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Abstract 

Moving interfaces play vital and crucial roles in a wide variety of different natural, technological, and 

industrial processes, including solids dissolution, capillary action, sessile droplet spreading, and 

superhydrophobicity. In each of these systems, the fundamental process behaviour is entirely dependent on the 

interface and on the underlying physics governing its movement. As a result, there is significant interest in 

studying and developing models to capture the behaviour of these moving interface systems over a wide variety 

of different applications. However, the simulation techniques used to model moving interfaces are limited in 

their application, as the molecular-level models are unable to simulate interface behaviour over large spatial 

and temporal scales, whereas the large-scale modeling techniques cannot account for the nanoscale processes 

that govern the interface behaviour or the molecular-scale fluctuations and deviations in the interface. 

Furthermore, methods developed to bridge the gap between the two scales are prone to error-induced force 

imbalances at the interface that can result in fictitious behaviour. 

In order to overcome these challenges, this study developed a novel kinetic Monte Carlo (kMC)-based 

modelling technique referred to as Moving Front kMC (MFkMC) to adequately and efficiently capture the 

molecular-scale events and forces governing the moving interface behaviour over large length and timescales. 

This framework was designed to capture the movement of transiently-varying interfaces in a kinetic-like 

manner so that its movement can be described using Monte Carlo sampling. The MFkMC algorithm 

accomplishes this task by evaluating the behaviour of the interfacial molecules and assigning kinetic Monte 

Carlo-style rate equations that describe the transition probability that a molecule would advance into the 

neighbouring phase, displacing an interfacial molecule from the opposing phase and thus changing the 

interface. The proposed algorithm was subsequently used to capture the moving interface behaviour within 

crystal dissolution, capillary rise, and sessile droplet spreading on both smooth and superhydrophobic surfaces. 

The individual system models for each application were used to analyze the behaviour within each application 

and to tackle challenges within each field. 

The MFkMC modelling method was initially used to capture crystal dissolution for applications in 

pharmaceutical drug delivery. The developed model was designed to predict the dissolution of a wide variety 

of crystalline minerals, regardless of their composition and crystal structure. The MFkMC approach was 

compared against a standard kMC model of the same system to validate the MFkMC approach and highlight 

its advantages and limitations. The proposed framework was used to explore ways of enhancing crystal 

dissolution processes by assessing the variability from environmental uncertainties and by performing robust 

optimization to improve the dissolution performance. The approach was used to simulate calcium carbonate 

dissolution within the human gastrointestinal system. Polynomial chaos expansions (PCEs) were used to 

propagate the parametric uncertainty through the kMC model. Robust optimization was subsequently 



vi 

 

performed to determine the crystal design parameters that achieve target dissolution specifications using low-

order PCE coefficient models (LPCMs). The results showcased the applicability of the kMC crystal dissolution 

model and the need to account for dissolution uncertainty within key biological applications. 

The MFkMC approach was additionally used to capture capillary rise in cavities of different shapes. The 

proposed model was adapted to capture the movement of a fluid-fluid interface, such as the moving interface 

present in capillary action studies, using kMC type approaches based on the forces acting locally upon the 

interface. The proposed force balance-based MFkMC (FB-MFkMC) expressions were subsequently coupled 

with capillary action force balance equations to capture capillary rise within any axisymmetric cavity. The 

developed model was validated against known analytical models that capture capillary rise dynamics in perfect 

cylinders. Furthermore, the resulting multiscale model was used to analyze capillary rise within axisymmetric 

cavities of irregular shape and in cylinders subject to surface roughness. These studies highlighted that the FB-

MFkMC algorithm can capture the macroscale behaviour of a system subject to molecular-level irregularities 

such as surface roughness. Furthermore, they highlighted that phenomena such as roughness can significantly 

affect moving interface behaviour and highlight the need to accommodate for these phenomena. 

MFkMC was furthermore extended to capture sessile droplet spreading on a smooth surface. The 

developed approach adapted the capillary action FB-MFkMC model to capture the spreading behaviour of a 

droplet based on the force balance acting upon the droplet interface, which was developed using analytical 

inertial and capillary expressions from the literature. This study furthermore derived a new semi-empirical 

expression to depict the viscous damping force acting on the droplet. The developed viscous force term depends 

on a fitted parameter 𝑐, whose value was observed to vary solely depending on the droplet liquid as captured 

predominantly by the droplet Ohnesorge number. The proposed approach was subsequently validated using 

data obtained both from conducted experiments and from the literature to support the robustness of the 

framework. The predictive capabilities of the developed model were further inspected to provide insights on 

the sessile droplet system behaviour. 

The developed FB-MFkMC model was additionally modified to capture sessile droplet spreading on 

pillared superhydrophobic surfaces (SHSs). These adjustments included developing the Periodic Unit (PU) 

method of capturing periodic SHS pillar arrays and accommodating for the changes necessary to capture the 

droplet spreading behaviour across the gaps between the pillars (i.e., Cassie mode wetting). The proposed SHS-

based FB-MFkMC (SHS-MFkMC) model was furthermore adapted to accommodate for spontaneous Cassie-

to-Wenzel (C2W) droplet transitions on the solid surface. The capabilities of the full SHS-MFkMC model to 

capture both radial sessile droplet spread and spontaneous C2W transitions were compared to experimental 

results from within the literature. Furthermore, a sensitivity analysis was conducted to assess the effects of the 

various system parameters on the model performance and compare them with the expected system results. 
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List of Abbreviations 

BCC      Body Centered Cubic 

C2W     Cassie-to-Wenzel 

CAH     Contact Angle Hysteresis 

CFD     Computational Fluid Dynamics 

FB-MFkMC    Force Balance-based Moving Front kinetic Monte Carlo 

kMC         Kinetic Monte Carlo  

LB     Lattice Boltzmann 

LPCM     Low-order PCE Coefficient Model 

MC         Monte Carlo 

MD     Molecular Dynamics 

MFkMC    Moving Front kinetic Monte Carlo 

NISP     Non-Intrusive Spectral Projection 

PCE       Polynomial Chaos Expansion 

PDE         Partial Differential Equation 

PDF       Probability Distribution Function 

PRMSE    Percent Root Mean Squared Error 

PU     Periodic Unit 

SHS       Superhydrophobic Surface 

SHS-MFkMC    Moving Front kinetic Monte Carlo for Superhydrophobic Surfaces 

TLK      Terrace Ledge Kink model 

W2C     Wenzel-to-Cassie  
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List of Symbols 

Latin Symbols 

⊿  crystal shape 

𝐴  surface area, (mm2) 

𝒜  ratio of capillary forces to viscous forces in the Lucas-Washburn capillary rise 

equation, (m2/s) 

𝑎  PCE coefficient 

𝒶  fitted constant term in the modified Hoerl equation 

𝑎𝑐𝑎  empirical fitting parameter for cylindrical approximation of inertial force added 

in to prevent asymptoting, (m) 

𝑎𝑝  SHS pillar length, (μm) 

𝒂𝝌(𝑡𝑚)  vector of 𝜒 th-order PCE coefficients for a model observable 𝚿(𝑡𝑚)  at a 

discretized time point 𝑡𝑚 

ℬ   ratio of gravity forces to viscous forces in the Lucas-Washburn capillary rise 

equation, (m/s) 

𝒃  vector of LPCM coefficients for a given LPCM 

𝒷  fitted exponential term in the modified Hoerl equation 

𝑏𝑝  SHS interpillar gap distance, (μm) 

𝑏   휄th LPCM coefficient for a given LPCM 

𝒃𝜒
𝚮(𝚵𝚮)  vector of 𝜒 th-order polynomial basis functions orthogonal to the uncertain 

parameters 𝚮 as a function of 𝚵𝚮 

𝐶𝑎  dimensionless Capillary number 

𝐶𝑃𝑈  CPU cost 

𝐶𝑚  concentration of crystal precursor species in the surrounding fluid phase, (mol) 

𝑐  empirical dimensionless viscous damping parameter derived for the viscous 

damping force within a sessile droplet 

𝑑, 𝑑1, 𝑑2 general numbers  



xxi 

 

𝑑𝑉𝐿𝑉  distance between a droplet VLV interface site and the nearest droplet-contacted 

pillar edge for sessile droplet spreading on an SHS, (mm) 

𝐸  activation energy of dissolution for a bond between two neighbouring ions in a 

CaCO3 crystal, (eV) 

𝐹  probability distribution function 

ℱ  collection of non-acceleration terms within the inertial force term of a sessile 

droplet, (kg) 

𝐹−1 (Π|𝚿(α𝑐𝑓|𝑡𝑚))  inverse cumulative distribution function of a model output 𝚿(𝑡𝑚) at a discretized 

time point 𝑡𝑚 evaluated at a probability Π for a given confidence α𝑐𝑓 

�⃑�  capillary force acting upon an interface, (N) 

𝑓  local force per unit length acting on a triple contact line interface site, (N/m) 

𝒻  fraction of the bottom surface of a sessile droplet in the Cassie state on a 

superhydrophobic surface that is in contact with the solid surface 

𝑔  acceleration due to gravity at the Earth’s surface, (m/s2) 

𝐻  height of a feature (capillary rise cavity segment, SHS pillar, sessile droplet etc.), 

(mm) 

𝐻𝑒𝜒(𝚵𝚮)  𝜒th-order Hermite polynomial for a vector of randomly-generated realizations 

with standard properties 𝚵𝚮 dependent upon 𝚮 for predicting output uncertainty 

distributions using PCE 

ℎ  rise height/drop of a fluid undergoing capillary action within a cavity, (mm) 

𝒽𝑟𝑒𝑙𝑒𝑎𝑠𝑒  release height of a droplet over-top of a solid surface 

𝒽𝑠𝑎𝑔  sag height of a sessile droplet VLV interface site spreading between two pillars 

on an SHS, (nm) 

𝐼  number of interface sites 𝑖 within a MFkMC/standard kMC system at any time 𝑡 

ℐ  number of uncertain parameters 휂𝒾 ∈ 𝚮 for a system 

𝒥  number of model outputs 𝜓𝒿 ∈ 𝚿 for a system 

𝐾  number of non-moving interface events 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖  accommodated in a moving 

interface system by the MFkMC algorithm 

𝑘′  pre-exponential rate constant for the movement of a triple contact interface, (s-1) 
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𝑘0  pre-exponential factor for the rate of crystal dissolution 𝑊𝒏,𝚯𝒏
,  

(s-1) 

𝑘𝑏  Boltzmann constant, (eV/K) 

𝐿𝑛𝑜𝑟𝑚  normalized distance from the utopia point for the bi-objective crystal dissolution 

optimization problem 

𝑙  length of a crystal edge or a PU, (Å) 

ℓ  characteristic length of a system, (m) 

ℓ𝓅-norm  𝓅th order norm, for use as the objective function in bi-objective optimization 

𝑀  number of discretized time points where the model outputs 𝚿 are analyzed under 

uncertainty 

𝑀𝑒𝑚𝑜𝑟𝑦  memory allocation requirements of a modelling method 

𝑚  mass, (kg) 

𝑁𝜈  number of discretization points used to sub-divide a design parameter 𝜔𝜈 for a 

given system 

𝒩(�̅�, 𝜎𝒩
2 )  normal distribution with mean �̅� and variance 𝜎𝒩

2  

�̂�  surface normal vector 

𝓃  number of datapoints measured from experimental results 

𝑛𝑏𝑑  number of bonds shared between a molecule and its nearest neighbours 

𝒏𝒃𝒅  vector of number of bonds 𝑛𝑏𝑑,𝜐 between a particle and its neighbours in the 𝜐th 

direction; 𝒏𝒃𝒅 = [𝑛1 … 𝑛𝜐 … 𝑛Υ] 

𝑛𝑑(𝑡𝑚)  number of molecules remaining within a dissolving crystal at a discretized time 

point 𝑡𝑚 

𝑛𝜈  discretized point of the 휈th process design condition 𝜔𝜈 for a given system 

𝑂ℎ  dimensionless Ohnesourge number 

𝑜(𝛿𝜏)  probability that more than one event 𝜖 will occur over the vanishingly-small time 

interval 𝛿𝜏 

𝑃  probability 
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𝑃(𝛿𝑡, 𝜖)  probability that an event 𝜖 will occur at time 𝑡 + 𝛿𝑡, given the current system 

state at time 𝑡 

𝑃𝑐𝑜𝑛𝑡(𝛿𝑡)  continuous probability that any event 𝜖𝑖  will occur at time 𝑡 + 𝛿𝑡 , given the 

current system state at time 𝑡 

𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡)  discrete probability that the next event to occur will be 𝜖𝑖 specifically, given that 

the event will occur at time 𝑡 + 𝛿𝑡 

𝑃0(𝛿𝑡)  probability, given the current system state at time 𝑡, that no event will occur 

between time 𝑡 and time 𝑡 + 𝛿𝑡 

𝑞  size of a single atom defect for surface roughness 

𝑅  radius, (mm); radial cylindrical coordinate 

ℛ  radial cylindrical coordinate 

𝑅𝑒  dimensionless Reynolds number 

𝑟𝑑(𝑡𝑚)  crystal dissolution rate at a discretized time point 𝑡𝑚 

𝑺𝒗  viscous stress tensor, (N/m2) 

𝑠  crystal size, (number of particles) 

𝑇  temperature, (K, oC) 

𝑡  system time, (s) 

𝑡𝑑  total time required for a crystal to completely dissolve, (s) 

𝑡𝑓  stopping time for the MFkMC algorithm, (s) 

𝑢  fluid velocity, (m/s) 

𝒖  fluid velocity vector, (m/s) 

𝑉  volume, (m3) 

𝑉𝑅𝑠  volume accommodation term in the semi-empirical viscous damping force 

expression for sessile droplets, derived based on the radius of the droplet as a 

perfect sphere, (mm) 

𝑣  velocity of an interface site, (m/s) 

𝑣0  initial local velocity of an interface site, (m/s) 

𝓋  characteristic velocity of a system, (m/s) 
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𝒲  Lambert W function 

𝑊  rate equation, (s-1) 

𝑊𝑒  dimensionless Weber number 

𝑤𝑝𝑎𝑟𝑒𝑡𝑜  weighted term for determining the pareto front 

𝑤𝑆𝐻𝑆  ratio of the surface area of a sessile droplet in contact with the solid surface to the 

surface area of the bottom side of a sessile droplet  

𝓌  fitted power term in the modified Hoerl equation 

𝒙  vector of spatial coordinates for a given point 

𝑥  cartesian x-axis coordinate 

𝓍0,⊿  initial crystal size guess for crystal dissolution optimization for a crystal of shape 

⊿ 

𝑦  cartesian 𝑦-axis coordinate 

𝓎⊿  binary variable to represent the discrete nature of the crystal shape ⊿  when 

performing optimization; 𝓎⊿ = 1 for the selected ⊿ and 𝓎⊿ = 0 for all other ⊿   

𝔷  axial cylindrical coordinate 

  

Greek Symbols 

α𝑐𝑓  confidence level for the probabilistic bounds 

𝛽𝑠  local angle of a cavity wall relative to a horizontal surface for capillary action, (°) 

Γ(𝒙, 𝑡)  an interface at spatial coordinates 𝒙 and at time 𝑡 

𝛾  interfacial (surface) tension, (N/m) 

𝚫  vector of considered crystal shapes for crystal dissolution 

Δ𝐸  correction activation energy/stabilization energy to accommodate for crystal 

surface particles dependent on their coordination number, (eV) 

Δ휇𝑐𝑝  difference in chemical potential between the crystal precursor species and the solid 

crystal, (eV) 

Δ𝜔𝜈  distance between each discretized point used to sub-divide a design parameter 𝜔𝜈 

for a given system 
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𝛿𝑅  molecular-level surface roughness within a cavity for capillary rise action, (nm) 

𝛿𝑡  stochastically-determined kMC time interval 

𝛿𝜏  vanishingly-small time interval describing the probability that an event 𝜖 will take 

place between time 𝑡 + 𝛿𝑡 and time 𝑡 + 𝛿𝑡 + 𝛿𝜏 

𝛿Ω  interface of a volume of fluid 

𝜖  kMC/MFkMC event 

휁  surface roughness, (μm) 

𝚮  vector of uncertain parameters for a system 

휂𝒾  value of the 𝒾th uncertain parameter 

𝚯𝒏𝒃𝒅
  angle orientation configuration for a particle with 𝒏𝒃𝒅  nearest neighbour 

configuration 

휃  contact angle of a fluid droplet interface point, (°) 

휃𝑤𝑎𝑙𝑙  contact angle between droplet sag and a pillar wall on an SHS, (°) 

𝜗  interaxial angle for a pristine crystal, where 𝜗 ∈ {𝜗𝛼 , 𝜗𝛽 , 𝜗𝛾}, (°) 

휅−1  capillary length; ratio between a fluid’s capillary and gravity forces, (μm) 

휆  spatial discretization and step size parameter for fluid-fluid interface movement, 

(m) 

휇  viscosity, (Pa s) 

Ν  number of process design conditions under which a PCE model is developed for a 

given system 

𝚵𝚮  vector of randomly-generated realizations with standard properties dependent 

upon 𝚮 for predicting output uncertainty distributions using PCE 

휉  random number  

휉𝑐𝑜𝑛𝑡  random number generated from a uniform distribution used to calculate the 

MFkMC time interval 𝛿𝑡 

휉𝑑𝑖𝑠𝑐  random number generated from a uniform distribution used to select the discrete 

event 𝜖𝑖 that will take place using MFkMC 
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Π  probability at which the inverse cumulative distribution function 

𝐹−1 (Π|𝚿𝜍(α𝑐𝑓|𝑡𝑚)) is evaluated 

𝜌  density, (kg/m3) 

𝜍  line tension of the triple contact line in a solid/fluid/atmosphere interface system, 

(pN) 

𝜎2  variance 

𝜑𝑙𝑠𝑚  implicit boundary surface of the level set method 

𝜑𝑝  SHS pillar base angle, (°) 

𝜙  azimuthal angle in polar and cylindrical coordinates 

𝚿  vector of model outputs for a system 

𝜓𝒿(𝑡𝑚)  𝒿th model output for a system at a given discretized time point 𝑡𝑚 

𝛚  vector of design conditions under which a PCE model is developed  

𝜔𝜈  휈th process design condition under which a PCE model is developed 

 

Subscripts and Superscripts 

⊿  crystal shape 

𝑎  acute interaxial angle marker for a pristine crystal 

𝑎𝑎𝑎  acute-acute-acute interaxial angle marker for a kink (𝑛𝑏,𝑡𝑜𝑡 = 3) crystal particle  

𝑎  primary axis of a pristine crystal 

𝑎𝑑𝑣  advancing  

𝑎𝑖  property of an atmosphere interface time 

𝑎𝑣𝑔  parameter modified to prevent phantom pinning 

𝑏  pertaining to the base of an SHS structure 

𝑏  secondary axis of a pristine crystal 

𝑏𝑑  pertaining to the solid-solid bonds of a solid surface particle 

𝑐  tertiary axis of a pristine crystal 

𝑐𝑎  cylindrical approximation 
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𝑐𝑎𝑝  capillary 

𝑐𝑏  Cassie state 

𝑐𝑓  confidence  

𝑐𝑜𝑛𝑒  conical geometry parameter 

𝑐𝑜𝑛𝑡  continuous probabilities and parameters 

𝑐𝑝  chemical potential 

𝑐𝑟  capillary rise/capillary action 

𝑐𝑢𝑏𝑒  cubic (rhombohedral) crystal parameter 

𝑐𝑦𝑙  cylindrical geometry parameter 

𝑐𝑤  Cassie wetting 

𝑑  dissolution 

𝑑𝑏  bottom surface of a sessile droplet 

𝑑𝑖  property of a droplet interface time 

𝑑𝑖𝑠𝑐  discrete probabilities and parameters 

𝑑𝑜𝑑𝑒  dodecahedral crystal parameter 

𝑑𝑟𝑜𝑝  droplet 

𝐸  property applied to the activation energy of dissolution 

𝑒  equilibrium (intrinsic) 

𝑒𝑞  equivalent 

𝑒𝑥𝑝  experimental 

𝑓  final 

𝑓𝑐  accommodating for impossible droplet spreading in non-radial directions and the 

formation of satellite droplets 

𝑔  gravity  

ℐ  total number of uncertain parameters 𝚮  

𝑖  site index number for the skMC and MFkMC algorithms 

𝒾  index number for a system’s uncertain parameters 𝚮 
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𝑖𝑚𝑝𝑎𝑐𝑡  vertical impact 

𝑖𝑛𝑡  interpolated 

𝑖𝑛𝑡𝑎  inertia 

𝑗  index for a bulk phase molecule advancing into a given interface site for MFkMC 

𝒿  index for time points measured from experimental results 

𝑗𝑖  index for the nearest neighbours to a given site 𝑖 

𝑘  index for non-moving interface events 

𝑙  lower probabilistic bound 

𝑙𝑜𝑤  lower 

𝑙𝑠𝑚  level set method parameter 

𝑙𝑣  fluid-atmosphere (liquid-vapour) property 

𝑙𝑎  pertaining to the primary axis length of a pristine crystal 

𝑙𝑏  pertaining to the secondary axis length of a pristine crystal 

𝑙𝑐  pertaining to the tertiary axis length of a pristine crystal 

𝑀𝐹𝑘𝑀𝐶  measure of MFkMC algorithm performance 

𝑚  index number for the discretized time points 

𝑚𝑎𝑥  pertaining to the MaxTime optimization study 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚  maximum value 

𝑚𝑓  MFkMC events pertaining to the movement of an interface 

𝑚𝑖𝑛  pertaining to the minVar optimization study 

𝑚𝑖𝑛𝑖𝑚𝑢𝑚  minimum value 

𝑚𝑖𝑠𝑐  MFkMC events pertaining to non-interfacial movement events 

𝑚𝑜𝑙  molar 

𝑛𝜈  discretized point index of the 휈th process design condition 𝜔𝜈 for a given system 

𝒏𝒃𝒅  parameter for a surface particle with 𝑛𝑏,𝜐 number of bonds between itself and its 

nearest neighbours in the 𝜐th direction 

𝑛𝑎  property of a parameter before it is modified to accommodate for phantom pinning 
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𝑛𝑐  property that does not accommodate for unphysical droplet spreading deviations 

𝑛𝑜𝑟𝑚  normalized 

𝑜  obtuse interaxial angle marker for a pristine crystal 

𝑜𝑜𝑎  obtuse-obtuse-acute interaxial angle marker for a kink (𝑛𝑏,𝑡𝑜𝑡 = 3) crystal particle  

𝑜𝑟𝑑  accommodating for unphysical droplet radius deviations 

𝑃𝑈  property of a periodic unit 

𝑃𝑈𝑖𝑛𝑡  parameter value inside a periodic unit 

𝑝  property of an SHS pillar 

𝓅  𝓅th order term, used to determine the norm objective functions for optimization 

𝑝, 𝑏  property at the base of an SHS pillar 

𝑝, 𝑡  property at the top of an SHS pillar 

𝑝𝑖𝑛  property of a receding fluid interface pinned along the edge of an SHS pillar 

𝑝𝑎𝑟𝑒𝑡𝑜  parameter for determining the pareto front 

𝑝𝑟𝑒𝑣  parameter value at the previous timestep 𝑡 − 𝛿𝑡 

𝑝𝑠  perfect sphere projected onto the spherical cap formed by a droplet 

𝑞  index for selecting an event to occur according to kMC 

𝑅𝑠  volume accommodation term 

ℛ  radial cylindrical component of a vector quantity 

ℛ𝑖  𝑖th radial cylindrical coordinate 

𝑟𝑒𝑐  receding 

𝑆𝐻𝑆  parameter pertaining to the solid-fluid contact on an SHS 

𝑠  property pertaining to solid and roughness structures 

𝑠𝑎𝑔  property pertaining to the sag of a VLV between SHS pillars 

𝑠𝑑𝑏𝑖  bottom surface of a sessile droplet in contact with a solid surface 

𝑠𝑘𝑀𝐶  measure of standard kMC algorithm performance 

𝑠𝑙  solid-fluid (solid-liquid) property 

𝑠𝑝ℎ𝑒𝑟𝑒  spherical crystal parameter, spherical cavity geometry parameter 
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𝑠𝑡𝑒𝑝  property related to the step site of an etch pit 

𝑠𝑣  solid-atmosphere (solid-vapour) property 

𝑇  parameter pertaining to cleavage face stabilization for a terrace crystal site 

(𝑛𝑏,𝑡𝑜𝑡 = 5) 

𝑡  pertaining to the top of an SHS structure 

𝑡𝑑  property applied to the crystal dissolution time 

𝑡𝑒𝑡𝑟𝑎  tetrahedral crystal parameter 

𝑡𝑜𝑡  total 

𝑡𝑣𝑓  property for droplet spread on an SHS, for an interface site if the site were a VLV 

site instead of a TCL site, or vice versa 

𝑢  upper probabilistic bound 

𝑢𝑝  upper 

𝑉𝐿𝑉  property of a VLV interface site 

𝑣  viscous 

𝑣𝑑  pertaining to the triple contact interface site vertical movement along a pillar wall 

𝑤  Wenzel state 

𝑤𝑎𝑙𝑙  property pertaining to the wall of an SHS structure 

𝑥  x-axis  

𝑦  y-axis 

𝔷  axial cylindrical component of a vector quantity 

𝔷𝑖  𝑖th axial cylindrical coordinate 

𝛼  interaxial angle between 𝑙𝑏 and 𝑙𝑐 for a pristine crystal, (°) 

𝛽  interaxial angle between 𝑙𝑎 and 𝑙𝑐 for a pristine crystal, (°) 

𝛾  interaxial angle between 𝑙𝑎 and 𝑙𝑏 for a pristine crystal, (°) 

휀  advancing (휀 = 𝑎𝑑𝑣) and receding (휀 = 𝑟𝑒𝑐) index 

𝚮  set of all uncertain parameters for a system 

휂𝒾  𝒾th uncertain parameter of a system 
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𝚯𝒏𝒃𝒅
  parameter for a surface particle with a given angle orientation 𝚯 for an 𝒏𝒃𝒅 nearest 

neighbour configuration 

휄  index number for LPCM coefficients 

Ν  total number of process design conditions under which a PCE model is developed 

for a given system 

휈  index number for a process’s design conditions 𝛚 under which a PCE model is 

developed  

휈𝜖  index of different types of MFkMC events that can occur; 휈𝜖 = 1  denotes a 

moving interface event and 휈𝜖 > 1 denotes one of the non-moving interface events 

휉𝒾, 𝒾
  randomly-generated realization with standardized properties of the 𝒾th uncertain 

parameter 휂𝒾, for predicting output uncertainty distributions using PCE 

𝜍  designation for the upper (𝜍 = 𝑢) and lower (𝜍 = 𝑙) probabilistic bounds of an 

output 𝚿(𝑡𝑚) 

Υ  number of orthogonal lattice vectors for a given crystal structure 

𝜐  index number for the different orthogonal lattice vectors (i.e., axis directions) of a 

given crystal structure 

𝜙𝑖  𝑖th azimuthal cylindrical coordinate 

𝜒  order of the series expansions used for PCE 

𝚿(𝑡𝑚)  parameter applied to the vector of model outputs at a discretized timepoint 𝑡𝑚 

 

Additional Notation 

�̅�  average value of a parameter 𝑑 

�̃�  dimensionless value of a parameter 𝑑 

�̂�  nominal value of a parameter 𝑑 

⌊𝑑⌉  rounding of a parameter 𝑑 to the nearest integer value 

𝑚𝑜𝑑(𝑑1, 𝑑2)  remainder of division between numerator 𝑑1 and denominator 𝑑2 
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Chapter 1 - Introduction & Motivation 

The interfacial phenomena that occur at the boundary between two or more phases are critical to a wide 

variety of different processes throughout engineering.1 The interfaces within these systems do not frequently 

remain static and are known to move and undergo surface fluctuations in time. Accordingly, these processes 

can be referred to as moving interface systems, and they play a crucial role in fields ranging from emulsions 

and micelle formation to ice melts and ocean waves.2,3 Consequently, it is crucial to accommodate for the 

boundary displacement and the various interfacial phenomena that occur in order to capture these processes. 

The fundamental processes and challenges affecting a moving interface system differ depending on the 

composition of the phases on each side of the interface. For example, the motion of a solid moving interface 

can be readily captured based on the physiochemical kinetic events taking place, such as adsorption and 

desorption. Conversely, the dynamics of moving fluid-fluid interfaces are better described using the underlying 

forces and energy balances acting along the interface.  

Moving interface systems play important roles in a variety of different systems as highlighted above, and 

as a result there is significant interest in developing models to capture, study, and improve upon these processes. 

In general, moving interface systems are often macroscale in nature and typically evolve over large spatial 

(mm-km) and temporal (ms-h) scales. However, these interfaces frequently include intricate detailed topologies 

and morphologies that are highly sensitive to microscale and molecular-level perturbations such as roughness 

and surface structures.4 For example, the dissolution of a solid is highly dependent on the molecular-level 

configuration of a surface particle with respect to its nearest neighbours. In addition, the inclusion of microscale 

and molecular-level roughness on a solid surface is known to drastically affect the spreading behaviour of fluid 

droplets on the surface, and can result in superhydrophobic surface behaviour. Therefore, due to the 

discrepancies in the length and time scales within these systems, moving interface processes can be challenging 

to capture using conventional modelling techniques. For instance, large-scale modelling techniques such as 

computational fluid dynamics (CFD) are incapable of capturing detailed molecular analyses of the systems, 

and thus are only useful for capturing the general (macroscale) behaviour of the system.5 These techniques 

additionally require specific methodologies to capture the movement of the interface, such as front-tracking or 

front-capturing.4,6 In comparison to the large-scale modelling techniques, microscale techniques such as 

Molecular Dynamics (MD) are capable of capturing the movement of the interface at the molecular level and 

therefore they are able to achieve unprecedented accuracy in simulating interfaces with complex geometries. 

However, those methods are computationally intensive and can only be used to simulate small systems (~nm) 

over short timescales (~ns).7 These challenges can be overcome using mesoscale modelling methods such as 

the Lattice-Boltzmann method, which aims to balance the molecular-level and macroscale evolution of a 

system.8 However, this latter approach is prone to error-induced force imbalances and fictitious behaviour near 
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the boundaries of multi-phase interfaces.9 This can be disadvantageous for moving interface systems, where 

the key properties of the system are often directly related to the interface.10  

Kinetic Monte Carlo (kMC) is an alternative mesoscale modeling technique that uses random sampling 

to analyze a system’s dynamic behaviour. kMC only considers the key events contributing to a system’s 

evolution, and thus it is capable of simulating larger systems over long periods of time.7 Furthermore, a kMC 

system is able to directly account for the crucial phenomena present at a multiphase interface. The kMC method 

has already been previously implemented to study solid moving interface applications ranging from thin film 

deposition to crystal growth and dissolution.11–13 In these applications, the solid-fluid interface can be evolved 

by adding or removing molecules from the solid surface according to kinetic event rates. However, it is not 

inherently obvious as to how kinetic surface events could be used to capture the interfacial dynamics of more 

complex systems involving fluid-fluid interfaces, such as capillary action or sessile droplet spreading, or 

whether kinetic surface events are even applicable to these systems. Furthermore, standard kMC is typically 

only used to directly model the solid surface at the interface, and consequently the behaviour of the remaining 

phases is usually only captured indirectly through the kinetic rate equations governing the surface evolution. 

As a result, this technique cannot be directly applied to simulate a dynamic fluid-fluid interface. Therefore, in 

order to capture moving interface systems using kMC, it is necessary to develop new approaches that can 

accommodate for both solid-based and fluid-fluid-based moving interfaces. This PhD study will particularly 

focus on developing a general kMC-based moving interface algorithm and applying it to key applications 

including solids and crystal dissolution, as well as fluid-fluid triple contact interface-based processes such as 

capillary action, sessile droplet spreading, and superhydrophobic surfaces. 

Solids and crystal dissolution is a prominent moving interface field of study where the interface exists at 

the boundary between a fluid and a shrinking solid phase.14–19 One of the key attributes for this application 

pertains to the rate at which the solid disintegrates within its intended environment, and thus it is desirable to 

control the dissolution rate within a given system.20 These rates strongly depend upon the local microstructure 

of the surface as well as the system environment,12 and therefore they are highly sensitive to environmental 

variability and uncertainties.21,22 As a result, it is necessary to accommodate for the effects of both the local 

surface structure and environmental uncertainties when conducting dissolution studies. However, this remains 

an emerging field within the literature. Capillary action-driven transport is another crucial moving interface 

system that significantly impacts a variety of different natural and artificial applications. This phenomenon 

utilizes the differences in surface energies between fluids and solids to propel a fluid-fluid interface along the 

surface of a narrow cavity without requiring external energy. This process does not depend on physiochemical 

kinetics and must be quantified through fundamental physical laws (e.g., the force or energy balances affecting 

the system) and therefore it can be challenging to analyze the interfacial movement.23
 This process is essential 

in many different scientific and engineering disciplines, and thus there has been significant interest in studying 
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capillary action processes in order to maximize their applicability.24–26 The observed behaviour within a 

capillary action system is dependent on the shape and properties of the solid cavity through which the fluid is 

rising or falling, and on the local microstructure and roughness of the cavity.27 However, capillary action is a 

macroscale process that can drive fluids over distances that can range from mm to km.28 As a result, it is 

necessary to accommodate the disparity in scales and cavity surface properties when studying and designing 

processes where capillary action plays a critical role.  

One of the most important moving interface applications can be found in the spreading of sessile droplets 

on solid surfaces. Sessile droplet systems are triple contact interface processes where the moving interface 

consists of two different fluids, and therefore its behaviour is best quantified based on the fundamental forces 

affecting the system. However, these droplet systems are further limited due to a lack of knowledge in the 

underlying forces responsible for the droplet spreading behaviour. Sessile droplet spreading is relevant to a 

wide variety of different engineering designs and processes.29–33 Superhydrophobicity, in particular, has 

emerged as one of the most critical sessile droplet applications. Solid surfaces are prone to contamination from 

various pollutants, and there are many instances where these can lead to adverse results. Consequently, there is 

significant motivation to develop surfaces that are self-cleaning, anti-fouling, and anti-wetting, in order to 

minimize or eliminate both solid and liquid surface contamination. These properties can be induced by 

designing extremely water-repellant surfaces, known as superhydrophobic surfaces (SHSs), where any water 

contacting the surface will form mobile drops that are readily removed by gravity or other external forces.34,35 

This superhydrophobic behaviour can be induced by creating low-energy material surfaces textured with 

microscale roughness structures to minimize the contact between water and the surface. However, SHSs suffer 

from a number of different problems that limit their wide-scale applicability. Most notably, these surfaces are 

susceptible to deactivation due to Cassie-to-Wenzel (C2W) transitions, where the droplets pin and impale on 

the surface roughness asperities to the extent where they are nearly impossible to remove.36 This process has 

the potential to critically sabotage SHS antiwetting behaviour, and consequently, there has been a substantial 

amount of research dedicated to preventing C2W from occurring.37–39 Furthermore, there are many model-

based studies conducted within the literature with the intention of overcoming C2W.8,39–41 These works employ 

techniques such as MD and LB to depict the dynamic response of fluid droplets to the micro- and nano-scale 

roughness structures present within SHSs. However, these modelling studies are limited by the same 

restrictions outlined previously for each method, i.e., computational limitations and force imbalances.7,9 

1.1   Research Objectives & Contributions 

Motivated by the challenges highlighted above, this PhD thesis presents the development of a novel 

Moving Front kinetic Monte Carlo (MFkMC) algorithm to capture and simulate general moving interface 

systems. This proposed kMC-based method only considers the behaviour of the interface and how it moves at 
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the molecular level. The MFkMC method defines the interface as the border separating interface molecules of 

different phases, and it uses kinetic-like rate equations to capture the interface movement based on the 

fundamental physics affecting the interface movement. As a result, the MFkMC algorithm possesses good 

generality. The applicability of the MFkMC algorithm is demonstrated through application in four case studies 

involving crystal dissolution, capillary rise, sessile droplet spread, and superhydrophobic surfaces. The 

MFkMC models developed for each case study are subsequently implemented to tackle key challenges 

experienced within each moving interface application. The specific research objectives considered are as 

follows: 

• Develop a generalized kMC-based MFkMC algorithm to capture the dynamic behaviour of any 

moving interface system. Validate the model performance through comparisons to standard kMC, 

known system behaviour, and experimental results for different case studies. 

• Adapt the MFkMC algorithm to capture the dissolution of crystalline solids within a solvent fluid. 

Use the developed model, in conjunction with uncertainty propagation techniques, to provide 

insight on the impact of environmental uncertainties on crystal dissolution with particular focus on 

pharmaceutical drug delivery. Determine the optimal conditions to encourage crystal dissolution 

while minimizing the impact of uncertainty. 

• Develop a method to capture fluid-fluid moving interfaces based on the fundamental physics 

affecting the interface behaviour and apply it to capture capillary rise. Utilize the developed method 

to evaluate the effects of cavity shape and surface roughness on the capillary action process. 

• Investigate the balance of forces acting upon the interfaces of sessile droplet systems. Couple this 

force balance with MFkMC to develop a sessile droplet spreading model and use it to study sessile 

droplet spread on flat surfaces. 

• Expand the sessile droplet FB-MFkMC model to accommodate for irregular solid surface 

geometries and to capture droplet spread on superhydrophobic surfaces. Adapt the model to predict 

whether spontaneous C2W transitions will occur based on the surface geometry. Evaluate the 

effects of the surface structures on the droplet spreading and C2W behaviour. 

The study of moving interface systems is a diverse multiscale field filled with processes that evolve on 

the macroscale but that are sensitive to microscale fluctuations along the interface. Consequently, it is essential 

to develop modelling methodologies that can accurately and efficiently capture the complete behaviour of a 

moving interface system while still accommodating for critical molecular-level deviations such as surface 

roughness. However, there are limited options that are able to achieve these conflicting objectives despite their 

relevance, as highlighted above. This study aims to fill this gap by developing the novel MFkMC algorithm to 

capture the general behaviour of any moving interface system, including both solid-based and fluid-fluid-based 

interfaces, so long as the underlying physiochemical processes that drive the interface movement are known. 
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Although this model has its own limitations and challenges, it is not subject to the same shortcomings as 

previously-developed moving interface approaches and therefore shows significant potential to improve model-

based studies for these systems.  

This study furthermore implements MFkMC to study and gain new insights in the fields of crystal 

dissolution, capillary rise, and sessile droplet spread on both ideally smooth and superhydrophobic surfaces. 

For crystal dissolution, this study explores the significant impact of environmental variability on dissolving 

solids, particularly within pharmaceutical drug delivery. This study furthermore contributes towards the 

development of efficient robust and bi-objective optimization policies for crystal dissolution applications like 

drug coating design. Within the field of capillary action, this work additionally develops a modelling tool that 

can be used to efficiently capture capillary rise for irregular pore geometries and for pores subject to molecular-

level surface asperities. Furthermore, it explores and highlights the importance of accommodating for 

phenomena such as surface roughness within these systems. Finally, with regards to sessile droplet spreading, 

this research develops a semi-empirical force balance to describe and capture each of the forces acting on the 

droplet interface. In addition, it explores the effects of superhydrophobic surface structures on the droplet 

spreading and contributes towards the designs of SHSs that resist C2W transitions. Overall, this work 

contributes towards the development of a novel modelling framework to capture and study moving interface 

systems that accommodates for both their macroscopic behaviour and microscale variations. 

1.2   Outline 

The remainder of this thesis is organized as follows: 

• Chapter 2 provides a review of the literature and presents an overview of the key moving 

interface systems (i.e., crystal growth and dissolution, capillary action, sessile droplet spreading, 

and superhydrophobicity), and discusses the key challenges facing each system. Furthermore, 

this section outlines the various modelling methods that can be used to capture moving interface 

systems and discusses their usage within the literature, with particular focus on the kMC 

approach that serves as the basis for the proposed MFkMC framework. 

• Chapter 3 provides a detailed overview of the developed MFkMC algorithm and showcases the 

fundamental theory behind this method. This section furthermore outlines many of the key 

challenges and considerations necessary when designing an MFkMC model for a given system. 

The information presented in this chapter has been adapted from a paper previously published 

in The Journal of Physical Chemistry B.23 

• Chapter 4 adapts the proposed MFkMC algorithm to capture the complete dissolution of crystals 

for biological applications. The developed model is compared to a standard kMC model 

previously developed within the literature for the same system.12 Furthermore, PCE is used to 
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propagate uncertainty in the environmental parameters through the dissolution process, and 

LPCMs are derived to predict the PCE coefficients for a range of different crystal shapes and 

sizes. The LPCM-based framework is used to perform robust and bi-objective optimization on 

the crystal dissolution system. The work presented in this chapter is a combination of 

information previously published in The Journal of Physical Chemistry B23 and Computers & 

Chemical Engineering.42 

• Chapter 5 describes a variation of the MFkMC algorithm adapted to capture moving fluid-fluid 

interfaces based on the force balances acting upon the interface. This model is subsequently used 

to capture capillary rise of a fluid within cavities that are perfectly cylindrical, that have an 

irregular geometry, and that have a roughened surface. The information presented in this chapter 

has been previously published in The Journal of Physical Chemistry B.23 

• Chapter 6 describes the study of the forces impacting the interface movement of a sessile droplet 

on an ideally smooth surface. This information is used to derive a semi-empirical force balance 

that is coupled with MFkMC to form the FB-MFkMC algorithm for sessile droplet spreading. 

The FB-MFkMC model is validated against experimental data and subsequently used to study 

sessile droplet spreading for different fluid droplets on different solid surfaces. This work has 

been previously published in Physics of Fluids.43 

• Chapter 7 modifies the FB-MFkMC algorithm to capture sessile droplet spread on SHSs. The 

developed model is adapted to accommodate for the changes in surface geometry and their 

effects on the droplet force balance. In addition, the model is modified to simulate C2W 

transitions. The model is validated against experimental data from the literature and it is used to 

subsequently study the effects of SHS structures on the droplet spreading behaviour. This model 

is furthermore used to determine the surface structures that minimize the likelihood of C2W 

transitions. The contents of this chapter will be submitted for publication to Chemical 

Engineering Science. 

• Chapter 8 presents the conclusions gained throughout this thesis. Furthermore, it outlines 

suggestions for further avenues of research to pursue in the future.  
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Chapter 2 – Background & Literature Review 

The objective of this chapter is to give a summary of the moving interface background knowledge 

pertinent to this study. This section particularly focuses on moving interface systems such as solids dissolution, 

capillary action, sessile droplet spread, and superhydrophobicity. Additionally, it highlights the advantages and 

disadvantages of the core modelling techniques previously applied to capturing moving interface systems. This 

section is organized as follows. Section 2.1 provides an overview of the different modelling methods used to 

depict moving interfaces, with particular focus on the fundamental modelling theories behind kMC. Section 

2.2 provides the necessary background information for each of the main moving interface systems depicted 

within this work. Subsection 2.2.1 discusses the mechanisms behind the solid moving interface-based crystal 

growth and dissolution processes. Furthermore, Subsection 2.2.2 discusses the relevant background 

information on the fluid-fluid-based capillary action, sessile droplet spread, and superhydrophobic surface 

applications respectively. Section 2.3 summarizes the gaps within the literature that highlight the overall 

objectives of this study. 

2.1  Modelling Methods 

Moving interface systems comprise exclusively of processes that contain a dynamically propagating 

interface between two or more phases. These interface displacements are expected to occur due to fluid flows, 

erosion, and deformations between the different phases.44,45 Such moving interface systems can be found in 

many critical applications, ranging from ice to fluid flows to mathematical finance.46–48 The properties of an 

interface differ significantly from those of the bulk and are critical for developing an understanding of how a 

system behaves and evolves. This interfacial behaviour are especially prominent on the microscale, and 

consequently there is a strong need to study moving interface systems as technology trends toward significantly 

smaller devices.49,50 Accordingly, there is substantial interest and strong motivation in developing models to 

capture and simulate the behaviour of these dynamic interface processes.  

The objective of this section is to discuss the various modelling methods that have been developed for 

moving interfaces and discuss how they have been implemented within the literature. This section will 

specifically focus on the kMC algorithm, which is the basis of the MFkMC algorithm developed in this work. 

Each modelling method described within this section are summarized in Table 2.1. This table additionally 

highlights the advantages and disadvantages of each method. The following subsection will provide a general 

overview of some of the most prominent moving interface modelling tools. Subsequently, Section 2.1.2 will 

provide a brief introduction to the kMC algorithm to highlight its potential and discuss its challenges and 

limitations in capturing moving interface system behaviour.  
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2.1.1  Modelling Approaches for Moving Interface Systems 

There are many different modelling methods that have been developed to capture the behaviour of 

moving interface systems. These problems frequently entail complex interface topologies and geometries that 

are sensitive to slight changes and perturbations.4 These interfaces furthermore frequently depict discontinuities 

in the system properties between the materials in each phase.51 As a result, they can be challenging to model 

using conventional techniques. Despite this, myriads of different modelling approaches have been proposed 

Table 2.1: Comparison of different moving interface modelling techniques 

Method Description Advantages Disadvantages Relevant 

References 

Continuum 

Modelling: 

Front-

Tracking 

Continuum PDE-

based modelling; 

Interface captured 

directly through 

computational nodes 

• Simple 

• Computationally Fast 

• Cannot capture molecular-level 

behaviour 

• Large number of nodes required 

to model microscale fluctuations 

4,6,53 

Continuum 

Modelling: 

Front-

Capturing; 

Level-Set 

Method 

Continuum PDE-

based modelling; 

Interface modelled 

implicitly (e.g., as an 

arbitrary surface) 

• Computationally 

efficient 

• Flexible 

• Can handle complex 

geometries 

• Cannot capture molecular-level 

behaviour 

• Numerical instabilities at the 

interface 

 

4,6,54 

Molecular 

Dynamics 

Movement of each 

molecule captured 

based on 

intermolecular forces 

• Captures molecular 

behaviour and 

fluctuations 

• Detailed 

• Computationally slow 

• Only capture ~nm systems over 

~ns timeframes 

59,60,7 

Lattice 

Boltzmann 

Model movement of 

molecules over 

discretized space 

using Boltzmann 

equations 

 

• Captures molecular 

behaviour and 

fluctuations 

• Reasonably great 

computational costs 

• Force imbalances and ficticious 

behaviour at interfaces 

• Computationally slow compared 

to continuum modelling 

• Requires solving entire fluid 

space 

8,9 

Kinetic 

Monte Carlo 

Stochastically models 

state-by-state 

evolution of a system 

based on kinetic 

transition rates 

• Captures molecular 

behaviour and 

fluctuations 

• Reasonable 

computational costs 

• Require duplicate simulations to 

capture average behaviour 

• Computationally slow compared 

to continuum modelling 

• No clearcut method to capture 

fluid-based moving interfaces  

7,67,68 
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and implemented to capture the dynamic behaviour of moving interface systems for a variety of different 

applications, including the applications considered in this work, i.e., crystal growth and dissolution, capillary 

action, and droplet spread on flat and textured surfaces. Moving interface problems are frequently tackled using 

large-scale modelling techniques such as computational fluid dynamics or other continuum modelling 

approaches. These processes frequently denote the movement of the interface with a unique partial differential 

equation (PDE) designed to capture the underlying physical processes governing the interface movement. The 

solution to the interface PDE can be furthermore used as boundary conditions of other relevant PDEs (e.g., 

mass, momentum, or energy conservation equations). A common example of these kinds of moving interface 

models is the Stefan Problem, which aims to study the change in properties such as heat conduction over an 

interface between the two phases, where at least one phase is changing into the other.52 Although Stefan 

problems are not exclusively applied to moving interface systems, they are frequently employed in applications 

where the interface can change significantly, such as heat exchange during ice melts. In general, continuum-

based analyses of moving interface systems are comparably fast and can efficiently capture the dynamics of 

large systems over realistically-long time periods. However, these techniques require specific methodologies 

to capture the movement of the interface, such as front-tracking or front-capturing.4,6 In the front-tracking 

method, the moving interface is assigned computational nodes to capture the location of the moving interface. 

These nodes are evolved discretely based on the underlying interface PDE to capture the interface movement.53 

The front tracking method can accurately capture the evolution of an interface, however it requires a 

prohibitively-large number of points to sufficiently capture systems with sophisticated surface geometries that 

evolve on a molecular level or systems whose interfacial movement is spatially heterogeneous based on the 

local interfacial microstructure. On the other hand, front-capturing methods implicitly model the moving 

interface as a high variation region instead of tracking the interface directly. The most common form of front-

capturing method is the level-set method, which captures the interface using an arbitrary implicit boundary 

surface 𝜑𝑙𝑠𝑚, where 𝜑𝑙𝑠𝑚 = 0 denotes the current location of the interface. In this method, the interface is 

evolved in time and space based on its normal velocity 𝑣  according to the level set equation 
𝜕𝜑𝑙𝑠𝑚

𝜕𝑡
+

𝑣|∇𝜑𝑙𝑠𝑚| = 0. This approach is versatile and can readily handle complex interface geometries in an accurate 

and efficient manner.54 Furthermore, its implicit interface definition allows for easier interface propagation and 

property calculation. However, it suffers from numerical instabilities at the interfaces that limit its applicability 

to accurately capture moving interface behaviour.5 Furthermore, this method requires detailed insights in order 

to properly set up the system. As highlighted in Table 2.1, both front-tracking and front-capturing methods are 

able to adequately capture the movement of an interface with sufficient implementation. Consequently, they 

have been used to capture a wide variety of different moving interface systems, including crystal growth,55 

capillary rise,56,57 and sessile droplet spread.6,58  However, these methods struggle to capture detailed and 
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discrete microscale information about the interface, such as its reactions to molecular-level perturbations, and 

are better reserved for applications where these features are not as crucial to the interface dynamics. 

In comparison to the large-scale continuum-based modelling techniques, microscale techniques such as 

Molecular Dynamics (MD) are capable of capturing the movement of the interface on the molecular level and 

therefore they are able to achieve unprecedented accuracy in simulating interfaces with complex geometries 

and spatially-heterogeneous systems, as documented in Table 2.1. The MD method is one of the most 

commonly-implemented molecular-level modelling technique. In MD, the positions and momentum of every 

molecule in the system are approximated based on Newton’s equations of motion.59,60 MD is able to accurately 

capture the dynamics of every particle within a considered system, and therefore it is able to achieve molecular-

level accuracy while simulating the behaviour of moving interfaces. Consequently, MD has found a lot of use 

in molecular-level moving interface studies, such as the dissolution of individual surface features of a crystal,61 

studying C2W transitions inside individual SHS features,40,41 and capillary action within nanoscale pores.62 

However, this approach, alongside other molecular-level modelling methods, is computationally intensive due 

to the number of particles considered and can only be used to simulate small systems (~nm) over short 

timescales (~ns).7  

The behaviour of moving interface problems frequently involve complex topologies and geometries that 

are sensitive to small perturbations.4 Furthermore, many moving interface problems involve phenomena that 

span multiple length and timescales, and consequently there is a need for modelling techniques that can bridge 

the disparate scales. This has previously been accomplished via mesoscale methods such as the Lattice-

Boltzmann (LB) approach.8 These methods still consider the molecular-level evolution of the system, however 

they apply key assumptions to simplify the problem and thus allow them to capture the behaviour of larger 

systems over longer time scales. The LB method is one of the most prominent mesoscale methods that can be 

used to capture moving interface behaviour in multiphase flows. In LB, the fluid phases of a moving interface 

system are depicted using a distribution of fictitious particles within a discretized space that are restricted by 

the degrees of freedom in which they can travel. These particles are subsequently evolved based on modified 

versions of the Boltzmann equation. LB is capable of capturing the behaviour of realistically-large moving 

interface systems while still accommodating for the underlying molecular-level behaviour, as highlighted in 

Table 2.1. As a result, it has been frequently used to capture fluid-fluid interface behaviour, including capillary 

rise,63 sessile droplet spread,64 and superhydrophobicity.65,66 However, LB simulations are still computationally 

constrained by their need to solve the entire fluid space of the droplet rather than only considering key 

interfacial events that govern the droplet dynamics. Additionally, this approach is prone to error-induced force 

imbalances and fictitious behaviour near the boundaries of multi-phase interfaces.9 This can be disadvantageous 

for moving interface systems, where the key properties of the system are often directly related to the interface.10  
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Each of the aforementioned modelling methods have different advantages and disadvantages that restrict 

their general applicability, as highlighted in Table 2.1. Continuum methods are computationally cheap, but they 

struggle to capture the microscale phenomena and fluctuations that govern many moving interface systems. On 

the other hand, molecular methods such as MD are able to achieve excellent accuracy on the microscale but 

are too computationally intensive to scale up. The trade-off between these two methods can be addressed using 

the LB method, however this method suffers from force imbalances along interfaces that limit its applicability 

to moving interface systems. Alternatively, these issues can be overcome through mesoscopic stochastic event 

algorithms such as kinetic Monte Carlo (kMC), which only considers the key events contributing to the system 

evolution and can be designed to directly account for the fundamental physics affecting a system. Given the 

relevance of kMC to this research, this method will be briefly reviewed in detail within the next section. 

2.1.2  Kinetic Monte Carlo 

Kinetic Monte Carlo (kMC) is an iterative stochastic modelling technique that can be used to evolve a 

system from one state into another based on transition rates, as summarized in Table 2.1. Given a system in its 

initial state, the kMC approach will identify any currently-accessible states and will transition the system into 

one of these at random, where the new system state is selected using Monte Carlo sampling based on its kinetic 

rate of occurrence. Therefore, kMC can be considered a stochastic realization of the Chemical Master Equation, 

a series of ordinary differential equations (ODEs) that describe the probabilistic state-wise system evolution.67 

The transitions considered in kMC simulations solely consist of the key events that transpire within the system. 

These events typically consist of molecular-level physical chemistry processes such as adsorption, reactions, 

and surface/bulk diffusion. During each kMC iteration, an event is selected at random based on its kinetic rate 

𝑊𝑖 according to the following expression: 

∑ 𝑊𝑞
𝑖−1
𝑞=1 ≤ 휉𝑑𝑖𝑠𝑐𝑊𝑡𝑜𝑡 ≤ ∑ 𝑊𝑞

𝑖
𝑞=1         (2.1) 

where 𝑊𝑖 denotes the kinetic rate of the 𝑖th event, 𝑊𝑡𝑜𝑡 denotes the total sum of all the kinetic rates, and 

휉𝑑𝑖𝑠𝑐 is a random number generated from the standard uniform distribution. Following its selection, the chosen 

kinetic event is subsequently executed to propagate the system into a new state. Note that the kinetic rates for 

each event can remain fixed for the duration of the kMC simulation, or they can be dynamically updated after 

each transition depending on the nature of the processes taking place. The kMC technique keeps track of time 

using a stochastic logarithmic equation that takes the sum of all rates into account, as shown below:68 

𝛿𝑡 = − 𝑙𝑛(휉𝑐𝑜𝑛𝑡) /𝑊𝑡𝑜𝑡         (2.2) 

where 𝛿𝑡 denotes the time increment between two kMC events and 휉𝑐𝑜𝑛𝑡 is a second randomly-generated 

number from the standard uniform distribution. kMC is therefore capable of evolving the system in real time. 
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However, it is important to note that since kMC is a stochastic process, it often requires averaging over multiple 

independent simulations in order to determine the average properties of the system.67 

A key advantage of kMC is that this technique is not focused on keeping track of the exact positions and 

properties of each molecular object in the system. Rather, it analyzes the system’s movement between fixed 

states in order to determine the average system behaviour.7 This allows it to simulate far larger models over far 

longer timescales than would be possible using more detailed molecular modelling approaches such as MD. 

Furthermore, kMC can be coupled with lattice meshes such that the locations of each molecule/molecular object 

is approximated onto discrete lattice sites. This limits the positional degrees of freedom and allows for much 

longer simulation times to be reached.67 However, one of the greatest strengths of the kMC approach is that it 

is only necessary to apply this method to the domains where the key system events are taking place (i.e. in the 

sessile droplet system on a flat surface, it is only necessary to apply kMC at the triple contact line). The 

remainder of the system domains (i.e. the bulk fluid phase) can therefore be disregarded by the kMC algorithm 

in order to greatly reduce the overall simulation computational cost. However, despite its advantages, kMC still 

suffers from drawbacks that can limit its implementation for a given system. Although kMC is significantly 

faster than MD and can be used to capture the dynamic behaviour of realistically large systems, it is still 

computationally intensive and can require extensive computational resources compared to continuum 

modelling or LB.7 Furthermore, kMC is a stochastic process where each full simulation only depicts a single 

possible model outcome. As a result, kMC results must be averaged over multiple independent simulations in 

order to capture the general expected behaviour of a system.13 

The kMC discussions thus far have primarily considered its molecular-level modelling capabilities. 

However, kMC is not necessarily constrained to simulating molecules and molecule-sized objects, as by 

definition it merely captures the state-by-state evolution of a system. As a result, the kMC approach can be 

readily expanded to simulate larger systems at reduced computational costs. These approaches still capture the 

fundamental molecular-level processes governing the system evolution, while applying them to larger scale 

objects. Furthermore, these approaches can help reduce the kMC computational drawbacks discussed 

previously. These approaches can be implemented through spatial clustering methods such as spatial coarse-

graining or Object kinetic Monte Carlo. If the kMC system consists of interacting atoms or molecules, the 

spatial coarse-graining technique can be applied, in which clusters of identical molecules are grouped together 

to form a larger “mesoparticle”. These mesoparticles are subjected to the same kinetic transition events applied 

to the molecules, although the kinetic rates for each event need to be modified to account for the larger 

mesoparticle size. Therefore, spatial coarse-graining kMC can efficiently simulate the behaviour of larger 

systems by considering the actions of these molecular clusters rather than the actions of individual molecules.69 

Similarly, if the system considered consists of molecular-level items (e.g. single surface defects, vacancies, or 

points along an interface), it can be simulated using Object kinetic Monte Carlo (OkMC), in which a cluster of 
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similar items are grouped together to form a larger object (e.g. a cluster of neighbouring vacancies can be 

defined as a void). Subsequently, OkMC will evolve each of the objects based on the kinetic rules that govern 

them.70,71 Much like coarse-grained kMC, OkMC events are applied to the objects as a whole rather than the 

elements they are composed of. As a result, OkMC algorithms are capable of simulating large systems over 

long timescales at reasonable computational costs so long as the objects are sufficiently large in scale. 

The kMC algorithm is highly versatile, and consequently it has been applied to describe a wide variety 

of systems. Most notably for the processes discussed within this work, kMC has previously been applied to 

simulate a variety of different moving interface processes, such as crystal growth,11,72,73 thin film depostion,13,74–

78 solids dissolution,12,79–81 and quantum dot synthesis.82,83 In addition, kMC-based multiscale frameworks have 

been used to capture the growth and erosion of solid-based moving interfaces within a fluid for applications 

such as dendrite growth in Li-ion batteries84,85 and delignification in wood fiber.86–89 However, these processes 

have all been restricted to capturing the evolution of solid moving interfaces, which are frequently driven by 

physical chemistry events such as adsorption and surface reaction and therefore can be readily described using 

known kinetic expressions.13,90,91 These approaches cannot be readily applied to capture fluid-based moving 

interfaces, which are driven by physical processes such as the balance of forces acting upon the interface, and 

therefore lack concise kinetic expressions. Furthermore, solid moving interface systems only use kMC to 

directly model the solid surface at the interface, and consequently the behaviour of the remaining phases is 

usually only captured indirectly through the kinetic rate equations governing the surface evolution. As a result, 

this technique cannot be directly applied to simulate a dynamic fluid-fluid interface. Consequently, the 

approach necessary to model these systems using kMC would differ significantly. 

2.2  Moving Interface Systems 

An interface is the boundary region between two different phases, and they define the spatial boundaries 

where the properties of one phase stop and give way to the properties of one or more adjacent phases. 

Furthermore, interfaces are seldom static and can evolve in both space and time. The evolution of an interface 

Γ(𝒙, 𝑡) as a function of space 𝒙 and time 𝑡 is most readily accomplished by analyzing the normal local interface 

velocity 𝑣(𝒙, 𝑡) along the length of the interface. This velocity is subject to the underlying laws governing the 

system behaviour; these laws can take the form of force and energy balances acting over the interface, of kinetic 

representations of physical events taking place, and of partial differential equations (PDEs) for the mass, 

energy, and momentum conservation expressions acting on the system.12,23,44 Once the velocity is known, it can 

be used to evolve the interface in time and to determine the new system shape. Note that there are a large variety 

of different moving interface processes governed by a myriad of different fundamental principles, and 

consequently the nature of the moving interface system can vary significantly from problem to problem. 

Specifically, there is a fundamental difference in the key underlying physics between different moving interface 
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systems depending on the composition of each phase on each side of the interface. These distinctions are most 

apparent between interfaces where one or more of the moving phases is a solid (e.g., crystal growth and 

dissolution) and interfaces where the moving phases are all fluids (e.g., capillary action and sessile droplet 

spread). Therefore, each of the subsequent sections will provide specific details about each the moving interface 

systems studied in this PhD thesis. 

2.2.1    Crystal Growth & Dissolution Behaviour 

The growth and dissolution of crystalline materials is an important field of study in numerous different 

disciplines with various engineering, geological, and medical applications, ranging from the developments of 

cements and paints,14,15 to the study of erosion and ocean acidity,16,17 to the study of bone implants.18,19 The 

crystal growth and dissolution processes are of particular importance in a number of biological fields such as 

the pharmaceutical, medical, and food industries, and have found usage in a number of different applications 

including the formation and disintegration of mineral supplements, nano-apatites for biomedical purposes, and 

capsules for food and drug delivery.11,92–96 One of the key critical quality attributes for many of these biological 

applications pertains to the rate at which the crystal dissolves within its intended environment. For example, in 

the pharmaceutical industry, it is critical to control the release rate at which a nano-encapsulated drug is 

administered within the human body.20 As a result, it is desirable to control the crystal dissolution rate for a 

given system. This can be achieved by modifying the size and shape distribution of the produced crystals,11 and 

consequently, there has been significant interest in studying the underlying mechanisms behind the growth and 

dissolution of crystals in order to design and manufacture crystals with specific shapes and sizes such that they 

can meet explicit bioavailability criteria. This has motivated the development of several different model-based 

approaches in order to analyze the crystal production and disintegration process.97–100 These methodologies 

have been furthermore implemented to optimize, control, and enhance these crystallization-based processes in 

applications such as protein crystallization.72,101–103 Similarly, this has inspired the development of multiscale 

crystallization models for use in non-biological processes such as size control in the synthesis of quantum 

dots.82,104–107 

Crystals can adopt a wide variety of different shapes and structures depending on factors including their 

composition, the temperature and pressure of the environment, crystal growth conditions, and vapour 

absorption.108 As a result, there are a wide range of techniques that can be used to capture crystal growth and 

dissolution processes. Crystals are typically classified according to a number of different metrics, including the 

structure of their unit cell, the spacing and angles between particles, their symmetry, and the crystal 

coordination number, i.e. the number of nearest neighbours surrounding a bulk crystal particle on average. For 

the sake of simplicity, this work will predominantly focus on crystals with a coordination number of six, as 

depicted in Fig. 2.1. Crystals with this coordination can be described using a general unit cell of edge lengths 

𝑙𝑎, 𝑙𝑏, and 𝑙𝑐 and interaxial angles 𝜗𝛼, 𝜗𝛽, and 𝜗𝛾. To distinguish the interaxial angles from their supplementary 
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counterparts, each of the interaxial angles are further indexed as acute (𝜗𝛼,𝑎, 𝜗𝛽,𝑎, and 𝜗𝛾,𝑎) and obtuse (𝜗𝛼,𝑜, 

𝜗𝛽,𝑜, and 𝜗𝛾,𝑜), where 𝜗𝑎 = 180° − 𝜗𝑜 for 𝜗𝑎 ∈ {𝜗𝛼, 𝜗𝛽 , 𝜗𝛾}. Crystals with a coordination number of six can 

be characterized using the Terrace Ledge Kink (TLK) model, which analyzes the kinetic and thermodynamic 

properties of the ion based on the number of bonds 𝑛𝑏𝑑,𝑡𝑜𝑡 it shares with its coordinated neighbouring ions. 

According to TLK, an ion with 𝑛𝑏𝑑,𝑡𝑜𝑡 = 6 bonds is classified as a bulk ion, whereas ions with 𝑛𝑏𝑑,𝑡𝑜𝑡 = 5, 4, 

3, 2, and 1 are characterized as terrace ions, ledge ions, kink ions, ledge adatoms, and adatoms, respectively.90,109 

Note that similar crystal surface formation models exist for crystals with a different coordination number.110 

However, discussions about these modelling methods will not be included here for the sake of brevity. 

 Crystal growth and dissolution mechanisms are frequently described kinetically based on the rates that 

molecules are added or removed from the crystal. There are three main events that are known to occur on the 

crystal surface: deposition, elimination (dissolution), and surface diffusion;111 each of these events is assumed 

to be governed by sets of kinetic equations that overall shape the evolution of the crystal surface. In crystal 

deposition, an atom, ion, or molecule adsorbs onto the crystal surface from the fluid phase surrounding it. In 

contrast, crystal surface particle elimination via dissolution involves the detachment of a crystal particle from 

the surface back into the surrounding fluid phase. Crystal growth and disintegration mechanisms can 

additionally undergo surface diffusion, where a crystal surface particle detaches and re-attaches at a different 

location on the crystal surface. Surface diffusion is typically decomposed into a surface dissolution and a re-

adsorption event, and therefore the kinetic rate for this event can be derived by combining the kinetic growth 

 

Figure 2.1: Labelling the dimensions and angles, including acute (𝑎) and obtuse (𝑜) angles, for a 

crystal with coordination number of six. Note that similar terminology can be derived for crystals of 

different coordination numbers 
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and dissolution rate equations.111 Note that the studies considered in this work consist of crystal dissolution 

studies where it is assumed that deposition and surface migration will not occur, and consequently this section 

will specifically focus on the kinetics of the surface molecule elimination events. However, kinetic equations 

for the remaining events can be readily found within the literature.111–113 

In order to dissolve, a crystal surface particle must break its bonds with each of its nearest neighbours 

and migrate into the surrounding fluid phase. Consequently, the energy required for a surface species to dissolve 

is proportional to the number of bonds it shares with its neighbouring species and the identity of its 

neighbouring species. Furthermore, the energy required for dissolving a surface particle is dependent on the 

angle and spacing between it and its neighbours, which can be determined based on the base lengths and angles 

of the crystal lattice for a perfect crystal. Consequently, it is necessary to know the local atomic surface 

configuration in order to determine the dissolution rate for a given surface species. The dissolution rate for a 

crystal surface particle with a known local surface configuration can be described as follows: 

𝑊𝑐𝑑,𝒏𝒃𝒅,𝜣𝒏𝒃𝒅
= 𝑘0 𝑒𝑥𝑝 (−

∑ 𝑛𝑏𝑑,𝜐𝐸𝜐𝜐 +𝛥𝐸𝜣𝒏𝒃𝒅

𝑘𝑏𝑇
)      (2.3) 

where 𝑘0 is a pre-exponential factor; 𝒏𝒃𝒅 = [𝑛𝑏𝑑,1, … , 𝑛𝑏𝑑,𝜐, … , 𝑛𝑏𝑑,Υ] is a vector that stores the number 

of bonds 𝑛𝑏𝑑,𝜐 between a particle and its neighbours in the 𝜐th direction, where ∑𝒏𝒃𝒅 = 𝑛𝑏𝑑,𝑡𝑜𝑡 is the number 

of nearest neighbours; 𝐸𝜐 denotes the activation energy of dissolution of the bond in the 𝜐th direction; 𝑘𝑏 is the 

Boltzmann constant; and 𝑇  is the temperature. Furthermore, the term Δ𝐸𝚯𝒏𝒃𝒅
 represents the correction 

activation energy necessary to account for the angle orientations 𝚯𝒏𝒃𝒅
 for a surface species with neighbour 

configuration 𝒏𝒃𝒅. Note that the nearest neighbour vector 𝒏𝒃𝒅 and the possible angle orientation values 𝚯𝒏𝒃𝒅
 

are dependent on the lattice structure of the considered crystal material. For a perfect primitive cell crystal with 

a coordination number of six, illustrated in Fig. 2.2, each ion in the bulk phase is coordinated with two nearest 

neighbours along each of the crystal lattice primitive vectors, and consequently the neighbour vector can be 

denoted as 𝒏𝒃𝒅 = [𝑛𝑏𝑑,𝑙�⃡�  
, 𝑛𝑏𝑑,𝑙

�⃡�  
, 𝑛𝑏𝑑,𝑙�⃡�

]. Furthermore, the angle orientation vector can take the values of 

𝚯𝒏𝒃𝒅
= [𝜗𝛼,𝑎, 𝜗𝛽,𝑎 , 𝜗𝛾,𝑎 , 𝜗𝛼,𝑜, 𝜗𝛽,𝑜, 𝜗𝛾,𝑜]  for 𝑛𝑏𝑑,𝑡𝑜𝑡 = 4  and 𝑛𝑏𝑑,𝑡𝑜𝑡 = 2  (ledge and ledge adatom ions, 

respectively) and 𝚯𝒏𝒃𝒅
= [𝜗𝛼,𝑎𝜗𝛽,𝑜𝜗𝛾,𝑜, 𝜗𝛼,𝑜𝜗𝛽,𝑎𝜗𝛾,𝑜, 𝜗𝛼,𝑜𝜗𝛽,𝑜𝜗𝛾,𝑎 , 𝜗𝛼,𝑎𝜗𝛽,𝑎𝜗𝛾,𝑎]  for 𝑛𝑏𝑑,𝑡𝑜𝑡 = 3  (kink 

ions), depending on the location of the nearest neighbours. Note that crystal cleavage face stabilization effects 

can be taken into account on terrace ions by assigning a corrector value ΔE𝚯𝒏𝒃𝒅
= Δ𝐸𝑇 when 𝑛𝑏𝑑,𝑡𝑜𝑡 = 5, if it 

is required for the crystal dissolution problem.90 Also note that the aforementioned values of 𝚯𝒏𝒃𝒅
 provide a 

general overview of all possible number of angle configurations and are most adept at describing triclinic 

crystals, where 𝜗𝛼 ≠ 𝜗𝛽 ≠ 𝜗𝛾 ; and the values of 𝚯𝒏𝒃𝒅
 can be simplified depending on the crystal lattice 

structure (e.g. for cubic/tetragonal/orthorhombic crystals, where 𝜗𝛼 = 𝜗𝛽 = 𝜗𝛾 = 90° , there is only one 
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possible angle configuration of 𝚯𝒏𝒃𝒅
= 90° for all values of 𝑛𝑏𝑑 .) Fig. 2.2 provides an illustration of the 

different acute/obtuse angle orientations and their respective reaction rates. 

Crystal growth and dissolution are the two main branches that study how a crystal changes size and shape 

based on its environment. In both crystal size changing modes, all three of the aforementioned crystal surface 

events (deposition, elimination, and surface diffusion) are expected to occur. However, both crystal growth and 

dissolution are expected to occur under different environmental conditions, and therefore they are both typically  

studied in isolation and for different applications. Crystal growth studies consider the formation and expansion  

of crystals within a fluid with a high concentration of precursor crystal species. These studies seek to analyze 

the crystal growth mechanisms and to optimize and control the process in order to obtain crystals with desirable 

shape and size distributions.11,72,73,98,114 On the other hand, crystal dissolution studies consider the key processes 

responsible for the breakdown of a crystal within a system. Many practical dissolution applications (e.g., timed 

release drug delivery) naturally occur under low solute conditions, such that crystal dissolution dominates 

whereas growth and surface diffusion can be considered negligible.115 As a result, the crystal dissolution process 

 

Figure 2.2: Assigning labels to the edge lengths, angle orientations, and kinetic rates for a 

rhombohedral crystal. Due to the rhombohedral crystal shape, this crystal can be described using 

TLK, such that the kinetic rates correspond to terrace (𝑊5), ledge (𝑊4,Θ4
), and kink (𝑊3,Θ3

) crystal 

sites; note that similar notation can be derived for crystals of different coordinate numbers 
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is typically studied in a solvent or some other system that encourages the desorption of particles and the overall 

disintegration of the crystal. These studies are performed in order to gain insights into the dissolution process 

and are frequently used to either study how to prevent crystal dissolution (e.g., dental caries studies),116 to 

control the rate and duration of the dissolution within a target system (e.g., timed release drug delivery),115 or 

to study the effects of dissolution on the surrounding system (e.g., permafrost melt studies).17 Crystal 

dissolution studies were initially performed by measuring the bulk dissolution rates of crystals within solutions, 

wherein the crystal surface was assumed to dissolve at a uniform rate regardless of its surface geometry.117,118 

Although primitive, these early works helped establish the overall relationship between crystal dissolution and 

environmental factors such as pH, temperature, and solvent saturation.119–122 Building upon the works of these 

predecessors, subsequent crystal dissolution works began to analyze the dissolution rates of individual crystal 

surface particles and study the effects of the surface microstructure on these dissolution rates. These studies 

were often performed by analyzing the formation and propagation of etch pits on a crystalline surface.123,124 

These etch pits form at defects in the crystal surface and rapidly enlarge as the crystal dissolves due to 

containing a higher number of faster-dissolving ledge and kink-type surface sites. The rates at which the etch 

pit expands can therefore provide a useful metric for analyzing the kinetics of the surface particles based on 

their numbers of nearest neighbours.125,126 The dissolution rates of an etch pit are frequently observed by 

analyzing the speed at which the etch pit walls recede. These step velocities 𝑣𝑠𝑡𝑒𝑝 can be compared for crystals 

with anisotropic etching in order to observe the effects of the crystal geometry in the crystal particle dissolution 

rate.127,128 For example, crystals subject to acute and obtuse crystal structure angles are observed to have 

different rates of etching depending on whether the exposed surface particle has more acute or obtuse angles. 

This observation can be measured by comparing the step velocities in etch pits along the acute (𝑣𝑠𝑡𝑒𝑝,𝑎) and 

obtuse (𝑣𝑠𝑡𝑒𝑝,𝑜) directions.127,128 These studies can further be upscaled to predict the dissolution kinetics of the 

entire crystal, and therefore provide detailed integrated analyses on crystal erosion operations that can be used 

to optimize and control the crystal dissolution process.  

These studies overall highlighted the importance of accommodating for the microscale surface structure 

when studying crystal growth and dissolution processes. Furthermore, they highlight how the processes are 

sensitive to environmental factors, such as the temperature and pH of the surrounding fluid. These variables 

are often subject to uncertainty and environmental variability, which can significantly alter the dissolution 

process and its kinetics.21,22,129 These issues are of particular importance for natural processes such as crystal 

dissolution within a biological system, where the environmental variability cannot be controlled and can 

experience significant fluctuations. Furthermore, this natural variability can critically affect processes such as 

pharmaceutical drug delivery, where it is necessary to control the rate and time of dissolution in order to prevent 

harm.20 Consequently, it has been previously suggested within the literature that the event rate constants for 

crystal dissolution and growth cannot be depicted with a single value, and instead a possible range of rates 
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should be used when predicting dissolution mechanics.130,131 The effects of dissolution on crystal growth 

processes have already been analyzed and taken into consideration within studies performed within the 

literature.11,72,73 However, the effects of uncertainty on crystal dissolution are not as frequently studied, which 

can impose limitations on pharmaceutical studies and other critical fields of research. In addition, it is important 

to develop process models that can capture the complete dissolution of a crystal from the microscale, as 

highlighted previously. However, to the author’s knowledge, none of the modelling methods discussed in 

Section 2.1 can adequately accurately capture the entire molecular crystal dissolution process without requiring 

prohibitive computational costs. Modelling approaches such as MD and kMC still require modelling the entire 

crystal structure, which is computationally infeasible for sufficiently large crystals. In addition, the continuum-

based approaches are not able to capture the microscale surface processes critical to the crystal dissolution 

behaviour. As a result, there is a need to develop modelling methods to address these challenges and efficiently 

capture the dissolution of an entire crystal. 

2.2.2   Fluid-Fluid Interface Behaviour 

A volume of liquid in a vacuum will create a completely spherical shape in the absence of outside factors. 

This phenomenon can be most readily explained by analyzing the balance of intermolecular forces within the 

liquid. In the bulk phase of the fluid, a molecule is completely surrounded by its neighbouring molecules of the 

same fluid and thus the net intermolecular forces experienced by the molecule is negligible. However, 

molecules at the fluid surface are only partially surrounded by molecules of the same phase, and therefore they 

will experience only a fraction of the intermolecular forces from their neighbours, resulting in a force 

imbalance.29,132 This imbalance is the basis of surface tension 𝛾, or the force per unit length exerted by the 

surface on the environment.133 This imbalance can also be defined as a surface energy, or the energy per unit 

area necessary for the surface to form.132 Note that surface tension and surface energy are equivalent within a 

fluid, and are thus used interchangeably. It is because of surface energy that a liquid will assume a spherical 

shape within a vacuum, as a fluid will modify its shape to minimize its overall potential energy. The minimum 

surface energy attained by a fluid is only dependent on the intermolecular forces present in the fluid and 

therefore it remains constant at fixed temperatures, regardless of the mass or volume of the fluid.133 

The concept of surface tension can be additionally expanded to describe the interface between multiple 

different bodies, such as when a fluid contacts a different material. In these cases, due to the differing 

intermolecular forces present at each side of the interface, the surface energy at the interface between the two 

phases will deviate from the individual surface energies of each phase, and consequently, the shape of the fluid 

will differ. The exact behaviour of these fluid interfaces varies from application to application, and 

consequently there has been a substantial amount of research performed to study this phenomenon for different 

systems. The following sub-sections will discuss this process as it relates to key fluid interface-based systems 

including capillary action, sessile droplet spread, and superhydrophobic surfaces. 



20 

 

2.2.2.1   Capillary Action Systems 

When a narrow cavity is placed into a fluid, the fluid will either rise up or be repelled from the cavity, 

depending on the surface energies between the fluid, the solid capillary material, and the surrounding air. If the 

surface energy of the liquid on the surface is lower than the air-solid surface energy (i.e., the solid surface is 

wetting), then the liquid will rise up in order to minimize the overall energy of the system. Furthermore, if the 

cavity material is wetting, the tip of the fluid column will rise up the cavity with a concave quasi-hemispherical 

shape that intersects the cavity wall at an acute contact angle 휃, as showcased in Fig. 2.3a. On the other hand, 

if the cavity material is non-wetting, then the liquid will be pushed down the cavity and its tip will maintain a 

convex quasi-hemispherical cap with an obtuse contact angle, as illustrated in Fig. 2.3b. Note that in both cases, 

the point at the edge of the fluid cap, where there is three-phase contact between the fluid, the solid cavity wall, 

and the surrounding atmosphere, is referred to as the triple contact line. The steady state relationship between 

the contact angle and the surface energies at the triple contact line can be expressed using Young’s Equation, 

which describes the interfacial force balance of the contact line along the solid surface as follows:29 

𝛾𝑙𝑣 𝑐𝑜𝑠(휃𝑒) = 𝛾𝑠𝑣 − 𝛾𝑠𝑙          (2.4) 

where 𝛾𝑙𝑣 , 𝛾𝑠𝑣 , and 𝛾𝑠𝑙  denote the interfacial tension of the fluid/atmosphere, solid/atmosphere, and 

solid/fluid interfaces respectively; and 휃𝑒 denotes the contact angle at equilibrium. This surface energy-driven 

movement is referred to as the capillary force and it is the basis for capillary rise. 

When a fluid rises up a wetting cavity, it will experience a balance of forces, in addition to the capillary 

force, that will dictate the dynamic fluid behaviour. The balance of forces can be captured using an equation 

 

Figure 2.3: Liquid column shape in a capillary tube: a) wetting surface (휃𝑒 < 90°); b) non-wetting 

surface (휃𝑒 > 90°) 
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such as the Lucas-Washburn equation, which models the fluid rise as a balance between capillary, viscous 

damping, and gravity forces in a vertical cylindrical cavity according to the following relationship:  

2

𝑅𝑐𝑟
𝛾𝑙𝑣 𝑐𝑜𝑠(휃𝑒) −

8

𝑅𝑐𝑟
2 휇ℎ

𝑑ℎ

𝑑𝑡
− 𝜌𝑔ℎ = 0       (2.5) 

where 𝑅𝑐𝑟 denotes the radius of the cavity at the triple contact line, 휇 denotes the dynamic viscosity of 

the fluid, 𝜌 denotes the density of the fluid, 𝑔 = 9.81 m/s2 is the gravitational acceleration due to gravity at the 

Earth’s surface, ℎ denotes the rise height (i.e. the height of the fluid within the cavity relative to the fluid surface 

outside the cavity), and 
𝑑ℎ

𝑑𝑡
= 𝑣𝑐𝑟 denote the vertical velocity of the fluid as it rises. This model can be further 

adapted to accommodate for inertial effects as follows:56,134 

𝜌ℎ
𝑑2ℎ

𝑑𝑡2 + 𝜌 (
𝑑ℎ

𝑑𝑡
)

2
+ 

2

𝑅𝑐𝑟
𝛾𝑙𝑣 𝑐𝑜𝑠(휃𝑒) −

8

𝑅𝑐𝑟
2 휇ℎ

𝑑ℎ

𝑑𝑡
− 𝜌𝑔ℎ = 0    (2.6) 

Note that Eqs. (2.5) and (2.6) above assumes that the cavity is perfectly cylindrical and therefore has a 

constant radius 𝑅𝑐𝑟 . In order to consider more complex cavity geometries, it is necessary to modify these 

equations to accommodate for changes in the radius 𝑅𝑐𝑟  as a function of the cavity height ℎ . This is 

accomplished through the inclusion of the local cavity angle 𝛽𝑠, which describes the local angle of the cavity 

wall relative to a horizontal surface and can be calculated based on the local variation in the cavity wall radius 

over an incremental change 휆 in the cavity height (i.e., a change between ℎ − 휆 and ℎ) as follows:135 

𝛽𝑠(ℎ) = 𝑐𝑜𝑠−1 (
ℎ−(ℎ−𝜆)

𝑅𝑐𝑟(ℎ)−𝑅𝑐𝑟(ℎ−𝜆)
) = 𝑐𝑜𝑠−1 (

𝜆

𝑅𝑐𝑟(ℎ)−𝑅𝑐𝑟(ℎ−𝜆)
)    (2.7) 

Furthermore, it is important to note that a change in the radius 𝑅𝑐𝑟 will also impact the contact angle 휃 

of the fluid triple contact line and cause it to deviate from its equilibrium value 휃𝑒. The deviation in 휃 for a 

tube of varying 𝑅𝑐𝑟 can be described according to the following equation:135 

𝑐𝑜𝑠(휃(ℎ)) = 𝑐𝑜𝑠(휃𝑒) −
𝜍

𝛾𝑙𝑣

𝑐𝑜𝑠(𝛽𝑠)

𝑅𝑐𝑟(ℎ)
        (2.8) 

where 𝜍 denotes the line tension of the triple contact line. The cavity wall angle 𝛽𝑠 and dynamic contact 

angle 휃 can be incorporated into the Lucas-Washburn equation as follows: 

2

𝑅𝑐𝑟
𝛾𝑙𝑣 𝑠𝑖𝑛(𝛽𝑠 − 휃) −

8

𝑅𝑐𝑟
2 휇ℎ𝑣𝑐𝑟 − 𝜌𝑔ℎ = 0      (2.9) 

Note that Eq. (2.9) becomes Eq. (2.5) when the cavity wall is completely vertical (i.e., when 𝛽𝑠 = 90° 

and therefore 휃 = 휃𝑒). These processes illustrate that microscale variability within the cavity can have notable 

impacts on the capillary behaviour of the fluid within it. As a result, it is necessary to accommodate for the 

molecular-level deviations when studying capillary action, especially within irregular cavity geometries. 



22 

 

2.2.2.2   Sessile Droplet Spreading 

When a liquid comes into contact with a solid surface, it will adapt a spherical cap shape and will move 

along the surface in order to minimize the interfacial energies between the liquid, the solid, and the surrounding 

atmosphere, as illustrated in Fig. 2.4. If the solid/air interface has a higher surface energy than the sum of the 

liquid/air and liquid/solid interface energies, then the liquid will spread along the solid to form a film. On the 

other hand, if the solid/air interface has a lower surface energy, then the liquid will form a quasi-hemispherical 

droplet with a contact angle 휃, as shown in Fig. 2.4b.29 Note that 휃 is defined between the solid surface and the 

droplet’s triple contact line, as highlighted within the figure. The droplet contact angle and its contact radius 

are dependent on the surface energies of each interface. On an ideally flat surface, the relationship between the 

contact angle and the surface energies at steady state can be expressed using Young’s Equation according to 

Eq. (2.4).136 Since the contact angle of a droplet is dependent on the interfacial surface energies of the system, 

it can therefore serve as an important measure of the liquid’s ability to wet the solid, as discussed for capillary 

action within the previous section. Typically, the liquid and solid are considered wetting/partially wetting if the 

equilibrium contact angle of the droplet is below 90°; similarly, contact angles above 90° are generally 

associated with non-wetting interactions between the solid and liquid. In the case of water, these wetting 

regimes are referred to as hydrophilic (휃𝑒 < 90°) and hydrophobic (휃𝑒 > 90°), respectively.137 It is important 

to note, however, that the switching angle of 90° is generally used for the sake of convenience, as in reality, 

the processes involved are quite complicated and there is no clear switch point between hydrophobicity and 

hydrophilicity for sessile droplet systems. Therefore, it is best to analyze this switch point based on the affinity 

between the liquid and the surface, that is, how readily water can be removed from the surface.138 

While the previous discussions have considered the sessile droplet at steady state, it is also important to 

consider the droplet’s dynamic behaviour. When a droplet is placed on a solid surface, it will spread and recede 

until it minimizes the overall surface energy between the droplet, the surface, and the atmospheric phase 

surrounding them as discussed previously. This minimization of the interfacial energies exerts a continuous 

restoration force on the drop (i.e. the capillary force) that drives the droplet to spread so long as there is a 

surface energy imbalance. These capillary forces are opposed by inertial forces, which resist droplet 

 

Figure 2.4: Liquid droplet shape on a solid surface based on surface energy minimization.  

a) 𝛾𝑠𝑣 > 𝛾𝑠𝑙 + 𝛾𝑙𝑣 (complete wetting), b) 𝛾𝑠𝑣 < 𝛾𝑠𝑙 + 𝛾𝑙𝑣 (partial/non wetting) 
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deceleration and acceleration and can drive the droplet to expand or contract past the capillary equilibrium size. 

For sufficiently large droplets, gravity has been observed to provide an additional driving force for the system.29 

These driving forces, however, are countered largely by viscous damping forces that continuously dissipate 

energy from the system. The dynamic behaviour of a sessile droplet is considered to be predominantly driven 

by the aforementioned forces.29,139 Therefore, it is necessary to have a detailed understanding of these forces in 

order to capture crucial droplet spreading behaviour. There have been many studies published within the 

literature that have derived analytical expressions for many of the key sessile droplet forces, i.e., capillary, 

inertial, and gravitational forces.140–142 However, there has yet to be developed any concretely analytical models 

to capture the viscous damping force within droplet systems, despite its overall importance to the sessile droplet 

spreading behaviour. 

The capillary force is one of the most important forces governing the behaviour of a fluid droplet, and 

therefore its effects on a sessile droplet behaviour are some of the most studied within the literature. As 

described above, this force is the result of the intermolecular force imbalances between the solid, droplet, and 

surrounding atmosphere phases, and therefore its analytical expression is dependent upon the fluid surface 

tension 𝛾𝑙𝑣 and the droplet contact angle 휃. The complete analytical expression for the capillary force at a given 

location 𝒙  along the interface and at a given time point 𝑡  can be derived in terms of these variables by 

integrating the differential pressure and the energy dissipation equations along the fluid-vapour interface in 

order to yield the following equation:56,140–142 

�⃑�𝑐𝑎𝑝(𝒙, 𝑡) = 2𝜋𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃 (𝒙, 𝑡))     (2.10) 

where 𝑅𝑑𝑟𝑜𝑝 and 휃 denote the dynamic droplet contact radius and the dynamic contact angle for the 

interface at position 𝒙 and at time 𝑡, respectively. Note that if the droplet maintains a spherical cap shape, the 

contact angle can also be determined geometrically based on its volume 𝑉  and the contact radius 𝑅𝑑𝑟𝑜𝑝 , 

according to: 

휃 = 2 𝑡𝑎𝑛−1 (((√9𝑉2 + 𝜋2𝑅𝑑𝑟𝑜𝑝
6 + 3𝑉)

2

3

− 𝜋
2

3𝑅𝑑𝑟𝑜𝑝
2 ) 𝑅𝑑𝑟𝑜𝑝𝜋

1

3 (√9𝑉2 + 𝜋2𝑅𝑑𝑟𝑜𝑝
6 + 3𝑉)

1

3

⁄ )   (2.11) 

The expression in Eq. (2.10) highlights how capillary action affects the sessile spreading depending on 

the state of the droplet. For example, if the droplet has a smaller contact radius than at equilibrium (i.e. 휃 > 휃𝑒 

according to Eq. (2.10)), then the capillary force will be positive and will drive the droplet to expand and 

increase its surface contact. On the other hand, if the droplet contact radius exceeds its equilibrium radius (i.e. 

휃 < 휃𝑒), then the capillary force will be negative and will push the droplet to recede and decrease its contact 

with the surface. 
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As a sessile droplet expands or contracts along the solid surface, it additionally experiences inertial forces 

that resist droplet deceleration. In order to determine an analytical expression for a droplet’s inertia, Newton’s 

second law can be applied to express the inertial force acting upon a differential element within the droplet. 

These differential inertia values can be subsequently integrated to derive a general inertial expression for the 

entire spherical droplet.141 The compete inertial force equation at a given time point 𝑡 can be expressed in terms 

of 휃 and 𝑅 as follows: 

�⃑�𝑖𝑛𝑡𝑎(𝒙, 𝑡) = 𝜋𝜌𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)3 (
𝑐𝑜𝑠 (𝒙,𝑡)

6 𝑠𝑖𝑛 (𝒙,𝑡)
+

𝑐𝑜𝑠 (𝒙,𝑡)

4 𝑠𝑖𝑛3 (𝒙,𝑡)
−

(𝒙,𝑡)

4 𝑠𝑖𝑛4 (𝒙,𝑡)
)

𝑑2𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)

𝑑𝑡2 = ℱ(𝒙, 𝑡)
𝑑2𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)

𝑑𝑡2  (2.12) 

where: 

 ℱ(𝒙, 𝑡) = 𝜋𝜌𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)3 (
cos (𝒙,𝑡)

6 sin (𝒙,𝑡)
+

cos (𝒙,𝑡)

4 sin3 (𝒙,𝑡)
−

(𝒙,𝑡)

4 sin4 (𝒙,𝑡)
).  

This expression highlights how the inertial force is proportional to the local acceleration experienced by 

the droplet. Note that this expression was derived based on inertial force expressions reported previously within 

the literature,141,142 as described within Appendix A. Furthermore, the contact angle and radius terms within the 

inertial expression produce negative values over 0 < 휃 ≤ 𝜋 that are greater in magnitude for larger contact 

angle values, as highlighted in Appendix A. These results showcase that the inertial force works in opposition 

to the droplet acceleration and that it is most significant when the droplet maintains low contact with the surface 

(large 휃). These results further highlight that the inertial force is greatest when the droplet first contacts the 

surface, which has been previously observed within the literature.29,143 

In addition to the capillary and inertial forces, gravity is also known to affect both the shape and the 

spreading behaviour of sufficiently large droplets. Within a small droplet, the capillary forces will dominate 

over the gravitational forces and therefore gravity will have a negligible effect on the droplet behaviour. 

However, if the droplet is too large, then gravity forces will dominate and will act as an additional driving force 

on the droplet spreading. The cut-off at which gravitational forces become negligible is defined according to 

the capillary length, 휅−1, as follows:144 

휅−1 = √𝛾𝑙𝑣 𝜌𝑔⁄           (2.13) 

For droplets with greater radius than 휅−1, the effects of the gravity forces can play a significant role on 

the droplet spreading behaviour. Under this scenario, the effects of gravity on the droplet at a given location 𝒙 

along the interface and at a time point 𝑡 can be expressed according to the following analytical formulation:142 

�⃑�𝑔(𝒙, 𝑡) = 𝜋𝜌𝑔𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)3 (
(𝒙,𝑡)

𝑠𝑖𝑛3 (𝒙,𝑡)
−

𝑐𝑜𝑠 (𝒙,𝑡)

𝑠𝑖𝑛2 (𝒙,𝑡)
−

2

3
)     (2.14) 

This equation illustrates that the gravitational force experienced by the droplet is greatest for large 

contact angles (i.e., when the droplet has minimal contact with the surface) and is smallest when the droplet 
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has maximal contact with the surface. Note that when the effects of gravity cannot be neglected, the 

gravitational force will additionally influence the shape of a sufficiently large droplet, causing it to form a 

flattened pancake shape rather than a hemispherical cap.29,142 Consequently, Eq. (2.11) cannot be used to relate 

the contact angle to the contact radius for droplets larger than 휅−1. 

Viscous damping is another crucial force that plays a significant role in the spreading behaviour of a 

sessile droplet. It is through viscous damping that the droplet’s energy is dissipated, and consequently it is the 

viscous damping force that prevents the droplet from oscillating indefinitely around its equilibrium contact 

angle. However, despite its overall importance to the sessile droplet spreading behaviour, there has yet to be 

developed any concretely analytical models to capture the viscous damping force within this system. This is 

due to the nature of how this force is calculated in general. For a given arbitrary system, the force due to 

viscosity is calculated based on integrating the viscous stress tensor 𝑺𝒗 over the surface of the system 𝛿Ω as 

follows: 

�⃑�𝑣 = ∫ ∫ 𝑺𝒗 ∙ �̂� 𝑑𝑜
𝛿𝛺

= 휇 ∫ ∫ (𝛻𝒖 + 𝛻𝒖𝑇) ∙ �̂� 𝑑𝑜
𝛿𝛺

      (2.15) 

where 𝒖 is the vector components of the fluid velocity at some point in space within the droplet, and �̂� 

denotes the normal to the system surface 𝛿Ω. This equation highlights that in order to derive a complete 

analytical expression for viscous damping, it is necessary to determine the fluid velocity at all points along the 

system surface. Deriving closed-form expressions for 𝒖 requires solving the Navier Stokes equations for the 

given system, which has yet to be accomplished for sessile droplets. Furthermore, fluid droplets are known to 

have complex internal flow patterns,145,146 further complicating the derivation. There have not been any reported 

work within the literature that have attempted to develop a purely-explicit mechanistic viscous force equation 

due to the challenges highlighted above. Instead, efforts have been focused on deriving assumption-based 

empirical viscous damping expressions, such as the following cylindrically-based viscous damping force:140 

�⃑�𝑣 ≈
6𝜋𝜇(1+

𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2−𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2

𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2+𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2
)

2𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2

𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2+𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2

(1−
𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2−𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2

𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2+𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2
)(2+

𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2−𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2

𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)2+𝐻𝑑𝑟𝑜𝑝(𝒙,𝑡)2
)

𝑙𝑛 (
𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)

𝑎𝑐𝑎
) (

𝑑𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)

𝑑𝑡
)

2

  (2.16) 

where 𝐻𝑑𝑟𝑜𝑝(𝒙, 𝑡) is the height of the droplet above the surface and 𝑎𝑐𝑎 is an empirically-fit parameter. 

This expression was constructed using assumptions to simplify the complex geometry and flow patterns of the 

sessile droplet system, such as assuming that the drop is a cylinder, or that the axial velocity profiles within the 

drop were negligibly small. However, these assumptions are only valid under very special conditions and can 

lead to significant errors in the predicted results. Furthermore, these forces rely on a fitted model parameter 

𝑎𝑐𝑎  and therefore they do not provide a true mechanistic expression for the viscous damping force. 

Consequently, further research is desired in order to overcome this obstacle. 
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The dynamic behaviour of the droplet can be assessed by considering the ratios of each of the forces 

mentioned above. These ratios can be captured through the use of dimensionless numbers such as the Reynolds 

(𝑅𝑒, inertia vs viscosity), Capillary (𝐶𝑎, viscosity vs capillarity), and Ohnesourge (𝑂ℎ, viscosity vs inertia and 

capillarity) numbers, which can be depicted for sessile droplet systems as follows: 

𝑅𝑒 =
𝓋𝜌ℓ

           (2.17) 

𝐶𝑎 =
𝓋

𝛾𝑙𝑣
           (2.18) 

𝑂ℎ =
𝜇

√𝜌𝛾𝑙𝑣ℓ
           (2.19) 

where 𝓋 and ℓ denote a characteristic velocity and characteristic length respectively; these values for a 

sessile droplet system are typically represented by the average velocity of the droplet contact line �̅�𝑑𝑟𝑜𝑝 and 

the average droplet contact radius �̅�𝑑𝑟𝑜𝑝. These numbers provide estimates on droplet properties such as the 

number of oscillations (𝑅𝑒, 𝐶𝑎), the period of oscillation (𝑅𝑒, 𝑂ℎ), and the recoil strength (𝑂ℎ, 𝐶𝑎) that a 

droplet would experience before reaching equilibrium.29,147,148  

When a sessile droplet is dynamically spreading/receding, it will adapt different contact angle values 

than the equilibrium value defined in Eq. (2.4). In particular, it has been observed that a droplet will adapt two 

different contact angles depending on whether the droplet edge is advancing or receding. When the contact line 

is expanding away from the droplet center, it will have a higher contact angle than at equilibrium, which is 

called the advancing contact angle 휃𝑎𝑑𝑣. On the other hand, the contact line will have a lower contact angle 

than at equilibrium when it is contracting back into the droplet; this is referred to as the receding contact angle 

휃𝑟𝑒𝑐. The difference between 휃𝑎𝑑𝑣 and 휃𝑟𝑒𝑐 is defined as the contact angle hysteresis (CAH).29 The origins of 

advancing/receding contact angles and CAH are not completely understood, and is therefore a field still under 

study. CAH is most commonly attributed to surface roughness and heterogeneous surface materials. The effects 

of surface heterogeneities on a droplet’s behaviour would produce different surface energies depending on the 

different materials, and thus the droplet would adapt a different contact angle in order to minimize the overall 

potential energy.  On the other hand, there are several different surface roughness effects that are associated 

with CAH. Surface roughness allows for pockets of air to be trapped between the droplet and the surface, 

resulting in a heterogeneous surface composition. In addition, the changes in the solid surface height will 

require more energy for the droplet’s triple line to overcome. In particular, the triple line can often become 

pinned on surface asperities, and will not become unpinned until sufficient force has been applied.149 In this 

case, the contact line will remain in place while the droplet continues to advance/recede, resulting in 

larger/smaller contact angles approaching 휃𝑎𝑑𝑣 /휃𝑟𝑒𝑐 . The droplet will de-pin once 휃𝑎𝑑𝑣  or 휃𝑟𝑒𝑐  has been 

reached for advancing and receding droplets, respectively.  
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In addition to contributing towards CAH, surface roughness has been established to affect the wettability 

of the solid by the liquid droplet. When a liquid is placed on a rough surface, it can either occupy the extra 

surface area created by the roughness (Wenzel state), or it can choose to sit on top of the surface asperities, 

leaving vapour-phase gaps between the droplet and the lower parts of the surface (Cassie state), as illustrated 

in Fig. 2.5. When the droplet is in the Wenzel state, the contact surface area between the droplet and the surface 

will be much larger than it appears, and consequently the droplet will appear to adopt different measured contact 

angles (휃𝑤) than the true contact angle (휃). When the droplet is in a Cassie state, it will similarly adopt larger 

apparent contact angles (휃𝑐𝑏) than the ideal case (휃) in order to account for the heterogeneous solid-vapour 

surface composition. This increase in the contact angle is due to the hydrophobic nature of air (휃𝑎𝑖𝑟/𝑤𝑎𝑡𝑒𝑟 =

180°). The contact angle modifications observed in both Wenzel and Cassie wetting can be characterized using 

the Wenzel and Cassie-Baxter equations, respectively.150 Note that the Cassie-Baxter model can be naturally 

adjusted to describe heterogeneous surfaces composed of two or more different solid materials by taking into 

account the contact angle and the fraction of the solid surface occupied by each material. Furthermore, note 

that despite the widespread use of the Cassie-Baxter and Wenzel equations to describe the Cassie and Wenzel 

state wetting respectively, there is much debate about their validity within the literature.151,152 These validity 

concerns predominantly arise as it is known that the droplet dynamics are affected by the movement of the 

droplet’s advancing line (i.e. the triple contact line on a solid surface), and therefore roughness profiles and 

composite surfaces only affect the droplet when they are in contact with this three-way interface.10 However, 

the general consensus seems to be that while these models might not be completely accurate on a molecular 

level, they are highly useful when taken as global surface descriptors that can be applied locally to droplets in 

the Cassie and Wenzel states.152 

The effect of roughness on the wettability of a surface is predominantly determined by the wetting state 

of the droplet. If a water droplet is in the Wenzel wetting regime, then the surface asperities will amplify the 

liquid behaviour on the surface, and therefore hydrophilic surfaces will appear more hydrophilic (휃𝑤 < 휃), 

whereas hydrophobic surfaces will appear more hydrophobic (휃𝑤 > 휃). Alternatively, if the water droplet is 

undergoing Cassie wetting, then the contact angle will be larger than on an ideal surface and the surface will 

behave more hydrophobically, regardless of the affinity between the droplet and the surface. This is due to the 

 

Figure 2.5: Liquid droplet in the a) Wenzel state, b) Cassie State 

a) b)
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high contact angle between liquids and air (e.g. 휃𝑎𝑖𝑟/𝑤𝑎𝑡𝑒𝑟 = 180°).153 Consequently, if a rough solid surface 

can be designed such that a contacting droplet of water is always in the Cassie state, then the droplet will have 

larger contact angles and can be removed more readily from the surface. This effect is referred to as 

superhydrophobicity, and it is the basis of self-cleaning and anti-wetting surfaces.  

2.2.2.3   Superhydrophobicity 

In nature, there are many biological surfaces, such as the lotus leaves, cicada wings and duck feathers, 

which exhibit extraordinary hydrophobic properties beyond what is achievable via capillary effects on an ideal 

surface. Specifically, the lotus leaf has been reported to achieve water contact angles greater than 150°, whereas 

the most hydrophobic solid surface materials cannot produce water contact angles higher than 120° on their 

own.154 This natural superhydrophobicity has been attributed to multi-scaled textures on the surfaces, where 

the surfaces are water-repellant due to roughness asperities that keep water droplets in the Cassie wetting state. 

Consequently, these surfaces are able to achieve higher contact angles and lower hysteresis than if they were 

perfectly flat.155 These surfaces have thus served as an inspiration for the design and fabrication of artificial 

superhydrophobic surfaces (SHSs), where roughness is combined with low surface energy materials in order 

to maximize the surface’s water repellency.  

There are numerous different approaches that have been implemented within the literature in order to 

produce artificial SHSs. For example, roughened surfaces can be fabricated by damaging pre-existing flat 

surfaces, by depositing nanoparticles, or by creating highly-porous surfaces.156,157 These methods produced 

surfaces with contact angles between 120-175° depending on the techniques and the surface material used. 

However, one of the most promising routes for fabricating SHSs involves creating periodic micro- or nano-

scale pillars on a solid surface.150,156,157 For these surfaces, the height, shape, width, and spacing between the 

pillars can be adjusted in order to achieve intrinsic contact angles between 125° and 165°. In general, superior 

intrinsic contact angles can be achieved for structures that minimize the contact between the solid and the 

droplet while still maintaining a Cassie wetting state. Additionally, lower CAH can be obtained by using simple 

pillar shapes (i.e. cylinders and rectangular prisms), whereas complicated pillar structures tend to have high 

hysteresis due to pinning on the complex geometry.158 In general, droplet pinning has been observed to cause 

large CAH on micro-pillared SHSs. This can be overcome by combining micro-textured surfaces with 

nanoscale features, which inhibit contact line pinning, in order to create structures with hierarchical 

roughness.159 Hierarchical SHSs have additionally been observed to have higher contact angles and sustain 

higher dynamic pressures, with contact angles as high as 173° and CAH as low as 1-2°.37,156,157,160 Consequently, 

there has been significant interest in developing periodic SHSs with multi-scale roughness, and numerous 

different surface designs have been produced. 

Despite the promise of textured surfaces in achieving superhydrophobicity, these surfaces are still prone 

to issues that deteriorate their liquid repellency. Micro- and nano-structured surfaces can be fragile, and thus 
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SHSs are prone to deterioration due to wear and tear. Surface degradation not only reduces the SHS 

effectiveness, but also results in the formation of sharp edges that are prone to pinning, resulting in higher 

CAH.161,162 This can be overcome by fabricating surfaces with higher mechanical durability, or by designing 

surfaces with microstructures that shield the more-vulnerable nanostructures. SHSs are also subject to 

contamination and corrosion damage.163 As a result, further research has been performed towards designing 

surfaces that resist common forms of corrosion.162 However, one of the most significant forms of SHS 

deterioration occurs if a droplet becomes embedded on the surface, i.e. undergoes a Cassie-to-Wenzel (C2W) 

transition.36  

There are several methods for sessile droplets to enter the impaled Wenzel state. Wenzel drops form 

readily due to fogging and droplet nucleation, when microdroplets condense directly within the gaps between 

asperities on an SHS. These microdroplets can coalesce with each other to form Wenzel state droplets, or they 

can coalesce with Cassie-state macrodroplets and impale them on the surface.164 Even the lotus plant, often 

considered the posterboy of superhydrophobicity, will lose its water-repellant tendencies if water is condensed 

on its surface.150 Droplets can additionally be transitioned into the Wenzel state directly from the Cassie state 

(C2W transition). This can occur during evaporation due to the increasing Laplace pressure within a shrinking 

droplet.[9] Cassie droplets can also transition into the Wenzel state via application of an external force165,166 

Additionally, C2W frequently takes place due to the impact of the droplets themselves on the surface.167,168 

Note that the amount of force needed to undergo a C2W transition depends on the energy barrier between the 

Cassie and Wenzel states, which is furthermore dependent on the structure of the SHS. As a result, it is also 

possible to design an SHS where the C2W energy barrier is negligible and the C2W transition happens 

spontaneously. In this highly undesirable case, the Wenzel state is monostable and the Cassie state will not 

occur.169 These spontaneous transitions can occur due to droplet sliding, when the local contact angle between 

the droplet and the asperity exceeds the advancing contact angle, thus allowing the droplet to advance into the 

gap between asperities. C2W transitions can also occur due to droplet sag. For a droplet in the Cassie state on 

an SHS, the liquid-vapour interface across a gap between roughness asperities will experience a local curvature 

due to gravity and surface tension forces and will sag downward. If the height of the curvature exceeds the 

height of the gap, then the droplet will readily fill the gap and enter a Wenzel state.36 

In order to prevent SHS deterioration due to C2W, it is necessary to determine pathways to transition 

drops out of the Wenzel state or to prevent the Wenzel drops from ever forming. Due to the presence of an 

energy barrier for the C2W transition, it can be inferred that the reverse transition from Wenzel to Cassie (W2C) 

wetting can also occur as long as the Cassie state is stable and sufficient energy is applied to the system. This 

has been observed numerous times experimentally, where a successful W2C transition was induced via external 

stimuli such as electrowetting,166 vibration,170 and application of heat.171 However, many superhydrophobic 

applications such as anti-wetting and self-cleaning surfaces involve systems where external energy cannot be 



30 

 

so readily applied. As a result, there is keen interest in developing SHSs where the transition to the Wenzel 

state is difficult to achieve, or where the inverse W2C transition could occur spontaneously, i.e. where the 

Cassie state is monostable. This potential state is theorized to occur on any SHS so long as the following 

condition is met:37 

1−𝒻

−𝒻
= −𝑐𝑜𝑠 (휃𝑟𝑒𝑐)         (2.20)  

where 𝒻 denotes the fraction of the surface occupied by the solid for a droplet in the Cassie state and 휁 

is a measure of the surface roughness. Similarly, conditions for high-stability Cassie state surfaces has been 

proposed based on the height of the surface asperities and the liquid, liquid-gas, and liquid-solid interaction 

properties.172 Additionally, monostable Cassie states have been observed to occur in surfaces with a two-layered 

roughness scheme (i.e. by depositing hydrophobic nanoparticles over a periodic micropillar structure)37,173 and 

on surfaces etched with periodically-structured nanocones.38 However, despite these advances, the transition 

mechanism for spontaneous W2C is still not completely understood and is an active area of research. 

2.3  Summary 

This section has reviewed the pertinent theory behind different moving interface systems and the various 

phenomena that govern these processes. This chapter furthermore has summarized the various studies that have 

already been performed within this field. This review provided particular focus on the fields of solids 

dissolution, capillary action, droplet spreading, and superhydrophobicity, which serve as the critical fields of 

study analyzed within this work. It furthermore provided a brief overview of the kMC modelling method that 

serves as the basis for the MFkMC algorithm proposed within this study.  

This chapter has illustrated the challenges faced in modelling moving interface systems and highlighted 

some of the remaining gaps within each of the moving interface systems considered. It discussed how there is 

currently a lack of model studies that are able to both efficiently simulate the molecular-level evolution of large 

moving interface systems over long timescales, while still accurately capturing the underlying physics 

governing the interface movement. In addition, while kMC has the potential to overcome the aforementioned 

challenges, there is a current lack of knowledge on how it could be implemented to simulate systems where the 

moving interface is not a solid. Furthermore, this chapter has highlighted how kMC is computationally-limited 

in its ability to capture large solid moving interface systems, such as the complete dissolution of large crystals. 

This section has additionally outlined some of the individual challenges experienced by the key studied moving 

interface systems. In the field of crystal dissolution, the dissolution of the solids is significantly affected by 

uncertainty and environmental variability. This uncertainty can cause significant issues in critical fields such 

as pharmaceutical drug delivery, where it is crucial to control key parameters such as the dissolution time and 

dissolution rate. In the field of capillary action, the movement of a fluid in a cavity is significantly affected by 
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the cavity shape and its microscale structure, which are not often taken into consideration by standard modelling 

approaches. In addition, sessile droplet systems suffer from a lack of knowledge on the complete balance of 

forces acting upon them. Furthermore, SHSs are prone to deactivation due to fowling mechanisms such as 

spontaneous C2W transitions and therefore there is considerable interest in designing surfaces that prevent this 

behaviour from occurring. These gaps provide the key motivation to perform this PhD study focused on 

developing a novel moving interface algorithm that can be applied to study and improve upon each of the 

moving interface processes analyzed within this thesis.  
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Chapter 3 – Development of the Moving Front Kinetic 

Monte Carlo Method*

Moving interface problems encompass a wide variety of different systems, such as ice melt, emulsion 

dynamics, ocean wave propagation, and droplet spread on a surface.2,3,174 These problems often involve 

complicated interface geometries and topologies that are sensitive to small scale variations.4 Consequently, 

they can be difficult to capture using traditional modelling methods. These issues can be addressed through the 

use of the kinetic Monte Carlo (kMC) method, which has the potential to bridge the gap between highly detailed 

molecular-level system descriptions and the larger space and time scales associated with continuum-level 

descriptions.7,67 Nevertheless, the application of kMC to moving interface systems is fundamentally limited by 

a lack of clear direction on how it can be implemented for such systems. Previously-developed kMC models 

can only be applied to solid-solid interface systems, where the underlying surface evolution can be captured 

kinetically, as discussed in Section 2.1.2. However, these approaches cannot be used to capture moving fluid-

fluid interfaces. In addition, existing kMC models for solid-based moving interfaces such as crystal dissolution 

require mapping of the entire solid affected by the kMC processes (e.g., in crystal dissolution kMC models 

need to capture the entire molecular structure of the crystal to simulate the dissolution of the entire crystal), 

and consequently it can be computationally infeasible to capture the behaviour of large systems using standard 

kMC. 

Based on the above, the objective of this chapter is to present a novel general kMC algorithm that can 

efficiently capture the movement of any dynamic interface. This kMC algorithm, which shall be referred to as 

Moving Front kMC (MFkMC), focuses primarily on the interface and how it advances or recedes on a 

molecular level. The MFkMC algorithm defines the interface as the boundary between the interface molecules, 

and it captures the interface movement using kinetic-like rate equations based on the fundamental physics 

responsible for the interface movement. Consequently, MFkMC is widely applicable and can be adjusted to 

capture any moving interface system, regardless of the physical processes or the composition of each phase. 

Section 3.1 provides an overview of the background theory and basic structure of the MFkMC method. 

Subsequently, the full general MFkMC algorithm is presented in Section 3.2. Furthermore, Section 3.3 outlines 

some of the general challenges and considerations that must be taken into account when developing a MFkMC 

model for a given application, such as time-dependent event rates, the initialization of new interface sites, 

dimensionality challenges, and the efficient storage of the system information. Summarizing remarks are 

provided at the end in Section 3.4. 

 

* The contents of this chapter were published in the Journal of Physical Chemistry B.23  
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3.1    Moving Front Kinetic Monte Carlo Theory & Overview 

This section presents the MFkMC algorithm proposed in this work to capture the behaviour of a moving 

interface system. This approach predominantly focuses on the local dynamic movement of an interface and the 

prevalent forces that govern its displacement. Taking inspiration from the object characterization approaches 

found in Object kinetic Monte Carlo,70,71 the MFkMC approach defines the interface based on the positions of 

the molecules on every side of this boundary, as illustrated in Fig. 3.1a. Consequently, MFkMC only concerns 

 

Figure 3.1: a) The interface region modelled by MFkMC. The coloured blue/green circles represent 

the interfacial molecules of each considered phase, the faded circles represent the bulk phase 

molecules that are excluded, and the red line denotes the interface; b) The movement of the interface 

can be subdivided into advancing (𝜖𝑎𝑑𝑣,𝑖) and receding (𝜖𝑟𝑒𝑐,𝑖) components; c) Illustration of how the 

MFkMC algorithm can represent a diffuse interface 
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itself with tracking the interfacial molecules in each phase and disregards the molecules within the phase bulks. 

To further reduce the degrees of freedom within the system, the MFkMC can be optionally combined with a 

lattice such that the positions of each interface molecule are restricted to a single lattice point.67 However, the 

MFkMC approach does not necessitate lattices and can be readily implemented lattice-free. Note that MFkMC 

still accounts for the effects of the bulk ions on the interface through the rate equations used to govern the 

interface site movement; specifically, MFkMC rate equations consider the probability that a bulk phase 

molecule could advance into the interface and replace a molecule of the adjacent phase, as detailed below. 

However, MFkMC does not explicitly keep track of the positions or properties of the bulk molecules directly. 

As a result, MFkMC has to disregard any former interface sites that move into the bulk phase due to the 

interface movement. Similarly, MFkMC has to construct a new interface every time it considers a former bulk 

phase site that becomes an interface site due to the movement of the interface. Note that since MFkMC does 

not explicitly keep track of the positions of bulk phase molecules, each MFkMC model must contain a problem-

specific set of rules to determine when and where to initialize new interface sites based on the bulk system 

properties whenever the interface moves. These rules vary depending on the application and therefore special 

care must be taken when adapting MFkMC for a new system. However, this initialization process is trivialized 

in lattice-based systems, as each empty lattice site adjacent to the interface following the interface movement 

can be assumed to contain a new interface molecule. As a result, it is recommended to implement an MFkMC 

lattice whenever the lattice-based assumption can be applied, although this is not a stringent requirement for 

MFkMC. Also note that the MFkMC algorithm can be adapted to accommodate for bulk phase sites if it is 

needed by coupling it with a separate bulk-phase kMC model; however, details concerning this method are 

beyond the scope of this work. Finally note that the above framework implies that the interface is sharp and 

that the properties of the phase on one side of the interface discontinuously jump to the property values of the 

adjacent phases on the other side of the interface. However, the framework discussed within this work can be 

readily extended to include diffuse interfaces. This can be accomplished by defining the diffuse interface as its 

own phase separated from each of the bulk phases by its own sharp interfaces, as illustrated in Fig. 3.1c. Each 

of the molecules within the interface phase would need to be considered (i.e., they cannot be disregarded unlike 

the bulk phase molecules) and each molecule’s properties would be assigned via a gradient function depending 

on their position in space relative to the bulk phases. However, this work is predominantly focused on 

developing moving interface models for sharp interface systems, and therefore the development of MFkMC 

algorithms for diffuse interface systems will need to be the subject of future work. 

The MFkMC algorithm defines the movement of the interface (𝑚𝑓) as a series of probabilistic events 

where each event 𝜖𝑚𝑓,𝑖  describes how a given interface molecule 𝑖  is replaced by a molecule from the 

neighbouring phase. These events are each composed of two interchangeable and interdependent sub-events. 

The first sub-event describes the movement of the selected interface molecule 𝑖 as it recedes into its own bulk 
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phase or the bulk of an adjacent phase (receding (𝑟𝑒𝑐) sub-event 𝜖𝑟𝑒𝑐,𝑖). On the other hand, the second sub-

event describes the replacement of the previously-mentioned molecule 𝑖 by a molecule within the neighbouring 

phase that advances into and occupies molecule 𝑖 ’s initial position (advancing (𝑎𝑑𝑣 ) sub-event 𝜖𝑎𝑑𝑣,𝑖 ). 

Therefore, the movement of the interface at molecule 𝑖 consists of both a receding event 𝜖𝑟𝑒𝑐,𝑖 and an advancing 

event 𝜖𝑎𝑑𝑣,𝑖  where 𝜖𝑚𝑓,𝑖 = 𝜖𝑟𝑒𝑐,𝑖 + 𝜖𝑎𝑑𝑣,𝑖 . Note that the order of these sub-events 𝜖𝑟𝑒𝑐,𝑖  and 𝜖𝑎𝑑𝑣,𝑖  is not 

relevant (i.e., these sub-events are interchangeable), as the interface will move regardless of whether the 

selected molecule recedes and is subsequently replaced by a molecule from the adjacent phase, or whether a 

molecule from the adjacent phase advances and displaces the selected interface molecule.  

Each event 𝜖𝑚𝑓,𝑖  is captured using a kinetic-like rate equation 𝑊𝑚𝑓,𝑖  that describes the transition 

probability 𝑃(𝛿𝑡, 𝜖𝑚𝑓,𝑖), given the current state of the system at time 𝑡, that the interface movement event 𝜖𝑚𝑓,𝑖 

takes place at time 𝑡 + 𝛿𝑡 (where 𝛿𝑡 denotes a stochastically-generated time interval), as per the rules of kinetic 

Monte Carlo.68 This probability can be decomposed into three components: the probability 𝑃0(𝛿𝑡) that no event 

will occur between time 𝑡 and time 𝑡 + 𝛿𝑡; the probability 𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) that the receding sub-event 𝜖𝑟𝑒𝑐,𝑖 will 

occur at time 𝑡 + 𝛿𝑡; and the probability 𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) that the advancing sub-event 𝜖𝑎𝑑𝑣,𝑖 will occur at time 

𝑡 + 𝛿𝑡. Note that the probability 𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) for sub-event 𝜖𝑎𝑑𝑣,𝑖  does not represent the probability of 

movement for a specific molecule but rather it represents the probability that any molecule from within the 

adjacent neighbouring phase will advance into the site presently occupied by interface molecule 𝑖. As a result, 

in order to calculate 𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) , it is necessary to express this probability based on the individual 

probabilities 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗) that a specific molecule 𝑗 within the adjacent phase will advance into the specified 

site 𝑖 at time 𝑡 + 𝛿𝑡. In order to calculate 𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) as a function of the probabilities 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗), 

consider the probability that any event 𝜖𝑎𝑑𝑣,𝑖,𝑗 will occur over a vanishingly-small time interval 𝛿𝜏 (i.e. the 

probability that any event 𝜖𝑎𝑑𝑣,𝑖,𝑗 will occur between time 𝑡 + 𝛿𝑡 and time 𝑡 + 𝛿𝑡 + 𝛿𝜏). Note that the time 

interval 𝛿𝜏 is different from the larger, unvanishing, and stochastically-generated time interval 𝛿𝑡 that is used 

to indicate the system time when the interface movement event 𝜖𝑚𝑓,𝑖 takes place. Therefore, the probability 

𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) can be expressed as follows: 

𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖)𝛿𝜏 = ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 𝛿𝜏 + 𝑜(𝛿𝜏)     (3.1) 

where 𝑜(𝛿𝜏) is the probability that more than one event 𝜖𝑎𝑑𝑣,𝑖,𝑗 will occur over 𝛿𝜏, i.e., the probability 

that multiple molecules 𝑗 will advance into the site currently or formerly occupied by molecule 𝑖 between times 

𝑡 + 𝛿𝑡 and 𝑡 + 𝛿𝑡 + 𝛿𝜏. Note that it is expected that 𝑜(𝛿𝜏) → 0 as 𝛿𝜏 → 0,68 and therefore by taking this limit, 

Eq. (3.1) simplifies to 𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) = ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 . As a result, the complete expression for the 

probability 𝑃(𝛿𝑡, 𝜖𝑚𝑓,𝑖) that 𝜖𝑚𝑓,𝑖 will take place at time 𝑡 + 𝛿𝑡 can be expressed as follows: 
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𝑃(𝛿𝑡, 𝜖𝑚𝑓,𝑖) = 𝑃0(𝛿𝑡)𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖)𝑃𝑎𝑑𝑣(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖) = 𝑃0(𝛿𝑡)𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗  (3.2) 

This equation can be further simplified by defining 𝑊𝑚𝑓,𝑖 = 𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗  as the rate 

of occurrence for interface movement event 𝜖𝑚𝑓,𝑖. Note that this definition of 𝑊𝑚𝑓,𝑖 highlights that the rate 

equation for a given event 𝜖𝑚𝑓,𝑖 must simultaneously accommodate for both sub-events 𝜖𝑟𝑒𝑐,𝑖 and 𝜖𝑎𝑑𝑣,𝑖 (i.e., 

it must accommodate for both the rate that interface molecule 𝑖 will recede into a bulk phase, and that a 

molecule from the adjacent phase will take the place of molecule 𝑖, thus moving the interface.)  

The MFkMC algorithm is not restricted to only capturing the movement of the interface and can be 

readily adapted to consider additional interfacial kinetic events depending on the application, such as interfacial 

reactions or evaporation and condensation. If the system considers 𝐾 different kinds of non-moving interface 

events in addition to the moving interface events, then each of these miscellaneous (𝑚𝑖𝑠𝑐) events (𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖) 

can be captured using a kinetic rate equation 𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖 that describes the probability 𝑃(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖) that the 𝑘th 

event 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖 will take place at interface molecule 𝑖 and at time 𝑡 + 𝛿𝑡.68 Note that the subscript 𝑚𝑖𝑠𝑐 is used 

to differentiate the non-moving interface events from the moving interface events, which are depicted using the 

subscript 𝑚𝑓 . The probability equation 𝑃(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖)  can be similarly decomposed into two (or more) 

components: the probability 𝑃0(𝛿𝑡)  that no event will occur between time 𝑡  and time 𝑡 + 𝛿𝑡 , and the 

probability 𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖) that the 𝑘th non-moving event 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖 will occur exactly at time 𝑡 + 𝛿𝑡 and at 

interface molecule 𝑖. By combining the probabilities for both 𝜖𝑚𝑓,𝑖 and 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖, the total probability that event 

𝜖𝑖 will occur can be expressed as follows: 

𝑃(𝛿𝑡, 𝜖𝑖) = {
𝑃0(𝛿𝑡)𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 , 𝜖𝑖 = 𝜖𝑚𝑓,𝑖

𝑃0(𝛿𝑡)𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖), 𝜖𝑖 = 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖

   (3.3) 

According to the kinetic Monte Carlo framework,68 the probability 𝑃0(𝛿𝑡) can be expressed as follows:  

 𝑃0(𝛿𝑡) = 𝑒𝑥𝑝(−𝑊𝑡𝑜𝑡𝛿𝑡)         (3.4) 

where 𝑊𝑡𝑜𝑡 = ∑ [𝑊𝑚𝑓,𝑖 + ∑ 𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖k ]𝑖 = ∑ [𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 + ∑ 𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖)𝑘 ]𝑖  defines 

the total rate of event 𝜖𝑖 taking place at 𝑡 + 𝛿𝑡. Therefore, the complete expression for 𝑃(𝛿𝑡, 𝜖𝑖) can be written 

as follows: 

𝑃(𝛿𝑡, 𝜖𝑖) = {
𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑒−𝑊𝑡𝑜𝑡𝛿𝑡

𝑗 , 𝜖𝑖 = 𝜖𝑚𝑓,𝑖

𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖)𝑒−𝑊𝑡𝑜𝑡𝛿𝑡 , 𝜖𝑖 = 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖

   (3.5) 

The objective of the MFkMC algorithm is to stochastically evaluate the state-by-state evolution of the 

moving interface system whose events are governed by the probabilistic distribution in Eq. (3.5). Therefore, in 

order to advance the system from one state to another, it is necessary to use Eq. (3.5) to stochastically select 
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both the event 𝜖𝑖  taking place and the time increment 𝛿𝑡  between the selected event and the previously-

executed event (i.e. Eq. (3.5) is used to select both the event 𝜖𝑖 and the time 𝑡 + 𝛿𝑡 when the selected event will 

occur). This probability density function spans both discrete and continuous probability spaces (i.e., the event 

𝜖𝑖  is selected from a discrete list of 𝐼 possible events 𝜖 = 𝜖1, … , 𝜖𝑖 , … , 𝜖𝐼, whereas the time increment 𝛿𝑡 is 

selected from a continuous distribution 0 ≤ 𝛿𝑡 < ∞) and consequently there is a need to sub-divide 𝑃(𝛿𝑡, 𝜖𝑖) 

into separate discrete and continuous density functions. Using conditioning, the probability density function 

can be written as follows: 

𝑃(𝛿𝑡, 𝜖𝑖) = 𝑃𝑐𝑜𝑛𝑡(𝛿𝑡)𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡)       (3.6) 

where 𝑃𝑐𝑜𝑛𝑡(𝛿𝑡) denotes the probability that any event will occur at 𝑡 + 𝛿𝑡, and 𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) denotes 

the probability that the next event to occur will be 𝜖𝑖 , given that it will occur at 𝑡 + 𝛿𝑡 . The continuous 

probability 𝑃𝑐𝑜𝑛𝑡(𝛿𝑡) can be calculated using probability addition theorem as follows:68 

𝑃𝑐𝑜𝑛𝑡(𝛿𝑡) = ∑ 𝑃(𝛿𝑡, 𝜖)𝑖   

= ∑ [𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑒−𝑊𝑡𝑜𝑡𝛿𝑡
𝑗 + ∑ 𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖)𝑒−𝑊𝑡𝑜𝑡𝛿𝑡

𝑘 ]𝑖  (3.7) 

By re-arranging the aforementioned equation and substituting in 𝑊𝑡𝑜𝑡 =

∑ [𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 + ∑ 𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖)𝑘 ]𝑖 , the probability 𝑃𝑐𝑜𝑛𝑡(𝛿𝑡) simplifies to: 

𝑃𝑐𝑜𝑛𝑡(𝛿𝑡) = 𝑊𝑡𝑜𝑡𝑒
−𝑊𝑡𝑜𝑡𝛿𝑡        (3.8) 

On the other hand, the discrete density function 𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) can be obtained by re-arranging Eq. (3.6) 

as follows:68 

𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) =
𝑃(𝛿𝑡,𝜖𝑖)

𝑃𝑐𝑜𝑛𝑡(𝛿𝑡)
         (3.9) 

By substituting Eqs. (3.5) and (3.8) into Eq. (3.9), the MFkMC event probability 𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) can be 

expressed as follows: 

𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) = {

𝑊𝑚𝑓,𝑖

𝑊𝑡𝑜𝑡
, 𝜖𝑖 = 𝜖𝑚𝑓,𝑖

𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖

𝑊𝑡𝑜𝑡
, 𝜖𝑖 = 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖

       (3.10) 

where 𝑊𝑚𝑓,𝑖 = 𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗  and 𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖 = 𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖) denote the rates of 

occurrence for events 𝜖𝑚𝑓,𝑖 and 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖, respectively. Subsequently, the kMC expressions traditionally used 

to select the time increment 𝛿𝑡 and the event 𝜖𝑖 can be determined by inverting the corresponding continuous 

and discrete probability distribution functions 𝐹𝑐𝑜𝑛𝑡(𝛿𝑡)  and 𝐹𝑑𝑖𝑠𝑐(𝜖𝑖|𝛿𝑡)  for Eqs. (3.8) and (3.10), 

respectively, as follows:68 
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 𝛿𝑡 = −
𝑙𝑛(𝜉𝑐𝑜𝑛𝑡)

𝑊𝑡𝑜𝑡
          (3.11) 

 ∑ ∑ 𝑊𝑚,𝑛
𝜈𝜖−1
𝑛=1

𝑖
𝑚=1 ≤ 휉𝑑𝑖𝑠𝑐𝑊𝑖,𝜈𝜖 ≤ ∑ ∑ 𝑊𝑚,𝑛

𝜈𝜖
𝑛=1

𝑖
𝑚=1      (3.12) 

where 𝑊𝑖,𝜈𝜖  is the rate of occurrence for event 𝜖𝑖,𝜈𝜖 ∈ 𝜖𝑖 = {𝜖𝑚𝑓,𝑖, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖} , where 𝜖𝑖,𝜈𝜖=1 = 𝜖𝑚𝑓,𝑖 

denotes a moving interface event for interface molecule 𝑖  and 𝜖𝑖,𝜈𝜖>1 = 𝜖𝑚𝑖𝑠𝑐,𝑘=𝜈𝜖−1,𝑖  denotes one of the 

additional non-moving interface events for interface molecule 𝑖; and 휉𝑐𝑜𝑛𝑡 and 휉𝑑𝑖𝑠𝑐 denote random numbers 

generated from a uniform distribution used to calculate 𝛿𝑡 and select 𝜖𝑖, respectively. Note that Eqs. (3.11)-

(3.12) share the same form as the standard kMC time and event selection equations (Eqs. (2.1)-(2.2)) reported 

within the previous chapter. These concepts serve as the fundamental mathematical principle for the kinetic 

Monte Carlo methodology, which is the foundation of the proposed MFkMC framework.68 This furthermore 

illustrates that the MFkMC moving interface expressions derived above can be captured using kMC techniques, 

and therefore the MFkMC algorithm can be considered as a branch of kMC extended to describe general 

moving interface systems. Note that the relevant events and the exact form of the rate equations 𝑊𝑚𝑓,𝑖 and 

𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖 varies from application to application. Therefore, the process of event selection and rate determination 

is described in more detail for each of the systems considered in Chapters 4-7 within this work. 

The MFkMC algorithm defines the position and movement of an interface based on the positions and 

movements of the interfacial molecules on each side of the interface. Each time the interface moves, the 

algorithm re-defines the interface by removing any former interface molecules that move into the bulk phase 

and by adding in any former bulk phase molecules that become a part of the interface as a result of the move. 

Furthermore, the MFkMC method takes into account the known structural features and spatial heterogeneities 

of any solid surfaces involved in solid-fluid interfaces on a molecular level. As a result, the MFkMC algorithm 

is able to accurately capture the shape of an interface regardless of its complexity and regardless of the intricacy 

of any surrounding solid geometries. 

The MFkMC algorithm is derived from kinetic Monte Carlo, and therefore it features the same 

limitations as standard kMC algorithms. However, the MFkMC algorithm has an additional limitation based 

on the assumptions used to define the moving interface events 𝜖𝑚𝑓,𝑖. As indicated above, the moving interface 

events assume that the two sub-events 𝜖𝑟𝑒𝑐,𝑖 and 𝜖𝑎𝑑𝑣,𝑖 occur near-simultaneously at time 𝑡 + 𝛿𝑡. Although this 

assumption holds for the majority of moving interface systems, it cannot be assumed for diffusion-limited 

phases that contain very few bulk molecules such that ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗 ≪ 𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖). In these cases, the 

interface molecules 𝑖 in one phase recede significantly faster than they can be replaced by molecules in the 

opposing phase. In order to simulate these kind of systems, it would be necessary to separate the advancing and 

receding sub-events 𝜖𝑎𝑑𝑣,𝑖 and 𝜖𝑟𝑒𝑐,𝑖 into their own separate kinetic events; however this process is beyond the 

scope of this work. 
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3.2  MFkMC Algorithm 

The proposed general MFkMC algorithm is illustrated in Fig. 3.2 and can be summarized as follows. 

1. Initialize the system by defining the location and other relevant parameters for each of the interfacial 

molecules in every phase of each dynamic interface considered, based on the initial conditions. 

2. Determine the initial rates 𝑊𝑚𝑓,𝑖 = 𝑃𝑟𝑒𝑐(𝛿𝑡, 𝜖𝑟𝑒𝑐,𝑖) ∑ 𝑃(𝛿𝑡, 𝜖𝑎𝑑𝑣,𝑖,𝑗)𝑗  for the local movement of each 

interface molecule 𝑖 using their respective rate equations. If there is more than one event that can take 

place for a given molecule (i.e., if the MFkMC algorithm considers more kinetic events than just 

moving the interface), then calculate the rate for any remaining kinetic events ( 𝑊𝑚𝑖𝑠𝑐,𝑘,𝑖 =

𝑃𝑚𝑖𝑠𝑐(𝛿𝑡, 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖), where 𝜖𝑚𝑖𝑠𝑐,𝑘,𝑖 denotes the 𝑘th non-moving interface event taking place at the 𝑖th 

interface molecule). 

3. Generate a random number 휉𝑐𝑜𝑛𝑡 from a uniform distribution to increment the system time 𝑡 by the 

continuous variable 𝛿𝑡 according to Eq. (3.11). Update any event rates that directly depend on the 

system time 𝑡 or the increment time 𝛿𝑡. 

4. Generate a second random number 휉𝑑𝑖𝑠𝑐  from a uniform distribution to select an event 𝜖𝑖  (i.e. an 

interfacial molecule) from discrete space based on the event rates of occurrence, according to Eq. 

(3.12). Note that these events include moving the interface (𝑊𝑚𝑓,𝑖) or any other interfacial event that 

is allowed to take place (𝑊𝑚𝑖𝑠𝑐,𝑖).  

5. Execute the selected event and update any affected rates at the neighbouring sites, accordingly.  

6. Update the list of interfacial molecules to add new interface sites and remove new bulk phase sites 

created by the change in the interface. If the interface moves, initialize new interfacial sites created by 

the move (i.e., new interfacial molecules that were in the bulk phase prior to the move), as illustrated 

in Fig. 3.3. Similarly, remove interfacial sites that become bulk phase sites. 

7. Repeat steps 3-6 until a pre-specified end condition has been met (e.g., the system time reaches a final 

integration time 𝑡𝑓; the system has reached steady state; the interface has completely disappeared, etc.)  

3.3  Challenges & Considerations 

The framework proposed in the previous section provides a general overview of the MFkMC 

methodology and its implementation. However, there are still a number of different aspects and challenges that 

must be addressed so that it can be properly implemented for a given application. Motivated by this, the 

following sub-sections will outline four main concerns and considerations with developing an MFkMC model, 

including time-dependent event rates, initializing former bulk phase sites, system dimensionality, and efficient 

storage of MFkMC information. 
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Figure 3.2: Flowchart of the general MFkMC algorithm 
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3.3.1  MFkMC for Systems with Time-Dependent Probabilistic Rates 

Moving interface systems are dynamic processes whose properties change in time, and consequently, it 

is expected that the rate equations governing the interfacial movement in MFkMC will vary as the system 

evolves. However, MFkMC is stochastic in nature, and therefore the system properties and MFkMC rate 

equations affected by the state-by-state system evolution vary sporadically in time and cannot be represented 

using a closed-form transient expression. As a result, these system rate equations do not always depend directly 

on the time 𝑡 or the rate of change in time 𝛿𝑡, i.e., they often only depend indirectly on 𝑡 or 𝛿𝑡 through the 

stochastic MFkMC fluctuations. When a system only involves rates that do not directly depend on 𝑡 or 𝛿𝑡, the 

order in which the random numbers 휉𝑐𝑜𝑛𝑡 and 휉𝑑𝑖𝑠𝑐 are generated is not relevant, and consequently Step 3 in 

the algorithm above (calculating the time increment 𝛿𝑡) can be performed after Steps 4-6 (selecting and 

executing an event). Note that there are numerous kMC algorithms reported within the literature where the 

event selection and execution occurs before time is incremented.12,13,175–177  

However, MFkMC can also accommodate for systems containing rate equations that depend directly on 

the time 𝑡 or the change in time 𝛿𝑡. These direct-time-dependent rate equations can occur due to controlled 

 

Figure 3.3: The interface region before (left) and after (right) a kMC event is executed using a) lattice-

free and b) lattice-based kMC. The pale green circles (on the left) represent bulk phase sites that 

become interface sites after the event is executed. Similarly, the pale blue circles (on the right) 

represent bulk phase sites that were on the interface prior to the event 
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predictable changes in external variables (e.g., subjecting the system to an externally-controlled temperature 

gradient in a system whose rates are temperature dependent but whose system evolution does not affect the 

temperature) or due to time derivative terms within the rate equations themselves that are approximated using 

finite differences. The latter case is expected to occur in systems whose rate equations are derived based on 

force balances, such as the sessile droplet studies presented in Chapters 6 & 7. In both of these cases, the order  

in which the random numbers 휉𝑐𝑜𝑛𝑡 and 휉𝑑𝑖𝑠𝑐 are generated is important. Consider the probability 𝑃(𝛿𝑡, 𝜖𝑖) 

that the system will undergo a specific event 𝜖𝑖  at time 𝑡 + 𝛿𝑡 . This probability density function can be 

separated into discrete and continuous functions 𝑃(𝛿𝑡, 𝜖𝑖) = 𝑃𝑐𝑜𝑛𝑡(𝛿𝑡)𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) as illustrated in Eq. (3.6). 

In this expression, the discrete probability 𝑃𝑑𝑖𝑠𝑐(𝜖𝑖| 𝛿𝑡) denotes the probability that the next event to occur will 

be event 𝜖𝑖, given that it is already known when the event will occur (i.e., 𝛿𝑡 has already been determined). As 

a result, it is necessary to calculate 𝛿𝑡 and determine the time at which the event takes place (i.e., 𝑡 + 𝛿𝑡) before 

selecting the event as long as the rates for an event 𝜖𝑖 are direct-time-dependent (𝜖𝑖(𝑡)) or time increment-

dependent (𝜖𝑖(𝛿𝑡)). Therefore, in order to provide a general algorithm that can be applied to the largest number 

of moving interface systems possible, the MFkMC algorithm calculates the time increment 𝛿𝑡 in Step 3 before 

determining and executing the event 𝜖𝑖 in Steps 4-6. Note that this ordering of steps can still be readily applied 

to systems whose rate equations that are not direct-time-dependent, as the order in which the random numbers 

are generated does not matter for these systems. 

3.3.2  Initializing Interfacial Particles at Former Bulk Sites 

Over the course of the MFkMF algorithm, new interfacial sites must be created and old sites removed 

whenever the interface moves, as highlighted in Fig. 3.3 and in step 6 of the MFkMC algorithm in Section 3.2. 

Whenever a new interfacial site is established, special care must be taken to initialize the particle properties 

such that they reflect the underlying attributes of the system. In a lattice-based MFkMC system, each of the 

molecules in each phase are assumed to occupy fixed positions according to a pre-set lattice,67 and therefore 

new interface molecules are readily initialized by identifying the empty lattice sites that sit adjacent to the 

interface. On the other hand, in lattice-free MFkMC, the positions of newly-formed interface molecules can be 

stochastically initialized based on the fluid density using stochastic approaches such as particle swarm 

optimization178 or probability distribution-based initialization schemes.179 An example that can be used for 

lattice-free initialization is pseudo-lattice, as illustrated in Fig. 3.4. In this technique, the fluid domain is 

discretized into uniformly-spaced mathematical points separated by the average inter-particle distance, which 

can be calculated based on the fluid density 𝜌 and particle molar mass 𝑚𝑚𝑜𝑙.
180 Once the interface moves, this 

method subsequently identifies the points adjacent to the new interface boundary that do not have an interface 

molecule within close proximity, and initializes a new interface particle around this point at a position 

stochastically-generated from a uniform or a normal distribution. In addition to the position, it is also necessary 

to initialize other relevant parameters, such as the molecule velocity, for each newly-formed interface molecule 



43 

 

for both lattice-based and lattice-free systems. These parameters can be assigned either deterministically or 

stochastically based on either the bulk properties of the system, or the properties of the nearby surrounding 

molecules. For example, the velocity of a freshly-created interface molecule for a water droplet spreading on a 

surface can be readily derived based on the velocity of its nearest neighbouring interface sites.140 On the other 

hand, in applications such as micelle formation under fluid flow,181 the velocities of new interface sites are 

more readily determined based on the overall velocity gradient of the surrounding fluid. Note that the method 

of initializing new interface molecules should be adapted depending on the application. More specifics are 

provided when discussing the different moving interface systems studied within each of the subsequent 

chapters. 

3.3.3  Dimensionality of the Moving Interface System 

The proposed MFkMC algorithm can be adapted to capture moving interface systems regardless of their 

underlying physics or their dimensionality. In general, higher-dimensional problems involve more complicated 

nearest neighbour interactions and often require additional application-specific rules that allow the interface to 

evolve in a realistic manner; detailed illustrations of this subject matter can be found in the sessile droplet 

models presented in Chapters 6 & 7. However, as a simple example, consider the spreading of a droplet on a 

smooth solid surface. In this case, the droplet interface is expected to spread uniformly around a center point, 

as illustrated in Fig. 3.5a. However, in a fully 3D model, this axisymmetric behaviour is not guaranteed and in 

the absence of additional rules, the droplet can readily adapt non-physical shapes, as illustrated in Fig. 3.5b. As 

a result, this 3D system model would require additional restrictions in place to prevent impossible moving 

interface events from occurring so that the interface will spread in a quasi-axisymmetric manner, as illustrated 

in Fig. 3.5c. Further details concerning this topic are provided in Chapters 6 & 7. Due to the aforementioned 

challenges associated with higher-dimensional systems, it is generally recommended to minimize the 

dimensionality of the considered problem whenever possible to reduce the complexity of the developed 

 

Figure 3.4: Illustration of the pseudo-lattice initialization scheme, where the spatial domains are sub-

divided into a grid of evenly-spaced points, and new interface sites are placed at a randomly-placed 

position around any unoccupied point adjacent to the interface after the interface moves 
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MFkMC model. However, the reduction in dimensionality can interfere with the model accuracy for systems 

such as those subject to isotropic molecular-level perturbations, and therefore special care must be taken when 

deciding on the dimensionality of the proposed MFkMC model to balance both the model 

complexity/efficiency and the model accuracy. 

3.3.4  Information Storage in MFkMC Models 

The interfaces in moving interface problems seldom remain the same length and can undergo drastic and 

significant changes in size over the course of the system evolution, e.g., sessile droplet spread, emulsification 

of two immiscible liquids, etc. As a result, the MFkMC algorithm needs to be adaptable to account for changes 

in the sizes of the interfaces and the amount of system information necessary to store. Furthermore, moving 

interface problems often require knowledge about an interface molecule’s nearest neighbour interface sites or 

other spatial heterogeneities. For lattice-based MFkMC models, the interfacial neighbors can be defined as the 

particles located in the lattice sites next to a given particle. On the other hand, for lattice-free MFkMC models, 

the interfacial nearest neighbors are best defined as the particles within a certain distance of a given particle. 

These nearest neighbor heterogeneities are particularly difficult to identify and store efficiently, and therefore 

it is imperative that the MFkMC information storage system provide an efficient means to determine a 

molecule’s nearest neighbour information to minimize the system computational cost. There are many different 

methods that can be used to efficiently store moving interface information, depending on the system and the 

applied assumptions. Two key storage methods that can be used to efficiently store the relevant interface and 

nearest neighbor information, the list indexing approach and the sparse matrix approach, are discussed next.  

 

Figure 3.5: a) Expected axisymmetric droplet spreading on a solid surface; b) non-physical droplet 

spreading for a higher-dimensional model in the absence of model restrictions; c) realistic droplet 

spreading for a higher-dimensional model under sufficient model restrictions 
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The first potential method for information storage when implementing the MFkMC algorithm is to 

borrow from the list indexing approaches used in porous network modelling, as shown in Fig. 3.6a.182 This 

approach would involve the creation of two lists: one that stores all the relevant information for each interface 

particle, and one that maps the interface particle “connectivity” (i.e., keeping track of each particle’s interfacial 

nearest neighbors). However, special care must be taken to efficiently update all relevant information, 

especially the interfacial nearest neighbor information, after every kMC event. In order to avoid having to 

search through all the currently-stored interface sites to identify the nearest neighbors every time a new 

interface particle is added, the lists can be updated such that the particle information is stored based on their 

distance relative to a fixed point, so that the nearest neighbor search can be limited to searching through a 

handful of particle entries. For example, in Fig. 3.6a, the interface molecule information inside the primary 

table are ordered according to their proximity to the center of interface molecule 𝐴1. Assuming that nearest 

neighbor molecules are defined as molecules that are 100 units or less apart, in order to determine the nearest 

neighbor information for molecule 𝐴4 (197 units from the origin) for the first time, it is only necessary to 

consider the table entries for molecules situated within ±100 units (between 97 and 297 units from the origin), 

which are all adjacent to molecule 𝐴4 in the main table, to see if they are nearest neighbors to 𝐴4 or not. In this 

 

Figure 3.6: a) Storing a (lattice-free) interface using a list indexing approach, where the interfacial 

molecule properties and the list of neighboring molecules are stored in separate tables; b) Storing a 

(lattice-based) interface using a sparse matrix, where the location of a molecule corresponds to its 

location within the matrix. Note that the sparse elements are shown as --- for the sake of illustration 
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example, there are only four molecules that need to be considered (molecules 𝐴3 , 𝐵2 , 𝐵3 , and 𝐵4 ). 

Subsequently, the intermolecular distance can be calculated between each considered molecule and molecule 

𝐴4 to determine which molecules are its nearest neighbors (i.e. within 100 units of 𝐴4.) Only molecules 𝐴3 and 

𝐵4 are within 100 units of 𝐴4, and therefore these are the only molecules marked on the connectivity table as 

𝐴4’s nearest neighbors. Note that there are many other methods that can be used to further simplify the nearest 

neighbor search for a new molecule. For example, the nearest neighbor search procedure can be further 

simplified for an N-dimensional system by creating N copies of the main information storage table, where 

particle information is stored in each table relative to their distance in a single dimension with respect to a fixed 

point, and each table organizes their molecules based on a different dimension. However, these approaches are 

beyond the scope of this work. 

The second information storage method, which works particularly well for lattice-based MFkMC 

approaches, is to use large sparse arrays to store all the data, where the location of an interfacial particle’s data 

within the array is correlated to its position in space as illustrated in Fig. 3.6b. This approach greatly simplifies 

finding information about the molecule’s nearest neighbors as the locations of the neighbors within the array 

can be readily determined. This is critical for determining whether new interface sites should be created or old 

sites removed. However, sparse arrays must be defined with a pre-determined size, and therefore it is possible 

for systems subject to fast-expanding interfaces or other large interfacial displacements to exceed the pre-

allocated sparse matrix dimensions. In order to prevent this issue, it is necessary to include a subroutine within 

the MFkMC code to re-assign the moving interface system to a sufficiently larger sparse matrix should the 

system exceed the current matrix dimensions. 

3.4  Summary 

This chapter provided a detailed general overview of the Moving Front kinetic Monte Carlo algorithm, 

a novel kMC-based modelling technique designed to simulate moving interface systems. The proposed model 

defines the location of a time-varying interface based on the positions of the interface molecules on either side 

of the boundary and assigns rates to capture their ability to advance into or recede away from the opposing 

phase. The algorithm subsequently stochastically selects an interface molecule to advance/recede based on their 

rates and executes it in order to migrate the interface. The proposed algorithm is designed to be compatible 

with other kMC-based techniques so that it could readily account for additional kinetic interfacial phenomena 

such as interfacial reactions. This chapter additionally provided a brief analysis of key challenges that must be 

taken into account when constructing an MFkMC model to capture the moving interface behaviour of a given 

system. For one, the order in which the MFkMC steps should be executed is dependent on whether the MFkMC 

event rates are directly dependent on changes in time, and therefore special care should be taken to design the 

algorithm around its events. In addition, MFkMC models suffer from the curse of dimensionality and therefore 
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additional rules may need to be instated to prevent unrealistic system behaviour at higher dimensions. Finally, 

the MFkMC algorithm requires proper care and consideration must be taken into account when designing how 

new interface sites are implemented and when deciding the method of information storage so that MFkMC can 

both accurately and efficiently capture the general system behaviour. The information presented in this chapter 

consequently serve as a baseline for the MFkMC algorithms developed and implemented throughout the 

remainder of this work.  
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Chapter 4 – MFkMC Crystal Dissolution Model for 

Biological Systems with Applications in Uncertainty 

Analysis and Robust Optimization† 

The dissolution of crystalline minerals is an emerging field of study with wide variety of applications in 

critical fields such as medicine, geology, and engineering.19,97,183 The rate and the way in which the materials 

dissolve is of critical importance in many of these systems. These dissolution mechanisms are highly dependant 

on the microscale surface structure and consequently, there has been significant interest in studying and 

modelling the underlying mechanisms behind dissolution on a molecular level in order to control the dissolution 

rate for a given application. It is thus necessary to simulate crystal dissolution processes using a molecular-

level modelling technique such as MFkMC to accurately capture the spatially-heterogeneous nature of the 

dissolution process. However, this process is complicated by environmental uncertainty in the crystal 

dissolution systems.21,22,129 Consequently, it is important to implement techniques in order to accommodate for 

uncertainty when studying, optimizing, and controlling crystal dissolution processes. 

The objective of this chapter is to develop a general 3D MFkMC framework to predict the dissolution of 

nanoscale defect-free crystals regardless of shape and crystal structure. This study particularly focuses on the 

dissolution of crystalline drug delivery capsules within the human body, which is of importance in the 

pharmaceutical industry. The developed MFkMC algorithm is subsequently compared and contrasted with 

standard kMC crystal dissolution models in order to validate its performance and to showcase the performance 

difference between the two kinetic Monte Carlo methods. This study furthermore utilizes the developed 

MFkMC framework to analyze the impact of various crystal sizes and shapes on the dissolution results. This 

chapter also investigates the effects of environmental uncertainties (e.g. the temperature and pH of the system) 

on the crystal capsule dissolution process through the use of Polynomial Chaos Expansions (PCEs). 

Furthermore, low-order PCE coefficient models (LPCMs) are constructed and used to perform 

computationally-efficient robust optimization on the dissolution model. This combination of methods provides 

key tools that can be used to further study and improve the design of pharmaceutical drugs and other biological 

nanocrystal designs to optimize and control their dissolution properties. Section 4.1 presents the 3D MCkMC 

and standard kMC frameworks developed and implemented to simulate complete crystal dissolution. This 

section additionally reviews the PCE and LPCM modelling methods implemented within this work. Section 

4.2 compares and contrasts both the MFkMC and standard kMC methods for the calcium carbonate case study 

 

† The contents of this chapter were published in the Journal of Physical Chemistry B23 and in the Computers & 

Chemical Engineering42 
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considered in this work. Section 4.3 subsequently performs uncertainty analysis on the crystal dissolution 

system, and Section 4.4 presents the robust optimization on the selected case study. Concluding remarks are 

provided in Section 4.5. 

4.1  Modelling Methods 

This section provides an overview of the various modelling methods utilized within this chapter. The 

Moving Front kinetic Monte Carlo and standard kinetic Monte Carlo approaches are presented here to capture 

the stochastic dissolution behaviour for a crystal of any given composition, shape, and size. The provided kMC 

algorithms provide a general framework that can be applied to a wide variety of different crystal materials. 

Furthermore, this section briefly overviews the Polynomial Chaos Expansion and low-order PCE coefficient 

models used to efficiently propagate parametric uncertainty and perform efficient robust optimization on crystal 

dissolution systems, respectively. 

4.1.1  MFkMC & Standard kMC Algorithms for Pristine Crystal 

Dissolution 

The objective of this subsection is to provide general standard kMC and MFkMC frameworks to simulate 

complete crystal dissolution for any desired perfect (defect-free) nanoscale crystal regardless of composition 

or crystal structure. Note that the proposed algorithm can be readily adapted to a wide variety of different 

crystals regardless of composition, crystal lattice structure, crystal lattice centering, or coordination number, 

and consequently the algorithm detailed in this section is presented in as general of terms as possible. 

Furthermore, the model can be readily adapted to accommodate for dissolution for crystals whose structures 

and compositions entail complex multi-step dissolution processes. However, for the case of simplicity, the 

algorithm detailed below predominantly focuses on dissolution in crystals with simple dissolution methods, 

such as in ionic crystals. 

In the crystal dissolution process, the surface species break their bonds with their surrounding neighbours 

and migrate into the bulk fluid phase surrounding the crystal. The energy required for a surface species to 

dissolve is proportional to the number of bonds it shares with its neighbouring species and the identity of its 

neighbouring species, and therefore it is necessary to know the local atomic surface configuration in order to 

determine the dissolution rate for a given surface species. Furthermore, the energy required for dissolving a 

surface particle is dependent on the angle and spacing between it and its neighbours, which can be determined 

based on the base lengths and angles of the crystal lattice for a perfect crystal. Consequently, it is additionally 

necessary to know distances and angles between each surface species and its neighbours, as highlighted in 

Section 2.2.1. In order to capture these surface heterogeneities, the crystal dissolution process is modeled using 

lattice-based approaches for both the MFkMC and standard kMC models. These latticing techniques represent 
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the entire crystal using a 3D mesh, such that each crystal particle is located within its own individual lattice 

site. Note that the lattice is used within these models as an organizational tool that maps the locations of the 

crystal particles relative to their neighbours, and consequently the type of lattice needed to adequately describe 

the crystal depends on the type of centering used (i.e., primitive, face-centered, body-centered, etc.). However, 

it is possible to capture all the different basic crystal centerings by changing the lattice shape. For example, a 

primitive cubic lattice is most easily denoted using a cubic lattice, as illustrated in Fig. 4.1a. On the other hand, 

a body-centered cubic (BCC) can be readily captured using an octahedral lattice, where each lattice site is 

considered to neighbour four lattice sites above and below it, as illustrated in Fig. 4.1b. Additionally, since the 

lattice is used to store the locations of each atom, ion, or molecule within the crystal, it is easiest to denote the 

lattice information of ionic or other polyatomic crystals based on the basic lattice shape formed by all of the 

species together rather than based on the sublattice occupied by a single species. For example, it is easiest to 

consider a NaCl crystal as a simple cubic lattice of alternating Na+ and Cl- ions, as illustrated in Fig. 4.1a, rather 

than a face-centered cubic Cl- lattice with Na+ cations located between the anions. The lattice stores critical 

information about each of the crystal particles, and therefore this modelling approach can directly account for 

crystal structure information of the surface particles such as their species composition, the number of 

neighbours, the distance between neighbours as indicated by the crystal lattice edge lengths, and the interaxial 

angles. The angle orientations and crystal edge lengths are determined at each lattice site by assigning labels in 

each direction, as depicted for a rhombohedral crystal in Fig. 2.2. Note that the angle labels differentiate 

between each interaxial angle and their supplement (i.e., the angle labels differentiate between acute and obtuse 

angles for each angle). These labels are determined based on the angle formed between the two planes 

intersecting at a given direction, as depicted in Fig. 4.2. Note that though this figure depicts a rhombohedral 

crystal, the methods mentioned in this section can be generally extended and applied to crystals of different 

shapes and coordination numbers. 

 

Figure 4.1: Mapping crystal lattices onto kMC lattices: a) mapping a ‘simple cubic’ NaCl crystal onto 

a cubic kMC lattice; b) mapping a BCC crystal onto an octahedral kMC lattice 
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In the present kMC-based algorithms, each surface crystal site is assigned a kinetic rate of dissolution 

based on its local surface structure, as detailed in Section 2.1.1 and as illustrated in Eq. (2.3). These kinetic 

rates are locally updated each time that a surface species is removed via dissolution. Note that in addition to 

the dissolution of the surface molecules, the inverse reaction (i.e., the re-adsorption of dissolved species back 

onto the surface of the crystal) and surface diffusion of existing crystal surface particles can also occur during 

the crystal dissolution process, if the concentration of dissolved particles in the fluid adjacent to the crystal is 

sufficiently high. Under these circumstances, the kinetic rate of re-adsorption and surface diffusion can be 

captured using kinetic models available within the literature.72,98 However, it is predominantly assumed within 

the literature that the dissolved species are rapidly transported away from the surface of the crystals such that 

the concentration of dissolved species at the crystal surface is inconsequential, and therefore the rates of re-

adsorption and surface migration during crystal dissolution are negligible.80,90 As a result, the general kMC 

model presented within this work assumes that the dissolved particles are transported away from the crystal 

surface fast enough such that re-adsorption would only insignificantly affect the model results, and therefore 

the kinetic rate of re-adsorption is neglected. 

The crystal dissolution process considered in this study is modeled using both standard kMC and 

MFkMC techniques. In both methods, the crystal shape and structure are captured using lattice-based 

approaches due to the well-ordered nature of crystals. In standard lattice-based kMC, the crystal is mapped to 

a 3D cubic lattice such that each ion within the crystal occupies its own unique lattice site, as illustrated (in 2D) 

in Fig. 4.3a. The crystal is then dissolved according to the standard kMC algorithm listed in Section B.1. In  

 

Figure 4.2: Labeling the acute (𝑎) and obtuse (𝑜) directions on the standard kMC/MFkMC lattice 
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contrast, the MFkMC algorithm only maps the locations of the crystal surface ions and their neighbouring fluid 

phase sites on the lattice (i.e., it only maps the locations of the interface sites). As a result, all bulk crystal ions 

and all bulk phase fluid sites are marked as empty on the MFkMC lattice, as illustrated (in 2D) in Fig. 4.3b.  

Since the crystal dissolution model does not consider any crystal growth mechanisms, the MFkMC crystal 

dissolution model is most readily captured using the sparse lattice-based approach discussed at the end of 

Section 3.3.4. Note that in the absence of crystal growth, there is no need to assign a moving interface event 

rate to any of the fluid-phase interface sites, since the fluid molecules will not be displaced by the solid crystal. 

In addition, the only relevant information to store for the MFkMC algorithm corresponds to the number of 

nearest neighbours in each direction 𝒏𝒃𝒅, the corresponding angle information 𝚯𝒏𝒃𝒅
, and the dissolution rate 

𝑊𝑐𝑑,𝒏𝒃𝒅,𝜣𝒏𝒃𝒅
 for each surface ion. The complete MFkMC algorithm for crystal dissolution is listed in Section 

B.2. Note that since the kinetic rate of dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝜣𝒏𝒃𝒅
 (Eq. (2.3)) does not directly depend on the time 

𝑡 or the time increment 𝛿𝑡, it does not matter whether 𝛿𝑡 is calculated before or after the event selection step 

within both the standard kMC and MFkMC algorithms, as discussed in Section 3.2.2. However, the time 

increment 𝛿𝑡 was calculated before selecting an event in both of the algorithms presented above in order to 

mirror the MFkMC structure presented in Section 3.2. 

 

Figure 4.3: 2D representation of initializing a section of a kMC lattice for crystal dissolution 

applications: a) Lattice initialization according to standard kMC; b) Lattice initialization according to 

MFkMC 
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4.1.2  Polynomial Chaos Expansions 

The kMC approaches discussed above are unable to explicitly account for the parametric uncertainty that 

is expected to occur in the crystal dissolution system. Often, scenario-based kMC-type simulations would be 

required to take uncertainty into account. For example, for crystal dissolution within a gastrointestinal system, 

the kinetic rates of dissolution are sensitive to properties of the dissolving fluid that are expected to vary and 

cannot be known with complete certainty, such as the fluid temperature and its pH. Therefore, in order for a 

kMC or MFkMC model to accurately capture the crystal dissolution process within the gastrointestinal tract, it 

is necessary for the simulation to account for the uncertainty in these parameters and their effects on the kinetic 

rates of dissolution. However, this technique is computationally prohibitive since it involves multiple 

simulations of the kMC-type model under different operating conditions. The way uncertainty is addressed in 

this study is described next.  

Parametric uncertainty was propagated through the crystal dissolution model via the use of Polynomial 

Chaos Expansions (PCEs). These low order expansions approximate the variability in the model outputs 𝚿 at 

specific time points as a function of the uncertain parameters 𝚮 using chaos polynomials functions according 

to Eq. (4.1). Note that any spatial or temporal variations in the model outputs 𝚿(𝒙, 𝑡) can be taken into account 

by discretizing the relevant space and time domains (𝒙 and 𝑡, respectively) into a set number of distinct points 

and measuring the variability due to uncertainty at each point. A unique PCE model can be subsequently 

constructed to capture the effects of uncertainty at each discrete point in space and time. The PCE algorithm 

implemented within this work only considers temporal variability within the model outputs, which is discretized 

into 𝑀 distinct timepoints 𝑡𝑚, i.e. 𝚿(𝑡𝑚). Consequently, the PCE notation used throughout the remainder of 

this study will only denote time dependence; examples of PCE models with spatial dependencies can be found 

elsewhere within the literature.176,184,185 The polynomial chaos expansion models can be expressed as follows: 

𝜳(𝑡𝑚) = ∑ 𝒂𝜒(𝑡𝑚)∞
𝜒=0 𝒃𝜒

𝜢(𝜩𝜢)        (4.1) 

where 𝒂𝜒(𝑡𝑚) represent the PCE coefficients of the 𝜒th order at a discretized timepoint 𝑡𝑚 whereas 

𝒃𝜒
𝚮(𝚵𝚮) denotes a 𝜒th order polynomial basis function orthogonal to the uncertainty distribution 𝚮. Note that 

these orthogonal polynomials are functions of 𝚵𝚮 = [휉1, 1
, … , 휉𝒾, 𝒾

, … , 휉ℐ, ℐ
], where 휉𝒾, 𝒾

 denotes a random 

value generated based on the uncertainty probability distributions applied to the 𝒾th uncertain parameter 휂𝒾 ∈

𝚮. Furthermore, note that the PCE coefficients 𝒂𝜒  can be determined via different methods, such as the 

intrusive Galerkin projection,186 non-intrusive spectral projection (NISP),187,188 or least-squares methods.176,184 

In this study, the least-squares method is used to fit the PCE coefficients to sample data generated by 

propagating random realizations in the uncertain parameters through the kMC models. The time-dependent 
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PCE algorithm considered in this study is based off of PCE methods developed previously within the 

literature,186–188 and is described within Section B.3. 

The PCE algorithm provides a computationally efficient means to propagate uncertainty through the 

crystal dissolution system. However, the computational speed of sample-based PCE is restricted by the number 

of sampling points used to determine the PCE coefficients 𝒂𝜒, in addition to the number of uncertain parameters 

ℐ in 𝚮 and the PCE order 𝜒. Lower order PCE polynomials and coefficients determined with fewer sampling 

points are more computationally efficient. However, these models are prone to larger computational errors and 

are thus more inaccurate. On the other hand, higher order PCE polynomials and coefficients determined with a 

larger number of sampling points may be able to achieve greater accuracy; however, more intensive offline 

calculations are needed to obtain such models. As a result, it is necessary to determine a priori the optimal 

number of sample points and PCE order to achieve sufficient accuracy while maintaining the lowest-possible 

computational time. In addition, it can be computationally expensive to perform optimization on a system 

model using PCE. This is because the PCE models are only defined for a single realization in the known design 

and operational parameters that influence the system performance, and therefore a unique PCE model would 

need to be developed for every design parameter combination considered within the optimization process. As 

a result, it is necessary to minimize the computational cost of PCE model development for a given system. The 

key computational sinkhole within least-squares and other non-intrusive PCE methods is due to the 

determination of the PCE coefficients, which require generating numerous sample points using the kMC-based 

models. To overcome this computational limitation, low-order PCE coefficient models (LPCMs) can be 

developed to approximate the values of the coefficients for a given set of design and operational parameters. 

The LPCM method is discussed next. 

4.1.3  Low-Order PCE Coefficient Models 

The PCE method is only capable of propagating parametric uncertainty under a single set of design 

conditions 𝛚 at which the PCE model was established. Consequently, it is necessary to develop a method to 

determine the PCE coefficients for an arbitrary set of design parameters. In order to accomplish this objective, 

a series of data-driven low order models were developed to predict each PCE coefficient 𝒂𝜒(𝑡𝑚) as a function 

of 𝛚. These low order PCE coefficient models (LPCMs) were determined by discretizing the set of design 

parameters 𝛚 into a finite number of realizations and developing a unique PCE model at each design parameter 

combination. Low order models were then selected to approximate the relationship between each PCE 

coefficient 𝒂𝜒(𝑡𝑚) and the design parameters 𝛚. The LPCM coefficients were subsequently determined using 

model regression techniques. The full LPCM algorithm considered in this work was adapted based on previous 

works in the literature74,189 and can be found in Section B.4. Note that a unique LPCM was constructed for each 

PCE coefficient 𝒂𝜒(𝑡𝑚) considered, i.e., a unique LPCM model was constructed for each coefficient within 
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the total dissolution time (𝑡𝑑) PCE model and for each coefficient within the PCE models constructed for the 

number of atoms remaining within the crystal 𝑛𝑑(𝑡𝑚) at each timepoint 𝑡𝑚. 

The developed LPCMs are computationally efficient and capable of generating a PCE model for a given 

𝛚 within short computational times. However, the LPCMs rely on low order model fittings and therefore 

require careful design in order to minimize errors and achieve sufficient accuracy. The LPCMs implemented 

in this study were developed using PCE coefficient data determined for each of the key system outputs 𝚿(𝑡𝑚) 

at defined set points in the design parameters 𝛚. The discretization of 𝛚 was selected a priori in order to 

determine the minimum number of design parameter points necessary to adequately capture the relationship 

between the PCE coefficients and 𝛚 with sufficient accuracy while still minimizing the number of required 

PCE models and therefore minimizing the required amount of computational resources. The corresponding 

LPCM models were selected and fit to the PCE coefficients using CurveExpert Professional 2.6. Furthermore, 

the LPCM methods are only defined over a specific range of design and operational parameters, and therefore 

they cannot be used to predict PCE models outside of this region of parameter space. It is thus necessary to 

determine in advance the parameter range in 𝛚 over which the LPCM models are to be defined. 

4.2   Comparison of MFkMC and Standard kMC Crystal 

Dissolution Models 

The MFkMC and standard kMC crystal dissolution schemes proposed in Section 4.1.1 were implemented 

in this work to study the complete dissolution of defect-free ionic Calcium Carbonate (CaCO3) crystals 

dissolving within the human gastrointestinal system. This mineral has been previously simulated using a 2D 

standard kMC model that captured dissolution along the surface of a single crystal face, and the model kinetics 

were validated via comparison to experimental results.90,109 Therefore, this mineral was selected for the case 

study as its kinetics have already been previously reported and validated within the literature. CaCO3 has a 

rhombohedral crystal structure and therefore each of the bulk [CO3]2- anions are coordinated with six metallic 

Ca2+ ions; similarly, each of the Ca2+ cations are coordinated with the oxygens from six different carbonate 

ions. Consequently, each ion can be characterized using the Terrace Ledge Kink (TLK) model, as detailed in 

Section 4.1.1.90,109 

Due to its rhombohedral crystal structure ( 𝑙𝑎 = 𝑙𝑏 = 𝑙𝑐 ; 𝜗𝛼 = 𝜗𝛽 = 𝜗𝛾 ≠ 90° ), CaCO3 will 

predominantly cleave along three planes that intersect each other at non-right angles, as highlighted in Fig. 4.4. 

These planes intersect at an acute angle of 𝜗𝛼,𝑎 = 78.08° or at the supplementary obtuse angle of 𝜗𝛼,𝑜 =

101.92°, depending on their orientation. Consequently, ledge and ledge adatom ions located at the intersection 

of two crystal planes can take on either an acute (𝑎) or an obtuse (𝑜) orientation (𝚯𝒏𝒃𝒅
= [𝑎, 𝑜] for 𝑛𝑏𝑑,𝑡𝑜𝑡 = 2 

and 𝑛𝑏𝑑,𝑡𝑜𝑡 = 4 in Eq. (2.3)). Similarly, kink ions occur at the intersection of all three crystal planes and thus 
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can take on two different (acute-acute-acute (𝑎𝑎𝑎) and obtuse-obtuse-acute (𝑜𝑜𝑎)) configurations (𝚯𝒏𝒃𝒅
=

[𝑎𝑎𝑎, 𝑜𝑜𝑎] for 𝑛𝑏𝑑,𝑡𝑜𝑡 = 3 in Eq. (2.3)). In general, surface ions with a larger number of obtuse angles (e.g., 

obtuse ledge sites or 𝑜𝑜𝑎 kink sites) dissolve faster as these sites are more exposed to the surrounding fluid. As 

a result, each of the different ledge and kink orientations dissolve at different rates depending on their angles 

of intersection with the crystal planes. Note that the present study assumes that the terrace (𝑛𝑏𝑑,𝑡𝑜𝑡 = 5) 

stabilization effects described in Section 4.1.1 do not occur; hence, Δ𝐸𝑇 = 0. Furthermore, because the lattice 

edge lengths are the same for a rhombohedral crystal (𝑙𝑎 = 𝑙𝑏 = 𝑙𝑐 = 3.2 Å),128 the activation energy term 𝐸𝜐 

in Eq. (2.3) is the same in all directions 𝜐 and therefore the activation energy is represented using the symbol 

𝐸. The full list of kinetic parameter values are derived from the literature90 and are listed in Table 4.1.  

The kMC model considered in this work is constructed to perform dissolution on CaCO3 crystals with a 

wide variety of different designs. Consequently, this model takes as inputs the size (𝑠) and shape (⊿) of the 

 

Figure 4.4: The rhombohedral crystal structure of CaCO3 

Table 4.1. CaCO3 dissolution kinetic parameters  

Parameter  Symbol Value 

Temperature 𝑇  310 K 

Dissolution pre-exponential constant 𝑘0  5.22 × 1010 s-1 

Activation energy of dissolution for a Ca-CO3 bond (Activation 

energy for CaCO3 ionic bond hydrolysis) 

𝐸  0.164 eV 

Acute ledge/ledge adatom correction activation energy Δ𝐸𝑎  0.0465 eV 

Obtuse ledge/ledge adatom correction activation energy Δ𝐸𝑜  0 eV 

Acute/acute/acute kink correction activation energy Δ𝐸𝑎𝑎𝑎  0.0465 eV  

Obtuse/obtuse/acute kink correction activation energy Δ𝐸𝑜𝑜𝑎  0.0388 eV 

Cleavage face stabilization energy Δ𝐸𝑇  0 eV 
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CaCO3 crystal to be studied. Note that the crystal shape is not a feature that can be easily quantified, and as a 

result there are several ways that can be used to define this design parameter. During crystal growth, the shape 

of the crystal can be quantified by the relative growth rates of the key crystal planes, and consequently these 

growth rates have been used to define crystal shape within previous works in the literature.98,102 However, a 

much wider variety of crystal shapes can be achieved via processes such as physical and chemical etching.190 

This work considered four distinct crystal shapes that were applied to the CaCO3 model, i.e., rhombohedral 

cubic (𝑐𝑢𝑏𝑒), spherical (𝑠𝑝ℎ𝑒𝑟𝑒), tetrahedral (𝑡𝑒𝑡𝑟𝑎), and dodecahedral (𝑑𝑜𝑑𝑒). Note that these shapes were 

selected to consider a wider diversity in the types of surface sites present on the crystal (e.g., terrace, edge, or 

kink sites). Shapes such as the tetrahedral and spherical crystals have higher ratios of the ledge (𝑛𝑏𝑑,𝑡𝑜𝑡 = 4) 

and kink (𝑛𝑏𝑑,𝑡𝑜𝑡 = 3) sites, whereas shapes such as the cubic and dodecahedral crystals have higher ratios of 

the terrace (𝑛𝑏𝑑,𝑡𝑜𝑡 = 5) sites. Note that most of these shapes cannot be obtained through normal CaCO3 growth 

methods, and therefore it is assumed that the calcium carbonate crystals were templated or cut and etched after 

growth in order to obtain the desired shapes. These techniques have been previously used within the literature 

to synthesize crystal nanoparticles of various different shapes.191,192 Note that the objective of this study is to 

quantify the effects of different crystal shapes on the dissolution process under uncertainty in the system’s 

parameters. Consequently, the synthesis of the aforementioned shapes is beyond the scope of this research. In 

contrast to the crystal shape, the sizes of the crystals were well-defined for the kMC model and measured by 

the total number of calcium and carbonate ions within the crystal, i.e., through the atomic volume of the crystal. 

For a given set of design parameters 𝑠 and ⊿, the kMC algorithms simulate the crystal dissolution 

process and subsequently output the total dissolution time 𝑡𝑑 and the number of particles remaining in the 

crystal 𝑛𝑑(𝑡) at various time points 𝑡 = 𝑡𝑚. The number of particles remaining are used to estimate the crystal 

dissolution rates in time according to the following backward finite difference expression: 

𝑟𝑑(𝑡𝑚) ≈
𝑛𝑑(𝑡𝑚)−𝑛𝑑(𝑡𝑚−1)

𝑡𝑚−𝑡𝑚−1
         (4.2)  

Note that the dissolution rates were estimated in this manner to simplify the application of the PCE 

models described in Section 4.3.3, as the crystal dissolution rates calculated directly from the kMC models 

were extremely noisy and highly sensitive to the inherent kMC stochastic fluctuations. As a result, it was 

difficult to observe the effects of uncertainty on the directly-calculated dissolution rates. Hence, the dissolution 

rates were calculated based on the rate of change in the number of atoms within the crystal for the sake of 

simplicity. The dissolution rates were calculated in this manner as it was observed that this method could 

capture the dissolution rate with sufficient accuracy and without excessive fluctuations due to stochastic noise 

over the intervals of time considered in this work. 

The MFkMC and standard kMC crystal dissolution models discussed above were implemented to model 

the dissolution of CaCO3 crystals of various sizes 𝑠 in water. The crystals simulated within this study were 
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cubic rhombohedrons with equal base length 𝑙𝑎, width 𝑙𝑏, and height 𝑙𝑐 (i.e. 𝑙𝑎 = 𝑙𝑏 = 𝑙𝑐, where the crystal 

size 𝑠 = 𝑙𝑎𝑙𝑏𝑙𝑐 ). This study considered the dissolution of crystals of five different sizes 𝑠 =

[83, 183, 283, 383, 483]. Both the standard kMC and the MFkMC crystal dissolution models were used to 

calculate the total dissolution time 𝑡𝑑 necessary for the crystal to completely dissolve, and the number of ions 

remaining within the crystal as a function of time, 𝑛𝑑(𝑡𝑚). To minimize the kMC-induced inherent stochastic 

variability in the results, each crystal was simulated 10 independent times using both methods; the results were 

averaged to showcase the expected model performance for each method. 

Table 4.2 lists the average crystal dissolution time 𝑡𝑑 for each crystal size as calculated via standard kMC 

and MFkMC. In addition, Fig. 4.5 illustrates the variability in 𝑛𝑑 as a function of time for each of the crystal 

Table 4.2. Total dissolution times, computational costs, and memory usage requirements of the 

standard kMC and MFkMC CaCO3 dissolution models for crystals of different sizes 

Size (ions) Modelling 

Method 

𝑡𝑑 (s) 

(% Error) 

CPU Time (s) 

(% of Standard 

kMC speed) 

Peak Memory 

Allocation (GB) 

(% of Standard 

kMC memory) 

𝑠 = 83 Standard kMC 0.0966574 0.781239 30.7853 

MFkMC 0.0965378 

(0.124%) 

7.94446 

(1017%) 

15.4243  

(50.10%) 

𝑠 = 183 Standard kMC 0.375573 69.7685 32.6622 

MFkMC 0.371833 

(0.996%) 

108.414 

(155.3%) 

16.7918 

(51.41%) 

𝑠 = 283 Standard kMC 0.684406 879.631 37.6286 

MFkMC 0.693743 

(1.364%) 

618.339 

(70.30%) 

17.5095 

(46.53%) 

𝑠 = 383 Standard kMC 1.0223 4112.16 47.3686 

MFkMC 1.01848 

(0.374%) 

2005.45 

(48.77%) 

19.925 

(42.06%) 

𝑠 = 483 Standard kMC 1.35121 20005.3 63.4289 

MFkMC 1.3383 

(0.956%) 

7036.34 

(35.17%) 

29.0104 

(45.74%) 
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sizes using both standard kMC (blue solid lines) and MFkMC (green dashed lines). Note that in this figure, the 

fainter lines of each colour showcase the results of each independent standard kMC and MFkMC simulation, 

whereas the single darker line depicts the average 𝑛𝑑 value at each point in time, averaged over each of the 10 

independent runs for each method. These results illustrate that the MFkMC and standard kMC modelling 

approaches exhibit a similar performance and output similar results (percent errors <2%, as shown in Table 

4.2). The results in Fig. 4.5 also illustrate the natural stochastic variability experienced by both kMC modelling 

methods. Note that the effects of the noise are more significant for the smaller crystal sizes, whereas they are 

insignificant for the larger crystals. The results furthermore showcase the nonlinear nature of the crystal 

dissolution process. This nonlinear behaviour occurs due to the ratio of the slow-dissolving terrace sites 

(𝑛𝑏𝑑,𝑡𝑜𝑡 = 5) to the faster-dissolving ledge (𝑛𝑏𝑑,𝑡𝑜𝑡 = 4) and kink (𝑛𝑏𝑑,𝑡𝑜𝑡 = 3) sites, where the number of 

nearest neighbours 𝑛𝑏𝑑,𝑡𝑜𝑡 impacts the kinetic dissolution rates as highlighted in Eq. (2.3). At the beginning of 

the dissolution process, the cubic rhombohedral crystal predominantly consists of terrace sites, resulting in 

slower initial kinetics. As the crystal dissolution process evolves, the crystal surface roughens and contains a 

higher ratio of the fast-dissolving kink sites, producing faster dissolution rates. The dissolution rate slows down 

as the crystal nears complete dissolution and the number of available surface ions decrease to zero. Table 4.2 

 

Figure 4.5: Number of atoms remaining 𝒏𝒅(𝒕) in the CaCO3 crystal as a function of time generated 

using standard kMC (blue) and MFkMC (green): a) for 𝑠 = 83 ions; b) for 𝑠 = 183 ions; c) for 𝑠 =

283 ions; d) for 𝑠 = 383 ions; e) for 𝑠 = 483 ions 
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additionally lists the computational costs and memory usage requirements for both the MFkMC and standard 

kMC methods for each of the crystal sizes. Note that the % kMC speed and % kMC memory values reported 

for the MFkMC results were calculated as follows: 

𝐶𝑃𝑈𝑀𝐹𝑘𝑀𝐶

𝐶𝑃𝑈𝑠𝑘𝑀𝐶
× 100%          (4.3) 

𝑀𝑒𝑚𝑜𝑟𝑦𝑀𝐹𝑘𝑀𝐶

𝑀𝑒𝑚𝑜𝑟𝑦𝑠𝑘𝑀𝐶
× 100%         (4.4) 

These results showcase the superiority of the MFkMC algorithm in terms of memory allocation, as the 

MFkMC algorithm at its peak required on average only 50% of the total memory demanded by the standard 

kMC algorithm at its peak, regardless of the crystal size. Furthermore, they highlight that the MFkMC algorithm 

is computationally faster for larger systems, whereas it is slower for smaller systems compared to standard 

kMC. For the smallest crystal size considered (𝑠 = 83  ions), the MFkMC algorithm required an order of 

magnitude more computational cost compared to standard kMC. However for the largest crystal size (𝑠 = 483 

ions), the MFkMC algorithm required an order of magnitude less computational time to simulate compared to 

standard kMC. This computational behaviour is due to the fundamental differences between the standard kMC 

and MFkMC approaches. Over the course of the execution of a single event, the MFkMC algorithm has more 

to accomplish as it must create new interface sites and remove new bulk sites brought about by the interface 

movement, in addition to executing the same tasks as standard kMC. However, the MFkMC algorithm 

disregards any molecules or sites within the bulk phase, and therefore it keeps track of significantly fewer 

molecules/sites on average compared to standard kMC, especially for large systems. Note that even though the 

bulk crystal sites have a zero reaction rate, the standard kMC model still needs to accommodate for them when 

selecting the molecule/site at which to execute the kMC event. As a result, the event selection process is faster 

for MFkMC since there are fewer molecules/sites to choose from compared to standard kMC. Although these 

computational savings are insignificant for small systems, they become notable as the crystal size increases, to 

the point where they completely overcome the additional MFkMC computational costs during the event 

execution. These results highlight the computational superiority of the MFkMC algorithm for modelling 

moving interface problems that can be otherwise captured using standard kMC techniques.  

4.3   CaCO3 Dissolution Model Validation, Analysis, and 

Sensitivity 

In order to validate the performance of the kMC-based crystal dissolution models proposed in this study, 

the step velocities of the CaCO3 dissolution process were calculated along the simulated crystal surfaces and 

compared to those observed experimentally using atomic force microscopy.127,128 Note that since the MFkMC 

and standard kMC models output similar results, as highlighted in Table 4.2 and Fig. 4.5, it is not necessary to 
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validate the performance of both models and thus this study was performed for just the MFkMC model. CaCO3 

crystals are predicted to have two key step velocities 𝑣𝑠𝑡𝑒𝑝,𝑜 and 𝑣𝑠𝑡𝑒𝑝,𝑎 that capture the rate of etching for 

crystal ledges that are obtuse and acute, respectively. Note that these step velocities are often referred to as fast 

and slow velocities respectively within the literature. The acute and obtuse step velocities have also been 

calculated within previous kMC-based crystal dissolution studies, and therefore the step velocities reported in 

this work were calculated according to measurement schemes used within those studies.90 The MFkMC model 

developed within this work was observed to have step velocities of 𝑣𝑠𝑡𝑒𝑝,𝑜 = 3.3 nm/s and 𝑣𝑠𝑡𝑒𝑝,𝑎 = 1.2 nm/s. 

These are well within the ranges of the step velocities observed experimentally within the literature (𝑣𝑠𝑡𝑒𝑝,𝑜 =

3.4 ± 0.6 nm/s and 𝑣𝑠𝑡𝑒𝑝,𝑎 = 1.5 ± 0.2  nm/s),127,128 as well as those measured from previously-developed 

crystal dissolution models (𝑣𝑠𝑡𝑒𝑝,𝑜 = 3.3 nm/s and 𝑣𝑠𝑡𝑒𝑝,𝑎 = 0.9 nm/s).90 These results validate the proposed 

MFkMC model, since it is able to adequately capture the crystal dissolution process. 

The crystal dissolution model performance is presented at different combinations of the crystal shape 𝑠 

and size ⊿, as outlined in Table 4.3. The kMC model is specifically analyzed for each of the four considered 

crystal shapes (⊿ ∈ 𝚫 = {𝑐𝑢𝑏𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑡𝑒𝑡𝑟𝑎, 𝑑𝑜𝑑𝑒}) at two different sizes. Note that the number of ions in a 

perfect crystal etched into a precise shape varies depending on the shape of the crystal itself (i.e. a perfect 

rhombohedral CaCO3 crystal with a base length of 15 ions would have a size 𝑠 = 𝑙𝑎𝑙𝑏𝑙𝑐 = 3375 ions, whereas 

a perfect spherical crystal with a diameter of 15 ions would have a size 𝑠 = 672 ions). In order to provide a 

fair comparison between the different crystal shapes, the sizes for each shape are selected such that they exhibit 

an equivalentnumber of ions, i.e. 𝑠 = 𝑠𝑒𝑞,⊿ for ⊿ ∈ 𝚫. Furthermore, preliminary results have shown that the 

number of atoms remaining 𝑛𝑑(𝑡𝑚) could not be readily captured over a linear timescale. This is because the 

effects of uncertainty were observed to introduce a large variation (over five orders of magnitude difference) 

in the crystal dissolution times, and consequently a linear timescale cannot provide meaningful analyses as 

most of the 𝑛𝑑  distributions were dominated by large peaks at 𝑛𝑑 = 0 . Therefore, the number of atoms 

remaining 𝑛𝑑(𝑡𝑚) were calculated over a logarithmic timescale at nine independent time points that were 

selected from previous simulations, i.e. 𝑡𝑚 = [𝑡0 = 4.14 × 10−8, 𝑡1 = 5.04 × 10−7, 𝑡2 = 6.14 × 10−6, 𝑡3 =

7.49 × 10−5, 𝑡4 = 9.12 × 10−4, 𝑡5 = 1.11 × 10−2, 𝑡6 = 1.35 × 10−1, 𝑡7 = 1.65, 𝑡8 = 20.09]. 

The results and the computational times needed to run these simulations are displayed in Table 4.3. 

Furthermore, Figs. 4.6a and 4.6b showcase the evolution in the number of atoms remaining (𝑛𝑑(𝑡𝑚)) as a 

function of time for the smaller and larger crystal sizes, respectively. In order to illustrate the stochastic 

variability in the kMC methods, each of the results in Fig. 4.6 were generated using three independent 

realizations of the crystal dissolution model, highlighted using different shades of the same colour for each 

shape. These figures show that the stochastic noise inherent to kMC does not significantly affect the temporal 

evolution of the crystal dissolution. On the other hand, the results in Fig. 4.6 and in Table 4.3 demonstrate that  
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the size and shape of the crystals notably affect the simulation results. The larger crystals have longer 

dissolution times and higher dissolution rates compared to the smaller crystals of the same shape. The longer 

dissolution times can be readily attributed to the larger number of ions in the larger CaCO3 crystals. In terms 

of the shape, the tetrahedral crystals have the largest dissolution rates and require less time to fully dissolve on  

average. However, the spherical crystals are able to achieve similarly low dissolution times (𝑡𝑑 = 0.180 s and 

Table 4.3. Outputs and computational costs of the CaCO3 dissolution kMC model for crystals of 

different sizes and shapes 

Shape 𝑐𝑢𝑏𝑒 𝑐𝑢𝑏𝑒 𝑠𝑝ℎ𝑒𝑟𝑒 𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 𝑡𝑒𝑡𝑟𝑎 𝑑𝑜𝑑𝑒 𝑑𝑜𝑑𝑒 

Size 

(ions) 
3375 15625 3071 15408 3098 14958 2880 15296 

CPU 

Time (s) 
13.92 227.13 26.93 492.08 60.76 1419.5 34.00 546.30 

𝑡𝑑 (s) 0.259 0.583 0.180 0.422 0.186 0.410 0.209 0.443 

𝑟𝑑(𝑡1) 

(ions/s) 

2.16 

×106 

2.16 

×106 

3.02 

×107 

2.16 

×106 

2.16 

×106 

2.16 

×106 

3.02 

×107 

2.16 

×106 

𝑟𝑑(𝑡2) 

(ions/s) 

1.77 

×105 

1.77 

×105 

7.98 

×106 

1.77 

×105 

1.77 

×105 

1.77 

×105 

1.03 

×107 

1.77 

×105 

𝑟𝑑(𝑡3) 

(ions/s) 

1.46 

×104 

1.46 

×104 

4.80 

×105 

1.46 

×104 

1.46 

×104 

8.73 

×104 

3.35 

×105 

4.37 

×104 

𝑟𝑑(𝑡4) 

(ions/s) 
1195 

2.99 

×104 

4.66 

×104 
3584 1195 

8.00 

×104 

1.16 

×105 

1.67 

×104 

𝑟𝑑(𝑡5) 

(ions/s) 
686.5 

2.86 

×104 

3.53 

×104 

1.60 

×104 
1275 

7.17 

×104 

9.28 

×104 

2.55 

×104 

𝑟𝑑(𝑡6) 

(ions/s) 

1.32 

×104 

1.90 

×104 

1.80 

×104 

1.76 

×104 

1.56 

×104 

6.20 

×104 

5.74 

×104 

5.17 

×104 

𝑟𝑑(𝑡7) 

(ions/s) 
1136 254.4 245.1 342.3 9032 4556 4419 5679 

𝑟𝑑(𝑡8) 

(ions/s) 
0 0 0 0 0 0 0 0 
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0.422 s for the smaller and larger crystal sizes, respectively), although their overall dissolution rates are lower 

throughout most of the dissolution process. On the other hand, the rhombohedral cubic crystals have the lowest 

dissolution rates overall and take the longest to dissolve compared to the other shapes (𝑡𝑑 = 0.259 s and 0.583 

s for the smaller and larger crystal sizes, respectively), as shown in Table 4.3. The changes in behaviour between 

the different shapes can be explained by the variation in the ratios of the different types of surface sites for each 

of the shapes. The faster-dissolving tetrahedral and spherical shapes have a higher ratio of the faster-dissolving 

kink and ledge sites. Consequently, these CaCO3 shapes have notably higher dissolution rates and therefore 

dissolve faster. On the other hand, the dodecahedral and rhombohedral cubic crystals have higher ratios of the 

higher-stability terrace sites. As a result, they dissolve slower and take longer to completely dissolve. In terms 

of the computational cost, the smaller crystal sizes require less time to compute than the larger crystal sizes, as 

expected. Furthermore, Table 4.3 highlights that the tetrahedral and dodecahedral crystals require 2-5 times 

longer on average to compute compared to the rhombohedral cubic and spherical crystals. This increase in the 

computational cost is due to the approach used to initialize the crystals within the model, and not due to the 

model process itself. The rhombohedral cubic and spherical crystal shapes are relatively simple to implement 

and do not require significant computational time to create a crystal of these shapes within the kMC lattice 

network. On the other hand, the tetrahedral and dodecahedral shapes are relatively complicated to model and 

implement and therefore require more computational resources. 

The current results highlighted in Fig. 4.6 provide reasonable comparisons of the differences in the 

dissolution behaviour between crystals of different shapes. However, they only provide a basic understanding 

 

Figure 4.6: Number of atoms remaining in the CaCO3 crystal as a function of time: a) for the smaller 

crystal sizes (𝑠𝑐𝑢𝑏𝑒 = 3375, 𝑠𝑠𝑝ℎ𝑒𝑟𝑒 = 3071, 𝑠𝑡𝑒𝑡𝑟𝑎 = 3098, 𝑠𝑑𝑜𝑑𝑒 = 2880); b) for the larger crystal 

sizes (𝑠𝑐𝑢𝑏𝑒 = 15625, 𝑠𝑠𝑝ℎ𝑒𝑟𝑒 = 15408, 𝑠𝑡𝑒𝑡𝑟𝑎 = 14958, 𝑠𝑑𝑜𝑑𝑒 = 15296). Note the differently-

shaded lines for each colour correspond to independent kMC runs for each shape to showcase the 

amount of stochastic variability present within the model 
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of the effects that the crystal size has on the dissolution dynamics. In general, it is expected that smaller crystals 

would have higher dissolution rates on average since they have a higher surface area-to-volume ratio, i.e., a 

larger percentage of their ions are on the crystal surface. Fig. 4.7 provides a direct comparison of the number 

of atoms remaining in the crystal (𝑛𝑑) as a function of time for crystals of the same shape and different sizes. 

Figs. 4.7a and 4.7e plot the evolution of 𝑛𝑑  for rhombohedral crystals of four different sizes 𝑠𝑐𝑢𝑏𝑒 =

[125, 3375, 15625,42875] ions, i.e., the rhombohedral crystals listed in Table 4.3 as well as a larger crystal 

and a smaller crystal. Furthermore, Figs. 4.7b-4.7d and 4.7f-4.7h depict the evolution of 𝑛𝑑  for spherical, 

tetrahedral, and dodecahedral crystals with sizes that are equivalent to the cubic crystal sizes, i.e. 𝑠𝑠𝑝ℎ𝑒𝑟𝑒 =

[123,3071,15408,41472], 𝑠𝑡𝑒𝑡𝑟𝑎 = [121,3098,14958,41741], and 𝑠𝑑𝑜𝑑𝑒 = [99,2880,15296,41615]. The 

results in Fig. 4.7 were generated by simulating three independent simulations for each crystal shape and size 

and averaging the results to minimize the stochastic noise. Note that Figs. 4.7e-4.7h plot the same results as 

Figs. 4.7a-4.7d; the only difference is that the results in Figs. 4.7e-4.7h have been normalized to provide better 

comparison of the results according to �̃�𝑑 = 𝑛𝑑/𝑠 and �̃� = 𝑡/𝑡𝑑, where �̃� and �̃�𝑑 denote the non-dimensional 

time and number of ions remaining respectively for each crystal shape and size. The results in Figs. 4.7a-4.7d 

illustrate that the larger crystals take longer to dissolve than the smaller crystals, which is to be expected due 

to the larger number of ions that require dissolution. On the other hand, the results in Figs. 4.7e-4.7h provide a 

better comparison on how the rates of dissolution vary between the crystals of each size. These results illustrate 

that the behaviour of the three larger crystal sizes are very similar and do not notably deviate from each other 

with regards to the shapes of their dissolution curves. However, the smallest crystal (in blue) deviates 

significantly from the results of the other three crystal sizes and has a drastically different profile shape. Note 

that the transient variation in 𝑛𝑑 for the smallest size of crystals is much coarser compared to the larger crystals 

since they contain fewer atoms overall. However, this appearance was not observed to significantly alter the 

general behaviour as increasing the number of independent kMC simulations did not notably affect the curve 

appearances. These results illustrate that the overall dissolution behaviour for the smallest crystal sizes is quite 

different from the larger crystals, and therefore they highlight the effects of the surface area-to-volume ratio 

for smaller crystals. Smaller crystals have a higher ratio of the highly-reactive kink (𝑛𝑏𝑑,𝑡𝑜𝑡 = 3) and ledge 

(𝑛𝑏𝑑,𝑡𝑜𝑡 = 4) sites compared to the slower terrace (𝑛𝑏𝑑,𝑡𝑜𝑡 = 5) sites and non-reactive bulk (𝑛𝑏𝑑,𝑡𝑜𝑡 = 6) sites, 

especially in the case of the tetrahedral crystal shapes. As a result, the smaller crystals experience significant 

dissolution during the initial time periods, as illustrated by the sharp near-vertical decrease in 𝑛𝑑 at the onset 

of the dissolution process. On the other hand, the larger crystal sizes have slower initial dissolution rates due 

to the lower ratio of highly-reactive sites. However, as the crystal dissolution process evolves, the larger crystals 

become rougher and rougher creating higher ratios of kink and ledge sites, and therefore the ratio of fast-  

dissolving sites increases as the crystal dissolves. As a result, the average rates of dissolution increase at 

moderate time periods for the larger crystals, as showcased in the middle of Figs. 4.7e-4.7h. Towards the end 
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Figure 4.7: Number of atoms remaining in the CaCO3 crystal as a function of time, a)-d), and normalized 

number of atoms remaining �̃�𝑑 as a function of normalized time �̃�, e)-h): a)/e) for rhombohedral crystals 

(𝑠𝑐𝑢𝑏𝑒 = [125,3375,15625,42875]); b)/f) for spherical crystals (𝑠𝑠𝑝ℎ𝑒𝑟𝑒 = [123,3071,15408,41472]); 

c)/g) for tetrahedral crystals (𝑠𝑡𝑒𝑡𝑟𝑎 = [121,3098,14958,41741]); d)/h) for dodecahedral crystals 

(𝑠𝑑𝑜𝑑𝑒 = [99,2880,15296,41615]) 
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of the dissolution process, the rates slow down as the fast-dissolving sites are removed. On the other hand, the 

smallest crystal size does not exhibit similar behaviour towards the middle and end of the dissolution process. 

This is because the number of fast-dissolving sites is highest at the onset of the crystal dissolution process, and 

it steadily decreases over time for the smallest crystals. After these sites dissolve, the rate of dissolution slows 

and maintains a near-constant rate for the remainder of the dissolution process as the ratio of different reactive 

sites stagnate. 

The CaCO3 dissolution process is dependent on a number of external environmental factors, such as the 

temperature and the pH of the system where the crystal is dissolving. Within the human gastrointestinal system, 

these environmental parameters are known to vary depending on a number of external factors. The average 

human body temperature has been documented as 37 oC;193,194 however, the exact temperature of the human 

body is known to vary between 35.2-38 oC depending on a number of factors such as time of day, age, gender, 

health, menstrual and biological rhythms, diet, and lifestyle.194–196 In addition, the pH of the human stomach 

has been reported to vary between 1.3 and 6.4 depending on a number of factors such as the location within the 

stomach and whether or not the person had recently eaten.197 Consequently, it is important to analyze the impact 

of the variability of these environmental factors on the CaCO3 dissolution behaviour. 

Motivated by this, a brief sensitivity analysis is performed on the kMC calcium carbonate crystal 

dissolution model subject to the key model parameters affected by variations in the temperature and pH. Note 

that the pH is not directly involved in the CaCO3 dissolution kinetics model; hence, the variability in the pH is 

evaluated in the model by modifying the activation energy of desorption 𝐸 (i.e. the parameter within the kMC 

model that the pH would affect the most significantly). The objective of this sensitivity analysis is to analyze 

the need to perform uncertainty analysis on the crystal dissolution model, and to determine the most influential 

uncertain parameters within the system. Consequently, the sensitivity analysis is performed by directly 

propagating realizations of 𝐸 and the temperature 𝑇 independently through the dissolution model to assess the 

model sensitivity to each uncertain parameter individually. In order to accommodate for the stochastic tendency 

of kMC methods, each realization of 𝐸 and 𝑇 were passed through the model four separate times and the results 

were averaged. 

Based on the above, this study analyzes the temperature and activation energies at their nominal value 

(i.e. 𝑇 = 37 oC and 𝐸 = 0.164 eV as shown in Table 4.1). Furthermore, this work also analyzes the crystal 

dissolution behaviour subject to a ±2oC variability in the temperature and a ±0.0164 eV variability in the 

activation energy. Note that the variability in the system temperature was derived based on the expected 

temperature fluctuations within the human body as discussed above. Furthermore, a 10% variability was 

considered in the activation energy to account for the fluctuations in the pH described previously. These 

sensitivity analyses are applied to the same crystal design case studies considered above in Table 4.3. 
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Fig. 4.8 illustrates the variability in the transient crystal dissolution profiles through 𝑛𝑑. These results 

illustrate that the variation in the pH through the activation energy has a significant effect on the CaCO3 

dissolution performance, as a 0.0164 eV increase and decrease in 𝐸 resulted in approximately an 85% increase 

and a 535% decrease on average, respectively, in the dissolution time as shown in Figs. 4.8e-4.8h. On the other 

hand, the variability in the system temperature was observed to have a minimal impact on the crystal dissolution 

behaviour. More specifically, a 2oC change in the temperature resulted in approximately a 13% change in the 

overall dissolution time, as highlighted in Figs. 4.8a-4.8d. As a result, the studies presented throughout the 

 

Figure 4.8: Sensitivity of the transient CaCO3 dissolution profile subject to changes in temperature, 

parts a)-d), and pH through the activation energy, parts e)-h): a) temperature variability, 𝑐𝑢𝑏𝑒; b) 

temperature variability, 𝑠𝑝ℎ𝑒𝑟𝑒; c) temperature variability, 𝑡𝑒𝑡𝑟𝑎; d) temperature variability, 𝑑𝑜𝑑𝑒; e) 

pH variability, 𝑐𝑢𝑏𝑒; f) pH variability, 𝑠𝑝ℎ𝑒𝑟𝑒; g) pH variability, 𝑡𝑒𝑡𝑟𝑎; h) pH variability, 𝑑𝑜𝑑𝑒 
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remainder of this work will only consider uncertainty in the stomach pH (i.e. the remaining studies will only 

consider parametric uncertainty in the activation energy). Note that the low variability in the crystal dissolution 

behaviour due to fluctuations in the system temperature do not indicate that the crystal dissolution model is 

insensitive to variations in the system temperature. Rather, the low variability is due to the narrow temperature 

range considered in this study (i.e., the temperature within the human body is only expected to fluctuate between 

35.2-38 oC, and therefore the temperature was only assigned a variability of ±2 oC). On the other hand, the pH 

within the human gastrointestinal system is expected to vary significantly. In the sensitivity analysis, this 

resulted in large fluctuations in the crystal dissolution behaviour as observed in Figs. 4.8e-4.8h. If the sensitivity 

analysis had been conducted with a larger variation in the system temperature, then it is expected that the 

fluctuations in the crystal dissolution behaviour would be much more significant. 

4.4   Uncertainty Analysis via PCE and LPCMs 

The objective of this section is to propagate parametric uncertainty due to environmental fluctuations 

through the CaCO3 dissolution models using PCE and LPCM. This study considered variability in the stomach 

pH, which is captured by adding uncertainty to the crystal activation energy 𝐸 as described in Section 4.3. The 

uncertainty in the activation energy was assumed to be normally distributed with its nominal value as the mean 

(i.e. �̅� = 0.164 eV) and a variance 𝜎𝐸
2 = 0.269 × 10−3 eV2. Furthermore, the uncertainty was assumed to 

remain invariant in time and space. Note that both the PCE models and LPCMs suffer from the curse of 

dimensionality and therefore increasing the number of uncertain parameters also increases the size and number 

of resources needed to generate these models. A larger number of uncertain parameters will increase the number 

of terms in the developed PCE model and will require more sampling from the kMC-based models to determine 

the PCE coefficient values thus requiring additional simulation costs. Similarly, increasing the number of 

uncertain parameters will increase the dimensionality of the developed LPCMs. Consequently, the addition of 

further uncertain parameters would raise the challenge of determining adequate models that can fit the data and 

they would necessitate the simulation of additional data points (and therefore additional computational 

resources) to achieve an acceptable model fit. 

The PCE models considered for the uncertainty analysis were constructed using 1st, 2nd, and 3rd order 

probabilistic Hermite polynomials as the polynomial basis function (i.e. 𝜒 = 1 − 3 and 𝒃𝜒
𝚮 = 𝐻𝑒𝜒 in Eq. (3)). 

The Hermite family of polynomials were selected for this study as they are orthogonal to the normal 

distribution, and they are therefore ideal for propagating normal uncertainty through the crystal dissolution 

model. Furthermore, the order of the PCE models were selected independently for each of the kMC model 

outputs (ie. 𝑡𝑑  and 𝑛𝑑(𝑡𝑚)). The PCE orders were determined a priori to be the lowest order of chaos 

polynomials needed to capture the uncertainty variability for their respective model outputs. The probabilistic 

Hermite polynomials are denoted as follows: 
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𝐻𝑒𝜒(𝜩𝜢) = (−1)𝜒𝑒𝜩𝜢
𝟐 /2 𝑑𝜒

𝑑𝛯𝜢
𝜒 𝑒𝜩𝜢

𝟐 /2         (4.5) 

Consequently, the full 3rd order polynomial chaos expression for a single uncertain parameter considered 

in this work can be denoted as follows: 

𝜳(𝑡𝑚) = 𝑎0(𝑡𝑚) + 𝑎1(𝑡𝑚)𝛯𝛨 + 𝑎2(𝑡𝑚)(𝛯𝛨
2 − 1) + 𝑎3(𝑡𝑚)(𝛯𝛨

3 − 3𝛯𝛨)   (4.6) 

where 𝑎0, 𝑎1, 𝑎2, and 𝑎3 denote the 0th, 1st, 2nd, and 3rd order PCE coefficients at each time instant 𝑡𝑚. 

Note that the corresponding 1st and 2nd order PCE models can be derived by truncating Eq. (4.6) after the 1st 

and 2nd order PCE coefficient terms, respectively. The PCE coefficients were determined via least squares 

regression using 500 sample points. The sample points were determined by propagating randomly-generated 

realizations in the uncertain parameter through the kMC models and recording their outputs at each time instant 

(𝑡𝑚). Note that the number of sample points were determined a priori to be the lowest number of points needed 

to capture the variability in the outputs 𝑡𝑑 and 𝑛𝑑(𝑡𝑚), respectively. Further note that both the lowest PCE 

order and the minimum number of sample points required were determined by fitting the PCE models to output 

uncertainty distributions generated using 10,000 randomly-generated MC sampling points propagated through 

the actual kMC model. 

On the other hand, the LPCMs were developed to approximate the values of the coefficients for a given 

set of CaCO3 design parameters (i.e.  𝛚 = [s𝑒𝑞,⊿, ⊿]). These LPCMs were generated using coefficient data 

generated for each of the selected crystal shapes (⊿ ∈ 𝚫 = {𝑐𝑢𝑏𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑡𝑒𝑡𝑟𝑎, 𝑑𝑜𝑑𝑒}) using the PCE 

algorithm described within Section 4.1.2. For the rhombohedral cubic (𝑐𝑢𝑏𝑒) crystals, the coefficient data was 

generated for crystals with a base length 𝑙𝑐𝑢𝑏𝑒 ∈ {8, 13, 18, 23, 28, 33, 38} atoms (i.e. with a base length within 

the range 8 ≤ 𝑙𝑐𝑢𝑏𝑒 ≤ 38, at intervals spaced five atoms apart.) Note that these correspond to rhombohedral 

cubic crystals of size 𝑠𝑐𝑢𝑏𝑒 ∈ {512, 2197, 5832, 12167, 21952, 35937, 54872}  atoms. The sizes for the 

remaining crystal shapes were selected to be comparable (in terms of number of atoms) to the rhombohedral 

cubic crystal shapes. In other words, the sizes for the other crystals were selected by finding the crystal with a 

perfect shape (e.g. a perfectly spherical, tetrahedral, or dodecahedral crystal with no vacancies or missing 

segments) that exhibited the closest number of atoms to the selected rhombohedral cubic crystals. The crystal 

sizes considered for the spherical, tetrahedral, and dodecahedral crystals were 𝑠𝑠𝑝ℎ𝑒𝑟𝑒 ∈

{360, 2109, 5575, 11513, 20479, 35880, 54088} , 𝑠𝑡𝑒𝑡𝑟𝑎 = {512, 2124, 5470, 12012, 20238, 35754,

53794}, and 𝑠𝑑𝑜𝑑𝑒 = {451, 2080, 5144, 11575, 21592, 33920, 53455}, respectively. In order to develop the 

LPCMs, the PCE coefficients at each crystal shape were subsequently fit to a variety of low-order models using 

the least squares method, and the model with the best fit was selected for each coefficient. A full list of the 

models and their coefficients for each PCE coefficient can be found in Section B.5. 
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The aforementioned PCE and LPCM algorithms were used to propagate parametric uncertainty in the 

pH through the CaCO3 crystal dissolution system under five different crystal size and shape combinations listed 

in Table 4.4. The PCE and LPCM models were validated via comparison to probability distribution functions 

determined for each crystal design by propagating uncertainty directly through the kMC models using 10,000 

MC sampling points. Table 4.4 lists the key statistical parameters for each uncertainty distribution generated 

via MC sampling, PCE, and LPCM. This table furthermore lists the computational times required to determine 

the output uncertainty distributions using each method. In addition, Figs. 4.9 and 4.10 illustrate the effects of 

uncertainty on the crystal dissolution time 𝑡𝑑 and on the number of atoms remaining in the crystal 𝑛𝑑(𝑡𝑚) at 

each timepoint 𝑡𝑚, respectively, using the uncertainty propagation methods considered in this work, i.e. MC 

sampling, PCE, and the LPCMs. Note that the probability distribution curves for the PCE and LPCM methods 

were developed by generating histograms for their respective output uncertainty variability data and by plotting 

the peaks and peak locations for each histogram as a 2D curve. Additionally note that the results showcased in 

Figs. 4.9f)- 4.9j) showcase a close-up view of the PDFs in Figs. 4.9a)- 4.9e) over the time interval 0-10 s. The 

results in Figs. 4.9 and 4.10 and in Table 4.4 illustrate that the PCE model predictions can accurately capture 

the output variability, as the majority of the deviations between the PCE and MC sampling results remain below 

1%. Similarly, the results demonstrate that the LPCM-generated PCE models are acceptable as the majority of 

the errors in the LPCM method compared to both the PCE and MC sampling methods remain below 5%. In 

addition, the PCE method showed an order of magnitude improvement on average in the computational cost 

compared to MC sampling, demonstrating the computational efficiency of the series expansion. On the other 

hand, the LPCMs have attractive computational efficiency compared to the PCE and the MC sampling methods. 

Table 4.4 highlights that the LPCMs require less than 3 seconds to compute the variability in 𝑡𝑑 and 𝑛𝑑(𝑡𝑚) 

regardless of the crystal size and shape. This is in contrast to the PCE and MC sampling methods, where the 

computational times vary depending on the crystal design due to the influence of the kMC models. Note that 

the computational cost for both the PCE and LPCM methods includes the time needed to determine the PCE 

coefficients via least squares and the LPCM equations, respectively. For the crystal designs considered in this 

study, the LPCM method was approximately 2 and 3 orders of magnitude faster than the PCE and MC sampling 

methods (10,000 sample points) respectively for the fastest dissolving crystal design. Furthermore, LPCM was 

about 3 orders of magnitude faster than the PCE method and 4 orders of magnitude faster than the MC sampling 

method for the slowest dissolving crystal design. These computational savings are expected to be even greater 

for larger crystals. However, note that the computational costs for the PCE and MC sampling methods are 

dependent on the number of sample points used in either method, and therefore the computational advantage 

of the LPCM method would be lessened if fewer points were used for the other methods. The results in Table 

4.4 and Figs. 4.9 and 4.10 furthermore highlight that the variability in the pH (as captured through the activation 

energy 𝐸) has a notable effect on the crystal dissolution model. These results highlight that the total dissolution 
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time follows an exponential distribution where the variation spans over five orders of magnitude. On the other 

hand, the variation in 𝑛𝑑 begins as a single peak at the maximum crystal size and transitions to a single peak at 

zero through an intermediary bimodal distribution with peaks at both extremes. Note that a third-order PCE 

model was necessary for the intermediate values of 𝑛𝑑 due to their bimodal nature, as this behaviour could not 

be accurately captured using 2nd or 1st order PCE models (not shown for brevity). These results indicate that 

the variability in 𝑛𝑑 is very low at 𝑡 = 4.14 × 10−8 s, and that therefore it is expected that the crystal would   

have not begun dissolving at this timepoint. As time evolves, the crystal dissolves and the effects of uncertainty 

begin to produce a binormal distribution with shallow peaks at 𝑛𝑑 = 𝑠  and 𝑛𝑑 = 0 , indicating that the 

Table 4.4. Uncertainty variability statistics in the CaCO3 dissolution outputs for different crystal shapes and 

sizes using MC sampling, PCE, and LPCM 

Shape 𝑐𝑢𝑏𝑒 𝑐𝑢𝑏𝑒 𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 𝑑𝑜𝑑𝑒 

Size (ions) 15625 3375 3071 3098 2880 

Method MC PCE LPCM MC PCE LPCM MC PCE LPCM MC PCE LPCM MC PCE LPCM 

CPU Time (s) 61260 6156 2.778 3854 393.9 2.808 7626 730.2 2.736 17430 1830 2.760 8556 903.6 2.832 

𝑡𝑑 (s) 

𝑡�̅� 3.146 3.373 3.554 1.447 1.557 1.904 1.091 1.542 1.336 1.046 1.652 1.184 1.130 1.352 1.325 

𝑡𝑑
𝑢(0.95) 12.41 17.38 17.93 5.503 8.085 9.752 3.882 7.393 6.634 3.968 7.831 6.045 3.939 6.821 6.833 

𝑡𝑑
𝑙 (0.95) 0.027 0 0 0.012 0 0 0.008 0 0 0.008 0 0 0.009 0 0 

𝑛𝑑  
(𝑡0) 

(ions) 

�̅�𝑑(𝑡0) 
1.56 

×104 

1.56 

×104 

1.56 

×104 
3375 3375 3375 3065 3065 3020 3095 3095 3093 2880 2880 2887 

𝑛𝑑
𝑢(0.95|𝑡0) 

1.56 

×104 

1.56 

×104 

1.56 

×104 
3375 3375 3375 3066 3066 3021 3097 3096 3093 2880 2880 2887 

𝑛𝑑
𝑙 (0.95|𝑡0) 

1.56 

×104 

1.56 

×104 

1.56 

×104 
3375 3375 3375 3065 3065 3020 3090 3090 3089 2880 2880 2887 

𝑛𝑑  
(𝑡2) 

(ions) 

�̅�𝑑(𝑡2) 
1.56 

×104 

1.56 

×104 

1.56 

×104 
3373 3373 3373 3063 3063 3017 3041 3042 3048 2878 2878 2887 

𝑛𝑑
𝑢(0.95|𝑡2) 

1.56 

×104 

1.56 

×104 

1.56 

×104 
3373 3373 3373 3064 3063 3019 3084 3085 3081 2878 2878 2891 

𝑛𝑑
𝑙 (0.95|𝑡2) 

1.56 

×104 

1.56 

×104 

1.56 

×104 
3373 3373 3373 3061 3060 3012 3004 2996 3015 2878 2877 2880 

𝑛𝑑  
(𝑡4) 

(ions) 

�̅�𝑑(𝑡4) 
1.56 

×104 

1.56 

×104 

1.56 

×104 
3344 3353 3349 2947 2951 2908 2865 2873 2888 2798 2806 2821 

𝑛𝑑
𝑢(0.95|𝑡4) 

1.56 

×104 

1.58 

×104 

1.57 

×104 
3371 3401 3395 3062 3087 3068 3006 3021 3042 2876 2923 2910 

𝑛𝑑
𝑙 (0.95|𝑡4) 

1.56 

×104 

1.52 

×104 

1.52 

×104 
3310 3213 3215 2518 2451 2330 2370 2321 2429 2514 2412 2539 

𝑛𝑑  
(𝑡6) 

(ions) 

�̅�𝑑(𝑡6) 9797 9911 9922 1640 1664 1751 973.1 1016 1023 928.8 961.5 991.3 976.3 1033 1055 

𝑛𝑑
𝑢(0.95|𝑡6) 

1.56 

×104 

1.61 

×104 

1.63 

×104 
3365 3414 3650 2886 2929 2994 2775 2807 2868 2795 2835 2858 

𝑛𝑑
𝑙 (0.95|𝑡6) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

𝑛𝑑  
(𝑡7) 

(ions) 

�̅�𝑑(𝑡7) 2614 2722 2884 298.1 324.7 129.1 136 146.4 501.3 128.7 137.3 123.8 137 153.9 1704 

𝑛𝑑
𝑢(0.95|𝑡7) 

1.50 

×104 

1.53 

×104 

1.58 

×104 
2690 2760 1353 1199 1318 3571 1162 1223 608.5 1240 1376 6439 

𝑛𝑑
𝑙 (0.95|𝑡7) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Figure 4.9: PDFs of the total crystal dissolution time, 𝑡𝑑, for different crystal designs generated using 

MC sampling (blue), 3rd order PCE (red), and the LPCMs (green): a)/f) rhombohedral cubic crystal, 𝑠 =

15625 ions; b)/g) rhombohedral cubic crystal, 𝑠 = 3385 ions; c)/h) spherical crystal, 𝑠 = 3071 ions; 

d)/i) tetrahedral crystal, 𝑠 = 3098 ions; e)/j) dodecahedral crystal, 𝑠 = 2880 ions; where a)-e) showcase 

the full PDFs for each crystal design and f)-j) showcase a close-up view of each PDF over the time 

interval 0-10s 
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variability in 𝑛𝑑 due to uncertainty in the pH is substantial and that therefore it is unknown whether the crystal 

remains completely intact, has completely dissolved, or is somewhere in-between during these intermediary 

timepoints. Towards the end of the simulation (𝑡8 = 20.09 s), it is expected that the crystal would have 

completely dissolved for most of the considered uncertainty realizations, and therefore the PDF for 𝑛𝑑 at this 

timepoint consists of a peak at 𝑛𝑑 = 0. These results highlight that environmental uncertainties can have 

significant and sizeable effects on the crystal dissolution behaviour, and therefore they should be 

accommodated for when modelling CaCO3 dissolution within the human body. 

 

Figure 4.10: PDFs of the number of atoms remaining in the CaCO3 crystal 𝑛𝑑(𝑡𝑚) at each of the 

timepoints 𝑡𝑚 (where 𝑚 ∈ [0,8] denotes the timepoint index) for different crystal designs generated 

using MC sampling (blue), PCEs (red), and the LPCMs (green): a) rhombohedral cubic crystal, 𝑠 =

15625 ions; b) rhombohedral cubic crystal, 𝑠 = 3385 ions; c) spherical crystal, 𝑠 = 3071 ions; d) 

tetrahedral crystal, 𝑠 = 3098 ions; e) dodecahedral crystal, 𝑠 = 2880 ions 
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4.5   Robust Optimization 

According to the pharmaceutical standards listed by the US Food and Drug Administration,20 one of the 

key critical quality attributes of a pharmaceutical drug is its dissolution performance (i.e. dissolution rate). 

Additionally, many pharmaceutical drugs require controlled or sustained releases within the human body in 

order to prolong the drug’s therapeutic efficiency.198,199 Consequently, it is desirable to select drug crystal 

designs that can extend the crystal dissolution time while controlling their dissolution rate. These 

aforementioned drug performance markers are additionally subject to environmental uncertainties due to 

variability in the gastrointestinal pH and temperatures.193,197 Therefore, it is also desirable to minimize the 

impact of variability due to uncertainty on the drug dissolution. However, these objectives are in direct conflict 

with each other, as the conditions that increase the dissolution time also increase the uncertain variability, as 

observed in Fig. 4.8.  

The aim of this section is to perform optimization on the studied CaCO3 dissolution system in order to 

address the trade-off between minimizing uncertainty and maximizing the drug release time while 

simultaneously controlling the dissolution rate. Note that this optimization problem is non convex and therefore 

only local optimality can be guaranteed; further analysis on this issue is beyond the scope of this work. This 

study assumes that the CaCO3 crystals are being used as a delivery system for a sustained-release drug, as 

CaCO3 has been previously proposed for this application within the literature.200 Consequently, it is desirable 

to extend the dissolution time of the crystals while limiting the maximum dissolution rate to prevent a 

significant peak in the drug release. The CaCO3 dissolution behaviour is influenced by the crystal size 𝑠 and 

shape ⊿, which are the key crystal design parameters considered in this study. Note that the crystal shape can 

be adjusted through cutting and etching techniques, as described in Section 4.3. However, the formation process 

necessary to develop each of these shapes is beyond the scope of this research. Nevertheless, it is still critical 

to gain insight on how certain crystal shape and sizes impact the CaCO3 dissolution properties under 

uncertainty. The optimization studies presented in this section solved using a 2.1 GHz Intel Xeon E5-2620 

Processor. The proposed optimization study was performed under multiple different scenarios, which are 

described next.  

4.5.1   Scenario I: Optimization under Nominal Conditions 

The objective of this scenario is to study the crystal dissolution process under nominal conditions (i.e. in 

the absence of uncertainty). In order to analyze the nominal CaCO3 dissolution behaviour, an optimization 

study was performed in order to determine the optimal crystal shape and size that maximizes the dissolution 

time while still keeping the dissolution rate below a certain threshold. The proposed optimization formulation 

is as follows: 
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𝑚𝑎𝑥
𝑠⊿,⊿

�̂�𝑑           (4.7) 

Subject to: 

LPCMs           (4.8) 

⊿ ∈ 𝜟 = {𝑐𝑢𝑏𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑡𝑒𝑡𝑟𝑎, 𝑑𝑜𝑑𝑒}       (4.9) 

𝓎⊿ ∈ {0,1}, ∀⊿ ∈ 𝜟         (4.10) 

∑ 𝓎⊿⊿∈𝜟 = 1          (4.11) 

𝓎⊿ = 1 ⟹ 𝑠𝑙,⊿ ≤ 𝑠⊿ ≤ 𝑠𝑢,⊿, ∀⊿ ∈ 𝜟       (4.12) 

�̂�𝑑(𝑡𝑚) ≤ 7 × 106 ions/s        (4.13) 

where �̂�𝑑  and �̂�𝑑  denote the nominal time needed for the crystal to completely dissolve 𝑡𝑑  and the 

nominal dissolution rate 𝑟𝑑 (i.e. the dissolution observables in the absence of uncertainty), respectively; 𝑠⊿ 

denotes the size of a crystal with shape ⊿; and 𝑠𝑙,⊿ and 𝑠𝑢,⊿ denote the lower and upper bounds applied to the 

crystal size for each shape ⊿. The upper and lower bounds were set to 𝑠𝑙,⊿ = [512,360,512,451] and 𝑠𝑢,⊿ =

[54872,54088,53794,53455] for ⊿ = [𝑐𝑢𝑏𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, 𝑡𝑒𝑡𝑟𝑎, 𝑑𝑜𝑑𝑒]. These bounds were selected based on 

the perfect crystal sizes that contain a comparable number of atoms for each of the considered shapes. 

Furthermore, note that the LPCMs are only being used in the present scenario to compute the model output 

assuming a nominal value in the activation energy, i.e. 𝐸 = 0.164 eV. As shown in equations (4.7)-(4.13), the 

crystal shape (⊿) is discrete and cannot be optimized using gradient-based optimization techniques. To 

overcome this limitation and reduce the computational costs, the optimization study was performed four times, 

i.e. once for each of the four considered crystal shapes. The optimal crystal shape was subsequently selected 

from the optimization results a posteriori. The corresponding optimization problems were solved using the 

interior point solver within the fmincon built-in function, a gradient-based optimizer available in MATLAB 

R2020a, using an initial guess 𝓍0,⊿ , where 𝓍0,⊿ = [12167,12712,12717,12680]   for ⊿ =

[cube, sphere, tetra, dode]. As shown in Table 4.5, the optimal crystal design corresponds to a rhombohedral 

cubic crystal that is 54872 ions in size. These results illustrate that the crystal dissolution time can be maximized 

by considering large crystals with a higher ratio of terrace surface ions. In general, the results in Table 4.5 

highlight that the largest crystal sizes maximize the dissolution time for each crystal shape. However, the 

optimal size determined for each crystal shape was limited by the restriction on the dissolution rate. For the 

rhombohedral cubic and dodecahedral crystals, the dissolution rates remained below the specified threshold for 

all considered crystal sizes, and therefore the optimal crystal size for these shapes corresponded to the 

maximum allowed crystal size. This is due to the higher ratio of the slower-dissolving terrace surface sites 
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documented for these crystal shapes, which limited their maximum dissolution rates. On the other hand, the 

spherical and tetrahedral crystal sizes contain higher ratios of the faster-dissolving ledge and kink sites and 

therefore they were subject to higher dissolution rates. As a result, the optimal sizes for these crystal shapes 

were limited due to the restriction applied to the dissolution rate. In particular, the maximum dissolution rate 

within the tetrahedral crystal remained above the threshold specified in Eq. (4.13) for all considered crystal 

sizes, and consequently it is an infeasible solution. Note that the infeasible tetrahedral results listed in Table 

4.5 were determined by finding the tetrahedral crystal size whose maximum reaction rate was the closest to 

meeting the restriction specified in Eq. (4.13), i.e. the smallest tetrahedral crystal size.  

4.5.2   Scenario II: Robust Optimization 

The uncertainty in the gastrointestinal acidity (as captured through the activation energy) is known to 

induce significant variability in the CaCO3 dissolution results, as highlighted in Figs. 4.8e-4.8h and Table 4.5. 

Motivated by this, the objective of this scenario is to assess the impact of the uncertainty on the crystal 

Table 4.5 Nominal optimization results for each of the considered CaCO3 crystal shapes 

Optimization Scenario Nominal Optimization 

Shape 𝑐𝑢𝑏𝑒 

optimal 

𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 

Size 54872 15408 512 53455 

�̂�𝑑 (s) 5.75 2.63 0.26 4.89 

𝜎𝑡𝑑

2  (s2) 218.17 44.31 0.06 180.23 

�̂�𝑑(𝑡1) (ions/s) 2.16×106 7.00×106 1.13×107 

infeasible 

5.66×106 

�̂�𝑑(𝑡2) (ions/s) 1.81×105 1.86×106 3.06×106 2.40×106 

�̂�𝑑(𝑡3) (ions/s) 6.55×104 7.45×105 5.91×105 1.06×106 

�̂�𝑑(𝑡4) (ions/s) 9.84×105 6.17×105 7.09×104 1.44×106 

�̂�𝑑(𝑡5) (ions/s) 4.25×105 2.06×105 1.51×104 6.28×105 

�̂�𝑑(𝑡6) (ions/s) 1.70×105 5.34×104 1427.5 1.65×105 

�̂�𝑑(𝑡7) (ions/s) 1.89×104 3277.1 59.39 1.53×104 

�̂�𝑑(𝑡8) (ions/s) 1049.7 0 5.93 0 
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dissolution process. This objective was attained by implementing a robust optimization study to maximize the 

dissolution time under uncertainty in the environmental pH (i.e. through 𝐸, as described in Section 4.3). Note 

that the uncertainty in 𝐸 was assumed to be normally distributed with mean �̅� = 0.164 eV and variance 𝜎𝐸
2 =

0.269 × 10−3 eV2. The robust optimization formulation is as follows:  

𝑚𝑎𝑥
𝑠,⊿

𝑡�̅�           (4.14) 

Subject to: 

 Constraints, Eq. (4.8)-(4.12) 

 𝐸~𝒩(�̅� = 0.164 𝑒𝑉, 𝜎𝐸
2 = 0.269 × 10−3 𝑒𝑉2)      (4.15)  

 𝑟𝑑
𝑢(𝛼𝑐𝑓|𝑡𝑚) ≤ 7 × 106 atoms/s       (4.16) 

Here, 𝑡�̅�  denotes the average total crystal dissolution time subject to uncertainty and 𝑟𝑑
𝑢(α𝑐𝑓|𝑡𝑚) =

𝐹−1 (1 −
α𝑐𝑓

2
|𝑟𝑑

𝑢(α𝑐𝑓|𝑡𝑚)) denotes the upper bound applied to the dissolution rate under uncertainty at every 

timepoint 𝑡𝑚  at a confidence interval α𝑐𝑓 , where 𝐹−1 (Π|𝚿(α𝑐𝑓|𝑡𝑚))  denotes the inverse cumulative 

distribution function of a model output 𝚿(𝑡𝑚) at time 𝑡𝑚  evaluated at a probability Π. This scenario was 

implemented twice at two different confidence intervals. The first robust scenario applies an upper bound on 

the dissolution rate at 84.1% confidence (i.e. at one standard deviation above the expected value; α𝑐𝑓 = 31.8% 

so Π = 1 −
𝛼𝑐𝑓

2
= 0.841), whereas the second robust scenario analyzes the dissolution rate upper bound at 

99.9% confidence (α𝑐𝑓 = 2% so Π = 1 −
𝛼𝑐𝑓

2
= 0.99). This problem was solved following the same approach 

described in Scenario I, i.e., problem was solved once for each crystal shape (⊿) using the fmincon’s built-in 

gradient-based optimization function available in MATLAB 2020a. The results from these optimization studies 

are displayed in Table 4.6. This table shows that there was a 1% difference on average in the total dissolution 

time between the nominal simulation results and the robust optimization results at 84.1% confidence. Similarly, 

it showcases that there is a 7% , 46%, and 94% difference in the total dissolution time between the nominal 

optimization results and the robust optimization results at a 99.9% confidence for the 𝑐𝑢𝑏𝑒, 𝑠𝑝ℎ𝑒𝑟𝑒, and 𝑑𝑜𝑑𝑒 

crystal shapes, respectively. The results in Table 4.6 further show that under 84.1% confidence, the effects of 

uncertainty on the optimization performance is negligible, and consequently the results from the robust 

optimization (i.e. the crystal shape and size that maximize the dissolution time while limiting the maximum 

dissolution rate under uncertainty) are the same as those predicted from the nominal optimization study 

(Scenario I). On the other hand, the optimization results under 99% confidence show notable deviations from 

the nominal optimization results. These results highlight that due to the effects of uncertainty, it is necessary to 

consider notably smaller crystal sizes in order to ensure that the maximum dissolution rate remains below the 
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specified threshold with high confidence. This observation is most apparent in the dodecahedral shaped crystal, 

where the maximum dissolution rate is not guaranteed to fall below 7 × 106 ions/s with 99% certainty over the 

range of crystal sizes considered in this study. However, both the rhombohedral cubic and spherical crystals 

are also noticeably impacted by the effects of uncertainty on the dissolution rate, as the optimal crystal sizes 

predicted for both of these shapes are noticeably lower than for the nominal optimization study. Note that in 

addition to the dodecahedral shaped crystal at 99% certainty, the maximum dissolution rate within the 

tetrahedral crystal for both confidence intervals remained above the threshold specified in Eq. (4.16) for all 

considered crystal sizes, and consequently it is an infeasible solution. As in the previous scenario, the infeasible 

results listed in Table 4.6 were determined by finding the crystal sizes for their respective shapes whose 

maximum reaction rate was the closest to meeting the restriction specified in Eq. (4.16).  

4.5.3   Scenario III: Bi-objective Optimization 

The results above indicate that uncertainty can impact the optimal crystal sizes and shapes under high 

confidence and highlights the need to minimize the variability while maximizing the dissolution time. The 

present scenario aims to determine the optimal trade-off point between these opposing objectives using an ℓ𝓅-

Table 4.6. Robust optimization results for 𝑚𝑎𝑥 𝑡�̅� for each of the considered CaCO3 crystal shapes 

Optimization Scenario Robust Optimization: 

𝑚𝑎𝑥 𝑡�̅� (α𝑐𝑓 = 31.8%) 

Robust Optimization: 

𝑚𝑎𝑥 𝑡�̅� (α𝑐𝑓 = 2%) 

Shape 𝑐𝑢𝑏𝑒 

optimal 

𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 𝑐𝑢𝑏𝑒 

optimal 

𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 

infeasible 

Size 54872 15408 512 53455 46656 3544 512 451 

𝑡�̅� (s) 5.72 2.59 0.25 4.92 5.35 1.41 0.25 0.31 

𝜎𝑡𝑑

2  (s2) 217.36 42.78 0.06 184.34 191.95 14.41 0.06 0.55 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡1) (ions/s) 2.18×106 7.00×106 2.22×107 

infeasible 

6.70×106 2.28×106 6.92×106 4.74×107 

infeasible 

1.47×107 

infeasible 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡2) (ions/s) 1.89×105 1.89×106 3.96×106 3.14×106 2.87×105 3.73×106 4.01×106 1.91×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡3) (ions/s) 8.35×104 8.60×105 6.74×105 1.18×106 6.06×105 4.88×106 5.06×106 1.74×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡4) (ions/s) 9.02×105 1.01×106 1.16×105 1.66×106 6.99×106 2.37×106 1.26×105 1.25×105 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡5) (ions/s) 7.95×105 4.31×105 3.18×104 1.28×106 3.30×106 2.81×105 3.86×104 3.79×104 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡6) (ions/s) 3.58×105 9.23×104 2659.3 3.24×105 3.47×105 2.48×104 3036.0 3496.3 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡7) (ions/s) 3.40×104 6692.7 182.05 2.82×104 3.06×104 1604.4 288.09 317.22 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡8) (ions/s) 3163.9 0 1.08 0 0 0 113.57 66.91 

 



79 

 

norm bi-objective optimization scheme. This optimization approach identifies an infeasible yet desirable 

optimal point (the utopia point) that simultaneously addresses both conflicting objectives, and subsequently 

determines the point within the feasible objective search space that is closest to this point.201 

In order to identify the utopia point and thus perform bi-objective optimization, it is necessary to perform 

two independent optimization studies a priori, one with respect to each conflicting objective. In the CaCO3 

dissolution process considered in this work, the first study (minVar) seeks to minimize the variability in the 

dissolution time while keeping the dissolution rate below a specific threshold, as follows: 

𝑚𝑖𝑛
𝑠,⊿

𝜎𝑡𝑑

2            (4.17) 

Subject to: 

Constraints, Eq. (4.8)-(4.12); Eq. (4.15)-(4.16)  

where 𝜎𝑡𝑑

2  denotes the variance of 𝑡𝑑 under uncertainty. The second optimization study (maxTime) seeks 

to maximize the dissolution time while still controlling the dissolution rate, as expressed in the robust 

optimization study denoted in Scenario II; these results are shown in Table 4.6 (maxTime). The results from 

the minVar optimization study are presented in Table 4.7. The results in both tables highlight that the uncertain 

variability is minimized for smaller crystals and crystals with shorter dissolution times. These results are to be 

expected, as the variability in the dissolution performance is directly correlated to the magnitude of the 

dissolution properties. Furthermore, the optimal conditions that minimize the variability are significantly 

different depending on the level of confidence applied to the maximum dissolution rate. Under a higher level 

of confidence, the dodecahedral crystal is no longer the optimal crystal shape since the maximum dissolution 

rate cannot be guaranteed to remain below the specified threshold with 99% confidence. Furthermore, the 

tetrahedral crystal remained above the specified threshold for both confidence intervals, and thus it was 

considered an infeasible solution. Note that the infeasible results listed in Table 4.7 were determined following 

the approach used to report the infeasible solutions for Scenarios I and II. 

The results in Tables 4.6 and 4.7 additionally highlight that the optimal crystal proportions necessary to 

minimize the variation due to uncertainty are in direct contrast with the optimal crystal designs necessary to 

maximize the crystal dissolution time. However, these optimization results can be used to define the infeasible 

optimal utopia point according to the coordinate pair ( 𝑡�̅�,𝑚𝑎𝑥, 𝜎𝑡𝑑,𝑚𝑖𝑛
2 ), where 𝑡�̅�,𝑚𝑎𝑥  denotes the mean 

dissolution time under uncertainty determined from the maxTime optimization study, whereas 𝜎𝑡𝑑,𝑚𝑖𝑛
2  denotes 

the variance in 𝑡𝑑 due to uncertainty under the minVar optimization study. After determining the utopia point, 

the optimal trade-off point can be determined using the ℓ𝓅-norm bi-objective optimization expression. This 

work implemented a ℓ2-norm bi-objective optimization scheme as shown below in Eq. (4.18). This study 

considered a ℓ2-norm optimization scheme as the relationship between the two objectives was determined to  
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be near-linear, and therefore it required a nonlinear (i.e. ℓ2-norm or higher) optimization scheme in order to 

compute the trade-off. 

𝑚𝑖𝑛
𝑠,⊿

√(1 −
𝑡̅𝑑−�̅�𝑑,𝑚𝑖𝑛

𝑡̅𝑑,𝑚𝑎𝑥−�̅�𝑑,𝑚𝑖𝑛
)

2

+ (
𝜎𝑡𝑑

2 −𝜎𝑡𝑑,𝑚𝑖𝑛
2

𝜎𝑡𝑑,𝑚𝑎𝑥 
2 −𝜎𝑡𝑑,𝑚𝑖𝑛

2 )

2

,      (4.18) 

Subject to: 

 Constraints, Eq. (4.8)-(4.12); Eq. (4.15)-(4.16)  

In the above formulation, 𝑡�̅�,𝑚𝑖𝑛 and 𝜎𝑡𝑑,𝑚𝑖𝑛
2  denote the mean and variance of the dissolution time under 

the minVar scenario, whereas 𝑡�̅�,𝑚𝑎𝑥 and 𝜎𝑡𝑑,𝑚𝑎𝑥 
2 denote the mean and variance of the dissolution time under 

maxTime (i.e. scenario II). The multi-objective optimization study was implemented for each crystal shape (⊿) 

and under the two different uncertainty confidence conditions scenarios, i.e. for α𝑐𝑓 = 31.8% and α𝑐𝑓 = 2% 

(84.1% and 99% confidence, respectively). The optimal trade-off results for both confidence scenarios are 

listed in Table 4.8. These results illustrate that the most optimal crystal shape under both scenarios is the 

Table 4.7. Robust optimization results for 𝑚𝑖𝑛 𝜎𝑡𝑑

2  for each of the considered CaCO3 crystal shapes 

Optimization Scenario Robust Optimization: 

𝑚𝑖𝑛 𝜎𝑡𝑑

2  (α𝑐𝑓 = 31.8%) 

Robust Optimization: 

𝑚𝑖𝑛 𝜎𝑡𝑑

2  (α𝑐𝑓 = 2%) 

Shape 𝑐𝑢𝑏𝑒 𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 

optimal 

𝑐𝑢𝑏𝑒 𝑠𝑝ℎ𝑒𝑟𝑒 

optimal 

𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 

infeasible 

Size 512 360 512 576 512 672 512 451 

𝑡�̅� (s) 0.77 0.54 0.25 0.36 0.77 0.69 0.25 0.31 

𝜎𝑡𝑑

2  (s2) 5.64 2.48 0.06 0.84 5.57 3.99 0.06 0.56 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡1) (ions/s) 2.16×106 3.72×106 2.22×107 

infeasible 

6.99×106 2.17×106 6.92×106 4.73×107 

infeasible 

1.47×107 

infeasible 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡2) (ions/s) 1.78×105 8.13 ×105 3.96×106 1.80×106 1.88 ×105 4.37×106 4.01×106 1.91×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡3) (ions/s) 3.02×104 6.00×105 6.74×105 2.03×105 1.32×105 4.27×106 5.04×106 1.74×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡4) (ions/s) 2.41×104 1.20×105 1.16×105 7.86×104 2.09 ×105 5.59×105 1.26×105 1.26×105 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡5) (ions/s) 3.81×104 2.86×104 3.18×104 4.04×104 4.83×104 5.73×104 3.86×104 3.79×104 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡6) (ions/s) 4046.8 2346.8 2660.9 3511.9 4333.6 4806.9 3035.7 3496.6 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡7) (ions/s) 135.62 335.68 182.11 0 221.73 578.85 288.1 317.49 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡8) (ions/s) 0 614.11 1.11 84.01 0 707.79 115.07 66.91 
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rhombohedral cubic shape. However, the dodecahedral crystal is able to achieve similarly optimal results under 

lower confidence, i.e. so long as its maximum dissolution rate could be guaranteed to fall below the desired 

threshold. Furthermore, the crystal size that best addresses the trade-off are medium-sized crystals, which have 

moderately high dissolution times and moderately low variability.  

Fig. 4.11 showcases the results from each of the optimization studies compared to the utopia point for 

the two confidence intervals. For the sake of illustration, Fig. 4.11 also displays the optimal results determined 

for all of the eligible crystal shapes in addition to the optimal shape (⊿ = 𝑐𝑢𝑏𝑒). Fig. 4.11 also highlights the 

Pareto frontier, i.e. the edge of the feasible search space between the optimal result points from both competing  

objectives. The Pareto frontier points were generated by solving the following ℓ2-norm based optimization 

problem: 

Table 4.8. ℓ2-norm multi-objective optimization results for each of the considered CaCO3 crystal 

shapes 

Optimization Scenario ℓ2-Norm Multi-Objective Optimization: 

α𝑐𝑓 = 31.8% 

ℓ2-Norm Multi-Objective Optimization: 

α𝑐𝑓 = 2% 

Shape 𝑐𝑢𝑏𝑒 

optimal 

𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 𝑐𝑢𝑏𝑒 

optimal 

𝑠𝑝ℎ𝑒𝑟𝑒 𝑡𝑒𝑡𝑟𝑎 

infeasible 

𝑑𝑜𝑑𝑒 

infeasible 

Size 13824 15408 512 19961 13824 3544 512 451 

𝑡�̅� (s) 3.47 2.58 0.25 3.28 3.35 1.42 0.25 0.31 

𝜎𝑡𝑑

2  (s2) 84.55 42.44 0.06 80.72 78.92 14.54 0.06 0.56 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡1) (ions/s) 2.17×106 7.00×106 2.22×107 

infeasible 

3.85×106 2.21×106 6.97×106 4.73×107 

infeasible 

1.47×107 

infeasible 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡2) (ions/s) 1.83×105 1.89 ×106 3.96×106 1.70×106 2.41×105 3.74×106 4.01×106 1.91×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡3) (ions/s) 4.62×104 8.59×105 6.74×105 3.44×105 4.06×105 4.88×106 5.04×106 1.74×106 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡4) (ions/s) 3.33×105 1.01×106 1.16×105 1.04×106 1.89×106 2.38×106 1.26×105 1.26×105 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡5) (ions/s) 3.40×105 4.29×105 3.18×104 6.18×105 1.17×106 2.83×105 3.86×104 3.79×104 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡6) (ions/s) 1.02×105 9.23×104 2660.9 1.25×105 1.03×105 2.50×104 3035.7 3496.6 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡7) (ions/s) 9196.4 6688.0 182.11 1.09 8971.8 1611.5 288.1 317.49 

𝑟𝑑
𝑢(α𝑐𝑓|𝑡8) (ions/s) 0 0 1.11 0 0 79.03 115.07 66.91 

Lnorm* 0.57 0.62 ---- 0.59 0.59 0.85 ---- ---- 

*Normalized Distance from the Utopia Point (ℓ2-Norm) 
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𝑚𝑖𝑛
𝑠

(𝑤𝑝𝑎𝑟𝑒𝑡𝑜 (1 −
𝑡̅𝑑−𝑡̅𝑑,𝑚𝑖𝑛

𝑡̅𝑑,𝑚𝑎𝑥−𝑡̅𝑑,𝑚𝑖𝑛
)

2

+ (1 − 𝑤𝑝𝑎𝑟𝑒𝑡𝑜) (
𝜎𝑡𝑑

2 −𝜎𝑡𝑑,𝑚𝑖𝑛
2

𝜎𝑡𝑑,𝑚𝑎𝑥 
2 −𝜎𝑡𝑑,𝑚𝑖𝑛

2 )

2

),   (4.19) 

Subject to: 

 Constraints, Eq. (4.8)-(4.12); Eq. (4.15)-(4.16)   

where 𝑤𝑝𝑎𝑟𝑒𝑡𝑜 = [0,0.1,0.2, … 0.9,1] is a weighted term that is adjusted between 0 and 1 to determine 

each of the Pareto points displayed in the figure. Note that the pareto front was generated only for the crystal 

shape that corresponds to the optimal solution, i.e. ⊿ = 𝑐𝑢𝑏𝑒. Additionally note that this pareto front addresses 

the trade-off between the maxTime optimization study (max
s,⊿

𝑡�̅�) and the minVar optimization study (min
s,⊿

𝜎𝑡𝑑

2 ) 

and therefore the optimal trade-off points indicate the best trade-off for each valid crystal shape that 

simultaneously maximize 𝑡�̅� and minimize 𝜎𝑡𝑑

2 . As in the previous scenarios, problem (4.19) was solved using 

fmincon’s built-in function available in MATLAB 2020a. Fig. 4.11 showcases that the ℓ2-norm trade-off results 

for the rhombohedral cubic crystal represent the closest point within the feasible search space to the targeted 

utopia point. Furthermore, the figure showcases that the optimal dodecahedral crystal design is able to achieve 

results within the same proximity to the utopia point. This highlights that the slower-dissolving crystals are 

essential for achieving optimal dissolution behaviour for slow-release applications. 

4.6   Summary 

The crystal dissolution process is a vital process that plays a critical role in numerous biological 

applications such as nutrient and pharmaceutical drug delivery. As a result, it is important to develop process 

models to capture and study the crystal dissolution process and furthermore understand and control the impact 

of environmental uncertainty on the dissolution behaviour. In this chapter, 3D MFkMC and standard kMC 

models were created to capture the dissolution of an entire crystal system. These models were subsequently 

compared to showcase the computational strengths of MFkMC. The proposed frameworks were additionally 

used to analyze the dissolution process on crystals of different sizes and shapes, and to study the impact of 

fluctuations in the system temperature and pH (i.e., the key environmental parameters) on the crystal 

dissolution. These results highlighted that the expected fluctuations in the pH are substantial and must be taken 

into account, whereas the expected variability in the temperature had minimal effect on the system. PCE models 

and LPCMs were additionally constructed to efficiently propagate parametric uncertainty in the activation 

energy (i.e. the key parameter considered to be affected by the pH) through the crystal dissolution model for a 

crystal of given size and shape. The LPCMs were subsequently used to perform optimization on the crystal 

dissolution system through a trio of different case studies. These case studies sought to maximize the time 

required for the crystal to dissolve and minimize the variability due to uncertainty on the dissolution time while 
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Figure 4.11: Location of the optimal trade-off points for the rhombohedral cubic crystal (green ×), 

spherical crystal (blue ×), and dodecahedral crystal (red ×), as well as the utopia point (green ▲), along 

the mean dissolution time (𝑡�̅�)/dissolution time variance (𝜎𝑡𝑑

2 ) Pareto front (black ○) under: a) 84.1% 

confidence (α𝑐𝑓 = 31.8%), b) 99% confidence (α𝑐𝑓 = 2%). Note that this pareto front addresses the 

trade-off between the maxTime optimization study (𝑚𝑎𝑥
s,⊿

𝑡�̅�) and the minVar optimization study (𝑚𝑖𝑛
s,⊿

𝜎𝑡𝑑

2 ) 

and therefore the optimal trade-off points indicate the best trade-off for each valid crystal shape that 

simultaneously maximize 𝑡�̅� and minimize 𝜎𝑡𝑑

2  
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simultaneously limiting the maximum dissolution rate experienced by the system. These studies highlighted 

that moderate crystal sizes and simpler crystal structures with higher concentrations of low-reaction terrace 

sites are needed to achieve the desirable objectives. These findings overall demonstrate the importance of taking 

environmental variability into consideration when designing crystals for biological and pharmaceutical 

purposes.  



85 

 

Chapter 5 – MFkMC Model for Capillary Rise Systems‡ 

Capillary action-driven transport through small cavities plays a crucial role in numerous applications, 

ranging from oil extraction,24,202 to capillary pumps in applications such as immunoassays,25,203 to low-gravity 

fluid flow applications,204 to fluid manipulation in heating systems.26,205 Consequently, there has been 

significant interest in developing models to capture the behaviour of capillary action. Capillary action typically 

occurs in rough, nonuniform microscale capillaries that are often a few micrometers to millimeters in diameter 

and that frequently contain nanoscale asperities. However, capillary action can extend over distances that can 

theoretically range from a few micrometers to over a hundred kilometers.28 Hence, it is desirable to implement 

modelling approaches such as kMC that can capture the nanoscale evolution of capillary action and extend it 

to the macroscale system over which it evolves. However, traditional kMC models are incapable of capturing 

the movement of the fluid-fluid based capillary action interface as highlighted in Section 2.1.2. Furthermore, 

although the MFkMC algorithm discussed in Chapter 3 has the potential to accurately capture the capillary 

action behaviour, this method is still limited by a lack of rate expression to capture the fluid-fluid interface 

movement based on its underlying physics.  

Motivated by this, the objective of this section is to expand the MFkMC algorithm to capture fluid-fluid 

based moving interface systems based on the fundamental force balances affecting the interface. The developed 

force balance-based MFkMC (FB-MFkMC) model will be subsequently applied to simulate capillary rise (i.e., 

vertical capillary action) of water in stainless steel tubes of different shapes. The FB-MFkMC model will be 

initially used to simulate capillary rise in cylindrical tubes of different radii, and the results of these simulations 

will be compared against known analytical solutions. Subsequently, the FB-MFkMC model will be used to 

simulate a pair of models that cannot be described analytically. In the first model, FB-MFkMC will be used to 

simulate capillary rise in a capillary with irregular geometry. On the other hand, the second model will consider 

capillary rise in a cylindrical tube with nanoscale roughness asperities applied to its surface. Section 5.1 will 

describe the development of the FB-MFkMC algorithm to capture fluid-fluid based moving interfaces based 

on their force balances. This section will additionally discuss the implementation and development of the FB-

MFkMC model for capillary rise. Subsequently, Section 5.2 will outline the three case studies and present the 

capillary rise model results for each scenario. A summary of this chapter will be provided in Section 5.3.  

5.1   MFkMC Algorithm for Capillary Rise 

The objective of this subsection is to provide a general MFkMC-based framework to simulate capillary 

rise of a fluid within a solid cavity. In order to implement MFkMC to capture capillary rise, it is first necessary 

 

‡ The contents of this chapter were published in the Journal of Physical Chemistry B23 
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to determine rates that can describe the movement of the fluid interface as it rises up the wetting cavity. The 

key properties of the capillary-driven systems such as capillary rise are dictated by the movement of the triple 

contact line, and consequently it is only necessary to consider the rate equations governing the triple line’s local 

movement when modelling capillary action applications.10 Although kMC-based approaches have yet to be 

implemented for capillary action, there have been previous attempts at deriving kinetic rate equations that 

govern the movement of a triple contact line within a capillary-driven system. Most prominently, Blake and 

Haynes proposed the molecular-kinetic model, which predicts the local contact angle of the triple contact line 

on a flat surface based on energy dissipation from kinetic surface events.206 Within this model, the local 

advancement or recession of the triple contact line is associated with dissipation of energy at the triple contact 

line due to molecular movements of the fluid molecules over a distance 휆; this can be expressed as follows: 

𝑊𝑎𝑑𝑣,𝑖, = 𝑘′ 𝑒𝑥𝑝 (
𝑓𝑖𝜆

2

2𝑘𝑏𝑇
),          (5.1) 

𝑊𝑟𝑒𝑐,𝑖 = 𝑘′ 𝑒𝑥𝑝 (
−𝑓𝑖𝜆

2

2𝑘𝑏𝑇
)         (5.2) 

where 𝑊𝑎𝑑𝑣,𝑖 and 𝑊𝑟𝑒𝑐,𝑖 denote the local rate of advancing and receding respectively of the 𝑖th interface 

site at the triple contact line over the incremental distance 휆, and 𝑓𝑖 denotes the force per unit length experienced 

locally by the contact line at an interface site 𝑖. In addition, 𝑘′ is a rate constant that was originally defined to 

include the Arrhenius rate of liquid adsorption/desorption on the surface as per the Blake-Haynes model. The 

kinetic rate equations in Eqs. (5.1)-(5.2) can be combined to define the local velocity of the triple line as 

follows:206 

𝑣𝑖 = 휆(𝑊𝑎𝑑𝑣,𝑖 − 𝑊𝑟𝑒𝑐,𝑖) = 2휆𝑘′ 𝑠𝑖𝑛ℎ (
𝑓𝑖𝜆

2

2𝑘𝑏𝑇
)      (5.3) 

The force per unit length 𝑓𝑖 is associated with the capillary force exerted on the contact line, and it was 

originally defined within the Blake-Haynes model as 𝑓 = 𝛾𝑠𝑣 − 𝛾𝑠𝑙 − 𝛾𝑙𝑣cos (휃) (i.e., re-defining Young’s 

Equation for a dynamic contact angle 휃). However, this approach is rudimentary as it fails to account for the 

remainder of the forces affecting the fluid rise, it relies on fitted model parameters, and it has been observed to 

deviate from experimental results. Their equations, however, do provide general kinetic rate expressions that 

can be readily coupled with an MFkMC-based algorithm to form the FB-MFkMC approach. As a result, Eqs. 

(5.1)-(5.2) were used as a general basis to couple the balance of the known forces acting on the triple contact 

line, i.e., the modified Lucas-Washburn equation in Eq. (2.9). 

In order to couple Eq. (2.9) with Eqs. (5.1)-(5.2), it is necessary to determine the relationship between 

the kinetic rates 𝑊𝑎𝑑𝑣,𝑖 and 𝑊𝑟𝑒𝑐,𝑖, and the force experienced by each molecular site along the contact line. In 

order to accomplish this task, Eq. (5.3) can be re-arranged as a function of the force per unit length, 𝑓𝑖 . 
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Subsequently, this expression can be substituted into Eqs. (5.1)-(5.2) to obtain the kinetic rates in the following 

form: 

𝑊𝑎𝑑𝑣,𝑖 = 𝑘′ 𝑒𝑥𝑝 (𝑠𝑖𝑛ℎ−1 (
𝑣𝑖

2𝜆𝑘′))         (5.4) 

𝑊𝑟𝑒𝑐,𝑖 = 𝑘′ 𝑒𝑥𝑝 (− 𝑠𝑖𝑛ℎ−1 (
𝑣𝑖

2𝜆𝑘′))       (5.5) 

Note that the value of 𝑘′  was observed to have negligible effect on the system behaviour, and 

consequently its value was set to 𝑘′ = 1 s-1 within this work.23 These kinetic rate equations can now be coupled 

with the force balance in Eq. (2.9) via the local velocity of the triple line, i.e. by setting 𝑣𝑖 = 𝑣𝑐𝑟, which is the 

only parameter in common between the equations. By re-arranging Eq. (2.9) for 𝑣𝑐𝑟 and substituting it into 

Eqs. (5.4)-(5.5), the kinetic rates for the triple contact line to advance and recede can be defined as follows: 

𝑊𝑎𝑑𝑣,𝑖 = 𝑘′ 𝑒𝑥𝑝 (𝑠𝑖𝑛ℎ−1 (
2𝛾𝑙𝑣𝑅𝑐𝑟,𝑖 𝑠𝑖𝑛(𝛽𝑠,𝑖− 𝑖)−𝜌𝑔ℎ𝑖𝑅𝑐𝑟,𝑖

2

16𝜇ℎ𝑖𝜆𝑘′ )),       (5.6) 

𝑊𝑟𝑒𝑐,𝑖 = 𝑘′ 𝑒𝑥𝑝 (− 𝑠𝑖𝑛ℎ−1 (
2𝛾𝑙𝑣𝑅𝑐𝑟,𝑖 𝑠𝑖𝑛(𝛽𝑠,𝑖− 𝑖)−𝜌𝑔ℎ𝑖𝑅𝑐𝑟,𝑖

2

16𝜇ℎ𝑖𝜆𝑘′ ))     (5.7)  

where 𝑅𝑐𝑟,𝑖, 𝛽𝑠,𝑖, 휃𝑖, and ℎ𝑖 denote the cavity radius, cavity wall angle, local contact angle, and triple 

contact interface height at the 𝑖th interface site along the triple contact line. Note that 𝑅𝑐𝑟,𝑖, 𝛽𝑠,𝑖, and 휃𝑖 are 

functions of the fluid height in the capillary tube ℎ𝑖. Furthermore, note that the FB-MFkMC rate equations 

proposed above are used to determine the probability that a localized section of the interface will displace by a 

distance 휆 based on the local velocity of the interface at that point. Therefore, this capillary-driven FB-MFkMC 

model discretizes the movement of the interface so that it can only move over distance 휆 at any given point in 

time. As a result, the parameter 휆 can be adjusted to fine-tune or coarse-grain the FB-MFkMC capillary action 

system and control the trade-off between model accuracy and computational efficiency. If 휆 is small (e.g., if 휆 

is defined as the local intermolecular spacing between interfacial molecules), then the system will have very 

high accuracy and will be able to accommodate for extremely small spatial and temporal heterogeneities, 

however it will require high CPU times to reach completion. On the other hand, large values of 휆 (e.g., if 휆 is 

5% of the total system size), then the system will be highly efficient and will have extremely small CPU times, 

however they will be noisy and will miss out on any fine-scale behaviour taking place. Consequently, 휆 must 

be chosen a priori in order to address the trade-off between the model accuracy and model efficiency. 

Additionally note that the proposed capillary action FB-MFkMC method shares several similarities with the 

level set method of interface movement, as it evolves the interface in space and time based on the local interface 

velocity profile. However, unlike the level set method, the FB-MFkMC approach to simulating fluid-fluid 

interfaces defines the interface explicitly based on the positions of the interfacial molecules. Specifically, when 

the FB-MFkMC interface is discretized on a molecular level, it uses the velocities of the interfacial molecules 
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themselves to advance the interface. Therefore, FB-MFkMC is capable of handling complicated interface 

geometries in a similar fashion to the implicit level set method.  

The capillary rise case study considered within this work consists of a body of water interacting with 

vertical radially-symmetric stainless steel tubes of varying dimensions. This system was implemented using 

lattice-free FB-MFkMC to predict the height of water in the steel tubes over time. The system was considered 

to be axisymmetric for the sake of simplicity, and consequently the capillary rise system was modeled using a 

1D FB-MFkMC model. In this system, the interface (i.e., the triple contact line) can be captured using FB-

MFkMC through the use of a single fluid interface site and a single vapour interface site, which predicts the 

location and system properties at the fluid and vapour sides of the triple contact line, respectively. Note that in 

this case study, the location of the solid interface remained fixed in time; thus, it was not necessary to consider 

a solid interface site in the FB-MFkMC algorithm. Due to the 1D and lattice-free nature of the FB-MFkMC 

model considered in this study, the fluid and vapour-phase sites were captured using the list indexing approach 

discussed in Section 3.3.4, where the fluid and vapour site information was stored in an array that keeps track 

of their vertical location ℎ𝑖, as well as the cavity radius 𝑅𝑐𝑟,𝑖, local cavity wall angle 𝛽𝑠,𝑖, velocity 𝑣𝑐𝑟,𝑖, and 

contact angle 휃𝑖  at the triple contact line. Note that there was no need to keep track of the interface site 

“connectivity” (i.e., keeping track of each site’s nearest neighbours). This is because the 1D model only 

considers a single interface site for each phase and these sites are continually adjacent as per MFkMC’s 

definition of an interface. The FB-MFkMC algorithm assumes that fluid-phase molecules can advance and 

displace the vapour interface site according to the advancing rate 𝑊𝑎𝑑𝑣,𝑖 in Eq. (5.6). Similarly, the FB-MFkMC 

algorithm assumes that vapour-phase molecules can advance and displace the fluid interface site according to 

the inverse receding rate equation 𝑊𝑟𝑒𝑐  in Eq. (5.7). Note that the force balance accommodates for the 

behaviour of the solid, fluid, and vapour phases and therefore the derived rate equations account for both the 

advancing and receding events 𝜖𝑎𝑑𝑣,𝑖  and 𝜖𝑟𝑒𝑐,𝑖  required to move the interface as discussed in Chapter 3. 

Furthermore, note that since the kinetic rates of advancing in Eqs. (5.6) and (5.7) do not directly depend on the 

time 𝑡 or the time increment 𝛿𝑡, it does not matter where 𝛿𝑡 is calculated within the FB-MFkMC algorithm. 

However, the time increment 𝛿𝑡 was calculated before selecting a site in the algorithm above in order to mirror 

the general MFkMC structure presented in Section 3.2. The complete FB-MFkMC algorithm for capillary rise 

implemented within this study is summarized as follows: 

1. Initialize the cavity by defining the variability in the cavity radius 𝑅𝑐𝑟,𝑖 as a function of the vertical 

position within the cavity ℎ𝑖. 

2. Define the initial positions of the fluid and vapor interface sites as well as the initial velocity 𝑣𝑐𝑟,0,𝑖 of 

the triple contact line. Calculate and store the cavity radius 𝑅𝑐𝑟,𝑖, the cavity wall angle 𝛽𝑠,𝑖, and the 

contact angle 휃𝑖. 
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3. Calculate and store the rates of advancement for the fluid and vapor interface sites, 𝑊𝑎𝑑𝑣,𝑖 and 𝑊𝑟𝑒𝑐,𝑖, 

according to Eqs. (5.6) and (5.7). 

4. Calculate the kMC time increment, 𝛿𝑡, according to Eq. (3.11) to determine the time 𝑡 + 𝛿𝑡 at which 

the next event will occur. 

5. Apply MC sampling to select either the fluid or the vapor interface site according to Eq. (3.12). If the 

fluid interface site is selected, then the fluid will advance and displace the vapor interface site and the 

vertical location of both sites will be incremented by 휆. On the other hand, if the vapor interface site is 

selected, then the vapor will advance and displace the fluid interface site and the vertical location of 

both sites will be decremented by 휆. 

6. Calculate the new cavity radius 𝑅𝑐𝑟,𝑖, cavity wall angle 𝛽𝑠,𝑖, contact angle 휃𝑖, and velocity 𝑣𝑖 of the 

triple contact line. 

7. Calculate the new rates of advancing for the fluid and vapor interface sites, 𝑊𝑎𝑑𝑣,𝑖  and 𝑊𝑟𝑒𝑐,𝑖 ,  

according to Eqs. (5.6)-(5.7). 

8. Repeat Steps 4-7 until a final time 𝑡𝑓 has been reached. 

5.2   Capillary Rise Model Results, Validation, and Analysis 

The objective of this section was to apply the FB-MFkMC algorithm discussed in the previous section 

to model the capillary-driven rise of water in radially-symmetric vertical stainless steel tubes of varying shapes. 

The proposed FB-MFkMC algorithm was used to simulate capillary rise under three different scenarios: 

capillary rise in perfectly smooth cylindrical tubes of uniform radii, capillary rise in an axisymmetric tube with 

complex geometry, and capillary rise in roughened cylindrical tubes. For each of these case studies, the 

capillary action FB-MFkMC algorithms were executed until a final time 𝑡𝑓 = 0.5  ms was achieved. 

Furthermore, the fluid properties and relevant parameters for each of these systems are listed in Table 5.1. 

Table 5.1. Capillary rise parameters for water rising up a stainless steel tube  

Parameter Symbol Value 

Equilibrium contact angle, water on stainless steel 휃𝑒 71° 

Water-air surface tension at 𝑇 = 25°C 𝛾𝑙𝑣 72.28 mN/m 

Dynamic viscosity of water at 𝑇 = 25°C 휇 0.89 mPa/s 

Density of water at 𝑇 = 25°C 𝜌 997 kg/m3 

Line tension of water 𝜍 20 pN (43) 

Rate constant, movement of the triple contact line 𝑘′ 1 s-1 

Step change considered by the MFkMC model 휆 7.07×10-9 m 
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5.2.1  Case Study 1: Capillary Rise in Perfectly Cylindrical Cavities 

The first case study considered capillary rise in three perfectly cylindrical vertical tubes of constant radii 

𝑅𝑐𝑟.𝑖 = 𝑅𝑐𝑟, 𝑅𝑐𝑟 = [3,4,5] mm in order to validate the FB-MFkMC model performance. The results of this 

analysis were compared against the known analytical solution to the Lucas-Washburn equation in a perfect 

cylinder, which predicts the height of the capillary as a function of time 𝑡:207 

 ℎ =
𝒜

ℬ
(1 + 𝒲 (−𝑒−1−

𝐵2𝑡

𝐴 ))        (5.8) 

 where 𝒜 =
𝑅𝑐𝑟𝛾𝑙𝑣 cos( 𝑒)

4𝜇
, ℬ =

𝑅𝑐𝑟
2 𝜌𝑔

8𝜇
, and 𝒲 denotes the Lambert W function. Furthermore, the FB-

MFkMC algorithm was used to simulate the results for each cylinder radii over five independent simulations 

to showcase the effects of stochastic variability inherent to kMC methods on the capillary rise results. 

The results of this study are illustrated in Fig. 5.1, where the solid lines denote the solution predicted by 

Eq. (5.8) and the dotted lines denote the solution to the FB-MFkMC equation. Note that the similarly-coloured 

dotted lines showcase the results from each of the independent FB-MFkMC simulations. Furthermore, the  

computational cost for this study as well as the percent relative root mean squared errors (PRMSE) between 

the capillary rise height predicted by FB-MFkMC and the height predicted using Eq. (5.8) are listed in Table 

5.2. These results illustrate that the FB-MFkMC equations are in complete agreement with the analytical 

 

Figure 5.1: Capillary rise height profiles as a function of time for water in perfectly cylindrical tubes 

of varying radii 
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solutions listed in Eq. (5.8), as the PRMSE results remain below 0.3% and the majority of the errors are below 

0.01%. Furthermore, they showcase that the kMC-induced stochastic fluctuations do not significantly affect 

the predicted capillary rise behaviour. Table 5.2 also demonstrates the efficiency of the FB-MFkMC algorithm, 

as the system only required 95 s on average to simulate capillary rise for a nanoscale 휆 ; note that the 

computational time can be reduced even further by considering a larger step size 휆. The results in Fig. 5.1 

additionally demonstrate the different dynamics of capillary rise for cylinders of different diameters. In all three 

cases, the water begins to rapidly rise into the cylinder tubes before gradually decelerating until the water 

column height reaches steady state. This steady state level is established as the point where the capillary forces 

driving the water upward are completely balanced by the gravity forces pulling the column of water downwards. 

The results further highlight that the water rises higher in tubes with a narrower radius. This behaviour is due 

to the relationship between the capillary force and the tube radius, shown in the first term of the Lucas-

Table 5.2. FB-MFkMC computational costs and PRMSEs between the analytical and FB-MFkMC-

predicted capillary rise heights for each of the three cylindrical tube studies 

Size (mm) FB-MFkMC 

Iteration 

CPU time (s) PRMSE (%) 

𝑅𝑐𝑟 = 5 1 3.363 4.296×10-3 

2 3.611 3.004×10-3 

3 3.343 2.221×10-1 

4 3.464 5.293×10-3 

5 3.504 4.251×10-3 

𝑅𝑐𝑟 = 4 1 3.472 1.132×10-2 

2 3.526 6.288×10-3 

3 3.347 6.747×10-3 

4 3.627 3.336×10-3 

5 2.925 9.545×10-3 

𝑅𝑐𝑟 = 3 1 3.052 4.867×10-1 

2 3.018 7.951×10-3 

3 2.909 8.623×10-3 

4 3.229 2.415×10-2 

5 2.988 1.100×10-1 
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Washburn  equation (i.e., Eqs. (2.5) and Eq. (2.9) in Chapter 2), which showcases that the capillary force term 

is inversely proportional to the radius of the capillary tube. 

5.2.2   Case Study 2: Capillary Rise in Irregular Axisymmetric Cavities 

The proposed FB-MFkMC model is not just restricted to considering relatively simple geometries but 

can also be applied to simulate capillary rise in any cavity irrespective of its shape. As a proof-of-concept to 

demonstrate the general applicability of the proposed FB-MFkMC algorithm, the framework outlined in 

Section 5.1 wa s applied to capture capillary rise in a radially-symmetric stainless steel tube with an irregular 

geometry, which is illustrated in Fig. 5.2. Note that FB-MFkMC is not just limited to simulating axisymmetric 

cavities and can be applied to capture capillary rise in non-symmetric cavities with any potential geometry. 

However, these non-symmetric systems would require use of a 2D FB-MFkMC model and therefore cannot be 

captured using the 1D FB-MFkMC algorithm proposed in this chapter. Further specifics about how to develop 

a triple contact interface system into 2D are provided in the next chapter. Therefore, non-symmetric cavities 

have not been considered in this study for brevity. The proposed tube geometry in Fig. 5.2 features a tube whose 

radius varies vertically; it initially consists of a spherical segment of radius 𝑅𝑠𝑝ℎ𝑒𝑟𝑒 = 0.5 mm that has a lower 

cross-sectional radius 𝑅𝑠𝑝ℎ𝑒𝑟𝑒,𝑙𝑜𝑤 = 0.48 mm and an upper cross-sectional radius 𝑅𝑠𝑝ℎ𝑒𝑟𝑒,𝑢𝑝 = 0.05 mm, and 

it subsequently turns into a cone with a wall of slope 𝛽𝑠,𝑐𝑜𝑛𝑒 = 104.04°. Note that the total height of the 

spherical segment, before it changes into a cone, is 𝐻𝑠𝑝ℎ𝑒𝑟𝑒 = 0.637 mm. The cone rises for a height of 

𝐻𝑐𝑜𝑛𝑒 = 0.1 mm before tapering off to a cylinder of constant radius 𝑅𝑐𝑦𝑙 = 25 µm. The FB-MFkMC algorithm 

 

Figure 5.2: The irregularly-shaped stainless steel tube used to generate the results in Fig. 5.3 
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was used to simulate the results over five independent simulations in order to showcase the effects of the kMC-

induced stochastic variability. The results of the capillary rise study are depicted in Fig. 5.3. Note that the 

differently-shaded lines in this figure showcase the results from independent FB-MFkMC runs. The results 

presented within the figure illustrate that the transient behaviour of the water inside the irregular tube is 

significantly different compared to the behaviour within a cylindrical tube. Most notably, the water rises rapidly 

through the spherical segment of the tube due to the rapidly-decreasing radius, as highlighted inside inlet A of 

the Fig. 5.3. Once the water reaches the transition point between the sphere and the cone (i.e., at ℎ𝑖 = 𝐻𝑠𝑝ℎ𝑒𝑟𝑒 =

0.637 mm), it continues to increase but at a notably slower rate until it reaches the top of the cone, as illustrated 

by inlet B in Fig. 5.3. Once the droplet reaches the cylinder part of the tube (i.e., ℎ𝑖 = 𝐻𝑠𝑝ℎ𝑒𝑟𝑒 + 𝐻𝑐𝑜𝑛𝑒 =

0.737 mm), the capillary force is not enough to overcome both the change in the tube angle and the gravitational 

force at this height. As a result, the triple contact line pins at the transition between the cone and the cylinder 

parts of the tube and the water column ceases to advance. The results in Fig. 5.3 additionally demonstrate that 

the inherent kMC variability has negligible effect on the capillary rise performance for tubes of irregular 

geometries, as each of the independent FB-MFkMC simulations produced similar results. 

 

Figure 5.3: Capillary rise height profile inside the axisymmetric tube of irregular geometry in Fig. 5.2 
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5.2.3   Case Study 3: Capillary Rise in Roughened Cylindrical Cavities 

The proposed FB-MFkMC model is also capable of capturing molecular-level roughness on the solid 

surface and gauging its effects on the overall macroscopic capillary rise behaviour. In order to evaluate this 

effect, the FB-MFkMC algorithm was used to simulate capillary rise on a cylindrical tube with nanoscale 

roughness added to its surface. In this procedure, the roughness was geometrically incorporated into the 

capillary tube profile by a molecular-level deviations 𝛿𝑅 to the droplet radius at stochastically-determined 

locations along the height of the cylinder. These geometric deviations in the droplet radius consequently 

affected the capillary rise behaviour based on the droplet radius variation conditions encoded in the rate 

equations (i.e., Eqs. (5.6)-(5.7)) according to Eqs. (2.7)-(2.8). The surface roughness 𝛿𝑅 was stochastically 

added using a normalized distribution 𝒩(�̅�, 𝜎𝒩
2 ) with mean �̅� and variance 𝜎𝒩

2 : 

𝛿𝑅 = 𝑞⌊𝒩(�̅� = 0, 𝜎𝒩
2 = 0.25)⌉        (5.9) 

where the notation ⌊𝑑⌉ is used to denote rounding the parameter 𝑑 to the nearest integer value, and where 

𝑞 denotes the size of a single atom defect. Since the solid material considered in this case study (stainless steel) 

is an alloy, this simulation estimated the value of 𝑞 based on the lattice length of AISI 316L stainless steel (𝑞 =

0.3596 nm).208 The results from the normal distribution were rounded so that the simulation would only 

consider roughness asperities whose heights were multiples of 𝑞 (i.e. roughness asperities consisting of an 

integer number of atoms.) The roughness variance (𝜎𝒩
2 ) was selected so that the cylinder surface would have 

an asperity density of roughly one asperity per 22.3 nm (i.e., roughly one asperity every 62 surface atoms) in 

an attempt to capture the roughness metrics exhibited on practical AISI 316L stainless steel surfaces. Note that 

asperities of positive height represent roughness peaks, whereas asperities negative height correspond to 

roughness valleys (i.e., vacancies along the surface of the cylindrical tube). Furthermore, note that due to the 

radial symmetry assumption applied when deriving the 1D capillary rise model, each roughness asperity in this 

study is assumed to form a uniform ring around the cavity. This axisymmetric roughness profile is not expected 

to occur in reality, and therefore the 1D axisymmetric capillary rise model would have very limited predictive 

capabilities. As a result, this surface roughness case study represents a proof-of-concept case study that is only 

intended to showcase that the FB-MFkMC capillary rise model can accommodate for surface roughness. To 

this extent, the asperity density used in this case study was not chosen to reflect the real roughness profiles 

expected in stainless steel; rather, it was chosen to showcase that the capillary rise FB-MFkMC model captures 

the expected behaviour of roughness under the roughness profile considered in this work. Note that the FB-

MFkMC model can be adapted to accommodate for realistic roughness profiles through expansion to a 2D 

model where the azimuthal axis cannot be disregarded; however, 2D models have not been considered in this 

work for the sake of brevity. Further details about how to model a triple contact interface system in 2D can be 

found in the next chapter. FB-MFkMC was used to simulate capillary rise on rough cylinders of radius 𝑅𝑐𝑟 =
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[3,4,5]  mm and the results are compared against the capillary rise behaviour inside an ideally-smooth 

cylindrical tube using the analytical solution presented in Eq. (5.8). The FB-MFkMC algorithm was used to 

simulate the results for each cylinder radii over five independent simulations. The results of this analysis are 

presented in Fig. 5.4. Note that in this figure, the solid lines indicate the expected behaviour inside an ideally-

smooth cylindrical tube, whereas the dashed lines indicate the solutions predicted using FB-MFkMC for the 

rough cylindrical tubes. In addition, note that the similarly-coloured dashed lines denote the results from each 

of the independent FB-MFkMC simulations that were executed for each pore radius. These results indicate that 

there is substantial deviation between the expected results in a smooth cylinder and the predicted results in a 

rough cylinder. In particular, the results showcase that the column of water within the tube eventually becomes 

 

Figure 5.4: Capillary rise height inside roughened cylindrical tubes of varying radii: a) 𝑅𝑐 = 5 mm; 

b) 𝑅𝑐 = 4 mm; c) 𝑅𝑐 = 3 mm. Note that the dashed lines indicate the FB-MFkMC results whereas the 

solid lines denote the results from the analytical solution to the Lucas-Washburn equation 
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pinned on roughness asperities, preventing the water from rising any further. Note that the water’s triple contact 

line is expected to pin each time it encounters a roughness asperity.27 However, the column of water does not 

remain trapped on the lower asperities within the tube because the capillary force is sufficient to overcome both 

the asperity pinning and the downward gravitational force. On the other hand, the water contact line remained 

pinned on asperities that are sufficiently high up within the tube, where the capillary force of the water column 

is too weak to overcome both the asperity and the increased gravitational force at that cavity height. The results 

in Fig. 5.4 additionally showcase the effects of stochastic variability on the FB-MFkMC results. Note that the 

variability in these results originate from the stochastic generation of the surface roughness asperities; they are 

not induced by the stochastic MFkMC algorithm behaviour. These results indicate that the stochastic variability 

has a noticeable effect on the capillary rise results and that it induces pinning at different heights depending on 

the surface roughness profiles. These results were expected since the surface roughness profiles were randomly 

generated and therefore the location of the pinning asperities were expected to vary. Furthermore, these 

randomized roughness profiles were intentionally included in the simulations to showcase that different 

roughness profiles result in different system behaviour. Note that the increase in surface area induced by the 

roughened surface is expected to affect the capillary force in addition to inducing pinning effects, as captured 

in the capillary action force balance modifications highlighted in Eq. (2.9). However, these capillary effects 

were not observed to have a significant effect in the FB-MFkMC-predicted model results. This is due the 

assumptions made in the attempt to replicate a practical roughened surface profile. Due to the axisymmetric 

assumptions applied to the FB-MFkMC capillary action model, the generated roughness profiles feature very 

few abrupt changes in the cavity radius and predominantly consist of large plateaus where the radius remains 

constant. Consequently, the overall surface area of the roughened capillary tubes does not significantly increase, 

resulting in minimal changes in the pre-pinning capillary rise dynamics within the cavity as showcased in Fig. 

5.4. However, the sparse distribution of the sporadic changes in the cavity radius aid in emphasizing the role 

of roughness-induced pinning in capillary action. The pinning results mirror those predicted within the 

literature, where the fluid triple contact line interaction with individual roughness asperities was directly 

studied.27 These results directly observed that the triple contact line will locally pin on asperities and cease to 

move until the local configuration of the neighbouring triple interface sites adopt a configuration suitable for 

inducing further capillary-driven advancement. The aforementioned work furthermore postulates that the 

strength of the pinning is proportional to how much of the triple line is affected by the roughness asperity, to 

the degree that should the asperity span the entire circumference of a cylindrical pore, that the fluid triple line 

would remain pinned indefinitely. The results in the aforementioned work furthermore validated this hypothesis 

through the use of another 1D capillary rise model. These results additionally can be used to showcase how the 

changes in capillary force are minimal for low surface asperity concentrations. Overall the results from this 

study further validate the performance of the FB-MFkMC capillary rise model and showcases its potential to 

capture real-world systems.  



97 

 

5.3   Summary 

Capillary action is a crucial moving interface phenomena that plays an important role in the study and 

design of numerous fluid transport applications. These phenomena can span large spatial domains but their 

behaviour is sensitive to fluctuations on the molecular level, and consequently it is necessary to develop 

modelling algorithms that can capture their behaviour on all the relevant scales. This chapter developed a 1D 

FB-MFkMC model to capture capillary rise within axisymmetric vertical cavities. In particular, the FB-

MFkMC algorithm was developed in order to capture the movement of fluid-fluid moving interfaces based 

solely on the balance of forces acting locally across the interface. The developed capillary rise FB-MFkMC 

model was highlighted to be able to accurately capture the expected sessile droplet behaviour in ideal 

cylindrical pores of different radii. However, the model also proved versatile in capturing capillary action 

behaviour in systems without a known analytical solution, such as in cavities with irregular axisymmetric 

geometry and in pores subject to molecular-level roughness. These studies showcased that the FB-MFkMC 

model was able to accommodate for this behaviour in a physically-reasonable manner and further highlighted 

the potential for MFkMC to capture moving interface systems in an accurate yet efficient manner. 
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Chapter 6 – MFkMC Model for Sessile Droplet 

Spreading on a Smooth Surface§ 

The impact and spreading of fluid droplets on a solid surface is an important process that occurs 

frequently in a wide variety of different natural, technological, and industrial operations.144,209 Within these 

applications, it is important to understand the behaviour of how a droplet spreads, and thus there has been 

substantial interest and research devoted to studying sessile droplet behaviour on different surfaces, both 

experimental and theoretical, as highlighted in Chapter 2.8,150 Sessile droplets are frequently large (>1mm) and 

evolve over relatively lengthy (>1s) time periods, however the surfaces in contact with the droplet are often 

rough and contain molecular-level asperities. As a result, there is a need for modelling techniques that can 

bridge the scales ansd capture the macroscale evolution of the droplet while still accounting for the molecular-

level phenomena taking place, such as FB-MFkMC. This kMC-based modelling approach is reliant upon 

having a well-defined closed form expressions for the force or energy balances acting upon the interface for 

liquid-liquid interfaces. However, as highlighted in Section 2.2.2.2, analytical expressions have not been 

derived for all the forces affecting droplet spread on a solid surface, and consequently a complete description 

of this force balance is presently lacking within the literature. In order to resolve this issue, past sessile droplet 

models assumed that the force balance affecting the droplet movement could be described using a damped 

harmonic oscillator equation.23 However, this approach oversimplifies the balance of forces acting upon the 

interface and cannot provide a detailed description of the underlying physics. Consequently, FB-MFkMC 

models presently lack the ability to provide detailed analyses on the effects of key droplet parameters on its 

overall spreading behaviour. 

Motivated by the findings discussed above, the objective of this work is to develop a comprehensive 

semi-empirical force balance that can adequately describe the spreading behaviour of a capillary-driven droplet 

on a solid surface, while accommodating for the key capillary, inertial, and viscous damping forces. Due to the 

absence of pure analytical viscous damping models in the literature, this work developed a fitted semi-empirical 

expression for the viscous term that is not reliant upon any conditionally-specific assumptions and therefore 

can be applied to a droplet spreading system for most given fluids. The proposed force balance is coupled with 

the FB-MFkMC algorithm in order to model sessile droplet spread for a variety of different fluids and surface 

materials. The proposed framework was validated using droplet spreading data derived both from experiments 

and from previous studies within the literature. The FB-MFkMC model was additionally used to analyze the 

 

§ The contents of this chapter have been reproduced from D. Chaffart, et al., “A semi-empirical force balance-based 

model to capture sessile droplet spread on smooth surfaces: A moving front kinetic Monte Carlo study,” Phys. Fluids 

35(3), 032109 (2023),43 with the permission of AIP Publishing 
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effects of each force over the different regimes of droplet spreading. Section 6.1 will describe the 

implementation and development of the FB-MFkMC model for sessile droplets on smooth surfaces. 

Subsequently, Section 6.2 will discuss the proposed force balance and will provide particular attention to the 

derivation of the viscous damping force. Section 6.3 will then validate the full FB-MFkMC model against 

experimental results and provide further analysis on the effects of the forces on the droplet behaviour. A 

summary of this chapter will be provided in Section 6.4. 

6.1   MFkMC Algorithm for Sessile Droplet Spread 

The behaviour of sessile droplet spread is similar to the behaviour governing capillary rise, and 

consequently there are many similar aspects between the developed FB-MFkMC sessile droplet model and the 

FB-MFkMC capillary rise model considered in the previous chapter. The sessile droplet system considered in 

this work consisted of a fluid droplet spreading on an ideally-flat two dimensional surface. Under these 

conditions, the droplet expanded and contracted radially with respect to the droplet center, i.e., where the 

droplet first contacted the surface. This system was captured using a 2D square lattice-based FB-MFkMC 

algorithm that modelled the spreading of the droplet triple contact line. Much like the capillary rise model 

considered previously, the triple line consists of a fluid-fluid interface and consequently the contact line 

dynamics can be captured using the kinetic-like rate equations listed in Eqs. (5.4)-(5.5). However, unlike the 

capillary rise case study, there do not exist a series of closed form expressions that describe the force balance 

acting upon the sessile droplet triple line within the literature; this will be further discussed within Section 6.2. 

On an ideally smooth surface, the triple contact interface of a sessile droplet will advance and recede 

radially with respect to the point in which the droplet first contacted the surface. As a result, the droplet contact 

line can be considered to be composed of an infinite number of independent, non-interactive damped harmonic 

oscillators advancing and receding relative to the center of the droplet/surface interface, as illustrated in Fig. 

6.1a. Note that the behaviour of these theorized droplet oscillators are based on the balance of forces acting on 

the droplet, which will be discussed in Section 6.2. Consequently, this terminology has no affiliation with the 

empirical damped harmonic oscillator equations typically used to describe the dynamics of these systems. 

Furthermore note that due to the nature of a lattice-based FB-MFkMC algorithm, the triple contact line is 

discretely defined as the boundary between the interfacial atmosphere-phase and fluid droplet-phase lattice 

sites as depicted in Fig. 6.1b and 6.1c. Consequently, each droplet-phase interfacial lattice site can be viewed 

as an independent oscillator moving in a single direction relative to the droplet center. Additionally, each of 

the atmosphere-phase interfacial lattice sites can be viewed as a site that has the potential to be immediately 

occupied by a droplet oscillator on the other side of the triple interface. Note that much like the capillary rise 

FB-MFkMC model, the location of the solid interface does not move and therefore it is not necessary to 

consider any solid interface sites in the FB-MFkMC algorithm. 



100 

 

Based on these considerations, the proposed FB-MFkMC algorithm defines the events governing the 

interface movement based on the phase of the interfacial sites, as illustrated in Fig. 6.2. For each of the 

atmosphere-phase interfacial sites, the FB-MFkMC approach assumes that there is an oscillator located one 

lattice unit away in the direction of the droplet center that can advance into this site 𝑖 according to the advancing 

rate 𝑊𝑎𝑑𝑣,𝑖 in Eq. (5.4), as depicted in Fig. 6.2a. Similarly, the FB-MFkMC approach assumes that each of the 

 

Figure 6.1: a) The droplet triple contact line can be considered as a series of infinite, independent 

damped harmonic oscillators; b) Triple contact line definition on a 2D lattice, note that both bulk 

phase sites are unmarked on the FB-MFkMC lattice; c) side view of the droplet represented by the 2D 

lattice in part b) 
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𝑖 th droplet-phase interfacial sites are occupied by droplet oscillators and it calculates the rates that these 

oscillators will recede toward the droplet center according to 𝑊𝑟𝑒𝑐,𝑖  in Eq. (5.5), as depicted in Fig. 6.2b. 

Therefore, the atmosphere-phase interface sites are assigned rates calculating the probability that the 

atmosphere-phase will recede away from these sites as they become occupied by the droplet-phase (triple 

contact line will advance away from the droplet center), whereas the droplet-phase interface sites are assigned 

rates determining the probability that the droplet-phase will recede away from these sites as they become 

occupied by the atmosphere-phase  (triple line will recede towards the droplet center). Note that although the 

droplet oscillators depicted by the droplet-phase interfacial sites can also advance into the atmosphere phase, 

this behaviour is disregarded as it is already accounted for by the rates of droplet advancing assigned to the 

atmosphere-phase interfacial sites. 

The lattice-based FB-MFkMC algorithm considered in this work restricts the positions of the droplet-

phase and atmospheric-phase interface sites to a square lattice grid in order to significantly reduce 

computational costs. Consequently, it is necessary to implement additional rules in order to prevent any 

 

Figure 6.2: In the sessile droplet MFkMC algorithm, the event taking place is defined based on the 

type of interfacial site. a) interface atmosphere-phase sites keep track of the advancing rate of a 

droplet oscillator (local triple contact line site) located 1 lattice unit away; therefore they capture the 

receding rate of the atmosphere-phase site as it is displaced by the droplet-phase; b) interface droplet-

phase sites keep track of the receding rate of a droplet oscillator located at that site; therefore they 

capture the receding rate of the droplet-phase site as it is displaced by the atmosphere-phase 
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unrealistic droplet behaviour that might occur due to approximating the radial spread of the spherical cap-

shaped droplet using a cartesian grid (i.e., unrealistically large asymmetric deviations in the droplet radius, 

impossible droplet spreading in non-radial directions, and the formation of satellite droplets under unrealistic 

conditions),23 as follows: 

𝑊 ,𝑖,𝑜𝑟𝑑 =

{
 
 

 
        𝑘′ 𝑒𝑥𝑝 ((

�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖+𝜆
) 𝑠𝑖𝑛ℎ−1 (

𝑣𝑑𝑟𝑜𝑝,𝑖

2𝜆𝑘′ )) ,   휀 = 𝑎𝑑𝑣

𝑘′ 𝑒𝑥𝑝 (− (
�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖−𝜆
)

−1

𝑠𝑖𝑛ℎ−1 (
𝑣𝑑𝑟𝑜𝑝,𝑖

2𝜆𝑘′ )) ,   휀 = 𝑟𝑒𝑐

        (6.1) 

𝑊 ,𝑖,𝑓𝑐(𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) =  

{
 
 

 
 

𝑊𝑎𝑑𝑣,𝑖,𝑜𝑟𝑑 , 휀 = 𝑎𝑑𝑣 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋ 𝑜𝑟 ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉ 𝑎𝑟𝑒 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑠𝑖𝑡𝑒𝑠)

𝑊𝑟𝑒𝑐,𝑖,𝑜𝑟𝑑 , 휀 = 𝑟𝑒𝑐 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌋ 𝑎𝑛𝑑 ⌈(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌉  𝑎𝑟𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 

                 𝑠𝑖𝑡𝑒𝑠) 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋ 𝑜𝑟 ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉ 𝑎𝑟𝑒 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑠𝑖𝑡𝑒𝑠)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (6.2) 

𝑊 ,𝑖(𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) = {

𝑊𝑡𝑜𝑡,𝑛𝑐

∑ (𝑊𝑎𝑑𝑣,𝑖,𝑓𝑐+𝑊𝑟𝑒𝑐,𝑖,𝑓𝑐)𝑖
𝑊 ,𝑖,𝑓𝑐(𝑥ℛ𝑖,𝜙𝑖

, 𝑦ℛ𝑖,𝜙𝑖
),   휀 = 𝑎𝑑𝑣

𝑊𝑡𝑜𝑡,𝑛𝑐

∑ (𝑊𝑎𝑑𝑣,𝑖,𝑓𝑐+𝑊𝑟𝑒𝑐,𝑖,𝑓𝑐)𝑖
𝑊 ,𝑖,𝑓𝑐(𝑥ℛ𝑖,𝜙𝑖

, 𝑦ℛ𝑖,𝜙𝑖
),   휀 = 𝑟𝑒𝑐

     (6.3) 

where 𝑊 ,𝑖,𝑜𝑟𝑑 ∈ 𝑾𝒊,𝒐𝒓𝒅 = [𝑊𝑎𝑑𝑣,𝑖,𝑜𝑟𝑑 , 𝑊𝑟𝑒𝑐,𝑖,𝑜𝑟𝑑]  and 𝑊𝑎𝑑𝑣,𝑖,𝑜𝑟𝑑 / 𝑊𝑟𝑒𝑐,𝑖,𝑜𝑟𝑑  denote the 

advancing/receding rates respectively for an interface site 𝑖 accommodating only for the unrealistic droplet 

radius deviations; 𝑊 ,𝑖,𝑓𝑐 ∈ 𝑾𝒊,𝒇𝒄 = [𝑊𝑎𝑑𝑣,𝑖,𝑓𝑐 , 𝑊𝑟𝑒𝑐,𝑖,𝑓𝑐]  and 𝑊𝑎𝑑𝑣,𝑖,𝑓𝑐 / 𝑊𝑟𝑒𝑐,𝑖,𝑓𝑐  denote the 

advancing/receding rates respectively for the 𝑖th interface site that additionally accommodate for the impossible 

droplet spreading in non-radial directions and for the formation of unrealistic satellite droplets; 𝑅𝑑𝑟𝑜𝑝,𝑖 denotes 

the current local radius of the triple contact line at the 𝑖th site; �̅�𝑑𝑟𝑜𝑝 denotes the average contact radius of the 

entire droplet; 𝑊𝑡𝑜𝑡,𝑛𝑐 denotes the total sum of all rates without accommodating for the unphysical droplet 

radius deviations; 𝑥 and 𝑦 are the Cartesian coordinates of a given lattice site 𝑖; and the subscripts 𝑅𝑖 and 𝜙𝑖 

denote the radial and azimuthal polar coordinates of the same 𝑖 th lattice site. Further details about these 

challenges and the derivations of Eqs. (6.1)-(6.3) above can be found in Section C.1. Furthermore, the complete 

step-by-step FB-MFkMC algorithm for the sessile droplet model implemented within this work is listed in 

Section C.2. 

Note that the presented FB-MFkMC algorithm is dependent on the local velocity of the triple contact 

line 𝑣𝑖, as highlighted in the rate expressions in Eq. (6.1). This parameter cannot be determined from FB-

MFkMC itself and therefore requires an additional means to determine its value at any point in time. This can 

be accomplished by analyzing the balance of forces acting upon the local droplet interface and recasting them 

to solve for the contact line’s local velocity. Further details on this process will be provided in the next section. 
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6.2   Sessile Droplet Force Balance Model Development 

When a droplet is placed on a solid surface, it will spread and recede until it minimizes the overall surface 

energy between the droplet, the surface, and the atmospheric phase surrounding them. This minimization of the 

interfacial energies exerts a continuous restoration force on the drop (i.e. the capillary force) that drives the 

droplet to spread so long as there is a surface energy imbalance. These capillary forces are opposed by inertial 

forces, which resist droplet deceleration and acceleration and can drive the droplet to expand or contract past 

the capillary equilibrium size. These driving forces, however, are countered largely by viscous damping forces 

that continuously dissipate energy from the system.  

The dynamic behaviour of a sessile droplet is considered to be predominantly driven by the 

aforementioned forces (capillary, inertial, and viscous damping).139,144 Therefore, it is necessary to have a 

detailed understanding of these forces in order to capture crucial droplet spreading behaviour and to simulate 

them using modelling approaches such as the FB-MFkMC algorithm described in the previous section. Note 

that for sufficiently large droplets (i.e., droplets larger than the capillary length of the fluid as depicted in Eq. 

(2.13)), the droplet behaviour is known to be additionally affected by gravity forces. However, the droplets 

considered in this study are all smaller than their capillary lengths and therefore gravity will not be included 

within the force balance.144 This section aims to develop and assemble complete analytical and semi-empirical 

expressions for each of the key fundamental forces affecting sessile droplet spread. These force balances are 

derived through a combination of analytical equations proposed within the literature (i.e., the capillary and 

inertial forces listed in Eqs. (2.10) and (2.12) respectively) and coupled with a semi-empirical expression for 

the viscous damping force derived within this work. The following sub-sections provides a more detailed 

description into the derivation of the semi-empirical viscous damping force and will provide further analysis 

on the force balance assembly and its incorporation into the FB-MFkMC algorithm. 

6.2.1    Derivation of the Viscous Damping Force 

The dynamic behaviour of a spreading sessile droplet greatly depends on viscous damping. However, 

despite its overall significance, no concrete mechanistic models have yet been devised to represent the viscous 

damping force in these systems. This is a result of the nature of this force and how it is computed. According 

to Eq. (2.15), it is necessary to determine the fluid velocity at all points along the system surface in order to 

calculate the viscous damping force. However, this information necessitates determining the solution to the 

Navier-Stokes equations within a sessile droplet shape, which has yet to be achieved within the literature. 

Consequently, there have not been studies within the literature that have attempted to develop a purely-explicit 

mechanistic viscous force equation due to the challenges highlighted above. Over the course of this study, a 

few attempts were made to derive analytical expressions for the viscous damping force. These approaches 

included deriving analytical expressions for the fluid velocity profiles under Stokes flow conditions and solving 
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for the velocity profiles numerically using CFD-based techniques. These expressions were subsequently 

incorporated into the viscous stress tensor and integrated to yield the viscous damping force. Despite these 

efforts, the tested approaches failed to provide a realistic viscous damping force expression. Further details 

about these attempts are described in Appendix C. In addition, there have been a handful of attempts within the 

literature to derive a semi-empirical expression for the viscous damping force, such as the cylindrically-based 

viscous force expression in Eq. (2.16).140 However, these methods thus far have failed to capture the full viscous 

damping behaviour within a general sessile droplet system. 

In order to overcome these issues, this work proposed the development of a semi-empirical force model 

to capture viscous damping within a droplet on a solid surface. The proposed model takes the following form: 

 �⃑�𝑣(𝒙, 𝑡) = −2𝜋휇𝑣𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝑉𝑅𝑠𝑐        (6.4) 

where 𝑣𝑑𝑟𝑜𝑝(𝒙, 𝑡) =
𝑑𝑅𝑑𝑟𝑜𝑝(𝒙,𝑡)

𝑑𝑡
 denotes the velocity of the droplet’s triple contact line at a given location 

𝒙 and time point 𝑡; 𝑉𝑅𝑠 = √
3𝑉

4𝜋

3
 is a term added to the expression to accommodate for the effects of the droplet 

volume 𝑉 on the viscous force; and 𝑐 is an empirically-derived dimensionless parameter. Note that the equation 

has a form resembling viscous damping formulations found in similar systems, such as the viscous force 

equations in capillary rise systems.56 Consequently, Eq. (6.4) was given a linear dependence on both the 

viscosity 휇 and the velocity of the droplet interface 𝑣𝑑𝑟𝑜𝑝. In addition, the 2𝜋 term was added to account for 

the axisymmetric nature of the droplet. The empirical parameter 𝑐 was added to account for discrepancies 

observed in the droplet behaviour between the force balance-based model results and those observed 

experimentally. Note that in order for �⃑�𝑣 to have the appropriate force units (i.e., N), the parameter 𝑐 must be 

unitless. The value of 𝑐 can be determined by applying model-fitting using data obtained both experimentally 

and from the literature. These fitted 𝑐 values can be subsequently analyzed to determine their relationship with 

respect to the physical parameters governing sessile droplet spread such as the droplet Ohnesourge number 𝑂ℎ 

defined in Eq. (2.19). In this work, the value of 𝑐 was fit using a wide variety of different functions using 

nonlinear regression to approximate the relationship between 𝑐 and 𝑂ℎ, and it was observed that the system’s 

behaviour was best represented according to a modified Hoerl relationship210,211, i.e., 

𝑐 = 𝒶𝒷1/𝑂ℎ𝑂ℎ𝓌          (6.5) 

where 𝒶 , 𝒷 , and 𝓌  are empirically fitted via model fitting techniques based on a select set of 

experimental data. Furthermore note that Eq. (6.5) is an empirical expression and that other models could be 

similarly derived to correlate 𝑐  with 𝑂ℎ  or other sessile droplet metrics. Further details concerning this 

equation’s derivation and the model fitting process are provided in Section 6.3. By combining Eqs. (6.4)-(6.5), 

the final form for the semi-empirical viscous damping force was determined to be: 
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 �⃑�𝑣(𝒙, 𝑡) = −2𝜋𝒶휇𝑣𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝑉𝑅𝑠𝒷
1/𝑂ℎ𝑂ℎ𝓌      (6.6) 

6.2.2   Force Balance Assembly and MFkMC Coupling 

The semi-empirical force equation highlighted in the previous section was assembled alongside the 

analytical capillary and inertial force expressions listed in Section 2.2.2.2 of the second chapter in order to 

describe the balance of forces acting upon the droplet interface. The complete force balance is derived by 

adding the individual force terms shown in Eqs. (2.10), (2.12), and (6.6) together as follows: 

𝜋𝜌𝑅𝑑𝑟𝑜𝑝
3 (

𝑐𝑜𝑠

6 𝑠𝑖𝑛
+

𝑐𝑜𝑠

4 𝑠𝑖𝑛3
−

4 𝑠𝑖𝑛4
)

𝑑2𝑅𝑑𝑟𝑜𝑝

𝑑𝑡2
= 2𝜋𝑅𝑑𝑟𝑜𝑝𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃) − 2𝜋𝒶휇𝑣𝑑𝑟𝑜𝑝𝑉𝑅𝑠𝒷

1/𝑂ℎ𝑂ℎ𝓌   (6.7) 

Note that the above force balance expression seems to imply axisymmetry in the droplet spreading 

behaviour, as the force balance equation does not showcase any dependence on the azimuthal (𝜙) axis. 

However, droplet spreading is not completely axisymmetric even on a smooth surface and frequently 

experiences stochastic microscale fluctuations in the radius along the length of the interface.212,213 This can be 

captured in the force balance by modifying Eq. (6.7) to accommodate for differences in the radius and the 

contact angle for different azimuthal positions along the droplet interface, as follows: 

 𝜋𝜌𝑅𝑑𝑟𝑜𝑝(𝜙, 𝑡)3 (
𝑐𝑜𝑠 (𝜙,𝑡)

6 𝑠𝑖𝑛 (𝜙,𝑡)
+

𝑐𝑜𝑠 (𝜙,𝑡)

4 𝑠𝑖𝑛3 (𝜙,𝑡)
−

(𝜙,𝑡)

4 𝑠𝑖𝑛4 (𝜙,𝑡)
)

𝑑2𝑅𝑑𝑟𝑜𝑝(𝜙,𝑡)

𝑑𝑡2  

  = 2𝜋𝑅𝑑𝑟𝑜𝑝(𝜙, 𝑡)𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃 (𝜙, 𝑡)) − 2𝜋𝒶휇𝑣𝑑𝑟𝑜𝑝(𝜙, 𝑡)𝑉𝑅𝑠𝒷
1/𝑂ℎ𝑂ℎ𝓌   (6.8) 

This equation can be further written in a discretized form as follows: 

𝜋𝜌𝑅𝑑𝑟𝑜𝑝,𝑖
3 (

𝑐𝑜𝑠 𝑖

6 𝑠𝑖𝑛 𝑖
+

𝑐𝑜𝑠 𝑖

4 𝑠𝑖𝑛3
𝑖
− 𝑖

4 𝑠𝑖𝑛4
𝑖
)

𝑑2𝑅𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡2   

= 2𝜋𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃𝑖) − 2𝜋𝒶휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠𝒷
1/𝑂ℎ𝑂ℎ−𝓌     (6.9) 

where 𝑅𝑑𝑟𝑜𝑝,𝑖 = 𝑅𝑑𝑟𝑜𝑝(𝜙𝑖, 𝑡) , 휃𝑖 = 휃(𝜙𝑖, 𝑡) , and 𝑣𝑑𝑟𝑜𝑝.𝑖 = 𝑣𝑑𝑟𝑜𝑝(𝜙𝑖, 𝑡)  denote the droplet contact 

radius, contact angle, and velocity for the 𝑖 th droplet interface site located at a position (ℛ𝑖, 𝜙𝑖 ) in polar 

coordinates. Note that due to the stochastic nature of the microscale fluctuations in the contact line, it is difficult 

to solve the force balance on its own to determine the droplet contact radius or velocity. This expression 

presently has no defined closed-form stochastic differential equation representation. Furthermore, any derived 

closed-form equations would be highly nonlinear with respect to the stochastically-varying parameters 

𝑅𝑑𝑟𝑜𝑝(𝜙, 𝑡) and 휃(𝜙, 𝑡), and consequently it would be highly difficult to solve in an accurate and efficient 

manner.  Consequently, this force balance benefits immensely from coupling with the sessile droplet FB-

MFkMC model proposed in Section 6.1. Due to the inherently stochastic nature of the algorithm, FB-MFkMC 

can deal with the stochastic variability of the system in an accurate and efficient manner. Furthermore, FB-
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MFkMC can provide microscale information to the force balance that it cannot otherwise accommodate for, 

such as surface roughness, however this is beyond the scope of this work. The sessile droplet FB-MFkMC 

model developed in this work has the capability of capturing the general stochastic spreading behaviour of 

droplets on solid surfaces. However, the rate equations governing the movement of the droplet interface require 

knowledge of the local velocity 𝑣𝑑𝑟𝑜𝑝,𝑖 along the length of the droplet triple contact interface, as highlighted in 

Eq. (6.1) of Section 6.1. This information can be readily determined by analyzing the balance of forces acting 

along the length of the interface and using them to predict the droplet velocity at any point in time. Therefore, 

in order to accurately capture sessile droplet spreading behaviour on a surface, the FB-MFkMC algorithm must 

be coupled with the force balance presented above. In order to couple these two approaches together, it is 

necessary to rearrange Eq. (6.9) in terms of the triple contact line velocity, 𝑣𝑑𝑟𝑜𝑝,𝑖. However, doing so requires 

knowledge of the triple contact line acceleration, 
𝑑2𝑅𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡2 , in order to analyze the inertia term. This can be 

accomplished by using the acceleration’s definition as the derivative of velocity, and approximating this term 

using backwards finite difference over a finite time interval 𝛿𝑡, i.e. 
𝑑2𝑅𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡2 =
𝑑𝑣𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡
≅

𝑣𝑑𝑟𝑜𝑝,𝑖−𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖

𝛿𝑡
, 

where 𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖 = 𝑣𝑑𝑟𝑜𝑝,𝑖(𝑡 − 𝛿𝑡) denotes the velocity of the 𝑖th triple contact line site at the previous time 

point. By substituting this approximation into Eq. (6.9), the force balance can be rearranged in terms of 𝑣𝑑𝑟𝑜𝑝,𝑖 

as follows: 

𝑣𝑑𝑟𝑜𝑝,𝑖 =
ℱ𝑖
𝛿𝑡

𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖+2𝜋𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(𝑐𝑜𝑠 𝑒−𝑐𝑜𝑠 𝑖)

ℱ𝑖
𝛿𝑡

+2𝜋𝒶𝜇𝑉𝑅𝑠𝒷1/𝑂ℎ𝑂ℎ−𝓌
      (6.10) 

where ℱ𝑖  is the discretized form of ℱ  and is a function of both 𝑅𝑑𝑟𝑜𝑝,𝑖  and 휃𝑖 . Eq. (6.10) can be 

subsequently substituted into Eq. (6.1) to determine the rate expressions necessary to propagate the droplet 

movement according to FB-MFkMC. Note that the finite difference time interval 𝛿𝑡 in Eq. (6.10) is the same 

as the MFkMC sample time 𝛿𝑡 presented in Eq. (3.11). This interval is typically miniscule as compared to the 

overall simulation time, and therefore the truncation error associated with finite difference approximations is 

negligible. The proposed FB-MFkMC method combines the features of the MFkMC algorithm with the 

fundamental physical principles captured by the force balance, and therefore it has the potential to yield 

accuracy in its predictions while efficiently capturing sessile droplet systems over realistically-long timescales. 

Furthermore, the framework can be readily expanded to include microscale features such as surface roughness 

and etched surface structures, and therefore improving its capabilities of capturing a physical droplet system. 

However, the proposed framework is still dependent on an empirically-fitted parameter 𝑐, and therefore it is 

still missing additional information in order to provide a purely physical approach to capturing sessile droplet 

spread. Consequently, further studies are required in the future to determine a purely mechanistic expression 

for the viscous damping force and thus improve the physical prediction capabilities of the FB-MFkMC model. 
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6.3    Model Validation and Analysis 

The previous sections have discussed the development of a FB-MFkMC model to capture sessile droplet 

spread on an ideally flat surface. This model is based upon the semi-empirical force balance shown in Eq. 

(6.10), which contains empirical parameters (𝒶, 𝒷, and 𝓌) derived from model-fitting. The objective of this 

section is to showcase the fitting of the model to data derived both experimentally and from within the literature. 

This section additionally validates the model using experimental data not previously used in the model fitting, 

and further investigates the model results to highlight its ability to universally capture sessile droplet spreading 

on an ideally flat surface under any droplet spreading regime. 

6.3.1   Experimental Setup & Model Fitting 

The semi-empirical FB-MFkMC sessile droplet algorithm implemented within this work was fit and 

subsequently validated using data obtained experimentally and from the literature. The experiments were 

performed by releasing deionized water droplets from syringes onto various smooth 

perfluorodecyltrichlorosilane (FDTS), polytetrafluoroethylene (PTFE), and pure silicon (Si) surfaces using the 

experimental setup showcased in Fig. 6.3a. Note that the FDTS and PTFE surfaces were prepared by depositing 

the respective coatings onto pure Si wafers via molecular vapour deposition. The volume of the water droplets 

considered in this study were controlled using a syringe pump and were allowed to vary between 0.46-9.8 μL. 

Furthermore, as shown in Fig. 6.3, the initial impact velocities 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and spreading velocities 𝑣𝑑𝑟𝑜𝑝,0 of the 

droplets were controlled by varying the droplet release height 𝒽 (i.e., the distance between the syringe tip and 

the solid surface) using a custom homemade stage (Fig. 6.3b). The impact and subsequent spreading of the 

droplets on the solid surfaces were recorded using a FASTCAM Mini UX 100 high-speed CCD camera at 2,000 

frames per second (fps) (0.5 ms per frame). The recorded video files were subsequently analyzed frame-by-

frame using ImageJ to extract the relevant droplet information (i.e., the contact radius 𝑅𝑑𝑟𝑜𝑝,𝑒𝑥𝑝(𝑡)) as a 

function of time 𝑡 (Fig. 6.3c). The experimental setup was utilized to record the spreading behaviour of nine 

different droplets of various sizes and impact velocities impacting solid surfaces of different materials. The 

details for each experiment are listed in Table 6.1. In addition to the experiments performed in this study, this 

work additionally analyzed and validated the developed sessile droplet FB-MFkMC model using droplet 

spreading data reported within the literature.214–216 The selected literature data was chosen to represent the 

spreading behaviour of different fluids over different solid surfaces that were not tested in the aforementioned 

experiments, and the information for each considered dataset is listed in Table 6.1. 

Following the accumulation of the experimental and literature results, this data was used to determine 

the empirical parameter 𝑐 for each sample via model fitting. This process was accomplished by coupling the 

force balance with the MFkMC algorithm to form the FB-MFkMC approach, as highlighted in Section 6.2.2, 

to provide measurable metrics so that the parameter 𝑐 within the viscous damping term could be compared to 
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the available data. The FB-MFkMC sessile droplet model results were subsequently fit to the obtained droplet 

results using least squares nonlinear regression. For each iteration of the least squares fitting, the FB-MFkMC 

sessile droplet model results were interpolated to determine the sessile droplet spreading information at the 

same timepoints available from the experimental data. Furthermore, the optimal solution of 𝑐 was determined 

by minimizing the percent relative root mean squared error between the interpolated model-predicted and 

experimental results as follows: 

𝑃𝑅𝑀𝑆𝐸 = 100% ∙ √
1

𝓃
∑ (𝑅𝑑𝑟𝑜𝑝,𝑒𝑥𝑝(𝑡𝒿)−𝑅𝑑𝑟𝑜𝑝,𝑖𝑛𝑡(𝑡𝒿))

2
𝓃
𝒿

∑ 𝑅𝑑𝑟𝑜𝑝,𝑖𝑛𝑡
2 (𝑡𝒿)𝓃

𝒿
     (6.11) 

 

Figure 6.3: Dynamic process of drop spreading: a) Experimental setup; b) Schematic of the 

experimental setup (not drawn to scale); c) Two snapshots showing before (upper panel) and after 

(lower panel) the drop contacts the sample surface (Si surface). The contact diameter at time 𝑡 is 

labeled as 2𝑅𝑑𝑟𝑜𝑝,𝑒𝑥𝑝(𝑡). The scale bar is 1 mm 
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where 𝑡𝒿  denotes the 𝒿 th time point from the experimental results; 𝑅𝑑𝑟𝑜𝑝,𝑒𝑥𝑝(𝑡𝒿) and 𝑅𝑑𝑟𝑜𝑝,𝑖𝑛𝑡(𝑡𝒿) 

denote the droplet contact radius from the experimental results and from the interpolated FB-MFkMC-predicted 

results at time 𝑡𝒿, respectively; and 𝓃 denotes the total number of measurements for a given droplet experiment. 

6.3.2    Model Validation 

The model fitting approach discussed above was used to determine the values of 𝑐 for each experimental 

study considered in this work. The fitted values 𝑐 are listed in Table 6.2 for each of the experimental studies 

considered in this work, along with their reported normalized root mean squared errors. Table 6.2 additionally 

lists the computational time required to simulate each result using the sessile droplet FB-MFkMC algorithm. 

Note that all the FB-MFkMC results simulated in this work were operated using the lattice spacing parameters 

휆 listed in Table 6.2. These spacing parameters were chosen based on the size of the droplet being simulated 

via FB-MFkMC and their values were determined a priori to be the largest spacing parameter that did not 

significantly affect the accuracy of the results, i.e., all smaller values of 휆  would output similar results. 

Furthermore, the FB-MFkMC results were generated using a pre-exponential constant value of 𝑘′ = 1 s–1 in 

Table 6.1:  Properties and parameters for the sessile droplet experimental (Exp) and literature-derived 

(refs) sample data considered in this work 

Sample Name Liquid Material Solid Surface 
𝑉 

(μL) 

𝑣𝑑𝑟𝑜𝑝,0 

(m/s) 

𝜌 

(kg/m3) 

휇 

(Pa·s) 

𝛾𝑙𝑣 

(N/m) 

휃𝑒 

(°) 

휅−1 

(mm) 

Sample A (Exp) Water PTFE 0.46 0.27 997 8.90×10-4 7.28×10-2 107 2.727 

Sample B (Exp) Water FDTS 6.2 0.29 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample C (Exp) Water FDTS 6.2 0.259 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample D (Exp) Water FDTS 6.2 0.22 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample E (Exp) Water FDTS 9.8 0.359 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample F (Exp) Water FDTS 9.8 0.259 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample G (Exp) Water FDTS 9.8 0.19 997 8.90×10-4 7.28×10-2 103.1 2.727 

Sample H (Exp) Water PTFE 2.57 0.14 997 8.90×10-4 7.28×10-2 107 2.727 

Sample I (Exp) Water Si 3.5 0.245 997 8.90×10-4 7.28×10-2 64 2.727 

Sample J (214) Water Wax 27 1.3 997 8.90×10-4 7.28×10-2 76 2.727 

Sample K (215) 10% Glycerol Stainless Steel 8.38 1.7 1025.9 1.22×10-3 7.0×10-2 4.0 2.637 

Sample L (215) 30% Glycerol Stainless Steel 7.99 2.55 1083.9 2.57×10-3 6.7×10-2 7.1 2.51 

Sample M (215) 70% Glycerol Stainless Steel 9.49 2.62 1190.4 2.68×10-2 5.8×10-2 26.1 2.229 

Sample N (216) 100% Glycerol Wax 7.7 2.7 1220 0.116 6.3×10-2 53.4 2.294 
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Eq. (6.1).  Note that a sensitivity analysis (not shown for brevity) was performed on 𝑘′ to observe its effects on 

the MFkMC predictions. This analysis revealed that this parameter has a  negligible effect on the  system 

behaviour, and consequently its value was set to 𝑘′ = 1 s-1 within this work.23 The results in Table 6.2 highlight 

that the FB-MFkMC sessile droplet model requires only 170 s of CPU time on average to simulate the sessile 

droplet behaviour, thus demonstrating its computational efficiency over other molecular-level modelling 

techniques.23 Note that the observed computational times varied depending on simulation parameters such as 

the spacing constant 휆, the maximum achieved droplet radius, and the simulation time; consequently, the 

computational cost was much larger for simulations such as Sample J that experienced significant droplet 

spreading over larger timescales, whereas it was orders of magnitude smaller for Sample A due to its small 

size. Furthermore, these results highlight that the FB-MFkMC sessile droplet model can adequately capture the 

sessile droplet spread once the empirical viscous parameter 𝑐 is known, due to the fact that the reported errors 

are below 5%, and most of the errors are below 1%. Furthermore, the largest error was observed for Sample J, 

whose surface was reported to be rough, and therefore more significant deviations are expected due to surface 

non-idealities.214 This highlights that the MFkMC model is capable of both accurately and efficiently capturing 

the sessile droplet spread. In addition to the above analysis, Fig. 6.4 compares the sessile droplet spreading 

Table 6.2:  FB-MFkMC sessile droplet model and 𝑐 fitting results 

Sample Name 𝑂ℎ 휆 (m) Fitted 𝑐 values PRMSE Computation Time (s) 

Sample A (Exp) 2.001×10-3 5×10-5 196.2656 0.729673 13.67 

Sample B (Exp) 2.001×10-3 5×10-5 207.3654 0.586961 103.96 

Sample C (Exp) 2.001×10-3 5×10-5 182.6875 0.586318 130.25 

Sample D (Exp) 2.001×10-3 5×10-5 202.8232 0.786432 164.77 

Sample E (Exp) 2.001×10-3 5×10-5 219.3137 0.434094 72.59 

Sample F (Exp) 2.001×10-3 5×10-5 191.3227 0.429289 83.58 

Sample G (Exp) 2.001×10-3 5×10-5 186.3903 0.558511 88.59 

Sample H (Exp) 2.001×10-3 5×10-5 177.78 0.813364 33.19 

Sample I (Exp) 2.001×10-3 5×10-5 208.1464 0.888258 103.43 

Sample J (214) 2.001×10-3 1×10-4 204.9014 4.170475 1064.53 

Sample K (215) 2.801×10-3 1×10-4 250.0 2.563906 264.92 

Sample L (215) 6.018×10-3 1×10-4 182.479 1.646412 175.26 

Sample M (215) 6.844×10-2 1×10-4 44.04654 0.918891 84.70 

Sample N (216) 0.2762 1×10-4 11.39 0.957991 50.21 
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behaviour of Sample E generated using FB- MFkMC (green xs) to the experimentally-observed data (red dot) 

and to results generated using a modified FB-MFkMC sessile droplet algorithm where the viscous damping 

force is calculated using the cylindrically-based simplified viscous damping force proposed within the literature 

and showcased in Eq. (2.16) (blue squares).140 This semi-empirical simplified viscous model relies on numerous 

assumptions as highlighted in Section 2.2.2.2, and is therefore only able to adequately capture the viscous 

damping behaviour of a sessile droplet under special circumstances. The results in Fig. 6.4 highlight that for 

the sessile water droplet system considered in Sample D, the cylindrical viscous model is unable to adequately 

reflect the droplet spreading behaviour. The observed behaviour highlights that the predicted viscous force 

using this method is negligibly small compared to the inertial and capillary forces, and therefore the predicted 

droplet behaviour behaves notably more underdamped than the observed droplet behaviour. This is in contrast 

to the semi-empirical viscous damping model proposed in this work, which was observed to sufficiently capture 

the energy dissipation within the sessile droplet system and therefore it was able to accurately replicate the 

sessile droplet behaviour observed experimentally. These results further highlight the capacity of the semi-

empirical viscous damping force-based FB-MFkMC model proposed in this work to capture sessile droplet 

spreading behaviour.  

 

Figure 6.4: Comparison of the experimental sessile droplet spreading behaviour observed for Sample 

D (red •) to the FB-MFkMC results generated using the full semi-empirical force balance (green x) 

and the FB-MFkMC results generated using the cylindrically-based viscous damping force proposed 

in the literature140 (blue ■) 
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 The results in Tables 6.1 and 6.2 can be additionally used to determine the relationship between 𝑐 and 

the sessile droplet system parameters. Fig. 6.5a provides a plot of the relationship between 𝑐 and the intrinsic 

contact angle 휃𝑖, the droplet volume 𝑉, and the impact velocity 𝑣0 for the results gathered from experiments, 

i.e., for the water droplet results. Note that in Fig. 6.5, the values of 𝑐 are illustrated through the colours of the 

points; furthermore, the size of the points are used to convey their depth in the 3D plot space. The results from 

the figure and tables highlight that the value of 𝑐 remains constant at around 𝑐 = 197.5 for a droplet of water, 

regardless of the physical droplet parameters or the surface materials. These results can be seen from the 

minimal variance in the point colours in Fig. 6.5a, as well in the low deviations in the reported 𝑐 values within 

Table 6.2. Furthermore, Fig. 6.5b illustrates the relationship for droplets of different fluids between 𝑐 and the 

fluid density 𝜌, the fluid viscosity 휇, and the liquid-vapour surface tension 𝛾𝑙𝑣. Note that the information within 

Fig. 6.5b is communicated in the same manner as within 6.6a, i.e., the values of 𝑐 are communicated through 

the sample point colours, and the point sizes are used to simulate depth perception. The results from this figure 

highlight that the value of 𝑐 is highly sensitive to the droplet liquid, as there are significant deviations in the 

observed point colours, and that 𝑐 has a nonlinear relationship with the fluid’s viscosity, density, and surface 

tension. Based on these observations, the value of 𝑐 was proposed to depend on the dimensionless Ohnesorge 

number, which depicts the ratio between the viscous force and the inertial and capillary forces as depicted in 

Eq. (2.19). Note that unlike other commonly-used dimensionless quantities (i.e. the Reynolds, Capillary, and 

Weber numbers 𝑅𝑒, 𝐶𝑎, and 𝑊𝑒), 𝑂ℎ does not depend on a characteristic velocity. As a result, it is ideal for 

fitting the parameter 𝑐  whose value was observed to be velocity-independent as highlighted in Fig. 6.5a. 

Furthermore, the results in Tables 6.1-6.2 and Fig. 6.5a highlight that the value of 𝑐  was observed to be 

independent of the droplet size and its physical dimensions. As a result, the characteristic length ℓ in Eq. (2.19) 

was selected to be the fluid capillary length 휅−1, as depicted in Eq. (2.13). The capillary length has units of 

length but its value depends on the fluid properties (i.e., 𝛾𝑙𝑣 and 𝜌) rather than the droplet dimensions, and 

therefore it is the perfect characteristic length to approximate the value of 𝑐. The Ohnesorge numbers and 

capillary lengths for each of the experimental samples are listed in Table 6.2. Furthermore, Fig. 6.6 illustrates 

the relationship between 𝑂ℎ  and the fitted 𝑐  values, which highlights that the affiliation between these 

parameters, for the most part, collapse onto a single curve. Based on these results, an empirical expression for 

the observed curve was determined by fitting the available data to a wide variety of different curve models 

using CurveExpert Professional 2.7.3. Note that the model fitting was only performed using the water, pure 

glycerol, and 70% glycerol data so that the remaining data could be used for validation (marked as ‘fitting data’ 

and ‘validation data’, respectively, in Table 6.3). According to this analysis, the variation in 𝑐 is most readily 

captured using the Hoerl model (i.e., Eq. (6.5)), with fitted model coefficients 𝒶 = 8.0720, 𝒷 = 0.9975, and 

𝓌 = −0.8314, such that the full expression for 𝑐 can be denoted as follows: 

 𝑐 = 8.0720 ∙ 0.99751/𝑂ℎ𝑂ℎ−0.8314       (6.12) 
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Figure 6.5: Variation in the fitted values of 𝑐 for: a) water droplets, as a function of the droplet 

volume 𝑉, the initial velocity 𝑣𝑑𝑟𝑜𝑝,0, and the contact angle 휃; b) droplets of different liquids, as a 

function of their density 𝜌, dynamic viscosity 휇, and surface tension 𝛾𝑙𝑣. Note that the value of 𝑐 is 

communicated through the colour of the points. Furthermore, the point sizes indicate the depth of the 

points along the z axis 
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Figure 6.6: Variation in the empirical parameter 𝑐 as a function of the Ohnesorge number 𝑂ℎ 

Table 6.3.  Dimensionless metrics of the sessile droplet samples and model results for predicting 𝑐 as 

a function of 𝑂ℎ  

Sample Name 
Fitting or Validation  

to determine 𝑐 = 𝑓(𝑂ℎ) 

PRMSE, 𝑐 =

𝑓(𝑂ℎ) 
𝑅𝑒 𝐶𝑎 

Sample A (Exp) Fitting 0.877935 144.84 3.303×10-3 

Sample B (Exp) Validation 0.655293 242.56 2.324×10-3 

Sample C (Exp) Fitting 0.590828 330.65 3.169×10-3 

Sample D (Exp) Validation 0.845269 458.32 4.392×10-3 

Sample E (Exp) Validation 0.439924 327.17 2.691×10-3 

Sample F (Exp) Fitting 0.519011 385.17 3.169×10-3 

Sample G (Exp) Validation 0.582917 431.27 3.548×10-3 

Sample H (Exp) Validation 0.81984 133.26 1.713×10-3 

Sample I (Exp) Validation 0.89692 258.50 2.997×10-3 

Sample J (214) Validation 4.741425 2710.2 1.590×10-2 

Sample K (215) Validation 4.443706 1802.8 2.960×10-2 

Sample L (215) Fitting 1.76496 1333.9 9.779×10-2 

Sample M (215) Validation 2.62018 152.59 1.212699 

Sample N (216) Fitting 1.02 34.79 4.971429 
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Note that the Hoerl equation was selected for its ability to fit the fitting data for 𝑐 to their corresponding 𝑂ℎ 

values. The full semi-empirical force balance can be expressed as follows: 

 𝜋𝜌𝑅𝑑𝑟𝑜𝑝,𝑖
3 (

𝑐𝑜𝑠 𝑖

6 𝑠𝑖𝑛 𝑖
+

𝑐𝑜𝑠 𝑖

4 𝑠𝑖𝑛3
𝑖
− 𝑖

4 𝑠𝑖𝑛4
𝑖
)

𝑑2𝑅𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡2  

  = 2𝜋𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃𝑖) − 16.1439𝜋휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠0.99751/𝑂ℎ𝑂ℎ−0.8314    (6.13) 

In order to validate the equation for 𝑐 (i.e., Eq. (6.12)), the full FB-MFkMC sessile droplet model was 

used to capture the droplet spread for each of the experimental conditions outlined in Table 6.1. The results of 

this study are depicted in Fig. 6.7, where the dotted green lines denote the average contact radius of the droplets 

as predicted by the FB-MFkMC simulations and the red xs depict the droplet data recorded from experiments 

and from the literature. Note that the FB-MFkMC simulations were performed three times each in order to 

analyze the effects of the kMC stochasticity on the model results. However, the results for each FB-MFkMC 

simulation were observed to be identical, as showcased in the figure. This is because the droplet radii reported 

in the figure are calculated by averaging the radius of each droplet as they vary azimuthally, and therefore the 

3D FB-MFkMC sessile droplet model innately accommodates for the average system behaviour without 

requiring additional simulations. In addition, Fig. 6.8 illustrates a top-down view of Sample C at different time 

intervals for a single FB-MFkMC simulation. Furthermore, Table 6.3 highlights the percent relative root mean 

squared error between the FB-MFkMC and experimental results calculated using Eq. (6.11). Note that in 

addition to the validation data, the PRMSE values are also listed for the fitting data in order to provide a 

benchmark of comparison for the validation data. These results highlight that the semi-empirical force balance 

is able to sufficiently predict the observed sessile droplet spreading, as the percent relative root mean squared 

errors predominantly remain below 5%. Furthermore, the predicted PRMSE values predominantly do not 

deviate significantly from the predicted PRMSE errors generated for the purely fit 𝑐 values denoted in Table 

6.2. Fig. 6.7 also illustrates that the FB-MFkMC sessile droplet model results do not deviate significantly from 

the experimental data and therefore they are able to accurately predict the sessile droplet behaviour. Note that 

although there are some deviations between the model and experiments particularly in Figs. 6.7d and 6.7j, these 

results can be attributed to surface roughness and other non-idealities on the experimental surface that are not 

accounted for by the present sessile droplet FB-MFkMC model, e.g., the rough wax surface in Sample J. These 

non-idealities can be readily integrated into the FB-MFkMC sessile droplet model through a series of 

modifications, however this is beyond the scope of this work. The results in Figs. 6.7-6.8 additionally 

demonstrate that the droplet advanced and receded uniformly, as the angular variation in the contact radius was 

observed to remain small. 

The sessile droplet behaviour showcased above exhibited large variability in the ratio between the viscous, 

inertial, and capillary forces, as highlighted by the diverse values observed in 𝑂ℎ. In order to provide a deeper 
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Figure 6.7: Comparison between the experimental/literature data (red x) and MFkMC-predicted results 

(green •) for sessile droplet spread: a) Sample A, water droplet on PTFE; b) Sample B, water droplet on 

FDTS; c) Sample C, water droplet on FDTS; d) Sample D, water droplet on FDTS; e) Sample E, water 

droplet on FDTS; f) Sample F, water droplet on FDTS; g) Sample G, water droplet on FDTS; h) Sample 

H, water droplet on PTFE; i) Sample I, water droplet on Si; j) Sample J, water droplet on wax; k) Sample 

K, 10% glycerol solution droplet on stainless steel; l) Sample L, 30% glycerol solution droplet on 

stainless steel; m) Sample M, 70% glycerol solution droplet on stainless steel; n) Sample N, pure glycerol 

droplet on wax 



117 

 

analysis of the different droplet performances, Table 6.3 additionally lists the Reynolds and Capillary numbers 

calculated for each of the experimental data sets according to Eqs. (2.17) and (2.18) respectively. These 

dimensionless quantities denote the ratios of inertial to viscous damping forces (𝑅𝑒) and of viscous damping 

to capillary forces (𝐶𝑎) at any point in time for each droplet. For each of the 𝑅𝑒 and 𝐶𝑎 values calculated in 

this study, the characteristic length ℓ was selected to be 𝑉𝑅𝑠 (which can be defined as the radius of the droplet 

as a perfect sphere) for each sample, whereas 𝓋 was selected to be the horizontal component of the impact 

velocity 𝑣𝑑𝑟𝑜𝑝,0. Note that unlike the Ohnesorge number, the characteristic length ℓ was selected to be 𝑉𝑅𝑠 

rather than the capillary length 휅−1. This decision was implemented to accommodate for both the droplet 

volume and its impact velocity when calculating 𝑅𝑒 and 𝐶𝑎, as these parameters are known to affect the sessile 

 

Figure 6.8: Top-down view of the radial variation in the spreading of a sessile water droplet (𝑉 = 9.8 

μL, 𝑣𝑑𝑟𝑜𝑝,0 = 0.22 m/s, 휅−1 = 2.727, 𝑂ℎ = 2.001 × 10−3) at different points in time along the 

droplet evolution. Note that the horizontal and vertical axes of each plot denote the distance to the 

droplet center in mm 
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droplet behaviour. Overall, the values listed in Table 6.3 indicate that the data used to fit and validate the semi-

empirical viscous damping force expression span a wide range of both large and small 𝑅𝑒 and 𝐶𝑎 values, 

therefore showcasing that the predicted model expression can adequately capture droplet behaviour under each 

of the possible force balance regimes (under inertial-driven, capillary-driven, and viscous-driven regimes). 

Additionally, the droplet data spans fluids of both low viscosity (water) and high viscosity (pure glycerol), 

which further illustrates that the semi-empirical viscous damping force expression can capture this force for 

both viscid and inviscid droplets, thus showcasing its overall generality. 

In addition to showcasing the widespread applicability of the proposed sessile droplet model, the 

dimensionless quantities 𝐶𝑎 and 𝑅𝑒 can also be used to provide analysis on the sessile droplet properties as it 

varies from system to system. As illustrated by the results in Table 6.3, all of the water droplet samples and 

many of the glycerol mixture samples have a large Reynolds number and a small Capillary number, indicating 

that the viscous damping force experienced by these samples is small compared to the inertial and capillary 

forces. Consequently, if the droplet is underdamped, it is expected these droplets would experience a large 

number of oscillations and a small oscillation period due to the low viscosity and the high inertial forces, 

respectively.144,217 This is in alignment with the observed results in Figs. 6.7b-g, which showcase that the sessile 

water droplets experience 2-3 oscillations with periods smaller than 10 ms. Furthermore, if the droplet is 

overdamped, the small Capillary and large Reynolds numbers indicate that the drop will approach its 

equilibrium at a faster rate compared to droplets with a higher viscosity contribution. In order to illustrate this 

behaviour, the Reynolds and Capillary numbers for the 0.46 μL water droplet (i.e., Sample A) were artificially 

increased and decreased, respectively, by decreasing the impact velocity 𝑣𝑑𝑟𝑜𝑝,0, decreasing the density 𝜌, 

decreasing the surface tension 𝛾𝑙𝑣, and increasing the viscosity 휇, using the FB-MFkMC sessile droplet model 

as showcased in Fig. 6.9. The results from these analyses are illustrated alongside the unmodified droplet 

behaviour determined from the experimental data. These results highlight that the weaker the viscous force, the 

more rapidly the droplet will approach its equilibrium state when overdamped. 

On the other hand, the viscid glycerol samples have significantly smaller 𝑅𝑒 and larger 𝐶𝑎 as compared 

to the water samples, indicating that the viscous force dominates for these droplets. Consequently, these 

droplets are unlikely to experience oscillations and any that do occur are expected to have a large period. These 

results can be observed in the plots showcased in Figs. 6.7k-n, which highlight the overdamped nature of the 

viscid glycerol-based drops. In order to further highlight this behaviour, the sessile droplet FB-MFkMC model 

was used to simulate the pure glycerol droplet on a PTFE surface (휃𝑖 = 116°),218 as shown in Fig. 6.10. Note 

that the presence or absence of oscillations within a droplet is influenced by the intrinsic contact angle in 

addition to the parameters within 𝑅𝑒 and 𝐶𝑎, and consequently a fluid droplet of fixed volume and impact 

velocity can experience both overdamped and underdamped behaviour depending on the solid surface material. 

The results in Fig. 6.10 showcases that when oscillating, the period of oscillation remains large (~100 ms) and 
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there is only a single oscillation before the droplet attains steady state, as predicted based on the dimensionless 

numbers. In order to further analyze the behaviour of high viscosity droplets, Fig. 6.11 depicts the behaviour 

of the glycerol droplet when 휇, 𝜌, 𝛾𝑙𝑣, 𝑣𝑜, and the volume 𝑉 are artificially modified. These results, which are 

generated using the FB-MFkMC sessile droplet model, further illustrate the trends mentioned above, i.e., larger 

𝑅𝑒 and smaller 𝐶𝑎 lead to larger oscillations with smaller periods, whereas smaller 𝑅𝑒 and larger 𝐶𝑎 result in 

increased droplet damping.  

6.4    Summary 

The spreading of sessile droplets plays a crucial role in a wide range of different applications in surface 

science and engineering, and consequently there is significant demand to model and study droplet spread. The 

droplet spreading process in sufficiently small droplets is governed by the inertial, capillary, and viscous 

damping forces acting upon the droplet triple contact line. However, the complete expressions for these forces 

were not completely known within the literature. This chapter developed a comprehensive semi-empirical force 

balance to capture the fundamental physics governing sessile droplet spread on an ideally flat surface. The 

proposed balance was derived based on analytical expressions previously derived to calculate the inertial and 

capillary forces, coupled with a semi-empirical expression to accommodate for the viscous damping force. The 

 

Figure 6.9: Variation in the spreading behaviour of water under Sample A conditions, according to: a) 

variations in 𝑣𝑑𝑟𝑜𝑝,0; b) variations in 𝜌; c) variations in 휇; d) variations in 𝛾𝑙𝑣 
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Figure 6.10: Spreading behaviour of the pure glycerol droplet on wax (green x) and on PTFE (red •) 

 

 

 

Figure 6.11: Variation in the spreading behaviour of pure glycerol under Sample N conditions, 

according to: a) variations in 𝑣𝑑𝑟𝑜𝑝,0; b) variations in 𝜌; c) variations in 휇; d) variations in 𝛾𝑙𝑣; e) 

variations in 𝑉 
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viscous damping behaviour was subject to a fitted empirical parameter whose value was determined to be 

dependent on the liquid material and its properties. Low-order expressions were proposed to predict the values 

of the parameter as a function of the droplet liquid’s Ohnesorge number. The full force balance was coupled 

with the FB-MFkMC algorithm to form the sessile droplet FB-MFkMC model, which was subsequently used 

to simulate the spread of sessile droplets on smooth surfaces. This modelling approach was validated using 

droplet data derived from experiments and from results reported previously within the literature. The proposed 

model was observed to provide acceptable predictions of sessile droplet spreading regardless of the droplet size, 

shape, composition, and the solid surface material. Furthermore, the model results were observed to reflect the 

expected droplet behaviour under a variety of different Reynolds and Capillary number values.   
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Chapter 7 – MFkMC Model for Sessile Droplet 

Spreading on Superhydrophobic Surfaces 

Solid surfaces are prone to contamination and fouling that have been demonstrated to cause adverse 

effects in applications such as hospital sanitation, window fogging, and biocontamination. Consequently, there 

is a crucial need to develop anti-wetting superhydrophobic surfaces (SHSs) in order to minimize and eliminate 

surface contamination.34,35,219 The superhydrophobic behaviour of these surfaces can be attributed to 

hierarchical or nanoscale surface asperities and roughness structures, as highlighted in Section 2.2.2.4.174,220 

The study of SHSs is fairly mature, and there have been many proposed surfaces that have demonstrated 

excellent water repellency.160,221 However, there still remain a number of challenges that inhibit the 

performance and wide-scale application of SHSs. Most notably, SHSs are prone to deactivation due to Cassie-

to-Wenzel (C2W) transitions, which has resulted in a significant amount of research into preventing and 

reversing C2W deactivation.37–39 Another key challenge is the difficulty in developing models to capture 

superhydrophobic surface behaviour. Many of these challenges can be likewise overcome through the use of 

the aforementioned FB-MFkMC algorithm discussed within the previous chapter. Nevertheless, there still 

remain key issues on how to implement FB-MFkMC to capture droplet spread on an SHS. Unlike ideally flat 

surfaces, the textured surface of an SHS changes as a function of space and therefore it is necessary to map the 

solid surface structure itself within the MFkMC model rather than assume it to remain spatially homogeneous. 

Furthermore, the droplet spreading behaviour changes between the gaps of an SHS’s roughness asperities and 

therefore it is necessary to accommodate for the additional physics and model considerations that occur due to 

the surface heterogeneity. In addition, the model must be adapted to accommodate for C2W transitions. 

To address the challenges outlined above, the aim of this chapter is to expand the FB-MFkMC model to 

capture sessile droplet spread on SHSs. The proposed SHS-based MFkMC (SHS-MFkMC) model will be 

modified using a Periodic Unit (PU) grid mechanism developed to accommodate for the spatial heterogeneities 

in the SHS. Furthermore, it will analyze the conditions and underlying physics necessary to capture Cassie 

mode droplet spreading and to predict the C2W transition. These results will be subsequently validated against 

experimental results from the literature and assessed via sensitivity analysis. Section 7.1 will describe the PU 

method used to model an SHS and it will furthermore describe the modifications made to the MFkMC model 

to capture both superhydrophobic droplet spreading and C2W transitions. Section 7.2 will subsequently 

validate the model with regards to both Cassie regime spreading and C2W. This section will additionally 

provide further analysis on the effects of the SHS structure on the droplet behaviour and whether it undergoes 

C2W. Concluding remarks will be provided in Section 7.3.  
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7.1  MFkMC Algorithm for Superhydrophobic Droplet Spread 

In order to capture sessile droplet spread on an SHS using SHS-MFkMC, it is necessary to modify this 

modelling approach in order to accommodate for the different solid surface structure and new physics that take 

place as a result of the solid surface spatial heterogeneities. This section will therefore outline each of the 

modifications that were made to capture the superhydrophobic behaviour. This section will initially provide an 

overview of the Periodic Unit (PU) technique developed to efficiently model the structure of the 

superhydrophobic surface. Subsequently, it will present the modifications made to the triple contact line force 

balance equations and to the SHS-MFkMC algorithm to accommodate for Cassie droplet spreading on an SHS. 

In addition, this section will also provide an overview of the different methods that were incorporated to predict 

C2W occurrences. Note that this chapter is predominantly focused on capturing the Cassie spreading regime 

of a droplet on an SHS and determining whether it would undergo C2W transitions.  

7.1.1  Superhydrophobic Surface Representation using the Periodic Unit 

Method 

One of the most defining physical features of SHSs are the roughness asperities that are responsible for 

the surfaces’ superhydrophobic properties. In an artificial SHS, these asperities frequently take the form of 

periodically-spaced near-identical pillars separated by gaps, as illustrated in Fig. 7.1a. These pillars can be 

manufactured in a variety of different shapes, and each different pillar design affects the superhydrophobic 

properties of the surface. Note that although there are a wide variety of different pillar structures available to 

study, this work only considers SHSs that have trapezoidal pillar designs, where the tops of the pillars are 

squares of length 𝑎𝑝,𝑡, the bottoms of the pillars have lengths of 𝑎𝑝,𝑏, and the pillar heights are 𝐻𝑝, as illustrated 

in Figs. 7.1b-c. Furthermore, the pillar walls intersect the surface below it at an angle of 𝜑𝑝, as highlighted in 

Fig 7.1b. Note that 𝜑𝑝 is measured with respect to the surface normal vector (i.e., the vector orthogonal to the 

bottom surface of the SHS), such that 𝜑𝑝 = 0 when 𝑎𝑝,𝑡 = 𝑎𝑝,𝑏  and 𝑏𝑝,𝑡 = 𝑏𝑝,𝑏 . Consequently, the angle 

showcased in Fig. 7.1b corresponds to 𝜑𝑝 + 90° for the sake of viewability. Finally, the pillars are separated 

by a gap of 𝑏𝑝,𝑡 and 𝑏𝑝,𝑏 between the tops and bases of the pillars, respectively. Note that the majority of SHS 

pillar designs considered in this work will have a rectangular prism shape (i.e., 𝜑𝑝 = 0, 𝑎𝑝,𝑡 = 𝑎𝑝,𝑏, 𝑏𝑝,𝑡 =

𝑏𝑝,𝑏), as illustrated in Fig. 7.1.  

The SHS-MFkMC model presented in Chapter 6 was designed to capture sessile droplet spread on an 

ideally flat, spatially homogeneous solid surface. As a result, the model had no need to accommodate for any 

spatial variations in the surface height and therefore the surface could be represented by a flat 2D plane to 

minimize computational costs. However, in the case of a pillared SHS, these assumptions cannot be applied 

and therefore it is necessary to map out the surface height at every point in space. Nonetheless, mapping the 



124 

 

geometry of the entire solid surface would be computationally and memory intensive, and it would eliminate 

one of the key computational advantages of using MFkMC (i.e., that sites not directly on a moving interface 

can be ignored). As a result, it is necessary to develop an alternative method to efficiently capture the shape of 

an SHS so that it is not necessary to store the entire solid surface structure. This goal can be accomplished 

through the use of the Periodic Unit method, which decomposes the solid surface into single periodic units  

(PUs), that each consisting of a single solid pillar as illustrated in Fig. 7.2. These PUs are defined such that on 

a periodically-repeating pillared surface, each PU is identical and therefore they can be tiled together to 

represent the entirety of the solid surface. Furthermore, because each PU is assumed to be identical, it is only 

necessary to have a detailed model for a single PU, and therefore this method can represent the complete solid 

surface in a memory-efficient manner.  

 

Figure 7.1: a) Superhydrophobic surface structure consisting of periodic pillars; b) side view of the 

trapezoidal (rectangular) pillars considered in this study; c) top-down view of the trapezoidal (rectangular) 

pillars considered in this study. Note that the angle showcased in this figure corresponds to 𝜑𝑝 + 90° since 

𝜑𝑝 is measured with respect to the surface normal vector 
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The PU method can be readily coupled together with SHS-MFkMC to efficiently determine the height 

of the solid surface at any point in space along the droplet triple contact interface. In this manner, whenever a 

new interface site is created within the MFkMC framework (i.e., according to Step 6 of the MFkMC algorithm 

as presented in Section 3.2), the SHS-MFkMC model will determine the location of the new interface site and 

share this information with the PU method. Upon receiving the interface location, the PU method will determine 

where within its respective PU that the site is located, as follows: 

𝑥𝑃𝑈𝑖𝑛𝑡,𝑖 = 𝑚𝑜𝑑 (𝑥ℛ𝑖,𝜙𝑖
+

𝑙𝑃𝑈,𝑥

2
, 𝑙𝑃𝑈,𝑥) −

𝑙𝑃𝑈,𝑥

2
      (7.1) 

𝑦𝑃𝑈𝑖𝑛𝑡,𝑖 = 𝑚𝑜𝑑 (𝑦ℛ𝑖,𝜙𝑖
+

𝑙𝑃𝑈,𝑦

2
, 𝑙𝑃𝑈,𝑦) −

𝑙𝑃𝑈,𝑦

2
      (7.2) 

where 𝑥𝑃𝑈𝑖𝑛𝑡,𝑖 and 𝑦𝑃𝑈𝑖𝑛𝑡,𝑖 denote the cartesian x- and y-axis coordinates respectively of the interface 𝑖 

location within its own PU relative to the PU center; 𝑥ℛ𝑖,𝜙𝑖
 and 𝑦ℛ𝑖,𝜙𝑖

 denote the cartesian x- and y-axis 

coordinates respectively of the interface 𝑖 location on the complete droplet surface relative to the droplet center; 

𝑙𝑃𝑈,𝑥 and 𝑙𝑃𝑈,𝑦 denote the length (along the x-axis) and width (along the y-axis) respectively of the PU; and the 

mod function outputs the remainder of division between two numbers 𝑑1 and 𝑑2 (i.e., the remainder of 𝑑1/𝑑2) 

as follows: 

𝑚𝑜𝑑(𝑑1, 𝑑2) = 𝑑1 − 𝑑2⌊𝑑1/𝑑2⌋        (7.3) 

Fig. 7.2 additionally provides a visual representation of how an interface’s location is mapped to PU 

coordinates according to the PU method. Once the interface site’s coordinates within the PU have been 

determined, the PU method will check the solid surface height beneath the interface site and return this 

information to the FB-MCkMC algorithm. This information will be subsequently used to determine whether 

 

Figure 7.2: Top-down view of the decomposition of a periodically-spaced pillared SHS into PUs 
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the newly-formed interface site is on top of a pillar or overtop of a pillar gap. Note that when using the PU 

method, it is ideal to select the MFkMC spatial discretization parameter 휆 such that 𝑙𝑃𝑈,𝑥 and 𝑙𝑃𝑈,𝑦, as well as 

the pillar width 𝑎𝑝,𝑡 and interpillar gap 𝑏𝑝,𝑡, are integer multiples of 휆. 

The proposed PU method discussed above is ideal for capturing smooth SHSs consisting of identical 

repeating pillar structures in the absence of surface roughness. However, this method can be modified to 

pseudo-randomly accommodate for potential surface roughness, individual irregularities in the pillar structure, 

or other differences between various PUs. This can be accomplished using a pseudo-random number generator 

to assign molecular-level roughness structures and other surface aberrations to an individual PU based on the 

PU’s coordinates (𝑥𝑃𝑈, 𝑦𝑃𝑈 ) along the PU grid. When a solid surface is decomposed into individual PUs using 

the PU method, the surface is interpreted as a grid of repeating PUs. As a result, each individual PU can be 

assigned its own integer index value that denotes its location on the solid surface, as illustrated in Fig. 7.3a. 

This index can be subsequently used to generate a unique seed for a pseudo-random number generator that can 

then be used to describe where surface irregularities would occur for that given PU, as illustrated in Fig. 7.3b. 

Since the surface aberrations are pseudo-randomly generated in a manner that is uniquely linked to the 

coordinates of an individual PU along the PU grid, it will guarantee that the same features will be generated 

every time for the same PU without having to store the entire solid surface. Note that when this surface 

roughness variant of the PU method is combined with a stochastic modelling approach such as SHS-MFkMC, 

 

Figure 7.3: a) When mapping an SHS using the PU method, the surface is sub-divided into a grid of 

individual PUs, which each have their own unique integer coordinates on the PU grid; b) theorized 

roughness profiles for different PU pillars generated pseudo-randomly based on their PU grid coordinates 

(𝑥𝑃𝑈, 𝑦𝑃𝑈) 
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it is necessary to use a second random number generator for the PU surface generation that is completely 

independent from the generator used for the stochastic method in order to prevent biasing of the MFkMC event 

selection.  

7.1.2  Force Balance and MFkMC Algorithm Modifications 

When a droplet undergoes Cassie spreading overtop of an SHS, it will showcase different behaviour 

depending on whether the droplet triple interface is advancing on top of a pillar or overtop of the gap between 

pillars, as illustrated in Fig. 7.4. While crossing the inter-pillar gaps, the droplet’s local advancing front is no 

longer defined by the local solid/liquid/vapour contact line but by the local droplet-vapour interface due to the 

absence of a solid surface. However, upon reaching the next pillar, the droplet will subsequently create a new 

local triple contact line as depicted in the figure. In order to account for this lateral inter-pillar droplet spreading, 

the SHS-MFkMC algorithm defines a second type of interface that is used to advance/recede the droplet across 

the gaps, which is referred to as the vapour/liquid/vapour (VLV) interface. Accordingly, the VLV is used to 

advance/recede the droplet until it reaches the next pillar surface, where it will create a new triple contact line 

(TCL) that will continue to advance or recede. Consequently, the VLV can be seen as an extension of the 

droplet’s line of advancement (i.e. an extension of the real triple contact line, along with the droplet TCL on 

the surface pillar tops) specifically defined for crossing gaps in the absence of a triple interface. 

When a droplet is moving across the gap between two pillars, it will experience different forces compared 

to when it is advancing on top of a pillar surface (i.e., VLV and TCL droplet interface sites will have a different 

force balance acting upon them). As a result, it is necessary to modify the balance of forces for VLV and TCL 

 

Figure 7.4: a) The advancing front of the sessile droplet is defined using the triple contact line (TCL) 

when in contact with the solid surface. b) When the advancing front is located over the gap between two 

SHS pillars, it cannot be described using the triple contact line; it must be instead described using the 

vapour/liquid/vapour interface (VLV) between the pillars. c) Once the advancing front reaches another 

pillar, it can once again be described using the TCL 
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sites in order to accommodate for these differences. In addition, the SHS-MFkMC algorithm method is 

observed to induce phantom pinning of the droplet interface along the edges of pillars when the movement of 

the droplet interface changes direction (i.e., SHS-MFkMC falsely predicts that the droplet will pin on the edges 

of pillars when the droplet stops advancing and starts to recede). This phantom pinning is due to the method 

used by SHS-MFkMC to define the interface, and consequently it is necessary to implement additional rules to 

prevent this unrealistic behaviour. The SHS-MFkMC force balance equations can be modified in order to 

accommodate for both the differences in physics between VLV and TCL sites, and to prevent phantom pinning, 

as follows: 

𝑤𝑆𝐻𝑆 =
𝐴𝑠𝑑𝑏𝑖

𝐴𝑑𝑏
             (7.4) 

𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎 =  

{
 
 
 
 
 
 

 
 
 
 
 
 

(2𝜋(2−𝑤𝑆𝐻𝑆)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(𝑐𝑜𝑠 𝑒−𝑠𝑖𝑛(𝛽𝑠,𝑖− 𝑖))+
ℱ𝑖
𝛿𝑡

𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖)

(
ℱ𝑖
𝑑𝑡

+16.1439𝜋𝑤𝑆𝐻𝑆𝜇𝑉𝑅𝑠0.9975
1

𝑂ℎ𝑂ℎ−0.8314)

,        𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔, 𝑖 𝑖𝑠 𝑇𝐶𝐿     

(2𝜋(2−𝑤𝑆𝐻𝑆)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(−1−𝑠𝑖𝑛(𝛽𝑠,𝑖− 𝑖))+
ℱ𝑖
𝛿𝑡

𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖)

(
ℱ𝑖
𝑑𝑡

+16.1439𝜋𝑤𝑆𝐻𝑆𝜇𝑉𝑅𝑠0.9975
1

𝑂ℎ𝑂ℎ−0.8314)

,        𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔, 𝑖 𝑖𝑠 𝑉𝐿𝑉

(2𝜋(2−𝑤𝑆𝐻𝑆)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(𝑐𝑜𝑠 𝑒−𝑐𝑜𝑠 𝑖)+
ℱ𝑖
𝛿𝑡

𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖)

(
ℱ𝑖
𝑑𝑡

+16.1439𝜋𝑤𝑆𝐻𝑆𝜇𝑉𝑅𝑠0.9975
1

𝑂ℎ𝑂ℎ−0.8314)

,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 𝑖𝑠 𝑇𝐶𝐿                          

(2𝜋(2−𝑤𝑆𝐻𝑆)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣(−1−𝑐𝑜𝑠 𝑖)+
ℱ𝑖
𝛿𝑡

𝑣𝑑𝑟𝑜𝑝,𝑝𝑟𝑒𝑣,𝑖)

(
ℱ𝑖
𝑑𝑡

+16.1439𝜋𝑤𝑆𝐻𝑆𝜇𝑉𝑅𝑠0.9975
1

𝑂ℎ𝑂ℎ−0.8314)

,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖 𝑖𝑠 𝑉𝐿𝑉                     

 

     (7.5) 

𝑣𝑑𝑟𝑜𝑝,𝑖,𝑡𝑣𝑓 = {
𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎(𝑖 𝑖𝑠 𝑉𝐿𝑉),    𝑖 𝑖𝑠 𝑇𝐶𝐿  

𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎(𝑖 𝑖𝑠 𝑇𝐶𝐿),    𝑖 𝑖𝑠 𝑉𝐿𝑉  
         (7.6) 

𝑣𝑑𝑟𝑜𝑝,𝑖 = {
𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎,    𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑛𝑜𝑡 𝑜𝑛 𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒

𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎+𝑣𝑑𝑟𝑜𝑝,𝑖,𝑡𝑣𝑓

2
,    𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 𝑜𝑛 𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒                    

       (7.7) 

where 𝑤𝑆𝐻𝑆 denotes the ratio of the underside of the droplet in contact with the solid surface pillar tops; 

𝐴𝑑𝑏 denotes the surface area on the bottom of the droplet (i.e., the part of the droplet that would be contacting 

the solid surface on an ideally-smooth surface); 𝐴𝑠𝑑𝑏𝑖 denotes the surface area of the droplet in direct contact 

with the pillar tops; 𝑣𝑑𝑟𝑜𝑝,𝑖,𝑛𝑎 and 𝑣𝑑𝑟𝑜𝑝,𝑖 denotes the velocity of the 𝑖th interface site before and after it is 

modified to accommodate for the phantom pinning, respectively; 𝑣𝑑𝑟𝑜𝑝,𝑖,𝑡𝑣𝑓 is the predicted velocity of the 𝑖th 

interface site if it had the opposite surface designation (i.e., if site 𝑖 was a VLV site (휃𝑒,𝑖 = 𝜋) instead of a TCL 

site (휃𝑒,𝑖 = 휃𝑒), and vice versa); 𝛽𝑠,𝑖 denotes the energy barrier angle for a receding interface site 𝑖 experiencing 

genuine pinning along the pillar edges; and 𝑣𝑑𝑟𝑜𝑝,𝑖(휃) denotes the velocity for site 𝑖  calculated using an 

equilibrium contact angle 휃𝑒,𝑖 = 휃 . In these equations, the term 𝑤𝑆𝐻𝑆  in Eqs. (7.4) and (7.5) is used to 
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accommodate how the solid-air ratio beneath the droplet affects both the viscous damping and capillary forces. 

Furthermore, Eq. (7.5) accommodates for the differing physics experienced by the VLV sites as well as the 

effects of droplet pinning on the pillar edges while receding. In addition, Eqs. (7.6)-(7.7) are implemented to 

prevent unrealistic phantom pinning that was observed to occur on the SHS due to the underlying assumptions 

behind MFkMC. In particular, Eq. (7.6) calculates the velocity of a TCL interface site as if it was a VLV 

interface site, and vice versa. Subsequently, Eq. (7.7) assesses whether or not the interface site is on a pillar 

edge. If the interface is on an edge, then this equation averages the expected interface velocity calculated using 

Eq. (7.5) with the modified velocity calculated using Eq. (7.6) if the interface is on a pillar edge. However, if 

the interface is not on a pillar edge, this equation sets the velocity to be the expected velocity predicted using 

Eq. (7.5). Further information about each of the aforementioned complications and the derivation of Eqs. (7.4)-

(7.7) can be found in Appendix D. 

7.1.3  Cassie-to-Wenzel Transitions 

One of the most crucial challenges affecting SHS design is that the surfaces are prone to deactivation 

due to surface fowling via Cassie-to-Wenzel transitions, where sessile droplets become pinned via Wenzel 

wetting mechanisms within the roughness asperities as discussed in Section 2.2.2.3. Consequently, it is 

important to accommodate for these phenomena when modelling SHSs using a method such as SHS-MFkMC. 

This section will predominantly focus on the fundamental processes necessary for SHS-MFkMC to 

accommodate spontaneous C2W transitions on an SHS. Note that this process can be modified to accommodate 

for induced C2W transitions (e.g., through the application of external pressure or vibration to a sessile drop) or 

C2W via evaporation, however these transitions were not considered within this work for the sake of time. 

C2W transitions are known to spontaneously occur on an SHS via two different mechanisms, i.e., via droplet 

sag and via spontaneous de-pinning. In order to accommodate for these transition mechanisms, it is important 

to understand the behaviour of the droplet as it crosses inter-pillar gaps. When a sessile droplet advances across 

a gap between two roughness asperities, it will experience curvature and sag downwards due to capillarity. If 

the height of the pillars does not exceed the height of the droplet sag, then the droplet will contact the bottom 

surface of the gap and spread, transitioning the droplet into the Wenzel state, as illustrated in Fig. 7.5a. 

Consequently, it is necessary to incorporate the droplet sag height into the SHS-MFkMC model to predict when 

C2W transitions will begin to occur. Note that the MFkMC algorithm itself does not directly simulate the entire 

curvature of the droplet sag as it crosses a gap, but rather it captures the horizontal droplet advancement using 

the VLV approach discussed in the previous section in order to reduce the computational costs. However, the 

VLV approach can still be modified to accommodate for sag height. In general, the height of droplet sag 𝒽𝑠𝑎𝑔,𝑖 

at a given point 𝑖 along the droplet advancing interface depends on the distance from site 𝑖 to the nearest pillar 

that the droplet is in contact with (𝑑𝑉𝐿𝑉,𝑖) and the intrinsic contact angle (휃𝑒), and can be depicted according to 

the following equation:222 
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𝒽𝑠𝑎𝑔,𝑖 = 𝑑𝑉𝐿𝑉,𝑖
1−𝑠𝑖𝑛 𝑒

− 𝑐𝑜𝑠 𝑒
         (7.8) 

In order to accommodate for C2W via droplet sag, the SHS-MFkMC model was modified to calculate 

the sag height for every VLV interface site. Each time that the droplet would advance over the gap, the SHS-

MFkMC algorithm would calculate the distance 𝑑𝑉𝐿𝑉,𝑖 between the new site 𝑖 and the nearest droplet-contacted 

pillar edges and use it to calculate the local sag height according to Eq. (7.8), as illustrated in Fig. 7.6. However, 

calculating 𝑑𝑉𝐿𝑉,𝑖 can be computationally difficult for a stochastically-advancing droplet whose interface is 

continuously evolving on a molecular level. In order to overcome this issue, this work approximated the radial 

spread of the droplet as a perfect circle when calculating the distance 𝑑𝑉𝐿𝑉,𝑖. Note that this assumption is only 

applied for the sake of calculating the drop sag, and that it is not used when simulating the radial droplet spread 

across the SHS using SHS-MFkMC. In addition, the droplet sag implementation in this work sub-divides the 

gap space within a PU into two regimes, the previous PU contact regime (Regime 1) and the current PU contact 

regime (Regime 2), as depicted in Fig. 7.7a. According to this method, Regime 1 is used when the droplet is 

not considered to be in contact with the pillar within its own PU; in this method, the distances are calculated 

between the selected droplet site and the pillars in each adjacent PU, and the shortest distance is selected to be 

𝑑𝑉𝐿𝑉,𝑖. On the other hand, Regime 2 is used when the droplet contacts its own PU’s pillar using the uniform 

radius assumption; under this assumption, the closest pillar to the selected droplet site is the pillar within its 

 

Figure 7.5: Mechanisms of C2W transitions via: a) Sag impalement; b) Sidewall depinning 
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own PU and therefore this distance is used to calculate 𝑑𝑉𝐿𝑉,𝑖. The method implemented in this work further 

sub-divided each of these regimes into two different sub-regimes that describe whether 𝑑𝑉𝐿𝑉,𝑖 for a given site 

𝑖 should be calculated based on how the minimum distance to the closest pillar should be calculated. The sag 

of a droplet at an interface site 𝑖 depends on the distance 𝑑𝑉𝐿𝑉,𝑖 between the site and the nearest point on the 

pillar edge that is also in contact with the droplet, i.e., the nearest point on the pillar edge that is wetted by the 

droplet. When the droplet first advances into a new PU (Regime 1) or first contacts a new pillar within its own 

PU  (Regime 2), the minimum closest point of contact on the nearest pillar will not be wetted by the droplet 

(according to the circular droplet approximation), and consequently 𝑑𝑉𝐿𝑉,𝑖  will need to be calculated by 

following the outer circumference of the droplet interface until it contacts the nearest pillar, as illustrated by 

Regimes 1a and 2a in Fig. 7.7b. However, as the droplet advances, the closest pillar edge site to the 𝑖th interface 

site will eventually wet (i.e., it will eventually be in contact with the droplet). Once this occurs, the minimum 

distance 𝑑𝑉𝐿𝑉,𝑖 will be equal to the minimum distance between the 𝑖th site and the closest pillar edge site, as 

illustrated by Regimes 1b and 2b in Fig. 7.7b. Each sub-regime determines the closest wetted point along the 

edge of the nearest droplet-contacted pillar to the chosen site 𝑖, and then calculates the difference between the 

two points (i.e., the distance 𝑑𝑉𝐿𝑉,𝑖). The SHS-MFkMC algorithm then calculates the sag height and compares 

it to the surface pillar height to determine whether or not the droplet will undergo C2W via droplet sag, as 

highlighted within the SHS-MFkMC algorithm in Section 7.1.4.  

 

Figure 7.6: Calculation of droplet sag height based on its distance from the nearest pillar 
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Figure 7.7: Calculation of the distance from the interface to the nearest pillar: a) The method in which 

𝑑𝑣𝑙𝑣,𝑖 is calculated depends on whether the droplet (via the circular droplet approximation) is not in 

contact with the pillar within its own PU (Regime 1) or whether it does contact the pillar within its own 

PU (Regime 2); b) Each regime can be further sub-divided into two sub-regimes depending on whether 

the closest point of contact on the nearest pillar should be determined by following the circumference of 

the assumed perfect circle from the 𝑖th droplet site to the nearest pillar (Regimes 1a, 2a) or whether the 

distance can be calculated directly between the 𝑖th site and the point on the pillar (Regimes 1b, 2b) 
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When a Cassie regime sessile droplet begins to spread across an inter-pillar gap on an SHS, the droplet sag will 

form a triple contact interface with the vertical pillar walls at the pillar edge, which can be categorized by the 

contact angle 휃𝑤𝑎𝑙𝑙, as illustrated in Fig. 7.5b. This triple contact interface will typically remain pinned along 

the pillar edge for SHSs not prone to spontaneous C2W. However, this interface can also depin and advance or 

recede vertically along the pillar wall if the vertical forces acting upon the interface (e.g., the gravity force, 

vertical inertia, etc.) are sufficiently large enough to overcome the capillary-driven pinning. This behaviour can 

furthermore result in spontaneous C2W if the interface advances far enough along the pillar walls that it 

contacts the bottom solid surface, as shown in Fig. 7.5b. When the droplet’s vertical triple interface is moving, 

it will advance or recede along the pillar wall according to vertical advancing and receding rates 𝑊𝑎𝑑𝑣,𝑣𝑑 and 

𝑊𝑟𝑒𝑐,𝑣𝑑, which are captured according to the moving interface rates presented in Eqs. (5.4)-(5.5). These rates 

are influenced by the vertical balance of capillary, inertial, viscous damping, and gravity forces acting on the 

interface, and can be described using the following force balance: 

𝜌ℎ𝑣𝑑,𝑖
𝑑𝑣𝑣𝑑,𝑖

𝑑𝑡
+ 𝜌𝑣𝑣𝑑,𝑖

2 =
3𝜇ℎ𝑣𝑑,𝑖𝑣𝑣𝑑,𝑖

𝑑𝑉𝐿𝑉,𝑖
2 + 𝜌𝑔ℎ𝑣𝑑,𝑖 −

𝛾𝑙𝑣

𝑑𝑉𝐿𝑉,𝑖
𝑐𝑜𝑠 휃𝑤𝑎𝑙𝑙,𝑖         (7.9) 

where ℎ𝑣𝑑,𝑖 denotes the distance the 𝑖th droplet sag site has travelled vertically along the pillar wall; 𝑣𝑣𝑑,𝑖 

denotes the vertical velocity of the droplet sag; and 휃𝑤𝑎𝑙𝑙,𝑖 denotes the contact angle between the droplet sag 

and the pillar wall at a TCL site 𝑖. Note that when the droplet has finished advancing over the gap between two 

pillars, 𝑑𝑉𝐿𝑉,𝑖 can be replaced by half of the interpillar gap distance at the top of the pillar 
𝑏𝑝,𝑡

2
. Furthermore 

note that Eq. (7.9) is the same equation as the force balance for capillary action between two parallel plates. In 

order to accommodate for spontaneous C2W via depinning, the SHS-MFkMC algorithm was modified to 

incorporate the advancing and receding movement of the vertical droplet sag TCL. This vertical droplet 

movement was integrated by re-arranging Eq. (7.9) with respect to the velocity, as follows: 

𝑣𝑣𝑑,𝑖 =
ℎ𝑣𝑑,𝑖

2𝛿𝑡
−

3𝜇ℎ𝑣𝑑,𝑖

2𝜌𝑑𝑉𝐿𝑉,𝑖
2 − √(−

ℎ𝑣𝑑,𝑖

2𝛿𝑡
+

3𝜇ℎ𝑣𝑑,𝑖

2𝜌𝑑𝑉𝐿𝑉,𝑖
2 )

2

− 2
𝜌ℎ𝑣𝑑,𝑖𝑣𝑣𝑑,𝑝𝑟𝑒𝑣,𝑖

𝛿𝑡
− 2𝜌𝑔ℎ𝑣𝑑,𝑖 + 2

𝛾𝐿𝑣

𝑑𝑉𝐿𝑉,𝑖
𝑐𝑜𝑠 휃𝑤𝑎𝑙𝑙,𝑖 (7.10) 

Subsequently, this equation is substituted into Eqs. (5.4)-(5.5) to derive the rate equations for vertical 

droplet movement 𝑊𝑎𝑑𝑣,𝑣𝑑,𝑖 and 𝑊𝑟𝑒𝑐,𝑣𝑑,𝑖 in the same manner discussed in Chapters 5 and 6. The vertical rates 

of movement were incorporated into the pool of possible events within the SHS-MFkMC model such that they 

would be randomly selected to occur. If the droplet interface began to advance, the algorithm would keep track 

of its position and would double check to see if the sag height would come in contact with the bottom solid 

surface. If this contact were to occur, then the droplet would be considered to have transitioned into the Wenzel 

state. Note that in order to reduce the overall computational cost and memory requirements, it was assumed 

that once the droplet VLV had completely advanced over the gap between two pillars, the vertical TCL would 
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not experience any significant depinning or movement if it had not already done so, as the VLV distance 𝑑𝑉𝐿𝑉,𝑖 

and therefore the sag contact angle 휃𝑤𝑎𝑙𝑙,𝑖 would remain constant. As a result, this model only considered the 

droplet sag TCLs adjacent to gaps along the edge of the droplet or those that were still experiencing movement 

so that all TCLs towards the center of the droplet bottom could be disregarded. 

7.1.4  SHS-MFkMC Algorithm for Sessile Droplet Spread on an SHS 

Cassie wetting sessile droplet spreading on an SHS is an intricate and complicated process that features 

significantly altered physics compared to droplet spreading on a smooth surface. Consequently, in order to 

capture this behaviour using SHS-MFkMC, the FB-MFkMC algorithm has been substantially modified in order 

to accommodate for the new physics and additional challenges highlighted in Sections 7.1.1-7.1.3. 

Accordingly, the complete SHS-MFkMC algorithm to capture sessile droplet spread on an SHS is illustrated 

in Fig. 7.8 and can be described as follows: 

1. Initialize the SHS using the PU method according to the PUinit sub-algorithm shown in Table 7.1 

2. Set the initial time to 𝑡 = 0s 

3. Initialize the system to depict the droplet on the surface 

3.1. Initialize the MFkMC lattice to depict when the droplet contacts the surface by marking the droplet 

and atmosphere interface sites according to Fig. 7.9 

3.2. Calculate the initial properties of each interface site 𝑖 using the SiteInit sub-algorithm presented in 

Table 7.2. 

3.3. Set 𝑣𝑑𝑟𝑜𝑝,𝑖 = 𝑣𝑑𝑟𝑜𝑝,0 for each interface site 𝑖  

4. Determine the time 𝑡 + 𝛿𝑡 when the droplet interface will move according to Eq. (3.11)  

5. Update the time-dependent event rates  

5.1. Update 𝑣𝑑𝑟𝑜𝑝,𝑖 according to Eqs. (7.5)-(7.7) and (7.10) 

5.2. Update 𝑊𝑡𝑜𝑡,𝑛𝑐 and calculate 𝑊𝑎𝑑𝑣,𝑖 and 𝑊𝑟𝑒𝑐,𝑖 according to Eqs. (6.1)-(6.3) and (5.4)-(5.5)  

6. Apply MC sampling to select a random interface event at a site 𝑖 according to Eq. (3.12) 

6.1. If the selected event is a vertical droplet spreading event:  

6.1.1. Execute the event at site 𝑖 according to the VertEvent sub-algorithm in Table 7.4 

6.1.2. If site 𝑖  is now a droplet site and ℎ𝑣𝑑,𝑖 ≥ 𝐻𝑝 , then the droplet has undergone C2W via 

spontaneous depinning 

6.2. If the selected event is a horizontal droplet spreading event: 

6.2.1. Execute the event at site 𝑖 according to the HorizEvent sub-algorithm in Table 7.5 

6.2.2. If site 𝑖 is now a droplet site and 𝒽𝑠𝑎𝑔,𝑖 ≥ 𝐻𝑝, the droplet has undergone C2W via droplet sag 

7. Repeat Steps 4-6 until either the droplet has undergone C2W or the final time 𝑡 = 𝑡𝑓 has been reached 
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Figure 7.8: Flowchart of the SHS-MFkMC algorithm 
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The above algorithm highlights how the PU method, vertical droplet movement along the pillar walls, C2W 

detection, and pillar edge detection are accommodated into the FB-MFkMC algorithm to built the SHS-

MFkMC process. Through the inclusion of these processes, the algorithm is able to accommodate the specific 

features associated with sessile droplet spread on an SHS. However, the SHS-MFkMC algorithm is based on 

the MFkMC algorithm outlined in Section 3.2, and therefore it is subject to the same MFkMC challenges and 

limitations outlined in Chapter 3. Furthermore, the additional physics and features incorporated into the SHS-

MFkMC model impacts the computational efficiency of the model and consequently, the model is 

computationally slow compared to the FB-MFkMC model used to capture sessile droplet spread on a smooth 

surface. In particular, the formation of vertical triple contact interface sites along the edges of each pillar 

significantly increases the total number of interface sites considered within the model, thus increasing its overall 

Table 7.1: The PUinit sub-algorithm 

1. Initialize a 𝑙𝑃𝑈,𝑥 × 𝑙𝑃𝑈,𝑦 rectangular space to represent a single PU 

2. Discretize the PU interior space according to 휆 

3. Determine and store the surface height 𝐻𝑖 at each discretized point based on the pillar physical 

structure (i.e. 𝑎𝑝,𝑡, 𝑎𝑝,𝑏, 𝑏𝑝,𝑡, and 𝑏𝑝,𝑏), as illustrated in Fig. 7.10 

 

 

 

Figure 7.9: a) Initial configuration on the MFkMC lattice for the moment when the droplet first impacts 

the solid surface; b) Side view of the droplet when it first impacts the solid surface of an SHS 
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Figure 7.10: Determining the height 𝐻𝑖 of the SHS relative to the pillar top while initializing the PU 

method for a sample pillar geometry: a) top view; b) Side view 
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computational cost. However, this challenge can be overcome by excluding the vertical TCL sites around a 

pillar once the droplet had completely crossed the gap to the adjacent pillars in order to minimize the considered 

number of interface sites, as highlighted at the end of Section 7.1.3.  

7.2  Model Validation and Analysis 

The objective of this section is to validate the proposed SHS SHS-MFkMC algorithm against data 

available from the literature. These studies validate the model’s ability to both capture sessile droplet spreading 

on an SHS, and its ability to predict C2W transitions. This section additionally investigates the model 

predictions and highlights its general ability to capture sessile droplet spread on an SHS. These results are 

furthermore used to analyze the behaviour of sessile droplet spreading on SHSs, and to determine the surface 

structure criteria necessary to prevent spontaneous C2W. 

Table 7.2: The SiteInit sub-algorithm 

1. Set 𝑅𝑑𝑟𝑜𝑝,𝑖 = ℛ𝑖 based on the polar coordinates (ℛ𝑖, 𝜙𝑖) for site 𝑖 

2. Determine the surface height 𝐻𝑖 below site 𝑖 

2.1. Determine 𝑥𝑃𝑈𝑖𝑛𝑡,𝑖 and 𝑦𝑃𝑈𝑖𝑛𝑡,𝑖 according to (𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) using Eqs. (7.1)-(7.2) 

2.2. Determine and output 𝐻𝑖 at the point (𝑥𝑃𝑈𝑖𝑛𝑡,𝑖, 𝑦𝑃𝑈𝑖𝑛𝑡,𝑖) within the PU 

2.3. If 𝐻𝑖 = 0, (i.e., on top of the pillar), mark site 𝑖 as a TCL site 

2.4. If 𝐻𝑖 < 0, calculate 𝑑𝑉𝐿𝑉,𝑖 using Regime 2b and calculate 𝒽𝑠𝑎𝑔,𝑖 according to Eq. (7.8) 

2.4.1. If  𝒽𝑠𝑎𝑔,𝑖 > 𝐻𝑖, mark site 𝑖 as a TCL site 

2.4.2. If 𝒽𝑠𝑎𝑔,𝑖 < 𝐻𝑖, mark the site as a VLV site 

3. Record how many nearest neighbour sites at ⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋  and ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉ are 

droplet sites 

4. Record how many nearest neighbour sites at ⌊(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌋  and ⌈(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌉ are 

droplet sites 

5. Determine if site 𝑖 or one of its nearest neighbour sites 𝑗𝑖 border a pillar edge according to the 

EdgePillar sub-algorithm in Table 7.3. 

6. Calculate 휃𝑖 using Eq. (2.11) 

7. Update �̅�𝑑𝑟𝑜𝑝, 𝑊𝑡𝑜𝑡,𝑛𝑐, 𝐴𝑠𝑑𝑏𝑖 and 𝐴𝑑𝑏 

8. Calculate 𝑤𝑆𝐻𝑆, 𝑊𝑎𝑑𝑣,𝑖 and 𝑊𝑟𝑒𝑐,𝑖 according to Eq. (7.4) and Eqs. (6.1)-(6.3) 
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The SHS SHS-MFkMC algorithm implemented within this work was validated using experimental data 

obtained from the literature in order to assess its capabilities of capturing both Cassie-state sessile droplet 

spreading and spontaneous C2W transitions. In order to conduct these validation studies, the SHS-MFkMC 

model was used to capture the spreading behaviour of droplets of water dropped onto various SHSs consisting 

Table 7.3: The EdgePillar sub-algorithm 

1. Analyze the state of site 𝑖 and each its nearest neighbours 𝑗𝑖 

1.1. If site 𝑖 is both a droplet interface site and a TCL site: 

1.1.1. If any nearest neighbour 𝑗𝑖 is both an atmosphere interface site and a VLV site: 

1.1.1.1. Mark site 𝑖 as a pillar edge droplet site  

1.1.1.2. Calculate 𝛽𝑠,𝑖 according to Eq. (2.7) 

1.1.1.3. Initialize 𝑣𝑣𝑑,𝑖 = 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and set ℎ𝑣𝑑,𝑖 = 0 

1.1.1.4. Calculate 𝑊𝑎𝑑𝑣,𝑣𝑑,𝑖 and 𝑊𝑟𝑒𝑐,𝑣𝑑,𝑖 by coupling 𝑣𝑣𝑑,𝑖 with Eqs. (5.4)-(5.5) 

1.1.2. Else: 

1.1.2.1. Mark site 𝑖 as not a pillar edge droplet site 

1.1.2.2. Set 𝛽𝑠,𝑖 =
𝜋

2
 radians 

1.2. If site 𝑖 is both an atmosphere interface site and a VLV site: 

1.2.1. Mark site 𝑖 as not a pillar edge droplet site 

1.2.2. Set 𝛽𝑠,𝑖 =
𝜋

2
 radians 

1.2.3. If any nearest neighbour site 𝑗𝑖 is both a droplet interface site, a TCL site, and is not 

currently a pillar edge site: 

1.2.3.1. Mark site 𝑗𝑖 as a pillar edge droplet site 

1.2.3.2. Calculate 𝛽𝑠,𝑗𝑖
 according to Eq. (2.7) 

1.2.3.3. Initialize 𝑣𝑣𝑑,𝑗𝑖
= 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and set ℎ𝑣𝑑,𝑗𝑖

= 0 

1.2.3.4. Calculate 𝑊𝑎𝑑𝑣,𝑣𝑑,𝑗𝑖
 and 𝑊𝑟𝑒𝑐,𝑣𝑑,𝑗𝑖

 by coupling 𝑣𝑣𝑑,𝑗𝑖
 with Eqs. (5.4)-(5.5) 

1.3. Else: 

1.3.1. Mark site 𝑖 as not a pillar edge droplet site 

1.3.2. Set 𝛽𝑠,𝑖 =
𝜋

2
 radians 
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of rectangular pillars manufactured with different dimensions as outlined in Table 7.6. This table also shows 

the values of 휆  used to perform the SHS-MFkMC simulations. Furthermore, each of the SHS-MFkMC 

simulations were performed according to the algorithm outlined in Section 7.1.4. Subsequently, the average 

droplet radius for each study was calculated and compared to the average droplet radii reported within the 

literature.33,167 Note that the SHS case studies considered in this study were selected to highlight different 

expected droplet spreading phenomena. In particular, the droplets in studies 1a and 1c were experimentally 

observed to bounce on the SHSs due to the high impact velocities 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and the large inter-pillar gaps 𝑏𝑝,𝑡. 

In general, SHSs with large gap-to-pillar top surface area ratios tend to have lower wetting and therefore are 

more prone to promote droplet bouncing. Additionally, study 1d showcases the behaviour of the droplet in 

study 1c once it re-impacts on the same SHS after bouncing. In the 1d case study, the droplet has a much smaller 

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and therefore undergoes very little oscillation before reaching steady state. Finally, the SHS in study 

1b was selected due to its smaller gap-to-pillar top surface area ratio, where the impacting droplet was 

experimentally observed to oscillate on the surface before reaching steady state. Note that each of these 

validation studies were only conducted using droplets of water, and that no other droplet fluid was used to test 

Table 7.4: The VertEvent sub-algorithm 

1. If site 𝑖 is an atmosphere site: 

1.1. Change site 𝑖 into a droplet interface site 

1.2. Remove the droplet interface site above site 𝑖 

1.3. Create a new atmosphere interface site 𝑗𝑖 below site 𝑖 

1.3.1. Initialize 𝑣𝑣𝑑,𝑗𝑖
= 𝑣𝑣𝑑,𝑖  

1.3.2. Calculate ℎ𝑣𝑑,𝑗𝑖
= ℎ𝑣𝑑,𝑖 − 휆 

1.3.3. Calculate 𝑊𝑎𝑑𝑣,𝑣𝑑,𝑗𝑖
 by coupling 𝑣𝑣𝑑,𝑗𝑖

 with Eq. (5.4) 

2. If site 𝑖 is a droplet site: 

2.1. Change site 𝑖 into an atmosphere interface site 

2.2. Remove the atmosphere interface site below site 𝑖  

2.3. Create a new droplet interface site 𝑗𝑖 above site 𝑖 

2.3.1. Initialize 𝑣𝑣𝑑,𝑗𝑖
= 𝑣𝑣𝑑,𝑖  

2.3.2. Calculate ℎ𝑣𝑑,𝑗𝑖
= ℎ𝑣𝑑,𝑖 + 휆 

2.3.3. Calculate 𝑊𝑟𝑒𝑐,𝑣𝑑,𝑗𝑖
 by coupling 𝑣𝑣𝑑,𝑗𝑖

 with Eq. (5.5) 
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the SHS model. This was due to the availability of sessile droplet spreading data on SHSs within the literature 

that could be used to validate the model, as the majority of the data available was conducted for water droplets. 

Furthermore, the modifications required to accommodate for SHSs within the SHS-MFkMC algorithm do not 

rely on the droplet fluid physical parameters as highlighted in Eqs. (7.4)-(7.7) and therefore it can be assumed 

that these parameters only affect droplet spreading on an SHS in the same manner that they affect spreading on 

a smooth surface. The results of this study are depicted in Fig. 7.11, where the solid green lines denote the 

average contact radius of the droplets as predicted by the SHS-MFkMC simulations and the dashed red lines 

depict the droplet data from the literature. Note that the SHS-MFkMC simulations were repeated three times 

for each case study in order to accommodate for the inherent stochasticity of the SHS-MFkMC algorithm. 

However, there were no notable deviations between the individual SHS-MFkMC simulations since the 3D 

SHS-MFkMC model innately accommodates for the average system behaviour by reporting the average droplet 

contact radius, as discussed previously in Section 6.3.2. The SHS-MFkMC results showcased in Fig. 7.11 were 

Table 7.5: The HorizEvent sub-algorithm 

1. Update 𝐴𝑠𝑑𝑏𝑖 and 𝐴𝑑𝑏 and calculate 𝑤𝑆𝐻𝑆 according to Eq. (7.4) 

2. If site 𝑖 is an atmosphere site: 

2.1. Change site 𝑖 into a droplet interface site 

2.2. Calculate 𝑊𝑟𝑒𝑐,𝑖 according to Eqs. (6.1)-(6.3) 

2.3. If 𝒽𝑠𝑎𝑔,𝑖 ≥ 𝐻𝑝, the droplet has undergone C2W via droplet sag 

3. If site 𝑖 is a droplet site: 

3.1. Change site 𝑖 into an atmosphere interface site 

3.2. Calculate 𝑊𝑎𝑑𝑣,𝑖 according to Eqs. (6.1)-(6.3) 

4. Check to see if any interface sites have become bulk sites due to the executed event; remove any 

newly formed bulk sites. 

5. Check to see if any new interface sites 𝑗𝑖 are created from former bulk phase sites due to the 

executed event 

5.1. Initialize the new interface sites according to the SiteInit sub-algorithm in Table 7.2 

5.2. Initialize 𝑣𝑑𝑟𝑜𝑝,𝑗𝑖
= 𝑣𝑑𝑟𝑜𝑝,𝑖 

6. Determine if site 𝑖 borders a pillar edge according to the EdgePillar sub-algorithm in Table 7.3 

7. Update �̅�𝑑𝑟𝑜𝑝 and 𝑊𝑡𝑜𝑡,𝑛𝑐 
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Table 7.6: Properties and parameters for the SHS sessile droplet spreading data considered to validate the 

radial spreading predictions of the SHS-MFkMC model 

Study Name Study 1a (33) Study 1b (167) Study 1c (167) Study 1d (167) 

Liquid Water Water Water Water 

Solid Surface FDTS Platinum Platinum Platinum 

휃𝑒 104 95 95 95 

𝑉 (uL) 3.59 2.57 2.57 2.57 

𝑣𝑑𝑟𝑜𝑝,0 (m/s) 0.27 0.28 0.28 0.08 

𝐻𝑝 (μm) 100 27 27 27 

𝑎𝑝,𝑡, 𝑎𝑝,𝑏  (μm) 25 20 20 20 

𝑏𝑝,𝑡, 𝑏𝑝,𝑏 (μm) 75 10 20 20 

휆 (μm) 25 10 10 10 

𝜌 (kg/m3) 997 997 997 997 

휇 (Pa·s) 8.90×10-4 8.90×10-4 8.90×10-4 8.90×10-4 

𝛾𝑙𝑣 (N/m) 7.28×10-2 7.28×10-2 7.28×10-2 7.28×10-2 

Computational Time 

(min) 
33.7 333.4 45.9 143.1 

 

 

Figure 7.11: Comparison between the experimental/literature data (red --) and the averaged SHS-

MFkMC-predicted results (green x) for sessile droplet spread on SHSs: a) Study 1a, droplet spread on an 

SHS with 𝐻𝑝 = 100 μm, 𝑎𝑝,𝑡 = 25 μm, 𝑏𝑝,𝑡 = 75 μm, 𝑣𝑑𝑟𝑜𝑝,0 = 0.27 m/s; b) Study 1b, droplet spread 

on an SHS with 𝐻𝑝 = 27 μm, 𝑎𝑝,𝑡 = 20 μm, 𝑏𝑝,𝑡 = 10 μm, 𝑣𝑑𝑟𝑜𝑝,0 = 0.28 m/s; c) Study 1c, droplet 

spread on an SHS with 𝐻𝑝 = 27 μm, 𝑎𝑝,𝑡 = 20 μm, 𝑏𝑝,𝑡 = 20 μm, 𝑣𝑑𝑟𝑜𝑝,0 = 0.28 m/s; d) Study 1d, 

droplet spread on an SHS with 𝐻𝑝 = 27 μm, 𝑎𝑝,𝑡 = 20 μm, 𝑏𝑝,𝑡 = 20 μm, 𝑣𝑑𝑟𝑜𝑝,0 = 0.08 m/s 
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accordingly determined by averaging the results from the three independent SHS-MFkMC runs. The results in 

this figure highlight that the SHS SHS-MFkMC algorithm is capable of qualitatively capturing the overall radial 

spread of sessile droplets on an SHS. For studies 1a and 1c, the SHS-MFkMC model was able to capture the 

droplet bouncing behaviour predicted from the experimental results. In both case studies, the droplet achieved 

a maximum spreading similar to the experimental data. Specifically, the maximum droplet radius in study 1a 

was observed to be 0.788 μm and 0.803 μm for the experimental and SHS-MFkMC models respectively, 

whereas in study 1c it was observed to be 0.823 μm and 0.860 μm for the experimental and SHS-MFkMC 

models, respectively. However, the SHS-MFkMC-predicted droplet receding behaviour in both studies differed 

from that of the experimental data and tended to predict that the droplet would bounce sooner than was observed 

experimentally. These notable deviations can be attributed to the effects of molecular-level surface 

irregularities on the sessile droplet spread. The surfaces of textured SHSs are known to experience significant 

nanoscale roughness and deviations from the expected pillar shapes due to the etching process used to 

manufacture the SHS.223 These surface irregularities play a significant role in the sessile droplet spread and 

therefore such deviations between the model results and experiments is to be expected. The manufacturing of 

an SHS is most notably expected to affect the sharpness of the pillar edges, and produce pillars with a more 

rounded edge.223 These rounded pillar edges are not expected to experience as sharp of pinning along the pillar 

edges compared to a perfect rectangular pillar structure. Since pinning is only expected to significantly affect 

the receding droplet behaviour, these manufacturing errors can explain the notably larger deviations in the 

droplet receding behaviour compared to its advancing behaviour. Similarly, large deviations can be observed 

in the droplet receding behaviour of study 1b. In this study, the SHS-MFkMC results are able to predict the 

amount of oscillations that the droplet will undergo before reaching steady state. In addition, the model predicts 

the final equilibrium contact radius of the droplet on the SHS. However, there are still significant deviations in 

both advancing and receding behaviour between the modelling and experimental results. These deviations are 

similar in behaviour to those observed in the ideally flat surface sessile droplet studies conducted in Chapter 6, 

although they are overall larger for the SHS surfaces. In particular, the SHS-MFkMC models for both SHSs 

and smooth surfaces tended to predict that the droplet would attain larger spreading radii when advancing and 

would similarly stop receding at larger contact radii before attaining steady state. This behaviour in both cases 

can be attributed due to surface roughness. In addition to the effects on the receding behaviour mentioned 

above, roughness is additionally expected to affect the predicted advancing behaviour, as discussed in Chapter 

6. In particular, molecular-level surface irregularities are expected to inhibit droplet advancing and stop the 

droplet movement before it is able to attain its maximum spreading radius. This behaviour is the basis of 

Wenzel-based wetting on a roughened surface, where the increase in surface area due to the roughness is 

predicted to cause the hydrophobic surface to appear more hydrophobic and therefore cause a droplet to 

undergo a smaller maximum spreading radius than it would on an ideally smooth surface.153 In comparison to 

studies 1a-1c, the SHS-MFkMC model results accurately predicted the sessile droplet spreading behaviour on 
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an SHS in study 1d. This is because the droplet in this study was expected to be overdamped and not experience 

any significant oscillations. As a result, it was not predicted to experience as significant effects due to surface 

roughness compared to the other studies. Most notably, the model was able to predict the final droplet spreading 

radius under Cassie wetting conditions on an SHS for both studies 1b and 1d, despite the changes in the surface 

geometry due to the pillars. This showcases that the SHS-MFkMC model can predict the superhydrophobicity 

of a given surface design, since the droplet spreading radius is directly correlated to the droplet contact angle 

as shown in Eq. (2.11). Overall, the model reasonably predicts the sessile droplet spreading behaviour on an 

SHS behaviour. There are still visible deviations between the SHS-MFkMC-predicted results and those 

observed from experiments, and these deviations are more notable than those observed on the ideally smooth 

surfaces studied in Chapter 6. However, as described above, these large deviations can be attributed to the 

effects of molecular-level surface irregularities on the sessile droplet spread. Although surface roughness is 

neglected in the present model, the model can be readily modified to accommodate for unique surface 

roughness profiles for each individual pillar as mentioned in Section 7.1.1. The integration of these methods 

into the SHS SHS-MFkMC algorithm will be the focus of future work. In addition to the above results, Table 

7.6 listed the computational cost for each study. Note that the computational costs for the SHS-MFkMC model 

are significantly larger (i.e., one to two orders of magnitude larger) than those for the FB-MFkMC model 

discussed in Chapter 6. This is due to the increased number of processes accommodated by the SHS-MFkMC 

algorithm in order to capture droplet spreading on an SHS, as discussed in Section 7.1.4. Additionally, the 

studies in Table 7.6 required significantly smaller 휆 values to simulate in order to accurately capture the SHS 

geometry, resulting in increased computational costs. These changes were most significant for Study 1c. This 

study required a significantly larger number of MFkMC events to capture its underdamped behaviour compared 

to the other studies, and the majority of these events were executed when the model was storing a large number 

of interface sites, resulting in significantly increased computational costs. 

Studies 1a-1d showcased above in Fig. 7.11 illustrated the radial Cassie wetting spread of a sessile 

droplet on an SHS where the droplet was not subjected to spontaneous C2W transitions. However, the SHS-

MFkMC model is also capable of capturing the C2W transition regime as discussed in Section 7.1.3. In order 

to illustrate and validate this behaviour, the MFkMC-based model was used to simulate the spreading behaviour 

of droplets on different rectangular pillar-based SHS designs as listed in Table 7.7, where half the surface 

designs have been experimentally demonstrated to undergo spontaneous C2W. Note that the likelihood of the 

droplet undergoing spontaneous C2W transitions is highest during the initial stages of the droplet radial (Cassie 

regime) spreading, when the droplet is in contact with the fewest number of pillars.224 Therefore, in order to 

reduce the computational cost, the SHS-MFkMC simulations of the SHSs were performed until the droplet 

either experienced a C2W transition or the droplet fully contacted the top surface of each of the pillars adjacent 

to the pillar that the droplet first contacted. Table 7.7 displays whether or not the SHS-MFkMC models 
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underwent spontaneous C2W for each considered surface design. Table 7.7 furthermore lists the expected 

maximum sag height for each study as well as whether the surfaces were observed to undergo spontaneous 

C2W through experiments conducted in the literature.33,167,225 Note that the maximum sag height between each 

of the pillars was measured along the gap between two diagonal pillars,226 as illustrated in Fig. 7.6. In addition, 

Fig. 7.12 showcases the vertical droplet movement profiles for each of the studies as predicted using the SHS-

MFkMC models. Note that all of the aforementioned surfaces experienced C2W transitions via depinning. This 

is because the maximum droplet sag height is typically small compared to the pillar heights fabricated 

experimentally. Consequently, to the author’s knowledge, none of the experimental SHSs described within the 

literature reported spontaneous C2W via droplet sag. However, the SHS-MFkMC model will still analyze 

whether a droplet will undergo C2W via droplet sag through the sag height equation reported in Eq. (7.8), 

which has already been validated within the literature.226,227 Furthermore note that all of the experimental results 

observed within the literature did not report the transient droplet behaviour as it advanced along the vertical 

pillar walls. These studies instead only reported whether the droplets underwent spontaneous C2W transitions, 

as reported in Table 7.7. As a result, Fig. 7.12 only illustrates the vertical droplet spreading behaviour predicted 

by the SHS-MFkMC simulations. The results from this figure demonstrate that the SHS-MFkMC model can 

predict whether or not an SHS will undergo spontaneous C2W transitions. Furthermore, the results in Fig. 7.12 

demonstrate that once the droplet depins vertically from the pillar tops, it rapidly accelerates down the pillar 

sidewalls until it contacts the base and undergoes C2W. Fig. 7.12a furthermore showcases that in the face of 

Table 7.7: Properties and parameters for the SHS sessile droplet spreading data considered to validate 

C2W transition predictions of the SHS-MFkMC model 

Study Name Study 2a (167) Study 2b (167) Study 2c (225) Study 2d (33) 

Liquid Water Water Water/Glycerol Water 

Solid Surface Platinum Platinum PDMS FDTS 

휃𝑒 95 95 71 104 

𝑉 (uL) 2.57 2.57 4 3.59 

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 (m/s) 0.36 0.28 0 1.02 

𝐻𝑝 (μm) 27 27 45 100 

𝑎𝑝,𝑡, 𝑎𝑝,𝑏 (μm) 20 20 30 25 

𝑏𝑝,𝑡, 𝑏𝑝,𝑏 (μm) 20 56 30 75 

C2W Observed 

Experimentally? No Yes Yes No 

C2W Predicted by 

SHS-MFkMC? No Yes Yes No 
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sufficient impact velocity, the droplet can depin from the pillar edges and momentarily advance down along  

the pillar walls. This behaviour is due to the vertical inertia force as depicted in Eq. (7.9). As a result, the 

observed movement along the pillar wall is temporary and the droplet sag readily retreats back to the pillar 

edge once the droplet has sufficiently decelerated due to the capillary and viscous damping forces. However, 

note that inertia can still induce a C2W transition on the SHS if the impact velocity is sufficiently large such 

that the droplet sag contacts the bottom surface of the SHS before the inertial force is overcome. This behaviour 

is expected and will be further explored later in this section. 

To further validate C2W transitions using the SHS-MFkMC model, the model was used to replicate data 

derived from the literature to predict what intrinsic contact angles would cause an SHS to have an unstable 

Cassie regime, i.e., for what contact angles would a given SHS spontaneously undergo C2W.224 This data from 

the literature was obtained for water droplets placed on a variety of different trapezoidal pillar structures where 

the width of the top of the pillar was modified while the pillar base dimensions remained constant, according 

to the parameters listed in Table 7.8. These different pillar shapes were categorized based on the solid fraction 

at the tops of the pillars according to the following dimensionless parameter:  

𝒻𝑆𝐻𝑆 =
𝑎𝑝,𝑡

𝑎𝑝,𝑏+𝑏𝑝,𝑏
          (7.11) 

 

Figure 7.12: Droplet triple contact line vertical position along the pillar walls as a function of time for 

four different SHSs: a) Study 2a, 𝐻𝑝 = 27 μm, 𝑎𝑝,𝑡 = 20 μm, 𝑏𝑝,𝑡 = 20 μm; b) Study 2b, 𝐻𝑝 = 27 μm, 

𝑎𝑝,𝑡 = 20 μm, 𝑏𝑝,𝑡 = 56 μm; c) Study 2c, 𝐻𝑝 = 45 μm, 𝑎𝑝,𝑡 = 30 μm, 𝑏𝑝,𝑡 = 30 μm; d) Study 2d, 𝐻𝑝 =

100 μm, 𝑎𝑝,𝑡 = 25 μm, 𝑏𝑝,𝑡 = 75 μm. These studies illustrate whether a sessile droplet will undergo 

spontaneous C2W transitions on the superhydrophobic surface 
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This study was conducted by using the SHS-MFkMC model to capture whether or not a droplet of water 

on a given surface would transition to the Wenzel state for 49 different intrinsic contact angles between 70° ≤

휃𝑒 ≤ 130° for each of 25 different pillar surface structures categorized by 0 휇𝑚 ≤ 𝑎𝑝,𝑡 ≤ 20 휇𝑚 such that 0 ≤

𝒻𝑆𝐻𝑆 ≤ 0.5. Note that the range of 휃𝑒 was chosen such that it captures the boundary between the metastable 

and unstable Cassie regimes for each surface pillar design. For each of these simulations, the SHS structure 

was initialized using the PU method according to the parameters listed in Table 7.8, as discussed in Section 

7.1.4. Subsequently, SHS-MFkMC was used to evolve the surface behaviour over five independent simulations, 

and the vertical droplet spreading behaviour was recorded for each simulation. The results from these 

simulations where used to compute the average transition tendencies, i.e., whether or not the model predicted 

a C2W transition on average for each value of 𝜑𝑝 and 휃𝑒. The results of this comparison are illustrated in Fig. 

7.13, where the black line denote the transition region between surfaces that will undergo spontaneous C2W 

(in cyan) and those where the Cassie regime is stable (in dark blue). This figure illustrates that the SHS-MFkMC 

accurately predicts whether an SHS design will undergo spontaneous C2W, as it is able to accurately replicate 

the unstable Cassie regime boundary from the literature. Furthermore, the results from each of the 

aforementioned studies within this chapter highlight the strengths of the SHS-MFkMC algorithm compared to 

the other modelling methods commonly used to capture SHS behaviour. In particular, they highlight how the 

model can both depict the small-scale fluctuations in the interface and accommodate for microscale surface 

structures while still capturing the general macroscopic droplet spreading behaviour. Furthermore, they 

Table 7.8: Properties and parameters for the SHS sessile droplet spreading data considered to validate 

C2W transition predictions of the SHS-MFkMC model for SHSs of varying 𝒻𝑆𝐻𝑆 and 휃𝑒 

Property Value 

Liquid Water 

휃𝑒 80-110° 

𝑉 2.57 uL 

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 0 m/s 

𝐻𝑝 50 μm 

𝑎𝑝,𝑡 0-20 μm 

𝑎𝑝,𝑏 20 μm 

𝑏𝑝,𝑡 40-20 μm 

𝑏𝑝,𝑏 20 μm 

𝜑𝑝 11.31-0° 

𝒻𝑆𝐻𝑆 0-0.5 
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illustrate the ability of the SHS-MFkMC to provide a force-based approach to assess the droplet behaviour on 

an SHS that is not prone to spurious interfacial force imbalances, unlike LB. Overall, these studies demonstrate 

the capability of the SHS-MFkMC model to capture sessile droplet spread and C2W transitions on a 

superhydrophobic surface. 

One of the key strengths of developing a model to capture sessile droplet spread on an SHS is that the 

model can be readily used to assess the viability of different anti-wetting surface structures. As a result, the 

developed SHS-MFkMC model was used to provide analysis on the effects of the various SHS design 

parameters (i.e., 𝐻𝑝, 𝑎𝑝,𝑡, 𝜑𝑝, and 𝑏𝑝,𝑡) on the sessile droplet behaviour. Furthermore, the model was used to 

evaluate the effects of the volume 𝑉 and initial spreading velocity 𝑣𝑑𝑟𝑜𝑝,0 of the droplet on its spreading and 

potential C2W transition behaviour. These studies were conducted by varying each of these parameters 

individually around a set of nominal conditions, as listed in Table 7.9. For each set of conditions, the SHS-

MFkMC model was used to capture the transient spreading behaviour of each droplet as well as whether or not 

the droplet underwent C2W. The transient profiles obtained for each parameter are illustrated in Fig. 7.14. In 

addition, Table 7.10 lists each of the considered studies and showcases whether the system was predicted to 

undergo spontaneous C2W. Note that the current SHS-MFkMC model does not currently accommodate for 

Wenzel type wetting along the droplet surface. As a result, droplets that experience C2W in Fig. 7.14 are 

showcased as pinning at very low droplet radius values. This behaviour is not expected to occur in reality since 

the droplets are expected to continue spreading in the Wenzel state. However, the current focus of this study is 

not on the Wenzel regime but rather on the Cassie regime and on C2W transitions, and therefore Wenzel wetting  

 

Figure 7.13: Spontaneous C2W transitions for pillars of different base angles 𝜑𝑝 (quantified based on the 

solid fraction parameter 𝒻𝑆𝐻𝑆) as a function of different intrinsic contact angles 
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was not considered due to time restrictions and is left for future work. The results in Fig. 7.14 and Table 7.10 

illustrate the importance that each of these parameters have on the SHS behaviour. As highlighted in Fig. 7.14a, 

the initial spreading velocity of the sessile droplet plays a critical role in designating whether the droplet will 

rebound off of the surface or will oscillate. As is expected, faster velocities lead to faster rebounding droplets 

that achieve larger maximum spreading before recoiling due to the larger Reynolds number 𝑅𝑒, whereas slower 

velocities (i.e., smaller 𝑅𝑒 values) lead to smaller amplitude oscillations.228 In addition, the droplet volume also 

impacts the oscillatory behaviour of a droplet on an SHS, as illustrated in Fig. 7.14b. In this figure, it is observed 

that larger droplets experience greater viscous damping (larger capillary number 𝐶𝑎 values, smaller 𝑅𝑒 values), 

which when coupled with the increased size, leads to larger periods of oscillation as previously highlighted in 

Chapter 6. Larger droplets furthermore experience a larger maximum spreading amplitude due to their 

increased size, as would be expected. Fig. 7.14c illustrates that 휃𝑒 impacts the dynamic spreading behaviour of 

the surface. These results highlight that lower intrinsic contact angles result in fewer oscillations and less 

chances of the droplet rebounding off of the surface due to the more-hydrophilic nature of the pillar tops, as is 

expected. 휃𝑒 is additionally observed to impact whether or not a droplet will undergo spontaneous C2W for a 

given surface structure, with larger contact angles resulting in greater SHS stability, as previously illustrated in 

Fig. 7.13.224 

Some of the most interesting sessile droplet behaviour can be observed by varying the dimensions of the 

SHS pillars. As illustrated in Fig. 7.14d, modifying the height of the pillars has minimal effect on the droplet 

average spreading behaviour. However, the height affects the likelihood that the droplet will undergo C2W 

transitions.226 These results highlight that the droplet is expected to undergo C2W due to droplet sag when the 

Table 7.9: Nominal SHS structure parameter and droplet property values used to assess the effects of 

each parameter on the sessile droplet behaviour 

Parameter Value 

𝑉 2.57 μL 

𝑣𝑑𝑟𝑜𝑝,0 0.14 m/s 

휃𝑒 95˚ 

𝐻𝑝 27 μm 

𝑎𝑝,𝑡, 𝑎𝑝,𝑏 40 μm 

𝑏𝑝,𝑡, 𝑏𝑝,𝑏 40 μm 

𝜑𝑝 0˚ 

𝑣𝑖𝑚𝑝𝑎𝑐𝑡  0.19 m/s 
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Figure 7.14: Variation in the spreading behaviour of water on various SHSs, according to variations: a) 

in 𝑣𝑑𝑟𝑜𝑝,0; b) in 𝑉; c) in 휃𝑒; d) in 𝐻𝑝; f) in 𝑎𝑝,𝑡; g) in 𝑏𝑝,𝑡; h) in 𝜑𝑝; e) Vertical droplet height on the SHS 

wall for droplets of various 𝑣𝑖𝑚𝑝𝑎𝑐𝑡 and 𝐻𝑝 = 2.7 μm 
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Table 7.10: Effects of SHS structure parameters and droplet property values on whether or not the SHS 

will undergo spontaneous C2W 

Study Spontaneous C2W? 

Nominal No 

3a 𝑣𝑑𝑟𝑜𝑝,0 = 0.07 m/s No 

𝑣𝑑𝑟𝑜𝑝,0 = 0.093 m/s No 

𝑣𝑑𝑟𝑜𝑝,0 = 0.21 m/s No 

𝑣𝑑𝑟𝑜𝑝,0 = 0.28 m/s No 

3b 𝑉 = 1.286 μL No 

𝑉 = 1.715 μL No 

𝑉 = 3.859 μL No 

𝑉 = 5.145 μL No 

3c 휃𝑒 = 55° Yes 

휃𝑒 = 75° Yes 

휃𝑒 = 115° No 

휃𝑒 = 135° No 

3d 𝐻𝑝 = 270 μm No 

𝐻𝑝 = 135 μm No 

𝐻𝑝 = 2.7 μm No 

𝐻𝑝 = 0.27 μm Yes 

3e 𝐻𝑝 = 2.7 μm,  

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 = 0.19 m/s No 

𝐻𝑝 = 2.7 μm,  

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 = 0.38 m/s No 

𝐻𝑝 = 2.7 μm,  

𝑣𝑖𝑚𝑝𝑎𝑐𝑡 = 0.57 m/s Yes 

3f 𝑎𝑝,𝑡 = 20 μm No 

𝑎𝑝,𝑡 = 60 μm No 

3g 𝑏𝑝,𝑡 = 20 μm No 

𝑏𝑝,𝑡 = 60 μm No 

3h 𝜑𝑝 = −20.32° No 

𝜑𝑝 = −10.49° No 

𝜑𝑝 = 10.49° No 

𝜑𝑝 = 20.32° Yes 
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pillar height is sufficiently small, i.e. 𝐻𝑝 = 0.27 μm. Furthermore, the droplets are more likely to undergo C2W 

under sufficiently large inertial effects, as discussed previously. In order to illustrate this observation, Fig. 7.14e 

showcases the vertical droplet behaviour along the pillar walls for the 𝐻𝑝 = 2.7 μm pillars subject to two 

different droplet impact velocities 𝑣𝑖𝑚𝑝𝑎𝑐𝑡, as listed in Table 7.10. These results illustrate that the droplet will  

undergo spontaneous C2W due to the high inertia forces on pillars of sufficiently small height, as confirmed in 

previous studies.229 Fig. 7.14f-g showcase the effects of the pillar width and the gap width on the sessile droplet 

spreading behaviour. Note that for the study in Fig. 7.14f, the pillar widths were modified by adjusting both 

𝑎𝑝,𝑡 and 𝑎𝑝,𝑏 equally such that the pillar maintained a rectangular prism shape. Similarly, the gap width study 

in Fig. 7.14g was conducted by adjusting both 𝑏𝑝,𝑡 and 𝑏𝑝,𝑏 equally to prevent the formation of trapezoidal 

pillars. These figures highlight that modifying the width of the pillars and the gaps has a significant effect on 

the wettability of the SHS. In particular, larger width pillars and smaller gap widths lead to decreased 

superhydrophobic surface tendencies, as observed in the larger final contact radii within the figures. On the 

other hand, smaller pillar widths and larger pillar gaps significantly increase the superhydrophobicity and result 

in droplet rebound. These observations are in agreement with those found within the literature.37,230 

Additionally, Fig. 7.14h investigated the effects of the pillar side wall angle 𝜑𝑝 on the SHS behaviour. Note 

that these studies were conducted by modifying the base width of the pillars 𝑎𝑝,𝑏, and therefore the widths of 

the pillar tops and their adjacent gaps remained the same for each case study. Consequently, the variation in 

𝜑𝑝 did not significantly impact the Cassie regime spreading of the droplets. However, large positive 𝜑𝑝 angles 

were observed to significantly impact the likelihood of C2W due to the decreased apparent contact angle 

between the droplet sag and the pillar wall, as observed within the literature.224 As a result, droplets on the 

surface with 𝜑𝑏 = 20.32° were observed to undergo spontaneous C2W. These results overall illustrate the 

impact that a well-designed SHS can have on its superhydrophobic properties. Furthermore, this demonstrates 

the capacity of the SHS-MFkMC model to evaluate the wetting abilities of different surface designs. 

Consequently, this model has the potential to be readily used to determine the surface designs that maximize 

its superhydrophobic tendencies while preventing C2W transitions from occurring. 

7.3  Summary 

Superhydrophobic surfaces are important sessile droplet spreading applications responsible for creating 

self-cleaning and anti-fouling surface designs that are important for a variety of different engineering and 

materials applications. Furthermore, these surfaces are prone to deactivation by the detrimental C2W transition 

process and consequently there is significant demand to model and study droplet spread on these challenging 

textured surfaces. This chapter extended the previously-developed SHS-MFkMC algorithm to allow it to 

accommodate for SHS behaviour on surfaces containing periodic etched rectangular pillar structures. The 

proposed model was designed to accommodate for the repeating pillar structures using the proposed PU 
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method. Furthermore, it was modified to accommodate for the novel challenges and changes in the force 

balance necessary to capture Cassie mode droplet spreading. The model was additionally adjusted to 

accommodate for spontaneous C2W transitions due to vertical wall depinning and due to droplet sag. The 

model overall showcased that it was able to qualitatively replicate the Cassie droplet spreading behaviour 

observed within the literature on different SHS structures. The model additionally exhibited an excellent ability 

to predict whether a droplet would undergo spontaneous C2W. Furthermore, the model was used to evaluate 

the effects of various surface design parameters, as well as the droplet velocity and volume, on the sessile 

droplet spreading behaviour on an SHS. Overall, these results illustrated that the proposed SHS SHS-MFkMC 

model has the potential to serve as a highly predictive modelling tool for capturing droplet spread on an SHS. 

However, the model is still in need of further adjustments and modifications to allow it to quantitatively capture 

these systems as well as to accommodate for more advanced surface geometries. In addition, further work is 

necessary to allow the model to accommodate for other crucial droplet spreading and wetting transition 

phenomena such as hysteresis, Wenzel-state wetting, and the highly-desired W2C transitions. However, this 

chapter demonstrates the overall potential of SHS-MFkMC for capturing SHS wetting behaviour. 
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Chapter 8 – Conclusions & Future Work 

8.1  Conclusions 

This PhD thesis presented the development of the novel MFkMC method to capture the general 

behaviour of moving interface systems. This kMC-based methodology was particularly developed to provide 

a unique approach to capturing these dynamic interfaces that is not subject to the same disadvantages as the 

existing moving interface modelling methodologies. Although it has its own drawbacks, this method has overall 

showcased its competitive ability to mesoscopically capture moving interface behaviour and its capacity to 

incorporate additional important moving interface phenomena such as surface roughness. The newly developed 

MFkMC algorithm was used to analyze and study the dynamic interface behaviour within key systems in solids 

dissolution, axisymmetric capillary action, and sessile droplet spreading on both smooth and superhydrophobic 

surfaces. These studies showcased that MFkMC was able to macroscopically predict the expected application 

behaviour while simultaneously accommodating for the microscale phenomena. Furthermore, they highlighted 

how MFkMC was able to directly accommodate for the fundamental physics acting on the interface and can 

overcome any fictitious behaviour that occurred. The applications of MFkMC in all the studies below outlined 

the extensive utilization of this novel method to capture a wide variety of different solid- and fluid-based 

moving interface systems. Additionally, the case studies highlighted key insights into each of their individual 

processes that are outlined next. 

The MFkMC algorithm was first-most adapted in Chapter 4 to capture the complete dissolution of 3D 

crystals within the human body. This study showcased that MFkMC can provide significant computational and 

memory advantages over standard kMC for sufficiently-large solid-based moving interface systems. 

Furthermore, the models were used to propagate uncertainty and perform robust optimization on the crystal 

dissolution behaviour due to uncertainties in key environmental system parameters. From these studies, it was 

observed that the expected changes in the system temperature only minimally impacted the dissolution 

behaviour. The variability in the pH, however, was predicted to induce significant deviations in the crystal 

dissolution process. These deviations were particularly observed to induce fluctuations over several orders of 

magnitude in the expected crystal dissolution behaviour. Furthermore, they were observed to introduce 

uncertainty as to whether the crystal would be completely dissolved, remain undissolved, or lie in a semi-

dissolved state at a given point in time. The results from the robust optimization studies furthermore showcased 

that in order to maximize the crystal dissolution time while simultaneously minimizing the effects of 

uncertainty, it is necessary to use moderate-sized crystals of simple shapes containing lower ratios of the highly 

reactive kink and ledge sites. Overall, these results highlighted the need to account for environmental 

uncertainty when designing crystals for biological and drug delivery applications. 
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In order to further expand the applicability of the MFkMC approach, a method was developed to 

accommodate for the movement of fluid-fluid interfaces within the MFkMC framework in Chapter 5 based on 

the balance of forces acting upon the local interface. Subsequently, the developed FB-MFkMC framework was 

implemented to capture capillary rise within axisymmetric cavities of various shapes for both smooth and rough 

surfaces. These studies highlighted that the MFkMC approach provides a robust framework that can be readily 

modified to capture capillary action within cavities of any general shape. Furthermore, these results showcased 

that surface roughness critically impacts the movement of fluid-fluid interfaces along a solid surface. They 

furthermore showcased that roughened surfaces can cause a rising fluid undergoing capillary action to 

prematurely halt its ascent due to not having enough energy to overcome both gravitational forces and 

roughness asperities. These results demonstrated the importance of accommodating for molecular-level 

irregularities when designing systems subject to capillary action-driven transport. Furthermore, these analyses 

can be extended to discuss how surface roughness can critically affect the movement of any fluid-fluid interface 

along a solid surface. 

In Chapter 6, the FB-MFkMC algorithm previously developed for capillary rise was modified to capture 

sessile droplet spread on an ideally flat surface. This model utilized a comprehensive semi-empirical force 

balance equation developed specifically to capture the fundamental balance of forces governing the droplet 

spreading process. The proposed balance consisted of a semi-empirical expression to accommodate for the 

viscous damping force that is subject to a fitted empirical parameter whose value is determined based on the 

droplet liquid’s Ohnesorge number. The results from this study highlighted that the viscous damping force 

affecting a sessile droplet is dependent on the droplet fluid properties as well as the droplet interface velocity. 

The fully-assembled FB-MFkMC model was additionally observed to predict the sessile droplet spreading 

behaviour regardless of the droplet size, shape, composition, solid surface material, or Reynolds and Capillary 

number values. Overall, this study highlighted the dependence of the droplet spread on the different forces 

acting upon its interface. Furthermore, the study highlighted the necessity to try and capture these underlying 

forces as accurately as possible not just for MFkMC simulations but to better understand the general droplet 

spreading behaviour. 

In Chapter 7, the newly established FB-MFkMC algorithm was extended into the SHS-MFkMC method 

in order to capture Cassie regime droplet spreading and spontaneous C2W transitions on superhydrophobic 

surfaces. This model was furthermore used to demonstrate the significant effects that surface roughness 

structures play on the wettability of a surface. These results highlighted that the hydrophobicity of a surface 

can be increased by using smaller pillars surrounded by larger air gaps. However, too large a gap was also 

observed to result in C2W transitions. These transitions could be mitigated by using sharper-angled pillar walls 

and by using taller pillar structures. The SHS-MFkMC model furthermore demonstrated its capability to predict 

the wetting and superhydrophobicity properties of a given surface design. This model additionally has the 
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capacity to be upgraded to accommodate for molecular-level asperities such as surface roughness and can 

therefore serve as a unique tool for capturing the entire wetting and dynamic spreading abilities of a sessile 

droplet on a realistically-rough SHS. However, further work is required to allow for the model to attain this 

ambition. Overall, these results highlighted the importance of SHS design on their wettability and showcased 

the general structure designs necessary to achieve ideal wetting properties.  

In summary, the studies conducted in this work overall showcased the potential of the MFkMC algorithm 

and its ability to capture moving interface system behaviour. In addition, the results presented herein 

demonstrated that with proper model design, MFkMC has the potential to efficiently evolve moving interface 

systems on the molecular and microscale levels over the large-scale length and timescales associated with 

moving interfaces. Consequently, this method offers a bridge between computationally-expensive microscale 

simulations such as Molecular Dynamics and the continuum-based modelling techniques that struggle to 

accommodate for molecular-level behaviour. Furthermore, the studies highlighted how MFkMC can be readily 

modified and customized to accommodate for additional system features, such as surface roughness and non-

flat surface geometries. Overall, the case study results demonstrated the general ability of MFkMC to capture 

the behaviour of moving interface systems. 

8.2  Future Work 

The results and interpretations drawn from this study can serve as a foundation for developing future 

research in this critical field of research. As a result, this work suggests the following avenues to further extend 

this research in the future. 

• Incorporate Surface Roughness into Sessile Droplet Models for both Smooth and Superhydrophobic 

Surfaces. Both sessile droplet MFkMC models developed in this work assumed that the surfaces were 

molecularly smooth and not subject to any nanoscale roughness. As a result, both models were observed 

to deviate from the experimentally-predicted sessile droplet behaviour. This assumption is particularly 

detrimental to capturing droplet spread on an SHS, since the manufactured pillars are expected to contain 

significant aberrations that can significantly impact the observed spreading behaviour.223 Furthermore, 

the addition of surface roughness is furthermore expected to impact the apparent (macroscopic) contact 

angle of a droplet, giving rise to the advancing and receding contact angles observed experimentally. 

Therefore, spatially-varying roughness should be integrated into both models based on real surface 

roughness profiles and pillar shape aberrations to allow for more realistic simulations of droplet 

spreading, including measurements for the advancing and receding contact angles, on both ideal surfaces 

and SHSs.  

• Expand the SHS Model to Accommodate for Wenzel-state Wetting and W2C Transitions. The present 

MFkMC-based SHS droplet spread model does not accommodate for the continued droplet dynamics 
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once the droplet enters a Wenzel wetting state, and therefore it cannot accommodate for the inverse 

Wenzel-to-Cassie transition. Therefore, in order to capture the full range of expected sessile droplet 

spreading behaviour on an SHS, the SHS-MFkMC model should be extended to incorporate for Wenzel 

wetting and simulate the droplet spreading behaviour after undergoing W2C. These models can be 

subsequently used to determine the SHS structures that are unstable in the Wenzel regime and therefore 

will spontaneously undergo W2C. 

• Expand the SHS Model to Accommodate for Different Pillar Shapes. There are a wide variety of different 

pillar shapes, in addition to rectangular pillars, that are used in the design of SHSs. These include SHSs 

designed with cylindrical and mushroom-shaped (double re-entrant) pillars, as well as other types of 

roughness asperities such as nanowires or spherical particles. In order to better accommodate for a wider 

variety of SHS designs, the SHS MFkMC method should be updated to be customizable for any specified 

pillar shape. In particular, the PU and droplet sag calculation methods should be generalized so that they 

can be readily adapted to any given pillar shape. 

• Development of a Non-Axisymmetric Rough Capillary Action MFkMC Model. The capillary rise 

applications considered within this work were performed using an axisymmetric model, where it was 

assumed that the cavity and the fluid behaviour within the cavity would be radially uniform. However, 

this assumption is not always applicable. Capillary action frequently occurs in non-axisymmetric 

cavities, as illustrated while accommodating for C2W transitions in the SHS MFkMC model in Chapter 

7. Furthermore, it is unlikely that the roughness profiles within a cavity would be radially uniform. In 

order to showcase the widespread applicability of the capillary action MFkMC algorithm, this model 

should be extended into a full 3D model to accommodate for capillary rise/fall in cavities of any shape. 

This model should be furthermore coupled together with spatially-varying roughness profiles based on 

real cavity roughness data in order to provide a superior representation of the effects of surface roughness 

on the capillary action process. 

• Development of Machine Learning-based Models to Efficiently Capture SHS Sessile Droplet Spreading. 

One of the key objectives in studying SHS design is to determine surface structures that are capable of 

minimizing droplet wettability. This can be readily achieved through the use of rigorous model-based 

optimization studies as long as there is a detailed system model such as the SHS-MFkMC model. 

However, these optimization studies often require extensive model sampling, and thus can be 

computationally-intensive for detailed mechanistic models. This issue can be overcome through the use 

of machine learning techniques such as artificial neural networks. These processes have emerged as an 

efficient yet accurate means of predicting the relationship between a system’s key observables and its 

inputs, regardless of noise or non-linearity. Consequently, they could provide an excellent means to 

optimize SHS surface designs. Therefore, the SHS-MFkMC model should be used to train deep neural 
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networks to capture key characteristic wetting parameters for a given SHS (e.g., its maximum contact 

radius, contact angle, and Cassie state stability) as a function of the surface structures that may emerge 

in novel anti-wetting, anti-biocontamination, and environmentally-friendly applications.34,35,231 These 

trained networks can be subsequently used to perform rapid and efficient model-based optimization to 

predict the SHS designs that maximize its hydrophobicity and that prevent C2W transitions. 

• Integration of FB-MFkMC Model into Multiscale Frameworks for Extended Applications. The proposed 

FB-MFkMC algorithm was developed to capture sessile droplet spread under ideal conditions and in the 

absence of external forces or additional phenomena taking place. However, the model can be readily 

adapted to accommodate for these kinds of processes by coupling it with additional modelling methods, 

such as CFD, that capture the additional phenomena. When FB-MFkMC is coupled with CFD models, 

the location of the CFD boundary conditions can be continuously modified based on the droplet shape 

and size as captured by the FB-MFkMC formulation. Furthermore, the influence of the CFD models on 

the droplet interface would be accommodated through the force balance term. This FB-MFkMC-based 

multiscale modelling approach could be used to solve for a wide variety of different advanced moving 

interface applications, such as solid particulate deposition on a surface via evaporating sessile droplet. 

The latter approach could also be used to study advanced deposition challenges such as the coffee ring 

effect. 

•  Development of Crystal Dissolution MFkMC Model to Study the Dissolution of Commonly-

Manufactured Crystal Shapes and to Capture Practical Pharmaceutical Drug Delivery Applications. 

Calcium Carbonate nanoparticles have been increasingly studied as a biocompatible carrier for 

pharmaceutical drug delivery. In these applications, the desired objective is to achieve controlled release 

of a given active substance within the human body by controlling the dissolution of the CaCO3. In a 

practical pharmaceutical drug delivery scenario, the desired CaCO3 nanoparticles should have a highly 

porous vaterite structure in order to maximize the amount of substance loaded within the crystal.232 

Furthermore, typical fabrication processes for a given crystal material do not produce a wide variety of 

different geometric shapes but rather produce solids whose shape is best quantified based on the ratio of 

heights of the individual crystal faces.98,102 Therefore, the method should be extended to capture the 

dissolution of porous vaterite CaCO3 nanoparticles loaded with the desired active materials. Furthermore, 

it is recommended to adapt the MFkMC crystal dissolution model to accommodate for the expected 

manufactured crystal shapes. Finally, it is recommended to adapt the uncertainty propagation study to 

include uncertainty and variability in both the crystal shape and size and analyze how these will affect 

the dissolution performance for drug delivery applications.  
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Appendix A 

Derivation of Inertial Force Expression 

The inertial force acting upon a sessile droplet was previously reported in the literature as follows:141,142 

�⃑�𝑖𝑛𝑡𝑎 = [−
𝜋𝜌𝑅𝑝𝑠

4

4𝑅
+

𝜋𝜌(𝑅𝑝𝑠−𝐻𝑑𝑟𝑜𝑝)

12
(2𝑅𝑑𝑟𝑜𝑝

2 + 3𝑅𝑝𝑠
2 )]

𝑑2𝑅𝑑𝑟𝑜𝑝

𝑑𝑡2     (A.1) 

This expression is derived based on projecting a perfect sphere onto the spherical cap formed by the 

sessile droplet, as illustrated in Fig. A.1. In both the figure and equation, 𝐻𝑑𝑟𝑜𝑝 denotes the height of the sessile 

droplet above the solid surface, and 𝑅𝑝𝑠 denotes the radius of the sphere projected onto the droplet cap. These 

values can be defined based on the droplet contact radius 𝑅𝑑𝑟𝑜𝑝 and the contact angle 휃 as follows: 

𝑅𝑝𝑠 =
𝑅𝑑𝑟𝑜𝑝

𝑠𝑖𝑛
          (A.2) 

𝐻𝑑𝑟𝑜𝑝 = 𝑅𝑑𝑟𝑜𝑝
1−𝑐𝑜𝑠

𝑠𝑖𝑛
         (A.3) 

By substituting Eqs. (A.2)-(A.3) into Eq. (A.1): 
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Figure A.1: Projection of a perfect sphere onto the droplet spherical cap 
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This expression can be simplified as follows: 

�⃑�𝑖𝑛𝑡𝑎 = 𝜋𝜌 [−
𝑅𝑑𝑟𝑜𝑝

3

4 𝑠𝑖𝑛4 +
𝑅𝑑𝑟𝑜𝑝

3 𝑐𝑜𝑠

12 𝑠𝑖𝑛
(2 +

3

𝑠𝑖𝑛2 )]
𝑑2𝑅𝑑𝑟𝑜𝑝

𝑑𝑡2       (A.5) 

The above expression can be subsequently re-arranged to yield the inertial force expression depicted in 

Eq. (2.12). In order to provide further analysis about the tendencies of the inertial force term, Fig. A.2 

showcases the behaviour of 𝑅𝑑𝑟𝑜𝑝
3 [−

4 sin4 +
cos

6 sin
+

cos

4 sin3 ] as a function of the contact angle 휃 for droplets 

of radii 𝑅𝑑𝑟𝑜𝑝 ∈ 𝑹𝒅𝒓𝒐𝒑 = {0.1, 0.5, 1, 5, 10} mm. This figure overall showcases that this expression remains 

negative for all possible values of 휃 and for all contact radii, and therefore highlights that the inertial force acts 

in the opposite direction of the acceleration based on the predicted model. 

 

  

 

Figure A.2: Plot of the radius and contact angle terms in the inertial force equation 𝑅𝑑𝑟𝑜𝑝
3 (

cos

6 sin
+

cos

4 sin3 −
4 sin4 ) as a function of 휃 for various droplet radii. Inset: An enlarged view of the radius and 

contact angle term using a smaller y-axis scaling to provide a clearer look at the function behaviour at 

smaller contact angles. 
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Appendix B 

Supplementary Material for Chapter 4 

B.1  Standard kMC Algorithm for Crystal Dissolution 

The complete standard kMC algorithm implemented in this work to model the crystal dissolution process is 

summarized according to the following algorithm: 

1. Initialize the crystal on the kMC lattice by mapping each crystal particle to its own unique lattice site, 

as illustrated in Fig. 4.3a. 

2. Determine the number of nearest neighbors 𝒏𝒃𝒅 and the angle configuration 𝚯𝒏𝒃𝒅
 information for each 

crystal particle. 

3. Calculate the kinetic rates of dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 for each molecule according to Eq. (2.3). 

Tabulate the cumulative sums of the kinetic rates 𝑊𝑡𝑜𝑡 = ∑ 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
𝑖 . 

4. Calculate the kMC time increment, 𝛿𝑡, according to Eq. (3.11) to determine the time 𝑡 + 𝛿𝑡 at which 

the next event will occur. 

5. Apply MC sampling to select a crystal molecule to dissolve based on their kinetic rates of dissolution, 

according to Eq. (3.12). 

6. Remove the selected molecule from the kMC lattice and update the nearest neighbor 𝒏𝒃𝒅 and angle 

configuration 𝚯𝒏𝒃𝒅
 information for each of the nearest neighbors. Calculate the new kinetic rates of 

dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 for each of the nearest neighbors according to Eq. (2.3). 

7. Repeat Steps 4-6 until the crystal has completely dissolved. 

B.2  MFkMC Algorithm for Crystal Dissolution 

The complete MFkMC algorithm for crystal dissolution implemented within this study is summarized as 

follows: 

1. Initialize the crystal on the sparse MFkMC lattice by mapping each crystal surface molecule and each 

adjacent interfacial fluid site to their own unique lattice sites. All bulk phase sites within the solid and 

the fluid are left empty, as illustrated in Fig. 4.3b. 

2. Determine the number of nearest neighbors 𝒏𝒃𝒅 and angle configuration information 𝚯𝒏𝒃𝒅
 for each 

surface particle. 
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3. Calculate the kinetic rates of dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 (i.e. the receding rate 𝑊𝑚𝑓,𝑖 ≡ 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅

) for 

each surface molecule according to Eq. (2.3). Tabulate the cumulative sums of the kinetic rates 𝑊𝑡𝑜𝑡 =

∑ 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
𝑖 . 

4. Calculate the kMC time increment, 𝛿𝑡, according to Eq. (3.11) to determine the time 𝑡 + 𝛿𝑡 at which 

the next event will occur. 

5. Apply MC sampling to select a surface molecule to dissolve based on their kinetic rates of dissolution, 

according to Eq. (3.12). 

6. Remove the selected ion from the MFkMC lattice and update the nearest neighbor 𝒏𝒃𝒅 and angle 

configuration 𝚯𝒏𝒃𝒅
 information for each of the nearest neighbors. Calculate the new kinetic rates of 

dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 for each of the nearest neighbors according to Eq. (2.3). 

7. Initialize any new surface particle sites created by the dissolution of the selected molecule and store 

their nearest neighbor 𝒏𝒃𝒅 and angle configuration 𝚯𝒏𝒃𝒅
 information. Calculate the kinetic rates of 

dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 for each new surface ion according to Eq. (2.3). Similarly, remove any 

interfacial fluid site that moved into the bulk fluid phase due to the dissolution event. 

8. Repeat Steps 4-7 until the crystal has completely dissolved. 

Note that since the kinetic rate of dissolution 𝑊𝑐𝑑,𝒏𝒃𝒅,𝚯𝒏𝒃𝒅
 (Eq. (2.3)) does not directly depend on the 

time 𝑡 or the time increment 𝛿𝑡, it does not matter whether 𝛿𝑡 is calculated before or after the event selection 

step within the MFkMC algorithm, as discussed in Section 3.3.1. However, the time increment 𝛿𝑡  was 

calculated before selecting an event in the MCkMC algorithm as well as the standard kMC algorithm in order 

to mirror the MFkMC structure presented in Section 3.2. 

B.3  Polynomial Chaos Expansion Algorithm 

The PCE method implemented within this work can be described according to the following algorithm: 

1. Discretize the time domain into 𝑀 different timepoints on which to measure the variability in the 

process outputs 𝚿. 

2. Define 𝚮 = [휂1, … , 휂𝒾 , … , 휂ℐ] ∈ ℝℐ and �̂� = [휂̂1, … , 휂̂𝒾 , … , 휂̂ℐ] ∈ ℝℐ as the arrays storing the uncertain 

parameters 휂𝒾 and the nominal values of the uncertain parameters 휂̂𝒾, respectively. Similarly, define 

𝚿(𝑡𝑚) = [𝜓1(𝑡𝑚), … , 𝜓𝒿(𝑡𝑚), … , 𝜓𝒥(𝑡𝑚)] ∈ ℝ𝒥 as the array of system outputs 𝜓𝒿 at timepoint (𝑡𝑚). 

3. Define the probability distribution function (PDF) 𝐹
𝒾
 for each uncertain parameter 휂𝒾 as follows: 

휂𝒾 ∈ 𝐹
𝒾
(휂̅𝒾 , 𝜎 𝒾

2 )         (B.1) 

Note that there are numerous different kinds of probability distributions that can be applied to 휂𝒾 and 

propagated through the system model using PCE. 
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4. Define the array of random values 𝚵𝚮 = [휉1, 1
, … , 휉𝒾, 𝒾

, … , 휉ℐ, ℐ
] ∈ ℝℐ, where 휉𝒾, 𝒾

 is generated based 

on the uncertainty distribution applied to 휂𝒾 . Note that the standard orthogonal polynomial basis 

functions 𝒃𝜒
𝚮  (see Eq. (4.1)) used for PCE require 휉𝒾, 𝒾

 to be generated from a standard 

distribution.187,188 Therefore, in order to define 휉𝒾, 𝒾
, the uncertain parameters 휂𝒾 must be transformed 

such that 𝐹𝜉𝒾,𝜂𝒾
 has standard distribution properties.187 

5. Select an orthogonal polynomial basis function 𝒃𝜒
𝚮 to build the PCE approximations based on the 

probability distribution 𝐹
𝒾
. The most commonly used PCE basis functions are the stochastic Askey 

polynomials, as their weight functions are orthogonal to most standard PDFs.187  

6. Solve for the PCE coefficients at their corresponding time point, i.e. 𝒂𝜒(𝑡𝑚). If the process system can 

be modelled with a closed-form mathematical expression such as a differential algebraic equation, then 

𝒂𝜒(𝑡𝑚) can be solved using intrusive approaches (i.e. methods that directly modify the source code), 

such as Galerkin projection.186 However, if the process system lacks a closed form as is the case with 

a kMC-based model, then 𝒂𝜒(𝑡𝑚) must be determined using sampling techniques such as non-intrusive 

spectral projection (NISP)187,188 or least-squares.176,184 Note that for these non-intrusive methods, the 

required number of sample points needed to determine accurate values of 𝒂𝜒(𝑡𝑚) is dependent on the 

number of uncertain parameters ℐ in 𝚮. Furthermore, it is necessary to develop a unique PCE model 

for each system output in 𝚿(𝑡𝑚), and consequently these approaches must be applied to determine 

𝒂𝜒(𝑡𝑚) for each 𝜓𝒿(𝑡𝑚). 

7. Use Monte Carlo (MC) sampling to propagate the parametric uncertainty in 𝚮 through the PCE models. 

The MC sampling method is used to randomly generate values of 𝚵𝚮, which are subsequently plugged 

into the PCE models in order to determine the uncertain system outputs 𝚿(𝑡𝑚). 

8. Determine key statistical information about the output distribution 𝚿(𝑡𝑚) such as the mean �̅�(𝑡𝑚), 

the variance 𝜎𝚿(𝑡𝑚)
2 , and the upper and lower probabilistic bounds 𝚿𝜍(α𝑐𝑓|𝑡𝑚) for 𝜍 ∈ {𝑢, 𝑙} at a given 

confidence α𝑐𝑓. Note that the upper (𝑢) and lower (𝑙) bounds can be determined at a specified α𝑐𝑓 

according to the following expression: 

𝜳𝜍(𝛼𝑐𝑓|𝑡𝑚) = 𝐹−1 (𝛱|𝜳𝜍(𝛼𝑐𝑓|𝑡𝑚)) , 𝛱 ∈ {1 −
𝛼𝑐𝑓

2
,
𝛼𝑐𝑓

2
} , 𝜍 ∈ {𝑢, 𝑙}   (B.2) 

Where 𝐹−1 (𝛱|𝜳𝜍(𝛼𝑐𝑓|𝑡𝑚)) denotes the inverse cumulative distribution function of a model output 

𝜳𝜍(𝑡𝑚)  at time 𝑡𝑚  evaluated at a probability Π  for an upper/lower bound 𝜍 . Note that in this 

expression, Π =
αc

2
 for the lower bound 𝜍 = 𝑙 of 𝚿(𝑡𝑚) and Π = 1 −

αc

2
 for the upper bound 𝜍 = 𝑢 of 

𝚿(𝑡𝑚). 
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B.4  Low-order PCE Coefficient Model Algorithm 

The LPCM methodology used within this study can be described according to the following steps. 

1. Define 𝛚 = [𝜔1, … , 𝜔𝜈 , … , 𝜔Ν] ∈ ℝΝ as the array of process design parameters 𝜔𝜈. Sub-divide the 

region of each 𝜔𝜈 into 𝑁𝜈 points evenly spaced apart at a distance Δ𝜔𝜈 as follows: 

𝜔𝜈,𝑛𝜈
= {𝜔𝜈,𝑚𝑖𝑛𝑖𝑚𝑢𝑚 + (𝑛𝜈 − 1)𝛥𝜔𝜈 ≤ 𝜔𝜈,𝑛𝜈

≤ 𝜔𝜈,𝑚𝑎𝑥𝑖𝑚𝑢𝑚,    𝑛𝜈 = 1,2,3, … , 𝑁𝜈} (B.3) 

2. Implement the PCE algorithm described in Section 4.1.2 and Section B.3 to determine the PCE 

coefficients 𝒂𝜒(𝑡𝑚) at each combination of discretized design parameter realizations 𝜔𝜈,𝑛𝜈
. 

3. Select reasonable low order models that sufficiently capture the relationship between the input design 

parameters 𝛚 and the output PCE coefficients 𝒂𝜒(𝑡𝑚). Note that the appropriate model for a given 

PCE coefficient is problem-dependent and therefore the type of model selected is expected to vary 

between each coefficient depending on the relationship between 𝒂𝜒(𝑡𝑚) and 𝛚 . As a result, the 

selection of an appropriate model must be performed via data analysis and observations. 

4. Use model regression (e.g. least squares) to estimate the coefficients for each of the low-order models 

selected in Step 3. 

5. Use LPCMs to determine the PCE coefficients 𝒂𝜒(𝑡𝑚) for given realizations in 𝛚. 

6. Build PCE models to predict the uncertain system outputs 𝚿(𝑡𝑚) based on the determined PCE 

coefficients 𝒂𝜒(𝑡𝑚). 

7. Propagate the uncertainty in 𝚮 through the PCE models according to Steps 7-8 in the Polynomial Chaos 

Expansion Algorithm presented in Section B.3. 

B.5  LPCMs and Model Coefficients 

The LPCMs developed within the main body of this work were determined using CurveExpert 

Professional 2.6 in order to fit a large selection of models to the PCE coefficient data. The models were fit to 

the data using least squares and the optimal model was selected based on the model R-squared values. A total 

of four different models were selected to predict the various PCE coefficients for the different crystal shapes 

as a function of the crystal size 𝑠: 

𝑎𝜒(𝑡𝑚) = 𝑏0 + 𝑏1𝜔𝜈         (B.4) 

𝑎𝜒(𝑡𝑚) = 𝑏0𝜔𝜈
𝑏1          (B.5) 

𝑎𝜒(𝑡𝑚) = (𝑏0 + 𝑏1𝜔𝜈)
−

1

𝑏2        (B.6) 
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𝑎𝜒(𝑡𝑚) = −(𝑏0 + 𝑏1𝜔𝜈)
−

1

𝑏2        (B.7) 

where 𝑏 ∈ 𝒃 = {𝑏0, 𝑏1, 𝑏2} In addition, some of the LPCMs were determined by performing cubic 

interpolation between the PCE coefficient values for different crystal sizes. The LPCM model and their 

respective coefficients for each PCE coefficient can be found in Table B.1. 

 

Table B.1. The LPCMs and their respective coefficients developed for each PCE coefficient of every PCE 

model considered 

PCE Model 

LPCM Model 

Equation 

Number 

𝑏0 𝑏1 𝑏2 

 

Shape 

(PCE 

Order) 

PCE 

Coefficient 

𝑡𝑑 

𝑐𝑢𝑏𝑒 

(2nd 

order) 

𝑎0 (B.4) -0.84224 0.16068 --- 

𝑎1 (B.4) -0.97554 0.26189 --- 

𝑎2 (B.4) -0.56377 0.18778 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(2nd 

order) 

𝑎0 (B.4) -0.91989 0.09183 --- 

𝑎1 (B.4) -1.29208 0.14570 --- 

𝑎2 (B.4) -0.89723 0.11779 --- 

𝑡𝑒𝑡𝑟𝑎 

(2nd 

order) 

𝑎0 (B.4) -0.89708 0.05815 --- 

𝑎1 (B.4) -1.62730 0.10210 --- 

𝑎2 (B.4) -1.81211 0.09576 --- 

𝑑𝑜𝑑𝑒 

(2nd 

order) 

𝑎0 (B.4) -0.96374 0.09568 --- 

𝑎1 (B.4) -1.78216 0.17642 --- 

𝑎2 (B.4) -1.65189 0.14706 --- 

𝑛𝑑(𝑡0) 

𝑐𝑢𝑏𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0.00391 -0.00002 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0.23898 0.00253 --- 

𝑡𝑒𝑡𝑟𝑎 𝑎0 interpolation --- --- --- 
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(1st order) 𝑎1 (B.4) -0.21179 0.04967 --- 

𝑑𝑜𝑑𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0.12869 -0.00014 --- 

𝑛𝑑(𝑡1) 

𝑐𝑢𝑏𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0.00189 0.00014 --- 

𝑎2 (B.4) -0.00042 -0.00019 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) -0.63659 0.05312 --- 

𝑎2 (B.4) 0.87371 -0.04605 --- 

𝑡𝑒𝑡𝑟𝑎 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) -1.23389 0.34059 --- 

𝑎2 (B.4) 0.32734 -0.12472 --- 

𝑑𝑜𝑑𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0.93445 0.00261 --- 

𝑎2 (B.4) -0.40795 -0.00461 --- 

𝑛𝑑(𝑡2) 

𝑐𝑢𝑏𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.00032 1.44193 --- 

𝑎2 (B.4) 0.00697 -0.00200 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.00003 3.42081 --- 

𝑎2 (B.7) 0.83473 -0.01597 1.20313 

𝑎3 (B.6) 1.37123 -0.02638 1.00987 

𝑡𝑒𝑡𝑟𝑎 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) -5.98787 0.76881 --- 

𝑎2 (B.4) 6.70625 -0.18856 --- 

𝑑𝑜𝑑𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) -0.50090 0.17431 --- 

𝑎2 (B.4) 2.29997 -0.13864 --- 
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𝑛𝑑(𝑡3) 

𝑐𝑢𝑏𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.01903 1.43793 --- 

𝑎2 (B.4) -0.28820 -0.07318 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.6) 0.28492 -0.00455 0.53484 

𝑎2 (B.7) 0.02546 -0.00049 1.31775 

𝑎3 (B.6) 0.09094 -0.00175 1.07971 

𝑡𝑒𝑡𝑟𝑎 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.6) 0.92498 -0.00090 0.03166 

𝑎2 (B.7) 0.06273 -0.00067 0.99037 

𝑎3 (B.6) 0.00413 -0.00005 1.99535 

𝑑𝑜𝑑𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.6) 0.02228 -0.00041 1.66899 

𝑎2 (B.7) 0.64584 -0.00715 0.34057 

𝑎3 (B.6) 0.01444 -0.00027 2.24202 

𝑛𝑑(𝑡4) 

𝑐𝑢𝑏𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.6) 0.99984 -0.00001 0.00007 

𝑎2 (B.5) -0.10193 2.24183 --- 

𝑎3 (B.6) 0.76145 -0.01118 0.17459 

𝑠𝑝ℎ𝑒𝑟𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.33940 2.06854 --- 

𝑎2 (B.5) -0.35689 1.97853 --- 

𝑎3 (B.5) 0.12757 2.06392 --- 

𝑡𝑒𝑡𝑟𝑎 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.12658 2.08949 --- 

𝑎2 (B.5) -0.00391 2.84664 --- 

𝑎3 (B.5) 0.00661 2.52132 --- 

𝑑𝑜𝑑𝑒 𝑎0 interpolation --- --- --- 
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(3rd order) 𝑎1 (B.5) 0.04068 2.50382 --- 

𝑎2 (B.5) -0.02364 2.62881 --- 

𝑎3 (B.5) 0.00002 4.35800 --- 

𝑛𝑑(𝑡5) 

𝑐𝑢𝑏𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 4.01241 1.88967 --- 

𝑎2 (B.5) -2.29524 1.99928 --- 

𝑎3 (B.5) 0.08310 2.74274 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.46857 2.51041 --- 

𝑎2 (B.5) -0.13296 2.70205 --- 

𝑎3 (B.5) 0.00911 3.12548 --- 

𝑡𝑒𝑡𝑟𝑎 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.45924 2.20206 --- 

𝑎2 (B.5) -0.07996 2.48306 --- 

𝑎3 (B.5) 0.02786 2.42092 --- 

𝑑𝑜𝑑𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.76445 2.30570 --- 

𝑎2 (B.5) -0.24732 2.50136 --- 

𝑎3 (B.5) 0.00532 3.22281 --- 

𝑛𝑑(𝑡6) 

𝑐𝑢𝑏𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 12.94864 2.19196 --- 

𝑎2 (B.5) -3.60917 2.39836 --- 

𝑎3 (B.5) 0.12933 2.97291 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.63611 2.79252 --- 

𝑎2 (B.5) -0.10325 3.03339 --- 

𝑎3 (B.5) 0.00349 3.45233 --- 

𝑡𝑒𝑡𝑟𝑎 𝑎0 interpolation --- --- --- 
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(3rd order) 𝑎1 (B.5) 0.50886 2.48535 --- 

𝑎2 (B.5) -0.08757 2.67659 --- 

𝑎3 (B.5) 0.00549 2.88683 --- 

𝑑𝑜𝑑𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 1.05702 2.64411 --- 

𝑎2 (B.5) -0.18025 2.89982 --- 

𝑎3 (B.5) 0.00412 3.44685 --- 

𝑛𝑑(𝑡7) 

𝑐𝑢𝑏𝑒 

(3rd order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 11.23223 2.67951 --- 

𝑎2 (B.5) -1.63767 2.96353 --- 

𝑎3 (B.5) 0.04908 3.43487 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) -23843.57 1281.125 --- 

𝑎2 (B.4) 1975.254 -88.89317 --- 

𝑡𝑒𝑡𝑟𝑎 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 0.00238 3.88246 --- 

𝑎2 (B.5) -1.52E-06 5.23338 --- 

𝑑𝑜𝑑𝑒 

(2nd 

order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.5) 1.47798 2.74923 --- 

𝑎2 (B.5) -0.32766 2.77617 --- 

𝑛𝑑(𝑡8) 

𝑐𝑢𝑏𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0 0 --- 

𝑠𝑝ℎ𝑒𝑟𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0 0 --- 

𝑡𝑒𝑡𝑟𝑎 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0 0 --- 

𝑑𝑜𝑑𝑒 

(1st order) 

𝑎0 interpolation --- --- --- 

𝑎1 (B.4) 0 0 --- 
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Appendix C 

Supplementary Materials for Chapter 6 

C.1  Additional MFkMC Considerations for Droplet Spreading 

The sessile droplet system considered in this work consists of a fluid droplet spreading on an ideally-flat 

two dimensional surface. Under these conditions, the droplet will expand and contract radially with respect to 

the droplet center, i.e., where the droplet first contacts the surface. However, the lattice-based FB-MFkMC 

algorithm considered in this work restricts the positions of the droplet-phase and atmospheric-phase interface 

sites to a square lattice grid in order to significantly reduce computational costs. Consequently, it is necessary 

to implement additional rules in order to prevent any unrealistic droplet behaviour that might occur due to 

approximating the radial spread of the spherical cap-shaped droplet using a cartesian grid.  

First of all, the rules of standard MFkMC allow for the droplet to advance into any atmospheric-phase 

interface site and recede from any droplet-phase interface site, regardless of the location of the neighbouring 

droplet sites. However, the aforementioned nature of droplet spreading necessitates that the droplet can only 

move radially. Consequently, in order to prevent any non-radial movement, the FB-MFkMC sessile droplet 

model must only allow the droplet to advance into or recede from a site if one of its neighbouring sites in the 

direction of the droplet center (i.e., their source sites) are on the droplet side of the interface, as illustrated in 

Fig. C.1a. This limitation can be expressed by modifying the FB-MFkMC rate equations as follows: 

𝑊 ,𝑖(𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) =  

     {

𝐸𝑞.  (5.4),   휀 = 𝑎𝑑𝑣 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋ 𝑜𝑟 ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉) 𝑎𝑟𝑒 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑠𝑖𝑡𝑒𝑠       

𝐸𝑞.  (5.5),   휀 = 𝑟𝑒𝑐 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋ 𝑜𝑟 ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉) 𝑎𝑟𝑒 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑠𝑖𝑡𝑒𝑠        

0, ⌊(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌋ 𝑎𝑛𝑑 ⌈(𝑥ℛ𝑖−𝜆,𝜙𝑖
, 𝑦ℛ𝑖−𝜆,𝜙𝑖

)⌉ 𝑎𝑟𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 𝑠𝑖𝑡𝑒𝑠         

(C.1) 

where 𝑥 and 𝑦 are the cartesian coordinates of a given lattice site 𝑖, and the subscripts ℛ𝑖 and 𝜙𝑖 denote the 

radial and azimuthal polar coordinates of the same lattice site. Note that the floor and ceiling bracket notation 

is used to handle cases where a site (𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) has more than one neighbour in the direction of the droplet 

center (i.e., when 𝜙 ≠
𝑛𝜋

4
) and therefore has multiple source sites. In these cases, the droplet is only prevented 

from moving if both of these sites are atmosphere sites. Another key challenge with lattice-based MFkMC is 

that the algorithm rules do not prevent the droplet from experiencing breakup while it is receding, as illustrated 

in Fig. C.1b. Although satellite drops are known to occasionally detach from the main droplet body in 

experiments, this behaviour is not expected to occur in practice on an ideally flat surface. This behaviour can 

be overcome by restricting a droplet interface site such that it is only allowed to  recede if all of the sites that 
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use it as a source site (i.e., all the sites in the opposite direction of the droplet center) are atmosphere sites, as 

follows: 

𝑊 ,𝑖(𝑥ℛ𝑖,𝜙𝑖
, 𝑦ℛ𝑖,𝜙𝑖

) =  

     {

𝐸𝑞. (5.4),   휀 = 𝑎𝑑𝑣

𝐸𝑞. (5.5),   휀 = 𝑟𝑒𝑐 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌋ 𝑎𝑛𝑑 ⌈(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌉ 𝑎𝑟𝑒 𝑎𝑡𝑚𝑜𝑠𝑝ℎ𝑒𝑟𝑒 𝑠𝑖𝑡𝑒𝑠 )  

0,   휀 = 𝑟𝑒𝑐 𝑎𝑛𝑑 (⌊(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌋ 𝑜𝑟 ⌈(𝑥ℛ𝑖+𝜆,𝜙𝑖
, 𝑦ℛ𝑖+𝜆,𝜙𝑖

)⌉ 𝑎𝑟𝑒 𝑑𝑟𝑜𝑝𝑙𝑒𝑡 𝑠𝑖𝑡𝑒𝑠 )

 (C.2) 

 

Figure C.1: a) The droplet can progress into an interface atmospheric-phase site only if one of the 

neighbouring sites in the direction of the droplet center is a droplet-phase site. Consequently, the 

droplet can proceed into the green site but not the red site; b) Since the droplet-phase interface site in 

red cannot recede without generating an isolated droplet, it is prohibited from doing so until all of the 

droplet-phase sites above it have moved into the droplet bulk via recession; c) The MFkMC algorithm 

on its own will typically result in large deviations in the azimuthal droplet radius due to the stochastic 

nature of kMC algorithms; d) The droplet is expected to have near-symmetric radial spreading on an 

ideally flat surface. 
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In addition to the above challenges, the FB-MFkMC method is known to predict uneven droplet 

spreading on an ideally-flat surface, as depicted in Fig. C.1c. This behaviour is due to the stochastic nature of 

the algorithm combined with the aforementioned approximation of a droplet’s radial spreading using a square 

lattice. However, the droplet is expected to spread quasi-uniformly, as highlighted in Fig. C.1d, in order to 

minimize the interfacial energies between the droplet, the solid surface, and the surrounding atmosphere. 

Although the droplet is expected to experience some fluctuations in its contact radius in practice, the observed 

deviations in the local radius of the triple contact line are significantly smaller than those predicted by the FB-

MFkMC sessile droplet algorithm.23 This issue can be overcome by adding a weighted penalty term to the rate 

equations as follows: 

𝑊𝑎𝑑𝑣,𝑖,𝑜𝑟𝑑 = 𝑘′ 𝑊𝑡𝑜𝑡,𝑛𝑐

∑ 𝑊𝑖𝑖
𝑒𝑥𝑝 ((

�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖+𝜆
) 𝑠𝑖𝑛ℎ−1 (

𝑣𝑑𝑟𝑜𝑝,𝑖

2𝜆𝑘′ ))     (C.3) 

𝑊𝑟𝑒𝑐,𝑖,𝑜𝑟𝑑 = 𝑘′ 𝑊𝑡𝑜𝑡,𝑛𝑐

∑ 𝑊𝑖𝑖
𝑒𝑥𝑝 (− (

�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖−𝜆
)

−1

𝑠𝑖𝑛ℎ−1 (
𝑣𝑑𝑟𝑜𝑝,𝑖

2𝜆𝑘′ ))    (C.4) 

where 𝑅𝑑𝑟𝑜𝑝,𝑖  denotes the current local radius of the triple contact line at site 𝑖 ; �̅�𝑑𝑟𝑜𝑝  denotes the 

average droplet contact radius; 𝑣𝑑𝑟𝑜𝑝,𝑖 denotes the velocity of the 𝑖th droplet contact radius site; and 𝑊𝑡𝑜𝑡,𝑛𝑐 

denotes the total sum of all rates without accommodating for the unphysical droplet radius deviations. The 

penalty terms (
�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖+𝜆
) in Eq. (C.3) and (

�̅�𝑑𝑟𝑜𝑝+𝜆

𝑅𝑑𝑟𝑜𝑝,𝑖−𝜆
)

−1

 in Eq. (C.4) are defined such that it encourages 

interface sites to recede/advance to a distance 휆 from the average contact radius �̅�𝑑𝑟𝑜𝑝 while simultaneously 

penalizing sites from advancing/receding too far away from �̅�𝑑𝑟𝑜𝑝. As a result, this term will not affect the 

average spreading behaviour of the droplet but rather will ensure that the fluctuations in the droplet radius 

remain small. Furthermore, the weighting term 
𝑊𝑡𝑜𝑡,𝑛𝑐

∑ 𝑊𝑖𝑖
 in Eqs. (C.3)-(C.4) is added to prevent the penalty term 

from affecting the calculation of the MFkMC time shown in Eq. (2). Although the penalty term is necessary to 

prevent unrealistic droplet spreading, its inclusion will significantly affect the temporal evolution of the system 

without the weighting term. The objective of the penalty term is just to redistribute the probabilities 𝑊𝑎𝑑𝑣,𝑖 and 

𝑊𝑟𝑒𝑐,𝑖 so that the FB-MFkMC algorithm does not overly select droplet spreading along a given direction, as 

observed in Fig. C.1c, and therefore it is not intended to affect the cumulative sum of the interfacial rates, 

∑ 𝑊𝑖𝑖 . Consequently, the weighing term is necessary to ensure that the unrealistic droplet spreading is 

eliminated without distorting the system temporal information. These restriction equations can be combined 

into a single equation to capture the rate of the droplet interface movement, as listed in Eqs. (6.1)-(6.3). 
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C.2  FB-MFkMC Algorithm for Sessile Droplet Spread on a 

Smooth Surface 

The complete FB-MFkMC algorithm to capture sessile droplet spread on an ideally-flat surface can be 

described as follows: 

1. Initialize the system to capture the moment that the droplet contacts the solid surface, as illustrated in 

Fig. C.2a, by marking the droplet and atmosphere interface sites according to Fig. C.2b. Calculate the 

initial properties of each interface site 𝑖 as follows:  

a. Calculate the radial distance 𝑅𝑑𝑟𝑜𝑝,𝑖 between the 𝑖th site and the droplet center. Note that for 

atmosphere-phase interface sites, the reported value of the radius should be the location of the 

nearest droplet interface site (i.e., 𝑅𝑑𝑟𝑜𝑝,𝑖 − 휆) as discussed above. 

b. Determine the state of the site’s nearest neighbours located at 𝑅𝑑𝑟𝑜𝑝,𝑖 ± 휆 in the direction of 

the droplet center (i.e., determine whether the sites located at  ⌊(𝑥ℛ𝑖±𝜆,𝜙𝑖
, 𝑦ℛ𝑖±𝜆,𝜙𝑖

)⌋  and 

⌈(𝑥ℛ𝑖±𝜆,𝜙𝑖
, 𝑦ℛ𝑖±𝜆,𝜙𝑖

)⌉  are droplet or atmosphere sites). Set the initial velocities for each 

interface site based on the droplet horizontal impact velocity, 𝑣𝑑𝑟𝑜𝑝,0.  

c. Calculate 𝑊𝑡𝑜𝑡,𝑛𝑐  and determine the initial advancing and receding rates for each site 

according to Eqs. (6.1)-(6.3). 

d. Calculate the average contact radius of the droplet �̅�𝑑𝑟𝑜𝑝. 

e. Set the initial time to 𝑡 = 0 s. 

2. Determine the time 𝑡 + 𝛿𝑡 when the droplet interface will move using a randomly generated number 

휉𝑐𝑜𝑛𝑡  according to Eq. (3.11). Calculate 𝑊𝑡𝑜𝑡,𝑛𝑐  and update any time-dependent rate equations 

according to Eqs. (6.1)-(6.3).  

3. Apply MC sampling to select a random interface site according to Eq. (3.12).  If the selected site is an 

atmosphere site, then the droplet will advance into this site and change it into a droplet interface site. 

If the selected site is a droplet site, then the droplet will recede from this site and it will change into an 

atmosphere interface site. Calculate the new rate for the selected site according to Eqs. (6.1)-(6.3). 

4. Check to see if any interface sites have become bulk sites on either side of the interface due to the 

executed event. Remove any newly formed bulk sites. 

5. Check to see if any new interface sites are created from former bulk phase sites on either side of the 

interface due to the executed event (i.e. formerly blank sites on the surface lattice that now border the 

interface). Initialize the velocity of the new interface sites based on the velocity of the selected site, 

calculate 𝑅𝑑𝑟𝑜𝑝,𝑖 , determine the state of the site’s nearest neighbours located at 𝑅𝑑𝑟𝑜𝑝,𝑖 ± 휆 in the 
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direction of the droplet center, and calculate the movement rates 𝑊𝑎𝑑𝑣,𝑖  and 𝑊𝑟𝑒𝑐,𝑖  for each new 

interface site according to Eqs. (6.1)-(6.3). 

6. Update �̅�𝑑𝑟𝑜𝑝 and 𝑊𝑡𝑜𝑡,𝑛𝑐. 

7. Repeat Steps 2-6 until the final time 𝑡 = 𝑡𝑓 has been reached.  

C.3  Previous Derivation Attempts of the Viscous Damping Force 

Expression 

Due to the lack of mechanistic models for the viscous damping force within the literature, a few different 

attempts were made to derive these analytical expressions. These attempts were based on integrating the viscous 

stress tensor across the interface between the droplet and the solid surface as follows:47 

 �⃑�𝑣(ℛ, 𝔷, 𝑡) = ∫ ∫ [−휇 (
𝛿𝑢𝔷(ℛ,𝔷,𝑡)

𝛿𝑟
+

𝛿𝑢ℛ(ℛ,𝔷,𝑡)

𝛿𝔷
) �̂�𝒓 − 2휇

𝛿𝑢𝔷(ℛ,𝔷,𝑡)

𝛿𝔷
�̂�𝖟] 𝑑𝑟

𝑅𝑑𝑟𝑜𝑝

0
𝑑𝜙

2𝜋

0
  (C.5) 

where 𝑢ℛ and 𝑢𝔷 are the radial and axial components of the fluid velocity inside the droplet in cylindrical 

coordinates. In order to solve for the viscous damping force, it is necessary to know the exact velocity profiles 

inside the droplet at any given point in space and time, and consequently each of the attempted methods utilized 

different approaches to calculate these parameters. In the first attempt, analytical solutions were found for the 

 

Figure C.2: a) Side view of the droplet when it first impacts the solid surface; b) Initial configuration 

on the FB-MFkMC lattice for the moment when the droplet first impacts the solid surface 
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velocity profiles inside a droplet under Stokes flow conditions. These expressions were  based on evaporating 

droplet studies previously reported within the literature, and further details concerning the derivation and 

assembly of these equations can be found therewithin.50,51 Note that the aforementioned works within the 

literature defined their velocity profiles with respect to the evaporation flux experienced by the droplets within 

their systems. However, the sessile droplet system considered in this work was assumed to undergo negligible 

evaporation. Instead, the methods reported within the literature were reversed to derive the velocity profiles as 

a function of the triple contact line velocity. The derived velocity profiles were subsequently coupled with Eq. 

(C.5) and integrated analytically to calculate the viscous damping force. However, this approach was derived 

under the assumption that the inertial forces were negligible (i.e. Stokes flow), which is known to be inaccurate 

for the scenarios considered in this work. Furthermore, the calculated velocity profiles predicted an infinite 

viscous force acting on the droplet system even under Stokes flow assumptions, which casts doubt on the 

overall accuracy of the derived velocity profiles themselves. In order to overcome these shortcomings, the 

velocity profiles inside the droplet were determined by solving the Navier-Stokes equations numerically using 

CFD-based techniques in COMSOL Multiphysics 5.6. These CFD models were designed to approximate the 

velocity profiles inside the droplet based on the velocity of the triple contact line, the droplet radius, and the 

droplet contact angle. The derived velocity profiles were subsequently used to approximate the viscous 

damping force by numerically solving Eq. (C.5). However, this approach predicted viscous damping forces 

that were orders of magnitude too small and therefore it did not adequately accommodate for the damping 

behaviour observed in the studied droplet systems. 
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Appendix D 

Supplementary Material for Chapter 7 

When the droplet is advancing or receding overtop of an inter-pillar gap (i.e., when the droplet interface 

can be represented using a VLV), it will experience different forces compared to when the droplet is advancing 

or receding on top of the pillars, and consequently it is necessary to modify the force balance to accommodate 

for these differences. Most notably, liquid droplets are considered to have a contact angle of 180° with air 

(휃𝑒,𝑖 = 𝜋),234 where 휃𝑒,𝑖 is a binary variable that captures the variability of the contact angle between the VLV 

and TCL for a given site 𝑖 as follows: 

휃𝑒,𝑖 = {
휃𝑒 ,    𝑖 𝑖𝑠 𝑇𝐶𝐿  
𝜋,    𝑖 𝑖𝑠 𝑉𝐿𝑉

         (D.1) 

Accordingly, the capillary force for the VLV can be written as follows: 

�⃑�𝑐𝑎𝑝,𝑉𝐿𝑉(𝒙, 𝑡) = 2𝜋𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝛾𝑙𝑣(−1 − 𝑐𝑜𝑠 휃 (𝒙, 𝑡))      (D.2) 

In addition to the capillary force, the droplet is additionally expected to experience pinning along the 

edges of the pillars when it is receding. While pinned, the droplet interface will remain fixed in place at the 

transition point between VLV and TCL until the droplet local contact angle exceeds its receding contact angle 

휃𝑟𝑒𝑐, depending on whether the droplet is advancing or receding.235,236 Although pinning is often associated 

with the local contact angle, it can also be considered as an energy barrier that must be overcome for de-pinning 

to occur.149 In this proposed model, contact line pinning was accommodated in a similar manner to the capillary 

rise model discussed in Chapter 5 by factoring in an energy barrier angle based on the changes in the droplet 

height into the capillary force term, as follows: 

�⃑�𝑐𝑎𝑝,𝑝𝑖𝑛(𝒙, 𝑡) = 2𝜋𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑠𝑖𝑛(𝛽𝑠(𝒙, 𝑡) − 휃(𝒙, 𝑡)))   (D.3) 

Where �⃑�𝑐𝑎𝑝,𝑝𝑖𝑛(𝒙, 𝑡) depicts the capillary force when the droplet is pinned while receding at a position 

𝒙 and time 𝑡 , and 𝛽𝑠(𝒙, 𝑡) denote the energy barrier angle for receding interfaces at 𝒙 and 𝑡 , and can be 

calculated using Eq. (2.7). 

In addition to the above-mentioned changes to the capillary force, the heterogeneous nature of Cassie 

wetting on an SHS is additionally expected to affect the viscous damping force of a spreading sessile droplet. 

When a droplet spreads on a solid surface, its viscous force is considered to be proportional to the contact 

between the droplet fluid and the solid surface due to the derivation of viscous damping for triple contact 

interface systems.56 As per its derivation, the viscous damping force term emerges from the boundary condition 
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of the viscous stress term acting on the fluid/solid interface. Similarly, the boundary condition of the viscous 

stress term acting on the fluid/atmosphere interface can be re-arranged to yield the capillary force term. 

Consequently, when a droplet undergoes Cassie wetting on an SHS, the viscous and capillary forces will 

contribute differently to the overall force balance compared to an ideally flat surface due to the increase in 

liquid/atmosphere interfaces. This was accommodated within the force balance as follows: 

�⃑�𝑐𝑎𝑝,𝑐𝑤(𝒙, 𝑡) = 2𝜋(2 − 𝑤𝑆𝐻𝑆)𝑅𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝛾𝑙𝑣(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃 (𝒙, 𝑡))   (D.4) 

�⃑�𝑣,𝑐𝑤(𝒙, 𝑡) = −2𝜋𝑤𝑆𝐻𝑆𝒶휇𝑣𝑑𝑟𝑜𝑝(𝒙, 𝑡)𝑉𝑅𝑠𝒷
1/𝑂ℎ𝑂ℎ𝓌      (D.5) 

Where �⃑�𝑐𝑎𝑝,𝑐𝑤(𝒙, 𝑡) and �⃑�𝑣,𝑐𝑤(𝒙, 𝑡) denote the modifications to the capillary and viscous damping forces 

due to the change in liquid/atmosphere and liquid/solid interfaces from the ideally flat surface case, and 𝑤𝑆𝐻𝑆 

denotes the ratio of the underside of the droplet in contact with the solid surface pillar tops, as listed in Eq. 

(7.4). 

The full force balance for an SHS pillar spreading on an SHS can be determined by combining Eqs. 

(D.1)-(D.5) with Eq. (6.13) as follows: 

ℱ𝑖
𝑑2𝑅𝑑𝑟𝑜𝑝,𝑖

𝑑𝑡2
=

{
  
 

  
 2𝜋(2 − 𝑤

𝑆𝐻𝑆
)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣

(𝑐𝑜𝑠 휃𝑒 − 𝑠𝑖𝑛(𝛽
𝑠,𝑖

− 휃𝑖)) − 16.1439𝜋𝑤𝑆𝐻𝑆휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠0.9975
1

𝑂ℎ𝑂ℎ−0.8314,   𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔, 𝑇𝐶𝐿 𝑠𝑖𝑡𝑒  

    2𝜋(2 − 𝑤
𝑆𝐻𝑆

)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣
(−1 − 𝑠𝑖𝑛(𝛽

𝑠,𝑖
− 휃𝑖)) − 16.1439𝜋𝑤𝑆𝐻𝑆휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠0.9975

1

𝑂ℎ𝑂ℎ−0.8314,   𝑝𝑖𝑙𝑙𝑎𝑟 𝑒𝑑𝑔𝑒 𝑎𝑛𝑑 𝑟𝑒𝑐𝑒𝑑𝑖𝑛𝑔, 𝑉𝐿𝑉 𝑠𝑖𝑡𝑒

 2𝜋(2 − 𝑤
𝑆𝐻𝑆

)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣
(𝑐𝑜𝑠 휃𝑒 − 𝑐𝑜𝑠 휃𝑖) − 16.1439𝜋𝑤𝑆𝐻𝑆휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠0.9975

1

𝑂ℎ𝑂ℎ−0.8314 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑇𝐶𝐿 𝑠𝑖𝑡𝑒                  

2𝜋(2 − 𝑤
𝑆𝐻𝑆

)𝑅𝑑𝑟𝑜𝑝,𝑖𝛾𝑙𝑣
(−1 − 𝑐𝑜𝑠 휃𝑖) − 16.1439𝜋𝑤𝑆𝐻𝑆휇𝑣𝑑𝑟𝑜𝑝,𝑖𝑉𝑅𝑠0.9975

1

𝑂ℎ𝑂ℎ−0.8314 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒, 𝑉𝐿𝑉 𝑠𝑖𝑡𝑒           

(D.6) 

 These equations can be subsequently re-arranged in terms of velocity, as illustrated in Eq. (7.5), and 

substituted into the SHS-MFkMC rate equations to accommodate for Cassie wetting on an SHS. 

In addition to modifying the force balance, it is also necessary to modify the SHS-MFkMC rate equations 

themselves to prevent unrealistic droplet spreading behaviour from occurring due to the general assumptions 

of MFkMC. When the SHS-MFkMC algorithm is used to capture Cassie sessile droplet spread on an SHS, this 

method can frequently encounter phantom pinning when the droplet switches from advancing to receding or 

vise versa. This phantom pinning does not occur due to any expected pinning phenomena as discussed 

previously, but rather it occurs due to a discrepancy between the predicted velocities of the droplet interface 

sites and those of the atmosphere interface sites along the edges of pillars. Recall that the rates for each MFkMC 

interface site for a given phase is defined as the probability that said phase will recede from the given site and 

get replaced by the adjacent phase. When this definition is applied to two adjacent droplet and atmosphere 

interface sites for a sessile droplet model, they provide a complementary pair of rate events that describe the 

probability that the same section of the droplet interface will either advance or recede, as illustrated in Fig. 
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D.1a. Consequently, it is expected that the velocities associated with the droplet interface site 𝑣𝑑𝑟𝑜𝑝,𝑑𝑖 and the 

atmosphere interface site 𝑣𝑑𝑟𝑜𝑝,𝑎𝑖 will be approximately the same at the same point along the interface, as both 

velocities are supposed to represent the velocity of the triple contact line segment itself. However, when a 

droplet stops advancing and begins to recede, the VLV interface sites will slow down and reverse speed at a 

significantly faster rate than the TCL sites on top of the pillars due to the difference in the intrinsic contact 

angles (i.e., because water and air have a contact angle of 180°, the VLV sites experience a much stronger 

deceleration from the larger capillary force compared to the TCL sites). As a result, this unexpected pinning 

creates an impossible jump discontinuity in the interface velocity when the droplet triple interface is located 

along a pillar edge, as demonstrated in Fig. D.1b. In this case, the droplet interface site predicts that the interface 

 

Figure D.1: a) When a droplet is advancing or receding via SHS-MFkMC, the interface velocities 

predicted by the sites on either side of an interface are typically the same on a smooth surface. b) 

phantom pinning occurs when a droplet changes direction on the edge of a pillar. This phantom pinning is 

caused by a jump discontinuity in the predicted interface velocity as calculated by the sites on either side 

of the interface. c) The jump discontinuity can be eliminated by averaging the two predicted interface 

velocities, therefore eliminating the jump discontinuity. 
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has a positive velocity, and therefore should advance. On the other hand, the atmosphere interface site predicts 

that the interface has a negative velocity, and therefore it should recede. However, it is the atmosphere interface 

sites that handle droplet advancing events whereas it is the droplet interface sites that handle droplet receding 

events, and as a result the probability of either event occurring is small. Consequently, the droplet remains 

pinned on the edges of these pillars and will not advance or recede for a very long time. In order to prevent this 

issue from occurring, the SHS-MFkMC algorithm was modified with an extra averaging condition, where the 

velocities of the droplet and atmosphere interface sites are averaged if the interface is on the edge of a pillar. 

This averaging condition is denoted according to Eqs. (7.6)-(7.7). In particular, Eq. (7.6) calculates the velocity 

of a TCL interface site as if it was a VLV interface site, and vice versa. Subsequently, Eq. (7.7) averages the 

expected interface velocity calculated using Eq. (7.5) with the modified velocity calculated using Eq. (7.6) if 

the interface is on a pillar edge, and otherwise sets the velocity to be the expected velocity (i.e., Eq. (7.5)) if 

the interface is not on a pillar edge. This velocity averaging approach is expected to eliminate the phantom 

pinning from occurring when the droplet interface changes direction as it will replace the jump discontinuity 

in the interface velocity with a single average value that changes based on the underlying physics on both sides 

of the interface, as illustrated in Fig. D.1c. However, this approach will not affect any other interface sites, 

where the velocities across the interface are expected to be identical. 

 


