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ABSTRACT 

Polycyciic arornatic hydrocarbons (PAHs) are common contarninants in aquatic environrnents. 

However, studying their impact on fish is problematic. They are difficuit to study because they can 

occur singly or as complex mixtures and can be modified by ultraviolet (UV) radiation. They are 

costly to study because of the expense associated with the exposure of fish to PAHs and 

subsequently with the disposd of large volumes of contaminateci water. To overcome these 

problerns. in vitro methods have been developed in this thesis to study the toxicity of individual 

PAHs and a PAH mixture to fish celIs and to examine the influence of UV on toxicity. 

Methodology was developed for quantifjmg the photocytotoxicity of fluoranthene to the 

rainbow trout gill ce11 Iine, RTgill-W1, for future use in screening PAHs for their relative 

photocytotoxicity to fish. SolubiIization in a modified culture medium was achieved with and 

without fetai bovine serum (FBS) and with and without dimethyl sulfoxide (DMSO). FBS caused 

most of the fluoranthene to remain in solution and blocked photocytotoxicity if present during UV 

irradiation. DMSO had littie effect on fluoranthene disüibution in ceIl cultures but caused cells to 

be slightly more sensitive to the phototoxicity of fluoranthene. The indicator dyes. aiamar  lue^^ 
and 5-carboxyfluorescein diacetate acetoxymethy 1 ester (CFDA-AM), were used to quanti@ 

cytotoxicity in two different ways: singly in two separate assays, and mixed together in a novel 

single assay, which saved time and material. With UV irradiation for 2 hr at a photon fluence rate 

of either 1.4 pmol m'2 s" W - B  (UV-A : W - B .  1.5) or 1.1 pnol mJ i' W - B  ( W - A  : UV-B. 

9.7). both dyes indicated increasing loss of viability with increasing doses of fluoranthene. EC5os 

ranged from 18 to 44 n@mI (89 to 217 nM), with the alamar Blue assay being slightiy more 

sensitive. 

Sixteen PAHs were screened for their ability to be directly cytotoxic to the rainbow trout gill 

ce11 line. RTgill-W 1. Exposure times of 2 hours or less were suficient for direct cytotoxicity to be 

detected, which appeared to be caused by a comrnon mechanism, the generd perturbation of 

membranes. This was judged by the similarity of results obtained for three fluorescent indicator 

dyes, alamar BlueTL", C'DA-AM, and neutrai red. Among the 16 PAHs tested, just two- and three- 

ring PAHs were cytotoxic. These were naphthaiene z acenaphthylene acenaphthene > fluorene 

z phenanthrene. The relative potency of these five PAHs suggested that water solubility is 

important but another contributing factor is lipophilicity. Thus, for PAHs to be directiy cytotoxic, 

they must accumulate in membranes and the failure of larger PAHs to be cytotoxic likely was 

caused by their failure to accumulate in membranes sufficiently. Only naphthalene was effective at 

concentrations weil below its water solubility limit. Therefore, direct cytotoxicity is likely to be 

most environmentally relevant only with naphthdene. 



Sixteen PAHs were screened for their ability to be photocytotoxic to the rainbow trout gill ce11 

line, RTgill-W 1. PAHs could be divided into one of 3 groups: incapable of k i n g  photocytotoxic, 

able to be photocytotoxic but dso to be directly cytotoxic, or capabIe of only being 

photocytotoxic. Photocytotoxicity was distinct fiom direct cytotoxicity in that ECSo values were 

lower with the neutrd red assay immediately afier the PAH/UV treatment than with alamar Blue or 

CFDA-AM, indicating a more specific action on lysosomes. As well, in photocytotoxicity but not 

in direct cytotoxicity, the three assays showed increased impairment 24 hr &er the treatment. This 

is consistent with the contention that reactive oxygen species are involved in photocytotoxicity. 

Most PAHs were found to be strictly photocytotoxic; however. only six compounds were 

photocytotoxic at concentrations theoreticdly achievable in water. When photocytotoxic PAHs 

were ranked relative to fluoranthene to establish fluoranthene equivalent factors (FEFs), 

benzo[a]pyrene and benzo[g,h,i]perylene were found to be most potent However. when the water 

solubility of each compound was taken into account in order to calculate the potential 

environmental photocytotoxic potency (PEPP), fluoranthene and pyrene appeared to have the most 

potentid to impact fish through p hotocytotoxicity . 
The influence of ultra violet (UV) irradiation on creosote toxicity was investigated with the 

rainbow trout gill ce11 Iine, RTgill-W 1, and two indicator dyes: aiamar Blue and CFDA-AM. 

Respectively, these monitor metabolic activity and membrane integrity. After solubilintion and 

chernical analysis, creosote was presented to cells in the dark to measure cytotoxicity or 

concurrently with UV irradiation to evaluate photocytotoxicity. As well, creosote was 

photomodified by two hours of UV irradiation prior to presentation to cells in the dark or together 

with W. Cytotoxicity was detected only at high nominal creosote concentrations, but 

photocytoxicity occured at creosote concentrations 35 fold lower. Al1 the aromatic hydrocarbons 

in creosote appeared to contribute to cytotoxicity, but photocytotoxicity was due only to the 

fluoranthene, pyrene, anthracene and benzo[a]anthracene of creosote. Photomodified creosote was 

much more cytotoxic than intact creosote and this difference was most pronounced in the aiarnar 

Blue assay. Likely, this was due to photomodification products that impaired the rnitochondrid 

electron transport c h a h  Photomodified creosote was slightly less photocytotoxic than intact 

creosote. Overall these resuits indicate that UV irradiation potentially enhances the toxicity of 

creosote to fish in several different but significant ways. 



Here 1 am! My head is still spinning fkom writing my thesis and 1 haven't thanked anyone yet for 

helping me get to this point. The point 1 am taiking about is that of daily prayer that my brain wilI Iast 

just one more day. Looking back, 1 think that these last three years were the rnost dynamic in my 

three-decade life. Actually, they were like a movie with me as the main actor! Al1 right, you Iab 

mates, 1 knew you would laugh. Knstin and movies and actors. But for d l  you Canadians who stilI 

can't believe that the stars were not at war in East Germany - 1 have seen Star Wars, al1 three parts, 

and it was not for nothing. What is the major truth 1 lemeci from the movie for my Ph.D.? THE 

FORCE HAS BEEN WITH ME! 

Well, 1 would not be here without the director of the cast, my supervisor Dr. Niels Bols. Niels, 

how is this for a topic sentence? 1 am very gratefui for your imperturbable support (don't you just 

love that phrase?) and enthusiasm throughout the project up to this very minute. Your generosity and 

understanding are invaluable cornmodities. You aiways find time for your crew rnernbers, be it 

between the baby wanting to have his diapers changed, Atlee and Bjorn wanting to go camping, Lucy 

waiting desperately for some family tirne and....a basketbail tournament. Working with you means 

great energy and fun and 1 am laoking forward to the many T i  Hortons' coffee discussions still to 

corne: of course, large and black, 

Luckily, 1 aiso had the chance to work with the directors of two other crews, Drs. George Dixon 

and Bruce Greenberg. George and Bruce, making me see things from your perspective helped me to 

find out where my piece of lab bench toxicology can fit into the big picme of helping people 

understand what they see on stage, and added a great deai of environmental toxicology and 

photochernistry to my ce11 culture work 1 believe that it is this combination that made my research 

somewhat unique. 

There is, of course, no cast with just one actor. In fact, 1 had so many fellow crew members that 1 

am afraid 1 will forget one, so please forgive me if you are not mentioned here and remember - 1 tried. 

Let me start with the highest ranked V.1.P.s: Lucy Lee (Doctor of Philosophy, Professor, and many 

other things), who showed me every day that women, motherhood and science can fit together; Liz 

Heikkila (first class technicai expert in al1 kinds of ce11 bioassays), who, despite having a farnily, 

shared some of those tiring, endless time courses with me; Ianine Clemons (Doctor of Philosophy), a 
la J9, who taught me (amongst other things) how to manage a computer rather than having the 

computer manage me; Denise Tom (Master of Science), A la Srniley, who is irreplaceable in having a 

whole crew work together and at the same tirne have everybody laugh but who, despite my sober 

efforts, still believes that German actors grow up on German beer rather than vaiuable mother's milk; 

Rosemarie Ganassin (Doctor of Philosophy, soon to be), à la Rm, who showed me that there are other 

things to adjust on a microscope than just the focus; and Jeff Whyte (Doctor of Philosophy, aiso soon 

to be) who made me listen to the North American classic. 'War of the Worlds". This was during one 



of those nights where 1 went to the studio hoping to practice my roie in qwet, only to find out that 

everybody else had similar plans. Needless to Say 1 got nothing done. And then there are the more 

temporary V.1,P.s: JO-Anne Herbrick, Angelina Chan, John Brubacher and Andrew Dueck, ail smart, 

hard workers and potential academy award winners. JO-JO, 1 saw Sean Connery last week and he did 

remember you, "ka-ching!". Angelina, you are the only person who shares my field experience and 1 

would say it was a specid one with al1 the hole dxilling preparations and then the rain and the BBQ. 

John-Andrew, you guys were aiways great fun to work with but there is this one thing I haven't figured 

out yet. How do you cut your hair, now that you can't support each other anymore? Finally, there are 

the many, many actors fiom other teams that gave me constructive advise and help on my acting 

performance. Thank you Xiao-Dong for giving me one of your UV-boxes so generously as a gift; 

thank you Mike W. for showing me how to operate that delicate spectroradiometer; Brendan and Jim 

B. for letting me in on the secrets of HPLC analysis, and al1 of you plus Cheryl, Karen, Ali, Yousef, 

and Sudhakar for the many vduable discussions. Thank you Gert-Jan de Maagd and Hans Klarner in 

the Netherlands and Paul White in the U.S. for being such good friends and also for promoting my 

work outside Canadian borders. You really made me feel good! Thanks to Helmut Segner and Anja 

Behrens in Germany with whom we started a very productive and hopefully, long-lasting 

collaboration. And last but not least, thanks to al1 you crew members on that legendary Germany tour 

within the CanaddGermany Science Exchange for the great mernories and lasting fiiendships. 

Now (+ sob +), 1 am getting realty sentimental. Come on, you al1 h o w  what cornes next. Yes. 1 

wouId like to give my love and thanks to my husband Mario (Super-Mario, that is). And I let you in 

on a little secret. Without our traditionai Sunday brunch science colloquium 1 would probably still be 

trying to figure out what happens when you add a PAH to water. And that Mario did a much better 

job in encouraging me and explaining things than 1 did is easily measured by the Fact that 1 will be 

done before hirn! But Mario, 1 promise that if 1 can't help you with al1 your modeling match factors, 1 

will take (better) care of the dishes and shopping, and 1 will help you proofread your thesis. Does this 

sound like a deal to you? 

Nicht traumen statt Ieben, sondern leben und traumen. L i e k  Mum und lieber Vati: Ich mochte 

Euch auch g a z  sehr danke sagen für Eure Liebe, Unterstützung und Vertrauen. Natürlich bin ich 

schon ein bipchen stolz auf mich aber vie1 stoizer bin ich auf Euch und für Euch. 

Finaiiy, 1 would like to Say thanks to d l  you Canadians, Austraiians, Brazilians, Arnericans, Irish, 

British and who knows from where else for making my stay here in Waterloo so special. 

DON'T DREAM RATHER THAN L M .  BUT LIVE AND DREAM. 
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In 1775, the British surgeon Sir Percival Pott noted an association between the incidence of 

scrotai cancer in chimney sweeps and their exposure to soot (Harvey, 1991). More than a century 

later, laboratory experiments showed that application of coai tar to the ears of rabbits or the skin of 

mice, wiih the latter assay still being in use today, produced tumors. This phenornenon led a group 

of chemists and physicists to anempt the identification of the tumor producing compound and, after 

collecting evidence for over 10 years and fractionating 2 tons of coal t a .  their work succeeded- In 

1932, benzo[a]pyrene, a polycyclic aromatic hydrocarbon (PAH) was identified as the major 

tumor-producing agent in coal tar (Kennaway, 1955). 

PAHs are a large group of chemicais whose common composition is the arrangement of 

carbon and hydrogen atorns in the form of two or more fused aromatic rings (Neff. 1985). The 

srnailest polycyclic aromatic hydrocarbon, consisting of two fused arornatic rings, is naphthalene 

(Figure A.I.). With its Iow molecular weight, relatively high water solubility and volatility, 

naphthdene can be considered the most mobile PAH in the environment. Other PAHs that are of 

prirnary environmental concern because of their ability to move within and between cornpartments, 

such as water, air and soil, are those with a molecular weight below 300 g/moI. This group of 

mobile PAHs comprises thousands of compounds if the number and position of aromatic rings, as 

well as the nurnber, chemistry and position of their substituents is taken into account (Neff, 1985). 

Because this large number of PAHs would be impossible to study and in order to unifi research 

that is concerned with the hazards posed by PAHs, the US. Environmental Protection Agency 

(EPA) and the World Health Organization (WHO) have identified 16 unsubstituted PMs as 

priority pollutants (Appendix 1; Tuvikene, 1995). It is these 16 priority PAHs that are dealt with in 

this thesis. 

NAPHTHALENE 

Figure A.I. Molecular structure of the srnailest PAH, naphthalene. 

The occurrence of PAHs in coai tar gives insight into the source of PAHs. Coai tar is formed 

during the combustion of coal in the absence of air at approximately lûûû°C. Thus, incomplete 

combustion of organic matter at high temperature will lead to PAH formation (Figure A.11.; Suess, 

1976). Anthropogenic combustion sources are, among others, residentid heating, agriculturai 



buniing, incineration, uansportation and smoking. Examples for indusmal processes that lead to 

PAH formation are aluminurn smelting, coke and asphalt production and petroieum refining. 

Nanual sources of PAH formation are volcanic activity and forest fires. Alttiough anthropogenic 

sources are considered the most relevant PAH producers in ùidustridized couniries, naturai 

sources can play a major rote. For example, it has k e n  estimated that 47 5% of the amiospheric 

PAH emission in 1990 in Canada was due to forest fies (Environment Canada, 1994). Two other 

sources of PAH formation have been proposed. Firstly, the discovery of complex PAH mixtures in 

fossil fuel has fed to the conclusion that, given enough time, decomposition of organic rnatter at 

relatively low temperatures (100-150°C) can lead to PAH production (Blumer, 1976). Secondly, 

PAH production due to direct biosynthesis by microorganisms and plants has k e n  shown but later 

was atmbuted to experimental artifacts and therefore, evidence for this latter route of PAH 

formation remains equivocai (Neff, 1985). However, there is consensus that high temperature 

combustion of organic material is the major source of PAH formation and release into the 

environment and that PAH emission increases with industrial development (Suess, 1976; Neff. 

1985). Thus, the question arises if and how organisms are able to deal with PAH exposures and 

what potentiai hazards are being posed to organisms living in PAH contaminated environrnents. 

0 

4 AIR 

Figure A.H. Schematic representation of cornmon sources and routes of exposure to PAHs in the 

environment. 

Since the discovery of benzo[a]pyrene as a highly potent carcinogen in coal tar, many studies 

have investigated carcinogenesis and its initiation due to metabolic activation. However, other 

adverse effects of PAH exposure have begun to surface. These include the suppression of the 

immune system (DaviIa et al., 1997). the ability of P M s  to mimic steroid hormones and thus the 



potentid to modulate endocrine functions (Santodonato, 1997). and the toxicity elicited by the 

absorption by PAHs of UV radiation, causing singlet oxygen as well as radical formation and 

possibly toxic photomodification products (Arfsten et al., 1996). 

Aithough by the early 1980s, the potential of PAHs to be toxic in the presence of UV radiation 

had been demonstrateci in marnmalian and avian cells (Allison, et ai., 1966; Lewis, 1935; Mailing 

and Chu, 1970; Morimura et al., 1964; Utsumi and Elkind, 1979), in Neurospora crassa (Mailing 

and Chu. 1970); Paramecium c a u d a m  (Epstein et ai., 1964), Drosophila melongaster (Maltoltsky 

and Fabian, 1946), and Escherichia coli (Harrison and Raabe, 1967). UV radiation exposures were 

not accounted for in environmental risk analysis. Bowling et al. (1983) were the first to show that 

fish exposed to anthracene contaminatecl water in the presence of naniral sunlight died within hours 

or days, whereas fish that were kept in the dark or not exposed to anthracene surviveci. Subsequent 

studies identified the fish gill epithelium as a major target site (Ons and Giesy, 1985, Weinstein et 

al., 1997). However, due to the costs involved and the large nurnber of fish needed, whole fish 

exposures of large numbers of PAHs and of PAH mixtures were not feasible. Such studies would 

be useful in identifying the PAHs that are toxic, under environmental relevant conditions, to fish 

either directiy or due to a UV radiation exposure. Furthemore, by establishing a larger PAH 

toxicity data set, PAHs could be ranked according to their toxic potencies, structure activity 

relationships recognized, and recommendations given for as to which compounds could serve as 

indicators of direct and photoinduced toxicity in environmentai samples. 

It is the overall goal of this thesis to study the direct and photoinduced toxicity of PAHs and a 

cornplex mixture to fish gill epitheliai cells. The fish gill cells are fiom a ce11 line (RTgill-W1) 

that has been established from the rainbow trout (Bols et al., 1994). The PAHs are the 16 priority 

PAHs and the mixture is creosote. The specific goals of this thesis are: 

1.) To develop methodologies for quantimng the photocytotoxicity of a mode1 PAH, 

fluoranthene, to RTgiIl-W1 cells, using fluorescent indicator dyes that can be measured 

rapidly and reliably with a fluorescence plate reader (Chapter 1). 

2.) To identifjt priority PAHs that are cytotoxic to RTgill-W1 cells in the absence of UV radiation 

and to rank them according to their toxic potency and environmental relevance (Chapter 2). 

3.) To identiQ priority PAHs that are cytotoxic to RTgill-W1 celIs in the presence of UV 

radiation and to rank hem according to their toxic potency and environmental relevance 

(Chapter 3). 

4.) To predict and measure the potential of creosote and photomodified creosote to be cytotoxic 

and/or photocytotoxic by using previously developed rnethodologies and toxic equivalent 

factors, which surnmarized the relationships between the physical-chernicai properties of 

PAHs and their toxicity (Chapter 4). 
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METHODOLOGY FOR DEMONSTRATING AND MEASURXNG THE 

PHOTOCYTOTOMCITY OF FLUORANTRENE TO FISH CELLS IN CULTURE "' 

1.1. ABSTRACT 

Methodology was developed for quantifying the photocytotoxicity of fiuoranthene to a gill ce11 

line (RTgiU-W 1) from rainbow trout for future use in screening polycyclic aromatic hydrocarbons 

( P B )  for their relative photocytotoxicity to fish. Solubilization in a modified culture medium 

was achieved with and without fetal bovine serum (FBS) and with and without dimethyl sulfoxide 

(DMSO). FBS causeù most of the fiuoranthene to remain in solution and blocked 

photocytotoxicity if present during UV irradiation. DMSO had M e  effect on fluoranthene 

disuibution in ce11 cultures but caused cells to be slightiy more sensitive to the phototoxicity of 

fiuoranthene. The indicator dyes. alamar MueTM and 5-carboxyfiuorescein diacetate acetoxymethyl 

ester (CFDA-AM), were used to quanufy cytotoxicity in two different ways: singly in two separate 

assays, and rnixed together in a novel single assay, which saved time and material. With UV 

irradiation for 2 hr at a photon fluence rate of either 1.4 pmol m'2 s-l W - B  (UV-A : W - B .  1.5) or 

1.1 p2-101 m" s" UV-B ( W - A  : UV-B, 9.7). both dyes indicated increasing loss of viability with 

increasing doses of fluoranthene. EC5os ranged fiom 18 to 44 n g h l  (89 to 217 nM), with the 

alamar Blue assay k i n g  slightly more sensitive. 

1.2. INTRODUCTION 

Photosensitizing compounds have drawn enormous interest because of their ciinicai uses in 

human medicine (Epstein, 1989), but as weli, photosensitizing compounds that are industrial 

pollutants are beginning to be evduated for their environmental impact (Landrum et al.. 1985; 

Huang et al., 1993). Upon absorbing Iight, photosensitizers undergo chernicai reactions (Foote, 

1976). The damaging or killing of ceils by the photosensitized reactions is defined as 

photocytotoxicity (MacRobert, et al., 1989; Spikes, 1989). The cytotoxic products of 

photosensitization include singlet oxygen and other reactive oxygen species (Vaienzo, 1987). 

"' This papa  has been published in Toxicology in Vitro (1997) Vol. 11 (IR). 107-1 19. Co- 
authors are A.G.J. Chan, B.M. Greenberg, D.G. Dixon and N.C. Bols. 



Among environmentai pollutants, most work has been completed on polycyciic aromatic 

hydrocarbons (PAHs). PAHs are ubiquitous contaminants in aquatic environments, and at least 

two, anthracene and fluoranthene, show enhanced toxicity to fish upon soIar diraviolet radiation 

(Bowling et al., 1983; ûris and Giesy, 1985; 1986; Kagan et al., f 985). Detennining the potentiai 

of other PAHs to be phototoxic might be done more easily with fish cells in culture. 

Although the ability of PAHs to photosensitize a n i d  ceils in cdture to UV radiation was 

described fïrst over 60 years ago (Lewis, 1935). the in vitro approach has yet to be optimized 

sufficiently to evduate quickly and reliably the photocytotoxicity of large numbers of PAHs. 

Among the probIems is the difficulty in dissolving them. Some solubilizing techniques have 

involved bovine sertun (Morimm et al., 1964; Kocan et al., 1983). and other rnethods have used 

carrier solvents such as dimethyl sulfoxide (DMSO) (Mailing and Chu, 1970). Usually the 

concenirations at which the photocytotoxicity of single PAHs have been studied have been higher 

than the highest concentrations theoretically possible in water, which are well below 300 nghl  for 

rnost PAHs (Neff, 1985; Mackay et al., 1992). Various endpoints have been used to monitor 

photoinduced toxicity. including the inhibition of rnitosis (Lewis, 1935). the phase-contrast 

appearance of cells (Van Gurp and Hankinson, 1983), and colony formation (Malling and Chu, 

1970; Utsumi and Eikind, 1979). Aithough most responses occur rapidly after W irradiation, 

quantifying them quickly has been difficult. 

Recendy, a numkr of cytotoxicity assays has been developed with fluorescent indicator dyes 

that allow the ce1Iular responses to be quantified rapidly with fluorescent multiweli plate readers 

(O'Connor et al., 199 1). One indicator dye is the virtually nonfluorescent 5-carboxyfluorescein 

diacetate acetoxymethyl ester (CFDA-AM), which is an esterase subsuate that can enter living 

cells. Cells with an intact pIasma membrane maintain a cytoplasmic milieu that supports esterase 

activity and the production of a fluorescent product. Therefore, CFDA-AM is an indirect mesure 

of plasma membrane integrity (O'Connor et d., 1991). Another indicator dye that can be read 

with a fluorescent plate reader is alamar Blue (Pagé et al., 1993). Alamar Blue is an indicator of 

cellular metabotic activity. The dye is taken up by cells and acted upon by oxidoreductases and 

the mitochondrial electron transport chah to yield the reduced form (Goegan et al., 1995). which is 

much more fluorescent than the oxidized form (Pagé et al., 1993). Wih both assays, a reduction 

in fluorescent readings relative to connols is a measure of cytotoxicity. These tests have yet to be 

applied to phototoxicity studies, but potentiaily they could allow the phototoxic potentiai of a large 

number of PiWs to be tested rapidly. 

Our overall goal in this paper is to develop a rapid, inexpensive in vitro procedure that can be 

used in the future to establish the relative phototoxicity of different PAHs to fish. Fluoranthene is 

used as a mode1 PAH, and the main in vitro system is the detection of cytotoxicity in confluent 

cultures of the rainbow uout gili epithelial ce11 Iine, RTgill-W1. Confluent gill ce11 cultures are 

used because in vivo studies of the phototoxicity of anthracene to fish have identified the gilI 



epithelium as one of the principal sites of damage (Oris and Giesy, 1985). The specific goals of 

this paper are five foId. The h t  is to develop a protocol for solubilizing fluoranthene without the 

use of a carrier solvent in an exposure medium that supports the viability of celIs but by itself does 

not generate photocytotoxic products upon k ing  UV irradiated. The second goal is to find UV 

exposure conditions that do not cause cytotoxicity and confound the studies of fluoranthene 

photocytotoxicity. The third aim is to quanti@ the distribution of fluoranthene in ce11 cultures and 

to detennine the influence of DMSO and FBS on this distribution. The fourth god is to quanti@ 

cytotoxicity through the use of a multiwell plate reader and of two indicator dyes, alarnar Blue and 

CFDA-AM, singly in separate assays and together in a common assay. The final goal is to use 

these methodological developments to detennine the conditions under which fluoranthene is 

photocytotoxic. 



13. MATERIALS AND METFIODS 

A. Cell lines und culture media 

Two salmonid ce11 Iines with epithelial-like morphologies were used. CHSE-214 was derived 

from Chinook salmon embryos (Lannan et ai., 1984) and was purchased fiom the Amencan Type 

Culture Collection (Rockville, MD, USA). RTgill-W 1 was developed in this laboratory from the 

rainbow trout gill (Bols et ai., 1994). Cytochrome P4501A activity was not detectable in either 

ceIl Line (Lee et al.. 1993; Bols, unpubiished data), and dmg metabolizing enzymes were unlikely 

to have influenceci the results to follow because fluoranthene exposures by themselves were never 

cytotoxic. and because when photocytotoxicity was observed, the total time of the fi uoranthene 

exposure usually had been only 2 hr. Both ce11 lines were grown in 75 cm2 culture flasks at 22OC 

in Leibovitz's L-15 medium supplemented with 10 96 FBS. The source of the tissue culture 

supplies and a description of the su-bcultivation procedure have previously been presented in detail 

(Bols and Lee, 1994; Schirmer et ai., 1994). 

A modification of the basai medium, L- 15, was used for the exposure of cells to W radiation. 

This was necessary because the treatment of conventionai growth media with UV radiation 

generates toxicants that appear to arise from UV modification of medium components such as 

vitamins and arornatic amino acids (Stoien and Wang, 1974; Wang, 1976; Lorenzen et ai., 1993). 

Therefore, L-15 was prepared with ail constituents Ieft out except for the salts, galactose, and 

pymvate (Appendix IV). These components (cell culture grade, Sigma, St Louis, MO, USA) were 

prepared in ce11 culture grade, distilled water (Canadian Life Technologies, Burlington, ON, 

Canada). They were sterilized and mixed together in the manner recommended by Leibovitz 

(1963, 1977) for the preparation of the complete basai medium. This modified medium was used 

either without or with a 10 % FBS supplernent and referred to respectively as L-151ex or L-1S/ex 

with FBS. 

B. UV radiation exposure 

W irradiation was done with either two UV-B photoreactor lamps or one W - A  and one UV- 

B photoreactor lamp (Southern N.E. Ultraviolet Co., Branford, CC, USA). CelIs were irradiated at 

room temperature in an atmosphere of air in Costar or Falcon 48-well culture plates with lids. The 

lids ensured sterility during the illumination process and simultaneously absorbed any radiation 

below a wavelength of 290 nm, a filtering process which under naturai conditions is canied out by 

stratospheric ozone. Irradiation was measured with an lnstaSpecTM II photodiode may 

specûoradiometer calibrated with a 1 kW quartz halogen lamp (Oriel corporation, Stratford, CT, 

USA). As well as UV-B (290-320 nm), the UV-B larnps emitted some visible (400-700 nm) and 



some UV-A (32M00 nm) radiation. With two W - B  lamps, the photon fluence rate was 1.4 p o l  

n-' s'l UV-B ( W - A  : ZN-B , 1.5) (Appendix II). With one W - B  and one UV-A lamp, the photon 

fluence rate was 1.1 p o l  m" a' W - B  (UV-A : UV-B. 9.7) (Appendù II). These values 

represent the photon fluence rates at the surface of the medium in the wells. A 500 pilwell aliquot 

of L- Wex, which resulted in a 4.7 mm path Iength through the medium, had little discernible 

effect on these fluence rates. However. FBS was found to absorb some of the emitted UV 

radiation, diminishing the fluence rates by approximately 27 % for W - B  and 9 % for UV-A- The 

duration of irradiation was 2 hr for d l  experiments. 

C. Sulu bilization of fluoranthene 

Fiuoranthene (InterScience Inc.. Markharn, ON, Canada) was dissolved in L-15/ex in order to 

simultaneously expose the cells to W and fiuoranthene. Two different soIubilization methods 

were used. Firstiy, fluoranthene was dissolved in 100 % DMSO to give a stock solution of 1 

mg/ml. Before each experiment, fluoranthene was m e r  diluted in DMSO to give 200 times the 

final concentration required by each design treatment, A constant volume of this working solution 

was added to L-151ex to give the desired concentrations of fluoranthene. This medium, in which 

the final DMSO concentration is 0.5 % vlv, is referred to as L-15/ex/DMSO. In some cases FBS 

was added to the L-lS/ex/DMSO to give IO % FBS (v/v). This medium is designated L- 

lS/ex/DMSO with FBS. 

In addition, fluoranthene was dissolved without the use of a carrier solvent, using a 

modification of methods developed for the application of PAKs to microorganisms (Mihelcic and 

Luthy. 1988; Millette et al.. 1995). One mg of fluoranthene was added to 1 liter of sterile L- Wex 

in a volurnetric flask which was wrapped in alurninum in order to protect the solution fiom light. 

The solution was stirred for 24 hr at 40°C, followed by 24 hr of constant stimng at room 

temperature. In order to remove any undissolved crystals, the solution was filtered through a type 

A/B extra thick borosiIicate glass fiber filter with a pore size of 1 pm (Gelman Sciences Inc.. Ann 

Arbor, MI, USA). The filtration apparatus was sterile and the solution was collected into a 

stetilized amber glass storage bottle (VWR Canlab, Mississauga, ON, Canada). The simplicity of 

L-1SIex meant that this solution codd be injected directly onto an EPLC column. HPLC analysis 

of 3 independently prepared stock solutions showed a fluoranthene concentration of 60-70 nglml. 

The fluoranthene solutions were stored in the dark at roorn temperature and were stable for at least 

6 months, as periodic HPLC analysis showed no change in concentration and no peak other than 

fluoranthene in the scanned range of 250-300 nm. The concentration of 60-70 nglmi (297-346 

nM) was approximately 30 % of the reported water solubility for fluoranthene and was the highest 



concentration that could be applied to ce11 cultures. In some cases 10 % FBS was added to the 

solution of L- 1S!ex with fluoranthene. 

D. HPLC ana fysis offluoranthene solutions 

HPLC was done with a Shimadzu SCL-1OA Iiquid chromatograph with a SPD-M1OA diode 

array detector and two LC- IOAD pumps (Shimadzu, Columbia, MD, USA). AIiquots of 100 pl 

from sample solutions were loaded ont0 a 25 cm LC-18 column (Supelco. Mississauga, ON. 

Canada). Fluoranthene was eluted with 85 % HPLC-grade acetonitrile (BDH Inc,, Toronto, ON, 

Canada) and 15 % Milli-Q filtered distilted water at a flow rate of 1 d m i n .  Fluoranthene was 

detected at 280 nm with a 20 nm band width. The peak areas of unknown samples were compared 

to that of an extemal fluoranthene standard. With this rnethod, the detection limit was found to be 

2 nglml(10 nM). 

E. Fluoranthene distriburion in ce11 cultures 

The influence of solubilization method and of FBS on the compartmentaiization of 

fluoranthene in ce11 cultures was studied. After CHSE-214 or RTgiIl-W1 cells had been grown to 

confluency in 12 wetl cuiture plates, the growth medium was removed. Each culture weIl was 

rinsed once with 1 ml of L- 15/ex. Fluoranthene (60 nglml) in 1 ml of either L- 1 5/ex, L- 1SIex with 

FBS, L-I5/ex/DMSO, or L-15/ex/DMSO with FBS was added to each well and incubated in the 

dark, Twenty four hours later the amount of fluoranthene was measured by HPLC in three 

compartrnents: the culture medium, the cells, and the polystyrene surface of the culture wells after 

the removai of the cells. 

Due to the presence of cells and senun, an extraction protocol was necessary for the anaiysis 

of fluoranthene. The medium from 6-12 wells for each treatment was collected into glas tubes. 

Cells were removed from the culture surface by treaunent with ûypsin or ce11 dissociation solution 

(Sigma St- Louis, MO, USA) and gentle scraping into L-lS/ex. The samples were mixed 2: 1 with 

hydrochloric acid (J.T. Baker Chexnical Co., Phillipsburg, NJ, USA) and lefi ovemight at room 

temperature. Aliquots of 2-3 ml hexane (Fisher Scientific, Nepean, ON, Canada) were added and 

after the phases had partitioned the mixtures were placed at -80 OC. The hexane phase, which did 

not freeze and remained on top, was pipetted into new glass tubes and evaporated by a gentle 

Stream of niuogen. The dried extracts were redissolved in 1 ml methanol and transfemed to HPLC 

autosampler vials. With this extraction procedure, the recovery of fluoranthene was found to be 

102 + 9 % (n=5) from L-Wex. In the presence of serum, the recovery was lower and more 

variable and ranged from 57 - 90 % with a mean of 67 t 13 % (n=5). 



After removai of cells, the culture surfaces were extracted for 100 min with 1 ml of HPLC- 

grade methanol (BDH Inc., Toronto, ON, Canada) per weii. This volume extracted the sides of 

each well to the height onginally occupied by the medium. The methanol solutions were then 

transferred to HPLC autosampler vials. With methanol, 98 & 10 8 (n=5) of the fluoranthene was 

recovered kom the plat%. 

F. Cyroroxicity of fuaranrhene and photornudified fluoranthene 

Confluent cultures of RTgiIl-WI in 48 well culture plates were exposed to fluoranthene in the 

dark to determine whether fluoranthene was cytotoxic without a UV radiation treaunent. The 

conf uent cuttures were achieved by plating 50,000 cells per well and alIowing them to grow for 3 

days. Confluent cultures were used because, more so than logarithmicdly growing populations, 

they reflect the prtmary in vivo target of PAH phototoxicity, the gill epithelium (Oris and Giesy, 

1985). Also, in preliminary experiments, confluent cultures were found to give more reproducible 

results than the log phase cultures. This likely can be attributed to the fact that the same cell 

number is more consistently obtained in different wells in confluent cultures and also to the fact 

that the culture is in a more uniform state as cells begin to arrest in G1 phase of the ce11 cycle. The 

cultures showed no Ioss of viability upon reaching confluency, wtiich has been observed previously 

with another sdmonid ce11 line that was kept viable at confluency for weeks (Lee and Bols. 1988). 

At confluency the growth medium was removed and each c u i t .  well rinsed once with 500 pl of 

L- 15/ex. After the rinse. control wells received 500 p1 of L-15/ex, while experirnental wells 

received 500 pl of L-IYex containing 60 nglml fluoranthene. At various times afterwards for up 

to 101 hr in the dark, the exposures were terminateci by removing the medium from the wells. At 

these times, the cytotoxicity asays, to be described later, were initiated by adding 150 pl of L- 

15/ex with the appropriate fluorescent indicator dyes. 

In order to determine whether photomodification of fluoranthene yielded cytotoxic products, 

confluent cultures also were exposed in the dark to fluoranthene solutions that previously had been 

W irradiated. Aliquots of fluoranthene solution (60 nghl  in L-IS/ex) were placed in rnultiwell 

culture plates without cells and irradiated for 2 hr with a photon fiuence rate of 1. I p o l  mp2 s-' 

W - B  (UV-A : W - B .  9.7). HPLC of this solution revealed fluoranthene at approxirnately 17 8 

of the original concentration and at least one product, whose identity is currentiy unknown. This 

photomodified fluoranthene solution was placed ont0 confluent cuItures of RTgill-W1 cells in 48 

well culture plates. These were incubated in the dark for up to 101 hr, with brief interruptions for 

occasional examination by phase-contrat microscopy. After 2, 24, 48, and 101 hr, cytotoxicity 

assays were performed as described below. A control plate, which had received L-1Yex with 

fl uoranthene but no UV irradiation, was also examinecl. 



Confluent cultures of RTgill-W1 cells in 48 well culture plates were concurrently exposed to 

fluoranthene and W radiation. Each well received a 500 pl diquot of L-lSIex, L- Wex with FBS, 

L- 1 S/ex/DMSO, or L- 1 S/exn>MSO with FBS containing fluoranthene over a concentration range 

fiom O to 60 ng/ml. Either immediately after the addition of fluoranthene or 24 h .  later. the plates 

were irradiated for 2 hr as described under UV radiation exposure. Upon termination of the üV 

radiation treatment, the cytotoxicity assays were perforrned immediately or in some cases 

immediately and 24 hr later. For immediate measurement, the experimental medium was removed 

and replaced with 150 pl of L-151ex with the fluorescent indicator dyes. For later measurements. 

the indicator dyes were removed after the assay, and the culture wells received L-15 with FBS for 

24 hr before cytotoxicity assays were repeated again on the same wells. In addition to these 

assays, observations by phase-contrast microscopy were carried out routinety in order to 

qualitatively detect signs of cytotoxicity. 

H. Alarnar Blue cytotoxiciîy assay 

Alamar Blue solution was purchased from Immunocorp. Science Inc. (MontreaI, PQ, Canada) 

and diluted into L-1SIex to 5 % vlv. Each culture well received 150 pi of this solution, and 2 hr 

later the wells were read with a fluorometric multiwell plate reader, the CytoFluor 2350 

(PerSeptive Biosystems, BurIington, ON, Canada) at respective excitation and emission 

wavelengths of 530 (2  30) and 595 (2 35) nm. 

I. CFDA-AM cytotoxicity assay 

The esterase subsirate, 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM), was 

purchased fiom Molecular Probes (Eugene, OR, USA) and dissolved in DMSO to give 4 mM 

CFDA-AM. This stock solution was diluted just pnor to use into L-1Slex to give 4 jM CFDA- 

AM. A 150 pl aiiquot of this solution was added to each well, and 2 hr later the w e h  were read 

on the CytoFluor 2350 at respective excitation and emission wavelengths of 485 (2 22) and 530 (t 

30) nm. 

The loss of fluorescent product fiom cells during the assay was exarnined for its impact on ce11 

viability measwement. After exposure of confluent 48 well cultures to CFDA-AM for 2 hr, 

fluorescence readings were compared before and after a rinse witti L-151ex. Based on readings at 

different sensitivities, fluorescence was approximately 20 urnes lower after a rinse. However, this 

was m e  for both experimental and control wells, indicating that the change in % ce11 viability was 



the same whether the mesurement was of the total CFDA-AM producî, or just the amount retained 

in the ceUs afier a rinse. 

K. Ahmur Blue and CFDA-AM cytotoxicity assuy 

In addition, the possibility of using the two dyes together was explored. Aiamar Blue and 

CFDA-AM were prepared together in L-Wex to give final concentrations respectively of 5 % vlv 

and 4 pM. This mixture was applied to wells containing RTgilI-W1 c e k  over the range of 20,000 

to 100,000 cells. After 3 hr, fluorescence was quantified with the CytoFIuor as described above. 

The fluorescent readings increased linearly with ce11 nwnber. This standard curve of ceil number 

versus fluorescence units was not statisticalIy different from standard curves of ce11 number versus 

fluorescence units for each dye used separately. This result led to the two dyes being used together 

in rnany experiments. As well as being performed immediately afier W radiation exposure, the 

assay with the two dyes was done in the same wells 24 hr later. In the intervening 24 hr between 

the assays, the ceIls were incubated in L-15 with FBS. 

L Data analysis 

The fluorescent readings in experimental wells were expressed as a percentage of the readings 

in control wells. Prior to these calculations, fluorescence readings for wells without cells were 

subtracted from the experimental and control vaiues with celis. EC50 values were determineci 

using the logistic function option in SigmaPlot (Jandel Scientific). 



UV-imdiated L-1Yex supponed fish ce11 viability. in the experirnents to follow, cells were 

UV irradiated for 2 hr in L- Wex. As a conuol, cuitures were incubated in the dark for 2 hr either 

in L-15/ex or in L-1Wex that had previously been irradiated for 2 hr. Xeither cytotoxicity assay 

revealed any difference between the two cultures, In a few of the experiments to follow, cells were 

incubated for several days in L- Wex that had previously been UV-irradiated. When cultures were 

exposed to UV-irradiated L-1Yex for 101 hr, cells remained attacheci to the growth surface and 

retained their normal epithelial-like shape. Relative to the values obtained during the fmt 2 hr of 

exposure, the CFDA-AM assay indicated no change in viability 101 hr later. However, the damar 

Blue assay indicated a 15 % decline (Figure 1.1.). In sumrnary, L-Wex was a convenient and 

appropriate solution for studying the cytotoxicity arising from exposure to fluoranthene and UV 

radiation together. 

Figure 1.1. Utility of W-irradiatecl L-ISkx to sqtpon fish ceII viability. Confluent cultures of 
RTgill-W1 cells were exposed in the dark for several days to L-1Sfex that previousiy had been 
irradiated at a photon nuence rate of 1.4 p o l  m'* s" W - B  (W-A : W - B ,  1.5) for 2 hr. 
Viability was assayed with a mixture of alamar Blue (open bars) and CFDA-AM (dashed bars) and 
expressed as a percentage of the readings in control cultures that received W-irradiated L-IYex 
for 2 hr, which in tum were the sarne as cultures receiving L-1S/ex for 2 hr. In each separate 
experiment, each treatment was performed on four culture wells and a mean calculateci. Each bar 
represents the mean of the means for 2 independent experiments. The vertical lines indicate the 
standard deviation. 



The W treaanents alone had litt!e or no effixt on the fish cells as measured from O to 2 and 

24 to 26 hr d e r  the end of irradiation (Figure 1.2.). When viewed 2 hr after irradiation, cells 

remaineci attached and retained their shape. As judged by alamar Blue and CFDA-AM assays. any 

decline in viability was Iess than 10 % during this p e n d  At 24 to 26 hr after irradiation. 

cytotoùcity was detected only with a photon fluence nite of 1.4 pnol rn-2 s-' UV-B ( W - A  : W-B. 

1.5). Relative to the dark control, viability was reduced by approximately 30 8 and 25 % in 

respectively the alamar Blue and CFDA-AM assays Figure 1,2., panel A). 

Figure 1.2. Effect of UV treatment on fish ce11 viability. Confiuent cultures of RTgill-WI cells 
were üV imdiated for 2 hr in L-Wex at photon fhence rates of either 1.4 pmol m-' s" W - B  
( W - A  : W - B .  1.5) (panel A) or 1.1 v o l  m-2 se' W - B  (UV-A : W - B .  9.7) (panel B). 
lmmediately afierwards, viability was assayed with a mixture of alamar Blue (open bars) and 
CFDA-AM (dashed bars) and expressed as a percentage of the readings in controi cultures that 
were kept in the dark. After these readings had been taken, the cultures received L-15 with FBS 
and were incubated for 24 hr before the cytotoxicity assays were again performed on the same 
cultures. In each separate experiment, each ueatxnent was performd on four cuIture wells and a 
mean cdcuiated. Each bar represents the mean of the means for 5 independent experiments. The 
vertical lines indicate the standard deviation. 



C. Distribution offluoranthene in cell cultures 

The presence or absence of FBS dramaticdy influenced the distribution of fluoranthene in 

fish ce11 cultures- This is shown for CHSE-2 14 in Figure 1.3.. and a similar distribution was 

obtained in a single experiment with RTgill-W 1. Without FBS in the culture medium, the amount 

of fluoranthene still in solution 24 hr after the solution had been applied to ce11 cultures was only 8 

& 5 Qo (n=5) of the initiai concentration. The majority (79 + 14 45, n=5) was recovered from the 

polystyrene culture surface. With FBS in the culture medium, 70 t 17 9E (n=5) of the fluoranthene 

added initially was still in solution 24 hr later. Less than 10 % was recovered from the plastic 

surface. With or without FBS, the cells acquired a similar amount of fluoranthene. As a Qo of the 

initial value, this was 23 2 12 % ( n 4 )  and 15 % (n=l) for respectively CHSE-214 and RTgill-W 1 

in the presence of FBS and 14 k 11 8 (n=4) and I I  % (n=l) for respectively CHSE-214 and 

RTgilI-Wl in the absence of FBS. These distributions were influenced little by the presence of 

DMSO. 

D. Cytotoxicity offluoranthene and photomodified fluoranthene 

No signs of cytotoxicity were detected in cultures exposed in the dark to fluoranthene at 60 

nglmI, the highest concentration possible without a canier solvent, This was tme in L-Wex with 

or without DMSO and for exposures of up to 101 hr. the longest used. 

A 60 ngml solution of fluoranthene in L-1SIex that had been photomodified by UV irradiation 

for 2 hr also was not cytotoxic. RTgill-W1 cultures that were exposed to the photomodified 

soiution for up to 101 hr in the dark showed similar readings in the alamar Blue or CFDA-AM 

assays as control cultures that were exposed in the dark to an unirradiated solution of 60 n g / d  

fluoranthene in L-15/ex. As well, the cultures showed no signs of cytotoxicity as judged by phase 

contrast microscopy. 
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Figure 13. Distribution of fluoranthene 24 hr after its addition to confluent ce11 cultures. 
Fluoranthene at 60 ng/d in either L- 15/ex, L- 1Wex with FBS, L- lS/ex/DMSO, or L- lS/ex/DMSO 
with FBS was added to CHSE-214 cells in 12 well polystyrene culture plates to give a total of 60 
nglwell. Twenty four hours later, three compartments were analyzed for fluoranthene: the culture 
medium, the cells and the polystyrene wells after cells and medium had been removed. The graph 
illustrates the % recovered in each compartment and is one of five similar experiments. 



E. Photocytotoxicity of fluoranthene 

Concurrent fluoranthene exposure and UV irradiation were cytotoxic in cultures without FBS. 

During the first 2 hr after irradiation, the phase-contrast appearance of cells changed in those 

cultures in L- 15/ex or L- 1 S/ex/DMSO with fhoranthene concentrations of 10-20 ngml (49-99 

nM) or greater. The cells appeared darker, the ce11 boundaries became distinct, and blebs were 

evident on some ceIls (Figure 1.4.). This was m e  with both ce11 lines and regardless of whether 

Figure 1.4. Phase-contrast appearance of RTgill-W1 ceIls before (panel A) and 2 hr after (panel 
B) being concurrentiy exposed to fluoranthene and UV radiation. A confluent culture in a well of 
a 48 weIl culture plate was exposed to 60 n g h l  fluoranthene in L-151ex and irradiated at a photon 
Huence rate of 1.1 p o l  rn-* s-' UV-B ( W - A  : W-B.  9.7) for 2 hr. The photographs were taken 
at 320x. 



the cultures had been exposed to fluoranthene and Unmediately inadiated, or had been exposed to 

fluoranthene for 24 hr before irradiation. Upon W irradiation with either photon fluence rate, 

increasing doses of fluoranthene led to increasing loss of viability as measured with either 

indicator dye Figures 15. and 1.6.). When the fluoranthene exposure was for the 2 hr during UV 

irradiation at a photon fluence rate of 1.4 p o l  m-' s-' W - B  (W-A : W - B ,  1 3 ,  the EC50 values 

ranged from 23.5 to 32.6 ngml (116 to 161 nM) with a mean of 143 i 19 nM (n=3) for damar 

Blue and fiom 28.5 to 43.9 ng/d  (141 to 217 nM) with a mean of 175 t 39 nM (n=4) for CFDA- 

AM. For fiuoranthene exposures of 26 tu, which consisted of a 24 hr exposure before irradiation 

plus the 2 hr during UV treatment, a similar dose-response curve was obtained. The E C ~ O  was 

185 nM (37.4 ng/ml) in the a l m a  Blue assay and 212 nM (42.9 n d d )  in the CFDA-AM assay. 

If DMSO was present, the shapes of the dose-response curves were slightly altered and the E C ~ O  

values were consistent1 y lower (Figure 1 S.). EC50 vdues for fiuoranthene in L- 15IexlDMSO 

ranged from 18.0 to 27.7 nglmi (89 to 137 nM) with a mean of 113 f 34 nM (n=2) for aiamar Blue 

and fiom 23.9 to 28.1 nglrnl(118 to 139 nM) with a mean of 129 I 11 nM (n=3) for CFDA-AM. 

In a single expenment with CHSE-214, the EC50 values were within this range. 

Ruoranthene exposure followed by W treatment in the absence of fluoranthene also was 

cytotoxic, but W treatrnent foilowed by fluoranthene exposure in the dark was not. When 

cultures were exposed to 60 ng/d fluoranthene in L-15lex or L- lS/ex/DMSO for 24 hr, rinsed free 

of fiuoranthene, and then W irradiated for 2 hr at a photon fluence rate of 1.4 pnol m-2 s" W - B  

( W - A  : W - B ,  1.5) in L-Wex alone, cytotoxicity was detected. Viability was reduced by 94 + 3 

5% (n=3) and 67 .ç 8 % (n=3) of controi cultures as judged respectively by the aiamar Blue and 

CFDA-AM assays. When cultures in L-1SIex were W irradiated for 2 hr and then exposed for 2 

hr in the dark to 60 nglmi fluoranthene in L- 1Yex or L- ISlex/DMSO, no signs of cytotoxicity were 

seen. 

The presence of FBS during W irradiation prevented fluoranthene from being 

photocytotoxic. When cultures were irradiated in 60 nghl  of fluoranthene in L- Wex with FBS or 

in L-15lex/DMSO with FBS, no cytotoxicity was detected. This was m e  even if the cuhres had 

been exposed to fiuoranthene for 24 hr pnor to irradiation. Cytotoxicity aiso was not observed if 

cultures were exposed to fluoranthene for 24 hr in L-1SIex or L-lS/ex/DMSO and then irradiated 

in L- 151ex with FBS. 

The presence of FBS after concurrent fluoranthene exposure and W irradiation did not 

prevent photocytotoxicity. When cultures were exposed to fluoranthene in L- Wex and imdiated 

for 2 hr at 1.1 pmol m-2 s-' UV-B (UV-A : W - B ,  9.7). cytotoxicity was detected immediately after 

irradiation and was more pronounced 26 hr later (Figure 1.6.). During the intervening period of 24 

hr, the cultures were exposed in the dark to L-15 with 10 96 FBS. EC50 values decreased by 



approximately 60 96 for both cytotoxicity assays. These results suggest that the celluiar darnage 

progressed irreversibly after initiation by the photosensitizing effects of fiuoranthene. 

10 1 O0 1 O00 

Fluoranthene concentration (nM) 

Figure 1.5. Viability of RTgill-W1 c e k  upon exposure to increasing concentrations of 
fiuoranthene in the dark and during UV irradiation. Confluent cultures were exposed to 
fluoranthene and either kept in the dark in L-IS/ex (A) or L-IS/ex/DMSO 0, or sirnultaneously 
irradiated for 2 hr at a photon fluence rate of 1.4 pnol m" S.' W - B  (UV-A : W - B .  1.5) in L- 
15/ex (A) or L-lS/ex/DMSO (O). Immediately af-terwards viability was assayed with a mixture of 
alamar Blue (panel A) and CFDA-AM (panel B) and expressed as a percentage of the readings in 
control cultures that received the appropriate dark or UV treatment but no fluoranthene. In each 
separate experiment, each treatment was performed on four culture weils and a rnean calculated. 
The data points represent the mean of the means for 2 and 3 independent experiments that had 
been done respectively with DMSO (open and closed squares) and without DMSO (open and 
closed triangles). The vertical fines indicate the standard deviation. 
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Figure 1.6. Viability of RTgilI-W1 cells immediately and 24 hr after being UV irradiated in 
increasing concentrations of fluoranthene. Confluent cultures were exposed to fluoranthene in L- 
15/ex and either kept in the dark (closed symbols) or simultaneously in-adiated at a photon fluence 
rate of 1.1 pnol m-' s-' W - B  ( W - A  : W - B .  9.7) (open symbols) for 2 hr. Immediately 
afterwards viability was assayed with a mixture of alarnar Blue (panels Al and A2: for the dark 
and O for the UV exposed cells) and CFDA-AM (panels B 1 and 82; for the dark and O for the 
W exposed cells). After these readings had been taken, the cultures received L-15 with FBS and 
were incubated for 24 hr before the cytotoxicity assays were again performed on the same cultures 
(panels A l  and A2 for alamar Blue: panels B 1 and B2 for C'DA-AM; + for the dark and O for 
the UV exposed cells). The results were expressed as a percentage of the readings in control 
cultures that received the appropriate dark or UV treatment but no fluoranthene. One independent 
experiment is shown in panefs AI and B 1; a second, in panels A2 and B2. In each the date points 
represent the mean of four culture wells. 'The vertical lines indicate the standard deviation. 



1.5. DISCUSSION 

A methodology fias been established that aiiowed the photocytotoxicity of fluoranthene to 

cultured fish cells to be describai and quantified. The photocytotoxicity appeared to be caused by 

damage to cellular membranes in general. Allison et ai. (1966) distinguished between 

photocytotoxicity due to photosensitization of the ce11 membrane, which was manifested by the 

appearance of morphological changes soon afkr the radiation treatmenb versus of the lysosomal 

membrane, which required the release of lysosomal enzymes in the cytoplasm and caused the cells 

to round up and die after approximately 24 hr. The responses of the fish ceIls occurred witiiin 2 hr 

of UV irradiation, which might suggest that the cell membrane is the main site of damage. 

However, the cytotoxicity assays do not exclude other membrane targets. As the CFDA-AM assay 

has been carried out in this report, a decrease in fluorescent readings directly measures a decline in 

cellular esterase activity. This is attributed to the loss of the appropriate cellular milieu for the 

reaction. Support for this cornes fiom the observation that cells dimpted by freeze and thaw show 

li ttle esterase activity as measured with fluorescent substrates (Persidsiq and Baillie, 1 977). 

Therefore, a reduction in fluorescent readings indicates darnage to either the cell membrane andlor 

interna1 membranes. Alternatively, the decrease is due to the specific inactivation of esterase 

activity. The latter hypothesis appears less likely because the lipophilic nature of fluoranthene 

make membranes more likely targets and because the results of the CFDA-AM assay parallel 

closely the more generai responses of morphologicai change and of the alamar Blue assay. The 

slightly Iower EC50 with the alarnar Blue assay hints at mitochondrial impairment occming 

slightly before generai membrane darnage. However, because general membrane darnage also 

would lead to mitochondrial impairment, under the current fluoranthene and UV exposure 

conditions, the two assays likely are rneasuring the same damage, with the aiamar Blue assay being 

a slightly more sensitive indicator of this than the CFDA-AM assay. 

This paper extends the utility of the fluorescent indicator dyes, alamar Blue and CFDA-AM, 

in cytotoxicity studies. Previously, alamar Blue was used to demonstrate daunorubicin cytotoxicity 

(Page et al., 1993). and the cytotoxicity of Cosmetics, Toiletry and Fragrance Association 

compounds was evaluated with CFDA-AM (O'Connor et al., 1991). The current papa shows the 

dyes to be useful for studying the photocytotoxicity of PAHs. In the past, the rapid loss of 

viability generated by PAH exposure and W irradiation has been monitored by dye exclusion 

(Morimura et al., 1964; Allison et al., 1966) and by the phase-contrast appearance of cells (Van 

Gurp and Hankinson, 1983). The aiamar Blue and CFDA-AM assays are superior because the 

response of the whole culture can be quantified rapidly and reliably with a fluorescent plate reader. 

As well, after a measurement on a culture well has been taken, growth medium can be returned and 

a measurement of the same well can be taken at a later time point. Potentiaily this could be done 

repeatedly. In addition, the current study shows that the two dyes can be used together. This 



allows the assays to be done more rapidly and the results to be more comparable because the 

assays are done at the same time on the same cultures. Materid costs are reduced because fewer 

rnultiwell cultures are used. One iimitation of ttiese assays is that they do not detect al1 the 

potential ways by which fluoranthene could be photocytotoxic. For example, the detection of 

sublethal damage that leads to the loss of replicative capacity would require a colony-forming 

assay, but this is not rapid, particularly for fish ceils, and is dficult to do with most fish ce11 lines 

(Bols and Lee, 1994). 

FBS profoundly infiuenced the distribution of fluoranthene in ce11 culture. Without FBS, most 

fluoranthene was adsorbed to the polystyrene cuiture surfaces; and with FBS, most fluoranthene 

was found in the culture medium. The adsorption of PAHs to culture plasticware has not been 

noted previously, but the adsorption of PAHs to surfaces of particles in the environment has been 

observed comrnonly (Law and Biscaya, 1994). Fluoranthene even has been s h o w  to adsorb to 

Teflon and stainless steel (Schults et al.. 1992). Tissue culture plasticware has been found to 

adsorb other hydrophobic compounds. When the adsorption of steroids to polystyrene plates was 

compared from different culture media, up to 40 % of the added steroid was adsorbed, but the l e s t  

adsorption was from medium with FBS (Longman and Buehring, 1986). FBS also maintained 

fluoranthene in the culture medium. This confmed a fiequent experimental practice of using 

serum to solubilize PAHs. For ce11 cuIture experiments, seruin has been used to dissolve PAHs 

either directly (Malling and Chu, 1970; Kocan et al., 1983) or in conjunction with acetone 

(Morimura et al., 1964; Lankas et al., 1980). Human plasma has k e n  used to extract PAHs, 

including fluoranthene, fiom soot (Falk et al., 1958) and calf serum has been used to solubilize 

PAHs from g l a s  surfaces (Morimura et al., 1964). 

The amount of fluoranthene in the ceIls was similar with or without FBS. However, the 

methodology might not have been adequate to detect small differences. With FBS, 10-30 % of the 

added fluoranthene was found in the ce11 monolayer, whereas without FBS, the cell monolayer 

contained 10-20 % of the added fluoranthene. A potential source of variability was the removal of 

cells from the growth surface by either trypsin andlor scraping. This step couId have resulted in a 

variable loss of fluoranthene from the cells or reiease of fluoranthene from the culture surface in 

the case of scraping. 

Fiuoranthene was not photocytotoxic if FBS was present during W irradiation. 

Photocytotoxicity arises from photosensitized reactions, which generate singlet oxygen and other 

reactive oxygen species. These can damage membranes and cause ceIl death (Valenzo, 1987). 

FBS could have protected cells by removing the toxic Iipid peroxides that would be generated by 

these species from the photoexcitation of fluoranthene within membranes and by providing to the 

plasma membrane vitamin E that would impair the development of lipid peroxides and quench 

singlet oxygen. Some of these protective actions by semm have been observed in other contexts 

(Hernler et al., 1979; Riley & Carlson, 1987; HalliweII & Gutteridge, 1985). As well, any 



hydrogen peroxide that might be generated through the photoexcitation of fluoranthene outside the 

ce11 cornpartment would be quenched generally through interactions with serum proteins or 

rernoved specifically with senun cacalase. Finaily, sorne of the prowtive action might be due to 

FBS reducing the photon fIuence rate reaching the cells. 

Phototoxicity aiso can be due to cytotoxic products arising from photomodification of the 

original sensitizing compound (Ren et ai., 1994). However. when fluoranthene was irradiated 

prior to being applied to the fish ce11 cultures, no cytotoxicity was observed. This would d e  out 

the formation of stable, cytotoxic photooxidized products in the medium, However, their 

formation within the ceils cannot be ~ k d  out. 

In the absence of FBS, the photocytotoxicity of fluoranthene was similar whether the 

fluoranthene exposure had k e n  for 24 hr before the W treatment or just for the 2 hr of W 

irradiation. In the h t  case W irradiation is initiated with the fluoranthene mainly adsorbed to 

the potystyrene. In the second case W irradiation is initiated with the fluoranthene initially in 

solution. The fact that the EC50s for photocytotox.icity were similar suggests that the total 

fluoranthene concentration in the cuiture well is criticai and not the relative distribution between 

the medium and the polystyrene. Presumably in both situations the cells attain a similar critical 

concentration of fluoranthene, although this must occur very rapidly in the case where fluoranthene 

is added concurrently with the UV treatment. The fluoranthene outside the ceIl contributes 

indirectiy to the photocytotoxicity by maintaining the critical cellular levels, but potentiaily could 

conmbute directiy by being a source of cytotoxic singiet oxygen and other reactive oxygen species 

(Vaienzo, 1987). However, this direct contribution is likeiy rninor compared to the 

photosensitization of fluoranthene occuning within the cells. If the total concentration per well is 

the cntical parameter, then the relative photocytotoxicity of different PAHs can be compared by 

determining the dose of PAH in the culture well that reduces viability by 50 5% under a standard 

W treatment. 

DMSO slightly enhanced the photocytotoxicity of fluoranthene in both toxicity assays, but had 

no influence on the distribution of fluoranthene in cell cultures. This enhancement could have 

been brought about by DMSO facilitating the entry of fluoranthene into membranes, and as a 

result, making the cells more sensitive at lower concentrations. As well, DMSO might have 

increased the susceptibility of cells by causing sublethal damage. Such an explanation has been 

put forth by Parkinson and Agius (1987) to explain the response of tiiapia brain ce11 cultures to 

1,1,1-trichloro-2,2-bis-(p-chlorophenyl) ethane (DDT) in DMSO versus acetone. The fact that the 

two assays are influenced by DMSO in a similar manner again suggests that both assays are 

measuring a common cytotoxic locus. Others have observed problems with caniers in PAH 

photosensitization studies. Malling and Chu (1970) found that benzo[a]pyrene was photocytotoxic 

when dissolvecl in dimethylformarnide but not in bovine serum or DMSO. Eliminating carrier 

solvents in studies with PAHs in vitro appears to be the best solution to the problem. The current 



papa offen a solubilization strategy. although it might not be appropriate for long term studies in 

which a more complete growth medium is required. 

nuoranthene appears to be photocytotoxic to animal ceiis in generai. This was tme in the 

current study with fish ceii lines and had been observed previously with ce11 lines fmm humans 

(Morimura et ai., 1964) and d e n t s  (Van Gurp and Hankinson, 1983). The UV radiation 

treaunents that rendered fluoranthene cytotoxic were different and in some cases hard to compare. 

However, the photon fluence rates that were used with the fish cells could potentially be achieved 

in clear water to depths of at least 10 meters. As well, photocytotoxicity could be demonstrated 

without the use of a carrier solvent and at fluoranthene concentrations that have k e n  found at 

some contaminated sites. In aquatic ecosystems, PAHs are present mostly bound to particulate 

matter, but in addition, they are found dissolved in the water column. For rivers in indusmaiized 

areas, PAH concentrations have been estimated at 1-5 ng/rnl (Neff, 1985), but at a contaminated 

lake site, concentrations as high as  5,000 nghl  have been reported for total PAHs (Munkittrick et 

al., 1995). For individuai PAHs, concentrations will depend on their behavior in mixture and will 

mostly be limited by their theoretical water solubility which for most PAHs is well below 300 

n @ d  (Neff, 1985; Mackay et ai., 1992). Therefore, the photocytotoxicity of fluoranthene has 

potential environmental impact The methodological deveIopments of this report should allow 

other environmentdly important PAHs to be tested rapidly and inexpensively for their potential 

photocytotoxicity . 
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ABILITY OF 16 PRIORIT'Y PAHs TO BE DIRECïLY CYTOTOXIC TO A CELL LINE 

FROM THE RAINBOW TROUT G E L  "' 

Sixteen poIycyclic aromatic hydrocarbons (PAHs) were screened for their ability to be directiy 

cytotoxic to a ce11 line from the rainbow trout gill, RTgill-W1. Exposure times of 2 hours or less 

were sufficient for direct cytotoxicity to be detected, which appeared to be caused by a common 

mechanism, the general perturbation of membranes. This was judged by the sirnilarity of results 

obtained for three fluorescent indicator dyes, aiamar Bluew, 5-carboxyfluorescein diacetate 

acetoxymethyl ester (CFDA-AM), and neuirai red. Among the 16 PAHs tested, just two- and 

three-ring PAHs were cytotoxic. These were naphthalene s acenaphthyiene z acenaphthene > 

fluorene z phenanthene. The relative potency of these five PAHs suggested that water solubility 

is important but another contributing factor is lipophilicity. Thus, for PAHs to be directiy 

cytotoxic, they must accumulate in membranes and the failure of larger PAHs to be cytotoxic 

IikeIy was caused by their failure to accumulate in membranes sufficiently. Only naphthalene was 

effective at concentrations weil below its water solubility limit. Therefore, direct cytotoxicity is 

likely to be most environmentaily relevant only with naphthalene. 

2.2. INTRODUCTION 

As well as causing genotoxicity (Benedict et al., 1972; Smolarek et ai. 1987; Varanasi et ai., 

1989), many polycyclic arornatic hydrocarbons ( P m )  cause cytotoxicity to animal cells in 

culture after they have been activated metabolicaily. This has been studied most intensively with 

benzo[a]pyrene. Benzo[a]pyrene cytotoxicity has been observed in pnmary cultures fiom rodent 

embryos (Diamond and Gelboin, 1969) and Iiver (McQueen and Williams, 1982), and with ce11 

Iines from rnammals (Gelboin et al., 1969; Babich et al., 1988). amphibia (Diamond and Clark, 

1970), reptilia (Diamond and Clark, 1970) and fish (Diamond and Clark, 1970; Babich and 

Borenfreund, 1988; Lee et ai., 1993). The cytotoxicity has been measured variously as growth 

"' This paper is for submission to Toxicology. Co-authors are D.G. Dixon, B.M. Greenberg, and 
N.C. Bois. 



inhibition (Diarnond and Clark, 1970; Diamond and Gelboin, 1969; Lee et al., 1993). enzyme 

leakage (McQueen and Williams, 1982), and neuûal red retention (Babich et ai,, 1988), and 

develops after a 2-3 day exposure to benzo[a]pyrene in complete growth medium, Several 

observations indiate that the cytotoxicity of benzo[a]pyrene is dependent on the xenobiotic 

metabolism of the cytochrome P450 systern. Cytotoxicity is reduced by a-naphthoflavone 

(Diamond and Gelboin, 1969; Babich et al., 1988). which inhibits the catalytic activity of 

cytochrome P4501A, and enhanced by exposure of the cells to hepatic S-9 microsomal fraction 

(Babich and Borenfreund, 1987) or to cytochrome P4501A inducing agents (Babich et al., 1988). 

Little or no cytotoxicity is observed in ceIl cdtures with little or no cytochrome P450 dependent 

monooxygenase activity (Gelboin et ai., 1969; Babich and Borenfreund, 1987; Babich et al.. 1988; 

Lee et ai., 1993). Other PAHs cause cytotoxicity in a manner similar to benzo[a]pyrene but 

severai of hem, inciuding anthracene and fiuorene, do not (Babich et al., 1988). 

A more quick and direct mode of cytotoxicity has been observed with the smallest PAH, 

naphthalene. Harmon and Sanborn (1982) studied the effect of naphthdene on cellular respiration 

and morphology in monkey (Vero) and human (Hep2) ce11 lines and in primay culhues of turkey 

embryos. A 2 hr naphthaiene exposure strongiy inhibited oxygen consumption in al1 three culture 

types. As well, pronounced morphological changes were observed at naphthalene concentrations 

near or above the EC50 value for oxygen consumption. The mechanism of cytotoxicity was studied 

with isolated rnitochondria and appeared to involve the inhibition of mitochondrial respiration at 

the level of ubiquinone (Stmble and Harmon, 1983; Beach and Harmon, 1992). Except for 

acenaphthene (Beach and Harmon, 1992), the ability of other PAHs to be directly and quickly 

cytotoxic is largely unexplored. 

Methodologies for conveniently quantiwng the photocytotoxicity of fluoranthene to fish cells 

have been developed (Chapter 1) and have features that should make them suitable for screening 

PAHs for their ability to be directly cytotoxic. For photocytotoxicity, two fluorescent indicator 

dyes, 5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) and alamar Blue, were 

applied to multiwelI cultures of the rainbow trout gill ce11 line, RTgill-W1, and the results 

quantified rapidly with a fluorescent multiwell plate reader. The a l m  Blue detects changes in 

the cellular function that is the focus of naphthalene cytotoxicity, the mitochondriai electron 

transport chain. The CFDA-AM mesures the more general response of cell membrane integrïty. 

The time frame is also appropriate. The photocytotoxicity is detected within 2 hr from the 

temination of a 2 hr concurrent exposure to fluoranthene and UV light. Finally, RTgill-W1 

should be suitable for detecting direct cytotoxicity because the results should not be confounded by 

PAH metabolism- As well as the short exposure tirne, PAH metabolism should be absent because 

7-ethoxyresonifin-O-deetfi y lase (EROD) ac tivity , which is a measure of cytoc home P4SO 1 A, is 

undetectable in this ce11 line (Bols, unpublished data). 



in this papa we have used dama Blue, CFDA-AM. and a fluorescent indicator dye that 

rneasures lysosornai membrane integrity, neutral red, to screen 16 prionty PAHs for theu ability to 

be directly cytotoxic to RTgill-W1 ceiis, The results are discussed with respect to the water 

solubility of individual PAHs in order to evaluate the environmental relevance. 



2.3. MATERIALS AND METBODS 

A. Cell culture and cymtoxicity testhg 

The rainbow uout gill cell line, RTgill-W1, was developed in this laboratory (BOIS et al., 

1994). Cells were culturecl in 75 cm' culture flasks at 22°C in Leibovitz's L-15 medium 

supplemented with 10 % fetal bovine senun (FBS). The source of the tissue culture supplies and a 

description of the subcultivation procedure have previously been presented in detail (Bots and Lee, 

1994; Schirmer et ai., 1994). 

Confluent monolayers of RTgilI-WI cells in two 48 well tissue culture plates were used to 

study the direct cytotoxic effects of each PAH. Confluent cultures were achieved by plating 

50,000 cells per well and allowing them to grow for 3 days. At confluency. the culnue medium 

was removed and each well inseci once with 500 pl of L-151ex. L-Wex, a modification of 

Leibovitz's L-15 medium, was developed specificdly for presenting to the cells PAHs in the dark 

or with a concurrent UV radiation exposure (Chapter 1). A description of the constituents of L- 

Wex and preparation procedures have been outlined previously (Appendix IV; Chapter I). After 

the nnse. al1 wells received 500 pi of L-151ex. The cells were then dosed with 2.5 pl aliquots of 

PAH dissolved in DMSO, using a Nichiryo Mode1 800 digital positive displacement micropipetter 

(Fisher Scientific, Toronto, ON, Canada). The duration of exposure in the dark was 2 hr for ail 

experirnents. 

Upon termination of exposure, cytotoxicity assays were perforxned immediately and 24 hr 

later. Three fluorescent indicator dyes were used. These were alamar BIue (Immunocorp. Science 

Inc., Montreal, PQ. Canada), an indicator of celiular metabolic activity; 5-carboxyfluorescein 

diacetate acetoxymethyI ester (CFDA-AM, Molecular Probes, Eugene, OR, USA), an esterase 

substrate that induectly maures  plasma membrane integrity; and neuîrai r d  (94%. Sigma 

Chernical Co., St. Louis, MO, USA), an indicator of Iysosomal membrane integrity. 

Ahmar Blue and CFDA-AM: The alarnar Blue and CFDA-AM indicator dyes were used in 

combination as describeci in Chapter 1 with minor modifications. Alamar BIue and CFDA-AM 

were prepared together in L-15/ex to give a final concentration respectively of 5% v/v and 4 pM 

(Appendix IV). For immediate measurements, aliquots of LOO pl/well of this solution were added 

to one of the culture plates. After 30 min, or in some cases after 2 hr, fluorescence was quantified 

with the CytoFluor 2350 (PerSeptive Biosystems, Burlington, ON, Canada) at respective excitation 

and ernission wavelengths of 530 (+ 30) and 595 (f 35) nm for alamar BIue, and 485 (I 22) and 



530 (5 30) nm for CFDA-AM. For measurements 24 hr later. the dye solution was removed from 

the wells and replaceci with L-15 with IO 8 FBS before cytotoxicity assays were repeated again on 

the same wells. 

Neutra1 red: The neutral red (3-amino-7dimethyIamino-2-methyIphenanzine hydrochloride. 

94 5%; Sigma Chemical Co., St Louis, MO, USA) indicator dye was prepared as a stock solution of 

5 mg neutral red in 1 ml of ddH20 (Appendix IV). This solution was protected from light and 

stored at room temperature. Under these storage conditions, neutral red had previously been 

shown to be stable for at Ieast three months (Lowik et al., 1993). The neutral red working sotution 

was prepared prior to each cytotoxicity test by diluting the stock solution 1 : 100 in L- 1Slex to yield 

50 pg neutral red in 1 ml of L-15lex. This working solution was filter-sterilized with a 0.2 p 

sterile acrodisc (Gelman Sciences Inc.. Ann Arbor, MI, USA) to remove fine precipitates of the 

dye. 

For immediate measurements, aliquots of 100 pi of this working solution were added to the 

second culture plate. After an incubation period of 1 hr, which ailowed the dye to be taken up by 

cells with intact lysosomes, the dye solution was removed and wells were rinsed with lûû pl of a 

mild fixative, containing 0.5% vlv formaldehyde and 1% wlv CaClt in ddH20. This rinsing step 

removed any excess neutral red that had not k e n  localized in lysosomes during the incubation 

period. In order to solubilize lysosomal neutral red, an aliquot of 100 pl of an extraction sotution 

( 1 % v/v acetic acid and 50% vlv ethanol in ddH20) was then added to each wetl. The plates were 

placed on an orbital shaker and shaken at - 40 rpm before fluorescence was measured 10 min later. 

Fluorescence was quantified with the CytoFluor 2350 at respective excitation and emission 

wavelengths of 530 (+ 30) and 645 (+ 50) nm. 

In contrast to the alamar Blue and CFDA-AM cytotoxicity assays, cells that had been exposed 

to neutral red could not be used for repeated measurements. This resulted fiom the fixation and 

extraction steps during the neutral red cytotoxicity assay which eradicated ceIl viability . 
Therefore, the neuaal red measurements that were taken 24 hr after irradiation were performed in 

plates that had previously been exposed to the darnar Blue and CFDA-AM indicator dyes. Upon 

completion of the fluorescent measurements, alarnar Blue and CFDA-AM were removed from 

wetls and replaced with 100 pilwell neutral red working solution. The neutral red cytotoxicity 

assay was then performed as described above. A prior experiment, in which extra plates were 

prepared to measure the toxicity after 24 hr in separate plates, had shown that results were similar 

whether the neutral red assay performed on separate plates or subsequent to the alamar 

BludCFDA-AM assays on the same cultures. 



C. Solubilization of PAHs and HPLC analysis 

PAHs were purchased in crystallized fom as follows: naphthalene (99%), acenaphthylene 

(99%). anthracene (99%), chrysene (95%), and benzo(a]pyrene (98%) were from Sigma Chernical 

Co. (St. Louis, MO, USA); acenaphthene (99%), fiuorene (98%), phenanthrene (98%). 

fluoranthene (98%)- pyrene (99%)- benzo[a]anthracene (99%), benzo[b]fluoranthene (99%), 

benzo[k]fluoranthene (98%), dibenzo[a,h]anthracene (97%), and benzo[g,h,i]perylene (98%) were 

from Aldrich Chernical Co. (Milwaukee, W, USA); and indeno[l,2,3-~d]pyrene (99%) was from 

Supelco (Mississauga ON, Canada). 

PAHs were dissolved in 100 % dimethyl sulphoxide (DMSO, BDH Inc., Toronto, ON. 

Canada) to yield stock solutions of 0 5  to 1 mg/ml. For some PAHs, particularly the higher 

molecular weight compounds, solubilization was slow and required shaking over night. The PAH 

stock solutions were serially diluted in DMSO to give 200 times the final concentration requued 

by each design treatrnent, These working solutions were stored at room temperature, protected 

from light in 1.5 or 5 ml amber screw cap vials (Kimble, VWR Canlab, Mississauga, ON, Canada). 

A 2.5 pl aliquot of these working solutions was added to 500 pl of L-IS/ex in wells of 48 well 

tissue culture plates to give the desired PAfI concentrations. 

The concentrations of PAHs in the working soiutions were c o d m e d  by HPLC. SampIes 

were prepared by adding 2.5 pi working solution to a 500 pi aliquot of 50 5% HPLC-grade 

acetonitrile (BDH Inc., Toronto, ON, Canada) and 50 8 Milli-Q filtered distilled water in 1.5 ml 

amber screw cap vials. HPLC was done with a System Gold liquid chromatograph with a System 

Gold 168 diode array detector and a Mode1 126 liquid chromatograph p m p  (Beckman 

Instruments Inc., Mississauga, ON, Canada). Aliquots of 100 pl from sarnpte solutions were 

loaded manudly ont0 a 25 cm LC-18 column (Supelco, Mississauga, ON, Canada). PAHs were 

eluted with 75 % HPLC-grade acetonitrile and 25 % Milli-Q fiitered distilled water at a flow rate 

of 1 drnin .  Detection of PAHs was done at 254 nm with a 30 nm band width. The peak areas of 

unknown samples were compared to those of individuai standards or a PAH calibration rnix 

(Supelco, BeIlefonte, PA, USA). 

D. Data analysis 

The fluorescence readings in wells that contained PAHs in DMSO were expressed as a 

percentage of the readings in conirol wells bat  contained DMSO only. Prior to these calculations, 

fluorescence readings for wells without cells were subtracted from ihe experimentai and control 

values with cells. Dose-response data followed a sigmoid relationship and were analyzed by 

nonlinear regression using the curve-fitting routine of SigmaPlot (Jandel Scientific). Data were 



fitted to the Iogistic function for continuous response data as described by Kennedy et al. (1993) 

for analyzing enzyme activities, with minor modifications. The logistic function was 

(1) y(d) = Y,. + (Y,. - Y-){ 1 + exp[-g(in(d) - ln(ECm))] }" 

where y(d) is the % ce11 viability at the PAH concenmtion d, Y- is the minimum % ce11 viability, 

Y, is the maximum % ce11 viability, g is a dope parameter, and ECw, is the PAH concentration 

that produces 50 % ce11 viability. Because experimental results were expressed relative to a 

conuoi on a O - 100 95 bais, Y, was 100 9% while Y, was O 46, which simpiified the equation 

to : 

(2) y(d) = 100 (%) { 1 c exp[-g(in(d) - In(ECJo)) J 1'' . 
Al1 statistical tests were performed using SYSTAP software (SPSS Inc., 1996). 



Three fluorescent indicator dyes were used to screen sixteen PAHs for their abiiity to cause 

cytotoxic responses in RTgill-W1 ceUs within 2 hr of a 2 hr application. Aiamar Blue, CFDA- 

AM, and n e u d  red were the indicator dyes and gave simihr results. Five PAHs were cytotoxic. 

whereas the other eleven were not. 

A. Cyrotoxic PAHs 

Naphthdene, acenaphthylene, acenaphthene, fluorene, and phenanthrene were directly 

cytotoxic. However, these compounds differed in their ability to be cytotoxic at concentrations 

below their maximum solubility in water (Table 2.1 .), Differences in solubility made obtaining full 

dose-response curves difficult for some of these PAHs (see below). However, when estimated 

ECSOs for either of the three cytotoxicity assays were used to rank these cornpounds, the sequence 

of cytotoxicity was naphthdene (48 f 6 pM, n=9) s acenaphthylene (43 f 7 pM, n=6) z 

acenaphthene (73 f: 12 pM, n=5) > fluorene (144 + 39 ph4, n=3) z phenanthrene (177 f 63 pM, 

n=6), as detennined by analysis of variance, followed by Tukey's post hoc test ( a  = 0.05). 

Naphthalene: This was the only PAH that was cytotoxic at concentrations well below its 

maximum solubility in water, which is 240 $4 (Table 2.1.). The shapes of the dose-response 

curves and the ECSo values were similar for each of the fluorescent indicator dyes and did not 

change in the 24 hr that followed the 2 hr of exposure (Figure 2.1.). Immediately after exposure, 

ECso values were 54 f 1 pM (n=2) for alamar Blue, 55 f 3 ph4 (n=2) for CFDA-AM, and 48 I 1 

ph4 (n=2) for neutrai Red. Twenty four hours later, the ECH, values were 51 ,+ 9 p M  (n=2) for 

alamar Blue, 49 f 1 pikl (n=2) for CFDA-AM, and 57 pM (n=l) for neuad red. Analysis of 

variance revealed no significant differences between these ECSo values (a=0.05). The resuits of 

the fluorescent assays were aiso confirmed by the phase-contrast appearance of the cells (Figure 

2.2.). At concentrations close to the observed ECw, values, cells were characterized by distinct, 

dark nuclei. Celts were round and bailoon-shaped, a morphoIogy that is typicaiIy observed for 

necrosis (Cobb et al., 1996). These morphological changes were observed within 20 minutes afier 

dosing and remained the same for up to 24 hr, although some cells detached from the growth 

surface over the 24 hr period. 



Table 2.1. Summary of physicai-chernical data of the 16 priority PAHs and their ability to elicit 

direct cytotoxicity in RTgilI-W 1 ceIls 

PAH Molecular Molecular Water Highest WC)- 

Structure Weight ~olubil i t~(" concentration toxicity? 
(g/mol) (PM) tested (pM) Y E S N  
L28.17 240 107 Naphthaiene 

Acenaphthylene 

Acenaphthene 

Fluorene 

Phenanthrene 

Anthracene 

Fluoranthene 

Benzo [alanthracene 

C hrysene 

Benzorb] fluoranthene 

Benzol k] fluoranthene 

YES 

YES 

YES 

YES 

YES 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

NO 

( 1 )  Source: Mackay et al., 1992 
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Figure 2.1. Viability of RTgill-WI cells immediately and 24 tu after king exposed to increasing 
concentrations of naphthalene. Confluent cultures were exposed to naphthalene in L- Wex and 
kept in the dark for 2 hr. Immediately afterwards and 24 hr later, ce11 viability was assayed with a 
mixture of damar Blue (top panels) and CFDA-AM (middle panels), and with neuual red (bottom 
panels). The resdts were expressed as a percentage of the readings in controI cultures that 
received no naphthalene. One representative expenment is shown. Each data point is the mean of 
four culnue wells with the vertical lines indicating the standard deviation. 



Figure 2.2. Phase-contrast appearance of RTgill-W1 celIs 2 hr after being exposed to 54 @l 
naphthalene (pane1 A) and cornpared to the control containing no naphthalene (panel B). 
Confluent cuhures in wells of a 48 well culture plate were exposed to 54 pM naphthaiene or the 
appropriate DMSO control in L - W e x  and kept in the dark for 2 hr. The photographs were taken 
at 160x. 



Acenaphthylene and Acemphthene: These two PAHs were most cytotoxic at concentrations 

above their water so1ubiIit.y limits, which are 26 pM for acenaphthylene and 23 @A for 

acenaphthene. However, as for naphthaiene, dose-response cufves were obtained that were similar 

in shape for each of the fluorescent indicator dyes and did not change in the 24 hr that followed the 

2 hr of exposure (Figure 2.4.). Likewise, morphological changes were seen and paralleled chose 

observed for naphthalene. When dose-response curves were used to estimate the percent ce11 

viability at water solubiIity, cytotoxicity was found for both acenaphthylene and acenaphthene but 

was significant in only a few cases (Figure 2.3., panels A and B). 

Figure 23. Ce11 viability of RTgill-W1 immediately and 24 hr after exposure to 26 pM 
acenaphthylene (panel A) and 23 pM acenaphthene (panel B). Dose-response curves that were 
obtained as  described in Figure 2.1. were used to calculate the percent ce11 viability for each of the 
compounds at their respective water solubility limits. The resuits for alamar Blue, CFDA-AM and 
neutra.l red are indicated, respectively, by open, crossed, and dashed bars. Each bar represents the 
mean of 4 independent expenments for acenaphthylene and 3 for acenaphthene. Vertical Iines 
indicate the standard deviation. One sample t-tests that revealed a significant difference fkom 100 
% ce11 viability are indicated by asterisks (a=O.OS). 
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Figure 2.4. Viability of RTgill-W1 cells immediately and 24 hr after king  exposed to increasing 
concentrations of acenaphthylene. Exposure of ce11 cultures to acenaphthylene and subsequent cell 
viabiiity assays were performed as described in Figure 2.1 .. One representative expenment is 
shown. Each data point is the mean of four culture wells with the vertical lines indicating the 
standard deviation. The arrows indicate the concentration at which acenaphthylene is maxirnaily 
soluble in water (26 pM). Sirnilar results were obtained for acenaphthene. 



Fluorene: Littie cytotoxicity was observed with this PAH at its water solubility limit. 12 pM 

(Figure 2.5.. panel A). However, when higher concentrations were tested, dose-response curves 

were obtained with ai1 three cytotoxicity assays but they were more variable than for okher PAHs. 

This was likely due to the formation of large fluorene crystais which were visible by phase-contrast 

microscopy at concentrations as low as 28 pM and even more so at 57 and 1 13 @VI, with the latter 

being the highest concentration tested 2.6.). AIthough the crystals made o b s e ~ n g  ce11 

morphology more difficult, the cells appeared round and frequently detached frorn the growth 

surface. 

Figure 25 .  Ce11 viability of RTgilI-W 1 irnmediately and 24 hr af'ter exposure to 12 pM fluorene 
(panel A) and 7 phenanthrene (panel B). Dose-response curves that were obtained as  
described in Figure 2.1. were used to calculate the percent ce11 viability for each of the cornpounds 
at their respective water solubiIity Iimits. The results for alamar Blue, CFDA-AM and neutrd red 
are indicated by, respectively, open, crossed, and dashed bars. Each bar represents the mean of 2 
independent experiments for phenanthrene. For flucone, 2 independent experiments are shown 
for neutral red, whereas three independent experiments are shown for alamar Blue and CFDA-AM. 
Vertical lines indicate the standard deviation. One sample t-tests revealed no significant 
differences from 100 96 ce11 viability (a4.05). 



Figure 2.6. Phase-contrast appearance of RTgill-W1 cells 2 hr after being exposed to 113 pM 
fluorene (panel A) and compared to the control containing no fluorene (panel B). Confluent 
cultures in weIls of a 48 weIl culture plate were exposed to 113 pM fluorene or the appropriate 
DMSO control in L-1Yex and kept in the dark for 2 hr. Crystai formation in the fluorene- 
containing wells is indicated by the arrows. The photographs were taken at 160x. 



Phe~nthrene: Although directiy cytotoxic, phenanthrene was only slightfy cytotoxic at 7 pM, 

its water solubility limit (Figure 2.5, panel B). Nevertheles, dose-response curves were obtained 

by applying high phenanthrene concentrations. These curves were similar for each of the 

fluorescent indicator dyes and for the wo tirne points ac which cytotoxicity was measured figure 

2.7.). As well, at the concentrations that were cytotoxic with the indicator dyes, rnorphological 

changes were seen chat were sùnilar to those observeci for naphthdene. 

B. Non-cytotoxic PAHs 

Neither the damar BIue, CFDA-AM, nor neutrai red assays detected cytotoxicity for the 

following PAHs: anthracene, fluoranthene, pyrene, benzo[a]anthracene, chrysene. 

benzo [b] fluoranthene, benzo[k] fluoranthene, benzo[a]pyrene, dibenzo[ah]anthracene, 

benzo[g,h,i]perylene, and indenof 1.2-3,-cdlpyrene. This was tnie even when PAHs were tested at 

concentrations several orders of magnitude above their water solubility Iimits (Tabie 2.1 ., Figure 

2.8.). 
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Figure 2.7. Viability of RTgill-WI cells imrnediately and 24 hr after king exposed to increasing 
concentrations of phenanthrene. Exposure of ceII cultures to phenanthrene and subsequent ce11 
viability assays were perfonned as described in Figure 2.1.. One representative experiment is 
shown. Each data point is the mean of four culture wells with the vertical lines indicating the 
standard deviation. The arrows indicate the concentration at which phenanthrene is maximally 
soluble in water (7 pM). 
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Figure 2.8. Viability of RTgill-WI cells immediately and 24 hr after being exposed to increasing 
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25. DISCUSSION 

The current research showed that a few PAHs elicited cytotoxic responses rapidly. This is 

referred to as a direct cytotoxic mode or action and is distinguished by the time fmne of its 

development from a cytotoxic response that requires metabolic activation of the PAH. Exposure 

times of several hours or fess have been sufficient for direct cytotoxicity to be detected, whereas 

much longer exposure times have been needed for PAH metabolism to cause cytotoxicity. Direct 

cytotoxiciîy had been observed previously with naphthalene through the monitoring of oxygen 

consumption (Harmon and Sanborn, 1982) and has now been found with naphthdene, 

acenaphthylene, acenaphthene, fluorene and phenanthrene by measuring changes in cellular 

functions with the fluorescent indicator dyes, dama. Blue, CFDA-AM, and neutral red. 

The fact that the different cytotoxicity assays gave similar results suggested a common 

mechanism for the directiy cytotoxic mode of action. Tke work of others on the toxicity of PAHs 

suggests several possibilities. Using isolated rnitochondria (Beach and Hannon, 1992; Harmon, 

1988; Harmon and Sanbom, 1982; Strubel and H m o n ,  1983)- as well as cells (Harmon and 

Sanborn, 1982), Hannon and his coworkers found that naphthalene and acenaphthylene 

specifically inhibited rnitochondrial respiration, and did so at the level of ubiquinone (coenzyme 

QI@. Another school of thought, which has k e n  developed for anesthetic compounds, is that 

inhibitory actions are due to generai changes in membrane integrity (Seeman, 1972). On the other 

hand, using liposomes, Sikkema et al. (1994) found that cyclic hydrocarbons caused effects botii 

on membrane integrity and on a specific membrane enzyme. In the current study the perturbation 

of membranes generally appears to be the cause of cytotoxicity because al1 three fluorescent 

assays are indirectiy measuring the maintenance of membrane integrity. The CFDA-AM assay 

needs an intact plasma membrane in order to maintain a cytoplasmic milieu that supports esterase 

activity and the formation of a fluorescent product. The aiamar Blue assay requires intact 

mitochondriai membranes in order that the electron transport chain functions and reduces the dye 

to a more fluorescent form. The neutral red assay is a measure of lysosomai membrane integrity 

because this membrane is required for the uptake and retention of the fluorescent dye. However, a 

specific action on rnitochondria that developed within minutes could Iead several hours later to the 

three assays giving similar results as the functiond integrity of plasma and lysosomai membranes 

will ultimately be dependent on ATP. Therefore, a specific mechanism appears unlikely but 

cannot be ruled out. 

The ability of PAHs to be directiy cytotoxic appeared to be related to their water solubility 

and to their Iipophilicity. Among the 16 PAHs tested, just two- and three-ring PAHs, which have 

the highest water solubifity (Mackay et al.. 1992), were cytotoxic. The exception, anthracene, also 

supported the correlation. Although of the sarne site and with the sarne number of rings as the 



cytotoxic phenanthene, anthracene is much l e s  water soluble because its three benzene rings are 

arranged in a Iinear rather than in an angular fashion (Harvey, 1991). The relative potency of the 

five PAHs that were cytotoxic suggested that water soiubiIity is again important, but an additional 

factor to be considered is Iipophiiicity, which can be expressecl as the water/octanol partition 

coefficient (Polw) or as the membrane-aqueous phase pamtion coefficient (Sikkema et ai., 1994). 

Phenanthrene and fluorene were the least water soluble and the least cytotoxic. Among the 

remaining three PAHs, naphthalene was approximately 10 fold more water soluble than 

acenaphthylene and acenaphthene but the three PAHs were equaily cytotoxic as judged by EC*. 

Acenaphthylene and acenaphthene are approximately 6 and IO fold more lipophilic than 

naphthalene, as judged by their Polw values (Mackay et ai., 1992). The interpretation for these 

observations is that in order for the PAHs to be directiy cytotoxic, they must accumulate in 

membranes. If this interpretation is correct, the larger PAHs failed to be directly cytotoxic 

because they failed to accumulate in membranes sufficiently to generdly disrupt membrane 

functions. 

The failure of the cells to recover or to be further damaged in the 24 hr following removal of 

the cytotoxic PAHs points to a toxicity mechanisrn that is distinct from the mechanism underlying 

the photocytoxicit. of fluoranthene (Chapter 1). Previously, using the alamar Blue and CFDA- 

AM cytotoxicity assays, we had observed that cytotoxicity was more pronounced 24 hr after the 

termination of a concurrent fluoranthene and UV exposure than afier 2 hr. In the case of 

fluoranthene photocytotoxicity, the membrane impairment appears to be due to the generation of 

reactive oxygen species (ROS) within the membrane (Chapter 1). In the case of direct 

cytotoxicity, the membrane impainnent appears to be due to a differcnt mechanisrn, likely the 

physical disruption of membrane integrity by the presence of the P M .  Support for this coma 

from work with liposomes by Sikkema et ai. (1994) who found that the accumulation of cyclic 

hydrocarbons caused swelling of the membrane biIayer and an increase in membrane fluidity. If 

direct cytotoxicity requires maintenance of the PAH in the ce1 membranes, removal of the PAH- 

containing medium should limit further damage but not necessady lead to recovery as the 

lipophilicity of the PAH would favor retention of the accumulated PAH in membranes. 

The potencial of a directly cytotoxic mode of action to be environmentally relevant appears to 

exist only for naphthalene. Naphthalene was the only PAH to be cytotoxic below its water 

solubility, and naphthalene concentrations similar to the ECSO values observed in this study have 

been measured in aquatic environments at point sources of PAH contamination, such as wood 

treatment or storage sites (Environment Canada, 1993). Furthexmore, ECSO values obtained with 

the RTgill-WI ce11 line are in the range of those found for lethality to fish in laboratory tests 

(Neff, 1985). Although fish lethality was measured after 24 to 96 hr of exposure, the damage to 



fish gill epitheIial cells soon after contact with naphthalene, as would be expected from the current 

st~~dy, Iikely occurred before damage to other tissues and organs. Support for this aisa comes 

fiom a study by Lee et ai. (1972) who detected within 25 to 60 min of fish k ing  exposed to 

naphthalene an increase in the naphthalene concentration of gills. Thus, naphthaiene is an 

important compound to be considered in the environmental risk assessment of PAHs and its 

directly cytotoxic action should be part of any evaiuation. 

Despite the importance of naphthdene, the conmbution of other PAHs to a directly cytotoxic 

mode of action might still have to be considered in the environment. Naphthalene is commonly 

present at contaminated sites dong with other PAHs, whose concentrations are usually well below 

saturation (Mackay et al., 1992: Neff, 1985). If the directly cytotoxic mode of action is due to the 

general accumulation of PAHs in membranes and is independent of P M  structure, these other 

PAHs would be expected to conîribute to the cytotoxic response, even though individually their 

concentrations would be too low to cause cytotoxicity. Within membranes, the different PAHs 

could interact in either an additive or non additive manner to elicit cytotoxicity. In other 

experimental systems, the toxicity of several aromatic hydrocarbons has k e n  observeci to be 

additive whether the compounds have been thought to be toxic through a general mernbrane- 

perturbing effect (Broderius and Kahl, 1985; Deneer et al., 1988; Mun02 and Tarazona. 1993) or 

a specific action on mitochondriai function (Beach and Hannon, 1992). 

The in vitro evaiuation of the cytotoxicity of PAHs is problematic. One general difficulty is 

thek low water solubility and the necessity to apply them to ce11 cultures at concentrations above 

their water solubility. At supersartuated concentrations, PAHs tend to form rnicrocrystals, and 

these could influence uptake, and in tum, cytotoxicity of PAH solutions (marner et ai., 1997; 

Kocan et al. 1981; Lakowicz et ai., 1980). Although only fluorene crystaIs were visible in our 

study, the formation of crystals that were too smdl to be visualized by phase-contrast microscopy 

cannot be ruled out for other PAHs. The appearance of fluorene crystals coincided with variable 

toxicity and morphological changes that appeared to be slightly different from those found for 

other cytotoxic PAHs in the absence of visible crystals. However, for acenaphthyfene, 

acenaphthene and phenanthrene, continuous dose-response curves couId be obtained consistently 

and morphological changes were similar to those found for naphthalene. This indicates that these 

PAHs are available to cells at concentrations that exceed their water solubility Iimits and that the 

toxic mechanisms remains either unchanged or changes in a way that was not detected with the 

fluorescent indicator dyes. Another general difficulty is that PAHs have the potentid to elicit 

cytotoxicity by multiple modes of action and detecting responses will depend on exposure tirnes 

and endpoints. Although in the current study a generai cytotoxic mechanism appeared to be at 

work, the use of screening protocols with multiple endpoints, and perhaps more complex 

endpoints, is probably still desirable in order to detect any specific actions. An example of a 



cornplex cytotoxic action of PAHs that occurs without rnetaboiic activation is the inhibition of ce11 

to cefl communication (Upham et al., 1994). This effect on intercel1ula.r communication was 

observed at much higher P M  concentrations than those used in the current study, and unlike the 

results with the fluorescent dyes, was Iost upon rernoval of the PAH. However, both studies 

found that the three-ringed PAHs were more likely to be inhibitory than four- and fwe-ringed 

P m .  
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ABILITY OF 16 PRIORIT'Y PAHs TO BE PHOTOCYTOTOXIC TO A CELL LINE 

FROM THE RAINBOW TROUT GILL "' 

3.1. ABSTRACT 

Sixteen polycyclic aromatic hydrocarbons (PAHs) were screened for their ability to be 

photocytotoxic to a ce11 line from the rainbow trout gill, RTgill-W1. PAHs could be divided into 

one of 3 groups: incapable of being photocytotoxic, able to be photocytotoxic but dso to be 

directiy cytotoxic, or capable of only k i n g  photocytotoxic. Photocytotoxicity was distinct from 

direct cytotoxicity in that ECSo values were lower with the neutrai red assay immediately after the 

PAWW treatment than with alamar Blue or CFDA-AM, indicating a more specific action on 

lysosomes. As well, in photocytotoxicity but not in direct cytotoxicity, the three assays showed 

increased impairment 24 hr after the treatment. This is consistent with the contention that reactive 

oxygen species are involved in photocytotoxicity. Most PAHs were found to be strictiy 

photocytotoxic; however, onfy six compounds were photocytotoxic at concentrations theoretically 

achievable in water. When photocytotolcic PAHs were ranked relative to fluoranthene to establish 

fluoranthene equivalent factors (FEFs), benzo[a]pyrene and benzofg,h,i]perylene were found to be 

most potent. However, when the water solubility of each compound was taken into account in 

order to calculate the potentid environmental photocytotoxic potency (PEPP), fluoranthene and 

pyrene appeared to have the most potentid to impact fish through photocytotoxicity. 

3.2. INTRODUCTION 

The toxicity that arises fiom simultaneous exposure to polycyclic aromatic hydrocarbons 

(PAHs) and W radiation has been studied in a number of aquatic organisms, including fish 

(Bowling et al., 1983; Kagan et al. 1987; Kagan et al., 1985; ûris and Giesy, 1985, 1986). In fish. 

the dorsal epidermis and the gill epithelium have been identified as target tissues of the 

photoinduced toxicity caused by anthracene and fluoranthene (ûris and Giesy, 1985, Weinstein et 

al., 1997). and the disruption of ce11 membranes has been proposed as the major cause (McCloskey 

"' This paper is for submission to Toxicology. Ceauthors are A.G.J. Chan. B.M. Greenberg, 
D.G. Dixon and N.C. Bols 



and ûris, 1993; Oris and Giesy, 1985). However, because determinhg the potentid of other PAHs 

to be phototoxic is done more easily with fish cells in culture, we previously developed a 

methodology that allows environmentaily important PAHs to be tested rapidly and inexpensivcly, 

using confluent ce11 cultures from the rainbow mut gill as a mode1 system (Chapter 1). 

Upon absorbing UV radiation, PAHs undergo photochemical reactions that invoive the 

formation of singlet oxygen, kee radicals and, potentially, photomodified PAH products (Arfsten, 

1996; Foote, 1976; Girotti, 1983, Huang et al., 1995). The darnaging or killing of cells that results 

from these photochemical reactions is defined as photocytotoxicity (Chapter 1; MacRobert et ai., 

1989). This is in contrast to PAHs eliciting a cytotoxic response rapidly in the absence of W 

radiation which is referred to as direct cytotoxicity (Chapter 2). 

Both photocytotoxicity and cytotoxicity can be monitored efficiently for various celluIar 

endpoints using fluorescent indicator dyes that can be read with a fluorescent plate reader. 

Indicator dyes that have previously been used with fish cells are dama- Blue (metabotic activity), 

5-carboxyfluorescein diacetate acetoxymethyl ester (CFDA-AM) (ce11 membrane integrity) and 

neutrai red (lysosornal membrane integrity) for quantifying the cytotoxicity of PAHs (Chapter 2) 

and alarnar Blue and CFDA-AM for measuring photocytotoxicity (Chapter 1). Thus, the neutral 

red assay has yet to be applied in studies on the photocytotoxicity of PAHs. 

In this paper, we have used previously developed methodologies to demonsuate the potentid 

of 16 priority PAHs to be photocytotoxic to the rainbow uout gilI ce11 Iine, RTgill-W1. Our goals 

were the-fold. Fmtly, we wanted to identify PAHs that are toxic in the presence of W 

radiation, and secondly, compare how photocytotoxic PAHs affect different cellular endpoints 

either immediately after üV irradiation or 24 hr later. This involved exposing cells to individual 

PAHs and W radiation, and applying the three fluorescent indicator dyes, alamar Blue, CFDA- 

A M  and neutrai red. Thirdly, we determined the photocytotoxic potencies of PAHs relative to 

fluoranthene. This required the caiculation of ECw, values and resulted in the proposa1 of 

fluoranthene equivalent factors (FEFs) for photocytotoxicity. In addition, a second ranking value 

was calculateci in order to indicate relative to fluoranthene the potentiai environmental 

photocytotoxic potency (PEPP) of each PAH. 



3.3. MATERIALS AND METaODS 

A. Ce11 culture, cytororicity tesrs und assays 

The rainbow trout gill ce11 line, RTgilI-W1, was developed in this laboratory (Bols et ai., 

1994). Cells were cultured in 75 cm2 culture flasks a 22OC in Leibovitz's L-15 medium 

supplemented with 10 % fetaI bovine s e m  (FBS). The source of the tissue culture supplies and a 

description of the subcultivation procedure have previously been presented in detail (Bols and Lee, 

1994; Schirmer et al., 1994). 

Confluent monolayers of RTgill-Wl cells in 48 well tissue culture plates were used to study 

the photoinduced cytotoxic effects of PAHs. Confluent cultures were achieved and cells dosed 

with the PAHs as described in Chapter 2. Immediately after the dosing, UV irradiation was 

performed as described below. As well as preparing plates for UV irradiation, control plates were 

prepared for exposure of cells in the dark Fluoranthene was included as a positive control in most 

expenments because of its abiiity to be photocytotoxic to RTgill-W1 cells (Appendix III; Chapter 

1)- 

Upon termination of the W radiation exposure, cytotoxicity assays were performed 

irnmediately and 24 hr later. Three cytotoxicity assays were used that are based on the fluorescent 

indicator dyes, aiamar Blue, CFDA-AM and neutrai red. A detailed description of the preparation 

and application of these dyes is given in Appendix N and Chapter 2. Al1 ce11 cultures received L- 

15 with 10 % FBS in the 24 hr between the assays. 

B. UV radiation exposure 

Afkr the cells had k e n  dosed and before the cytotoxicity assays were camed out, UV 

radiation was applied to the ce11 monolayers. W irradiation was done with one UV-A and one 

UV-B photoreactor lamp (Southern NE. Ultraviolet Co., Branford, CT, USA). Cells were 

irradiated at room temperature in an atmosphere of air and in the presence of tissue culture plate 

lids as descnbed previously (Chapter 1). Irradiation was measured frequently with an 

1 n s t a ~ ~ e c ~ ~ I I  photodiode array spectroradiometer calibrated with a 1 kW q u m  halogen lamp 

(Or-iel corporation, Stratford, CT, USA). With one UV-A and one W-B lamp, and varying 

distances between the radiation source and the tissue culture plates, the photon fluence rate was 

adjuted to 10 pmol m" s-' (i 10 40) for W - A  and 1 pmol m-2 s*' (f 6 %) for UV-B (Appendix II). 

These values represent the photon fluence rates at the surface of the medium in the welIs. A 500 

pI/well aliquot of L-19ex had previously k e n  show to have little discernible effect on these 

fluence rates (Chapter 1). The duration of irradiation was 2 hr for al1 experiments. 



The absorption by each PAH of the W radiation emitted by the UV photomctor lamps was 

calculated by multipIying the values of the UV emission- and PAH absorption-spectra at each 

wavelength and integrating the area under the resulting curve (Appendices 1 and II; Krylov et al., 

1997). This integrated absorption value. which is designated J, was normalized for the largest 

absorption value, which was obtained for benzo[a]pyrene (Table 3.1 .). 

Table 3.1. Summary of photo-physica! propenies of PAHS 

Acenaphthy lene 
Acenaphthene 
Fiuorene 
Phenanthrene 
Anthracene 
Fiuoranthene 
Pyrene 
Benzo[a]anthracene 
Chrysene 
Benzo[b]ff uoranthene 
Benzo[k]ff uoranthene 
Benzo[a] p yrene 
Di benzo[a, h janttiracene 
Benzo[g,h,i]perylene 

(1) Jtml = Absorption of UV radiation by the PAH. 
normalized for benzo[a]pyrene 

(2) = quantum yield of triplet-state formation; 
values were obtained from available Iiterature: 
(a) Krylov et al., 1997 
(b) Birks, 1970, pg. 25 1-253 
(c) d.n.a. = data iot  available 

C. Preparation of PAH solutions and HPLC analysis 

PAHs were purchased in crystallized form and dissolved in 100 % dimethyl sulphoxide 

(DMSO, BDH Inc., Toronto, ON, Canada) as desribed previously (Chapter 2). The PAH stock 

solutions were serially diluted in DMSO to give 200 times the final concentration required by each 

design treatment. These working solutions were stored at room temperature, protected fiorn light 

in 1.5 or 5 ml amber screw cap vials (Kimble, VWR Canlab, Mississauga, ON, Canada). A 2.5 pi 

aliquot of these working solutions was added to 500 pi of L-1Slex in wells of 48 well assue culture 

plates prior to a UV radiation treatment to give the desired PAH concentrations. DMSO has 



previously been shown to have a slightiy sensitizing effect on cells in the presence of a UV 

radiation treatment (Chapter 1). However, for screening purposes, DMSO qualifies as a suitable 

solvent. in contrast to the previously introduced method of solubilizing fluoranthene in the 

absence of a carrier, DMSO required srnaller volumes and allowed the preparation of a wider dose 

range for each of the PAHs tested. 

The concentrations of PAHs in the working solutions were confirmed by HPLC as described 

in Chapter 2. Briefiy, samples were prepared by adding 23 pl working solution to a 500 pi aliquot 

of 50 % HPLC-grade acetonitrile (BDH Inc., Toronto, ON. Canada) and 50 8 Milli-Q filtered 

distilled water in 1.5 ml amber screw cap vials. HPLC was done with a System Gold liquid 

chromatograph with a System Gold 168 diode array detector and a Mode1 126 liquid 

chromatograph purnp (Beckman Instruments Inc., Mississauga ON. Canada). Aliquots of 100 pl 

fiom sample solutions were loaded manually ont0 a 25 cm LC-18 column (Supelco, Mississauga, 

ON, Canada) and eluted/detected as desribed (Chapter 2). 

D. Data amlysk 

The fluorescence readings in wells that contained PAHs in DMSO were expressed as a 

percentage of the readings in control wells that contained DMSO oniy. Prior to these calculations, 

fluorescence readings for wells without cells were subtracted fiom the experimentai and control 

values with cells. Dose-response data followed a sigrnoid relationship and were analyzed by 

nonlinear regression using the curve-fitting routine of SigmaPlot (JandeI Scientific). Data were 

fitted to the logistic function as described previously (Chapter 2). The logistic function was 

( 1 )  y(d) = 100 (%)( 1 + exp[-g(ln(d) - I n W ~ d ) l } - ' .  

where y(d) is the % ce11 viability at the PAH concentration d, g is a dope parameter, and ECS0 is 

the PAH concentration that produces 50 % ce11 viability. 

AI1 statistical tests were performed using S Y S T A F  software (SPSS Inc., 1996). 



The response of RTgill-W1 cells to PAWCTV uearments ailowed the sixteen priority 

PAHs to be divided into t h e  basic groups. Under the conditions of the assays, PAHs were 

either incapabie of k ing photocytotoxic, able to be both photocytotoxic and directly 

cytotoxic, or capable of on1 y k ing  photocytotoxic. 

A. Non-photocytotoxic PAHs 

Three PANs showed no photocytotoxicity. For naphthdene and fluorene, this was judged 

frorn the similarities of dose-response curves chat were obtained after exposure for 2 hr in the 

dark or afier 2 hr of W irradiation (Figure 3.1.). For chrysene dose-response curves were not 

obtained for either treatment, even when chrysene was tested at concentrations that exceeded 

its water solubility limit by approximateiy 25 times (Figure 3.2.). 

B. Photocytotoxic and cytotoxic PAHs 

Acenaphthylene, acenaphthene and phenanthrene, which were previously found to be 

cytotoxic (Chapter 2), also showed some photocytotoxicity. This was judged from dose- 

response curves that were shifted towards lower PAH concentrations in the presence of UV 

radiation (Figure 3.3.). Unlike cytotoxicity, photocytotoxicity was measurable imrnediately 

after U V  exposwe only with the neutral red assay. In the rneaswernents that were taken 24 hr 

later. photocytotoxicity was detected with the aiarnar Blue and CFDA-AM indicator dyes and 

dose-response curves were similar to those obtained with the neutral red assay either 

immediately or 24 hr after UV irradiation (Figure 3.3.). When ECSOs for either of the three 

cytotoxicity assays were compared by analysis of variance, followed by Tukey's post hoc test 

(a = 0.05), the rank order for photocytotoxicity was similar to that for cytotoxicity with 

acenaphthylene z acenaphthene > phenanthrene. 

C. Strictly photocytotoxic PAHs 

The majority of the PAHs was found to be only photocytotoxic (Tables 3.2. and 3.3.). 

These PAHs could be divided into two groups. 

The first group consisted of PAHs that were photocytotoxic only at relatively high 

concentrations (Figure 3.4). As estimated from dose-response data, benzo[k]fluoranthene and 

indeno[1,23-cdlpyrene elicited no toxicity at concentrations at which these compounds are 
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Figure 3.1. Viability of RTgill-W1 ceIls after k ing  exposed to increasing concentrations of 
naphthalene in the presence or absence of W radiation. Confluent cultures were exposed to 
naphthdene in L-15Iex and either kept in the dark (O) or simultaneously W irradiated for 2 
hr (1). Inunediately afterwards and 24 hr later, ce11 viability was assayed with a mixture of 
alamar Blue (top panels) and CFDA-AM (middle panels), as well as with neutral red (bottom 
panels). The results were expressed as a percentage of the readings in control cuItures that 
received the appropriate dark or UV treatment but no naphthalene. One representative 
experiment is shown. Each data point is the mean of four culture wells with the vertical lines 
indicating the standard deviation. Similar relative dose-response curves were obtained for 
fluorene. 
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Figure 3.2. Viability of RTgill-W1 cells imrnediately and 24 hr after k i n g  exposed to increasing 
concentrations of chrysene in the presence (5 )  or absence (O) of UV radiation. Exposure of ce11 
cultures to chrysene and subsequent ce11 viability assays were performed as described in Figure 
3.1 .. One representative expriment is shown. Each data point is the mean of four culture wells 
with the vertical iines indicating the standard deviation. The arrows indicate the concentration at 
which chrysene is maxirnally soluble in water (13nM). 
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Figure 3.3. ViabiIity of RTgill-W1 ceIls imrnediately and 24 hr after being exposed to 
increasing concentrations of acenaphthyiene in the presence (9) or absence (a) of W 
radiation. Exposure of ceIl cultures to acenaphthylene and subsequent ce11 viability assays 
were perfomed as describeci in Figure 3.1.. One representative expriment is shown. Each 
data point is the mean of four culture wells with the vertical lines indicating the standard 
deviation. The arrows indicate the concentration at which acenaphthylene is maxirnally 
soluble in water (26 w). Sirnilar relative dose-response curves were obtained for 
acenaphthene and phenanthrene. 



Imrnediate Toxicity Delayed Toxicity 

Figure 3.4. Viability of RTgill-Wl cells immediately and 24 hr afier k i n g  exposed to 
increasing concentrations of benzo[b]fluoranthene in the presence ( S )  or absence (a) of UV 
radiation. Exposure of ce11 cultures to benzo[b] fluoranthene and subsequen t ceII viability 
assays were perfomed as described in Figure 3.1.. One representative expriment is shown. 
Each data point is the mean of four culture wells with the vertical lines indicating the standard 
deviation. The arrows indicate the concentration at which benzo[b]fluoranthene is maximally 
soluble in water (6 nM). 
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Figure 3.5. Viability of RTgill-WI cells imrnediately and 24 hr after k ing  exposed to 
increasing concentrations of fluoranttiene in the presence (C) or absence (a) of W radiation. 
Exposure of ce11 cultures to fluoranthene and subsequent ce11 viability assays were performed 
as described in Figure 3.1 .. The data points represent the mean of 5 independent experiments 
in which fluoranthene served as a positive control. The vertical lines indicate the standard 
deviation. 



maximally soluble in water. For benzo[b]fluoranthene and dibenzo[ah]anthracene, ce11 

viabiiity was decreased by less than 10 96 at their respective water solubility limits in the 

assays that were perfomed 24 hr after UV irradiation. ECu, values, which were Iowest in the 

assays 24 hr after UV exposure, ranged from approximately 14-23 thes above water 

solubility for benzo[b]ff uoranthene, 50-72 times for benzo[k]fluoranthene, and 57-89 and 144- 

163 times above water solubility for, respectively, dibenzo[a,h]anttiracene and indeno[ l,2,3- 

cdlpyrene. At these high concentrations, PAHs are Iikely present in the culture medium in 

microcrystalline form, which potentially affects their UV absorption and uptake characteristics 

(Lakowicz et al., 1980; Weinberger and C h e  Love, 1984). Therefore, the toxicity that was 

O bserved for benzo [k] fluoranthene. benzo[b] fluoranthene, dibenzo[%h]anthracene and 

indeno[l,S$-cdlpyrene Iikely was governed by factors more complex than those present for 

the second group of photocytotoxic PAHs. 

This second group consisted of PAHs that were photocytotoxic at concentrations below 

the concentrations which these compounds could theoreticaily achieve in water (Figure 3.5.; 

Table 3.2.). In the presence of W radiation, fluoranthene, pyrene, anthracene, 

benzo[a]pyrene, benzo[a]anthracene, and benzo[g,h,i]perylene caused the cellular activities of 

al1 three assays to be irnpaired imrnediately after W exposure. However, the degree of 

impairment differed between the assays. As judged fiom the ECm values, neutral red was 

found to be the most sensitive measure of photocytotoxicity Unmediately after concurrent W 

irradiation and exposure to any one of the six PAHs (Table 3.2.). For an individual P M ,  the 

E C 6  obtained in the alamar Blue and the CFDA-AM assays were very similar. In the assays 

that were perfomed 24 hr later, al1 three fluorescent indicator dyes gave sirnilar ECSo values 

(Table 3.2.). Furthemore, when ECw, values for the immediate and 24 hr assays were 

compared for each of the three dyes, it was found that in al1 cases alarnar Blue and CFDA-AM 

E C 6  decreased significantly over the 24 hr period, whereas neutrd red EC* did not. with 

one exception: benzo[a]pyrene. Finally, slightly U-or L-shaped dose-response curves were 

obtained in the neutral red assay with fluoranthene, pyrene, benzo[g,h,i]peryIene (Figures 3.5. 

and 3.6.). and in a few cases for benzo[a]pyrene (data not shown). 

D. Photocytotoxicity rankings relative to fluoranthene 

For the PAHs that were identified as photocytotoxic to RTgill-W1 cells, relative 

photocytotoxic potencies were calculated in two ways. Fluoranthene was chosen as a 

reference compound because it is an ubiquitous environmentai contaminant (Ankley et al., 

1994) and because it was phototoxic in this and a previous snidy with fish cells at 

concentrations well below its water solubility lirnit (Chapter 1). Cdculations were based on 

the mean of the mean ECm values for the three assays at 24 hr after UV irradiation. These 



values were used because they were simila. for ail three indicator dyes and comparable to the 

ECS0 values obtained for the neuuai red assay 2 hr afier UV irradiation, which was the most 

sensitive indicator of immediate photocytotoxicity (Table 3.2,). A fluoranthene equivdent 

factor (FEF) ranked a PAH according to its relative toxicity at concentrations equirnolar to 

fluoranthene and was caIculated by dividing the ECSo for fluoranthene by the ECSo for the 

PAH. Ln addition to FEFs, another ranking value was calculated in order to indicate relative 

to fluoranthene the potential environmental photocytotoxic potency (PEPP) of a PAH. A 

PEPP incorporated the photocytotoxicity of a PAH together with its highest possible 

concentration in aquatic environments and was calculated by dividing the water solubility to 

ECm ratio for a PAH by the water solubility to ECW ratio for fluoranthene. As the W 

exposures and toxicity assays were canîed out in this report, benzo[a]pyrene was the most 

photocytotoxic PAH (Table 3.3., FEF) but fluoranthene was the PAH most Iikely to occur in 

the environment at concentrations at which photocytotoxicity could occur (Table 3.3., PEPP). 

10 1 O0 1 O00 10 100 1000 

Pyrene (nM) Bento[g,h,i]perylene (nM) 

Figure 3.6. Viability of RTgiII-Wl cells immediately (0) and 24 hr (A) afier king  
simultaneously exposed for 2 hr to UV radiation and increasing concentrations of pyrene 
(panel A) and benzo[g,h,i]perylene (panel B), and as measured with the neutral red assay. 
Exposures of ce11 cultures to pyrene and benzo[g,h,i]perylene, followed by the neutrd red 
assay were performed as described in Figure 3.1 .. One representative experiment is show for 
each compound. Each data point is the mean of four culture wells with the vertical lines 
indicating the standard deviation. 





Table 33. E G  vdues for the photocytotoxicity of PAHs and their potencies relative to fluoranthene 

PAH Molecular W.S. ECw, W.SI PEPP'~) FEF"' 
Structure (nM) (') (M)" ECso 

Naphthalene 

Acenaphthylene 

Acenaphthene 

Fluorene 

Phenanthrene 

An thracene 

Fiuoranthene 

Pyrene 

Benzo[a]anthracene 

Chrysene 

Benzo[b] fluoranthene 

Benzo[k] fluoranthene 

( 1 ) W.S. = Water solubility; Source: Mackay et al., 1992 
(2) ECH, values were calculated as the mean of the mean ECw values obtained for eâch fluorescent 

indicator dye 24 hr after UV irradiation. 
(3) PEPP = potential environmental photocytotoxic potency ( ~ . S J E C S ~ ( p ~ ] / ~ - S J E C M i ~ U O T ; U I - ~ ) ] .  
(4) FEF = Fluoranthene equivalent factor (ECKWnmihaujECsocPm). 
(5) n.a. = not applicable 
(6) Toxicity is partiy due to cytotoxicity. 



3.5. DISCUSSION 

Most of the pnority PAHs were photocytotoxic, and the ability to be photocytotoxic appeaed 

to depend on the proper combination of photochemical and solubility properties. 

Photocytotoxicity appeared to correlate with the PAHsl photochemical properties that others have 

identified as favoring the formation of the hiplet excited state and singlet oxygen (Foote, 1976; 

MacRobert et al., 1989). One photochernical propercy is the absorption of UV radiation which 

varies among PAHs and can be quantified by the overlap of the absorption s p e c t m  of each 

compound and the s p e c t m  of the W radiation source (Huang et al., 1997; Krylov et ai., 1997). 

Secondly, PAHs differ in their abiiity to undergo the conversion from the singlet excited state to 

the longer-lived triplet excited state. This photochemical property is cornrnonly expressed as the 

triplet state quantum yield (O) (MacRobert et al., 1989), and values for can be obtained from the 

literature (Birks, 1970; Krylov et al., 1997). Naphthalene and fluorene showed the least overlay of 

their respective absorption spectra with that of the UV-radiation source and were not 

photocytotoxic. Benzo[a]pyrene showed the greatest overlap and was most photocytotoxic as 

judged from the ECSo values. Acenaphthene and phenanthrene showed an overlap similar to that 

of fluorene but their triplet state quantum yields are much higher than that of fluorene. Chrysene 

showed a different behavior. Although intermediate between phenanthrene and anthracene in 

absorption and triplet state quantum yield, it is not photocytotoxic. Therefore, an additional factor 

to be considered is the ability of P M  to accumulate at criticd cellular sites, which we have 

argued previously are ce11 membranes (Chapters 1 and 2). Thus, additional properties influencing 

the ability of a PAH to be photocytotoxic are water solubility and lipophilicity (Chapter 2). 

Consequently, it is likely that ctirysene did not accumulate in cells sufficientiy to elicit a 

photocytotoxic response. 

Although the occurrence of additional mechanisms working at different IeveIs and having 

different degrees of specificity is possible, the generai mechanism behind the photocytotoxicity of 

the PAHs appears to be the impairment of membranes generally. This is because the three assays 

of cellular viability indirectly measure the maintenance of membrane integrity and gave broadly 

sirniIar results. in this way the photocytotoxicity of PAHs is similar to the direct cytotoxicity of 

PAHs (Chapter 2). Yet, one important observation shows that the origins of the impairment are 

different between the two modes of toxicity. Most of the PAHs that are photocytotoxic are not 

directly cytotoxic. However, in the presence of UV radiation, these photocytotoxic PAHs have 

properties that would be expected to Iead to the formation of reactive oxygen species (ROS). ROS 

can damage membranes, and therefore, are the likeiy cause of membrane impairment in 

photocytotoxicity (Vdenzo, 1987). 

In addition to a general mechanism of damage, a more specific action on lysosomes appears to 

contribute to photocytotoxicity. This is suggested by the neutrai red assay, which measures the 



uptake and retention of the dye in lysosomes (Babich and Borenfreund, 1992). With 

acenaphthylene, acenaphthene and phenanthrene, only the neutral red assay detected 

photocytotoxicity immediately afier the PAWUV treatments. When al1 three assays of cellular 

viability were performed immediately afier concurrent PAH and üV treatments, the EC* were 

lower with the neutral red assay than with the other two assays. This means that at some PAH 

concentrations significant lysosomal damage was occurring while mitochondrial activity and 

plasma membrane integrity was king maintaineci as normal. The greater sensitivity of lysosomes 

was likely due to the specific accumulation of PAHs in this organelle. Preferential PAH 

accumulation in lysosomes has been found to occur in animal cells generaily (Allison and 

Mallucci, 1964; Kocan et ai., 1983) and would cause lysosomal damage to occur at lower nominal 

concentrations. 

The specific action on the lysosome was not apparent twenty four hours after termication of 

the PAWUV treatment. At this tirne the neutrai red assay gave very similar results to the CFDA- 

AM and alamar Blue assays. This means that after the PAHNV treatments had ended, impairment 

of rnitochondrial activity and plasma membrane integrity continued more rapidly than damage to 

lysosomes. Two very different scenarios can be advanced to explain this. One possibifity is that 

early damage to lysosomes caused the release of lysosomal enzymes which during the next 24 tu 

caused further damage to mitochondria and plasma membranes more so than impairment to 

lysosomes. This is reminiscent of a proposal by Ailison et al. (1966). An alternative mechanisrn is 

that lysosomes can slow down the formation of ROS better than other cellular sites. Once initiated, 

the generation of ROS proceeds in a cascade fashion unless disrupted by protective cellular 

actions, such as vitamin E (Hailiwell and Gutteridge, 1985). ROS formation might overwhelm any 

local protective actions in mitochondria and plasma membranes and cause damage to continue at 

these sites after temination of the PAH/W treatmentç, while in the lysosome damage due to ROS 

would be slowed down or halted. In support of this idea, rat liver lysosomal membranes have been 

show to have much higher vitamin E (a-tocopherol) levels than mitochondrial membranes and 

microsomes (Rupar et al., 1992). 

Several PAHs among the photocytotoxic PAHs appeared to differ in the manner or extent to 

which they acted at the lysosome. This was seen by comparing the results frorn neutrai red assays 

that had been done immediately after the termination of the concurrent exposure to U W A H  and 

24 hr later. Fluoranthene and B[a]P most clearly showed contrasting behavior. With fluoranthene, 

the neutral red assay showed littie change between the two time periods, although alamar Blue and 

CFDA-AM assays indicated more damage at 24 hr than at 2 hr. By contrast, with B[a]P, the 

neutral red assay indicated more damage at 24 hr than at 2 hr, as did the other two assays. In 

mollusc, the isomenc PAHs phenanthrene and anthracene have been observed to act differently in 

their interaction with lysosomes (Nott and Moore, 1987). Perhaps, specific features of the 



lysosomai membrane could account for some PAHs having a unique action on the lysosome in 

addition to a more general one. 

In the neutml red assay, an additional difference was observed ktween the photocytotoxic 

P W s  and might be accounted for by the differentid formation of excimers. At high 

concentrations of some PAHs, increasing photocytotoxicity was not observed with increasing 

concentration of PAH, resulting in a dose-response curve with a U-or L-shape. This was observed 

for pyrene, benzo[g,h,i]perylene, fluoranthene and, l e s  fiequentIy and to a smdler extent. for 

benzo[a]pyrene. Previously, U-shaped dose-response cuves were observed for the phototoxicity 

of pyrene to the fathead minnow, and excimer formation was thought to be the cause (Kagan et al.. 

1987). At high concentrations severai PAHs form excimers, which are complexes of an 

elecuonicaily excited and a ground state molecule (Birks, 1970, T m o ,  1978). Excimers have 

reduced phototoxic potentid because they have l e s  capacity to facilitate photochemica1 reactions 

(Kagan et al., 1987). For instance, excimers simultaneously involve two PAH moleciiles and the 

energy of the excimer singlet excited state is lower than ka t  of the monomeric PAH molecule in 

the same state (Turro, 1978). As well, both the quantum yield and the lifetime of excimer triplet 

excited States are diminished (Birk, 1970). The occurrence of U-shaped dose-response curves only 

in the neutral red assay, which preferentially measures lysosomal impairment, might be due to 

PAH concentrations k i n g  higher, and in tum, excimer formation k i n g  greater in the lysosome. 

The failure of other photocytotoxic PAHs to show U-shaped dose-response curves in the neutral 

red assay has severai different explanations. For anthracene, this result would be expected because 

with this PAH others were unable to detect excimer formation in the presence of oxygen (Birks. 

t970; Weinberger and Cline Love, 1984). As weli, both anhacene and benzo[a]anthracene are 

among the PAHs with the shortest haif-life in the presence of oxygen and UV radiation (Huang et 

al.. 1997; Mackay et ai., 1992). Therefore, their concentrations in Iysosomes likely were too Iow 

to lead to excimers. For the PAHs that showed photocytotoxicity only at concentrations above 

their water solubility, a change in their dose-response curves at high concentrations was difficult to 

observe because the curves were incomplete ancilor showed rather shallow negative slopes. 

Kowever, due to the high concentrations necessary to elicit any toxic response with these 

compounds, the formation of motecule aggregates cannot be mled out. 

The three assays of cellular viability emphasized differences between photocytotoxicity and 

direct cytotoxicity. In direct cytotoxicity but not photocytotoxicity, the neunal red assay always 

gave the same result as the other two assays. This suggests that specific lysosomal effects are not 

part of the directly cytotoxic mechanism. In direct cytotoxicity but not photocytotoxicity, the three 

assays showed the same level of impairment 24 hr aftet the PAH treatrnents as imrnediately 

afterwards (Chapter 2). This observation is consistent with the contention that ROS are involved 

in photocytotoxicity but not in direct cytotoxicity. 



Of the sixteen priority PAHs, thirteen were photocytotoxic, but only two appear to have the 

potential to impact on fish in the environment through photocytotoricity. The most restrictive 

factor is availability in the water column, which is iduenced by water solubility. Water solubility 

reduces the consideration fiom thirteen to eight PAHs: acenaphthylene, acenaphthene, anthracene, 

fluoranthene, pyrene, benzo[a]anthracene, benzo[a]pyrene and benzo[g,h,i]perylene. These are the 

PAHs that showed signifiant photocytotoxicity at concentrations at or below their water 

solubility. Among these, the EC* of the PAHs varied greatly with respect to their water solubility 

limit, and only fluoranthene and pyrene had EC* much lower than their water solubiiity. The 

other six had ECSo values that were too close to their maximum water solubility to likely have an 

environmental impact, except at exceptional point sources. For example, benzofalpyrene was most 

photocytotoxic (FEF=8.454) but its ECm value was ciose to its maximum solubility in water. This 

was in contrat to fluoranthene whose ECso value was approxirnately 14 fold below its water 

solubility lirnit, making fluoranthene 10 tinies more likely to occur at photocytotoxic 

concentrations in the aquatic environment than benzo[a]pyrene (PEPPd.107). An additional 

factor that limits availability in aquatic environments is stability. For example, anthracene has a 

hdf-live of only a few hours to days in UV-irradiated environments compared to weeks for 

fluoranthene (Mackay et al., 1992). Thus, although anthracene (FEF=1.898) was found to have 

approximately twice the photocytotoxic potency of fluoranthene in our study (FEF=1.000), it 

appears less likely to play a role as a photosensitizer in the environment. 

An additional factor to consider in assessing the potential of PAHs to be photocytotoxic to fish 

is their ability to persist in the main target tissue, the gill. This has never been measured directly 

but two interrelated factors that might influence persistence are metabolism and accumulation of 

the PAH in fish. Metabolism would reduce the likelihood of persistence. On the other hand, 

accumulation of PAHs in fat depots wouid provide an endogenous P M  source that could supply 

the gill through a very small fraction of the PAH partitioning from fat into blood. Generally, PAHs 

are metabolized rapidly and fail to accumulate substantialIy in fish, but this generalization is based 

mostly on research with just B[a]P (Varanasi et al., 1989). How other PAHs would behave is 

unclear, but because mixed Function oxygenases (MFOs) are criticai to PAH metabolism, the 

inability to induce these enzymes likely would rnake metabolism slower and accumulation more 

likely. Fluoranthene and pyrene were noninducers or extremely poor inducers of MFOs in rainbow 

trout in vivo (Gerhart and Carlson, 1978) and in vitro (Bols, unpublished data), and thus, could 

persist in fish. Therefore, in the environment, fluoranthene and pyrene appear to be the PAHs with 

the most potential to impact on fish through photocytotoxicity. 
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AN EVALUATION OF THE CYTOTOXICI'W AND PHOTOCYTOTOXICIIY OF 

INTACT AND PHOTOMODIFIED CREOSOTE THROUGH THE USE OF A 

RAINBOW TROUT GILL CELL LINE, RTgill-W1, 

AND TWO FLUORESCENT INDICATOR DYES, ALAMAR BLUE AND 5- 

CARBOXYFLUORESCEIN DIACETATE ACETOXYMlETHYL ESTER "' 

4.1. ABSTRACT 

The influence of ultra violet (UV) irradiation on creosote toxicity was investigated with the 

rainbow rrout @Il ce11 line, RTgill-W1, and two indicator dyes: damar Blue and 5- 

carboxyfiuorescein diacetate acetoxymethyl ester (CFDA-AM). Respectively, these monitor 

metabolic activity and membrane integrity. After solubilization and chernical andysis, creosote 

was presented to ceIls in the dark to measure cytotoxicity or concurrentiy with W irradiation to 

evaluate photocytotoxicity. As weII, creosote was photomodified by two hours of UV irradiation 

prior to presentation to cells in the dark or together with UV. Cytotoxicity was detected only at 

high nominal creosote concentrations, but photocytoxicity occurred at creosote concentrations 35 

fold lower. Ail the aromatic hydrocarbons in creosote appeared to contribute to cytotoxicity, but 

photocytotoxicity was due onIy to the fluoranthene, pyrene, anthracene and benzo[a]anthracene of 

creosote. Photomodified creosote was much more cytotoxic than intact creosote and this 

difference was most pronounced in the alarnar Blue assay. Likely, this was due to 

photomodification products that impaired the rnitochondrid electron transport chain. 

Photomodified creosote was slightly less photocytotoxic than intact creosote. OveralI these results 

indicate that UV irradiation potentially enhances the toxicity of creosote to fish in several different 

but significant ways. 

4.2. INTRODUCTION 

Despite the fact that the toxicity of selected polycyclic aromatic hydrocarbons (PAHs) in the 

presence of W radiation had first b e n  shown with cells in culture in 1935 (Lewis), UV radiation 

"' This paper is for submission to Environmental Toxicology and Chemistry. Co-authors are J.S. 
Herbrick, B .M. Greenberg, D.G. Dixon and N.C. Bols. 



exposures have only recently been considered in the environmentai risk analysis of PAHs, The 

pioneering work of Bowling and Giesy (1983) on the acute toxicity of UV-irradiated, anthracene- 

exposed sunfish was foIlowed by the screening of PAHs in invertebrates (Ankley et al., 1997, 

Ankley et al., 1995; Newsted and Giesy, 1987) and plants (Huang et al., 1993; Huang et aI., 1995; 

Ren et al., 1994). However, due to the costs involved, studies on the photoinduced toxicity of 

PAHs to fish are limited to ody  a few PAtfs (Kagan et al., 1985; Oris and Giesy, 1986; 1987) and 

none on complex PAH mixtures. 

Recentiy, a methodology was developed that allowed the testing and ranking of 16 priority 

PAHs rapidly and inexpensively for their direct and photoinduced toxicity to a ce11 line from the 

rainbow trout, RTgiH-Wl (Chapter 1 to 3)- This ce11 line was derived from a target tissue of 

photoinduced toxicity, the fish gill epiihelium (Ons and Giesy, 1985; McCloskey, 1993; Weinstein 

et al.. 1997) and thus can serve as a mode1 system for the photoinduced toxic effects in fish. In his 

culture systern, the rapid killing of cells by PAHs in the absence of UV radiation was designated 

direct cytotoxicity (Chapter 2). and was in contras to the damaging or killing of cells due to 

photochernical reactions that followed the absorption of UV radiation by the PAH, which was 

terrned photocytotoxicity (Chapters 1 and 3). The establishment of toxic potencies showed 

naphthalene to be most environmentally relevant for its direct cytotoxicity (Chapter 2), whereas 

fluoranthene and pyrene appeared to have the most potential to impact fish through 

photocytotoxicity (Chapter 3). These potencies shodd aiso be useful in predicting and/or 

explaining the cytotoxicity and photocytotoxicity of PAHs in mixture. 

Although most previous studies on the W-mediated toxic effects of PAHs have dealt with 

intact cornpounds, Greenberg and his group have s h o w  that the W-irradiation of PAH solutions 

prior to exposure to plants and bacteria also l a d s  to a significant increase in toxicity (Huang et ai., 

1993, Huang et al., 1995; Mailakin et al., 1997; McConkey et al., 1997; Ren et al., 1994; Ren et 

al., 1996). This toxicity is apparently caused by PAH photomodification products which most 

commonly arise in large numbers from the direct chernical reaction of UV-irradiated PAHs with 

oxygen. Potentiaily, these photooxidation products can be toxic by themselves (McConkey et al., 

1997) or by a concurrent LJV radiation exposure (Huang et al,, 1993; Mallakin et al., 1997). The 

toxicity of photooxidized PAH products has not yet been shown in fish or cultured fish cells but 

our previously devetoped RTgill-W 1 bioassay has features that should make it suitable for not oniy 

detecting the cytotoxicity caused by these compounds but also for elucidating their potential 

different modes of toxic action. This is based on the use of the fluorescent indicator dyes, alamar 

B lue and 5-car boxyfluorescein diacetate acetoxymeth y 1 ester (CFDA-AM), which measure, 

respectively, the metabolic activity and the membrane integrity of a cell. Thus, cornpounds that 

prefertntially act on the electron transport chah will be detected specifically with alamar Blue, 

whereas the more general darnage to membrane integrity will be measured with CFDA-AM. 



The goal in this chapter is to apply the RTgill-W1 ceU bioassay to a complex chexnical 

mixture, creosote. Creosote was chosen because it is a widely used wood preservative and it can 

contain up to 85 95 PAHs (Mueller et ai., 1989). The study compriseci three major steps. One was 

the solubilization of creosote in a modified ce11 culture medium without the use of a carrier solvent 

and the chernical anaiysis of the 16 priority PAHs and some additionai hydrocarbons in the final 

creosote stock solution. This analysis dlowed predictions of the cytotoxicity and 

photocytotoxicity of creosote, using previously established toxic equivdent factors. which 

summarized the relationships between the physical-chernical propenies of PAHs and their toxicity 

(Chapters 2 and 3) .  The second step of tfiis study was the application of the creosote solution to 

RTgill-WI cells in the absence or presence of W radiation and the measurement of the direct 

cytotoxicity and the photocytotoxicity of creosote using the fluorescent indicator dyes, damas Blue 

and CFDA-AM. This procedure allowed the biologicai response of celIs to creosote to be 

evaiuated and compared to the predictions derived from the chemicai anaiysis. Finaily, the direct 

cytotoxicity and the photocytotoxicity of creosote that had k e n  modified by a 2 hr UV irradiation 

in the absence of c e k  was studied. 



43. MATERIALS AND METHODS 

A, Cell litte anà culture media 

The rainbow trout gilI ce11 line, RTgiIl-W1, was developed in this laboratory (Bols et al., 

1994). Cells were cultured in 75 cm2 culture flasks at 22°C in Leibovitz's L-15 medium 

supplemented with 10 9% fetal bovine semm (FBS). The source of the tissue cuhre  supplies and a 

description of the subcultivation procedure have previously been presented in detail (Bols and Lee, 

1994; Schirrner et ai., 1994). 

A modification of the basai medium, L-15, was used for exposure of cells to creosote and UV 

radiation. This was necessary because îreatment of conventional growth media with UV radiation 

generates toxicants that appear to arise from UV modification of medium components such as 

vitamins and aromatic amino acids (Lorenzen et al., 1993; Stoien and Wang, 1974). A description 

of the constituents of the modified L-15 medium, which was designated L-Wex. and preparation 

procedures have been outlined in Chapter 1 and Appendix IV. 

B. W radiation exposure 

Cells were irradiated at room temperature in an atmosphere of air and in the presence of tissue 

culture plate lids as described in Chapter 1. UV irradiation was done with two W - B  photoreactor 

larnps (Southern N.E. Ultraviolet Co., Branford, Ci', USA) at a photon fluence rate of 1.4 pmol m- 

' S.' UV-B. As well as W - B  (290-320 m), the W - B  lamps emitted some visible (400-700 m) 

and some UV-A (320-400 nrn) radiation. However, with a visible : UV-A : UV-B ratio of 5 : 1.5 : 

1. the spectrum was well weighted toward its W - B  component. irradiation was measured with an 

1 n s t a ~ ~ e c ~ I I  photodiode array spectroradiometer calibrated with a 1 kW quartz halogen lamp 

(Oriel corporation, Stratford, CT, USA). The values represent the photon fluence rates at the 

surface of the medium in the wells. A 500 Wwell diquot of L-1Wex had previousiy been s h o w  to 

have little discernible effect on these fluence rates (Chapter 1). The duration of irradiation was 2 

hr for al1 experiments. 

C. Preparation of creosore in L-l5/' 

Liquid phase creosote was provided by Carbochem Ltd (Mississauga, ON, Canada) and was 

found to have a density of approximately 1 .O g/mi. For appIication to cultured fish cells, creosote 

was dissolved in L-1S/ex by a technique recommended by Tadokoro et al. (1991) for dissolving 

creosote in water. This technique facilitated the soiubilization of creosote in a manner that closely 



reflected the solubilization process in the environmcnr An aiiquot of 70 pI (70 mg) liquid 

creosote was added to 1 liter of sterile L-Wex in a sterilized amber glas storage boule with a 

Teflon lined cap (VWR Canlab, Mississauga, ON, Canada) and a sterilized, Teflon-coated 

magnetic stirrer (VWR Canlab, Mississauga, ON, Canada). This nominal creosote concentration 

was chosen because at some creosote treatrnent and storage sites the maximum aqueous 

concentration of PAHs was in this range (Environment Canada, 1993). To Wly protect the 

solution from light, the bottle was wrapped in aiuninum. The solution was stirred at room 

temperature and the solubiIization process monitored after stimng for 1 hr, i day, 3 days and 7 

days. At the end of each stirring period, the solution was ailowed to settle for 1 hr to allow 

undissolved particles to settle to the bottom of the botde before an aliquot of 150 mi was carefully 

removed for application to ce11 cultures, and for extraction and chemical anaiysis. 

D. Extraction and chemical analysis of creosote 

Aiiquots of 120 ml of creosote in L-Wex were extracted as described by Bestari et al. (1997) 

with rninor modifications. Briefly, the samples were extracted three times with rnethylene chloride 

(Fisher Scientific, Nepean, ON, Canada) and passed into an Erlenmeyer flask through a glas  wooI 

plugged funnel with a layer of sodium sulfate to facilitate the removai of water. The Erlenmeyer 

beaker was then swirled several times in the presence of sodium sulfate before the samples were 

passed tfirough another glas wool plugged funnel into round-bottom flasks that contained a few 

glass beads. The methyIene chloride was evaporated with a rotary evaporator at 28°C to 

concentrate the samples to approximately 5 ml, followed by a Stream of nitrogen to achieve 

dryness. The sampies were then re-extracted 5 times with 1 ml of methylene chlonde and stored in 

5 ml amber glass viais at - 20°C until chemicai analysis. Naphthaiene and fluoranthene could be 

recovered fiom spiked samples to, respectively, 82 % and 90 %, which is similar to the recovery 

rates reported by Bestari et al. (1997). The deviations between two extractions of the same stock 

solution were less than 12 % for al1 compounds. 

For chemical anaiysis, sample aliquots of 3 pl were injected into a Hewlett Packard 5890 Gas 

Chromatograph (GC) equipped with an HP7673A autosarnpler and Fiame Ionization Detector 

(FID). The temperature was held at 35°C for 2 min, followed by a lS°C/min increase to 165°C. 

followed by a 30°C/min increase to 300°C and a constant temperature of 300°C for 10 min. The 

carrier gas was helium with a flow rate of 30 mYmin. The injector temperature of the GC was 

200°C, and the FID temperature was 30°C. The deviations between repeated measurements of 

the same creosote sample were l e s  than 10 % for ai1 chemicais. 

Chernical andysis focused on PAHs because they can account for 85 % of the compounds in 

creosote (Environment Canada, 1993; Mueller et ai., 1989). However, a few other compounds 



were analyzed as well. These included the heterocyclics dibernofuran and carbazole, and the 

aromatic hydrocarbons benzene, toluene and xylene. The detection limits (d.1.) of the GC method 

for each of the compounds are given in Table 4.1. 

E. Cytotoxicity and photocytotoxicity of creosote 

Confluent monolayers of RTgill-W1 cells in 48 well tissue culture plates were used to smdy 

the cytotoxicity and photocytotoxicity of creosote. Confluent cultures were achieved by plating 

50,000 cells per well and aliowing them to grow for 3 days. At confiuency, the culture medium 

was rernoved and each weH rinsed once with 500 pi of L-lS/ex. After the rime, ail wells received 

increasing volumes of creosote in L-Wex together with fiesh L-lS/ex to yield a total volume per 

weIl of 500 pl. To determine cytotoxicity, cells were exposed to creosote for 6 hr in the dark 

before the aiamar Blue and CFDA-AM cytotoxicity assays were c a ~ e d  out as described below. 

For photocytotoxicity, cells were exposed to creosote for 6 hr in the dark prior to being UV 

irradiated for 2 hr and measured with the alamar Blue and W A - A M  cytotoxicity assays (Figure 

4.1 .). 

F- Cytoroxici~ and photocy~otoxicity ofphotomodified creosote 

In order to obtain photomodified creosote, aliquots of creosote in L-15fex were placed in gIass 

jars and UV irradiated for 2 hr. Glass jars were used to reduce losses due to adsorption. The jars 

were covered with 48 well plate lids to achieve photon fluence rates that were simila. to those 

obtained in UV irradiated 48 weIl tissue culture plates. The protocol that foIIowed the preparation 

of photomodified creosote was identical to that described above for the cytotoxicity and 

photocytotoxicity of creosote but used photomodified creosote solution instead of intact creosote 

(Figure 4.1 .). 

G. Alamar Blue and CFDA-AM cytoroxiciîy assays 

The aiamar BIue (Lmmunocorp. Science Inc., Montreai, PQ, Canada) and CFDA-AM (5- 

carboxyfluorescein diacetate acetoxymethyl ester, Molecular Probes, Eugene, OR, USA) indicator 

dyes were used in combination as descnbed in Chapter 1. Briefly, alamar BIue and CFDA-AM 

were prepared together in L-15Iex to give final concentrations of respectively 5% v/v and 4 W. 
After removal of the creosote solutions, aliquots of 150 pi of the dyes were added to each well and, 

2 hr later, fluorescence was quantified with the CytoFluor 2350 (PerSeptive Biosystems, 



Burlington, ON, Canada) at respective excitation and emission wavelengths of 530 (+ 30) and 595 

(f 35) nm for alamar Blue, and 485 (2 22) and 530 (t 30) nm for CFDA-AM. 

H. Data analysis 

Anabsis of raw data: The fluorescence readings in wells that contained creosote in L-IS/ex 

were expressed as a percentage of the readings in conno1 wells that received L-151ex only. Prior 

to these calculations, fluorescence readings for we1Is without cells were subtracted From the 

experimental and control vaiues with cells. Dose-response data followed a sigmoid relationship 

and were analyzed by nonlinear regression using the curve-fitting routine of Sigrnaflot (Jandel 

Scientific). Data were fitted to the logistic function as described in Chapter 2 with 

( 1 ) y(d) = 100 (46) ( 1 + exp[-g(W) - W c d ) ]  1-'. 
where y(d) is the % ce11 viability at the nominai creosote dose d, g is a dope parameter. and ECSo 

is the nominai creosote concentration that produces 50 8 ce11 viability. 

Predicting the cytotoxici~ and p hotocytotoxicity of creosote: Predictions on the % ceII 

viability were made for the cytotoxicity and photocytotoxicity of creosote. These predictions were 

based on the chernical creosote analysis in this report and on the PAH toxicity data described in 

Chapters 2 and 3. In accordance with these toxicity data, naphthaiene and fluoranthene were used 

as mode1 compounds for, respectively, the cytotoxicity and photocytotoxicity of the hydrocarbons 

in creosote. 

Cvtotoxicitv: Three assumptions were made to predict the potentiai of creosote solutions to be 

directly cytotoxic. Firstiy, it was assumed that al1 aromatic hydrocarbons and heterocyclics 

contribute to the direct cytotoxicity of creosote through their accumulation in ce11 membranes and 

independent of their structure (Chapter 2). Secondly, water solubiIity and lipophilicity were 

regarded as the fundamental properties of a PAH contributing to the accumuIation of a PAH in ceIl 

membranes. As these two properties are interrelated and work in opposite directions, the potential 

ability of a PAH to accumulate in ce11 membranes was expressed as the product of its water 

solubility limit times its octanoVwater partition coefficient. This is referred to as the membrane 

accumulation factor (MAF). Inasmuch as naphthaiene was the most potent PAH to act through 

direct cytotoxicity and the one most Iikely to act in this way in the environment, the membrane 

accumulation factor (MAF) of each PAH was expressed relative to the MAF for naphthalene to 

give a naphthalene equivalent membrane accurnuiation factor (NEMAF) (Table 4.2.). The 

concentration of each PAH couId be converted into a naphthalene equivdent concentration (NEC) 

by multiplying its concentration by its NEMAF. Thirdly, ai1 compounds were assumed to act in 

membranes additively and in a manner as previously show for naphthalene (Chapter 2). Thus the 



total NEC of a creosote solution was simply the sum of the NECs for each component identified 

and quantifie. in creosote (see Table 4.3). Finally, to predict the 5% ce11 viability due to cytotoxic 

compounds in a creosote solution, NECs were applied to the logistic functions obtained previously 

for the direct cytotoxicity of naphthaiene (Chapter 2). These functions were 

(2) y(d) = 100 (%)( 1 + exp[-2.035(ln(d) - ln(53.404))I)-' for alarnar Blue, and 

(3) y(d) = 100 (%){ 1 + exp[-2.846(ln(d) - ln(57.777))l)-' for CFDA-AM. 

With these functions and with NECs that would be expected at each of the applied nominal 

creosote concentrations, entire dose-response curves were predicted. 

Photocvtotoxici~: To predict the photocytotoxicity of creosote, previousiy obtained 

fluoranthene equivaient factors (FER, Chapter 3) were used to convert the concentrations of 

strictly photocytotoxic PAHs into fluoranthene equivalent concentrations (FECs). As for the 

cytotoxic compounds, additiviry was assumed. Thus, to predict the % ce11 viability due to 

photocytotoxic compounds in creosote, the sum of FECs in each creosote sarnple was applied to 

the Iogistic functions obtained previously for the Unmediate photocytotoxicity of fluoranthene 

(Chapter 3). These functions were 

(4) y(d) = 100 (96) ( 1 + exp[- 1.568(ln(mC) - ln(0.289))] }'I for alamar Blue. and 

(5) y(d) = 100 (46) ( 1 + expl- l.S94(ln(mC) - ln(0.240))j 1'' for CFDA-AM. 

With these functions and with FECs that would be expected at each of the applied nominal 

creosote concentrations, entire dose-response curves were predicted. 
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Figure 4.1. Schematic representation of the four conditions under which cells were exposed to 
creosote (cytotoxicity and photocytotoxicity of creosote) or photomodified creosote (cytotoxicity 
and photocytoto~icity of photomodified creosote). 



A. Prepararion and chernistry of creosore solutions 

The arnount of creosote that could be dissolved in L-IYex was dependent on the time of 

stimng. After 1 day of stirring, al1 priority P m  were found at higher concentrations in L- IS/ex 

than after 1 hr of stirring, with the exception of naphthalene (Table 4.1.. Figure 4.2.). After 3 days. 

some PAHs had m e r  increased in concentration whereas others slightiy decreased. In contrast, 

aII PAH concentrations decreased between days 3 and 7 of stirring. This was also reflected in the 

total arnount of pnority PAHs detected, which was iowest after 7 days and highest afier 1 and 3 

days (Figure 4.2.). However, with the exception of naphthalene, the relative contribution of each 

PAH to the total mass detected remained relatively constant for each time point with acenaphthene, 

fluorene and phenanthrene king the main con~butors (Figure 4.2.). 

Peak concentrations were observed after 3 days of stirring for the other arornatic hydrocarbons 

(Table 4.1., Figure 4.3.) and for the heterocyclics (Table 4.1.). Arnong the heterocyclics. 

dibenzofuran was more abundant than carbazole while, among the aromatic hydrocarbons, 2- 

rnethyl-naphthalene + indole were the main contributors (Figure 4.3.). 

If al1 detected compounds were added together, the highest total mass was found to be 8077 

pg/i after 3 days of stimng, followed by 6904 pg/l, 5830 pg/l, and 5571 pg/I after, respectively, 1 

day, 1 hr, and 7 days of stining. Thus, with the method used to solubilize creosote and with taking 

3 1 compounds into account 7.9 to 1 1.5 % of the 70 mg/i creosote originally added to L-1S/ex 

could be accounted for. 



Table 4.1. Chemicai analysis of creosote solutions 

1 h3" 1 day"' 3 daYs"' 7 dayst ' ' 
Compound Detection limit Concentration in creosote/L- Wex stock 

(d.1.; PM) solution (pgtl) 
Prioritv PAHs 
naphthalene 

acenaphthylene 

acenaphthene 

fluorene 

p henanthrene 

an thracene 

fluoranthene 

pyrene 
benzo[a]anthracene 

chrysene 

benz~[b+k]fluoranthene'~' 

benzo[a] p yrene 

indeno[ 1,2,3-cdlpyrene 

dibenzo[a,h]anthracene 

benzo[g.h,i]perylene 

Other arornatic hvdrocarbons 
benzene 

2-methyl-naphthalene + 
indole '3' 

1 -methyl-naphthalene 

biphenyl 

Heterocycfics 

dibenzofuran 

carbazole 

Other corn~ounds analvzed for but not detected 

toluene 13.5 

ethy lbenzene 8.3 

pm-xylenes; O-xylene 8.3 

mmethylbenzenes: 1.35; 9.4 
1.2,4; 1.2.3 
(1) Time refers to the solubilization time of creosote. 
(2) Value is beiow the detection limit of the GC method. 
(3) Compounds CO-eiuted in the applied GC method. 
(4) n.d. = not detected 



1 hour 1 day 
(Sum of prforfty PAHs: 3920 ug/l) (Sum of priorfty PAHs: 4823 ugA) 

3 days 
(Sum of priority PAHs: 4785 ug/l) 

7 days 
(Sum of ptiodty PAHs: 33M) ug/l) 

Figure 4.2. Contribution of each of the priority PAHs to the total PAH content measured by GC in 
the four creosote samples. Creosote was stirred in L-Wex for 1 hour, 1 day, 3 days and 7 days 
before the solution was allowed to settle for 1 hour and sarnples were removed for extraction and 
chexnical andysis. The total PAH content, which is given ih brackets, was taken as 100 % and the 
% contribution of each of the PAHs was then calculated accordingly. 



1 hour 1 day 
(Sum of aromaüc hydrocarbons: 833 ugn) (Sum of aromatic hydrocarbons: 730 ugB) 

3 days 7 days 
(Sum of aromatic hydrocarbons: 1768 ugn) (Sum of aromatic hydrocarbons: 1099 ugn) 

Figure 4.3. Contribution of each of the non-priority aromatic hydrocarbons to the total content of 
these cornpounds measured by GC in the four creosote samples. Creosote was stirred in L-15Iex 
as described in Figure 4.2. The total content of non-priority aromatic hydrocarbons, which is 
given in brackets, was taken as 100 % and the % contribution of each of the compounds was then 
calculated accordingly. 



B. Cytotoxicity of creosote solutions 

After RTgill-W1 cultures had been exposed to creosote solutions for 6 hr in the dark (Figure 

4.1 .), the two fluorescent dyes, alamar Blue and CFDA-AM, indicated cytotoxic responses. With 

both indicator dyes, fluorornebric readings were greatiy reduced at the highest nominal creosote 

concentration, which was 70 mg/l (Figure 4.4.). For the creosote sample that was obtained afier 

one day of stimng, cytotoxicity was observed also at the second highest creosote concentration, 50 

mg/l. For this creosote sample, EXso values were 53 rngA for aiamar Blue and 52 mgA for CFDA- 

AM and were the lowest observed for the creosote solutions (Figure 4.4.). In contrast, ECSo values 

were highest for the creosote sample that had k e n  sUrred for 1 hr before dosing. ECw, values were 

71 mg/l and 77 m@ for, respectively, the alamar Blue and the CFDA-AM cytotoxicity assay 

(Figure 4.4.). Differences that were observed between the alarnar BIue and CFDA-AM 

cytotoxicity assays were minor in the creosote samples that had been s h e d  between 1 hr and 3 

days. For the 7 day creosote sample, however, the damar Blue assay revealed a higher IeveI of 

cytotoxicity for 70 mgii than did the CFDA-AM assay (Figure 4.4.). 

The observed and predicted ability of creosote soIutions to be directiy cytotoxic were 

compared (Figure 4.5 and Table 4.4). For predicted ability, the concentrations of ail identified 

compounds in the creosote solutions were converted to naphthalene quivalent concentrations 

(NECs) and surnmed to express each nominal creosote dose for each creosote solution as a NEC 

(Tables 4.2 and 4.3). The NEC of each nominal creosote dose for each creosote sample was 

subsequentiy appIied to the appropriate logistic functions to yield dose-response curves of 

predicted direct cytotoxicity (Figure 4.5.). For the creosote solution that had been s h e d  for 1 hr. 

these predicted dose-response curves were similar to observed dose-response curves. At high 

concentrations of the other creosote solutions, the predicted curves were flatter and it becarne 

apparent that not al1 cytotoxicity could be accounted for by NECs (Figure 4.5.- 3 days). If the 

observed direct cytotoxicity was compared to the predicted cytotoxicity at the highest nominal 

creosote concentration, it could be concluded that between 25 and 94 % of the observed direct 

cytotoxicity could be accounted for by the compounds analyzed for in the creosote samples (TabIe 

4.4.). 
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Figure 4.4. Viability of RTgiil-W1 cells upon exposure to increasing concentrations of creosote in 
L- 15/ex. Confluent cultures were exposed in the dark for 6 hr to creosote that had been stirred in 
L-15/ex for 1 hr, 1 day, 3 days and 7 days. Immediately after the exposure, viability was assayed 
with a mixture of alamar Blue (O) and CFDA-AM (O) and expressed as a percentage of the 
readings in controi cultures that received no creosote. Each data point represents the mean of four 
culture welis. The vertid lines indicate the standard deviation. 



Table 4.2. Derivation of naphthalene equivaient membrane accumulation factors (NEMAFs) for 
directly cytotoxic compounds 

Compound W.S. (uM)'~' W.S. x Pahw NEMAI?" 

Prioritv PAHs 
naphthdene 

acenaphthylene 

acenap hthene 

fi uorene 

phenanthene 

anthracene 

fluoranthene 

PYrene 
benzo[a]an thracene 

chrysene 

Other aromatic hvdrocarbons 
benzene 22 000 

2-methyl-naphthaiene 173 
+ indole "' 
1 methyl-naphthalene 200 

biphenyl 48.6 

(1)  W.S. = Water solubiliry; Source: Mackay et al., 1992. 
(2) POhY = OctanoUwater partition coefficient; Source: Mackay et al., 1992. 
(3) MAF = Membrane accumulauon factor. 
(4) NEMAF = Naphthaiene equivalent membrane accumulation factor 

( M A F [ ~ o m ~ o u n d ~ ( ~ @ i h . ~ c a c ) ) .  

(5) Cornpounds co-eluted in the applied GC rnethod. The values in this and the foIlowing 
tables refer to 2-methyl-naphthaiene only. 



Table 43. Directiy cytotoxic compounds in creosote and 
development of naphthalene equivalent concentrations (NECs) 

1 hr"' 1 day"' 3 daYs'" 7 daYs" ' 
Compound NEMAF en NEC'" Pr NEC") C?) 

n, 
NEP C3) NECJ' 

(ml (W) (PM) (Wl (W) IW) @Ml (W) 
Prioritv PAHS 

nap hthalene 1.000 0.127 0.127 0.019 0.019 4.03 4.03 1.62 1.62 

acenaphthylene 0.684 0.418 0.286 0.497 0.34û 0.664 0.454 0.492 0336 

acenaphthene 0.958 4.71 451 5.85 5.60 7.95 7.62 5.67 5.43 

fluorene 0.379 3-65 138 4.70 1.78 4.62 1.75 3.47 131 

phenanthrene 0.422 6.95 293 8.81 3.72 6.87 2.90 5.08 2.14 

anthracene 0.024 0.738 0.018 0.912 0.022 0.764 0.018 0.615 0.015 

fluoranthene 0.444 2.53 1.12 2.98 132 2.03 OM1 1.40 0.625 

benzo[a] anthracene 0.041 0.525 0.021 0.632 0.026 0.397 0.016 0.261 0.011 

c hrysene 0.022 0.462 0,010 0.497 0.011 n.d. na. n.d. na. 

Other aromatic hvdrocarbons 

benzene 6.203 3.00 18.6 1.89 11.7 3.00 18.6 1.69 105 

2-methyi naphthalene 2.61 7 2.56 6.70 2.41 631 6.55 17.1 4.14 10.8 
+ indole 
I-methyl-naphthalene 3.096 0.471 1.46 0.381 1.18 1.99 6.16 1.13 350 

biphenyl 1.278 1.09 139 1.21 155 2.07 2.64 1.41 1.80 

Heterocyclics 

di benzofuran 0.776 4.19 3.25 5.30 4.11 6.20 4.81 4.60 357 

carbazole 0.067 2.23 0.149 2.75 0.184 2.88 0.193 2.38 0.159 

TOTALNEC: - 423 38.1 673 41.9 

Time refers to the solubilization time of creosote. 
NEMAF = Naphthaiene equivalent membrane accumulation factors were obtained from 
Table 4.2. 
Concentrations (C) in pg/l were obtained from Table 4.1. and converted into moM according 
to the molecular weight of each compound. 
NEC = Naphthaiene equivalent concentrations were calculated by multiplying C by the 
corresponding NEMAF. 
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Figure 4.5. Viability of RTgilI-W1 cells upon creosote exposures as described in Figure 4.4. and 
as predicted fiom previously obtained dose-response curves of naphthalene cytotoxicity using 
naphthaiene equivalent concentrations (NECs). The obtained dose-response curves are the same 
as those shown for the aiarnar Blue (a) and CFDA-AM (0) cytotoxicity assays in the 1 tir and 3 
days stirred creosote sarnples in Figure 4.4.. The predicted dose-response curves were obtained by 
convening the concentrations of hydrocarbons in the creosote sarnples to NECs using toxic 
potencies relative to naphthalene (Tables 4.2. and 4.3.). NECs were then applied to calculate the 
% ce11 viability at each concentration with the equations that were previously found to adequately 
describe the dose-response of naphthalene cytotoxicity. These equations are given in the Materids 
and Methods (equations (2) and (3)). 



Table 4.4. Corriparison o f  ohtaincd and prcdictcd direct cytotoxicity of creosote 

Chriracterisiics of creosote solution Obscrveti cytotoxicity of Predictcd cyiotoxicity due to low % Cytotoxiciiy unaccounted 
creosotc soluhn niolccular wcight arornatic for 

(% Cell ~ ioh i l i t~ ) " '  hydrocarhons (Predicied - observed) 
(96 Cell ~ i a b i l i t ~ ) ' ~ '  

Solubilization Nominal NEC"' 
time concentration alamar Blue CFDA-AM alamar Blue CFDA-AM alamar Blue CFDA-AM 

1 hour 70 mgA 42.2 pM 56 60 62 7 1 6 1 1  
1 day 70 m g  38.1 pM O 1 66 76 66 75 

3 days 70 mgA 67.3 PM 8 1 O 3 8 39 30 29 
7 days 70 mgA 41.9 pM 10 45 62 7 1 52 26  

(1) Values correspond to the % ceIl viability ai 70 mgll creosote shown in Figure 4.4. 
(2) % ce11 viability was calculated using the estimated dose-response curvcs of immediaie naphthalene cytotoxicity to RTgill-W 1 cells as presented in Chapter 2 

and as shown in Figure 4.5. The equations for adequately describing these dose-response curves are the same as equations (2) and (3) in Maieriols and 
Methods, and were y(d) = 100% ( I + exp[-2.035 (In (d) - In (53.404))] 1'' for alainar Blue and y(d) = lm% { I + expl-2.846 (In (d) -In (57.777))] 1'' for 
CFDA-AM. 

(3) NEC = Naphthalene equivalent concen (rations were obtriined from Table 4.3. 



C. Photocyrotoxicity of creosote solutions 

When RTgill-W1 cells were UV irradia& immediately after king exposed to creosote for 6 

hr in the dark (Figure 4.1 .), the two fluorescent dyes, alamar BIue and CFDA-AM, indicated more 

pronounced cytotoxic responses than dark controls. This photocytotoxicity was observed at 

concentrations above 1 mg/l. Except for rninor differences, the two fluorescent dyes yielded 

similar dose-response curves for the creosote solutions that were obtained after 1 tu to 3 days of 

stimng (Figure 4.6.). ECw, values were Iowest with the 1 and 3 day creosote samples but were 

sIightIy higher in the creosote solution that was obtained after 1 hr of stirring (Figure 4.6.). For the 

7 day creosote sample, the alamar Blue cytotoxicity assay yielded a dose-response curve and an 

ECSo value that were comparable to any other sample. However, the CFDA-AM assay was less 

sensitive, and resulted in an ECSo value that was three times above the ECx, value for alamar BIue 

(Figure 4.6.). 

Previousiy, several PAHs were found to be stnctly photocytotoxic. and fluoranthene was 

established as a reference compound for this mode of toxic action (Chapter 3). Among the 

photocytotoxic PAHs, four were found in al1 creosote samples. These PAHs were anthracene, 

fluoranthene, pyrene, and benzo[a]anttiracene (Tables 4.1. and 4.5.). When the concenirations of 

these compounds in the stock solution of 70 mg/l creosote in L-Wex were corrected by their 

appropriate fluoranthene equivdent factor (FEF) (Chapter 3), fluoranthene equivalent 

concentrations (FECs) were obtained (Table 45.). The sum of FECs in each creosote sample and 

each nominal creosote dose was subsequentiy applied to the appropnate logistic fumions to yield 

dose-response curves of predicted photocytotoxicity (Figure 4.7.). If these predicted dose- 

response curves were cornpared to the actual creosote dose-response curves, a good agreement 

between the two was seen. This was [rue whether the sample contained the highest FECs (Figure 

4.7.. 1 day) or whether the sample with the lowest FECs was applied (Figure 4.7.. 7 days). It was 

therefore concluded that the four photocytotoxic PA&, anthracene, fluoranthene, pyrene and 

benzo[a]anthracene, hl ly  accounted for the observed photocytotoxicity of creosote to RTgill-W 1 

celis. 
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Figure 4.6. Viability of RTgill-W 1 cells upon expostm to increasing concentrations of creosote in 
L- 1Yex in the presence of W radiation. Confluent cultures were exposed to creosote in the dark 
for 6 hr as descnbed in Figure 4.4. followed by a LJV radiation exposure for 2 hr. Immediately 
afier W irradiation viability was assayed with a mixture of alamar Blue ( O )  and CFDA-AM (O) 
and expressed as a percentage of the readings in conwl cultures that received W radiation but no 
creosote. Each data point represenu the mean of fou. c u l m  wells. The vertical lines indicate the 
standard deviation. 
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Figure 4.7. Viability of RTgill-W 1 cells upon creosote exposures as descnbed in Figure 4.6. and 
as predicted from previously obtained dose-response curves of fiuoranthene photocytotoxicity 
using fiuoranthene equivalent concentrations (FECs). The obtained dose-response curves are the 
same as those shown for the aiamar Blue (@) and CFDA-AM (0) cytotoxicity assays in the 1 and 
7 days stirred creosote samples in Figure 4.6.. The predicted dose-response curves were obtained 
by converting the concentrations of the photocytotoxic PAHs in the creosote samples to 
fluoranthene equivalent concentrations using previously deiennined fluoranthene equivalent 
factors. These concentrations were then applied to calculate the % ce11 viability at each 
concentration with the equations that were previously found to adequately describe the dose- 
response of fluoranthene photocytotoxicity. These equations are given in the Materials and 
Methods (equations (4) and (5)) .  



Table 4.5. Photocytotoxic compounds in creosote and deveIopment of fluoranthene equivdent 
concentrations (FECs) 

1 h#" 1 day") 3 daYs"' 7 daysz1' 
Photo- FEF '2) FEC'~) 3) FEC'~' 3)  FE^" ' FEC'" 

cytotoxic (CLM) (W) (PM) (W) (W (PM) (M (W) 
compound 

anthracene 1.898 0.738 1.40 0.912 1.73 0.764 1.45 0.615 1.17 

fluoranthene 1.000 253 2.53 2.98 298 2.03 2.03 1.40 1.40 

benzo[aj- 3.321 OSï5 1.74 0.632 2.10 0.397 132 0.261 0.867 
anthracene 

TOTAL FEC:- 9.02 - 10.73 7.42 5.18 

Time refers to t5e solubiIization time of creosote. 
Fluoranthene Equivdent Factors (FEFs) were obtained fiom Chapter 3 (Table 3.3). Although 
these FEFs were obtained from cytotoxicity assays 24 hr after üV-irradiation, they varied h i e  
from the 2 hr FER. 
Concentrations (C) in pg/l were obtained fiom Table 1 and converted into moVl according to 
the molecular weight of each compound. 
Fiuoranthene Equivalent Concentrations (FECs) were caiculated by muitipIying C by the 
corresponding FEF. 

D. Cytotoxiciry of photomodified creosote solutions 

When RTgilI-W1 cells were exposed for 6 hr in the dark to creosote solutions that previously 

been W irradiated for 2 hr (Figure 4.1.), cytotoxicity continued to be detected for al1 four 

creosote solutions and with both assays of cellular activity (Figure 4.8.). However, in contras to 

the cytotoxicity of unirradiated (intact) creosote, the two assays gave quantitatively different 

results. For the alamar Blue assay, cytotoxicity was seen at nominal creosote concentrations above 

1 mgil. However, for the CFDA-AM assay, nominal creosote concentrations of 5 mgfl and above 

were necessary to elicit an appreciable response (Figure 4.8.). Consequently, the ECm values for 

the CFDA-AM assay were between 3.2 and 4.5 times higher than those for the alamar Blue assay. 

E. Photocytotoxicity of photornodified creosote solutions 

When RTgiII-Wl celts were W irradiated for 2 hr imrnediately after being exposed to 

photomodified creosote for 6 hr in the dark (Figure 4.1.), photocytotoxicity continued to be 

detected for ail four creosote solutions and with both assays of cellular activity (Figure 4.9). In 

general, the alarnar Blue and the CFDA-AM assays showed responses that were similar to those 

obtained for the cytotoxicity of photomodified creosote, although toxicity was much more 



pronounced for the two endpoints (Figure 4.9.). For the alamar Blue assay, ECm values were 

comparable to the ECS0 values that were obtained for the photocytotoxicity of creosote and ranged 

fiom 2.1 mgA for the creosote sampie obtained after i day of stimng to 4.3 mg/I for the creosote 

sample obtained afier 1 hr of stirring (Figure 4.9.). For the CFDA-AM assay, ECm values were 2.2 

to 3.3 times above those obtained for the alamar Blue assay and rangeci from 4.6 mgIl for I day of 

stimng to I l  mg/l for 7 days of stirring F~gure 4.9.). 
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Figure 4.8. Viability of RTgilI-W1 cells upon exposure to increasing concentrations of 
photomodified creosote in L-lS/ex. Confluent cultures were exposed in the dark for 6 hr to 
creosote that had been stirred in L-1Yex for 1 hr, 1 day, 3 days and 7 days and subsequently 
modified by W radiation exposure for 2 hr. Unmediately after the exposure of this photomodified 
creosote CO ceIls viability was assayed with a mixture of alama. Blue (e) and CFDA-AM (0) and 
expressed as a percentage of the readings in control cultures that received no creosote. Each data 
point represents the mean of four culture wells. The vertical lines indicate the standard deviation. 
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Figure 4.9. Viability of RTgill-W1 ceils upon exposure to increasing concentrations of 
photomodified creosote in L-151ex in the presence of W radiation. Confluent cultures were 
exposed to photomodified creosote as described in Figure 4.8. followed by a W radiation 
exposure for 2 hr. Immediately after UV irradiation viability was assayed with a mixture of alamar 
Blue (a) and CFDA-AM (0) and expressed as a percentage of the readings in control cultures that 
received no creosote. Each data point represents the mean of four culture wells. The vertical Iines 
indicate the standard deviation. 



F. Cornparison of cyto- and photocyto-toxicity of inract and photomodified creosote 

solutions 

The toxic potency of creosote to RTgill-W1 cells was strongly infiuenced by W radiation. 

The most potent combination was the simultaneous presence of creosote and UV radiation, the 

photocytotoxicity of creosote, Cornpared to creosote alone, toxicity was increased 35 and 23 times 

in, respectively, the alamar Blue and the CFDA-AM assay in the creosote sample that was 

solubilized for 3 days (Table 4.6.). If the same creosote sample was photomodified prior to 

exposure of the cells in the dark, toxicity was 7.6 (alamar BIue) and 2.0 (CFDA-AM) times that of 

intact creosote, but was lower than the photocytotoxicity of either creosote or photomodified 

creosote (Table 4.6.). SimiIar ratios were obtained for the creosote samples that were obtained 

after 1 hr, 1 day and 7 days of solubilization. The average increase in toxicity compared to intact 

creosote for ail creosote samples was 27 f 5.9 and 19 k 5.7 times for aiamar BIue and CFDA-AM 

in the photocytotoxicity of creosote, 8.4 i 1.1 and 2.3 f 0.4 times for aiamar Blue and CFDA-AM 

in the cytotoxicity of photomodified creosote, and 20 f: 4.0 and 8.5 t 1.9 times for alamar Blue 

and CFDA-AM in the photocytotoxicity of photomodified creosote. 

The cytotoxicity and photocytotoxicity of intact and photomodified creosote caused different 

changes in ce11 morphology as judged by phase contrast rnicroscopy. For the cytotoxicity of intact 

and photornodified creosote, cells ofien were eniarged and theu nuclei more distinct than in conuol 

cultures. However, membrane blebs were not obsewed and ceIls remained attached to the culture 

surface. In contrast, for the photocytotoxicity of intact and photomodified creosote at the highest 

concentrations, many cells rounded up and detached fiorn the growth surface during the 2 hr of W 

irradiation. At lower concentrations many cells remained attached but had blebs. 

Table 4.6. ECm values for the toxicity of creosote and cornparison of toxic potencies"' 

darnar Blue CFDA-AM 
Toxicity k i n g  measured EGO - fold ECso - fold 

(ma) '2' incrase"' (mg/i) '2' increaser3' 
Cytotoxicity of creosote 60.0 1 .O 6 1 .O 1 .O 
Photocytotoxicity of creosote 1.7 35.0 2.7 23.0 
Cytotoxicity of photomodified creosote 7.9 7.6 30.0 2.0 
Photocytotoxicity of photomodified creosote 2.7 22.0 7.4 8.2 
(1) Table contains values obtained in the creosote sample that had k e n  solubilized for 3 days. 
(2) Values correspond to the ECu, values given for the 3 day creosote sample in Figures 4.4,4.6., 

4.8., and 4.9. 
(3) Factor refers to the increase in toxicity compared to the cytotoxicity of creosote (ECSo for the 

cytotoxicity of creosoteECm for each of the other properties). 



4.5. DISCUSSION 

A. Prepnration and chemistry of creosote solutions 

Creosote was solubilized in this study without the aid of a carrier solvent. Although the 

applied nominai creosote concentration was relatively hi&, chexnical anaiysis showed compounds 

to be present in the final creosote solution at concentrations that welI reflected those found in 

ground water at different wood treaunent sites (Goerlitz et ai., 1985; Rosenfeld and Plumb, 1991). 

Compared to available data on the composition of the original creosote used in this study (King et 

al.. I995), creosote in L-1Wex was similar for major components such as phenanthrene, pyrene and 

anthracene. Naphthaiene, however, was found at lower concentrations than expected from the 

original creosote composition. This c o n f m  studies by Tadokoro et ai. (1992) who found that the 

applied solubilization procedure led to creosote solutions that welf reflected the original creosote 

with the exception of low boifing chemicals. Altematively, the relatively low naphthalene 

concentrations found in our study could be due to tosses during the storage of the creosote before 

its application in the experiments described in this report. 

B. Cytoroxicity of creosote solutions 

The cytotoxicity elicited by creosote was similar in many ways to the direct cytotoxicity of 

individuai low rnoIecular weight PAHs (Chapter 2). Similar morphological changes were observed 

in the ce11 cultures exposed in the dark to either creosote or individuai Iow rnolecular weight 

PAHs. Both the alamar Blue and the CFDA-AM assay gave similar levels of impairment which 

indicates that the two assays IikeIy were measuring the same darnage. This darnage would be due 

to the specific inhibition of membrane-integrated enzymes andor the general disturbance of 

membrane properties (Chapter 2; Sikkerna et ai., 1994). In contmst, toxicity due to metabolic 

activation was unlikely to have occurred in the current experiments because of the absence of 

cytochrome P4SO 1A 1, and because cytotoxicity occurred within such a short period of tirne. 

High nominal creosote dcses were necessary to elicit a cytotoxic response in RTgill-W 1 cells. 

Cornparisons to other studies that have used creosote are difficult because of the different ways in 

which creosote has been applied to test organisrns and because the composition of creosote can 

Vary significantly between manufacturers. However, mouse embryo cultures were affected by 

petroleum creosote at concentrations similar to those that were effective on RTgitl-W 1 (Iyer et ai., 

1992). Moreover, the supplementation of culture medium with a rodent hepatic S9 fraction did not 

modiQ the embryotoxicity of petroleum creosote. 

Additivity has been an adequate model in the past for explaining the toxicity of mixtures of 

several creosote components, but in the current study such a model described the cytotoxicity of 



oniy one creosote solution. In the pas& benzene, naphthalene, acenapthene and 1- 

chloronaphthaiene were shown to act additively in inhibiting mitochondrid respiration in vitro 

(Beach and Hannon, 1992; Chapter 2). Naphthaiene, acenaphthene, phenanthene and anthracene 

were slightly less than additive at equitoxic concentrations in eliciting acute toxicity to Daphnia 

magna, but additivity was still thought a sufficient model (Mufioz and Tarazona, 1993). In the 

current study an additive model described the cytotoxicity of just the creosote solution that had 

been stirred for 1 h and not the creosote solutions that had been stirred from 1 to 7 days. 

Presumably longer stirring dissolved additional compounds, which were not analyzed for 

chemicaily . These additionai compounds could cause the additive mode1 to under estimate the 

cytotoxic potential of the creosote solutions in severai ways. 

The simplest cause of under estimation would be if any of the additionai compounds were 

direcdy cytotoxic. In favor of this possibility is the fact that the chemistry of creosote is extremely 

complex, with up to 200 different compounds (Mueller et al. , 1989), whereas only 15 to 16 

chemicais were identified in the current study and considered in the additive model. The phenols 

are one chemicai class to consider. Phenols are frequently found in creosote (Mueller et al., 1989). 

and have been show to be cytotoxic to cuhred fish ceIls (8abich and Borenfreund. 1987: Bols et 

al., 1985; Schüürmann et ai., 1997) as well as to fish (Hattula et al., 1981; Hodson et al.. 1984; 

Veith and Broderius, 1990). Another chemicd class of potential importance are the polycyclic 

nitroaromatic hydrocarbons. In studies on the in vitro embryotoxicity of petroleurn creosote, Iyer 

et ai. (1992) suggested that polycyclic nitroaromatic hydrocarbons were major conmbutors to the 

direct embryotoxicity. A different explmation for the under estimation is that the additional 

compounds might not be directly cytotoxic, but rhey could potentiate the cytotoxic actions of other 

compounds. OnIy further research with other complex solutions of aromatic hydrocarbons and 

more complete chernical analysis wilI allow these possibilites to be distinguished. 

C. Phorocytotuxicity of creosote solutiorts 

The photocytotoxicity of creosote appeared to arise from photosensitized reactions that led to 

the formation of reactive oxygen species (Chapters 1 and 3; Valenzo, 1987). This was because the 

responses of cells to UV irradiation and creosote solutions was sirnilar to the responses to W 

irradiation and individuai PAH congeners, which appeared to be photocytotoxic through the 

production of reactive oxygen species (Chapters 1 and 3). The sirnilar responses were the 

morphologicai changes of cells and the decline in cel1uIa.r activities that occurred to the same 

extent in either the alamar Blue or CFDA-AM assays. The photosensitized reactions potentially 

could be due to intact PAHs or products that aise from the photomodification of the original 

sensitizing compound. Alternatively, photomodification products could be cytotoxic directly. 

However, if cytotoxic photomodification products should indeed &se, they appear to be Iess 



important in the presence of UV radiation. This is because if the creosote solution was 

photomodified prior to being added to the cells in the dark, toxicity was l e s  than for the 

photocytotoxicity of creosote and the two fluorescent indicator dyes showed significantly different 

results. One exception in the photocytotoxicity of creosote is seen in the sample that was 

soIubiIized for 7 days. The difFerent responses in the alamar Blue and CFDA-AM assays hint at 

the formation of photomodification products whose impairment of the mitochondriai electron 

transpon system occurs before general membrane damage. 

The photocytotoxicity of creosote solutions could be fully accounted for by four PAHs, using 

previously developed fluoranthene equivaient factors (FEFs; Chapter 3). These four PAHs were 

anthracene, fluoranthene, pyrene, and benzo[a]anthracene. in a study on the phototoxicity of 

several coal tar constituents to guinea-pig skin, Kochevar et al. (1982) found anthracene, 

fiuoranthene and pyrene to be most potent, whereas phenanthene, chrysene and carbazole were 

not phototoxic. Other researchers have found relatively high phototoxic potencies for anthracene. 

fluoranthene, pyrene, and/or benzo[a]anthracene in a variety of biological systerns (reviewed by 

Arfsten et al., 1996). However, it has not been shown previously that these four compounds can 

account for the photocytotoxicity of a complex mixture such as creosote. This is particularly 

intriguing as two of the above congeners, namely fluoranthene and pyrene, are prevalent not only 

in creosote contaminated aquatic environments (Bestari et al., 1997; Rosenfeld and Plumb, 1991) 

but aiso in air ambient to alurninum plants, wood heating sources, rurai or urban areas, as well as in 

contaminated hesh water and sediments (Environment Canada, 1994). 

The application of FEFs in our study was done under the assumption that the photocytotoxic 

compounds act in an additive fashion. Research on the phototoxicity of defined mixtures has just 

begun. Hatch and Burton (1996) have recently shown that fiuoranthene and anthracene were 

additive in their phototoxicity to benthic organisms. This is in agreement with the proposed 

similar mode of phototoxic action for PA& the generation of reactive oxygen species upon 

absorption of UV radiation. Hence, higher concentrations of a phototoxic compound or mixtures 

of phototoxic compounds wiil give nse to higher concentrations of reactive oxygen species and 

consequentl y enhanced toxicity . 

D. Cytotoxiciry of photomodifed creosote solutions 

Photomodiwng creosote through UV irradiation must have generated cytotoxic products 

because irradiation caused the creosote solutions to be more cytotoxic. Previously, fluoranthene 

was show to be extensiveIy photomodified under similar experimentai conditions (Chapter l), and 

because fluoranthene has a haif-iife in solar radiation that is intermediate among the detected 

PAHs (Huang et al., 1997; Mackay et al., 1992), significant modifications of other PAHs in 

creosote can be expected as well. Most commonly, the photomodification of a single PAH leads to 



a complex mixture that contains, amongst other classes of compowds, quinones and diols 

(Maiiakin et al., 1997; McConkey et al., 1997; Nikolaou et ai,. 1984). For example. 9,IO- 

phenanthrenequinone (PHEQ), was found to be the major component and primary toxicant in 

phenanthrene-containing solutions that were exposed to actinic radiation (McConkey et al., 1997). 

PHEQ was unique in that it not only was resistant to M e r  photooxidation but dso in that it did 

not support photosensitized reactions. With phenanthrene king the most abundant PAH in ail 

creosote samples, PHEQ thus likely contributes to the cytotoxicity of photomodified creosote in 

the current study . 

The alamar Blue assay was more sensitive than the CFDA-AM assay in detecting an inhibition 

of cellular activity by the photomodified creosote soIutions. The EC* were 3 to 4 fold lower with 

alamar Blue. This indicates that photomodification products had speciiic actions in mitochondna. 

Such an impairment could be due to compounds that srructurally mimic components of the elecuon 

rransport chah  For example, quinones can receive electrons fiorn NADH that are normally 

donated to ubiquinone. Alamar Blue and natural receptors would then compete for electrons with 

the quinones of the photomodified creosote solution. which potentially leads to a decreased 

reduction of alamar Blue and thus decreased fluorescent readings. The reduced quinone can pass 

on its electron to oxygen, forming superoxide radical and the parent quinone. The quinone can 

then repeat the cycle while superoxide radical is converted into hydrogen peroxide by superoxide 

dismutase a d o r  into hydroxyl radical in the presence of iron by the Fenton reaction (Di Giulio et 

al., 1989). Thus, quinones can lead to yields of oxygen radicals that exceed the capabilities of 

cellular antioxidant defense mechanisms and result in a more generai damage to cell membranes 

and proteins. This general damage due to oxidative stress has been measured with CFDA-AM in 

this report and with Neutra1 Red in previous reports that used cultured fish cells (Babich et al., 

1993; Babich et al., 1994). 

E. Photocyroroxicity of photomodifzed creosote solutions 

As with the photocytotoxicity of the onginal creosote solution, the photocytotoxicity of 

photomodified creosote appears to arise fiorn photosensitized reactions. Support for this cornes 

fiom the fact that in combination with W irradiation both the intact and photomodified creosote 

solutions caused simi1a.r changes in cellular morphology and a level of impairment that was the 

same with either the darnar Blue or CFDA-AM assays. These photosensitized reactions would 

have been initiated by parent compounds that rernained after the photomodification process or by 

photomodification products that thernselves act as photosensitizers. One such photomodification 

product that has recently been identifieci is 2-hydroxyanthraquinone (Mallakin et al., 1997). 



F. Cornparison of cyro-and photocyto-ruxicity of intact and photomdified creosote 

solurions 

The results of this study indicate chat assessing the environmental impact of creosote is 

complex. W-irradiation consistently increased the toxicity of creosote to fish cells in culture and. 

at Ieast in the case of the photocytotoxicity of creosote, tfris was attributable to PAHs. A positive 

association in fish between high PAH exposures near creosote contaminated sites and the induction 

of cytochrome P4SO 1A1 (Schoor et al., 199 1) or the occurrence of liver neoplasms (Vogelbein et 

al., 1990) has been reported and constitute other ways in which creosote can be toxic to aquatic 

organisrns. For the UV radiation exposures, the highest toxicity was seen when creosote and the 

fish @II cells were present sirnultaneously. This photocytotoxicity of creosote led to a 35-fold 

increase in toxic potency. Exposure conditions in wfiich photocytotoxicity would be expected to 

occur in the environment are near the waste water emux of wood ueatment faciiities. It is wood 

treatment and storage facilities that are major contributors of creosote entry into the environment 

(Environment Canada, 1993). Furthermore, the toxicity of creosote was enhanced when creosote 

was photomodified prior to exposure to the ce11 culture system. This cytotoxicity of 

photomodified creosote led to an 8-fold increase in toxic potency and implies that W irradiation 

does not necessarily result in the toxicity deactivation of complex mixtures. Borthwick and Patrick 

( 1982) tested the deactivation of creosote in saitwater due to exposure to direct sunlight and 

measured a half-life of Iess than a week This study indicates that prolonged W radiation 

exposures will likely lead to a significant decrease in toxic potency under static conditions. 

However, if the supply of creosote contarninated water is continuous, as would be expected at 

wood treatment sites, deactivation due to UV inadiation is not iikely to occur but in contrast, c m  

lead to a further activation of toxicity. 

The RTgill-W1 ceIl bioassay ailowed the study of a complex chemical mixture, creosote, with 

respect to its toxicity in the absence or presence of UV radiation. Together with chemical analysis, 

the assay made it possible to fully determine the compounds that gave rise to the most toxic 

combination studied here, the simultaneous presence of creosote and UV radiation or the 

photocytotoxicity of creosote. Furthermore, by combining two fluorescent indicator dyes, alamar 

Blue and CFDA-AM, responses of ce11 cultures could be quantified rapidly and reliably with a 

fluorescent plate reader, and different modes of creosote cytotoxicity identified. Thus, the assay is 

usefui in screening environmental samples for the presence of compounds that are toxic directly or 

by a concurrent or prior W irradiation, and in understanding the modes of toxic action of these 

compounds on a cellular level. 
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CONCLUDING REMARKS AND FUTURE DIRECTIONS 

Polycyclic aromatic hydrocarbons (PAHs) are a group of chernicals whose toxicology is 

difficult to smdy for at least three reasons. Fmtly, PAHs are stnicturally, and thus physically and 

chernically, diverse. Secondiy, PAHs occur in the environment as compiex mixtures and thirdly, 

PAHs can eiicit toxicity in a variety of ways. Two ways in which PAHs can be toxic to aquatic 

organisms have k e n  studied with continuous fish ce11 culmes in this thesis: their direct 

cytotoxicity and theù toxicity in the presence of W radiation, or their photocytotoxicity. 

The direct cytotoxicity of PAHs (Figure B.I.) was found to depend on two physical-chernical 

parameters. These were water solubility and Iipophilicity, which work in opposite ways. PAHs 

with a relatively high water solubility (and a low Iipophilicity) provide a large number of 

molecules in the aqueous phase to be potenually taken up into their cellular target sites, the 

membranes. However, the low Iipophilicity allows only a small portion of the available molecules 

to accumulate. in contrast, few molecules are soluble in the aqueous phase for PAHs with a low 

water solubility, providing only a limiteci number of molecules to be potentially taken up by cells. 

However, the high lipophilicity favors the cellular uptake of a large pomon of the few available 

PAH molecules. Therefore, if a PAH is equdly more water soluble than another PAH is more 

lipophilic, the net result in the ceil is the same. Although the mode of the directly cytotoxic action 

has not been studied directly, the different fluorescent dyes indicated a general disruption of 

membrane integrity in the presence of the PAHs but an early inhibition of specific membrane 

enzymes could not be ruled out. 

The photocytotoxicity of PAHs (Figure B-II.) was found to depend on four physical-chernical 

parameters. These were water solubility and IipophiIicity but additionally, the ability of each PAH 

to absorb UV radiation and to fonn the electronically excited triplet state, which is needed for 

photochernical reactions to occur. The transfer of energy from an excited triplet state PAH to 

oxygen yields singlet oxygen, which beside catalyzing other oxidative reactions, is a prime initiator 

of lipid peroxidation. Lipid peroxidation is known to lead to membrane blebbing (Halliwell and 

Gutteridge, 1985) and this has consistently been observed in this study for the photocytotoxicity of 

PAHs. Furthemore, the transfer of an electron from an excited triplet state PAH to cellular 

substrates or oxygen can lead to extensive radical formation. Finally, the direct chernical reaction 

of excited triplet state PAHs with oxygen leads to the formation of oxidized PAH products, such as 

quinones. Quinones are capable of redox cycling in which enzymes, such as the NADH 

dehydrogenase of the mitochondrial electron transpon chah, serve as electron and hydrogen 

donors to yield quinone radicals that pass the extra electron to oxygen while retuming to their 

original state. Redox cycling thus can yield radicai formation in the presence as well as in the 



absence of UV radiation and was though to be the cause of the specific inhibition of mitochondrial 

activity in the cytotoxicity of photomodified creosote. 

lm0 

I oai 
s 0.001 

* PAH wi<h higb water sotubility 

1. Accumulation of PAH moledes in: 

The Ccii Membrane The Mitochoadriai Membrane The Lysosome and 

Figure B.I. Schematic representation of the direct cytotoxicity of PAHs. 
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Figure B.IL Schematic representation of the photocytotoxicity of PAHs 



Many new questions arose from the results of this work related to the cytotoxicity and 

photocytotoxicity of PAHs and other ways in which PAHs are toxic. For example, both W 

radiation and the P M  Auoranthene have been shown, in separate smdies, to induce apoptosis at 

relatively high doses (Godar and Lucas, 1995; Yamaguchi et ai., 1996). Thus, it would be 

interesting to investigate whether a combination of the two leads to apoptosis at much lower 

concentrations than previously observed or even at concentrations below those that elicited 

photocytotoxicity in this thesis. The success with the indicator dyes, aiamar Blue and CFDA-AM, 

suggests that they could be used successfulIy dong with the neutral red to study additional modes 

of PAH cytotoxicity. One is the cytotoxicity due to rnetabolic activation. These indicator dyes 

could be used on cells with an active cytochrome P4Sûdependent mono-oxygenase system to 

conveniently screen priority PAHs for their potential to give nse to cytotgxic products through ce11 

metabolism. In addition, the sensitivity of aiamar Blue in detecting responses to photomodified 

creosote suggests that this assay could be used to screen PAHs after they have been UV irradiated 

for their propensity to give rise to cytotoxic products with a mitochondnal mode of action. In 

these ways a complete profile of the toxic actions of the priority PAHs could be developed. 

The methodological developments that led to the in vitro toxicity assays for the direct and 

photoinduced toxicity of PAHs to the rainbow trout gill ceil h e ,  RTgill-W1, have shown that 

environmentaily important features can be incorporated into studies with rnicrowell plates. 

Previously, the water solubility limits of environmental contarninants have rarely been considered 

in vitro. However, the importance of such considerations has become clear in this study in at least 

two ways. Firstly, high contaminant concentrations can lead to different rnechanisms of toxicity as 

was seen in the U- or L-shaped dose-response cuves for the photocytotoxicity of selected PAHs in 

the neutral red assay. Secondly, by taking the water solubiiity limits of PAHs into account, 

compounds that are the most Iikely to cause cytotoxicity andor photocytotoxicity in the 

environment could be determined. Thus, naphthalene could serve as an indicator of potential 

cytotoxicity in aqueous environmental samples, whereas fluoranthene and pyrene are indicacors of 

photocytotoxicity . 
The deveioped assay procedures are simple, inexpensive and rapid. Both individual PAHs as 

welI as a complex mixture were tested reliably, making the assays a useful tool for testing effluents 

or environmental samples, as well as for toxic identification evaiuations. Furthemore, the assays 

can be useful in engineering approaches that aim to reduce the toxicity of effluents. Finally, the in 

vitro assays have the potential to lead to new sarnpling and monitoring techniques. 
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APPENDIX 1 

CHEMICAL CONFIGURATION AND ABSORPTION SPECTRA 

OF THE 16 PRIORITY PAHs 
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Figure C.I. Representation of the chetnical configuration and absorption spectnrm for 

each of the 16 priority PAHs. This figure continues over the next 5 pages. 
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APPENDIX II 

EMTSSION OF UV RADIATION BY UV-B AND UV-A PHOTOREACTOR LAMPS 

Figure C.II. Emission of W  radiation fiom 274 to 400 nm by two W-B photoreactor lamps (A) 
or one W-B and one UV-A photoreactor lamp (B), measured after passage through a 48-well 
culture plate lid. With two W-B lamps, the photon fluence rate was 1.4 m o l  m-2 s" W-B (W- 
A : W-B.  1.5). With one W-B and one W - A  lamp, the photon fluence rate was 1 . 1  p o l  m" s" 
W - B  ( W - A  : W - B ,  9.7). The inserts show the spectmm ernitted between 274 and 778 nm. 
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Figure C.III. Schematic representation of the standard assay procedure. 



APPENDIX IV 

PREPARATION OF THE MODIFI%D CULTURE MEDIUM, L-15/ex, AND ALAMAR 

BLUE, -A-AM, AND N E W  RED DYE SOLUTIONS 

A. Preparation of constituents of L-15/ex 

The preparation of constituents for L-1S/ex follows the procedure outiined by Leibovitz, A. 

(1963), American Journal of Hygiene 78, 173. Ali components are ceil culture grade (Sigma, St. 

Louis, MO, USA) and are prepared in ce11 culture grade, distilied water (Canadian Life 

Technologies, Burlington, ON, Canada). 

Salt solution A: To 6ûû ml water add: 

1. 80gNaCl 

2. 4.0 g KCl 

3. 2.0 g MgS04 

4. 2.0 g MgCl- 

Salt solurion B: To 100 mi water add; 

1. 1.4 g CaClz 

Salt soiution C: To 300 ml water add, 

1. 1.9 g Na2HP04 

2. 0.6 g KH2P04 

Each solution is autoclaved separately and stored at room temperature. 

Sodium pyruvate: To 100 ml of water add, 

1. 5.5 g sodium pyruvate 

2. filter-sterilize (0.2 p) 

3. dispense in 12 ml arnounts and store at -20°C 



Galactose solution: To 100 ml of water add, 

1. 9.0 g galactose 

2. filter-sterilize (0.2 pm) 

3. dispense in 12 ml amounts and store at -20°C 

B. Preparation of L-I5/ex 

To 1 Iiter of ce11 culture grade distilled water add asepticaily: 

1. 68.0 ml Salt Solution A 

2. 11.4 ml Salt Solution B 

3. 34.0 ml Salt Solution C 

4. 1 1.4 ml sodium pyruvate 

S. I 1.4 ml galactose 

Store at room temperature. 

N.2. Preparation of dye working solutions 

A. Preparation ofalamar Blue 

Dilute aiarnar Blue solution (Immunocorp. Science Inc., Montreai, PQ, Canada) in L- 19ex to a 

final concentration of 5 % v/v. Always prepare fresh. 

B. Prepararion of CFDA-AM 

CFDA-AM stock solution: To the crystalline CFDA-AM (Molecu1a.r Probes, Eugene, OR, USA) 

add DMSO to give 4 mM CFDA-AM. Store at -20°C. 

CFDA-AM working solution: Thaw stock solution at room temperature and dilute 1 : 1ûûû in L- 

W e x  to yield 4 w, If darnar Blue and CFDA-AM are k ing  used together, dilute the CFDA-AM 

stock solution 1 : 1OOO in the alarnar Blue working solution to yield 4 pM CFDA-AM. Always 

prepare fresh. Re-fieeze stock solution. 



C, Preptzration of neutrd red 

Neurral red srock solution: Dissolve 50 mg neutral red (94 %, Sigma Chernical Co., St. Louis, 

MO, USA) in 10 ml of ddH20. Store tfiis stock solution at rom temperame and protected from 

light. 

Neurral red working solution: Dilute stock solution 1 : 100 in L-ISIex to give 50 pg/ml neutral 

red in L- Wex. Vonex well and filter-sterilize (0.2 pm). Always prepare fresh. 

Neutra1 redfmztive: Repare 05 % v/v formaidehyde and 1 % w/v CaClz in dciH20. Store at 

room temperature. 

Neurral red exrraction solution: Prepare 1 46 v/v acetic acid and 50 % vlv ethanol in ddH20. 

Store at room temperature. 




