harvesting (N−[ρ̂AB] = 0). These two cases can be distinguished by
checking whether |M| > Ljj.

We will show in the next section that the estimator can attain values close to unity when
the detectors are in causal contact.

In what follows, we are going to focus on varying only the time delay between the
switching peaks tAB. In particular, the variation of tAB will allow us to change the causal
relationships between detector A and B. All quantities will be measured in units of the
Gaussian switching width T. For concreteness, we will set the proper distance between

7The non-relativistic version of this would be in terms of lattice sites: the ground state of many-body
systems is typically entangled in analogous manner.
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Alice and Bob’s detectors to be some fixed quantity ΩT = 7 and L = 7T (unless oth-
erwise stated). In making these choices, one important thing is that L be sufficiently
large so that the strong support (5.18) still gives enough space between detectors for
spacelike separation to be well-defined. Moreover, the calculations done in this work
can be straightforwardly extended to the case when the detectors have finite size: the in-
clusion of spatial smearing is outlined in Appendix B.2. We focus on pointlike detectors
so that the causal relationships between the two detectors are clearer as it is completely
controlled by the switching function.

5.4 Main results

In this sectionwe show the result for (3+ 1) and (2+ 1) dimensionswhen the scalar field
is massless and the switching is Gaussian8. We will also consider higher dimensions,
massive fields and compactly supported switching functions in Section 5.5.

5.4.1 (3+1) dimensions

In Figure 5.2, we plot the communication-assisted entanglement estimator I [ρ̂AB], the
negativity and the matrix elements M,Ljj for (3+1) dimensions. The vertical straight
lines are the light cones of detector A emanating from the event (tA, 0), and we vary the
time delay tAB. In Figure 5.2(b) we show the total negativity N of the two detectors af-
ter interaction as well as the decomposition into harvested and communication-assisted
negativity N±. In Figure 5.2(c) we show in more detail the behaviour of the matrix ele-
ments of ρ̂AB. For all figures, the red-colored shaded area marks Alice’s light cone with
respect to the strong support SA (c.f. Figure 5.1). The blue-shaded area marks the region
where the behaviour of |M±| starts to change dramatically, which occurs within Alice’s
light cone. The central white area about the origin is where Alice and Bob are (effec-
tively) spacelike-separated, as one can verify by checking the commutator-dependent
quantities N− and |M−| in Figure 5.2(b,c).

From Figure 5.2(a), we see that in (3+1) dimensions, the communication-assisted
entanglement estimator I [ρ̂AB] ≈ 1 near the light cone at tAB = ±7T (since L = 7T).

8In principle, for Gaussian switching the detectors are really never truly spacelike-separated, but one
can show that the qualitative results carry to the case of strictly compactly supported switching. The IR
divergence in (1+1) dimensions makes the physical interpretation somewhat difficult, and so for brevity
we refer the reader to [34] for details. In otherwords, the negligible Gaussian tails outside of the detectors’
switching strong support have no relevance to entanglement harvesting in general.

88



-10 -5 0 5 10

0.2

0.4

0.6

0.8

1.0

-10 -5 5 10

2.×10-14

4.×10-14

6.×10-14

8.×10-14

1.×10-13

1.2×10-13

-10 -5 5 10

5.×10-14

1.×10-13

1.5×10-13

Figure 5.2: Bipartite entanglement as a function of time delay tAB between Alice and
Bob’s switching in (3+1) dimensions. The parameters are ΩT = 7 and L = 7T.
The vertical straight lines are the light cones of detector A emanating from the event
(tA, 0). The red shaded region marks the strong support of Alice’s switching func-
tion, and the blue-shaded area marks the region where the behaviour of |M±| starts
to change dramatically. (a) The communication-assisted entanglement estimator. Note
that I [ρ̂AB] ≈ 1 near the light cone, hence most of the bipartite entanglement is purely
communication-based. (b) N ,N± as a function of tAB. Crucially, the anti-commutator
part |M+| vanishes near the light cone while the commutator part |M−| dominates.
(c) |M|, |M±|,Ljj as a function of tAB. The region where |M| > Ljj (solid blue curve is
above dashed horizontal red curve) is where the negativity N is nonzero.
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This means that essentially all of the bipartite entanglement is communication-based
and not harvested from the scalar field vacuum. Figure 5.2(b) and 5.2(c) show how the
anti-commutator (state-dependent) part takes a sudden, drastic dip (near the edges of
the blue shaded region) as full light-contact is approached, eventually vanishing at the
light cone; in contrast, the commutator part starts to dominate at precisely the regions
where the anti-commutator contribution starts diminishing.

From the field-theoretic perspective, this result may perhaps be somewhat surprising
because it says that communication does not simply enhance bipartite entanglement be-
tween Alice and Bob by “adding” more correlations on top of vacuum entanglement
harvesting. Even though a Bogoliubov decomposition analysis shows that timelike-
and null- separated regions do contain correlations [141], our results suggest that when
the detectors can communicate through the field, the two detectors will forgo entangle-
ment harvesting from the vacuum and preferentially gain entanglement through their
exchange of information through the field. Indeed, we emphasize that since the commu-
tator contribution is state-independent, any entanglement obtained by the detectors from
the commutator cannot be attributed to pre-existing correlations of the vacuum state of
the field.

The fact that the peaks in I [ρ̂AB] are localized around the light cone is a consequence
of the strong Huygen’s principle in (3+1) dimensions: the (expectation value of) com-
mutator [ϕ(x), ϕ(x′)] for massless field only has support along the null direction. The
explicit expression reads (see, e.g., Appendix B.3 for a derivation)

C−
3 (x, x′) = i

4π|∆x| [δ(∆t + |∆x|)− δ(∆t − |∆x|)] , (5.27)

where δ(z) is a one-dimensional Dirac delta distribution and we used the notation C−
n

to denote the commutator in arbitrary (n + 1)-dimensional Minkowski spacetime.
Next, we note that when the detectors are timelike-separated, it is in principle possi-

ble to have timelike entanglement harvesting as the field commutator completely vanishes
outside the light cone, while the anti-commutator still has support in the light cone inte-
rior (see e.g. [126] for related result). However, it is generically much more difficult to
extract entanglement from the vacuum for timelike separation than for spacelike separa-
tion (for fixed proper separation L). This follows naturally from the fact that the Wight-
man function for massless fields in (3+1) dimensions has a power law decay σ(xA, xB)−1,
where σ(x, y) is the Synge world function, which in flat space reduces to half the space-
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time interval:

σ(x, y) = 1
2

(
|x0 − y0|2 − |x − y|2

)
. (5.28)

Since the commutator is supported only at the light cone, it follows that this power law
falloff is contained in the anti-commutator. Therefore, the anti-commutator contribution
|M+| diminishes the deeper Bob is in Alice’s light cone interior, eventually falling below
the noise term Ljj, rendering entanglement harvesting impossible.

Let us comment on one minor observation concerning the slight asymmetry of the
estimator I [ρ̂AB] in Figure 5.2. The peaks of I [ρ̂AB] is not exactly at ∆tAB = 7T (the light
cone emanating from the peak of Alice’s Gaussian switching) but comes very close to it.
This has to do with the inherent asymmetry of the anti-commutator contribution |M+|
(see Figure 5.2(c)) that affects the denominator of the ratio ofN−/N in Eq. (5.26). One
can check numerically that for the parameters we chose in Figure 5.2, the value of |M+|
vanishes at approximately ∆tAB ≈ ±7.07T. In contrast, the commutator contribution
|M−| is indeed symmetric about the light cone. Note that the symmetry of |M−| only
occurs in (3+1) dimensions and has no direct connection with null separation: we will
see in Section 5.5 that in higher dimensions the asymmetry is manifest also for |M−|
regardless of the strong Huygens’ principle. In any case the finite nature of the switch-
ing function blurs the picture, and what really matters is that in the neighbourhood of
∆tAB = 7T (blue region of Figure 5.2), the bipartite entanglement is dominated by field-
mediated communication.

In summary, our result in (3+1) dimensions highlights the importance of the de-
tectors being spacelike-separated in order for vacuum entanglement harvesting to be
possible. When they are null-separated, the entanglement comes mainly from bipartite
signaling and not from entanglement harvesting. When they are timelike-separated, en-
tanglement harvesting is in principle possible but much more difficult than spacelike
harvesting due to the power-law decay of the anti-commutator.

5.4.2 (2+1) dimensions

Let us now see what happens in (2+1) dimensions where the strong Huygens’ principle
is known to not hold, as we show in Figure 5.3. Note that since λ has units of [Length] n−3

2

in natural units, we define the dimensionless coupling constant λ̃ = λT
3−n

2 since T is
fixed in this work.
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Figure 5.3: Bipartite entanglement as a function of time delay tAB between Alice and
Bob’s switching in (2+1) dimensions. The parameters are ΩT = 7 and L = 7T. The
vertical straight lines are the light cones of detector A emanating from the event (tA, 0).
The shaded regionmarks the strong support of Alice’s switching function, and the blue-
shaded area marks the region where the behaviour of |M±| starts to change dramati-
cally. (a) The communication-assisted entanglement estimator. Note that I [ρ̂AB] ≈ 1
near the light cone, hence all of the bipartite entanglement is purely communication-
based. (b) N ,N± as a function of tAB. Crucially, the anti-commutator part |M+| van-
ishes near the light conewhile the commutator part |M−| dominates. (c) |M|, |M±|,Ljj
as a function of tAB. The region where |M| > Ljj (solid blue curve is above dashed hor-
izontal red curve) is where the negativity N is nonzero.

92



We see in Figure 5.3(a) that as Bob enters deeper into the interior of Alice’s light
cone, the communication-assisted entanglement estimator I [ρ̂AB] → 1. The sudden van-
ishing of I [ρ̂AB] for |tAB| ≳ 10T is just because there is no more entanglement past this
point: M± → 0 as |tAB| → ∞ (while Ljj remains constant), which follows from the
falloff properties of the Wightman function for n ≥ 2. Inspection of Figures 5.3(b) and
(c) shows that within Alice’s light cone interior, we have that |M| ≈ |M−|, thus any
entanglement generated in the timelike region is all communication-based: there is vir-
tually no entanglement harvesting for timelike-separated detectors. On the other hand,
unlike the (3+1) dimensional case, the negativity at null-separation is shared equally
by communication and harvesting at the light cone. Furthermore, the violation of the
strong Huygens’ principle manifests itself by having the field commutator slowly in-
creasing its dominance as Bob approaches Alice’s light cone, eventually taking over all
of |M| ≈ |M−|. At the same time the role of the anti-commutator quickly vanishes as
Bob approaches the light cone and vanishes in the interior.

To emphasize the lesson learned in this section, unlike the (3+1) dimensional case, in
(2+1) dimensions there is no such thing as timelike entanglement harvesting at leading order
in perturbation theory deep into the light cone, as all entanglement obtained from the
timelike region are all due to the field commutator.

5.4.3 General comments on entanglement harvesting outside theUDW
model in flat spacetime

The fact that in (3+1) dimensions the null-separated case is completely dominated by
signaling implies that one should be careful when ascribing the entanglement obtained
by the two detectors to harvesting when they are null-connected. This includes, for
instance, the (1+1)-dimensional models involving derivative coupling variants of the
Unruh-DeWitt model [33, 91] where the commutator of the field’s proper time deriva-
tives has support only along the null direction; setups involving massless fields confor-
mally coupled to gravity in conformally flat backgrounds; or setups when one uses com-
pactly supported switching but Alice and Bob’s spatial smearings can be null-connected
(e.g., some of the regimes in [81, 129]). Outside of conformal symmetry, one still needs
to be careful as curvature and the global structure of spacetime can have non-trivial ef-
fects on the ability of null and timelike connected detectors to harvest entanglement. For
example, in a black hole spacetime (such as Schwarzschild) it is possible to find scenar-
ios where null communication through secondary geodesics allow for genuine entan-
glement harvesting [142]. In the Kerr geometry, one cannot even find conformally flat
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slicing (unlike Schwarzschild geometry in Painlevé-Gullstrand coordinates [143, 144]),
thus the role of vacuum entanglement vs communication is likely to be even more com-
plicated.

The fact that timelike entanglement harvesting does not occur at all in (2+1) dimen-
sions also implies that one should in general be very careful in ascribing the entangle-
ment obtained by the two detectors to vacuum entanglement harvestingwhen the strong
Huygens’ principle does not hold. This includes, for instance, setups where the back-
ground geometry is curved and not maximally symmetric, such as cosmological space-
times with minimal coupling; black hole spacetimes, including the lower-dimensional
cases such as (rotating) Bañados-Teitelboim-Zanelli (BTZ) black holes [81, 145]; and
lower dimensional maximally symmetric spacetimes such as (2+1)-dimensional Anti-
de Sitter geometry (AdS3) [99]. Another relevant example involves a particular setup
in (2+1) dimensions involving indefinite causal ordering (ICO). This was also recently
investigated in [132], or superposition of trajectories [146]. In light of our results, even if
one does not doubt the quantum advantages due to ICO,when there is causal connection
between the detectors onemaywonder howmuch of this can be reasoned to be enhance-
ment due to signaling (which is possible, see e.g. [147]), versus true enhancement of the
vacuum harvesting protocol.

5.5 Further results

In this section we briefly discuss the the effect of the mass of the scalar field, the number
of spacetime dimensions and the effect of using truly compact swtichings (instead of
Gaussian ones) in light of the results obtained in the previous section.

5.5.1 Strong Huygens’ principle in higher dimensions

As we briefly mentioned in Section 5.2, when the strong Huygens’ principle is satisfied,
the field commutator C−(x, x′) has support only along the null directions. For a Klein-
Gordon field in (n+ 1)-dimensionalMinkowski spacetimes, this occurs onlywhen n ≥ 3
is odd and for massless fields. It turns out that due to the structure of the commutator
in higher dimensions, the role of communication manifests somewhat differently even
if the principle is satisfied. A representative example is shown in Figure 5.4 for n = 5.

Figure 5.4(a) shows that like in the (3+1)-dimensional case, the communication-
assisted entanglement estimator dominates in the neighbourhoodof the light cone. How-
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ever, notice that there are two peaks around the light cone emanating from the centre
of Alice’s strong support, which suggests that while communication dominates in the
neighbourhood of Alice’s light cone (red shaded region), the anti-commutator dominates
around the region of maximum light-contact ∆tAB = L. This is because both |M±| ex-
hibit an extra peak, which leads to an additional peak in N± in Figure 5.4(b) and (c).
Note that since the anti-commutator has three peaks around the light cone ∆tAB = L, and
the commutator only two peaks, for n = 5 the commutator actually is not the dominant
contribution at ∆tAB = L, unlike for n = 3. In fact, one can check that for odd n = 2j + 1
with j ≥ 1, we have j + 1 peaks for the anti-commutator around Alice’s light cone and j
peaks for the commutator; thus the importance of the commutator at the light cone de-
pends on whether j is even or odd. Note that we also see a similar asymmetry of I [ρ̂AB]
around the region of maximum light contact emanating from Alice’s Gaussian peak at
∆tAB = 7T as was the case in (3+1) dimensions.

The increasing number of peaks for both the commutator and anti-commutator con-
tributions can in fact be directly traced back to the behaviour of the imaginary and real
parts of the Wightman function. For a massless scalar field, the Wightman function for
arbitrary n reads9 [82, 86]

W(x, x′) =
(−i)n−1Γ(n−1

2 )

4π
n+1

2 [(∆t − iϵ)2 − |∆x|2] n−1
2

, (5.29)

where the ϵ is a UV regulator and the (distributional) limit ϵ → 0 is taken after in-
tegration: for small ϵ > 0, the real and imaginary parts of (5.29) corresponds to the
“nascent” family whose limit ϵ → 0 is the Wightman function. The real and imaginary
part in that distributional limit yield respectively the (vacuum expectation value of) the
anti-commutator and the commutator.

The simple case of the commutator can be actually computed easily from a mode
expansion (see Appendix B.3). For arbitrary odd n ≥ 3 the (state independent) expec-
tation of the commutator takes the form

C−
n (x, x′) = i

n−3
2

∑
j=0

aj

|∆x|n−2−j

[
δ(j)(∆t + |∆x|) + (−1)j+1δ(j)(∆t − |∆x|)

]
, (5.30)

where aj are real, ∆t = t − t′, ∆x = x−x′ and δ(j)(z) is the j-th distributional derivative
9We can also obtain the same result by taking the small m → 0+ limit of massive scalar case, see

Appendix B.4.
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Figure 5.4: Detector entanglement as a function of time delay tAB between their switch-
ing peaks in (5+1) dimensions. The parameters are ΩT = 7 and L = 7T. The vertical
straight lines are the light cones of detector A emanating from the event (tA, 0). The red-
shaded region denotes Alice’s light cone arising from the strong support SA. Note the
increasing number of peaks in all the plots compared to (3 + 1) dimensions.
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Figure 5.5: Detector entanglement as a function of time delay tAB between their switch-
ing peaks in (4+1) dimensions. The parameters are ΩT = 7 and L = 7T. The vertical
straight lines are the light cones of detector A emanating from the event (tA, 0). The red-
shaded region denotes Alice’s light cone arising from the strong support SA. Note the
increasing number of peaks in all the plots compared to (2 + 1) dimensions.
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of the Dirac delta function. The distributional derivatives of Dirac deltas have support
strictly along the null direction, but they differ from the Dirac delta in that the “nascent”
family defining δ(j)(z) has j + 1 peaks10. Since the commutator is dominated by the
highest derivative of the Dirac delta (the (n − 3)/2-th derivative) for sufficiently large
detector separations (which is the case in this work), the number of peaks in |M−| is
1 + (n − 3)/2. Thus for n = 5, the highest derivative is j = 1, which gives two peaks for
the commutator contribution, in agreement with Figure 5.4(c). It is straightforward to
check that for n = 7, we will have three peaks in I [ρ̂AB] which follows from the number
of peaks in |M−|, and this pattern continues to higher dimensions.

Similarly, there is also an increasing number of peaks in |M±| for even n. As shown
in Figure 5.5, we plot the case for n = 4 and we see that we also have more peaks in
|M±| (hence N± and I [ρ̂AB]) as compared to the n = 2 case in Figure 5.3. However, the
pattern differs slightly from the odd n case. More generally, for even n = 2` with ` ≥ 1
there will be ` peaks for both the anti-commutator and the commutator around Alice’s
light cone. Since the number of peaks around both components are equal, it is always the
case for even n that both components contribute equally to the bipartite entanglement
around the light cone. Despite this, it is worth emphasizing that for detectors in timelike
contact, the entanglement is still dominated by signaling in all even spatial dimensions
rather than true harvesting.

5.5.2 Massive scalar field

We plot the massive field results in Figure 5.6. There are several important distinctive
features as compared to the massless case. The first observation is that for a massive
field the commutator has support inside the light cone regardless of the dimension of
spacetime, even within the deep interior of Alice’s light cone (∆tAB � 7T). The second
observation is that the oscillatory nature of both the commutator and anti-commutator
contributions to the correlation term |M±| become more pronounced as the mass of
the field increases. The third observation is that the oscillations are not “in phase”: the
dominant contributions to entanglement alternate between the anti-commutator contri-
bution and the commutator contribution, so that on average they both contribute equally
for timelike-separated detectors that are switched on long enough.

The oscillatory nature of both contributions can also be directly traced back to the
behaviour of the imaginary and real parts of the Wightman function, which is given for

10One can readily see this by using Gaussian functions as a family of nascent delta functions, and their
derivatives define a family of derivatives of delta functions.
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Figure 5.6: Detector entanglement as a function of time delay tAB between their switch-
ing peaks in (3+1) dimensions for massive scalar fields. (a) mT = 0.2 (b) mT = 0.5
(c) mT = 1. The parameters are ΩT = 7 and L = 7T. The vertical straight lines are
the light cones of detector A emanating from the event (tA, 0). The red-shaded region
denotes Alice’s light cone arising from the strong support SA. Observe that for small
mass the behaviour is close to massless fields and there increasing oscillatory behaviour
as the mass of the field increases.
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arbitrary m and n by (see Appendix B.4 for a derivation)

W(x, x′) = m
n−1

2

(2π)
n+1

2

1

[−(∆t − iϵ)2 + |∆x|2] n−1
4

K n−1
2
(m
√
−(∆t − iϵ)2 + |∆x|2) , (5.31)

where Kα(z) is the modified Bessel function of the second kind [111]. We can regard the
UV regulator ϵ as providing a nascent family of complex-valued functions whose limit
gives the Wightman function above. By plotting the nascent family for finite nonzero ϵ,
one can see the same oscillatory behaviour of |M±|, including the number of peaks that
appear in them.

Notice that while both massless fields in even spatial dimensions and massive fields
have commutators with support for timelike separation, their relative contributions to
the entanglement generated between two timelike-separated detectors are quite differ-
ent. Namely, on one hand for the massless case entanglement deep into the region of
timelike separation is dominated by the commutator contribution and therefore it cannot
be attributed to genuine harvesting. On the other hand, for the massive case both com-
munication and harvesting can be thought of as contributing equally to the detectors’
entanglement.

5.5.3 Compactly supported switching function

Finally, we complete our analysis by showing that the main claims of this work are not
affected by the use of non-compact switching, as long as the strong supports of both
detectors are in spacelike separation. We do this by performing the same calculations
for compactly supported switching functions and restricting our attention to the simple
case of amassless scalar field in (3+1) dimensions. Unlike theGaussian case, there is not
much in the way of simplification that we can effect for the matrix elements of ρ̂AB. Thus
we calculate the matrix elements for the case of compact switchings numerically from
(5.9a) and (5.9b) using the standard formula for the Wightman function for massless
field in (3+1) dimensions using Eq. (5.29):

W(x, x′) = − 1
4π2

1
(∆t − iϵ)2 − |∆x|2 . (5.32)
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Figure 5.7: Comparison between compact and non-compact switching on detector en-
tanglement in (3+1) dimensions formassless scalar fields. The parameters are ΩT = 4
and L = 7T. (a) Comparison of the communication-assisted entanglement estimator for
full and truncatedGaussian switchings. (b) Comparison of the non-localmatrix element
for the full Gaussian (denoted |M±

full|) and the truncated Gaussian switchings (denoted
|M±

trunc|). The truncated Gaussian has compact support Rj = [−3T + tj, 3T + tj]. The
vertical straight lines are the light cones of detector A emanating from the event (tA, 0).
The white region between the grey zones near the origin is the values of tAB where the
two compactly supported detectors can be truly spacelike-separated. The red regions
are Alice’s light cone with respect to the full Gaussian switching’s strong support.
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The compact switching we consider is the truncated Gaussian,

χtrunc
j (t) = e−

(t−tj)
2

T2 ΦRj , (5.33)

where ΦRj is the indicator function on the compact interval Rj = [−3T + tj, 3T + tj],
given by

ΦRj :=

{
1 t ∈ Rj

0 t 6= Rj
. (5.34)

This choice of truncated Gaussian allows us to compare the result with the full Gaus-
sian switching more easily. As the detector separation is set at L = 7T, in this case the
two detectors can be made strictly spacetike separated without any tails putting them in
marginal light contact. The comparison is shown in Figure 5.7. The grey shaded region
marks the light cone of Alice’s compact support if the switching is the truncated Gaus-
sian, which spans interval of 6T. The red shaded region marks the light cone of Alice’s
strong support if the switching is Gaussian.

Our example here gives essentially an identical communication-assisted entangle-
ment estimator I [ρ̂AB] in Figure 5.7(a). We also see fromFigure 5.7(b) up to small oscilla-
tions near the boundary of compact support, the use of compactly supported switching
leads to essentially the same result as non-compact switching: namely, the communi-
cation component (commutator contribution) dominates near the light cone while the
vacuum harvesting component (anti-commutator contribution) vanishes. This is not
surprising because the essential reason for the dominance of communication over har-
vesting at null separation is not influenced by the shape of the switching function but
rather the distributional behaviour of the real and imaginary parts of the Wightman
function11.

11Unfortunately, at the time of writing our Mathematica code was not good enough to demonstrate this
for nonzero spacelike entanglement harvesting, so we picked ΩT = 4 where at least theM± terms can be
compared. We thank Patricia Ribes Metidieri and Sergi Nadal for showing via different numerical code
that they agree with our main claims for the spacelike harvesting regime with compact switching [148].
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5.6 Conclusions

In this chapterwe analyzedwhether entanglement harvesting can be achievedwhen par-
ticle detectors are causally connected and are able to exchange information and therefore
get entangled without harvesting correlations from the field. In particular, we studied
the role of the field-mediated communication in the so-called entanglement harvesting
protocol for the Minkowski vacuum in arbitrary spacetime dimensions. By varying the
time delay between the switching functions of two detectors and hence their causal rela-
tionships, we investigated howmuch of the entanglement acquired by the two detectors
after interaction with the fields is due to field-mediated communication between them
and how much is due to vacuum entanglement harvesting.

By comparing the contribution of the commutator and the anti-commutator to the
entanglement acquired by two detectors interacting with the field, we showed that for
massless fields in any dimensions, the entanglement they acquire does not come from
harvestingwhen the twodetectors are causally connected via the field. Instead, it is dom-
inated by the state-independent field commutator between the detectors, hence being
due to communication and not harvesting as has been sometimes claimed. For complete-
ness, we have also analyzed the case of massive fields, where the behavior is somewhat
different: for massive enough fields the contributions of harvesting and communication
to the entanglement acquired by the detectors in causal connection tends to be equally
contributed by both communication and harvesting.

The key takeaway in viewof our results is that for a genuine “entanglement harvesting
protocol”, the entanglement ‘swapped’ from the existing field correlations should be the
major contributor to the bipartite entanglement between the detectors. In this context,
we have seen that in the cases when the field commutator is the leading contribution
to the entanglement between detectors, the entanglement does not originate from the
field state — that is, it is not extracted from the field. This is so because the commutator
contribution is the same regardless of the state of the field and hence it will entangle the
detectors in the same way whether the field has pre-existing correlations or not. That is
the case in most massless field scenarios when the two detectors are in causal contact,
where their entanglement comes from their ability to signal each other via the field. Our
results emphasize the importance of remaining spacelike-separated to properly claim
that the detectors harvest entanglement from the field.

We close this chapter by making some comments about further directions. First, one
of the great values of using a relativistic field is that the causal relations between the
detectors are very clear, in contrast to non-relativisticmany-body systems. However, this
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is not quite accurate because of the so-called Lieb-Robinson bound [149–151]: even in
non-relativistic settings, there are speed limits of information propagation that recover
relativistic causality in the continuum limit. It would be interesting to see if there is
a way to formalize a spacelike entanglement harvesting protocol and how it compares
with signaling-mediated entanglement in the language of the Lieb-Robinson bound to
give a notion of approximate spacelike-ness for the entanglement harvesting protocol.

Second, our results so far rely on perturbative methods — it is not so clear what the
non-perturbative results would look like. While non-perturbative analyses of entangle-
ment harvesting protocols have been performed [90] in the context of proving no-go
theorem for non-vanishing entanglement harvesting, not much has been investigated
about the structure that enables harvesting when the detectors are in causal contact. In
fact, a more recent result involving non-perturbative methods via harmonic oscillators
coupled to the field [152] will be very useful to understand this in fuller generality.
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Part III

Open quantum systems
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Chapter 6

Effective master equations for two
accelerating qubits

「心を燃やせ」
Set your heart ablaze!

煉獄杏寿郎、「鬼滅の刃」
Kyoujurou Rengoku, Kimetsu no Yaiba

In the RQI context, the entanglement dynamics between two UDW detectors is typi-
cally studied in twoways: (a) using the entanglement harvesting protocol (seeChapter 4
and 5); or (b) using the so-called open master equation framework (see, e.g., [153–167]).
Although the objectives may vary, at the technical level the main difference between
these two approaches is the interaction timescale. On the one hand, the entanglement
harvesting protocol is by construction restricted to relatively short timescales, since one
wants to extract entanglement from the field and not through signaling between the two
detectors [34] (c.f. Chapter 5). On the other hand, the open master equation framework
often aims to obtain late-time dynamics, which is useful when one wishes to understand
long-time processes such as thermalization1 (see, e.g., [87, 118]). Because of the late-
time dynamics, the setup often involves detectors that are in causal contact, hence the
causal propagator will play an important role in detector dynamics.

1For example, master equation methods allow us to directly determine if (and when) a single detector
approaches a Gibbs state (see, e.g., [168, 169]), instead of stopping at the detailed balance condition or
Planckian transition rates: they are only necessary but not sufficient conditions for thermalization.
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In this chapter (lifted from our work in [35]) we revisit the open master equation
framework applied to two UDW detectors undergoing uniform parallel accelerations.
Our work is motivated by the fact that making late-time predictions in perturbation
theory reliably is notoriously difficult [170–173]. The issue is that the strength of the
detector-field coupling imposes a natural timescale for which the perturbation series at
any given order is valid. In essence, perturbative expansions of quantities like e−iλĤIτ ≈
1 − iλĤIτ +O(λ2) generically become suspect at late times2 when λĤIτ becomes too
large. We need to have control over how long are “long times” when studying weakly-
coupled systems, and the open master equation approach provides one way to do this
via “late-time resummation” of the perturbative series. However, since the open mas-
ter equations are often derived heuristically and can be used like a black box (see, e.g.,
[153–167]), they are often used without careful or explicit analysis of the validity of the
approximations that go into it.

More specifically, the resulting evolution equation for reduced density matrix ρ̂SYS(τ)
of the detector (“system”)—knownas theGorini-Kossakowski-Sudarshan-Lindblad (GKSL)
master equation [175–179] — is derived from demanding that the quantum dynamical
semigroup property [92, 93] holds for a given microscopic interaction Hamiltonian sub-
ject to some physically reasonable assumptions. Obtaining the master equation for the
reduced density matrix ρ̂SYS(τ) of the detector (“system”) at time τ typically involves
three distinct approximations:

(1) First, one perturbs the underlying Liouville-vonNeumann equation for the full den-
sity matrix using the Born approximation. This is justified when the environment is
both large compared to the system and is weakly coupled to it. However, the result-
ing master equation for ρ̂SYS(τ) is intractable because it depends on its entire history
of evolution (i.e. the evolution has memory).

(2) This is where the second approximation — the Markovian approximation — is em-
ployed, by working in a regime of parameter space where the evolution is said to be
memoryless —- i.e., the time evolution equation for the reduced state ρ̂SYS(τ) is time-
local. The resulting equation is infamously of the “Redfield-type”: the differential
equation for ρ̂SYS(τ) induces a dynamical evolution map Φτ : ρ̂SYS(0) 7→ ρ̂SYS(τ) that
is believed to be not completely positive3 (CP) [92, 93].

(3) The third approximation, known as the secular approximation (also known as post-
2This is also true for adiabatic smooth switching functions (“switching on carefully” [117, 118, 174]).
3That is, one can end up with predictions of negative probabilities with the computed reduced density

matrix. This is sometimes known as “slippage of initial conditions” [180–183].
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trace rotating wave approximation 4 (RWA) [185], hereafter just RWA), is then used
in order to make Φτ a completely positive and trace-preserving (CPTP) map, i.e.,
a quantum channel. The inspiration for this approximation is from quantum optics
in which rapidly oscillating terms in the master equation can be neglected when the
system is near resonance with an oscillating environment (like a laser tuned to a
specific frequency), and formally described by Davies in [186, 187].

Notably, once the three approximations are taken, the resulting GKSL master equation
can be used “beyond” its domain of applicability regardless of how they were derived.

Here we will argue that the lack of CP-property mentioned above in Step (2) arises
because the Markovian limit is not carefully taken. Inspired by the work of [188] in a
cosmological context, the correct Markovian limit amounts to approximating both the
system state ρ̂SYS(τ) in the interaction picture and the system observables as memory-
less. This would then produce an evolution map that is already CP according to the
GKSL theorem [175, 178] even without the RWA in Step (3). Consequently, the standard
approach in employing the RWA-based GKSLmaster equation is at best valid on amuch
smaller parameter space. We provide explicit bounds (“validity relations”) for which
the Born-Markov approximation alone is valid and show that three well-known special
cases studied in the literature, namely (i) the “stacked trajectory” limit (when detector
trajectories are taken to be equal5 with proper separation L = 0 [153, 156, 157, 162, 163]),
(ii) the large gap-to-acceleration ratio Ω/a ≳ 1 [157, 159–161, 164, 166, 167], and (iii)
inertial qubits interacting with the vacuum state [155, 164, 165], violate the validity of
the Markovian approximation.

The key takeaway is that in order to make reliable late-time predictions, we need to
ruthlessly stick to the validity of the approximations that go into themicroscopic deriva-
tion of the master equations. For single qubits, this amounts to the high-temperature
limit Ω/a � 1, but for multiple detectors there are constraints on the detectors’ proper
separation imposed essentially by the causal propagator. Wewill see that theMarkovian
validity disfavours small proper separation L between the detectors because the causal
propagator appears in themaster equation as a 1/L-dependence on the “effectiveHamil-
tonian”, which is one simple reason why case (i) violates theMarkovian approximation.

This chapter is organized as follows. In Section 6.1, we discuss the UDW setup for two
uniformly accelerated detectors. From there we develop the Nakajima-Zwanzig mas-

4There is alsowhat is so-called the pre-traceRWA,which have been shown to lead to relativistic causality
violation [184] or even the lack of a Markovian limit [185].

5Sometimes compared to the two-atom Dicke model [189].
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ter equation for the joint detector state in Section 6.2, and then further take its Marko-
vian limit in Section 6.3 obtaining the late-time asymptote for the state and compute the
timescales for the approach to this fixed point. In Section 6.4 we calculate the validity
relations that constrain the parameters in order for the Born-Markov approximations to
be valid. Finally, in Section 6.5 we compare our results without the RWA with those that
are derived using the RWA.

6.1 Two accelerating UDW detectors

Consider twoobserversAlice andBob, each carrying a pointlike two-levelUnruh-DeWitt
(UDW) detector moving along parallel accelerated trajectories in flat spacetime with
proper acceleration a and proper separation L. The worldlines are given by

yA(τ) = (t(τ), x(τ), 0, 0) , yB(τ) = (t(τ), x(τ), L, 0) , (6.1)

where

t(τ) =
1
a

sinh(aτ) , x(τ) =
1
a

cosh(aτ) . (6.2)

As they are parallel in the transverse direction, the two observers’ worldlines can be
parametrized by the same proper time and we set the initial proper times along each
trajectory τ = 0 to align with t = 0.

The setup very much parallels the entanglement harvesting protocol in Chapter 4
except that we use the regular UDW coupling instead of the derivative coupling, with
the redshift factor dτ/dt nowdue to the accelerated trajectory. In the interaction picture,
the two detectors interact with the field via the interaction Hamiltonian6

Ĥ I
int(t) = λ

dτ

dt ∑
j=A,B

µ̂I
j
(
τ(t)

)
⊗ ϕ̂

[
yj
(
τ(t)

)]
≡ λV̂ I

int(t) , (6.3)

where we define V̂ I
int for convenience in order to make the power-counting of the cou-

pling strength λ more explicit. The monopole operator of each detector appearing in
Ĥ I

int is given by
µ̂I

j(τ) := σ̂x
j (τ) ≡ σ̂+

j eiΩτ + σ̂−
j e−iΩτ . (6.4)

6In this chapter we will have to switch between interaction and Schrödinger pictures at several junc-
tures, thus we use the superscript I to denote the interaction picture observables or states.
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One other difference is that in order to connect with the standard literature, note that the
interaction Hamiltonian (6.3) uses sharp switching with support at the interval [0, t] (c.f.
Chapter 3).

With this setup, the interaction picture density matrix ρ̂I(t) of the detector-field sys-
tem evolves according to the Liouville-von Neumann equation

dρ̂I(t)
dt

= −iλ
[
V̂ I
int(t), ρ̂I(t)

]
. (6.5)

Our goal is to determine the evolution of the joint qubit state i.e. the reduced density
matrix obtained by tracing over the field’s degrees of freedom where

ρ̂I
AB(t) := trϕ[ρ̂

I(t)] . (6.6)

As is standard in the literature, we take the initial state of the detector-field system at
t = 0 to be uncorrelated state given by

ρ̂I(0) = ρ̂I
AB(0)⊗ |0〉〈0| , (6.7)

where |0〉 is the Minkowski vacuum and the initial joint detector state ρ̂I
AB(0) to be arbi-

trary7. For later use, the joint qubit state in the Schrödinger picture, denoted by ρ̂AB(t),
is related to the interaction picture version by

ρ̂I
AB(τ) = eiĥτ ρ̂AB(τ)e−iĥτ , (6.8)

where ĥ = ĥA + ĥB are the sums of the detectors’ free Hamiltonians.

6.2 Late times and master equations

In this section we begin with the Liouville-von Neumann equation (6.5) and connect its
standard perturbative expansion to master equations that are better suited for studying
late-time evolution of the density operator. Using the Nakajima-Zwanzig master equation

7An often unstated fact is that the pointlike UDWdetectormodel is incompatiblewith an arbitrary initial
state of the detector, in that it will lead to ultraviolet (UV) divergences. One has to impose (a) UV cutoff
or (b) spatial smearing to regulate the UV divergence. In the context of open quantum systems, a hard
UV cutoff is usually imposed instead of giving a finite size to the detector as the resulting calculations are
more mathematically tractable (see, e.g., [117] for comparison).
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(equivalent to the Born approximation at the order O(λ2) considered in this work), we
then develop explicit integro-differential equations that can be used later to study the
Markovian limit.

6.2.1 From perturbation theory to master equations

We begin by noting an equivalent formulation of the Liouville-von Neumann equation
(6.5),

ρ̂I(t) = ρ̂I(0)− iλ
∫ t

0
dt′ [V̂ I

int(t
′), ρ̂I(0)]− λ2

∫ t

0
dt′

∫ t′

0
dt′′

[
V̂ I
int(t

′), [V̂ I
int(t

′′), ρ̂I(t′′)]
]

,

(6.9)

which lends itself useful to perturbative calculations. This equation is derived by insert-
ing the integral version of (6.5),

ρ̂I(t) = ρ̂I(0)− iλ
∫ t

0
dt′ [V̂ I

int(t
′), ρ̂I(t′)] (6.10)

into itself iteratively. Invoking the standard perturbative (Dyson) series expansion on
(6.9) yields to second-order in the qubit-field coupling

ρ̂I(t) = ρ̂I(0)− iλ
∫ t

0
dt′ [V̂ I

int(t
′), ρ̂I(0)]

− λ2
∫ t

0
dt′

∫ t′

0
dt′′

[
V̂ I
int(t

′), [V̂ I
int(t

′′), ρ̂I(0)]
]
+O(λ3) . (6.11)

After a partial trace over the field, the second term vanishes due to the vanishing of the
one-point function 〈0|ϕ(t, x)|0〉 = 0, and the joint state of the detectors up to O(λ2)
reads

ρ̂I
AB(t) ≈ ρ̂AB(0)− λ2

∫ t

0
dt′
∫ t′

0
dt′′ trϕ

[
V̂ I
int(t

′), [V̂ I
int(t

′′), ρ̂I(0)]
]

. (6.12)

Wemake a parenthetical remark here that in a (3+ 1)-dimensional setting, the coupling
strength λ is dimensionless for the UDW-type coupling.

The standard perturbative approach applies in a regime where 1 � aτ � 1/λ2, and
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begins to breakdown8 when λ2aτ ∼ O(1) as outlined in [171–173]. The utility of the
open system approach is that there exists a Markovian regime truncated at the same
order as (6.11) that allows us to study the same problem in the late-time regime λ2aτ ∼
O(1) by “resummation” of terms to all orders in λ2aτ. The way this works is to note that
perturbative series like (6.11) gives the time evolution of the system from τ0 to τ so long
as λ2a(τ − τ0) � 1 holds. Within this window, one can differentiate the perturbative
expression to yield a differential equation for ρ̂(τ). If this differential equation is time-
local in ρ̂(τ) — that is, not depending on its entire integrated history of evolution from
τ0 to τ — then the same differential equation applies in any other perturbatively small
window from any τj to τ, so long as λ2a(τ − τj) � 1. The master equation then applies
over much larger timescales, since it can be trusted over the union of such perturbatively
small but overlapping time domains allowing for integration out to late times where
λ2aτ ∼ O(1) (but λ4aτ � 1)9. This argument can be made particularly clear in an
analogous context, namely the phenomenological description of particle decay [170, 171,
191, 192].

Indeed, the time-local nature of Markovian master equations is the essential property
that we need to resum the late-time breakdown of Eq. (6.11) to all orders in λ2aτ while
neglecting O(λ4aτ) effects. This resummation argument is, in essence, a renormaliza-
tion group argument familiar from particle physics that closely resembles particle decay
descriptions. Our task is now clear — what remains is to:
(1) Turn Eq. (6.11) into a time-local Markovian equation that is valid up to late times as

specified above using suitable approximations;

(2) Find an explicit, late-time resummed solution to the Markovian regime;

(3) Find the domain of validity of the approximations that go into (1) and (2), and show
that the resulting equation defines a completely-positive evolution.

Note that Step (3) is often neglected or given as a very rough heuristic, which may lead
to unphysical results. We discuss this further in Section 6.4.

To gain access to late times, we apply the Born approximation10 to Eq. (6.9),

ρ̂I(t) ≈ ρ̂I
AB(t)⊗ |0〉〈0| , (6.13)

8In this case, temporal smooth switching functions multiplying the interaction Hamiltonian are some-
times used to turn off the interaction before perturbative breakdown occurs.

9Actually, this statement is physically sensible but mathematically somewhat opaque. In an upcoming
work we will hopefully be able to make this more precise [190].

10Born approximation is a slightly weaker requirement compared to the Dyson series truncation (6.12)
since we can have ρI

AB(t′′) 6≈ ρ̂I
AB(0) for long interactions without significantly changing the bath state.
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which neglects correlations between the joint qubit state and the field11. The resulting
state at O(λ2) reads

ρ̂I
AB(t) ≈ ρ̂AB(0)− λ2

∫ t

0
dt′
∫ t′

0
dt′′ trϕ

[
V̂ I
int(t

′),
[
V̂ I
int(t

′′), ρ̂I
AB(t

′′)⊗ |0〉〈0|
]]

. (6.14)

By taking the derivative with respect to t, we obtain the integro-differential equation

dρ̂I
AB

dt
≈ −λ2

∫ t

0
dt′ trϕ

[
V̂ I
int(t), [V̂

I
int(t

′), ρ̂I
AB(t

′)⊗ |0〉〈0|]
]

. (6.15)

This equation is useful in that unlike (6.11), it only depends on ρ̂I
AB. Note however that

Eq. (6.15) is not time-local because it depends on the entire history (“memory”) of its
evolution.

The equation of motion of the form Eq. (6.15) is precisely theO(λ2)-truncation of the
Nakajima-Zwanzig equation [193, 194] (see [92, 93] for an introduction). The basic idea
behind the Nakajima-Zwanzig equation is that we can define a projection P such that

P [ρ̂I(t)] := ρI
AB(t)⊗ |0〉〈0| . (6.16)

This splits the total state into “relevant” part projected by P (the system) and “irrele-
vant” part projected by its complement 1− P (the environment). Since the Liouville-
von Neumann equation (6.5) is linear, one can use it to derive an exact equation of mo-
tion for P [ρ̂I(t)] alone, which has the form

∂P [ρ̂I(t)]
∂t

=
∫ t

0
dt′ K(t, t′)P [ρ̂I(t′)] , (6.17)

where K(t, t′) is called the memory kernel that measures information backflow from the
detector to the field. The nice feature of the Nakajima-Zwanzig equation is that what
we called the Born approximation in Eq. (6.15) is naturally built-in as the leading-order
expansion of the memory kernel K(t, t′). Consequently, it has the natural interpretation
that indeedwe are neglecting thememory effect due to the back-reaction to the field. The
Nakajima-Zwanzig formalism provides a very natural organizing principle for the per-
turbative expansion in a way that makes clear the information flow between the relevant

11These correlations can be shown to be O(λ2) [188] so it only contributes as O(λ4) effect. For any
significant backreaction onto the the field state, the Born approximation is not valid. Interestingly, if the
detectors’ initial state is pure, we can show that the Born approximation amounts to the weak-coupling
regime with some subtlety that can be made precise using an exactly solvable dephasing model [190].
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part (the system) and irrelevant part (the environment) of the total system. Following
[93], we refer to Eq. (6.15) as the Nakajima-Zwanzig master equation at second order
(NZ-ME2).

6.2.2 Nakajima-Zwanzig equation for two accelerated qubits

After tracing out the field degrees of freedom, NZ-ME2 (6.15) results in

dρ̂I
AB

dt
= λ2 ∑

j,k

∫ t

0
dt′

dτ(t)
dt

dτ(t′)
dt′

(
Wjk

(
τ(t), τ(t′)

) [
µ̂I

k
(
τ(t′)

)
ρ̂I
AB(t

′), µ̂I
j
(
τ(t)

)]
+ H.c.

)
,

(6.18)

where H.c. denotes Hermitian conjugate and the sum runs over the labels j, k ∈ {A,B}.
Here t, t′ are Minkowski time variables, τ is the common proper time for the detectors.
The pullback of the vacuum Wightman two-point function along the trajectories yj, yk
denoted Wjk, is given by

Wjk(τ, τ′) := 〈0|ϕ̂(yj(τ))ϕ̂(yk(τ
′))|0〉. (6.19)

For the parallel accelerated trajectories (6.1), the Wjk’s simplify greatly: writing ∆τ =
τ − τ′, we get the “self-correlations” [195]

WS(∆τ) := WAA(τ, τ′) = WBB(τ, τ′) = − a2

16π2
1

sinh2 [ a
2(∆τ − iϵ)

] , (6.20)

and “cross-correlations”

W×(∆τ) := WAB(τ, τ′) = WBA(τ, τ′) = − a2

16π2
1

sinh2 [ a
2(∆τ − iϵ)

]
− ( aL

2 )2
. (6.21)

By performing a change of variable s = ∆τ, the resultingNZ-ME2 can be re-expressed
in terms of proper time τ such that

dρ̂I
AB

dτ
≈ λ2 ∑

j,k∈{A,B}

∫ τ

0
ds
(

Wjk(s)
[
µI

j(τ − s)ρ̂I
AB(τ − s), µ̂I

k(τ)
]
+ H.c.

)
. (6.22)

Using the uncoupled basis {|eAeB〉 , |eAgB〉 , |gAeB〉 , |gAgB〉}, the integro-differential equa-

115



tion (6.22) for ρ̂I
AB(τ) has two decoupled components: that is, we can split the density

matrix into
ρ̂I
AB(τ) = ρ̂I

AB,X(τ) + ρ̂I
AB,O(τ) (6.23)

where

ρ̂I
AB,X(τ) =


ρI

11(τ) 0 0 ρI
14(τ)

0 ρI
22(τ) ρI

23(τ) 0
0 ρI

32(τ) ρI
33(τ) 0

ρI
41(τ) 0 0 ρI

44(τ)

 , (6.24a)

ρ̂I
AB,O(τ) =


0 ρI

12(τ) ρI
13(τ) 0

ρI
21(τ) 0 0 ρI

24(τ)
ρI

31(τ) 0 0 ρI
34(τ)

0 ρI
42(τ) ρI

43(τ) 0

 . (6.24b)

We call these decoupled pieces the X-block and O-block respectively (due to the posi-
tions of the nonzero matrix elements). Note that ρ̂I

AB,X(τ) is known as an X-state and
some of its properties have been investigated in the literature (see e.g. [196]). The com-
ponents of Eq. (6.24) are not all independent since we can use

ρI
44(τ) = 1 − ρI

11(τ)− ρI
22(τ)− ρI

33(τ) ,
ρI

nm(τ) = ρI∗
mn(τ) for n 6= m ∈ {1, 2, 3, 4} .

(6.25)

Therefore, for the X-block we have a system of seven coupled ordinary differential equa-
tions (ODE), while for O-block we have eight coupled ODEs with eight variables. The
full explicit expressions for theODEs for X-block and O-block are given inAppendix D.1
and Appendix D.2 respectively12.

Before we solve these equations, let us remark on the choice of initial state ρ̂AB(0). In-
terestingly, many existing studies involving two UDW detectors in open system frame-
work restricts their attention to an X-state as the initial state [153, 155, 157–160, 165, 167]
because the time evolution preserves the X-block [197]. Here we see that this restriction
is unnecessary since X-block completely decouples from O-block, so one can evolve the
O-block independently anyway. We will see in the next section that for non-degenerate
detectors (Ω > 0) that the O-block tends towards zero at late-times, so only the X-block
survives in the long time limit.

12Sometimes this is solved by going to coupled basis instead.
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6.3 Two-qubit Markovian dynamics

As alluded earlier, the main obstruction to solving Eq. (6.22) (or equivalently the ODEs
given in Appendices D.1 and D.2) and obtaining late-time results is that it is not time-
local: the integrals on the RHS have memory over their entire history of the evolution
integrating over functions of τ − s. In order gain access to late time dynamics, we must
enter aMarkovian regime where the dynamics is memoryless. As we will shall see, there
are subtleties involved in taking Markovian limit of Eq. (6.22).

6.3.1 A different Markovian approximation

Let us start with a Markovian approximation of Eq. (6.22) that is different from the one
usually taken in the literature, and we will compare this with the standard approach.

The physical essence of the Markovian limit is the observation that the environment
correlators WS,×(s) are sharply peaked about s = 0. That is, there exists a regime
in which the timescale associated with the system evolution is much shorter than the
timescale set by the environment (bath). The bath timescale τβ is set by 1/a as can be
seen from Eqs. (6.20) and (6.21) where the environment correlators have exponential
fall-off:

WS(s) ≈ − a2

4π2 e−as as � 1 , (6.26a)

W×(s) ≈ − a2

4π2 e−as as � max
{

1, 1
2 log

( aL
2

)}
. (6.26b)

This means that when the system evolves at a much slower timescale that the bath, i.e.,
τβ ≡ 1

a � τS, the memory dependence in the RHS of (6.22) becomes negligible13 and
we can perform a Taylor series about s = 0 where

µ̂I
j(τ − s)ρ̂I

AB(τ − s) ≈ µ̂I
j(τ)ρ̂

I
AB(τ)− s

(
µ̂I

j(τ) ˙̂ρI
AB(τ) + ˙̂µI

j(τ)ρ̂
I
AB(τ)

)
+O(s2) , (6.27)

and a similar Taylor series for the opposite ordering of operators ρ̂I
AB(τ − s)µ̂I

j(τ − s) in

13It is sometimes colloquially stated that fast (Markovian) environment dynamicsmeans that WS,×(s) ∼
δ(s) underneath the integral sign in (6.22)— from this point of view it also makes sense that one removes
the history of integration as we do in Eq. (6.28).
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(6.22). Therefore, the leading order of the series expansion is memoryless and reads

dρ̂I
AB

dτ
≈ λ2 ∑

j,k

∫ τ

0
ds
(

Wjk(s)
[
µ̂I

j(τ)ρ̂
I
AB(τ), µ̂I

k(τ)
]
+ H.c.

)
. (6.28)

Observe that only the correlators WS,× depend on s but there is no more dependence on
τ − s; Eq. (6.28) is therefore time-local.

Physically, the series expansion leading to (6.28) essentiallymakes τβ = 1/a the short-
est timescale of the problem: in otherwords, theMarkovian regime iswhere the environ-
ment dynamics is extremely rapid compared to the system dynamics. Since the system
evolution timescale is typically set by the energy gap Ω, we have

τβ =
1
a
� τs ≡ Ω−1 =⇒ Ω/a � 1 . (6.29)

That is, Markovian regime amounts to being in the high-temperature regime. In this
regime, the environment erases the history of integration in Eq. (6.22), including the in-
tegration over the (system) monopole operators µ̂I

j. This is a very important point that
we stress from time to time in this work: since we are in the interaction picture, themem-
oryless Markovian limit requires that the memory is neglected from both the monopole
operators and the states; otherwise the residual memory leads to problems.

Another noteworthy point that is often neglected is that the Taylor approximation step
from (6.22) to (6.28) provides a means of quantifying when the Markovian approxima-
tion applies: indeed, it is now clear that the Markovian limit begins to fail when the sub-
leading derivative terms in (6.27) become too large. Bounding the next-to-leading-order
terms in (6.27) to be small relative to the leading-order terms maps out the parameter
spacewhere theMarkovian approximation applies. We explore suchMarkovian validity
bounds in full detail in Section 6.4.

Time-dependent coefficients and late times

We pause here to make two important remarks regarding the time-dependence of the
coefficients appearing in the evolution equation (6.28).

First, while Eq. (6.28) is already memoryless (or time-local), it turns out the upper
limit of τ on the integrals prevents straightforward integration out to very late times
for the problem at hand. To see why, note that Eq. (6.28) can be recast into a system of
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ordinary differential equations (ODEs) for a vector u(τ) whose components are built out
of the entries of the density matrix ρ̂I

AB(τ): schematically, it takes the general form

du(τ)
dτ

= A(τ)u(τ) + v(τ) , (6.30)

where v(τ) is some possibly nonzero vector and A(τ) is a square matrix, both of whose
entries contain the integral transforms of environment correlators WS,×(s) appearing in
Eq. (6.28) (with upper limits τ on the integrals). Even for v(τ) = 0, the matrix ODE
above cannot be solved in closed form unless A(τ) obeys very specific properties14.
Formal solutions to (6.30) generally involve time-ordered exponential which in turn re-
quires perturbative treatments that the late-time resummation was meant to avoid.

Second, although Eq. (6.30) can be organized into a Lindblad-like form (see Eq. 6.46),
the resulting coefficients are time-dependent and therefore this master equation does not
obey the assumptions of the Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) theo-
rems stated in [178, 179]. In particular, if one tries to put Eq. (6.30) into the Lindblad
form, the corresponding Kossakowski matrix of Lindblad coefficients can be negative-
definite especially at early times — the positive-definite property of the Kossakowski
matrix is usually taken to be the signature of a violation of complete-positivity (CP)
property for the evolution. However, Lindblad’s theorem only applies for master equa-
tions in Lindblad form with time-independent Kossakowski matrix (see [198] for more
details15). Consequently, one cannot make claims about the CP property of the evolu-
tion (or lack thereof) by invoking Lindblad’s theorem at this stage. In fact, since we
cannot perform late-time resummation yet with time-dependent A(τ), it is pointless to
check the CP properties though the GKSL theorems at this juncture anyway.

The upshot is that the practical calculation of late-time resummation requires more
than just removing the memory effect: we need to find a regime where the time-local
equation (6.28) can be approximated as a matrix ODE with constant coefficients, which
is exactly solvable in closed form. That is, we need towork in the regimewhere Eq. (6.30)
reduces to

du(τ)
dτ

= Au(τ) + v , (6.31)

where A is now a constant matrix and v is also a constant vector. Indeed, this is the case
14Such as when [A(s), A(s′)] = 0 for all s, s′ ∈ (0, τ).
15In essence this is because the Lindblad generator as defined in [175, 178] is a single time-independent

(possibly unbounded) operator.
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in later sections when we consider late-time dynamics of the detectors.
To this end, given the fall-off of the environment correlators given in (6.26a) and

(6.26b), we assume that
aτ � max

{
1, 1

2 log
( aL

2

)}
(6.32)

so that we can approximate the upper limit of integration over s τ → ∞ in Eq. (6.28),
giving

dρ̂I
AB

dτ
≈ λ2 ∑

j,k

∫ ∞

0
ds
(

Wjk(s)
[
µ̂I

j(τ)ρ̂
I
AB(τ), µ̂I

k(τ)
]
+ H.c.

)
. (6.33)

This is the Markovian equation (not yet in Lindblad master equation form) whose late-
time resummed solution is amenable to explicit computation.

On other commonly-used versions of the Markovian approximation

In the majority of the literature, most papers of which are based on the approach de-
scribed in [92, 93], the “standard” Markovian approximation is usually taken as the ap-
proximation

ρ̂I
AB(τ − s) ≈ ρ̂I

AB(τ)− s ˙̂ρI
AB(τ) +O(s2) , (6.34)

as opposed to Eq. (6.27). That is, instead of applying the series expansion about τ on
the product µ̂I

j(τ − s)ρ̂I
AB(τ − s), the usual approach only applies the series expansion to

the density operator ρ̂I
AB(τ − s) while keeping the monopole operator µ̂I

j(τ − s) intact.
The folklore is that Markovian regime is when the state has no memory about its past
history.

We now argue that the self-consistent way of taking the standard approximation
(6.34) for the setup at hand is exactly the one considered in this work (which in turn is
inspired by [188]). The usual logic for keeping only the leading-order term of the state
ρ̂I
AB(τ − s) ≈ ρ̂I

AB(τ)− s ˙̂ρI
AB(τ) +O(s2) in any integro-differential master equations, such

as those that arise from Nakajima-Zwanzig formalism, is that we are guaranteed that
˙̂ρI
AB(τ) ∼ O(λ2) from the master equation we start from. Since these derivative terms

in the approximation are suppressed by two extra powers of the coupling strength, this
seems to imply that all the subleading terms in the Taylor series can be safely ignored.
What this argument fails to account for is that the derivative terms can become danger-
ously large if energy scales associated with the system become too large (compared to
the energy scales of the environment).
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In order to demonstrate where the problem lies, it is most easily illustrated for the
single detector case where Ω/a ≳ 1 alone causes the Markovian approximation to break
down (for two detectors there are more conditions, as we will see in Section 6.4). By
ignoring Bob’s detector entirely and only focusing on Alice’s detector, one gets the ana-
log of the Nakajima-Zwanzig equation (6.22) for Alice’s reduced density matrix ρ̂I

A :=
trB [ρ̂I

AB] where (see Section 3.2 of [171] and also [172, 173, 199] for more details)

dρ̂I
A

dτ
≈ λ2

∫ τ

0
ds
(

WS(s)
[
µ̂I
A(τ − s)ρ̂I

A(τ − s), µ̂I
A(τ)

]
+ H.c.

)
(6.35)

The failure of the Markovian approximation in the case of Ω/a ≳ 1 is most easily appre-
ciated by studying the evolution of the off-diagonal components ρI

A,12 of Alice’s reduced
density matrix16

dρI
A,12

dτ
≈ −2λ2

∫ τ

0
ds Re [WS(s)] e+iΩsρI

A,12(τ − s)

+ 2λ2e+2iΩτ
∫ τ

0
ds Re [WS(s)] e−iΩsρI∗

A,12(τ − s) . (6.36)

If one uses (6.34), as is usually done in the literature, then the resultingMarkovian equa-
tion of motion for the off-diagonal components yields

dρI
A,12

dτ
≈ −2λ2

∫ ∞

0
ds Re [WS(s)] e+iΩsρI

A,12(τ)

+ 2λ2e+2iΩτ
∫ ∞

0
ds Re [WS(s)] e−iΩsρI∗

A,12(τ) . (6.37)

where we have also assumed aτ � 1 so the upper limit on the integral is now τ → ∞.
The time-local differential equation (6.37) turns out to have the solution in the non-
degenerate regime λ2C � Ω

ρI
A,12(τ) ≈ Ae−λ2Cτ + Be(−λ2C+2iΩ)τ (6.38)

where C is given by

C := 2
∫ ∞

0
ds Re [WS(s)] cos(Ωs) = Ω

4π
coth

(
πΩ

a

)
, (6.39)

16In Eq. (6.36) and those that follow, one should include a renormalization of Alice’s detector gap in
order to get the Markovian solution (6.38) — we omit this detail here, see Appendix D.3.
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andA and B are constant coefficients, which can be explicitly computed but whose form
is not important in what follows (see Appendix D.3).

To check when the Markovian approximation is valid, one can insert the solution
(6.37) and see when (6.36) is well-approximated by (6.37). Although somewhat tedious
(see Appendix D.3), it can be shown that we require∫ τ

0
ds Re [WS(s)] e+iΩse+λ2Cs ≈

∫ ∞

0
ds Re [WS(s)] e−iΩs . (6.40)

Noting that Re [WS(s)] ∝ e−as for as � 1, the above approximation can only work when

λ2C � a , e±iΩs ∼ 1 . (6.41)

The main point here is that while the first condition can be suppressed by making λ
sufficiently small, the second condition can hold underneath the integral sign in (6.40)
only when Ω � a. In other words, for Ω/a ≳ 1 it is impossible to satisfy the approxi-
mation (6.40), and so theMarkovian approximation cannot be consistently applied. The
argument given here is related to the diagnostic for the failure of the Markovian approx-
imation described in [171] where it was explicitly shown that the derivative terms in
the Taylor series (6.34) become too large when Ω/a ≳ 1. This extra requirement that
Ω/a � 1 is often missed in the literature (although stated in [169, 171, 172, 199]).

What we have seen above is that the correct way of taking the Markovian approx-
imation necessarily accounts for the requirement that Ω/a � 1, and in the standard
approach one has to actually ensure that this is enforced. We now claim that the version
of the Markovian approximation in Section 6.3.1 we employ does account for this auto-
matically. Following Section 6.3.1, the right way of taking the approximation for Alice’s
qubit is to perform Taylor series expansion about τ on both the monopole and the state:

µ̂I(τ − s)ρ̂I
A(τ − s) ≈ µ̂I(τ)ρ̂I

A(τ)− s
(
µ̂I(τ) ˙̂ρI

A(τ) + ˙̂µI(τ)ρ̂I
A(τ)

)
+O(s2) . (6.42)

Note that by approximating µ̂I
j(τ − s) ≈ µ̂I

j(τ) underneath the integral sign, we are au-
tomatically requiring that the energy scales associated with the system (in this case Ω
appearing in the detector’s monopole operator) are small compared to those associated
with the environment. We will see that when we check for validity relations in Sec-
tion 6.4, the condition Ω/a � 1 will be present.

In fact, what we believe to be the correct Markovian approximation also solves other
problems that otherwise require further renormalization of divergences or additional
sleight of hand. Using the approximation (6.42) on (6.36) give a different Markovian
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equation of motion (c.f. Eq. (6.37))

dρI
A,12

dτ
≈ −2λ2

∫ ∞

0
ds Re [WS(s)] ρI

A,12(τ) + 2λ2e+2iΩτ
∫ ∞

0
ds Re [WS(s)] ρI∗

A,12(τ) . (6.43)

which has the solution (c.f. Eq. (6.38))

ρI
A,12(τ) ≈ ASe−λ2CSτ + BSe(−λ2CS+2iΩ)τ , (6.44)

with the constant CS given by

CS := lim
Ω→0+

C =
∫ ∞

0
ds Re [WS(s)] =

a
4π2 . (6.45)

This solution has three crucial features: (1) it is much simpler than Eq. (6.38), (2) it is
independent of any UV divergences, and most importantly (3) contrary to what is often
said in the literature, it preserves the complete-positivity (CP) property for the entirety
of its evolution without further approximations (including RWA) [171]. The requirement
Ω/a � 1 is encoded in the definition of CS, since C/a = CS/a +O(Ω2/a2). It is impor-
tant to note that the Markovian solution still has dependence on Ω: it just cannot appear
in the “matrix coefficients” of the Markovian equation of motion.

In the remainder of this chapter, we will therefore apply the Markovian approxima-
tion (6.27) to our more complicated two-detector problem. We will see later that the
“correct” Markovian approximation also circumvents the need for tracking any UV di-
vergences often associated with the “standard” Markovian approximation and will pre-
serve complete positivity without RWA in the regime where Markovian limit is valid.
Before doing so, we first show that Eq. (6.42) results in a Lindblad equationwhichmakes
manifest the CP-preserving property and hence why RWA is not necessary.

6.3.2 Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form

The best way to showwhy theMarkovian approximation (6.42) results in CP-preserving
dynamics (without further approximation) is to cast our equation into a Schrödinger
picture equation of the Lindblad form

∂ρ̂AB
∂τ

= −i[ĥeff, ρ̂AB(τ)] +D[ρ̂AB(τ)] . (6.46)
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Eq. (6.46) takes the form analogous to the the Liouville-von Neumann equation with an
effective Hamiltonian ĥeff (sometimes called the Lamb-shifted Hamiltonian) and with
an extra term involving the dissipation superoperatorD capturing the non-unitary open
dynamics of the time evolution. For bipartite qubits, we say that Eq. (6.46) is in the
Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form if the dissipator has the form [175,
178]:

D[ρ̂AB] = ∑
α,β=x,y,z

∑
j,k=A,B

γ
αβ
jk

(
σ̂

β
k ρABσ̂α

j − 1
2

{
σ̂α

j σ̂
β
k , ρAB

})
(6.47)

where the matrix γ := [γ
αβ
jk ] is known as the Kossakowski matrix. The time evolution of

the joint qubit state ρ̂AB is said to be completely positive (CP) if the linear superoperator
Φτ : ρ̂AB(0) 7→ ρ̂AB(τ) is a quantum channel, i.e., Φτ is completely positive and trace-
preserving (CPTP) map [92, 93]. It is known that that the dynamical evolution is CP
if and only if the Kossakowski matrix γ is positive semidefinite, ĥeff is Hermitian, and
the “jump operators” (here the σ̂α

j ’s) form an orthonormal basis for the Hilbert-Schmidt
operators on the joint detector Hilbert space [92, 175, 176, 178, 179, 198, 200].

Let us now recast the Markovian dynamics encoded in equation (6.33) into GKSL
form. Converting (6.33) to the Schrödinger picture using (6.8) yields

∂ρ̂AB
∂τ

≈ −i[ĥA + ĥB, ρ̂AB(τ)] + λ2 ∑
j,k

∫ ∞

0
ds
(

Wjk(s)[µ̂k(0)ρ̂AB(τ), µ̂j(0)] + H.c.
)

, (6.48)

with the sum running over j, k ∈ {A,B} as before. We stress again that a crucial differ-
ence that distinguishes the usual procedure in the literature from ours is the way the
Markovian approximation is implemented17.

In addition to the constant CS defined in (6.45), we also define two other constants
17The “standard” Markovian approximation would have given

∂ρ̂AB
∂τ

≈ −i[ĥA + ĥB, ρ̂AB(τ)] + λ2 ∑
j,k

∫ ∞

0
ds
(

Wjk(s)[µ̂k(−s)ρ̂AB(τ), µ̂j(0)] + H.c.
)

.
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that depend on separation L:

C× := 2
∫ ∞

0
ds Re [W×(s)] =

sinh−1 (aL/2)
2π2L

√
1 + (aL/2)2

, (6.49a)

K× := 2
∫ ∞

0
ds Im [W×(s)] = − 1

4πL
√

1 + (aL/2)2
. (6.49b)

The Markovian master equation (6.48) can be reorganized into GKSL form (6.46) with

ĥeff = ĥA + ĥB + λ2K×σ̂x
A ⊗ σ̂x

B . (6.50)

The entries of the Kossakowki matrix (6.47) are given by

[γ
αβ
AA] = [γ

αβ
BB ] =

 λ2CS 0 0
0 0 0
0 0 0

 , (6.51a)

[γ
αβ
AB ] = [γ

αβ
BA ] =

 λ2C× 0 0
0 0 0
0 0 0

 . (6.51b)

The effective Hamiltonian operator ĥeff is here the joint free Hamiltonian of the detectors
ĥA + ĥB together with an extra degeneracy-lifting environment-induced interaction term
λ2K×σ̂x

A ⊗ σ̂x
B . Notably, this so-called “Lamb shift” term is finite and the degeneracy in the

joint free Hamiltonian is lifted because the spectrum of ĥeff is {−Ω,−λ2K×,+λ2K×, Ω}
in contrast to the spectrum of ĥA + ĥB which is given by {−Ω, 0, 0, Ω}.

We now claim that the dynamics described by ĥeff and the 6 × 6 Kossakowski matrix,

γ =

[
γ

αβ
AA γ

αβ
AB

γ
αβ
BA γ

αβ
BB

]
(6.52)

defines a CP-preserving evolution map without further approximation. This follows
directly from Lindblad’s theorem [175, 177]: indeed, by construction we satisfy the
requirements of the theorem that ĥeff is Hermitian and the Kossakowski matrix γ is
positive-semidefinite, where the only two nonzero eigenvalues are

λ1[γ] = λ2(CS + C×) , λ2[γ] = λ2(CS − C×) , (6.53)

which are non-negative since CS ≥ C× > 0 for any L ≥ 0. In other words, theMarkovian

125



master equation (6.48) studied in this work using the correct Markovian approximation
(6.27) already defines CP-preserving evolution without the need for any additional ap-
proximations such as the RWA.

6.3.3 Markovian limit of the X-block

We are now ready to perform the late-time resummation for the late-time dynamics of
the detectors. Recall that the evolution decouples18 into two sets of matrix ODE for the
X- and O-blocks as stated in (6.23). In what follows we find it more convenient to work
in the Schrödinger picture.

Starting from the Markovian dynamics (6.48), the X-block component can be rear-
ranged into a matrix ODE with constant coefficient of the form (6.31): this reads

dx
dτ

= (M0 + λ2M2)x(τ) + λ2b , (6.54)

where we define the vector of X-block components x(τ) and the constant vector b to be

x(τ) := [ρ11(τ), ρ22(τ), ρ33(τ), Re ρ14(τ), Im ρ14(τ), Re ρ23(τ), Im ρ23(τ)]
T , (6.55a)

b := [0, CS, CS,−C×,−K×, C×, 0]T , (6.55b)

and M0, M2 are constant matrices

M0 =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 2Ω 0 0
0 0 0 −2Ω 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


, (6.56)

(6.57)
18The full set of integro-differential equations for the X-block from NZ-ME2 (before the Markovian

approximation) are shown in Appendix D.1.
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M2 =



−2CS CS CS −2C× −2K× 2C× 0
0 −3CS −CS 2C× 0 −2C× −2K×
0 −CS −3CS 2C× 0 −2C× 2K×
0 2C× 2C× −2CS 0 2CS 0

2K× K× K× 0 −2CS 0 0
0 −2C× −2C× 2CS 0 −2CS 0
0 K× −K× 0 0 0 −2CS


. (6.58)

The determinant of the matrix is given by

det
(

M0 + λ2M2

)
= −256λ10Ω2Cs

(
C2

s − C2
×

) (
C2

s + K2
×

)
(6.59)

which is nonzero so long as Ω > 0 and L > 0 (since C× ≤ CS with C× → Cs in the
limit L → 0+). Observe that this alone already implies that any inferences made for the
dynamics immediately become suspect in the limit that the trajectories are “stacked” on
top of one another with L → 0+ (considered, e.g., in [153]).

The eigenvalues for M0 + λ2M2 are given by19

λX
1 ≈ − 2λ2Cs ,

λX
2 ≈ − 3λ2Cs − λ2

√
C2

s + 8C2
× ,

λX
3 ≈ − 3λ2Cs + λ2

√
C2

s + 8C2
× ,

λX
4 = − 2λ2 (Cs − iK×) ,

λX
5 = − 2λ2 (Cs + iK×) ,

λX
6 ≈ −2iΩ − 2λ2Cs ,

λX
7 ≈ +2iΩ − 2λ2Cs .

(6.60)

Since the determinant (6.59) is nonzero this means that the matrix is invertible (so long
as Ω, L > 0). This is sufficient for computing the steady state solution x?:

dx?
dτ

= 0 =⇒ x? = −(M0 + λ2M2)
−1λ2b . (6.61)

19These are computed as a series in the coupling λ since the the characteristic polynomial has high
degrees so we neglect O(λ4) contributions here — note however that λX

4 and λX
5 are exact eigenvalues of

M0 + λ2M2).
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Since Re[λX
j ] < 0 for all j at O(λ2), we conclude that the dynamics sink towards the

above steady-state x? for any initial state x(0). The stationary solution x? reads

x? ≈
(

1
4

, 1
4

, 1
4

, 0, 0, 0, 0
)T

, (6.62)

and more generally, the solution to (6.54) for arbitrary τ is given by

x(τ) = e(M0+λ2M2)τ(x(0)− x?) + x? . (6.63)

This is the late-time resummed solution for the X-block that we sought.
We can evaluate this general solution (6.63) numerically or perturbatively along the

lines of [171] (for example, see Eq. (6.105)). The numerical calculation of (6.63) will be
relevant, for instance, when we want to calculate the amount of entanglement that the
two detectors acquire via interaction with the quantum field.

6.3.4 Markovian limit for O-block

For the O-block, we perform the same procedure as before (see Appendix D.2 for the
NZ-ME2 before taking the Markovian approximation) which leads to

dy(τ)
dτ

= (N0 + λ2N2)y(τ) , (6.64)

where we define

y(τ) := [ ρ12(τ), ρ13(τ), ρ24(τ), ρ34(τ), ρ∗12(τ), ρ∗13(τ), ρ∗24(τ), ρ∗34(τ)]
T (6.65)

and where N0, N2 are constant matrices

N0 =



−iΩ 0 0 0 0 0 0 0
0 −iΩ 0 0 0 0 0 0
0 0 −iΩ 0 0 0 0 0
0 0 0 −iΩ 0 0 0 0
0 0 0 0 iΩ 0 0 0
0 0 0 0 0 iΩ 0 0
0 0 0 0 0 0 iΩ 0
0 0 0 0 0 0 0 iΩ


, (6.66)

128



N2 =



−2CS −α C× CS CS C× −α∗ 0
−α −2CS CS C× C× CS 0 −α∗

C× CS −2CS −α∗ −α 0 CS C×
CS C× −α∗ −2CS 0 −α C× CS
CS C× −α 0 −2CS −α∗ C× CS
C× CS 0 −α −α∗ −2CS CS C×
−α∗ 0 CS C× C× CS −2CS −α

0 −α∗ C× CS CS C× −α −2CS


, (6.67)

with the shorthand α := C× − iK×. Furthermore we find the determinant

det
(

N0 + λ2N2

)
= Ω8 + 16λ4Ω6C2

s + 64λ8Ω4C2
s

(
C2

s − C2
×

)
(6.68)

which is always nonzero in the perturbative limit for nonzero gap (Ω > 0). The matrix
eigenvalues at O(λ2) are given by

λO
1 ≈ −iΩ + λ2(−2Cs + C× −

√
(Cs − C×)2 − K2

×
)

λO
2 ≈ −iΩ + λ2(−2Cs + C× +

√
(Cs − C×)2 − K2

×
)

λO
3 ≈ −iΩ + λ2(−2Cs − C× −

√
(Cs + C×)2 − K2

×
)

λO
4 ≈ −iΩ + λ2(−2Cs − C× +

√
(Cs + C×)2 − K2

×
)

(6.69a)

with the corresponding conjugate pairs

λO
5 = λO∗

1 , λO
6 = λO∗

2 , λO
7 = λO∗

3 , λO
8 = λO∗

4 . (6.69b)

Since the matrix N0 + λ2N2 is invertible (for Ω > 0), we have the general late-time
resummed solution

y(τ) = e(N0+λ2N2)τy(0) . (6.70)

At large τ → ∞, we have y(τ) → 0, i.e. the O-block decays to zero. This follows from
the fact that the stationary solution y? is given by

dy?

dτ
= 0 =⇒ y? = 0 , (6.71)
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because all the eigenvalues of N0 + λ2N2 have negative real parts (so long as Ω > 0).
This result implies that regardless of the initial state chosen for the two detectors, only
the X-block contribution survives in the late-time limit.

6.3.5 Thermalization and (lack of) entanglement

The late-time steady-state solution for the NZ-ME2 equation follows by combining the
steady-state solutions x? and y? for both X-block and O-block we obtained earlier. The
result is that the late-time stationary state is maximally mixed for any initial joint state
of both qubits:

ρ̂AB(∞) =
1

2
⊗ 1

2
+O(λ4) , (6.72)

which is clearly separable. The steady state solution (6.72) is independent of Ω, a, L and
anyUV cutoffs (like ϵ used to regulate coincident limit divergences). In otherwords, cal-
culations in the Markovian regime at leading order are unable to probe the temperature
of the field even if both detectors do thermalize. This is because the Markovian regime
where we need Ω/a � 1 corresponds to the high-temperature limit, hence the steady
state solution only picks out the zeroth-order expansion in Ω/a. Any dependence of
the state on Ω/a and any deviation from maximally mixed state can only appear in the
non-Markovian corrections or at finite (but sufficiently large) τ.

Furthermore, the fact that the asymptotic final state is independent of L means that the
Markovian regimewashes out the effect due to the causal propagator (the field-mediated
signaling between the two detectors). Any L-dependent corrections to the steady-state
solution can only appear at finite τ at this order in perturbation theory. It is worth em-
phasizing that the lack of L-dependence at late times on its own is not very surprising:
already in other contexts such as entanglement harvesting, detectors are unable to get
entangled by the quantum field vacuum when the energy gap is too small compared
to other scales of the problem [34, 77, 201, 202]. Similarly, in perturbative short-time
Dyson series expansions, accelerated detectors suffer entanglement degradation [98].
These older results already suggest that one should not expect any entanglement in the
late-time Markovian regime when both detectors are in their ground states.

That said, we should still be able to infer the Unruh temperature from the late-time
dynamics indirectly. Recall that the eigenvalues of M0 + λ2M2 and N0 + λ2N2 set the
scale for the thermalization process. In the limit of large separation (aL � 1), we have
C×/CS � 1 and K×/CS � 1, so that the maximum of the real part of the eigenvalues
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is given by

max
j

Re(λX
j ) ≈ −2λ2CS =

λ2a
2π2 ≡ λ2TU

π
. (6.73)

This is equal to the decay rate of a single accelerating detector experiencing thermal bath
at Unruh temperature TU = a/(2π) found in the literature (see, e.g., [169]). Therefore,
while the asymptotic final state cannot tell us about the Unruh temperature, we can still
learn about theUnruh effect from its decay rates for sufficientlywell-separated detectors.

One non-trivial consequence of our calculations is that the regime aL � 1 is incom-
patible with the Markovian limit: the eigenvalue λX

3 approaches zero as aL gets smaller,
rendering M singular in the limit aL → 0. The origin of this phenomenon is in the co-
efficient K×, which depends on the causal propagator of the field evaluated along both
the detectors’ trajectories, which scales as 1/L. In effect, what is happening is that for
aL � 1, the detectors can exchange information with one another via the field commu-
tator (by signaling), so one detector “stores” the memory of the other detector. Conse-
quently, the decay process becomes much slower at small separation (Re[λX

3 ] ≈ 0−).

6.4 Validity relations for Markovian limit

In Section 6.3 we obtained the Markovian solution for the two-detector dynamics and
showed that the evolution is CP without the need for RWA. This issue is largely ignored
in the literature20, especially so when two detectors are considered. In the majority of
past literature we are aware of, it is assumed that the Markovian limit can be taken, with-
out specifyingwhen it is valid in terms of the relevant scales for the problem at hand. We
now find explicitly the requirements for the Markovian limit to be valid, and we show
that similar two-detector calculations in the past can actually violate these requirements.

6.4.1 Sub-leading non-Markovian expansion

Recall that the Markovian approximation can be viewed in terms of the Taylor series
(6.27), repeated here,

µ̂I
j(τ − s)ρ̂I

AB(τ − s) ≈ µ̂I
j(τ)ρ̂

I
AB(τ)− s

(
µ̂I

j(τ) ˙̂ρI
AB(τ) + ˙̂µI

j(τ)ρ̂
I
AB(τ)

)
+O(s2) . (6.74)

20One exception is [169] for a single detector, but the method is not very portable for two detectors.
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This is physicallymotivated by the fact that the environment correlatorsWS,× are strongly
peaked about s = 0 in the master equation. Inserting (6.74) into (6.22), we get

dρ̂I
AB

dτ
≈ λ2 ∑

j,k∈{A,B}

∫ ∞

0
ds
(

Wjk(s)
[
µ̂I

j(τ)ρ̂
I
AB(τ), µ̂I

k(τ)
]
+ H.c.

)
− λ2 ∑

j,k∈{A,B}

∫ ∞

0
ds
(

sWjk(s)
[
µ̂I

j(τ) ˙̂ρI
AB(τ) + ˙̂µI

j(τ)ρ
I
AB(τ), µ̂I

k(τ)
]
+ H.c.

)
.

(6.75)

Using ˙̂µI
j(τ) = −Ω(−iσ̂+

j eiΩτ + iσ−
j e−iΩτ) we can put Eq. (6.75) into the Lindblad-like

form, which in the Schrödinger picture reads

dρ̂AB
dτ

≈ −i[ĥeff, ρ̂AB(τ)] +Dγ [ρ̂AB(τ)]

− i
[
ẑeff, ρ̂AB(τ)

]
+Dη

[
− i[ĥ, ρ̂AB(τ)] + ˙̂ρAB(τ)

]
+Dζ

[
ρ̂AB(τ)

]
. (6.76)

The first two terms of Eq. (6.76) are the original terms in the GKSL master equation:
the effective Hamiltonian ĥeff is given in Eq.(6.50), while the dissipator Dγ is given by
Eq. (6.47), with Kossakowski matrix γ computed in Eqs. (6.51a-6.51b). The next three
terms contain the subleading corrections to the GKSL equation: we have ẑeff defined by

ẑeff := −λ2ΩD′
S

2

(
σ̂z
A + σ̂z

B
)
− λ2ΩS′

×
2

(
σ̂x
A σ̂

y
B + σ̂

y
A σ̂x

B
)

. (6.77)

The last two terms are extra “dissipation terms” Dη,Dζ with the corresponding “Kos-
sakowski matrices” η and ζ given by

[η
αβ
AA ] = [η

αβ
BB ] =

D′
S 0 0

0 0 0
0 0 0

 , [η
αβ
AB ] = [η

αβ
BA ] =

D′
× 0 0

0 0 0
0 0 0

 , (6.78a)

[ζ
αβ
AA] = [ζ

αβ
BB ] =

 0 1
2(D′

S − iS′
S) 0

1
2(D′

S + iS′
S) 0 0

0 0 0

 , (6.78b)

[ζ
αβ
AB ] = [ζ

αβ
BA ] =

 0 1
2(D′

× − iS′
×) 0

1
2(D′

× + iS′
×) 0 0

0 0 0

 . (6.78c)
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The constant coefficients D′
S,× and S′

S,× are given by

D′
S,× := 2

∫ ∞

0
ds Re [WS,×(s)] s (6.79a)

S′
S,× := 2

∫ ∞

0
ds Im [WS,×(s)] s (6.79b)

which evaluate to (see Appendix D.4)

D′
S =

log(aϵ)

2π2 , D′
× =

Re
[
Li2
(
`2
−
)
− Li2

(
`2
+

)]
4π2 aL

√
1 + (aL/2)2

, (6.80a)

S′
S = − 1

4π
, S×′ =

sinh−1 (aL/2)
2πaL

√
1 + (aL/2)2

, (6.80b)

where Li2(z) is the polylogarithm of order 2 [203] and we used the shorthand

`± :=
aL
2

±

√
1 +

(
aL
2

)2

. (6.81)

Note that D′
S is a UV-regulated function with the infinitesimal ϵ > 0 appearing in the

iϵ-prescription of the environment correlators WS,×. It is worth stressing that the UV
regulator is needed because sharp switching is not compatible with pointlike limits in
(3+1) dimensions: the UV regulator is given the interpretation of a position-space cutoff
on the size of the detector below which we cannot resolve21.

6.4.2 Matrix ODE derivation of validity bounds

The idea of findingwhere theMarkovian approximation applies is to bound the last three
terms in (6.76) involving ẑeff, η and ζ to be parametrically small compared to the first
two terms involving ĥeff and γ. Wherever in parameter space this is true, the Lindbladian
dynamics studied in this work are valid — this results in a set of bounds that must be
satisfied involving functions of λ, a, Ω and L (as well as a UV cutoff ϵ) which we call
validity bounds.

21Note that in other contexts such as entanglement harvesting, pointlike detector models may still work
because some initial states are insensitive to these UV issues. In the validity relations derived here, the
UV regulators will appear explicitly as we consider arbitrary qubit initial states.
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The simplest way of doing this is to again split (6.76) into the X- and O-blocks, keep-
ing the subleading non-Markovian correction to the Markovian expansion as in (6.76)
and find the analogous matrix ODE to Eq. (6.31): the result is an equation of the form

du
dτ

≈ Au + v︸ ︷︷ ︸
Markov.

−Y
du
dτ

− Zu︸ ︷︷ ︸
lead. non-Markov.

. (6.82)

The matrix Y can be obtained from A by the replacement CS,× → D′
S,× and KS,× → S′

S,×
(with the rest of the entries zero), while the matrix Z depends only on combinations of
ΩD′

j and ΩS′
j. Iteratively plugging (6.31) into the RHS of (6.82) gives us

du
dτ

≈ (1− Y)(1− ZA−1)Au + (1− Y)v , (6.83)

where we have used the fact that A is invertible (for both the X- and O-blocks, so long
as Ω, L > 0). Eq. (6.83) tells us that for the Markovian approximation to be valid, we
need

1− Y ≈ 1 , 1− ZA−1 ≈ 1 , (6.84)

A straightforward way of evaluating these is to demand that each matrix element satis-
fies

|Ynm| � 1 and |(ZA−1)nm| � 1 . (6.85)
Eq. (6.85) provides us with a very compact way of stating the constraints required for
validity of Markovian approximation.

What remains to be done is towrite down the information contained in (6.85) in terms
of physical parameters λ, Ω, a, L and ϵ. Studying the X-block in the abovemanner results
in entries of the matrix Y which from |Ynm| � 1 yield

λ2|D′
S| = λ2 log(aϵ)

2π2 � 1 , (6.86a)

λ2|D′
×| = λ2Re

[
Li2(`2

−)− Li2(`2
+)
]

4π2aL
√

1 + (aL/2)2
� 1 , (6.86b)

λ2|S′
×| = λ2 sinh−1 (aL/2)

2πaL
√

1 + (aL/2)2
� 1 , (6.86c)

where `± is defined in (6.81). It is straightforward to see that |S′
×| � 1 for all aL ≥ 0,
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hence the third bound is automatically satisfied. The first bound is a single-detector
bound (also encountered in [171]) and ensures the smallness of the coupling λ must
compensate for the size of the UV cutoff ϵ. The non-trivial bound ends up being the
second one, since it depends on the detector separation: for aL ≳ 1 we always have
|D′

×| � 1, however

λ2|D′
×| ≈

λ2(1 − log(aL))
2π2 for aL � 1 . (6.87)

What thismeans is that small aL must be compensated byweaker coupling λ, and so one
cannot make aL arbitrarily small. This bound is distinct from the UV cutoff requirement
that demands ϵ � L.

The condition |(ZA−1)nm| � 1 for the X-block introduces more bounds, which are
generally very complicated due to thematrix inverse. However, all the bounds involving
aL are only non-trivial when aL � 1 (i.e., they can be easily satisfied for aL ≳ 1), so
below we restrict our attention only for aL � 1. The λ-dependent bounds are

λ2| log(aϵ)|
2πaL

� 1 ,
3πΩ/a − λ2aL

(aL)2 � 1 ,
λ2

aL
� 1 ,

λ2

4aL
+ λ2| log(aϵ)| � 1 ,

(6.88)

while the λ-independent bounds are

πΩ
a

� 1 ,
πΩ

a(aL)2 � 1 ,
Ω| log

(
a2ϵL

)
|

a(aL)2 � 1 . (6.89)

One of themain takeaways from this analysis is that aL, whichmeasures detector separa-
tion in units of a, cannot be arbitrarily small: it is bounded below by all other parameters
involving aϵ, Ω/a and λ2. Very small aL amounts to very closely-spaced detectors and
the field-mediated communication makes memoryless approximation harder to satisfy.

We can perform the same kind of (tedious) analysis for the O-block and it turns out
that up to irrelevant numerical factors and linear combinations of the above conditions,
the O-block does not contain any new information about Markovian validity.
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6.4.3 Summary: when is Markovian approximation valid?

The short story is that the Markovian validity favours weak coupling λ � 1 (due to per-
turbation theory), as well as the high-temperature regime Ω � a and large separation
aL ≳ 1. Overall, we can summarize the validity relations for Markovian limit as follows:

(i) By default, the Markovian approximation requires that Ω/a � 1. This require-
ment is often implicit or ignored in the literature.

(ii) In general the pointlike limit is ill-defined for arbitrary qubit initial states when
one considers sharp switching, which is the usual approach in open quantum
systems (with rare exceptions such as [168]). Consequently, the UV divergences
encountered are to be interpreted as ignorance about the detectors finite spatial
extent. The validity bounds require

λ2| log(aϵ)|
2π2 � 1 . (6.90)

That is, aϵ cannot be arbitrarily small: either we probe the “high temperature”
regime22 (large a) relative to the effective size of the detector prescribed by the
UV cutoff ϵ), or that detector size cannot be arbitrarily small.

(iii) In the presence of two detectors, we require that λ2|D′
×| � 1, where D′

× depends
on the dimensionless detector separation aL. For large aL this is automatically
satisfied if (i) and (ii) are properly satisfied; however, for small aL � 1 we require
that λ, a, Ω, L and ϵ work together to obey

πΩ
a(aL)2 � 1 ,

Ω| log
(
a2ϵL

)
|

a(aL)2 � 1 , λ2 � aL (6.91)

which are simplified versions of the aL-dependent validity bounds given in (6.88)
and (6.89). The crucial point is that aL cannot be arbitrarily small: it is bounded
below by quantities involving λ, Ω/a, aϵ. Thus this condition favours aL ≳ 1; for
aL � 1 one has to more carefully tune Ω/a, aϵ and λ in order to compensate for
the non-Markovianity this introduces.

22At the same time, no finite-sized realistic detector can maintain its rigid shape for arbitrarily large
accelerations, so in practice the high-temperature regime is highly non-trivial to bound without explicit
computation.
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(iv) Finally, the matrices governing the evolution for the X- and O-blocks are treated
as perturbative in the coupling λ (for nonzero Ω > 0 where matrix determinants
are nonzero), this means that the matrices M0, N0 are large compared to the per-
turbations λ2M2, λ2N2 in the matrix ODEs (6.54) and (6.67). What this amounts
to is remaining in a regimewhere the eigenvalues λX,O given in (6.60) and (6.69b)
are perturbative in the coupling— thismeans that the oscillation scale Ω > 0must
be large compared to the O(λ2) corrections. At the end of this day this enforces

λ2 � Ω
a

and λ2 � ΩL (6.92)

which roughly speaking ensures that λ2 is the smallest parameter in the prob-
lem23. Notice that the second relation in is yet another manifestation that aL can-
not be arbitrarily small.
It is worth noting that (6.92) has two important implications: (1) the gapless limit
Ω = 0 must be treated separately and not simply set Ω = 0 in the results we have
gotten so far — the reason has to do with the fact that the matrices M0 + λ2M2
(also for N0 + λ2N2) have vanishing determinant in this limit, so the density
matrix does not generically decohere properly. This is not a real problem because
for gapless regimewe can fully solve the dynamics non-perturbatively (see [204]);
(2) since we also have Ω/a � 1, it must mean that

Ω/a ∼ λ (6.93)

so that Ω/a is small enough for Markovianity to hold, but large enough for the
perturbative calculation to work.

While the conditions (i)-(iii) are not prohibitively restrictive, they do imply that sev-
eral calculations in the literature for the past two decades are strictly-speaking invalid or
unreliable. These include (1) the stacked trajectory limit24 (L = 0) considered in [153]
and (2) calculations using RWA-based GKSL equation considered in [166, 167] in the
regime where Ω/a ≳ 1, which already violate (i).

23Strictly speaking, enforcing the validity bounds (6.92) is about remaining in the perturbative/non-
degenerate regime as opposed to just being Markovian.

24The fact that (iii) implies that L 6= 0 is disallowed is unsurprising, first because the environment-
induced interaction diverges in this limit. It is also well-known that divergences associated with pointlike
detector models have nothing to do with open quantum systems: for finite-sized detectors, by construction
we do not allow centres of mass to overlap for this reason.
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6.5 Comparison with using rotating wave approximation

The fact that the steady state at late times (6.72) is separable andmaximally mixed is not
in itself very surprising, since a fast/hot environment should generically be expected
to scramble any information contained in an arbitrary initial joint detector state. This
section addresses the fact that there are several different results in the literature that
seem to conflict with the results covered in this thesis (see, e.g., [153–157, 162–167]),
most notably that sometimes the two detectors can end up entangled.

What makes comparison to these works difficult is that the microscopically derived
Lindblad equations used all apply an additional approximation relative to our work:
the secular or rotating wave approximation (RWA). Beginning with a Born-Markov ap-
proximation where only the reduced density matrix is slowly-varying (as described in
(6.34)), these works would find a GKSL equationwhose Kossakowski matrix has in gen-
eral some negative eigenvalues (hence spoiling complete positivity) as well as explicit
dependence on divergences that cannot be renormalized into an effective Hamiltonian.
The RWA is then applied to rectify this apparent CP-violation, dropping certain terms
in the GKSL equation under the guise that they should not be important when the sys-
tem oscillates quickly. After applying the RWA, the resulting Kossakowski matrix then
ends up having non-negative eigenvalues for any sizes of parameters in the problem, in-
cluding large detector gaps Ω ≳ a, and the expression is free of any non-renormalizable
divergences.

As we have already argued in the preceding sections (motivated by an Effective Field
Theory (EFT) way of thinking), the Markovian approximation has a domain of validity
that restricts the parameter space that we can use. Once this is recognized andwe strictly
remain in this subset of the parameter space, the resulting Markovian dynamics is CP
without further approximations. Applying the RWA at best will only restrict the domain
of validity even further, making the resulting master equation even more restrictive in
its use. Our results demonstrate that not only is the RWA unnecessary, but in general
one should always track the regime of validity of all approximations involved, otherwise
one risks obtaining nonsensicalmaster equations and output states that do not reflect the
physical problem at hand.

In this last section, we investigate what happens if we apply the RWA anyway, within
the domain of validity of the (“correct”) Markovian approximation, so as to make an easier
point of comparison to the aforementioned literature. The point of this exercise is two-
fold: first to emphasize that both the dynamics studied in this chapter and the RWA
yields late-time states that are not entangled (when constrained to be within the regime
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of validity of Markovianity). Furthermore, we show that the dynamics between the two
approaches can differ notably, which means that carelessly applying the RWA alters
physical predictions significantly.

6.5.1 The RWA-based solution

Let us now checkwhat happens if wewere to perform the RWA and see if the differences
between this and the dynamics reported in this chapter are significant. Following for
example [92], taking the RWA amounts to dropping all terms coming from

σ̂±
j σ̂±

k ρ̂AB(τ) , σ̂±
j ρ̂AB(τ)σ̂

±
k . (6.94)

In the interaction picture, these terms arise from products of the monopole operators
with a phase e±i(E+E′)τ that correspond to fast “counter-rotating” terms (here E, E′ ∈
{Ω, 0, 0,−Ω} denotes the spectrum of the system Hamiltonian ĥ = ĥA + ĥB). The stan-
dard lore is that these terms oscillate much more quickly compared to the slow “co-
rotating” terms that come with e±i(E−E′)τ, and so should be neglected. This procedure,
more rigorously described by Davies [186, 187], yields a Lindblad equation of the form
(6.46) with Kossakowski matrix γ(RWA), with components

[γ
αβ
AA]

(RWA) = [γ
αβ
BB ]

(RWA) =

 λ2CS
2 0 0
0 λ2CS

2 0
0 0 0

 , (6.95a)

[γ
αβ
AB ]

(RWA) = [γ
αβ
BA ]

(RWA) =

 λ2C×
2 0 0
0 λ2C×

2 0
0 0 0

 , (6.95b)

and an effective Hamiltonian

ĥ
(RWA)
eff =

λ2K×
2

(
σ̂x
A σ̂x

B + σ̂
y
A σ̂

y
B
)

(6.96)
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c.f. equations (6.51a), (6.51b) and (6.50). There are now four nonzero eigenvalues (with
repetition) of the new Kossakowski matrix γ(RWA), given by

λ1[γ
(RWA)] = λ2[γ

(RWA)] =
λ2

2
(CS + C×) , (6.97)

λ3[γ
(RWA)] = λ4[γ

(RWA)] =
λ2

2
(CS − C×) . (6.98)

The RWA yields almost identical equations of motion as the ones without RWA for both
the X-block and O-block, with M

(RWA)
0 = M0, N

(RWA)
0 = N0, but with the perturbative

corrections M
(RWA)
2 and N

(RWA)
2 being sparser matrices:

M
(RWA)
2 =



−2CS CS CS 0 0 2C× 0
0 −3CS −CS 0 0 −2C× −2K×
0 −CS −3CS 0 0 −2C× 2K×
0 0 0 −2CS 0 0 0
0 0 0 0 −2CS 0 0
0 −2C× −2C× 2CS 0 −2CS 0
0 K× −K× 0 0 0 −2CS


, (6.99)

N
(RWA)
2 =



−2CS −α− C× CS 0 0 0 0
−α− −2CS CS C× 0 0 0 0
C× CS −2CS x − α+ 0 0 0 0
CS C× −α+ −2CS 0 0 0 0
0 0 0 0 −2CS −α+ C× CS
0 0 0 0 −α+ −2CS CS C×
0 0 0 0 C× CS −2CS −α−
0 0 0 0 CS C× −α− −2CS


(6.100)

c.f. Eqs. (6.54) and (6.67). The matrix M0 + λ2M
(RWA)
2 can be inverted and the general

solution for the X-block is

x(RWA)(τ) = e(M0+λ2M
(RWA)
2 )τ(x(0)− x?) + x? , (6.101)

where x? ends up evaluating to be exactly the same steady-state solution as given earlier
in Eq. (6.62) without applying the RWA.

For theO-block one can check that the block-diagonalmatrix N0 +N
(RWA)
2 is invertible

with all eigenvalues having negative real parts. This proves that at late times the O-block
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decays to zero for arbitrary initial states of the field. Together, we have shown that for
any initial state of the field, the steady state solution at late times is exactly the same
as without the RWA: it is also a separable mixed state at leading order in perturbation
theory:

ρ̂
(RWA)
AB (∞) =

1

2
⊗ 1

2
+O(λ4) = ρ̂AB(∞) . (6.102)

Being explicit about the dynamics in the RWAcase, it turns out that atO(λ2) thematrices
M0 + λ2M

(RWA)
2 and N0 + λ2N

(RWA)
2 have the same eigenvalues as the earlier (non-RWA)

eigenvalues listed in Eqs. (6.60) and (6.69b). Since the real part of these eigenvalues are
all negative this confirms that RWA also sinks towards a separable mixed state.

The main difference between applying the RWA and the earlier Markovian descrip-
tion arises when one tracks the finite-time dependence of the components of the density
matrix. For example, let us consider ρ

(RWA)
14 (τ), which can be obtained from two of the

components of xRWA(τ) in Eq. (6.101). We find that

ρ
(RWA)
14 (τ) ≈ ρ14(0)e(−2iΩ−2λ2Cs)τ . (6.103)

By contrast, for the non-RWA version the answer is somewhat more complicated: one
way to proceed is to compute the (right) eigenvectors rX

j of the matrix M0 + λ2M2 (as
a series in λ), so that the solution (6.63) is equivalent to the ansatz

x(τ) =
7

∑
j=1

cje
λX

j τrX
j + x? , (6.104)
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where the coefficients cj may also be computed as a series in λ. This gives

ρ14(τ)

≈
(

ρ14(0) +
iλ2CsRe[ρ14(0)]

Ω
+

iλ2C×[2ρ22(0) + 2ρ33(0)− 1]
2Ω

− λ2K×[2ρ11(0) + ρ22(0) + ρ33(0)− 1]
2Ω

)
× e(−2iΩ−2λ2Cs)τ +

λ2K×[2ρ11(0) + ρ22(0) + ρ33(0)− 1]
2Ω

e−2λ2Csτ

−
iλ2C×

(
4− C2

s
C2
×
+ Cs

C×

√
8+ C2

s
C2
×

)[
2ρ22(0)+2ρ33(0)−1+

(
− Cs

C×
+

√
8+ C2

s
C2
×

)
Re[ρ14(0)]

)

2Ω

(
8+ C2

s
C2
×
− Cs

C×

√
8+ C2

s
C2
×

) eλ2
(
−3Cs−

√
C2

s+8C2
×

)
τ

−
iλ2C×

(
− 3Cs

C×
+

√
8+ C2

s
C2
×

)[(
− Cs

C×
+

√
8+ C2

s
C2
×

)
(2ρ22(0)+2ρ33(0)−1)−8Re[ρ14(0)]

]

4Ω

(
8+ C2

s
C2
×
− Cs

C×

√
8+ C2

s
C2
×

) eλ2
(
−3Cs+

√
C2

s+8C2
×

)
τ

(6.105)

where O(λ4) effects have been neglected. In both cases, for any given initial data ρ14(0)
we have ρ14(τ) → 0 and ρ

(RWA)
14 → 0 at very late times. In other words, both non-RWA

and RWA solutions have the same late-time behaviour for ρ14, which we already know
since the stationary state at late time is diagonal in the uncoupled energy eigenbasis.

The main difference between Eqs. (6.105) and (6.103) can be understood in the con-
text of the theorems outlined by Davies [186, 187], and amounts to the simultaneous
limit λ2 → 0 and τ → ∞ while keeping λ2aτ ∼ O(1). What is important to note is
that Davies’ limit in fact amounts to taking RWA: while the result of Davies is of course
mathematically sound, the master equation obtained via Davies’ approach cannot be
used if we insist on not applying the RWA. To put it another way, Davies’ theorem does
not account for the free parameters in the microscopic Hamiltonian that will vary from
problem to problem. Sincewe started from aUDW interaction (which is themicroscopic
description of the setup), we are obliged to restrict our attention to a subset of parame-
ter space where Born-Markov approximations apply. This in turn requires us to restrict
to the “high-temperature” regime Ω/a � 1 (and all the complicated validity relations
found earlier). We only get the same result as Davies’ approach if we also apply RWA,
and from an EFT perspective this means that we have to add more constraints to the
parameter space in addition to the validity relations we have found earlier. These restric-
tions are not given by Davies’ theorem and depend on the system under consideration.
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Figure 6.1: Initially prepared in ground state |gAgB〉 with or without RWA. The common
parameter choices are Ω/a = 0.01 and λ = 0.01. Left: aL = 0.25. Right: aL = 2. Note
that for the RWA-based solution the detectors cannot get entangled from the ground state
even though the non-RWA solution could.

6.5.2 Entanglement dynamics: with RWA vs without RWA

As shown in the previous subsection, at finite times the two procedures yield different
predictions since the density matrices ρRWA

AB (τ) 6= ρAB(τ) (compare for example (6.105)
and (6.103)). In particular, it can be shown that the RWA result approaches the full result
when ΩL is large. This is consistent with the fact that the RWAmay lead to superluminal
signaling in relativistic settings, yet large ΩL is precisely the regime where the detectors
are so widely separated that the superluminal (but finite-time) propagation becomes
negligible. This means that the RWA and the full result particularly disagree precisely
when causal relations between the two detectors matter.

In this subsection we underline this point by studying the finite-time entanglement
between the two detectors, showing that RWA evolution can in general differ signifi-
cantly from the non-RWA effectiveMarkovian evolution studied in this work. We choose
to study negativity [115] as the entanglement monotone, defined by

N [ρ̂AB] =
||ρ̂ΓAAB ||1 − 1

2
, (6.106)

where ΓA denotes the partial transposewith respect to subsystemA and || · ||1 is the trace
norm.

Wenow showwhat happens to the entanglement generation and degradation by plot-
ting N [ρ̂AB(τ)] for various initial states ρ̂AB(0) by comparing RWA-based vs non-RWA
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Figure 6.2: Initially prepared in states |gAeB〉 based on the choice of states in [167], with
or without RWA. The common parameter choices are Ω/a = 0.01 and λ = 0.01. Left:
aL = 0.25. Right: aL = 2. The difference between the negativities with or without the
RWA is of order 10−9 to 10−7.
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Figure 6.3: Initially prepared in the Bell state |Φ+〉 = 1√
2
(|gAgB〉+ |eAeB〉), based on the

choice of states in [167] and [166] respectively, with or without the RWA. The common
parameter choices are Ω/a = 0.01, λ = 0.01 and aL = 2. Left: negativity as a function
of time. Right: Zoomed-in version around λ2aτ = 10, showing oscillatory behaviour for
the solution without the RWA. The difference in negativity ∆N = N −N (RWA) isO(λ2).
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based solutions25. In Figure 6.1 we show the case when the detectors begin the evolution
in their ground states |gAgB〉. The common parameter choices are Ω/a = 0.01, λ = 0.01
andwe consider both smaller (aL = 0.25) and larger (aL = 2) separations. We see a stark
difference between the RWA-based solution and the one without the RWA: at all times
the RWA-based solution cannot generate entanglement, while the full Born-Markov so-
lution studied in this chapter (without the RWA) can get temporarily entangled at later
times. The smaller the detector separation, the longer the entanglement persists for the
non-RWA solutions. Above aL ∼ 2 both solutions remain separable at all times.

We emphasize that our results are completely within the domain of validity of the
approximations (see Section 6.4). This can be comparedwith Figure 6.2, where we show
the case when the detectors are initially prepared in states |gAeB〉, based on the choice
of states in [167] with or without the RWA for the same set of parameters. This time,
the amount of entanglement is larger, however the differences between the RWA and
non-RWA are very slight: the negativity are very similar, and one can check that their
difference N −N (RWA) is of order 10−9 to 10−7 (i.e., way below ∼ λ2).

In Figure 6.3 we show the case for initially Bell state |Φ±〉 = 1√
2
(|gAgB〉+ |eAeB〉) with

the same parameter choices. Since the Bell state is maximally entangled, there is no
surprise in having entanglement degradation especially after interacting with the envi-
ronment. This scenario is particularly interesting because it highlights what the RWA
actually does to entanglement dynamics: it “smoothens out” oscillatory behaviour of
negativity obtained with only the Born-Markov approximation, as can be seen from the
zoomed-in version in the middle figure of Figure 6.3. The oscillatory behaviour also is
modulated by a decaying function at late times (the rightmost figure) and the differ-
ences in negativity is O(λ2). Therefore, we see that the non-RWA solution approaches
the RWA result at very late times. Figure 6.3 gives an explicit demonstration of how
the RWA is a form of averaging/coarse-graining, essentially by removing the oscillatory
components and getting the overall large-timescale behaviour right.

6.6 Conclusion

In this chapter we argued that the lack of CP property after performing the Born-Markov
approximation in the standard open systems approach is problematic, as there is resid-
ual memory in the system operators that was not removedwhen performing theMarko-

25We do not attempt to reproduce the plots in [166, 167] since they are outside the domain of validity
of the Born-Markov approximations (namely Ω/a � 1 must always be enforced in what follows).
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vian approximation. The spurious UV divergences and the lack of complete positivity
are typically resolved by ad hoc procedures such as applying the secular approximation.
We showed this explicitly in the context of the oft-studied model of two accelerating
detectors interacting with a quantizedmassless scalar field in flat spacetime, using a dif-
ferent Markovian approximation first used in [188]. The fact that the bath is a quantum
field is somewhat relevant, as it is well-known that rotating wave approximations can
lead to important causality violations [184]: this has to do with the fact that for fields in
their vacuum states, both the co-rotating and counter-rotating terms are important and
there is no single “rotating frame” that can counter all frequencies of the bath modes
(i.e. the field is a continuum of infinitely many modes, as opposed to quantum-optical
settings where the bath is a laser tuned to a single particular frequency). The validity if
the RWA requires careful tracking of the size of the terms being thrown away.

Ourworkhaswider implications for the generic open system framework: more specif-
ically, it suggests that the “infamous” property of being non-CP for Redfield-type equa-
tions seen in standard literature (see, e.g., [92, 93]) is not quite correct. The problem
is that when one performs the Born-Markov approximations, one has to restrict the pa-
rameter spaces for which the resulting equation is valid. Our example shows that the
CP property is already guaranteed simply by faithfully staying in the regime where
the Markovian approximation is valid. Applying the RWA to fix the non-CP problem
amounts in some sense to “shifting the goalpost”: while the resulting GKSL-RWA equa-
tion is manifestly CP even for large Ω/a ≳ 1, we are not allowed to do so because we
needed Ω/a � 1 to even arrive at this step. Therefore any calculation for Ω/a ≳ 1 is
automatically not reliable.

It is interesting to see that there is merit in approaching problems in open quantum
systems by treating the problem as an EFT (i.e. in the Open EFT framework [188, 191,
205–226] typically used for studying quantum fields themselves as opposed to qubits).
From an EFT perspective, when a hierarchy of scales can be utilized (in our case between
the timescales of the environment and system), relative “effective” simplicity can arise.
Furthermore, every EFT has its domain of validity and every approximation shrinks
this domain; everything works so long as one remains strictly within the regime where
the approximation is expected to work. Conversely, the breakdown of any approximate
equation necessarily arises due to being outside the domain of validity of that approx-
imation. Following this EFT line of thought, applying the RWA/secular approximation
to fix CP-violations is an odd thing to do because it amounts to ‘moving the goalpost’ by
changing the original problem to another (possibly unrelated) problem. It is also worth
noting that a similar model to ours has been studied in [227], using harmonic oscillators
as detectors in a static bath, and the results are consistent with what we found here.
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We suspect that there are broader classes of problems within the open system frame-
work that have these sort of spurious issues arising from apparent non-CP properties of
approximate master equations. One line of investigation we are pursuing (in an upcom-
ing work [190]) is to identify whether such problems arise in more general open sys-
tems settings simply due to forcing the resulting equation to work outside the domain
of applicability of the approximations taken. If these issues can be solved by properly
accounting for memory effects then this would make the open system framework more
reliable, robust and more widely applicable for making physical predictions.
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Part IV

Modest holography
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Chapter 7

Modest holography in asymptotically
flat spacetimes

「届かなくていい手紙なんてないですよ」
There is no such thing as a letter that deserves to go undelivered.

ヴァイオレットエバガーデン、「ヴァイオレットエバガーデン」
Violet Evergarden, Violet Evergarden

In general relativity, more often than not any reasonable observers are located far
away from any astrophysical objects. Thus in many situations one can approximate
observers as essentially at infinity. This is especially evident in the detection of elec-
tromagnetic and gravitational radiation from some astrophysical sources. At the same
time, electromagnetic and gravitational radiations travel along null geodesics, thus they
will reach future null infinity I +. No observers can be exactly at I +, but for many prac-
tical calculations one can approximate them to be “close” to null infinity to detect these
radiations. Therefore, physics at null infinity remains very relevant for studying what
faraway observers can see.

One less well-known but nonetheless remarkable result in algebraic quantum field
theory (AQFT) is that there is a form of bulk-to-boundary correspondence between mass-
less QFT living in the bulk geometry and massless QFT living in its null boundary
[40, 228–230]. In the case of asymptotically simple spacetimes (i.e., without horizons),
the null boundary is simply null infinity, while for Schwarzschild geometry this will be
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the union of the Killing horizon and null infinity. This provides a form of holography
between the algebra of observables and states of two scalar field theories. However,
this is arguably less attractive compared to the holographic duality provided by Anti-de
Sitter/Conformal Field Theory (AdS/CFT) correspondence [231–233] (see, e.g., [234–
238] and references therein for non-exhaustive list of this very vast research program).
There, the CFT can be very strongly coupled and it can be used to construct directly the
bulk asymptotically AdS geometry. The flat holography presented above is really about
reconstruction of correlators of the bulk non-interacting QFT from the correlators of an-
other non-interacting QFT at the boundary. As such, they give us a very different and
modest kind of holography, as was already pointed out in [40].

In this chapter (lifted from our work in [36, 37]1), we will show that we can do better
by actually reconstructing the metric of the bulk geometry directly from the boundary
correlators (the smeared n-point functions). Our results are inspired from the work of
Saravani, Aslanbeigi, and Kempf [239, 240], where they reconstructed the bulk met-
ric from bulk scalar propagators (the Feynman propagator), thus one should be able
to holographically exploit the bulk-to-boundary correspondence. In [40, 228–230] the
correspondence is naturally given in terms of the (smeared) Wightman two-point func-
tions. One would like to replace the Feynman propagator with the Wightman function.
Indeed, the metric reconstruction from bulk Wightman two-point functions, exploiting
the Hadamard property directly, was very recently given in [241] in the context of the
UDW model. By augmenting the bulk-to-boundary correspondence in [40, 228–230]
with the metric reconstruction scheme in [239–241], replacing the bulk propagator with
the boundary correlation functions, we will be able to establish a form of holographic
bulk reconstruction in asymptotically flat spacetimes.

At the core of this result is the fact that the Hadamard property of the states in the
bulk is encoded non-trivially into the boundary correlators. Recall that physically rea-
sonable states are required to be Hadamard states [42, 58, 59], which have the property
that the short-distance (UV) behaviour of the correlation functions is dominated by the
geodesic distance between two nearby points (typically written in terms of Synge world
functions). Therefore, what really happens in the metric reconstruction is the ability to
“invert” the correlators between nearby points and use that to extract the approximate
metric components. Wewill show this reconstruction usingMinkowski and Friedmann-
Robertson-Walker (FRW) spacetimes. We will refer to this version of bulk-to-boundary
correspondence as “modest holography”. What is yet obvious at this point is the role of
the bulk causal propagator: we will see that it is the core ingredient that “propagates”

1Ref. [37] is a shortened version for the Gravity Research Foundation (GRF) Essay Competition 2022.
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bulk quantities to the null boundary.
We should emphasize what we are not doing in this chapter. We do not claim that we

can reconstruct all asymptotically flat spacetimes purely from I +, and certainly not the
maximal analytic extensions in general. The modest holography works as far as there
is enough “Cauchy data” at I + for the reconstruction. For example, if we have a black
hole with future horizon H +, observers near I + ∪ H + can at most reconstruct the
metric holographically in the exterior of the black hole. The reason is simply that there is
not enough Cauchy data to reconstruct the interior using this method. In some cases
one may need to include timelike infinity (even for massless fields) to have enough
Cauchy data [242]. Note also that violation of strong Huygens’ principle in generic
curved spacetimes means that massless field causal propagators can have timelike sup-
ports [243, 244]. In this respect, our bulk reconstruction construction is closer to that
of Hamilton-Kabat-Lifschytz-Lowe (HKLL) construction in AdS/CFT [245–247]. What
we propose here is that the bulk-to-boundary correspondence proposed in [40, 228–230],
which was only between bulk and boundary correlators, can (and perhaps should) be
promoted to an actual holographic reconstruction of the bulk geometry.

We point out that our results are only guaranteed in (3+1)-dimensional asymptoti-
cally flat spacetimes, where the asymptotic symmetry group is the Bondi-Metzner-Sachs
(BMS) group [248, 249]. In higher dimensions this may not be the case and it has been
debated in the literature as to when the BMS group remains the asymptotic symme-
try group (see, e.g., [250–252]). This is closely tied to the existence of the gravitational
memory effect. We are not aware of any analogous bulk-to-boundary correspondence
in higher dimensions. Note that this is highly non-trivial: it has to do with the fact that
the Coulombic and radiative parts of the gravitational field fall off like r3−D and r1−D/2

respectively near I , and they are only equal in spacetime dimension D = 4. It is also
worth mentioning that there is a much more extensive description of algebraic frame-
work for fields of various spins andmasses in the context of S-matrix formalism is given
very recently in [253], which shares similar language with what we do here.

This chapter is organized as follows. In Section 7.1 we briefly review the algebraic
framework for real scalar QFT living on null infinity. In Section 7.2 we present an ex-
plicit calculation for the holographic reconstruction of bulk correlators from boundary
correlators and show how to construct the bulkmetric. In Section 7.3 we discuss the con-
nection with large-r expansion of the bulk fields. In Section 7.4 we discuss our results
and outlook for further investigations.

Conventions. In order to match both the physics and the mathematics literature with-
out altering each other’s conventions too much, we will make the following compro-
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mises. Inmost placeswe follow “physicist’s convention”, writingHermitian conjugation
as A† and complex conjugation as B∗. There are three exceptions using “mathematician’s
convention”: (1) C∗-algebra in Section 7.1, where ∗ here really means (Hermitian) ad-
joint/Hermitian conjugation (2) complex conjugate Hilbert space H in Section 7.1, and
(3) complex stereographic coordinates (z, z) in Appendix E, where complex conjugation
is denoted by a bar.

7.1 Scalar QFT on I +

The algebraic framework for scalar field theory in the bulk but otherwise arbitrary (glob-
ally hyperbolic) curved spacetimes has been given in Chapter 2. In this section our goal
is to review the construction of scalar field quantization living on I +. This necessarily
requires us to restrict our attention to massless scalar fields since solutions to the mas-
sive Klein-Gordon equation do not have support at I . Furthermore, we require that
the field is conformally coupled to gravity in order to exploit good properties associated
with Weyl rescaling of the bulk metric. Since our results are only guaranteed for (3 + 1)
dimensions, in what follows the real scalar field obeying Eq. (2.1) will be taken to have
m = 0 and ξ = 1/6.

There are two reasonswhy scalar QFT onI + necessarily requires separate treatment.
First, viewing I + as the conformal boundary of M, null infinity is a (codimension-1)
null surfacewith degeneratemetric (i.e., signature (0,+,+)). Second, the scalarQFThas
no equation of motion at I +. Clarifying how this works is one of the main goals of this
section. We will also connect how the AQFT framework relates to the more pedestrian
(but perhaps more natural) approach used in asymptotic quantization [252], where one
quantizes a bulk field theory and then performs a “near-I + expansion” to obtain the
corresponding boundary field theory.

It is worth noting in advance that because the scalar field theory at I + has no equa-
tion of motion (such a field is called a generalized free field), it is essential that one exploits
the symplectic structure available for the theory to obtain the quantization at the bound-
ary. This is why in Chapter 2 we defined the bulk scalar field as being symplectically-
smeared field operator ϕ̂( f ) = σ(E f , ϕ̂), since the bulk-to-boundary correspondence
can be regarded as a compatibility between the symplectic structures of the bulk and
the boundary. One of the main ingredients that connects these structures is precisely
the causal propagator E of the scalar theory in the bulk geometry M.
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7.1.1 Geometry of null infinity

In order to set the stage, let us set up and review a few relevant definitions, in particular
the notion of asymptotic flatness. We follow the rigorous definition in [230] and explain
what the conditions mean in practice [254].

Let (M, gab) be a globally hyperbolic manifold, which we call the physical spacetime.
We say that (M, gab) is asymptotically flat with timelike infinity i+ if there exists an unphysi-
cal spacetime (M̃, g̃ab)with a preferred point i+ ∈ M̃, a smooth embedding F : M → M̃
(so that M can be viewed as embedded submanifold of M̃), such that

(a) The causal past of i+, denoted J−(i+), is a closed subset of M̃ such that M =

J−(i+) \ ∂J−(i+). The set I + ⊂ M̃ is called future null infinity which is topo-
logically R × S2;

(b) There exists a smooth function Ω > 0 on M̃, such that Ω|I + = 0, dΩ|I + 6= 0, and

F∗(Ω−2 g̃ab) = gab , (7.1)

typically written as g̃ab = Ω2gab. In the standard physics terminology, Eq. (7.1)
is known as Weyl rescaling2, typically written as g̃ab = Ω2gab, and Ω called the
conformal factor [254]. At i+, we have ∇̃a∇̃bΩ = −2g̃ab where ∇̃ is the Levi-Civita
connection with respect to the unphysical metric g̃ab;

(c) Defining na := ∇̃aΩ, there exists a smooth positive function λ supported at least
in the neighbourhood of I + such that ∇̃a(λ4na)|I + = 0 and the integral curves of
λ−1na are complete on I +.

(d) The physical stress-energy tensor Tab sourcing the Einstein field equation Gab =

8πGTab obeys the condition T̃ab = Ω−2Tab,3 where T̃ab is smooth on M̃ and I +.
Note that for vacuum solutions this condition is redundant.

2In [50] it is called conformal transformation, while angle-preserving diffeomorphism is called conformal
isometry. In high energy physics and AdS/CFT, conformal transformation often refers to angle-preserving
diffeomorphism.

3This condition formalizes the fact that to be asymptotically flat the matter fields need to decay. For
example, even if we treat cosmological constant as the stress-energy tensor (i.e., Tab = −Λgab) instead of
being a true cosmological constant, the spacetime is still not asymptotically flat.
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The four conditions mainly say the following: Condition (a) says that M lies in the
causal past of its (future) boundary ∂M = I + ∪ {i+}, which is manifest when we
draw Penrose diagrams; Condition (b) says that I + is the conformal boundary of M
and the conditions on Ω are technical “price” for bringing infinity into an actual bound-
ary; Conditions (c) and (d) say that I + is a null hypersurface with normal na and that
Einstein equations are approximately vacuum at I + [254]. Note that the technical con-
dition ∇̃a(λ4na) = 0 is the statement that we can find null generators of I + that are
divergence-free [255]. This amounts to choosing the Bondi condition ∇̃anb = 0 and
implies nana = O(Ω−2) [254].

We can now state the properties of (future) null infinity I + that we are interested in
[41, 50]:

(a) Since I + is a null hypersurface of M̃ diffeomorphic to R × S2, there exists an
open neighbourhood U containing I + and a coordinate system (Ω, u, xA) such
that xA = (θ, φ) defines standard coordinates of the unit two-sphere, u is an affine
parameter along the null geodesic of the generators of I +. In this chart, I + is
defined by the locus Ω = 0 and hence the metric reads

h := g
∣∣
I + = (dΩ ⊗ du + du ⊗ dΩ) + γS2 , (7.2)

where γS2 is the induced metric of λ on S2, i.e.,

γS2 = dθ ⊗ dθ + sin2 θ dφ ⊗ dφ . (7.3)

The chart (U, (Ω, u, xA)) is called the Bondi chart.

(b) There exists a distinguished infinite-dimensional subgroupBMS4(I
+) ⊂ Diff(I +),

called theBondi-Metzner-Sachs (BMS) group,which leaves invariant themetric (7.2).
This group is the semidirect product SL(2, C)⋉ C∞(S2). This is exactly the same
group that preserves asymptotic symmetries of the physical spacetime (M, gab)
[256] (see Appendix E for more details).

For completeness, we make a passing remark that this construction could have been
generalized to other null surfaces, such as Killing horizons in black hole and cosmo-
logical spacetimes. The idea is to consider more generally the following ingredients
[41, 228, 229]:

(a) Let N ⊂ M̃ be a null hypersurface diffeomorphic to R × Ξ with Ξ a spacelike
submanifold of M. We can define the analogous Bondi chart (Ω, λ, xA) on M̃ so
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that on open neighbourhood V containing N , the hypersurface is the locus Ω = 0
so that (λ, xA) defines a coordinate system forN . As before, we require dΩ|N 6= 0.

(b) The metric restricted to N takes analogous form to Eq. (7.2):

h = C2(dΩ ⊗ dλ + dλ ⊗ dΩ + γΞ) , (7.4)

where C 6= 0 is real. As before λ will define an affine parameter for null generators
of N .

In this sense, the structure of null infinity and Killing horizons are very similar. For
example, the future horizon H + of Schwarzschild geometry is associated with λ = U
where U is one of the the Kruskal-Szekeres coordinates, with C 6= 1 (unlike the case
for I +). There is some extra care that one needs to be aware of for metrics that con-
tain horizons, but in this chapter we will not consider these cases and leave it for future
investigation. We direct interested readers regarding the same constructions involving
horizons to [41, 229].

7.1.2 Quantization at null infinity

Next, we try to construct scalar field theory at I +. The main subtlety compared to
standard bulk scalar theory is that I + is a null submanifold with degenerate metric,
and that we should consider the equivalence classes of the triple [(I +, h, n)], where
(I +, h, n) ∼ (I +, h′, n′) if they are related by a transformation in BMS4(I

+). This
latter condition is the statement that the BMS4(I

+) is an asymptotic symmetry of all
asymptotically flat spacetimes and I + is a universal structure of these spacetimes [254]
(see Appendix E). For these reasons, the scalar field theory at null infinity will “look”
different from the bulk theory, but procedurally the construction proceeds the sameway,
as we will show.

First, fix a Bondi frame (I +, h, n). We define a real vector space of “solutions”4 [230]

SolR(I +) := {ψ ∈ C∞(I +) : ψ, ∂uψ ∈ L2(I +, dµ)} . (7.5)

where dµ = du dγS2 is the integration measure, dγS2 the standard volume form on
S2, and L2(I +, dµ) is the space of square-integrable functions with respect to dµ. This

4Although there is no equation of motion at I +, we denote the real vector space SolR(I +) this way
because as we will see it is related to the space of solutions SolR(M) in the bulk.
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space becomes a symplectic vector space if we give it a symplectic form σI : SolR(I +)×
SolR(I +) → R with

σI (ψ1, ψ2) =
∫

I
dµ (ψ1∂uψ2 − ψ2∂uψ1) . (7.6)

The symplectic structure is independent of the choice of Bondi frames [41] (we repro-
duce the essential features to demonstrate this in Appendix E). We can then define a
“Klein-Gordon” inner product

(ψ1, ψ2)I := iσI (ψ∗
1 , ψ2) . (7.7)

Recall from Chapter 2 that in order to obtain the quantization for the bulk scalar the-
ory, we needed the algebra of observables A(M) (or W(M)) and an algebraic state
ω. For quasifree states ωµ defined by a real symmetric bilinear inner product µ on
SolR(M), the characterization of ωµ depends on the one-particle structure (K,H). The
Hilbert space H is essentially the “positive frequency subspace” of the complexified solu-
tion space SolC(M), with inner product given by Klein-Gordon inner product extended
to the complex domain. As wewill now see, the definition of (SolR(I +), σI ) essentially
lets us carry the same procedure almost verbatim.

7.1.3 Boundary algebra of observables

Similar to the bulk algebra of observables, we have the boundary algebra of observables
A(I +) whose elements are generated by unit 1 and the smeared boundary field operator
φ̂(ψ), where ψ ∈ C∞

0 (I +) . However, there are several structural differences. First, there
is no equation of motion at I +, so A(I +) is defined differently from A(M). Second,
the metric is degenerate at I + and hence the smeared field operator φ̂(ψ) has to be
defined carefully.

That said, we can still work directlywith theWeyl algebra corresponding to the “expo-
nentiated” version of A(I +), denoted W(I +), where many things are better behaved.
This is because given a symplectic vector space (SolR(I +), σI ), there exists a complex
C∗-algebra generated by elements of SolR(I +) [44]. The Weyl algebra W(I +) is gen-
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erated by 1 and W(ψ) for ψ ∈ SolR(I +). The Weyl relations are5

W(ψ)† = W(−ψ) , (7.8a)
W(ψ)W(ψ′) = e−iσI (ψ,ψ′)/2W(ψ + ψ′) . (7.8b)

This Weyl algebra is unique up to (isometric) ∗-isomorphism [44]. The algebraW(I +)
contains a unit element associated with ψ = 0, and W(ψ) is uniquely specified by ψ.
Moreover, since there is no equation of motion on I +, there is no causal propagator and
hence the locality condition (often called microcausality in QFT) is not implemented by
the causal propagator; instead, this can be imposed using the definition of the symplectic
form σI , given by

[W(ψ), W(ψ′)] = 0 supp(ψ) ∩ supp(ψ′) = ∅ . (7.9)

This is analogous to the microcausality relation in the bulk theory (c.f. Eq. (2.11)).

7.1.4 Quasifree state at I +

Now, let us construct a one-particle structure for (K, h) for SolR(I +). We will follow
closely the construction in [41], focusing on accessibility for physics-oriented readers.

First, define K : SolR(I +) → h to be the positive-frequency projector given by

(Kψ)(u, xA) =
1√
2π

∫ ∞

0
dω e−iωuψ̃(ω, xA) , (7.10)

ψ̃(ω, xA) =
1√
2π

∫ ∞

−∞
du eiωuψ̃(u, xA) . (7.11)

That is, ψ̃ is the u-domain Fourier transform of ψ and hence KSolR(I +) + iKSolR(I +)
is dense in SolC(I +). The space h is a Hilbert space with inner product defined as
restriction to “Klein-Gordon” inner product Eq. (7.7)

〈Kψ1, Kψ2〉h := (Kψ1, Kψ2)I . (7.12)

It was shown in [41] that there exists a BMS4(I
+)-invariant quasifree and regular algebraic

5We will not distinguish the notation of the elements of the Weyl algebra in the bulk and in the bound-
ary and useW(·) for the Weyl algebra and W(·) as its elements. The bulk elements will always be written
as W(E f ) with causal propagator E, while the boundary element will be written as W(ψ).
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state (see also [42] for definition of regular state) ωI : W(I +) → C such that

ωI (W(ψ)) = e−µI (ψ,ψ)/2 , (7.13)

where µI : SolR(I +)× SolR(I +) → R is a real bilinear inner product given by

µI (ψ1, ψ2) = Re〈Kψ1, Kψ1〉h . (7.14)

Notice that up to this point, the procedure exactly parallels that of the bulk scalar field
theory.

In fact, we can be very explicit about this algebraic state. First, since we already have
the algebraic state ωI and theWeyl algebra of observablesW(I +), we can use the GNS
theorem to construct the Fock representation of the boundary field. Recalling that in the
GNS representation we can take derivatives of the representation of the Weyl algebra
(c.f. Eq. (2.18)), we can calculate the smeared Wightman two-point function at I + [230]:

WI (ψ1, ψ2) := ωI (φ̂(ψ1)φ̂(ψ2))

= − 1
π

lim
ϵ→0

∫
dγS2dudu′ ψ1(u, xA)ψ2(u′, xA)

(u − u′ − iϵ)2 . (7.15)

The definition of ωI (φ̂(ψ1)φ̂(ψ2)) requires that we define what “boundary field” φ̂(ψ)
with boundary smearing function ψ means. Wewill clarify this point in Section 7.3. Note
that the integral is taken over the same angular direction xA for ψ1 and ψ2. Eq. (7.15) is
the main result we will use for our holographic reconstruction.

7.1.5 Modest holography: bulk-to-boundary correspondence

At this point, the Weyl algebras W(M) and W(I +) as well as the space of solutions
SolR(M) and SolR(I +) are a priori unrelated, hence so are the two scalar field theories.
Indeed, it is not automatic that one can establish some sort of holographic principle or
bulk-to-boundary correspondence between them. The reason is because for this to work,
we need to “project” bulk solutions to I +, i.e., we need the existence of a projection map
Γ : SolR(M) → SolR(I +). This is necessary in order for an injective ∗-homomorphism
i : W(M) → W(I +) to exist and build the bulk-to-boundary correspondence.

The celebrated result in [40] shows that the boundary Weyl algebra is in fact very
natural: this is because one can prove that if there exists a projectionmap Γ : SolR(M) →
SolR(I +) such that
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(1) The bulk solutions projected to I + lie in SolR(I +), i.e., ΓSolR(M) ⊂ SolR(I +);

(2) The symplectic forms are compatible with Γ, i.e., σ(ϕ1, ϕ2) = σI (Γϕ1, Γϕ2);

then the bulk algebra W(M) can be identified with a C∗-subalgebra of W(I +), in that
there exists an isometric ∗-isomorphism ι : W(M) → ι(W(M)) ⊂ W(I +) such that

ι(W(E f )) = W(ΓE f ) ∈ W(I +) . (7.16)

Furthermore, (SolR(I +), σI ) is universal for all asymptotically flat spacetimesM. These
conditions guarantee that the Weyl algebras are compatible, i.e., the bulk scalar field in
M can be “holographically” projected to the boundary I + and defines a boundary
scalar field there.

The injective ∗-homomorphism ι : W(M) → W(I +) can be used to perform pull-
back on the algebraic state ωI . That is, the state ω := (ι∗ωI ) : W(M) → C is an
algebraic state on W(M), with the property [257]

ω(W(E f )) ≡ (ι∗ωI )(W(E f )) = ωI (W(ΓE f )) , (7.17)

in accordance with Eq. (7.16). This result is remarkable because (i) the BMS4(I
+)-

invariant state ωI isunique (in its folium), thus the algebraic state ι∗ωI is also unique [41];
(ii) the pullback state ω isHadamard and is invariant under all isometries of (M, gab) [258].
In the case when the bulk geometry is flat, ι∗ωI would define what we know as the
Poincaré-invariant Minkowski vacuum.

It is worth stressing that this construction relies on the existence of the projectionmap
Γ whose image lives entirely in SolR(I +). This assumption is not automatic, andwe can
think of three representative examples:

(i) In Schwarzschild spacetime, we also have Killing horizons H ±, thus I + alone is
not enough, we also need H + to build the correspondence [229].

(ii) In Friedmann-Robertson-Walker (FRW) spacetimes, we also have cosmological
horizons H ±

cosmo that play the role of null infinity I ± even if the spacetime is not
asymptotically flat [228]. Since the geometry is asymptotically de Sitter, it is im-
possible to build the correspondence this way for the entire de Sitter hyperboloid.
For matter- or radiation-dominated FRW models, which are “almost” asymptoti-
cally flat in that their conformal completions have null conformal boundary6, it is
still possible that some information is lost into timelike infinity i±.

6This is related to a very subtle problem that became clearer only very recently: the problem is that the
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(iii) In spacetimes containing ergoregions7, it is possible for some bulk solutions to
get projected into future timelike infinity i+ instead of I +, essentially due to the
asymptotic time-translation Killing field becoming spacelike.

In all these cases, the key observation is that it is not automatic that if E f ∈ SolR(M) then
it can be projected properly to SolR(I +): more concretely, in terms of Bondi coordinates,
the “conformally rescaled” boundary data

ψ f := lim
r→∞

u const.
Ω−1E f (7.18)

may not be an element of SolR(I +). It is in this sense that in general null infinity is
not a good initial data surface [242]. Even for globally hyperbolic spacetimes without
horizons, one typically needs to augment I + with future timelike infinity i+ to make
this work (also see [253] and references therein). In what follows we will work with
the assumption that the spacetime is one where the bulk-to-boundary correspondence
(7.16) holds.

7.2 Holographic reconstruction of the bulk metric

The injective ∗-homomorphism ι allowed us to define the bulk algebraic state ω via the
pullback of algebraic state ωI in Eq. (7.17). We also know that the elements of the Weyl
algebra are formally the “exponentiated” version of the smeared field operator ϕ( f ).
Therefore, in order for us to say that we can perform holographic reconstruction, we
require that for f , g ∈ C∞

0 (M), we can construct the smeared Wightman function in
the bulk in the sense given in Chapter 2 such that it agrees with the boundary via the
relation:

W( f , g) = WI (ψ f , ψg) , (7.19)

where ψ f = ΓE f and ψg = ΓEg.
The holographic reconstruction is complete once wemodify the result from Saravani,

Aslanbeigi and Kempf [239, 240] to reconstruct the metric from W( f , g) instead of the

stress-energy tensor does not decay fast enough to be asymptotically flat and the asymptotic symmetry
group is BMS-like [259].

7We thank Gerardo García-Moreno for pointing this out.
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Feynman propagator (or equivalently, following the analogous proposal in [241])8. The
idea is that one can reconstruct the metric formally by computing in (3+1) dimensions
the “coincidence limit” of the inverse Wightman function

gµν(x) = − 1
8π2 lim

x′→x
∂µ∂ν′W(x, x′)−1 . (7.20)

Notice that this is not surprising (in hindsight!) because Green’s functions, propagators
and kernels (such as the Wightman functions) know about the metric function through
the Klein-Gordon equation. In particular, in the case of Wightman functions, the re-
quirement that the states are Hadamard means that for closely separated events x, y the
Wightman function is of the form [11]

WM(x, y) = U(x, y)
8π2σϵ(x, y) + V(x, y) log σϵ(x, y) + Z(x, y) , (7.21)

where U, V, Z are regular smooth functions and U → 1 as x → y. The bi-scalar σϵ(x, y)
is the Synge world function with iϵ prescription, i.e.,

σ(x, y) = 1
2
(τy − τx)

∫
γ

gµν(λ)γ̇
µ(λ)γ̇ν(λ)dλ , (7.22a)

σϵ(x, y) = σ(x, y) + 2iϵ(T(x)− T(y)) + ϵ2 , (7.22b)

where σ(x, y) ≡ σϵ=0(x, y) is the Syngeworld function, T is a global time function (which
exists by virtue of global hyperbolicity of M) and γ(τ) is a geodesic curve with affine
parameter τ with γ(τx) = x and γ(τy) = y. Schematically, Eq. (7.20) comes from the
fact that when y ≈ x we have ∆x = x − y ≈ 0 and

WM(x, y)−1 ≈ 8π2σ(x, y) ∼ 4π2gµν(x)∆xµ∆xν +O(∆x2) . (7.23)

Our calculations in the previous sections treat the Wightman two-point functions as
smeared two-point functions. In practice this means that the expression in Eq. (7.20)
should be computed as a difference equation centred around the peak of the smearing
functions. Furthermore, the smearing implies that there is a “resolution limit” directly
defined by the supports of the smearing functions f , g. Physicallywe can interpret this as
the statement that vacuumnoise prevents us from reconstructing themetric with infinite

8There the focus was on measurement of metric components using Unruh-DeWitt detectors that can
probe the correlators.
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accuracy. Taking this into account, we calculate the metric using finite differencing: let
f , g to be sharply peaked functions with characteristic widths δ localized around x and
y respectively9. The finite-difference approximation of ∂µ∂ν′W(x, x′)−1 applied to the
reciprocal of the Wightman function reads

∂µ∂ν′W(x, x′)−1

≈ W(x + ϵµ, x′ + ϵν′)−1 − W(x + ϵµ, x′)−1

δ2 − W(x, x′ + ϵν′)−1 − W(x, x′)−1

δ2 . (7.24)

Here the vector ϵ := ϵµ∂µ points in the direction of coordinate basis ∂µ with very small
length

√
|ϵµϵµ| = δ � 1. A change of variable (shift by ϵµ) and smearing theWightman

functions before taking its reciprocal allows us to write the metric approximation as

gµν(x) ≈ − 1
8π2δ2

[
W( fϵ, gϵ)

−1 − W( fϵ, g)−1 − W( f , gϵ)
−1 + W( f , g)−1

]
, (7.25)

where fϵ(x) = f (x − ϵ) and gϵ(x′) = g(x′ − ϵ′). The approximation improves with
smaller δ but this is bounded below by the resolution provided by the characteristic
widths of f , g. Note that the spacetime smearing functions must be properly normalized
to reproduce the metric, as we will see in the examples later.

For our purposes, however, wewant tomake this reconstructionwork from the bound-
ary. So what we would like to calculate is WI (ψ1, ψ2) in Eq. (7.15), use that to recon-
struct W( f , g) using bulk-to-boundary correspondence (7.19), and then reconstruct the
metric by the finite difference scheme (7.24). From Eq. (7.15), we see that what really
remains to be done is to compute Γ : SolR(M) → SolR(I +). When this projection map
exists, its action is quite simple in the Bondi chart: it is given by10

ψ f ≡ (ψ f )(u, xA) = lim
r→∞

(Ω−1E f )(u, r, xA) , (7.26)

where Ω = 1/r.
The final step to obtain the holographic reconstruction is to combine modest hologra-

phy with the metric reconstruction using bulk correlators —crucially, the state induced
9We can take f , g to be Gaussian as an approximation since the tails quickly become negligible and

are effectively compactly supported and δ measures the width of the Gaussian. This allows for more
controlled calculations in what follows.

10In standard language of asymptotic symmetries literature, ψ f constitutes a boundary data for the bulk
scalar field theory [256].
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in the bulk by (7.17) has the Hadamard property [41]. That is, using Eq. (7.17) and
(7.25) we obtain

gµν(x) ≈
−1

8π2δ2

[
WI (ψ fϵ

, ψgϵ)
−1 − WI (ψ fϵ

, ψg)
−1 − WI (ψ f , ψgϵ)

−1 + WI (ψ f , ψg)
−1
]

,

(7.27)

where ψ fϵ
= Γ(E fϵ). Eq. (7.27) tells us how to reconstruct the bulk metric from the

boundaryWightman function of the scalar field atI +. This is themain resultwe sought.
In practice, the bottleneck of the holographic reconstruction is the “classical” compo-

nent, namely the causal propagator E that is constructed from the classical wave equa-
tion (2.1). The holographic reconstruction is as simple or as hard as the computability
of the causal propagator, its action on compactly supported test function f , and all the
integrals that come with it.

In this chapter we will restrict our attention to computing the bulk and boundary
correlators for two simple examples, which are transparent and manageable yet phys-
ically relevant: (1) Minkowski space, and (2) a Friedmann-Robertson-Walker (FRW)
universe conformally related to Minkowski space. For Minkowski space, we will show
how the bulk metric can be reconstructed from its boundary explicitly, since there is ex-
act closed-form expression for the bulk/boundary correlator11. For the FRW case, we
will content ourselves with showing that the bulk-to-boundary reconstruction works by
showing that the boundary and bulk correlators agree since the remaining obstruction
is merely numerical in nature.

7.2.1 Example 1: Minkowski spacetime

For the metric reconstruction, it is useful to first give the Penrose diagram as shown in
Figure 7.1. Due to spherical symmetry, we can consider the holographic reconstruc-
tion to work if we can reconstruct the bulk Wightman function for three types of pair of
events: one for timelike pairs, one for null pairs, and one for spacelike pairs. For conve-
nience, let us fix the following four points in Bondi coordinates (t, r, xA), setting xA = 0

11This is much harder task than recovering the bulkmetric from its bulk unsmeared correlator, as done in
[239, 241], which can be done quite easily, as wewill see later. The problem is that the unsmeared boundary
correlator is “universal” (see Section 7.3).
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Figure 7.1: Penrose diagram for the holographic reconstruction in Minkowski space.
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by spherical symmetry:

O = (0, 0, 0, 0) , A = (α, 0, 0, 0) ,
B = (0, α, 0, 0) , C = (−α, 0, 0, 0) .

(7.28)

Without loss of generality we can consider the timelike pair to be OA, the spacelike pair
to be OB, and the null pair to be BC (essentially due to translational and rotational in-
variance).

For simplicity, let us consider four distinct spacetime smearing functions

f j ≡ f j(x) = χ

(
t − tj

Tj

)
δ3(x − xj) , (7.29)

where χ(τ) is chosen to be a smooth function with a peak centred at τ = 0, j = O,A,B,C
labels the points in the bulk geometry for which f j is localized, Tj labels the characteristic
timescale of interaction. Thus the spacetime smearing f j is very localized in space and
slightly smeared in time. For concrete calculations, let us fix the switching function to
be a normalized Gaussian, so that12

χj(t) := χ

(
t − tj

Tj

)
=

1√
πT2

j

e−(t−tj)
2/T2

j , (7.30)

and for simplicity we set Tj = T for all j. For the time being we set λ = 1. In flat space,
this choice enables us to compute the smeared Wightman function in closed form:

W( fi, f j) =
1√

128π3T2
∣∣∆xij

∣∣ e− |∆xij|2+(∆tij)
2

T2

×
[

e
(|∆xij|+∆tij)

2

2T2

(
erfi

[∣∣∆xij
∣∣− ∆tij√
2T

]
+ i

)

+ e
(|∆xij|−∆tij)2

2T2

(
erfi

[∣∣∆xij
∣∣+ ∆tij√
2T

]
− i

)]
, (7.31)

12Note that the Gaussian switching renders supp( f j) 6∈ C∞
0 (M), given any open neighbourhood Oj of

Σtj we can always choose T small enough so that supp( f j) centred at t = tj and x = xj is for all practical
purposes compactly supported in Oj.

167



where ∆tij = tj − ti and ∆xij = |xj − xi|.
In order to calculate the boundary Wightman function, we need the causal propaga-

tor. The causal propagator in flat space is given by

E(x, y) = δ(∆t + |∆x|)− δ(∆t − |∆x|)
4π|∆x| (7.32)

where ∆t = t − t′ and ∆x = |x− y|. Using the modified null coordinates (7.34), we get

E f j(x) =
∫

d4y E(x, y) f j(y) =
χ
(

t−tj+|x−xj|
T

)
− χ

(
t−tj−|x−xj|

T

)
4π|x − xj|

. (7.33)

We can introduce a “modified null variables” uj, vj defined by

uj := t − tj − |x − xj| ,

vj := t − tj + |x − xj| ,
(7.34)

so that E f j takes a simple form

E f j(x) =
1

4π|x − xj|

[
χ

(
vj

T

)
− χ

(
uj

T

)]
. (7.35)

The boundary data associated with E f j, denoted by φj, is is the projection of E f j to I +

via the projection map Γ. This is done by taking the limit r = |x| → ∞ while fixing
u = t− r constant (or v = t+ r → ∞ while fixing u constant in double-null coordinates),
so that

ΓE f = lim
r→∞

Ω−1E f , Ω =
1
r

. (7.36)

In this limit, the modified null variables become

uj → u − (tj − |xj| cos θj) ,

vj → v − (tj + |xj| cos θj) ,
(7.37)

where θj is the angle between x and xj.
The modest holography amounts to the claim that WI (φi, φj) for Gaussian smearing

is also given by Eq. (7.31). Let us see how this works concretely using examples. For
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brevity we will compute just one timelike pair and one spacelike pair explicitly, and one
can check that it will work in general.

Timelike pair OA

For point O, we have sO = 0 and xO = 0, hence

E fO =
1

4πr

[
χ
( v

T

)
− χ

( u
T

)]
. (7.38)

It follows that the boundary data is

φO = − 1
4π

χ
( u

T

)
. (7.39)

For point A, we have

E fA =
1

4πr

[
χ

(
v − α

T

)
− χ

(
u − α

T

)]
, (7.40)

The boundary data associated with E fO reads

φA = − 1
4π

χ(u − α) . (7.41)

Using Eq. (7.19) with boundary smearing function φO, φA, we get

WI (φO, φA) = − 1
4π2 lim

ϵ→0+

∫
du du′ χ( u

T )χ(
u′−α

T )

(u − u′ − iϵ)2 = W( fO, fA) . (7.42)

The second equality follows from the fact that the bulk unsmeared Wightman function
in flat space reads

W(x, y) = − 1
4π2

1
(t − t′ − iϵ)2 − |x − y|2 , (7.43)

thus the integral is (up to change of variable u → t) exactly the bulk smearedWightman
function in Eq. (7.31).
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Figure 7.2: Real part of W( fO, fB) as a function of α/T, where α = |xO − xB|. The
imaginary part vanishes since OB are spacelike separated.

Case 2: spacelike pair OB

For point B, we have tB = 0, xB = (α, 0, 0), and near I + the modified null variables are

uj = u + α cos θB , vj = v − α cos θB . (7.44)

The boundary data is

φB = − 1
4π

χ

(
u + α cos θB

T

)
. (7.45)

The boundary Wightman function therefore reads

WI (φO, φB) = − 1
8π2 lim

ϵ→0+

∫ π

0
dθB sin θB

∫
du du′ χ( u

T )χ(
u′+α cos θB

T )

(u − u′ − iϵ)2 . (7.46)

Using a change of variable ũ′ = u′ + α cos θB and integrating over θB first, we can rewrite
this into a suggestive form

WI (φO, φB) = − 1
4π2 lim

ϵ→0+

∫ du du′ χ( u
T )χ(

u′
T )

(u − u′ − iϵ)2 − |α|2 . (7.47)
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Let us first check this numerically (since in the FRW case we have to do this), as shown
in Figure 7.2. Note that since the spacetime smearing is real and O is spacelike separated
from B, hence Im[W( fO, fB)] = 0. Thus for a spacelike pair of points we do get

WI (φO, φB) = W( fO, fB) . (7.48)

We could obtain the exact expression using the fact that Eq. (7.47) has exactly the same
esxpression as the smeared bulk Wightman function W( fO, fB) if we replace t → u and
|x − y|2 = |α|2 in Eq. (7.43).

Let us also remark that the form in Eq. (7.47) is highly suggestive, since the same ex-
pression in Eq. (7.47) can be obtained by considering the final joint state of two Unruh-
DeWitt qubit detectors interacting with a massless scalar field at proper separation α
for small/zero detector energy gap (the “LAB” term in the joint detector density matrix;
see, e.g., [34, 77]). Therefore these boundary correlators are in principle measurable
by asymptotic observers who carry quantum-mechanical detectors. This is to be con-
trasted with the calculations done in, for instance, [260], since it is not obvious how the
correlators of the Bondi news tensor and Bondi mass can be measured in practice.

Bulk reconstruction using smeared Wightman functions

It remains to show how to reconstruct the metric in the bulk. We will content ourselves
with reconstructing gtt = −1 and gjj = 1 at the origin x = O since we have translational
invariance.

Due to modest holography, we have just seen that the bulk correlator W( f , g) (7.31)
is also the expression for boundary correlator WI (ψ f , ψg). Therefore our task is to simply
reconstruct the metric using (7.27). Through this prescription, the approximate expres-
sion for the metric component (denoted gδ,T

µν ) at finite T and δ are given by

gδ,T
tt (O) :=

T2
(

2
√

2Te
δ2

T2 F
(

δ√
2T

)
− πδ

[
1 + erfi

(
δ√
2T

)2
])

2δTe
δ2
T2
[

T − 2
√

2δF
(

δ√
2T

)]
+ πδ3

[
1 + erfi

(
δ√
2T

)2
] , (7.49)

gδ,T
jj (O) :=

T
√

2δF
(

δ√
2T

) − T2

δ2 . (7.50)

where F (z) is the Dawson function and erfi(z) = −i erf(iz) is defined from erf(z), the
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error function [111]. Now, keeping δ > 0 fixed but small for the finite difference scheme,
we have in the limit T → 0+

lim
T→0+

gδ,T
tt (O) = −1 , lim

T→0+
gδ,T

jj (O) = 1 . (7.51)

hence we recover the non-trivial component of the Minkowski metric. It is important to
note that the limits do not commute: we cannot, for instance, rescale ∆ := δ/T and take
∆ → 0. We need to keep δ finite or at least going to zero slower than T.

A remark is in order. If we allow ourselves to start from the unsmeared bulk Wight-
man function, we can easily reconstruct the metric according to [239, 240] because of the
argument at the beginning of Section 7.2 using the Hadamard form of the unsmeared
Wightman function (7.21). For example, using theWightman function (7.43), it is straight-
forward to see that

WM(x, x′)−1 = −4π2((t − t′)2 − (x − x′)2) (7.52)

and hence by taking derivatives with respect to x and x′ and dividing both sides by−8π2

we simply get gtt = −1 and gjj = 1 and gµν = 0 when µ 6= ν. However, for the boundary
correlator, we cannot quite do this because there is no “unsmeared” version that is in
the Hadamard form. We saw earlier in the calculation leading to Eq. (7.47) that for the
spacelike pairs the boundary correlator WI (φO, φB) may involve an additional angular
integral inside the boundary smearing functions after propagating the bulk smearing
functions fO, fB to I +. This reflects the universal nature of I +.

To summarize, our modest holographic reconstruction relies on two steps: (1) the
bulk-to-boundary correspondence between the bulk and boundary correlators; (2) re-
constructing the metric using the smeared boundary correlator. For Minkowski space,
Step (2) can be done exactly, which is given in Eq. (7.50). In the next example for
FRW spacetimes, Step 2 will be numerically difficult to compute, so we will content our-
selves with making sure Step 1 is achieved and Step 2 follows in analogous fashion to
Minkowski spacetime using prescription (7.27).

7.2.2 Example 2: FRW spacetime

The FRW universe with flat spatial section is given by the line element

ds2 = −dt2 + a(t)2(dr2 + r2dΩ2) (7.53)

172



Figure 7.3: Penrose diagram for the bulk-to-boundary reconstruction in FRW spacetime.
Left: spatially flat FRW geometry with zero cosmological constant and dust/radiation
matter content. Right: spatially flat FRW geometry with positive cosmological con-
stant describing Big Crunch (left red patch) or Big Bang (right green patch). Both the
past/future conformal infinity or initial/final singularity I ± are spacelike and Hcosmo
is the past/future cosmological horizon.
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where a(t) is the scale factor and the spatial section is written in spherical coordinates.
It is convenient to recast this metric into the conformally flat form by using conformal
time η =

∫ t dt′/a(t′), so that the metric reads

ds2 = a(η)2(−dη2 + dx2 + dy2 + dz2) . (7.54)

Here we have used the Cartesian coordinates for the spatial section, which is convenient
when computing the Wightman function. We will use the spherical coordinates when
we calculate the projection to the null boundary.

The bulk Wightman function is conformally related to the Minkowski one by the re-
lation [45]

WFRW(x, y) = a−1(ηx)WM(x, y)a−1(ηy) , (7.55)

where a(ηx) is the scale factor evaluated at point x. It follows that the unsmearedWight-
man function reads

WFRW(x, y) = − 1
4π2

a(ηx)−1a(ηy)−1

(∆η − iϵ)2 − |∆x|2 , (7.56)

where ∆η = ηx − ηy and ∆x = x − y. In what follows we will drop the subscript FRW
to remove clutter.

If we regard the spacetime smearing as being associated with observers prescribing
the interaction in comoving time t, then we can consider the similar pointlike function

f j(x) = χ

(
t(η)− tj

T

)
δ3(x − xj) , (7.57)

where now t(η) is written as a function of conformal time. The bulk smearedWightman
function is thus given by

W( fi, f j) = − 1
4π2 lim

ϵ→0

∫ dη dη′

a(η)−3a(η′)−3

χ(t(η)− ti)χ(t(η′)− tj)

(η − η′ − iϵ)2 − |∆xij|2
. (7.58)

As before, we need the causal propagator to find the boundary correlator. The causal
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propagator is obtained using the Weyl rescaling in Eq. (7.55), so that it reads

E(x, x′) = δ(∆η + |∆x|)− δ(∆η − |∆x|)
4π a(η)a(η′)|∆x| . (7.59)

We can then define a set of modified null coordinates

Uj = η − |x − xj| ,

Vj = η + |x − xj| .
(7.60)

It follows that

E f j(x) =
∫

d4y
√
−g E(x, y) f j(y) =

a(Vj)
3χ
(

t(Vj)−tj
T

)
− a(Uj)

3χ
(

t(Uj)−tj
T

)
4π a(η)|x − xj|

. (7.61)

The boundary data associated with E f j, denoted by φj, is the projection of E f j to I + via
the projection map Γ. In this limit, the modified null variables become

Uj → uj := u + |xj| cos θj ,

Vj → vj := v − |xj| cos θj ,
(7.62)

where θj is the angle between x and xj. More concretely, the projection map amounts to
rescaling by Ω−1 = ra(η), taking r = |x| → ∞ and keeping u = η − r fixed, i.e.,

ΓE f = lim
I +

ra(η)E f . (7.63)

From this we get

φj(u, xA) = −
a(uj)

3

4π
χ

(
t(uj)− tj

T

)
. (7.64)

In order to make explicit calculations, we need to use a concrete scale factor. For our
purposes, we are interested in the physically relevant scale factor a(t) associated with
the perfect fluid stress-energy tensor

Tµν = (ρ + p)uµuν + pgµν , (7.65)

where uµ is the four-velocity of the fluid, ρ and p are the energy density and pressure
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(as functions of only the comoving/conformal time). The fluid is assumed to obey the
barotropic equation of state p = (γ − 1)ρ, where 0 ≤ γ ≤ 2. The conservation law
∇µTµν = 0 implies that the evolution of ρ, p is constrained to obey

ρ̇

ρ + p
= −3

ȧ
a

. (7.66)

This implies, in particular, that

ρ =
ρ0

a3γ
(7.67)

where ρ0 is some constant. For a dust-filled universe, we have γ = 1 so ρ ∝ a−3 and for
a radiation-filled universe we have γ = 4/3 so ρ ∝ a−4. The value γ = 0 corresponds to
a de Sitter universe with cosmological constant Λ > 0 by setting Λ = ρ0 (see [261] for
more details on FRW geometry).

Under the above assumptions of the matter content in the bulk geometry, the corre-
sponding scale factors for these two classes of FRW spacetimes are given by

aγ(η) = (Hη)
2

3γ−2 , adS(η) = ± 1
Hη

, (7.68)

where H > 0 is a constant (in units of inverse time). The Penrose diagram for the respec-
tive classes of FRW geometries are shown in Figure 7.3. For concreteness, wewill restrict
our attention to (a) radiation-filled universe γ = 4/3 with a(η) = Hη and η > 0; (b)
a contracting de Sitter universe with a(η) = 1/(Hη) and η > 0. The reason we include
the de Sitter universe is to highlight one non-trivial aspect of this construction: that is,
even if the spacetime is asymptotically de Sitter and I + is spacelike, the cosmological
horizon Hcosmo shares analogous features13 as future null infinity I + for asymptotically
flat spacetimes [228].

As before, due to spherical symmetry we only need to attempt the reconstruction
of the bulk Wightman function for three types of pair of events, which we label by the
same points O,A,B,C. In the conformal coordinates (η, r, xA), setting xA = 0 by spherical
symmetry.

13It is important to note that the symmetry group of the horizon is distinct from the BMS group but a
careful treatment [228] shows that the cosmological horizon’s algebraic state ωHcosmo is invariant under
exactly these transformations.
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Figure 7.4: Real and imaginary parts of W( fO, fA) = WI (φO, φA) in FRW spacetime.
We pick HT = 0.2 and we plot against α = (tO − tA)/T. Top row: radiation-dominated
universe with a(η) = Hη and η > 0. Bottom row: de Sitter contracting universe with
a(η) = (Hη)−1 and η > 0.
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Timelike pairs OA

Let us take O = (η(tO), 0, 0, 0), A = (η(tA), 0, 0, 0), where tO and tA are some positive
constants. From Eq. (7.64), we have

φO(u, xA) = − a(u)3

4π
χ

(
t(u)− tO

T

)
, (7.69)

φA(u, xA) = − a(u)3

4π
χ

(
t(u)− tA

T

)
. (7.70)

and we define α = tA − tO. For radiation and de Sitter scale factors, the comoving time
t is given in terms of conformal time by

trad(η) =
Hη2

2
, η > 0 (7.71a)

tdS(η) = H−1 log(Hη) , η > 0 . (7.71b)

Now we can compute the boundary correlator

WI (φO, φA) = − 1
4π2 lim

ϵ→0+

∫
du du′ a(u)3a(u′)3 χ( t(u)

T )χ( t(u′)−α
T )

(u − u′ − iϵ)2 . (7.72)

The results are shown in Figure 7.4 for both the radiation-dominated universe and the
de Sitter contracting universe. We see that they clearly agree. However, observe that
χ(t(u)/T) is not Gaussian and the supports of φj can be quite different. For example, in
the de Sitter contracting universe case φj is a smooth function with support only on the
positive real axis, i.e., supp(ψj) ⊂ (0, ∞). The takeaway is that different bulk geometries
are accounted for by different “boundary data” at the conformal boundary, in this case
either I + or Hcosmo.

Spacelike pairs OB

Let us take O = (η(tO), 0, 0, 0), B = (η(tO), α, 0, 0), where tO is some fixed constant
chosen so that O, B are on the same time slice and tA = α > 0. From Eq. (7.64), we have

φB(u, xA) = − a(u + α cos θ)3

4π
χ

(
t(u)

T

)
. (7.73)
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Figure 7.5: Real part of W( fO, fB) = WI (φO, φB) in FRW spacetimes (imaginary part
vanishes). We pick HT = 0.2 and we plot against α = |xO − xB|/T. Left: radiation-
dominated universe. Right: de Sitter contracting universe.

This time we have an angular integral, so the boundary correlator reads

WI (φO, φB) = − 1
8π2 lim

ϵ→0+

∫
du du′

∫
sin θdθ a(u)3a(u′ + α cos θ)3

×
χ( t(u)

T )χ( t(u′+α cos θ)
T )

(u − u′ − iϵ)2 . (7.74)

By a change of variable ũ′ = u′ + α cos θ and integrating over θ, the boundary correlator
can be simplified into

WI (φO, φB) = − 1
4π2 lim

ϵ→0+

∫
du du′ a(u)3a(u′)3χ( t(u)

T )χ( t(u′)
T )

(u − u′ − iϵ)2 − |α|2 = W( fO, fB) . (7.75)

The second equality is obtained simply by comparing with the bulk Wightman function
expression, since ∆xOB = α. The results are shown in Figure 7.5.

Holographic reconstruction of the bulk FRW spacetimes

We have shown that the bulk-to-boundary correspondence of the correlators work as
well in FRW spacetimes. The schemeworks for the radiation-dominated universe where
the “conformal boundary” is similar to future null infinity I +. A nice bonus is that, as
shown in [228], the same construction ought to work as well for the de Sitter contracting
universe. However, in this case the bulk-to-boundary correspondence is not between
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the bulk and the conformal boundary I + (which is spacelike), but rather with the cos-
mological horizon Hcosmo (c.f. Figure 7.3). Hence for de Sitter cosmological spacetime
it is perhaps a misnomer to call it bulk-to-boundary correspondence. However, since
the cosmological horizon is also a codimension-1 null hypersurface, we still have holo-
graphic reconstruction of the bulk geometry from “boundary data”.

In principle, the metric can be reconstructed analogous to the procedure outlined
for Minkowski space using Eq. (7.27), but because the boundary Wightman function
does not admit a simple closed-form expression, it is difficult to perform this calculation
numerically since we need T, δ to be very small. However, it is worth noting that there
is something universal about the boundary correlator: take, for instance, the case when
the two points are spacelike in Eq. (7.75) which we reproduce for convenience:

WI (φO, φB) = − 1
4π2 lim

ϵ→0+

∫
du du′ a(u)3a(u′)3χ( t(u)

T )χ( t(u′)
T )

(u − u′ − iϵ)2 − |α|2 .

This integral differs from the one in Minkowski space (c.f. Eq. (7.47)) only in the choice
of boundary smearing functions and the physical meaning of |α|: in Minkowski space, it
amounts to setting a(u) = 1 and t(u) = u. Therefore, information of the bulk geometry
is encoded in the boundary data (smearing) that enters into this “universal integral”
over u, u′ and angular variable xA.

The fact that the boundary smearing functions contain information about the geom-
etry cannot be understated. In particular, one cannot “cheat” by trying to reconstruct
the bulk metric from unsmeared bulk correlator. If we use the unsmeared bulk correlator
(7.56), we can check that

lim
x′→x

∂µ∂ν′W(x, x′)−1 =


+8π2a(η)2 µ = ν′ = 0
−8π2a(η)2 µ = ν′ = j
0 otherwise

(7.76)

so that indeed the metric components are gµν(x) = ∓a(η) for µ = ν = 0 and µ =
ν = j respectively (and zero otherwise). This works because of the Hadamard form
of the (unsmeared) Wightman function (7.21). We cannot quite do this literally for the
boundary correlator because the “unsmeared” part is universal: as we will see in the
next section, it has the structure

WI (u, u′, xA, yA) ∼ − 1
π

δS2(xA − yA)

(u − u′ − iϵ)2 , (7.77)
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where δS2(xA − yA) is the Dirac delta distribution on two-sphere. This universality is a
manifestation of the universality of I + (or Hcosmo for de Sitter case).

7.3 Asymptotic expansion of the field operator

We shouldmention that the projection Γ acting on the space of solutions SolR(M) could
also be viewed at the level of canonical quantization. This is what is typically done in the
“infrared triangle” program [256, 262, 263], where the idea is to perform an asymptotic
large-r expansion of the field operator and keeping only the leading term. This way of
thinking is highly intuitive because it does not require us to think of unphysical space-
time M̃ and it compels us to think of scalar QFT at I + to be an approximation of “far-
away observers”. The price to pay is that the holographic nature of the QFT degrees of
freedom is not obvious because I + is not strictly speaking part of the description by
faraway observers (since they travel on timelike curves).

Let us now show how the two methods are related, using the Minkowski spacetime
example as a reference, and connect the holographic nature of the QFT to asymptotic ob-
servers. This connection implies that QFT at I + can and should be accessible to physical
asymptotic (large-r) observers.

First, for Minkowski spacetime the canonical quantization gives the “unsmeared”
field operator

ϕ̂(x) =
∫ d3k√

2(2π)3|k|
âke−i|k|t+ik·x + h.c. . (7.78)

It is useful to write this in the Bondi chart x = (u, r, xA). Using the fact that the metric
in Bondi coordinates is given by

ds2 = −du2 − 2du dr + r2dΩ2 , (7.79)

we have kµxµ = −ωu − ωr(1 − k̂ · r̂), where ω = |k|, k̂ = k/|k| and r̂ = r/|r| are unit
vectors. We can then write k̂ · r̂ = cos θ for some angle θ and d3k = ω2dω dγS2 . The
field operator now reads

ϕ̂(u, r, xA) =
1√

2(2π)3

∫ ∞

0
ω

3
2 dω

∫
dγS2 âke−i|k|u−iωr(1−cos θ) + h.c. . (7.80)
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Now we would like to take the large-r limit. The stationary phase approximation says
that for any function f (k) we have∫

dγS2 f (k)e±i|k|r(1−k̂·r̂) ∼ ± 2πi
|k|r f (|k|r̂) +O(r) . (7.81)

This implies that at leading order in r the field operator is dominated by

ϕ̂(u, r, xA) ∼ − i
2r
√

π

∫ ∞

0
ω

1
2 dω

[
âωr̂e−iωu − â†

ωr̂eiωu
]

. (7.82)

The boundary data (unsmeared) operator is then defined to be

φ̂(u, xA) := lim
r→∞

rϕ̂(u, r, xA) , (7.83)

and the creation operators satisfy the following canonical commutation relation[
âωr̂, â†

ω′ r̂′

]
=

δ(ω − ω′)

ω2 δS2(r̂ − r̂′) . (7.84)

Let us now compute the (unsmeared) Wightman two-point function at I + with re-
spect to the vacuum state14. One important subtlety arises here: the ordinary boundary
Wightman function, 〈0I |φ̂(u, xA)φ̂(u′, yA)|0I 〉, is logarithmically divergent at I + as
can be seen from dimensional analysis and scaling arguments. Therefore, instead we
compute the two-point correlators of its conjugate momentum ∂u φ̂:

WI (u, xA; u′, yA) = 〈0I |∂u φ̂(u, xA)∂u φ̂(u′, yA)|0I 〉

=
∫ dωdω′

4π
dγS2 dγ′

S2(ωω′)3/2e−iωu−iω′u′〈0I |âωr̂ â†
ω′ r̂′ |0I 〉

=
1

4π

∫
ω dω dγS2 dγ′

S2e−iω(u−u′)δS2(r̂ − r̂′)

= − 1
4π

lim
ϵ→0

1
(u − u′ − iϵ)2

∫
dγS2 dγ′

S2δS2(r̂ − r̂′) . (7.85)

14This vector state |0I 〉 is obtained from the BMS4-invariant algebraic state ωI via GNS representation
theorem (c.f. Chapter 2).
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Now if we integrate this over boundary smearing functions Ψ1, Ψ2 at I +, we get

WI (Ψ1, Ψ2) = − 1
4π

lim
ϵ→0

∫
du du′dγS2

Ψ1(u, xA)Ψ2(u′, xA)

(u − u′ − iϵ)2 , (7.86)

where we use capital Greek letter Ψ to distinguish it from the boundary smearing func-
tion ψ ∈ SolR(I +) in the AQFT approach.

Observe that Eq. (7.86) appears to be off by a factor of 1/4 compared to Eq. (7.15)
obtained using the algebraic method. This discrepancy arises because the algebraic ap-
proach calculates this two-point function somewhat differently. To see this, recall that
for ψ ∈ SolR(I +) the smeared boundary field operator φ̂(ψ) is related to the unsmeared
one via symplectic smearing, i.e., wewant to define φ̂(ψ) := σI (ψ, φ̂). However, by using
integration by parts on Eq. (7.6), we get

σI (ψ, φ̂) = 2
∫

I +
du dγS2 ψ(u, xA)∂u φ̂(u, xA)

≡ 2
∫

I +
du dγS2 ψ(u, xA)Π̂(u, xA)

=: 2 Π̂(ψ) . (7.87)

where Π̂(u, xA) = ∂u φ̂(u, xA) is the (unsmeared) conjugate momentum to φ̂(u, xA).
Hence the unsmeared boundary field operator φ̂(ψ) should be interpreted as the smeared
conjugate momentum operator ∂u φ̂, not the smeared boundary field operator φ̂ itself.
This subtlety arises because in this so-called null surface quantization, the operator Π is
not independent of φ̂ [264], unlike in the standard canonical quantization of the bulk
scalar theory that employs spacelike hypersurfaces for the symplectic structure.

The holographic reconstruction works by fixing f ∈ C∞
0 (M), propagate it to I + by

taking

ψ f (u, xA) := lim
r→∞

(Ω−1E f )(u, r, xA) (7.88)

and calculating

WI (ψ f , ψg) = − 1
π

lim
ϵ→0

∫
dγS2du du′ ψ f (u, xA)ψg(u′, xA)

(u − u′ − iϵ)2 . (7.89)
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Since Eq. (7.86) is based on the interpretation of smeared conjugatemomentumoperator

Π̂(Ψ) =
∫

I +
du dγS2 Ψ(u, xA)∂u φ̂(u, xA) , (7.90)

this means that ψ f that appears directly in Eq. (7.15) is related to symplectic smearing ψ

in φ̂(ψ) and “momentum smearing” Ψ in Π̂(Ψ) by

ψ f = ψ =
Ψ
2
∈ SolR(I +) . (7.91)

The key takeaway is that the smeared Wightman two-point functions computed using
the algebraic approach and large-r expansion of the bulk (unsmeared) field operator
only differ by a normalisation.

7.4 Discussion and outlook

In this chapter, we have shown that one can directly reconstruct the bulk geometry of
asymptotically flat spacetimes from the boundary correlators at I +. This makes use of
two previously unconnected results: augmenting the bulk-to-boundary correspondence
developed in the AQFT community [40, 228–230] with the recent metric reconstruction
method using scalar correlators based on [239, 240]. The version that ismore relevant for
us is the scheme used in [241] is more appropriate due to the more direct use of Wight-
man two-point functions. This makes explicit use of the uniqueness and Hadamard
nature of the boundary field state and importantly is relevant for asymptotic observers.
The idea is that while no physical observers can follow null geodesics exactly on I +,
we can perform a large-r expansion of bulk field operators. The asymptotic observers
near I + will thus find that the bulk correlation function WM( f , g) very close to I + is
at leading order given exactly by WI (ψ f , ψg).

We perform our calculations for relatively simple examples, namely both Minkowski
and FRW spacetimes, where we can show concretely how the boundary smeared corre-
lators have universal structure (reflecting the universal structure of I +) and much of
the geometric information is encoded in the boundary smearing functions, i.e. boundary
data. Furthermore, the calculations are explicit enough for us to see that the boundary
correlators can, in principle, be expressed in the language of Unruh-DeWitt (UDW) de-
tectors used in relativistic quantum information (RQI). That is, for asymptotic observers
who carry qubit UDW detectors interacting with a massless scalar field, the expressions
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for the boundary correlators naturally appear in the final density matrix of the detectors
(see, e.g., [34, 77]). In terms of detectors, the differences between Minkowski and FRW
scenarios appear as different “switching functions” (i.e., different interaction profiles).
Therefore, the holographic reconstruction can be properly expressed in operational lan-
guage using tools from RQI, since the correlators can be extracted directly via quantum
state tomography, without assuming that any correlators are simply “measurable”.

There are several future directions now to explore within this framework. First, con-
cretely understanding the projection map Γ in generic spacetimes seems difficult, since
one needs to have a very good handle on causal propagators E(x, x′). However, by mak-
ing use of Bondi coordinates (e.g. Eq. (E.10)) one may be able to systematically con-
struct the asymptotic expansion of the causal propagator and see the radiative data of
the gravitational field directly in the boundary correlators for asymptotic observers.

For example, one may wonder if boundary correlators may have imprints that can be
used to infer the existence of gravitational (shock)waves [106, 265], since the bulk cor-
relators know about the background shockwave (see, e.g., [82]). On the other hand, re-
cently complex calculations of bulk correlators have become possible for Schwarzschild
spacetimes and even the interior of Kerr spacetime (see, e.g., [108, 266]). Modest holog-
raphy suggests that near-horizon and near-I correlators [229] can perhaps aid in these
fronts, inwhich case one can then reconstruct the black hole geometry fromnear-horizon
and asymptotic correlators.

Second, a natural extension of this construction is to see whether the result general-
izes to massive fields and spinors, as well as higher dimensions. The main subtlety here
is that formassive fields null infinity is not the correct boundary data to consider, and in-
stead one would choose another “slicing”, such as hyperboloid slicing that can resolves
the field behaviour at timelike infinity i+ [253]. Furthermore, even in flat space, in higher
even-dimensional cases the causal propagator contains higher distributional derivatives,
while in odd-dimensional cases the strongHuygens’ principle is violated (see, e.g., [34])
despite being conformally coupled. Different spins also have different scaling behaviour
for Hadamard states [86]. It would be interesting to see how the boundary reconstruc-
tion works out explicitly.

Last but not least, although we have made use only of the properties of ordinary free
QFT in curved spacetime, these ideas should in principle carry over to the asymptotic
quantization of gravity [255, 267, 268], and provide a new direction to explore the key
differences arising from the nature of the gravitational field (see for instance [269–271]).
We leave these lines of investigations for the future.
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Chapter 8

Summary and outlook

「僅かな勇気が本当の魔法。
若者たちよ、大志を抱け
その一歩が世界を変える。」

True magic is but a little courage of the heart.
Youths, be ambitious

That one step you take can change the world.

エヴァンジェリン・A. K.・マクダウェル、「魔法先生ネギま」
Evangeline A. K. McDowell, Mahou Sensei Negima

8.1 Recapitulation

In this thesis we discussed some of the important roles played by the causal propagator
in RQI, since it forms the core component of the (algebraic) quantization of the scalar
field theory. In point form, we have covered the following:

d In Chapter 1we described two approaches to RQI, namely the abstract approach and the
concrete approach. We have adopted the concrete approachwhere relativity enters from
first principles through the presence of the relativistic quantum field. The CCR alge-
bra enforces relativistic microcausality relations and the causal propagator measures
the degree of non-commutativity of local observables with supports in spacetime.
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d In Chapter 2we briefly recapped the basic formalism ofQFT in curved spacetimes, us-
ing a more algebraic description in the spirit of algebraic quantum field theory (AQFT).
While canonical quantization remains the common platform to perform standard cal-
culations, the AQFT framework provides a much cleaner way to view QFT in curved
spacetimes. Though not covered in the thesis, AQFT particularly shines in RQI when
we perform non-perturbative calculations (see, e.g., [51–54, 75, 90]).

d InChapter 3, we reviewed a family of detectormodels thatwe called theUnruh-DeWitt
(UDW) detector model. It is a valuable set of tools involving non-relativistic quantum-
mechanical probes — detectors — interacting with a relativistic quantum field via
local interactions. They have great versatility, admit a lot of possible generalizations,
and the full power of standard quantum information theory can be exploited to study
various problems where these detectors are used.

d In Chapter 4, we investigated the entanglement harvesting protocol in the context of a
truncated model of Vaidya spacetime, which describes a model of gravitational col-
lapse from a null shell. There we used the UDW detector model to better understand
how different choices of (inequivalent) vacua are interpreted at the level of UDW de-
tectors. We saw that the behaviour of the field commutator casts doubt on whether
two qubits interacting with a quantum field truly “harvest entanglement” from the
field or not, especially since the spacetime is not flat.

d In Chapter 5 we showed that indeed the doubt is justified — we argued that even
in Minkowki (flat) spacetime, the entanglement harvesting protocol should really be
regarded as a proper harvesting protocol when the qubit detectors are not allowed to
signal or communicate through the field — that is, we must arrange that the causal
propagator vanishes in such protocols. Non-relativistic quantum information theory
does not provide an easyway of formulating this trade-off between causal contact and
entanglement harvesting.

d In Chapter 6, we covered a somewhat related problem involving the entanglement
generation between two accelerating qubits, where we used the open master equa-
tion framework. Albeit somewhat tediously, we showed that many of the results in
the literature are strictly speaking incorrect because the results are outside the domain
of applicability of the approximations employed — something that EFT practitioners
would not find much surprise about. We identified that one such problem is synony-
mous to ignoring the causal propagator’s short-distance behaviour. This work also
shows how hard it is to make reliable predictions when multiple approximations are
applied in a particular microscopic derivation of a master equation.
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d Finally, in Chapter 7we looked at an apparently unrelated problem to the earlier chap-
ters, namely modest holography, where we provided a simple argument for a local,
quantum-mechanical metric reconstruction using the bulk-to-boundary correspon-
dence between correlation functions of the bulk scalar field theory and those of the
scalar field theory on the null boundary. The connection to RQI is quite immediate—
after all, this was motivated by the recent results on bulk metric reconstruction using
the Feynman propagator and Wightman two-point functionsof the bulk scalar field
theory and how these may be potentially accomplished using UDW-type coupling.

Overall, it is remarkable that the causal propagator, a very well-known object from the
classical field theory and partial differential equations, can feature so prominently (and
yet quite obviously, as we learn from electromagnetism classes, for example) in RQI.

8.2 Where do we go from here?

It is appropriate to close the thesis by providing some ideas on what the author of this
thesis finds to be worth pursuing in the coming years. Some of the things mentioned
below are currently work-in-progress, and some others are part of a “wishlist” — akin
to a ‘prayer’ for the future of the field.

` Non-perturbative entanglement harvesting in curved spacetimes
It has been shown that delta-coupled detectors (effectively interacting at a single in-
stant in time) cannot harvest entanglement from the field [202]. It is also known that
if the detectors can couple to the field more than once via delta-coupling, then en-
tanglement harvesting is possible. In fact, the same kind of argument was used to
construct a relativistic quantum channel can transmit quantum information with high
quantum channel capacity [75]. If one were to use AQFT and follow the philosophy
of thinking about relativistic quantum channels as we did in [53, 54] (which in turn
are based on [51, 52]), it is in fact clear that entanglement harvesting protocol is con-
ceptually the same as communication protocols except in the causal relation between
the two detectors — that is, about the choice of spacetime smearings fA, fB and the
causal propagator E( fA, fB).
Currently we are working on generalizing the construction in [61] to curved space-
time in a way that streamlines the formalism with the relativistic communication in
[75]. The main difference is that since there is no natural notion of Fourier transform

191



in curved spacetimes (i.e., the field modes are not plane waves), the generalization
would require us to work with the structural properties of causal propagators di-
rectly. The way to do this is, interestingly, to exploit the “older AQFT” framework by
Dimock [272]. Dimock’s approach does not carry forward to interacting QFTs such
as ϕ4 theory, but it works very nicely for our approach.
Interestingly, this approach allows us to compare the standard entanglement harvest-
ing protocol with the constructions based on tensor networks, in relation to entangle-
ment distillation considered in [273]. In an ongoing work, the basic idea is to see
how the mapping the correspondence between the UDW parameters with the tensor
network parameters (bond dimension, etc.) would give us a good ‘dictionary’ on
how tensor network calculations reflect continuum calculations and quantify when
the tensor network representation becomes unsuitable1.

` SU(2)-qudit Unruh-DeWitt detector formalism
Currently, an ongoing work [276] concerns the generalization of the UDW model to
d-dimensional systems (‘qudits’), focusing on what we call SU(2)-qudits. The idea
is to construct qudits arising from the spin-j representation of SU(2)with dimension
d = 2j + 1 and understand the dynamics based on the UDW-like interactions.
There are several reasons why this class of model is interesting. First, we know that
the generalization to UDW coupling of the form Ĵx ⊗ ϕ̂ will generate coherences in
the energy eigenbasis (if the free Hamiltonian ĥ ∝ Ĵz), thus in general it is not clear
how Unruh-type phenomena arises. The detailed balance condition is expected to
hold much more generally (see, e.g., [277]), but whether all coherences decay at the
same rate remains to be seen.
Second, unlike two-dimensional systems, there are many more ways to define three-
level systems. A well-known one is the Λ-system [278], where the qudit detector
only has one excited state and (d − 1)-fold degenerate ground state. There is also the
option of considering SU(d)-qudits (d-dimensional representation of SU(d)), which
allows for much greater flexibility in energy transitions. Comparing the distinction
between different qudit systems and how they impact physical phenomena such as
the Unruh effect, entanglement harvesting protocols, and relativistic communication
protocols forms the core of the goals of [276].
Last but not least, from an information-theoretic perspective, two-dimensional sys-
tems have a lot of “miracles”. To name a few, note that we cannot have bound entan-
glement unless we have at least two qutrits [279]; there exists unital channels that are
1Essentially because tensor networks, in a sense, correspond to “low bulk entanglement” [274, 275].
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not mixed-unitary channels for Hilbert space dimension d ≥ 3; and to our knowledge
even the general calculation of completely dephasing channels for SU(2)-qudits are
not available at the moment. Providing the relativistic generalization of qudit chan-
nels arising from relativistic dynamics would fill a large existing gap (with more QI
emphasis) in the RQI literature.

` Information-carrying capacity of spinor fields
The relativistic channels considered in [51, 53, 75] show that relativistic scalar fields
(at least in flat spacetime) can be used to transmit classical and quantum information
very well — that is, the classical channel capacity of [51, 53] and quantum channel
capacity of [75] can be made arbitrarily close to 1 (subject to some constraints on the
setup). An open question concerns the case of spinor fields—whether spin-1/2 fields
have the same ability to carry information and how one would set it up.
There are two main reasons why this question is worth pursuing. First, structurally
the case of spin-1 and spin-2 fields are less interesting because we know that their
equations of motion are the same as the Klein-Gordon equation (2.1). Therefore, up
to some gauge-fixing issues (which do not arise in scalar theory) we expect that they
behave the sameway as the scalar field theory as far as themaximumchannel capacity
is concerned (of course, the “details” differ). However, spinor fields satisfy the Dirac
equation — the ‘square-root’ of the Klein-Gordon equation — and furthermore the
algebra of observables gives us canonical anti-commutation relations (CAR). It is also
highly non-trivial what would be the best coupling with a detector in this context.
Second, from a more philosophical perspective we would like to be able to describe
everything inQFT information-theoretically2. Mapping out the information-carrying
capacity of all the relativistic quantum fields in the Standardmodel would be instruc-
tive, and the (free) spinor case would give us a first glance at such an ambitious pro-
gram. For example, if the maximum channel capacity of a spinor field turns out to be
less than 1, we believe this would be a significant fundamental result in RQI: in this
sense, all fields are not equal in their ability to encode and transmit classical and/or
quantum information.

` Operationalizing gauge-invariant observables and microcausality in gauge theory
and gravity3

One of the main issues with many of the current approaches to observables in gauge
theory and gravity is that while they can be gauge-invariant, being observable does
2This is inspired by a conversation with Achim Kempf long time ago.
3This is based on a proposal for one of the author’s postdoctoral applications.
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not imply that they are “operationally” accessible. For example, there are proposals
to obtain bulk information from the boundary data [271, 280], but this is not oper-
ational because it requires observers to be completely delocalized across the entire
cut at null infinity. These observers must “reconvene” to compile the information
and this procedure takes effectively infinite time to complete. The UDW detector-
based approach in RQI taught us that it is not sufficient, even in principle, to have
observables: the information must be accessible by (at least) idealized observers in a
concrete manner.
A possible remedywould be to adopt qubit-like detector models that couple to gauge
fields (e.g., hydrogen atoms coupling to electromagnetic field) and see if some of the
gauge-invariant observables can indeed be accessible using a quantum optical-based
setup. There is also the issue that gauge-invariant observables are often non-local and
require treatment using so-called relational observables [281, 282] — thinking about
how one could formulate relational observables using the UDW framework would
be interesting in its own right.
Last but not least, while not really obvious, microcausality in gauge theories and
gravity can be really difficult to check precisely because gauge-invariant observables
must be non-local in the sense that they require the observables to be dressed (see,
e.g., [283–285]). Consequently, how to use a UDW-type framework to operationalize
measurement of gauge-invariant observables to respect microcausality is not obvious
at all. In fact, already in a seemingly unrelated problem this issue arises: quantum
electrodynamics (QED) in curved spacetime turns out to have surprising features,
such as ‘apparent’ superluminal propagation of photons due to vacuum polariza-
tion in QED [286]. It was shown that in a sense the issue has to do with the fact that
QED in curved spacetimes induces an effective refractive index in the effective action,
and reconciliation withmicrocausality involves a highly non-trivial understanding of
Kramers-Kronig relations in curved spacetimes.

These ideas still fall within the more concrete framework (c.f. Chapter 1) in RQI, since
the thesis focuses on this approach. Nonetheless we find them interesting to pursue and
the answers would hopefully be not too far distant in the future.

In terms of themore abstract approachwhere one thinks in amoremodel-independent
and hence device-independent manner (see, e.g., [16–20, 22–25]), we believe that RQI
would very much benefit from progress in this direction. Recently, some progress was
made in clarifying at very high level the difference between relativistic causality and
information-theoretic causality [287, 288], and the idea that the security proof of certain
quantum key distribution protocols (QKD) arises from relativistic principles [19, 20].
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d f e f d

It is the author’s opinion that there is a sense in which the RQI community still does
not have a strong and coherent list of problems that one would need to tackle. This is
not surprising for a relatively young field, and in a way it is a good news because one
can expect a great deal of excitement and progress in the upcoming years. There are
many things we can expect from RQI when more tools become available, more people
come to agree on what are some of the most important problems to solve within the
field, and how RQI as a field can contribute to other subfields of physics. Indeed, to
the author’s knowledge all these things started to arise in the last three years, and so in-
teresting breakthroughs and insights about relativistic aspects of quantum information,
information-theoretic aspects of quantumfields in curved spacetime, and even quantum
gravity may be just around the corner4.

I offer my sincerest prayer to the progress of RQI and all the people involved in
improving our understanding of the Universe using the lens of quantum information,
quantum field theory, and general relativity. By construction, RQI seems to have very
ambitious goals of trying to bridge three big sub-fields of physics and in return pro-
viding unique perspectives to all three of them. For future students, a little courage is
indistinguishable from true magic — it would go a long way in pursuing physics.

4As for the author, stepping away from RQI after the thesis and moving into more pure QI-oriented
research without relativity may very well lead to fresh perspective on problems in RQI, since currently
RQI has not fully utilized the full power of quantum information research. For example, the existence of
universal recovery channel for generic von Neumann algebras was only very recently investigated [289,
290]. This is of immediate interest to practitioners of AQFT.
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Appendix A

Symplectic smearing

Here we reproduce, for completeness, a few results (from e.g. [11] Lemma 3.2.1) on the
symplectic smearing (2.8) and the causal propagator. First, we have the claim that (2.8)
is equivalent to (2.6), i.e.

ϕ̂( f ) := σ(E f , ϕ̂) =
∫

dV f (x)ϕ̂(x) . (A.1)

To see this, we can consider more generally the differential operator P̂ = ∇a∇a + V1,
where V̂ ∈ C∞(M) and the Klein-Gordon operator is when V̂ = −m2 − ξR. note that
since f (x) is compactly supported and since M is globally hyperbolic M ∼= R × Σt,
there are t1, t2 ∈ R such that f = 0 for t /∈ [t1, t2]. Moreover, from the definition of the
advanced propagator we have P ◦ E− f = f , so for any ϕ ∈ SolR(M) (i.e., Pϕ = 0), we
can rewrite ϕ( f ) as follows:

ϕ( f ) =
∫

dV ϕ(x) f (x)

=
∫

t∈[t1,t2]
dV ϕ(x)(P ◦ E− f )(x)

=
∫

t∈[t1,t2]
dV

[
ϕ∇a∇a(E− f ) + ϕV̂E− f

]
. (A.2)

Now we need to do integration by parts. We will do this really carefully since the
minus sign can cause confusion. We first write dV =

√−g dt d3x where t is the coordi-
nate time associated with the foliation ofM, and let dΣ =

√
h d3x be induced 3-volume
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element on the spacelike surfaces Σt. Then we have

ϕ( f ) =
∫

t=t2

dΣ (−ta)
[
ϕ∇a(E− f )− (E− f )∇aϕ

]
−
∫

t=t1

dΣ (−ta)
[
ϕ∇a(E− f )− (E− f )∇aϕ

]
=
∫

t=t1

dΣ (−ta)
[
(E− f )∇aϕ − ϕ∇a(E− f )

]
, (A.3)

where ta is the future-directed unit normal vector (i.e., ta = ∂t → (1, 0, 0, 0) in the
adapted coordinates). The second equality follows from the fact that the smeared ad-
vancedpropagator E− f and its derivatives vanish on Σt2 due to supp(E− f ) ⊆ J−(supp f ).

Using similar reasoning for the smeared retarded propagator, we also have that E+ f
and its derivatives vanish at t1, so we are free replace E− in the final equality of Eq. (A.3)
with the causal propagator E = E− − E+. Finally, by writing the directed 3-volume
element as dΣa := −tadΣ, so that the volume element is past-directed (see, e.g., [49]),
and using the definition of symplectic form (2.7), we get

ϕ( f ) =
∫

t=t1

dΣa [(E f )∇aϕ − ϕ∇a(E f )] = σ(E f , ϕ) , (A.4)

as desired. Hence the symplectically smeared field operator reads ϕ̂( f ) = σ(E f , ϕ̂).
Note that as an immediate consequence of this calculation we have

σ(E f , Eg) = E( f , g) (A.5)

simply by setting ϕ(x) = (Eg)(x) into Eq. (A.4).
Let us comment on some issues regarding convention that we believe could (easily)

cause some confusion. In general relativity, often the convention for the directed vol-
ume element is one in which it is future-directed: that is, dΣ̃a = tadΣ = −dΣa. In this
convention, onewould keep the ordering in Eq. (A.3) andwrite the symplectic smearing
as

σ(E f , ϕ) =
∫

Σt1

dΣ̃a [ϕ∇a(E f )− (E f )∇aϕ] . (A.6)

All we have done here is to absorb the minus sign into the integration measure. This
“freedom” is somewhat confusing because in some cases, some authors may want to
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write Eq. (A.7) “without tilde”: in this case, the new symplectic form reads

σ′(ϕ1, ϕ2) =
∫

Σt1

dΣa [ϕ2∇aϕ1 − ϕ1∇aϕ2] , (A.7)

which implies that σ′ = −σ. In this case, by antisymmetry we have σ′(Eg, E f ) =
−σ(Eg, E f ) = E( f , g). The symplectic smearing is also now defined to be ϕ( f ) =
−σ′(E f , ϕ) = σ′(ϕ, E f ). Crucially, those who adopt σ′ as the symplectic form and claim
that σ′(E′ f , E′g) = E′( f , g) will have E′ = −E, the retarded-minus-advanced propagator.

Whichever convention is used, depending on the quantity of interest it may not mat-
ter. However, it is good practice to be consistent and one easy way to test this is through
the following recipe:

(1) Set the spacetime to be Minkowski space and fix whatever convention for E and σ;

(2) Pick two functions f , g and compute E f , Eg, E( f , g), and σ(E f , Eg) in the chosen
convention;

(3) Using canonical quantization, compute 〈[ϕ̂(x), ϕ̂(y)]〉 = W(x, y) − W(y, x), where
W(x, y) is the unsmeared Wightman function. In [45], this would correspond to
〈[ϕ̂(x), ϕ̂(y)]〉 = iG(x, x′), where G(x, y) is the Pauli-Jordan distribution;

(4) Match the conventions and find the relationship between σ(E f , Eg), E( f , g) and
G( f , g) (smeared Pauli-Jordan distribution).

InMinkowski space we can be very explicit and even show this in terms of a closed-form
expression by choosing specific f , g (even “strongly supported” functions likeGaussians
will work). Our convention gives σ(E f , Eg) = E( f , g) = G( f , g) with ϕ̂( f ) = σ(E f , ϕ̂).
There is a sense inwhichwe could regard our convention as the “least-minus” (or “most-
plus”) convention.

225





Appendix B

Entanglement harvesting in arbitrary
dimensions

B.1 Non-local term in arbitrary dimensions

Here we will derive the non-local termM, generalizing the result of [77] to an arbitrary
number of spatial dimensions n and mass m. We will also show how the derivation of
M conveniently splits the contributions coming from the field commutator and anti-
commutator.

First, we recall that we have two identical detectors that are pointlike and at rest rel-
ative to the quantization frame with Minkowski coordinates (t, x). The detector tra-
jectories xj(t) (j = A,B) are static relative to the quantization frame so we can write
xj(t) = (t, xj) where xj are constant. The detectors are turned on for the same effec-
tive duration (controlled by Gaussian width T) but they are allowed to be turned on at
different times (different Gaussian peaks in Eq. (5.17)). We will comment on the inclu-
sion of spatial smearing at the end of this section.

Under these assumptions, the non-local contribution M can be written as

M = −λ2
∫ ∞

−∞
dt
∫ t

−∞
dt′eiΩ(t+t′)

×
[

e−
(t−tA)2

T2 e−
(t′−tB)2

T2

∫ dnk

2(2π)nωk
e−iωk(t−t′)+ik·(xA−xB) + (A ↔ B)

]
, (B.1)
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where we implemented the time ordering as a nested integral and ωk =
√
|k|2 + m2 is

the relativistic dispersion relation. It is convenient to perform the following redefinition
and change of variables:

tAB := tB − tA , xAB := xB − xA , t → t − tA , t′ → t′ − tA . (B.2)

This will give a more symmetric expression

M = −λ2
∫ ∞

−∞
dt
∫ t

−∞
dt′
∫ dnk

2(2π)nωk
e−iωk(t−t′)eiΩ(t+t′+2tA)

×
[

e−
t2

T2 e−
(t′−tAB)2

T2 e−ik·xAB + e−
(t−tAB)2

T2 e−
t′2

T2 eik·xAB

]
. (B.3)

Let us rewrite this in a more compact form

M = −λ2e2iΩtA
∫ dnk

2(2π)nωk
K(k) , (B.4)

K(k) :=
∫ ∞

−∞
dt
∫ t

−∞
dt′e−iωk(t−t′)eiΩ(t+t′)

[
e−

t2

T2 e−
(t′−tAB)2

T2 e−ik·xAB + e−
(t−tAB)2

T2 e−
t′2

T2 eik·xAB

]
,

(B.5)

where we keep all the global phases for clarity. The integral can be done in closed form:

K(k) =
π

2
T2e−

T2
2 (Ω2+ω2

k)
[

eik·xAB+itAB(Ω−ωk) + e−ik·xAB+itAB(Ω+ωk)

]
+

√
π

2
T2e−

t2AB
T2

[
eik·xABJ

(
T(ωk + Ω)

2
, T(ωk − Ω) +

2itAB
T

)
+ e−ik·xABJ

(
T(ωk + Ω)

2
− itAB

T
, T(ωk − Ω)

) ]
, (B.6)

where we define

J (a, b) := −i
√

πe−a2− b2
4 erfi

(
a + b/2√

2

)
, (B.7)

with erfi(z) = −i erf(iz) and erf(z) is the error function.
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Next, we separate the radial and angular part of the integration measure in (B.4):
∫ dnk

2(2π)nωk
=

1
2(2π)n

∫ ∞

0
d|k| |k|n−1√

|k|2 + m2

∫
dΩn−1

=
1

2(2π)n

∫ ∞

0
d|k| |k|n−1√

|k|2 + m2

∫
dµn−2

∫ π

0
dθ sinn−2 θ , (B.8)

where dΩn−1 is the area element of the unit sphere Sn−1 and dµn−2 is the remaining
angular part of the integration measure:

dΩn−1 = dθ(sin θ)n−2dµn−2 , dµn−2 :=
n−2

∏
i=1

dφi (sin φi)
n−2−i . (B.9)

The integral over dµn−2 can be found using the trick in [62] as follows:
∫

dΩn−1 =
∫

dµn−2

∫ π

0
dθ sinn−2 θ =

2π
n
2

Γ(n
2 )

, (B.10)

∫
dθ sinn−2 θ =

√
πΓ(n−1

2 )

Γ(n
2 )

=⇒
∫

dµn−2 =
2π

n−1
2

Γ
(

n−1
2

) . (B.11)

Hence we get

∫ dnk

2(2π)nωk
=

1
2(2π)n

2π
n−1

2

Γ
(

n−1
2

) ∫ ∞

0
d|k| |k|n−1√

|k|2 + m2

∫ π

0
dθ sinn−2 θ . (B.12)

The only component that depends on the angular variable is the phase e±ik·xAB , thus we
can perform this integral first:∫ π

0
dθ sinn−2 θ e±ik·xAB =

∫ π

0
dθ sinn−2 θ e±i|k||xAB| cos θ

=
√

πΓ
(

n − 1
2

)
0F̃1

(
n
2

;−|k|2|xAB|2
4

)
, (B.13)

where 0F̃1 is the regularized generalized hypergeometric function [111]. For complete-
ness, we note that this could also be equivalently written in terms of Bessel function
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using the fact that for n > 1 we have [139]

0F̃1

(
n
2

;−|k|2|xAB|2
4

)
=

(
2

|k||xAB|

) n−2
2

Jn−2
2
(|k||xAB|) . (B.14)

This is also called the Bessel-Clifford function, denoted as Cn(z) = 0F̃1(n + 1; z) [139].
Since K(k) in (B.6) has four terms, it is convenient to rewrite the expression as K =

K1 +K2 +K3 +K4, where

K1(|k|) = 2−n−1π1− n
2 T2

0F̃1

(
n
2

;−|k|2|xAB|2
4

)
e−

1
2 T2(ω2

k+Ω2)+itAB(Ω−ωk) , (B.15a)

K2(|k|) = 2−n−1π1− n
2 T2

0F̃1

(
n
2

;−|k|2|xAB|2
4

)
e−

1
2 T2(ω2

k+Ω2)+itAB(Ω+ωk) , (B.15b)

K3(|k|) = −i2−nπ
1
2−

n
2 T2eitABΩ− t2AB

2T2 −
T2Ω2

2 F
(

ωkT2 + itAB√
2T

)
0F̃1

(
n
2

;−|k|2|xAB|2
4

)
,

(B.15c)

K4(|k|) = −i2−nπ
1
2−

n
2 T2eitABΩ− t2AB

2T2 −
T2Ω2

2 F
(

ωkT2 − itAB√
2T

)
0F̃1

(
n
2

;−|k|2|xAB|2
4

)
,

(B.15d)

where F (z) := e−z2 ∫ z
0 dy ey2 is the Dawson’s integral [111]. We have made explicit the

fact that Kj depends only on the magnitude of the momentum vector |k| (since ωk =√
|k|2 + m2), thus it is convenient to write k := |k|. The full expression forM now reads

M = −λ2e2iΩtA
∫ ∞

0
dk

kn−1
√

k2 + m2

4

∑
j=1

Kj(k) . (B.16)

This is the final expression for the non-local matrix elementM for arbitrarymass m ≥ 0.
Inwhat followswewould like to be able to splitM into two parts, onewhich depends

only on the anti-commutator, denoted byM+, and the other which depends only on the
field commutator, denoted by M−. This split is necessary for splitting the harvesting
contribution (which depends on the anti-commutator) from the communication contri-
bution (which depends on the commutator). Let us write the expectations of the the
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anti-commutator and the commutator in terms of the Wightman function:

C±(x, x′) = W(x, x′)± W(x′, x) . (B.17)

Remarkably, what is perhaps not obvious from the splitting of M into Kj’s is that the
field anti-commutator expectation C+(x, x′) depends only on K1 and K2, while the field
commutator expectation C−(x, x′) depends only on K3 and K4. The (anti-)commutator
contributions can then be written as M± = M±M′, where M′ is the same integral
as M in Eq. (B.4) but with the replacement ωk → −ωk and k → −k. Under these
replacements, we have

M′ = −λ2e2iΩtA
∫ ∞

0
dk

kn−1
√

k2 + m2

4

∑
j=1

K′
j(k) , (B.18)

where as before we use k = |k| and

K′
1(k) = K2(k) , K′

2(k) = K1(k) , K′
3(k) = −K4(k) , K′

4(k) = −K3(k) . (B.19)

Hence, the (anti-)commutator contributions to M are compactly expressible as

M+ = −λ2e2iΩtA
∫ ∞

0
dk

kn−1
√

k2 + m2
(K1(k) +K2(k)) , (B.20a)

M− = −λ2e2iΩtA
∫ ∞

0
dk

kn−1
√

k2 + m2
(K3(k) +K4(k)) . (B.20b)

B.2 Spatially smeared detector

The calculation for the case of a spatially smeared detector is straightforward. For sim-
plicity, we will consider the special case where both detectors have identical spatial
smearing and switching functions (up to spacetime translation), with the same inertial
trajectory at rest in the quantization frame.

Under these assumptions, we can write χj(t) := χ(t − tj) where j = A,B and χ(t)
is some real function. The spatial smearing of both detectors is a common real-valued
function F(x) that is L1-normalized to unity and we write Fj(x) = F(x − xj). The re-
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sulting matrix elements in (5.9a) and (5.9b) are modified into

Lij = λ2
∫

dt dt′
∫

dnx dnx′ χi(t)χj(t′)Fi(x)Fj(x
′)e−iΩ(t−t′)W(t, x; t′, x′) (B.21)

M = −λ2
∫

dt dt′
∫

dnx dnx′ eiΩ(t+t′)χA(t)χB(t′)FA(x)FB(x′)Θ(t − t′)W(t, x; t′, x′)

+ eiΩ(t+t′)χA(t)χB(t′)FA(x)FB(x′)Θ(t′ − t)W(t′, x′; t, x)
]

. (B.22)

The expression for Lij in Eq. (5.9a) is modified to

Lij = λ2
∫ dnk

2(2π)nωk
χ̃i(Ω + ωk)χ̃

∗
j (Ω + ωk)F̃i(k)F̃∗

j (k) , (B.23)

where F̃i(k) is the Fourier transform of Fi(x). The translation property of the Fourier
transform allow us to write this as

Lij = λ2
∫ dnk

2(2π)nωk
|χ̃(Ω + ωk)|2|F̃(k)|2e−i(Ω+ωk)(ti−tj)eik·(xi−xj) . (B.24)

Note that Ljj (the excitation probability of detector j) is independent of tj and xj, as we
expect from translational invariance. The pointlike limit is recovered simply by setting
F̃(k) = 1.

For the non-local M matrix element we can proceed similarly. For the Gaussian
switching considered in Appendix B.1, the resulting expression for M in (B.4) turns
out to be obtainable by simply replacing

K(k) → |F̃(k)|2K(k) , (B.25)

This follows straightforwardly from the definition of the Fourier transform and its trans-
lation property and is consistent with the expression found in [77].

Finally, we remark that the usual dipole coupling in the light-matter interaction al-
lows for complex-valued smearing functions, e.g. when one considers a hydrogen atom
coupled to electric field. So long as there is no exchange of angular momentum involved
between the detectors and the field, the results obtained using real-valued smearing and
switching functions will be qualitatively similar [78].
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B.3 Commutator in arbitrary dimensions and strongHuy-
gens’ principle

In this section we calculate the expression for the (vacuum expectation value of the)
field commutator C−(x, x′) = 〈[ϕ(x), ϕ(x′)]〉 in arbitrary dimensions. We note that this
expectation value is state-independent, and all the state-dependence of the Wightman
function is contained in the expectation value of the anti-commutator C+(x, x′). Using
the fact that C−(x, x′) = W(x, x′)− W(x′, x) and Eq. (B.12) we have

C−(x, x′) = i
(2π)n

2π
n−1

2

Γ(n−1
2 )

∫ ∞

0
d|k| |k|n−2

∫ π

0
dθ sinn−2 θ sin (−i|k|∆t + i|k||∆x| cos θ) ,

(B.26)

where we have used the shorthand ∆t = t − t′, ∆x = x − x′. Writing ω = |k| and
performing the angular integral, we get

C−(x, x′) = − i√
(4π)n

[
2
∫ ∞

0
dω ωn−2 sin(ω∆t) 0F̃1

(
n
2

;−1
4
|∆x|2ω2

)]
, (B.27)

where 0F̃1 is the regularized generalized hypergeometric function [111]. Note that the
term in the square bracket is in the formof Fourier sine transform. As an example, we can
readily recover the case for n = 1, n = 2 and n = 3 previously calculated, for example,
in [122]:

C−
1 (x, x′) = − i√

4π

[
2
∫ ∞

0
dω sin(ω∆t)

cos(ω|∆x|)
ω
√

π

]
= − i sgn(∆t)

2
Θ(|∆t| − |∆x|) ,

(B.28)

C−
2 (x, x′) = − i

4π

[
2
∫ ∞

0
dω sin(ω∆t)J0(ω|∆x|)

]
= − i sgn(∆t)

2π

Θ(∆t2 − |∆x|2)√
∆t2 − |∆x|2

,

(B.29)

C−
3 (x, x′) = − i

(4π)3/2

[
2
∫ ∞

0
dω ω sin(ω∆t)

2 sin(ω|∆x|)√
π|∆x|

]
=

i
4π|∆x| [δ(∆t + |∆x|)− δ(∆t − |∆x|)] . (B.30)

The expressions for arbitrary dimensions can be worked out analogously.
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Let us consider what happens for the commutator when n is odd and n ≥ 3. The
strong Huygens’ principle says that for odd number of spatial dimensions (odd n), the
support of the commutator is only along the null direction ∆t = ±|∆x|. Wewill calculate
this explicitly for n = 5 and n = 7 and provide the generic form for arbitrary odd n. The
crucial part of the upcoming calculation is that for odd n ≥ 5, the support is confined to
be along the null direction. However, notice that it involves not onlyDirac delta functions
but also their distributional derivatives. Let us denote the distributional derivatives of
the Dirac delta function by δ(k)(z) where (k) denotes the number of derivatives. The
distributional derivative has the property that

∫ ∞

−∞
dz f (z)δ(k)(z − z0) = (−1)k dk f

dzk (z0) (B.31)

and in particular
∫

dz δ(k)(z) = 0 for all k ≥ 1.
In order to calculate the commutator for n = 5, first we rewrite Eq. (B.27) as

C−
5 (x, x′) = − 2i√

(4π)5

∫ ∞

0
dω ω3 sin(ω∆t)0F̃1

(
5
2

;−1
4
|∆x|2ω2

)
=

2i√
(4π)5

∫ ∞

0
dω

2√
π|∆x|3

[
cos(ω∆t + ω|∆x|)− cos(ω∆t − ω|∆x|)

]
+

2i√
(4π)5

∫ ∞

0
dω

2ω√
π|∆x|2

[
sin(ω∆t + ω|∆x|) + sin(ω∆t − ω|∆x|)

]
.

(B.32)

Integrating over ω from 0 to ∞, the first line in the last step is essentially the Fourier co-
sine transform of a constant function, while the second line is proportional to the Fourier
sine transform of ω. Therefore, we obtain

C−
5 (x, x′) = i

8π2|∆x|3

[
δ(∆t + |∆x|)− δ(∆t − |∆x|)

]
− i

8π2|∆x|2

[
δ(1)(∆t + |∆x|) + δ(1)(∆t − |∆x|)

]
. (B.33)

Note that the commutator is supported only along the null direction, but there is a contri-
bution due to first derivative of theDirac delta function δ(1)(∆t± |∆x|)which dominates
for larger |∆x|.
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In order to calculate the commutator for n = 7, first we rewrite Eq. (B.27) as

C−
7 (x, x′) = − 2i√

(4π)7

∫ ∞

0
dω ω5 sin(ω∆t)0F̃1

(
7
2

;−1
4
|∆x|2ω2

)
=

2i√
(4π)7

∫ ∞

0
dω

12√
π|∆x|5

[
cos(ω∆t + ω|∆x|)− cos(ω∆t − ω|∆x|)

]
+

2i√
(4π)7

∫ ∞

0
dω

12ω√
π|∆x|4

[
sin(ω∆t + ω|∆x|) + sin(ω∆t − ω|∆x|)

]
− 2i√

(4π)7

∫ ∞

0
dω

4ω2
√

π|∆x|3

[
cos(ω∆t + ω|∆x|)− cos(ω∆t − ω|∆x|)

]
.

(B.34)

Integrating over ω from 0 to ∞, the first line is the Fourier cosine transform of a constant
function, the second line is the Fourier sine transform of ω, and now we also have the
third line proportional to Fourier cosine transform of ω2. Therefore, we obtain

C−
7 (x, x′) = 3i

16π3|∆x|5

[
δ(∆t + |∆x|)− δ(∆t − |∆x|)

]
− 3i

16π3|∆x|4

[
δ(1)(∆t + |∆x|) + δ(1)(∆t − |∆x|)

]
+

i
16π3|∆x|3

[
δ(2)(∆t + |∆x|)− δ(2)(∆t − |∆x|)

]
. (B.35)

Note that the commutator is supported only at the light cone, but there are contribu-
tions due to first and second derivatives of the Dirac delta function, with the second
derivatives dominating at small distances.

More generally, following the same procedure one can show that odd n ≥ 3, the
commutator takes the generic form

C−
n (x, x′) = i

n−3
2

∑
j=0

aj

|∆x|n−2−j

[
δ(j)(∆t + |∆x|) + (−1)j+1δ(j)(∆t − |∆x|)

]
, (B.36)

where aj are real constants, and at small distances the commutator is dominated by the
highest derivative of the Dirac delta function. Thus the strong Huygens’ principle is
satisfied in Minkowski spacetimes with an odd number of spatial dimensions n ≥ 3.
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Finally, we remark that the distributional derivatives of the Dirac delta function are
responsible for the increasing number of peaks in |M−| in higher dimensions. Roughly
speaking, this comes from the fact that M− is an integral with respect to t, t′ over the
switching functions multiplied with the commutator C−

n (x, x′). Since we considered de-
tectors that are sufficiently separated spatially (large enough |∆x|), the dominant con-
tribution comes from the highest (n−3

2 -th) derivative of the delta function. Therefore,
the dominant feature of |M−| comes from convolution of the switching functions with
the highest derivative, so the peaks of |M−| come from the behaviour of the derivatives
of the switching functions centred about the null direction.

B.4 Wightman function for massive scalar fields in arbi-
trary spacetime dimensions

Here we study the behaviour of the Wightman functions of arbitrary m ≥ 0 and n ≥ 2.
For completeness we will first derive derive the Wightman function for a massive scalar
field in arbitrary dimensions. The Wightman function was also derived in [86] but the
steps there required restrictions to timelike-separated points. Here we present a more
general expression.

Following the procedure in Appendix B.1, we know that the Wightman function can
be written as

W(x, x′) = 1
2(2π)n

2π
n−1

2

Γ
(

n−1
2

) ∫ ∞

0
d|k| |k|n−1√

|k|2 + m2
e−i

√
|k|2+m2∆t

∫ π

0
dθ sinn−2 θ eik·∆x .

(B.37)

where ∆t = t − t′ and ∆x = x−x′. The angular part was solved in (B.13), but it will be
convenient for us to use the Bessel-Clifford functions (B.14) and write this as

W(x, x′) = 2π
n
2

2(2π)n

∫ ∞

0
d|k| |k|n−1√

|k|2 + m2
e−i

√
|k|2+m2∆t

(
2

|k||∆x|

) n−2
2

Jn−2
2
(|k||∆x|) .

(B.38)
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We perform the change of variable s =
√
|k|2 + m2/m, so that

W(x, x′) = m
n
2

2(2π)
n
2 |∆x| n−2

2

∫ ∞

1
ds(s2 − 1)

n−2
2 e−ims∆t Jn−2

2

(
m|∆x|

√
s2 − 1

)
. (B.39)

We can now use the identity #6.645 in [291]:
∫ ∞

1
dx(x2 − 1)

ν
2 e−αx Jν

(
β
√

x2 − 1
)
=

√
2
π

βν(α2 + β2)−
ν
2−

1
4 Kν+ 1

2

(√
α2 + β2

)
,

(B.40)

where Kµ is the modified Bessel function of the first kind. Setting ν = n−2
2 , β = m|∆x|

and analytic continuation using α = ϵ + im∆t gives

W(x, x′) = m
n−1

2

(2π)
n+1

2

1

[−(∆t − iϵ)2 + |∆x|2] n−1
4

K n−1
2

(
m
√
−(∆t − iϵ)2 + |∆x|2

)
, (B.41)

where this expression should be understood as a (bi-)distribution. The commutator and
anti-commutator can then be obtained using C±(x, x′) = W(x, x′)± W(x′, x). Note that
the small mass (distributional) limit m → 0+ will give us theWightman function for the
massless scalar field in Eq. (5.29).
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Appendix C

Numerical contour integration

Here we present our method of performing contour integration using Mathematica that
we employed for the work discussed in Chapter 4. The basic idea was first demonstrated
in the context of moving mirror spacetimes [292] but with a small improvement (which
turned out to be necessary for a separate result in [91]). We believe this method is worth
outlining because it seems to be useful for many purposes beyond relativistic quantum
information settings, since it is essentially the problem of evaluating a double integral
over a distribution. The numerical computation is done usingMathematica, and the doc-
umentation is given in [293].

Let us illustrate the technique by computing the transition probability of an Unruh-
DeWitt detector comovingwith the quantization frame in (3+1)-dimensionalMinkowski
space. The detector-field interaction is prescribed by the usual amplitude coupling ĤI =
λχ(t)µ̂(t)ϕ̂(t, x), where (t, x) denotes the coordinates of the detector. For convenience
we will set the detector to be at the origin, so that x = 0. It is easy to see that the
Wightman function associated with the Minkowski vacuum, WM(t, t′) ≡ WM(t, 0, t′, 0),
reduces to the simple expression1 [45, 79]

WM(t, t′) = − 1
4π2

1
(t − t′ − iϵ)2 . (C.1)

We have kept the iϵ prescription here since it is the commonway of describing the distri-
butional nature of the vacuum Wightman functions2. Let us set the switching to be the

1Observe that this is the same as the Wightman function for derivative coupling in (1+1)-dimensional
Minkowski space, up to the constant prefactor.

2In the simple case above, we could also remove the iϵ in exchange of using Dirac delta function and
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Gaussian switching χ(t) = e−t2/(2σ2) for convenience, since we will later make compari-
son with some results in the literature that uses this switching function. Note that this is
different from the switching considered in the main body of Chapter 4 (c.f. Eq. (4.26))
by substitution σ →

√
2σ. The transition probability of a pointlike detector prepared in

the ground state to leading order in perturbation theory is

Pr(Ω, σ) = λ2
∫

dt dt′ e−t2/(2σ2)e−t′2/(2σ2)e−iΩ(t−t′)WM(t, t′) , (C.3)

where Ω > 0. We can write this as

Pr(Ω, σ) = lim
ϵ→0+

λ2J (Ω, σ, ϵ) , (C.4)

J (Ω, σ, ϵ) := − 1
4π2

∫
dt dt′ e−iΩ(t−t′) e−t2/(2σ2)e−t′2/(2σ2)

(t − t′ − iϵ)2 . (C.5)

For this particular case, we are fortunate because the closed-formexpression for Eq. (C.5)
is known, which we can use to check our calculations. This is given by [79]

J0 :=
e−σ2Ω2 −

√
πσΩ erfc(σΩ)

4π
. (C.6)

We remark that there is another closed form expression derived differently in [295] that
only works correctly for Ω > 0, whereas Eq. (C.6) is valid for all Ω ∈ R.

Let us now compare this with numerical computation3. We will refer to an integral Jj
as Method j, and we will call J0 Method 0.

C.1 Method 1: direct iϵ integration

We denote J1 to be the integral (C.5) evaluated by brute force, picking a small enough
ϵ during integration. We will evaluate this for Ωσ = 1 for concreteness. In this case

principal value integral via Sokhotsky’s formula [294]

lim
ϵ→0+

1
x ∓ iϵ

= P.V.
(

1
x

)
± iπδ(x) , (C.2)

where P.V. denotes principal value and the limit is understood in the distributional sense.
3All numerical computations in Chapter 4 were done using Mathematica 12.0 [296].
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Method 0 gives

J0
∣∣
Ωσ=1 =

e−1 −
√

πerfc(1)
4π

≈ 0.00708827 . (C.7)

The values of J1 can be computed using various settings and optimizations. We ob-
tained reasonable results using MinRecursion → 3, MaxRecursion → 20, AccuracyGoal →
∞, PrecisionGoal → 10. We also cut the integral at strong support, i.e. t, t′ ∈ (−5σ, 5σ)
for better convergence; one can check that the results are generally worse if one chooses
to numerically integrate over R. The results are shown in Table C.1.

ϵ/σ J1
10−1 0.00670272 + 2.67648 × 10−9i
10−2 0.00704838 − 6.50088 × 10−16i
10−3 −0.732931 − 9.03524 × 10−7i
10−4 −6.84952 + 1.52192i
10−5 −27.3218 − 0.246437i

Table C.1: Values of J1 using Method 1 (direct iϵ integration) as ϵ varies.

Observe that ϵ ∼ 10−2σ reasonably approximates (C.7), but the rest of the values do
not work. To our knowledge, any other settings within this scheme do not help much,
and we believe that while in principle there should be a way to make this method work,
it would require a great deal of effort and understanding of the back-end numerical anal-
ysis to make this worthwhile in terms of both the computational time and numerical sta-
bility. We stress that the sorts of computations done in [87] or [99] have one particular
advantage: they can be recast into one-dimensional integrals that can be dealt withmuch
better numerically. For example, the Method → “DoubleExponentialOscillatory” used in
[81] is not available for higher-dimensional integrals.

C.2 Method 2: numerical contour integration

The idea is basically to perform the following integral:

J2 := − 1
4π2

∫
R

dt
∫

C(ϵ)
dt′ e−iΩ(t−t′) e−t2/(2σ2)e−t′2/(2σ2)

(t − t′)2 , (C.8)
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Figure C.1: The choice of contour about t′ = f (t) in contrast to iϵ prescription. For our
example, we have f (t) = t.

where C(ϵ) is a contour deformed to the upper complex plane around the pole t′ = t.
The contour is shown in Figure C.1 and shown contrasted to the iϵ prescription. If we
choose to instead perform the integral over t first, then the contour is deformed to the
lower complex plane around the pole t = t′. We let ϵ here to be the distance from the pole
(in units of σ): that is, we integrate t′ from −∞ to t − ϵ, then from t − ϵ to t − ϵ + i, then
to t + ϵ + i, followed by t + ϵ and finally from t → ∞. That is, we set ϵ to be the distance
from the pole along the t′ axis4. Again we integrate over strong support (−5σ, 5σ) as in
general integration over R is of lower quality. The results are shown in Table C.2.

Notice that the results are a much better approximation to (C.7) than Method 1. Fur-
thermore, to achieve this quality we only need MinRecursion → 3 and nothingmore. This
could potentially be improved with more optimization. It is quite remarkable that this
methodworks verywell withminimal settingswhereas the usual iϵ approach ofMethod
1 fails terribly. Method 2 only starts to deviate very little when we get too close to the
pole (ϵ ∼ 10−5σ) due to numerical resolution.

We make four observations here. First, the fact that J2 is numerically constant across
a broad range of values of ϵ is a manifestation of a basic principle in complex analysis,

4A minor point: the units of ϵ depend on the pole. Typically one views ϵ as a UV regulator (hence
typically in natural units it has units of length), but mathematically it is really just a prescription for
describing the distributional nature of the distribution at hand. Thus it can be dimensionless, depending
on where it appears.
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ϵ/σ J2
10−0 0.00708827 − 6.59116 × 10−19i
10−1 0.00708827 − 8.73414 × 10−19i
10−2 0.00708827 − 1.69173 × 10−18i
10−3 0.00708827 + 1.09202 × 10−9i
10−4 0.00708827 + 1.09423 × 10−9i
10−5 0.00708712 + 1.17660 × 10−9i

Table C.2: Values of J2 using Method 2 (numerical contour) as ϵ varies.

namely the deformation theorem. The theorem states that within a holomorphic region we
can deform the contour of an integral without changing the value of the integral, which
follows from Cauchy’s integral theorem. Since the pole is along the t′ axis, any ϵ will
give the same result since there is no other pole in the upper complex plane. Therefore
Method 2 provides a very nice way of checking numerical stability: if the integral is no
longer constant as we vary ϵ across a broad but reasonable range, (recall from Table C.2
thatwewould notwant ϵ to be too small numerically), then perhaps one needs to check if
something has gone wrong or the method itself no longer works stably. Second, because
of the deformation theorem, in practice the contour shown in Fig C.1 is flexible: we
chose this contour because it is the simplest to illustrate. Third, notice that in computing
J (Ω, σ, ϵ), Jordan’s lemma cannot be used due to theGaussian switching function – hence
we do not have the benefit of using the residue technique numerically. Finally, what
we have performed here is effectively a two-dimensional contour integration, where the
poles are continuous (one pole on the t′ axis for every t) on the (t, t′) plane.

We pause to remark that actually there are two more methods that work well for
Minkowski vacuum calculations, which are used in [87, 117, 118, 297]. One of them in
fact can be written in a form free of the UV regulator ϵ, thus it is either correct or in-
correct. A brief investigation [292] indicated that for Minkowski vacua these two are
competitive methods and behave very well. However they failed in the presence of a
(possibly dynamical) Dirichlet boundary condition (such as a moving mirror [101])
because the mirror introduces new poles that reduce the utility of these methods. Nev-
ertheless the resultant calculations remained valid because the transition rate is given
by a one-dimensional integral in time. It was shown that numerical contour integration
remains superior in the context of moving mirrors [292].

The results in this section and the observations above testify to the especial appeal of
numerical contour integration in practical calculation.
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Figure C.2: Themodified contour used for harvesting calculations in Chapter 4 based on
[33]. The contour effectively does away with finding the poles for derivative Wightman
functions.

C.3 Better contour for entanglement harvesting: Vaidya
spacetime

For calculations carried out in Chapter 4, the choice of contour in Figure C.1 is not good
enough. The problem is that the contour we picked relies on finding the location of the
poles, i.e. we are solving for t′ = f (t). Even for derivative Wightman functions for the
Unruh and HHI vacua in Eq. (4.39b) and (4.39c), f is in general not a linear function of
t and depends on the black hole mass M. Even more importantly, for entanglement har-
vesting the nonlocal term M depends on two different radial coordinates with different
gravitational redshifts, so f is highly non-trivial.

An even bigger problem is caused by time ordering in M: one would have to con-
stantly track whether within the strong support the poles are included or not when time
ordering is applied. For derivative Wightman functions in Vaidya spacetime, this is
worsened by the two additional equally complicated terms. It is not hard to check that
the contour prescription we did earlier, where the deformation is somewhat close to the
poles (say ϵ ∼ 10−1σ) does not quite work, let alone direct integration via iϵ.

The deformation theorem andGaussian suppression coming from the switching func-
tion provide uswith a new contour thatwe can use5. The idea is that if the strong support
of the Gaussian switching is (−bσ, bσ), then we set ϵ = bσ. In other words, we adopt the
contour in Figure C.2. This contour has the advantage that we effectively do away with
finding the poles: the poles are either within thewithin the strip or outside the strip, and
a single contour covers all possible positions of the pole independent of the complexity
of the function f that describes the location of the pole as a function of t. It also solves
the issue of time ordering, by replacing the upper limit of t′ from 5σ to t.

5The authors thank Nicholas Funai for useful discussions on the complex analysis aspects of this nu-
merical technique.
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As it turns out, with relatively minimal settings (such as MinRecursion ∼ 3 − 6), the
numerical computation works very well even for Vaidya spacetime. We also chose for
simplicity to deform the contour by one imaginary unit +i to the upper complex plane.
In fact, this numerical calculation is stable enough for computation of long-time observ-
ables such as the EDR ratio for KMS detailed balance condition. We have also used
infinite precision such as using fractions 1/2 instead of 0.5 whenever possible, and we
set the global precision setting to 50 digits using PreRead command.

We note that withmore complicated problems (and depending on the issue at hand),
we expect that different optimizations and variations may be needed on top of what we
have done here. The main point is that numerical contour integration provides a suffi-
ciently robust and straightforward implementationwithout having to construct a separate
numerical scheme from scratch, and the fact that optimization is possible at all (unlike
the direct integration by iϵ prescription). We also did not attempt to optimize computa-
tional time; this is perhaps left for future investigations.

Finally, we stress that this method is very powerful for our purposes, but it is not
without problems. In particular, it is noticeable that our method seems to be ill-behaved
for large Ωσ: in general highly oscillatory integrals are numerically unfriendly and our
method is not exempt from this. A much more careful numerical approach would be
required instead of relying on simple built-in settings of NIntegrate.
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Appendix D

Useful calculations for master equations

D.1 Nakajima-Zwanzig evolution of the X-block

In this Appendix we give the explicit evolution equations for the X-block ρ̂I
AB,X(τ) de-

fined in (6.23) for the Nakajima-Zwanzig master equation (6.22) at O(λ2) given in Sec-
tion 6.3. The X-block contains five independent matrix elements. The coupled integro-
differential equations for these matrix elements are given by:

∂ρI
11

∂τ
= 2λ2

∫ τ

0
ds Re[WS(s)] cos(Ωs)

(
− 2ρI

11(τ − s) + ρI
22(τ − s) + ρI

33(τ − s)
)

+ 2λ2
∫ τ

0
ds Im[WS(s)] sin(Ωs)

(
2ρI

11(τ − s) + ρI
22(τ − s) + ρI

33(τ − s)
)

− 2λ2e−2iΩτ
∫ τ

0
ds e+iΩsW∗

×(s)ρ
I
14(τ − s)− 2λ2e+2iΩτ

∫ τ

0
ds e−iΩsW×(s)ρI∗

14(τ − s)

+ 4λ2
∫ τ

0
ds
(

Re[W×(s)] cos(Ωs) + Im[W×(s)] sin(Ωs)
)

Re[ρI
23(τ − s)] (D.1)

∂ρI
22

∂τ
= 2λ2

∫ τ

0
ds Re[WS(s)] cos(Ωs)

(
1 − 3ρI

22(τ − s)− ρI
33(τ − s)

)
+ 2λ2

∫ τ

0
ds Im[WS(s)] sin(Ωs)

(
1 − 2ρI

11(τ − s)− ρI
22(τ − s)− ρI

33(τ − s)
)

+ 2λ2e+2iΩτ
∫ τ

0
ds e−iΩsRe[W×(s)]ρI∗

14(τ − s)
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− 4λ2
∫ τ

0
ds
(

Re[W×(s)]Re[ρI
23(τ − s)] + Im[W×(s)]Im[ρI

23(τ − s)]
)

cos(Ωs)

+ 2λ2e−2iΩτ
∫ τ

0
ds e+iΩsRe[W×(s)]ρI

14(τ − s) (D.2)

∂ρI
33

∂τ
= 2λ2

∫ τ

0
ds Re[WS(s)] cos(Ωs)

(
1 − ρI

22(τ − s)− 3ρI
33(τ − s)

)
+ 2λ2

∫ τ

0
ds Im[WS(s)] sin(Ωs)

(
1 − 2ρI

11(τ − s)− ρI
22(τ − s)− ρI

33(τ − s)
)

+ 2λ2e−2iΩτ
∫ τ

0
ds e+iΩsRe[W×(s)]ρI

14(τ − s) + 2λ2e+2iΩτ
∫ τ

0
ds e−iΩsRe[W×(s)]ρI∗

14(τ − s)

− 4λ2
∫ τ

0
ds
(

Re[W×(s)]Re[ρI
23(τ − s)]− Im[W×(s)]Im[ρI

23(τ − s)]
)

cos(Ωs)

(D.3)

∂ρI
14

∂τ
= −4λ2

∫ τ

0
ds e+iΩsRe[WS(s)]ρI

14(τ − s) + 4λ2e+2iΩτ
∫ τ

0
ds e−iΩsRe[WS(s)]Re

[
ρI

23(τ − s)
]

− 2λ2e+2iΩτ
∫ τ

0
ds Re[W×(s)]e−iΩs

(
1 − 2ρI

22(τ − s)− 2ρI
33(τ − s)

)
− 2iλ2e+2iΩτ

∫ τ

0
ds Im[W×(s)]e−iΩs

(
1 − 2ρI

11(τ − s)− ρI
22(τ − s)− ρI

33(τ − s)
)

(D.4)

∂ρI
23

∂τ
= 2λ2e−2iΩτ

∫ τ

0
ds e+iΩsRe[WS(s)]ρI

14(τ − s) + 2λ2e+2iΩτ
∫ τ

0
ds e−iΩsRe[WS(s)]ρI∗

14(τ − s)

− 4λ2
∫ τ

0
ds Re[WS(s)] cos(Ωs)ρI

23(τ − s)

+ 2λ2
∫ τ

0
ds Re[W×(s)] cos(Ωs)

(
1 − 2ρI

22(τ − s)− 2ρI
33(τ − s)

)
+ 2λ2

∫ τ

0
ds Im[W×(s)] sin(Ωs)

(
1 − 2ρI

11(τ − s)− 2ρI
22(τ − s)

)
(D.5)
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D.2 Nakajima-Zwanzig evolution of the O-block

In this Appendix we give the explicit evolution equations for the O-block ρ̂I
AB,O(τ) de-

fined in (6.23) for the Nakajima-Zwanzig master equation (6.22) at O(λ2) given in Sec-
tion 6.3. The O-block contains four independent matrix elements. The coupled integro-
differential equations for these matrix elements are given by:

∂ρI
12

∂τ
= −2λ2

∫ τ

0
ds
[
Re[WS(s)] cos(Ωs)

(
ρI

12(τ − s)− ρI
34(τ − s)

)
− Im[WS(s)] sin(Ωs)

(
ρI

12(τ − s) + ρI
34(τ − s)

)]
− 2λ2

∫ τ

0
ds Re[WS(s)]eiΩsρI

12(τ − s) + 2λ2e2iΩτ
∫ τ

0
ds Re[WS(s)]e−iΩsρI∗

12(τ − s)

− 2λ2e2iΩτ
∫ τ

0
ds e−iΩsW×(s)ρI∗

24(τ − s)

+ 2λ2
∫ τ

0
ds ρI

24(τ − s)
(
Re[W×(s)] cos(Ωs) + Im[W×(s)] sin(Ωs)

)
+ 2λ2e2iΩτ

∫ τ

0
ds e−iΩsRe[W×(s)]ρI∗

13(τ − s)− 2λ2
∫ τ

0
dsW∗

×(s) cos(Ωs)ρI
13(τ − s)

(D.6)

∂ρI
13

∂τ
= −4λ2

∫ τ

0
ds Re[WS(s)]eiΩsρI

13(τ − s) + 2iλ2
∫ τ

0
ds W∗

s (s) sin(Ωs)ρI
13(τ − s)

+ 2λ2
∫ τ

0
ds ρI

24(τ − s)
(
Re[WS(s)] cos(Ωs) + Im[WS(s)] sin(Ωs)

)
+ 2λ2e2iΩτ

∫ τ

0
ds Re[WS(s)]e−iΩsρI∗

13(τ − s)− 2λ2e2iΩτ
∫ τ

0
ds W×(s)e−iΩsρI∗

34(τ − s)

+ 2λ2
∫ τ

0
ds ρI

34(τ − s)
(
Re[W×(s)] cos(Ωs) + Im[W×(s)] sin(Ωs)

)
+ 2λ2e2iΩτ

∫ τ

0
ds Re[W×(s)]e−iΩsρI∗

12(τ − s)− 2λ2
∫ τ

0
dsW∗

×(s) cos(Ωs)ρI
12(τ − s)

(D.7)

∂ρI
24

∂τ
= −2λ2

∫ τ

0
ds Re[WS(s)]eiΩsρI

24(τ − s)
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− 2λ2
∫ τ

0
ds
(
Re[WS(s)] cos(Ωs) + Im[WS(s)] sin(Ωs)

)
ρI

24(τ − s)

+ 2λ2
∫ τ

0
ds
(
Re[WS(s)] cos(Ωs)− Im[WS(s)] sin(Ωs)

)
ρI

13(τ − s)

+ 2λ2e2iΩτ
∫ τ

0
ds Re[WS(s)]e−iΩsρI∗

24(τ − s)− 2λ2e2iΩτ
∫ τ

0
ds W∗

×(s)e
−iΩsρI∗

12(τ − s)

+ 2λ2
∫ τ

0
ds ρI

12(τ − s)
(
Re[W×(s)] cos(Ωs)− Im[W×(s)] sin(Ωs)

)
+ 2λ2e2iΩτ

∫ τ

0
ds e−iΩsRe[W×(s)]ρI∗

34(τ − s)− 2λ2
∫ τ

0
ds W×(s) cos(Ωs)ρI

34(τ − s)

(D.8)

∂ρI
34

∂τ
= −2λ2

∫ τ

0
ds
(
Re[WS(s)] cos(Ωs) + Im[WS(s)] sin(Ωs)

)
ρI

34(τ − s)

− 2λ2
∫ τ

0
ds Re[WS(s)]eiΩsρI

34(τ − s)

+ 2λ2
∫ τ

0
ds
(
Re[WS(s)] cos(Ωs)− Im[WS(s)] sin(Ωs)

)
ρI

12(τ − s)

+ 2λ2e2iΩτ
∫ τ

0
ds Re[WS(s)]e−iΩsρI∗

34(τ − s)

+ 2λ2
∫ τ

0
ds
(
Re[W×(s)] cos(Ωs)− Im[W×(s)] sin(Ωs)

)
ρI

13(τ − s)

− 2λ2e2iΩτ
∫ τ

0
ds W∗

×(s)e
−iΩsρI∗

13(τ − s)

− 2λ2
∫ τ

0
ds W×(s)cos(Ωs)ρI

24(τ − s) + 2λ2e2iΩτ
∫ τ

0
ds Re[W×(s)]e−iΩsρI∗

24(τ − s)

(D.9)

D.3 When is Alice’s detector Markovian?

In this section we expand the argument leading to Eq. (6.40), which shows that Alice’s
detector is onlyMarkovian when Ω/a � 1 even in the “standard”Markovian approach.
Recall that the Nakajima-Zwanzig equation for the off-diagonal components of Alice’s
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detector is (6.36), repeated here for convenience:

dρI
A,12

dτ
≈ iλ2DρI

A,12(τ) + FNZ(τ) , (D.10a)

FNZ(τ) := −2λ2
τ∫

0

ds Re [WS(s)] e+iΩsρI
A,12(τ − s)

+ 2λ2e+2iΩτ

τ∫
0

ds Re [WS(s)] e−iΩsρI∗
A,12(τ − s) (D.10b)

with a counter-term λ2DρI
A12(τ) (see the definition (D.12) below) included to ensure

that the Markovian solution oscillates at the physical detector gap [171]. Applying the
“standard” Markovian approximation ρ̂I

A(τ − s) ≈ ρ̂I
A(τ) commonly employed in the

literature yields Eq. (6.37), we get

dρI
A,12

dτ
≈ iλ2DρI

A,12(τ) + FM(τ) (D.11a)

FM(τ) := −2λ2
∞∫

0

ds Re [WS(s)] e+iΩsρI
A,12(τ)

+ 2λ2e+2iΩτ

∞∫
0

ds Re [WS(s)] e−iΩsρI∗
A,12(τ) (D.11b)

with the counter-term also included. Here we have defined a constant D that is UV-
regulated (i.e. UV-divergent in the limit ϵ → 0+):

D := 2
∫ ∞

0
ds Re [WS(s)] sin(Ωs) =

Ω
2π2 log(eγaϵ) +

Ω
2π2 Re

[
ψ(0)

(
− iΩ

a

)]
, (D.12)

with γ the Euler-Mascheroni constant, ψ(0)(z) = Γ′(z)/Γ(z) the digamma function
[203], and ϵ the finite UV cutoff associated with the iϵ-prescription of the correlator
WS(s) defined in (6.20). Using the definition of constant C from (6.39), Eq. (D.11) sim-
plifies to

dρI
A,12

dτ
≈ −λ2CρI

A,12(τ) + λ2(C − iD)e+2iΩτρI∗
A,12(τ) . (D.13)
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The Markovian solution of Eq. (D.11) is given by

ρI
A,12(τ) ≈ Ae−λ2Cτ + Be(−λ2C+2iΩ)τ (D.14)

where the constant coefficients A and B are given by

A = ρ̂I
A,12(0) + ρI∗

A,12(0)
λ2(D + iC)

2Ω
and B = −ρI∗

A,12(0)
λ2(D + iC)

2Ω
. (D.15)

We are interested in the conditions under which the RHS of (D.10) is approximately
equal the RHS of (D.11), i.e., when FNZ(τ) ≈ FM(τ). To self-consistently answer this
question we here insert the Markovian solution (D.14) into both FNZ(τ) and FM(τ) and
explore constraints on the parameters that yield FNZ(τ) ≈ FM(τ). Substituting the
Markovian solution (D.14) into FNZ(τ) and FM(τ) we get

FNZ(τ) = 2λ2e−λ2Cτ
∫ τ

0
ds Re [W(s)] e+iΩs (B∗ −A) e+λ2Cs

+ 2λ2e(−λ2C+2iΩ)τ
∫ τ

0
ds Re [W(s)] e−iΩs (−B +A∗) e+λ2Cs , (D.16)

FM(τ) = 2λ2e−λ2Cτ
∫ ∞

0
ds Re [W(s)]

(
e−iΩsB∗ − e+iΩsA

)
+ 2λ2e(−λ2C+2iΩ)τ

∫ ∞

0
ds Re [W(s)]

(
−e+iΩsB +A∗e−iΩs

)
. (D.17)

Now, if we assume that λ2C � a and aτ � 1 then (D.16) becomes approximately

FNZ(τ) ≈ 2λ2e−λ2Cτ
∫ ∞

0
ds Re [W(s)] e+iΩs (−A+ B∗)

+ 2λ2e(−λ2C+2iΩ)τ
∫ τ

0
ds Re [W(s)] e−iΩs (−B +A∗) . (D.18)

However, for arbitrary Ω > 0 this is in general not approximately equal to FM(τ), since

FNZ(τ)− FM(τ) ≈ 2λ2e−λ2CτB∗
∫ ∞

0
ds Re [W(s)] (e+iΩs − e−iΩs)

+ 2λ2e(−λ2C+2iΩ)τB
∫ τ

0
ds Re [W(s)] (e−iΩs − e+iΩs) . (D.19)

The only way we can have FNZ(τ)− FM(τ) ≈ 0 in the above is if we additionally assume
that Ω/a � 1 so that e+iΩs ≈ e−iΩs ≈ 1 under the integral sign, as claimed in the main
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text surrounding Eq. (6.40).

D.4 Some useful integrals

In this appendix we compute the functions C× and K× defined in (6.49a) and (6.49b),
as well as D′

× and S′
× defined in (6.79b) and (6.79a) (where we note that CS, D′

S and S′
S

have all been computed in [171, 173]).
First we compute C× and S×, and to this end we define the related Fourier cosine and

sine transforms

C×(Ω) := 2
∫ ∞

0
ds Re[WS,×(s)] cos(Ωs) , (D.20)

S×(Ω) := 2
∫ ∞

0
ds Im[WS,×(s)] sin(Ωs) . (D.21)

The values of these integrals depend on the proper acceleration a, detector separation L
as well as the energy gap Ω. These integrals have the properties

C× = lim
Ω→0+

C×(Ω) , S′
× = lim

Ω→0+

dS×(Ω)

dΩ
(D.22)

and are useful definitions because the thermality encoded in the correlator W× implies
that C×(Ω) and S×(Ω) are related for arbitrary Ω > 0. In particular, W× satisfies the
KMS condition,

W×(τ − iβ) = W∗
×(τ) , (D.23)

with β = 2π/a = T−1
U the inverseUnruh temperature, which in turn implies the detailed

balance relationship
C×(Ω) = − coth

(
πΩ

a

)
S×(Ω) . (D.24)

Since the imaginary part of theWightman function is precisely half the expectation value
of the field commutator, we have (see [34])

Im[〈0|ϕ̂(t, x)ϕ̂(t′, x)|0〉] = i
4π2|∆x|

[
δ(∆t + |∆x|)− δ(∆t − |∆x|)

]
, (D.25)

where ∆x = x − x′ and ∆t = t − t′. Substituting the trajectories (6.1) and setting
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s = τ − τ′ gives

Im[W×(s)] = − a
8πL

√
1 + (aL/2)2

δ

(
s − 2

a
sinh−1(aL/2)

)
. (D.26)

With this one can compute S×(Ω) to give

S×(Ω) = −
sin
(

2Ω
a sinh−1 (aL/2)

)
4πL

√
1 + (aL/2)2

, (D.27)

which using (D.24) in turn implies

C×(Ω) =
coth

(
πΩ

a

)
sin
(

2Ω
a sinh−1 (aL/2)

)
4πL

√
1 + (aL/2)2

. (D.28)

Using this together with (D.22) then straightforwardly gives the answers for C× and S′
×

given in (6.49a) and (6.80b). Using the expression (D.26) for Im[W×(s)] in the integral
definition (6.49b) for K× also easily gives the result quoted in the main text.

Finally we compute D′
× defined in (6.79a). Using the form (6.21) of W×(s) and then

switching the integration variable z := as/2 turns (6.79a) into

D′
× = − 1

2π2 Re
[

lim
δ→0+

∫ ∞

0
dz z

sinh2(z)− ( aL
2 )2 − iδ

]
, (D.29)

where we have defined the dimensionless infinitesimal δ = aϵ/2 (and taken it out of the
argument of the sinh function noting that z > 0). Performing a partial fraction expansion
on the integrand yields

D′
× = Re

[
lim

δ→0+

I(
√
( aL

2 )2 + iδ )− I(−
√
( aL

2 )2 + iδ )

4π2
√
( aL

2 )2 + iδ

]
, (D.30)

with I(b) defined by
I(b) :=

∫ ∞

0
dz

z
sinh(z) + b

(D.31)
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for b ∈ C \ (−∞, 0]. This evaluates to

I(b) = Li2(−b +
√

b2 + 1)− Li2(−b −
√

b2 + 1)√
b2 + 1

(D.32)

where Li2 is the polylogarithm of order 2 [203],

Li2(z) = −
∫ z

0
dt

log(1 − t)
t

(D.33)

defined for z ∈ C \ [1, ∞). With the above formula we safely can take the limit δ → 0+

giving the result (6.80a) quoted in Chapter 6.
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Appendix E

BMS symmetries at I +

In this Appendix we briefly review some basic concepts of BMS symmetries at I + and
their relationship as asymptotic symmetries of the bulk spacetime M. It will be conve-
nient (since we have run out of letters/symbols) to use the notation C∞(N ) to be the
space of smooth functions on some manifold N , X(N ) to be the set of vector fields on
N .

E.1 BMS group

From various definitions in Section 7.1, we see that there is an inherent freedom in the
definition of null infinity for an asymptotically flat spacetime: namely, the freedom to
rescale the conformal factor Ω > 0 in a neighbourhood of I + by another smooth posi-
tive factor λ > 0: Ω → λΩ. Under such a transformation the triple (I +, h := g

∣∣
I + , na :=

∇̃aΩ) transforms as (
I +, h, n

)
−→

(
I +, λ2h, λ−1n

)
. (E.1)

Thus the (future) null infinityI + is really the set of equivalence classes, C = [(I +, h, n)],
of all such triples and there is in general no preferred choice or representative within a
class. Moreover, null infinity is universal in the sense that given any two equivalence
classes C1, C2 with representatives (I +

1 , h1, n1) and (I +
2 , h2, n2), there is a diffeomor-

phism γ : I +
1 → I +

2 such that(
I +

2 , h2, n2
)
=
(
γ(I +

1 ), γ∗h1, γ∗n1
)

. (E.2)
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It is this freedom that allows one to transform to a Bondi frame (7.2)

hB := 2du dΩ + γS2 , (E.3)

where γS2 is the usual metric on the 2-sphere (not to be confused with the diffeomor-
phism γ) and as well u is the affine parameter of the null generators na := ∂u.

The diffeomorphisms γ that preserve the equivalence classes of I + in the sense of
(E.2) comprise the Bondi–Metzner–Sachs [248, 249] group BMS4(I

+). In other words,
for any γ ∈ BMS4(I

+) ⊂ Diff(I +) and any equivalence class C with representative
(I +, h, n) we have (

γ(I +), γ∗h, γ∗n
)
=
(
I +, λ2h, λ−1n

)
. (E.4)

Clearly (E.4) is independent of the representations chosen. Importantly this statement
is equivalent to the following [50]: Given a one-parameter family of diffeomorphisms γt

generated by a vector ξ̃ on I +, ξ̃ can be smoothly extended (not uniquely) to a vector
field ξ in M (for some neighbourhood of I +) such that Ω2Lξ g → 0 in the limit to I +.

In order to see that this definition leads to a conformal rescaling of the metric at I +,
we note that

Ω2Lξ gab = Lξ ĝab − 2Ω−1ncξc ĝab . (E.5)
Since the left hand side and the first term on the right hand side are smooth in the limit
to I + this implies α(ξ) := Ω−1ncξc is also smooth. Therefore Ω2Lξ g|I + = 0 implies
the conformal Killing equation

Lξ ĝab = 2α(ξ)ĝab . (E.6)

This preserves the null condition nanbLξ ĝab = O(Ω2).

Moreover, if we fix a Bondi frame ∇̃anb = 0, the twist of na vanishes, ∇[anb] = 0, so
we also have Lξna = −α(ξ)na and Lnα(ξ) = 0 [254]. By pulling back to I +, we obtain
the asymptotic symmetries of the bulk manifold M:

L
ξ̃
γS2 = 2α(ξ̃)γS2 , (E.7a)

L
ξ̃
na = −α(ξ̃)na . (E.7b)

Note that at I + we have ξ̃ = ξ so we will drop the tilde whenever it is clear from the
context. Thus we see that these reproduce the infinitesimal action of BMS4(I

+) (see
e.g. [254]).
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The general solution to (E.7a) and (E.7b) with Lnα(ξ) = 0 is given by the vector field
ξ ∈ X(I +) of the form

ξ( f , Y) =
(

f +
1
2

u DAYA
)

n + Y , (E.8)

where n ∈ X(I +), Y ∈ X(S2) and f ∈ C∞(S2) and

Ln f = 0 = LnY LYγS2 = DAYAγS2 . (E.9)

The metric on the 2-sphere γS2 = γABdxAdxB, where xA are coordinates for S2, and γAB
can be used to raise indices A, B, C . . . with its associated covariant derivative DA.

The vector fields ξ( f , 0) = f n are known as supertranslations: they are parametrized
by smooth functions f on the 2-spheres and they form a ideal of the BMS algebra bms4.
The smooth conformalKilling vectors of the two-sphere, Y ∈ X(S2), generate the Lorentz
algebra—but there is generically no preferred Lorentz subgroup. Therefore the structure
of the BMS group generated by these asymptotic Killing vectors is a semi-direct product
BMS4 = SO+(3, 1)⋉ C∞(S2).

We review these asymptotic symmetries in a more direct manner below.

E.2 Asymptotic symmetries of the metric

The metric of any asymptotically flat spacetime can be written in Bondi-Sachs coordi-
nates [248, 249]

ds2 = −Udu2 − 2e2βdudr + gAB

(
dxA +

1
2

UAdu
)(

dxB +
1
2

UBdu
)

, (E.10)
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where det(gAB) = r4 det(γAB). Due to the assumptions in Sec. 7.1, the large-r expansion
takes the form (see e.g. [256])

U = 1 − 2mB
r

+O(r−2) , (E.11a)

β = O(r−2) , (E.11b)

UA =
1
r2 DBCAB +O(r−3) , (E.11c)

gAB = r2γAB + rCAB +O(r0) . (E.11d)

Here, mB is the Bondi mass aspect, CAB is the shear tensor1, and NA is the angular mo-
mentum aspect. Together with the Bondi news tensor NAB = ∂uCAB (and the constraint
equation for the Bondi mass coming from the Einstein equations), these form the ra-
diative data for general relativity [256, 268]. Observe that by introducing Ω = r−1 (so
dr = −Ω−2dΩ) and rescaling g̃µν = Ω2gµν, the fall-off conditions (E.11) imply that the
metric in the unphysical spacetime takes the Bondi form at I + where Ω = 0, given by
Eq. (7.2).

By direct computation, we can show that the fall-off conditions are preserved by the
asymptotic Killing vectors [298, 299]

ξ =

(
f +

1
2

uDAYA
)

∂u +

(
YA − 1

r
DA f +O(r−2)

)
∂A

+
1
2
(
− rDAYA + DADA f +O(r−1)

)
∂r , (E.12)

where as before these vectors, ξ( f , Y), are parameterized by the scalar functions f ≡
f (xA) and the conformal Killing vectors of the 2-sphere, Y = YA∂A, whose general form
is [300]

YA ≡ YA(xA) = DAχe + ϵABDBχm (E.13)
where (DADA + 2)χe/m = 0, i.e. χe/m are ` = 1 spherical harmonics.

In particular, ξ(0, DAχe) generate boosts and ξ(0, ϵABDBχm) generate rotations [300]2.
While expanding f in a basis of spherical harmonics one finds that the first four spheri-
cal harmonics Ylm(xA) correspond to ordinary translations in the bulk (l = 0, m = 0 for

1Fixing Bondi gauge/coordinates and the determinant condition ∂r det
(

gAB/r2) = 0 implies that the
shear tensor is trace-free: γABCAB = 0.

2A generalisation YA to non smooth solutions leads to the notation of superrotations [298, 299] which
will not concern us here.
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time translations, l = 1, m = 0,±1 for spatial translations).

E.3 Group action at I +

To see an explicit representation of the group at I + we will work in a Bondi frame
henceforth, and also, fix the 2-sphere to have complex stereographic coordinates xA =
{z, z}, where z = cot(θ/2)eiφ. In this system the Bondi frame takes the form

hB := 2du dΩ +
4 dz dz
(1 + zz)2 . (E.14)

Keeping the notation in [40] one can show [249] that the action of the BMS4 group takes
the following form,

u′ = KΛ(z, z) (u + f (z, z)) ,

z′ := Λz =
aΛz + bΛ

cΛz + dΛ
, z′ := Λz =

āΛz + b̄Λ

c̄Λz + d̄Λ
. (E.15)

Here Λ ∈ SO+(3, 1) denotes a particular proper orthochronous Lorentz transformation
and

KΛ(z, z) =
1 + |z|2

|aΛz + bΛ|2 + |cΛz + dΛ|2
. (E.16)

The coefficients (aΛ, bΛ, cΛ, dΛ) arise from the covering map p : SL(2, C) → SO+(3, 1)
since SL(2, C) is a double cover of the proper orthochronous Lorentz group SO+(3, 1),
i.e., SL(2, C)/Z2

∼= SO+(3, 1).
Notice that the choice of sign does not change any of the transformations andhencewe

have the semidirect product BMS4 = SO+(3, 1)⋉ C∞(S2). We see the semi-direct prod-
uct structure by considering the composition of (Λ, f ), (Λ′, f ′) ∈ SO+(3, 1) × C∞(S2).
This yields

KΛ′(Λ(z, z))KΛ(z, z) = KΛ′·Λ(z, z) , (E.17a)
(Λ′, f ′) ◦ (Λ, f ) = (Λ′ · Λ, f + (KΛ−1 ◦ Λ) · ( f ′ ◦ Λ)) , (E.17b)

where in the second line we note that KΛ−1 ◦ Λ = 1/KΛ.
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E.4 BMS-invariant asymptotic scalar field theory

In order to define the action of a one-parameter element γ′
t of the BMS group on the

space of solutions SolR(I +) at I +, one considers the action of its smooth extension γt
into M on ϕ and then uses the map Γ to project it to I +. That is, working in a Bondi
frame, for ϕ ∈ SolR(M) and ψ ∈ SolR(I +)

Aγ′
t
ψ := lim

I +

[
(ΩB)

−1γ∗
t ϕ
]

= lim
I +

[
ΩB(γt(x))

ΩB(x)

]
× lim

I +

[
ΩB(γt(x)))−1ϕ(γt(x))

]
= KΛ(z, z)−1 ψ(u, z, z) . (E.18)

By making use of the asymptotic Killing equation for ξt the generator of γt, it can be
shown that the third line follows. Alternatively this may be seen by noting that the
fields ψ ∈ SolR(I +) transformwith conformal weight−1 under the induced conformal
transformation at I + by γ′

t (c.f. (E.4)).
The induced symplectic form σI at I + given by

σI (ψ1, ψ2) =
∫

I +
du dγS2 (ψ1∂uψ2 − ψ2∂uψ1) , (E.19)

is also BMS-invariant because the integration measure and the derivative respectively
transform as

du dγS2 → K3
Λ du dγS2 , ∂u = na → K−1

Λ na . (E.20)

Therefore all the resulting AQFT constructions (including the induced state) are BMS-
invariant (in the sense of group action mentioned in Chapter 2).
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