
Learning to Engage: An Application
of Deep Reinforcement Learning in

Living Architecture Systems

by

Lingheng Meng

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2023

© Lingheng Meng 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Matthew Gombolay
Assistant Professor
School of Interactive Computing
Georgia Institute of Technology

Supervisors: Dana Kulić
Professor
Dept. of Electrical and Computer Engineering
University of Waterloo — Monash University

Rob Gorbet
Associate Professor
Dept. of Knowledge Integration
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal Members: Stephen L. Smith
Professor
Dept. of Electrical and Computer Engineering
University of Waterloo

Mark Crowley
Associate Professor
Dept. of Electrical and Computer Engineering
University of Waterloo

Internal-External Member: Edith Law
Associate Professor
David R. Cheriton School of Computer Science
University of Waterloo

ii

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

Lingheng was the sole author of Chapter 1, 2, 3, 9 and 10 which were written under the
supervision of Dr. Dana Kulić and Dr. Rob Gorbet and were not written for publication.
Exceptions to sole authorship of material are as follows:

Chapter 4
The two physical testbeds, namely Aegis Canopy and Meander are developed by Philip
Beesley Studio Inc.1. For the LAS Simulation Toolkit, the LAS-Behavior-Engine is de-
veloped by the engineer team of Philip Beesley Studio Inc. and their collaborators. The
author of this thesis solely developed the rest of the simulation toolkit.

Chapter 5:
This research was conducted at the Royal Ontario Museum by Lingheng Meng and Daiwei
Lin under the supervision of Dr. Dana Kulić, and was published in the ACM Transactions
on Human-Robot Interaction (THRI). Lingheng Meng implemented Single Agent Raw
Action Space (SARA) and Agent Community Raw Action Space (ACRA) and contributed
to the data analysis, while Daiwei Lin implemented Parameterized Learning Agent (PLA).

Lingheng Meng, Daiwei Lin, Adam Francey, Rob Gorbet, Philip Beesley, and Dana Kulić
(2020). Learning to Engage with Interactive Systems: A Field Study on Deep Reinforce-
ment Learning in a Public Museum. J. Hum.-Robot Interact. 10, 1, Article 5 (March
2021), 29 pages.
DOI: 10.1145/3408876

Chapter 6
A version of this chapter was published in the proceedings of the 2020 25th International
Conference on Pattern Recognition (ICPR).

Lingheng Meng, Rob Gorbet and Dana Kulić (2021). The Effect of Multi-step Methods on
Overestimation in Deep Reinforcement Learning. 2020 25th International Conference on
Pattern Recognition (ICPR), Milan, Italy, 2021, pp. 347-353.
DOI: 10.1109/ICPR48806.2021.9413027.

Chapter 7
A version of this chapter was published in the proceedings of the 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS).

1https://www.philipbeesleystudioinc.com

iv

https://doi.org/10.1145/3408876
https://doi.org/10.1109/ICPR48806.2021.9413027
https://www.philipbeesleystudioinc.com

Lingheng Meng, Rob Gorbet and Dana Kulić (2021). Memory-based Deep Reinforcement
Learning for POMDPs. 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), Prague, Czech Republic, 2021, pp. 5619-5626,
DOI: 10.1109/IROS51168.2021.9636140.

v

https://doi.org/10.1109/IROS51168.2021.9636140

Abstract

Physical agents that can autonomously generate engaging, life-like behavior will lead
to more responsive and interesting robots and other autonomous systems. Although many
advances have been made for one-to-one interactions in well controlled settings, future
physical agents should be capable of interacting with humans in natural settings, including
group interaction. In order to generate engaging behaviors, the autonomous system must
first be able to estimate its human partners’ engagement level, then take actions to maxi-
mize the estimated engagement. In this thesis, we take Living Architecture Systems (LAS),
architecture scale interactive systems capable of group interaction through distributed em-
bedded sensors and actuators, as a testbed and apply Deep Reinforcement Learning (DRL)
by treating the estimate of engagement as a reward signal in order to automatically gen-
erate engaging behavior. However, applying DRL to LAS is difficult, because of DRL’s
low data efficiency, overestimation problem, and issues with state observability, especially
considering the large observation and action space of LAS.

We first propose an approach for estimating engagement during group interaction by
simultaneously taking into account active and passive interaction, and use the measure as
the reward signal within a reinforcement learning framework to learn engaging interactive
behaviors. The proposed approach is implemented in a LAS in a museum setting. We
compare the performance of the learning system to that of a baseline design using pre-
scripted interactive behavior. Analysis based on sensory data and survey data shows that
adaptable behaviors within an expert-designed action space can achieve higher engagement
and likeability. However, this initial approach relies on a manually defined reward and
assumes a known, concise definition of the state and action space to address issues of slow
learning, sample efficiency and state/action specification of DRL.

To relax these restrictive assumptions, we first analyze the effect of multi-step methods
on alleviating the overestimation problem in DRL, and building on top of Deep Determinis-
tic Policy Gradient (DDPG), propose Multi-step DDPG (MDDPG) and Mixed Multi-step
DDPG (MMDDPG). Empirically, we show that both MDDPG and MMDDPG are signifi-
cantly less affected by the overestimation problem than vanilla DDPG, which consequently
results in better final performance and learning speed. Then, to handle Partially Observ-
able Markov Decision Processes (POMDPs), we propose Long-Short-Term-Memory-based
Twin Delayed Deep Deterministic Policy Gradient (LSTM-TD3) by introducing a mem-
ory component to TD3, and compare its performance with other DRL algorithms in both
MDPs and POMDPs. Our results demonstrate the significant advantages of the memory
component in addressing POMDPs, including the ability to handle missing and noisy ob-
servation data. After that, we investigate partial observability as a potential failure source

vi

of applying DRL to robot control tasks, which can occur when researchers are not confi-
dent whether the observation space fully represents the underlying state. We compare the
performance of TD3, Soft Actor-Critic (SAC) and Proximal Policy Optimization (PPO)
under various partial observability conditions, and find that TD3 and SAC become easily
stuck in local optima and underperform PPO. We propose multi-step versions of the vanilla
TD3 and SAC to improve their robustness to partial observability.

Based on our study with manually designed reward functions, which is the estimate
of engagement, and the fundamental research on DRL, we further reduce the reliance on
designers’ field knowledge, and propose to learn a reward function from human preferences
on engaging behavior by taking advantage of preference learning algorithms. Our simula-
tion results show that the reward function induced from human preference is able to lead
to a policy that generates engaging behavior.

vii

Acknowledgements

First of all, I would like to thank my supervisors, Prof. Dana Kulić and Prof. Rob
Gorbet, for the great opportunity and precious experience to be guided by and work with
them over the years. They have been always supportive, patient and inspiring to me in
both academics and life. I sincerely appreciate your encouragement and patience when the
experiment did not go well, and admire your optimism and passion to research. You not
only teach me how to do research and think critically, but also set a role model for me on
how to be a good supervisor, how to collaborate with others, how to make contributions
to the society, and how to balance work and life, etc. A special thank goes to Prof. Dana
Kulić for the wonderful visiting opportunity to Monash University in Australia.

I would also want to thank the members of my committee, Prof. Matthew Gombolay,
Prof. Edith Law, Prof. Stephen L. Smith and Prof. Mark Crowley, for their professional
and illuminating questions as well as their inspiring and motivating feedback throughout
my PhD process, all of which significantly improved the final thesis. I want to thank you
all for taking the time to review my thesis and for being there for me at each milestone.

I am appreciative to our collaborators from Philip Beesley Studio Inc., Prof. Philip
Beesley, Adam Francey, Michael Lancaster, Matt Gorbet, Kevan Cress, etc., for providing
the experiment testbeds and planning the fantastic workshops and symposia. The Royal
Ontario Museum, Tapestry Hall, and our research participants, who made this work possi-
ble, are especially appreciated for enabling us to conduct our field study and for their kind
assistance.

I would like to express my gratitude to all great members in Dana’s research group at
both University of Waterloo in Canada and Monash University in Australia. It is always
eye-opening to learn from others’ research, and inspiring to discuss with others. Thanks
to Jonathan Feng-Shun Lin for his help in both academics and life. Thanks Nils Wilde for
his help with sharing his PhD thesis proposal which helped me to organize my proposal.
Thanks Pamela Carreno-Medrano, Tina Wu, and Rachel Love for organizing so many
great social activities. Thanks Calvin Vong for making my visit to Monash University
more smooth. Most notably, thanks Daiwei Lin for working with me on our field study
and accompanying on the trips to our collaborators. I would like to express my gratitude
to every single person who has contributed to our lab, but in order to preserve space, I will
instead store their names in my heart.

Without the resources and assistance offered by the University of Waterloo and Monash
University, this thesis would not be possible. The research in this thesis was also funded
by the Social Sciences and Humanities Research Council, and it was made possible in part
by assistance from the Digital Research Alliance of Canada.

viii

I would especially like to thank my friend Shuyu for the many precious days we spent
together, from working out to sharing the significant occasions of our two families.

Finally, I want to thank my family for their unending moral and financial support, as
well as their encouragement and patience along the arduous road. My wife deserves the
deepest gratitude for her steadfast, unwavering support and for bringing my baby to me.
I also want to express my gratitude to my daughter for coming into my life, for being so
cooperative, and for making our family laugh so much.

ix

Dedication

This thesis is dedicated to my wife, Feijie and my daughter, Minyan.

x

Table of Contents

Examining Committee ii

Author’s Declaration iii

Statement of Contributions iv

Abstract vi

Acknowledgements viii

Dedication x

List of Figures xviii

List of Tables xxiii

1 Introduction 1

1.1 Overview . 1

1.2 Contributions . 6

1.3 Structure . 8

2 Related Work 10

2.1 Human-Robot Interaction . 10

xi

2.2 Deep Reinforcement Learning . 14

2.2.1 Overcoming Overestimation Problem in DRL 14

2.2.2 Approaches to Solving POMDPs 16

2.2.3 Partial Observability during DRL 18

2.3 Preference Learning in HRI . 19

3 Background 22

3.1 Decision Making . 22

3.1.1 Markov Decision Process (MDP) 22

3.1.2 Partially Observable Markov Decision Process (POMDP) 23

3.2 Reinforcement Learning (RL) . 23

3.2.1 Traditional RL Methods . 25

3.2.2 Multi-step Methods . 25

3.3 Deep Reinforcement Learning (DRL) . 26

3.3.1 DRL Foundations . 26

3.3.2 Overestimation Problem . 28

3.3.3 Deep Deterministic Policy Gradient (DDPG) 29

3.3.4 Twin Delayed Deep Deterministic Policy Gradient (TD3) 30

3.3.5 Soft Actor-Critic (SAC) . 31

3.3.6 Proximal Policy Optimization (PPO) 32

3.4 Preference Learning . 33

4 Experiment Testbeds 36

4.1 Testbed 1: Aegis Canopy . 37

4.1.1 Physical Installation . 37

4.1.2 Pre-scripted Behavior . 39

4.2 LAS Simulation Toolkit (LAS-Sim-Tkt) . 42

4.2.1 LAS-Behavior-Engine (LAS-BE) . 44

xii

4.2.2 LAS-Unity-Simulator (LAS-Uni-Sim) 53

4.2.3 LAS-Agent-Internal-Environment (LAS-Intl-Env) 56

4.3 Testbed 2: Meander . 65

4.3.1 Physical Installation . 65

4.3.2 Pre-scripted Behavior . 70

4.4 Summary . 70

5 Learning to Engage with Interactive Systems: A Field Study on Deep
Reinforcement Learning in a Public Museum 73

5.1 Proposed Approach . 74

5.1.1 Parameterized Learning Agent: Learning on Top of Pre-scripted Be-
havior . 74

5.1.2 Learning in Raw Action Space . 79

5.2 Experiments . 79

5.2.1 Experimental Procedure . 79

5.2.2 Data Collection . 80

5.2.3 Data Preprocessing . 81

5.2.4 Data Analysis . 82

5.2.5 Quantitative Evaluation . 83

5.3 Results . 85

5.3.1 Quantitative Comparison Between PB and PLA 85

5.3.2 Analysis of Actions Automatically Generated by PLA 87

5.3.3 Human Survey Results . 90

5.4 Discussion . 94

5.5 Summary . 97

xiii

6 The Effect of Multi-step Methods on Overestimation in Deep Reinforce-
ment Learning 98

6.1 Proposed Methods . 99

6.1.1 Multi-step DDPG (MDDPG) . 100

6.1.2 Mixed Multi-step DDPG (MMDDPG) 100

6.2 Experiments . 101

6.2.1 Experimental Evidence of Multi-step Methods’ Effect on Alleviating
Overestimation . 101

6.2.2 Performance Comparison . 104

6.3 Discussion . 107

6.4 Summary . 110

7 Memory-based Deep Reinforcement Learning for POMDPs 111

7.1 Proposed Approach . 112

7.1.1 Recurrent Actor-Critic Framework 114

7.1.2 Optimization of the Recurrent Actor-Critic 114

7.2 Experiment Settings . 116

7.3 Results . 118

7.3.1 Performance Comparison . 118

7.3.2 Policy Generalization . 120

7.4 Ablation Study . 124

7.4.1 Effect of Double Critics and Target Policy Smoothing 124

7.4.2 Effect of Current Feature Extraction 125

7.4.3 Including Past Action Sequence in Memory 125

7.5 Summary . 125

xiv

8 Partial Observability during DRL for Robot Control 127

8.1 Exemplar Robot Control Problem . 128

8.2 The Potential Effect of Multi-step Bootstrapping on Passing Temporal In-
formation . 130

8.3 Hypotheses Verification . 132

8.4 Experiments . 132

8.4.1 Results on Benchmark Tasks with Observation Delay and Action
Transformation . 135

8.4.2 Results on Benchmark Tasks with Partial Observability 136

8.4.3 Revisit LAS . 138

8.5 Summary . 139

9 Engaging Behavior Generation from Human Preferences In A Large Scale
Interactive System: A Simulation Experiment 140

9.1 Methodology . 141

9.1.1 Overall Framework . 141

9.1.2 Preference Learning of Reward Function 142

9.1.3 Policy Learning from Preference-based Reward Function 143

9.2 Individual Preference vs. Aggregate Preference 145

9.3 Experiment Settings . 145

9.3.1 Control Task Description . 145

9.3.2 Preference Teacher . 149

9.3.3 Participating Procedure . 150

9.4 Experiment Results On Simulated and Constrained Human Preference . . 150

9.5 Experiment Results on Unconstrained Expert Preference 154

9.5.1 Expert Data Summary . 154

9.5.2 Expert Teacher Survey Data . 157

9.6 Limitations . 162

9.7 Summary . 163

xv

10 Conclusions and Future Work 165

10.1 Conclusions . 165

10.2 Future Work . 168

References 171

APPENDICES 200

A Appendix for Chapter 5 201

A.1 Pseudo-code for DDPG-based PLA . 201

B Appendix for Chapter 7 203

B.1 Algorithms Implementation . 203

B.2 Supplementary Results . 203

B.2.1 Performance Comparison . 203

B.2.2 Robustness to Partial Observability 205

B.2.3 Effect of History Length . 206

B.2.4 Policy Generalization . 207

B.2.5 A Glance of The Relationship Among the Return, the Predicted Q-
value, and the Extracted Memory of the Actor-Critic 209

B.2.6 Supplementary results for the Ablation Study 210

C Appendix for Chapter 8 217

C.1 The Potential Effect of Multi-step Bootstrapping on Passing Temporal In-
formation . 217

C.2 Algorithms Implementation . 218

D Appendix for Chapter 9 220

D.1 Pseudo-code For Training Preference-based Reward Function 220

D.2 Experiment Settings for Preference Learning 220

xvi

D.2.1 Trajectory Generation . 220

D.2.2 Segment Generation . 222

D.2.3 Segment Pair Sampling . 222

D.2.4 Preference Query Schedule . 222

D.2.5 Preference Labeling . 222

D.2.6 Web-based Interface for Human Preference Teaching 223

D.3 Experiment Procedures for Different Conditions 224

D.3.1 Experiment With Hand-crafted Reward 224

D.3.2 Experiment With Preference-based Reward 225

D.4 Experiment Implementation . 229

D.4.1 Simulation of LAS with las sim tkt 229

D.4.2 Reward Function Choosing . 230

D.4.3 RL Algorithms Implementation . 230

D.4.4 Data Management . 231

D.5 Preliminary Experiment Results . 233

D.5.1 Results on Hand-crafted Reward 234

D.5.2 Results on Simulated Preference . 237

D.5.3 Results on Constrained Human Preference 245

D.6 Results on Unconstrained Expert Preference 248

D.6.1 Expert Data Summary . 248

D.6.2 Policy Evolution Accompanying Preference-based Reward 254

D.6.3 Preference Prediction of Various PB-Reward Models 262

D.6.4 Expert Teacher Survey Data . 267

D.7 Discussion . 269

D.7.1 Bias in Preference Based Reward Model 269

D.7.2 Reward Scaling In Reward Saturation 272

D.7.3 World Representation Gap Between Video and Experience Segment 274

D.7.4 Common Preference VS Personalized Preference 276

D.7.5 Expert VS Novice Teacher . 277

xvii

List of Figures

1.1 Living Architecture Systems . 2

3.1 Agent and Environment Interaction in RL [62] 24

3.2 MLP Diagram . 27

3.3 Circuit and Unfolded Diagram of LSTM-Cell 27

3.4 Informal View of Overestimation . 29

3.5 Agent and Environment Interaction and Preference Teacher and Preference
Learner Interaction in PL+RL . 34

4.1 Installation Diagram and Interaction Types 38

4.2 Diagram of Node in the LAS . 38

4.3 LAS: Aegis Canopy . 40

4.4 Pre-scripted Behavior . 40

4.5 LAS-Sim-Tkt Diagram. 42

4.6 Timeline of Modules in LAS-Sim-Tkt . 43

4.7 Screenshot of LAS-BE. 45

4.8 GridRunner Diagrams . 48

4.9 AmbientWave Diagram . 49

4.10 Excitor Diagram . 51

4.11 ElectricCell Diagram . 52

4.12 Screenshot of LAS-BE-IE-GUI . 53

xviii

4.13 Communication Diagram Among LAS, LAS-BE, and LAS-Uni-Sim. 54

4.14 LAS-Uni-Sim . 55

4.15 Balanced Activation . 55

4.16 LAS-Intl-Env Diagram. 57

4.17 LAS-Intl-Env Step Timeline. 58

4.18 Physical Meander . 67

4.19 Sensor and Actuator Type and Location 68

4.20 Grid Vertices of Meander . 72

5.1 Interface Between LAS and PLA . 75

5.2 Actor-Critic of PLA . 75

5.3 Experiment Schedule . 80

5.4 Interest Area Used to Estimate Occupancy 82

5.5 Estimated Occupancy Comparison . 86

5.6 Estimated Engagement Distribution Comparison 87

5.7 Active Interaction Count Comparison . 88

5.8 Average Estimated Engagement Comparison 89

5.9 Average Active Interaction Count Comparison 89

5.10 Trajectory of Daily Average Metrics . 90

5.11 Visualizing Actions Taken by PLA Embedded in a Two Dimensional Space. 91

5.12 Difference between the Cluster Centroid of PLA and PB 92

5.13 Boxplot and Violinplot of Average Scale of each Godspeed Category over
Participants within PB or PLA. 93

5.14 Sample Interesting Scenario . 96

6.0 Comparison Among MDDPG, MMDDGP and DDPG 103

6.1 The Difference in Estimated Target Q-values Between 1-step and Multi-step
Methods . 104

6.2 Learning Curves for PyBulletGym Tasks 105

xix

6.3 Comparison between Online and Offline Multi-step Expansion 108

7.1 Recurrent Actor-Critic Framework . 113

7.2 Actor Optimization . 115

7.3 Example PyBulletGym Tasks. 117

7.4 Learning Curves for PyBulletGym Tasks 119

7.5 Cross Evaluation . 121

7.6 Diagram of Full−CFE and Full−PA . 122

7.7 Learning Curves of Ablation Study . 123

8.1 LAS installation Meander . 128

8.2 Unexpected Results on LAS . 129

8.3 Information Incorporated in n-step Bootstrapping 131

8.4 Benchmark Tasks. 133

8.5 Action Transformation Functions . 133

8.6 Results on Benchmark Tasks with Action Transformation and Observation
Delay . 134

8.7 Effect of Multi-step Size on The Performance of MTD3 and MSAC 136

8.8 Effect of Multi-step Size on The Performance of PPO 137

8.9 Revisit LAS Results . 138

9.1 Overall Framework of PL+RL Setting . 142

9.2 Control Task Summary . 149

9.3 Hierarchy of Preference Teacher . 149

9.4 Study Participating Procedure . 151

9.5 Preliminary Results . 152

9.6 Proportion of Preference Choice for Each Request 155

9.7 Preference Prediction Accuracy of PB-Reward Checkpoints 156

9.8 Average Preference Prediction Accuracy of PB-Reward Checkpoints 156

xx

9.9 SUS Score Interpretation (adapted from [45]) 158

B.1 Performance Comparison on POMDP-version of AntPyBulletEnv-v0 with
different observabilities. 205

B.2 Relationship Between Partial-Observability and History Length. 206

B.3 Performance of LSTM-TD3 with Different History Lengths 207

B.4 Learning curves for PyBulletGym tasks . 211

B.5 Evaluation with History Length Different From that Used When Training . 213

B.6 Relationship Among the Return, Predicted Q-value, Extracted Memory of
Actor-Critic, . 214

B.7 Learning curves of ablation study . 215

D.1 Preference Query Page in Web-based Interface 223

D.2 Web-based Interface Deployment Diagram 224

D.3 Database Schema and Synchronization Between Local and Cloud Database 233

D.4 Learning Curves on Hand-crafted Reward 235

D.5 Learning Curves on Hand-crafted Reward with Different Random Seeds . . 235

D.6 Average Value Prediction . 236

D.7 Learning Curves on Hand-crafted Reward with Different Reward Scales . . 238

D.8 Learning Curves on Hand-crafted Reward with Different Reward Scales and
Random Seeds . 239

D.9 Learning Curves Measured in HC-Rew on Preference-based Reward 240

D.10 True Error Rate of Preference Label . 241

D.11 Learning Curves Measured in PB-Rew on Preference-based Reward 242

D.12 Investigate Into PB-Rew Based Return Collapse 243

D.13 Error Rate of Constrained Human Preference 245

D.14 RL Learning Results on Constrained Human Preference 246

D.15 PPO with Constrained Human Preference on Various Segment Lengths . . 247

D.16 TD3 with Constrained Human Preference on Various Segment Lengths . . 248

xxi

D.17 LSTM-TD3 with Constrained Human Preference on Various Segment Lengths249

D.18 SAC with Constrained Human Preference on Various Segment Lengths . . 250

D.19 Segments and Segment Pairs . 252

D.20 Expert Preference Choice Time Spending 252

D.21 Distribution of Expert Preference Choice Time Spending 253

D.22 Preference Prediction-Agreement Between Two Consecutive PB-Rew Check-
points . 254

D.23 RL and PL on Unconstrained Expert Preference 255

D.24 Compare Performance of TD3 with Different PB-Reward Checkpoints . . . 258

D.25 Effect of Preference Model Switch . 258

D.26 RL Agent Learning Curve and Video Segments 259

D.27 PB-Reward Prediction of PB-Rew Checkpoints 261

D.28 Preference Prediction-“Accuracy” Between Two Consecutive PB-Rew Check-
points . 261

D.29 Action Prediction of Policy Checkpoints 262

D.30 Offline PB-Reward Estimator Training . 263

D.31 Reward Prediction of Separate PB-Reward Estimator 263

D.32 Preference Prediction Agreement Among Separately Trained Estimators . . 266

D.33 Observation Embedding . 271

D.34 Example Expert Preference Model and Biased Reward Models 272

D.35 Reward Learning Example . 273

D.36 Reward Scaling In Reward Saturation . 273

D.37 Example Scenes Challenging World Representation Gap 276

D.38 Two Types of HRI Involvement . 278

xxii

List of Tables

4.1 Pre-scripted Behavior Parameters . 41

4.2 Parameters of GridRunner Influence Engine 47

4.3 Parameters of AmbientWave Influence Engine 49

4.4 Parameters of Excitor Influence Engine . 50

4.5 Parameters of ElectricCell Influence Engine 51

4.6 Summary of Sensors and Actuators . 69

4.7 Parameters of the Influence Engines of the Pre-scripted Behavior 71

5.1 Hyper-parameters of DDPG-based PLA 78

5.2 Summary of Experiment Schedule and Data 80

5.3 Cronbach’s α on Godspeed for PB and PLA 93

6.1 Maximum Average Return Over 10 Trials of 1 Million Steps of MMDDPG(8-
avg), DDPG, TD3, SAC, MVE and STEVE 106

6.2 Comparison of Forward and Backward Propagation on a Mini-batch for
Updating the Critic . 109

7.1 MDP- and POMDP-version of Tasks . 117

7.2 Comparing DDPG and LSTM-DDPG in Terms of Maximum Average Return124

8.1 MDP- and POMDP-version of Benchmark Tasks 133

8.2 The Maximum of Average Return . 135

xxiii

9.1 Observation Space Composition . 146

9.2 Parameterized Action Space . 147

9.3 Expert Response on System Usability Scale 158

9.4 What do you think is the best way to teach an interactive system engaging
behavior? . 159

9.5 Expert Response on Custom Preference Teaching Questions 160

9.6 What was your reasoning for your choice between two video clips? 161

9.7 Do you think your preference has been shifted compared to that at the 1st
session? . 162

B.1 Hyperparameters for Algorithms . 204

B.2 Maximum Average Return . 212

B.3 Maximum Average Return for Ablation Study 216

C.1 Interpretations of Reward Function . 217

C.2 Hyperparameters for Algorithms . 219

D.1 Preference-Learning Related Hyper-parameters 231

D.2 Hyper-parameters of Preference-based Reward Function 231

D.3 Tables in Local and Cloud Database . 232

D.4 Observation Space Size for Different Tow 234

D.5 Best Learning Performance on Hand-crafted Reward 235

D.6 Best Learning Performance on Hand-crafted Reward with Different Reward
Scale and Observation Window Sizes . 237

D.7 Best Performance Measured in Hand-crafted Reward for Simulated Prefer-
ence Teacher with Different Irrationality and Segment Lengths 241

D.8 Summary of Expert Participation . 251

D.9 Preference Prediction Accuracy of Separately Trained PB-Reward Estimators264

D.10 Preference Prediction Accuracy Comparison Between Online and Offline
Mix-trained Estimator . 265

xxiv

D.11 Preference Prediction Agreement on Random Segment Pairs 265

D.12 Questions Adapted From System Usability Scale 267

D.13 Questions Adapted From Robot Incentives Scale 268

xxv

Chapter 1

Introduction

1.1 Overview

As robots enter human environments, engaging with human occupants in a suitable manner
becomes increasingly important [247, 227, 38, 54, 248, 144, 11, 133]. To facilitate long-
term interaction, interactive systems should be able to continuously adapt in order to
generate engaging and appropriate behavior. Although for simple interactive systems it
may be possible to manually design engaging behaviors, this approach is time-consuming
and sometimes unfeasible for complex non-anthropomorphic interactive systems with many
degrees of freedom (DOF), e.g. hundreds of DOF. In addition, manually designed behaviors
constrain the system to a limited set of reactions, whereas autonomous generation of actions
provides the possibility of adaption and continuous behavioral evolution in a nonstationary
environment. Therefore, understanding how to autonomously generate engaging behavior
is necessary for long-term Human Robot Interaction (HRI), and learning algorithms can
be advantageous.

When introducing learning into an interactive system, human input could be explicit
or implicit. An example of explicit input is a human taking a teacher role, giving feedback
to guide the robot to achieve some goals. With implicit input, a learning signal, either
hand-crafted or learned, is generated based on observations of human behaviors during
interaction, without requiring active feedback. For successful long-term interaction in so-
cial and public settings, both implicit and explicit input are important, where the implicit
input is used for learning from the natural interaction between the users and the interac-
tive system with less cognitive demand, while the explicit input is used for learning from
experts/designers with the goal of transferring human knowledge to the interactive system

1

explicitly. Finally, for successful interaction in social and public settings, the system should
successfully engage with and learn from both individual and group interactions.

(a) Radiant Soil, installed in
Daejeon Museum of Art in Dae-
jeon, South Korea, 2018.

(b) Epiphyte Spring, installed in
Design Institute of Landscape
and Architecture in Hangzhou,
China, 2015.

(c) Hylozoic Series:
Sibyl, installed in the
Industrial Precinct
in Sydney, Australia,
2012.

(d) Aegis, installed
in the Royal Ontario
Museum in Toronto,
Canada, 2018.

(e) Meander, installed in Tapestry Hall in Cambridge,
Canada, 2020.

Figure 1.1: Living Architecture Systems. (Photos courtesy of Philip Beesley Studio Inc.)

In this thesis, we study the challenge of long term autonomy with Living Architecture
Systems (LAS). LAS are interactive systems at architectural scale that emulate living en-
vironments aiming to engage occupants in long-term interaction (see Fig. 1.1 for sample
installations by the Living Architecture Systems Group (LASG) and Philip Beesley Studio
Inc. (PBSI)1). An immersive LAS can have dozens of sensors and hundreds of actuators
with various modalities to enable interaction with visitors, which poses a challenge when

1More LAS environments by LASG/PBAI can be found at https://www.philipbeesleystudioinc.
com/sculptures

2

https://www.philipbeesleystudioinc.com/sculptures
https://www.philipbeesleystudioinc.com/sculptures

designing effective interaction control strategies. Historically LASs have used pre-scripted,
human-designed behaviors. However, we are interested in the potential for adaptive ma-
chine learning behavioral algorithms to generate interactive behaviors. LAS aims for long-
term continuous interaction, and this necessitates the capability of LAS to evolve with and
to learn in a non-stationary environment, rather than using a single pre-scripted solution
or assuming the existence of a single optimal solution.

Although LAS aims for long-term engagement with occupants, the architectural scale
and non-anthropomorphic, immersive nature of LAS makes it distinctive compared to
robots more typically studied in HRI [244, 107, 139, 278, 100, 303]. Since LAS is intended
to create life-like behaviors at architectural scale, it facilitates accommodating multiple
occupants and group interaction, rather than the one-to-one interaction most commonly
studied in HRI. In addition, unlike HRI studies with humanoid robots that can be directly
inspired by human-human interactions, LAS is a non-anthropomorphic robot, making the
design of interactive behavior less intuitive. While it is possible to manually design life-like
interactive behaviors to some extent, it is very time-consuming and requires significant ex-
pertise, and the resulting behaviors are non-adaptive. Therefore, implementing interactive
systems that can adapt and learn in dynamic crowd settings as well as from expert feed-
back and can autonomously generate engaging behavior is critically important, not only
because it is useful in many applications, including public spaces, schools, workplaces, and
family residences etc, but also because HRI in such interactive systems could extend our
understanding of socially acceptable and engaging interactive behavior.

Manually designed behavior patterns can generate engaging life-like behaviors based on
the designer’s understanding [30, 29], but this can be time-consuming and result in behav-
iors that become predictable during long term interaction. To overcome this limitation,
machine learning may be used to automatically generate behavior and study whether such
behavior is attractive or engaging for participants. For example, in [57, 58], a Curiosity-
Based Learning Algorithm (CBLA) was implemented in a LAS to automatically generate
behavior based on a computational notion of curiosity [211] of the LAS. However, the ac-
tion produced by the CBLA is purely intrinsically motivated by the curiosity mechanism
and does not consider any extrinsic motivation, e.g., maximizing measures of human re-
sponse, which could play a more important role when an interactive system aims to engage
participants. Another issue with [57, 58] and many works on social robots [139, 42] is
that the proposed approach is only designed and tested for one-to-one interaction in a
controlled setting, rather than group interactions in natural settings, i.e., multiple people
interacting with an interactive system simultaneously without instruction or guidance by
the researchers.

Learning interactive behavior for an extrinsically motivated LAS in natural settings

3

with group interactions is a difficult challenge that is not typically considered in Reinforce-
ment Learning (RL) [265] tasks in controlled settings with only one-to-one interaction.
Firstly, LAS has very large state and action spaces, typically having dozens of sensors and
hundreds of actuators. The learning challenge is exacerbated by a complicated and non-
stationary environment, where the LAS might be manipulated by occupants with different
cultural backgrounds, interests and personalities. In addition, interactions happening in
the real world happen less frequently than interactions in the simulators or video games
typically studied in RL. This results in fewer interactions, which poses a huge challenge for
data-driven learning algorithms. Last but not the least, there is no standard measurement
for estimating engagement, i.e., the extrinsic motivation of LAS. If a measurement of en-
gagement is sparse and time-delayed, learning interactive behavior becomes more difficult.

Considering these challenges, Deep Reinforcement Learning (DRL) [192, 193] offers
advantages because of its powerful representation capacity to deal with large observation
and action space. DRL has been intensively studied in simulated environments, such as
games [192] and simulated robots [164], as well as in real-world studies, such as robotics
control [104, 299, 267] and human-robot interaction [222, 60, 187]. However, applying
DRL to real world robots [117, 80], including LAS, is not straightforward because of the
aforementioned challenges and the limitations of DRL. For example, DRL suffers from low
data efficiency, instability, i.e., drastic fluctuations in accumulated reward increase rather
than a smooth increase [117, 264, 130], and incapacity of dealing with Partially Observable
Markov Decision Process (POMDP). These disadvantages hinder DRL from broad use
in applications where interactive data collection, which is ubiquitous in HRI, is time-
consuming, smooth adaption of behavior is crucial to maintain engagement, e.g. interactive
robots [186], and POMDP is inevitable due to lack of knowledge of the structure of the
dynamics, sensor limitations, missing data, etc. Therefore, more fundamental research
is also needed to advance our understanding of DRL when facing these challenges and
facilitate the successful application of DRL to LAS in order to automatically generate
engaging behavior.

Within the RL framework, an agent could learn engaging behavior from implicit input,
i.e., interactive data, given a well-defined reward function. However, manually designed
reward needs domain expertise and is hard to specify when the environment dynamics in-
volving human participants is very complicated and even non-stationary and/or the dimen-
sionality of the observation space is very high. Therefore, explicitly incorporating human
knowledge either into a reward function or directly into the policy, along with learning
from implicit input, is appealing. Popular approaches to incorporating human knowledge
are Preference Learning [294, 157], Inverse Reinforcement Learning [203], Learning from
Demonstration [225], Interactive Reinforcement Learning where either action correction

4

[55, 56, 217] or reward [263, 272] is provided by a user. These approaches come with
different mental and physical demands on teachers, and some of them are very hard to
apply to LAS. For LAS, an agent either acts on a low-dimensional but highly abstracted
parameterized action space, or acts on a high-dimensional raw action space with hundreds
of actuators, which deters the recruitment of methods needing action guidance from hu-
man. Therefore, inducing a reward function from human preference is more attractive to
our application. Different from manually designed reward function that relies on expertise
and is time-consuming to specify, preference based reward function learning may be less
demanding of human teachers.

This thesis aims to advance our understanding on how to learn engaging behavior for
crowd and long-term interaction for architectural scale interactive systems. Such architectural-
scale interactive systems normally have dozens of sensors and hundreds of actuators, which
enable crowd interaction, i.e., interacting with multiple people simultaneously, but also
make control more challenging. In addition, these systems usually target long-term in-
teraction: their behavior should continue to engage their occupants when deployed in
long-term installations. For these reasons, in this thesis Machine Learning (ML) tech-
niques, such as Deep Reinforcement Learning (DRL) and Preference Learning (PL), are
proposed to enable autonomous generation of engaging behavior.

When applying learning techniques to such systems, the following key challenges arise:

• Estimation of engagement: In order to maximise engagement, a measure of engage-
ment, to be used as a reward signal for learning, must first be formulated. One
approach is to manually formulate a proxy metric, considering the capacity of the
sensors embedded in an interactive system. A more general approach is to auto-
matically learn the engagement metric in order to further increase the flexibility and
adaptability of the control algorithm and reduce the reliance on a manually designed
reward;

• Ecological evaluation: To validate the proposed algorithms, the integrated system
should be evaluated in target environments and crowd settings with diverse visitors.

• Data efficiency: learning algorithms may display low data efficiency, especially con-
sidering the large number of actuators and sensors embedded in these interactive
systems;

• Partially observable environment: due to the architectural scale of the interactive
system, the limited sensor coverage, and the latency of the internal state of the
visitors or occupants, etc., the observation of the environment for a learning agent
may be partially observable, which challenges the learning of engaging behavior;

5

• Simulation infrastructure: Experiments with physical robots are time-consuming,
so simulation infrastructure is desired and beneficial for algorithm development and
experiment reproducibility.

1.2 Contributions

In this thesis, we take LAS as our testbeds to investigate how to automatically generate
engaging lifelike behavior with non-anthropomorphic robots. Motivated by the aforemen-
tioned goal and challenges, we work on creating simulation infrastructure, conducting a
field study in an unconstrained environment, understanding and proposing DRL algorithms
dealing with application challenges, identifying partial observability as a potential failure
source in applying DRL to robot control, and proposing to learn to engage from human
preference.

Specifically, this thesis makes the following contributions to the state of the art in
applying DRL to LAS to enable automatic engaging behavior generation:

C1. Simulation Infrastructure: LAS Simulation Toolkit

Chapter 4 tackles the simulation infrastructure challenge to enable fast algorithm devel-
opment and promote reproducible experiments. A simulation toolkit for applying DRL to
LAS is described. The toolkit integrates necessary components to run a LAS simulation
and provides a middle layer to allow a learning agent to communicate with the simulated
LAS with configurable observation and action space. This toolkit also enables researchers
to conduct research without a physical installation of LAS and to run multiple experiments
simultaneously in a High Performance Computation system in order to reduce development
time.

C2. Unconstrained Field Study Applying DRL to LAS

Chapter 5 addresses the challenge of ecological validation using manually designed engage-
ment estimation, where we propose an approach to estimate engagement with low-cost
sensors and learn a policy from the estimate of engagement within an unconstrained envi-
ronment using reinforcement learning. Our results show that the proposed approach is able
to generate more engaging behavior compared to prescripted behavior. The experiment is

6

conducted with a novel non-anthropomorphic robot and unique interaction style in a pub-
lic museum setting, interacting with museum visitors, contributing an approach for crowd
engagement estimation from ambient sensors and a first implementation of crowd-based
interactive learning in a large-scale, long-term, and real-world study.

C3. Elaborating the Effect of Multi-step Methods on Overestimation in DRL

Chapter 6 addresses the challenge of improving the data efficiency of DRL algorithms, based
on the concern that when applying DLR algorithms to a LAS, a meaningful behavior may
be hard to learn within a limited time, especially for a non-permanent LAS. One possible
cause of low data efficiency is overestimation [274]. This occurs when there is noise in the
estimation of an action’s value, causing an agent to overestimate the value of that action.
Because of this overestimation, the resulting policy is not optimal to achieve the given
goal. To help address this problem, this chapter proposes to combine multi-step methods
with traditional DRL. Multi-step methods are a group of methods in RL where the multi-
step immediate rewards are used to estimate an action’s value. When these rewards are
not optimal, the corresponding action value underestimates the true action value. In this
chapter, we demonstrate experimentally that the introducing of multi-step methods helps
to alleviate overestimation problem and consequently results in better final performance
and learning speed.

C4. Proposing Memory-based DRL for POMDPs

Chapter 7 contributes to tackling the challenge of partial observability. In this chapter,
we consider incorporating a memory component to DRL algorithms in order to solve Par-
tial Observable Markov Decision Processes (POMDPs). Different from Markov Decision
Processes (MDPs) where the observation of the environment is assumed to be a full repre-
sentation of the state of the environment so that the next observation only depends on the
current observation and action, in POMDPs the observation of the environment is a partial
representation of the state of the environment which means past observations are needed to
infer the underlying state. To enable the DRL algorithm to automatically infer the under-
lying state of the environment, this chapter proposes a neural network architecture to take
both the past experiences and the current observation as the input to learn an action value
function and infer a policy from the learned action value function. This chapter experi-
ments with the proposed method on simulated tasks with different types of POMDPs, e.g.,
sensory data missing and sensory noise, etc., and demonstrates the advantages of proposed
method in dealing with POMDPs.

7

C5. Identifying Partial Observability As A Potential Failure Source in Applying
DRL to Robot Control

Chapter 8 is inspired by our work applying DRL algorithms to LAS, where we find the
popular DRL algorithms have different performance compared to other standard bench-
marks. In this chapter, we investigate partial observability as a potential failure source of
applying DRL to robot control tasks, which can occur when researchers are not confident
whether the observation space fully represents the underlying state. The motivation of this
work is based on our observation that DRL algorithm that relies on multi-step immediate
rewards performs better than DRL algorithms that only rely on one-step immediate reward
on POMDPs, even though this is hard to observe on MDPs. Therefore, we hypothesize
multi-step bootstrapping plays a role in transferring temporal information through reward
signals. To validate this hypothesis, we investigate the effect of the step size on the perfor-
mance of the DRL algorithms on POMDPs. Similar results can be reproduced on different
tasks with various partial observabilities, and for most cases simply increasing the step size
by 1 step can significantly increase the algorithm’s performance on POMDPs.

C6. Generating Engaging Behavior From Human Preference

Chapter 9 aims to address the limitations of manually designed engagement metrics. In
this chapter, we propose to generate engaging LAS behaviors from human preference
by replacing the hand-crafted reward function with a reward function learned from hu-
man preference. We examine four DRL algorithms namely Proximal Policy Optimization
(PPO), Twin Delayed Deep Deterministic Policy Gradient (TD3), Soft Actor-Critic (SAC)
and Long-Short-Term-Memory based TD3 (LSTM-TD3) with simulated expert feedback.
We then recruit three experts to provide unconstrained feedback. Our results show the
preference-based reward continuously adapts to new preference labels and is able to predict
the future expert preference significantly better than a randomly initialized reward model.
The survey data is also analyzed in this chapter, and it is shown that experts have different
perceptions of the usability of the system.

1.3 Structure

This thesis is structured as follows: We first review the related work in Chapter 2. Then,
the necessary background is provided in Chapter 3. Chapter 4 introduces the testbeds
utilized in this work. Chapter 5 presents the field study conducted in a public museum.

8

Chapter 6 shows the work elaborating the relationship between multi-step methods and
overestimation problem. Chapter 7 proposes a memory-based DRL algorithm to deal with
partial observable MDP. Chapter 8 identifies partial observability as a potential failure
source of applying DRL to robot control tasks. Chapter 9 proposes a method to learn
engaging behavior from human preference. Chapter 10 concludes with the contributions
of this thesis and the future work.

9

Chapter 2

Related Work

This thesis considers embedding Reinforcement Learning (RL) into a large-scale interactive
system to endow the system with the ability to engage occupants. At the interaction
level, we want to understand how to automatically generate engaging behavior from the
perspective of HRI, which relates our work to many works in HRI. At the implementation
level, we consider an RL framework, but since there are still challenges successfully applying
RL algorithms to real world robots, we also contribute RL algorithms that can be deployed
to practical applications. In addition, considering the difficulty in manually designing
a reward function, i.e., an estimate of engagement, we also exploit preference learning
to transfer human preference into a reward estimator in order to reduce the reliance on
expertise, which relates our work to preference learning as well.

2.1 Human-Robot Interaction

Adaptive Control Traditional robotic systems operating in environments where the
system dynamics are unknown or varying have used adaptive control [15]. In the domain
of human-robot interaction, [286] applied adaptive control to robot navigation, where a
social proxemics potential field is constructed and used to design a robot motion controller
which is able to adapt its desired trajectory smoothly and at the same time comply with
the proxemics contraints. Nakazawa et al. [201] proposed a potential field imposing a re-
pulsive fin to allow adaptive control of an accompanying robot, where the robot is able to
adapt its relative position to the accompanied human in the presence of obstacles. Vitiello
et al. [283] proposed a Neuro-Fuzzy-Bayesian approach for adaptive control of a robot’s
proxemics behavior, where recognized human activities and human personality acquired by

10

questionnaires are input into an Adaptive Neuro Fuzzy Inference Engine (ANFIS) to deter-
mine a robot’s stopping distance. Adaptive control has also been applied to rehabilitation
robots [300], robots driven by Series Elastic Actuators [163], and many other applications.
However, adaptive control relies on a known structure of the dynamics model. In our case
(i.e., the testbeds shown in Chapter 4), it is difficult to apply adaptive control because
we do not have access to a good model of the environment dynamics, since the number of
visitors is unpredictable and visitors’ interaction style varies.

Learning with Human as Explicit Teacher Interactive Reinforcement Learning
(IRL) studies RL algorithms in the context of HRI, where humans explicitly provide re-
wards or actions to guide an agent in RL. Isbell et al. [131] applied RL in a complex human
online social environment, where a human interacts with a learning agent by providing a
reward signal, and highlighted that many of the standard assumptions, such as stationary
rewards, Markovian behavior, appropriateness of average reward, for RL are clearly vio-
lated. Thomaz [272, 271] proposed IRL for training human-centric assistive robots through
natural interaction, where a human coach’s feedback is used to shape the predefined re-
ward. In addition, Thomaz [272, 271] introduced anticipatory cues to allow the human
coach to predict the robot’s action and provide timely feedback. In [263], IRL was first
studied in real-world robotic systems, and showed that the positive effects of human guid-
ance increase with state space size. Other works converting human feedback to reward
include [148, 149]. Griffith et al. [102] proposed an algorithm (Advise) to formalize the
meaning of human feedback as policy feedback, which is more effective and robust than
using human feedback as extra reward. Krening et al. [150] studied the effect of different
teaching methods with the same underlying RL algorithm on human teachers’ experience
in terms of frustration. This work emphasizes that high transparency will decrease frus-
tration and increase perceived intelligence. Different from most of these works where the
human plays the direct role of teacher, i.e., directly providing either a reward or a policy
advice in an interactive way, in this thesis we aim to learn how to engage visitors without
requiring them to consciously teach or train the interactive system. Therefore, in Chapter
5 the learning agent does not explicitly receive rewards from visitors, but uses a measure
of engagement as reward, which is calculated based on observed visitor behaviors, without
any constraints on the frequency and consistency of interaction on the visitor.

Learning with Human as Implicit Teacher RL algorithms have been deployed
in social robotics to enable a robot to acquire socially acceptable skills, where a predefined
reward function is employed to implicitly infer the reward signal from sensed human behav-
ior. In [153], emotion recognition based on videos captured during participants’ interaction
with a robot is exploited as a reward within an RL framework to adapt the robot’s behavior
towards participants’ personal preferences. Leite et al. [159] proposed to model the user’s

11

affective state by combining facial expression recognition and game state in a supervised
way. The predicted affective state is then used to calculate the reward in an RL framework
to personalize response to users. Macharet et al. [173] investigated the effectiveness of us-
ing RL to learn socially acceptable approaching behavior for a mobile robot. Gordon et al.
[101] studied affective personalization in an integrated intelligent tutoring system, where in
a one-to-one interaction setting, facial expression based engagement and valence estimation
are used as reward in a standard SARSA algorithm. These studies all work on relatively
small state and action spaces without exploiting deep neural networks. Recently, Deep
Reinforcement Learning (DRL) has also been investigated in social robotics. Qureshi
et al. [222] proposed Multimodal Deep Q-network (MDQN) for a handshake robot, where
a deep neural network was employed to approximate the Q-value function based on both
image and depth information. Chen et al. [60] studied Social Aware Collision Avoidance
Deep Reinforcement Learning (SA-CADRL), where the reward function was designed to
penalize actions leading to states where a robot is too close to nearby pedestrians and a
deep neural network is used to approximate the Q-value function. Different from these
works where either DRL is not exploited or the action space is discrete, Chapter 5 applies
continuous control DRL to an interactive social robot.

One-to-one HRI In Natural Settings Without Learning Interactions in nat-
ural settings, e.g., public spaces, are too complex to be simulated in controlled laboratory
settings, so to understand natural HRI it is important to conduct field studies. Many HRI
systems have been tested in public spaces such as hospitals [198], train stations [111], ser-
vice points [137, 141], airports [134], shopping malls [245], hotels [66] and museums [246],
among others. Although robots investigated in these papers are sometimes surrounded by
a group of people in a public place, these robots typically interact with only one person
at a specific time, i.e., one-to-one interaction. Unlike these works, the larger scale of LAS
enables LAS to simultaneously accommodate interactions with multiple people. In addi-
tion, the behaviors of robots studied in most of these works are pre-designed by researchers
without continuous learning and adaptability.

Interactive Artworks Without Learning Interactive artworks are outcomes of
combining arts and engineering, and have brought a new research direction for under-
standing HRI, especially with non-anthropomorphic robots, not only from the robotics
perspective but also from an artistic perspective. LAS in this work and previous installa-
tions [29] are examples of such immersive interactive systems that promote roboticists’ and
architects’ understanding of life-like interactive behavior. Other examples include [160],
who investigated visitors’ interaction and observation behaviors with mobile pianos in a
museum. [259, 260] studied flying cubes in multiple publicly accessible spaces where flying
cubes play the role of living creatures. In [71], roboticists collaborated with a professional

12

dancer to design interactive dancing robots. [284] created spatial interactions with im-
mersive virtual reality technology. Raffaello D’Andrea created one of the first interactive
agents in art called “The Table” [73], with artist Max Dean. It interacts with humans in the
wild, one-on-one setting and does not have any learning. [18] studied dancing quadcopters,
without an interactive component. Close collaboration between artists and roboticists has
been fostering the creation of richer modes of interaction and extending the scope of studies
in HRI. Most works mentioned here rely heavily on the design of choreographers, while in
Chapter 5 and Chapter 9 we add adaptability on top of choreography by learning engaging
behavior based on the action space defined by choreographers.

Engagement Estimation in HRI As the intention of HRI is to engage human
participants in interactions, detecting and measuring initial and ongoing engagement in
HRI is critical for initiating and maintaining interaction [78, 96, 204]. Many approaches
for measuring engagement rely on rich sensors, such as cameras, lasers, sonar and audio
sensors, and on sophisticated facial expression, gesture, gaze, body movements, physiolog-
ical signals and speech recognition technologies [151, 270, 11]. Sanghvi et al.[235] proposed
to estimate engagement by extracting features of body motion from video by training an
engagement prediction model in a supervised way, but the proposed method requires a
lateral camera and users to wear a specific colored coat. Keizer et al. [141] trained an
engagement classifier based on multimodal corpus in a supervised way, which classifies en-
gagement into three levels i.e. NotSeekingEngagement, SeekingEngagement and Engaged.
Michalowski et al. [189] studied a spatial model of engagement for a social robot and tested
a robotic receptionist to engage visitors, and suggested that direction and speed of motion
are more appropriate measures of engagement than location or distance alone. However,
this work used distance to determine the engagement level and what pre-scripted behavior
to take, rather than using the distance as a learning signal. Bohus et al. [36, 37] studied
the engagement model for a multiparty open-world dialog system, but the system can only
actively engage in at most one interaction even though it could simultaneously keep track
of additional, suspended interactions. Engagement in [36, 37] is viewed as several states.
Behaviors corresponding to each engagement state are pre-defined. Even though the au-
thors claim the system is a multiparty interaction, the number of participants is limited
because of the field of view of the camera and the interaction screen. Khamassi et al. [143]
and Velentzas et al. [282] proposed to estimate engagement from human gaze and use it as
a reward function in an RL framework to allow fast adaption to environment change, where
experiments are conducted in a well controlled setting. Most works studying engagement
in HRI focus on humanoid social robots, one-to-one interactions, and discrete measures of
engagement. In this thesis we study a non-anthropomorphic robotic environment, group
interaction, and measure engagement as a continuous value. Most importantly, we use a

13

measure of engagement as the extrinsic reward to drive learning, rather than using the
measure of engagement as a contingent event to trigger a predefined behavior. In addition,
since our environment has highly varying lighting conditions and the potential for severe
occlusions, camera based methods may be less reliable.

2.2 Deep Reinforcement Learning

Applying RL methods to real-world robots is challenging. First, real world robots have
continuous and large state-action spaces. Considering traditional RL methods, neither tab-
ular methods for discrete state and action spaces nor approximate methods with manually
designed features for continuous state and action space are suitable for large, continuous
state and action spaces [265]. DRL methods for continuous state and action spaces are
appealing, as they are end-to-end methods that could learn policy directly from raw input.
However, DRL methods face the low data efficiency and incapacity to Partial Observable
Markov Decision problem, etc.

2.2.1 Overcoming Overestimation Problem in DRL

DRL is criticized for its low data efficiency and instability, i.e., drastic fluctuations in
accumulated reward increase rather than a smooth increase [117, 264, 130]. These disad-
vantages hinder DRL from broad use in applications where interactive data collection is
time-consuming and smooth adaption of behavior is crucial to maintain engagement, e.g.
interactive robots [186].

Low data efficiency corresponds to slow learning speed, assuming the learning algorithm
is capable of learning an optimal policy given sufficient data, and can be caused by two
reasons: 1) lack of data, and 2) lack of training. If slow learning is caused by lack of
data, the environment is under-explored. In this case, an efficient exploration strategy, e.g.
parameter space noise [219], or a complementary source of experiences, e.g. World Models
[105], can be helpful for generating additional training data. On the other hand, if slow
learning is caused by lack of training, since enough experiences have been collected but
not coded into policy, a more effective way to use the collected data is necessary such as
prioritized replay buffer [238, 120] and hindsight experience replay [9].

Instability is partially related to the catastrophic forgetting problem of Deep Learning
(DL) [147] which is inherent in the continuously evolving nature of policy learning in Rein-
forcement Learning (RL). In addition, inaccurate estimation and continuous tuning of the

14

Q-value function might lead the learned policy in directions far away from optimal or cause
it to fluctuate around a local optimum. The overestimation problem [274] in Q-learning
is a typical example of inaccurate estimation in which the maximization of an inaccurate
Q-value estimate induces a consistent overestimation. As the result of overestimation, the
estimated Q-value of a given (state, action) pair might explode and drive the correspond-
ing policy away from optimal. Therefore, DRL algorithms based on Deep Neural Networks
(DNNs) [99] should strive to alleviate overestimation problem if it cannot be completely
overcome.

Multi-step methods have been studied in traditional RL for both on- and off-policy
learning considering both the forward view, i.e., updating each state by looking forward
to future rewards and states, and the backward view, i.e., updating each state by combin-
ing the current Temporal Difference (TD) error with eligibility traces of past events [265].
Recently, a new multi-step action-value algorithm Q(σ) was proposed to allow the degree
of sampling performed by the algorithm at each step during its backup to be continuously
varied, with Sarsa at one extreme, and Expected Sarsa at the other [75]. The results
show that an intermediate value of σ performs better than either extreme. However, a
systematic way to adjust σ still needs to be studied, and the learning tasks in [75] are
relatively simple with small state and action spaces, avoiding the need for DL methods.
Multi-step TD learning for non-linear function approximation was studied in [281] where
forward TD(λ) was investigated on simple discrete control tasks. Although a neural net-
work was used for function approximation in this work, only simple discrete control tasks
were examined. Rainbow [118], an integrated learning agent combining many extensions
including multi-step learning, found that multi-step not only helps speed up early learning
but also improves final performance on Atari 2600 games. However, Rainbow is built on
top of Deep Q-Network (DQN) [192] and only discrete action space tasks were examined.
In our work, we focus on continuous control tasks. Multi-step methods have also been
investigated in asynchronous methods [191], which rely on parallel actors employing dif-
ferent exploration policies in parallel instances of environments, to decorrelate consecutive
updating experiences and to stabilize policy learning without using a replay buffer. How-
ever, such a parallel paradigm can only work practically in simulated environments, and is
unfeasible for real applications where multiple instances of physical systems (e.g., robots)
are too expensive.

The Overestimation Problem [274] in DRL is cited as the reason non-linear func-
tion approximation fails in RL. Based on Double Q-learning [109], Double DQN [280] was
shown to be effective in alleviating this problem for discrete action spaces. Although Twin
Delayed Deep Deterministic Policy Gradient (TD3) [89] proposed to take the minimum of
two bootstrapped Q-values of a state-action pair which are separately estimated by two

15

critics to overcome the overestimation problem, the extra neural network for the second
critic also introduces additional computation cost, especially when the state and action
spaces are large. Model-based Value expansion (MVE) [83] is a multi-step method that
expands multi-step on a learned environment model, whose performance tends to degrade
in complex environments. As an improvement of MVE, STochastic Ensemble Value Ex-
pansion (STEVE) [47] expands various multi-steps on an ensemble of learned environment
models, including transition dynamics and reward function, then adds these to an ensemble
of Q-value functions. The final target Q-value is a weighted mean of these generated target
Q-values. Both MVE and STEVE suffer from modeling error, and more importantly they
both introduce vast extra computation, especially STEVE. Averaged-DQN [10] is proposed
to reduce variance and stabilize learning by exploiting an average over a set of target Q-
values calculated from a set of past Q-value functions. It is shown that Averaged-DQN also
helps in alleviating the overestimation problem. Different from that, our method MMD-
DPG proposed in Chapter 6 takes the average over a set of target Q-values calculated with
different step sizes, which is also shown to be more stable than MDDPG.

2.2.2 Approaches to Solving POMDPs

Most works in DRL focus on developing algorithms [192, 154, 164, 239, 241, 89, 106]
for Markov Decision Processes (MDPs) with fully observable state spaces [79], i.e. the
observation at each time step fully represents the state of the environment. Few works
consider the more complex Partially Observable Markov Decision Process (POMDP) where
the observation is just a partial representation of the underlying state. However, POMDPs
are ubiquitous in real robotics applications [196], such as robot navigation [50], robotic
manipulation [213], autonomous driving [268, 285], and planning under uncertainty [287,
61]. Partial observability may be due to limited sensing capability, or an incomplete system
model resulting in uncertainty about full observability.

POMDPs have been tackled with the concept of belief state [230], which represents the
agent’s current belief about the possible physical states it might be in, given the sequence
of actions and observations up to that point. These algorithms are designed to estimate
the belief state, then the value function and/or the policy are learned based on the belief
state [242]. However, these methods need to know the environment model and the state
space and they only work on tasks with small state and action spaces.

POMDPs have also been addressed with DRL, for both discrete [110, 154, 302] and
continuous [258, 285] control problems. Recurrent Neural Networks (RNN) have been
exploited in DRL to solve POMDPs by considering both the current observation and
action, and the history of the past observations and actions [114, 258, 301, 302, 154].

16

Incorporating Memory into DRL has been investigated in a number of previous
works. Deep Recurrent Q-Learning (DRQN) [110] adds recurrency to the Deep Q-Network
(DQN) [193] by replacing the first post-convolutional fully-connected layer with a recur-
rent Long-Short-Term-Memory (LSTM). The results on Atari 2600 games show DRQN
significantly outperforms DQN on POMDPs, which validates the effectiveness of memory
extracted by the LSTM for solving POMDPs. [154] investigated a similar idea but aug-
mented the structure with an auxiliary game feature, e.g. presence of enemies, learning in
3D environments in first-person shooter games. The results show the proposed architec-
ture substantially outperforms DRQN. These methods only consider past observations in
the history. [302] proposed Action-specific Deep Recurrent Q-Network (ADRQN) to also
consider past actions in the memory. However, these works are based on tasks with dis-
crete action spaces, rather than on continuous control tasks. [114] extended Deterministic
Policy Gradient (DPG) [250] to Recurrent DPG (RDPG) by adding LSTM and inves-
tigated it on continuous control tasks with partial observations. Dramatic performance
improvement was observed with memory. However, even though the observation space was
large for some tasks, the action space had relatively few dimensions for the investigated
tasks. [258] investigated RDPG on bipedal locomotion tasks with both visual and sensory
input, but only one task was examined. Different from directly optimizing RNN, [301]
proposed to augment the observations and actions with the continuous memory states and
use guided policy search to optimize a linear policy. The method shows better performance
than other policy search methods. However, the guided policy search is less powerful and
generalizable than non-linear policy. In Chapter 7, we consider continuous control tasks
with large observation and action spaces and propose LSTM-TD3 within a recurrent actor-
critic framework, which is a further improvement of RDPG by exploiting TD3 to reduce
the overestimation problem.

Deep Reinforcement Learning (DRL) [193] has been making tremendous improvement
in end-to-end learning in decision making problems by combining Deep Neural Networks
(DNNs) [156] and Reinforcement Learning (RL) [265]. While most works [193, 164, 191,
117] are evaluated in simulated tasks, applications to real world robots [153, 222, 60, 104,
299, 136] have also achieved promising performance. From the perspective of embedded
artificial intelligence, not only the robots’ capability for completing a given task effectively
and efficiently is important, but also the robots’ capacity to engage human companions
is crucial in order to embed robots into our daily life, which is one of the main research
topics in Human Robot Interaction (HRI) [244, 107, 139, 278, 100, 303].

Previous works [30, 29] studied pre-scripted engaging behavior on an interactive system,
based on expertise of architects. The demanding labour work of pre-scripted behavior
motivates research on automatically generating engaging behavior by combining RL where

17

reward function is based on an estimated curiosity namely Curiosity-based Learning Agent
(CBLA) [57]. Even though it is attractive to allow a learning agent to act based on its
intrinsic motivation, the study is conducted in a lab environment without considering
extrinsic motivation of engaging human companions.

2.2.3 Partial Observability during DRL

Many popular DRL algorithms are formulated for MDP problems. However, POMDP is
common in novel and complex control tasks [53, 85, 205] due to lack of knowledge of the
structure of the dynamics, sensor limitations, missing data, etc. In addition, most literature
assumes that the key components of an environment, namely the action and observation
space and the reward function, are given, which may not necessarily be true for complex
systems. For DRL algorithms developed for handling POMDPs [110, 154, 302, 129, 182],
researchers usually assume the tasks on hand are POMDPs, rather than first determining
if the given task is POMDP or MDP. In real applications, these assumptions may not be
satisfied. Therefore, researchers may encounter unexpected results that are different from
those usually reported in literature with these assumptions. Moreover, researchers tend
to present successes in applying DRL to robot control, but hide the failure stories behind
these successes, the reason of these failures and how they detect them, which can be useful
to make DRL approaches more useable in robotics.

Multi-step methods have been investigated in the literature for improving reward signal
propagation [281, 191, 75, 118] and alleviating the over-estimation problem [181]. However,
as far as we know, there is no work connecting multi-step methods to their potential effect
on passing temporal information when solving POMDP. In Chapter 8, we empirically show
that multi-step bootstrapping helps TD3 and SAC to perform better on POMDPs.

POMDPs have been investigated within both model-free [110, 154, 182] and model-
based [129, 254] DRL, where the tasks are known POMDPs. In Chapter 8, we do not
focus on proposing new algorithms for solving POMDPs, but empirically show that when
unsuccessfully applying DRLs to a complex control task the source of the failure may be
related to partial observability, which is applicable to applications where researchers are
not confident whether the given task is MDP or POMDP.

[226] studies the environment design, including the state representations, initial state
distributions, reward structure, control frequency, episode termination procedures, curricu-
lum usage, the action space, and the torque limits, that matter when applying DRL. They
empirically show these design choices can affect the final performance significantly. In ad-
dition, [128] focuses on investigating the challenges of training real robots with DRL rather

18

than simulated ones. [175] studies the factors that matter in learning from offline human
demonstrations, where the observation space design is highlighted as one of the prominent
aspects. These works aim to comprehensively cover broader topics in applying DRL, but
in Chapter 8 we mainly focus on the partial observability problem during DRL for robot
control. Moreover, we try to reproduce the problem encountered when applying DRL to
novel robot on toy tasks that are accessible to everyone, as we understand many domain
robots are not available to researchers who want to reproduce the experiment represented
in many works.

2.3 Preference Learning in HRI

Preference Learning (PL) [90] is one of the popular methods to learn a reward from human
teachers, which is especially useful when the manually engineered reward is extremely diffi-
cult due to large observation and action space and/or complicated dynamics, etc., and has
been applied in video game play [127], autonomous car driving task [34], recommendation
robot [296], entertainment robot [177], assembly robot [195], exoskeleton gait optimization
[162], etc. Many of these related works consider Single Agent Scenario where a robot
learns a policy based on the reward function induced from PL to complete a task without
human involvement. Even though there are also applications that investigate Multi-Agent
Scenario where the robot aims to interact with human based on human preference, it is
common that only one human is involved in the interaction with the robot. In our case, we
are interested in applying PL to LAS that aims to facilitate crowd human-robot interac-
tion enabled by the large scale of LAS which can be seen from the testbeds introduced in
Chapter 4. Moreover, the specific people in the group within the LAS will vary in the case
of public LAS installations. [177] propose to use Preference Learning System to personalize
human robot interaction during entertainment activities, but the action space is discrete
and small. PL is also employed in Learning from Demonstration (LfD) where it is used
to extrapolate the reward derived from demonstrations by comparing trajectories injected
with different degrees of action noise [46], where the preference labels are automatically
generated by assuming the trajectory with less action noise is preferred over the one with
more action noise. However[59] shows that the automatically generated preference labels
following Luce-Shepard rule [170] results in a counterproductive inductive bias. Neverthe-
less, LfD still needs user to provide demonstrations that are not random if not optimal,
Providing demonstrations for LASs is difficult because the non-stationarity, resulting from
visitor diversity among other things, means the demonstration environment will differ from
the environment during policy execution.

19

Many approaches use engineered features to represent human preference. For exam-
ple, the methods proposed to actively choose queries: Approximate Expected Utility of
Selection [7], Volume Removal [234], Information Gain [35], Maximum Regret [292] rely
on manually designed trajectory features, which are limited to tasks with intuitive and
relatively short trajectories. [293] considers preferences over partial trajectory segments,
which are thought to be more informative than single states and at the same time more
differentiable than using whole trajectories, but the approach is still limited to simple
tasks. In addition, when a reward model is learned, most works [234, 35, 292, 291] assume
a linear reward model on the trajectory features. Even though [34] proposed to use Gaus-
sian Process (GP) to fit a non-linear reward, the reward model still relies on hand-crafted
features, which is much less flexible and impractical for tasks with very large observation
spaces and complicated dynamics.

Humans may get impatient with the process of preference labelling if too many la-
bels are required, so minimizing the required number of samples is a best practice. To
improve sample efficiency, [157] proposed the unsupervised PrE-training and preference-
Based learning via relaBeLing Experience (PEBBLE), which uses intrinsic reward-based
pretraining of policy to increase behavior diversity, then uses SAC to learn policy to max-
imize the reward elicited from preference labels. The proposed method is examined on
standard simulator benchmarks with relatively low-dimensional action and observation
space. In Chapter 9, we investigated a variant of PEBBLE by using SAC but without
reward ensemble and unsupervised pre-training. In addition, Chapter 9 investigates the
performance of TD3, PPO, and LSTM-TD3 proposed in Chapter 7. In another ways,
[115] proposes few-shot preference learning for RL by putting the PL into the scenario of
meta-RL where a preference-based reward model is pretrained on a set of tasks and contin-
uously adapts to a new task enabled by Model agnostic meta-learning [84]. [291] proposes
to use scale feedback rather than binary preference choice to improve the data efficiency
by employing a sliding bar to allow users to provide more nuanced information. Besides,
[127, 35] propose to use multiple sources of human feedback to improve the data efficiency
by combining preference and demonstration. Again, the tasks investigated in these works
have much smaller observation and action space compared to that in LAS.

[158] proposed a benchmark for Preference-based Reinforcement Learning where both
continuous robot locomotion and robot control are considered. Especially, teacher irra-
tionality is considered in the simulated teacher preference. In Chapter 9, we borrow a few
ideas, e.g., irrational preference model, from this work to set up a simulation environment
to examine the application of PL to LAS.

Different from the works relying on manually designed trajectory features, [64] investi-
gates end-to-end reward model learning from human preference on MuJoCo tasks [277, 43],

20

where human preference teachers are asked to provided preference according to a given cri-
teria. It was shown that after hundreds of preference labels, the policy learned from the
reward function induced from human preference is comparative to the hand-crafted reward.
However, only one on-policy DRL algorithm, i.e., PPO, is investigated, and the simulated
tasks have much smaller observation space than our case. Most importantly, the robots
within these tasks are not intended to interact with human, i.e., single agent scenario. In
Chapter 9, we investigate both on-policy, i.e., PPO, and off-policy, i.e., TD3, SAC, and
LSTM-TD3, DRL algorithms on LAS with different types of preference, namely simulated
preference, constrained human preference and unconstrained human preference.

21

Chapter 3

Background

3.1 Decision Making

Decision Making is the process of perceiving the environment and making an action choice
accordingly to achieve some goals, and is broadly studied in Psychology [252], Social Science
[252], Optimization Theory [124], Robotics [197], Artificial Intelligence [265, 230], Human
Robot Interaction [72], Economics [253] and Manufacturing [103], etc. This thesis builds
on top of a specific type of decision process called Markov Decision Process (MDP) and
its generalization to Partially Observable Markov Decision Process (POMDP).

3.1.1 Markov Decision Process (MDP)

A Markov Decision Process (MDP) is a sequential decision process for a fully observable,
stochastic environment with a Markovian transition model and additive rewards [33, 230].
Formally, MDP can be defined as a 4-tuple (S,A, P,R), where S is the state space, A is
the action space, P (s′|s, a) = p(st+1 = s′|st = s, at = a) is the transition probability that
action a in state s at time t will lead to a new state s′ at time t + 1, and R(s, a, s′) ∈ R
provides the immediate reward r indicating how good taking action a is in state s after
transitioning to a new state s′. In MDP, it is assumed that the state transitions defined in
P satisfy the Markov property, i.e. the next state s′ only depends on the current state s
and the action a. The goal for an agent in MDPs is to choose actions at each time step that
maximize its expected future discounted return E [

∑∞
t=0 γ

trt], where rt is the immediate
reward received at time t and γ ∈ [0, 1] is the discount factor that describes the preference
of the agent for current rewards over future rewards.

22

3.1.2 Partially Observable Markov Decision Process (POMDP)

Partially Observable Markov Decision Process (POMDP) [16, 48, 230] is a generalization
of a MDP, which does not assume that the state is fully observable, and is defined as a
6-tuple (S,A, P,R,O,Ω), where S, A, P , and R are the same as that in MDP, with an
additional observation space O and observation model Ω. Although the underlying state
transition in a POMDP is the same as in an MDP, the agent cannot observe the underlying
state, instead it receives an observation ot+1 ∈ O when reaching the next state st+1 with
the probability Ω(ot+1 | st+1). If the observation ot+1 can fully represent the current state
st+1, a POMDP will reduce to a MDP.

For some cases, using a history of past observations and/or actions and/or rewards up
to time t as a new observation can reduce a POMDP to MDP. For example, for tasks
where the velocity is part of the state, using a history of past positions of a robot as the
observation can make the POMDP, where only position is included in its observation, a
MDP, as the velocity can be inferred from the two consecutive positions. For these cases,
history aids with dealing with partial observability. The goal for an agent in POMDPs is
the same as that in MDPs.

3.2 Reinforcement Learning (RL)

Reinforcement Learning (RL) [265] solves decision problems such as MDP and POMDP
based on a learning paradigm where an agent learns to act by trial-and-error without know-
ing the underlying transition and reward model. Two agent and environment interaction
models are commonly adopted as shown in Fig. 3.1, where Fig. 3.1a shows the classic
view and Fig. 3.1b shows a more realistic view. From the classic view, an agent perceives
the environment through its observation and takes action in the environment which will
move to the next state represented by a new observation and give a reward signal, gen-
erated by the critic inside the environment, to the agent. Then, a new interaction will
be repeated. The classic view assumes the reward is part of the environment, which is a
simplified model of the reality where the reward signal may be internally generated by the
brain of an organism. Therefore, [62, 255] expanded the classic view by differentiating the
external environment from the internal environment as shown in Fig. 3.1b. Within the
expanded view, the internal environment and the agent together can be seen as an organ-
ism that interacts with the external environment. The internal environment integrates the
exteroception and proprioception to form an observation and send a reward signal to the
agent.

23

(a) Classic View (b) Expanded View

Figure 3.1: Agent and Environment Interaction in RL [62]

Even though the agent and environment interaction models, i.e. classic view and ex-
panded view, are different, the agent works in the same way. Specifically, at a discrete time
t an agent interacts with the external/internal environment by taking action at according
to either a stochastic policy π(at | ot) or a deterministic policy at = µ(ot) when observing
the representation ot of the current state st. Then, the environment transitions to the next
state st+1 represented by a new observation ot+1 and returns an immediate reward signal
rt. By continuously interacting with the environment and receiving new observations and
rewards, an agent learns an optimal policy to maximize the expected future return.

There are three functions commonly used in RL algorithms. For MDPs where the
observation o fully represents the state s, the state-value function V π(s) of a state s under
a policy π represents the expected return starting from s and following π thereafter, which
is formally defined as follows:

V π(s)
.
= Eπ

[
∞∑
i=0

γirt+i | St = s

]
, (3.1)

where the γ is the discount factor. Similarly, the action-value function Qπ(s, a) of taking
action a in state s under a policy π is the expected return starting from s, taking a, and
following π thereafter, which is defined as:

Qπ(s, a)
.
= Eπ

[
∞∑
i=0

γirt+i | st = s, at = a

]
. (3.2)

24

The advantage Aπ(s, a) of taking action a in state s is defined as

Aπ(s, a)
.
= Qπ(s, a)− V π(s), (3.3)

when following a policy π. For POMDP, since the state s is not directly observable, the
observation o is used in learning these value functions or policy. To simplify the notation,
for the rest of this paper, we will use o to represent s.

3.2.1 Traditional RL Methods

Traditional RL methods employ either tabular representation or simple function approxi-
mation [265], with hand-crafted feature construction, to represent the value function. Even
though these methods are well studied with comparatively clear properties and are more
stable, they are not suitable to tasks with continuous and high-dimensional observation
and action space which are ubiquitous in the real world. This work aims to apply RL tech-
niques to large interactive systems where hundreds of sensors and actuators are embedded,
which limits the applicability of traditional RL.

3.2.2 Multi-step Methods

Multi-step Methods (also called n-step methods) [265] refer to RL algorithms utilizing
multi-step bootstrapping to facilitate fast propagation of knowledge about the outcomes
of selected actions, by looking n steps forward. Formally, n-step discounted accumulated
reward following policy π can be expressed as

R
(n)
t =

n−1∑
i=0

γirt+i, (3.4)

where n is the step size after which the bootstrapped value will be used. The bootstrapped
value corresponds the value estimated based on other estimates. The idea of bootstrap-
ping originates from Dynamic Programming [265] and corresponds to the operation where
the estimates are updated on the basis of other estimates. Combining with the n-step
discounted accumulated reward defined in Eq. 3.4, the n-step bootstrapping Q̂(n) of ob-
servation and action pair (ot, at) can be defined as

Q̂(n)(ot, at) = R
(n)
t + γnQ(ot+n, a), (3.5)

where a ∼ π (a|ot+n) and Q is the approximation of the true state-action value function
Qπ of policy π defined in Eq. 3.2. Note that when n = 1, Eq. 3.4 reduces to 1-step
bootstrapping, which is commonly used in Temporal Deference (TD) based RL.

25

3.3 Deep Reinforcement Learning (DRL)

Deep Reinforcement Learning (DRL) [192] [164] learns the value function and policy in an
end-to-end manner by recruiting deep neural networks. In effect, DRL uses Deep Neural
Networks (DNN) for approximating the policy and value functions by reformulating RL as
supervised learning. However, collecting data through exploration results in data that is
not Independent and Identically Distributed (IID), which violates some key assumptions
in supervised learning. The replay buffer employed in DRL helps address this problem
by randomly sampling a batch of experiences from a buffer with millions of experiences,
which breaks the time dependence between consecutive experiences. Learning both the
policy and value networks by bootstrapping the value with the current policy and value
networks may cause very unstable learning and may not converge at all, as the current
policy and value networks continuously change. To stabilize the learning, DRL employs
target neural networks, which are slowly updated towards the current policy and value
networks. Since the tasks investigated in this work are all continuous control tasks, more
interest will be given to DRL methods that are applicable to tasks with continuous action
space, which will be detailed in the rest of this chapter.

3.3.1 DRL Foundations

Two types of deep neural networks, namely fully connected Multi-Layer Perceptron (MLP)
and Long-Short-Term-Memory (LSTM), are employed in this work. In particularly, MLP
is a powerful function approximator, whereas LSTM is especially beneficial to incorporate
memory information in POMDPs.

Multi-Layer Perceptron (MLP)

Multi-Layer Perceptron (MLP) is a fully connected multi-layer feed-forward neural net-
work. Its structure is shown in Fig. 3.2. MLP has powerful function approximation
capacity known as Universal Function Approximation Theorem [121]. When MLP is used
to approximate an actor, i.e., a policy, it takes an observation as input and generates
an action as output for deterministic policy or the mean and standard deviation as out-
puts for stochastic policy. When MLP is used to approximate a critic, if the critic is a
action-value function, it takes an observation and an action as input and generates a real
value as an output, whereas if the critic is a state/observation-value function, it takes a
state/observation as input and generates the value as an output.

26

Figure 3.2: MLP Diagram

Long-Short-Term-Memory (LSTM)

Long-Short-Term-Memory (LSTM) [119] is a type of Recurrent Neural Network (RNN)
[99] that has an outer recurrence from the outputs to the inputs of the hidden layer and
also an internal recurrence between LSTM-Cells. As shown in the circuit diagram in Fig.
3.3, within a LSTM-Cell, a system of gating units controls the flow of information, (Fig.
3.3) and enables the remembering and forgetting of information given a sequence of inputs.
To ease understanding, Fig. 3.3 also shows the unfolded diagram. The forward calculation

Figure 3.3: Circuit and Unfolded Diagram of LSTM-Cell

27

of the LSTM-Cell is defined in Eq. 3.6

it = σ(Wiixt + bii +Whiht−1 + bhi)

ft = σ(Wifxt + bif +Whfht−1 + bhf)

c̃t = tanh(Wigxt + big +Whght−1 + bhg)

ot = σ(Wioxt + bio +Whoht−1 + bho)

ct = ft ⊙ ct−1 + it ⊙ c̃t
ht = ot ⊙ tanh(ct),

(3.6)

where ct and ht−1 are the cell and hidden states at time t − 1, xt is the input at time
t, and it, ft, c̃t and ot are the input, forget, cell and output gates, respectively. σ is the
sigmoid activation function, and ⊙ is the Hadamard, i.e. element-wise, product. ct and
ht are the cell and hidden states at time t. The trainable parameters in the LSTM-cell
are the weights Wii, Whi, Wif , Whf , Wig, Whg, Wio, Who and the biases bii, bhi, bif , bhf ,
big, bhg, bio, bho, where the subscripts indicate the source and the destination of the neural
connections. The new cell state ct is a combination of forgetting something in the previous
cell state ct−1 and remembering something new coded in cell gate c̃t, and the output of the
hidden layer is further controlled by the output gate ot. In this way, LSTM is able to learn
both the short-term and long-term dependencies.

3.3.2 Overestimation Problem

The Overestimation Problem [274] is inevitable when function approximation is employed
in Q-Learning based value estimation. Generally speaking, the generalization error induced
by function approximation can lead to systematic overestimation of the value estimations
because of the max operation used in bootstrapping the target Q value in Q-learning, which
will be formally described in Eq. 3.7 - 3.10. As a consequence of this overestimation, as
well as the large discount factor typically used in RL, the overestimation will lead to failure
to learn an optimal policy based on the estimated value function. Formally, assume the
implicit true value function Qtrue is approximated by a function approximator Qapprox, e.g.
a neural network, that introduces some noise Y a′

o′ to the estimates of Qtrue as

Qapprox (o′, a′) = Qtrue + Y a′

o′ , (3.7)

where Y a′

o′ is modeled by a zero-mean random variable, and Q-learning is used to update
Q following

Q (o, a)← r + γmax
a′

Q (o′, a′) , (3.8)

28

where Q indicates the value function and can be either the approximator Qapprox or the
true value function Qtrue. Then, the error Zo,a between the estimated and the true Q in
(o, a) is defined as

Zo,a
.
= r + γmax

a′
Qapprox (o′, a′)−

[
r + γmax

a′
Qtrue (o′, a′)

]
= γ

[
max
a′

Qapprox (o′, a′)−max
a′

Qtrue (o′, a′)
]
.

(3.9)

According to [274], zero-mean noise Y a′

o′ may easily result in Zo,a with positive mean, i.e.,

E
[
Y a′

o′

]
= 0 ∀a′ often

===⇒ E [Zo,a] > 0. (3.10)

Intuitively, due to the random noise Y a′

o′ , there might be some actions corresponding to
Qapprox > Qtrue and some others corresponding to Qapprox < Qtrue. However, the max
operator always picks the largest one, making it prone to overestimation. Fig. 3.4 illustrates
the informal view of overestimation. At the beginning (left panel) there is overestimation
bias in the approximation. Then, because of the bootstrapping and max operation used to
update the approximation Q, the overestimation bias is also bootstrapped and exacerbated
(middle and right panel), which finally causes the wrong policy to be derived from the
approximation Q.

Figure 3.4: Informal View of Overestimation, where the blue lines indicate the true Q, the
dotted red lines are the approximated Q before the current approximated Q in solid red
lines, and the black arrows indicate the overestimation bias between the approximation
and the true Q.

3.3.3 Deep Deterministic Policy Gradient (DDPG)

Deep Deterministic Policy Gradient (DDPG) [164] adapts the ideas, i.e. replay buffer
and target networks, underlying of the success of the Deep Q-Learning [192] to continuous

29

control within the Actor-Critic framework. Formally, the critic Q, i.e. the Q-value function,
is approximated by a neural network parameterized by θQ, and the actor µ, i.e. the
deterministic policy, is also approximated by a neural network parameterized by θµ. Then,
the critic Q is optimized by minimizing the expected mean square error between the target
Q̂ and the predicted Q-value Q, as follows:

minθQE{(ot,at,rt,ot+1,dt)}Ni=1
(Q(ot, at)− Q̂(ot, at))

2, (3.11)

where {(ot, at, rt, ot+1, dt)}Ni=1 is a mini-batch of N experiences randomly sampled from the

replay buffer D, and the target Q̂ is defined as:

Q̂(ot, at) = rt + γ(1− dt)Q−(ot+1, a
−), (3.12)

where rt is the immediate reward after taking action at in observation ot, γ is the discount
factor, dt is the boolean indicator of if ot+1 corresponds to the termination state, Q− is
the target critic, and a− = µ−(ot+1) based on target actor µ−. The target actor-critic are
updated periodically to the online actor-critic according to

θµ− ← ρθµ− + (1− ρ)θµ and θQ− ← ρθQ− + (1− ρ)θQ. (3.13)

The actor µ is optimized to maximize the approximated Q-value Q(ot, µ(ot) with respect
to the parameter θµ of the actor, as follows:

maxθµ E{(ot)i}Ni=1
Q(ot, µ(ot)), (3.14)

where {(ot)i}Ni=1 are N observations sampled from the replay buffer.

3.3.4 Twin Delayed Deep Deterministic Policy Gradient (TD3)

Twin Delayed Deep Deterministic Policy Gradient (TD3) [89] is a variant of DDPG to
address the function approximation error in Actor-Critic methods, especially the overesti-
mation problem [274], in Actor-Critic methods. Specifically, TD3 employs two critics Q1

and Q2, parameterized by θQ1 and θQ2 respectively, and uses the minimum of the pre-
dicted optimal future return in observation ot+1 to bootstrap the Q-value of the current
observation ot and action at, as follows:

Q̂(ot, at) = rt + γ(1− dt)minj=1,2Q
−
j (ot+1, a

−), (3.15)

where rt is the immediate reward after taking action at in observation ot, γ is the discount
factor, dt is the boolean indicator of if ot+1 corresponds to the termination state, Q−j is

30

the target critic, and a− = µ−(ot+1) + ϵ where ϵ ∼ clip(N(0, σ),−c, c) is the clipped target
action noise with mean 0, standard deviation σ and boundary c, and µ− is the target actor.

With the bootstrapped target Q-value Q̂(ot, at), critics Q1 and Q2 are optimized to
minimize the mean square error between the target and the predicted Q-value, as follows:

minθQjE{(ot,at,rt,ot+1,dt)}Ni=1
(Qj − Q̂(ot, at))

2, (3.16)

where {(ot, at, rt, ot+1, dt)}Ni=1 is the randomly sampled mini-batch of size N from the replay
buffer D.

The actor µ is optimized to maximize the approximated Q-value Qj(ot, µ(ot) with re-
spect to the parameter θµ of the actor, as follows:

maxθµ E{(ot)i}Ni=1
Q(ot, µ(ot)), (3.17)

where j = 1 or 2, and {(ot)i}Ni=1 are states sampled from the replay buffer. The target
networks update in TD3 is similar to that in DDPG as defined in Eq. 3.13.

3.3.5 Soft Actor-Critic (SAC)

Soft Actor-Critic (SAC) [106] is also an off-policy actor-critic DRL and employs two neural
networks to approximate two versions of the state-action value function (named critics)
Qi=1,2 parameterized by θi=1,2. Learning two versions of the critic is used to address the
function approximation error by taking the minimum over the bootstrapped Q-values in
the next observation ot+1. Different from TD3, SAC gives a bonus reward to an agent at
each time step, proportional to the entropy of the policy at that timestep. Different from
TD3 learning a deterministic policy µ, SAC learns a stochastic policy πψ parameterized by
ψ. Given a mini-batch of experiences (ot, at, rt, ot+1) uniformly sampled from the replay
buffer D, the target bootstrapped Q-value Q̂(ot, at) of taking action at in observation ot
can be defined with the target networks as follows:

Q̂(ot, at) = rt + γ

[
min
i=1,2

Qθ−i

(
ot+1, a

−)+ αH(π(·|ot+1))

]
, (3.18)

where the target Q-value functions are parameterized by θ−i , a− ∼ πψ− (a|ot+1) with target
policy πψ− , and α ≥ 0 balances the maximization of the accumulated reward and entropy.
Then, Qi can be optimized by minimizing the expected difference between the prediction
and the bootstrapped value with respect to parameters θi, following

min
θi

E(ot,at,rt,ot+1)∼D

[
Qθi(ot, at)− Q̂(ot, at)

]2
, (3.19)

31

where (ot, at, rt, ot+1) are experiences sampled from replay buffer D. The policy is updated
to maximize the expected Q-value on ot, a where a is sampled from policy πψ(·|ot) and the
expected entropy of π in observation ot as follows:

max
ψ

Eot∼D
[

min
i=1,2

Qωi(ot, a) |a∼πψ(a|ot) +αH(πψ(·, ot))
]
. (3.20)

The target networks update in SAC is similar to that in DDPG as defined in Eq. 3.13.

3.3.6 Proximal Policy Optimization (PPO)

Proximal Policy Optimization (PPO) [241] optimizes a policy by taking the biggest possible
improvement step using the data collected by the current policy, but at the same time
limiting the step size to avoid performance collapse. A common way to achieve this is to
attenuate policy adaptation. Formally, for a set of observation and action pairs (ot, at)
collected from the environment based on the current policy πφk , the new policy πφ is
obtained by maximizing the expectation over the loss function L(ot, at, φk, φ) with respect
to the policy parameter φ as maxφ E(ot,at)∼πφkL(ot, at, φk, φ). The loss function L is defined
as

L(ot, at, φk, φ) = min

(
πφ(at|ot)
πφk(at|ot)

Aπφk (ot, at), clip(
πφ(at|ot)
πφk(at|ot)

, 1− ϵ, 1 + ϵ)Aπφk (ot, at)

)
,

(3.21)
where ϵ is a small hyperparameter that roughly says how far away the new policy is allowed
to go from the current one, and Aπφk (ot, at) is the advantage value. A common way to
estimate the advantage is called generalized advantage estimator GAE(λ) [240], based
on the λ-return and the estimated state-value V (ot) in observation ot as Aπφk (ot, at) =
Rt(λ)− Vυ(ot). The Rt(λ) is defined by

Rt(λ) = (1− λ)
T−t−1∑
n=1

λn−1R
(n)
t + λT−t−1R

(T−t)
t , (3.22)

where λ ∈ [0, 1] balances the weights of different multi-step returns and the summation of

the coefficients satisfies 1 = (1− λ)
∑T−t−1

n=1 λn−1 + λT−t−1. Particularly, R
(n)
t is defined as

R
(n)
t =

∑t+n−1
i=t γi−trt + γnVυ(ot+n) that is bootstrapped by state-value Vυ(ot+n) in obser-

vation ot+n. The state-value function Vυ is optimized to minimize the mean-square-error
between the predicted state value Vυ(ot) and the Monte-Carlo return Rt =

∑T
i=t γ

i−trt
based on the experiences collected by the current policy, as minυ Eot [Vυ(ot)−Rt]

2.

32

3.4 Preference Learning

Preference Learning (PL) [90, 65, 97, 122] is essentially a supervised learning of a ranking
function which maps an input to a real number as an indicator of the order of the input.
As the learned ranking function can be interpreted as the reward function in RL, PL has
also being studied in RL [6, 7, 293, 295] and Deep RL [64, 294, 127] as a way to infer the
underlying reward function from the provided ranking information, which is particularly
useful for tasks,e.g. tasks with large action space, where either manually specifying the
reward function or providing demonstration is difficult. On the contrary, ranking informa-
tion, especially preference, is easy to be specified by users. Therefore, this work chooses
PL as the way to learn the underlying reward function from user preferences in order to
eliminate the dependency of manually designed reward function.

When PL is introduced into the RL setting, indicated as PL+RL, there are three
key differences compared to the standard RL setting. Firstly , as a type of Interactive
Reinforcement Learning (IntRL), PL+RL involves two types of interaction. In particular,
in addition to the interaction between the agent and environment in the standard RL,
there is another interaction between the preference teacher and preference learner, where
the preference teacher provides preferences to the learner and the later infers the underlying
reward function of the teacher. Secondly , in PL+RL the reward function is normally not
assumed to be provided by the environment but learned from the human preference, even
though it is still possible to have a handcrafted reward function within the environment and
mix it with the reward function learned by PL. Thirdly , the reward function provided by
PL is non-stationary, because the collection of the preference labels is a recursive process
and the reward function is also periodically trained on the collected preference labels.
Fig. 3.5 shows the aforementioned interactions and the generation of the reward signal
in PL+RL. In PL+RL, the goal of PL is to learn the reward function approximating the
underlying reward function of the human, as well as the policy that maximizes the learned
reward function.

Formally, PL+RL can be defined as a MDP, but does not assume the reward function
r exists in the environment. Instead, it assumes that there is a preference teacher who can
express preferences between trajectory segments. A trajectory segment is a sequence of k
observations and actions pairs, σ = ((ot, at) , (ot+1, at+1) , · · · , (ot+k−1, at+k−1)) ∈ (O × A)k,
collected during the interaction between an agent and the environment. Given a pair of
segments (σ0, σ1), a preference teacher indicates which segment is preferred, i.e., y = 1 if
σ1 is preferred over σ0 indicated as σ0 ≺ σ1, or y = 0 if σ0 is preferred over σ1 indicated
as σ0 ≻ σ1, or y = −1 if σ0 and σ1 are equally preferred indicated as σ0 ∼ σ1. By

33

Figure 3.5: Agent and Environment Interaction and Preference Teacher and Preference
Learner Interaction in PL+RL

interacting with the preference teacher, a set
{

(σ0, σ1, y)
i
}M
i=1

of M preference labels are

collected. Given a reward function r̂(o, a) ∈ R as a preference-predictor, if we view r̂ as
an approximator of a latent factor r determining the preference teachers’ judgement and
assume the preference teachers’ probability of preferring one segment over another of a
segment pair depends exponentially on the summation over the values of the latent reward
within the segment, then we have

P̂
[
σ0 ≻ σ1

]
=

e
∑k−1
i=0 r̂(o0t+i,a0t+i)

e
∑k−1
i=0 r̂(o0t+i,a0t+i) + e

∑k−1
i=0 r̂(o1t+i,a1t+i)

, (3.23)

and r̂ can be optimized by minimizing the cross-entropy loss between the predictions P̂
and the labels

L (r̂) = −
∑

(σ0,σ1,y)∈D

(1− y)P̂
[
σ0 ≻ σ1

]
+ yP̂

[
σ0 ≺ σ1

]
, (3.24)

where D =

{
(σ0, σ1, y) |

{
(σ0, σ1, y)

i
}M
i=1

and y ̸= −1

}
which excludes the segment pairs

that are equally preferred.

In practice, PL is more challenging than the simplified theoretic representation. For
example, preference labels are collected periodically and then used to estimate the reward
function, which causes the reward signals used for policy learning to be non-stationary. In
addition, the segment generation and pairing are nontrivial, as they affect the effectiveness
and efficiency of preference labelling. Besides, the observation and action are normally

34

represented as numeric vectors for most applications which are not friendly for preference
teachers to assess. Therefore, in reality video clips corresponding to the sequence of the
observation and action pairs are used for preference labelling. These practical challenges
will be discussed in Chapter 9.

35

Chapter 4

Experiment Testbeds

The two physical testbeds, namely Aegis Canopy and Meander introduced in this chapter,
are developed by Philip Beesley Studio Inc. (https: // www. philipbeesleystudioinc.
com). For the LAS Simulation Toolkit, the LAS-Behavior-Engine is developed by the en-
gineering team of Philip Beesley Studio Inc. and their collaborators. The author of this
thesis solely developed the rest of the simulation toolkit.

In this chapter, we will introduce two physical testbeds and one simulation toolkit.
The first physical testbed Aegis Canopy was installed in a museum and exhibited for few
months. Even though the interaction between the testbed and the visitors is unconstrained,
the visitors need to pay for a ticket to access to it. However, the second physical testbed
Meander is a long-term installation at an event venue where part of the installation is
publicly accessible. Therefore, the second testbed is completely uncontrolled and closer to a
wild study. The physical testbeds are indispensable to our understanding on how to engage
people with an interactive system in a uncontrolled environment, but the development with
physical testbeds is too expensive especially when dozens of design choices are involved.
For this sake, we developed a simulation toolkit to simulate the physical testbed and
visitors. The physical testbeds support ecological validation in real-world environments
and with diverse users, while development of the simulation toolkit helps to address the
slow algorithm development and poor experiment reproducibility challenges when endowing
interactive systems with engaging behavior, as identified in Chapter 1.

36

https://www.philipbeesleystudioinc.com
https://www.philipbeesleystudioinc.com

4.1 Testbed 1: Aegis Canopy

In this section, we describe the physical system used as the testbed in Chapter 5, and the
design of Pre-scripted behaviors (PBs) that drive the interactive behavior of the system.
The PBs, which are designed by expert architects and interactive system designers, are the
baseline we use to compare to the learning system described in Section 5.1 below.

The testbed Aegis Canopy was part of the exhibition Transforming Space, which consists
of two sculptures, i.e. the Aegis Canopy and Noosphere, as shown in the top-left sub-figure
in Fig. 4.1. The exhibition was exhibited at the Royal Ontario Museum (ROM) in Toronto,
Canada from June 2 to October 8, 2018 (https://www.rom.on.ca/en/philip) and was
publicly accessible to over 60,000 visitors who had toured the exhibit.

Since this research mainly used the Aegis Canopy part of the installation, we will
describe the design of the Aegis Canopy in detail, and subsequently refer to the Aegis
Canopy part of the installation as the Living Architecture System (LAS).

4.1.1 Physical Installation

The LAS hangs overhead within the Aegis Canopy space, with an approximate height of
1.8 meters. Fig. 4.1 shows the front view of the LAS. The active part of the system is
composed of eight speakers and 24 nodes.

Each node in the LAS consists of six Fronds, one Moth, and one high-power LED as its
actuated systems and one infrared (IR) sensor, as shown in Fig. 4.2. Each Frond includes
a shape memory alloy (SMA) wire which contracts when voltage is applied, pulling a cord
attached to a flexible co-polyester sheet, as illustrated in Fig. 4.2a. The contraction gen-
erates a smooth and gentle movement, and when the applied voltage is removed the SMA
slowly relaxes to its original shape.1 The Moth consists of wing-like flexible flaps attached
to a small DC vibration motor that vibrates when activated, making the moth appear to
be flapping its wings. The Moth also houses two small LED lights which illuminate during
vibration. The single high-power LED located beneath the central flask can be faded to
illuminate the colored liquid in the flask. The IR sensor senses the proximity of visitors,
and generates a continuous reading proportional to the distance between any part of the
body of a visitor and the sensor location in the Aegis Canopy.

1A video illustrating the SMA assembly contracting and relaxing can be found in https://youtu.be/

YcreirXrRF4.

37

https://www.rom.on.ca/en/philip
https://youtu.be/YcreirXrRF4
https://youtu.be/YcreirXrRF4

Figure 4.1: Installation Diagram and Interaction Types

(a) Node Diagram (b) Fully Assembled Node

Figure 4.2: Diagram of Node in the LAS

There are eight speakers distributed throughout the LAS. These speakers play two
types of sound samples. The first sound is a background sound played on a continuous
loop. The second sound is triggered by the IR sensors. These speakers are independently
controlled by specialized software, so here we treat them as background behaviors.

The arrangement of the speakers and nodes is illustrated in Fig. 4.3, where the 24 nodes
are highlighted by red circles. A photo of the physical LAS is shown in the bottom-left of

38

Fig. 4.3. The 24 nodes are at varying height levels. Specifically, nodes at the left and right
edges are slightly higher than those in the middle of the LAS. This spatial arrangement
distinguishes three types of visitor engagement with the system. When visitors observe
the LAS but are not underneath the LAS, no IR sensor is activated, i.e., visitors are
observing the LAS but cannot be observed by the LAS sensors. As shown in Fig. 4.1,
when visitors walk or stand underneath the LAS, which we name Passive Interaction, the
IR sensors above them are activated, but the distance between the visitor and the system
is still large, corresponding to a small reading of the IR sensor. Visitors engaging in Active
Interaction might also reach their hand upwards to interact with the LAS, resulting in a
higher activation value of the closest IR sensor.

Two web cameras (labeled Camera1 and Camera2 in Fig. 4.1 and Fig. 4.3) are mainly
used to record video during our experiment and to calibrate sensory data; they are not
used by the Deep Reinforcement Learning (DRL) algorithm. These two web cameras are
mounted on the wall in the front-right and back-left corners of the LAS space.

4.1.2 Pre-scripted Behavior

Pre-scripted behavior (PB) is the interactive behavior manually designed by the architects,
and it is also the baseline used for comparison with adaptive behaviors we will describe in
Section 5.1. Within the PB mode, the system can be in two types of states: active and
background, in which behaviors are mainly controlled by 17 parameters (shown in Table
4.1) specified by the architects. The values in the Default and Range columns are used in
the PB and Parameterized Learning Agent (PLA), which will be introduced in Chapter 5,
modes, respectively.

The active state is entered if any of the IR sensors is triggered. In this state, the node
corresponding to the triggered sensor will first activate its local reflex behavior. In the
local reflex behavior, the Moth, the LED and six SMAs attached to the same node as
the triggered IR sensor will be activated. When a Moth is activated, it will ramp up the
vibration to its maximum Imax over time Tmru, hold there for a period of time Tmho, then ramp
down over (Tmrd). After a waiting period (Tmgap) following the sensor trigger, the LED on
the same node is activated. It ramps up over time period (T lru) to its maximum brightness
(Imax), holds for a period of time (T lho) and then gradually dims over (T lrd). At the same
time, the SMAs are activated one after another separated by (T smagap). A step voltage is
applied to contract the SMA, after which a cooling-down time is started during which this
SMA will not be activated again. The activation profile of the SMA wires is fixed in order
to protect them from overheating, so these are not included in the parameterization shown

39

Figure 4.3: LAS: Aegis Canopy

Figure 4.4: Pre-scripted Behavior

40

Table 4.1: Pre-scripted Behavior Parameters

Parameters Meaning Default Range

Tmru, T lru
ramp up time: the time it takes for the Moths or

LEDs to increase up to their maximum value
1.5 [0, 5]

Tmho, T
l
ho

hold time: the time that Moths and
LEDs are held at their maximum value

1 [0, 5]

Tmrd , T lrd
ramp down time: the time it takes for

Moths and LEDs to fade down to 0
2.5 [0, 5]

Imax
maximum percentage of duty cycle

per PWM period
78 [0, 100]

Tmgap
the time gap between the Moth starting to
ramp up and the LED starting to ramp up

1.5 [0, 5]

T smagap

the time gap between activation of
each SMA armon the nodes

0.3 [0, 5]

T ngap
the time gap between activation of each node

during neighbour behavior
1.8 [0, 5]

Tminbg

minimum time to wait before activating
background behavior

45 [15, 60]

Tmaxbg

maximum time to wait before activating
background behavior

90 [60, 100]

Tw time to wait before trying to pick a moth or LED 5 [0, 10]

P
probability of successfully choosing an actuator

during background behavior
0.4 [0, 1]

Tsma time between choosing SMAs to actuate 0.7 [1, 5]
Tminsw minimum time to wait before performing sweep 120 [5, 200]
Tmaxsw maximum time to wait before performing sweep 240 [200, 400]

The unit of all time parameters is seconds, except Imax is percentage and P is probability.

in Table 4.1. After the local reflex behavior is triggered, the IR-detected event will be
propagated from the triggered node to neighbouring nodes after a delay (T ngap), until the
edge nodes of the LAS are reached (shown in Fig. 4.4), causing a cascade of local reflex
behaviors at each node.

If no IR sensor triggering happens for a random time within
[
Tminbg , Tmaxbg

]
, the system

goes into the background state. In this state, the LEDs and moths will randomly activate

41

their local reflex behaviors with probability P every amount of time Tw. The SMAs are
also activated independently with the same probability P every Tsma.

In either state, a sweep of LEDs in either direction along the longer axis of the instal-
lation happens at random time intervals within [Tminsw , Tmaxsw]. During the sweep, each LED
activates local reflex behavior and propagates in the direction of the sweep.

4.2 LAS Simulation Toolkit (LAS-Sim-Tkt)

Figure 4.5: LAS-Sim-Tkt Diagram.

To facilitate algorithm development and validation, we developed a LAS Simulation
Toolkit (LAS-Sim-Tkt). As shown in Fig. 4.5, LAS-Sim-Tkt is a combination of LAS-

42

Figure 4.6: Timeline of Modules in LAS-Sim-Tkt, where all modules are running in parallel,
and the components within a module might either follow a strict sequential sequence or
run in parallel depending on the logical structure of the components.

43

Behavior-Engine (LAS-BE), LAS-Message-Server (LAS-MS), LAS-BE-Influence-Engine-
GUI (LAS-BE-IE-GUI), LAS-Unity-Simulator (LAS-Uni-Sim), and LAS-Agent-Internal-
Environment (LAS-Intl-Env)2. The communication among the modules is through the
LAS-MS, where the LAS-BE, the LAS-BE-IE-GUI, the LAS-Uni-Sim and the LAS-Intl-
Env communicate by passing Open Sound Control (OSC)3 messages, while the LAS-BE
and the LAS communicate via User Datagram Protocol (UDP). As indicated with dashed
boxes in Fig. 4.5, there is no need to have a LAS physical installation and/or LAS-Uni-Sim
in order to run a simulation. Fig. 4.6 illustrates the parallel running of the modules in
the LAS-Sim-Tkt along a timeline, where the components within a module might either
follow a strict sequential sequence or run in parallel depending on the logical structure
of the components, which will be elaborated in the following subsections. In particular,
from the top to the bottom of Fig. 4.6, the action generated by LAS-Agent is passed to
LAS-Intl-Env to be interpreted. Then, it will be passed to LAS-BE to be executed by
sending commands to the actuators in LAS and/or LAS-Unity-Sim, where LAS, i.e. the
physical installation, is not needed for simulation and LAS-Unity-Sim is used for better
visualization and for simulating visitors. From the bottom to the top of Fig. 4.6, sensory
readings are transmitted to LAS-BE. After collected by LAS-BE, sensory readings will be
sent to LAS-Intl-Env for constructing observation which will be used by LAS-Agent to
learn policy and infer next action, etc.

LAS-Sim-Tkt is used for initial algorithm development and validation, especially when
the accessibility of a physical installation is very limited. An additional function of the
toolkit is to pretrain a learning agent within the simulator and transfer the learned policy
to the physical system. The toolkit has been built into a Singularity (https://sylabs.io)
container and opensourced on https://github.com/LinghengMeng/las_sim_tkt.

In this section, we will describe each module of the toolkit. The toolkit provides the
infrastructure for our experiments, which necessitates a detailed description.

4.2.1 LAS-Behavior-Engine (LAS-BE)

LAS-Behavior-Engine (LAS-BE) is developed by the engineering team at the Philip Beesley
Studio Inc., which is a core middle layer module based on Processing (a flexible software
sketchbook and a language for learning how to code within the context of the visual arts)4,

2The LAS-SoundController in Fig. 4.5 only works with the physical LAS rather than the simulated
LAS.

3https://en.wikipedia.org/wiki/Open_Sound_Control
4https://processing.org/

44

https://sylabs.io
https://github.com/LinghengMeng/las_sim_tkt
https://en.wikipedia.org/wiki/Open_Sound_Control

Figure 4.7: Screenshot of LAS-BE.

and is responsible for interpreting high-level behavior design into control commands for
hardware. Fig. 4.7 shows a screenshot of the LAS-BE. The LAS-BE is used to chore-
ograph the LAS’s interactive behavior, which is challenging due to the large number of
actuators (up to hundreds of actuators within a typical installation), the wide area distri-
bution of sensors and actuators (e.g. spread over a whole building), and the complexity
of social factors during HRI (e.g. many-to-many interaction). LAS-BE eases the design
of the pre-scripted behaviors for architects and enables a parameterized action space for
a learning agent. Although a detailed design of the LAS-BE is out of the scope of this
work, we would like to briefly introduce the high-level concepts invented for LAS-BE to
highlight the complexity of designing pre-scripted behaviors and to emphasize the necessity
for introducing AI technology to this application field.

At a high level, the behaviors of the actuators are determined by two concepts namely
the Influence Engine, and the Influence Map. Specifically, the influence map defines which
actuators are subscribed to which influence engine, and the influence engine is the al-

45

gorithm(s) that generates the influence on the subscribed actuators. In addition to the
influence engine, an actuator could also be influenced by a sensor and/or other predefined
sources. Each influence engine is characterized by a set of parameters which defines its
dynamics, and hence its influence on subscribed actuators. With the great flexibility pro-
vided by the influence engine and influence map mechanism of the LAS-BE, the architect
can specify new, overlapping influence engines of different types, and subscribe actuators to
each engine individually or in groups. In this section we describe the idea of each influence
engine at the high level and introduce a typical set of parameters that are most related to
our work, rather than an exhaustive list of all the possible engines and parameters.

Influence Map: A Subscription of Influence Source

An actuator can subscribe to one or more of the following influence sources: influence
engines including GridRunner, AmbientWave, Excitor and ElectricCell, nearby sensors
including IR sensor, sound detector, grideye presence (processed sensor data that indicates
the presence of humans)5, random noise, and sample behaviors hardcoded by the engineers.
When an actuator is subscribed to multiple influence sources, its response is determined by
the combination of all subscribed influence sources by superposing the intensities induced
by the various subscription sources. Formally, if the intensity range of an actuator is in
[0, ιmax] and it is under the influence of Nι influence sources each with induced intensity ιi
on it, then the final intensity ι of the actuator is as follows:

ι = min

[
Nι∑
i=1

ιi, ιmax

]
. (4.1)

Influence Engine: GridRunner

A key underlying structure in the LAS scaffold is a 3D hexagonal grid, with actuators
populated throughout. The GridRunner influence engine considers each vertex of this
grid as a potential source of (virtual) particles. Every time a sources is activated, it will
emit particles in a specific direction, and these particles steer on the predefined 3D grid,
activating any (physical) actuators as they pass by. Specifically, the steering path of the
particles follow the edges of the hexagons with different speeds. Each particle has a sphere

5Grideye sensors and IR sensors are sensing different areas of the LAS. In addition, grideye sensors are
able to detect a larger area than IR sensors and roughly infer human gestures.

46

Table 4.2: Parameters of GridRunner Influence Engine

ParamName Description Min Max

nParticles
Determine how many particles can be generated

in total
5 2000

sourceRotation Rotation of the source of the burst of the particles 0 2
sourceSpread Spread of the source of the burst of the particles 0 6.28

sourceHeading Heading of the source of the burst of the particles 0 6.28
burstInterval Frequency of the burst 10 5000

burstQty Quantity of the burst 0 250

yVelocity Verticle speed of particles 0 1
influenceSize The size of the influence 0 1500

influenceIntensity Intensity of the influence 0 1
maxSpeed The maximum speed of the particles 0.5 10

influence range, where actuators within the sphere will be activated. The sources can be
one or more of the following source type:

• Mouse Source: the sources that are activated when the mouse passes by the predefined
grid vertices. This is designed for manually activating sources within the LAS-BE.

• Sensor Source: the sources located near a sensor that can either be activated manually
by clicking the checkbox in the LAS-BE-IE-GUI (which will be introduced in section
4.2.1) or be activated by the nearby sensor. For example, if the IR sensor’s reading
is above its threshold, the source nearby the sensor will be activated. This type
of source is mainly to improve the interactivity, as the sensor reading can only be
changed by a visitor who is trying to interact with the sculpture.

Within a LAS, there can be as many sources as wished by engineers for each type of
source. The dynamics of the GridRunner is defined by a set of parameters, described in
Table 4.2 and illustrated in Fig. 4.8. In Table 4.2, nParticles controls how many particles
can coexist within the 3D space of a sculpture, the following 5 parameters apply to any
source defined in the space, and the last 4 parameters apply to any particle that can be
generated by a source. Fig. 4.8a illustrates the overall effect of this influence engine on
the actuators within a grid world, where the actuators will be activated with the intensity
of the particles emitted by a source. 4.8b shows that both the influence size and intensity

47

(a)

(b) (c)

(d) (e)

Figure 4.8: GridRunner Diagrams, where (a) shows the overall effect of the influence
engine, (b) shows the influence size and intensity change of a particle, (c) depicts the effect
of the burst quantity, (d) shows the effect of source spread, heading and rotation, and (e)
shows the burst interval.

can be tuned. The burstQty is used to change the burst quantity as shown in Fig. 4.8c.
As shown in Fig. 4.8d, the sourceRotation rotates the source along the z-axis, while the
sourceHeading turns the source heading along the y-axis. The spread controls how wide

48

the particles can be emitted from the source. Between two consecutive bursts, there is a
pause during which no particles are emitted, which is determined by the burstInterval as
shown in Fig. 4.8e.

Table 4.3: Parameters of AmbientWave Influence Engine

ParamName Description Min Max
waveActive Indicate whether activate a wave influence Flase True

velocity The propagation velocity of a wave 0 2
period The width of a wave 0 1
angle The propagation direction of a wave 0 6.283

amplitude
The intensity of the activation when an actuator

is touched by a wave
0 1

(a) (b)

Figure 4.9: AmbientWave Diagram, where (a) illustrates the parameter change dimensions
and (b) shows the outcomes when turning these parameters.

Influence Engine: AmbientWave

The AmbientWave influence engine provides dynamic global patterns imitating (virtual)
waves, which flow throughout the LAS and aim to influence a large portion of (physical)
actuators as the waves wash over their location. The waves generated by AmbientWave
will determine the intensity to which an actuator will be activated. Table 4.3 illustrates
the involved parameters and their possible value range, while Fig. 4.9 depicts the change

49

dimensions related to the AmbientWave. When waves are generated consecutively, the
outcomes of these parameters are illustrated in Fig. 4.9b, which clearly shows the diverse
effects created by this influence engine. Even though AmbientWave is designed for a
global pattern, it can also be customized for a local pattern by specifying a small group of
actuators that can be influenced by an AmbientWave influence engine.

Table 4.4: Parameters of Excitor Influence Engine

ParamName Description Min Max
excitorSize The size of an excitor 40 2000

excitorCoreSize The portion of the core of an excitor 0 1

excitorLifespan The lifespan of an excitor 500 20000

excitorMasterIntensity
The intensity of the activation of an
actuator triggered with an excitor

0 1

excitorSpeedLimit The maximum speed of an excitor. 0 1
attractorAngleSpeed The angular speed of an attractor. 0 0.25

attractorForceScalar
The force scalar of the attractor to

attract an excitor
0 5

maxExcitorAmount
The maximum number of excitors
that can coexist within the space

1 35

bgHowOften
How often the background excitors

are generated
250 1000

Influence Engine: Excitor

The Excitor influence engine implements a (virtual) spherical object moving through the
LAS towards an attractor, activating any (physical) subscribed actuators it passes on its
route. The attractor, specified by architects, plays the role of a hotspot that attracts
excitors to fly to it. Depending on the source of an excitor, four types of excitor are
designed: Sound Excitor, Motion Excitor, Presence Excitor and Background Excitor, which
are generated by a sound detector, the movement of human detected by a grideye sensor,
the presence of humans detected by a grideye sensor, and randomly picked locations,
respectively. The parameters related to excitor are listed in Table 4.4, and the diagram in
Fig. 4.10. In Fig. 4.10, (a) shows excitors are attracted to attractors and the the 3D axes

50

(a) (b)

Figure 4.10: Excitor Diagram, where (a) shows excitors are attracted to attractors and the
the 3D axes indicate the movement are in 3D, and (b) depicts the relationship between the
core size and the excitor size.

indicate the movement are in 3D, and (b) depicts the relationship between the core size
and the excitor size. Also note that, the rotation of the attractor and the excitor motion
are all in 3D space.

Table 4.5: Parameters of ElectricCell Influence Engine

ParamName Description Min Max

active
Indicate whether the ElectricCells

influence engine is active
Flase True

masterIntensity Intensity of the trigger of an actuator 0 1

neighbourRange
The distance range from the current cell

within which the next actuator is randomly
selected and activated

1 10

cellCount
The amount of electric cells flowing

from actuator to actuator
1 8

rate The rate at which the cells jump between actuators 10 100

triggerChange
The probability that an actuator can be triggered

by the cell it encountered
0 1

51

Figure 4.11: ElectricCell Diagram

Influence Engine: ElectricCells

The ElectricCell influence engine creates fast patterns by simulating a (virtual) “lightning
bolt” that jumps from actuator to actuator within a given range (nearest neighbours),
at a given rate (ms), activating the (physical) actuators as it passes by. The purpose
is to generate semi-random paths that look like electric shocks are moving through the
sculpture. Table 4.5 describes the parameters related to this influence engine, and Fig.
4.11 illustrates an ElectricCell jumps among actuators along the path until the maximum
neighbour range and/or the maximum cell count is reached.

LAS-Message-Server (LAS-MS)

The LAS-Message-Server (LAS-MS) connects the LAS-BE with other modules i.e. the
LAS-Unity-Simulator (LAS-Uni-Sim) 4.2.2 and the LAS-Agent-Internal-Environment (LAS-
Intl-Env) 4.2.3 by sending messages through the high speed network. Within the LAS-
Sim-Tkt, modules can run on separate computers depending on the computation resources
requirements and the required resilience of the whole system. In particular, when applying
Machine Learning (ML) techniques within the LAS-Agent shown in Fig. 4.5 to control
the LAS, large CPU and GPU resources may be required. Therefore, separately running
the resource-consuming ML related computation on a powerful computer and passing ei-
ther the learned policy or the action based on the policy through LAS-MS can make the
control of the LAS smoother and faster. In addition, separating the LAS-BE and policy
learning with distributed computers meanwhile saving a copy of the learned policy on the
machine running LAS-BE improves the resilience of the whole system, as the shutdown of
the machine running ML related computation will not interrupt the control.

52

(a) Folded (b) Unfolded

Figure 4.12: Screenshot of LAS-BE-IE-GUI, where (a) and (b) corresponds to folded and
unfolded GUI panel respectively.

LAS-BE-Influence-Engine-GUI (LAS-BE-IE-GUI)

The GUI of the LAS-BE shown in the Fig. 4.12a is mainly used for designing the sub-
scription relationship between actuators and influences and visualizing the choreographed
behavior of a LAS, rather than tuning the parameters related to various influence engines.
To complement the design of the influence engines, a web-based LAS-BE-Influence-Engine-
GUI (LAS-BE-IE-GUI) is developed to choreograph the various influence engines. By co-
operating with the LAS-BE, the outcomes of the tuning of the parameters of the influence
engines within the LAS-BE-IE-GUI can be visualized immediately and restored for future
use. Fig. 4.12a is the screenshot of the LAS-BE-IE-GUI. Unfolding the panels under each
influence engine, the parameters will show up and be ready to be tuned by dragging the
value bar as shown in Fig. 4.12b.

4.2.2 LAS-Unity-Simulator (LAS-Uni-Sim)

To facilitate evaluation of design strategies before deploying to physical installations and
conducting field studies, we developed a simulator called LAS-Unity-Simulator (LAS-Uni-

53

Sim) based on Unity (https://unity.com/). The simulator can not only simulate sen-
sors and actuators in Meander but also the visitors with either manually designed or
autonomous policies.

One of LAS-BE’s functionalities is to allow architects and engineers to collaboratively
choreograph the LAS’s interactive behavior even before deploying the designed behavior
into the physical system, based on simulated sensory inputs. However, the visual fidelity
is limited due to the visual art development platform Processing 6 used by LAS-BE, and
the LAS-BE lacks a collision detection mechanism and path planning capacity which are
essential to simulate visitors. Since our algorithms will be finally deployed to the LAS
whose visual appearance of its interactive behavior will be perceived by both visitors and
by teachers who provide their preferences, both the visual fidelity and simulated visitors
are necessary for our initial research before moving to field study. Therefore, we further
developed a simulator based on Unity to enable the direct visual assessment and the flexible
simulation of visitors’ behavior. We call this simulator the LAS Unity-Simulator (LAS-
Uni-Sim).

Figure 4.13: Communication Diagram Among LAS, LAS-BE, and LAS-Uni-Sim.

The communication among LAS, LAS-BE, and LAS-Uni-Sim is shown in Fig. 4.5,
but for convenience we reproduced the related portion in Fig. 4.13. The main purpose
of having LAS-Uni-Sim is to simulate sensors detecting simulated visitors. With LAS-
Uni-Sim, we are able to validate our design of learning algorithms prior to recruiting

6https://processing.org/

54

https://unity.com/

participants. Specifically, simulated sensor signals are sent from LAS-Uni-Sim to LAS-BE,
then LAS-BE generates raw actuator commands based on pre-scripted high-level behavior.
After that, the raw actuator commands are either sent to the physical system or to LAS-
Uni-Sim for execution.

(a) Meander in LAS-Uni-Sim

(b) SM (c) MO (d) RS (e) DR

(f) PC (g) IR (h) GE

Figure 4.14: LAS-Uni-Sim, where (a) shows Meander (the name of the physical LAS that
will be introduced in Section 4.3) in LAS-Uni-Sim, and (b)-(h) are implemented sensors
and actuators in LAS-Uni-Sim. Specifically, the sensors are Infrared sensor (IR), and
GridEye Infrared array sensor (GE), while actuators are Moth (MO), Rebel Star (RS),
Double Rebel Star (DR), Protocell (PC), and Shape-Memory Alloy (SM).

(a) Continuous Activation (b) Threshold Activation

Figure 4.15: Balanced Activation, where “balanced” means that the probability of the off
and on state of an actuator is 0.5. Specifically, (a) has continuous activation when the
action value is greater than 0.5, and the activation of (b) will jump to 1 for any action
value greater than 0.5.

Fig. 4.14 shows the simulated testbed Meander (the name of the physical LAS that

55

will be introduced in Section 4.3) in LAS-Uni-Sim and the simulated sensors, i.e., Infrared
sensor (IR) and GridEye Infrared array sensor (GE), and actuators, i.e., Moth (MO), Rebel
Star (RS), Double Rebel Star (DR), Protocell (PC), and Shape-Memory Alloy (SM). Note
that sound related sensors and actuators, i.e. Sound Detector (SD) and Open Sound
Speaker (OS), are not implemented. Fig. 4.15 illustrates the two types of activation
function for different actuators, where Fig. 4.15b is only used for SM and Fig. 4.15a is
used for the rest of the actuator types. For an action value in [0, 1] issued on an actuator,
we want to make the on and off state of the actuator to be equal, i.e. a value in [0, 0.5)
corresponds to off and a value in [0.5, 1] corresponds to on. Even though SM only has two
states, i.e. either on or off, other actuators, e.g. light, can have different intensities when
they are on, so for the action value in [0.5, 1] the intensity of the actuator grows from [0, 1].
The reason for this consideration is to ease the learning algorithm to equally explore to
the off and on state of an actuator which are the most obvious visual difference.

4.2.3 LAS-Agent-Internal-Environment (LAS-Intl-Env)

In order to align with the classical environment interface exploited in the OpenAI Gym7

and to separate the development of learning algorithms from the different choices of control
and sensing abilities of a learning agent, e.g. the choice of the action and observation space,
we designed a LAS Machine Learning Agent Internal Environment (LAS-Intl-Env) which is
the middle layer between the environment, including both the external (i.e. exteroception)
and the internal (i.e. proprioception) environment of a LAS, and the learning agent. Fig.
4.5 highlights the functionality of the LAS-Intl-Env in the whole control system when the
learning capability is enabled, where for convenience the connection between the LAS-BE
and the LAS-Intl-Env is reproduced in Fig. 4.16.

As shown in Fig. 4.16, at the high-level the LAS-Intl-Env is composed of four compo-
nents namely Action Execution Component, Observation Construction Component, Re-
ward Component, and Communication Manager. Specifically, the Action Execution Com-
ponent involves the definition of the action space which could be either raw actuator space
or parameterized action space. The Observation Construction Component specifies the
observation space which may include both the exteroception, i.e., the perception of the
external world of the LAS (e.g. the existence of the visitors), and the propriception, i.e.,
the perception of the status of the LAS (e.g. the status of an actuator). By mixing the
exteroception and the proprioception together, an agent can get a better understanding
of the state of the environment and make an appropriate action decision to maximize the

7https://gym.openai.com

56

https://gym.openai.com

Figure 4.16: LAS-Intl-Env Diagram.

goal defined by the Reward Component. The Reward Component specifies the reward
function at time step t, indicating the goodness/badness of taking an action. The Com-
munication Manager is responsible for the communication between the other components
in the LAS-Inter-Env and the LAS-BE. In this section, the high-level cooperation among
the components will be introduced first, followed by the details about each component
and the summary about the various choices and challenges involved in the design of these
components.

In order to better simulate the real world interaction between the LAS and the visitors,
which cannot be paused to wait for the rendering of the state of the environment, the
LAS-Intl-Env asynchronously receives the sensors’ and actuators’ status from and sends
action to the LAS-BE while the interaction is continuously happening as shown in Fig.
4.6. Even though the parallel running of the modules makes the learning task harder
because of the potential data loss and inconsistency, it can make the behavior smoother
because there is no pause to synchronize the outcome of the taking of an action. Therefore,
to keep the simulation as realistic as possible, the LAS-Sim-Tkt keeps the asynchronous
communication mechanism among the various modules.

57

Figure 4.17: LAS-Intl-Env Step Timeline.

ALGORITHM 1: Pseudo Code for the Interaction between LAS-Intl-Env and Learning
Agent

1 Initialize: intl env, agent
2 while not done do

/* Infer and execute action, and return observation and reward */

3 act← agent.infer action(obs)
4 new obs, rew, done, info← intl env.step(act)

/* Store experience into replay buffer if not missing data */

5 if info.missing data == True then
6 obs, info ← intl env.get obs()
7 else
8 replay buffer.store(obs, act, rew, new obs, done, info)
9 obs← new obs

10 end

11 end

The interaction between an agent and the LAS-BE is in discrete time and realized by
calling the step function of the LAS-Intl-Env, as with the other popular benchmarks in
the RL community. By using a similar interface to other RL benchmarks, the state of
the art RL algorithms can be easily adopted to LAS. Alg. 1 illustrates the pseudo code

58

for the interaction between the LAS-Intl-Env and a learning agent. Inside Alg. 1, the
intl env.step(obs) involves the collaboration among the components within LAS-Intl-Env,
which will be introduced in the rest of this section and detailed in Alg. 2. Specifically, an
agent infers the next action according to its policy when observing an observation. Then,
the LAS-Intl-Env sends the action to LAS-BE for execution, and waits to receive the new
observation, the reward signal, the task terminal indicator, and the diagnostic information
(e.g. missing data information) after taking the action. This procedure continues until
reaching the terminal state or the maximum episode length.

The time interval between two consecutive action executions is considered as one time
step. Within one time step, the collaboration among the components of the LAS-Intl-
Env is illustrated in Fig. 4.17. As shown in Fig. 4.17, a time step starts with emptying
the message buffer for action-received confirmation, resuming message server to receive
action-received confirmation from LAS-BE, sending the inferred action to LAS-BE, and
collecting the action-received confirmation from LAS-BE. Then, LAS-Intl-Env will wait
for Taw seconds for the action receiving and execution, where Taw is actually the minimum
time to execute an action and observe its immediate/short-term effect8. In other words,
if Taw is equal to 0, it assumes that the effect of taking the action on the environment is
immediately observable, whereas if Taw is greater than 0, it assumes that it takes some time
for the action to take effect or the action will last for a while. In many control problems
in robotics, it is quite common that the actuators run at a very high frequency so that the
execution time is negligible, which means the sensory reading immediately after the sending
of an action command can be thought as the new observation of the environment. Or in
other cases, the action execution and observation construction run in a synchronized way
that the observation is constructed only after the execution of the action. However, these
are not applicable to LAS. Firstly, the action execution time in LAS cannot be ignored
both for the raw or parameterized action space because of the nature of the actuators (e.g.
SMA which gently contracts and relax) and the nature of the parameterized action (e.g.
the excitor takes time to fly through the actuators to activate them). Secondly, the action
execution and the observation construction are asynchronized as shown in Fig. 4.6 that
the action sent from LAS-Intl-Env is executed in LAS-BE and cannot be paused when
collecting observations. Therefore, Taw is especially useful when the immediate effect of
taking an action takes longer time and including the effects of the actions before that harms
the decision making. After waiting for action execution, there is a time window Tow for

8The immediate/short-term effect is to differentiate delayed/long-term effect, where the first one cor-
responds to the earliest effect credited to the action execution and the later one is the delayed effect of
the action execution after a while, which may be intertwined with the effects of the other actions taken
during the time.

59

collecting the observation. The action execution and observation time window combined
together determine the time interval used for collecting sensor readings and actuator status
in order to construct the new observation. Even though Taw can be set to 0 as the effect of
the action execution on the actuator status can be observed immediately, Tow is rarely set
to 0, because to observe the effect of the execution of an action on the sensors perceiving
the human robot interaction typically takes some time. Once the observation time window
is passed, the message server will be paused, followed by the observation construction, the
missing data checking and the reward calculation. With this information, a new action
based on the new observation will be inferred from the agent’s policy.

As illustrated in Fig. 4.17 and the description in the previous paragraph, the interaction
frequency f can be calculated by Eq. 4.2:

f =
1

Taw + Tow + Tai
, (4.2)

where Tai is the time used for action inference. It can be seen that the larger the Taw +
Tow + Tai is , the lower the interaction frequency will be. It is worth to emphasize that
the Tow cannot be as small as in most of HRI applications, including LAS, as that for
other robotics control tasks, because the human in the loop cannot interact with a robot
with very high frequency. For LAS, this is more prominent, because the architectural scale
of the sculpture makes the behavior of the sculpture harder to perceive and makes the
human’s reaction slower, e.g. moving from one part to another part of the sculpture. It is
not hard to imagine that if f is very high, the sensor readings within tow at time step t
may be the same as that at time step t− 1.

Communication Manager

Communication Manager (CM) is responsible for managing the communication between the
LAS-BE and the other components in the LAS-Intl-Env. Specifically, CM starts the server
for (1) receiving sensor readings and actuator status from the LAS-BE and distributing
them to the Observation Construction Component of LAS-Intl-Env, and (2) receiving the
action received confirmation from the LAS-BE to confirm an action is received. In addition,
CM sends interpreted actions to the LAS-BE.

Action Execution Component

Action Execution Component (AEC) defines the action space for the learning agent.The
learning agent does not need to know the meaning of each dimension of the action space.

60

It is the AEC’s responsibility to interpret the actions received from the learning agent and
send the interpreted action to the LAS-BE with the help of CM. Formally, the action space
a ∈ [−1, 1]d is a vector specifying all possible actions, where the dimension of a is d, and
each dimension a(i) (where i = {1, · · · , d}) has the value range [−1, 1]. The value range
for each dimension is constrained to [-1, 1], whereas the value range of the original action

a′(i) is [a
′(i)
max, a

′(i)
min], where the i is the corresponding dimension index and the maximum

a
′(i)
max and the minimum a

′(i)
min value for each dimension may be different depending on the

nature of the action dimension. The interpretation of the action a to the original action
aorig depends on the data type as follows:

a′(i) =

(a(i)+1)
2
×
(
a
′(i)
max − a′(i)min

)
+ a

′(i)
min, if a′(i) is float,{

False, if a(i) < 0
True, Otherwise.

, if a′(i) is bool,⌊
(a(i)+1)

2
×
(
a
′(i)
max − a′(i)min

)
+ a

′(i)
min + 0.5

⌋
, If a′(i) is integer,

(4.3)

where i is the dimension index of the action a and ⌊·+ 0.5⌋ rounds a value · up to the
nearest integer. Eq. 4.3 shows how the action a in the action space is converted into the
original action a′ that can be understood and executed by the LAS-BE.

The original action can be in either the raw actuator space (i.e. the direct control of
physical actuators) or the parameterized action space (i.e. control the primitive parameters,
e.g. the parameters related to the influence engines introduced in Section 4.2.1, which will
subsequently affect the behavior of raw actuators).

Observation Construction Component

Observation Construction Component (OCC) defines the observation space for the learn-
ing agent. Specifically, it retrieves the sensory readings and actuator status from CM,
preprocesses and constructs the observation according to the definition of the observation
space. Formally, assume within the observation window Tow, o′nsi is the nsith of the Nsi

sensory readings of the sensor si ∈ {1, · · · , S} with the value range [o′minsi , o
′
maxsi

] and o′nai
is the naith of the Nai actuator status of the actuator ai ∈ {1, · · · , A} with the value range
[o′minai , o

′
maxai

], received by MC from the LAS-BE, the o′sinsi and o′ainai will be converted

to the range [0, 1] as follows:

onsi =
o′nsi − o

′
minsi

o′maxsi − o
′
minsi

and onai =
o′nai − o

′
minai

o′maxai − o
′
minai

. (4.4)

61

With the processed sensory reading onsi and the processed actuator status onai , the aggre-
gated sensory reading osi for sensor si and the aggregated actuator status oai for actuator
ai can be calculated either by averaging the processed data within the observation time
window as follows:

osi =
1

Nsi

Nsi∑
nsi=1

onsi and oai =
1

Nai

Nai∑
nai=1

onai , (4.5)

or by concatenating the processed data within the observation time window as follows:

osi =

Nsi⋃
nsi=1

onsi and oai =

Nai⋃
nai=1

onai , (4.6)

where
⋃

is the concatenation operator9. After that, then the observation can be divided
into two types (i.e. the exteroception and the proprioception) and calculated as follows:

os =
S⋃

si=1

osi and oa =
A⋃

ai=1

oai , (4.7)

where S and A are the total number of sensors and actuators involved in the LAS. Based
on the choice of perception, the final observation o can be formed as follows:

o =

os, if only use exteroception,
oa, if only use proprioception,

os
⋃
oa, if use both.

(4.8)

Reward Component

Reward Component (RC) is computed based on the action and observation from AEC and
OCC, respectively, as shown in Fig. 4.16. The RC provides a reward function to evaluate
the goodness of taking an action when observing an observation. This reward function can
be handcrafted by engineers, or learned by some algorithms, e.g. Inverse Reinforcement
Learning, or a combination of them. The reward rt at time step t can be a function of
observation and/or action variables as follows:

rt = R(ot, at) or rt = R(ot+1) or rt = R(ot, at, ot+1) or rt = R(ot+1|hlt) (4.9)

9Scalar value is essentially a vector with only one dimension, so in this section we will use lowercase
letter to represent both the scalar and vector.

62

where ot+1 is the new observation after taking the action at when observing ot, and hlt is
the observation history sequence at time step t with the length l with the following format:

hlt =

{
ot−l+1, at−l+1, · · · , ot, at if t>l

o1, a1, · · · , ot, at otherwise.
(4.10)

Summary

Alg. 2 summarizes the pseudo code for the step function of LAS-Intl-Env which involves the
collaboration among the components as depicted in Fig. 4.16. For a clear understanding
of the complexity of the control task, the following list summarizes the design choices in
each component:

• CM: Communication Manager

– Taw: Action window determines when to start observation window within one
time step.

– Tow: Observation window determines how many sensory readings and actuator
status are received for one time step.

• AEC: Action Execution Component

– a: action space

∗ raw actuator space with hundreds of actuators.

∗ parameterized action space with dozens of parameters.

• OCC: Observation Construction Component

– S: Sensors in the observation space.

– A: Actuators in observation space.

– osi : aggregated observation on sensors over the received sensory readings within
the observation window.

∗ Average (Eq. 4.5)

∗ Concatenate (Eq. 4.6)

– oai : aggregated observation on actuators over the received actuator status within
the observation window

63

ALGORITHM 2: Pseudo Code for Step Function of LAS-Intl-Env

Input: at
Output: ot+1, rt, dt, info

1 Initialize: time window size for waiting for action execution Taw, time window size for
collecting observation Tow, observation construction type obs construct, reward calculation
type rew type

/* Execute action */

2 convert at to original action command a′t
3 send a′t to LAS-BE for execution
/* Wait for action execution */

4 sleep(Taw)
/* Collect and construct observation */

5 empty message buffer
6 resume message server
7 sleep(Tow)
8 pause message server

9 collect original sensory readings

{{
o′nsi

}Nsi
nsi=1

}S
si=1

and actuator status

{{
a′nai

}Nai
nai=1

}A
ai=1

from message buffer
10 missing data ← check if missing data

11

{{
onsi

}Nsi
nsi=1

}S
si=1

,
{{

anai
}Nai
nai=1

}A
ai=1

convert original sensory readings and actuator status

to [0, 1] according to Eq. 4.4

12 {osi}
S
si=1, {oai}

A
ai=1 ← ← aggregate processed sensory readings and actuator status

according to Eq.Eq.4.6 and 4.6
13 os, oa ← aggregate exteroception and proprioception according to Eq. 4.7
14 ot+1 ← construct final observation according to Eq. 4.8

/* Calculate reward */

15 rt ← calculate reward according to Eq, 4.9 and 4.10
/* Determine if task is done */

16 dt ← determine terminal state(new observation)
/* Set diagnosing information */

17 info.missing data← missing data

∗ Average (Eq. 4.5)

∗ Concatenate (Eq. 4.6)

– type

64

∗ os: exteroception only.

∗ oa: proprioception only.

∗ os
⋃
oa: both exteroception and proprioception.

• RC: Reward Component

– format

∗ rt = R(ot, at) depends on ot and at. When the environment dynamics is
not deterministic or nonstationary, ot and at may be inefficient to capture
enough information to determine the goodness of taking an action.

∗ rt = R(ot+1) depends on ot+1. When the environment dynamics is not de-
terministic or nonstationary, ot and at may be inefficient to capture enough
information to determine the goodness of taking an action.

∗ rt = R(ot, at, ot+1) depends on ot+1. Even though ot, at, and ot+1 working
together are providing enough information when the underlying decision
process is one-degree MDP, i.e. the underlying current state is all needed
to make a decision, for decision process that relies on previous states this
format is not enough.

∗ rt = R(ot+1|hlt) depends on ot+1 and the past history hlt. This format tries
to include as much information as possible, but this requires a very powerful
learning method and much more computation resources.

4.3 Testbed 2: Meander

Meander is the testbed used to evaluate the approaches proposed in Chapter 9. It is a long-
term installation at Tapestry Hall in Cambridge, Canada (https://www.tapestryhall.
ca/meander/), where parts of the installation are accessible to the public and some are
private. The component actuators and sensors of Meander are similar to those of Aegis
Canopy introduced in 4.1. However, the middle layer control algorithm LAS-BE introduced
in Section 4.2 is different from that in Section 4.1.

4.3.1 Physical Installation

Meander is a large-scale testbed environment constructed within Tapestry Hall (https://
www.tapestryhall.ca), a historic warehouse building at the centre of a residential highrise

65

https://www.tapestryhall.ca/meander/
https://www.tapestryhall.ca/meander/
https://www.tapestryhall.ca
https://www.tapestryhall.ca

development in Cambridge, Ontario. Sensors embedded within the environment signal the
presence of visitors, and send ripples of light, motion and sound through the system in
response, under the control of LAS-BE with either pre-scripted behavior choreographed by
experts or learned behavior based on ML techniques.

Fig. 4.18 shows a schematic diagram and photographs of Meander. Specifically, Fig.
4.18a illustrates the composition of Meander, namely Cloud, North River (NR), South River
(SR) and Central Hemisphere. Cloud does not have sensors and actuators for interaction,
while the other three parts all have the capacity to sense and interact with visitors. The
spatial position of Meander in the building can be better viewed in the top-left 3D view
panel, from which it can be seen that the North River, South River and Cloud are hanging
above the hallway on the second floor (pink and purple in Fig. 4.18a) and accessible to
visitors on the second floor, while the Central Hemisphere is hanging above the ground
on the first floor (green area) in the lobby and is accessible to visitors in the lobby. Fig.
4.18b, 4.18c and 4.18d are images of Meander taken on the second floor. The sculpture
parts in the green and purple areas, i.e. the NR and Central Hemisphere, are accessible
to public visitors, whereas access to the sculpture part in the pink area, i.e. the SR, is
restricted. There are gates between the public and private spaces. Fig. 4.18g shows one of
the gates on the second floor. By accessible, we mean the capacity to physically interact
with the sculpture, i.e. the ability to be detected by a sensor. However, the majority of
the sculpture is within the view of the visitors in the public accessible space. There is a
camera (Fig. 4.18f) onsite to collect videos for further study and for maintenance. The
Control Room is locked and hidden in the corner, where all control facilities are located as
shown in Fig. 4.18e. To inform the visitors that there is a study ongoing, we will locate
four posters on notice boards in visible locations, e.g. the main entrance and locations
near the sculpture on both floors (as indicated in Fig. 4.18a). The posters have a brief
introduction of the study and the QR code leads potential participants to the website with
more details about the experiment. Fig. 4.18h shows a visitor who is interacting with the
North River part of Meander.

Sensors and actuators are embedded in Meander to endow it with perception and reac-
tion ability. Specifically, the sensors employed are Infrared sensor (IR), GridEye Infrared
array sensor (GE), and Sound Detector (SD), while actuators employed are Moth (MO),
Rebel Star (RS), Double Rebel Star (DR), Protocell (PC), Shape-Memory Alloy (SM),
and Open Sound speaker (OS).

The IR sensor senses the proximity of visitors, and generates a continuous reading pro-
portional to the distance between any part of the body of a visitor and the sensor location.
The GE is a state-of-the-art thermopile sensor that features 64 thermopile elements in an
8×8 grid format, detecting a low-resolution heat scan of its field of view. The SD provides

66

(a) Meander Sculpture Composition

(b) South River (c) North River (d) Central Hemisphere

(e) Control Room (f) Camera (g) Gate Access (h) Visitor

Figure 4.18: Physical Meander, where (a) shows the overall composition of the sculpture,
namely the South River, the North River and the Central Hemisphere; (b), (c) and (d)
are images of the three parts of Meander (courtesy of Philip Beesley Studio Inc.); (e) is
the control room; (f) is the camera used to collect video recordings; (g) is the gate access
between NR and SR; and (h) is a visitor is interacting with Meander.

67

(a) 2D

(b) 3D

Figure 4.19: Sensor and Actuator Type and Location, where (a) is plotted in 2D from
top view to emphasize sensors and actuators 2D arrangement, and (b) is plotted in 3D to
emphasize sensors’ and actuators’ variation in height.

a binary indication of the presence of sound, and an analog representation of its amplitude.

The Moth consists of wing-like flexible flaps attached to a small DC vibration motor

68

Table 4.6: Summary of Sensors and Actuators

North River South River
Central

Hemisphere
Cloud

S
e
n
so

rs

IR 8 5 0 0
GE 6 5 8 0
SD 6 5 5 0
Sum 20 15 13 0

A
c
tu

a
to

rs

MO 66 45 150 0
RS 86 65 0 0
DR 0 0 60 0
PC 18 11 0 0
SM 24 15 0 0
OS 6 5 8 0
Sum 200 141 218 0

that vibrates when activated, making the moth appear to be flapping its wings. The Moth
also houses two small LED lights which illuminate during vibration. The RS is a single
high-power LED located beneath the central flask, which can be faded to illuminate the
colored liquid in the flask. The DR is actually two high-power LEDs mounted on the top
and bottom of a plastic bar. The PC is also a single high-power LED, but located beneath
a central flask with a different shape from that for RS. SM contracts when voltage is
applied, pulling a cord attached to a flexible co-polyester sheet, as illustrated in Fig. 4.2a.
The contraction generates a smooth and gentle movement, and when the applied voltage
is removed the SM slowly relaxes to its original shape.10 The OS is essentially a speaker
controlled by sophisticated 4D sound software to play immersive, spatialized multi-channel
sound.

For clarity, Fig. 4.19 shows the position of sensors and actuators embedded in Mean-
der, and Table 4.6 summarizes the number of sensors and actuators in different parts of
Meander. From Fig. 4.19 and Table 4.6, it can be summarized that:

• Sensors and actuators are spread over the whole space (Fig. 4.19a) at various heights
(Fig. 4.19b) to enable the LAS to simultaneously accommodate multiple interactions
happening among visitors and the LAS.

• The diversity of sensors and actuators enhances the LAS’s ability to perceive various

10A video illustrating the SM assembly contracting and relaxing can be found at https://youtu.be/
YcreirXrRF4.

69

https://youtu.be/YcreirXrRF4
https://youtu.be/YcreirXrRF4

sources of information happening in the space and to react in different ways.

4.3.2 Pre-scripted Behavior

The pre-scripted behavior of Meander is defined by the influence maps among actuators,
sensors and the parameters of the influence engines within the LAS-BE as introduced in
section 4.2.1. For the dynamics of the LAS-BE, please refer to section 4.2.1, and in this
section we will only describe the setting of the parameter values of various influence engines
employed in the pre-scripted behavior, which will be the base of the parameterized action
space for the baseline of the learning based approaches proposed in section 9. The influence
maps are fixed not only for the pre-scripted behavior but also for the parameterized action
space of the learning agent introduced in Chapter 9, so the details of them are out of
the scope of this thesis and will be omitted. Since in Chapter 9 the parameters of the
influence engines of the pre-scripted behavior will be used as the action space of a learning
agent, we will elaborate them in the following section. However, we should note that for
the pre-scripted behavior, the influence engine settings are fixed, which greatly limits its
flexibility and adaptability.

Influence Engine Settings

Table 4.7 shows the the parameter values for each influence engine in the default pre-
scripted behavior followed by its value range. Once the pre-scripted behavior is set, these
parameter values will not change during the course of the running of the given pre-scripted
behavior, even though another pre-scripted behavior can be loaded to replace the current
one. Therefore, the pre-scripted behavior is carefully designed by architects based on their
knowledge.

4.4 Summary

In this chapter, we introduced two physical testbeds namely Aegis Canopy and Meander,
and the LAS simulation toolkit. For the two testbeds, we first described the sensor and
actuator composition, then illustrated their pre-scripted behavior. Different from the Aegis,
which is installed in a museum and accessible to visitors who paid a ticket, the Meander
is installed in a building where part of the sculpture is publicly accessible. However,
the physical testbeds are not always accessible to researchers and visitors. Therefore, we

70

Table 4.7: Parameters of the Influence Engines of the Pre-scripted Behavior

Influence
Engine

ParamName
Pre-scripted

Value
Min Max Count

G
ri
d
R
u
n
n
e
r

nParticles 1915 5 2000

11

sourceRotation 2 0 2
sourceSpread 1.67 0 6.28

sourceHeading 3.96 0 6.28
burstInterval 2140 10 5000

burstQty 17 0 250
yVelocity 0.1 0 1

influenceSize 355 0 1500
influenceIntensity 0.93 0 1

maxSpeed 6.2 0.5 10

A
m
b
ie
n
t

W
a
v
e

waveActive True Flase True

5
velocity 0.1 0 2
period 0.2 0 1
angle 1.4 0 6.283

amplitude 0.01 0 1

E
x
ci
to

r

excitorSize 40 40 2000

9

excitorCoreSize 0.95 0 1
excitorLifespan 20000 500 20000

excitorMasterIntensity 1 0 1
excitorSpeedLimit 0.6 0 1

attractorAngleSpeed 0.2 0 0.25
attractorForceScalar 1 0 5
maxExcitorAmount 16 1 35

bgHowOften 250 250 1000

E
le
ct
ri
cC

e
ll

active True Flase True

6

masterIntensity 1 0 1
neighbourRange 3 1 10

cellCount 2 1 8
rate 75 10 100

triggerChange 0.005 0 1
31

71

Figure 4.20: Grid Vertices of Meander

developed a simulation toolkit to allow researchers to more easily develop and evaluate
machine learning techniques for such challenging interactive systems.

72

Chapter 5

Learning to Engage with Interactive
Systems: A Field Study on Deep
Reinforcement Learning in a Public
Museum

The research in this chapter was conducted in conjunction with a MASc. student of the Uni-
versity of Waterloo, Daiwei Lin1, and was published in the ACM Transactions on Human-
Robot Interaction (THRI) in 2020 [187].

In this chapter, we investigate extrinsically motivated learning in natural settings with
group interaction. Specifically, we use sensors embedded in the interactive system to
estimate the overall occupancy and engagement of the visitors in a LAS, and use this
estimate as the extrinsic reward for learning. We investigate whether we can exploit the
designer’s pre-scripted behaviors to bootstrap learning. We use the Deep Deterministic Pol-
icy Gradient (DDPG) algorithm to train an Actor-Critic agent which acts in the designer-
parameterized action space, which we call the Parameterized Learning Agent (PLA). Both
fixed pre-scripted and learning behaviors are evaluated over three weeks at a public ex-
hibition at the Royal Ontario Museum (ROM), and all data is collected from museum
visitors. We evaluate how engaging the behaviors are based on a quantitative analysis of

1This research was conducted at the Royal Ontario Museum by Daiwei Lin and Lingheng Meng under
the supervision of Dr. Dana Kuli´c. Daiwei Lin implemented Parameterized Learning Agent (PLA), while
Lingheng Meng implemented Single Agent Raw Action Space (SARA) and Agent Community Raw Action
Space (SARA) and contributed to the data analysis.

73

estimated engagement and the number of active interactions, and on qualitative analysis
of human survey results. This chapter contributes to solving the engagement estimation
challenge with the proximity sensors embedded within the LAS. With this engagement
estimate, Reinforcement Learning (RL) can be exploited to enable autonomous engaging
behavior generation for the LAS. In addition, this chapter addresses the challenge of eco-
logical validation by conducting a field study in a museum environment and crowd setting
with diverse visitors.

5.1 Proposed Approach

In this section, we describe how the Parameterized Learning Agent (PLA) is designed to
automatically generate interactive actions.

Fig. 5.1 illustrates the software architecture connecting the physical hardware to the
learning agents. The Middle Layer coordinates the sensor reading and action execution
among the physical LAS and agents. Only one agent type controls the LAS at any given
time. PB only takes and stores IR readings without issuing actions because its action
policy is fixed, while PLA is formulated as a standard RL framework where the Obser-
vation Constructor constructs the observation, the Reward Critic generates a reward that
estimates the engagement of visitors, and Actor-Critic is the learned policy and Q-value
function.

5.1.1 Parameterized Learning Agent: Learning on Top of Pre-
scripted Behavior

PLA is designed to learn on top of PB, i.e., parameterized action space, where the PB
introduced in section 4.1, Chapter 4 is designed by expert architects and interactive sys-
tem designers and is the baseline used to compare to learning agent. The motivation for
this approach is to bootstrap learning by exploiting the designer’s knowledge of engaging
behavior, where we hypothesize the designer already has a good idea about what types
of actions might be engaging to visitors and this can form a helpful starting point for the
learner.

74

Figure 5.1: Interface Between LAS and PLA

(a) Actor (b) Critic

Figure 5.2: Actor-Critic of PLA, where layer size and activation function are
indicated under and above each layer respectively.

Observation and Action Space Construction

For PLA, we select 11 parameters from Table 4.1 as the action space, i.e., the dimension
of the action vector is 11. This is because some parameters do not take effect until a

75

subsequent trigger or until the current propagation finishes. This could lead to obtaining
an observation which is based on both previous and updated parameters. To avoid this
issue, we exclude Tminbg , Tmaxbg , Tw, P , Tminsw and Tmaxsw from the action space. In this way,
we make sure every observation is only related to the latest action. To attenuate IR sensor
noise, the observation for PLA is an average over 20 IR readings as defined in Eq. 5.1:

obs(t) =
1

20
·

19∑
i=0

ir(t−i·∆t), (5.1)

where ir(t−i·∆t) is the value array of 24 IR sensor readings at time (t− i ·∆t),
∑

is element-
wise summation, and ∆t ≈ 0.1s is the time to retrieve one set of 24 IR values from the
physical LAS. Thus the dimension of the observation vector is 24 and each observation
vector represents the average IR readings over 2 seconds, which means an agent generates
an action every 2 seconds. Note that this delay between an agent’s two consecutive actions
is in the parameterized action space (i.e., an update to the PB parameters), which means
that this will not cause a delay in the LAS’s response to human visitors. The 2s time delay
between every two consecutive parameterized actions generated by PLA is chosen to allow
an action to complete before initiating another action. As described in Section 5.2.3, IR
values are converted and scaled so that 0 corresponds to the maximum distance reading
(i.e., there is nothing in front of the sensor), and 1 corresponds to the minimum distance
reading (i.e., there is something very close to the sensor).

Estimating and Using Engagement as a Reward for Learning

A key feature of our approach is the formulation of the reward function: we wish to learn
and reward behaviors which foster visitor engagement. Specifically, the extrinsic reward
is computed by summing over the IR observations, which can be regarded as a rough
estimate of occupancy and engagement, because: 1) more activated IRs means more people
are standing under the LAS, thus indicating higher occupancy; 2) closer distance between
visitors and IR sensors implies more active interaction, e.g., looking very closely or raising
hands, which are higher engagement behaviors. Therefore, higher occupancy and more
active interaction will cause higher extrinsic reward. Formally, given a new observation at
time t+1, obs(t+1) = (obs

(t+1)
1 , obs

(t+1)
2 , · · · , obs(t+1)

n)2, the reward r(t) for taking action a(t)

2In this chapter, we will use normal lowercase for scalar and bold lowercase for vector.

76

while observing obs(t) can be expressed as Eq. 5.2:

r(t) =
n∑
i=1

obs
(t+1)
i , (5.2)

where the value of n is the number of dimensions of the observation vector, e.g. n is 24 for
PLA.

Low cost embedded IR sensors are employed to estimate engagement for three reasons:
First, the varying lighting conditions in the exhibition area do not allow us to use the
webcam footage for reliable pose or facial expression analysis. Because of occlusions and
the uncontrolled nature of the space and the varying number of occupants, an array of
inexpensive IR sensors that can be precisely located within the space is more effective than
lower numbers of more sophisticated equipment. Finally, due to privacy concerns we could
not guarantee that we would be permitted to use camera data.

Implementation

Given the observation and extrinsic reward, the optimal policy can be learned by an RL
algorithm3. In this paper, learning is implemented using the Deep Deterministic Policy
Gradient (DDPG) algorithm [164], a variant of Deterministic Policy Gradient [250], where
both the Actor and Critic are approximated with deep neural networks.

PLA uses the DDPG agent from OpenAI’s Baselines package [77], following the hyper-
parameters specified in Table 5.1 (the detailed pseudo-code can be found in Alg. 4 Ap-
pendix A). The structure of the neural network is shown in Fig. 5.2. All layers are dense
layers, with layer-norm applied, where the activation function and neurons for each layer
are indicated above and under each layer in Fig. 5.2, respectively. At the start of the
field study, the actor-critic networks of PLA were randomly initialized. On all subsequent
deployment days, the learned actor-critic from the previous day was loaded and training
continued from the previous day’s network parameters. There is a replay buffer D of size
106 that stores all experiences collected thus far on each day. An experience is a tuple
of (obs(t), a(t), r(t), obs(t+1), done(t+1)) where done(t+1) is always 0. Every 10 steps, we will
sample 20 mini-batches from the replay buffer. The system does not have a terminal state,
so we manually set the maximum length of an episode to 100 steps, which corresponds to
about 200s, and after each episode the start observation is the observation encountered at
the end of the last episode. The reason for not having a terminal state for interaction with

3However, note that the interaction frequency is limited by the physical constraints of the LAS.

77

Table 5.1: Hyper-parameters of DDPG-based PLA

Hyper-parameters value
actor learning rate 10−4

critic learning rate 10−3

discount rate gamma 0.99
batch size N 64

replay buffer size |D| 106

train interval 10
train times 20

episode length 100
parameter noise α 1.01
parameter noise δ 0.1

initial parameter noise σ 0.1

a single visitor is related to the sensor capabilities, the distributed nature of the sensors,
and the fact that multiple visitors move through the space simultaneously. Since we cannot
track individual visitors, we do not know when one leaves one sensor space and moves into
another, or when leaves the LAS and another arrives.

The maximum episode length is arbitrarily set to 100 steps only for logging statistic
summaries, e.g. accumulated reward, estimated Q-values, etc., regularly. It does not affect
the training when the maximum episode length is reached, because there is no reset of the
environment.

The actor-critic is trained 20 times on a randomly sampled mini-batch every 10 in-
teractions, corresponding to approximately 20s. At every step, the exploratory action is
generated by the current actor perturbed with parameter noise, i.e. Parameter Space Noise
[219].

All hyper-parameters used in this paper were empirically chosen via experiments on
a simplified simulator where the agent directly controls all actuators and maximizes the
reward based on IR readings, and visitors are simulated to approach LEDs with the highest
intensity. Our tests on the simplified simulator showed that DDPG worked well with the
chosen hyper-parameters and was able to smoothly converge to the optimal policy in 100
episodes where the maximum length of each episode is 1000. Because the simulator is an
extremely simplified model of the actual environment, we mainly used it to make sure our
code is bug free rather than to pre-train a policy.

78

5.1.2 Learning in Raw Action Space

During the field study, we also tested two additional learning systems designed to act
in raw action space, i.e. directly control actuators, rather than acting in parameterized
action space. The Single Agent Raw Act (SARA) directly controls the 192 raw actuators
of the LAS using a single agent, while the Agent Community Raw Act (ACRA) controls
the raw actuators in a decentralized way, where a distributed multi-agent learning system
replaces the single large learner. Unfortunately, we were not able to allocate enough time
for examining SARA and ACRA in the field study, so their performance is not analysed
in the results section.

5.2 Experiments

5.2.1 Experimental Procedure

Our experiment was conducted for two weeks from Sept. 14 to Oct. 03, 2018, at the
ROM. We were permitted by the ROM to collect data from 1 p.m. to 4 p.m. every day on
weekdays. In addition, we conducted in-person surveys on Sept. 18, 20, and 27. During
the entire experiment period, visitors were free to visit and interact with the installation
without any interference from researchers.

For each day of the experiment, the following procedure was followed:

1. Randomly schedule the different agent conditions into 1 or 1.5 hour time slots as
shown in Fig. 5.3. PB and PLA were scheduled on each day, while only one of
SARA and ACRA were scheduled per day.

2. Automatically run scheduled behavior at each time slot, and save interaction data
and learned models and videos at the end of each behavior.

During days where no visitor surveys were collected, researchers were not present in the
environment. During the three survey days, researchers were present, but did not provide
any additional instructions to visitors. Researchers observed which visitors interacted with
the LAS, passively or actively, within a specific behavior period. When visitors were
finished with their visit, researchers unobtrusively approached randomly selected visitors
who had interacted with the system, and asked them if they were willing to participate in
a survey. If a visitor agreed to do the survey, they were guided to a table located around

79

a corner and were provided with a tablet with a questionnaire (see Section 5.2.2). The
researchers also recorded which mode the visitor had interacted with. We only recruited
visitors who had interacted with only one behavior mode.

The overall experiment schedule is shown in Fig. 5.3, where red, blue, green, yellow
and white areas correspond to PB, PLA, SARA, ACRA and no schedule respectively. A
summary of the experiment schedule and collected data is shown in Table 5.2.

Video was not available on Sep. 14.

Figure 5.3: Experiment Schedule

Table 5.2: Summary of Experiment Schedule and Data

Behavior Days Hours
Survey

Participants

PB 14 15.5 14

PLA 13 15 15

SARA 4 4 4

ACRA 4 4 3

Video was not available on Sep. 14.

5.2.2 Data Collection

The data collected comes in four types: sensor readings, learning agent logs, human survey
data and video data from the two web-cams.

80

Every raw sensor reading is logged. In addition to the raw sensor data, each agent also
logs its own learning algorithm data collected during the course of learning.

For human survey data, 14, 15, 4, and 3 participants completed surveys in the PB, PLA,
SARA and ACRA modes respectively, as summarized in Table 5.2. The questionnaire used
in our experiment is a standardized measurement tool for HRI: the Godspeed questionnaire
[24]. In addition to the 24 Godspeed questions, we asked participants about their interests
and background, and their general feedback and comments.

The Questionnaire consists of four types of questions:

1. Participants’ interests and background (multiple-select multiple choice);

2. Participants prior knowledge about interactive architecture and machine learning,
including “How familiar are you with interactive architecture?” and “How familiar
are you with machine learning algorithms?”;

3. 24 Godspeed questions namely Godspeed I: Anthropomorphism, Godspeed II: Ani-
macy, Godspeed III: Likeability, Godspeed IV: Perceived Intelligence and Godspeed
V: Perceived Safety [24];

4. Participants’ general feedback, i.e., “Any additional comments regarding your expe-
rience?” and “Any overall feedback?”.

Video data is collected to calibrate sensory readings and validate occupancy estimates,
which will be discussed in detail in Section 5.2.4. Video data is available for all the
experiments except for Sep. 14.

5.2.3 Data Preprocessing

The IR data is scaled so that all sensory observations for the learning agent are within
[0, 1] and all actions that learning agent can take are within [−1, 1]. The IR readings are
scaled into [0, 1] corresponding to the nearest object being at a detected distance of 80cm
or more (no nearby humans detected), to the nearest object being 10cm (very close human
detected). The action values for all raw actuators are scaled to [−1, 1]. For SMAs, values
in the range [−1, 0) means off and values in the range [0, 1] means on, while for LED and
Moths the continuous values from -1 to 1 are interpreted into 0 to 255, where 0 indicates
off and 255 indicates the brightest light for LEDs, and the highest intensity vibration
for the Moths. The 11 parameterized actions are scaled to [−1, 1], where -1 corresponds
to minimum and 1 corresponds to maximum, and their corresponding original values are
shown in Table 4.1 Chapter 4.

81

5.2.4 Data Analysis

The camera view includes regions outside of the LAS itself. To only focus on areas directly
related to the LAS, we define three parts of the whole camera view (as shown in Fig. 5.4a
and Fig. 5.4b for Camera1 and Camera2 respectively). In Fig. 5.4, each camera view
is divided into Camera View, Whole Interest Area and Core Interest Area. For both IR
Data Calibration (see Section 5.2.4) and Occupancy Estimation (see Section 5.2.4), we only
consider the Whole Interest Area. Any visitors outside this interest area will be ignored
for the purposes of occupancy estimation. The Core Interest Area approximates the space
directly underneath the LAS.

(a) Camera1 (b) Camera2 (c) Sample of Estimated
Occupancy from Cam-
era1

Figure 5.4: Interest Area Used to Estimate Occupancy

IR Data Calibration

To enable comparison between different behavior modes, the sensor data must be pre-
processed to ensure consistency between conditions. Since visitors can physically interact
with the system, it is possible that a visitor changes the direction of the IR sensor thus
changing its field of view and subsequent readings. To calibrate the IR data, two calibra-
tion steps are taken: 1) IR sensors, whose value is relatively constant and effectively not
responding to occupants (e.g., due to obstructions), are removed, 2) the baseline reading
for each sensor is shifted to zero. Note that the calibration is only done for analysis, during
the learning uncalibrated readings are used. To identify blocked IR and baseline shifts, we
visually checked the videos recorded by the two web-cams, and selected a time period when
there is no visitor within the whole interest area. Then, we find the IR data corresponding
to the no-visitor time. Using the no-visitor time, we determine the thresholds for noise

82

removal and blocked IR detection for the IR data. We use these thresholds to calibrate
the raw IR data.

Occupancy Estimation

We also use the camera data to generate a second estimate of occupancy. We estimate the
number of people occupying the space during a one minute interval, using OpenPose4 [52]
based on the videos recorded by one of the web-cams5. When estimating occupancy, we
only considered the Whole Interest Area.

Non-visitor Period Examination

We also used the camera data to determine whether there are significant periods when no
visitors are present. To identify the time periods with no visitors in Whole Interest Area,
we manually labelled the time periods when no person is under either camera in the Whole
Interest Area. If a person’s body is partially visible in Whole Interest Area, we consider
it as a person being in the area. The total amount of non-visitor time throughout the
experiment is 1 hour, only 2.5% of total experiment time. Therefore, we use the whole
time period for analysis without removing any non-visitor intervals.

5.2.5 Quantitative Evaluation

Two metrics, i.e. estimated engagement level and active interaction count, will be used
to quantitatively evaluate the ability of PB and PLA to engage visitors. Although these
two metrics both depend on IR readings, they emphasize different aspects of engagement.
Specifically, estimated engagement level does not differentiate passive and active interac-
tion (illustrated in Fig. 4.1), while active interaction count focuses on measuring active
interaction.

We report the average estimated engagement and the average active interaction rather
than accumulated reward commonly used in RL, because of the non-episodic, i.e. no
termination, and non-stationarity, i.e. transition dynamics T (s′|s, a) changes with different
visitors, nature of the test environment. Specifically, in the natural setting of LAS, the

4https://github.com/CMU-Perceptual-Computing-Lab/openpose
5Videos from Camera2 are highly affected by the changing light of the projector as shown in Fig. 5.4b,

so for occupancy estimation we only used videos from Camera1.

83

https://github.com/CMU-Perceptual-Computing-Lab/openpose

number of visitors varies at different time periods and is highly irregular, which makes
the evaluation of learned policy on a separate run unfeasible since the same environment
will never be encountered twice. Similarly, comparing accumulated reward within a fixed-
length episode is also unfair, because if we compare an episode from PLA during which
there are no visitors with an episode from PB during which there are several visitors, we
can not say PLA is worse than PB and vice versa, because no matter what PLA does there
is no reward at all. Therefore, we regard the whole experiment as continuous learning
and compare PLA and PB in terms of average estimated engagement and average active
interaction.

Estimated Engagement Level

We use raw IR readings recorded during each behavior and Eq. 5.3 to calculate an estimated
engagement for comparison among behaviors. Specifically, given M IR readings received
within 1 minute (typically sampled at 10Hz)

{
ir(1), ir(2), ..., ir(M)

}
where each IR reading

ir(i) is a vector of 24 IR values, the estimated engagement level e is defined by Eq. 5.3:

e =
1

M

1

24

M∑
m=1

24∑
i=1

ir
(m)
i , (5.3)

where ir
(m)
i is the ith IR sensor in the mth IR reading. The estimated engagement is in

the range [0,1], where the maximum 1 corresponds to a maximally engaging state, where
all IR sensors are receiving maximum readings during the entire 1 minute window, while
the minimum 0 corresponds to fully non-engaging state, where all IR sensors are receiving
minimum readings for the duration of the one-minute window.

Active Interaction Count Analysis

In addition to the estimate of engagement, we separately estimate the level of active inter-
action. To capture active interactions, we count the number of IR readings having value
>= 0.25, which corresponds to a proximity of 35cm or less from an IR sensor, within 1
minute. Formally, given M IR readings received within 1 minute (typically sampled at
frequency F = 10Hz)

{
ir(1), ir(2), ..., ir(M)

}
where each IR reading ir(i) is a vector of 24

IR values, the number of active interactions Nactive is defined by Eq. 5.4:

Nactive =
1

F

M∑
m=1

24∑
i=1

1

{
ir

(m)
i ≥ 0.25

}
, (5.4)

84

where ir
(m)
i is the ith IR sensor in the mth IR reading, and 1 {·} is a indicator function.

Therefore, Nactive is the total detected active interactions within 1 minute.

5.3 Results

In this section, we first quantitatively compare the performance of PB and PLA based on
evaluation metrics introduced in Section 5.2.5. After that, we analyze the human survey
data.

5.3.1 Quantitative Comparison Between PB and PLA

In this section, we quantitatively compare the performance of the two behavior modes
based on sensory data collected during the interaction between visitors and the LAS. We
use two ways to quantitatively compare the two behaviors’ performance: 1) comparing the
estimated engagement level, as described in Section 5.2.5, and 2) comparing the number
of active interactions, as introduced in Section 5.2.5.

Our experiment is run in a natural setting, i.e., a publicly accessible museum, so it is
possible that there are different occupancy levels in the space due to factors not related
to the behavior mode. To check whether there are different occupancy levels between
conditions (which might be caused either by some behaviors being more attractive to
visitors, or factors not related to system behaviors), we analyze the overall occupancy
level for PB and PLA, as described in Section 5.2.4. Fig. 5.5 shows a comparison of the
estimated occupancy between PB and PLA, where (a) shows that, in only about 5% of data,
PLA has approximately 1 more visitor than PB, and (b) shows that the average occupancy
between PB and PLA is very similar. A Mann-Whitney U test indicates that there is no
significant difference between PB and PLA in terms of occupancy level, U = 239030.5,
p = 0.92 (two-sided).

Estimated Engagement Level Comparison

Fig. 5.6 compares the distributions of estimated engagement (see Section 5.2.5) between
PB and PLA. From Fig. 5.6, we can observe that for the first 75% of data there is no
noticeable difference between PB and PLA, while for the last 25% of data PLA has larger
estimated engagement than PB. Fig. 5.8 shows the average estimated engagement, which
shows PLA achieves higher average engagement than PB.

85

(a) Comparison of Estimated Occupancy Distribu-
tions.

(b) Average Estimated Occupancy

Figure 5.5: Estimated Occupancy Comparison. (a) is a Q-Q (100-quantiles-100-quantiles)
plot of estimated per-minute occupancy, using the method introduced in Section 5.2.4,
for PB and PLA, where the coordinate (x, y) of the q-th point from bottom-left to up-
right corresponds to the estimated occupancy of (PB, PLA) for the q-th percentile, i.e.
Qq, q = 0, 1, ..., 100, and the reference line indicates a perfect match of distribution between
PB and PLA. For example, the point (4.3, 4) for PB vs PLA at the Q75 means that 75% of
observations for PB and PLA are less than 4.3 and 4, respectively. (b) shows the average
estimated per-minute occupancy and its standard error for PB and PLA.

Active Interaction Comparison

Fig. 5.7 compares the active interaction count based on Eq. 5.4 between PB and PLA.
From this figure, we can see that for about 50% of observations, PLA achieves higher
active interaction than PB. Fig. 5.9 compares PB with PLA in terms of average raw active
interaction count. As shown in the figure, PLA almost doubles the PB average active
interaction count.

Evolution of Average Estimated Engagement and Active Interaction

To analyse how performance evolved over the 3 week experiment, we plot the daily average
engagement and active interaction over the whole experiment. Fig. 5.10 shows daily

86

Figure 5.6: Estimated Engagement Distribution Comparison. The Q-Q (100-quantiles-100-
quantiles) plot between PB and PLA is based on average estimated engagement, where
the coordinate (x, y) of the q-th point from bottom-left to up-right corresponds to the
estimated engagement level of (PB, PLA) for the q-th percentile, i.e. Qq, q = 0, 1, ..., 100,
and the reference line indicates a perfect match of distributions between PB and PLA.

average metrics of PB and PLA. In terms of daily estimated engagement, Fig. 5.10a shows
that during the first two days, PB outperforms PLA, while after Sep. 25 PLA overtakes PB
for the remainder of the experiment. A similar trend can be seen in terms of daily active
interaction as shown in Fig. 5.10b. PLA receives more active interaction than PB from the
very beginning and keeps expanding the gap between PLA and PB. Even though it seems
PLA is improving, due to the uncontrolled experimental setting, we cannot be certain
whether this is caused by continuous adapting of PLA, or due to factors independent from
the interactive action of the LAS.

5.3.2 Analysis of Actions Automatically Generated by PLA

In this section, we analyze actions automatically generated by PLA. Since the dimension-
ality of the action space is 11 and each dimension is continuous, visualisation and analysis
of the action trajectory is difficult. For ease of visualisation, we first cluster actions into
6 clusters using K-Means [12], then use t-SNE [172] to embed actions generated by PLA
into a 2 dimensional space, where actions which are close in high dimensional space are

87

Figure 5.7: Active Interaction Count Comparison. The Q-Q Plot is based on active in-
teraction count per minute obtained using Eq. 5.4, where every (x, y) corresponds to the
active interaction count of PB in one percentile, and the line indicates a perfect match of
distributions between PB and PLA.

modeled by nearby points and dissimilar actions are modeled by distant points with high
probability. The resulting visualisation allows us to compare actions over all days or be-
tween specific days. Note that the clustering is done in the 11-dimensional action space of
PLA rather than the 2-dimensional embedding space, and the centroid of each cluster is
an 11-dimensional data point which can be thought of as the multi-dimensional average of
the points in the cluster. Fig. 5.11a and 5.11b show embedded actions generated by PLA
viewed in different colors for different days and different clusters, respectively, where PB
is also embedded for comparison and is indicated by the red star. Fig. 5.11c shows the
actions taken by PLA separately by day, with the different clusters labeled.

Fig. 5.12 depicts, for each PLA action cluster, the difference between each of the 11
dimensions of the cluster centroid and the corresponding default value of PB. From Fig.
5.12, we can observe that: (1) most action dimensions of the centroids of clusters 2, 3, 4
and 5 are greater than the default values of PB; (2) cluster 1 is very similar to PB on many
action dimensions; and (3) the centroid of cluster 6 has more action dimensions with values
lower than the default value of PB. Taking cluster 4 of PLA as a concrete example, most
dimensions of the centroid are larger than the default value of PB, indicating actions in
cluster 4 are slower and smoother than PB since Moths and LEDs take more time to ramp

88

Figure 5.8: Average Estimated Engagement
Comparison, where blue bars with standard
errors show the average estimated engage-
ment and its corresponding standard error.

Figure 5.9: Average Active Interaction
Count Comparison, where blue bars with
standard errors show the average number
of active interactions per minute for each
behavior (the counting is based on 1Hz in-
teraction frequency).

up (Tmru, T lru), hold on (Tmho, T
l
ho) and ramp down (Tmrd , T lrd), and the time gaps between

activating Moths and LEDs and neighbour nodes are longer (Tmgap, T
n
gap, Tsma). Cluster 4

seems to be preferred on Sep. 26th, Oct. 3rd and Oct. 5th as shown in Fig. 5.11c, as many
actions in cluster 1 are taken. Cluster 1 shares more similarity with PB, as seen from the
small differences in most dimensions shown in the 4th panel in Fig. 5.12. Actions in cluster
1 are taken densely on Sep. 17th, 19th, 20th, 26th and Oct. 5th, as shown in Fig. 5.12. As
an interesting and slightly contrary example to cluster 4, cluster 6 of PLA shows abrupt
action where Moths and LEDs take less time than PB to ramp up (Tmru, T lru), which seems
to be preferred on Sep. 24th. Note that here we arbitrarily set the total cluster number to
6 for a relatively clear visualization. As the clusters still have considerable within-cluster
variance, the analysis of centroids only provides an approximate analysis of the diversity
of actions taken by PLA.

Combining Fig. 5.11a, 5.11c and 5.12, we do not see specific types of action which
are dominant. Nevertheless, it seems that PLA continuously adapts, because actions gen-
erated by PLA on each day show slightly different coverage as shown in Fig. 5.11c and

89

(a) Estimated Engagement (b) Active Interaction

Figure 5.10: Trajectory of Daily Average Metrics. (a) Daily Average Estimated Engage-
ment and (b) Daily Average Active Interaction, where each data point is the corresponding
average on each day, the lines are linear regressions of these data and the translucent bands
around the regression line are the 95% confidence intervals for the regression estimate.

demonstrated in the previous paragraph. Overall, we can observe that PLA covered a wide
range of actions on each day and no obvious dominant actions were reached by the end of
the experiment.

5.3.3 Human Survey Results

In this section, we analyze the visitor responses to the survey for PB and PLA. We first
examine if there are any differences in the population characteristics between the partici-
pants who engaged with the system in PB or PLA behavior modes. Then, we compare the
PB and PLA responses for each Godspeed category. Finally, we compare PB and PLA for
each question in Godspeed Likeability category individually.

We first analyze whether there are population differences between conditions. In Section
5.2.4, we confirmed that there were no significant differences between PB and PLA in terms
of estimated occupancy. To test for differences in participant background and interest,
we performed a χ2-test on participants’ background and interests based on the first two
questions in our questionnaire (see Section 5.2.2), and found no statistically significant
differences between the two groups.

90

t-SNE Action Embedding Vectors of PLA
Viewed In Different Days

Sep. 17
Sep. 18
Sep. 19
Sep. 20
Sep. 21

Sep. 24
Sep. 25
Sep. 26
Sep. 27
Sep. 28

Oct. 02
Oct. 03
Oct. 05
PB

(a) Viewed in Days

t-SNE Action Embedding Vectors of PLA
 Viewed In Different Clusters

Cluster 1
Cluster 2
Cluster 3

Cluster 4
Cluster 5

Cluster 6
PB

(b) Viewed in Clusters

Date Sep. 17 Date Sep. 18 Date Sep. 19 Date Sep. 20

Date Sep. 21 Date Sep. 24 Date Sep. 25 Date Sep. 26

Date Sep. 27 Date Sep. 28 Date Oct. 02 Date Oct. 03

Date Oct. 05
Cluster 1
Cluster 2
Cluster 3
Cluster 4

Cluster 5
Cluster 6
PB

(c) On Each Day in 6 Clusters

Figure 5.11: Visualizing Actions Taken by PLA Embedded in a Two Dimensional Space.

91

Figure 5.12: Difference between the Cluster Centroid of PLA and PB. Each panel shows
the difference aPLA−aPB between the cluster centroids of PLA aPLA and the default value
of PB aPB for each dimension of the action space elaborated in Table 4.1, where a positive
value means that the corresponding dimension of the cluster centroid of PLA is greater
than the default value of PB, while a negative value means the contrary.

Cronbach’s α-test was conducted on each category of Godspeed for both PB and PLA to
examine the reliability of participants’ responses, results are shown in Table 5.3. Although

92

α on Anthropomorphism and Perceived Safety is low, α on others is in the acceptable
range, especially for Likeability α ≥ 0.85.

Table 5.3: Cronbach’s α on Godspeed for PB and PLA

Anthropomorphism Animacy Likeability
Perceived
Intelligence

Perceived
Safety

PB 0.74 0.77 0.85 0.89 0.52
PLA 0.64 0.80 0.93 0.85 0.27
A commonly accepted rule [76]: 0.9 ≤ α: Excellent; 0.8 ≤ α < 0.9: Good; 0.7 ≤ α < 0.8: Acceptable;

0.6 ≤ α < 0.7: Questionable; 0.5 ≤ α < 0.6: Poor; α < 0.5: Unacceptable.

Figure 5.13: Boxplot and Violinplot of Average Scale of each Godspeed Category over
Participants within PB or PLA.

Fig. 5.13 shows the Box-plot and Violin-plot of the calculated average scale over each
Godspeed category for PB and PLA. Within the five Godspeed categories, only Likeability
has a relatively large gap between the medians of PB and PLA. In addition, Likeability
has a relatively small variance, whereas other categories have large variance. A normality
test was conducted for the Likeability category for participants from PB and PLA, re-
spectively. Shapiro-Wilk Test [243] indicates PB (p = 0.12) is normally distributed, while
PLA (p = 0.0008) is not. Therefore, non-parametric test Mann−Whitney U test [176]
was conducted and finds that the distributions of PB (Median=4.10, M=4.09, SD=0.56)

93

and PLA (Median=5.00, M=4.48, SD=0.64) differ significantly (Mann−Whitney U = 67,
p=0.044 ¡ 0.05) in terms of Likeability, whereas for other categories there is no significant
difference between PB and PLA.

In summary, PLA is rated higher than PB by the participants in terms of Likeability,
while there are no significant differences between PB and PLA in the other Godspeed
categories.

5.4 Discussion

In this paper, we investigated how an interactive system can learn to engage with visitors
in a natural setting, where no constraints are imposed on visitors and group interaction is
accommodated. Relying on the standard RL framework and a novel measure of engagement
as reward, an adaptive behavior PLA was compared to a pre-scripted behavior PB. Our
results show that PLA outperforms PB in terms of estimated engagement level, active
interaction count, and the Likeability in human survey data. We hypothesize that the
PLA configuration outperforms PB because it benefits from both human expert input,
such as parameterized action space and manual reward function, and learning. During
the design process, architects design PB based on their expertise. We exploit this human
expertise to effectively restrict the parameterized action space of PLA into a region where
we know good solutions can be found, and at the same time limit the dimension of the PLA
action space. Therefore, PB and PLA both incorporate human intelligence, but compared
with PB, PLA is endowed with adaptability by applying RL to its parameterized action
space.

Our approach uses low-cost IR sensors for engagement estimation. Compared to other
social HRI work with rich sensing such as cameras and microphones, we were still able
to estimate engagement with limited sensing and generate engaging behaviors accordingly.
This might be helpful to other large scale interactive systems where having sophisticated
measurement may be unfeasible. In summary, this work provides two useful generaliz-
able guidelines for designing engaging behavior for long-term interaction: (1) in a group
interaction setting, group engagement from low-cost ambient sensors can be used either
standalone, or as a complement of individual engagement measures, and (2) such a mea-
sure of engagement can be used as a reward signal to generate customised and evolving
behavior.

Creating engaging behaviors for LAS requires learning algorithms that continue to
adapt rather than optimizing to a single best policy. First, the Markov Decision Process

94

and Stationary Environment Dynamics assumptions are broken because of the compli-
cated interaction environment. In addition, interaction time cannot be assumed to have
a constant length, and the interaction speed is bound to physical interaction and cannot
be sped up. In addition, since LAS is an architectural scale interactive system, percep-
tion of the environment is more complex and may need to include both proprioception
and exteroception. Therefore, although we exploit a RL framework in our work, the role
it plays is different from that of standard testbeds such as OpenAI Gym [43] or Arcade
Learning Environment (ALE) [32]. In this work, RL is used to introduce adaptability, but
there is no guarantee that the learning leads to optimal policy. This is illustrated by the
observation that compared with PB, PLA shows very flexible action patterns, and some
are very different from PB. Specifically, one observed behavior generated by PLA is LEDs
turned on and propagated quickly from one node to another back and forth multiple times
accompanying activated SMAs and Moths (see https://youtu.be/2tICanYEpoo) for the
video comparing PB and PLA, which makes the LAS look like a thunderstorm. This novel
behavior illustrates that the sculpture has taken the primitives composed by the designers
and evolved engaging and interesting behavior from those.

The group setting presents a challenging environment for learning. During the entire
experiment, we found some scenarios that highlight the complexity of using RL in LAS,
such as interactions between visitors and the possibility that the LAS could be physically
changed by touching as shown in Fig. 5.14. In addition, there are many other examples
of complicated environment dynamics that present challenges to a learning algorithm.
Examples include visitors who use alternate interaction strategies, change their interaction
strategy over time or because they are influenced by other visitors, as well as visitors who
raise their hands for reasons other than interaction. These observations illustrate the non-
stationarity of the environment, and the influence of human-human interaction in group
scenarios during HRI. They also emphasize the importance of developing and testing these
algorithms “in the wild.”

Selecting RL algorithms and hyper-parameters with real experiments is challenging,
since we do not have a ”validation set” that allows us to do multiple runs and we cannot
accelerate learning. Due to the non-stationary nature of the investigated environment
in our case, this is also impossible to do with a simulator, because unlike some fields in
robotics where a realistic simulator can be devised, in our case the diversity of visitors’
interaction styles, social influence of human-human interaction and variations in visitor
numbers during different time periods, etc. make it impossible to devise such a good
simulator. Therefore, in this work we only used a simplified simulator to make an initial
hyperparameter selection and confirm our code is bug free rather than to pre-train a
policy or fine-tune hyper-parameters. Finally, although DDPG was selected as the learning

95

https://youtu.be/2tICanYEpoo

(a) Learn how to inter-
act from other visitor

(b) Parent lifts child (c) Group visit lead by
a guide

(d) Visitors taught by
security guard but mis-
understood touch IR
sensors

Figure 5.14: Sample Interesting Scenario. (a) shows how visitors can affect each other.
Before the woman in blue arrives, the man in black had spent a while just looking around
and did not know how to interact with the LAS. Then coincidentally he saw how the
woman raised her hand and how the LAS responded. After that he copied her action to
interact with the LAS. (b) shows a parent helping his child experience the interaction after
he explored how to interact. Since the child could not reach the IR sensor, the parent
lifted his child. (c) shows a group visit where a group of visitors is led by a guide. (d)
shows a more complex scenario about misunderstanding shared information. In this case,
three girls were taking photos without interacting. Then a security guard taught one of the
three girls how to interact. At the same time, the second girl saw and joined them. After
that the third girl learned this from her friends. However, there was a misunderstanding
of the security guard’s instruction, so they directly touched the IR sensors rather than just
waving hand closely.

96

algorithm as it is easy to implement and works on continuous action space, the best choice
of RL algorithm requires further investigation. DDPG may not be sample efficient and can
be susceptible to overestimation and sensitive to hyper-parameters [117]. More advanced
continuous control algorithms, such as Soft Actor-Critic (SAC) [106], Twin Delayed DDPG
(TD3) [89], and Multi-step DDPG (MDDPG) [180], should be investigated in the future.

5.5 Summary

In this chapter, we developed and evaluated algorithms for generating interactive behaviors
in group environments. Specifically, we provide a way to estimate engagement during group
interaction based on multiple IR sensors, where both individual engagement, passive and
active interaction, and group engagement, i.e. occupancy, are taken into account. PB and
PLA were examined to evaluate how the use of human knowledge influences interaction. By
analyzing interaction and human survey data, we found that learned interactive behaviors,
i.e. PLA, result in higher engagement and perceived likeability than pre-scripted behavior,
i.e., PB.

In this chapter, we used DDPG as the learning algorithm. However, similar to other
DRL algorithms, DDPG faces the low data efficiency problem. To improve the data ef-
ficiency of DDPG, we propose two variants of DDPG by combining it with multi-step
methods in the next chapter. Specifically, we study the effect of multi-step methods on
the overestimation problem in DRL.

97

Chapter 6

The Effect of Multi-step Methods on
Overestimation in Deep
Reinforcement Learning

A version of this chapter was published in the proceedings of the 2020 25th International
Conference on Pattern Recognition (ICPR) [184].

Applying Deep Reinforcement Learning (DRL) [193] to a novel robot, such as a Living
Architecture System (LAS), is not always straightforward, because many DRL algorithms
are mainly investigated on simulation tasks with the focus on theoretical, rather than en-
gineering, aspects and do not prioritise data efficiency. This chapter aims to improve the
data efficiency of the DRL algorithm used in Chapter 5 to reduce the barrier of applying
DRL to Human Robot Interaction. In addition, to ease the comparison this chapter uti-
lizes the standard benchmarks intensively investigated in DRL community rather than our
special interactive systems, i.e., LASs, but the knowledge developed in this chapter is still
applicable to LASs.

DRL incorporates the powerful representation capacity of nonlinear Deep Neural Net-
works (DNNs) into classic Reinforcement Learning (RL), but also results in low data effi-
ciency and instability, i.e., drastic fluctuations in accumulated reward increase rather than
a smooth increase, [117, 264, 130]. Deep Q-Networks (DQNs) [193] represent the Q-value
function with DNNs, but is only designed for discrete action spaces Deep Deterministic
Policy Gradient (DDPG) [164] was proposed to tackle continuous control tasks, where the
actor and critic are both represented with DNNs. The move from low dimensional state
and action spaces to high-dimensional state and action spaces by employing DNNs comes

98

with the cost of low data efficiency and non-monotonic learning progress, where policy
diverges from optimal due to inaccurate approximation of the value function. These dis-
advantages hinder DRL from broad use in applications where interactive data collection is
time-consuming and smooth adaption of behavior is crucial to maintain engagement, e.g.
interactive robots [187].

Low data efficiency corresponds to slow learning speed, assuming the learning algorithm
is capable of learning an optimal policy given sufficient data, and can be caused by two
reasons: 1) lack of data, and 2) lack of training. If slow learning is caused by lack of
data, the environment is under-explored. In this case, an efficient exploration strategy, e.g.
parameter space noise [219], or a complementary source of experiences, e.g. World Models
[105], can be helpful for generating additional training data. On the other hand, if slow
learning is caused by lack of training, since enough experiences have been collected but
not coded into policy, a more effective way to use the collected data is necessary such as
prioritized replay buffer [238, 120] and hindsight experience replay [9].

Instability is partially related to the catastrophic forgetting problem of Deep Learning
(DL) [147] which is inherent in the continuously evolving nature of policy learning in
Reinforcement Learning (RL). In addition, inaccurate estimation and continuous tuning
of the Q-value function might lead the learned policy in directions far away from optimal
or cause it to fluctuate around a local optimum. The overestimation problem [274] in
Q-learning is a typical example of inaccurate estimation in which the maximization of an
inaccurate Q-value estimate induces a consistent overestimation.

Building on top of DDPG [164], we experiment with Multi-step DDPG (MDDPG),
where different step sizes are manually set, and with a variant called Mixed Multi-step
DDPG (MMDDPG) where a mixture of different multi-step backups is used as target Q-
value. We first experimentally show that MDDPG and MMDDPG outperform DDPG,
in terms of final performance and learning speed, mainly because of their effect helps
alleviate the overestimation problem. Then, we compare MMDDPG with other state-of-
the-art approaches to show that the proposed method can achieve comparable performance
to TD3 which is dedicated to addressing overestimation problem. After that, we discuss
the underestimation and overestimation underlying offline multi-step method. At the end,
we conclude this work and provide prospects for future research.

6.1 Proposed Methods

In this section, we will progressively introduce MDDPG and MMDDPG.

99

6.1.1 Multi-step DDPG (MDDPG)

MDDPG is a variant of DDPG where multi-step experiences sampled from the replay
buffer are used to calculate the direct accumulated reward, which is then added to the
bootstrapped Q-value after these experiences.

Based on the n-step discounted accumulated reward in Eq. 3.4, we can easily realize
n-step bootstrapped return using consecutively stored experiences in the replay buffer.
Assuming that past experiences of an agent are consecutively stored in the replay buffer D
and the experience at time step t is sampled into a training mini-batch, the n consecutive
experiences from t to t+n−1 are treated as a single multi-time step sample. Then, for each

sample in the n-step mini-batch
{

(st, at, rt, · · · , st+n, dt+n)(i)
}N
i=1

with size N , the n-step
bootstrapped estimated action value function can be defined as Eq. 6.1:

Q̂
(n)
t =

∑n−1

i=0 γ
irt+i + γn maxaQθQ− (st+n, a) ,
if ∀ k ∈ [1, · · · , n] and dt+k ̸= 1;∑k−1

i=0 γ
irt+i,
if ∃ k ∈ [1, · · · , n] and dt+k = 1,

(6.1)

with dt+k = 1 if the episode is done, otherwise dt+k = 0.

The value function Q of MDDPG is updated by minimizing the objective given in Eq.
6.2.

LθQ = E(st,at,rt,··· ,st+n,dt+n)∼U(D)

[(
Q̂

(n)
t −QθQ (st, at)

)2]
, (6.2)

where Q̂
(n)
t is Eq. 6.1, while the policy update remains the same as DDPG. For convenience,

in this chapter we will denote MDDPG with step size n as MDDPG(n). Specifically, when
n = 1, MDDPG(1) is equivalent to DDPG.

6.1.2 Mixed Multi-step DDPG (MMDDPG)

MMDDPG is a variant of MDDPG based on the observation that for different tasks the
best choice of step size n may differ. MMDDPG mixes target Q-values calculated with
different step sizes. This also helps to reduce the bias of the target Q-value by mixing a
small set of target Q-values. The mixture can be an average over target Q-values with

different step sizes from 1 to n as Q̂
(navg)
t in Eq. 6.3, or the minimum of such a set of target

Q-values as Q̂
(nmin)
t in Eq. 6.3. Or considering n = 1 is the most prone to overestimation,

100

MMDDPG could take the average over target Q-values with step size from 2 to n, as

Q̂
(navg−1)
t in Eq. 6.3.

Q̂
(navg)
t =

1

n

n∑
i=1

Q̂
(i)
t or Q̂

(nmin)
t = min

i∼[1,n]
Q̂

(i)
t

or Q̂
(navg−1)
t =

1

n− 1

n∑
i=2

Q̂
(i)
t (6.3)

Similar to MDDPG(n), we will denote MMDDPG with different mixture methods in-
troduced in Eq. 6.3 as MMDDPG(n-avg), MMDDPG(n-min), and MMDDPG(n-avg-1),
respectively.

6.2 Experiments

Tasks used for evaluation are selected from PyBulletGym1. We compare MDDPG and
MMDDPG with vanilla DDPG, TD3, SAC [106], MVE and STEVE.2 All algorithms use
policy and value functions with 2 hidden layers and each layer has 300 hidden units. Other
hyper-parameters are set to the default values. All experiments are run five times for five
different random seeds.

6.2.1 Experimental Evidence of Multi-step Methods’ Effect on
Alleviating Overestimation

Fig. 6.0 compares DDPG with its variants MDDPG and MMDDPG with different step size
n. This figure illustrates that all MDDPG(n) with n > 1 outperform DDPG, and especially
for MMDDPG(8-avg) the improvement, in terms of final performance and learning speed,
is significant as highlighted with the red line. To illustrate the underlying relationship
between the performance and learned Q-value, the average Q-value is shown in parallel,
from which we can see that the bad performance of DDPG always corresponds to an
extremely large Q-value. Note that even though multi-step methods help to relieve the

1https://github.com/benelot/pybullet-gym
2DDPG, TD3 and SAC use implementations in https://github.com/openai/spinningup, and

MVE and STEVE use the implementations in https://github.com/tensorflow/models/tree/master/

research/steve

101

https://github.com/benelot/pybullet-gym
https://github.com/openai/spinningup
https://github.com/tensorflow/models/tree/master/research/steve
https://github.com/tensorflow/models/tree/master/research/steve

overestimation problem, they cannot completely overcome this problem, as shown by the
drastic increase and followed by the sharp decrease in Q-value within the first few epochs
in Fig. 6.0, whereas DDPG takes more time to decrease its Q-value, and in some cases
never does. The initial overestimation is caused by approximation error on most (state,
action) pairs, because at the beginning stage of the learning only a small set of (state,
action) pairs are encountered, causing a high error in (state, action) pairs without training
data. However, as more and more experiences are collected in the replay buffer, the
approximation error is reduced. From the average Q-values in Fig. 6.0, we can see that
none of the examined approaches avoid this initial explosion in the average Q-values.

(a) AntPyBulletEnv-v0

(b) HalfCheetahPyBulletEnv-v0

102

(c) HopperPyBulletEnv-v0

(d) Walker2DPyBulletEnv-v0

Figure 6.0: Comparison Among MDDPG, MMDDGP and DDPG, where for each task ac-
cumulated reward and average Q-value are shown side-by-side correspondingly to demon-
strate the relationship between the overestimation of Q-value and performance.

To investigate why multi-step methods help to alleviate the overestimation problem, we

record backups of sampled experiences Q̂
(1)
t , Q̂

(2)
t , Q̂

(3)
t , Q̂

(4)
t , Q̂

(5)
t , Q̂

(navg)
t , and Q̂

(nmin)
t for

DDPG, MDDPG(n) and MMDDPG(n-avg) to depict the gap between 1-step and multi-

step backups. For example, Q̂
(1)
t − Q̂

(2)
t , indicated as “TQ 1Step- TQ 2Step” in Fig. 6.1

shows the difference between 1-step and 2-step backups. Four key characteristics can
be observed in this figure: (1) within a specific algorithm all gaps are positive which
means multi-step methods provide smaller estimated target Q-values than that of the
1-step method; (2) the larger the step, the smaller the corresponding estimated target

103

Figure 6.1: The Difference in Estimated Target Q-values Between 1-step and Multi-step
Methods, where the larger the value, the bigger the difference. (MDDPG(n) is a multi-step
DDPG with step size n, and MMDDPG(n-avg) is a mixture of 1- to n-step DDPG.)

Q-value, e.g. the blue line underneath the yellow line in each sub-figure; (3) the difference
becomes smaller with increased interactions; and (4) among the different algorithms, the
magnitude of the estimated Q-value decreases as the step size n increases. These findings
provide insight into multi-step methods’ effect on alleviating the overestimation problem.

6.2.2 Performance Comparison

This section focuses on comparing MMDDPG(8-avg) with other baselines namely DDPG,
TD3, SAC, MVE and STEVE. Special attention is given to MVE and STEVE, because
these two algorithms are very similar to MDDPG and MMDDPG with the difference that
they expand multi-steps in a learned environment model. Fig. 7.4 shows the learning curves

104

(a) AntPB-v0 (b) HalfCheetahPB-v0

(c) HopperPB-v0 (d) Walker2DPB-v0

Figure 6.2: Learning Curves for PyBulletGym Tasks. The shaded area shows half of
standard deviation of the average accumulated return over 10 trails. MEV and STEVE
are not run for full 1 million steps as they take more than 58 hours even on a machine with
2 x NVIDIA P100 Pascal and 3 CPUs @ 2.1GHz.

of these algorithms on various tasks, and Table 6.1 summarizes the maximum average
return. Obviously, MMDDPG(8-avg) significantly outperforms DDPG on all examined
tasks. Surprisingly, MMDDPG(8-avg) performs comparably and even better on some tasks
than TD3 which is currently one of the state-of-the-art approaches, specifically designed to
address function approximation error in DDPG. Considering all examined tasks in this work

105

Table 6.1: Maximum Average Return over 10 Trials of 1 million Steps of MMDDPG(8-
avg), DDPG, TD3, SAC, MVE and STEVE. The maximum value for each task is bolded.

Algos AntPB HalfCheetahPB Walker2dPB HopperPB

MMDDPG
(8-avg)

2767.1±1461.4 1368.9±527.3 1014.0 ±316.3 2391.9±473.3

DDPG 885.4±811.7 422.2±137.6 524.0±227.5 1570.7±626.8
TD3 2388.0±832.6 1033.9±429.6 1806.8±270.0 2253.9±295.2
SAC 845.5±103.7 608.3±131.1 918.9±33.4 2249.9±207.9
MVE 639.5±33.9 331.9±290.6 332.4±261.8 263.4±332.4

STEVE 1969.0±525.7 630.5±132.2 522.7±368.3 1338.6±449.6
Algos AntMJC HalfCheetahMJC Walker2dMJC

MMDDPG
(8-avg)

3042.8±1038.5 2242.2±338.6 1365.6±409.9

DDPG 2014.8±1371.6 1311.8±1367.6 844.7±521.1
TD3 3495.2±725.9 2201.1±692.8 1583.3±670.1
SAC 1680.5±414.6 1977.7±180.4 779.1±178.7

have a dense reward signal, where multi-step methods’ effect on enabling fast propagation of
reward will be less important, we speculate that multi-step plays a similar role in alleviating
the overestimation problem as does TD3, but using a different mechanism. Compared with
MDDPG and MMDDPG, the disadvantage of TD3 is it introduces more computation for
training its critics, because it maintains two separate critics and at each training step these
two critics are updated to the minimum estimated Q-value of their target critic networks.
Detailed comparison in terms of computation cost among DDPG, MDDPG, MMDDPG
and TD3 will be discussed in Section 6.3.

Counterintuitively, SAC performs worse than TD3 on tasks from PyBulletGym, and
for some tasks SAC is even worse than DDPG. This is unexpected, as it is shown in [106]
that SAC outperforms TD3 on some difficult continuous control tasks from OpenAi gym
which use the MuJoCo [277] physics engine. One possible explanation is that PyBulletGym
uses Bullet physics [69], at the same time environments in PyBulletGym are ported from
Roboschool environments which are harder than MuJoCo gym, as the robot’s body is
heavier than that in MuJoCo tasks and termination states are added if robot flips over.
This needs further investigation. Especially if SAC is going to be employed in a real robot,
the belief that SAC is the best choice might be misleading.

MVE performs the worst on most tasks. STEVE is shown to be sample efficient on
AntPyBulletEnv-v0 and is better than MVE, which is consistent with the results in [47].

106

However, STEVE is worse than MMDDPG(8-avg) and TD3.

6.3 Discussion

In this section, we discuss the advantages and disadvantages of different ways to do multi-
step expansion, and expose the tradeoff between overestimation and underestimation that
underlies offline multi-step methods. Then, we compare the computation resource con-
sumption between TD3 and our proposed methods, since they show comparable final per-
formance and learning speed.

Comparison of Multi-step Expansion Methods

As shown in Eq. 6.4, there are three ways to calculate Q̂
(n)
t (st, at) depending on how the

n − 1 experiences after (st, at, rt, dt) are acquired: (1) offline expansion, sampled from
the replay buffer, e.g. MDDPG and MMDDPG; (2) online expansion, sampled from the
environment according to an online policy, e.g. Q(σ) [75]; (3) model-based expansion,
sampled from a learned environment model according to an online policy, e.g. MVE and
STEVE.

Q̂
(n)
t (st, at) = rt +

offline, online, model︷ ︸︸ ︷
n−1∑
k=1

γkrt+k︸ ︷︷ ︸
underestimation prone

+γn max
a
QθQ−(st+n, a)︸ ︷︷ ︸

overestimation prone

(6.4)

Theoretically, online expansion is the best as the multi-step experiences are directly
sampled from the environment. However, this is unrealistic, because expanding multi-
step for each experience (st, at, rt, st+1) in a mini-batch is time-consuming, especially when
running multiple parallel environments (e.g. in simulation) is impossible.

A compromise is learning an environment model, then doing multi-step expansion on
the learned environment model, as is done in MVE and STEVE. The challenge with this
approach is that learning an environment, including transition dynamics and reward func-
tion, might be as hard or even harder than learning a policy, even without considering
the extra cost for computation resources. It is also not clear to what extent the error
introduced by the learned environment model will harm the learning of a policy. As shown

107

in Fig. 7.4 and Table 6.1, MVE and STEVE do not provide significant benefit, compared
with MMDDPG(8-avg) and TD3.

Offline expansion is a solution somewhat in between. On one hand, it does not need to
learn an environment model or to expand according to current policy on the environment,
but uses past experiences after (st, at, rt, st+1) as an expansion of the current online policy
on the environment, with only negligible extra computation required. On the other hand,
it is not an exact expansion of online policy, which introduces error in the estimated target
Q-value and tends to be an underestimation of Q-value following current online policy.
Nevertheless, offline expansion gradually approaches online expansion as the replay buffer
fills with experiences following a stable optimal policy. This is seen in Fig. 6.3 where
the initial gap between online and offline multi-step expansion is big, indicating large
underestimation, but gradually decreases with the increase of interactions.

Figure 6.3: Comparison between Online and Offline Multi-step Expansion, where the blue
and the red line correspond to average of offline and online multi-step expansion over a
mini-batch sampled from replay buffer, and the green line is the gap between them.

Obviously, multi-step expansion cannot completely overcome the overestimation prob-
lem, because the bootstrapped Q-value after n-steps is still prone to overestimation as
shown in Eq. 6.4. But since n > 1, the bootstrapped part is weighted less than in the
1-step method. Overall, offline multi-step expansion tends to be an underestimation of the
online multi-step expansion, while the bootstrapped Q-value after n-step tends to be an

108

overestimation of the value in state st+n. Therefore, the step size n balances the tradeoff
between overestimation and underestimation.

Computation Resource Consumption Comparison with TD3

Similar to MVE and STEVE, MDDPG and MMDDPG proposed in this paper employ
multi-step expansion to provide a more accurate target Q-value estimation for the critic in
DDPG. As discussed in Section 6.2.2 and 6.3, MMDDPG outperforms MVE and STEVE in
terms of learning speed, final performance and computation resource consumption. How-
ever, unlike multi-step expansion, TD3 takes the minimum of target Q-values estimated
from two critics as the final target Q-value to update these two critics, to avoid value
approximation error. MDDPG and MMDDPG show comparable final performance and
learning speed as TD3 on most tasks. Here we focus on comparing the computation re-
source consumption of these three methods.

Table 6.2: Comparison of Forward and Backward Propagation on a Mini-batch for Updat-
ing the Critic

DDPG TD3 MDDPG(n) MMDDPG(n)
FP 1 2 1 n
BP 1 2 1 1

Total 2 4 2 n+1

FP: Forward Propagation, BP: Backward Propagation.

Table 6.2 summarizes the time of forward and backward propagation needed for training
the critic on a mini-batch of transitions. As shown in the table, DDPG needs 1 forward
propagation to estimate the target Q-value and 1 backward propagation to update the
critic. TD3 performs 2 forward and 2 backwards propagations, one for each critic. MDDPG
with a specific step size n does not introduce extra propagations compared with DDPG.
However, the number of forward propagations needed for MMDDPG with a specific choice
of step size n is n, while only 1 backward propagation is needed for the updating critic.
Therefore, MDDPG consumes less computation resource than TD3, while MMDDPG con-
sumes more computational resource than TD3 only when n ≥ 4, assuming the forward and
backward propagation are equally demanding in terms of computational resources.

109

6.4 Summary

In this chapter, we empirically revealed multi-step methods’ effect on alleviating overesti-
mation in DRL, by proposing MDDPG and MMDDPG which are a combination of DDPG
and multi-step methods, and discussed the underlying underestimation and overestimation
tradeoff. Results show that employing multi-step methods in DRL helps to alleviate the
overestimation problem by exploiting bootstrapping. This chapter also discussed the ad-
vantages and disadvantages of three ways to implement multi-step methods from the point
of view of extra computation cost and modeling error.

However, a principled way for choosing step size n is still needed. Perhaps dynamically
tuning n during the course of learning is more suitable as at different stages of learning
the trade-off between overestimation and underestimation needs to be balanced differently.
The most important future direction arising from this work is to find a more effective
way to overcome overestimation since this is key to improving DRL algorithms’ sample
efficiency, while still retaining a simple exploration method in order to limit computational
needs.

110

Chapter 7

Memory-based Deep Reinforcement
Learning for POMDPs

A version of this chapter was published in the proceedings of the 2021 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS) [185].

Unlike the commonly used standard benchmarks where the observation space of the
control task is well-engineered by researchers to fully capture the underlying state of an
agent, the state space of Living Architecture Systems may not be fully observable due to
the architecture scale, limited sensing, and the challenge of perceiving the internal state of
human occupants, as introduced in Chapter 4. Therefore, this chapter aims to address the
partial observability challenge by proposing a memory-based DRL algorithm and examining
the algorithm on standard benchmarks with various types of partial observability.

DRL [192, 164]has been intensively studied in simulated environments, such as games
[192] and simulated robots [164], as well as in real-world studies, such as robotics control
[104, 299, 267] and human-robot interaction [222, 60, 187]. DRL enables end-to-end policy
learning on tasks with high-dimensional state and action spaces, without relying on labour-
consuming feature engineering. However, most works focus on developing algorithms [192,
154, 164, 239, 241, 89, 106] for Markov Decision Processes (MDPs) with fully observable
state spaces [79], i.e. the observation at each time step fully represents the state of the
environment. Few works consider the more complex Partially Observable Markov Decision
Process (POMDP) where the observation is just a partial representation of the underlying
state. However, POMDPs are ubiquitous in real robotics applications [196], such as robot
navigation [50], robotic manipulation [213], autonomous driving [268, 285], and planning
under uncertainty [287, 61]. Partial observability may be due to limited sensing capability,

111

or an incomplete system model resulting in uncertainty about full observability.

POMDPs have been tackled with the concept of belief state [230], which represents the
agent’s current belief about the possible physical states it might be in, given the sequence
of actions and observations up to that point. These algorithms are designed to estimate
the belief state, then the value function and/or the policy are learned based on the belief
state [242]. However, these methods need to know the environment model and the state
space and they only work on tasks with small state and action spaces.

POMDPs have also been addressed with DRL, for both discrete [110, 154, 302] and
continuous [258, 285] control problems. Recurrent Neural Networks (RNN) have been
exploited in DRL to solve POMDPs by considering both the current observation and
action, and the history of the past observations and actions [114, 258, 301, 302, 154].

In this chapter, we propose a memory-based DRL, called Long-Short-Term-Memory-
based Twin Delayed Deep Deterministic Policy Gradient (LSTM-TD3), for continuous
robot control. We provide a comparison study with other DRL algorithms where both
MDP and POMDP versions of the tasks are investigated to demonstrate how observeability
properties influence performance on both POMDPs and MDPs. Compared to other DRL
algorithms, results show that LSTM-TD3 improves performance significantly on POMDPs
where the observation space of the underlying MDPs is disturbed to reduce the observ-
ability. We will also provide an ablation study to show the contribution of each design
component, and discuss the advantages and disadvantages of the proposed method.

7.1 Proposed Approach

In this chapter, we propose a memory-based DRL algorithm named LSTM-TD3 within
a recurrent actor-critic framework, where both the actor and the critic employ recurrent
neural networks, as illustrated in Fig. 7.1. In this section, we will first introduce the
proposed recurrent actor-critic framework, then present the optimization method for the
actor-critic.

In the proposed approach, a mini-batch of N experiences
{

(hlt, ot, at, rt, ot+1, dt)i
}N
i=1

is sampled from the replay buffer D of experiences (ot, at, rt, ot+1, dt), where dt indicates
whether the terminal state is reached after observing ot+1 and for each sample the past
history hlt with length l until observation ot at time t is defined as:

hlt =

{
ot−l, at−l, · · · , ot−1, at−1 if l, t ≥ 1,

o0, a0 otherwise,
(7.1)

112

Figure 7.1: Recurrent Actor-Critic Framework

where o0 and a0 are the zero-valued dummy observation and action vectors with the same
dimensions as those of the normal observation and action. The reason for adding the zero-
valued dummy observation and action is that the recurrent actor-critic framework employs
a memory component to separately extract memory from history, which means we have
to feed a history into the memory component and cannot leave it empty. As defined in
Eq. 7.1, if history length l ≥ 1 and time step t ≥ 1, the history hlt at time t is defined as
the past l (observation, action) pairs, otherwise no history is used and zero-valued dummy
vectors (observation, action) are used as input to the memory component.

113

7.1.1 Recurrent Actor-Critic Framework

The structure of the proposed recurrent actor-critic framework is illustrated in Fig. 7.1,
where Long-Short-Term-Memory is introduced to extract information beneficial to the
actor and critic from past history. The proposed framework can handle history of any
length.

Formally, given a mini-batch sample of experiences, the memory-based critic Q, as
illustrated in Fig. 7.1, can be seen as a compound function of the memory extraction
Qme, the current feature extraction Qcf , and the perception integration Qpi components,
following Eq. 7.2

Q(ot, at, h
l
t) = Qme ◦Qcf ◦Qpi

= Qpi(Qme(hlt) ⋊⋉ Qcf (ot, at)),
(7.2)

where ◦ indicates function composition, ⋊⋉ indicates the concatenation operation, Qme is
the extracted memory based on history hlt, and Qcf is the extracted current feature based
on current observation ot and action at.

Similarly, the memory-based actor µ is also a compound function of the memory extrac-
tion µme, the current feature extraction µcf , and the perception integration µpi components,
defined as follows:

µ(ot, h
l
t) = µme ◦ µcf ◦ µpi

= µpi(µme(hlt) ⋊⋉ µcf (ot)),
(7.3)

where ◦ indicates function composition, ⋊⋉ indicates the concatenation operation, µme is
the extracted memory based on history hlt, and µcf is the extracted current feature based
on current observation ot.

7.1.2 Optimization of the Recurrent Actor-Critic

The optimization of the proposed recurrent actor-critic framework follows that of TD3.
Specifically, each critic Q

j∈
{
1, 2

} is optimized to minimize the mean-square-error between

the predicted Qj and the estimated target Q̂ with respect to the parameters θQj of the
critic Qj, as follows:

minθQj E{(hlt,ot,at,rt,ot+1,dt)i}N
i=1

(Qj − Q̂)2, (7.4)

114

where given the definition of memory-based critic (Eq. 7.2) and actor (Eq. 7.3), the target
Q-value Q̂ based on the target actor µ− and critic Q−j is defined as follows

Q̂ = rt + γ ∗ (1− dt) ∗ min
j=1,2

Q−j (ot+1, a
−, hlt+1), (7.5)

where a− = µ−(ot+1, h
l
t+1) + ϵ with ϵ ∼ clip(N(0, σ),−c, c) and c is the boundary of target

action noise, hlt+1 = (hlt − (ot−l, at−l)) ∪ (ot, at) is the l observation and action pairs before
ot+1, and the minimum of the estimated optimal Q-values of the two target critics in
(ot+1, h

l
t+1) is taken to bootstrap the target Q-value of (ot, at, h

l
t).

For the actor, its parameters θµ are optimized to maximize the approximated Q-value in
observation (ot, h

l
t) and the corresponding estimated optimal action µ(ot, h

l
t) with respect

to the parameters of the actor, as follows:

maxθµ E{(hlt,ot)i}Ni=1

Q(ot, µ(ot, h
l
t), h

l
t), (7.6)

where the Q could be either of the two critics Q1 and Q2, as in TD3. The pseudo-code for
optimizing the recurrent actor-critic can be found in Alg. 3 and the actor optimization is
depicted in Fig. 7.2 where the parameters θQ1 of the critic Q1 is fixed while the parameters
θµ of the actor is optimized according to Eq. 7.6..

Figure 7.2: Actor Optimization

115

ALGORITHM 3: Pseudo-code for LSTM-TD3
Input: History length L

1 Initialize critics QθQ1 , QθQ2 , and actor µθµ with random parameters θQ1 , θQ2 and θµ

2 Initialize target networks θQ
−
1 ← θQ1 , θQ

−
2 ← θQ2 and θµ

− ← θµ

3 Initialize environment o1 = env.reset(), past history hl1 ← 0, and replay buffer D
4 for t = 1 to T do

/* Interacting */

5 Select action with exploration noise at ∼ µθµ(ot, h
l
t) + ϵ, ϵ ∼ N(0, σ)

6 Interact and observe new observation, reward, and done flag: ot+1, rt, dt = env.step(at)
7 Store experience tuple (ot, at, rt, ot+1, dt) in D
8 if d then
9 Reset environment ot+1 = env.reset() and history hlt+1 ← 0

10 else
/* Update hlt+1 */

11 hlt+1 = (hlt − (ot−l, at−l)) ∪ (ot, at)

12 end
/* Learning */

13 Sample mini-batch of N experiences with their corresponding histories{
(hlt, ot, at, rt, ot+1, dt)i

}N
i=1

from D

14 Optimize Qj according to Eq. 7.4
15 Optimize µ according to Eq. 7.6
16 Update target actor-critic

17 end

7.2 Experiment Settings

The tasks (Fig. 7.3 where (a) HalfCheetahPyBulletEnv-v0, (b) AntPyBulletEnv-v0, (c)
Walker2DPyBulletEnv-v0, (d) HopperPyBulletEnv-v0, and
(e) InvertedDoublePendulumPyBulletEnv-v0) tested in this work come from PyBullet-
Gym1, an open-source implementation of the OpenAI Gym MuJoCo environment based
on BulletPhysics2. In this work, an MDP-version and 4 POMDP-versions of each task
are investigated, described in Table 8.1. The MDP-version is the original task, as it has
a fully observeable state-space, while the 4 POMDP-versions simulate different scenarios
that potentially cause partial observability in real applications. Specifically, the POMDP-
RemoveVelocity (POMDP-RV) is designed to simulate the scenario where the observation

1https://github.com/benelot/pybullet-gym
2https://github.com/bulletphysics/bullet3

116

(a) (b) (c) (d) (e)

Figure 7.3: Example PyBulletGym Tasks.

space is not well-designed, which is applicable to a novel control task that is not well-
understood by researchers and therefore the designed observation may not fully capture
the underlying state of the robot. The POMDP-Flickering (POMDP-FLK) models the case
where remote sensor data is lost during long-distance data transmission. The case when
a subset of the sensors are lost is simulated in POMDP-RandomSensorMissing (POMDP-
RSM). Sensor noise is simulated in POMDP-RandomNoise (POMDP-RN).

Table 7.1: MDP- and POMDP-version of Tasks

Name Description
Hyper-
parameter

MDP Original task −
POMDP-RV Remove all velocity-related entries in the observation space. −
POMDP-FLK Reset the whole observation to 0 with probability pflk. pflk
POMDP-RN Add random noise ϵ ∼ N(0, σrn) to each entry of the observation. σrn
POMDP-RSM Reset an entry of the observation to 0 with probability prsm. prsm

The baselines used to compare with the proposed LSTM-TD3 are the DDPG [164],
SAC [106], TD3 [89], TD3 with Observation-Window (TD3-OW) where the ot is simply
concatenated with the observations within the history window hlt to form an observation
as input, and TD3 with Observation-Window-AddPastAct (TD3-OW-AddPastAct) where
ot is concatenated with the observations and the actions within the history window hlt.
The hyperparameters for the baseline algorithms were always the defaults provided in
OpenAISpinningUp3. For the proposed algorithm, hyperparameters were empirically set
to that for TD3, and the network structures of the LSTM-TD3 were chosen to have a similar
number of parameters to the networks in TD3. All reported results are averaged over 10
evaluation episodes based on 4 different random seeds. The code used for this work can

3https://spinningup.openai.com

117

be found in https://github.com/LinghengMeng/LSTM-TD3. All hyperparameter testing
and additional results (e.g. LSTM-TD3 in POMDPs with lower observability and larger
history length than that reported here) are reported in the Appendix B.

7.3 Results

7.3.1 Performance Comparison

The rows of Fig. 7.4 show the learning curves of the three sampled tasks, where the fist
column shows the performance on MDP, while the following 4 columns show results on
POMDPs. The results on MDP show that the proposed method has competitive perfor-
mance to the baselines. The results on the POMDPs highlight the advantage of having
memory when solving partially observable tasks. On all types of POMDP, LSTM-TD3
outperforms all baselines, except on POMDP-RV of HalfCheetahPyBulletEnv-v0, where
LSTM-TD3(5) shows slightly worse performance than TD3. Although TD3-OW shows
better performance than DDPG, TD3, and SAC on POMDPs for most tasks, it still fails
for some POMDPs, such as the POMDP-FLK version of most tasks. This reveals that sim-
ply concatenating observations is not a good choice, compared to having a LSTM-based
memory extraction component as that in LSTM-TD3. LSTM-TD3(0) seems sensitive to
random seeds (1st panel of the 3rd row of Fig. 7.4) as it achieves lower performance com-
pared to that of TD3 and LSTM-TD3 with history length larger than 0. To explain this,
even though we set the history for it to zero, it may still predict nonzero for the Qme

(introduced in Eq. 7.2), because the gradients with respect to the randomly initialized
weights of Qme may be nonzero and back-propagated, which could influence the agent
during learning.

Particularly, a significant performance gap can be observed on POMDP-FLK for all
tasks (the 3rd column in Fig. 7.4), where the baselines basically fail while LSTM-TD3
achieves comparative performance to that on MDP. This is especially promising for tasks
where whole sensor data may be lost, either caused by hardware failure or by temporary
occlusion, etc. Similar, dramatic performance improvement can be seen on POMDP-RN
and POMDP-RSM.

Surprisingly, comparing LSTM-TD3 and TD3, memory does not always help for
POMDP-RV (the 2nd column in Fig. 7.4) of HalfCheetah and Ant. Intuitively, if the
velocity is important to learn a task, there is no way to infer such information without
past observations i.e. memory. However, if previous observations are available, the velocity

118

https://github.com/LinghengMeng/LSTM-TD3

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

HalfCheetahPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

AntPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

5000

10000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

InvertedDoublePendulumPyBulletEnv-v0

Figure 7.4: Learning Curves for PyBulletGym Tasks, where to ease the comparison only
average values are plotted. In the legend, the value in the bracket of LSTM-TD3 indicate
the length of the history, e.g. LSTM-TD3(5) uses history length 5.

119

can be inferred by differences in position between consecutive steps. This intuition can be
clearly observed on the POMDP-RV of Hopper and InvertedDoublePendulum, where the
performance of LSTM-TD3 is significantly better than that of TD3. For the HalfCheetah
and Ant, if we compare the performance on MDP and POMDP-RV, we can still see a no-
ticeable gap, which means velocity does contribute to learn a good policy. We hypothesize
that LSTM-TD3(5) does not outperform TD3 on the POMDP-RV version of HalfCheetah
and Ant due to the fact that within the history window all speeds are very similar and
velocity cannot be accurately inferred, which may be caused by relatively high sampling
rate.

Interestingly, by comparing the results of TD3-OW and TD3-OW-AddPastAct, we
found that adding past actions consistently harms the performance compared to TD3-
OW, which does not have past actions in its observation window. Even though TD3-OW-
AddPastAct still outperforms TD3 on POMDP, it performs worse than TD3 on MDP,
which is undesirable if we have no prior knowledge of whether the current design of the
observation space is partially or fully observable. Ideally, even if the past action-related
information does not provide anything new beyond the past observation, it can be safely
ignored and should not harm the performance. We think this is related to the simple
construction method where actions are concatenated with observations to form a single
observation that includes history information. In this way, the observation dimension is
expanded, which makes the learning harder. In addition, this simple construction method
treats all observations equally instead of prioritizing the most recent observation, which
is normally more valuable in decision-making than earlier observations. This observation
based on TD3-OW and TD3-OW-AddPastAct in fact supports our idea to structurally
separate the memory extraction and current feature extraction in the recurrent actor-critic
framework (Fig. 7.1) designed for LSTM-TD3, then combine them together to further
learn a presentation of the critic and the actor. In section 7.4.3, we will further investigate
if adding past actions is beneficial for LSTM-TD3.

7.3.2 Policy Generalization

To better understand the generalization of the learned policy using LSTM-TD3, we eval-
uated the learned policy on a different version of a given task, i.e., if the policy is learned
on the MDP-version of a task, and evaluated on the POMDP-versions of the task. This
is valuable for real applications where the environment may be non-stationary. Fig. 7.5
shows the cross evaluation results on AntPyBulletEnv-v0. POMDP-RV is not included as
it has a different observation dimension which corresponds to a different input shape for
the neural networks. From the first panel (i.e. policies trained on MDP), TD3, TD3-OW,

120

and LSTM-TD3 significantly outperform DDPG, SAC, and TD3-OW-AddPastPact. When
evaluating on POMDPs, there is always a decrease for TD3, TD3-OW, and LSTM-TD3,
but LSTM-TD3 is the most robust and achieves better performance on these evaluation
environments than TD3 and TD3-OW. As for the last three panels, even though LSTM-
TD3 still outperforms TD3-OW significantly when evaluated on a different environment,
for each algorithm there is not much change in performance. Actually, when trained on
POMDP-FLK and evaluated on MDP, LSTM-TD3 achieves a better performance than
evaluated on POMDP-FLK.

Figure 7.5: Cross Evaluation. In each panel, the x-axis indicates the evaluation envi-
ronment (proposed in Table 8.1) and the y-axis is the average return, where the bars
highlighted with red dashed box correspond to performances evaluated on the same envi-
ronment where the policies are trained, and errorbar on the bar tips indicates the standard
deviation of the performance.

121

(a) Full−CFE (b) Full−PA

Figure 7.6: Diagram of Full−CFE and Full−PA, where for the Full−CFE the extracted
memory is directly concatenated with the current observation for the actor and with the
current observation and action for the critic; and for the Full−PA past actions are exclued
from the history.

122

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDP-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK

0.0 0.5 1.0
Step 1e6

POMDP-RN

0.0 0.5 1.0
Step 1e6

POMDP-RSM
AntPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

5000

10000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDP-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK

0.0 0.5 1.0
Step 1e6

POMDP-RN

0.0 0.5 1.0
Step 1e6

POMDP-RSM
InvertedDoublePendulumPyBulletEnv-v0

Figure 7.7: Learning Curves of Ablation Study, where to ease the comparison only average
values over 10 evaluation episodes based on 4 different random seeds are plotted. In the
legend, Full, Full−CFE, Full−PA, Full−DC, Full−TPS, and Full−DC−TPS correspond
to LSTM-TD3 with full components, removing current feature extraction, excluding past
action, not using double critics, not using target policy smoothing, and simultaneously not
using double critics and target policy smoothing.

123

Table 7.2: Comparing DDPG and LSTM-DDPG in Terms of Maximum Average Return,
where ± indicates a single standard deviation. The bolded value of LSTM-DDPG indi-
cates the performance of LSTM-DDPT on a specific version of a task is better than the
performance of DDPG on MDP-version of the task.

Task Algorithms

Name Version DDPG LSTM-DDPG

H
al
fC

h
eP

B MDP 487.6± 6.1 517.4 ± 102.0
POMDP-RV 508.4± 23.9 552.0 ± 1.4

POMDP-FLK 84.8± 20.4 690.8 ± 0.0
POMDP-RN 268.7± 70.2 731.1 ± 330.9

POMDP-RSM 283.7± 27.0 606.3 ± 63.0

A
n
tP

B

MDP 1210.8± 226.1 1855.8 ± 494.2
POMDP-RV 683.5± 101.4 1068.6± 363.0

POMDP-FLK 449.0± 93.3 2145.1 ± 107.2
POMDP-RN 449.6± 18.5 879.3± 446.9

POMDP-RSM 465.2± 51.0 1831.7 ± 33.9

pflk = 0.2, σrn=0.1, prsm = 0.1.

7.4 Ablation Study

To further understand the effect of each component of the proposed LSTM-TD3, in this
section we perform an ablation study. Specifically, we examine the effects of the following
components: (1) double critics (DC), (2) target policy smoothing (TPS), (3) current feature
extraction (CFE), and (4) including past actions (PA) in the history. Fig. 7.7 shows the
learning curves of ablated versions of LSTM-TD3, each removing a different component,
while Table B.3 reports the maximum average return of the investigated ablated algorithms.

7.4.1 Effect of Double Critics and Target Policy Smoothing

As shown in Fig. 7.7, Full−DC shows a significant decrease in performance compared
to Full on all MDPs and most POMDPs, whereas TPS seems less important to the best
performance of Full. When simultaneously removing DC and TPS, the performance signif-
icantly decreases. Note that without DC and the TPS, the LSTM-TD3 is in fact reduced
to LSTM-DDPG, similar to RDPG proposed in [114]. To ease the comparison, we sum-
marized the results of DDPG and LSTM-DDPG, i.e. Full−DC−TPS, in Table 7.2. When

124

compared on the same version of a task, LSTM-DDPG always outperforms DDPG, which
can be observed by comparing the results in each row. Remarkably, LSTM-DDPG even
achieves significantly better performance on POMDPs than DDPG on MDP.

7.4.2 Effect of Current Feature Extraction

In this chapter, we intentionally separate the memory extraction and the current feature
extraction, then combine them together (Fig. 7.1), in order to differentiate the current
and the past and to reduce the interference from useless information in the memory. Al-
ternatively, we can directly combine the current observation for the action (or the current
observation and action for the critic) with the extracted memory, i.e. removing the CFE
(Full−CFE) (Fig. 7.6a). As shown in Fig. 7.7, Full−CFE performs much worse, compared
to Full, especially for MDP-version tasks. Recall that one scenario for devising the LSTM-
TD3 is the situation where engineers are not sure if the design of the observation space is
appropriate to capture the state of the agent, if the designed observation space properly
captures the state of the agent and there is no CFE, poor performance will be achieved.
Therefore, CFE is important for such scenarios.

7.4.3 Including Past Action Sequence in Memory

Fig. 7.6b illustrates Full−PA, where past actions are excluded from the history. As shown
in Fig. 7.7, removing PA causes a decrease in performance, where a remarkable decrease
can be observed on the POMDP-RV version of InvertedDoublePendulumPyBulletEnv-v0
(the 2nd panel in the last row in Fig. 7.7), which is contrary to the observation in Section
B.2.1 that TD3-OW-AddPastAct performs significantly worse than TD3-OW by adding
past actions in the history. This means LSTM-TD3 is more robust than OW-TD3. This is
desirable especially when designers have no prior about whether observation of past actions
is needed to infer the current state of an agent for an unknown task.

7.5 Summary

In this chapter, we proposed a memory-based DRL algorithm called LSTM-TD3 by com-
bining a recurrent actor-critic framework with TD3. The proposed LSTM-TD3 was com-
pared to standard DRL algorithms on both the MDP- and POMDP-versions of continuous
control tasks. Our results show that LSTM-TD3 not only achieves significantly better

125

performance on POMDPs than the baselines, but also retains the state-of-art performance
on MDP. Our ablation study shows that all components are essential to the success of the
LSTM-TD3 where DC and TPS help in stabilizing learning, CFE is especially important
to retain the good performance in MDP, and PA is beneficial for tasks where past actions
provide information about the current state of the agent.

126

Chapter 8

Partial Observability during DRL for
Robot Control

A version [183] of this chapter is under review at the 2023 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS 2023).

This chapter builds on the analysis in Chapter 7 to identify the source of the failure
caused by partial observability when applying Deep Reinforcement Learning (DRL) to
Living Architecture Systems. The work in this chapter is inspired by the counter-intuitive
observation that applying DRL algorithms to a simulated LAS produces different results
compared to applying DRL on standard benchmarks. Based on the observed behavior
in the simulated LAS, this chapter reproduces the same counter-intuitive observations on
standard benchmarks and hypothesizes that partial observability may cause the failure of
the application of DRL algorithms.

DRL has made tremendous advances in both simulated and real-world robot control
tasks in recent years. Nevertheless, applying DRL to novel robot control tasks is still
challenging, especially when researchers have to design the action and observation space
and the reward function. In this chapter, we investigate partial observability as a potential
failure source of applying DRL to robot control tasks, which can occur when researchers
are not confident whether the observation space fully represents the underlying state. We
compare the performance of three common DRL algorithms, TD3, SAC and PPO under
various partial observability conditions. We find that TD3 and SAC become easily stuck
in local optima and underperform PPO. We propose multi-step versions of the vanilla TD3
and SAC to improve robustness to partial observability based on one-step bootstrapping.

This chapter aims to fill the gap between directly assuming a novel system to be con-

127

trolled is MDP or POMDP. Particularly, we first introduce an exemplar robot control
problem caused by partial observability on a novel complex system, then discuss the po-
tential effect of multi-step bootstrapping on passing temporal information. After that,
we propose two hypotheses and the corresponding algorithms to verify these hypotheses.
In the experiments, we reproduce the counter-intuitive results observed from the complex
system on toy control tasks to confirm that the problem is caused by partial observabil-
ity. In addition, the results to verify our hypotheses are presented. Then, we discuss the
limitations of this work.

8.1 Exemplar Robot Control Problem

(a) Physical LAS (b) Simulated LAS

Figure 8.1: LAS installation Meander, where (a) is an image of the physical installation
Meander (courtesy of Philip Beesley Studio Inc.), and (b) shows the simulated LAS.

In this section, we will provide a motivating example highlighting the challenge of
applying DRL to complex robotic control tasks. The Living Architecture System (LAS)
[28, 188], an architectural-scale interactive system with hundreds of actuators such as lights,
shape memory alloys, DC motors and speakers, etc., and sensors such as infrared sensors
and microphones, etc., is a robot system that is: (1) novel, i.e., not a commonly used
test-bed in DRL, requiring researchers to design the action/observation space and reward
function; and (2) complex, i.e., the dynamics of the robot itself and its external environment
is unknown. LAS is designed by a collection of architects, artists, psychologists, roboticists,
computer scientists and engineers, aiming to engage occupants in a long-term interaction.
A classic scenario in LAS is multiple visitors wandering around a LAS and trying to interact
with it, where the long-term goal is to engage the visitors and hold their interest. Fig.

128

8.1 shows the LAS installation Meander 1, where Fig. 8.1a shows a photo of the physical
installation and Fig. 8.1b shows the simulated Meander within LAS-Behavior-Engine,
a simulator and a behavior controller. Within the LAS, there are over 500 actuators
and about 50 sensors spread over the whole space of the installation. With such a large
set of actuators and sensors and the complexity of human factors, it is extremely hard to
handcraft engaging behavior by direct control of the actuators. Therefore, a middle layer is
designed to add a set of dynamics to induce different activation intensities in the actuators
either when observing changes in sensors or when in background behavior mode. The
parameters involved in controlling the dynamics can be used by either human designers or
learning agents to generate engaging behaviors in the LAS. In other words, the large raw
action space is transferred by a complex mapping into a simplified and easy-to-understand
parameterized action space. For example, in Fig. 8.1b the excitors (yellow spheres) are
randomly positioned and attracted to move to attractors (pink hexagons) and activate
actuators they pass by as they do so, which are controlled by parameters such as the size,
the speed and the maximum number of excitors, etc.

Figure 8.2: Unexpected Results on
LAS, where PPO is better than TD3
and SAC.

To apply DRL to LAS, researchers need to de-
sign the key RL components, namely the observation
and action space and the reward function. However,
the design of these components is not trivial. In a
first attempt to learn an effective control policy, we
designed the three components of LAS as: Obser-
vation space: the status of actuators and sensory
readings in [0, 1] within a time window. Specifically,
for a 1 second time window and 1Hz data reading,
the observation space has 724 dimensions, composed
of 124 dimensions of sensory readings and 600 di-
mensions of actuator status; Action space: the
9 dimensional parameterized action space in [−1, 1]
where each dimension corresponds to one parameter
involved in the excitor dynamics and applies to all
excitors within the system; and Reward function:
the average over the actuator intensities included in
the observation space, which means the reward function encourages actions that maximally
activate the actuators.

Three state-of-the-art DRL algorithms, i.e. TD3, SAC, and PPO, introduced in Section
3.3, were tested on the environment. Fig. 8.2 shows the learning curves of these algorithms

1More images and demonstrative videos of Meander can be found in https://youtu.be/SVTc7xOSBrg.

129

https://youtu.be/SVTc7xOSBrg

on LAS with the observation, action and reward formulated as described above. Surpris-
ingly, TD3 and SAC perform much worse than PPO, where TD3 is slightly better than
random and SAC is about the same as random, contrary to reports that the performance
of both TD3 and SAC are much better than PPO on tasks provided in OpenAI Gym
[89, 106].

After some investigation, we hypothesized that the problem shown in Fig. 8.2 could be
caused by the partial observability of the observation space2. The intuition behind this
is that temporal information is unavailable through the short 0.25s observation window,
but somehow PPO seems to be able to incorporate some temporal information while TD3
and SAC fail. To be more concrete, when the observation window is short, there is no
information about the change rate of the actuator status and the sensory readings, which
may be important for solving the problem. For example, knowing the increase or decrease
of the activation intensity of an actuator caused by an action is beneficial to learn a
policy that encourages active behavior. However, intuitively, TD3, SAC and PPO are all
general DRL algorithms without special consideration for handling POMDP. In addition,
considering the special characteristics of LAS, we also suspect the problem in Fig. 8.2 could
be related to observation delay [40], where the observation ot received at time step t is
the representation of the state st−∆d that ∆d is the time an observation is delayed. This
is inevitable when the observations are communicated through UDP protocal. Further,
action transformation [140, 8] is also a possible cause, considering the parameterized
action space will experience a complex transformation into the raw action space for a robot
to execute. To interpret these results we identify variations on benchmark OpenAI gym
tasks that replicate the algorithms’ performance.

8.2 The Potential Effect of Multi-step Bootstrapping

on Passing Temporal Information

To understand why PPO is better than TD3 and SAC in terms of handling POMDP,
we revisit their policy and value function optimization introduced in Section 3.3. One
prominent difference among them is that PPO uses multi-step bootstrapping with n > 1
while TD3 and SAC use 1-step bootstrapping. Specifically, PPO uses λ-return defined in
Eq. 3.22, which is a weighed average of n-step returns where n ∈ [1, T − t−1], to calculate

2Along with environment related hyper-parameters such as observation and action space and reward
function design, we did try to reduce the depth of the neural networks employed in TD3 and SAC, but
did not find an obvious difference in the performance.

130

Figure 8.3: Information Incorporated in n-step Bootstrapping, where the n immediate
rewards and the bootstrapped value, whose calculation depends on what value function is
available, thereafter are included.

the advantage Aπφk (ot, at) of taking action at in observation ot. However, TD3 and SAC
only use 1-step bootstrapping to calculate their target Q-value as defined in Eq. ??. Fig.
8.3 illustrates n-step bootstrapping with different n values, where the n immediate rewards
and the bootstrapped value are discounted 3 and added together.

The reward signal r = R(o, a, o′) can be seen as a one-dimensional state-transition ab-
straction of (o, a, o′). If the reward signal is dense, it is possible that each underlying state
can be uniquely represented by a reward signal (This may sound extreme, but considering
the most MuJoCo tasks from OpenAI Gym where the reward is a function of the action,
robot status and moving direction and velocity, a reward may uniquely represent the un-
derlying state). Then, for the case where R(o, a1, o

′
1) < R(o, a2, o

′
2), a1 can be thought to

encode less information than a2. Therefore, the goal of an agent can be interpreted to
maximize accumulated information encoding. With n-step bootstrapping where n > 1, n
consecutive state-transition abstractions are combined through weighted summation. By
combining consecutive state-transition abstractions, some temporal information is also in-
corporated. One may argue that even for n = 1 it is also possible to incorporate temporal
information that exists in the value function. However, the value function is approximate,
which is not as effective as that calculated directly from the n consecutive state-transition
abstractions. Once the n-step bootstrapping has incorporated temporal information, it
will be passed to the value function. When the policy is optimized based on the value
function, it will be further passed to the policy as well.

3For clarity, we did not draw discount factor γ in the figure.

131

8.3 Hypotheses Verification

Based on the aforementioned unexpected results and the analysis, we make four hypotheses:

Hypothesis 1 If observation delay caused the unexpected results in Section 8.1, then sim-
ilar results should be reproducible on benchmark tasks with various degrees of observation
delay.

Hypothesis 2 If action transformation caused the unexpected results in Section 8.1, then
similar results should be reproducible on benchmark tasks with different types of action
transformation.

Hypothesis 3 If partial observability caused the unexpected results in Section 8.1, then
similar results should be reproducible on MDP vs. POMDP versions of benchmark tasks.

Hypothesis 4 The λ-return (Eq. 3.22) based on n-step bootstrapping employed in PPO
leads to robustness to POMDP, therefore (1) n-step versions of TD3 and SAC with n > 1
should also improve robustness to POMDP compared to their vanilla versions, and (2)
replacing λ-return with 1-step bootstrapping should cause PPO’s performance to decrease
when moving from MDP to POMDP.

To empirically verify the Hypothesis 3 and 4, we investigate the performance of
the multi-step (also known as n-step) variants of vanilla TD3 and SAC, namely Multi-
step TD3 (MTD3) [269] and Multi-step SAC (MSAC) [20], on various tasks. Specifi-

cally, instead of sampling a mini-batch
{

(ot, at, rt, ot+1)
(k)
}K
k=1

of K 1-step experiences,

we sample a mini-batch
{

(ot, at, rt, ot+1, · · · , ot+n−1, at+n−1, rt+n−1, ot+n)(k)
}K
k=1

of K n-
step experiences. Then, we replace the target Q-value calculation defined in Eq. 3.15
and Eq. 3.18 with the n-step bootstrapping defined as Q̂(n)(ot, at) =

∑t+n−1
i=t γi−trt +

γn
[
mini=1,2Qθ−i

(ot+n, a) + αH(π(·|ot+n))
]
, where a = µϕ− (ot+n) and a ∼ πψ− (a|ot+n) for

MTD3 and MSAC, respectively, α = 0 for MTD3, and the policy update is the same as
that for TD3 and SAC.

8.4 Experiments

Fig. 8.4 shows the benchmark MuJoCo tasks (Ant-v2, HalfCheetah-v2, Hopper-v2, Walker2d-
v2) from OpenAI Gym that we will use to verify hypotheses 1-4. We investigate three types

132

Figure 8.4: Benchmark Tasks. Figure 8.5: Action Transformation Functions

Table 8.1: MDP- and POMDP-version of Benchmark Tasks

Name Description
Hyper-
param

MDP Original task −

POMDP-RV
Remove all velocity-related
entries in the observation space.

−

POMDP-FLK
Reset the whole observation
to 0 with probability pflk.

pflk = 0.2

POMDP-RN
Add random noise ϵ ∼ N(0, σrn)
to each entry of the observation.

σrn = 0.1

POMDP-RSM
Reset an entry of the
observation to 0 with
probability prsm.

prsm = 0.1

of potential causality, namely observation delay, action transformation, and partial observ-
ability. For observation delay, we assume at time step t the agent can only receive the
observation ot−∆d , that is ∆d step delayed, and for t < ∆d the o0 is used. Fig. 8.5 shows
the 5 action transformations investigated, where the original action given by an agent is
first transformed accordingly before execution, and sgn(·) indicates the sign of a value.
Table 8.1 shows the POMDP-versions of the original tasks proposed in [182]. Note that
the POMDP-version tasks only transform the observation space of the original task, but
leave the reward signal unchanged, which means the reward signal is still based on the
original observations. This enables fair comparison among the performances of an agent

133

(a) Observation Delay

(b) Action Transformation

Figure 8.6: Results on Benchmark Tasks with Action Transformation and Observation
Delay

on MDP and POMDP.

The neural network structures and hyper-parameters of PPO, TD3, SAC, MTD3(n),
MSAC(n) are the same as the implementation in OpenAI Spinning Up (https://spinningup.
openai.com), and the source code of this paper can be found in https://github.com/

LinghengMeng/m_rl_pomdp.4 The n in the bracket indicates the step size in multi-step
bootstrapping. LSTM-TD3(l) [182] is also compared to see how the MTD3(n) and MSAC(n)
perform compared to an algorithm specifically designed for dealing with POMDP, where l
indicates the memory length. The results shown in this section are based on three random
seeds. For better visualization, learning curves are smoothed by 1-D Gaussian filter with
σ = 20.

4Additional implementation details and complementary results can be found in https://arxiv.org/

pdf/2209.04999.pdf.

134

https://spinningup.openai.com
https://spinningup.openai.com
https://github.com/LinghengMeng/m_rl_pomdp
https://github.com/LinghengMeng/m_rl_pomdp
https://arxiv.org/pdf/2209.04999.pdf
https://arxiv.org/pdf/2209.04999.pdf

Table 8.2: The Maximum of Average Return over 5 evaluation episodes within 2 million
steps based on 3 different random seeds. If TD3 or SAC perform worse than PPO, they are
gray-colored. If MTD3(5) or MSAC(5) outperform the corresponding TD3 or SAC, they
are red-colored. The maximum value of all evaluated algorithms for each task is bolded.

Task Algorithms

Name Version PPO TD3 SAC MTD3(5) MSAC(5)
LSTM-
TD3(5)

A
n
t

MDP 1315.61 5976.49 6106.42 4174.73 5474.10 4745.36
POMDP-FLK 1087.93 1339.88 972.37 2154.18 4205.45 3420.69
POMDP-RN 587.87 1684.48 1431.37 1315.31 3185.56 1130.96
POMDP-RSM 836.34 1737.50 931.68 2819.81 4204.35 1459.67
POMDP-RV 3412.95 1870.12 1102.99 3123.41 4160.47 1958.36

H
a
lf
C
h
ee
ta
h MDP 3770.88 11345.21 11887.53 7001.51 8694.46 10086.52

POMDP-FLK 2183.27 1377.18 248.49 1289.14 4803.40 1678.92
POMDP-RN 3975.56 5306.12 4651.56 5503.61 5865.68 4395.61
POMDP-RSM 3338.03 1395.06 123.70 3314.96 5847.08 1467.68
POMDP-RV 4120.39 2937.80 498.51 3955.83 4017.05 4406.33

H
op

p
er

MDP 3604.01 3823.88 3993.51 3700.19 4065.26 3677.02
POMDP-FLK 2657.15 1043.63 1047.01 1219.17 1048.73 3587.02
POMDP-RN 3469.32 2125.03 1026.52 3022.95 3318.88 3426.28
POMDP-RSM 3107.39 2506.26 1003.19 3187.08 3184.48 1169.30
POMDP-RV 2613.43 1023.38 1119.84 1000.27 1144.11 592.39

W
al
ke
r2
d

MDP 4230.38 5762.66 6097.24 7181.57 5615.33 5189.87
POMDP-FLK 2723.41 999.17 1003.27 1243.08 1412.80 4219.05
POMDP-RN 4160.27 1220.65 1060.09 3959.90 3977.56 4191.02
POMDP-RSM 3295.34 2178.42 2009.92 4197.03 4778.27 4083.16
POMDP-RV 3531.14 1443.01 2199.88 2670.89 3397.12 4356.57

8.4.1 Results on Benchmark Tasks with Observation Delay and
Action Transformation

Fig. 8.6 shows the results of PPO, TD3 and SAC on benchmark tasks with observation
delay (Fig. 8.6a) and action transformation (Fig. 8.6b), where the first column corresponds
to the original task. From this figure, we can see that no tested observation delay or
action transformation causes PPO to outperform TD3 and/or SAC. These results reject
Hypotheses 1 and 2.

135

Figure 8.7: Effect of Multi-step Size on The Performance of MTD3 and MSAC, where the
average learning curves correspond to MTD3(n) and MSAC(n) with different multi-step
sizes n and the shaded area shows half of standard deviation of the average accumulated
return over 3 random seeds.

8.4.2 Results on Benchmark Tasks with Partial Observability

Table 8.2 shows the maximum of average return of PPO, TD3, SAC, MTD(5), MSAC(5)
and LSTM-TD3(5) calculated over 5 episodes. Firstly, to verify Hypothesis 3 and com-
paring PPO, TD3 and SAC, we found that: (1) TD3 and SAC significantly outperform
PPO on all MDP tasks; (2) TD3 and SAC are much worse than PPO on most POMDP
tasks. In addition, (3) TD3 and SAC experience dramatic drops in performance when
moving from MDP to POMDP, while PPO does not experience too much change in per-
formance. These observations match perfectly the unexpected results described in Section
8.1, indicating that the problem comes from the partial observability.

Interestingly, in some HalfCheetah (POMDP-RV and POMDP-RN) and Ant (POMDP-
RV) environments, PPO performs better than in the standard MDP environment. While
in case of Cheetah the difference is small and it could be argued that it is purely statistical
noise and is thus insignificant, in Ant the difference is really large. From the hypothesis
that PPO could incorporate temporal information, a potential explanation is that velocity
is indirectly incorporated and probably additionally adding it to the observation can only
make the observation space larger and introduce difficulty in finding an optimal policy.

When we compare TD3 and SAC to their multi-step versions MTD3(5) and MSAC(5)
on POMDPs in Table 8.2, it can be seen that MTD3(5) and MSAC(5) outperform their
vanilla versions on most POMDPs (highlighted in red in Table 8.2), which verifies Hypoth-
esis 4 (1). Even though MTD3(5) and MSAC(5) show performance increase compared

136

Figure 8.8: Effect of Multi-step Size on The Performance of PPO, where the learning
curves correspond to PPO(λ) with λ-return and PPO(n) with simple n-step bootstrapping
(the shaded area shows half of standard deviation of the average accumulated return over
3 random seeds). The ϵ indicates how far away the new policy is allowed to go from the
current one.

to TD3 and SAC and comparable or better performance than PPO on POMDPs, LSTM-
TD3(5) exhibits dramatically better performance on some tasks, e.g. POMDP-FLK of
Walker2d-v2 and Hopper-v2. This indicates that for some cases directly learning a good
representation of the underlying state from a short experience trajectory is more effective
than relying on multi-step bootstrapping to pass some temporal information. Fig. 8.7
shows the average learning curves of MTD3(n) and MSAC(n) with different multi-step
sizes n = {1, 2, 3, 4, 5}, when n = 1 they reduce to TD3 and SAC. It can be seen from Fig.
8.7 that simply increasing n by a few steps makes their performance dramatically better
than n = 1 with a little extra computation cost. For the n we tested, n = 5 shows the best
performance on most tasks.

Fig. 8.8 compares PPO(λ) with λ-return and PPO(n) with simple n-step bootstrap-
ping. From this figure, we observe that when λ-return is replaced with 1-step bootstrap-
ping, the performance of PPO does not change much, which rejects Hypothesis 4 (2).
Compared to the return estimation, when the clip ratio ϵ is increased, PPO’s performance
experiences a significant decrease. In summary, the results shown in this section support
Hypothesis 3, but for Hypothesis 4 only the first part is supported by the results.

137

Figure 8.9: Revisit LAS Results

8.4.3 Revisit LAS

After observing similar relative performance on the POMDP-versions of the benchmark
tasks, we revisit the LAS task and test the MTD3, MSAC and LSTM-TD3 on LAS as
well as TD3 on LAS with longer observation windows. As shown in Fig. 8.9, TD3 on
LAS with longer observation window achieves better performance compared to TD3 with
shorter observation window. In addition, both MTD3(5) and LSTM-TD3(5) achieve better
performance than vanilla TD3. Unfortunately, similar to SAC, both MSAC(5) and SAC
on LAS with longer observation window (not plotted because it overlaps with the line
of SAC) failed. If only looking at the results of TD3, we may conclude that on LAS,
TD3 under-performs PPO because of partial observability as we are able to reproduce the
similar results on standard benchmark tasks and to increase the performance of vanilla
TD3 by techniques used to tackle POMDP. However, this is not applicable to SAC. There
may be differences between TD3 and SAC that leads to SAC’s failure on LAS, which is
beyond the scope of this work and will be left for the future. For instance, in terms of
exploration strategy, TD3 adds fixed action noise to explore, while SAC always encourages
broader exploration because of the maximizing policy entropy in its policy update. On the
contrary, PPO is more conservative than TD3 and SAC, as it constrains the policy change.
This may also explain why MTD3(5), LSTM-TD3(5), and TD3 with longer observation
window learn faster at the initial stage but achieves worse final performance than PPO.

138

8.5 Summary

In this chapter, we first highlight the counter-intuitive observation found when applying
DRLs to a novel complex robot, that PPO outperforms TD3 and SAC. We hypothesize
that this degradation in performance is potentially caused by observation delay, action
transformation, or partial observability. Then, we provide a potential explanation about
why the multi-step bootstrapping employed in PPO makes it more robust to partial ob-
servability compared to TD3 and SAC, which only rely on 1-step bootstrapping. Based
on the hypotheses on partial observability, we use multi-step versions of vanilla TD3 and
SAC, i.e., MTD3 and MSAC, to verify our hypotheses on MDP- and POMDP-version of
benchmark tasks. Even though the hypotheses on observation delay and action transfor-
mation are rejected on the benchmark tasks, the same counter-intuitive observation can
be reproduced on the POMDP-versions of the benchmark tasks. The results of MTD3 and
MSAC with multi-step size n = 5 show that simply increasing the step size from n = 1
to n = 5 can significantly increase the performance of vanilla TD3 and SAC on POMDPs.
After that, we revisit the LAS task and find that TD3 with longer observation window,
MTD3(5) and LSTM-TD3 are able to achieve better performance than vanilla TD3, but
MSAC(5) still fails. We provide a potential explanation that this may be related to the
exploration strategies employed by different DRL algorithms.

139

Chapter 9

Engaging Behavior Generation from
Human Preferences In A Large Scale
Interactive System: A Simulation
Experiment

This chapter proposes to use Preference Learning (PL) to learn the engagement estimate
from human preferences and to avoid the disadvantages of manually designed engagement
estimates, as introduced in Chapter 1. By combining PL and Reinforcement Learning (RL),
more flexibility and adaptability is introduced in the approach to autonomous engaging
behavior generation for crowd and long-term interaction. Particularly, in chapter 5, we
showed that the behavior of an interactive system, controlled by a learning agent acting
in parameterized action space, outperforms pre-scripted behavior choreographed by expert
architects, by maximizing a manually designed reward function estimating passive and
active engagement. However, the manually designed reward function relies on designers’
expertise, needs to be manually adapted to different sensors, and might lead to undesired
behavior if the designed reward function is not correctly formulated [82].

To reduce the reliance on manually designed reward functions, techniques such as In-
verse Reinforcement Learning [1, 203, 88] and Human Preference learning [7, 292, 64] have
been proposed. This chapter is inspired by [64], where a reward function is learned from
human preferences over two video clips of an agent’s past behavior. As shown in [64], novel
complex behaviors can be learned with the learned reward function elicited from human
preferences, which is hard to manually design by engineers and architects. In addition,

140

for applications where users’ preferences might change over time, continuously eliciting a
reward function from human preferences is necessary. Therefore, interactively learning a
reward function is more appealing than using a fixed reward function.

Different from the continuous control tasks investigated in [64], in this thesis we investi-
gate whether a reward function could be learned from the preferences provided by users so
that engaging interactive behavior could be learned from this reward function. The test-
bed is a non-anthropomorphic robot aiming to engage its occupants, whose interaction
might be affected by personal and social factors, e.g. aesthetic preferences, social distanc-
ing, different backgrounds and personalities, etc., which means the external environment
of the robot is highly non-deterministic.

In this chapter, we will describe our proposed approach to investigate whether a reward
function learned from human preferences over short video segments can be used to learn a
policy to maximise interaction engagement.

9.1 Methodology

We propose to combine Preference Learning (PL) with Reinforcement Learning (RL), called
PL+RL, to learn engaging behavior from users’ preferences, by replacing the hand-crafted
reward function with a reward function induced from user preferences. In this section, we
will first introduce the overall framework of PL+RL and then elaborate the components
in detail.

9.1.1 Overall Framework

The overall framework is shown in Fig. 9.1, which is an implementation of the simplified
version of PL+RL in Fig. 3.5. The interactive system is the simulated Living Architecture
System (LAS) named Meander introduced in Section 4.3. The RL-based agent LAS-Agent
interacts with its internal environment LAS-Intl-Env which directly interacts with its exter-
nal environment, i.e., Meander, simulated by LAS-Behavior-Engine (LAS-BE) (described
in Section 4.2.1). Within LAS-Agent, a reward function learned by Preference Learning
can be used to replace the hand-crafted reward function. To enable preference learning,
segments are generated from trajectories by the Segment Generation module, and the User
Preference Interface is used to collect human preferences which will be used to induce the
underlying reward function through Preference Learning.

141

Figure 9.1: Overall Framework of PL+RL Setting

9.1.2 Preference Learning of Reward Function

In this section we will introduce the preference learning (PL) of the reward function Rpb,
built on top of the method [64] introduced in section 3.4. The basic idea of PL is to show a
user a pair of video clips of the interaction between an agent and its environment and ask
for feedback on which one is preferred. With these collected preference labels, PL learns a
reward function which then drives the policy of the agent. This process involves trajectory
generation, segment generation, segment pair sampling, preference query scheduling, and
reward function learning. In this section, we will focus on introducing reward function
learning and leave the rest to the appendix.

Preference-based Reward Function Learning

According to [64], given an experience (ot, at, ot+1, dt) where an agent takes action at in
observation ot then observes a new observation ot+1, and terminates the trajectory or not,
indicated by dt, the preference-based reward rt can be defined as

rt = Rpb (ot, at, ot+1 | θpbr) , (9.1)

142

where Rpb is the preference-based reward model parameterized by θpbr

Formally, we use σ = (σe, σv) to represent a segment composed of experience segment
σe and video segment σv that are sampled from the trajectory l = (le, lv) composed of
experience trajectory le and video trajectory lv collected during the interaction of an agent
with its environment. When two segments σ0 and σ1 are sampled for preference labelling,
the corresponding video segments are shown to the preference teacher to ask for preference
label y ∈ {0, 1,−1}, where y = 0 or 1 indicates either segment 0 or 1 is preferred and
y = −1 indicates the two segments are equally engaging or unengaging, while the experience
segments are used to train the preference-based reward model. Given a preference data
point (σ0 = (σ0

e , σ
0
v) , σ

1 = (σ1
e , σ

1
v) , y), the preference prediction can be calculated following

P̂
[
σ0 ≻ σ1

]
= P̂

[
σ0
e ≻ σ1

e

]
=

e
∑K−1
i=0 Rpb(o0t+i,a0t+i,o0t+i+1|θpbr)

e
∑K−1
i=0 Rpb(o0t+i,a0t+i,o0t+i+1|θpbr) + e

∑K−1
i=0 Rpb(o1t+i,a1t+i,o1t+i+1|θpbr)

,

(9.2)

where the experience segment σ
0/1
e =

〈(
o
0/1
t+k−1, at+k−1, r

0/1
t+k−1, o

0/1
t+k

)〉K
k=1

are the K consec-

utive experiences of segment 0 or 1 starting from time step t to t+K − 1.

Given a preference training dataset Dtrain
pl =

{
(σ0 = (σ0

e , σ
0
v) , σ

1 = (σ1
e , σ

1
v) , y)

n}|Dtrainpl |
n=1

with
∣∣Dtrain

pl

∣∣ data points, the reward function Rpb is updated by minimizing the cross-
entropy loss between the true and the predicted preference label with respect to the pa-
rameters θpbr of the reward function, as follows:

min
θpbr

L = −
∑

(σ0,σ1,y)∈D

(1− y)P̂
[
σ0
e ≻ σ1

e

]
+ yP̂

[
σ0
e ≺ σ1

e

]
, (9.3)

where P̂ [σ0
e ≺ σ1

e] = 1−P̂ [σ0
e ≻ σ1

e] andD =
{

(σ0, σ1, y) | (σ0, σ1, y) ∈ Dtrain
pl and y ̸= −1

}
⊆

Dtrain
pl that excludes the equally rated cased, i.e., y = −1.

Each time a new set of preference labels is received, Rpb will be fitted to the whole
training dataset Dtrain

pl following the pseudo-code shown in Alg. 5 in Appendix D. After

that, the new Rpb will be used to drive the learning of an agent before the next new set of
preference labels is collected.

9.1.3 Policy Learning from Preference-based Reward Function

The goal of PL is to infer a reward function that drives the policy learning in RL to gen-
erate the behavior matching the human preference. A key challenge for any RL algorithm

143

used in the PL+RL setting is the non-stationary reward function problem. As both the
reward and the policy are being learned simultaneously, the RL algorithm faces a changing
reward function during learning. Therefore, to get a comprehensive comparison of the
performance of DRL, both off-policy and on-policy RL algorithms are investigated in this
chapter. Off-policy RL algorithms TD3 [89], SAC [106], and LSTM-TD3 [185] are more
data efficient than on-policy algorithms, because they can reuse the experiences in a replay
buffer. However, on-policy RL algorithms such as PPO [241] may be more stable due to its
limitation on the step size to avoid performance collapse. Another key difference between
on- and off- policy algorithms is that the latter needs to recalculate the reward during
training on the experiences from replay buffer.

Using PB-Rew in Off-policy RL

The off-policy RL algorithms investigated in this thesis are TD3, SAC, and LSTM-TD3
which are introduced in Section 3.3 and Section 7.1. Different from the standard RL setting,
in PL+RL during the training the reward rt in an experience (ot, at, rt, ot+1, dt+1) sampled
from the replay buffer D needs to be recalculated before being used for calculating the
bootstrapping Q-value, because the reward rt is changed along with the reward function
during PL. Formally, assume the current PB-Rew function is Rpb and for an experience
(ot, at, rt, ot+1, dt+1), the target Q-value Q̂(ot, at) of (ot, at) for TD3, SAC and LSTM-TD3
can be calculated as Eq. 9.4, Eq. 9.5 and Eq. 9.6 by replacing the rt in Eq. 3.15, Eq. 3.18
and Eq. 7.5 with Rpb (ot, at, ot+1) as follows:

Q̂(ot, at) = Rpb (ot, at, ot+1) + γ(1− dt)minj=1,2Q
−
j (ot+1, a

−), (9.4)

Q̂(ot, at) = Rpb (ot, at, ot+1) + γ

[
min
i=1,2

Qθ−i

(
ot+1, a

−)+ αH(π(·|ot+1))

]
, (9.5)

Q̂(ot, at) = Rpb (ot, at, ot+1) + γ ∗ (1− dt) ∗ min
j=1,2

Q−j (ot+1, a
−, hlt+1). (9.6)

Using PB-Rew in On-policy RL

The on-policy RL algorithm investigated in this thesis is PPO. Using PB-Rew in PPO is
implemented simply by replacing the HC-Rew with PB-Rew.

144

9.2 Individual Preference vs. Aggregate Preference

Preference Learning can be applied to either individual preference or aggregate preference.
Individual preference is more applicable to domains where individuals are distinct and per-
sonalized responses are more desirable. In such cases, preference labels should be collected
from each individual and individual reward functions estimated from each individual sep-
arately. Aggregate preference is more applicable to fields where a group of people share
very similar preferences, and appropriate responses to this entire group are to be learned.
In this case, preference labels collected from the group can be used together, reducing
the demand on each individual to provide preference labels. With these considerations, in
the user study conducted in this chapter, we choose the aggregate preference in order to
provide more preference labels to a preference-based reward model and reduce the demand
of preference labels from each user. As a result, this choice introduces a key assumption
that the group of users share similar preferences. This assumption makes sense in the
application of LAS, considering that the pre-scripted behaviors are normally designed by
experts who assume their design of the behaviors can engage most visitors, i.e., satisfying
the aggregate preference of the visitors. Therefore, we believe this assumption is appropri-
ate, even though we believe the visitors’ engagement may be enhanced by also considering
individual preference.

9.3 Experiment Settings

In this section, we introduce the control task, three types of preference teachers, and
the preference selection procedure for human preference teachers. More details about the
experiment settings and implementation for each condition can be found in Appendix D.3
and D.4.

9.3.1 Control Task Description

The task is to generate engaging behavior in the simulated testbed Meander introduced in
section 4.3 Chapter 4. The simulation is realized by employing the LAS Simulation Toolkit
(LAS-Sim-Tkt) introduced in section 4.2 Chapter 4. The composition of the simulated
Meander is the same as that in the physical sculpture.

145

Observation Space

The observation space O is composed of exteroception, i.e., the readings from the sensors
that are mainly used to sense the external environment of Meander, and proprioception,
i.e., the status of the actuators that represents the internal environment of Meander. In
practice, at a specific time step the observation is constructed from the retrieved Nsa

status of all sensors and actuators embedded in Meander at the frequency fo = Nsa
Tow

within
a specific time window Tow by either averaging or concatenating the processed data, which
is done by the Observation Construction Component (OCC) in the LAS-Agent-Internal-
Environment (LAS-Intl-Env) introduced in Section 11. Concretely, except OS1, the status
of all devices listed in Table 4.6 are included in the observation space in order to maximize
the agent’s perceptual capacity. Table 9.1 summarizes the composition of the observation
space, where fo = 1, Tow = 1, and the original value range of each device is converted
to range [0, 1] according to Eq. 4.4-4.8. To summarize, for fo = 1 and Tow = 12, the
dimension of the observation space is 724, where 124 dimensions are exteroception and
600 dimensions are proprioception. If using concatenating method, the dimension of the
observation space will be 724× fo×Tow, while if using averaging method, it will be always
724. In this thesis, if not specified, we use fo = 1 and Tow = 1.

Table 9.1: Observation Space Composition

Exteroception
(Sensors)

Proprioception
(Actuators)

Device Type IR GE SD MO RS DR PC SM

Orig Value Range [0, 750] [0, 2] [0, 1024] [0, 1]

Obs Value Range [0, 1]

Device Number 13 19 16 261 151 60 29 39

Each Device Data Dimension 1 5 1 1 1 2 1 1

Each Device Type Dimension 13 95 16 261 151 120 29 39

Each Obs Type Dimension 124 600

Obs Dimension 724

1Because OS is controlled by a 3rd party controller, called 4D Sound, which is not used in the simulated
experiment, so we exclude it from the proprioception.

2When fo = 1 and Tow = 1, the results of concatenating and averaging method are the same, because
there only one set of status of the sensors and actuators.

146

Table 9.2: Parameterized Action Space

Influence
Map

ParamName
Pre-scripted

Value
Orig Value

Range
Act Value
Range

Count

E
x
c
it
o
r

excitorSize 40 [40, 2000]

[−1, 1] 9

excitorCoreSize 0.95 [0, 1]

excitorLifespan 20000 [500, 20000]

excitorMasterIntensity 1 [0, 1]

excitorSpeedLimit 0.6 [0, 1]

attractorAngleSpeed 0.2 [0, 0.25]

attractorForceScalar 1 [0, 5]

bgHowOften 250 [250, 1000]

maxExcitorAmount 16 [1, 35]

Action Space

The action space A is parameterized with the parameters within LAS-BE to leverage the
expert knowledge. As introduced in Table ?? Section 4.3, there are 31 parameters of the
influence maps defined in LAS-BE involved in the pre-scripted behavior of Meander. Even
though having all of them can maximize the flexibility and the diversity of the action
space, it will dramatically increase the exploration space for the agent’s policy leading
to the demand for a very large number of interaction samples which is undesirable to
applications in HRI. Therefore, we need to balance the trade-off between having a smaller
action space and maximizing the flexibility and the diversity of the possible behavior. By
analyzing the effect of the parameters in Table ??, we decided to only keep the 9 parameters
related to the Excitor influence map as listed in Table 9.2 where the Orig Min and Orig
Max indicate the minimum and maximum value in the original value range and the Act
Min and Act Max indicate the minimum and maximum value in the action space. The
Excitor influence map can generate very active behavior by having larger action values
and generate very calm behavior by having small action values. Each dimension a(i) of
the action a ∈ R9 is in [−1, 1], which will be converted to its original value range by the
Action Execution Component (AEC) in the LAS-Agent-Internal-Environmen (LAS-Intl-
Env) during execution according to Eq. 4.3 in Section 4.2.3.

147

Reward Function

Two types of reward function R are investigated to generate engaging behavior. We com-
pare a Hand-Crafted Reward (HC-Rew) function with three types of Preference-based
Reward (PB-Rew): (1) a reward inferred from simulated preference based on HC-Rew, (2)
a reward induced from human preferences that try to match the HC-Rew, and (3) a reward
inferred from expert preference teachers who indicate their preference based on their own
understanding about what behavior is more engaging.

Hand-crafted Reward (HC-Rew) Function The Hand-crafted Reward (HC-Rew),
Rhc, is defined to encourage active behavior in Meander, which assumes active is more
engaging to visitors. Formally, given an observation o

.
= oa

⋃
os concatenating the extero-

ception os and the proprioception oa, the reward is defined as

r = Rhc(o)
.
=

1

|oa|

|oa|∑
j=1

o(j)a , (9.7)

where |oa| is the dimensionality of oa.

Preference-based Reward (PB-Rew) Function Preference-based Reward (PB-
Rew) function, indicated as Rpb, refers to the reward function derived from the human
preferences. Unlike HC-Rew that is stationary during the learning of a policy in RL,
PB-Rew is inevitably non-stationary. First, PB-Rew is non-stationary because the prefer-
ence labels are collected online. Second, the underlying function that determines human
preference3 may change due to various reasons, such as the preference teachers may be a
different group of people, or the teachers changed their mind during the course of preference
providing.

Control Task Summary

Table 9.2 briefly summarizes the dimension and the value range of the action and ob-
servation space and the reward function of the task investigated, where the observation
frequency fo = 1 and observation window size Tow = 1. Given the control task, the goal of
an agent is to maximize the accumulated reward, either hand-crafted or preference-based,
by observing the environment and taking an action according to the learned policy.

3Note that when we say human preference, without specification, we assume the preference labels are
provided by a group people rather than a single person.

148

Figure 9.2: Control Task Summary

Act Space Obs Space
Reward Function

HC-Rew PB-Rew
Dimension 9 724 1 1
Value Range [-1,1] [0,1] [0,1] [-1,1]

Figure 9.3: Hierarchy of Prefer-
ence Teacher

9.3.2 Preference Teacher

In this thesis, three types of preference teacher will be investigated, as shown in Fig. 9.3.

Simulated Preference Teacher For the simulated preference teacher, there is no
human user, so there is no need to show video segments and the web-based interface is
not engaged. Formally, assume a segment pair (σ0 = (σ0

e , σ
0
v), σ

1 = (σ1
e , σ

1
v)) is sampled

for preference labeling and by definition σ0
e =

〈(
o0t+k−1, a

0
t+k−1, r

0
t+k−1, o

0
t+k, d

0
t+k−1

)〉K
k=1

and

σ1
e =

〈(
o1t+k−1, a

1
t+k−1, r

1
t+k−1, o

1
t+k, d

1
t+k−1

)〉K
k=1

, we define the simulated preference index as
the average of hand-crafted reward introduced in 9.3.1 over a segment:

ρ0 =
1

K

K∑
k=1

Rhc(o0t+k−1) and ρ1 =
1

K

K∑
k=1

Rhc(o1t+k−1), (9.8)

where K = |σe| is the number of experiences within the experience segment σe of a segment
σ, and the average operation is to make a fair comparison when |σ0

e | ≠ |σ1
e |. With the

simulated preference index, the simulated preference label can be calculated as:

y
.
=

0, if ρ0 > ρ1

1, if ρ0 < ρ1

−1, if ρ0 = ρ1.
(9.9)

In Eq. 9.9, a perfect simulated preference teacher is presented. A non-perfect simulated
preference teacher, also called ϵ-irrational preference teacher, can be realized by randomly

149

sampling a label from 0, 1,−1 with a small irrational probability ϵip. Formally, given
a perfect synthetic preference label y generated by Eq. 9.9, and assuming a value p is
uniformly sampled from [0, 1,−1], then the new preference label y′ given by an ϵ-irrational
preference teacher with irrational probability ϵip can be defined as

y′ =

{
y, if p ≥ ϵip,

U{0,1,−1}, otherwise,
(9.10)

where U{0,1,−1} indicates a number uniformly sampled from set {0, 1,−1}.
Constrained Human Preference Teacher Constrained human preference teacher

replaces the simulated preference teacher, but he/she is constrained to provide preference
labels based on the criteria set by the hand-crafted reward, i.e., constrained to prefer the
video segment that is visually more active.

Unconstrained Expert Preference Teacher For real applications, the underlying
function of human preference is unknown. The criteria of human preference may be diverse,
making it hard to hand-craft a reward function. Therefore, experiments with unconstrained
preference teachers are necessary to determine if unconstrained human preference can be
transferred to a reward function.

9.3.3 Participating Procedure

Participants are asked to participate in multiple sessions as shown in Fig. 9.4, where each
session follows the same procedure for collecting preferences. In each session, we ask a
preference teacher to provide at least 20 distinct preference labels following the instructions
on the web-based interface. If we use Nc, N

distinct
c , N eq eng

c and N eq uneng
c to indicate the

number of total, distinct (either left or right is better), equally engaging and equally un-
engaging preference responses provided by a user in one session, then their relationship is
Nc = Ndistinct

c + N eq eng
c + N eq uneng

c . The user is permitted to move to the next step once
Ndistinct
c ≥ 20.

9.4 Experiment Results On Simulated and Constrained

Human Preference

In this section, we will first show results on hand-crafted rewards and preference-based
rewards induced from simulated or constrained human preference labels. Additional results
and ablation studies for this section can be found in Appendix D.5.1, D.5.2, and D.5.3.

150

Figure 9.4: Study Participating Procedure

Fig. 9.5 shows the simulated and constrained preference results4, measured in terms of
the hand crafted reward. Fig. 9.5a shows the baseline results with the hand-crafted reward.
We can see that TD3 and LSTM-TD3 learn faster than PPO at the beginning, but achieve
worse final performance. The first part of this observation is not surprising, but the second
part is very uncommon compared to the results reported on MuJoCo tasks [89], where TD3
usually outperforms PPO significantly in terms of final performance. Counter-intuitively,
SAC performs worst among the four algorithms. This is very unexpected because on Mu-
JoCo tasks SAC is always the best or comparable to TD3 as reported in [106]. To exclude
the implementation bugs, we tested our implementation of the algorithms on MuJoCo
tasks, and the results are similar to the results reported in [89, 106]. Therefore, we suspect
this is related to the exploration strategy employed by different algorithms. For instance,
TD3 adds fixed action noise to explore, while SAC always encourages broader exploration

4The learning curves reported in this chapter are averaged over three random seeds and smoothed
by 1-D Gaussian filter (Gaussian kernel standard deviation σ = 5). The shaded area corresponds to the
standard deviation over the three random seeds.

151

(a) Hand-crafted Reward

(b) Simulated Preference

(c) Constrained Human Preference

Figure 9.5: Preliminary Results

152

because of the maximizing policy entropy in its policy update. On the contrary, PPO is
more conservative than TD3 and SAC, as it constrains the policy change. This may also
explain why LSTM-TD3 and TD3 learn faster initially but achieve worse final performance
than PPO.

Fig. 9.5b shows the results with simulated preferences, where the simulated human
preference is generated according to Eq. 9.8 - 9.10 with different segment lengths l = 1.5s,
l = 3s, and l = 4.5s and irrational probability ϵip = 0.1. The performance is measured in
hand-crafted reward (HC-Rew). Because the preference-based reward signal that is used by
RL agent is induced from simulated preferences and changes between and during different
runs, it is more consistent to compare the performance by the hand-crafted reward, which
is fixed. We can see that overall the performance of each algorithm trained on PB-Rew
with different segment lengths is comparable to their performance on HC-Rew, and for
some cases the performance of PB-Rew is even better than that of HC-Rew, e.g., TD3
with segment length 1.5s gets better performance than on HC-Rew. These observations
indicate that a good PB-Rew approximation is derived from the simulated preference labels.
Besides, it is particularly interesting that SAC on PB-Rew gets better performance on all
cases than it on HC-Rew, even though SAC is still worse than other algorithms.

Fig. 9.5c shows results on constrained human preference where the human teacher is
constrained to prefer the video segment that is appears visually more active. To reduce
the total time for this experiment, we only run RL agent for 10000 steps for each case,
but to make the comparison easier, the x-axis in Fig. 9.5c extends to the same range as
that in Fig. 9.5a and Fig. 9.5b. From Fig. 9.5c, we can see that TD3 is more sensitive to
segment length for constrained human preference, compared to simulated preference, where
TD3 achieves the best performance with segment length 4.5s. This indicates that human
preference labels may not be able to accurately capture subtle differences between two video
segments, while the simulated preference can easily achieve that because of the access to the
underlying reward function. This finding reminds us that when using human preference
the video segment length should be carefully selected in order that it contain sufficient
content for the human to make an informed discrimination. For this work, we found that
4.5s segment length results in PPO and TD3 performance with human preference that
is comparable to that of simulated preference, so for the following unconstrained expert
preference we will use a segment length of 4.5s.

153

9.5 Experiment Results on Unconstrained Expert Pref-

erence

We recruited three experts, designers or engineers highly knowledgeable about installing
and configuring LAS, and asked them to remotely participate in our study for 2 sessions
following the procedure depicted in Fig. 9.4. In this experiment, only segment length
K = 4.5s is tested, while other settings are the same as that for constrained human
preference. In addition, the preferences collected from different experts are used together to
train a preference-based model, i.e., learning preferences of “aggregate expert” as apposed
to learning separate reward models for each expert. The reason for this is that separately
collecting preferences from each expert needs more preference labels from each expert and
is more time consuming. However, it is worth to mention that this choice assumes experts
share common preferences, as discussed in Section 9.2.

9.5.1 Expert Data Summary

In this section, we first address the following questions at the high level:

Question 1 During/after learning, does the policy become better at generating videos pre-
ferred by the experts?

Question 2 During/after learning, does the reward model become better at predicting the
preferences of the experts?

To answer Question 1, Fig. 9.6 illustrates the proportion of each preference choice to
the total number of preference choices of each preference request5. Of interest is how the
equally engaging and equally unengaging responses change over time (note that the bars
from left to right in each preference choice correspond to the sequence that the preference
choices are collected. It can be seen that for the first four preference requests the proportion
of equally engaging increased while the proportion of equally unengaging decreased, which
indicates more and more segments that are engaging are added into the segment pool,
implying that the policy of the RL agent is improving. However, the fifth and sixth
preference request shows the opposite trend, that the proportion of equally engaging clips
decreased while the proportion of equally unengaging clips increased, which indicates more

5For the distribution of the segment pairs, please refer to Fig. D.19 in Appendix D.

154

Figure 9.6: Proportion of Preference Choice for Each Request

segments that are unengaging are added into the segment pool. This is surprising as we
expect the policy to improve following each interaction with the teacher. We investigated
the policy and find that the policy is stuck in a local optimum, which causes the video clips
generated later to be very similar. Note that the segment pool is initialized with segments
sampled from the trajectories generated by a random policy in order to ensure the diversity
of the initial segments. Based on these observations, we try to answer Question 1 as
follows:

Answer to Question 1 The policy derived from the human preferences does become bet-
ter in term of generating videos preferred by the experts for the first few sessions compared
to the initial policy. However, once the policy gets stuck in a local optimum, experts tend
to rate similar video segments “equally unengaging” rather than “equally engaging”, poten-
tially because of the lack of diversity.

To answer Question 2, Table 9.7 shows the preference prediction accuracy of a PB-Rew
checkpoint on the preference labels, where the prediction accuracy above 0.5 is in bold. A
simplified Table 9.8 shows the average prediction accuracy for each expert. Specifically,
CP0 and CP1-CP6 are the PB-Rew checkpoints created after the initialization and the 6

155

Figure 9.7: Preference Prediction Accuracy of PB-Reward Checkpoints

CP

PT
PT1 PT2 PT3 PT4 PT5 PT6

CP0 (init) 0.40 0.25 0.26 0.33 0.48 0.30

CP1 0.95 0.58 0.57 0.76 0.57 0.60
CP2 0.95 0.58 0.57 0.76 0.57 0.60
CP3 0.95 0.63 0.52 0.71 0.57 0.60
CP4 0.95 0.67 0.61 0.86 0.52 0.60
CP5 0.90 0.71 0.61 0.91 0.57 0.50

CP6 0.90 0.71 0.57 0.95 0.62 0.50

CP: PB-Rew Checkpoint

PT: Preference Teaching Session

Expert 1
Expert 2
Expert 3

Figure 9.8: Average Preference Prediction Accuracy of PB-Reward Checkpoints

CP

PT
Expert 1 Expert 2 Expert 3 Average

CP0(init) 0.37 0.28 0.37 0.34
CP6 0.93 0.61 0.60 0.71

CP: PB-Rew Checkpoint, PT: Preference Teaching Session.

teaching sessions, respectively, and PT1-PT6 are the preference labels collected during the
corresponding preference request, where the colored curves connect the preference labels
from the same expert but different sessions. The white background of each cell indicates
the row PB-Rew checkpoint has not seen the labels from a column preference request. The
red background of the diagonal cells indicates the row checkpoint is created immediately
after seeing the column preference labels for the first time. The gray background of the
lower triangle cells indicates the row checkpoint has seen the column preference labels more
than once, and the darker the color is, the more time the column preference labels are seen
by the checkpoint. For CP0, because it is randomly initialized, its predictions are all less
than 0.56. After trained with preference labels from PT1, CP1 has prediction accuracy 0.95
on PT1 and has prediction accuracy greater than 0.5 for PT2-PT6, which indicates the

6One may expect the prediction accuracy of the randomly initialized reward model closer to 50%, but
the number of “right is better” vs “left is better” is unbalanced for each request as shown in Fig. 9.6, so
it makes sense to have the prediction accuracy less than 50% for randomly initialized reward model.

156

experts indeed share some common preference. In addition, as more and more preference
labels are added to the training dataset and the PB-Rew is incrementally trained on the
dataset, the preference prediction accuracy on the past (in gray color) is well contained,
which means there is no catastrophic forgetting. It can be seen that all PB-Rew checkpoints
after seeing expert preferences, i.e., CP1-6, outperform the randomly initialized PB-Rew,
i.e., CP0, in term of the expert preference prediction accuracy. Therefore, based on these
findings the answer to Question 2 is as follows:

Answer to Question 2 The preference based reward model becomes significantly better
at predicting the preferences of the experts than the randomly initialized reward model, and
the more the reward model is trained on a set of preference labels, the higher the prediction
accuracy of the reward model will be on that set of preference labels.

In addition, it is also worth to note that all the models are good at predicting expert
1(above 90%), but they are much worse at predicting expert 2, and barely above 50%
chance at predicting expert 3. This is likely because there is a difference between expert
preferences, meanwhile because expert 1’s preference is the first seen by the model and the
continuous training is adopted, the model is more dominated by expert 1’s preference. Or
perhaps it is because expert 1 was more predictable and the other 2 were more volatile.
A detailed analysis of the reward and policy function evolution is provided in Appendix
D.6.2.

9.5.2 Expert Teacher Survey Data

The survey is composed of three parts, i.e., (1) questions adapted from the System Usability
Scale (SUS) [44, 23, 45] and used to measure the usability of our web-based interface,
which are listed in Table D.12, (2) questions adapted from the Robot Incentives Scale
(RIS) [228, 113] and used to measure the user’s perception of his/her emotion, utility, and
social connection of using the preference teaching system, which are listed in Table D.13,
and (3) open questions. In this study, we have three experts and each of them participated
into two sessions. The survey is done after each session, but Expert 1 skipped the survey
in the second session. Due to the very limited user samples, we are not able to conduct
statistical analysis. Therefore, we will report all raw responses from the participants.

Usability of The Web-based Interface

Table 9.3 shows experts’ response on system usability, where Q2, Q4, Q6, Q8 and Q10 are
gray because they are questions negatively related to the score of system usability. Fig. 9.9

157

Table 9.3: Expert Response on System Usability Scale

Pref Request

SUS Question
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Score

Exp. 1, Ses. 1 3 2 4 1 3 1 5 1 4 2 80.0

Exp. 2, Ses. 1 1 4 4 2 3 2 2 4 3 2 47.5

Exp. 2, Ses. 2 1 4 2 1 4 3 4 4 2 2 47.5

Exp. 3, Ses. 1 4 1 5 1 4 1 5 2 5 1 92.5

Exp. 3, Ses. 2 4 1 4 1 5 1 5 2 4 1 90.0

Average 2.6 2.4 3.8 1.2 3.8 1.6 4.2 2.6 3.6 1.6 71.5

Figure 9.9: SUS Score Interpretation (adapted from [45])

shows the interpretation of SUS score along with the score of each survey data. Specifically,
from the perspective of acceptability, if the SUS score is below 50, it is considered not
acceptable, while if the score is above 70, it is considered acceptable. From the perspective
of adjective rating, the interpretation for the score is indicated by some key points, such
as worst imaginable (25), Poor (39.17), OK (52.01), Good (72.75), Excellent (85.58), and
Best Imaginable (100) as shown in Fig. 9.9. Overall, expert 1 and 3 give high SUS score
indicating the system is acceptable, while expert 2 does not like the interface and only
gives score 47.5 which is interpreted as not acceptable. In addition, from the adjective
rating perspective, expert 3 thinks the system is excellent, expert 1 thinks it is good,
whereas expert 2 thinks the system is between poor and ok. Expert 1 and 3 have very

158

Table 9.4: What do you think is the best way to teach an interactive system engaging
behavior?

Expert Response

Expert 1
• Demonstrating actions for the sculpture

Expert 2
• Correcting the sculpture’s Actions
• Demonstrating actions for the sculpture
• Programming the sculpture
• “Demonstrating and correcting given some context i.e. how many

people are there and where are they, what is the desired outcome?”
• “Enabling parts of the sculpture to respond to other parts of the sculp-

ture, creating emergent feedback loops of constructive and destructive
reinforcement”

Expert 3
• Selecting from alternatives (as in this system)
• Correcting the sculpture’s Actions

different opinions from that of expert 2. This reminds us that experts may not share the
same attitude on how to incorporate human knowledge into an interactive system to make
it more engaging or on how to interpret the usability of an interface. It is also worth
noting that expert 2 is a User Experience (UX) design professional, while the other two
experts are more system control engineers. The different attitude among experts is also
illustrated by their feedback on the open question: “What do you think is the best way to
teach an interactive system engaging behavior?” with options as follows: (1) Selecting from
alternatives (as in this system), (2) Correcting the sculpture’s Actions, (3) Demonstrating
actions for the sculpture, (4) Programming the sculpture, and (5) Other, please comment
in detail.

Table 9.4 shows the responses from experts on this question. Among all of the options,
expert 2 selected all options but not Selecting from alternatives. This indicates expert 2’s
strong opinion that “Selecting from alternatives” is not an ideal way to teach an inter-
active system, and that leads to their low ratings on SUS. Even though expert 1 thinks
“Demonstrating actions for the sculpture” is the best way to teach an interactive system
engaging behavior, he/she still gives a good rating on the usability of the “Selecting from
alternatives”. Expert 3 believes both “Selecting from alternatives” and “Correcting the

159

Table 9.5: Expert Response on Custom Preference Teaching Questions

Pref Request

Question Emotion

Q1 Q2 Q3 10-Q4 10-Q5 10-Q6 Score

Exp. 1, Ses. 1 2 2 1 4 1 2 20.0

Exp. 2, Ses. 1 3 3 6 3 3 8 43.3

Exp. 2, Ses. 2 2 2 3 3 7 8 41.6

Exp. 3, Ses. 1 8 7 5 7 3 3 55.0

Exp. 3, Ses. 2 9 8 7 9 2 7 70.0

Pref Request

Question Utility Social Connection

Q1 Q2 Q3 Q4 Score Q1 Q2 Q3 Q4 Score

Exp. 1, Ses. 1 5 5 5 7 55.0 7 9 6 5 67.5

Exp. 2, Ses. 1 4 3 5 3 37.5 3 7 8 1 47.5

Exp. 2, Ses. 2 3 5 2 4 35.0 3 4 7 1 37.5

Exp. 3, Ses. 1 9 9 9 8 87.5 10 10 10 9 97.5

Exp. 3, Ses. 2 9 9 9 9 90.0 9 10 9 9 92.5

sculpture’s actions” are the best way to teach an interactive system engaging behavior,
which is consistently reflected in his/her over 90 SUS score. These observations indicate
that the system usability rating may be dependent on the expert’s strong opinion on the
best way to teach.

Users’ Perception of The Preference Teaching System

Table 9.5 shows the experts’ responses to the custom preference teaching questions. Be-
cause the Q4-Q6 in Emotion are measuring negative emotions, we use 10 minus the cor-
responding scales to convert them into positive emotions. The score of each category is
calculated by taking the average scale over the questions within each category, i.e., emo-
tion, utility, and social connection, then multiplying it with 10 to have a score in [0, 100]
where the higher the score, the better it is for each category. Overall, expert 3 has the
highest score on all categories, which indicates expert 3 likes using the preference teaching
method, and thinks this method could help in incorporating human knowledge into the

160

behavior of an interactive system, at the same time could feel social connection to the
potential visitors who are going to interact with the interactive system. Expert 2 has the
lowest score on utility and social connection, which indicates expert 2 does not think the
preference teaching system is helpful to teach an interactive how to engage and he/she does
not fell much social connection to the potential visitors of an interactive system by using
the preference teaching system. Expert 1 has the lowest score on emotion, which indi-
cates that even though expert 1 does not like the preference teaching method emotionally,
he/she still thinks it is useful to teach the interactive system engaging behavior. According
to emotion-Q4, expert 1 and 2 are both unhappy with the “Cannot Tell” queries where
they cannot tell which one of the two segments is better. Expert 1 is particularly worried
about providing unreliable preferences and ruining the sculpture’s behavior, according to
emotion-Q5 and emotion-Q6.

Table 9.6: What was your reasoning for your choice between two video clips?

Expert Response

Expert 1
“mostly, the ‘business’ of the patterns, but also when there appeared

to be coordinated waves of behaviour, I like that.”

Expert 2
“Usually it had to do with more happening, and more variety, but
sometimes it was about the relationship (smoothness and fluidity) of
the expression I was seeing.” “activity, and diversity of behaviour”

Expert 3

“I liked clips where it looked like there was some kind of recognizable
pattern or effect that was intentional. Some clips were very inactive,

which is not engaging. Some clips were ‘hyper active’,
which often looked random and unengaging.”

“Some behaviours were too static, some were too empty,
and others were too chaotic. These better ones had some gentle/subtle

movement, and the best ones had occasional large
(but still slow) movements.”

Users’ Responses On Open Questions

It is hard to infer what is the expert’s criteria on engaging behavior from the learned
PB-Reward estimator, so we add the question “What was your reasoning for your choice
between two video clips?” in the survey to directly ask them to see if experts share some-
thing in common in terms of engaging behavior. Table 9.6 shows experts responses to this
question, where we highlighted some keywords of the experts’ criteria. From the table, we
can see that experts indeed share common preferences. For example, they all care about

161

patterns in the behavior of the sculpture in contrast to random behavior. In addition, vari-
ety and diversity are preferred over static and simple behavior. Activity is also considered
when making a preference choice. However, as indicated by expert 3, neither inactive nor
hyper active is good, but something in between with patterns is most favorable. Broadly
speaking, experts share some common preferences at the high level, but we can still imag-
ine at a more detailed level they may have distinct preference, especially given a much
complicated scenario where human visitors are interacting with the sculpture.

Table 9.7: Do you think your preference has been shifted compared to that at the 1st
session?

Expert Response

Exp. 2, Ses. 2:

“Not really. I still find the clips quite limited in what they
express and it’s hard (even for me) to imagine how the activity

depicted in the little thumbnails would translate
to the real sculpture in all cases.”

Exp. 3, Ses. 2: “No I think my preferences are still the same as last session.”

It is possible that human preference teachers change their preference after seeing more
and more behavior in the segments. Therefore, in this study experts are asked if their
preferences have shifted between the 1st session and the 2nd session. Table 9.7 shows the
experts’ responses on this question. It can be seen that neither expert 2 nor 3 reported
changing their preference, which is consistent with our hypothesis in proposed in section
D.6.2.

9.6 Limitations

One of the limitations of the work in this chapter is that no visitors, i.e., people who
interact with the sculpture, were involved in the experiment. Therefore, we cannot examine
if expert preferences are successfully passed to the behavior of the sculpture and lead to
engaging behavior that can be perceived by visitors. This should be investigated in the
future. In addition, in this work we only conducted 2 preference teaching sessions for
each expert, which may be too limited; training performance with more sessions should be
further investigated.

In this work, we only employed the reward model induced from preference data, which
may be limiting. For example, the preference-based reward model may be unreliable,

162

especially at the beginning, due to the limited number of preference labels and the limited
diversity of the segment pairs, which is detailed in section D.7.1. Moreover, there exists a
world representation gap that the video segments used for collecting preference labels may
capture information that cannot be represented by the experience segments. In addition,
learning a reward model and the corresponding policy from scratch may cause very low
learning speed. Therefore, it is interesting to investigate if the combination of a manually
designed reward function, e.g., the engagement estimate proposed in Chapter 5, with a
reward function learned from the human preference could induce more engaging behavior
and at the same time enable faster policy learning.

Applying Preference Learning to Living Architecture System (LAS) via labeling of
video segments is also challenging because moving from 3D world to 2D image results in
information loss, especially for a LAS that is architectural-scale and intended for immersive
crowd interaction. Video recordings captured by one camera may not be able to capture all
necessary information required for preference learning. Moreover, it assumes that experts
are able to accurately predict how simulations viewed in 2D videos can transfer to the user
experience in the 3D world, which cannot be answered by the simulation experiment. All
of these should motivate a future field study to validate the proposed approach.

There are many design choices involved in this work, such as the design of the various
components in LAS-Intl-Env, i.e., the simulator, the design choices related to preference
learning of a reward function, and the hyper-parameter choices related to DRL algorithms.
Even though hyper-parameter search was conducted to choose the hyper-parameters em-
pirically, it is not exhaustive and should be explored further in order to make the transfer
from simulator to real world application successful.

9.7 Summary

In this chapter, we propose to generate engaging behavior from human preferences by
replacing the hand-crafted reward function with a reward function induced from human
preference. Specifically, we firstly introduce the overall framework and the learning al-
gorithms at the high-level. Then, the control task is described. For the experiment, we
take a step-by-step approach by starting from a hand-crafted reward function then moving
towards preference-based reward function with different types of preference model, i.e.,
simulated preference, constrained human preference, and unconstrained expert preference.
With these various experiment settings, we examine four DRL algorithms namely PPO,
TD3, SAC and LSTM-TD3. Our results show PPO outperforms the other three algorithms
on the hand-crafted reward, while SAC performs the worst. With simulated preferences,

163

TD3 and LSTM-TD3 achieve similar performance to that of PPO, but at faster learning
speed. Our results on constrained human preferences show that the algorithms are more
sensitive to segment length, where a longer segment length seems better than a short one.
Finally, for experiment on unconstrained expert preference, we recruit three experts and
each of them participates in two sessions. Our results show that the policy derived from
the human preference does become better in term of generating videos preferred by the
experts for the first few sessions compared to the initial policy. However, once the policy
gets stuck to a local optical, experts tend to treat the similar video segments “equally
unengaging” rather than “equally engaging”, potentially because of the lack of diversity.
In addition, we find that the preference based reward model becomes significantly better at
predicting the preferences of the experts than the randomly initialized reward model and
its old version, and the more the reward model is trained on a set of preference labels, the
higher the prediction accuracy of the reward model will be on that set of preference labels.
Our survey data of unconstrained experts shows experts have different attitudes towards
the preference-based teaching system, where two of them have similar and higher ratings
of the system and one of them is less favourable towards the preference-based teaching
system and inclined to other methods, e.g., correction and demonstration based teaching.

164

Chapter 10

Conclusions and Future Work

As more and more robots move from lab/factory to people’s houses and from safety cages
to human-centered spaces, it is necessary to enable the robots to engage with their part-
ners for productive, enjoyable, entertaining and long-lasting human-centered HRI. To help
further this goal, this thesis applies state-of-art artificial intelligence techniques, especially
Reinforcement Learning (RL) and Preference Learning (PL), to living architecture systems
(LAS) to examine the various ideas towards learning to engage. Distinct from other HRI
applications focus on one-to-one HRI, LAS particularly inclines to one-to-many (namely
crowd) HRI given its architectural scale with hundreds of actuators and dozens of sensors.
Considering the novelty of the robot, i.e., LAS, investigated in this thesis, we conduct both
field study and simulation experiments on LAS to test the proposed approaches based on
RL and PL. Along the journey, we recognize that it is still challenging to directly apply
the state-of-art algorithms to our case, because of the limitations of these algorithms when
facing POMDP and suffering from over-estimation problem, etc. Therefore, this thesis also
studies these problems and proposes methods to solve them.

10.1 Conclusions

In Chapter 4, we introduced two physical testbeds, namely Aegis Canopy and Meander,
and the LAS simulation toolkit. For the two testbeds, we first described the composition
of sensors and actuators, then illustrated their pre-scripted behavior. Different from Aegis
Canopy, which is installed in a museum and accessible to visitors who paid a ticket, Meander
is installed in a building where part of the sculpture is publicly accessible. However,
the physical testbeds are not always accessible to researchers and visitors. Therefore, we

165

developed a simulation toolkit to allow researchers to more easily develop and evaluate
machine learning techniques to such challenging interactive systems.

In Chapter 5, we developed and evaluated algorithms for generating interactive be-
haviors in group environments. Specifically, we provide a way to estimate engagement
during group interaction based on multiple IR sensors, where both individual engagement,
passive and active interaction, and group engagement, i.e. occupancy, are taken into ac-
count. PB and PLA were examined to evaluate how the use of human knowledge influences
interaction. By analyzing interaction and human survey data, we found that learned in-
teractive behaviors, i.e. PLA, result in higher engagement and perceived likeability than
pre-scripted behavior, i.e., PB. This study revealed that comparing to the fixed pre-scripted
behavior, the adaptive behavior generated by a parameterized learning agent, that acts on
the expert-designed action space and is driven by an engagement estimate, is more capable
of engaging visitors and more promising for enabling a long-term interaction.

In Chapter 6, we empirically revealed multi-step methods’ effect on alleviating over-
estimation in DRL, by proposing MDDPG and MMDDPG which are a combination of
DDPG and multi-step methods, and discussed the underlying underestimation and over-
estimation tradeoff. Results show that employing multi-step methods in DRL helps to
alleviate the overestimation problem by exploiting bootstrapping and improve the data
efficiency of DDPG. This paper also discussed the advantages and disadvantages of three
ways to implement multi-step methods from the point of view of extra computation cost
and modeling error. This work helps to improve the data efficiency of DRL algorithms in
order to make these algorithms more applicable to the LAS.

In Chapter 7, we proposed a memory-based DRL algorithm called LSTM-TD3 by com-
bining a recurrent actor-critic framework with TD3. The proposed LSTM-TD3 was com-
pared to standard DRL algorithms on both the MDP- and POMDP-versions of continuous
control tasks. Our results show that LSTM-TD3 not only achieves significantly better
performance on POMDPs than the baselines, but also retains the state-of-art performance
on MDP. The ablation study shows that all components are essential to the success of the
LSTM-TD3 where DC and TPS help in stabilizing learning, CFE is especially important
to retain the good performance in MDP, and PA is beneficial for tasks where past actions
provide information about the current state of the agent. This work is motivated by our
concern that our LAS control task may be not a MDP but a POMDP, so an algorithm that
is able to deal with POMDPs is required. For successful application to systems with an
unknown state space such as LAS, the proposed LSTM-TD3 should not only be capable
of solving POMDPs but also maintain good performance on MDPs.

In Chapter 8, we first highlight the counter-intuitive observation found when applying

166

DRLs to a novel complex robot, that PPO outperforms TD3 and SAC. We hypothesize
that this degradation in performance is caused by partial observability. Then, we provide
a potential explanation about why the multi-step bootstrapping employed in PPO makes
it more robust to partial observability compared TD3 and SAC, which only rely on 1-step
bootstrapping. Based on that, we proposed MTD3 and MSAC to verify our hypotheses on
MDP- and POMDP-version of benchmark tasks. The same counter-intuitive observation
can be reproduced on the POMDP-versions of the benchmark tasks, which confirms the
problem is caused by partial observability. The results of MTD3 and MSAC with multi-step
size n = 5 show that simply increasing the step size from n = 1 to n = 5 can significantly
increase the performance of vanilla TD3 and SAC on POMDPs. The work in this chapter
illustrates that when the observability of the state-space of a system is unknown, researchers
could apply both DRL algorithms capable of POMDPs and algorithms that are designed
for MDPs to the task at hand and compare their performance to help to diagnose if the
task is a POMDP or MDP.

In Chapter 9, we propose to generate engaging behavior from human preferences by
replacing the hand-crafted reward function with a reward function induced from human
preference. Specifically, we firstly introduce the overall framework and the learning al-
gorithms at the high-level. Then, the control task is described. For the experiment, we
take a step-by-step approach by starting from a hand-crafted reward function then moving
towards preference-based reward function with different types of preference model, i.e.,
simulated preference, constrained human preference, and unconstrained expert preference.
With these various experiment settings, we examine four DRL algorithms namely PPO,
TD3, SAC and LSTM-TD3. Our results show PPO outperforms the other three algorithms
on the hand-crafted reward, while SAC performs the worst. With simulated preferences,
TD3 and LSTM-TD3 achieve similar performance to that of PPO, but at faster learning
speed. Our results on constrained human preferences show that the algorithms are more
sensitive to segment length, where a longer segment length seems better than a short one.
Finally, for experiment on unconstrained expert preference, we recruit three experts and
each of them participates in two sessions. Our results show that the policy derived from
the human preference does become better in term of generating videos preferred by the
experts for the first few sessions compared to the initial policy. However, once the policy
gets stuck to a local optical, experts tend to treat the similar video segments “equally
unengaging” rather than “equally engaging”, potentially because of the lack of diversity.
In addition, we find that the preference based reward model becomes significantly better at
predicting the preferences of the experts than the randomly initialized reward model and
its old version, and the more the reward model is trained on a set of preference labels, the
higher the prediction accuracy of the reward model will be on that set of preference labels.

167

Our survey data of unconstrained experts shows experts have different attitudes towards
the preference-based teaching system, where two of them have similar and higher ratings
of the system and one of them is less favourable towards the preference-based teaching
system and inclined to other methods, e.g., correction and demonstration based teaching.
The work in this chapter shows that the recruited experts do share common preferences,
but the preferences are not exactly the same. Therefore, the proposed method can help
derive engagement estimates that measure common preferences. As a complement to those
common preferences, the derived engagement estimate can be combined with personalized
preferences to further improve the engagement of the robot’s behavior.

10.2 Future Work

Even though PLA proposed in Chapter 5 received higher average engagement and perceived
likeability than PB, we cannot be certain about the cause of this difference. Therefore,
a baseline with random policy can be tested to see if there is a difference between this
baseline and PLA to confirm that the learning agent is indeed learning from and adapting
to its interaction experience. Other advanced continuous control DRL algorithms such as
SAC, TD3 and MDDPG are also worth investigating. Upcoming installations of even larger
LAS are planned and this decentralization will become necessary as the number of actuated
elements increases beyond one thousand in a single installation. In addition, hierarchical
RL with PB bootstrapping could be a promising extension, where we could design a pool of
PBs and various levels of reward functions, and see how complicated action patterns could
emerge. It is also promising to introduce intrinsic motivation and a learning algorithm
driven both intrinsically and extrinsically for LAS. To tackle the low pace of interaction
in LAS and high sample requirement of RL, it is interesting to investigate how to transfer
learned models from simulation to physical LAS. We realize conducting field study to
examine these ideas is impossible, not only because a physical installation is not always
available but also the time needed for such study is prohibitive. Therefore, in the future we
could introduce visitor models in the simulation facility proposed in Chapter 4 to promote
the accessibility of LAS and run multiple simulation experiments in parallel on a High
Performance Computing system.

Chapter 6 shows the effect of multi-step method on alleviating overestimation prob-
lem in DRL. However, the step size is empirically chosen. Therefore, a principled way for
choosing step size n is still needed. Perhaps dynamically tuning n during the course of
learning is more suitable as at different stages of learning the trade-off between overesti-
mation and underestimation needs to be balanced differently. The most important future

168

direction arising from this work is to find a more effective way to overcome overestimation
since this is key to improving DRL algorithms’ sample efficiency, while still retaining a
simple exploration method in order to limit computational needs.

The proposed approach in Chapter 7 is particularly useful when engineers do not have
enough knowledge about the environment model and the appropriate design of the obser-
vation space to capture the underlying state. Memory can be useful in such a scenario
to help infer the underlying state. However, the interpretation of the extracted memory
is a challenge. If there is a way to properly interpret the extracted memory, such infor-
mation, e.g. if the current task is a POMDP or a MDP, can be exploited to improve
the observation space design and advance the understanding of the task. Unfortunately,
without adding specific constraint terms in the cost functions Eq. 7.4 and 7.6 to facilitate
the interpretation, there is no way to properly interpret the extracted memory. Future
research should give attention to this direction. In addition, for each run of LSTM-TD3
in Chapter 7 we treat the history length l as a hyper-parameter and fixed it for each run.
While LSTM-TD3 with a history length l = 5 achieves good performance on the devised
POMDPs, this may not be achieved for other tasks where the underlying state depends
on less recent memory. However, a long history length increases computation resources
and time, during both the training and the inferring, i.e. decision making, phases. In
the future, an approach for dynamic adaptation of history length l that achieves the best
performance while minimising training and decision making time should be investigated.
Besides, more sophisticated POMDP tasks relying on long past history should be exam-
ined. SAC with LSTM is also worth to investigate in the future. With the insight of the
importance of CFE of LSTM-TD3, TD3-OW with a separate CFE should also be studied
and compared to LSTM-TD3.

In terms of the work in Chapter 8, a deeper understanding about why n-step boot-
strapping can make TD3 and SAC better on POMDP is an interesting direction for the
future. Besides, it is also worth to investigate if LSTM-TD3 and MTD3 can be combined
to allow TD3 to solve POMDP better by learning temporal information both from the past
experiences and from the future rewards.

Inspired by the results reported in Chapter 9, we identify the potential bias in preference
based reward model, the reward scaling of PL in reward saturation, the world representa-
tion gap between video and experience segment, the interesting common and personalized
preference problem, the potential difference between expert and novice teacher, and the
limitations of the work in Appendix D. These challenges are not unique to our application,
but are common to most real world applications where PL is employed. Therefore, they
are all worth to be investigated deeply. Specifically, more sophisticated query generation
and sampling methods should be investigated in order to reduce the bias by increasing the

169

diversity of the queries shown to the users. More attention should also be given to reward
scaling of PL, because the non-stationary reward resulting from reward scaling is problem-
atic and may cause sever fluctuation in the policy induced from that. One possible solution
to that is to add an additional term in the cost function of reward model optimization to
penalize huge change in reward estimation. Humans are very good at image processing
and understanding, and it is reasonable to make the most of this capacity to transfer hu-
man preference. However, when the world representation gap exists between video and
experience segment, it is questionable how much information can be effectively transferred
to a reward model. Therefore, understanding the effect of the world representation on the
effectiveness and efficiency of human preference transferring is also an interesting research
direction. In this thesis, we were trying to extract the common preference from multiple
experts into a reward function, whereas personalized preference should also be maintained
in order to engage different people. Moreover, it is also interesting to understand if there
is difference between expert and novice teacher. The last but not the least, applying PL to
real world applications, rather than only experimenting in simulation, is challenging and
needs more investigations, and will be left for the future.

170

References

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the twenty-first international conference on Machine
learning, page 1. ACM, 2004.

[2] Douglas Aberdeen, Olivier Buffet, and Owen Thomas. Policy-gradients for psrs and
pomdps. In Artificial Intelligence and Statistics, pages 3–10. PMLR, 2007.

[3] Oludare Isaac Abiodun, Aman Jantan, Abiodun Esther Omolara, Kemi Victoria
Dada, Nachaat AbdElatif Mohamed, and Humaira Arshad. State-of-the-art in arti-
ficial neural network applications: A survey. Heliyon, 4(11):e00938, 2018.

[4] Igor Adamski, Robert Adamski, Tomasz Grel, Adam Jedrych, Kamil Kaczmarek,
and Henryk Michalewski. Distributed deep reinforcement learning: Learn how to
play atari games in 21 minutes. In International Conference on High Performance
Computing, pages 370–388. Springer, 2018.

[5] Nir Ailon. An active learning algorithm for ranking from pairwise preferences with
an almost optimal query complexity. Journal of Machine Learning Research, 13(1),
2012.

[6] Riad Akrour, Marc Schoenauer, and Michele Sebag. Preference-based policy learning.
In Joint European Conference on Machine Learning and Knowledge Discovery in
Databases, pages 12–27. Springer, 2011.

[7] Riad Akrour, Marc Schoenauer, and Michèle Sebag. April: Active preference
learning-based reinforcement learning. In Joint European conference on machine
learning and knowledge discovery in databases, pages 116–131. Springer, 2012.

[8] Arthur Allshire, Roberto Mart́ın-Mart́ın, Charles Lin, Shawn Manuel, Silvio
Savarese, and Animesh Garg. Laser: Learning a latent action space for efficient

171

reinforcement learning. In 2021 IEEE International Conference on Robotics and
Automation (ICRA), pages 6650–6656. IEEE, 2021.

[9] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter
Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba.
Hindsight experience replay. In Advances in Neural Information Processing Systems,
pages 5048–5058, 2017.

[10] Oron Anschel, Nir Baram, and Nahum Shimkin. Averaged-dqn: Variance reduction
and stabilization for deep reinforcement learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning-Volume 70, pages 176–185. JMLR. org,
2017.

[11] Salvatore M Anzalone, Sofiane Boucenna, Serena Ivaldi, and Mohamed Chetouani.
Evaluating the engagement with social robots. International Journal of Social
Robotics, 7(4):465–478, Aug 2015.

[12] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seed-
ing. In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035. Society for Industrial and Applied Mathematics, 2007.

[13] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. A brief survey of deep reinforcement learning. arXiv preprint
arXiv:1708.05866, 2017.

[14] John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A
bayesian sampling approach to exploration in reinforcement learning. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 19–26.
AUAI Press, 2009.

[15] Karl J Åström and Björn Wittenmark. Adaptive control. Courier Corporation, 2013.

[16] Karl Johan Åström. Optimal control of markov processes with incomplete state in-
formation. Journal of Mathematical Analysis and Applications, 10(1):174–205, 1965.

[17] Alexandre Attia and Sharone Dayan. Global overview of imitation learning. arXiv
preprint arXiv:1801.06503, 2018.

[18] Federico Augugliaro, Angela P. Schoellig, and Raffaello D’Andrea. Dance of the
flying machines: Methods for designing and executing an aerial dance choreography.
IEEE Robotics Automation Magazine, 20(4):96–104, Dec 2013.

172

[19] Benedicte M Babayan, Naoshige Uchida, and Samuel J Gershman. Belief state rep-
resentation in the dopamine system. Nature communications, 9(1):1–10, 2018.

[20] Yuqin Bai. An empirical study on bias reduction: Clipped double q vs. multi-step
methods. In 2021 International Conference on Computer Information Science and
Artificial Intelligence (CISAI), pages 1063–1068. IEEE, 2021.

[21] Albert Bandura, William H Freeman, and Richard Lightsey. Self-efficacy: The exer-
cise of control, 1999.

[22] Aaron Bangor, Philip Kortum, and James Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of usability studies, 4(3):114–
123, 2009.

[23] Aaron Bangor, Philip T Kortum, and James T Miller. An empirical evaluation of the
system usability scale. Intl. Journal of Human–Computer Interaction, 24(6):574–594,
2008.

[24] Christoph Bartneck, Dana Kulić, Elizabeth Croft, and Susana Zoghbi. Measurement
instruments for the anthropomorphism, animacy, likeability, perceived intelligence,
and perceived safety of robots. International journal of social robotics, 1(1):71–81,
Jan 2009.

[25] Andrew G. Barto. Intrinsic Motivation and Reinforcement Learning, pages 17–47.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[26] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using
real-time dynamic programming. Artificial intelligence, 72(1-2):81–138, 1995.

[27] Andrew G Barto and Sridhar Mahadevan. Recent advances in hierarchical reinforce-
ment learning. Discrete event dynamic systems, 13(1-2):41–77, 2003.

[28] Philip Beesley. Near-living Architecture: Work in Progress from the Hylozoic Ground
Collaboration, 2011-2013. Riverside Architectural Press Toronto, Ontario, Canada,
2014.

[29] Philip Beesley, Matthew Chan, Rob Gorbet, Dana Kulić, and Mo Memarian. Evolv-
ing systems within immersive architectural environments: New research by the living
architecture systems group. Next Generation Building, 2:31–56, 2015.

[30] Philip Beesley, Pernilla Ohrstedt, and Rob Gorbet. Hylozoic Ground: Liminal Re-
sponsive Architecture: Philip Beesley. Riverside Architectural Press, 2010.

173

[31] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective
on reinforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 449–458. JMLR. org, 2017.

[32] Marc G. Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The ar-
cade learning environment: An evaluation platform for general agents. CoRR,
abs/1207.4708, 2012.

[33] Richard Bellman. A markovian decision process. Journal of mathematics and me-
chanics, 6(5):679–684, 1957.

[34] Erdem Bıyık, Nicolas Huynh, Mykel J Kochenderfer, and Dorsa Sadigh. Active
preference-based gaussian process regression for reward learning. arXiv preprint
arXiv:2005.02575, 2020.

[35] Erdem Bıyık, Dylan P Losey, Malayandi Palan, Nicholas C Landolfi, Gleb Shevchuk,
and Dorsa Sadigh. Learning reward functions from diverse sources of human feedback:
Optimally integrating demonstrations and preferences. The International Journal of
Robotics Research, 41(1):45–67, 2022.

[36] Dan Bohus and Eric Horvitz. Models for multiparty engagement in open-world
dialog. In Proceedings of the SIGDIAL 2009 Conference, pages 225–234. Association
for Computational Linguistics, 2009.

[37] Dan Bohus and Eric Horvitz. Open-world dialog: Challenges, directions, and a
prototype. Technical report, April 2009.

[38] Dan Bohus and Eric Horvitz. Managing human-robot engagement with forecasts
and... um... hesitations. In Proceedings of the 16th International Conference on Mul-
timodal Interaction, ICMI ’14, pages 2–9, New York, NY, USA, 2014. ACM.

[39] Blai Bonet and Hector Geffner. Solving pomdps: Rtdp-bel vs. point-based algo-
rithms. In IJCAI, pages 1641–1646. Pasadena CA, 2009.

[40] Yann Bouteiller, Simon Ramstedt, Giovanni Beltrame, Christopher Pal, and
Jonathan Binas. Reinforcement learning with random delays. In International con-
ference on learning representations, 2021.

[41] Darius Braziunas. Pomdp solution methods. University of Toronto, 2003.

[42] Cynthia Breazeal, Kerstin Dautenhahn, and Takayuki Kanda. Social Robotics, pages
1935–1972. Springer International Publishing, Cham, 2016.

174

[43] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman,
Jie Tang, and Wojciech Zaremba. Openai gym. CoRR, abs/1606.01540, 2016.

[44] John Brooke. Sus: a “quick and dirty’usability. Usability evaluation in industry,
189(3), 1996.

[45] John Brooke. Sus: a retrospective. Journal of usability studies, 8(2):29–40, 2013.

[46] Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator im-
itation learning via automatically-ranked demonstrations. In Conference on robot
learning, pages 330–359. PMLR, 2020.

[47] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
Sample-efficient reinforcement learning with stochastic ensemble value expansion. In
Advances in Neural Information Processing Systems, pages 8224–8234, 2018.

[48] Apostolos N Burnetas and Michael N Katehakis. Optimal adaptive policies for
markov decision processes. Mathematics of Operations Research, 22(1):222–255, 1997.

[49] Lucian Busoniu, Robert Babuska, and Bart De Schutter. A comprehensive survey
of multiagent reinforcement learning. IEEE Transactions on Systems, Man, And
Cybernetics-Part C: Applications and Reviews, 38 (2), 2008, 2008.

[50] Salvatore Candido and Seth Hutchinson. Minimum uncertainty robot navigation
using information-guided pomdp planning. In 2011 IEEE International Conference
on Robotics and Automation, pages 6102–6108. IEEE, 2011.

[51] Z. Cao, G. Hidalgo Martinez, T. Simon, S. Wei, and Y. A. Sheikh. Openpose: Re-
altime multi-person 2d pose estimation using part affinity fields. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2019.

[52] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d
pose estimation using part affinity fields. CoRR, abs/1611.08050, 2016.

[53] Anthony R Cassandra. A survey of pomdp applications. In Working notes of AAAI
1998 fall symposium on planning with partially observable Markov decision processes,
volume 1724, 1998.

[54] Ginevra Castellano, André Pereira, Iolanda Leite, Ana Paiva, and Peter W. McOwan.
Detecting user engagement with a robot companion using task and social interaction-
based features. In Proceedings of the 2009 International Conference on Multimodal
Interfaces, ICMI-MLMI ’09, pages 119–126, New York, NY, USA, 2009. ACM.

175

[55] Carlos Celemin and Javier Ruiz-del Solar. Interactive learning of continuous actions
from corrective advice communicated by humans. In Robot soccer world cup, pages
16–27. Springer, 2015.

[56] Carlos Celemin and Javier Ruiz-del Solar. An interactive framework for learning
continuous actions policies based on corrective feedback. Journal of Intelligent &
Robotic Systems, 95(1):77–97, 2019.

[57] Matthew TK Chan, Rob Gorbet, Philip Beesley, and Dana Kulič. Curiosity-based
learning algorithm for distributed interactive sculptural systems. In 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 3435–
3441. IEEE, Sep. 2015.

[58] Matthew TK Chan, Rob Gorbet, Philip Beesley, and Dana Kulić. Interacting with
curious agents: User experience with interactive sculptural systems. In 2016 25th
IEEE International Symposium on Robot and Human Interactive Communication
(RO-MAN), pages 151–158. IEEE, Aug 2016.

[59] Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal
demonstration via self-supervised reward regression. In Conference on robot learning,
pages 1262–1277. PMLR, 2021.

[60] Yu Fan Chen, Michael Everett, Miao Liu, and Jonathan P How. Socially aware
motion planning with deep reinforcement learning. In 2017 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 1343–1350. IEEE, 2017.

[61] Ricson Cheng, Arpit Agarwal, and Katerina Fragkiadaki. Reinforcement learning
of active vision for manipulating objects under occlusions. In Conference on Robot
Learning, pages 422–431. PMLR, 2018.

[62] Nuttapong Chentanez, Andrew Barto, and Satinder Singh. Intrinsically motivated
reinforcement learning. Advances in neural information processing systems, 17, 2004.

[63] Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically moti-
vated reinforcement learning. In Advances in neural information processing systems,
pages 1281–1288, 2005.

[64] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. Deep reinforcement learning from human preferences. Advances in neural
information processing systems, 30, 2017.

176

[65] Wei Chu and Zoubin Ghahramani. Preference learning with gaussian processes. In
Proceedings of the 22nd international conference on Machine learning, pages 137–144,
2005.

[66] Michael Jae-Yoon Chung and Maya Cakmak. ”how was your stay?”: Exploring the
use of robots for gathering customer feedback in the hospitality industry. In 27th
IEEE International Symposium on Robot and Human Interactive Communication,
RO-MAN 2018, Nanjing, China, August 27-31, 2018, pages 947–954, 2018.

[67] Pawel Cichosz. Truncating temporal differences: On the efficient implementation of
td (lambda) for reinforcement learning. Journal of Artificial Intelligence Research,
2:287–318, 1994.

[68] Andrew L Comrey and Howard B Lee. A first course in factor analysis. Psychology
press, 2013.

[69] Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation
for games, robotics and machine learning. http://pybullet.org, 2016–2019.

[70] Francisco Cruz, Sven Magg, Yukie Nagai, and Stefan Wermter. Improving interactive
reinforcement learning: What makes a good teacher? Connection Science, 30(3):306–
325, 2018.

[71] Catie Cuan, Ishaan Pakrasi, and Amy LaViers. Time to compile. In Proceedings of
the 5th International Conference on Movement and Computing, MOCO ’18, pages
53:1–53:4, New York, NY, USA, 2018. ACM.

[72] Mary L Cummings and Sylvain Bruni. Collaborative human–automation decision
making. In Springer handbook of automation, pages 437–447. Springer, 2009.

[73] Raffaello D’Andrea and Max Dean. The table. https://raffaello.name/

projects/table/, 2001.

[74] Kerstin Dautenhahn. Socially intelligent robots: dimensions of human–robot in-
teraction. Philosophical Transactions of the Royal Society of London B: Biological
Sciences, 362(1480):679–704, 2007.

[75] Kristopher De Asis, J Fernando Hernandez-Garcia, G Zacharias Holland, and
Richard S Sutton. Multi-step reinforcement learning: A unifying algorithm. In
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

177

http://pybullet.org
https://raffaello.name/projects/table/
https://raffaello.name/projects/table/

[76] Robert F DeVellis. Scale development: Theory and applications, volume 26. Sage
publications, 2016.

[77] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plap-
pert, Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov.
Openai baselines. https://github.com/openai/baselines, 2017.

[78] Kevin Doherty and Gavin Doherty. Engagement in hci: Conception, theory and
measurement. ACM Comput. Surv., 51(5):99:1–99:39, November 2018.

[79] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Bench-
marking deep reinforcement learning for continuous control. CoRR, abs/1604.06778,
2016.

[80] Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru,
Sven Gowal, and Todd Hester. Challenges of real-world reinforcement learning: def-
initions, benchmarks and analysis. Machine Learning, 110(9):2419–2468, 2021.

[81] Gabriel Dulac-Arnold, Daniel Mankowitz, and Todd Hester. Challenges of real-world
reinforcement learning. arXiv preprint arXiv:1904.12901, 2019.

[82] Tom Everitt, Victoria Krakovna, Laurent Orseau, Marcus Hutter, and Shane
Legg. Reinforcement learning with a corrupted reward channel. arXiv preprint
arXiv:1705.08417, 2017.

[83] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez, and
Sergey Levine. Model-based value estimation for efficient model-free reinforcement
learning. arXiv preprint arXiv:1803.00101, 2018.

[84] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for
fast adaptation of deep networks. In International conference on machine learning,
pages 1126–1135. PMLR, 2017.

[85] Amalia Foka and Panos Trahanias. Real-time hierarchical pomdps for autonomous
robot navigation. Robotics and Autonomous Systems, 55(7):561–571, 2007.

[86] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian Os-
band, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin, et al.
Noisy networks for exploration. arXiv preprint arXiv:1706.10295, 2017.

[87] Robert M French. Catastrophic forgetting in connectionist networks. Trends in
cognitive sciences, 3(4):128–135, 1999.

178

https://github.com/openai/baselines

[88] Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial
inverse reinforcement learning. arXiv preprint arXiv:1710.11248, 2017.

[89] Scott Fujimoto, Herke van Hoof, and David Meger. Addressing function approxima-
tion error in actor-critic methods. arXiv preprint arXiv:1802.09477, 2018.

[90] Johannes Fürnkranz and Eyke Hüllermeier. Pairwise preference learning and ranking.
In European conference on machine learning, pages 145–156. Springer, 2003.

[91] Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning. In international conference on machine
learning, pages 1050–1059, 2016.

[92] Yarin Gal, Jiri Hron, and Alex Kendall. Concrete dropout. In Advances in Neural
Information Processing Systems, pages 3581–3590, 2017.

[93] Milica Gasic, Catherine Breslin, Matthew Henderson, Dongho Kim, Marcin Szum-
mer, Blaise Thomson, Pirros Tsiakoulis, and Steve Young. Pomdp-based dialogue
manager adaptation to extended domains. In Proceedings of the SIGDIAL 2013
Conference, pages 214–222, 2013.

[94] Milica Gašić and Steve Young. Gaussian processes for pomdp-based dialogue manager
optimization. IEEE/ACM Transactions on Audio, Speech, and Language Processing,
22(1):28–40, 2013.

[95] Samuel J Gershman and Naoshige Uchida. Believing in dopamine. Nature Reviews
Neuroscience, 20(11):703–714, 2019.

[96] Nadine Glas and Catherine Pelachaud. Definitions of engagement in human-agent
interaction. In 2015 International Conference on Affective Computing and Intelligent
Interaction (ACII), pages 944–949, Sep. 2015.

[97] Alyssa Glass. Explaining preference learning, 2006.

[98] Yoav Goldberg. Neural network methods for natural language processing. Synthesis
lectures on human language technologies, 10(1):1–309, 2017.

[99] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[100] Michael A. Goodrich and Alan C. Schultz. Human-robot interaction: A survey.
Found. Trends Hum.-Comput. Interact., 1(3):203–275, January 2007.

179

[101] Goren Gordon, Samuel Spaulding, Jacqueline Kory Westlund, Jin Joo Lee, Luke
Plummer, Marayna Martinez, Madhurima Das, and Cynthia Breazeal. Affective per-
sonalization of a social robot tutor for children’s second language skills. In Thirtieth
AAAI Conference on Artificial Intelligence, 2016.

[102] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L. Isbell, and An-
drea Thomaz. Policy shaping: Integrating human feedback with reinforcement learn-
ing. In Proceedings of the 26th International Conference on Neural Information
Processing Systems - Volume 2, NIPS’13, pages 2625–2633, USA, 2013. Curran As-
sociates Inc.

[103] Mikell P Groover. Fundamentals of modern manufacturing: materials, processes,
and systems. John Wiley & Sons, 2020.

[104] Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement
learning for robotic manipulation with asynchronous off-policy updates. In 2017
IEEE international conference on robotics and automation (ICRA), pages 3389–3396.
IEEE, 2017.

[105] David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122,
2018.

[106] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
arXiv preprint arXiv:1801.01290, 2018.

[107] Sami Haddadin and Elizabeth Croft. Physical Human–Robot Interaction, pages 1835–
1874. Springer International Publishing, Cham, 2016.

[108] Martin T Hagan, Howard B Demuth, and Mark Beale. Neural network design. PWS
Publishing Co., 1997.

[109] Hado V Hasselt. Double q-learning. In Advances in Neural Information Processing
Systems, pages 2613–2621, 2010.

[110] Matthew Hausknecht and Peter Stone. Deep recurrent q-learning for partially ob-
servable mdps. arXiv preprint arXiv:1507.06527, 2015.

[111] Kotaro Hayashi, Daisuke Sakamoto, Takayuki Kanda, Masahiro Shiomi, Satoshi
Koizumi, Hiroshi Ishiguro, Tsukasa Ogasawara, and Norihiro Hagita. Humanoid
robots as a passive-social medium-a field experiment at a train station. In 2007

180

2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
137–144. IEEE, March 2007.

[112] Simon Haykin. Neural networks and learning machines, 3/E. Pearson Education
India, 2009.

[113] Marcel Heerink, Ben Krose, Vanessa Evers, and Bob Wielinga. Measuring acceptance
of an assistive social robot: a suggested toolkit. In RO-MAN 2009-The 18th IEEE
International Symposium on Robot and Human Interactive Communication, pages
528–533. IEEE, 2009.

[114] Nicolas Heess, Jonathan J Hunt, Timothy P Lillicrap, and David Silver. Memory-
based control with recurrent neural networks. arXiv preprint arXiv:1512.04455, 2015.

[115] Joey Hejna and Dorsa Sadigh. Few-shot preference learning for human-in-the-loop
rl. arXiv preprint arXiv:2212.03363, 2022.

[116] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. Deep reinforcement learning that matters. arXiv preprint
arXiv:1709.06560, 2017.

[117] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and
David Meger. Deep reinforcement learning that matters. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[118] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow:
Combining improvements in deep reinforcement learning. In Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[119] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-
tation, 9(8):1735–1780, 1997.

[120] Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado
Van Hasselt, and David Silver. Distributed prioritized experience replay. arXiv
preprint arXiv:1803.00933, 2018.

[121] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward
networks are universal approximators. Neural networks, 2(5):359–366, 1989.

181

[122] Neil Houlsby, Ferenc Huszár, Zoubin Ghahramani, and Máté Lengyel. Bayesian active
learning for classification and preference learning. arXiv preprint arXiv:1112.5745,
2011.

[123] Rein Houthooft, Xi Chen, Yan Duan, John Schulman, Filip De Turck, and Pieter
Abbeel. Curiosity-driven exploration in deep reinforcement learning via bayesian
neural networks. arXiv preprint arXiv:1605.09674, 2016.

[124] Ronald A Howard. Dynamic programming and markov processes. 1960.

[125] Jennifer L Hughes, Abigail A Camden, and Tenzin Yangchen. Rethinking and updat-
ing demographic questions: Guidance to improve descriptions of research samples.
Psi Chi Journal of Psychological Research, 21(3):138–151, 2016.

[126] Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imi-
tation learning: A survey of learning methods. ACM Computing Surveys (CSUR),
50(2):21, 2017.

[127] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario
Amodei. Reward learning from human preferences and demonstrations in atari.
Advances in neural information processing systems, 31, 2018.

[128] Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey
Levine. How to train your robot with deep reinforcement learning: lessons we have
learned. The International Journal of Robotics Research, 40(4-5):698–721, 2021.

[129] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson.
Deep variational reinforcement learning for pomdps. In International Conference on
Machine Learning, pages 2117–2126. PMLR, 2018.

[130] Alex Irpan. Deep reinforcement learning doesn’t work yet. https://www.alexirpan.
com/2018/02/14/rl-hard.html, 2018.

[131] Charles Isbell, Christian R. Shelton, Michael Kearns, Satinder Singh, and Peter
Stone. A social reinforcement learning agent. In Proceedings of the Fifth International
Conference on Autonomous Agents, AGENTS ’01, pages 377–384, New York, NY,
USA, 2001. ACM.

[132] Carolina Islas Sedano, Verona Leendertz, Mikko Vinni, Erkki Sutinen, and Suria
Ellis. Hypercontextualized learning games: Fantasy, motivation, and engagement in
reality. Simulation & Gaming, 44(6):821–845, 2013.

182

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html

[133] Serena Ivaldi, Sébastien Lefort, Jan Peters, Mohamed Chetouani, Joelle Provasi, and
Elisabetta Zibetti. Towards engagement models that consider individual factors in
HRI: on the relation of extroversion and negative attitude towards robots to gaze
and speech during a human-robot assembly task. CoRR, abs/1508.04603, 2015.

[134] Michiel Joosse and Vanessa Evers. A guide robot at the airport: First impressions.
In Proceedings of the Companion of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction, HRI ’17, pages 149–150, New York, NY, USA, 2017.
ACM.

[135] Arthur Juliani, Vincent-Pierre Berges, Esh Vckay, Yuan Gao, Hunter Henry, Marwan
Mattar, and Danny Lange. Unity: A general platform for intelligent agents. CoRR,
abs/1809.02627, 2018.

[136] Gregory Kahn, Adam Villaflor, Bosen Ding, Pieter Abbeel, and Sergey Levine.
Self-supervised deep reinforcement learning with generalized computation graphs for
robot navigation. In 2018 IEEE International Conference on Robotics and Automa-
tion (ICRA), pages 1–8. IEEE, 2018.

[137] Kirsikka Kaipainen, Aino Ahtinen, and Aleksi Hiltunen. Nice surprise, more present
than a machine: Experiences evoked by a social robot for guidance and edutainment
at a city service point. In Proceedings of the 22Nd International Academic Mindtrek
Conference, Mindtrek ’18, pages 163–171, New York, NY, USA, 2018. ACM.

[138] Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric
Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, et al.
Qt-opt: Scalable deep reinforcement learning for vision-based robotic manipulation.
arXiv preprint arXiv:1806.10293, 2018.

[139] Takayuki Kanda and Hiroshi Ishiguro. Human-Robot Interaction in Social Robotics.
CRC Press, Inc., Boca Raton, FL, USA, 1st edition, 2012.

[140] Anssi Kanervisto, Christian Scheller, and Ville Hautamäki. Action space shaping
in deep reinforcement learning. In 2020 IEEE Conference on Games (CoG), pages
479–486. IEEE, 2020.

[141] Simon Keizer, Mary Ellen Foster, Zhuoran Wang, and Oliver Lemon. Machine learn-
ing for social multiparty human–robot interaction. ACM transactions on interactive
intelligent systems (TIIS), 4(3):14, 2014.

183

[142] Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning
for computer vision? In Advances in neural information processing systems, pages
5574–5584, 2017.

[143] Mehdi Khamassi, George Velentzas, Theodore Tsitsimis, and Costas Tzafestas.
Robot fast adaptation to changes in human engagement during simulated dynamic
social interaction with active exploration in parameterized reinforcement learning.
IEEE Transactions on Cognitive and Developmental Systems, 10(4):881–893, 2018.

[144] Rajiv Khosla, Khanh Nguyen, and Mei-Tai Chu. Human robot engagement and
acceptability in residential aged care. International Journal of Human–Computer
Interaction, 33(6):510–522, 2017.

[145] Cory D Kidd and Cynthia Breazeal. Robots at home: Understanding long-term
human-robot interaction. In Intelligent Robots and Systems, 2008. IROS 2008.
IEEE/RSJ International Conference on, pages 3230–3235. IEEE, 2008.

[146] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980, 2014.

[147] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

[148] W. Bradley Knox and Peter Stone. Combining manual feedback with subsequent
mdp reward signals for reinforcement learning. In AAMAS, 2010.

[149] W. Bradley Knox and Peter Stone. Reinforcement learning from simultaneous human
and mdp reward. In Proceedings of the 11th International Conference on Autonomous
Agents and Multiagent Systems - Volume 1, AAMAS ’12, pages 475–482, Richland,
SC, 2012. International Foundation for Autonomous Agents and Multiagent Systems.

[150] Samantha Krening and Karen M. Feigh. Interaction algorithm effect on human ex-
perience with reinforcement learning. ACM Trans. Hum.-Robot Interact., 7(2):16:1–
16:22, October 2018.

[151] Dana Kulic and Elizabeth A Croft. Affective state estimation for human–robot
interaction. IEEE Transactions on Robotics, 23(5):991–1000, 2007.

184

[152] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hier-
archical deep reinforcement learning: Integrating temporal abstraction and intrinsic
motivation. In Advances in neural information processing systems, pages 3675–3683,
2016.

[153] Kazumi Kumagai, Daiwei Lin, Lingheng Meng, Alexandru Blidaru, Philip Beesley,
Dana Kulić, and Ikuo Mizuuchi. Towards individualized affective human-machine
interaction. In IEEE International Symposium on Robot and Human Interactive
Communication, pages 678–685. IEEE, IEEE, 2018.

[154] Guillaume Lample and Devendra Singh Chaplot. Playing fps games with deep rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 31, 2017.

[155] Edith Law, Vicky Cai, Qi Feng Liu, Sajin Sasy, Joslin Goh, Alex Blidaru, and
Dana Kulić. A wizard-of-oz study of curiosity in human-robot interaction. In Robot
and Human Interactive Communication (RO-MAN), 2017 26th IEEE International
Symposium on, pages 607–614. IEEE, 2017.

[156] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,
521(7553):436, 2015.

[157] Kimin Lee, Laura Smith, and Pieter Abbeel. Pebble: Feedback-efficient interactive
reinforcement learning via relabeling experience and unsupervised pre-training. arXiv
preprint arXiv:2106.05091, 2021.

[158] Kimin Lee, Laura Smith, Anca Dragan, and Pieter Abbeel. B-pref: Benchmarking
preference-based reinforcement learning. arXiv preprint arXiv:2111.03026, 2021.

[159] Iolanda Leite, André Pereira, Ginevra Castellano, Samuel Mascarenhas, Carlos Mar-
tinho, and Ana Paiva. Modelling empathy in social robotic companions. In In-
ternational Conference on User Modeling, Adaptation, and Personalization, pages
135–147. Springer, 2011.

[160] Florent Levillain, Elisabetta Zibetti, and Sébastien Lefort. Interacting with non-
anthropomorphic robotic artworks and interpreting their behaviour. International
Journal of Social Robotics, 9(1):141–161, Jan 2017.

[161] Andrew Levy, Robert Platt, and Kate Saenko. Hierarchical actor-critic. arXiv
preprint arXiv:1712.00948, 2017.

185

[162] Kejun Li, Maegan Tucker, Erdem Bıyık, Ellen Novoseller, Joel W Burdick, Yanan
Sui, Dorsa Sadigh, Yisong Yue, and Aaron D Ames. Roial: Region of interest active
learning for characterizing exoskeleton gait preference landscapes. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 3212–3218.
IEEE, 2021.

[163] Xiang Li, Yongping Pan, Gong Chen, and Haoyong Yu. Adaptive human–robot
interaction control for robots driven by series elastic actuators. IEEE Transactions
on Robotics, 33(1):169–182, 2016.

[164] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. Continuous control with deep rein-
forcement learning. CoRR, abs/1509.02971, 2015.

[165] Michael L Littman, Richard S Sutton, and Satinder P Singh. Predictive representa-
tions of state. In NIPS, volume 14, page 30, 2001.

[166] Phoebe Liu, Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. Learning inter-
active behavior for service robots the challenge of mixed-initiative interaction. In
Proceedings of the Workshop on Behavior Adaptation, Interaction and Learning for
Assistive Robotics, 2016.

[167] Phoebe Liu, Dylan F Glas, Takayuki Kanda, and Hiroshi Ishiguro. Learning proactive
behavior for interactive social robots. Autonomous Robots, pages 1–19, 2018.

[168] Wei Liu, Seong-Woo Kim, Scott Pendleton, and Marcelo H Ang. Situation-aware
decision making for autonomous driving on urban road using online pomdp. In 2015
IEEE Intelligent Vehicles Symposium (IV), pages 1126–1133. IEEE, 2015.

[169] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
Multi-agent actor-critic for mixed cooperative-competitive environments. CoRR,
abs/1706.02275, 2017.

[170] R Duncan Luce. Individual choice behavior: A theoretical analysis. Courier Corpo-
ration, 2012.

[171] Max Lungarella, Giorgio Metta, Rolf Pfeifer, and Giulio Sandini. Developmental
robotics: a survey. Connection science, 15(4):151–190, 2003.

[172] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(Nov):2579–2605, 2008.

186

[173] Douglas G Macharet and Dinei A Florencio. Learning how to increase the chance of
human-robot engagement. In 2013 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, pages 2173–2179, Nov 2013.

[174] A Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and
James Bergstra. Benchmarking reinforcement learning algorithms on real-world
robots. In Conference on robot learning, pages 561–591. PMLR, 2018.

[175] Ajay Mandlekar, Danfei Xu, Josiah Wong, Soroush Nasiriany, Chen Wang, Rohun
Kulkarni, Li Fei-Fei, Silvio Savarese, Yuke Zhu, and Roberto Mart́ın-Mart́ın. What
matters in learning from offline human demonstrations for robot manipulation. arXiv
preprint arXiv:2108.03298, 2021.

[176] Henry B Mann and Donald R Whitney. On a test of whether one of two random
variables is stochastically larger than the other. The annals of mathematical statistics,
pages 50–60, 1947.

[177] Marcos Maroto-Gómez, Sara Marqués Villarroya, Maŕıa Malfaz, Álvaro Castro-
González, Josè Carlos Castillo, and Miguel Ángel Salichs. A preference learning
system for the autonomous selection and personalization of entertainment activities
during human-robot interaction. In 2022 IEEE International Conference on Devel-
opment and Learning (ICDL), pages 343–348. IEEE, 2022.

[178] David C May, Kristie J Holler, Cindy L Bethel, Lesley Strawderman, Daniel W
Carruth, and John M Usher. Survey of factors for the prediction of human comfort
with a non-anthropomorphic robot in public spaces. International Journal of Social
Robotics, 9(2):165–180, 2017.

[179] James L McClelland, Bruce L McNaughton, and Randall C O’Reilly. Why there
are complementary learning systems in the hippocampus and neocortex: insights
from the successes and failures of connectionist models of learning and memory.
Psychological review, 102(3):419, 1995.

[180] Lingheng Meng, Rob Gorbet, and Dana Kulić. The effect of multi-step methods
on overestimation in deep reinforcement learning. arXiv preprint arXiv:2006.12692,
2020.

[181] Lingheng Meng, Rob Gorbet, and Dana Kulić. The effect of multi-step methods on
overestimation in deep reinforcement learning. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 347–353. IEEE, 2021.

187

[182] Lingheng Meng, Rob Gorbet, and Dana Kulić. Memory-based deep reinforcement
learning for pomdps. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5619–5626. IEEE, 2021.

[183] Lingheng Meng, Rob Gorbet, and Dana Kulić. Partial observability during drl for
robot control. arXiv preprint arXiv:2209.04999, 2022.

[184] Lingheng Meng, Rob Gorbet, and Dana Kulić. The effect of multi-step methods on
overestimation in deep reinforcement learning. In 2020 25th International Conference
on Pattern Recognition (ICPR), pages 347–353, 2021.

[185] Lingheng Meng, Rob Gorbet, and Dana Kulić. Memory-based deep reinforcement
learning for pomdps. In 2021 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pages 5619–5626, 2021.

[186] Lingheng Meng, Daiwei Lin, Adam Francey, Rob Gorbet, Philip Beesley, and Dana
Kulić. Learning to engage with interactive systems: A field study. arXiv preprint
arXiv:1904.06764, 2019.

[187] Lingheng Meng, Daiwei Lin, Adam Francey, Rob Gorbet, Philip Beesley, and Dana
Kulić. Learning to engage with interactive systems: A field study on deep reinforce-
ment learning in a public museum. J. Hum.-Robot Interact., 10(1), oct 2020.

[188] Lingheng Meng, Daiwei Lin, Adam Francey, Rob Gorbet, Philip Beesley, and Dana
Kulić. Learning to engage with interactive systems: A field study on deep reinforce-
ment learning in a public museum. ACM Transactions on Human-Robot Interaction
(THRI), 10(1):1–29, 2020.

[189] Marek P Michalowski, Selma Sabanovic, and Reid Simmons. A spatial model of
engagement for a social robot. In 9th IEEE International Workshop on Advanced
Motion Control, 2006., pages 762–767, March 2006.

[190] Marco Mirolli and Gianluca Baldassarre. Functions and mechanisms of intrinsic
motivations. In Intrinsically Motivated Learning in Natural and Artificial Systems,
pages 49–72. Springer, 2013.

[191] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy
Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods
for deep reinforcement learning. In International conference on machine learning,
pages 1928–1937, 2016.

188

[192] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing atari with deep re-
inforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[193] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

[194] Clément Moulin-Frier and Pierre-Yves Oudeyer. Exploration strategies in develop-
mental robotics: a unified probabilistic framework. In Development and Learning
and Epigenetic Robotics (ICDL), 2013 IEEE Third Joint International Conference
on, pages 1–6. IEEE, 2013.

[195] Thibaut Munzer, Marc Toussaint, and Manuel Lopes. Preference learning on the ex-
ecution of collaborative human-robot tasks. In 2017 IEEE International Conference
on Robotics and Automation (ICRA), pages 879–885. IEEE, 2017.

[196] Kevin P Murphy. A survey of pomdp solution techniques. environment, 2:X3, 2000.

[197] Robin R Murphy. Introduction to AI robotics. MIT press, 2019.

[198] Bilge Mutlu and Jodi Forlizzi. Robots in organizations: The role of workflow, social,
and environmental factors in human-robot interaction. In 2008 3rd ACM/IEEE
International Conference on Human-Robot Interaction (HRI), pages 287–294, March
2008.

[199] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. Data-efficient
hierarchical reinforcement learning. In Advances in Neural Information Processing
Systems, pages 3303–3313, 2018.

[200] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter
Abbeel. Overcoming exploration in reinforcement learning with demonstrations. In
2018 IEEE International Conference on Robotics and Automation (ICRA), pages
6292–6299. IEEE, 2018.

[201] Kazushi Nakazawa, Keita Takahashi, and Masahide Kaneko. Unified environment-
adaptive control of accompanying robots using artificial potential field. In 2013
8th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
199–200. IEEE, 2013.

189

[202] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward
transformations: Theory and application to reward shaping. In ICML, volume 99,
pages 278–287, 1999.

[203] Andrew Y Ng, Stuart Russell, et al. Algorithms for inverse reinforcement learning.
In Icml, volume 1, page 2, 2000.

[204] Heather L O’Brien and Elaine G Toms. What is user engagement? a conceptual
framework for defining user engagement with technology, 2008.

[205] Sylvie CW Ong, Shao Wei Png, David Hsu, and Wee Sun Lee. Pomdps for robotic
tasks with mixed observability. In Robotics: Science and systems, volume 5, page 4,
2009.

[206] OpenAI. Learning dexterous in-hand manipulation. arXiv preprint http-
sarXiv:1808.00177v2, 2018.

[207] Randall C O’reilly and Yuko Munakata. Computational explorations in cognitive
neuroscience: Understanding the mind by simulating the brain. MIT press, 2000.

[208] Ian Osband, John Aslanides, and Albin Cassirer. Randomized prior functions for
deep reinforcement learning. In Advances in Neural Information Processing Systems,
pages 8617–8629, 2018.

[209] Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep
exploration via bootstrapped dqn. In Advances in neural information processing
systems, pages 4026–4034, 2016.

[210] Jason W Osborne and Anna B Costello. Sample size and subject to item ratio
in principal components analysis. Practical Assessment, Research, and Evaluation,
9(1):11, 2004.

[211] Pierre-Yves Oudeyer and Frederic Kaplan. What is intrinsic motivation? a typology
of computational approaches. Frontiers in neurorobotics, 1:6, 2009.

[212] Vikas N O’Reilly-Shah. Factors influencing healthcare provider respondent fatigue
answering a globally administered in-app survey. PeerJ, 5:e3785, 2017.

[213] Joni Pajarinen and Ville Kyrki. Robotic manipulation of multiple objects as a pomdp.
Artificial Intelligence, 247:213–228, 2017.

190

[214] Joni Pajarinen, Jens Lundell, and Ville Kyrki. Pomdp planning under object com-
position uncertainty: Application to robotic manipulation. IEEE Transactions on
Robotics, 2022.

[215] Egon S Pearson, Ralph B D “’AGOSTINO, and Kimiko O Bowman. Tests for
departure from normality: Comparison of powers. Biometrika, 64(2):231–246, 1977.

[216] Paola Pennisi, Alessandro Tonacci, Gennaro Tartarisco, Lucia Billeci, Liliana Ruta,
Sebastiano Gangemi, and Giovanni Pioggia. Autism and social robotics: A systematic
review. Autism Research, 9(2):165–183, 2016.

[217] Rodrigo Pérez-Dattari, Carlos Celemin, Javier Ruiz-del Solar, and Jens Kober. Inter-
active learning with corrective feedback for policies based on deep neural networks. In
International Symposium on Experimental Robotics, pages 353–363. Springer, 2020.

[218] Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration:
An anytime algorithm for pomdps. In IJCAI, volume 3, pages 1025–1032. Citeseer,
2003.

[219] Matthias Plappert, Rein Houthooft, Prafulla Dhariwal, Szymon Sidor, Richard Y.
Chen, Xi Chen, Tamim Asfour, Pieter Abbeel, and Marcin Andrychowicz. Parameter
space noise for exploration. CoRR, abs/1706.01905, 2017.

[220] Ivaylo Popov, Nicolas Heess, Timothy Lillicrap, Roland Hafner, Gabriel Barth-
Maron, Matej Vecerik, Thomas Lampe, Yuval Tassa, Tom Erez, and Martin Ried-
miller. Data-efficient deep reinforcement learning for dexterous manipulation. arXiv
preprint arXiv:1704.03073, 2017.

[221] Stephen R Porter, Michael E Whitcomb, and William H Weitzer. Multiple surveys of
students and survey fatigue. New directions for institutional research, 2004(121):63–
73, 2004.

[222] Ahmed Hussain Qureshi, Yutaka Nakamura, Yuichiro Yoshikawa, and Hiroshi Ishig-
uro. Robot gains social intelligence through multimodal deep reinforcement learn-
ing. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Hu-
manoids), pages 745–751. IEEE, 2016.

[223] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur Guez,
Danilo Jimenez Rezende, Adria Puigdomènech Badia, Oriol Vinyals, Nicolas Heess,
Yujia Li, et al. Imagination-augmented agents for deep reinforcement learning. In
Advances in neural information processing systems, pages 5690–5701, 2017.

191

[224] Roger Ratcliff. Connectionist models of recognition memory: constraints imposed
by learning and forgetting functions. Psychological review, 97(2):285, 1990.

[225] Harish Ravichandar, Athanasios S Polydoros, Sonia Chernova, and Aude Billard.
Recent advances in robot learning from demonstration. Annual review of control,
robotics, and autonomous systems, 3:297–330, 2020.

[226] Daniele Reda, Tianxin Tao, and Michiel van de Panne. Learning to locomote: Un-
derstanding how environment design matters for deep reinforcement learning. In
Motion, Interaction and Games, pages 1–10. 2020.

[227] Charles Rich, Brett Ponsler, Aaron Holroyd, and Candace L Sidner. Recognizing
engagement in human-robot interaction. In 2010 5th ACM/IEEE International Con-
ference on Human-Robot Interaction (HRI), pages 375–382. IEEE, March 2010.

[228] Nicole L Robinson, Jennifer Connolly, Genevieve M Johnson, Yejee Kim, Leanne
Hides, and David J Kavanagh. Measures of incentives and confidence in using a
social robot. Science Robotics, 3(21):eaat6963, 2018.

[229] Peter J Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation
of cluster analysis. Journal of computational and applied mathematics, 20:53–65,
1987.

[230] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall Press, USA, 3rd edition, 2009.

[231] Stuart J. (Stuart Jonathan) Russell. Artificial intelligence : a modern approach.
Prentice Hall series in artificial intelligence. Prentice Hall, Upper Saddle River, N.J,
3rd ed. edition.

[232] Andrei A Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu,
and Raia Hadsell. Sim-to-real robot learning from pixels with progressive nets. arXiv
preprint arXiv:1610.04286, 2016.

[233] Fereshteh Sadeghi and Sergey Levine. Cad2rl: Real single-image flight without a
single real image. arXiv preprint arXiv:1611.04201, 2016.

[234] Dorsa Sadigh, Anca D Dragan, Shankar Sastry, and Sanjit A Seshia. Active
preference-based learning of reward functions. 2017.

192

[235] Jyotirmay Sanghvi, Ginevra Castellano, Iolanda Leite, André Pereira, Peter W
McOwan, and Ana Paiva. Automatic analysis of affective postures and body motion
to detect engagement with a game companion. In Proceedings of the 6th international
conference on Human-robot interaction, pages 305–312. ACM, 2011.

[236] Sreeshankar Satheeshbabu, Naveen K Uppalapati, Tianshi Fu, and Girish Krishnan.
Continuous control of a soft continuum arm using deep reinforcement learning. In
2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), pages 497–503.
IEEE, 2020.

[237] Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function
approximators. In International Conference on Machine Learning, pages 1312–1320,
2015.

[238] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experi-
ence replay. arXiv preprint arXiv:1511.05952, 2015.

[239] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
Trust region policy optimization. In International Conference on Machine Learning,
pages 1889–1897, 2015.

[240] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.
High-dimensional continuous control using generalized advantage estimation. arXiv
preprint arXiv:1506.02438, 2015.

[241] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[242] Guy Shani, Joelle Pineau, and Robert Kaplow. A survey of point-based pomdp
solvers. Autonomous Agents and Multi-Agent Systems, 27(1):1–51, 2013.

[243] Samuel Sanford Shapiro and Martin B Wilk. An analysis of variance test for normality
(complete samples). Biometrika, 52(3/4):591–611, 1965.

[244] Thomas B. Sheridan. Human–robot interaction: Status and challenges. Human
Factors, 58(4):525–532, 2016. PMID: 27098262.

[245] Chao Shi, Satoru Satake, Takayuki Kanda, and Hiroshi Ishiguro. A robot that
distributes flyers to pedestrians in a shopping mall. International Journal of Social
Robotics, 10(4):421–437, Sep 2018.

193

[246] Masahiro Shiomi, Takayuki Kanda, Hiroshi Ishiguro, and Norihiro Hagita. Inter-
active humanoid robots for a science museum. In Proceedings of the 1st ACM
SIGCHI/SIGART Conference on Human-robot Interaction, HRI ’06, pages 305–312,
New York, NY, USA, 2006. ACM.

[247] Candace L. Sidner, Cory D. Kidd, Christopher Lee, and Neal Lesh. Where to look: A
study of human-robot engagement. In Proceedings of the 9th International Conference
on Intelligent User Interfaces, IUI ’04, pages 78–84, New York, NY, USA, 2004. ACM.

[248] Candace L Sidner and Christopher Lee. Engagement rules for human-robot collab-
orative interactions. In SMC’03 Conference Proceedings. 2003 IEEE International
Conference on Systems, Man and Cybernetics. Conference Theme - System Security
and Assurance (Cat. No.03CH37483), volume 4, pages 3957–3962 vol.4, Oct 2003.

[249] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam,
Marc Lanctot, et al. Mastering the game of go with deep neural networks and tree
search. nature, 529(7587):484, 2016.

[250] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-
tin Riedmiller. Deterministic policy gradient algorithms. In Eric P. Xing and Tony
Jebara, editors, Proceedings of the 31st International Conference on Machine Learn-
ing, volume 32 of Proceedings of Machine Learning Research, pages 387–395, Bejing,
China, 22–24 Jun 2014. PMLR.

[251] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al.
Mastering the game of go without human knowledge. Nature, 550(7676):354, 2017.

[252] Herbert A Simon. The new science of management decision. 1960.

[253] Herbert A Simon. Theories of decision-making in economics and behavioural science.
In Surveys of economic theory, pages 1–28. Springer, 1966.

[254] Gautam Singh, Skand Peri, Junghyun Kim, Hyunseok Kim, and Sungjin Ahn. Struc-
tured world belief for reinforcement learning in pomdp. In International Conference
on Machine Learning, pages 9744–9755. PMLR, 2021.

[255] Satinder Singh, Richard L Lewis, Andrew G Barto, and Jonathan Sorg. Intrinsically
motivated reinforcement learning: An evolutionary perspective. IEEE Transactions
on Autonomous Mental Development, 2(2):70–82, 2010.

194

[256] Angela Sinickas. Finding a cure for survey fatigue. Strategic Communication Man-
agement, 11(2):11, 2007.

[257] William D Smart and L Pack Kaelbling. Effective reinforcement learning for mo-
bile robots. In Proceedings 2002 IEEE International Conference on Robotics and
Automation (Cat. No. 02CH37292), volume 4, pages 3404–3410. IEEE, 2002.

[258] Doo Re Song, Chuanyu Yang, Christopher McGreavy, and Zhibin Li. Recurrent de-
terministic policy gradient method for bipedal locomotion on rough terrain challenge.
In 2018 15th International Conference on Control, Automation, Robotics and Vision
(ICARCV), pages 311–318. IEEE, 2018.

[259] David St-Onge, Pierre-Yves Brches, Inna Sharf, Nicolas Reeves, Ioannis Rekleitis,
Patrick Abouzakhm, Yogesh Girdhar, Adam Harmat, Gregory Dudek, and Philippe
Gigure. Control, localization and human interaction with an autonomous lighter-
than-air performer. Robot. Auton. Syst., 88(C):165–186, February 2017.

[260] David St-Onge and Nicolas Reeves. Human interaction with flying cubic automata.
In Proceedings of 2010 IEEE/ACM Internations Conference on Human Robots In-
teraction, 2010.

[261] Clara Kwon Starkweather, Benedicte M Babayan, Naoshige Uchida, and Samuel J
Gershman. Dopamine reward prediction errors reflect hidden-state inference across
time. Nature neuroscience, 20(4):581–589, 2017.

[262] Aaron Steinfeld, Terrence Fong, David Kaber, Michael Lewis, Jean Scholtz, Alan
Schultz, and Michael Goodrich. Common metrics for human-robot interaction. In
Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-robot Interac-
tion, HRI ’06, pages 33–40, New York, NY, USA, 2006. ACM.

[263] Halit Bener Suay and Sonia Chernova. Effect of human guidance and state space size
on interactive reinforcement learning. In RO-MAN, 2011 IEEE, pages 1–6. IEEE,
July 2011.

[264] Niko Sünderhauf, Oliver Brock, Walter Scheirer, Raia Hadsell, Dieter Fox, Jürgen
Leitner, Ben Upcroft, Pieter Abbeel, Wolfram Burgard, Michael Milford, et al. The
limits and potentials of deep learning for robotics. The International Journal of
Robotics Research, 37(4-5):405–420, 2018.

[265] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction.
MIT press, 2018.

195

[266] Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-
mdps: A framework for temporal abstraction in reinforcement learning. Artificial
intelligence, 112(1-2):181–211, 1999.

[267] Lei Tai, Giuseppe Paolo, and Ming Liu. Virtual-to-real deep reinforcement learning:
Continuous control of mobile robots for mapless navigation. In 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 31–36.
IEEE, 2017.

[268] Victor Talpaert, Ibrahim Sobh, B Ravi Kiran, Patrick Mannion, Senthil Yoga-
mani, Ahmad El-Sallab, and Patrick Perez. Exploring applications of deep re-
inforcement learning for real-world autonomous driving systems. arXiv preprint
arXiv:1901.01536, 2019.

[269] Yunhao Tang. Self-imitation learning via generalized lower bound q-learning. Ad-
vances in neural information processing systems, 33:13964–13975, 2020.

[270] Andrea Thomaz, Guy Hoffman, and Maya Cakmak. Computational human-robot
interaction. Found. Trends Robot, 4(2-3):105–223, December 2016.

[271] Andrea L. Thomaz and Cynthia Breazeal. Reinforcement learning with human teach-
ers: Evidence of feedback and guidance with implications for learning performance.
In Proceedings of the 21st National Conference on Artificial Intelligence - Volume 1,
AAAI’06, pages 1000–1005. AAAI Press, 2006.

[272] Andrea Lockerd Thomaz, Guy Hoffman, and Cynthia Breazeal. Real-time interactive
reinforcement learning for robots. In AAAI 2005 workshop on human comprehensible
machine learning, 2005.

[273] Robert L Thorndike. Who belongs in the family. In Psychometrika. Citeseer, 1953.

[274] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for
reinforcement learning. In Proceedings of the 1993 Connectionist Models Summer
School Hillsdale, NJ. Lawrence Erlbaum, 1993.

[275] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of
clusters in a data set via the gap statistic. Journal of the Royal Statistical Society:
Series B (Statistical Methodology), 63(2):411–423, 2001.

196

[276] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. Domain randomization for transferring deep neural networks from simula-
tion to the real world. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ
International Conference on, pages 23–30. IEEE, 2017.

[277] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-
based control. In 2012 IEEE/RSJ International Conference on Intelligent Robots
and Systems, pages 5026–5033. IEEE, 2012.

[278] Panagiota Tsarouchi, Sotiris Makris, and George Chryssolouris. Human–robot in-
teraction review and challenges on task planning and programming. International
Journal of Computer Integrated Manufacturing, 29(8):916–931, 2016.

[279] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal
of machine learning research, 9(11), 2008.

[280] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with
double q-learning. In Thirtieth AAAI conference on artificial intelligence, 2016.

[281] Harm van Seijen. Effective multi-step temporal-difference learning for non-linear
function approximation. arXiv preprint arXiv:1608.05151, 2016.

[282] George Velentzas, Theodore Tsitsimis, Iñaki Rañó, Costas Tzafestas, and Mehdi
Khamassi. Adaptive reinforcement learning with active state-specific exploration for
engagement maximization during simulated child-robot interaction. Paladyn, Journal
of Behavioral Robotics, 9(1):235–253, 2018.

[283] Autilia Vitiello, Giovanni Acampora, Mariacarla Staffa, Bruno Siciliano, and Silvia
Rossi. A neuro-fuzzy-bayesian approach for the adaptive control of robot proxemics
behavior. In 2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
pages 1–6. IEEE, 2017.

[284] Graham Wakefield, Tobias Hollerer, JoAnn Kuchera-Morin, Charles Roberts, and
Matthew Wright. Spatial interaction in a multiuser immersive instrument. IEEE
computer graphics and applications, 33(6):14–20, Nov 2013.

[285] Chao Wang, Jian Wang, Yuan Shen, and Xudong Zhang. Autonomous navigation of
uavs in large-scale complex environments: A deep reinforcement learning approach.
IEEE Transactions on Vehicular Technology, 68(3):2124–2136, 2019.

197

[286] Chen Wang, Yanan Li, Shuzhi Sam Ge, and Tong Heng Lee. Adaptive control for
robot navigation in human environments based on social force model. In 2016 IEEE
International Conference on Robotics and Automation (ICRA), pages 5690–5695.
IEEE, 2016.

[287] Tixian Wang, Amirhossein Taghvaei, and Prashant G Mehta. Q-learning for pomdp:
An application to learning locomotion gaits. In 2019 IEEE 58th Conference on
Decision and Control (CDC), pages 2758–2763. IEEE, 2019.

[288] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. Sample efficient actor-critic with experience
replay. arXiv preprint arXiv:1611.01224, 2016.

[289] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and
Nando De Freitas. Dueling network architectures for deep reinforcement learning.
arXiv preprint arXiv:1511.06581, 2015.

[290] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards. 1989.

[291] Nils Wilde, Erdem Bıyık, Dorsa Sadigh, and Stephen L Smith. Learning reward
functions from scale feedback. arXiv preprint arXiv:2110.00284, 2021.

[292] Nils Wilde, Dana Kulic, and Stephen L Smith. Active preference learning using
maximum regret. arXiv preprint arXiv:2005.04067, 2020.

[293] Aaron Wilson, Alan Fern, and Prasad Tadepalli. A bayesian approach for policy
learning from trajectory preference queries. Advances in neural information process-
ing systems, 25, 2012.

[294] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al. A sur-
vey of preference-based reinforcement learning methods. Journal of Machine Learn-
ing Research, 18(136):1–46, 2017.

[295] Christian Wirth and Johannes Fürnkranz. Preference-based reinforcement learning:
A preliminary survey. In Proceedings of the ECML/PKDD-13 Workshop on Rein-
forcement Learning from Generalized Feedback: Beyond Numeric Rewards. Citeseer,
2013.

[296] Leo Woiceshyn, Yuchi Wang, Goldie Nejat, and Beno Benhabib. Personalized cloth-
ing recommendation by a social robot. In 2017 IEEE International Symposium on
Robotics and Intelligent Sensors (IRIS), pages 179–185. IEEE, 2017.

198

[297] James E Young, JaYoung Sung, Amy Voida, Ehud Sharlin, Takeo Igarashi, Henrik I
Christensen, and Rebecca E Grinter. Evaluating human-robot interaction. Interna-
tional Journal of Social Robotics, 3(1):53–67, Jan 2011.

[298] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. A study on overfitting
in deep reinforcement learning. arXiv preprint arXiv:1804.06893, 2018.

[299] Fangyi Zhang, Jürgen Leitner, Michael Milford, Ben Upcroft, and Peter Corke. To-
wards vision-based deep reinforcement learning for robotic motion control. arXiv
preprint arXiv:1511.03791, 2015.

[300] Juanjuan Zhang and Chien Chern Cheah. Passivity and stability of human–robot
interaction control for upper-limb rehabilitation robots. IEEE Transactions on
Robotics, 31(2):233–245, 2015.

[301] Marvin Zhang, Zoe McCarthy, Chelsea Finn, Sergey Levine, and Pieter Abbeel.
Learning deep neural network policies with continuous memory states. In 2016 IEEE
international conference on robotics and automation (ICRA), pages 520–527. IEEE,
2016.

[302] Pengfei Zhu, Xin Li, Pascal Poupart, and Guanghui Miao. On improving deep rein-
forcement learning for pomdps. arXiv preprint arXiv:1704.07978, 2017.

[303] Jakub Z lotowski, Diane Proudfoot, Kumar Yogeeswaran, and Christoph Bartneck.
Anthropomorphism: opportunities and challenges in human–robot interaction. In-
ternational Journal of Social Robotics, 7(3):347–360, Jan 2015.

199

APPENDICES

200

Appendix A

Appendix for Chapter 5

A.1 Pseudo-code for DDPG-based PLA

201

ALGORITHM 4: DDPG-based PLA
Input: first day

1 Initialize: train interval, train times, episode length, replay buffer D, mini-batch size N
2 if first day then
3 Initialize Critic Q(obs, a|θQ) and Actor µ(obs|θµ) with random parameters θQ, θµ

4 else
5 Load pretrained Critic Q(obs, a|θQ) and Actor µ(obs|θµ)
6 end
7 Target networks θQ− ← θQ, θµ− ← θµ

8 start of day ← True
9 while True do

10 if start of day then

11 Receive initial observation obs(1)

12 Initialize parameter noise σ
13 start of day ← False

14 else

15 obs(1) ← obs(t+1), σ ← σj+1

16 end
17 for t← 1 to episode length do

18 Select action a(t) = µ(obs(t)|θµ +N (0, σ)) according to the current policy and
exploration noise.

19 Execute action a(t), observe reward r(t) and observe new observation obs(t+1)

20 D ← D ∪ (obs(t), a(t), r(t), obs(t+1))
21 if t%train interval == 0 and |D| ≥ N then
22 for j ← 1 to train times do

23 Sample a random minibatch of N trainsitions (obs(i), a(i), r(i), obs(i+1)) from
D

/* Update adaptive parameter noise scale */

/* Update actor-critic */

24 end

25 end

26 obs(t) ← obs(t+1), σ1 ← σj+1

27 end

28 end

202

Appendix B

Appendix for Chapter 7

B.1 Algorithms Implementation

The implementation of the algorithms is based on OpenAI Spinningup1. The code used
for this work can be found in https://github.com/LinghengMeng/LSTM-TD3. Table C.2
details the hyperparameters used in this work, where − indicates the parameter does not
apply to the corresponding algorithm. For the actor and critic neural network structure
of LSTM-TD3, the first row corresponds to the structure of the memory component, the
second row corresponds to the structure of the current feature extraction, and the third
row corresponds to the structure of perception integration after combining the extracted
memory and the extracted current feature.

B.2 Supplementary Results

B.2.1 Performance Comparison

Table B.2 summarizes the maximum average return of each algorithm on different tasks,
where the POMDP-FLK, POMDP-RN, and POMDP-RSM are examined with pflk = 0.2,
σrn = 0.1, and prsm = 0.1. From Table B.2, we can see that LSTM-TD3 either outperforms
or achieves comparative performance to other baselines on MDP, and significantly outper-
forms other baselines on POMDP-versions of each task. These results provide evidence

1https://spinningup.openai.com

203

https://github.com/LinghengMeng/LSTM-TD3

Table B.1: Hyperparameters for Algorithms

Hyperparameter
Algorithms

DDPG TD3 SAC LSTM-TD3

discount factor: γ 0.99

batch size: Nbatch 100

replay buffer size:
|D| 106

random start step:
Nstart step

10000

update after
Nupdate after

1000

target NN update
rate τ

0.005

optimizer Adam [146]

actor learning rate
lractor

10−3

critic learning rate
lrcritic

10−3

actor NN structure: [256, 256]
[128] + [128]

[128]
[128, 128]

critic NN structure: [256, 256]
[128] + [128]

[128]
[128, 128]

actor exploration
noise σact

0.1 - 0.1

target actor noise
σtarg act

- 0.2 - 0.2

target actor noise clip
boundary ctarg act

- 0.5 - 0.5

policy update delay - 2 - 2

entropy regulation
coefficient α

- - 0.2 -

history length l - - - {0, 1, 3, 5}

of the promising advantages of memory based DRL on both MDP and POMDP. On one
hand, LSTM-TD3 can be used out-of-box without caring too much of the design of the

204

0.0 0.5 1.0
Step 1e6

0

500

1000

1500

2000

Av
er

ag
e

Re
tu

rn

rn=0.05

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn

rn=0.1

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn

rn=0.2

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn

rn=0.5
AntPyBulletEnv-v0 POMDP-RandomNoise

(a) POMDP-RN

0.0 0.5 1.0
Step 1e6

0

500

1000

1500

Av
er

ag
e

Re
tu

rn

prsm=0.05

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn

prsm=0.1

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn
prsm=0.2

0.0 0.5 1.0
Step 1e6

Av
er

ag
e

Re
tu

rn

prsm=0.5
AntPyBulletEnv-v0 POMDP-RandomSensorMissing

(b) POMDP-RSM

Figure B.1: Performance Comparison on POMDP-version of AntPyBulletEnv-v0 with dif-
ferent observabilities.

observation as memory component can partially compensate the lost information. On the
other hand, by comparing the performance difference of adding and removing the memory
component, LSTM-TD3 provides a way to detect if the current design of the observation
space is improvable or not in terms of capturing the underlying state.

B.2.2 Robustness to Partial Observability

Fig. B.1 compares the proposed LSTM-TD3 with the baselines in terms of the robustness
to different partial observabilities, where the higher the σrn and the prsm, the lower the
observability. In general, LSTM-TD3 has better robustness than TD3-OW which has

205

0 1
Step 1e6

1000

2000

Av
er

ag
e

Re
tu

rn

pflk=0.05

0 1
Step 1e6

pflk=0.1

0 1
Step 1e6

pflk=0.2

0 1
Step 1e6

pflk=0.5

0 1
Step 1e6

pflk=0.8
AntPyBulletEnv-v0 POMDP-Flickering

Figure B.2: Relationship Between Partial-Observability and History Length.

better robustness than TD3. A small reduction of observability can be handled by LSTM-
TD3, but for POMDP with severe reduction of observability LSTM-TD3 performance also
degrades.

B.2.3 Effect of History Length

The history length l is a hyperparameter of LSTM-TD3, and it determines the maximum
history length in the observation window. As illustrated in Fig. B.4 and Table B.2, LSTM-
TD3 with a relatively short history length l = 5 produces significantly better performance
than other baselines without a memory component. Fig. B.2 shows the performance
of LSTM-TD3 with different history lengths on POMDP-FLK AntPyBulletEnt-v0 with
various flickering probabilities pflk = {0.05, 0.1, 0.2, 0.5, 0.8} where the higher the pflk the
lower the obervability. For pflk = 0.05, LSTM-TD3(3) and LSTM-TD3(5) show similar
performance and both significantly outperform LSTM-TD3(0) and LSTM-TD3(1). When
pflk increases from 0.05 to 0.1, LSTM-TD3(5) still maintains similar performance, but
LSTM-TD3(3) experiences a dramatic decrease. This means the decreased observability
can still be compensated with history of length 5, but cannot be compensated with history
of length 3. When further reducing the observability to pflk = 0.2, the performance of
LSTM-TD3(5) is also degraded, as shown in the 3rd panel of Fig. B.2. When pflk is
increased to 0.5 and 0.8, all examined history lengths fail the task (the last two panels in
Fig. B.2).

Fig. B.3 illustrates the performance of LSTM-TD3 with different history lengths. From
this figure, we can see that when the history length increased, the final performance im-
proves too. However, the long history length causes much extra computation consumption.

206

Figure B.3: Performance of LSTM-TD3 with Different History Lengths, where LSTM-TD3
with history length 10, 50 and 100 are not fully run up to 1 million steps due to the extra
computation cost caused by long history.

B.2.4 Policy Generalization

The second extension is to evaluate the learned policy with different history length from
that used during training. If we use ltrain and leval to represent the history length used
during training and evaluation respectively, the generalization capability for both ltrain >
leval and ltrain < leval can be useful in different scenarios. On one hand, for ltrain >
leval, if ltrain and leval can achieve the same performance, using a shorter history length
during evaluation can reduce the inferring time of an action, and this is valuable for tasks
where real-time decision making is important and training can be run in parallel and
is not time-sensitive. On the other hand, for ltrain < leval, if leval can achieve better

207

performance than ltrain by increasing the history length, which means how to extract
useful memory information can be learned with a shorter history length and longer history
length during evaluation is only to extract more useful information, then using a shorter
history length during training can speed up the training and reduce resource consumption,
at the same time without compromising the performance. As for other DRL algorithms,
the training is on a mini-batch while the evaluating is only on a single data, so if the
ltrain is large, the training will take more time and computation resources than evaluation.
Therefore, it a good choice to achieve the same performance by reducing the cost during
training and increasing the cost during evaluation. Normally, training cost is unvalued by
researchers, especially some research [4, 138] proposed to use large distributed computer
cluster. However, there are cases, where the robot cannot communicate fleetly with the
remote computation center and onboard computation resources are limited, that the effort
in saving computation is still required. This practical consideration inspires the second
evaluation extension.

Evaluation with Different History Lengths

Fig. B.5 illustrates the evaluation results of LSTM-TD3 with various history lengths that
may be different from the history length used for training. From this figure, it can be seen
that when trained with a specific history length ltrain but evaluated with a different history
length leval > ltrain, the performance remains at the same level. However, when evaluated
with a history leval < ltrain, the performance cannot be guaranteed, as for some cases a
shorter evaluation history length will cause dramatic decrease in performance, e.g. LSTM-
TD3(3) on POMDP-RN (the blue line in the 4th panel of Fig. B.5), while for others a
shorter evaluation history length can still achieve similar performance, e.g. LSTM-TD(5)
on POMDP-RN and on POMDP-RSM (the red line in the 4th and 5th panels of Fig.
B.5). Based on this observation, it seems the performance can be generalized to a longer
evaluation history length rather than a shorter one. It is worth to note that the longest
training history length investigate here is only 5, so more valuable insights may be found
with more results with longer training history length.

The results that when evaluating with history length longer than 0, the performance
does not change (the cyan lines in Fig. B.5) of LSTM-TD3(0), are very interesting, because
in the training phase LSTM-TD3(0) takes zero-valued dummy observation and action as
history as defined in Eq. 7.1 and this dummy history cannot provide any useful information
about how to extracting memory that is useful to current task. Therefore, when replacing
this dummy history with real history in the replay buffer, the extracted memory can
be anything and will disturb the decision making, which makes us to expect that when

208

evaluating the learned policy with history length longer than 0, the performance will be
decreased. However, the results is surprisingly remained at the same level as that for LSTM-
TD3(0). This reminds us that LSTM-TD3(0) may have learned a policy that intentionally
ignores the history. To validate this conjecture, we plotted the average extracted memory
of the actor in Fig. B.6c. As shown in Fig. B.6c, the average extracted memory of the actor
of LSTM-TD3(0) initially starts with a non-zero value, but after a few thousands steps its
value remains at a value around 0.0034±0.0024, which is very close to 0, whereas for other
LSTM-TD3s with longer history length the average extracted memories are relatively far
away from 0 and have relatively large standard deviation. And this observation is consistent
for both MDP and POMDPS. Even though we cannot claim the 0 in the extracted memory
can be interpreted as neglect of past history, but at least we can say the history is uniformly
mapped to a roughly fixed value rather than a random value for each history. In this
way, even replacing the zero-value dummy history with a real history of experiences, the
performance will not bad than that for a dummy history.

B.2.5 A Glance of The Relationship Among the Return, the Pre-
dicted Q-value, and the Extracted Memory of the Actor-
Critic

The proposed LSTM-TD3 has been experimentally proved to be useful according to the
results presented in Section B.2.1, but the understanding of the LSTM-TD3, especially the
interpretation of the extracted memory, is still a big challenge. In Fig. B.6, we presented
the average test return, the average predicted Q-value, the average extracted memory of
actor and critic to have a glance of the relationship among them.

By comparing Fig. B.6a and B.6b, we found that the average test return and the average
predicted Q-value match approximately perfect, which means there is no overestimation
problem as studied in [274, 89, 180] and is desirable.

Our special interest is in the relationship between the test return and the extracted
memory of the actor-critic. It is worth to note that both the actor and the critic have a
memory component and there is no sharing of the memory component, which means they
may learn different coding of the memory that is helpful for learning a Q-value function and
a policy, respectively. As shown in Fig. B.6c and B.6d, no matter if we comparing these
plots horizontally or vertically, there is no consistent trend can be found. Horizontally,
for both the actor and the critic, the average extracted memories for different versions,
i.e. the MDP and the various POMDPs, of the task are showing different trends, where
an exception is the extracted memory of the actor of LSTM-TD3(0) as discussed in the

209

previous section B.2.4. Vertically, for different versions of the task, the extracted memories
of the actor and the critic show different trends too. Especially, the average extracted
memory of the critic of the LSTM-TD3(0) is not similar with that of the actor whose
value is consistently close to 0. Contrarily, the average extracted memory of the critic of
LSTM-TD3(0) is even further from 0 than that of LSTM-TD3(5). This may indicate the
different roles of the memory component playing in the actor and the critic. Again, the
interpretation of the extracted memory is not so straight-forward, and special constraints
may be forced to improve the interpretability of the memory component, which is out of
the scope of this paper and will be left for the future study.

B.2.6 Supplementary results for the Ablation Study

Fig. B.7 shows the learning curves of various ablated LSTM-TD3 by removing differ-
ent components, namely (1) using double critics (DC), (2) using target policy smoothing
(TPS), (3) having current feature extraction (CFE) component, and (4) including past
actions (PA) in the history. Table B.3 reports the maximum average return of the investi-
gated ablated algorithms.

210

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

HopperPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

Walker2DPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

500

1000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDO-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK
pflk = 0.2

0.0 0.5 1.0
Step 1e6

POMDP-RN
rn = 0.1

0.0 0.5 1.0
Step 1e6

POMDP-RSM
prsm = 0.1

InvertedPendulumPyBulletEnv-v0

Figure B.4: Learning curves for PyBulletGym tasks, where to ease the comparison only
average values are plotted. In the legend, the value in the bracket of LSTM-TD3 indicate
the length of the history, e.g. LSTM-TD3(5) uses the history length 5.

211

Table B.2: Maximum Average Return over 10 evaluation episodes based on 4 different
random seeds. Maximum value of evaluated algorithms for each task is bolded, and ±
indicates a single standard deviation. LSTM-TD3 (5) corresponds to the LSTM-TD3 with
the history length l = 5.

Task Algorithms

Name Version DDPG TD3 SAC TD3-OW LSTM-TD3 (5)

H
a
lf
C
h
ee

MDP 487.6± 6.1 1311.9 ± 49.7 663.5± 30.8 1265.5± 8.9 1223.0± 582.3
POMDP-RV 508.4± 23.9 1151.7± 74.9 631.5± 57.1 1161.3 ± 17.2 918.4± 44.0

POMDP-FLK 84.8± 20.4 82.4± 45.7 117.0± 42.2 1559.61 ± 559.9 848.1± 60.2
POMDP-RN 268.7± 70.2 501.9± 47.5 328.4± 62.1 703.9± 21.7 771.6 ± 18.2

POMDP-RSM 283.7± 27.0 538.9± 32.2 587.4± 44.3 606.9± 13.4 954.0 ± 362.9

A
n
t

MDP 1210.8± 226.1 2433.5± 288.5 980.8± 96.3 2289.5± 154.8 2574.9 ± 79.0
POMDP-RV 683.5± 101.4 1765.6± 2.2 800.4± 4.8 1265.3± 65.2 1932.7 ± 199.6

POMDP-FLK 449.0± 93.3 654.4± 1.6 529.7± 23.7 1390.5± 736.6 2036.7 ± 73.5
POMDP-RN 449.6± 18.5 1165.8± 59.0 620.8± 10.0 1520.1± 8.4 1966.1 ± 171.4

POMDP-RSM 465.2± 51.0 763.7± 103.3 659.1± 3.1 1230.4± 124.0 1324.9 ± 313.6

W
a
lk
er
2
D

MDP 835.0± 102.2 1783.1± 111.6 930.1± 53.2 1941.3± 128.5 1970.5 ± 38.5
POMDP-RV 716.6± 224.5 1477.9± 164.3 921.9± 20.8 1220.9± 53.8 1479.9 ± 283.2

POMDP-FLK 142.4± 29.6 181.9± 98.7 217.2± 90.6 1238.6± 385.4 1264.9 ± 338.5
POMDP-RN 197.2± 96.2 295.8± 44.7 278.9± 44.5 648.3± 129.5 984.7 ± 267.7

POMDP-RSM 283.6± 31.0 519.4± 17.5 630.5± 20.8 633.2± 23.2 841.2 ± 91.6

H
o
p
p
er

MDP 1699.6± 80.2 2201.3± 180.4 2424.5± 85.4 2210.1± 286.4 2465.0 ± 158.9
POMDP-RV 520.6± 105.3 926.0± 219.6 1145.8± 162.1 2212.1± 5.5 2233.6 ± 176.6

POMDP-FLK 259.5± 63.9 401.1± 39.8 243.2± 161.3 1353.0± 467.8 2264.6 ± 72.3
POMDP-RN 400.8± 62.8 644.2± 46.5 782.0± 65.2 962.0± 10.5 1635.8 ± 180.7

POMDP-RSM 596.1± 57.1 873.2± 7.9 892.3± 2.5 1193.7± 193.3 1349.1 ± 405.7

In
v
P
en

MDP 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0
POMDP-RV 912.5± 13.5 944.1 ± 41.6 891.3± 108.7 876.3± 123.7 752.6± 428.5

POMDP-FLK 147.1± 120.1 158.1± 115.5 121.1± 23.0 1000.0 ± 0.0 1000.0 ± 0.0
POMDP-RN 422.5± 18.8 342.8± 46.8 289.8± 19.3 1000.0 ± 0.0 752.6± 428.5

POMDP-RSM 624.9± 4.0 381.5± 180.1 445.0± 101.5 1000.0 ± 0.0 1000.0 ± 0.0

In
v
D
o
u
P
en

MDP 4746.3± 4607.1 7054.3± 2304.5 9357.3± 0.3 9358.6± 0.3 9359.77 ± 0.1
POMDP-RV 750.6± 130.4 953.6± 92.0 2027.6± 508.6 7998.1± 653.7 9358.9 ± 0.3

POMDP-FLK 274.2± 62.8 382.6± 105.4 404.9± 11.8 9358.6 ± 0.5 9358.4± 1.1
POMDP-RN 506.5± 159.3 470.4± 330.3 662.7± 34.7 2005.3 ± 13.4 1952.7± 503.4

POMDP-RSM 881.7± 364.4 829.5± 96.1 1084.9± 103.6 9304.4 ± 54.6 9156.1± 348.6

For POMDP-FLK, pflk = 0.2. For POMDP-RN, σrn=0.1. For POMDP-RSM, prsm = 0.1.

212

Figure B.5: Evaluation with History Length Different From that Used When Training,
where in each panel the title indicates the version of the task, the x-axis corresponds
to the history length used during evaluation, each line corresponds to the policy trained
with a specific history length, and the marker indicates the point where the training and
evaluation history length are the same.

213

0 1
Step 1e6

0

2000

Av
er

ag
e

Re
tu

rn

MDP

0 1
Step 1e6

POMDP-RV

0 1
Step 1e6

POMDP-FLK

0 1
Step 1e6

POMDP-RN

0 1
Step 1e6

POMDP-RSM

(a) Average Test Return

0 1
Step 1e6

0

100

200

Av
er

ag
e

Q
Va

lu
e MDP

0 1
Step 1e6

POMDP-RV

0 1
Step 1e6

POMDP-FLK

0 1
Step 1e6

POMDP-RN

0 1
Step 1e6

POMDP-RSM

(b) Average Q Value

0 1
Step 1e6

0.025

0.000

0.025

Av
er

ag
e

Ex
tra

ct
ed

M

em
or

y

MDP

0 1
Step 1e6

POMDP-RV

0 1
Step 1e6

POMDP-FLK

0 1
Step 1e6

POMDP-RN

0 1
Step 1e6

POMDP-RSM

(c) Average Extracted Memory of Actor

0 1
Step 1e6

0.050

0.025

0.000

Av
er

ag
e

Ex
tra

ct
ed

M

em
or

y

MDP

0 1
Step 1e6

POMDP-RV

0 1
Step 1e6

POMDP-FLK

0 1
Step 1e6

POMDP-RN

0 1
Step 1e6

POMDP-RSM

(d) Average Extracted Memory of Critic

Figure B.6: Relationship Among the Return, Predicted Q-value, Extracted Memory of
Actor-Critic, where (a), (b), (c), and (d) shows the average test return, the average pre-
dicted Q-value, the average extracted memory of actor, and the average extracted memory
of critic. The average extracted memory of actor and critic is an average over all output
neurons of the memory component.

214

0.0 0.5 1.0
Step 1e6

0

1000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDP-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK

0.0 0.5 1.0
Step 1e6

POMDP-RN

0.0 0.5 1.0
Step 1e6

POMDP-RSM
HalfCheetahPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDP-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK

0.0 0.5 1.0
Step 1e6

POMDP-RN

0.0 0.5 1.0
Step 1e6

POMDP-RSM
HopperPyBulletEnv-v0

0.0 0.5 1.0
Step 1e6

0

1000

2000

Av
er

ag
e

Re
tu

rn

MDP

0.0 0.5 1.0
Step 1e6

POMDP-RV

0.0 0.5 1.0
Step 1e6

POMDP-FLK

0.0 0.5 1.0
Step 1e6

POMDP-RN

0.0 0.5 1.0
Step 1e6

POMDP-RSM
Walker2DPyBulletEnv-v0

Figure B.7: Learning curves of ablation study, where to ease the comparison only average
values are plotted. In the legend, Full, Full−CFE, Full−PA, Full−DC, Full−TPS, and
Full−DC−TPS correspond to LSTM-TD3 with full components, removing current feature
extraction, excluding past action, not using double critics, not using target policy smooth-
ing, and simultaneously not using double critics and target policy smoothing.

215

Table B.3: Maximum Average Return for Ablation Study. Maximum value of evaluated
algorithms for each task is bolded, and ± indicates a single standard deviation.

Task
Algorithms

LSTM-
TD3

Full−CFE Full−PA Full−DC Full−TPS
Full−DC−

TPS

H
a
lf
C
h
ee

M 1223.0 1182.2± 522.0 1469.6 ± 637.5 569.1± 78.5 920.6± 48.8 517.4± 102.0
P1 918.4 680.6± 129.9 871.0± 43.6 589.5± 73.8 945.6 ± 187.5 552.0± 1.4
P2 848.1 844.7± 211.3 946.9 ± 242.1 836.3± 346.7 809.9± 42.7 690.8± 0.0
P3 771.6 641.5± 40.2 742.9± 79.2 1222.2 ± 313.4 808.3± 468.1 731.1± 330.9
P4 954.0 457.0± 99.1 784.0± 39.7 958.1 ± 229.1 693.9± 79.0 606.3± 63.0

A
n
t

M 2574.9 1510.8± 421.4 2421.0± 305.4 2121.1± 334.6 2658.6 ± 1537.1 1855.8± 494.2
P1 1932.7 1133.2± 421.6 1535.0± 358.1 1711.9± 331.5 1814.3± 90.3 1068.6± 363.0
P2 2036.7 1817.2± 323.0 1578.1± 466.2 2023.9± 348.0 2083.8± 159.9 2145.1 ± 107.2
P3 1966.1 1705.7± 105.8 1287.4± 366.0 1588.0± 548.0 1885.8± 92.7 879.3± 446.9
P4 1324.9 1737.4± 310.3 1817.6± 66.4 1728.8± 494.0 1730.0± 474.4 1831.7 ± 33.9

W
a
lk
er
2
D

M 1970.5 1230.9± 329.2 1719.6± 431.1 1526.3± 96.5 2011.7 ± 61.6 1381.9± 801.0
P1 1479.9 520.2± 85.4 1100.9± 243.6 1214.2± 313.7 1871.7 ± 138.3 1349.3± 101.1
P2 1264.9 1132.6± 256.2 1027.3± 214.5 1017.1± 122.6 1320.2 ± 275.9 731.5± 160.0
P3 984.7 844.9± 282.2 803.5± 22.9 662.7± 155.2 1240.7 ± 228.2 576.6± 403.8
P4 841.2 762.9± 53.0 896.1± 46.8 1070.8 ± 226.4 820.8± 45.4 1010.2± 324.9

H
o
p
p
er

M 2465.0 1517.0± 673.8 2178.2± 200.7 2504.7± 180.5 2613.1 ± 81.5 2015.0± 477.6
P1 2233.6 1187.0± 749.1 2188.9± 240.2 1775.5± 471.6 2303.9± 156.6 1852.9± 327.4
P2 2264.6 1459.0± 513.2 2055.9± 48.1 2087.9± 194.0 2117.9± 103.1 2083.3± 168.7
P3 1635.8 1143.9± 298.7 1279.7± 444.7 1337.7± 262.1 1450.7± 357.3 1524.0± 516.0
P4 1349.1 1343.1± 411.3 1008.6± 3.4 1634.3± 338.6 1769.5± 210.6 1938.2 ± 0.0

In
v
P
en

M 1000.0 874.2± 217.9 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0
P1 752.6 804.4± 246.2 752.6± 428.6 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0
P2 1000.0 1000.0± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 577.4 1000.0 ± 0.0
P3 752.6 752.7± 428.3 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 986.5± 19.0
P4 1000.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0 1000.0 ± 0.0

In
v
D
o
u
P
en

M 9359.73 8677.9± 749.7 9359.0± 5403.4 9343.9± 5394.7 9358.8± 9358.8 9352.5± 5399.7
P1 9358.9 9358.0± 1.0 5568.0± 4941.9 4748.1± 6616.0 9357.7± 5402.7 8974.0± 377.3
P2 9358.4 9358.0± 1.1 9357.4± 1.9 9356.2± 1.2 9357.1± 5402.3 9359.4 ± 0.0
P3 1952.7 1534.0± 462.1 1308.5± 1220.5 2453.9± 1576.2 2360.5± 1403.6 2544.9 ± 3599.0
P4 9156.1 9139.5± 377.1 9358.7 ± 0.5 9156.9± 333.3 9357.7± 0.8 9355.0± 3.8

M: MDP, P1: POMDP-RV, P2: POMDP-FLK, P3: POMDP-RN, P4: POMDP-RSM.
The variance of the performance of LSTM-TD3 can be found in Table B.2.
For POMDP-FLK, pflk = 0.2. For POMDP-RN, σrn=0.1. For POMDP-RSM, prsm = 0.1.
CFE: Current Feature Extraction; PA: Past Action; DC: Double Critics; TPS: Target Policy Smooth

216

Appendix C

Appendix for Chapter 8

C.1 The Potential Effect of Multi-step Bootstrapping

on Passing Temporal Information

Table C.1 summarises the meaning of the key components of RL under the original and
new interpretation of the reward function.

Table C.1: Interpretations of Reward Function

Original Interpretation New Interpretation

R(o, a, o′)
the reward of taking action a in

observation o which leading to a new
observation o′

the 1 dimensional state-transition
abstraction of taking action a in
observation o leading to a new
observationo′ (a state-transition

abstraction feature)

Qπ(o, a)

the expectation of the accumulated
discounted reward when taking action

a in observation o and following
policy π thereafter

the expectation of the accumulated
discounted state-transition abstraction
when taking action a in observation o

and following policy π thereafter

V π(o)
the expectation of the accumulated

discounted reward when in observation
o and following policy π thereafter

the expectation of the accumulated
discounted state-transition abstraction
when in observation o and following

policy π thereafter

π(a|o) policy π that is optimized to maximize
the accumulated discounted reward

policy π that is optimized to maximize
the accumulated discounted data

representation

217

C.2 Algorithms Implementation

Table C.2 details the hyperparameters used in this work, where − indicates the parameter
does not apply to the corresponding algorithm. For the actor and critic neural network
structure of LSTM-TD3, the first row corresponds to the structure of the memory compo-
nent, the second row corresponds to the structure of the current feature extraction, and
the third row corresponds to the structure of perception integration after combining the
extracted memory and the extracted current feature.

218

Table C.2: Hyperparameters for Algorithms

Hyperparameter
Algorithms

PPO TD3 MTD3 SAC MSAC LSTM-TD3
discount factor: γ 0.99
λ-return: λ 0.97 -
clip ratio: ϵ 0.2 -
batch size: Nbatch - 100
replay buffer size:
|D| 4000 106

random start step:
Nstart step

- 10000

update after
Nupdate after

- 1000

target NN update
rate τ

- 0.005

optimizer Adam [146]
actor learning rate
lractor

3 ∗ 10−4 10−3

critic learning rate
lrcritic

10−3 10−3

actor NN structure: [256, 256]
[128] + [128]

[128]
[128, 128]

critic NN structure: [256, 256]
[128] + [128]

[128]
[128, 128]

actor exploration
noise σact

- 0.1 - - 0.1

target actor noise
σtarg act

- 0.2 0.2 - - 0.2

target actor noise clip
boundary ctarg act

- 0.5 0.5 - - 0.5

policy update delay - 2 2 - - 2
entropy regulation
coefficient α

- - - 0.2 0.2 -

history length l - - - - - {0, 1, 3, 5}
bootstrapping step size n - - {2, 3, 4, 5} - {2, 3, 4, 5} -

219

Appendix D

Appendix for Chapter 9

D.1 Pseudo-code For Training Preference-based Re-

ward Function

Alg. 5 shows the pseudo-code for training the preference-based reward function.

D.2 Experiment Settings for Preference Learning

D.2.1 Trajectory Generation

A trajectory is a record of the interaction between an agent and its environment either
from the start to the end, i.e., terminal, or to the maximum trajectory length. A trajectory
is represented by a sequence of the interaction experiences of an agent and a sequence of
images within a video recording that will be used for preference labeling.

Formally, a trajectory l = (le, lv) is a tuple of experience trajectory le and video trajec-
tory lv collected during the interaction of an agent with its environment. The experience
trajectory le = ⟨(ot−1, at−1, rt−1, ot, dt−1)⟩Tt=1 is represented by a sequence of experiences in

discrete time t starting from t = 1 to t = T , while the video trajectory lv = ⟨it̂⟩
t̂oT
t̂=t̂o0

is a se-

quence of images within a video recorded in real-world time t̂ starting from t̂o0 to t̂oT , where
the real-world time of an experience (ot−1, at−1, rt−1, ot, dt−1) is

(
t̂ot−1 , t̂at−1 , t̂rt−1 , t̂ot , t̂dt−1

)
.

220

ALGORITHM 5: Training Preference-based Reward Function

Input: PL-Rew parameters θpbr, training dataset Dtrain
pl , test dataset Dtest

pl , training epoch
Nepoch = 5, training batch size Nbatch = 64

Output: θpbr
1 Initialize early stopping patience espatience←0, early stopping score esscore ← −∞, maximum

early stopping patience max patience← 2
2 for epoch i← 1 to Nepoch do

/* Training */

3 for batch i← 1 to Nbatch do
4 calculate loss Ltrain on the batch according to Eq. 9.3

5 update Rpb using gradient descent θpbr ← θpbr − α▽θpbrLtrain
6 end

/* Validating and Early Stopping */

7 calculate loss Lval on test dataset
8 if epoch i == 1 then
9 esscore ← −Lval

10 else
11 if esscore < −Lval then
12 esscore ← −Lval
13 else
14 espatience ← espatience + 1
15 if espatience ≥ max patience then
16 early stop training
17 end

18 end

19 end

20 end

A pre-training trajectory is generated by a policy before an agent starts interacting
with the environment during the pre-training stage. The pre-training trajectory is used to
collect human preferences and initialize the reward function and avoid the agent learning
on a random reward function. Once the agent starts interacting with the environment, the
trajectories collected thereafter are called online trajectories.

221

D.2.2 Segment Generation

Formally, given a trajectory l, a segment σ = (σe, σv) is a tuple of experience segment σe
and video segment σv from l. Inside the experience segment
σe = ⟨(ot+k−1, at+k−1, rt+k−1, ot+k, dt+k−1)⟩Kk=1 are the K consecutive experiences starting
from time step t to t+K−1, where t ∈ [1, T −K+1] and K ∈ [1, T]. Correspondingly, as-
sume the real-world time corresponding to the experience (ot+k−1, at+k−1, rt+k−1, ot+k, dt+k−1)

is
(
t̂ot+k−1

, t̂at+k−1
, t̂rt+k−1

, t̂ot+k , t̂dt+k−1

)
, then the video segment is defined as σv = ⟨it̂⟩

t̂ot+K
t̂=t̂ot

,

which is essentially a video clip starting from t̂ot to t̂ot+K in real-world time.

D.2.3 Segment Pair Sampling

A segment pair c = (σ0, σ1) is a tuple of two segments drawn from the segment pool Dσ,
which will be shown to a preference teacher to ask for a preference label. The simplest
way to generate a segment pair is to randomly sample two segments and pair them up, we
adopt this approach herein.

D.2.4 Preference Query Schedule

Periodically, a set of Nc segment pairs {cn}Ncn=1 will be shown to a user to ask for his/her
preference. We schedule Nc preference queries every F episodes of agent interaction.

D.2.5 Preference Labeling

Preference labeling is done by showing the video segments (σ0
v , σ

1
v) of a pair of segments

(σ0 = (σ0
e , σ

0
v), σ

1 = (σ1
e , σ

1
v)) to a preference teacher and asking them to rate “left is

better”, “right is better”, “equally engaging”, and “equally un-engaging”, through a web-
based interface. The preference teacher’s response will be interpreted into a preference
label as

y
.
=

0, if left is better,
1, if right is better,
−1, if equally engaging,
−1, if equally un-engaging,

(D.1)

where y = −1 indicates two segments are equally engaging or un-engaging, which will not
be used when training preference-based reward function. Once a preference data (σ0 =

222

(σ0
e , σ

0
v), σ

1 = (σ1
e , σ

1
v), y) is collected, it will be saved into either the training preference

dataset Dtrain
pl with the probability ppl = 0.9 or the test preference dataset Dtest

pl with the
probability 1− ppl.

D.2.6 Web-based Interface for Human Preference Teaching

Figure D.1: Preference Query Page in Web-based Interface

We developed a web-based interface hosted on Google Cloud to collect preference labels.
Fig. D.2 depicts the deployment of the web-based interface. In the local computer where
the simulator is running, all data generated during the interaction between the agent and
the environment is stored in a local database including both the experience and video
trajectories. Every time the segments are generated, they will be uploaded to the cloud,
where the video segments are stored in cloud storage and experience segments are stored
in cloud database. The web-based interface will retrieve data from the cloud storage and
database and save user data to the cloud database, each time a user participated in a
session of the study. The users could access the interface remotely through any network
accessible device.

223

Figure D.2: Web-based Interface Deployment Diagram

D.3 Experiment Procedures for Different Conditions

To get a better understand of it and steadily advance towards generating engaging behavior
from human preference, we designed various experiment conditions with gradual difficul-
ties. This section will summarize these different experiment conditions to make it easy to
differentiate the components and challenges involved in these experiment conditions, un-
derstand the experiment results, and get insights from the experiment. In summary, we will
first experiment with hand-crafted reward, followed by experiment with preference-based
reward that is induced from simulated preference label, constrained human preference label,
unconstrained expert preference label, respectively.

D.3.1 Experiment With Hand-crafted Reward

When experiment with hand-crafted reward (HC-Rew), the reward function defined in Eq.
9.7 is used to generate reward signal. In this work, to ease the validation of different RL
algorithms and the integration of the basic RL components with the preference learning re-
lated components, we unified the interaction interfaces, called rl agent.interact() and LAS-
Intl-Env.step(), between the internal environment LAS-Intl-Env and RL agent rl agent as
illustrated in Alg. 6. Specifically, rl agent.interact() receives observation and reward signal
from LAS-Intl-Env and generates action based on that, and LAS-Intl-Env.step() receives
the action from the agent and executes it within the simulator then returns the next obser-
vation and reward signal. Alg. 6 shows the pseudo-code of the basic interaction paradigm

224

ALGORITHM 6: Interact with LAS-Intl-Env with Hand-crafted Reward Function
Input: LAS internal environment configuration, agent configuration, total experiment

epochs Nrl episode, maximum episode length max ep len = 100
1 Initialize LAS-Intl-Env, Learning Agent rl agent, total experiment steps

T = Nrl episode ∗max ep len
2 new obs, info ← LAS-Intl-Env.reset()
3 rew, done, terminal ← None, None, None
/* Interact with environment */

4 for t← 1 to T do
5 act ← rl agent.interact(new obs, rew, done, info, terminal)
6 obs, rew, done, info = LAS-Intl-Env.step(act)
7 terminal ← done or reach max ep len
8 if terminal then

/* Save the last experience */

9 ← rl agent.interact(new obs, rew, done, info, terminal)

10 end

11 end

in RL and will be expanded later to incorporate Preference Learning (PL). The done is
always false in this work because there is no terminal state defined in LAS-Intl-Env, and
info saves all necessary debugging information, e.g. when we test different reward scale,
info can be used to save the original reward signal before scaling.

D.3.2 Experiment With Preference-based Reward

When experiment with preference-based reward (PB-Rew), the reward function is induced
from preference labels which are either generated from simulated preference teachers or
provided by real human users. Alg. 7 provides the pseudo-code of a RL agent interacting
with the environment with PB-Rew, where the key differences from Alg. 6 are highlighted
in light blue. Specifically, when experiment with PB-Rew, there additionally involves
(1) collecting pretraining preference labels (Alg. 8/Alg. 11), (2) pretraining PB-Rew
before a RL agent interacting with the environment, (3) online preference labels collection
(Alg. 9/Alg. 12) and (4) online PB-Rew training which happen periodically during the
interaction between RL agent and the environment.

Alg. 8 and Alg. 11 are the pseudo-codes on collecting pretraining preference labels,
while Alg. 9 and Alg. 12 are the pseudo-codes on collecting online preference labels for
simulated and human preference teachers, respectively. These algorithms all need Alg. 10

225

ALGORITHM 7: Interact with LAS-Intl-Env with Preference-based Reward Function
Input: LAS Internal environment configuration, preference collector configuration,

PB-reward component configuration, learning agent configuration, PB-reward train
frequency rew train freq

1 Initialize LAS-Intl-Env, RL Agent rl agent, PB-Reward Rpb, Pref Collector pref , total
interaction steps T = Nrl episode ∗max ep len

2 /* Pre-train PB-Reward */

3 pref .collect pretraining preferences(· · ·) (Alg. 8/Alg. 11)
4 Rpb ← train PB-Reward according to Alg. 5
5 update reward in environment LAS-Intl-Env.set reward component(Rpb)
6 /* Interact with environment */

7 new obs, info = LAS-Intl-Env.reset()
8 rew, done, terminal ← None
9 for t← 1 to T do

10 act ← rl agent.interact(new obs, rew, done, info, terminal)
11 obs, rew, done, info ← LAS-Intl-Env.step(act)
12 terminal ← done or reach max ep len
13 if terminal then
14 ← rl agent.interact(new obs, rew, done, info, terminal)
15 /* Collect online preference labels */

16 steps since last pref request← pref .collect online preferences(· · ·) (Alg. 9/Alg.
12)

17 /* Train reward component */

18 if steps since last rew train ≥ rew train freq then
19 Rpb ← train PB-Reward according to Alg. 5
20 update reward in environment LAS-Intl-Env.set reward component(Rpb)
21 steps since last rew train← 0

22 end

23 end
24 steps since last pref request← steps since last pref request+ 1
25 steps since last rew train← steps since last rew train+ 1

26 end

to generate segments from a trajectory. Pretraining preference labels are collected before
the agent interacting with its environment based on segments sampled from trajectories
generated from some policies, where in this work we use a random policy to roll out trajec-
tories for pretraining preference labels. After the PB-Rew is pre-trained, the agent starts
interacting with its environment whose reward signal is given by PB-Rew. Online prefer-

226

ALGORITHM 8: Collect Simulated Pretraining Preference Labels

Input: Pretrain preference label number Npp, pretrain agent policy πpp, irrational
probability pip, segment number per trajectory N l

σ

1 pretrain segment number Nps ← Npp × 2
/* Generate pretrain segments */

2 for i← 1 to
⌈
Nps
N l
σ

⌉
do

3 roll out trajectory l by running πpp
4 {σ} ← generate segments from trajectory l according to Alg. 10
5 add to segment buffer Dσ ← Dσ ∪ {σ}
6 end
/* Generate pretrain preference labels */

7 for i← 1 to Npp do
8 sample a segment pair (σ0, σ1)
9 generate preference label y′ according to Eq. 9.10 with irrational probability pip

/* Add pretrain preference labels to traning and test dataset */

10 if p ∼ U[0,1] <= ppl then

11 Dtrain
pl ← Dtrain

pl ∪ (σ0, σ1, y′)

12 else
13 Dtest

pl ← Dtest
pl ∪ (σ0, σ1, y′)

14 end

15 end

ence labels are collected periodically during this interaction based on segments generated
both in pretraining phase and online interaction phase.

Except the difference between pretraining and online preference collection, the proce-
dures for collecting preference labels from simulated and human preference teachers also
have slight difference which is mainly introduced by the web-based interface usage. The
difference is highlighted in light blue in Alg. 11 and Alg. 12. As will be detailed in sec-
tion D.4.4, the web-based interface is hosted on a cloud platform, so the data collected on
local computer and cloud needs to be synchronized. In addition, different from simulated
preference teacher who is always available, human preference teachers will only provide
their preferences when they are available and this cannot be predicted. Therefore, when a
preference request is scheduled, the whole learning system needs to wait until the requested
preference labels are provided by human preference teachers.

Table D.1 summaries all hyper-parameters related to preference learning that are men-
tioned in Alg. 7 - 12. For values in {}, we will test all of them in this work.

227

ALGORITHM 9: Collect Simulated Online Preference Labels
Input: trajectory l, segment pool Dσ, steps since last pref request,

online pref request freq, preference number per request Nc

Output: steps since last pref request
/* Generate online segments */

1 {σ} ← generate segments from trajectory l according to Alg. 10
2 add to segment buffer Dσ ← Dσ ∪ {σ}
/* Generate online preference labels */

3 if steps since last pref request ≥ online pref request freq then
4 for i← 1 to Nc do
5 randomly sample a segment pair (σ0, σ1) from segment buffer Dσ

6 generate preference label y′ according to Eq. 9.10 with irrational probability pip
/* Add pretrain preference labels to traning and test dataset */

7 if p ∼ U[0,1] <= ppl then

8 Dtrain
pl ← Dtrain

pl ∪ (σ0, σ1, y′)

9 else
10 Dtest

pl ← Dtest
pl ∪ (σ0, σ1, y′)

11 end

12 end
13 steps since last pref request← 0 // Reset step count

14 end

ALGORITHM 10: Segment Generation

Input: Trajectory l = (le, lv), segment length K, segment number N l
σ for the current

trajectory
Output: Segment set seg set

1 Initialize segment set seg set← ∅ of the given trajectory

2 for j ← 1 to N l
σ do

3 randomly select a start time step t ∈ [1, T −K + 1]

4 extract experience segment σe = ⟨(ot+k−1, at+k−1, rt+k−1, ot+k, dt+k−1)⟩Kk=1

5 extract video segment σv = ⟨it̂⟩
t̂ot+K
t̂=t̂ot

6 add segment to segment set seg set← seg set ∪ {σ = (σe, σv)}
7 end

228

ALGORITHM 11: Collect Human Pretraining Preference Labels

Input: Pretrain preference label number Npp, pretrain agent policy πpp, irrational
probability pip, segment number per trajectory N l

σ

1 pretrain segment number Nps ← Npp × 2
/* Generate pretrain segments */

2 for i← 1 to
⌈
Nps
N l
σ

⌉
do

3 roll out trajectory l by running πpp
4 {σ} ← generate segments from trajectory l according to Alg. 10
5 add to segment buffer Dσ ← Dσ ∪ {σ}
6 one way sync segment table local2cloud()

7 end
8 /* Collect pretrain preference labels */

9 while not collected pretraining preferences do
10 one way sync preference table cloud2local()
11 if Npp ≤

∣∣{(σ0, σ1, y)|(σ0, σ1, y) ∈ Dpl and y ̸= −1
}∣∣ then

12 collected pretraining preferences← True
13 else
14 sleep(5 minutes)
15 end

16 end

D.4 Experiment Implementation

In this section, we will introduce some implementation details which are not mentioned in
the proposed approach.

D.4.1 Simulation of LAS with las sim tkt

The simulation toolkit LAS Sim Tkt introduced in Section 4.2 is used in the simulation
experiments conducted in this chapter. However, in Section 4.2 only the high-level concepts
of LAS Sim Tkt is introduced. For the real experiments where many hyper-parameters
are investigated, it is necessary to run multiple simulation experiments simultaneously.
To achieve that and promote the reproducibility of the results reported in this chapter,
we implemented the concept of LAS Sim Tkt to support running on High Performance
Computing (HPC), which is available in https://github.com/LinghengMeng/las_sim_

tkt.

229

https://github.com/LinghengMeng/las_sim_tkt
https://github.com/LinghengMeng/las_sim_tkt

ALGORITHM 12: Collect Human Online Preference Labels
Input: trajectory l, segment pool Dσ, steps since last pref request,

online pref request freq, preference number per request Nc

/* Generate online segments */

1 {σ} ← generate segments from trajectory l according to Alg. 10
2 add to segment buffer Dσ ← Dσ ∪ {σ}
3 one way sync segment table local2cloud()
/* Collect online preference labels */

4 if steps since last pref request ≥ online pref request freq then
5 valid pref num before←

∣∣{(σ0, σ1, y)|(σ0, σ1, y) ∈ Dpl and y ̸= −1
}∣∣

6 while True do
7 sleep(5 minutes)
8 one way sync preference table cloud2local()
9 valid pref num after ←

∣∣{(σ0, σ1, y)|(σ0, σ1, y) ∈ Dpl and y ̸= −1
}∣∣

10 if valid pref num after − valid pref num before ≥ Nc then
11 steps since last pref request← 0 // Reset step count

12 break

13 end

14 end

15 end

D.4.2 Reward Function Choosing

In this thesis, the Preference-based Reward (PB-Rew) function Rpb is approximated by a
fully connected neural network with parameters θpbr and the hyper-parameters listed in
Table D.2.

D.4.3 RL Algorithms Implementation

The implementation of RL algorithms in this chapter are very similar to those investigated
in the previous chapters. Specifically, the neural network structures and hyper-parameters
of PPO, TD3, SAC are the same as the implementation in OpenAI Spinning Up (https:
//spinningup.openai.com). The LSTM-TD3(5) follows the implementation as that in
Chapter 7, where n in the bracket indicates the step size in multi-step bootstrapping.

230

https://spinningup.openai.com
https://spinningup.openai.com

Table D.1: Preference-Learning Related Hyper-parameters

Hyper-parameters Description Value

max ep len Maximum episode length 100

Npp Pretrain preference label number 20

N l
σ Segment number per trajectory 2

rew train freq Reward train frequency 1000

pip
Irrational probability of

simulated teacher
{0, 0.1, 0.3}

ppl
Probability a preference data is

added to tranining dataset
0.9

online pref request freq Online preference request frequency 1000

Nc Preference number per request 20

K Segment length {1.5s, 3s, 4.5s}
PB-Reward related hyper-parameters can be found in Table D.2.
pip is only for simulated preference teacher.

Table D.2: Hyper-parameters of Preference-based Reward Function

Hyper-parameter Value
Input (ot, at, ot+1)

Hidden Layers [64, 64]
Hidden Layer Activation ReLu
Output Layer Activation Tanh

Dropout Rate 0.5

D.4.4 Data Management

For this experiment, we need to save experience data, video data, and user data, which
makes simple text log file prohibitive. To enable data management, we employed relational
database to save experience and user data. In addition, we kept video segments separately
in Google Bucket Storage and only stored the link to the video segments in the database
tables. Another practical thinking is there is no need to store experience in cloud database,
since the cloud database is just for collecting preference based on video segment and all
learning related works are happened on local computer. Therefor, we maintained two

231

databases where one on local computer and another one on the cloud. The local and
cloud database are implemented by SQLite https://www.sqlite.org and PostgreSQL
https://www.postgresql.org, respectively. The tables in each database are shown in
Table D.3. Specifically, the experience table saves all experience data generated during the
interaction between an agent and its environment. segment table saves video segment data
where the experience segment is represented by the start and end experience id and the
video segment is represented by a URL link to the video segment stored on cloud bucket
storage. exp and seg match table matches a video segment and the experiences within the
start and end experience id corresponding to the video segment to ease data retrieving.
pref user table saves the user, i.e., the preference teacher, data. pref label table saves all
preference labels provided by the users. pref survey table saves all questionnaire related
data. Fig. D.3 depicts the relationship between these tables and the synchronization of the
tables between the local and cloud database. In particularly, segment table is synchronized
from local to cloud database, while pref user table, pref label table, and pref survey table
are synchronized from cloud to local database.

Table D.3: Tables in Local and Cloud Database

DB Tables Description
Local
DB

Cloud
DB

experience table all experiences ✓ ✗

segment table all generated segments ✓ ✓

exp and seg match table
the correspondence between
segments and experiences

✓ ✗

pref user table preference user data ✓ ✓

pref label table preference data ✓ ✓

pref survey table
questionnaire data of

preference user
✓ ✓

Note: ✓ or ✗ indicates a table is included or not included in a database.

232

https://www.sqlite.org
https://www.postgresql.org

Figure D.3: Database Schema and Synchronization Between Local and Cloud Database

D.5 Preliminary Experiment Results

The learning curves reported in this chapter are averaged over three random seeds and
smoothed by 1-D Gaussian filter (Gaussian kernel standard deviation σ = 5) for better
visual effect. The shaded area corresponds to the standard deviation over the three random
seeds.

233

D.5.1 Results on Hand-crafted Reward

The experiment with hand-crafted reward is to validate different design choices, such as
observation window size Tow and different DRL algorithms.

Effect of Observation Window Size

Fig. D.4 shows the learning curves on hand-crafted reward defined in Eq. 9.7 over 3 ran-
dom seeds (curves on hand-crafted reward with different random seeds are shown in Fig.
D.5), Table D.5 summaries the best performance on hand-crafted reward for each algo-
rithm within 20000 steps, and Table D.4 shows the observation space size corresponding
to different observation window sizes, where Tow indicates the size of observation window
used to construct observation as introduced in section 9.3.1. We tested different obser-
vation window sizes to confirm there is no sever partial observability problem based on
two intuitions that: (1) if there is sever partial observability problem in Tow = 1, then
increasing the observation window size will get better results because larger observation
window size is able to incorporate temporal information within the observation space; and
(2) if there is sever partial observability problem, we would be able to observe significant
performance difference between TD3 and LSTM-TD3, as LSTM-TD3 is proposed to deal
with POMDP. Comparing the three panels in Fig. D.4, there is not much performance
difference among different observation window sizes, neither significant difference between
TD3 and LSTM-TD3 for Tow = 1s and Tow = 2s. Even though LSTM-TD3 experiences
performance decrease, this is more likely related to the large observation space size shown
in Table D.4. Therefore, we empirically conclude that for Tow = 1 there is no sever partial
observability problem.

Table D.4: Observation Space Size for Different Tow

Observation Window Size Tow = 1s Tow = 2s Tow = 5s

Observation Space Size 724 1448 3620

Observation reading frequency fo = 1.

By focusing on the first panel in Fig. D.4, we can see that TD3 and LSTM-TD3 learn
faster than PPO at the beginning, but achieve worse final performance. The first part
of this observation is not surprising, but the second part is very uncommon compared
to the results reported on MuJoCo tasks [89] where TD3 outperforms PPO significantly

234

Figure D.4: Learning Curves on Hand-crafted Reward

Figure D.5: Learning Curves on Hand-crafted Reward with Different Random Seeds

Table D.5: Best Learning Performance on Hand-crafted Reward

Obs Window Size PPO TD3 LSTM-TD3 SAC
Tow = 1s 44.77 34.07 34.83 1.54
Tow = 2s 43.44 43.43 32.70 3.22
Tow = 5s 40.99 32.33 32.33 8.40

in terms of final performance. Counter-intuitively, SAC performs worst among the four

235

Figure D.6: Average Value Prediction

algorithms. This is very unexpected because on MuJoCo takes SAC is always the best or
comparable to TD3 as reported in [106]. To exclude the implementation bugs, we tested
our implementation of the algorithms on MuJoCo tasks, and the results are similar to the
results reported in [89, 106]. To provide more insights into this, Fig. D.6 shows the average
value predictions correspond to the learning curves in Fig. D.4, where the PPO’s the state-
value and others’ Q-value functions are plotted. It can be seen from Fig. D.4 and Fig.
D.6 that SAC experienced sever overestimation problem which is indicated by the huge
difference between the learning performance and Q-value prediction of SAC. Even though
SAC employs the same method (Eq. 3.18) with TD3 (Eq. 3.15) to overcome overestimation
by taking the minimum of two Q-value estimators, SAC still suffers from the problem while
TD3 does not. Therefore, we suspect these counter-intuitive observations are task specific.

Effect of Reward Scale

Based on the counter-intuitive observation that TD3 and SAC are worse than PPO, we
investigated if reward signal scale is the reason of that. Particularly, in the standard
MuJoCo benchmark, most tasks have maximum immediate reward that is greater than 1,
while in the LAS the hand-crafted reward value range is in [0,1]. Formally, assume the
original reward value range is r ∈ [min,max] and we want to rescale the reward to range
r′ ∈ [min′,max′], then the new reward r′ can be rescaled by

r′[min′,max′] =
r[min,max] −min
max−min

(max′ −min′) +min′ (D.2)

236

where in this work r ∈ [0, 1] which is rescaled to r′[0,2], r
′
[−1,1], r

′
[−2,2], r

′
[0,10], r

′
[0,100].

Fig. D.7 shows the learning curves averaged over 3 random seeds1 on hand-crafted
reward with different reward scales and fixed observation window size Tow = 1, where
r′[0,1] corresponds to the original reward, and the agent is trained with the rescaled reward
but measured in the original reward scale. Table D.6 summaries the best performance
within 20000 steps among different random seeds for different reward scales and observation
window sizes, where the best among each row is highlight in bold. From the figure and the
table, the performance of PPO on different reward scales is very similar and consistent.
Even though TD3 and LSTM-TD3 have slight changes on most reward scales, the changes
are not significant. The most interesting observation is on SAC which completely fails the
task with r′[0,1], r

′
[0,2], r

′
[−1,1], r

′
[−2,2] but has significant improvement with r′[0,10] and r′[0,100],

even though the learning is unstable.

Table D.6: Best Learning Performance on Hand-crafted Reward with Different Reward
Scale and Observation Window Sizes

Alg. Obs Window r′[0,1] r′[0,2] r′[−1,1] r′[−2,2] r′[0,10] r′[0,100]

PPO
Tow = 1s 44.77 42.59 43.00 42.29 45.15 43.70
Tow = 2s 43.44 41.57 44.07 43.92 44.69 41.79
Tow = 5s 40.99 40.30 40.71 40.63 39.91 40.62

TD3
Tow = 1s 31.62 31.50 42.58 34.71 40.82 43.32
Tow = 2s 40.41 30.20 39.76 39.05 37.65 38.85
Tow = 5s 33.88 36.19 35.00 34.70 37.12 14.65

LSTM-TD3
Tow = 1s 31.50 38.79 43.35 41.75 40.05 41.44
Tow = 2s 40.80 39.45 38.56 38.76 41.03 30.95
Tow = 5s 35.21 22.56 4.53 17.53 37.65 35.95

SAC
Tow = 1s 2.45 2.35 2.33 2.88 32.35 42.93
Tow = 2s 3.97 3.39 2.62 2.91 34.32 39.72
Tow = 5s 2.94 6.49 2.97 5.19 33.50 41.64

D.5.2 Results on Simulated Preference

The simulated human preference is generated according to Eq. 9.8 - 9.10 with different
segment lengths and irrational probabilities. Specifically, we investigated irrational prob-
ability pip = 0,pip = 0.1,pip = 0.3, and segment length l = 1.5s, l = 3s, and l = 4.5s.

1the learning curves on hand-crafted reward with different reward scales and random seeds are shown
in Fig. D.8.

237

Figure D.7: Learning Curves on Hand-crafted Reward with Different Reward Scales

Fig. D.9 shows the learning curves of various RL algorithms on preference-based re-
ward (PB-Rew) with different irrational probabilities and segment lengths, where the per-
formance is measured in hand-crafted reward (HC-Rew) and the fist column is the base-
line that RL algorithms both learn and measured in hand-crafted reward. Because the
preference-based reward signal that is used by RL agent is induced from simulated pref-
erence and is different among different runs, it is more fair to compare the performance
measured in hand-crafted reward which is fixed and direct measurement of how good the
learned PB-Rew is in terms of maximizing the HC-Rew. From Fig. D.9, we can see that
overall the performance of each algorithm trained on PB-Rew with different irrational
probabilities and segment lengths is comparative to their performance on HC-Rew, and
for some cases the performance of PB-Rew is even better than that of HC-Rew, e.g., TD3
on pip = 0.1 and segment length 1.5s gets better performance than it on HC-Rew. These
observations indicate a descent PB-Rew is derived from the simulated preference labels. It

238

Figure D.8: Learning Curves on Hand-crafted Reward with Different Reward Scales and
Random Seeds

is particularly interesting that SAC on PB-Rew gets better performance on all cases that
it on HC-Rew, even though SAC is still worse than other algorithms. Note that the irra-
tional probability indicates the probability that a simulated preference teacher will make
irrational, i.e., random, choice rather than the indicating the error rate of preference label-
ing. Fig. D.10 illustrates the true error rate of the collected preference labels of different
irrational probabilities, where the box extends from the lower to upper quartile values of
the data, with a line at the median, and the whiskers extend from the box to show the
range of the data. From Fig. D.10, we can see that the true error rate of preference label
is lower than the corresponding irrational probability.

Table D.7 summaries best performance of different algorithms with different irrational
probabilities and segment lengths measured in HC-Rew among different random seeds. In

239

Figure D.9: Learning Curves Measured in HC-Rew on Preference-based Reward

Table D.7, if the best performance of a RL agent on PB-Rew is worse than the its baseline,
i.e., its performance on HC-Rew, it will be in gray. The bold corresponds to the best
performance of a RL agent among different segment lengths for each irrational probabil-
ity. From the table, we can see that except PPO, other algorithms all get better best
performance on PB-Rew than their baseline on HC-Rew, which indicates the effectiveness
of PB-Rew induced from preference labels. The results in Table D.7 and Fig. D.9 also
show the performance is not sensitive to irrational probability, and it seems that for higher
irrational probability longer segment length is better than shorter segment length.

Fig. D.11 shows the learning curves of RL agents trained on PB-Rew that are also
measured in PB-Rew. From the perspective of PB-Rew, SAC seems making pretty good

240

Figure D.10: True Error Rate of Preference Label

Table D.7: Best Performance Measured in Hand-crafted Reward for Simulated Preference
Teacher with Different Irrationality and Segment Lengths

Alg. BL
pip = 0 pip = 0.1 pip = 0.3

1.5s 3s 4.5s 1.5s 3s 4.5s 1.5s 3s 4.5s

PPO 44.77 45.13 43.33 41.42 40.72 43.03 45.79 41.82 38.73 42.54

TD3 31.62 42.16 36.24 41.37 40.94 43.44 41.52 38.76 42.31 41.85

LSTM-
TD3

31.50 38.58 42.21 43.50 42.65 38.83 40.74 40.24 41.95 42.23

SAC 2.45 10.24 11.83 15.00 11.16 10.96 11.37 8.41 7.45 9.26

BL: baseline with hand-crafted reward. For all results, Tow = 1s.

and steady progress and having less performance gap with other algorithms than that
from the perspective of HC-Rew. This contrary observation on the performance of SAC
measured in PB-Rew and HC-Rew seems to indicate the learned PB-Rew is not an exact
match of HC-Rew, even though they may share some in common. Another interesting
observation in Fig. D.11 is that for many cases TD3 and LSTM-TD3 experience sever
performance decrease when measured in PB-Rew, which is not observed in Fig. D.9 when
measured in HC-Rew. We suspect the performance decrease measured in PB-Rew observed
in TD3 might be caused by the reward function shift.

To investigate the aforementioned collapse in TD3 and validate our suspicion, Fig. D.12
shows the return, reward and action collected during the interaction of an agent with its
environment, where the irrational probability pip is 0.1, segment length is 1.5s, and the

241

Figure D.11: Learning Curves Measured in PB-Rew on Preference-based Reward

rewards and actions before step 0 are generated by a random policy during collecting pre-
training preference label (more results can be found in Appendix D). The data shown in
Fig. D.12 is collected during a RL agent is interacting with its environment where only
the PB-Rew is accessible to the agent and HC-Rew is only saved for investigation and not
accessible to the agent. Each row of Fig. D.12 corresponds to the results from a specific
RL algorithm. In each row, the first column shows the return measured in PB-Rew and

242

Figure D.12: Investigate Into PB-Rew Based Return Collapse

243

HC-Rew, indicated as PB-Return and HC-Return respectively, and the estimated value
function indicated as PB-Value. The second column shows the PB-Rew and HC-Rew for
each experiences collected over the interaction, and for better visualization the correspond-
ing filtered lines are plotted as well. The third column shows the actions generated by the
agent over the interaction, and similarly for better visualization the corresponding filtered
lines are plotted. From the 1st column of the 2nd row in the figure, we can see that there
is a collapse in the PB-Return of TD3, but the HC-Return is not affected. This indicates
even though the PB-Rew is changed, the policy derived from PB-Rew does not changed
much. This can be supported by the collected rewards in the 2nd column of the 2nd row
of the figure, where start from around 14000 step there are more experiences have PB-Rew
value covering whole value range from -1 to 1, while it seems there is no obvious change
in HC-Rew. In addition, it can also be supported by the generated action where in the
3rd column of the 2nd row only one action dimension has obvious change while others do
not. Similar observations can be found for LSTM-TD3 and SAC as well. It is worth to
mentioned that the PB-Rew plotted in Fig. D.12 is calculated for each step, while during
the policy training of TD3 the PB-Rew is recalculated for the experiences sampled from the
experience replay buffer based on the updated PB-Rew function. This further emphasizes
the importance of recalculating PB-Rew during policy training for off-policy RL algorithms
that relying on experience replay. Different from other three off-policy algorithms, PPO
is more sensitive to the PB-Rew change. As shown in the the 1st row of Fig. D.12, when
the PB-Rew changed around 15000 step (blue dots in the 2nd column), the performance of
the policy on HC-Rew is also affected (red dots in the 2nd column), because of the change
of policy (3rd column). At the first glance, PPO is an on-policy algorithm which means it
always has access to the latest PB-Rew, and the other three also have access to the latest
PB-Rew during training by recalculating PB-Rew. However, PPO only uses the experi-
ences from the last episode to train its policy, while the other three sample a mini-batch of
experiences from the experience buffer with much more experiences from many episodes.
Because the PPO updates policy only on a small set of experiences, it may not generalize
well and cause performance collapse.

Another interesting observation in Fig. D.12 is the sudden PB-Rew change always
happens after a long time of reward plateau, e.g. the 1st and 2nd row. An explanation
to this is when the reward gets saturated around the maximum it is impossible to accom-
modate more preference labels because the reward predictions are so close to each other.
Therefore, the neural network output needs to be pushed to cover the whole output range
to accurately predict preference.

244

D.5.3 Results on Constrained Human Preference

The whole experiment with unconstrained expert preference follows the same procedure for
human preference teacher as demonstrated in Alg. 7 in Appendix D.3.1. The preference
learning related hyper-parameters in the experiment with unconstrained experts is the
same as that shown in Table D.1, where in this experiment only segment length K = 4.5s
is tested. The RL agent used is TD3, and the preference-based reward estimator uses the
hyper-parameters shown in Table D.2.

Fig. D.13 shows the error rate of constrained human preference corresponding to dif-
ferent video segment length, where the error rate is the ratio of preference queries that
are wrongly labels and the true label is calculated based on the handcrafted reward as
defined in Eq. 9.8 adn 9.9. For TD3 and LSTM-TD3, the shorter the segment length is,
the higher the error rate is. PPO is less sensitive to segment length, compared to other
three algorithms. SAC has very high error rate no matter what the segment length is.

Figure D.13: Error Rate of Constrained Human Preference

Fig. D.14 shows the learning results of various RL algorithms with constrained human
preference, where the 1st, 2nd, and 3rd row show the HC-Return, PB-Return and average
value prediction, respectively. By comparing the HC-Return, PB-Return and average value
prediction, we can roughly conclude the bad performance of SAC is closely related to its
bad value estimation, For instance, SAC’s HC-Return is the lowest, but it gets the highest
average value prediction, compared to TD3 and LSTM-TD3.

More data from these four algorithms on different segment length are shwon in Fig.
D.15, D.16, D.17, D.18, where the rewards and actions collected along the learning are

245

(a) HC-Return

(b) PB-Return

(c) Average Value Prediction

Figure D.14: RL Learning Results on Constrained Human Preference

246

presented as well.

Figure D.15: PPO with Constrained Human Preference on Various Segment Lengths

247

Figure D.16: TD3 with Constrained Human Preference on Various Segment Lengths

D.6 Results on Unconstrained Expert Preference

D.6.1 Expert Data Summary

Table D.8 summarizes the participation of the experts, where the Request Sequence corre-
sponds to the sequence of participation, and the numbers in the 3rd to 7th columns indicate
how many preference labels are provided in total and for each preference choice. As men-

248

Figure D.17: LSTM-TD3 with Constrained Human Preference on Various Segment Lengths

tioned in section D.2.6, there may be cases where the two segments of a segment pair are
equally engaging or unengaging and these preference labels cannot be used in preference
learning as we formulate it as a two-class classification problem, so in this experiment,
we ask expert participants to provide at least 20 distinct preferences, i.e., either “Right is
Better” or “Left is Better”, in each session to make sure we have sufficient training data.
As seen in Table D.8, each session has at least 20 distinct preferences. The preference
labels are collected based on the segment pool where two segments are sampled from to

249

Figure D.18: SAC with Constrained Human Preference on Various Segment Lengths

ask for preference. Fig. D.19 illustrates the segments and segment pairs. Specifically, the
top left shows the segments indicated as dots and the segment pairs connected by a solid
line, where x-axis is the time step of RL agent2, y-axis is the times a segment is sampled
for preference, different colors correspond to the segment pairs shown to different prefer-
ence requests, and the segments after the gray-dotted vertical line are added after the last

2Segments before time step 0 are collected for pretraining preference-based reward.

250

preference request. The bottom left of Fig. D.19 is to show how the the segments are
distributed over the time, where each short vertical line corresponds to a segment. The
top right summarizes the number of segments that are sampled for different times, where
the inset pie chart shows the proportion of segments with different sampled numbers. The
bottom right shows the proportion of experiences that are at least seen once by prefer-
ence teachers. From Fig. D.19 we can see that (1) segments are sparsely distributed over
the whole trajectory, (2) segments added earlier have higher opportunity to be seen by a
preference teacher, and (3) only about 6.1% of experiences3 is seen by preference teachers.

Table D.8: Summary of Expert Participation

Request
Sequence

Pref Request Total
Distinct Preference Cannot Tell

Right is
Better

Left is
Better

Sum
Equally
Eng.

Equally
Uneng.

Sum

PT1 Exp. 1, Ses. 1 24 6 14 20 1 3 4
PT2 Exp. 2, Ses. 1 30 9 15 24 4 2 6
PT3 Exp. 3, Ses. 1 28 11 12 23 5 0 5
PT4 Exp. 1, Ses. 2 28 9 12 21 7 0 7
PT5 Exp. 3, Ses. 2 28 11 10 21 3 4 7
PT6 Exp. 2, Ses. 2 30 11 9 20 2 8 10

Exp.: Expert, Ses.: Session, Eng.: Engaging, Uneng.:Unengaging

Fig. D.20 shows the time spent on each preference query in a session by an expert,
where the “equally engaging” and “equally unengaging” labels are highlighted in green and
red respectively, the dotted vertical lines separate the different sessions, and the dashed
line corresponds to a 3-degree polynomial fit to the time spent on preference queries within
a session. Specifically, the time spent on each preference query is measured as the time
between when a segment pair is shown to a preference teacher and a preference choice is
provided. This is a rough estimation of time spent on a preference query as a preference
teacher may be distracted from the current task. For example, there is one preference query
of Expert 3, Session 1 cost over 400s which is extremely abnormal. Fig. D.21 shows the
distribution of the time spent over each preference choice in each session, where “eng.” and
“uneng.” stands for engaging and unengaging respectively, and rating times over 100s are
ignored. From these two figures, we can see that within a session the time spent normally
decreases for most sessions, which indicates the experts adapt quickly on how to make a
preference choice. An especially outstanding example is the 1st session of exert 2, where

3To be more precisely, preference teachers only see the video segments correspond to the experience
segments.

251

Figure D.19: Segments and Segment Pairs

Figure D.20: Expert Preference Choice Time Spending

the first few queries cost over 50 seconds on average while the last few queries cost less
than 20 seconds. In addition, for the same expert it is shown that less average time is
spent on the 2nd session compared to the 1st session. For instance, expert 2 spent much
less time on preference labeling in session 2 than that in session 1, as shown in the green
markers in Fig. D.20 and the 2nd and 6th panel in Fig. D.21. Besides, equally engaging
and unengaging usually cost more time than distinct preference where either left or right

252

Figure D.21: Distribution of Expert Preference Choice Time Spending

is preferred as shown in Fig. D.21 that the median of “equally engaging” or “equally
unengaging” is much higher than that of “right is better” or “left is better”.

Fig. D.22 summarizes the agreement between two consecutive PB-Rew checkpoints
(where CP0 is the randomly initialized PB-Rew, and CP1-CP6 are the checkpoints of PB-
Rew trained after each of the 6 preference teaching sessions) on 500 segment pairs randomly
sampled from the segment pool. It can be seen that after trained on the preference labels
from the 1st session CP1 is significantly different from the randomly initialized CPO.
Then, after continuously trained with new preference labels from the 2nd and 3rd session,
the disagreement between two consecutive PB-Rew checkpoints decreases. However, the
disagreement between CP3 and CP4 is significantly higher than other cases followed by the
disagreement between CP4 and CP5. Overall, the PB-Rew does change much, in terms
of preference prediction, after the 1st session, with the maximum of 30% disagreement for
CP3 and CP4 and the minimum of 1.8% disagreement for CP2 and CP3.

253

Figure D.22: Preference Prediction-Agreement Between Two Consecutive PB-Rew Check-
points

D.6.2 Policy Evolution Accompanying Preference-based Reward

To better understand the observations in the last section, in this section we will take a
close look at the evolution of the policy derived from the preference based reward function.
Fig. D.23 plots the data collected during the PL+RL. Specifically, the first panel of Fig.
D.23a shows the PB-Return (solid blue line) and HC-Return (solid red line) measured
in PB-Rew and HC-Rew respectively, and the average Q-value (dashed green line), and
the second panel shows the Q-loss (solid black line) and Pi-loss (solid cyan line) of the
TD3 agent. The third panel of Fig. D.23a shows the change of PB-Return and HC-
Return in the first panel. Fig. D.23b shows the HC-Rew in red and PB-Rew in blue
collected during the learning, where HC-Rew is in [0, 1] and PB-Rew is in [−1, 1], the
lines are Gaussian filtered rewards for better visualization of reward change, and rewards

254

(a) Learning Curve on Unconstrained Expert Preference

(b) Rewards Collected During Learning (c) Actions Collected During Learning

Figure D.23: RL and PL on Unconstrained Expert Preference

255

before time step 0 are those collected from a random policy for generating segments for
pretraining preference labels. Fig. D.23c shows the actions collected during the learning,
where different colors corresponds to different dimensions of an action represented by dots,
the lines are Gaussian filtered actions for better visualization of action change, and actions
before time step 0 are generated by the random policy for preference pretraining. In each
sub-figure, from left to right, the gray vertical lines correspond to 6 preference requests
(labeled in gray circles above the vertical lines) where the first preference request is for
pretraining PB-Rew which happens before RL, while the purple vertical lines correspond
to the 7 checkpoints (labeled in purple circles above the vertical lines) of RL agent and
PB-Rew, namely CP0(-200), CP1(899), CP2(1799), CP3(2699), CP4(3899), CP5(4799),
and CP6(6599), where the number within the brackets is the time step that the checkpoint
is created and CP0(-200) is the checkpoint saved before any learning. In addition, the
vertical color bars are to highlight the time when the RL agent experienced outstanding
PB-Return decreases, where the light red, light green and light blue correspond to the 1st,
2nd and 3rd PB-Return drops respectively. Note that in the PL+RL setting, only the
PB-Rew derived from human preference is used to learn a policy, and PB-Rew is only used
for comparison purpose.

When comparing the shape of HC-Return (solid red line) and PB-Return (solid blue
line) in the first panel and their changes in the thrid panel of Fig. D.23a, they look very
similar. When PB-Return increases the HC-Return increases too, and when the PB-Return
decreases at about 3000 steps the HC-Return also decreases. This means overall PB-Rew
is correlated with HC-Rew. However, there are still distinctions. For example, the increase
and decrease magnitudes are different between PB-Return and HC-Return. In addition,
the 2nd (light green area) and 3rd (light blue area) PB-Return drops do not cause HC-
Return drop. This can be better observed in Fig. D.23b, where the PB-Rew decreases
in the 2nd and 3rd drops of PB-Return while the HC-Rew does not. These observations
indicate the PB-Rew is to some extent distinct from HC-Rew.

When comparing the average Q-value estimation (dashed green line) and the PB-Return
(solid blue line) in the first panel of Fig. D.23a, the average Q-value is underestimated
even with discount factor γ = 0.99 as it is far smaller than PB-Return. We can see that
the Q-value estimation increases as the increase of PB-Return and experiences a small
fluctuation when PB-Return drops (light red area), then stays relatively stable until the
3rd drop (light blue area) in PB-Return. The average Q-value loss (solid black line) first
increases along with the increase of Q-value, then decreases dramatically at the first drop
of PB-Return, followed by staying stable from 4000 to 6000 step and increasing gradually
after the 3rd PB-Return drop (light blue area). Because the policy loss is defined as the
negative of Q-value in order to maximize the Q-value of the action generated by the policy,

256

the opposite trend of average Q-value estimation can be observed in the Pi-loss (solid cyan
color).

It is particularly interesting to investigate (1) what causes the decreases in PB-
Return, and to understand (2) why the HC-Return does not change for the 2nd
and the 3rd decrease in PB-Return. It is worth to mention that in the PL+RL
setting, it is very difficult to analyze the causality of performance change, because both
the PL and RL can cause significant change in the performance measured in PB-Rew and
they also interfere with each other. On one hand, if the policy of RL does not change,
significant change in PB-Rew from PL can cause significant change in PB-Return. On
the other hand, if the PB-Rew does not change, significant change in the policy can lead
to significant change in PB-Return as well. What makes it more complicated is both the
PB-Rew and policy are non-stationary.

Based on our observation in Fig. D.23c that the policy does not show significant change,
we hypothesize: the performance drops in PB-Return are mainly caused by the scaling
change of PB-Reward, rather than the change of underlying human preference. To validate
our hypothesis, we show results in the rest of this sub-section based on the following ideas:
(1) if the PB-Reward corresponding to the drops changed significantly, the performance
(measured in HC-Reward) of the policy learned from the fixed PB-Reward checkpoints
should be significantly different too; and (2) if the performance drops are caused by the
change of human preference, similar observation should be able to be reproduced in simu-
lation.

Fig. D.24 compares the performance (measured in HC-Reward) of TD3 with different
PB-Reward checkpoints saved during the study with unconstrained experts as indicated
in Fig. D.23, where the TD3 agents are trained from scratch with the reward calculated
from the fixed PB-Reward checkpoints, and only the best performance for each checkpoint
is compared. We can see that the PB-Reward increases from CP0 to CP2, and experiences
a slight decrease from CP2 to CP3, then stays relatively stable thereafter. This result is
contrary to the idea (1) and supports our hypothesis.

Fig. D.25 shows the results of a simulated preference model switch, where a predefined
preference model is switched to its opposite after 4000 steps as indicated by the vertical
dotted line. Here, the simulated preferences switch from active to calm, i.e., the more active
actuators the better for the first 4000 steps, then afterwards the less active actuators the
better. The solid bold lines correspond to the success cases where the agents successfully
adapt from one preference to another. Nevertheless, it is interesting to see that the adaption
takes a long time rather than happens immediately, because we use all preference labels
collected until now to train a PB-Reward model. This means only when the number

257

Figure D.24: Compare Performance of
TD3 with Different PB-Reward Check-
points

Figure D.25: Effect of Preference Model Switch

of the preference labels based on the new preference model exceeds that based on the
old preference model, the agent is able to dominantly be driven by the new preference.
Surprisingly, we also observe many cases where the agents fail to adapt to the switched
preference model, as indicated by the dotted lines which are stopped early when no change
is observed in the learning curves for a long time. On the one hand, this indicates that the
proposed method is not suitable for the cases where the preference model may change over
time and a faster adaption to the change is critical. However, on the other hand, the slow
adaption means the method is robust to preference noise which may be either introduced by
mistake or wrong preference labeling caused by very similar segment comparison. Overall,
the results rejects the idea (2) and supports our hypothesis.

Fig. D.26 shows a small set of video segments from the segment pool collected along the
whole process, where the dots in the learning curves indicate the time steps corresponding
to the video segments, and the segment before time step 0 is collected during PL pre-
training phase. Due to the difficulty of showing a video segment with hundreds of frames,
we take the maximum value over the frames for each pixel to form an image to represent
the maximum intensity of the actuators within a video segment. Fig. D.26 shows the
images of the video segments and the histograms of these images. We can see that as the
HC-Return increases when more actuators are activated and the last three video segments
in Fig. D.26 look very similar which indicates the policy does not change much

258

Figure D.26: RL Agent Learning Curve and Video Segments

Further Analysis on PB-Return Drops

From Fig. D.23a and Fig. D.23b, it can be seen that the three drops happened immediately
after the 4th (Exp. 1, Ses. 2), 5th (Exp. 3, Ses. 2), and 6th (Exp. 2, Ses. 2) preference
request (indicated in gray circles in Fig. D.23a), where these preference requests are
followed by PB-Rew training on all collected preference labels. Then, a natural assumption
is that the drops in PB-Return are mainly caused by the change of PB-Rew. To validate the
assumption, we sample all experiences from the replay buffer of RL agent and predict PB-
Rew on these experiences using the PB-Rew model checkpoints, and plot the distribution
of the predictions in Fig. D.27 where the x-axis corresponds to the checkpoint version,
e.g., CP3 (2699) is the 3rd checkpoint saved immediately after time step 2699, and the
red and blue dotted lines connect the medians and means of the predictions respectively.
Besides PB-Rew prediction, we also use the PB-Rew model checkpoints to predict the
preference to see to what extent the two consecutive checkpoints of PB-Rew model agree
with each other, where we randomly sample 500 segment pairs in total from the segment
pool to predict the preference label with irrational probability pip = 0. Fig. D.28 is the

259

preference prediction-“accuracy” between two consecutive PB-Rew checkpoints, where the
prediction of the previous checkpoint is treated as the target and the diagonal values of
each panel indicate the proportion of samples that the two consecutive checkpoints make
the same prediction of preference. Fig. D.22 summarizes the results in Fig. D.28 into
agree and disagree categories to show how the agreement between two consecutive PB-
Rew checkpoints changes. According to Fig. D.23a, the 1st drop in PB-Return happened
between the 3rd and 4th checkpoint, the 2nd drop in PB-Return happened between the
4th and 5th checkpoint, and the 3rd drop in PB-Return happened between the 5th and
6th checkpoint. This observation aligns well with the results in Fig. D.27 where we can
see that there is a dramatic decrease in the median and mean of the PB-Rew predictions
between CP3 and CP4, while the change from CP4 to CP5 and from CP5 and CP6 is
minor which corresponds to the last two minor drops in Fig. D.23a. In addition, these
changes are also reflected in the preference prediction illustrated in Fig. D.28 and Fig.
D.22, where the disagreement between CP3 and CP4 in terms of preference prediction is
significantly higher than other cases followed by the disagreement between CP4 and CP5.
To summarize, all of the aforementioned results indicate the cause of the decreases in PB-
Return is the change of the PB-Rew induced from human preference, which answers the
question (1) in the previous paragraph.

Because HC-Rew is fixed, it can be roughly used as an indicator of the policy change,
i.e., if the policy is changed the HC-Return will change, otherwise HC-Return will stay
unchanged. When comparing the HC-Return and PB-Return in Fig. D.23a, we found that
HC-Return does not change for the 2nd and 3rd drop in PB-Return but only experiences
a mild decrease for the 1st drop in PB-Return. Therefore, we suspect that the policy only
has a mild change at the 1st drop in PB-Return and keeps unchanged for the other two.
To validate that, we visualize the action generated from the RL policy in Fig. D.23c and
Fig. D.29. Fig. D.23c shows the actions collected during learning where the actions are
those leading to the rewards shown in Fig. D.23b and return shown in Fig. D.23a, from
which no obvious difference can be found near the PB-Return drops. To catch more subtle
changes in the policy, Fig. D.29 depicts the actions4 generated by the policy checkpoints
in the observations from the experience replay buffer of the RL agent, where each panel
corresponds to an action dimension of the action space defined in Table 9.2 with value range
[−1, 1] and the inset figure of each panel with much smaller y-axis range is to visualize
the action differences on different observations. According to Fig. D.29, overall except
exitorSpeedLimit the difference among policy checkpoints is very small. However, as shown
in the inset figures, the policy change is much larger from CP3 to CP4 than that from CP4
to CP5 and from CP5 to CP6. Therefore, we conclude the answer to the question (2) is

4Note that exploration action noise is not included.

260

Figure D.27: PB-Reward Prediction of PB-
Rew Checkpoints

Figure D.28: Preference Prediction-
“Accuracy” Between Two Consecutive
PB-Rew Checkpoints

HC-Return does not change for the 2nd and 3rd drop in PB-Return is because the policy
does not change much. Another question can be raised is that if PB-Rew changed why the
policy does not change for the 2nd and 3rd drop in PB-Return, since the policy is derived
from PB-Rew. One possible explanation is under some limitation even if the PB-Rew
has changed along the preference learning, as long as the relative relationship, i.e., which
experience is better than another among the PB-Rew of the experiences does not change,
the policy will keep stationary as well. Note that the prerequisite of this explanation is
the PB-Rew change is within some limitation rather than a dramatic change as that from
CP3 to CP4 in Fig. D.27.

261

Figure D.29: Action Prediction of Policy Checkpoints

D.6.3 Preference Prediction of Various PB-Reward Models

In Table 9.7, the PB-Reward checkpoints are trained with all preference labels collected
after each preference request session in an incremental online learning method, which means
these checkpoints incorporate all preference teachers’ preference and may not able to reflect
the difference among the preference labels from various sessions. Therefore, we separately
trained a set of PB-Reward estimators (called Exp. x, Ses. y where x is the expert

262

Figure D.30: Offline PB-Reward Estimator
Training

Figure D.31: Reward Prediction of Separate
PB-Reward Estimator

id and y is the session id of that expert) for the preference labels collected within each
preference request session and an estimator (called mixed) with all preference labels, where
all estimators use the same neural network structure listed in Table D.2 and the training
of these estimators is offline batch learning. Fig. D.30 shows the training loss of these
estimators within 500 epochs, where the all preference labels within each session are used
for training and there is no validation and test dataset because of the limited number of
labels. We can see the training loss decreases quickly at the first dozens of epochs and
remains relatively stable. Fig. D.31 shows the distribution of the reward prediction of these
estimators on experiences in the replay buffer of the RL agent. From this figure, it can
been seen that on the same experience set the distribution of the predicted reward looks
very different for different estimators, except the estimator from Exp3-S1 looks similar to
that of Exp1-S2. Particularly, even for the the same expert, the estimators from different
sessions look quite different from each other, e.g., Exp1-S1 and Exp1-S2. It is naturally to
conclude that (1) experts have different preference, and (2) the same expert changed his/her
preference from one session to another. However, these conclusions are inconsistent with
the experts’ the survey data where none of the experts indicating their preference changes
over the time, which will be shown in session D.6.4 and discussed in session D.7.

Even the reward prediction distributions of different estimators have different shapes,
it is still possible to make the same preference prediction from different estimators as long
as the relative relationship, i.e., which one is better than another, is similar. Therefore,

263

Table D.9: Preference Prediction Accuracy of Separately Trained PB-Reward Estimators

Estimator
Pref Request

PT1 PT2 PT3 PT4 PT5 PT6

Exp. 1, Ses. 1 0.950 0.667 0.522 0.810 0.476 0.600
Exp. 2, Ses. 1 0.450 1.000 0.522 0.667 0.714 0.550
Exp. 3, Ses. 1 0.600 0.583 1.000 0.571 0.381 0.600
Exp. 1, Ses. 2 0.900 0.750 0.652 1.000 0.571 0.550
Exp. 3, Ses. 2 0.600 0.750 0.609 0.619 1.000 0.450

Exp. 2, Ses. 2 0.600 0.625 0.652 0.619 0.524 1.000
Mixed 0.950 1.000 0.957 1.000 1.000 0.950

Expert 1
Expert 2

Expert 3

Table D.9 shows the preference prediction accuracy of the separately trained PB-Reward
estimators on the preference labels provided by the experts, where the results in bold are
those greater than 0.5, the results in red indicate the horizontal estimator is trained with
the vertical preference labels, the results in blue highlight the prediction accuracy of an
estimator trained on labels from one session but examined on another session, and the
curves connect the sessions from the same expert. It is not surprising that all estimators’
preference prediction accuracy (results in red) are above 0.95 on the preference dataset
that they are trained. In terms of generalization, only 4 of 30 cases the estimators have
prediction accuracy that are lower than 0.5 (results with smaller font-size and not in red)
on preference data that they did not see during training, which indicates the estimator from
one session can generalize better than a random guess in terms of preference prediction.
This observation reveals that even though the reward prediction distributions of the esti-
mators look significantly different from each other (Fig. D.31), the preference predictions
of these estimators may be very similar. For instance, the reward prediction distributions
of Exp1-S1 and Exp1-S2 look very different in Fig. D.31, but their preference predictions
are not so different, as estimator trained on PT1 with training accuracy 0.950 has predic-
tion accuracy 0.810 on PT4 and estimator trained on PT4 with training accuracy 1.00 has
prediction accuracy 0.900 on PT1.

Except the separately trained PB-Reward estimator, it is particularly interesting to
see how the estimator trained offline, i.e., mixed in Table D.9, with all preference labels
performs compared to that of trained online, i.e., CP6 in Table 9.7, in terms of preference
prediction accuracy. Table D.10 compares the preference prediction accuracy of CP6 and
that of mixed, where the maximum in each column is in bold and the total number of
training epochs of the preference dataset from each session is shown in the brackets. It

264

Table D.10: Preference Prediction Accuracy Comparison Between Online and Offline Mix-
trained Estimator

Estimator
Pref Request

PT1 PT2 PT3 PT4 PT5 PT6

CP6
(Table 9.7)

0.900
(30)

0.708
(25)

0.565
(20)

0.952
(15)

0.619
(10)

0.500
(5)

Mixed (500)
(Table D.9)

0.950 1.000 0.957 1.000 1.000 0.950

is clear that the most recent preference labels are less trained than old preference labels
in online training. For example, PT6 is trained 5 epochs while PT1 is trained 30 epochs
for CP6. This means the estimator is biased to old preference labels. This is reflected
by the prediction accuracy, where CP6 has preference prediction accuracy 0.900 on PT1
but only has 0.500 on PT6. For the offline training, all preference labels are equally went
through the training, which causes very similar preference prediction accuracy on data from
different sessions. Due to the large training epochs, mixed has higher preference prediction
accuracy than CP6 on all sessions.

Table D.11: Preference Prediction Agreement on Random Segment Pairs

Estimator
Estimator Exp. 1

Ses. 1
Exp. 2
Ses. 1

Exp. 3
Ses. 1

Exp. 1
Ses. 2

Exp. 3
Ses. 2

Exp. 2
Ses. 2

Mixed

Exp. 1, Ses. 1 1.0 0.304 0.496 0.62 0.278 0.658 0.482

Exp. 2, Ses. 1 0.304 1.0 0.372 0.526 0.848 0.418 0.668
Exp. 3, Ses. 1 0.496 0.372 1.0 0.476 0.368 0.514 0.408

Exp. 1, Ses. 2 0.62 0.526 0.476 1.0 0.47 0.598 0.578
Exp. 3, Ses. 2 0.278 0.848 0.368 0.47 1.0 0.418 0.672
Exp. 2, Ses. 2 0.658 0.418 0.514 0.598 0.418 1.0 0.522

Mixed 0.482 0.668 0.408 0.578 0.672 0.522 1.0

Until now we investigated the preference prediction accuracy on CP1-CP6 where the
human preference labels are available, it is also worth to see how the PB-Reward estimators
induced from the human preference labels agree with each other on the segment pairs that
are not seen by a user. Since the newly sample segment pairs are not labeled, there will
not be prediction accuracy but only preference prediction agreement between estimators.
Table D.11 shows the preference prediction agreement, i.e., the proportion of segment pairs
over 500 segment pairs randomly sampled from the segment pool that two estimators make

265

Figure D.32: Preference Prediction Agreement Among Separately Trained Estimators

the same preference prediction, where the agreements greater than 0.5 are in bold and the
agreement between the estimators induced from the different sessions of the same expert
is highlighted in red rectangle. Overall the separately trained estimators (not including
mixed) do not always agree with each other, where for some cases, e.g. Exp.1, Ses.1 vs Exp.
3, Ses. 3, estimators have very low agreement, while for others, e.g., Exp. 2, Ses. 1 vs Exp.
3, Ses. 2, they have high agreement. Compared to separately trained estimators, mixed,
which is trained with labels from all sessions, has higher agreement with the separately
trained estimators. The agreement between Exp. 2, Ses. 1 and Exp. 2, Ses. 2 and that
between Exp. 3, Ses. 1 and Exp. 3, Ses. 2 are lower than 0.5, which indicates Expert
2 and Expert 3 disagree with themselves in different sessions. This observation is in line
with the observation from Fig. D.31, but is inconsistent with the experts’ the survey data
where none of the experts indicating their preference changes over the time. Again, we will
show the survey data in session D.6.4 and have a discuss on this in session D.7.

Fig. D.32 summarizes the proportion of 500 randomly sampled segment pairs that the
estimators make the same preference prediction, where the left panel includes the mixed
estimator while the right panel excludes the mixed estimator. It can be seen that on 38.2%
and 32.4% of the 500 segment pairs that 4/7 and 3/6 estimators are agree with each other,
and on 4.4% and 5.2% of the 500 segment pairs that all estimators are agree with each
other. This also indicates these estimators are not completely agree with each other, but
they still share something in common.

266

D.6.4 Expert Teacher Survey Data

Table D.12 shows the questions adapted from System Usability Scale (SUS) [44, 23, 45] and
used to measure the usability of our web-based interface. The SUS score [22] is calculated
as follows

Ssus = 2.5×

(∑
i=1,3,5,7,9

(Qi − 1) +
∑

j=2,4,6,8,10

(5−Qj)

)
, (D.3)

where the final score is in range [0, 100].

Table D.13 shows questions adapted from Robot Incentives Scale (RIS) [228, 113] and
used to measure user’s perception of his/her emotion, utility, and social connection of using
the preference teaching system.

Table D.12: Questions Adapted From System Usability Scale

Question Label Question

SUS-Q1 I think that I would like to use this interface frequently.

SUS-Q2 I found the interface unnecessarily complex.

SUS-Q3 I thought the interface was easy to use.

SUS-Q4
I think that I would need the support of a technical person to be able to
use his interface.

SUS-Q5 I found the various functions in this interface were well integrated.

SUS-Q6 I thought there was too much inconsistency in this interface.

SUS-Q7
I would imagine that most people would learn to use this interface very
quickly.

SUS-Q8 I found the interface very cumbersome to use.

SUS-Q9 I felt very confident using the interface.

SUS-Q10 I needed to learn a lot of things before I could get going with this interface.

In the survey, we also welcome expert participants to leave general comments on our
study in order to catch oversights that are not well considered before. Among the experts,
only expert 2 left general comments in the two sessions as follows:

• Exp. 2, Ses. 1:

267

Table D.13: Questions Adapted From Robot Incentives Scale

Question Label Question

Emotion-Q1 I like this teaching process.

Emotion-Q2
I enjoy providing my preference of video clip to teach the
sculpture how to engage visitors.

Emotion-Q3 I find it is easy to choose the video clip I prefer.

Emotion-Q4 I am unhappy with the “Cannot Tell” queries.

Emotion-Q5
If I should use the teaching interface, I would be afraid to provide
unreliable feedback.

Emotion-Q6
If I should use the teaching interface, I would be afraid to ruin the
sculpture’s behavior by providing incorrect feedback.

Utility-Q1
This teaching process would be able to make the sculpture’s
behavior more engaging.

Utility-Q2
This teaching process would be useful for me to teach the
sculpture how to generate more engaging behavior.

Utility-Q3
This teaching process would be able to help any user to adapt the
sculpture’s behavior to his/her preferences.

Utility-Q4
This teaching process would provide reliable assistance to adapt
the sculpture’s behavior.

Social-Connection-Q1
I feel socially connected to the visitors of the sculpture, even
though they are not aware I am one of the teachers who taught
this sculpture.

Social-Connection-Q2
I am aware that the sculpture I am teaching is intended to engage
its visitors.

Social-Connection-Q3
I am proud to tell the visitors of the sculpture that I contributed
to teaching the sculpture.

Social-Connection-Q4
I would recommend to my friends that they use the interface to
help teach the sculpture.

“It can be hard to judge what is ‘best’ for ‘engagement’ at this scale and
without context of the physical environment – some things that look very
interesting in these clips might be annoying or impossible to really see in
the physical context of the sculpture. Also, for the interface, I found I was
constantly maximizing and minimizing the videos and that got annoying.
And would be nice to directly select the image rather than needing to say
‘left’ or ‘right’ - i kept being afraid I was picking the wrong one because I

268

might mix up left and right.”

• Exp. 2, Ses. 2:

“ I think ‘engaging activity’ relies on changes to the behaviour from one
such behaviour to another over time and in response to activity of the
space, and sometimes it is the contrast between two behavioiurs that will
be ‘engaging’ – not sure how to represent this in the study.”

It is very interesting to see that expert 2 has very high expectation by extending the scenario
to very complicated one where human visitors are within the space of the sculpture. Indeed,
in real application engaging behavior depends on the context rather than simply determined
by the sculpture’s behavior. For example, if a visitor is very excited and intended to expect
more reaction from the sculpture, highly active behavior may be more engaging, while if
the visitor is very cautious and much enjoyed smooth reaction, less active behavior may
be more engaging than highly active one.

D.7 Discussion

Even though our results indicate learn how to engage from preference is promising, there are
still questions worth further investigation. Based on our observations, we will devote this
section to discuss the bias in preference learning based reward model, world representation
gap between video and experience segment, common preference VS personalized preference,
expert VS novice preference teacher, and some limitations of the work shown in this chapter.

D.7.1 Bias in Preference Based Reward Model

In the previous section, we mentioned that according to the results on reward and prefer-
ence prediction of PB-Reward estimators, it seems the same expert disagrees with him/herself
between different sessions, while the experts clearly expressed in the survey data that their
preference do not change. These contrary results remind us there must be something is
overlooked. If the experts’ preference do not change, then the reward estimator must be
biased so that it cannot preciously capture the experts’ preference. To further investigate
the source of the potential bias, we employ t-distributed stochastic neighbor embedding (t-
SNE) [279] to embedding the observations from whole experience buffer into 2 dimensions
for better visualization. Fig. D.33 shows the observation embedding. Inside, all obser-
vations are shown in the top left panel, where the observations within the segments for

269

different preference request are shown in different colors, the size of the markers indicates
the magnitude of HC-Reward of the experience that the original observation is from, and
the purple ones are those not included within any segment sampled for human preference.
We visually group all embedded observations into three groups, i.e., G1, G2 and G3, ac-
cording to the 2D distance, and the top right panel shows the distribution of the embedded
observations based on their HC-Reward which indicates the distinct difference among the
three groups with respect to HC-Reward. The rest sub-panels show the embedded obser-
vations from the segments for different sessions. Combining and comparing these panels,
we can see that the for the first session only very limited observations (only observations
in G2 and G3 are included) are shown to experts for preference labeling, whereas for the
second session broader observations (all three groups are included for expert 2 and 3) are
seen by experts.

These biased observations included in the segments used for collecting human preference
along with the limited human knowledge that can be carried by preference labels are
believed to be the cause of biased reward estimators. Let us consider an expert who
prefers active behavior but not hyper active behavior, as mentioned by expert 3 in Table
9.6 and depicted in Fig. D.34. At the beginning because the policy is random, it is more
likely to have segments that are less active. Then, when two of them are shown to the
expert, the one that is more active will be preferred. However, this does not mean the
more active, the better. Then, along with the policy evolving, more segments that are
much more active are added, and when two very active segments are shown to an expert,
the expert may prefer the one less active. Similarly, this does not mean the less active,
the better. As depicted in Fig. D.34, when only partial preference is included within
the preference dataset, this will cause the preference based reward model cannot capture
the whole picture of human preference and generalize badly to unseen data. Therefore,
only when diverse segment pairs, that are able to cover sufficient diverse observations, are
preference labeled, the experts’ preference can be more preciously captured.

Since we can not change the information that can be carried by a preference label,
the best way to avoid biased reward model is to reduce the bias of the observations in the
segments sampled for human preference. This can be realized by having a large pretraining
preference labels with diverse segment pool. However, this is impractical for applications
where collecting the pretraining preference labels are expensive and the policy that can be
used to collect diverse segments is unavailable. Therefore, another approach, that does not
rely on a very large pretraining preference dataset but using continuously growing prefer-
ence dataset, is to periodically reinitialize the reward estimator and train with the whole
preference dataset from scratch. However, unless the policy of RL agent is reinitialized and
retrained, the reward bias will be maintained within the policy for a very long time. In

270

Figure D.33: Observation Embedding

271

Figure D.34: Example Expert Preference Model and Biased Reward Models

general, these potential approaches can only alleviate the bias, but it is basically inevitable
because of the co-evolution of RL policy and preference-based reward model.

D.7.2 Reward Scaling In Reward Saturation

Not only the bias may cause the shift of preference based reward model, but also the
reward scaling after reward saturation will lead to the change of the preference based
reward model. By definition, reward saturation refer to the situation where the current
reward model makes reward predictions around the boundaries, either upper or lower bound
of the output range, so that no more reward prediction can be squeezed into to keep the
accurate preference prediction without interference. Therefore, in order to accommodate
more preference labels, the reward scaling will happen, which will loosely spread the reward
predictions.

To understand the concept of reward saturation and reward scaling, we need to first
understand how the reward model is updated given segment pairs and the corresponding
preference labels. Without loss of generality, let us consider an extreme case where only
one experience is included within a segment σ = (ot, at, rt, ot+1, dt), which is essentially
K = 1 according to the representation of segment introduced in Section D.2.2. Given a
segment pair (σ0, σ1) and a PB-Reward reward estimator Rpb approximated by a neural
network, whose output activation function is tanh, then the preference prediction of the
estimator defined in Eq. 9.2 can be represented as

P̂
[
σ0 ≻ σ1

]
=

eR
pb(σ0)

eRpb(σ0) + eRpb(σ1)
. (D.4)

272

Now let us only consider the loss on this segment pair, which has the following form

L
(
Rpb
)

= −
(

(1− y)P̂
[
σ0
e ≻ σ1

e

]
+ yP̂

[
σ0
e ≺ σ1

e

])
, (D.5)

If the preference label y = 0, then L
(
Rpb
)

= − eR
pb(σ0)

eR
pb(σ0)+eR

pb(σ1)
. Then, to minimize the loss,

we could either increase Rpb(σ0) or decrease Rpb(σ1), as shown in the top right shaded area

of Fig. D.35. Similarly, if y = 1, then L
(
Rpb
)

= − eR
pb(σ1)

eR
pb(σ0)+eR

pb(σ1)
. To minimize the loss,

we could either increase Rpb(σ1) or decrease Rpb(σ0), as shown in the bottom left shaded
area of Fig. D.35. The increase and/or decrease of the reward prediction is realized by
tuning the weights of the neural network used to approximate the reward model.

Figure D.35: Reward Learning Example

Figure D.36: Reward Scaling In Reward Saturation

Now, let see how reward scaling happens in reward saturation. As shown in the left
panel of Fig. D.36, the preference relationship, indicated by ≺, among σ1 to σ7 is correctly
incorporated into the reward model R, and the predictions, indicated in red dots, are
concentrated around the upper bound of the tanh activation function. Than, when a new

273

preference data point (σ0 = σ1, σ
1 = σ8, y = 1) comes, the reward prediction Rσ8 on σ8 (in

blue dot) is actually lower than that on σ1. Therefore, to minimize the loss, we need to
either increase Rσ8 or decrease Rσ1 , or do both. However, since Rσ8 is already very close
to the upper bound of the output, which is what we called reward saturation, it is easier
to decrease Rσ1 by tuning the model weights. At the same time, we still need to keep the
preference relationship among σ1 to σ7, which consequently causes the decreases in σ2 to σ7
as well, which is what we called reward scaling, and finally leads to the results in the right
panel in Fig. D.36. Similar phenomenon will happen when reward is saturated around the
lower bound.

Either reward saturation nor reward scaling in Preference Learning is undesirable for RL
agent. To be more concrete, if reward saturation happened, this means many experiences
have very similar reward predictions, which will make it hard to differentiate which action in
an observation is better than others. This will further cause extremely slow learning speed
of a good policy that maximizes the preference based reward. Reward scaling would also to
harmful, because the change in the scale of the reward signal will cause the change in value
function approximation that is commonly adopted in RL, and the unstable value function
approximation will further lead to unstable policy update. Ideally, the reward prediction
could nicely spread over the whole output range of the reward estimator, at the same time
similar experiences could have similar reward predictions while distinct experiences could
have differentiable reward predictions. In order to realize this, new techniques must be
introduced and need further study.

Different from the bias introduced in Section D.7.1 where the biased reward model may
generalize to completely wrong reward as shown in Fig. D.34 and lead to a policy that
inconsistent with the human preference, reward scaling in PL does not necessarily cause
different policy as long as the preference relationship is unchanged, which we call policy
invariance under genuine reward scaling. It is not hard to imagine that if only the reward
scale is changed but which action is better than another does not change, the final optimal
policy should be the same. This is essentially the a reward shaping [202], where the shaped
reward R′, original reward R, and shaping reward function F satisfies R′ = R + x × F ,
F = R and x ∈ (−1,∞).

D.7.3 World Representation Gap Between Video and Experience
Segment

The fundamental idea of this work is to learn a preference based reward function from
human preference by showing preference teacher two video segments. However, we should

274

notice that not the video segments but the experience segments are used in training the
reward function. Therefore, we cannot ignore the fact that there is a representation gap
between video and experience segments, which further results in a perception gap and
influences the effectiveness of preference transferring from human to the preference-based
reward function. Take our application as an example, on one hand, the video segment
rendered in the simulator cannot visually reflect subtle activation intensity difference of
actuators, while this can be captured by the experience segment where actuator intensity
is represented by real value. On the other hand, the action pattern is easier to be perceived
by preference teacher from the video segment than that from experience segment, because
neither the representation of observation space nor the reward estimator are designed to
deal with temporal information that is essential for learning preferred behavior pattern.
Therefore, it is not hard to imagine that transferring human preference from human to
reward model is easier for tasks where the representation gap is small than the tasks where
the gap is large.

If applying the proposed method to real world application, the gap will be more promi-
nent because of limited sensing capacity, complex lighting condition, and complicated sur-
rounding environment, etc. Fig. D.37 shows some distinct scenes that could exacerbate the
representation gap. Fig. D.37a and Fig. D.37b show different camera positions will have
different views with different obstacles and be affected different by light coming through
the windows. Fig. D.37c shows a partially public accessible gate which may be open or
closed depending on the business owner, where when it is closed only the part close to
elevator publicly accessible. Fig. D.37d shows the light condition on a special event at
night, which is significantly distinct from that at daytime. Fig. D.37e shows a group of
three visitors during daytime, where one (highlighted in red arrow) of them knows more
about the sculpture and leads the group interaction with the sculpture by giving demon-
stration. Fig. D.37f shows two group interactions, where one group of two is close to the
camera and another group of four beyond the gate as highlighted with red arrows, and
they are all guests from the event held onsite. Fig. D.37g shows a worker (highlighted
in red arrow) is introduce the sculpture to her potential customers. Fig. D.37h shows
a one-to-one interaction where a visitor self-explored how to interact with the sculpture.
Fig. D.37i shows a worker who is just passing by the sculpture without any intention to
interact. The various scenes shown in the figure are good examples to demonstrate how
complex the context can be perceived by a human when a human see a sequence of such
images from a video segment. As mentioned by expert 2 in section D.6.4, the engagement
of the sculpture’s behavior also depends on the context, whereas this context cannot be
represented by the observation of an RL agent. Without a good understanding of world
representation gap, it will be very difficult to successfully apply the proposed method to

275

(a) Different Camera Position (b) Different Camera Position (c) Partially Public Accessible
Gate

(d) Light Condition on Special
Event

(e) Group Visitors at Daytime (f) Group Visitors at Night

(g) Worker Guided Visitors (h) Self-explorer (i) Worker Passing By

Figure D.37: Example Scenes Challenging World Representation Gap

real world and may possible to result in wrong reward and cause safety concern.

D.7.4 Common Preference VS Personalized Preference

In this work, we continuously trained the reward model with the preference labels from
different expert teachers, with the assumption that experts share common preference with
each other and with potential visitors of the sculpture. One may argue that Preference
Learning should target to individual rather than a group of people, as the group of people
may have very different preferences. It does make sense if learning from different under-
lying preference models, the reward model induced from the preference labels provided

276

by these different preference models may fluctuate continuously resulting in highly non-
stationary reward model, especially for opposite preference models. However, experts’
preference cannot be dramatically different and must share something in common, because
otherwise, there is no way for experts to design a pre-scripted behavior that everyone is
happy. Actually, for pre-scripted behavior there is more strict assumption that not only
the experts but also the visitors share the same preference on engaging behavior. The
common preference assumption is, to some extent, validated by our survey data shown
in Table 9.6 that experts do share something in common in term of engaging behavior.
Another reason, that we use the whole preference dataset to train a reward model rather
than personalizing the reward model for each expert, is the number of preference labels
is too small for each expert to avoid highly biased reward model as discussed in section
D.7.1, unless we can introduce techniques to estimate uncertainty in the reward model
which is definitely an interesting direction for the future. In addition, if there are hundreds
of preference teachers, it is impractical to maintain a set of reward model and policy for
each of them.

Nevertheless, it does not mean learning personalized preference is not a good idea or
impossible. If the preference teacher population is not too large, we could separately learn
different reward functions and policies for different teachers by tracking each of them. In
this way, personalized engaging behavior would be more appealing for the teacher. How-
ever, if the preference teacher population is too large to separately maintain the personal-
ized reward model and policy, or if it is impossible to track each teacher, we can probably
cluster preference teachers by some metrics to reduce the preference teacher types and
separately train reward model and policy for each cluster. For this method, we also need
to find a way to connect a specific preference type with the user that the robot is facing
without much input from the user. For example, ideally we can infer the user’s preference
from the way he/she interact with the robot, or collect a small set of preference labels, e.g.,
only 1 or 2, from the user, then infer the user’s preference from the provided preference
labels, given the segment pairs for this small set of preference labels are representative to
differentiate one preference type from the others.

D.7.5 Expert VS Novice Teacher

Expert and novice preference teachers may share common preference as discussed before,
but it is very likely that they have different preference on the tools that can be used to teach
a LAS how to engage. Because of the limited knowledge carrying capacity of the proposed
preference teaching, expert 1 and 2 are prone to other ways to teach engaging behavior,
such as action demonstration, action correction, or programming, as shown in Table 9.4.

277

However, we need to understand that these methods are way cognitively demanding and
difficult to use for novices, especially considering on parameterized action space, novices
do not know how to preciously interpret parameterized action into the raw actuator space.
In addition, one practical challenge in our application is the robot, i.e., a LAS, cannot be
paused for a user to correct its action and resumed later, which is quite unique to other
action correction applications where the robot could be paused and wait for human input.
What makes things worse is the there are two types of HRI involved in real application
as illustrated in Fig. D.38 without considering the potential human-to-human interaction
popular in group interaction, where one type of HRI happens between the teacher and the
robot and the second type of HRI happens between the robot and visitors, which means
even if we could pause the robot for human input, we could not pause the visitors who
are engaging with the robot. For experts, they have a lot of experiences and are able
to imagine various of scenario so that they could possibly design the behavior of a robot
without the involvement of the second type of HRI. However, this is impossible for novice
teacher. Therefore, we believe preference teaching is probably the most feasible way to
allow novices to teach the LAS how to generate engaging behavior.

Figure D.38: Two Types of HRI Involvement

278

	Examining Committee
	Author's Declaration
	Statement of Contributions
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Overview
	Contributions
	Structure

	Related Work
	Human-Robot Interaction
	Deep Reinforcement Learning
	Overcoming Overestimation Problem in DRL
	Approaches to Solving POMDPs
	Partial Observability during DRL

	Preference Learning in HRI

	Background
	Decision Making
	Markov Decision Process (MDP)
	Partially Observable Markov Decision Process (POMDP)

	Reinforcement Learning (RL)
	Traditional RL Methods
	Multi-step Methods

	Deep Reinforcement Learning (DRL)
	DRL Foundations
	Overestimation Problem
	Deep Deterministic Policy Gradient (DDPG)
	Twin Delayed Deep Deterministic Policy Gradient (TD3)
	Soft Actor-Critic (SAC)
	Proximal Policy Optimization (PPO)

	Preference Learning

	Experiment Testbeds
	Testbed 1: Aegis Canopy
	Physical Installation
	Pre-scripted Behavior

	LAS Simulation Toolkit (LAS-Sim-Tkt)
	LAS-Behavior-Engine (LAS-BE)
	LAS-Unity-Simulator (LAS-Uni-Sim)
	LAS-Agent-Internal-Environment (LAS-Intl-Env)

	Testbed 2: Meander
	Physical Installation
	Pre-scripted Behavior

	Summary

	Learning to Engage with Interactive Systems: A Field Study on Deep Reinforcement Learning in a Public Museum
	Proposed Approach
	Parameterized Learning Agent: Learning on Top of Pre-scripted Behavior
	Learning in Raw Action Space

	Experiments
	Experimental Procedure
	Data Collection
	Data Preprocessing
	Data Analysis
	Quantitative Evaluation

	Results
	Quantitative Comparison Between PB and PLA
	Analysis of Actions Automatically Generated by PLA
	Human Survey Results

	Discussion
	Summary

	The Effect of Multi-step Methods on Overestimation in Deep Reinforcement Learning
	Proposed Methods
	Multi-step DDPG (MDDPG)
	Mixed Multi-step DDPG (MMDDPG)

	Experiments
	Experimental Evidence of Multi-step Methods' Effect on Alleviating Overestimation
	Performance Comparison

	Discussion
	Summary

	Memory-based Deep Reinforcement Learning for POMDPs
	Proposed Approach
	Recurrent Actor-Critic Framework
	Optimization of the Recurrent Actor-Critic

	Experiment Settings
	Results
	Performance Comparison
	Policy Generalization

	Ablation Study
	Effect of Double Critics and Target Policy Smoothing
	Effect of Current Feature Extraction
	Including Past Action Sequence in Memory

	Summary

	Partial Observability during DRL for Robot Control
	Exemplar Robot Control Problem
	The Potential Effect of Multi-step Bootstrapping on Passing Temporal Information
	Hypotheses Verification
	Experiments
	Results on Benchmark Tasks with Observation Delay and Action Transformation
	Results on Benchmark Tasks with Partial Observability
	Revisit LAS

	Summary

	Engaging Behavior Generation from Human Preferences In A Large Scale Interactive System: A Simulation Experiment
	Methodology
	Overall Framework
	Preference Learning of Reward Function
	Policy Learning from Preference-based Reward Function

	Individual Preference vs. Aggregate Preference
	Experiment Settings
	Control Task Description
	Preference Teacher
	Participating Procedure

	Experiment Results On Simulated and Constrained Human Preference
	Experiment Results on Unconstrained Expert Preference
	Expert Data Summary
	Expert Teacher Survey Data

	Limitations
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	APPENDICES
	Appendix for Chapter 5
	Pseudo-code for DDPG-based PLA

	Appendix for Chapter 7
	Algorithms Implementation
	Supplementary Results
	Performance Comparison
	Robustness to Partial Observability
	Effect of History Length
	Policy Generalization
	A Glance of The Relationship Among the Return, the Predicted Q-value, and the Extracted Memory of the Actor-Critic
	Supplementary results for the Ablation Study

	Appendix for Chapter 8
	The Potential Effect of Multi-step Bootstrapping on Passing Temporal Information
	Algorithms Implementation

	Appendix for Chapter 9
	Pseudo-code For Training Preference-based Reward Function
	Experiment Settings for Preference Learning
	Trajectory Generation
	Segment Generation
	Segment Pair Sampling
	Preference Query Schedule
	Preference Labeling
	Web-based Interface for Human Preference Teaching

	Experiment Procedures for Different Conditions
	Experiment With Hand-crafted Reward
	Experiment With Preference-based Reward

	Experiment Implementation
	Simulation of LAS with las_sim_tkt
	Reward Function Choosing
	RL Algorithms Implementation
	Data Management

	Preliminary Experiment Results
	Results on Hand-crafted Reward
	Results on Simulated Preference
	Results on Constrained Human Preference

	Results on Unconstrained Expert Preference
	Expert Data Summary
	Policy Evolution Accompanying Preference-based Reward
	Preference Prediction of Various PB-Reward Models
	Expert Teacher Survey Data

	Discussion
	Bias in Preference Based Reward Model
	Reward Scaling In Reward Saturation
	World Representation Gap Between Video and Experience Segment
	Common Preference VS Personalized Preference
	Expert VS Novice Teacher

