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Abstract 

In the process industry, the economical operation of systems is of utmost importance for stakeholders to remain 

competitive. Moreover, economic incentives can be used to drive the development of sustainable processes, which 

must be deployed to ensure continued human and ecological welfare. In the process systems engineering paradigm, 

model predictive control (MPC) and real-time optimization (RTO) are methods used to achieve operational optimality; 

however, both methods are subject to uncertainty, which can adversely affect their performance. Along with the 

challenges of uncertainty, formulations of economic optimization problems are largely problem-specific as process 

utilities and products vary significantly by application; thus, many nascent processes have not received a tailored 

economic optimization treatment.  

In this thesis, the focus is on avenues of economic optimization under uncertainty, namely, the two-step RTO method, 

which updates process models via parameters; and the modifier adaptation (MA) method, which updates process 

models via error and gradient correction. In the case of parametric model uncertainty, the two-step RTO method is 

used. The parameter estimation (PE) step that accompanies RTO requires plant measurements that are often noisy, 

which can cause the propagation of noise to the parameter estimates and result in poor RTO performance.  In the 

present work, a noise-abatement scheme is proposed such that high-fidelity parameter estimates are used to update a 

process model for economic optimization. This is achieved through parameter estimate bootstrapping to compute 

bounds and determine the measurement-set that results in the lowest parameter variation; thus, the scheme is dubbed 

low-variance parameter estimation (lv-PE). This method is shown to result in improved process economics through 

truer set points and reduced dynamic behaviour. 

In the case of structural model mismatch (i.e., unmodelled phenomena), the MA approach is used, whereby gradient 

modifier (i.e., correction) terms must be recursively estimated until convergence. These modifier terms require plant 

perturbations to be performed, which incite time-consuming plant dynamics that delay operating point updates. In 

cases with frequent disturbances, MA may have poor performance well as there is limited time to refine the modifiers. 

Herein, a partial modifier adaptation (pMA) method is proposed, which selects a subset of modifications to be made, 

thus reducing the number of necessary perturbations. Through this reduced experimental burden, the operating point 

refinement process is accelerated resulting in quicker convergence to advantageous operating points. Additionally, 

constraint satisfaction during this refinement process can also result in poor performance via wasted below-

specification products. Accordingly, the pMA method also includes an adjustment step that can drive the system to 

constraint-satisfying regions at each iteration. The pMA method is shown to economically outperform both the 

standard MA method as well as a related directional MA method in cases with frequent periodic disturbances. 

The economic optimization methods described above are implemented in novel processes to improve their economics, 

which can incite further technological uptake. Post-combustion carbon capture (PCC) is the most advanced carbon 

capture technology as it has been investigated extensively. PCC takes industrial flue gases and separates the carbon 

dioxide for later repurposing or storage. Most PCC operating schemes make decisions using simplified models since 

a mechanistic PCC model is large and difficult to solve. To this end, this thesis provides the first robust MPC that can 

address uncertainty in PCC with a mechanistic model. The advantage of the mechanistic model in robust optimal 

control is that it allows for a precise treatment of uncertainties in phenomenological parameters. Using the multi-
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scenario approach, discrete realizations of the uncertain parameters inside a given uncertainty region can be 

incorporated into the controller to produce control actions that result in a robust operation in closed-loop.  In the case 

of jointly uncertainty activity coefficients and flue gas flowrates, the proposed robust MPC is shown to lead to 

improved performance with respect to a nominal controller (i.e., one that does not hedge against uncertainty) under 

various operational scenarios. 

In addition to the PCC robust control problem, the mechanistic model is used for economic optimization and state 

estimation via RTO and moving horizon estimation (MHE) layers respectively. While the former computes 

economical set points, the latter uses few measurements to compute the full system state, which is necessary for the 

controller that uses a mechanistic model.  These layers are integrated to operate the system economically via a new 

economic function that accounts for the most significant economic aspects of PCC, including the carbon economy, 

energy, chemical, and utility costs. A new proposed MPC layer is novel in its ability to enable flexible control of the 

plant by manipulating fresh material streams to impact CO2 capture and the MHE layer is the first to provide accurate 

system estimates to the controller with realistically accessible measurements. A joint MPC-MHE-RTO scheme is 

deployed for PCC, which is shown to lead to more economical steady-state operation compared to constant set point 

counterfactuals under cofiring, diurnal operation, and price variation scenarios. The lv-PE scheme is also deployed 

for the PCC system where it is found to improve set point economics with respect to traditional PE methods. The 

improvements are observed to occur through reduced emissions and more efficient energy used, thus having 

environmental co-benefits. Moreover, the lv-PE algorithm is used for uncertainty quantification to develop a robust 

RTO that leads to more conservative set points (i.e., less economic improvement) but lower set point variation (i.e., 

less control burden).  

The methodologies developed in this PhD thesis provide improvements in efficacy as well as applicability of online 

economic optimization in engineering applications, where uncertainty is often present. These can be deployed by both 

academic as well as industrial practitioners that wish to improve the economic performance on their processes. 
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1. Introduction 

As the chemical, manufacturing, and energy industries expand to meet growing demand, digitalization is being 

increasingly embraced and computational techniques are becoming necessary to remain competitive. This growth also 

incites further interconnectedness of processes and the markets, necessitating real-time decision-making regarding the 

operation of processes. In this competitive environment, process economics are paramount and online model-based 

optimization is emerging as an attractive option to update operating conditions subject to external factors (i.e., 

upstream processes changes, external disturbances, market prices). Additionally, economic mechanisms like carbon 

and energy pricing can promote sustainability. Figure 1-1 depicts the interaction of an online economic optimizer and 

a plant (e.g., manufacturing, process, energy). As depicted therein, the optimizer is subject to pricing dictated by the 

market. The optimizer also contains a mathematical model that predicts process phenomena and behaviour which, 

along with the pricing information, allow for an economic model of the plant to be formulated. The optimizer solves 

for cost-optimal decisions to convey to the plant; moreover, different optimizers could contain additional sub-layers 

that operate at different timescales. Nevertheless, the plant is operated using the optimizer-computed decisions subject 

to disturbances. Finally, sensor measurements are taken from the plant, whereby they are used to by optimizer to 

reconcile the process model with the plant. Among the most sophisticated model-based operational approaches being 

used today are real-time optimization (RTO) (Darby et al., 2011), model predictive control (MPC) (Mayne, 2014), 

and modifier adaptation (MA) (Marchetti et al., 2009). These methods are the common theme in the present thesis. 

 
Figure 1-1: General flow of information for an online economic optimizer 

RTO is commonly used in plants that deploy feedback control to regulate the system towards desired operating 

conditions. The most common implementation of RTO is the “two-step” approach, which uses time-averaged steady-

state measurements to recursively estimate and update model parameters in the economic optimization layer. The 

economic optimization layer uses the same model as the parameter estimation (PE) layer; thus, the PE layer continually 

reconciles the optimization model with the latest plant data. The RTO economic optimization layer optimizes the plant 

operating conditions subject to an economic objective (e.g., revenue, cost, energy, emissions) and generates set points 

for the feedback controller to steer the plant towards. 

Feedback control makes use of measurements or estimates of plant quantities to regulate the system towards the set 

points dictated by the RTO layer. Conventionally, classical control approaches like proportional-integral-derivative 

(PID) controllers have been used and continue to be prevalent in industry. However, these traditional PID controllers 
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are unable to consider process constraints and have difficulty in dealing with complex systems (e.g., with time-delays, 

nonlinearities, high-order dynamics). Resulting from these limitations, optimal control like MPC is increasingly being 

investigated, with a particular focus on its nonlinear version NMPC (i.e., an MPC that uses a nonlinear process model) 

to deal with troublesome dynamic behaviour. In principle, NMPCs (and MPCs more broadly) use a dynamic process 

model to predict future process behaviour and determine optimal control action based on the predicted process 

dynamics. The NMPC problems use feedback in the form of initial conditions to update its trajectory and execute its 

optimization problem at every time interval. NMPC solutions generate an optimal manipulated variable trajectory, 

and the first time-instance of this trajectory is provided to the plant. The plant is operated for another time interval and 

the initial conditions of the NMPC are updated to reflect the new measurements/estimates resulting in closed-loop 

operation. When integrated with RTO, an NMPC that uses a matching dynamic model to the RTOs steady-state model 

can also be updated upon the execution of a PE problem. 

The initial conditions necessary to solve the MPC problem are not always readily measurable; this immeasurability is 

even more common in NMPC, where the process model is often detailed and requires information regarding many 

(sometimes all) system states. When this situation occurs, state estimation is deployed to use the available 

measurements to provide the necessary initial conditions to solve the NMPC problem. While many state estimation 

techniques exist (e.g., Kalman filter, Kalman, 1960; extended Kalman filter, Haseltine and Rawlings, 2005), MHE is 

of increasing interest for nonlinear systems to complement NMPC. MHE is effectively the inverse of MPC; instead 

of predicting the future to produce control actions, it uses historical trajectories to estimate the current state of the 

system. MHE achieves this by reconciling past measurements, estimates, and control actions to a dynamic model on 

a horizon, thus finding the optimal current state to match its predicted past trajectory. In doing predicting this current 

state, the MHE provides feedback to the NMPC, thus closing the loop. Like the RTO and NMPC, the MHE model 

can also be updated with a PE problem if it uses a matching model. 

A commonality of all three approaches mentioned above is the use of a process model to make their respective 

decisions. All models make simplification and assumptions with respect to the actual system they represent; moreover, 

they require external inputs that may be unknown, measured, or estimated. These potential imperfections in the model 

can be lumped together as uncertainties. Uncertainties internal to the model are referred to as endogenous while those 

from external sources are known as exogeneous. In the case of the RTO/NMPC/MHE hierarchy as presented above, 

only parametric (endogenous and exogenous) uncertainty is generally addressed; this is sufficient if the model is of 

high quality as to be accurate across many operating conditions and capture most process phenomena. Moreover, the 

PE quality must be high, else erroneous predictions will be made by these models. If model quality is not high such 

that the plant and model cannot be reconciled via parameters, then structural uncertainty is present as the model’s 

mathematical structure is awry from that of the plant. 

In cases of structural model uncertainty MA is used to adapt the imperfect model to perform steady-state economic 

optimization. This is done through zeroth and first order “modifier” terms, which correct the optimization problem 

with respect to its constraints and gradients. By performing these corrections, MA can eventually converge to the true 

plan optimum upon refinement. A main difficulty in MA is the estimation of gradients for the first order correction. 

While model gradients are easy to estimate as the model is known by the modeller, the plant gradients are significantly 
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more difficult as they are not directly measurable from the plant. A common approach to estimate these gradients is 

to successively perturb plant inputs such that its local gradient with respect to each input can be estimated. However, 

this is difficult to do in practice in systems with slow dynamics, frequent disturbances, or many inputs.  

To the author’s knowledge, both two-layer RTO and MA algorithms contain points of weakness that can inhibit the 

economic performance of the systems they operate. In the case of the hierarchical RTO/NMPC/MHE approach, all 

three layers can be reliant on the fidelity of the parameter estimates generated by the PE problem. Poor parameter 

estimates can create problems in the RTO-generated set points leading to set point offset, as well as the NMPC/MHE 

control actions and state estimates leading to poor control performance and further offset. As the PE problem uses 

noisy data to generate its estimates, it is subject to propagation of that noise to the estimates. Moreover, the PE 

approach as commonly implemented does not verify the estimate quality before providing it to the other layers. In the 

case of the MA approach, the weakness occurs in the perturbation step whereby the optimal decisions made by the 

MA can be severely delayed. In a system where the disturbance dynamics are faster than the perturbation dynamics, 

the MA may not converge to or even approach the true plant set point. 

In addition to the algorithmic gaps mentioned above, the economically optimal operation of many sustainable 

processes remains fully or partially unaddressed, especially as it pertains to addressing uncertainty. One such process 

is post-combustion carbon capture (PCC). For PCC, only a handful of online economic optimization studies have been 

published with significant limitations. PCC is a nascent process that has yet to reach widespread industrial update 

owing to its operating cost. Accordingly, online economic of the PCC process can be a factor to further induce 

operators to adopt this technology.  

1.1. Research Objectives 

This work attempts to address the issues regarding economic optimization under uncertainty listed above. New insights 

on ways to improve economic performance over existing uncertainty techniques will be presented in the context of 

RTO, NMPC, MHE, and MA. These will be applied to existing process benchmarks as well as budding processes that 

have not yet received attention in the optimal operation literature. Specifically, the current PhD thesis aims to achieve 

the following: 

• Observe the propagation and effect of noise on the traditional two-layer RTO approach through its effect on 

parameter estimation and develop an operating scheme that abates noise. 

• Examine MA in the context of high-frequency disturbances and slow dynamics; design an approach to deal 

with these circumstances and improve the economic performance of MA. 

• Investigate the effects of uncertainty in the control, estimation, and economic optimization of post-

combustion carbon capture (PCC) and propose a tiered economical operational scheme for its operation. 

1.2. Contributions 

To address the objectives listed above, this thesis will result in the following methodological contributions: 

• A low-variance parameter estimation (lv-PE) approach integrated with RTO and NMPC to operate process 

systems under parametric uncertainty without propagation of noise to the process set points and control 

actions. A twofold algorithm will be presented, which chooses a favourable subset of measurements to reduce 
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noise propagation and ensures estimates are indeed accurate. Testing of the lv-PE scheme under known 

benchmark problems under the standard two-layer approach. 

• A partial modifier adaptation approach to address structural model uncertainty in systems with slow dynamics 

and/or frequent disturbances. An algorithm to choose partial modification strategies that will lead to the best 

economic performance and evaluation of the algorithm in several systems with different structural 

characteristics. An ancillary problem to account for constraint violation is also proposed so the algorithm 

improves constraint adherence as well as economics. 

Moreover, the following applied contributions are also described, which pertain to the PCC process: 

• A robust NMPC that uses a mechanistic model for the PCC process and can address endogenous and 

exogenous uncertainty through the deployment of a scenario-based approach. Comparison of the proposed 

robust controller with a deterministic nominal controller under variations in the amount of uncertainty and 

variations the number of uncertain scenarios. Testing of the robust control scheme under step and a realistic 

power plant diurnal load variation scenario. 

• A novel economic objective function that considers all significant operational cost in PCC for use in an RTO 

scheme integrated MHE and NMPC to operate the system under realistic measurability assumptions and 

relatively low cost. Use of a mechanistic PCC model in the three operating layers and testing of the scheme 

under realistic scenarios including: cofiring of fuels, diurnal load variations, and price fluctuations. The 

NMPC will allow for flexible operation of the PCC process while the MHE allows for a realistic subset of 

measurements to be required by the controller. 

• Application of the lv-PE scheme to the PCC system and evaluation of its effect on process economics, energy 

consumption, emissions, and raw material usage over time. Additional evaluation of the effect of estimations 

fidelity on control performance as effected by NMPC and MHE layers. Study of PCC under time-of-use 

pricing scenarios across a wide set of possible disturbances. A robust RTO muti-scenario scheme to jointly 

address uncertain parameters and fluctuating prices will also be studied. 

1.3. Structure of Thesis 

The thesis presented herein is structured as follows: 

Chapter 2 provides a literature in the pertinent research areas in economic optimization under model uncertainty 

including two-step approach and modifier adaptation. Moreover, methods to address uncertainty in MPC will also be 

outlined. Noise abatement methods for PE integrated with control and RTO will be examined. Lastly, online economic 

optimization methods for the novel PCC and RAS processes will be reviewed.  

Chapter 3 presents the design of a robust NMPC for PCC under parametric uncertainty. The controller uses a dynamic 

mechanistic model, thereby enabling a precise treatment of uncertain model parameters and upstream disturbances. 

This controller is tested against a its nominal counterpart under step disturbances and diurnal load variation scenarios. 

The effect of number of scenarios and size of uncertainty region is also studied therein. This study was published in 

Fuel (Patrón and Ricardez-Sandoval, 2020a). 

Chapter 4 introduces an RTO scheme for PCC by proposing a comprehensive cost function that included, energy, 

carbon tax, carbon sales, and utility costs. Moreover, a MHE is deployed along with a multi-variable NMPC to achieve 
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the set points dictated by the RTO with a realistic set of measurements. The proposed RTO is deployed in cofiring, 

diurnal variation, and price change scenarios with corresponding counterfactuals without RTO. This work was 

published in Applied Energy (Patrón and Ricardez-Sandoval, 2022a). 

Chapter 5 proposes a scheme to abate the effect of measurement noise in the PE problem associated with RTO. The 

proposed algorithm chooses the lowest-variance subset of measurements prior to estimation and produces error bounds 

of the resulting estimates. This is motivated through a demonstration of the effect of parameter variation on the 

economic optimum and tested in two test cases. The scheme is designed to result in improved economics and reduced 

constraint violation through its effect of set point generation and NMPC parameter updates. This study was published 

in Industrial & Engineering Chemistry Research (Patrón and Ricardez-Sandoval, 2022b). 

Chapter 6 applies the PE scheme presented in Chapter 5 to the PCC plant studied in Chapter 5. Two sets of uncertain 

parameters are considered: the flue gas CO2 content and the activity coefficients. The PE scheme aims to make the 

PCC RTO more realistic by considering uncertainties. Moreover, fluctuating carbon and energy prices are also 

considered and addressed with a robust formulation.  The effect of the pricing on the rate of carbon capture and process 

cost is studied and paired with varying disturbances.  

Chapter 7 proposes a MA scheme, entitled partial MA (pMA), which is designed to abate the effect of uncertainty in 

cases of structural (i.e., not parametric) plant-model mismatch. This scheme aims to improve on the performance of 

the standard MA by selecting a subset of inputs for modification, instead of using all inputs, thus allowing for faster 

action. An algorithm for selecting the number of inputs as well as an ancillary problem to ensure constraint adherence 

are presented.  

Chapter 8 presents concluding remarks as well as potential avenues for future works within the remit of the methods 

presented herein.  
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2. Background and Literature Review 

The optimal process operations literature is vast and quickly evolving. This chapter reviews the variety of different 

methods used for optimal operation, how they have been applied to the sustainable processes of interest in the present 

thesis, and any gaps that may exist. The economic optimization under uncertainty literature is first reviewed in Section 

2.1 with the context of RTO and MA. Moreover, the model predictive control literature is reviewed in Section 2.2 

with a focus on uncertainty and economic control. Finally, the applications of these methods to the PCC are outlined 

in Section 2.3. 

2.1. Online Economic Optimization of Process Systems 

The economic operation of systems is of paramount importance in the chemical and process industries, which are 

becoming increasingly market-driven and competitive. To this end, model-based economic optimization has been an 

active field within the process systems engineering community in recent years. 

2.1.1. Two-step Real-time Optimization 

Chiefly among these methods is Real-Time Optimization (RTO: Darby et al., 2011), which has been deployed in a 

variety of applications: e.g., a laboratory-scale flotation column (Navia et al., 2016), hydrogen production network 

(Galan et al., 2019). RTO uses a process model as well as an economic model to determine the optimal operating point 

for the plant while addressing model uncertainty. These operating points are passed as set points to a control layer, 

which dynamically steers the plant towards the economic optimum.  

RTO can either use steady-state or dynamic models to generate constant set points or set point trajectories, 

respectively. Dynamic RTO (DRTO) is used when systems can exhibit expensive dynamics, instability, or otherwise 

undesirable steady-state operation (Ramesh et al., 2021). Several variant of DRTO have been proposed, which include 

the use of stabilizing constraints (MacKinnon et al., 2022; Ramesh et al., 2021) and embedded closed-loop predictions 

(Dering and Swartz, 2022). While DRTO is beneficial in some cases, the typical steady-state RTO is often sufficient 

to achieve good performance and is the focus of this review.  

Steady-state RTO typically employs detailed models that are a suitable reflection of the plant behaviour, often those 

models are subject to uncertainty, which can cause erroneous operating points that lead to economic suboptimality 

and constraint violations when implemented in the plant. Differences between the model and plant result in suboptimal 

plant economics as the model being optimized may not be fully equivalent with the plant it represents. The 

uncertainties present in RTO problems that cause these suboptimalities can be either structural (i.e., the model does 

not fully account for the phenomena occurring in the plant) or parametric (i.e., the model contains parameters that are 

not known precisely and/or may change over time) (Krasławski, 1989). While structural model uncertainty in RTO is 

also an active research area (Marchetti et al., 2009; Roberts and Williams, 1981), parametric uncertainty is of interest 

in the present study.  

To mitigate the effects of parametric uncertainty and arrive near the “true” economic optimum (i.e., the optimum that 

corresponds to the plant), a Parameter Estimation (PE) step is typically implemented alongside the economic 

optimization step in RTO via the so-called two-step approach. The PE step uses steady-state process information (i.e., 

historical data on the steady-state measurements and manipulated variables) to perform a least squares optimization 
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problem, whereby the difference between measurements and the steady-state process model predictions are minimized 

with the uncertain parameters as the decision variables (Cox, 1964). These updated parameters are subsequently 

supplied to the RTO problem and can be also supplied to the controller (e.g., in a model-based control scheme that 

uses a dynamic version of the RTO model). Once a new set point is achieved, the PE step is repeated as new steady-

state data becomes available. Thus, the procedure of executing PE and RTO is performed periodically such that the 

plant and the model are constantly being reconciled through the model parameters. This overall scheme is closed loop 

since the RTO set points are passed to a regulatory controller, which acts on the plant, whereby plant measurements 

are supplied to the PE problem and the controller. Note that the associated problem of identifying whether steady state 

has been reached (known as steady state identification (SSI: Cao and Rhinehart, 1995) is also a part of many RTO 

schemes. While SSI can be used to indicate when it is appropriate to begin collecting steady-state measurements, it 

does not otherwise interact with the PE and RTO in parameter estimation or set point generation, respectively; thus, 

its deployment is often omitted in the context of RTO for simplicity. 

Issues arising from the use of experimental measurements often arise in practice, which could lead to performance 

loss in downstream operating layers. For instance, systematic measurement errors caused by instrumentation 

miscalibration, or faults can occur and lead to poor estimation, monitoring, and control performance. To address this, 

gross error detection (GED) methods have been proposed in the literature, e.g., hypothesis testing (Özyurt and Pike, 

2004), error bounds (Bhat and Saraf, 2004), mixed integer programming (Arora and Biegler, 2001), and maximum a 

posteriori estimation (Yuan et al., 2015). In the presence of faults, the deployment of GED in the context of PE/RTO 

will ensure that estimated parameters and set points are consistent with the plant thereby preventing erroneous 

operating points.  

In addition to gross error, random error is also present and difficult to eliminate from industrial systems. This type of 

error occurs as measurements are subject to fluctuations obeying an underlying statistical distribution that causes 

imprecision (Albuquerque and Biegler, 1996). In the context of RTO, variations in the set point produced by the RTO 

owed to noisy parameter estimates can occur (Quelhas et al., 2013); these are caused by noisy plant measurements 

that lead to ill-conditioning in the PE problem and propagation of noise into the estimates. This set point imprecision 

is detrimental to the process economics as the effect of deviating from the true optimum may accrue substantially 

many RTO iterations. Moreover, fluctuating set points also impose undue burden on the process control layer, which 

is preferably avoided. To address the accuracy/precisions of RTO set points, a variety of approaches have been 

proposed in the literature.  

A probability constrained approach has been proposed (Zhang et al., 2002) to incorporate uncertain economics and 

constraints into a robust RTO formulation. Moreover, a Bayesian approaches for parameter estimation paired with 

uncertainty propagation (e.g., via polynomial chaos expansions; Mandur and Budman, 2014) have also been suggested 

to formulate robust economic objectives for optimization. However, robust approaches such as this sacrifice 

performance to find a solution that works well regardless of the true parameter realization. Other authors (e.g., Miletic 

and Marlin, 1998), have developed statistical approaches to decide when set point should be changed to avoid 

transients caused by insignificant parameter/disturbance changes. These use hypothesis testing and only perform 

model and set point updates upon the occurrence of significant changes in operating point; however, this does not 
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address the root issue of noisy measurements and only avoids frequent unnecessary unwarranted set point fluctuations. 

Data reconciliation (DR), which makes experimental data consistent with the process model (Albuquerque and 

Biegler, 1996; Arora and Biegler, 2001; Bhat and Saraf, 2004; Özyurt and Pike, 2004; Yuan et al., 2015), can also be 

employed to improve two-step RTO performance such that the measurement and parameter estimates are consistent 

with the RTO model and constraints; this may have some noise-filtering effects, thus reducing variability. However, 

the main issue being addressed in DR is measurement/model consistency, not random error, and any effect that it has 

on random error may be an ancillary benefit. Increasingly, joint parameter and state estimation has been investigated 

along with the use of dynamic data to improve RTO performance by increasing execution frequency. A recent work 

(Liu et al., 2021) performed dynamic estimation whereby the set of estimated variables changed depending on the 

operating conditions; other contributions (Krishnamoorthy et al., 2018; Matias and Le Roux, 2018; Valluru and 

Patwardhan, 2019) have coupled dynamic parameter estimation with steady-state economic optimization to achieve 

increased RTO frequency. Nevertheless, the issue of noise propagation can persist in joint parameter and state 

estimation if not addressed. Lastly, robust estimators (Albuquerque and Biegler, 1996; Arora and Biegler, 2001; 

Özyurt and Pike, 2004) have been proposed for GED, DR, and PE in chemical systems. These broadly aim to reduce 

the effects of outliers on parameter estimates by reformulation of the respective optimization problems (e.g., log-

likelihood objectives); however, their effect on RTO has not been previously studied. 

In general, the methods listed above require the implementation of new process layers (Bhat and Saraf, 2004; Liu et 

al., 2021; Matias and Le Roux, 2018) (e.g., Kalman filter or MHE) to generate outputs to the existing PE and RTO, 

thus further complicating an already stratified and intensive two-step approach. Other methods require sensitivity 

information (Liu et al., 2021; Miletic and Marlin, 1998), which is difficult to estimate in practice as it requires system 

perturbations; this is particularly difficult in the presence of significant noise. The additional complexity proposed by 

these methods may be undesirable in an industrial setting as operators are reticent to implement convoluted operating 

schemes. Moreover, no method in the literature aims to abate the effect of random error explicitly in the context of 

RTO. This leaves a gap for a scheme that directly targets the effect of random error owed process noise in the two-

layer RTO scheme. 

Two-step RTO can also be used in cases where structural plant-model mismatch is present (i.e., when parameter 

adaptation alone does not lead to convergence to true plant optima). For instance, Mandur and Budman (2015) propose 

a parameter gradient correction on the output model with simultaneous parameter estimation. This allows for 

convergence to the true process optimum and compares favourably to other structural mismatch adaptation schemes. 

2.1.2. Modifier Adaptation 

Increasingly, modifier adaptation (MA) (Gao and Engell, 2005; Marchetti et al., 2009) and its many variants (e.g., 

Marchetti et al., 2010; del Rio Chanona et al., 2021) are being investigated for situations of structural model 

uncertainty where robust and two-step approaches are not suitable. A comprehensive review of MA can be found in 

Marchetti et al (2016). 

Instead of adapting model parameters, MA adapts the economic optimization problem via its objective function and 

inequality constraints. By introducing 0th order bias terms and 1st order gradient modifications with respect to the 

decision variables, MA has been proven to match plant and model KKT conditions (Marchetti et al., 2009). Assuming 
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full state accessibility, the bias terms are straightforward to compute; however, the gradient estimation is more 

intensive as it requires system perturbations. Imposing perturbations on the system requires small changes to be made 

on the input variables such that they produce a correspondingly small changes in the output variables in the 

neighbourhood of the current operating point. Note that perturbations can also refer to disturbances; henceforth we 

only use perturbations only to refer to small user-defined input changes. The gradient near the current operating point 

can then be estimated as the ratio of output to input perturbations, which allows for gradient modifiers to be computed 

and the process operating point to be updated. The gradient modifiers are then recomputed at the newly defined 

operating point as the local gradient changes with new operating points. This refinement process of updating operating 

points and gradients is repeated until the true (i.e., plant) operating point is reached by the model. If a disturbance 

occurs, the gradient computation and modifier refinement process can detect this mismatch such that the new plant 

optimal operating point is found again. Each input perturbation requires the system to undergo dynamic operation 

until the perturbed state is reached, thus delaying the operating point update. This can become detrimental if: i) there 

are many inputs such that many perturbations must occur; ii) the process dynamics are slow such that the gradient 

estimation is time consuming; and iii) the process disturbances occur at a high frequency. These conditions affect the 

amount of time it takes to converge to plant optimality. For instance, if disturbances are occurring frequently, the 

modifier refinement process may be interrupted before convergence to the optimum. Typically, layered RTO 

approaches are generally deployed for high-frequency disturbance scenarios (Bottari et al., 2020), whereby different 

timescales have individuated control schemes. More broadly, if the dynamics are slow, there are numerous inputs, or 

the disturbances occur at a high frequency, the system will not converge to an optimal solution in time to accrue the 

benefits of the true optimum. These represent the main weakness of the existing MA algorithms as constructed and 

deployed in the literature (Marchetti et al., 2016). A few MA variants have been proposed to circumvent the 

perturbation delay. Dual MA (Marchetti et al., 2010) has been proposed to estimate gradients using past operating 

points whereby new successive operating points are placed such that they contain sufficient information for gradient 

estimation. Gao et al., (2016) proposed the use of local approximations of the cost and constraint functions, which 

could be differentiated to produce gradient approximations. Some studies have taken the approach of using transient 

measurements to speed up the MA procedure (e.g., de Avila Ferreira et al., 2017; Marchetti et al., 2020). These 

generally use neighboring extremals, which assume that the uncertainty is parametric (François and Bonvin, 2014). 
Most notably, directional MA (dMA; Costello et al., 2016), which updates the cost and constraint gradients according 

to “privileged” input directions chosen through sensitivity analysis of the Lagrangian function, has been proposed. 

dMA does not ensure KKT matching but ensures that the cost cannot be improved further in the privileged directions 

upon its convergence. dMA requires the knowledge of which parameters are uncertain, their distributions, and the 

sensitivity of the optima to these parameters. The main difficulty that arises when using dMA is the requirement of 

model Lagrangian cross derivatives with respect to inputs and uncertain parameters. Model derivatives are acquired 

through a perturbation process or analytically; however, these are only computed once and generate local sensitivities. 

Costello et al. (2016) compute their privileged directions based on local model sensitivities with respect to inputs and 

uncertain parameters. In reality, structurally mismatched problems may not contain uncertain parameters. Even for 

cases with uncertain parameters, their distributions are unlikely to be known a priori and their sensitivities are unlikely 
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to be the same across all potential operational points. Singhal et al. (2018) and Rodriguez et al. (2022) present a method 

to compute global (instead of local) parameter sensitivities; this allows for changing privileged directions at different 

operating points, which yields more flexibility to the dMA method. These global sensitivity methods also require 

parameter probability densities to be known a priori, which enable parameter Monte Carlo sampling. In addition to 

the assumptions regarding a priori knowledge of the uncertain parameters, these dMA methods compute directions 

based on the proposed predictive model, (i.e., not plant quantities), hence the directions that are privileged for the 

model may not necessarily be suitable for the actual plant. Despite this progress on gradient estimation and many-

input systems, no prior MA scheme is aimed at frequent periodic disturbances. 

Another issue in MA is that of constraint satisfaction during modifier refinement. MA only guarantees satisfaction 

upon convergence; however, satisfaction is not guaranteed in the modifier refinement iterations. Bunin et al. (2011) 

presented a method to determine upper bounds on filter gains such that satisfaction is guaranteed. However, limiting 

the filter gain may slow convergence speeds. Previous studies have also proposed schemes to ensure feasible-side 

convergence, whereby each iterate is guaranteed to be constraint-satisfying (Marchetti et al., 2017a). These require 

the constraint and objective function be made strictly convex upper-bounding functions via additional quadratic terms; 

to do so, the estimation of Hessian matrices is needed, which may be impractical. Furthermore, Marchetti et al. (2017b) 

also deployed robust constraint upper bounds, which result in backoff from the true constraint but ensure iteration 

feasibility in the presence of gradient uncertainty; this scheme also requires process Hessians. A gap exists in the 

literature for an MA constraint-satisfaction scheme that enables the use of little filtering and does not require Hessian 

information, which is difficult to acquire in practice. 

2.2. Model Predictive Control 

Process controllers aim to regulate controlled variables (CVs) to their desired set points by actuating the process 

manipulated variables (MVs).  Model predictive control (MPC) is a well-established method to achieve the optimal 

control whereby a dynamic process model is used to predict future system behaviour while also receiving constant 

feedback from the plant by way of initial conditions. MPC poses a dynamic optimization problem given the feedback 

from the plant, which minimizes the sum of squared errors with respect to the set points across a prediction horizon 

(i.e., the fixed future time window in which the MPC model predicts plant behaviour). Accordingly, the MVs across 

a control horizon (which could be the same or shorter than the prediction horizon) are the decision variables for the 

MPC optimization problem. The first time-instance of these MVs is given to the plant such that it is controlled until 

the MPC is executed at the next sampling time. At every sampling time, feedback from the plant is acquired, thus 

making the scheme closed-loop by updating the process model on the current system state. Importantly, MPC can also 

include process constraints in their formulation; thus, ensuring the safety and viability of its decisions.  

The set points provided to the MPC can be based on process knowledge/heuristics or determined by an RTO (as 

discussed in Section 2.1.1.). Control systems with various CVs require tuning of the various control objectives to 

ensure the desired dynamic behaviour occurs and the controller is effective for all CVs; tuning approaches (e.g., Shah 

and Engell, 2011) have also been studied. The feedback provided to the MPC is acquired by way of measurement or 

state estimation. Measurement simply relies on process instrumentation while state estimation is a very active field of 

research, which provides some of tools used in the present work. As state estimation is not the core topic of study 
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herein, the reader is referred to Afshari et al. (2017), Allgöwer et al. (1999), and Valipour and Ricardez-Sandoval 

(2021) for an in-depth discussion. The prediction horizon serves as a tuning parameter for MPC whereby better 

tracking performance is achieved by using longer horizons; however, this comes with increased computational effort 

as the dynamic optimization problem grows with longer predictions. Another way to improve control performance is 

the use of a nonlinear model for MPC (denoted NMPC); this can improve control performance in nonlinear systems 

whereby a linear model may be inaccurate. NMPCs are primarily of interest in the present work, which considers 

various variants on the traditional NMPC framework. 

2.2.1. Model Predictive Control Under Model Uncertainty 

As noted by Mesbah (2018), model uncertainty in MPC has been addressed with two techniques: robust MPC (RMPC) 

and stochastic MPC (SMPC). RMPC works on the principle that the uncertainties are bounded, and process constraints 

must be satisfied for all uncertainties within the bounds (Mayne, 2014). The uncertainties are assumed to be the set of 

all possible uncertainties in a finite bounded region, which is discretized into a finite number of realization. The 

simplest of these scenario-based approaches is the min-max MPC (Scokaert and Mayne, 1998), which assumes the 

worst-case uncertainty occurs and solves the MPC optimization subject to this pessimistic uncertainty realization. The 

min-max formulation results in significant conservativeness. To alleviate some the drawback of min-max, the multi-

scenario approach (e.g., Huang et al., 2009; MacKinnon et al., 2021) builds a finite set of model realizations for which 

a single control trajectory is computed. The multi-scenario approach approximates an uncertain probability 

distribution through discretization of a probability density function and assigns each realization a probability a priori 

based on process knowledge. The multi-scenario approach results in less conservatism being built into the problem 

than min-max but still retains some performance sacrifices for constraint adherence as it prioritizes average 

performance across potential scenarios. However, the computational effort scales with the number of scenarios as the 

uncertainty is approximated with a higher resolutions. Most sophisticated among scenario-based approaches is the 

multi-stage approach (Lucia et al., 2013), which allows for uncertainty evolution and recourse actions occurring over 

time. The multi-stage formulation features a “robust horizon” that accommodates for changing uncertainties in the 

future whereby recourse may be taken. As with the multi-scenario approach, the multi-stage computational effort 

scales with the number of scenarios; however, it also scales with the length of the robust horizon, thus increasing the 

computational expense further.  

In contrast to the scenario-based approaches SMPCs solve the dynamic optimization problem subject to constraint 

and parameter expectations that are not necessarily bounded (Saltık, 2018). In this way, the conservatism present in 

the scenario-based approaches is reduced with the trade-off that the hard constraints are softened through 

reformulation as chance constraints. In this case, a continuous probability density function is required for each 

uncertainty, which is not easy to acquire in practice (i.e., it may require process knowledge or Monte Carlo 

simulations; Mayne, 2016). 

2.2.2. Economic Model Predictive Control 

Economic MPC (EMPC) retains certain key characteristic of a traditional MPC such as the use of feedback, MVs, 

horizons, and constraints. The important difference lies in the use of an economic objective whereby a profit is 
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maximized, or a cost minimized over the prediction horizon. This control structure aims to bypass the need for set 

points and essentially merges the RTO and MPC layers into one. EMPC has been used for a variety of industrial 

applications, e.g., PCC (Decardi-Nelson et al., 2018), HVAC (Mendoza-Serrano and Chmielewski, 2012), and an air 

separation unit (Huang et al., 2012). However, this approach has some implications as it pertains to stability, which 

have spurred significant research on EMPC. As the set point regulation objective is no longer present, EMPC scheme 

can suffer from instability and capricious control actions. Under the standard formulation as presented in Ellis et al. 

(2014), stability cannot be guaranteed for EMPC-operated systems. Accordingly, several methods have been proposed 

to ensure stability including the use of infinite horizon approximations, terminal constraints, terminal cost, and 

Lyapunov-based EMPC. These methods are briefly reviewed herein; however, the reader is asked to refer to Ellis et 

al. (2014) for an extensive tutorial.  

A general assumption that occurs in most MPC formulations is that of a finite horizon length. This assumption is made 

to make the dynamic optimization problem tractable when discretized; this is necessary as an infinite horizon would 

results in an infinite-dimensional problem. However, the truncation of the horizon results in the inability to guarantee 

stability as the full economic trajectory is unknown by the controller. Würth et al. (2007) propose the that a discount 

factor be used to account for the time value of money in EMPC. As a result of the long period of time needed to 

account for discounted economics, a long (i.e., effectively infinite) horizon is necessary. Accordingly, Würth et al. 

(2007) propose that time domain is made finite through a transformation of the time bounds. This poses the 

optimization problem to finite but introduces a singularity at one of the boundaries, which is handled using terminal 

constraints. Alternatively, Mendoza-Serrano and Chmielewski (2012) segmented the infinite horizon into a finite 

initial portion and a tail that is quantified by a quadratic regulator of the terminal state. By doing this, the EMPC 

problem is made independent on the finite horizon size and shown to be equivalent to the infinite horizon formulation. 

Lastly, Huang et al. (2012) showed that sufficiently long finite horizons could be used for EMPC in some cases to 

achieve the stability properties of infinite horizon. 

Terminal constraints and costs are related methods to ensure EMPC stability in that they both impose system behaviour 

at the end of a finite time horizon. In the case of terminal constraints, this is done by imposing an end-point constraint 

on the horizon such that the system will always try to converge to a stable point (Diehl et al., 2011) or neighbourhood 

(e.g., Amrit et al., 2011). Choosing the terminal point is important as it must be stable; these are generally chosen 

based on off-line static process optimization (Angeli et al., 2012). The use of a terminal fixed point, however, can lead 

to small feasibility sets and inflexibility in the controller. Authors like Fagiano and Teel (2013) have suggested the 

used of terminal sets (regions) to abate this issue. In contrast, for terminal cost/penalty approaches, the objective 

function is formulated with a term to penalize the distance from a pre-specified terminal point. In general, the terminal 

cost takes the form of a quadratic Lyapunov function for which the weighing matrix satisfies the Lyapunov equations 

(Amrit et al., 2011). For this approach to work, the objective function must sometimes be regularized using quadratic 

regulator terms to satisfy dissipativity (Amrit et al., 2011) requirements. 

Lastly, the Lyapunov-based EMPC (LEMPC; Heidarinejad et al., 2012) has also received significant attention as a 

means of stabilizing EMPC operation. LEMPC proposes the use of two distinct operational modes using an EMPC 

and an auxiliary controller, respectively. In the EMPC mode, the system uses a Lyapunov function to keep the state 
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trajectory within a pre-specific bounded set. This bounded set is chosen to guarantee stability is retained for any 

possible disturbance. If a disturbance drives the system outside of this bounded set, the system remains in a region of 

stability but the LEMPC switches to an auxiliary mode. In the auxiliary mode, a Lyapunov function is forced to 

decrease over time thereby steering the system back to the stability region or an equilibrium point. Using these two 

modes, stability is always guaranteed. As with the terminal cost approach, this requires the formulation of a Lyapunov 

function and regularization terms as previously mentioned. Moreover, Lyapunov functions can also be used to ensure 

robust stability (i.e., in the presence of model mismatch). For instance, Santander et al. (2016) propose the use of a 

polytopic model to characterize the model error across different operating conditions; this allows for the formulation 

of Lyapunov constraints with consideration of potential mismatches. They also perform online parameter updating as 

part of their EMPC procedure. 

An application of EMPC in recirculating aquaculture systems, which was performed for this thesis but is not part of 

the main results, can be found in Appendix E. 

2.3. Online Economic Optimization and Control of Post-combustion Carbon Capture 

As global warming is increasingly in the forefront of public discourse, the drive to develop “green” technologies has 

never been greater. Chiefly among the causes of global warming is the large quantity of carbon dioxide (CO2) produced 

in industrial combustion and emitted in flue gases. To this end, the development of mitigation strategies for CO2 

emissions is essential to restricting further global warming. An ever-increasing industrial demand bolsters worldwide 

greenhouse gas (GHG) emissions. CO2 is the most abundant of the GHGs, totaling 73% of all emissions in 2017, 

mainly because of its production in the power generation and transportation sectors (Olivier and Peters, 2018). In 

particular, combustion sources make up 89% of the total CO2 emissions subdivided by fuel type into coal (40%), oil 

(21%), and natural gas (18%) (Olivier and Peters, 2018). After a brief plateau in 2015 and 2016, CO2 emissions 

continued their upward trend in 2017 owing to the increasing reliance of developing countries on coal as a convenient 

energy source (BP, 2019). Despite recent trends of waning coal use in in the developed world, worldwide reliance on 

other CO2 emitters has been steadily increasing (Le Quéré et al., 2018); likely because of their abundance and low 

price. This is particularly essential for developing economies that must provide inexpensive and reliable energy to 

their populations. In 2019, combustibles accounted for ~79% of the world’s energy supply (IEA, 2020), comprising 

mainly oil, natural gas, and coal. While it would be ideal to eliminate these emissions, this is not a realistic option 

because of the worldwide dependency on CO2 emitting products, thereby necessitating the development of 

technologies to mitigate global CO2 emissions.  

Carbon capture and storage (CCS) is one of the technologies on the forefront of CO2 emission mitigation. This 

technology aims to sequester CO2 to avoid its release into the atmosphere, subsequently using it elsewhere or storing 

it in repositories. In particular, pre-combustion removal (Babu et al., 2013; Linga et al., 2007), post-combustion 

removal (Valencia-Marquez et al., 2015), chemical looping combustion (CLC) (Lucio and Ricardez-Sandoval, 2020; 

You et al., 2018) and oxy-combustion (Chansomwong et al., 2014a; 2014b) have received much attention.  

Post-combustion CSS (PCC) is the most mature CCS technology that is ready for deployment. A major benefit of the 

technology is that it can be used to retrofit existing CO2 emission sources for immediate removal. For PCC, several 
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methods of removing CO2 from combustion products in industrial flue gases have been investigated, these include 

adsorption, physical absorption, chemical absorption, cryogenic separation, and membrane-based separation (Wang 

et al., 2017). Of these, chemical absorption by way of amine solvents has seen experimental contributions by way of 

pilot-scale (Dugas, 2006; Idem et al., 2006) and industrial-scale (Faramarzi et al., 2017; Huang et al., 2010) plants. 

Moreover, there have also been computational contributions in modelling, simulation and process design (Bahakim 

and Ricardez-Sandoval, 2014; 2015; Gaspar el al., 2016; 2017; Lawal et al., 2009; Mac Dowell et al., 2013; Nittaya 

et al., 2014). Despite the construction of these few plants, widespread uptake of PCC systems has been slow. The main 

factor hindering adoption of this technology remains the economic detriment it poses to the fuel-fired power plants to 

which it is connected; as the PCC process is expensive, it reduces the profit of the power plant. To this end, techno-

economic analysis (e.g., Danaci et al., 2021; Li et al., 2016) and economic operation of the PCC process (e.g., Luu et 

al., 2015; Mechleri et al., 2017; Panahi and Skogestad, 2012) have been studied. These economical operation analyses 

and schemes will be critical in inducing emitters to consider PCC plants as viable. 

Of the solvents possible for chemical absorption PCC, monoethanolamine (MEA) based solvents have received 

particular attention among the solvent alternatives because of their abundance, performance, and low price relative to 

other solvents (Hossein Sahraei and Ricardez-Sandoval, 2014). Consequently, MEA-based chemical absorption for 

CO2 removal is very developed as a potential emerging technology since its chemistry and process have been 

extensively studied (Haimour and Sandall, 1984; Hikita et al., 1977; Hoff et al., 2004; Kvamsdal et al., 2009; Onda, 

et al., 1968). Importantly, these studies have allowed the development of transient mechanistic process models (Harun 

et al., 2012; Jayarathna et al., 2013; Schneider et al., 1999).  

For real-life deployment of the MEA-based PCC, the process operation must be well understood to achieve safety and 

productivity. A crucial part of the operation is the implementation of a process control system to ensure set-point 

regulation and tracking. In an MEA-based PCC plant, the control system is conventionally used to ensure that CO2 

removal targets and energy consumption requirements are met in the presence of upstream disturbances, e.g. changes 

in the energy load. The successful fulfillment of these operational goals is especially pertinent in the PCC system as 

the CO2 removal generally detracts from the profitability of the upstream plant. In addition to the control studies that 

consider conventional decentralized feedback controllers such as PI and PID (Luu et al., 2015; Mechleri et al., 2017), 

the development of the aforementioned PCC plant models has enabled the use of model-based control strategies. 

Previous studies have implemented model-based control featuring various levels of model sophistication and control 

envelopes. For the MEA-based PCC plant, Bedelbayev et al. (2008) implemented an MPC based on a linearized model 

of the absorber unit whereas Sahraei and Ricardez-Sandoval (2014) developed an MPC involving multiple inputs and 

outputs and compared their performance to a decentralized feedback PI-based control strategy. He et al. (2016) 

implemented another linearized MPC model integrated with scheduling for the full MEA-based PCC plant. Moreover, 

Panahi and Skogestad (2012) evaluated different control structures for the PCC plant and implemented a multivariable 

linear MPC. For increasingly complex models, Åkesson et al. (2012) considered a low-order nonlinear model and 

implemented a nonlinear MPC (NMPC) for the absorber unit in the PCC plant. Decardi-Nelson et al. (2018) also 

implemented an NMPC scheme for the complete post-combustion MEA-based CCS pilot-scale plant. Additionally, 

they also developed an economic MPC (EMPC) for the plant. Similarly, Chan and Chen (2018) also implemented an 
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EMPC scheme based on an Aspen Plus model of an entire MEA-based CSS plant whereby the process economics can 

be optimized and controlled with respect to changing feed qualities and utility prices. These are only selected few of 

the control studies for the MEA-based PCC plant, a review on this subject can be found elsewhere (Salvinder et al., 

2019). 

Recently, machine learning techniques (Altan et al., 2021; Karasu et al., 2020; Rangel-Martinez et al., 2021) applied 

to the prediction of systems with complex dynamics (Wang and Ricardez-Sandoval, 2020) such as PCC (Helei et al., 

2021; Rahimi et al., 2021), this offers a balance between modelling accuracy and computational tractability. Literature 

on PCC control is vast; a recent review on this subject can be found in (Salvinder et al., 2019). A commonly proposed 

approach to achieve control flexibility in this system is through the manipulation of heating duty (Åkesson et al., 2012; 

He et al., 2016; Jung et al., 2020; Jung et al., 2021; Luu et al., 2015), which can enrich or dilute the PCC solvent as 

required but requires steam to be taken from the power plant. An aspect that has not been considered for control is the 

use of makeup streams to achieve the same flexibility while abating the use of steam that could otherwise be used for 

power generation. 

For feedback control to be practically implementable, the plant states must be fully measurable or observable. 

Accordingly, state estimation is used as many system states required by the controller cannot be measured online; this 

is particularly important in complex systems that include several states. In comparison to the control literature for 

PCC, the available state estimation literature is sparse. Notably, Jung et al. (2020) paired a KF with linear and nonlinear 

MPCs for control of the PCC, respectively. The latter used a mechanistic control model and required the measurement 

of 74/110 system states and very low process noise for successful state estimation. Moreover, Yin, Decardi-Nelson 

and Liu (2019) used moving horizon estimation (MHE) to perform fault diagnosis, whereby the PCC absorber was 

decomposed into spatial subsystems (i.e., it was decomposed into five stages, each with its own estimator) and only 

gas temperatures were measured. MHE is an advanced estimation scheme well-suited to deal with nonlinearities and 

constraints. Its use in PCC, which is nonlinear and often constrained, could allow for more accurate and reliable state 

estimates than KF, leading to a more effective control layer. Despite these recent advances in the state estimation 

literature for the PCC process, only a single full MHE implementation, which requires a realistically achievable 

number of measurements without model decomposition, has yet to be implemented and engaged within a broader 

operational scheme (i.e., with MPC and RTO) for PCC plants. The only existing example of MHE for PCC was 

proposed by Yin et al. (2020); however, this was only used for monitoring purposes and not engaged with other 

operational layers. More broadly, there is also a gap for an integrated operating scheme that addresses the economic, 

control, and estimation problems simultaneously.  

The ability to estimate plant states, which can subsequently be fed to a controller to steer the system towards desirable 

operating points, enables the implementation of optimal operation approaches. These can be put into two categories, 

both of which could use mechanistic process models: economic MPC (EMPC), in which an optimal control problem 

is formulated with an economic objective, thus providing economically-driven control actions directly to the plant; 

and real-time optimization (RTO), in which a steady-state problem is formulated with an economic objective, hence 

providing steady state set points that are passed to a control layer and are updated when significant disturbances occur. 

While RTO is a steady-state method, EMPC is inherently dynamical; as such, it often requires stabilization (e.g., 



 16  

terminal constraints/cost) and intensive computational effort per sampling interval (Ellis et al., 2014), making it 

difficult to implement online. The economically optimal operational approaches for PCC are summarized in Table 

2-1:  
Table 2-1: Summary of literature pertaining to the economically optimal operation of PCC processes. 

Ref. Approach Findings Drawbacks 

Chan and Chen 

(2018) 

EMPC Approach for MEA-based plant provided 

~10% cost reduction over a constant 

operating point. Disturbances in flue gas 

quality and utility costs were considered. 

Full state access was assumed 

(no estimation). Only solvent 

and utility costs considered. 

MEA makeup manipulated. 

Decardi-Nelson et 

al. (2018) 

EMPC/ 

RTO 

Approach for MEA-based plant provided 

~6% cost savings over a constant operating 

point. EMPC and RTO were compared. RTO 

performance was found to approach EMPC 

performance if executed frequently. 

Disturbances in flue gas flowrate and steam 

price were considered. 

Full state access was assumed 

(no estimation). Only carbon 

tax and thermal costs 

considered. Reboiler duty 

manipulated. 

Akula et al. (2021) RTO Approach for MEA-based plant provided an 

analysis of the optimal steady-state operating 

point in part-load, full-load, and varying flue 

gas composition scenarios. 

Dynamics were not considered 

(i.e., no control/estimation). 

Only pumping, heating, and 

cooling costs considered. 

Reboiler duty manipulated. 

The following conclusions can be made from this review of the economically optimal operation literature: 1) the 

existing studies are tailored specifically to MEA-based plants, 2) the respective economic functions considered in the 

previous studies ignored key aspects of the process economics in their cost function (e.g., Decardi-Nelson, Liu and 

Liu (2018) included thermal and carbon tax costs but ignored solvent costs), 3) none of the previous studies have 

manipulated both MEA and water makeup streams to achieve solvent enrichment/dilution (e.g., Chan and Chen (2018) 

only manipulated the MEA makeup). This elucidates the following gaps in the literature: 1) the need for a generic 

operating scheme that can be applied to a general class of PCC plants to achieve economically optimal operation while 

promoting CO2 removal, 2) the need for an economic function that is comprehensive through its inclusion of all 

significant economic aspects of PCC, 3) an advanced model-based control scheme that can manipulate PCC plants 

flexibly without solely relying on the energy-intensive reboiler, 4) an advanced model-based state estimation scheme 

that is accurate and reliable in terms of the measurements required. 

A complicating factor embedded in the models that are used in model-based control approaches, including those using 

highly detailed nonlinear mechanistic models, is that the models will be subject to various types of uncertainty. These 

are caused by assumptions made in developing the model (structural), and error associated with estimating 

experimental parameters (parametric) (Krasławski, 1989). This uncertainty, which leads to mismatch between the 

plant and the model, can be either exogenous or endogenous. Exogenous uncertainty occurs due to factors not 
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embedded in the model, e.g., variations in inlet compositions, flowrates, changes in products demands; while 

endogenous uncertainties occur within the model’s parameters or equations leading to plant-model mismatch, e.g. 

activity coefficients, heat transfer coefficients, rate constants. For model-based control, taking these uncertainties into 

account is crucial as neglecting them will lead to poor controller performance, which would translate into off-

specification products, failure to meet commercial and regulatory process demands, and lost profits. To take these 

uncertainties into account, the closed-loop operation must be made insensitive to uncertainty, which can be achieved 

through stochastic or robust methods control, the latter of which will the focus of this study. A review of stochastic 

MPC methods can be found elsewhere (Mesbah, 2016).  In this context, control actions must be determined such that 

the process will exhibit good performance in closed loop despite these uncertainties. The robust operation of the MEA-

based PCC has been addressed using optimal control by a few authors. For instance, Panahi and Skogestad (2012) 

employed a robust linear MPC on the entire plant; while Zhang et al., (2018) implemented a 𝐻> robust controller with 

a nonlinear NAARX model on the entire plant. Decardi-Nelson et al. (2018) evaluated the performance of their NMPC 

and EMPC schemes under upstream uncertainties; however, they did not make their controllers robust to those 

uncertainties. In a follow-up work, Decardi-Nelson and Liu (2022) used a zone tracking approach to design a robust 

PCC EMPC. 

Uncertainty is particularly salient in PCC where a nonlinear carbon capture plant interacts with a nonlinear power 

plant. Accordingly, this topic has been investigated for several applications. The design of PCC under uncertainty has 

been addressed through ranking-based (Bahakim and Ricardez-Sandoval, 2015) and multi-scenario (Cerrillo-Briones 

and Ricardez-Sandoval, 2019) approaches. In the control layer, several robust controllers (Jung et al., 2020; Rúa et 

al., 2021a; Zhang et al., 2018) have been proposed and paired with state estimators (Yin et al., 2020); these often 

consider uncertain model structures, parameters, and unmeasurable/unmeasured variables. On longer timescales, 

scheduling (Zantye et al., 2019) and planning (Wu et al., 2015; Xuan et al., 2022; Zhang et al., 2019) schemes have 

been proposed for PCC, which generally address price and demand uncertainties. As per the literature, uncertainty has 

only been considered for online economic optimization of PCC in the context of EMPC (Decardi-Nelson and Liu, 

2022); however, no study has considered uncertainty in an RTO-operated PCC process. The effect of uncertainty in 

real-time steady-state decision making (i.e., not scheduling or planning time horizons) for PCC is unknown.  

While the models used in RTO are often mechanistic, there is no guarantee that the model parameters are near their 

true values; hence, parameters estimation schemes must be considered to improve the RTO’s predictions. Indeed, for 

a PCC system being modelled mechanistically, Hughes et al. (2022) recently showed the importance of parameter 

accuracy through uncertainty quantification of mass transfer and kinetic parameters and their impacts on the 

effectiveness of carbon capture. To this end, RTO schemes typically employ the so-called ‘two-step’ approach, 

whereby a parameter estimation (PE) layer is employed to update RTO model parameters periodically. Previous RTO 

implementations for PCC, have not considered the estimation layer of the two-step approach (i.e., they have assumed 

perfect parameters and measurable disturbances). In most of the cases, this is a strong assumption as online 

measurement of some disturbances (e.g., compositions) or perfect knowledge of model parameters (e.g., 

thermodynamic activities or mass transfer parameters) are not realistic. As such, this assumption remains to be 

addressed such that the PCC RTO is fully implementable in a real-life scenario. In contrast, cases with rapidly 
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fluctuating parameters and economics make the two-step approach for RTO unsuitable as set points can quickly 

become suboptimal. Instead, a robust optimization approach could be deployed for this task. However, robust 

optimization, which has been an active research consideration for PCC in longer timescales, has also yet to be 

considered in context of RTO.  
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3. Robust Control of a CO2 Capture Absorber 

In this work, we focus on a monoethanolamine (MEA)-based chemical absorption PCC method, for which the 

chemistry and process have been extensively studied (e.g., Dugas, 2006; Hikita et al., 1997). These studies have 

enabled the development and verification of mathematical models, which in turn, can be used for model-based 

optimization and control as presented herein.  

One optimization approach that has not been considered to make the MEA-based PCC plant robust through its control 

is the multi-scenario approach. In general, scenario-based approaches are commonly used when considering robust 

operation using MPC under uncertainty whereby an optimal controller considers multiple discrete realizations of 

uncertainty and aims to find optimal control actions that can accommodate all the pre-specified uncertainty 

realizations. The multi-scenario approach, as implemented in the present work, has previously been used for a large-

scale nonlinear model of an air separation unit (Huang et al., Biegler, 2009), and linear hydrodynamic model for water 

resource management (Tian et al., 2017).  To the authors’ knowledge, the past robust controllers applied to the MEA 

PCC plant have used linear and reduced-order models while this study uses a nonlinear dynamic mechanistic model 

for this process. Such a model enables the controller to explicitly address uncertainty where it is most likely to occur; 

in parameters associated to specific chemical phenomena and in the process operating conditions dictated by upstream 

units.  

The aim of this study is to use a mechanistic dynamic model to implement and assess the performance of a robust 

NMPC on the absorber in an MEA-based PCC pilot-scale plant. To the authors’ knowledge, this is the first study that 

has implemented robust control in the MEA-based PCC process (or any other CCS process) with the multi-scenario 

approach while using the actual mechanistic model of the process. This work explicitly accounts for exogenous 

uncertainty that will affect the absorber daily owing to changes in operating policies of the upstream emission-

producing plant (e.g. rapid changes in flue gas flowrates and uncertainty in flue gas composition); as well as 

endogenous parametric uncertainty in the plant model via its thermodynamic properties.      

3.1. MEA-based Absorber Model 

The dynamic mechanistic model used in this work was adapted from Harun et al. (2012) and describes an MEA-based 

CO2 absorber unit in a PCC pilot plant as a packed column. The arrangement and operating conditions are based on 

the pilot plant studied by Dugas (2006). The model is a partial differential algebraic system of equations (PDAEs) as 

it is composed of ordinary (ODEs) and partial differential equations (PDEs) as well as algebraic equations (AEs).  

The absorber, shown in Figure 3-1, operates at atmospheric inlet pressure and has four components: 

monoethanolamine (MEA), carbon dioxide (CO2), water (H2O), and nitrogen gas (N2), which are denoted as the set 

𝑖 = {𝑀𝐸𝐴, 𝐶𝑂,, 𝐻,𝑂,𝑁,}. The column has two inlet and two outlet streams located at the bottom and the top of the 

column’s axial domain (𝑧(𝑚)), which are at 𝑧 = 0 and 𝑧 = 𝐻, respectively. The top inlet stream, referred to as the 

“lean” amine stream, consists of a liquid phase mixture of MEA, CO2, and H2O. In the full PCC plant, this stream 

comes from a storage tank that mixes fresh MEA with the recycled MEA from a downstream stripper that regenerates 

and recycles the solvent. The bottom inlet of the column, referred to as the flue gas stream, consists of CO2, H2O, and 

N2. This gaseous mixture comes from an upstream combustion source and contains the CO2 for removal. The top 

outlet stream, referred to as the vent gas, consists of unremoved CO2 as well as H2O and N2. The bottom outlet stream, 
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referred to as the “rich” amine stream, consists of all four components and goes to the aforementioned stripper for 

isolation of the CO2 and regeneration of the amine solvent. Inside the column, a small amount of gaseous CO2 is 

naturally absorbed into the liquid phase from the gas phase. More importantly, the absorption relies on the reactive 

mechanism that takes advantage of the weak acid and base properties of the CO2 and MEA (or other alkanolamines), 

respectively. These two components react to make a water-soluble salt containing the CO2, which readily dissolves 

into the liquid phase rich amine solution. A detailed description of this mechanism can be found in (Vaidya and Kenig, 

2007). 

 
The absorber model considered in this study operates under the following assumptions: 

1. There is turbulent flow within the column, which is approximated as plug flow. 

2. The system is modelled as axially distributed and is assumed to be well-mixed in the radial direction. 

3. The gas phase is ideal owing to low operating pressures. 

4. The pressure drop along the height of the column is linear. 

5. N2 only exists in the gas phase, phase changes occur in all other components in both directions. 

6. There is thermal equilibrium between the phases. 

7. There is no accumulation in gas and liquid films. 

8. The liquid phase has a constant velocity in the axial domain for a given inlet flowrate. 

This model consists of molar component balances for the gas and liquid phases, energy balances for the gas and liquid 

phases, rate equations, chemical kinetic equations, equilibrium equations, and physical property descriptions. These 

are presented next. 

3.1.1. Molar Component Material Balances 

The molar component material balances describe the dynamics of the constituent component concentration in each 

phase owing to chemical reactions, changes in equilibria, and mass transfer. They are as follows: 

Flue gas: 
𝐶!,!#
$ , 𝑇!#

$ , 𝑢!#
$  

Vent gas 

CO2-rich amine solution 

Lean amine solution: 
𝐶!,!#% , 𝑇!#% , 𝑢!#

$  

Figure 3-1: Absorber column arrangement with inputs and outputs. Components are MEA, 
CO2, H2O, and N2 

z=0 
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𝑑𝐶*+

𝑑𝑡 = 𝑢+
𝜕𝐶*+

𝜕𝑧 + 𝑎.𝑁* (3-1)  

𝑑𝐶*
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?

𝜕𝑧 − 𝑎.𝑁* − 𝐶*
? 𝜕𝑢?
𝜕𝑧  (3-2)  

where 𝐶*+(𝑚𝑜𝑙/𝑚/) and 𝐶*
?(𝑚𝑜𝑙/𝑚/) are liquid and gas molar concentrations of component 𝑖, respectively; and 

𝑢+(𝑚/𝑠) and 𝑢?(𝑚/𝑠) are liquid and gas velocities, respectively. 𝑎.(𝑚,/𝑚/) is the wetted area, while 

𝑁*(𝑚𝑜𝑙/𝑚,/𝑠) is the molar flux between phases for component	𝑖. The molar flux directions are defined as positive 

for gains of material in the liquid phase and, accordingly, negative for gains of material in the gas phase. 

While the assumptions stated that there is a fixed liquid velocity along the height of the column for a given liquid inlet 

flowrate, the same is not assumed for the gas velocity since the gas phase is much less dense and loses substantially 

more momentum as it travels up the column. This decrease in velocity is expressed as a momentum balance for the 

gas phase: 

𝜕𝑢?
𝜕𝑧 =

𝑢?
𝑃
𝑑𝑃
𝑑𝑧 +

𝑢?
𝑇?
𝑑𝑇?
𝑑𝑧 −

𝑎.
𝐶@'@
? �𝑁*

;

*A6

 (3-3)  

where 𝑃(𝑏𝑎𝑟) is the absorber pressure as a function of position in the axial domain, 𝑇?(𝐾) is the gas phase temperature, 

and 𝐶@'@
? = ∑ 𝐶*

?;
*A6 (𝑚𝑜𝑙/𝑚/) is the total gas concentration.  

3.1.2. Energy Balances 

The energy balances describe the dynamics of the temperatures of the two phases owing to chemical reactions, 

equilibria, and heat transfer. They are stated as follows: 

𝑑𝑇+
𝑑𝑡 = 𝑢+

𝜕𝑇+
𝜕𝑧 −

𝑎.
∑ 𝑐%,*+;
*A6 𝐶*+

�ℎ?+�𝑇+ − 𝑇?� + ∆𝐻&$B𝑁7C! − ∆𝐻D!C
)#%𝑁D!C + ℎ'E@(𝑇+ − 𝑇#"F)� (3-4)  
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where 𝑇+(𝐾) is the liquid phase temperature,	ℎ?+(𝐽/𝑚𝑜𝑙/𝐾) is the interfacial heat transfer coefficient given by the 

Chilton-Colburn heat and mass transfer analogy (Geankoplis, 2003), and 𝑇#"F(𝐾) is the temperature of the 

surroundings. 𝑐%,*+ (𝐽/𝑚𝑜𝑙/𝐾) and 𝑐%,*
? (𝐽/𝑚𝑜𝑙/𝐾) are the liquid and gas specific heat capacities of component	𝑖, 

respectively; 𝑁7C! and 𝑁D!C are the molar fluxes of CO2 and H2O, respectively, calculated using the two-film mass 

transfer model. ∆𝐻&$B(𝐽/𝑚𝑜𝑙) is the molar heat of reaction, ∆𝐻D!C
)#%(𝐽/𝑚𝑜𝑙) is the molar heat of vaporization of water, 

and ℎ'E@ (W/m2/K) is the heat transfer coefficient between the absorber and its surroundings. 

3.1.3. Mass Transfer 

The two-film model gives the rate of mass transfer within the absorber for all components excluding N2, as it is 

assumed to only occur in the gas phase. The model is stated as follows: 

𝑁* = 𝐾*
?(𝑝* − 𝑝*∗) (3-6)  
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1
𝐾*
? =

1
𝑘*
? +

𝐻𝑒*
𝑘*+𝐸#F-

 (3-7)  

where 𝐾*
?(𝑚𝑜𝑙/𝑚,/𝑃𝑎/𝑠) is the overall mass transfer coefficient for the gas phase while  𝑘*

?(𝑚𝑜𝑙/𝑚,/𝑃𝑎/𝑠) and 

𝑘*+(𝑚/𝑠) are the binary gas and liquid mass transfer coefficients for component 𝑖, respectively. 𝑝*(𝑘𝑃𝑎) and 𝑝*∗(𝑘𝑃𝑎) 

are the partial and equilibrium pressures for component 𝑖, respectively. 𝐻𝑒*(𝑘𝑃𝑎	𝑚//𝑚𝑜𝑙) is the Henry’s law constant 

for component 𝑖. The use of an overall mass transfer coefficient eliminates the need to calculate interfacial 

concentrations and, as stated earlier, transfer from the gas to the liquid phase was used as the convention for positive 

mass transfer. The model assumes that resistance to mass transfer for liquid H2O and MEA is negligible because these 

components have a higher solubility; thus, most of their resistance to mass transfer occurs in the gas phase (Harun et 

al., 2012). 

As mentioned above, the acid-base chemical reactions between CO2 and MEA described by Austgen et al. (1989) 

dictates the amount of CO2 absorbed in the liquid phase solvent. The effect of this increase is captured by the 

enhancement factor (𝐸#F-), which represents an approximate analytical solution to the differential equations governing 

the diffusional mass transfer and chemical reactions occurring in the liquid film. The enhancement factor is valid 

under the pseudo-first order reaction scheme with respect to CO2; which is valid in the situation where an alkanolamine 

is absorbing CO2 in a packed column, owing to the increased mixing afforded by the packing (Kvamsdal et al. 2009). 

This scheme is facilitated by low CO2 partial pressure, high reactant concentration, and short contact times; thus, 

ensuring that mass transfer is enhanced by the reactions while not depleting the amine concentration. The volume of 

amine is considered constant throughout the film and equal to that of the bulk phase. The enhancement factor is given 

by: 

𝐸#F- =
�𝑘,𝐶H91∗ 𝐷7C!

𝑘7C!
+  (3-8)  

where 𝑘,(𝑚,/𝑚𝑜𝑙/𝑠) is the second-order reaction rate constant and 𝐶H91∗ (𝑚𝑜𝑙/𝑚/)	is the liquid molar concentration 

of free MEA, both calculated from Hoff et al. (2004). 𝐷7C!(𝑚
,/𝑠) is the diffusivity of CO2 in the MEA solution. 

3.1.4. Equilibria 

The dynamic model considers chemical and phase equilibria together. Chemical equilibrium describes the balance 

between ionic and molecular species in the liquid phase while phase equilibrium describes the balance between phases 

at the gas-liquid interface. For H2O and MEA, the equilibrium pressure at the interface is expressed as follows: 

𝑝*∗ = 𝑥*𝛾*𝑝*
)#% (3-9)  

where 𝑥*,	𝛾*, and  𝑝*
)#%(𝑘𝑃𝑎) are the liquid fraction, activity coefficient, and vapor pressure of component 𝑖, 

respectively. Since the temperature of the system exceeds the supercritical temperature of CO2, it does not exist in the 

liquid phase. Instead, the equilibrium pressure of CO2 is calculated using Henry’s law: 

𝑝7C!
∗ = 𝐻𝑒7C!𝐶7C!

∗ 𝛾7C! (3-10)  
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where 𝐶7C!
∗ (𝑚𝑜𝑙/𝑚/)	 is the liquid molar concentration of free CO2 from Hoff et al. (2004), and 𝛾7C! is the activity 

coefficient of CO2. 

3.1.5. Physical Properties, Absorber Design and Model Inputs 

Table 3-1 lists the physical properties used in the model, their sources, and values (if constant). Variable physical 

properties are calculated using correlations provided in the corresponding reference. Table 3-1 also lists the packed 

column design characteristics as used in this study. Additionally, Table 3-2 lists the required inputs for the model, 

which come in the form of initial conditions and inlet (boundary) operating conditions. Initial conditions are obtained 

from measurements/estimates from the absorber while operating conditions are obtained from 

measurements/estimated from upstream units. 

Table 3-1: Physical properties and design characteristics used for the absorber column model. 

Physical Property Value Source 

Ambient Temperature (K) 𝑇#"F = 297.6 Harun et al. (2012) 

Heat transfer coefficient between absorber 

and surroundings (W/m2/K) 

ℎ'E@ = 430 Kvamsdal and Rochelle (2008) 

Molar heat of reaction (kJ/mol) ∆𝐻&$B = 48 Kvamsdal and Rochelle (2008) 

Molar heat of vaporization (kJ/mol) ∆𝐻D!C
)#% = 82 Poling et al. (2007) 

MEA activity coefficient 𝛾H91 = 0.677 Aspen Property Package 

CO2 activity coefficient 𝛾7C! = 0.381 Smith et al. (2005) 

H2O activity coefficient 𝛾D!C = 0.974 Smith et al. (2005) 

Wetted area (𝑚,/𝑚/) 𝑎. Onda et al. (1968) 

Liquid component heat capacity (𝐽/𝑚𝑜𝑙/𝐾) 𝑐%,*+  Hilliard (2008) 

Gas component heat capacity (𝐽/𝑚𝑜𝑙/𝐾) 𝑐%,*
?  Aspen Property Package 

Liquid component mass transfer coefficient 

(𝑚/𝑠) 
𝑘*+ Onda et al. (1968) 

Gas component mass transfer coefficient 

(𝑚𝑜𝑙/𝑚,/𝑃𝑎/𝑠) 

𝑘*
? Onda et al. (1968) 

Component Henry’s law constant  

(𝑘𝑃𝑎	𝑚//𝑚𝑜𝑙) 

𝐻𝑒* Haimour and Sandall (1984) 

Second-order reaction rate constant  

(𝑚,/𝑚𝑜𝑙/𝑠) 

𝑘, Hikita et al. (1977) 

CO2 diffusivity in solvent solution (𝑚𝑜𝑙/𝑚/) 𝐷7C! Ko et al. (2001) 

Component vapour pressure (bar) 𝑝*
)#% Aspen Property Package 

Design Characteristics   
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Column internal diameter (𝑚) 0.43 Cerrillo-Briones and Ricardez-Sandoval (2019) 

Packing height (𝑚) 6.1 Cerrillo-Briones and Ricardez-Sandoval (2019) 

Packing type IMTP #40 Cerrillo-Briones and Ricardez-Sandoval (2019) 

 
Table 3-2: Model inputs: initial and operating conditions required 

 Initial Condition (𝟎 ≤ 𝒛 ≤ 𝑯, 𝒕 = 𝟎) Boundary Condition (	𝒛 = 𝟎, 𝒛 = 𝑯, 𝒕 ≥ 𝟎) 

Gas 𝐶*
?(𝑧, 0) = 𝐶*,'

? (𝑧) 𝐶*
?(0, 𝑡) = 𝐶*,*B

? (𝑡) 

 𝑇?(𝑧, 0) = 𝑇'
?(𝑧) 𝑇?(0, 𝑡) = 𝑇*B

?(𝑡) 

  𝑢?(0, 𝑡) = 𝑢*B
? (𝑡) 

  𝑃?(0, 𝑡) = 𝑃*B
?(𝑡) 

Liquid 𝐶*+(𝑧, 0) = 𝐶*,'+ (𝑧) 𝐶*+(𝐻, 𝑡) = 𝐶*,*B+ (𝑡) 

 𝑇+(𝑧, 0) = 𝑇'+(𝑧) 𝑇+(𝐻, 𝑡) = 𝑇*B+ (𝑡) 

  𝑢+(𝑧, 𝑡) = 𝑢*B+ (𝑡) 

 

The outlined PDEs that comprise the mass and energy balances (equations (3-1)–(3-5)) are denoted as 𝒇𝒅 along with 

the AEs that comprise the process phenomena (equations (3-6)–(3-10)) and physical property (Table 3-1). This set of 

equations represent the mechanistic model for this process, which require the column design specifications and 

initial/boundary conditions presented in Table 3-1and Table 3-2, respectively.  

3.2. Robust NMPC 

In the present work, a nominal NMPC formulation will be implemented along with the multi-scenario formulation for 

comparison. By nominal NMPC, we refer to an NMPC controller that includes no measures for dealing with 

uncertainty in the formulation (it assumes that its parameters are known a priori). We begin by defining the multi-

scenario NMPC and subsequently presenting the nominal NMPC as a special case. Generally, an NMPC uses a 

nonlinear dynamic process model to determine optimal control actions that minimize a loss function, e.g., set-point 

tracking errors in the controlled variables. In the case of the multi-scenario NMPC, the controller considers multiple 

realizations of the model’s uncertain parameters, which results in instances of the process model denoted by the set 

“𝑟”. The operation of the NMPC in the feedback control strategy is depicted in Figure 3-2, which shows a control 

structure operating at a time 𝑡 in the operation of a process where an NMPC  receives measurements or estimates of 

the plant states 𝒙𝟎	as initial conditions for the model, as well as the set points for the controlled variables 𝒚𝒔𝒑  . This 

information is included in the formulation of the optimal control problem. For a multi-scenario discrete-time NMPC 

at sampling time 𝑡	, this problem is as follows: 

min
𝒖𝒕#𝒊∀*∈{6,…,P}

�𝜔&

Q

&A6

�µ𝒚T𝒕S𝒊,𝒓 − 𝒚𝒔𝒑µ𝑸𝒄
, +�µ∆𝒖𝒕S𝒋µ𝑹𝒄

,
P

*A6

P

*A6

 

𝑠. 𝑡. 

(3-11)  
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𝒇𝒅,𝒓�𝒙T𝒕S𝒊,𝒓, 𝒖𝒕S𝒋, 𝒚T𝒕S𝒊,𝒓, 𝜽𝒓� = 𝒙T𝒕S𝒊S𝟏,𝒓																																															∀𝑖 ∈ {0,… , 𝑃 − 1}, ∀𝑟 ∈ {1,… , 𝑆} 

𝒙T𝒕 = 𝒙𝟎 

𝒈𝒅,𝒓�𝒙T𝒕S𝒊,𝒓, 𝒖𝒕S𝒋, 𝒚T𝒕S𝒊,𝒓, 𝜽𝒓� ≤ 𝟎																																																																		∀𝑖 ∈ {1,… , 𝑃}, ∀𝑟 ∈ {1,… , 𝑆} 

𝒖𝒍 ≤ 𝒖𝒕S𝒋 ≤ 𝒖𝒉																																																																																																																											∀𝑖 ∈ {1,… , 𝑃} 

𝒖𝒕S𝒊S𝟏 = 𝒖𝒕S𝒊																																																																																																																						∀𝑖 ∈ {𝐶,… , 𝑃 − 1} 

 

(5-1)  

where‖𝑿‖𝑨,  denotes a quadratic form on vector	𝑿 ∈ ℝB with the weighting matrix 𝑨 ∈ ℝB×B. 𝒙T𝒕S𝒊,𝒓 ∈ ℝB& represents 

the predicted states (differential variables) for each model realization, 𝒚T𝒕S𝒊,𝒓 ∈ ℝB' are the predicted controlled 

variables for each model realization, and 𝜽𝒓 ∈ ℝB𝜽 are the uncertain model parameters. Note that these variables are 

defined as across the set “𝑟”, representing the various model realizations corresponding to each realization in the 

uncertain parameters. 𝒚𝒔𝒑 ∈ ℝB' are the user-defined set points for the controlled variables, and 𝒙T𝒕 ∈ ℝB& are the 

measured or estimated states used as the initial condition. Note that these variables are not indexed across the set “𝑟” 

as they are externally acquired thus realization independent (they have the same value for all realizations). 𝒙𝟎 ∈ ℝB& 

is the state vector acquired from the simulated plant, which is set as equal to 𝒙𝒕 for every NMPC execution thereby 

enabling feedback to the controller.  ∆𝒖𝒕S𝒊 ∈ ℝB) is the vector of changes in the manipulated variables (∆𝒖𝒕S𝒊 =

𝒖𝒕S𝒊 − 𝒖𝒕S𝒊^𝟏). The controller tuning parameters include diagonal positive semidefinite matrices 𝑸𝒄 ∈ ℝB'×B' and 

𝑹𝒄 ∈ ℝB)×B), which affect set-point tracking and control move suppression, respectively. 𝑃 and 𝐶, which denote the 

prediction and control horizons as integer multiples of the sampling intervals, respectively, also serve as tuning 

parameters as they can affect the controller’s performance. ∑ 𝜔&Q
&A6 = 1 are nonnegative weights for different 

uncertainty realizations where 𝑀 is the user-defined number of realizations that the NMPC considers. As mentioned 

above, these realizations represent instances of the process model that the NMPC simultaneously considers such that 

each realization has a unique combination of uncertain parameters. Of the total model parameters, only a user-defined 

subset is considered uncertain, this subset is chosen based on a priori process and model knowledge about which 

parameters are difficult to estimate.  

By solving the open-loop problem (3-11), an optimal control sequence	𝒖𝒕S𝟏, … , 𝒖𝒕S𝑪 is obtained for the user-defined 

control horizon 𝐶; beyond this horizon, the manipulated variables are assumed constant, hence the last constraint in 

equation (3-11). The optimization problem from which this optimal sequence is acquired is subject to the system of 

constraints composed of the aforementioned DAE system 𝒇𝒅 and 𝒈𝒅, as well as input constraints 𝒖𝒍 ≤ 𝒖𝒕S𝒊 ≤ 𝒖𝒉. 

𝒇𝒅,𝒓: ℝB& ×ℝB) ×ℝB𝜽 → ℝB& denotes the set of nonlinear differential equations describing the evolution of states in 

Robust NMPC 
𝒇𝒅,𝒓�𝒙T𝒕S𝒊,𝒓, 𝒖𝒕S𝒋, 𝒚T𝒕S𝒊,𝒓, 𝜽𝒓� 

Plant 
𝒇𝒅(𝒙𝒕S𝟏, 𝒖𝒕S𝟏, 𝒚𝒕S𝟏, 𝜽) 

𝒖𝒕S𝟏 𝒙𝒕S𝟏 𝒚𝒔𝒑 

𝒙𝒕 = 𝒙=(𝑡 ← 𝑡 + 1) 
 

Figure 3-2: Feedback loop between the simulated plant and multi-scenario NMPC. NMPC dependent on “r” while 
plant is not. 
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the system, and 𝒈𝒅,𝒓: ℝB& ×ℝB) ×ℝB𝜽 → ℝB* denotes the set of inequality constraints imposed on the controller 

(aside from the manipulated variable contraints). 𝒖𝒍 and 𝒖𝒉 ∈ ℝB) denote the lower and upper bounds for the 

manipulated variables and reflect the physical limitations of the process and its controllers. For the multi-scenario 

NMPC the DAE system composed of	𝒇𝒅,𝒓 and 𝒈𝒅,𝒓 contains “𝑟” realizations of the uncertain parameters 𝜽𝒓. This DAE 

system is used to predict the process’ evolution for a user specified prediction horizon 𝑃 for the given uncertainty 

realizations. This enables the objective function to determine the optimal control actions for the given control horizon. 

As shown in problem (3-11), the objective (loss) function contains two weighted terms: one minimizes quadratic 

deviation from specified set-points and the other penalizes changes in the control actions. From the optimal control 

sequence obtained by solving problem (3-11), the first control action 𝒖𝒕S𝟏 is passed to the plant as depicted in Figure 

3-2. The plant is then simulated for a fixed interval ∆𝑡 using the input 𝒖𝒕S𝟏 and a nonlinear process model. This 

simulation enables the plant states to evolve to 𝒙𝒕S𝟏 and, after the time interval ∆𝑡	 has elapsed, the process of obtaining 

and giving measurements/estimates to the NMPC is repeated. By using the evolved states 𝒙𝒕S𝟏	 as feedback to solve 

problem (3-11) again recursively during each time interval ∆𝑡	, the scheme becomes closed loop. This is shown in the 

feedback portion of Figure 3-2 where the initial condition is updated as 	𝒙T𝒕 = 𝒙=  after moving the horizon from 𝑡 to 

𝑡 + 1. In this study, we assume full state and disturbance information availability (i.e., the relevant information needed 

by the NMPC can be precisely measured or estimated). State estimation for the MEA PCC system remains an open 

challenge that will be addressed in future work. Note that past NMPC studies on this system (e.g., Åkesson et al., 

2012; Chan and Chen, 2018; Decardi-Nelson et al., 2018) have made similar assumptions. Also note that feedback 

does not necessarily need to occur at every sampling interval; however, more frequent feedback often leads to better 

control performance. 

The mechanism by which the multi-scenario NMPC makes the controller robust is by finding a single optimal control 

sequence 𝒖𝒕S𝟏, … , 𝒖𝒕S𝑪 that minimizes the objective function for all model realizations given the feedback	𝒙𝒕 = 𝒙𝟎 

from the plant. This unique optimal control sequence accommodates for the user-defined set of possible values that 

uncertainties parameters may manifest during operation. This makes the control actions robust to uncertainty in the 

sense that although the “true” parameter values are not ascertained by the NMPC controller, the actions will be well-

suited for performance across the defined set of uncertain parameter realizations.  

As mentioned above, the nominal NMPC occurs as a special case of the multi-scenario NMPC when only a single 

scenario is considered with no further safeguards against uncertainty. The single scenario corresponds to a nominal 

realization of the model uncertain parameters, i.e., 𝜽𝒓	∀𝑟 ∈ {1}. This assumption simplifies the formulation and 

shrinks the model size as variables are no longer indexed across “𝑟”, however; it ignores model uncertainty by making 

the assumption that the model provides a perfect representation of the system. Unfortunately, this is often not the case 

in practice and may result in non-optimal operation because of poor controller performance. Worse still, this 

assumption may lead to infeasibility.  

Both the nominal and multi-scenario NMPC controllers are implemented in a control loop with plant simulation 

containing a single realization of the uncertain parameters	𝜽.  The nominal and multi-scenario NMPC use the large-

scale mechanistic model of the absorber column, consisting of 𝒇𝒅 and 𝒇𝒅,𝒓, respectively. This model has been 

presented in Section 3.1.  
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3.3. Model Implementation and Validation 

The nominal and multi-scenario NMPC optimization formulations are NLP and were implemented in the Pyomo 

environment, an optimization library in PYTHON (Hart et al., 2011). The axially distributed, continuous-time 

differential-algebraic system presented in Section 3.1 was discretized axially into ten finite elements using the 

backward finite difference method. This discretization was determined in the model validation stage by considering 

different numbers of finite elements for the axial domain. Since there is a tradeoff when considering discretization 

resolutions between model size and accuracy, a course axial discretization was used to prevent the model from 

becoming untenably large when discretized in time. The axially discretized absorber model has 80 states and 1,781 

algebraic variables. Likewise, the model was discretized in time into eight elements to a step size of 12.5 seconds 

using three-point Radau collocation on finite elements for all experiments. The Radau collocation method was chosen 

because of its high accuracy and built-in functionality in Pyomo. The high-resolution discretization in time is necessary 

because fast responses are observed owing to the fact that the model represents a pilot-scale plant and disturbances 

are considered directly at the system boundaries. It was found that step sizes larger than 12.5 seconds presented 

difficulties to the solvers when solving the NMPC problem and smaller sizes would have increased the problem size, 

making it unnecessarily large. The interior-point optimization algorithm (IPOPT) (Wächter and Biegler, 2005) was 

used to search for local solutions of the nominal and robust optimization problems presented in (3-11). The studies 

presented in this section were performed on an Intel core i7-4770 CPU @ 3.4GHz. The nominal inlet conditions for 

the pilot-scale absorber model are adopted from Cerrillo-Briones and Ricardez-Sandoval (2019) and are presented in 

Table 3-3. 
Table 3-3: Base case inlet operating conditions 

 Flue Gas Inlet (𝒛 = 𝟎) Lean Solution Inlet (𝒛 = 𝒉) 

𝑻𝒊𝒏(𝑲) 319.17 314 

𝒚𝒊𝒏𝑴𝑬𝑨/𝒙𝒊𝒏𝑴𝑬𝑨(𝒎𝒐𝒍/𝒎𝒐𝒍) 0 0.1 

𝒚𝒊𝒏
𝑪𝟎𝟐/𝒙𝒊𝒏

𝑴𝑪𝟎𝟐(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.175 0.030 

𝒚𝒊𝒏
𝑯𝟐𝑶/𝒙𝒊𝒏

𝑯𝟐𝑶(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.025 0.870 

𝒚𝒊𝒏
𝑵𝟐/𝒙𝒊𝒏

𝑵𝟐(𝒎𝒐𝒍/𝒎𝒐𝒍) 0.8 0 

𝒖𝒊𝒏(𝒎/𝒔) 0.64 0.00473 

 

In order to start the controller tests at realistic points, the inlet conditions stated in Table 3-3 were used to solve a 

steady-state version of the nominal absorber model. This steady state provided initial conditions for all undisturbed 

states at which to begin the dynamic plant simulations. Moreover, the NMPC model’s performance in the solver is 

sensitive to how the algebraic variables are initialized in the solver. This is because the optimization problem is large, 

containing 64,488 nonlinear algebraic equations and 64,497 variables for the nominal (single-scenario) NMPC. 

Accordingly, prior to starting test scenarios, a feasibility problem is executed and the algebraic variables from this 

feasibility problem are used to initialize subsequent NMPC solves.  
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The model was validated at steady state using the base case operating conditions reported by Harun et al. (2012). 

These validation operating conditions differ from the base case operating conditions used in this study (shown in Table 

3-3) as they have altered reference fluid velocities. The lower fluid velocities used in this study result in lower carbon 

capture rates than those considered in the Harun et al. (2012); however, the results obtained are nevertheless 

representative of the MEA PCC plant. The model was validated at steady state to compare the outputs to past 

implementation of the model, the validation outputs are displayed in Table 3-4. The outlet stream values were 

compared to Cerrillo-Briones and Ricardez-Sandoval (2019) and Harun et al. (2012). The latter of these studies was 

itself validated using experimental data from an MEA absorption CCS pilot-scale plant from Dugas (2006) and found 

to be in good agreement.  
Table 3-4: Steady-state validation data for the current absorber model using the base case operating conditions from Harun et 

al. (2012). Model 1: Cerrillo-Briones and Ricardez-Sandoval (2019), Model 2: Harun et al. (2012). 

 Vent gas Rich amine solution 

 Current 

model 

Model 1 Model 2 Current 

model 

Model 1 Model 2 

Temperature (K) 314.45 314.78 314.15 330.61 328.04 327.76 

Total molar flowrate 

(mol/s) 

3.49 3.53 3.47 32.87 31.68 32.87 

       

Mole Fraction       

MEA 0.0001 0 0 0.0981 0.1044 0.1021 

CO2 0.0088 0.0108 0.0085 0.0555 0.0502 0.0503 

H2O 0.0717 0.0761 0.0651 0.8464 0.8452 0.8475 

N2 0.9193 0.9066 0.9264 0 0 0 

 

As shown in Table 3-4, the current model implementation with the base case operating conditions from Harun et al. 

(2012) is in very good agreement for all output values with both models against which it was tested. The output values 

predicted by the present model have a 4.012% difference and 2.43% difference from model 1 and model 2, 

respectively; and there are no egregiously inaccurate values. This also validates the choice of resolution for the axial 

discretization mentioned above. Based on these results, the model was deemed fit for use in the study. 

3.4. Results 

In the PCC absorber model presented in Section 3.1, four parameters were considered uncertain. These included the 

species activity coefficients in the equilibrium pressure relations (𝛾H91,	𝛾7C! , 𝛾D!C) and the CO2 flue gas inlet fraction 

(𝑦*B
7C!). To the authors’ knowledge, this is the first study that explicitly considers uncertainty in these parameters for 

the post-combustion CO2 absorber unit. The activity coefficients are featured in the equilibria model (equation (3-9)); 

an earlier study (Cerrillo-Briones and Ricardez-Sandoval, 2019) established their significant effect on the system’s 

mass transfer rate. The activity coefficients were chosen as uncertain parameters because they typically exhibit 
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variation with changing operating conditions (Austgen et al., 1989). This potential variation is addressed in the 

proposed robust NMPC implementation by treating them as uncertain parameters. Meanwhile, the feed fraction is an 

inlet condition that is likely to be uncertain due to upstream variations in fuel quality (e.g., change in the type of coal) 

and demands as well as changes in the operating conditions of the fossil-fired power plants. For simplicity, changes 

in the CO2 flue gas inlet mole fraction are reflected only in the H2O gas inlet mole fraction, so they are treated as a 

single uncertain parameter. This is assumed because any changes in the upstream process will only affect the relative 

ratio of combustion products in the flue gas (CO2 and H2O), while the fraction of the two non-combustible components 

will be effectively fixed because there is no MEA in the flue gas and N2 is inert. Table 3-5 contains the nominal values 

for the uncertain parameters considered in this study.  
Table 3-5: Uncertain parameters and their nominal values 

Uncertain Parameter (𝜽) Nominal Value (𝜽𝒏𝒐𝒎) 

𝛾H91	 0.677 

𝛾7C! 0.381 

𝛾D!C 0.974 

𝑦*B
7C! 0.175 

 

The nominal NMPC and the multi-scenario NMPC definition from (3-11) were applied to the CO2 absorber model 

presented in Section 3.1. The formulation of the former will be omitted for brevity as the requisite assumptions were 

presented above; however, we define the optimization problem for the latter and is as follows: 

min
i,-,/#,
0 ∀*∈{6,…,P}

�𝜔& Å��%𝐶𝐶Æ@S*,&(𝒙T𝒕S𝒊,𝒓) −%𝐶𝐶@S*
-% �,

P

*A6

Ç
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&A6

+�∆𝐹+,*B@S*
,
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jA6

 

𝑠. 𝑡. 

𝒇𝒅,𝒓 È𝒙T𝒕S𝒊,𝒓, 𝐹+,*B@Sj , 𝜽𝒓É = 𝒙T𝒕S𝒊S𝟏,𝒓																																																					∀𝑖 ∈ {0,… , 𝑃 − 1}, ∀𝑟 ∈ {1,… , 𝑆} 

𝒙T𝒕 = 𝒙𝟎 

𝐹+,*B+ 	≤ 𝐹+,*B@S* ≤ 𝐹+,*Bk 																																																																																																															∀𝑖 ∈ {1,… , 𝑃} 

(3-12)  

where the manipulated variable is the total liquid feed flowrate 𝐹*B+ , with lower and upper bounds at 𝐹+,*B+ = 10	𝑚𝑜𝑙/𝑠 

and 𝐹+,*Bk = 80	𝑚𝑜𝑙/𝑠 , respectively. This input range provides a physically realistic range for the feed rate while 

allowing for fast control action. Note that the liquid inlet flowrate is typically used in conjunction with the reboiler 

duty as manipulated variables when considering an entire MEA PCC plant; in this study however, only the former is 

used however since it directly affects the absorber being studied and is better suited for disturbance rejection and fast 

control. As shown in Section 3.1, the states defined in the differential model equations 𝒇𝒅 for which initial 

conditions	𝒙T𝒕 = 𝒙𝟎 are required are the component phase concentrations and phase temperatures corresponding to 

equations (3-1), (3-2), (3-4), and (3-5). Similarly, the model contain equations (3-3) and (3-6)–(3-10), along with 

physical property relations from Table 3-1. The control and prediction horizon were both set as 100 seconds, which 

discretized into eight time intervals (𝑃 = 𝐶 = 8). This was determined based on preliminary uncontrolled step 
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disturbances tests where the most parsimonious discretization that provided an acceptable resolution for observing 

dynamics was obtained. The weighting matrices were set as identity matrices of proper dimensions (𝑸 = 𝐼B'×B' and 

𝑹 = 𝐼B)×B)) and, as no underlying distribution of the expected values of the uncertain parameters is available, the 

realization weighting parameter is assumed to be equal for all realizations (𝜔6 = 𝜔, = ⋯ = 𝜔H); the latter inherently 

assumes that the uncertain parameter values are uniformly distributed. The controlled output (variable) in the objective 

function is set as percentage of CO2 captured from the flue gas, which will have a unique steady state for a given set 

of initial and operating conditions. This variable is defined as follows: 

%𝐶𝐶 =
𝐹*B
7=! − 𝐹'E@

7=!

𝐹*B
7=! × 100% (3-13)  

For the multi-scenario controllers tested, it is expected that there will be increasing loss in performance as the 

controller considers a larger number of scenarios. This performance deterioration manifests as less aggressive control 

actions and eventual set-point offsets. This effect can be examined by comparing the performance of a nominal NMPC 

under no plant-model mismatch (i.e., the case where the controller knows the plant parameters perfectly) to the 

performance of the multi-scenario NMPCs. Since the nominal NMPC has a perfect model of the plant, which results 

in off-set free tracking, it provides an upper limit for controller performance. Thus, for a given controller tuning, the 

performance of the nominal NMPC can be used as a benchmark to compare the performance of controllers that do 

result in offset (i.e., robust NMPC controllers and NMPC controllers that consider a plant-model mismatch). To 

quantify the performance degradation of the robust controller, the price of robustness was used, i.e., the percent 

difference in performance of the robust controller relative to the nominal NMPC controller. It is expected that the 

price of robustness (PoR) will increase to reflect increasing conservativeness of multi-scenario NMPCs as they 

consider more uncertainty realizations in their formulation. PoR is defined as follows: 

𝑃𝑜𝑅 = Ë
𝐽&'FE-@ − 𝐽l'"*B#+

𝐽l'"*B#+
Ë × 100% (3-14)  

where “𝐽&'FE-@” and “𝐽B'"*B#+”  are the performance indices of a given controller. This robust control PoR is designed 

to be analogous to the same concept used robust optimization, which quantifies the loss in performance incurred by 

computing a robust (as opposed to deterministic) solution (e.g., Schöbel and Zhou-Kangas, 2021). These terms are 

defined as the sum of squared errors with respect to a CO2 removal percentage set-point over a time period (T), i.e. 

𝐽m =�(%𝐶𝐶* −%𝐶𝐶-%,*),,				
n

*A=

∀𝑐 = {𝑛𝑜𝑚𝑖𝑛𝑎𝑙, 𝑟𝑜𝑏𝑢𝑠𝑡	} (3-15)  

Percent offsets from the desired set-point at the final steady state of simulation were also used for assessment of the 

robust NMPCs tested. Another factor to consider when using multi-scenario controllers is the increase in size of the 

multi-scenario NMPC optimization problem. The size of the problem increases proportionally to the number of 

realizations considered by the controller, thereby increasing the CPU time to solve each optimization problem. 

Accordingly, averaged CPU times for NMPC executions were also recorded to assess performance in a given 

simulation.  
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3.4.1. Effect of Size of Uncertainty Region 

The effect of the size of the uncertainty region was investigated first. The uncertainty region refers to the symmetric 

interval box of a priori defined values around the nominal parameter values in which the uncertain parameters are 

bounded in a multi-scenario formulation (i.e., 𝜽 ∈ [(1 − 𝛼)𝜽𝒏𝒐𝒎, (1 + 𝛼)𝜽𝒏𝒐𝒎]), where the parameter 𝛼 is used to 

represent the size of the uncertainty region. Given increasing sizes of uncertainty regions 𝛼, the robust controller 

performance is expected to degrade since the uncertain parameters are able to take on a wider range of values, which 

the controller must accommodate for. The source of the performance degradation is of interest as it could manifest as 

less aggressive control action or set-point offset.  

As mentioned above, a nominal NMPC was designed with the uncertain parameter values set to their corresponding 

nominal parameters (Table 3-5), which were the same values used in the plant for this scenario. This corresponds to 

the operational case where the model describes the plant perfectly, which may rarely occur in practice. As can be seen 

in Table 3-6, the nominal NMPC has no set-point offset in the %CC controlled variable. As mentioned above, the 

performance of the nominal NMPC was used to determine the PoR to compare multiple three-realization multi-

scenario NMPCs that were also tested in the plant simulation. The three-realization multi-scenario NMPCs tested had 

increasingly large uncertainty region sizes (i.e., increasing 𝛼 value). The scenarios in the three-realization controllers 

were defined at the nominal (𝜽𝒏𝒐𝒎), minimal (𝜽𝒍 = (1 − 𝛼)𝜽𝒏𝒐𝒎), and maximal (𝜽𝒉 = (1 + 𝛼)𝜽𝒏𝒐𝒎) values of each 

uncertain parameter for the given size of uncertainty region. These controllers were tested in a disturbance rejection 

scenario, where two subsequent 5% steps down in total flowrate of flue gas (𝐹*B
? ) were implemented 44 time-intervals 

(550 s) apart, as displayed in Figure 3-3. The 44 intervals between the steps were used to ensure sufficient time for 

the %𝐶𝐶 output to reach steady state prior to disturbing the system again. Subsequent smaller steps down were 

implemented in favor of a single large step for ease of convergence in the IPOPT solver.  
Table 3-6: Price of robustness, offset, and CPU time for increasing uncertainty region sizes 

𝜶 PoR (%) Offset (%) CPU time (s) 

0 (nominal) 0 0 55.71 

0.2 5.74 0.0253 183.14 

0.25 9.57 0.0396 192.42 

0.3 14.82 0.0568 192.74 

0.35 21.77 0.0768 218.73 

0.4 29.36 0.0968 208.27 

 

Table 3-6 summarizes the results of these tests. As shown in this table, there is substantial performance degradation 

as reflected in the increasing PoR for increasing uncertainty region sizes. This degradation comes mostly in the form 

of offset as displayed in Figure 3-5. While the nominal NMPC shows no offset, each subsequent robust NMPC 

controller shows an increasing amount of offset with an increased uncertainty region size. A single-scenario NMPC 

with poorly chosen uncertain parameters (i.e., different than the nominal plant parameters), however, would not exhibit 

off-set free performance like the one exhibited by the nominal NMPC. This would be analogous to the case where a 
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NMPC no longer has a perfect plant model (plant-model mismatch) and is where multi-scenario approach can be 

beneficial; this type of behavior is investigated in the following sections. It can be also observed in Figure 3-4 and 

Figure 3-5 that the conservatism is not reflected in the aggressiveness (or lack thereof) of the control actions as each 

plant reaches its new steady state at approximately similar times for all the robust NMPC controllers.  These figures 

also show that small changes in the manipulated variable reflect with quite substantial changes in the controlled 

variable. The results in Table 3-6 also suggest that there is an increasing price of robustness difference for constant 

increases in size of the uncertainty region. This nonlinear relationship highlights the need to define an uncertainty 

region size that covers the expected uncertainty but not so large as to squander the potential benefit of the multi-

scenario approach. Moreover, a small increase in mean CPU time per simulation can generally be observed for 

increased sizes of uncertainty region. A similar effect was observed in a scheduling context by Li and Ierapetritou 

(2008) and is explained by a decrease in the size of the feasible region making it more difficult to find a solution as 

robustness requirements increase.  

 
Figure 3-3: Inlet flue gas flowrate (disturbance) for Scenario A (5.1) and Scenario B (5.2) 
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Figure 3-4: Inlet solvent flowrate (manipulated variable) for step-down simulations and increasing uncertainty region size 

 

 
Figure 3-5: Percent Carbon capture (controller variable) for step-down simulations and increasing uncertainty region size 



 34  

3.4.2. Effect of Number of Realizations 

With the effect of uncertainty region size established, the effects of the number of scenarios considered by the 

controller on performance and CPU time were assessed. The size of the uncertainty region may be different for each 

parameter. In principle, historical plant data, seasonal and diurnal changes in the process, and process heuristics can 

be used to determine the size of the uncertainty. However, for the remainder of this work α = 0.3 was chosen as the 

uncertainty region size for all of the uncertain parameters. This uncertainty region size was selected based on a 

preliminary analysis that showed that a 30% variation in the uncertain parameters represented significant process 

variability that is often observed during operation. Moreover, from the results of Scenario A, it was concluded that 

this uncertainty region size represents an acceptable trade-off between uncertainty region size (robustness) and PoR. 

Each of the uncertain parameters was discretized to its nominal, low or high values to limit the number of possible 

uncertainty realizations. Even with this limitation, since there exist four uncertain parameters that can occur at 

either	𝜃B'", 𝜃+, or 𝜃k; there are 3; = 81 possible combinations of these parameters. However, including 81 

realizations in a controller is unrealistic as the CPU time would become computationally intractable; thus, the 

maximum number of realizations allowed for a multi-scenario controller was chosen to be 7 based on observed CPU 

times and preliminary closed-loop simulations. These realizations are displayed in Table 3-7. 
Table 3-7: Possible parameter realizations for the controllers and the plants 

 S1 (P1) S2 (P2) S3 S4 (P3) S5 S6 (P4) S7 

𝜸𝑴𝑬𝑨	 𝜃B'" 𝜃k 𝜃+ 𝜃k 𝜃+ 𝜃+ 𝜃B'" 

𝜸𝑪𝑶𝟐 𝜃B'" 𝜃k 𝜃+ 𝜃+ 𝜃+ 𝜃k 𝜃B'" 

𝜸𝑯𝟐𝑶 𝜃B'" 𝜃k 𝜃+ 𝜃k 𝜃k 𝜃B'" 𝜃B'" 

𝒚𝒊𝒏
𝑪𝑶𝟐 𝜃B'" 𝜃k 𝜃+ 𝜃k 𝜃k 𝜃B'" 𝜃+ 

 

These realizations were chosen with the goal of exploring a mix between expected and worst-case combinations of 

uncertain parameters. That is, the scenarios aim to represent (with only a few realizations), the full set of parameter 

realizations that may actually occur. It would be desirable to include a large number of these scenarios to make the 

controller robust; however, this number is limited by the CPU time. Note that the choice of these parameter realizations 

(as well as the number of realizations) in the controller can drastically affect closed-loop performance. Accordingly, 

the choice of realizations should be tailored to the specific application, especially when the operator has insight on the 

potential uncertainty. In this case specifically, each scenario was chosen as it represented a distinct combination of the 

uncertainty parameters that is significantly different from the other realizations in the uncertain parameter realization 

set. 

While testing the performance of the multi-scenario controllers against a large sample of plants with different 

parameter realizations would be the best way to assess their benefit, time limitations required only simulating the 

controllers in a few plants, which itself still required significant computational effort. As such, a sample of four plants 

with different uncertain parameter realizations was chosen such that it would be as representative as possible to the 

potential variations in uncertain parameters and such that statistical measures approximately reflected the benefits of 
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the multi-scenario controller. The chosen simulated plants contained the parameter value realizations in Table 3-7 that 

correspond to S1, S2, S4, and S6, i.e., P1, P2, P3 and P4, respectively. With regards to the parameter values displayed 

in Table 3-7, S1 was chosen as it contained only nominal parameter values, S2 was chosen as all values were at the 

same (high) uncertain region boundaries, S4 was chosen as it contained values that were at different (high and low) 

uncertainty region boundaries, and S6 was chosen as it contained a mixture of nominal and uncertainty region 

boundary uncertain parameters.  

Robust NMPC controllers with three, five, and seven scenarios were evaluated on the aforementioned plants. Also, an 

NMPC with uncertain parameters values different that the nominal uncertain parameters was considered. The 

performance of the robust controllers was tested using the same disturbance rejection tests as in Scenario A, shown in 

Figure 3-3, with a shorter simulation time of 950 seconds. The shorter simulation time was introduced to cut down on 

the computational effort required to obtain the results. Nevertheless, it proved to be more than sufficient time for the 

systems to reach their new-steady state after both disturbances are introduced as shown in the results from Scenario 

A. In this scenario, however, the controllers were compared based on their performance indices, as displayed in Table 

3-8. 
Table 3-8: Performance indices of various NMPCs and multi-scenario NMPCs in different plants (i.e., with different uncertain 
parameter realizations). The average column represents the average performance index of a given controller in all plants simulated 
(𝐽𝑐!), with their respective standard deviations (𝜎𝐽𝑐). *Plants where controllers exhibited ringing for the default tuning parameters 

Controller Scenario(s) 𝑱𝒄  

(P1) 

𝑱𝒄 

(P2) 

𝑱𝒄 

(P3) 

𝑱𝒄 

(P4) 

Average 

𝑱𝒄G  

Std. 

Dev 

𝝈𝑱𝒄 

Mean 

CPU 

(s) 

No. of 

Equations 

C1 

(Nominal) 

S1  

13.044 19.250 14.576 11.940 14.703 3.218 50.9 64,488 

C2 S2 32.020 11.126 31.646 20.581 23.843 10.00 57.7 64,488 

C3 S1, S2, S3 14.977 15.455 16.475 11.163 14.518 2.322 192.3 193,416 

C4 S1, S2, S3, 

S4, S5 14.679 17.657 15.469 11.969 14.944 2.349 385.7 322,344 

C5 S1, S2, S3, 

S4, S5, S6, 

S7 15.161 15.700 16.537 11.350 14.687 2.295 718.6 451,272 

 

The results in Table 3-8 show that the mean CPU time increases as the robust controllers takes more realizations into 

account. This is expected as the size of the problem grows proportionally to the number of scenarios as reflected in 

the number of equations, thus increasing the size of the search space that the NLP solver must consider. The degrees 

of freedom for each problem, however, remained fixed at eight (time intervals in the control horizon) regardless of 

the number of realizations considered in the controller. Nevertheless, since the total model size does grow with 

realizations, it is crucially important to determine whether the sacrifice in computational effort in the multi-scenario 

controllers is worth the increased robustness. For instance, consider C2 (an NMPC controller with parameters on the 
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high end of uncertainty region) and C5 (the seven-scenario controller). The mean performance index across all plants 

tested is ~1.62 times higher for C2 while the mean CPU time is time is ~12.45 times higher for C5. On face value, it 

appears that for the additional computational effort required for C5 to be justified, the operator must be placing 

significant priority to performance. However, this experiment only simulates approximately 16 minutes of plant 

operation. This is a relatively short amount of time where only two step-changes in the upstream process are introduced 

into the plant. A longer simulation time, which is unrealistic to perform for all controllers in all plants due to time 

constraints, would better illustrate the performance disparity between the two controllers. Nevertheless, in a real test 

scenario the PCC absorber could be operating continuously for days provided that the downstream combustion process 

is operating.  

Despite the large computational cost of C5, very similar performance improvement over C2 was achieved with the 

three-scenario controller (C3) without as much additional computational burden. The mean performance of C2 is 

~1.64 times higher than that of C3, while the mean computational time of C3 is a much more reasonable (compared 

to C5) ~3.33 times higher than that of C2.  This, with C3 the operator would still be placing priority on performance 

over computational burden but not nearly as much as with C5. As mentioned above, this performance disparity would 

become increasingly large with longer test times as more error accrues in the performance indices. Although the 

performance of C3 and C5 are very similar despite much larger mean CPU times for C5, it should be noted that this 

is likely due to the small sample of plants used in this study. Across a larger set of plants, we would expect to see a 

clear benefit when using C5 since it is the most robust controller. 

As indicated in previously, the uncertain parameters have been chosen to be uniformly distributed with their nominal 

parameter values in the center of the distribution. As a result, C1, which contains the uncertain parameters’ nominal 

values that are centrally positioned in the uncertainty region; is expected to have some inherent robustness and 

therefore present good performance in most plant cases (as show in Table 3-8). This is analogous to the case where a 

NMPC is designed with well-chosen/estimated parameters and is reflected in C1s average performance index (𝐽mG  in 

Table 3-8), which is closer to that of the robust multi-scenario controllers (C3,C4, and C5) than that of the other single-

scenario controller with large plant-model mismatch (i.e. C2). However, it is not always the case that parameters can 

be well chosen/estimated, i.e., when the parameter estimation problem is too large, not repeated frequently enough, or 

when variables are approximated as parameters. To contrast, C2 (i.e., the NMPC with parameter values at the high 

end of the uncertainty region) was observed to show substantially worse performance than C1, as reflected in the 

average performance index of C1 which is ~0.617 times that of C2. This is because C2 lacks the inherent robustness 

imparted on C1 by having centrally located parameter values in the uncertainty region and is analogous to the case 

where the NMPC is designed with poorly chosen/estimated parameters. Moreover, for C1 and C2, we observe a larger 

standard deviation in their performance across plants. This is particularly evident in C2 but still noticeable with C1. 

This means that these controllers show more variation in their performance in different plants (i.e., good performance 

in some plants and poor performance in others). Take for instance C1, which performs well relative to other controllers 

in P1 but less so in P2. C1s performance in P1 should be very good as its single scenario contains no plant-model 

mismatch to P1. However, its performance in P2 is worse because all the parameter values are largely mismatched; 

the converse can be said about C2. In contrast, the multi-scenario controllers show a more consistent performance 
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among the different plants tested as reflected in their low deviations for the plant sample although the mean 

performances indices are very similar to that of C1. Having consistent operation despite uncertainty, such as the 

proposed robust NMPC enables, is crucial for a process like PCC as its economics and emissions must be controllable 

to be attractive for industrial implementation. Load changes in the upstream power plant are common and cause these 

operational disturbances, making it important to consider them on a model level. 

Since we are assessing the controllers based on their performance index, it is important to notice that the experiment 

designed in this section has two subsequent transients and little time for the %𝐶𝐶(controlled variable) to be at steady-

state. More time at steady-state and longer simulations times would allow the performance index to accrue more error 

and the benefits of the robust controllers would be even more pronounced as they would display reduced set point 

offset. This effect will be shown in the next section as we consider a prolonged test case that the controller might 

encounter in a real MEA-based PCC absorber’s daily operation. 

3.4.3. Diurnal Variation in Flue Gas 

As stated above, the absorber’s operation will occur downstream from a CO2 emission source resulting in exogenous 

disturbances to the PCC plant operation. Coal-fired power plants are of specific interest to be retrofitted with PCC 

units and, as such, the coal-fired power plant will dictate the daily operational variation of the PCC plant. 

Conveniently, this provides a realistic test case under which the robust NMPC designed for the MEA PCC absorber 

can be evaluated for a longer operational period than in Section 3.4.2.  

Due to diurnal variation in consumer demands, energy consumption occurs in a cyclical manner whereby the demand 

is highest in the middle of the day and lowest during the night. Similarly, for a region that is dependent on coal-fired 

power, the demand to the plant will also be cyclical leading to a periodic variation in the quantity of flue gas released. 

This periodic variation in the flue gas released by the plant provides a periodic disturbance to the MEA PCC plant. 

An example of region that is reliant on coal-fire power and experiences a diurnal demand variation is the Canadian 

province of Alberta. Based on single-day data from the Alberta Electric System Operator (AESO), the cycle amplitude 

of the province’s daily internal load is ~8.95% of the midline (average load) (AESO, 2019). 
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Figure 3-6: Diurnal Inlet flue gas flowrate variation (disturbance) for Scenario C (5.3)  

As such, the disturbance in the flue gas flowrate shown in Figure 3-6 was used to approximate the single-day cycle in 

order to test the efficacy of several controllers for a single cycle. The periodic behavior was approximated as step 

changes in the flue gas flowrate to the absorber every 45 sampling intervals (~9.4 minutes). The amplitude of the 

variation in flue gas flowrate was assumed to be 10%  of the midline flowrate based on the aforementioned daily 

observations from AESO. The cycle length was compressed to 75 minutes due to time limitations as a 24h simulation 

would be prohibitively long. Nonetheless, all controllers were shown to exhibit fast enough responses to reject each 

step disturbance before a subsequent one was introduced into the system.  

For this test case, NMPC controllers involving one and three-scenarios (𝛼 = 0.3) were implemented. The three-

scenario robust NMPC controller was chosen as it could be shown to have benefits over single-scenario NMPCs with 

plant model-mismatch as demonstrated in Section 3.4.2 while maintaining more acceptable computational costs 

relative to higher-scenario controllers. Specifically, controllers C1, C2, and C3 (Table 3-8) were implemented in P1, 

i.e. plant with nominal uncertain parameters (Table 3-7). Moreover, to further elucidate the benefits of the multi-

scenario controller more clearly, uncertain parameters values for a second test plant were randomly generated (based 

on a uniform distribution) inside the 30% uncertainty region. In addition to testing C1, C2, and C3 for a longer 

simulation in P1, the controllers were also implemented in this plant (P5) using random values in the uncertain 

parameters. The parameter values for P5 are displayed in Table 3-9. 
Table 3-9: Randomly determined uncertain parameter realization for Plant 5 

Uncertain Parameter (𝜽) 𝜽𝑷𝟓 

𝛾H91	 0.846 
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𝛾7C! 0.453 

𝛾D!C 1.062 

𝑦*B
7C! 0.182 

 

Table 3-10: Performance indices and CPU times for single-scenario (C1 & C2) and multi-scenario (C3) NMPCs in Plant 1 and 
Plant 5 

Controller Scenario(s) 𝑱𝒄  

(P1) 

Mean 

CPU (s) 

𝑱𝒄  

(P5) 

Mean 

CPU (s) 

C1 (Nominal) S1 33.143 74.135 66.281 47.427 

C2  S2 157.647 79.583 71.593 58.422 

C3 S1, S2, S3 39.021 186.750 35.151 202.908 

 

Table 3-10 summarizes the results for this scenario. As expected, the multi-scenario controller (C3) exhibited far better 

performance than the single-scenario NMPC with plant-model mismatch (i.e., C2) in P1. This was markedly illustrated 

by the longer simulation length of 75 minutes in this scenario compared to 18.75 minutes in the simulation from 

Scenario B. This is further exhibited in Figure 3-7,where the performance of C3 when employed in P1 is much more 

like the performance of the C1 (nominal controller) than that of C2 (controller with plant-model mismatch). Moreover, 

although the robust controller (C3) requires on average ~2.35 times the computational effort of C2, its performance 

index is ~0.25 times that of C2, thus justifying the additional computational effort.  This reinforces the notion that the 

robust controller’s benefits are more clearly observed over a longer operating window. 

 
Figure 3-7: Percent Carbon capture for diurnal variation in flue gas simulations in P1 



 40  

In P5 (random plant uncertain parameter realization), both C1 and C2 performed relatively similarly with respect to 

performance indices and CPU times as shown in Table 3-10. However, as with P1, the robust NMPC controller (C3) 

exhibited a better performance index that is half of that observed for C1 and C2. Note that in this case, C1 (nominal 

NMPC) has plant-model mismatch because plant P5 contains random realizations in the uncertain parameters, which 

no longer correspond to those in C1. This robustness came at a significant computational cost as each NMPC execution 

for C3 required ~4 times the CPU time relative to C1 and C2. Nevertheless, as shown in the simulations over a longer 

operational time, the benefits of a robust NMPC are evident even when only a small number of scenarios are 

considered. This performance benefit accrues over time and is significant in a plant that operates continuously for 

several hours or days such as a PCC plant. The simulations performed in this section, although longer than that shown 

in the previous scenario, are still relatively short compared to the operational time of a PCC plant. Consequently, real 

plant operation would see even more pronounced benefits from using the multi-scenario approach. As mentioned 

earlier, consistent performance despite uncertainty is essential to the PCC process. We have demonstrated in this 

scenario that, given a realistic load following experiment, the robust controller has superior regulatory performance 

for the %CC set-points. Having robust control, such as that presented in this work, makes the process industrially 

viable given the importance of economics and emissions. 

3.5. Summary 

The study herein presents a robust controller for a PCC absorber. This is the first explicit treatment of uncertainty 

associated with operating conditions and physical property descriptions in the MEA PCC process and it was enabled 

by the use of a dynamic mechanistic model. Uncertainties in activity coefficients are considered along with disturbance 

uncertainty in the flue gas inlet flowrate. The multi-scenario approach was used to address uncertainty and several 

aspects of this formulation where investigated. The size of the uncertainty region was first investigated with step 

experiments where it is found that increasing uncertainty leads to decreased control performance, primarily through 

off set. The effect of number of scenarios in the controller was also studies where overall (i.e., across potential 

uncertainty realizations) performance improvement is observed at the expense of large increased in computational 

effort. Lastly, a case of diurnal load variation from the power plant to the PCC plant is studied, and the robust controller 

is found to have better overall performance in this practical scenario. Overall, the deployment of robust controllers 

like the one presented herein can aid in the operation of PCC to ensure set points are reached accurately to maintain 

operation at economically optimal levels. 
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4. Integrated Operating Scheme of a CO2 Capture System 

The control system of the PCC process is crucial in ensuring its productive, safe, and cost-effective operation. As it 

currently stands, the use of PCC is of net economic detriment to the operation of the upstream power plant with which 

it is implemented. As such, the economically optimal controlled operation of this process is a crucial aspect that must 

be investigated to encourage widespread adoption of this technology. This can be achieved using what is known as 

the two-layer approach whereby real-time optimization (RTO) and model predictive control (MPC) are implemented 

hierarchically, which will be the focus of this study. 

While there are many control studies that investigate the dynamic and controlled behaviour of the PCC system (e.g., 

Åkesson et al., 2012; Sahraei and Ricardez-Sandoval, 2014), the economically optimal operation of this process has 

not received as much attention. Some notable works in this field include the economically optimal operation of the 

entire PCC process by Panahi and Skogestad (2012); similarly, single-layer economic model predictive control 

(EMPC) strategies have been proposed by Chan and Chen (2018) and Decardi-Nelson et al. (2018). The literature, 

however, has not yet considered the implementation of a unit-based two-layer approach; whereby the major PCC units 

are operated with their own RTO and controller. A decentralized approach such as this allows for increased RTO 

execution frequency as the economic optimization can be performed upon a single unit reaching steady state (instead 

of the entire system).  

Accordingly, the contributions of this chapter are as follows:  

1) Jointly address the economic operation, control, and state estimation for general PCC plants operating 

downstream from fuel-fired power plants by using a mechanistic process model in RTO, NMPC, and MHE layers, 

respectively. To the authors’ knowledge, this is the first operational scheme in PCC (or indeed any CCS) to use an 

optimal three-layer operational approach and a mechanistic process model in each of the manufacturing layers. The 

mechanistic process model is well-suited to perform this task as it produces highly accurate decisions and predictions 

in each of the layers, which results in an effective operation scheme in closed loop. Moreover, RTO is suitable for this 

system as it is computationally efficient and produces economically attractive set points.  

2) Introduce a generalized economic objective function that can be adapted for all PCC plants (i.e., with 

different designs, solvents, prices, etc.). The proposed economic function brings together the aforementioned aspects 

of the economics for the first time (i.e., energy, chemical, utility), and includes novel carbon economy factors (i.e., 

social cost and recoups). A detailed economic model is key when many competing incentives can affect process costs 

such as in PCC. Using the proposed economic model, the RTO can provide realistic economically optimal steady 

states for different upstream power plant operations at which to maintain key variables while also incentivizing the 

removal of CO2.  

3) Design a centralized multivariable control approach for the PCC plant, which enables large disturbances 

from the power plant to be handled through the manipulation of makeup streams. The proposed NMPC control scheme 

is advantageous since the PCC system exhibits strong interactions between the manipulated and controlled variables. 

In addition, the manipulation of both makeup streams, which is a first in this the present study, helps in 

diluting/concentrating removal solvents to effectively manipulate the removal of CO2.  
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4) Introduce the first model-based advanced estimation to be used within a control framework for PCC plants. 

The scheme consists of an MHE formulation that requires a realistic/accessible set of measurements and can 

accommodate for a substantial amount of noise. The mechanistic model applied to the estimation layer accurately 

captures the past process dynamics, which helps in producing highly accurate state estimates for the nonlinear 

dynamics exhibited in PCC. 

The study herein employs the model used in Chapter 3 with some modifications (described in the following sections) 

to consider stripper-side effects. This economic operation scheme is applied to the absorber section of a pilot-scale 

PCC plant with approximations of the stripper section effects. The plant and scheme are subjected to scenarios that 

would occur in PCC plants owing to changes in the power plant including: A) co-firing of coal and biomass, such that 

the economics of each fuel under the new objective function can be observed; B) diurnal variation in flue gas 

quantities, which allows for assessment of the scheme performance under upstream power plant load variation; and 

C) price changes, such that the dependence of the economics on prices can be assessed. These scenarios are primarily 

assessed using their process economics as it pertains to the improvements in steady-state PCC cost and the associated 

energy penalty on the power plant imposed by the RTO. 

4.1. Proposed Economic Operation Scheme and Formulations 

PCC plants are subject to frequent disturbances, which impact the process operation and economics. Operating 

conditions that were once economically optimal become suboptimal thereby rendering the process set points outdated. 

For instance, a PCC system that requires a high CO2 removal set point to maintain good process economics could be 

subject to a decrease in CO2 composition in the flue gas. This disturbance would allow for a decrease in the removal 

set point because of the lower throughput of CO2. In this situation, the lower removal set point would be an opportunity 

for savings from chemical materials (i.e., water and solvent consumption) as well as energy costs, which inflate the 

removal rate. As indicated above, economic detriment posed by the PCC to the upstream power plant remains the 

main factor in preventing adoption of this technology; thus, economical operating schemes are paramount in inciting 

its widespread uptake. Figure 4-1 outlines the flow of information of the proposed scheme, described next, which aims 

to operate the process in an economically optimal fashion while maintaining the closed-loop operation of the plant on 

target and using few available online measurements. 

The PCC plant is subject to disturbances denoted as	𝒅𝒕 in Figure 4-1. These disturbances cause the plant to deviate 

from its predefined set points, which can have economic and safety implications. An advanced model-based controller 

such as NMPC can be deployed to ensure that the plant meets its operational targets despite the occurrence of these 

disturbances. At every sampling interval, the NMPC requires access to the full set of model states (i.e., concentrations, 

temperatures, hold ups); however, only a small portion of the states are often available for online measurements (𝒛𝒕), 

which are typically corrupted with measurement noise 𝒗𝒕. The lack of a full set of measured states to provide to the 

NMPC requires the use of a reliable state estimation framework that can operate for a wide range of operating 

conditions. In this work, MHE is employed since it can deal with process nonlinearities that are present in PCC. MHE 

comprises a dynamic optimization problem that uses the available noisy measurements (𝒛𝒕 + 𝒗𝒕, as shown in Figure 
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4-1) to provide an estimate of the full set of plant states (𝒙T𝒕) at the current time. These estimates are computed such 

that the model state predictions are consistent with historical process measurements and estimates. 

Once the set of states are estimated by the MHE, they are fed to the NMPC as initial conditions (𝒙T𝒕,𝑵𝑴𝑷𝑪 = 𝒙T𝒕,𝑴𝑯𝑬, 

as shown in Figure 4-1) to solve another dynamic optimization problem that determines control actions for the plant. 

The control actions are computed such that the controlled variables are regulated towards their set points by the process 

manipulated variables (𝒖𝒕S𝟏, as shown in Figure 4-1). The manipulated variables are subsequently passed to the plant, 

and after a time interval has elapsed (i.e., 𝑡 ← 𝑡 + 1), the procedure of measurement, estimation, and control is 

repeated. This repeated cycle provides constant feedback to the NMPC via the MHE so that the plant behaviour is 

properly regulated. 

On a longer timescale, as the process operation varies significantly owing to the disturbances, operating points must 

be updated as noted above. When the closed-loop operation of the plant is at steady state, the RTO is triggered such 

that a new economically optimal steady-state operating point is defined for the plant. The RTO uses steady-state 

measurements (𝒛𝒕 + 𝒗𝒕) to provide updated controlled variables set points to the NMPC (𝒚𝒔𝒑 = 𝒚𝑹𝑻𝑶, as depicted in 

Figure 4-1). These set point updates cause the NMPC layer to operate the system dynamically such that the updated 

controlled variables are eventually reached. Upon reaching these set points, the plant will be operating in an 

economically optimal manner until a new disturbance occurs. Each of the components of Figure 4-1 is discussed in 

further detail in the following subsections.  

 
Figure 4-1: Proposed scheme for PCC plants. 

4.1.1 RTO formulation 

A novel RTO economic function for a general PCC process is introduced along with the RTO formulation, which 

provides updated set points to the NMPC as depicted in Figure 4-1. The RTO formulation proposed for PCC plants is 

as follows: 

Plant 
Manipulated 

variables  

(𝒖𝒕S𝟏) 

Set points (𝒚𝒔𝒑 = 𝒚T𝑹𝑻𝑶) 

Predicted states (𝒙T𝒕,𝑵𝑴𝑷𝑪 = 𝒙T𝒕,𝑴𝑯𝑬) 

Nonlinear model 

predictive control 

(NMPC)  

Real-time optimization 

(RTO)  

Moving horizon estimation 

(MHE) 

(𝑡 ← 𝑡 + 1) 

Noisy  

measurements 

(	𝒛𝒕 + 𝒗𝒕) 

Disturbances 

	(𝒅𝒕) 
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min
𝒚t
�𝑃mku",*𝑚̇mku",*

"vE% (𝒙T)
*

+ 𝜁𝑃-#+u-𝑚̇7C!
m#%(𝒙T) + 𝑃7C!𝑚̇7C!

)uB@(𝒙T)

+�𝑃uBu&?w,j𝑄uBu&?w,j(𝒙T) +�𝑃D!C𝑚̇D!C,v
vj

(𝒙T) 

𝑠. 𝑡. 

𝒇𝒔(𝒙T, 𝒚T, 𝒖, 𝒅) = 𝟎 

𝒈𝒔(𝒙T, 𝒖, 𝒅) ≤ 𝟎 

𝒚𝒍 ≤ 𝒚 ≤ 𝒚𝒉			 

𝒖𝒍 ≤ 𝒖 ≤ 𝒖𝒉		 

(4-1)  

where 𝒇𝒔: ℝB) ×ℝB1 ⟶ℝB& ×ℝB' is the PCC model at steady state, which maps the disturbance variables (𝒅 ∈

ℝB1) to the steady states (𝒙T ∈ ℝB&), manipulated variables (𝒖 ∈ ℝB)), and the controlled variables (𝒚 ∈ ℝB'). 

𝒈𝒔: ℝB& ×ℝB) ×ℝB1 ⟶ℝB* 	denotes the set of inequality constraints (aside from upper and lower bounds) that 

determine the feasible region for the PCC plant in the RTO framework. 𝒚𝒍 and 𝒚𝒉 ∈ ℝB' are the lower and upper 

bounds for the controlled variables, respectively, whereas 𝒖𝒍 and 𝒖𝒉 ∈ ℝB) are the lower and upper bounds for the 

manipulated variables, respectively.		The RTO procedure can also involve a parameter estimation step, which uses the 

available measurements to estimate uncertain parameters; this step is omitted for brevity. 

The objective function lumps the major economic factors present in the PCC process into five categories. Firstly, it 

considers the fresh feeds of chemical solvents ‘𝑖’ used for absorption, which are often expensive (e.g., CANSOLV, 

KS-1, AMP/PZ, etc., Danaci et al., 2021). These chemicals typically perform the removal of the CO2 via various 

reactive absorption mechanisms. As such, the first (chemical) cost term is comprised of the fresh feeds of the various 

chemicals being fed to the process (𝑚̇mku",*
"vE% ) along with their respective market price (𝑃mku",*).  

The second term (sales) represents the recoups that can be made by selling the captured CO2. This is the first time that 

this cost has been considered explicitly in an economic optimization function for PCC (it has previously only been 

considered in technoeconomic analyses e.g., Nwaoha and Tontiwachwuthikul, 2019). As CCS technologies become 

increasingly mature, a competitive market for the captured product will emerge, thus allowing for emitters to recover 

some of the losses incurred by the capture process. This term consists of the price of selling captured CO2, (𝑃-#+u-) 

and the capture rate of CO2 (𝑚̇7C!
m#%). This ‘price’ is negative as this term represents a profit (contrasted to the other 

terms which represent a cost). 𝜁 ∈ [0,1] denotes an efficiency factor that quantifies the portion of the total CO2 

captured that can be sold.  

The third term (carbon) consists of the social cost of carbon (SCC), which includes the market cost of emitting CO2 

as well the non-market negative externalities of emissions. Negative externalities are costs not typically borne by the 

emitter but by a third-party (e.g., the associated effects on human and environmental health and their remediation) and 

are largely ignored within most carbon tax frameworks. By taking the social cost into account, the economic burden 

of these externalities is shifted back to the emitter, thus representing a larger penalty than a carbon tax. This term 

consists of the price of emitting carbon (𝑃7C!) and the CO2 emission rate (𝑚̇7C!
)uB@) via the vent gas. This is the first 

time that SCC is used in the economic optimization of a PCC process to provide a more complete perspective of the 
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effects of emissions. Past studies have used simple carbon tax prices (Decardi-Nelson et al., 2018) however, a carbon 

tax will under-incentivize the removal of CO2 as it ignores the negative externalities caused by the emission of CO2. 

The fourth (energy) term is comprised of all the energy-intensive units ‘𝑗’ within the plant (e.g., reboilers, blowers, 

pumps, preheaters, etc.). This cost term is typically the most significant within PCC plant and is, in fact, the reason 

why their widespread uptake remains nascent. It consists of the unit price of energy (e.g., steam, electricity, etc., 

𝑃uBu&?w,j) as well as the energy consumption requirements (e.g., duty, load, etc., 𝑄uBu&?w,j). As the proposed scheme 

does not include a model of the power plant, this energy cost considers the energy requirements of the PCC plant but 

not its potential effects on the associated energy generation (i.e., the economic effect of taking steam for the PCC that 

could otherwise be used to produce energy). While the effects of PCC on the power plant are not considered in the 

RTO decisions, they are nonetheless assessed to ensure that the PCC is hindering the power generation unduly; this is 

discussed in the following sections. 

The fifth (water) term is comprised of all the water-consuming units ‘𝑘’ within the plant (e.g., makeups, condenser, 

etc.). This cost term is typically not very significant for PCC plants owing to the low price of water but it is included 

for completeness. This term consists of the price of water (𝑃D!C) as well as the water consumption by individual units 

(𝑚̇D!C,v). 

Using the economic function described in formulation (4-1), the RTO determines the set points for the controlled 

variables (𝒚𝒔𝒑 = 𝒚T𝑹𝑻𝑶) to pass to the controller, as shown in Figure 4-1. These set points will change significantly as 

disturbances (𝒅) occur. The RTO problem is triggered when the PCC system reaches steady state; to detect steady 

state, there are various criteria that can be applied as outlined by Rhinehart (2013). 

4.1.2 NMPC Formulation 

The NMPC uses the dynamic process model to determine the control actions that are used by the plant at every 

sampling interval to regulate the process. For PCC plants, which are highly nonlinear, an NMPC rather than a linear 

MPC is preferred to provide quick control actions with little offset.  

In NMPC, the manipulated variables act to regulate the controlled variables to the steady-state set points supplied by 

the RTO (𝒚𝒔𝒑 ∈ ℝB') in the presence of disturbances. The control actions are computed by solving an optimal control 

problem on a future time horizon whereby the sum of squared errors between the controlled variables and their set 

points as well as the squared changes in the manipulated variables are minimized. These, respectively, minimize set 

point offset and manipulated variable movement. To solve this dynamic problem, the mechanistic model requires the 

full set of process states as initial conditions, which acts as feedback from the plant to the controller; these are estimated 

by the MHE estimation framework based on the available plant measurements. With the initial conditions, the NMPC 

model is used to predict the future process behaviour on the future horizon 𝑖 ∈ {1,… , 𝑃} (i.e., 𝒙T𝒕S𝟏, … , 𝒙T𝒕S𝑷) and 

determine manipulated variable trajectories on the horizon 𝑖 ∈ {1,… , 𝐶} (i.e., 𝒖𝒕S𝟏, … , 𝒖𝒕S𝑪) that are optimal for the 

given objective function; these horizons are depicted as 𝑡 + 𝑃 and 𝑡 + 𝐶 in Figure 4-2, respectively. The first of these 

manipulated variables values (i.e., 𝒖𝒕S𝟏, shown at the 𝑡 + 1 marker Figure 4-2) is passed to the plant, which is then 

operated for a sampling interval (∆𝑡 = 1	interval, as depicted in Figure 4-1). At this new interval, the NMPC is re-
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computed, thus moving the horizon forward in time and creating a ‘moving horizon’. In the case of a nominal NMPC 

(as opposed to robust in Chapter 3) with MHE estimates, the formulation solved at every time instance is as follows: 

min
𝒖𝒕#𝒊∀*∈{6,…,P}

�µ𝒚T𝒕S𝒊 − 𝒚𝒔𝒑µ𝑸𝒄
, +�‖∆𝒖𝒕S𝒊‖𝑹𝒄

,
P

*A6

P

*A6

 

𝑠. 𝑡. 

𝒇𝒅(𝒙T𝒕S𝒊, 𝒖𝒕S𝒊, 𝒅𝒕S𝒊, 𝒚T𝒕S𝒊) = 𝒙T𝒕S𝒊S𝟏                                                                          ∀𝑖 ∈ {0,… , 𝑃 − 1} 

𝒙T𝒕,𝑵𝑴𝑷𝑪 = 𝒙T𝒕,𝑴𝑯𝑬  

𝒈𝒅(𝒙T𝒕S𝒊, 𝒖𝒕S𝒊, 𝒅𝒕S𝒊, 𝒚T𝒕S𝒊) ≤ 𝟎                                                                                              ∀𝑖 ∈ {1,… , 𝑃} 

𝒚𝒍 ≤ 𝒚𝒕S𝒊 ≤ 𝒚𝒉	                                                                                                                        ∀𝑖 ∈ {1,… , 𝑃} 

𝒖𝒍 ≤ 𝒖𝒕S𝒊 ≤ 𝒖𝒉		                                                                                                                        ∀𝑖 ∈ {1,… , 𝑃} 

𝒖𝒕S𝒊S𝟏 = 𝒖𝒕S𝒊																																																																																																																					∀𝑖 ∈ {𝐶,… , 𝑃 − 1} 

(4-2)  

where‖𝑿‖𝑨,  denotes a quadratic form on vector	𝑿 ∈ ℝB with the weighting matrix 𝑨 ∈ ℝB×B . 𝒇𝒅: ℝB& ×ℝB) ×

ℝB1 ⟶ℝB& ×ℝB' is the dynamic mechanistic model (not at steady state as with the RTO). Inputs to problem (4-2) 

are the initial conditions (𝒙T𝒕,𝑵𝑴𝑷𝑪 ∈ ℝB&) and disturbances (𝒅𝒕S𝒊 ∈ ℝB1) whereas the outputs are the states (𝒙T𝒕S𝒊 ∈

ℝB&), manipulated variables (𝒖𝒕S𝒊 ∈ ℝB)), and controlled variables (𝒚T𝒕S𝒊 ∈ ℝB2) on their respective horizon 𝑃 or 𝐶. 

The disturbances 𝒅𝒕S𝒊 are denoted with the time index (compared to 𝒅 in the RTO) as a trajectory of disturbances is 

required by the NMPC; however, this trajectory in the prediction horizon is assumed to be constant (i.e., 𝒅𝒕 = 𝒅𝒕S𝟏 =

⋯) as knowledge of the disturbances cannot be known a priori to their occurrence. The feedback from the plant at the 

beginning of the horizon ‘𝑡’ (𝒙T𝒕,𝑴𝑯𝑬 ∈ ℝB&) is comprised of measurements and estimates made by the MHE scheme 

as shown at the 𝑡 marker in Figure 4-2. The terms 𝑸𝒄 ∈ ℝB2×B2 and 𝑹𝒄 ∈ ℝB)×B) are weights used to tune the 

controller such that its performance is acceptable. 𝒈𝒅: ℝB1 ×ℝB& ×ℝB) ×ℝB' ⟶ℝB* 		denotes the set of inequality 

constraints (aside from upper and lower bounds) that can be applied to the NMPC-predicted trajectories. As with the 

RTO in equation (4-1), 𝒚𝒍 and 𝒚𝒉 ∈ ℝB' are the lower and upper bounds for the controlled variables, respectively; 

and 𝒖𝒍 and 𝒖𝒉 ∈ ℝB) are the lower and upper bounds for the manipulated variables, respectively; in the future horizon.	 

The NMPC as described in formulation (4-2) provides the control actions (𝒖𝒕S𝟏) to the plant by which the set points 

provided by the RTO can be tracked. It imposes dynamic operation on the plant to reject disturbances (𝒅𝒕) when occur 

and to change set points (𝒚𝒔𝒑) when specified by the RTO. Each execution of the NMPC problem requires feedback 

from the plant via the MHE such that the full set of plant states are provided as inputs at each time interval (∆𝑡) to the 

NMPC framework as shown in Figure 4-2. This NMPC differs from the one presented in Section 3.2. in that it only 

considers a single realization (i.e., it is not robust, hence no explicit dependence on model parameters is shown). This 

controller also has multiple manipulated and controlled variables; moreover, the tuning between the tracking and 

suppressions terms is significantly different as will be discussed in the next sections. 

4.1.3 MHE Formulation 

As noted with the NMPC, most PCC plants (and indeed most CCS processes) exhibit a highly nonlinear behaviour; 

hence, the state estimation is often subject to substantial process uncertainty for which linear filters (e.g., KF) may be 
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ill-suited. Moreover, measurements are corrupted with noise and PCC plants are subject to process constraints that 

must be satisfied during operation (e.g., safety bounds on temperature estimates). MHE is particularly well-suited for 

these types of problem as it enables the use of a detailed model to handle process nonlinearities, process constraints, 

and provides substantial smoothing of noise. In the proposed scheme, the MHE uses a dynamic process model to 

estimate the full state vector at every sampling interval (∆𝑡 = 1 interval) such that it can be supplied to the NMPC as 

feedback (i.e., 𝒙T𝒕,𝑴𝑯𝑬 ∈ ℝB& is used as initial conditions for the problem in equation (4-2)). This requires that plant 

measurements be supplied to the MHE at every execution such that it has updated information on the most recent (as 

well as past) states of the plant. In contrast to the NMPC, which makes future predictions of the process, the MHE 

esimates the current process state by building a horizon N time intervals into the past, i.e., 𝑘 ∈ {0,… ,𝑁} (depicted at 

the 𝑡 − 𝑁 marker in Figure 4-2). 

 
Figure 4-2: Relationship between MHE and NMPC. 𝑥 denotes a state variable and 𝑢 denotes a manipulated variable. Cyan X 
markers denote points of interest. Past of the process denoted in red, future of the process denotes in black. 

In the past horizon, the history of the process can be reconstructed through its known measurements, estimates, and 

control actions; leading to a current state estimate that conforms with past plant behaviour. The MHE formulation 

solved at every time instance t and is as follows: 

min
𝒙t𝒕3𝑵|𝒕,𝒗𝒕3𝒊|𝒕,𝒘𝒕3𝒊|𝒕

∀*∈{=,…,l}

�µ𝒗𝒕^𝒊|𝒕µ𝑸𝒆
, +�µ𝒘𝒕^𝒊|𝒕µ𝑹𝒆

,
l^6

*A=

l

*A6

+ 𝜑@^l 

𝑠. 𝑡. 

𝒇𝒅�𝒙T𝒕^𝒊|𝒕, 𝒖𝒕^𝒊, , 𝒅𝒕^𝒊, 𝒚T𝒕^𝒊|𝒕� = 𝒙T𝒕^𝒊S𝟏|𝒕 + 𝒗𝒕^𝒊S𝟏|𝒕																																																											∀𝑖 ∈ {1,… ,𝑁} 

𝒉𝒅�𝒙T𝒕^𝒊|𝒕� = 𝒛𝒕^𝒊 +𝒘𝒕^𝒊|𝒕																																																																																															∀𝑖 ∈ {0,… ,𝑁 − 1} 

𝒈𝒅�𝒙𝒕^𝒊|𝒕, 𝒖𝒕^𝒊, 𝒅𝒕^𝒊, 𝒚T𝒕^𝒊|𝒕� ≤ 𝟎                                                                                     ∀𝑖 ∈ {0,… ,𝑁}  

𝒚𝒍 ≤ 𝒚T𝒕^𝒊|𝒕 ≤ 𝒚𝒉	                                                                                                                      ∀𝑖 ∈ {0,… ,𝑁} 

(4-3)  

where 𝒛𝒕^𝒊 ∈ ℝB7 is the history of the process measurements for the past 𝑁 time intervals until the time ‘𝑡’ at which 

the MHE is executed. 𝒗𝒕^𝒊S𝟏|𝒕 ∈ ℝB& and 𝒘𝒕^𝒊|𝒕 ∈ ℝB7 are the process and measurement noise terms on the past 

horizon, respectively; the square of these noise terms is minimized in the objective function. 𝒉𝒅:	ℝB& ⟶ℝB7 is the 

observation model and, as with the NMPC, 𝒇𝒅: ℝB& ×ℝB) ×ℝB1 ×ℝB' ⟶ℝB&  is the dynamic mechanistic process 

model. The inputs to problem (4-3) are the manipulated variable (𝒖𝒕^𝒊 ∈ ℝB)), disturbance variable (𝒅𝒕^𝒊 ∈ ℝB1), 
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measurement (𝒛𝒕^𝒊), and state (𝒙T𝒕^𝒊|𝒕) histories on the horizon	𝑁 and the output the current system state (𝒙T𝒕|𝒕 ∈ ℝB&). 

𝑸𝒆 ∈ ℝB&×B& and 𝑹𝒆 ∈ ℝB7×B7 are weighting matrices for the objective function; these are inversely proportional to 

the process and measurement noise covariances, respectively. Both 𝑸𝒆 and 𝑹𝒆	are estimated at every sampling interval 

based on previous estimates and measurements, respectively. As with the NMPC and RTO, 𝒚𝒍 and 𝒚𝒉 ∈ ℝB' are the 

lower and upper bounds for the controlled variables, respectively.	𝒈𝒅: ℝB1 ×ℝB& ×ℝB) ×ℝB' ⟶ℝB* 	denotes the 

set of inequality constraints (aside from upper and lower bounds) to which the MHE estimates must adhere.	𝜑@^l ∈ ℝ	
denotes the arrival cost, which penalizes the MHE for truncating the horizon to a finite length, this can be estimated 

using a variety of filters as explored in Valipour and Ricardez-Sandoval (2021). 

The first (process noise) term in the objective function represents the process uncertainty within the MHE horizon. 

Moreover, the second (measurement noise) term represents the errors in the MHE state estimates with their associated 

historical measurements within the estimation horizon. The arrival cost accounts for previous information discarded 

in the MHE since it was gathered before the current estimation horizon (i.e., historical information of the process prior 

to 𝑡 − 𝑁). By embedding prior available measurements within the MHE problem, the objective function ensures that 

the current state estimates are consistent with prior state measurements. The resulting MHE state estimates for a given 

time interval are provided to the NMPC and used as the initial conditions to solve the corresponding optimal control 

problem. Hence, the future state trajectories predicted by the NMPC begin at the MHE-estimated operating point of 

the system (as shown where the two trajectories meet in Figure 4-2). Given the estimates provided by MHE at the 

current time interval ‘𝑡’ (𝒙T𝒕,𝑴𝑯𝑬), the NMPC problem provides the optimal control actions to run the process plant 

and perform MHE for the next time interval ‘𝑡 ← 𝑡 + 1’. That is, once the new measurements are available (from the 

process plant), MHE uses these measurements together with the control actions provided by NMPC to estimate the 

states that are needed to initialize the NMPC problem. Note that inaccurate initial conditions provided by the MHE 

would likely result in inaccurate control actions predicted by the NMPC thus resulting in an undesirable or even 

unstable closed-loop operation of the system. Likewise, inaccurate control actions provided by NMPC may lead to a 

significant loss of performance in the MHE scheme and therefore inaccurate estimations. Thus, a high performance 

of both the NMPC and MHE schemes is required to avoid intensifying the errors and to achieve a proper closed-loop 

performance. 

Using the formulations presented in this section, information is exchanged between the operational layers as depicted 

in Figure 4-1 and in Figure 4-2 for the NMPC and MHE schemes. The RTO provides economically optimal set point 

updates (𝒚𝒔𝒑) to the NMPC upon the occurrence of disturbances 	(𝒅𝒕). These set points are achieved by the NMPC 

through the manipulated variables (𝒖𝒕S𝟏), which are used to control the plant. The NMPC is provided with the current 

states as feedback to determine optimal control actions; these states are estimated by the MHE (𝒙T𝒕,𝑴𝑯𝑬) using the 

available noisy measurements (𝒛𝒕 + 𝒗𝒕). The control/estimation procedure is repeated at every sampling interval (∆𝑡), 

while the RTO procedure is performed less often when the system reaches steady state. 

4.2. PCC Absorber Section Case Study 

The PCC model presented in Section 3.1 was adapted to consider stripper-side effects as shown herein. The PCC plant 

operates as described next. An MEA/water solution is outputted through the bottom of the stripper for which a reboiler 
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determines the ratio of this solvent solution that is recycled between the buffer tank and stripper; higher reboiler duty 

leads to increased CO2 desorption in the stripper. The buffer tank recycle stream containing MEA, water, and traces 

of CO2 goes through the cross-heat exchanger where it pre-heats the colder rich amine solution.  The recycle stream 

then reaches the tank where it is mixed with two makeup streams of fresh water and fresh MEA such that the solution 

is concentrated or diluted as required. The recycled amine solution enters the buffer tank at 366.5 K (Nittaya, 2014); 

thus, the tank contents are cooled using an internal coil through which water is circulated. 

As shown Figure 4-3, PCC plants are composed of absorber and stripper sections, which provide a natural partition 

for operational schemes. In this study, the absorber section is primarily being studied (Figure 4-3, left dashed box), 

with some approximations on the behaviour of the stripper section reboiler (Figure 4-3, right dashed box). The focus 

was placed mainly on the absorber section as it is where the carbon capture from the flue gas occurs; thus, it is the 

most important unit from a processing perspective. This partition was necessary as to restrict the size (thus, the 

computational time) of the simulated plant as assessment of the entire plant would have been prohibitively protractive. 

As RTO is an inherently steady-state method, the decision was made that steady-state approximations of the stripper 

section were sufficient for its assessment. Accordingly, the stripper section economics (particularly those of the 

reboiler), which are important to the process, are considered through steady-state approximations elaborated upon in 

this section. Moreover, changes in the stripper section are assumed to occur as disturbances to the absorber section, 

elaborated upon in Section 4.2.2; this way the stripper side operation and associated dynamics are considered in the 

present analysis. The NMPC and MHE implemented in the present case study, moreover, are quite general and could 

be applied in the larger context of a PCC plant scenario if the stripper section behaviour could be considered. 

 
Figure 4-3: PCC plant. Dashed lines denote the units being considered in this study (i.e., the absorber section and reboiler). Blue 
font denotes controlled variables, purple font denotes additional RTO decision variables, green font denotes manipulated variables, 
and red font denotes disturbance variables (outlined in Section 4.2.3). 

The dynamic mechanistic model for the absorber section of the PCC plant used for the layers in this study was adapted 

from Harun et al. (2012) and Nittaya (2014), which was based the operating conditions for the process on the pilot 

plant data and configuration from Dugas (2006). The model comprises a set of partial differential equations (PDEs), 
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ordinary differential equations (ODEs), and algebraic equations (AEs) to describe the system dynamics and 

phenomena; together these are a partial differential-algebraic system of equations (PDAEs). The process model 

consists of material balances, energy balances, and physical property models for both units, which are presented in 

the next subsections. Additionally, the absorber model consists of rate equations, chemical kinetics equations, and 

equilibrium equations; these, along with the assumptions made in developing the absorber model, are omitted for 

brevity, a full description of this model is provided in Chapter 3. 

4.2.1 Buffer Tank Model 

As shown within the left dashed box in Figure 4-3, the inputs to the tank are the recycled solvent coming from the 

stripper as well as the fresh water and MEA makeups. The output from the tank is the lean solvent going to the 

absorber. Component material balances for the buffer tank account for changes in molar holdup caused by control 

actions on the inlet and outlet flowrates. Moreover, changes in molar holdup also occur upon disturbances in the 

recycled flowrates coming from the stripper section as depicted in Figure 4-3. Nitrogen is assumed to be insoluble in 

the amine solvent; thus, the buffer tank does not contain this component as in the absorber, i.e., 𝑛@#Bv = 𝑛m'"% − 1. 

The material balances for the tank are differential molar balances for each soluble component where no reaction is 

taking place and the well-mixed assumption holds (stirred tank). The molar holdups are modelled as follows: 

𝑑𝑛H91@#Bv

𝑑𝑡 = 𝐹H91&um + 𝐹H91
"vE% − 𝐹H91,'E@@#Bv  (4-4)  

𝑑𝑛7C!
@#Bv

𝑑𝑡 = 𝐹7C!
&um − 𝐹7C!,'E@

@#Bv  (4-5)  

𝑑𝑛D!C
@#Bv

𝑑𝑡 = 𝐹D!C
&um + 𝐹D!C

"vE% − 𝐹D!C,'E@
@#Bv  (4-6)  

where 𝐹H91
"vE%and 𝐹D!C

"vE%(𝑚𝑜𝑙/𝑠) denote the fresh MEA and water flowrates, respectively. 𝑛*@#Bv(𝑚𝑜𝑙) denotes the 

tank holdup component moles.	𝐹+,*B@#Bv = ∑ 𝐹*&um
B/8-9
*A6 	and 𝐹+,*B#F- = ∑ 𝐹*'E@

B/8-9
*A6 (𝑚𝑜𝑙/𝑠) (as shown in Figure 4-3) denote 

the total recycled and tank outlet molar flowrates of species 𝑖, respectively. 

In addition to the component molar balances, an overall material balance is required to model the tank’s holdup as it 

can also change significantly because of the control actions taken to regulate the PCC system and due to changes in 

the recycled stream. For instance, a control action may impose an increase in the makeup flowrates which, if not 

adequately accounted for in the outlet flowrate, may cause the tank level to continually rise. Tracking the tank’s liquid 

level is a necessary safety requirement to avoid overflows or emptying of the tank (i.e., for inventory management). 

The inventory requirements of the tank must be coordinated with the removal requirements of the absorber (i.e., 

changing the makeup flowrates may affect the liquid level while also affecting the amount of absorption occurring). 

Hence, a centralized multi-variable controller such as NMPC is well suited to handle this interaction. This balance is 

performed under the assumption of constant inlet liquid densities in the makeup streams, which are valid as inlet 

stream are assumed to have constant compositions and temperatures. In contrast, the recycle and outlet density stream 

densities are modelled using the physical property models presented in the next section, as the composition of these 
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streams may vary due to changes in the operation of the stripper section. As such, the tank liquid level is modelled as 

follows: 

𝐴@#Bv
𝑑ℎ@#Bv

𝑑𝑡 =
𝐹+,*B@#Bv

𝜌&um +
𝐹H91
"vE%

𝜌H91
+
𝐹D!C
"vE%

𝜌D!C
−
𝐹+,*B#F-

𝜌@#Bv (4-7)  

where ℎ(𝑚) denotes the tank liquid level and 𝐴@#Bv(𝑚,) denotes the tank cross-sectional area.	𝜌&um, 𝜌H91, 𝜌D!C, and 

𝜌@#Bv(𝑚𝑜𝑙/𝑚/) denote the total recycle, fresh MEA, fresh water, and total outlet stream molar densities, respectively.  

In addition to the component and overall material balances, an energy balance is required for the tank. Within this 

unit, streams of different temperatures are mixed, and cooling is applied. Hence, temperature tracking is needed 

because thermodynamic changes in the tank can lead to changes in the removal rate of the subsequent absorber unit. 

The temperature changes within the tank are modelled as follows: 

Ó � 𝑐%,+,*@#Bv𝑛*@#Bv
B/8-9

*A6

Ô
𝑑𝑇@#Bv

𝑑𝑡

= 𝐹@'@#+&um 𝑐%,+&um(𝑇@#Bv − 𝑇+&um) + 𝐹H91
"vE%𝑐%,+,H91

"vE% (𝑇@#Bv − 𝑇H91
"vE%)

+ 𝐹D!C
"vE%𝑐%,+,D!C

"vE% (𝑇@#Bv − 𝑇D!C
"vE%) + 𝑄m''+ 

(4-8)  

where 𝑐%,*@#Bv(𝐽/𝑚𝑜𝑙/𝐾) denotes the tank component specific molar heat capacities. 𝑇@#Bv(𝐾) denotes the bulk tank 

temperature while 𝑇+
&umwm+u, 𝑇H91

"vE%, and 𝑇D!C
"vE%(𝐾) denote the inlet recycled, fresh MEA, and fresh water temperatures, 

respectively. Likewise, 𝑐%,+&um, 𝑐%,+,H91
"vE% , and 𝑐%,+,D!C

"vE% (𝐽/𝑚𝑜𝑙/𝐾) denote the specific molar heat capacities of the recycled, 

fresh MEA, and fresh water streams, respectively. 𝑄m''+(𝑊) denotes the cooling duty supplied to the tank through a 

coil.  

Table 4-1 contains physical property models, parameters, and design characteristics associated with the tank model 

described herein. 
Table 4-1: Physical property and design characteristics for the tank model. 

Physical Property Value Source 

Stream heat capacity (𝐽/𝑚𝑜𝑙/𝐾) 𝑐%,+ Hilliard (2008) 

Recycled stream molar density (𝑚𝑜𝑙/𝐿) 𝜌&um	 Weiland et al. (1998) 

Tank liquid molar density (𝑚𝑜𝑙/𝐿) 𝜌@#Bv Weiland et al. (1998) 

MEA molar density (𝑚𝑜𝑙/𝐿) 𝜌H91 = 5.05 × 10^< Aspen Property Package 

Water molar density (𝑚𝑜𝑙/𝐿) 𝜌D!C = 1.87 × 10^< Aspen Property Package 

Design Characteristics   

Internal diameter (𝑚) 𝐷@#Bv = 2	 Harun et al. (2012) 

Height (𝑚) ℎ@#Bv = 2 Harun et al. (2012) 

4.2.2 Stripper Section Approximation 

For the RTO layer to find an economically optimal point, approximations regarding the steady-state stripper section 

behaviour are made herein for a more realistic representation of the process and its economics. These additional 
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equations were included as part of the RTO model to consider the stripper-side reboiler steam and solvent depletion 

costs.  

The largest cost in the PCC plant is incurred by the steam supplied to the stripper section reboiler, which is energy-

intensive and often draws the required heating steam from the upstream power plant. To consider the reboiler cost, 

simulated steady-state data between reboiler duty and lean loading from Nittaya (2014) was correlated to yield: 

𝐿𝐿 = 𝑎&uF + 𝑏&uF𝑄&uF (4-9)  

where 𝐿𝐿(𝑚𝑜𝑙/𝑚𝑜𝑙) denotes the lean loading in the recycled stream and 𝑄&uF(𝑊) denotes stripper-side reboiler duty 

as shown in Figure 4-3. To correlate the data in this range, a linear model was found to accurately fit the data available 

with 𝑅, = 0.97 (see Figure A-1in Appendix A), thus not requiring a more sophisticated regression model. In this case, 

the nominal reboiler duty value of 153,600	𝑊 corresponds to the nominal operation outlined in Nittaya (2014) and 

the data were within ±5% of this nominal value. A sensitivity analysis performed by Nittaya (2014) also established 

that the ±5% range provides ample flexibility for the reboiler to affect the lean loading (i.e., the loading is very 

sensitive to the reboiler duty and this range of heat duties varies the loading from ~0.23 to ~0.32	𝑚𝑜𝑙/𝑚𝑜𝑙, which 

is a typical range for a pilot-scale PCC unit). Accordingly, the reboiler duty (𝑄&uF) was also constrained within this 

range in the RTO, where it becomes an additional decision variable. The reason for inclusion of reboiler duty as a 

decision variable in the RTO through the simplified model in equation (4-9) was to consider the significant reboiler 

cost and to understand its effect on the optimal RTO-determined controlled variables. 

Solvent depletion also occurs in the stripper section due to the condenser (top right of Figure 4-3), which outputs some 

solvent with the purified CO2. The absorber section does not contain the condenser; thus, no solvent depletion is 

explicitly being accounted for in the RTO model. The depleted MEA and water, while not as expensive as the reboiler 

steam, need to be considered so that the system has incentive to supply makeups at steady state; thus, necessitating 

the modelling of solvent depletion by further approximating the behavior in the stripper section. If depletion were not 

considered in the absorber section it would be assumed that all the solvent can be regenerated and remain in the system; 

in this case, the RTO would not have incentive to feed fresh makeups at steady state owing to the high cost of the 

solvent chemicals (particularly MEA); this situation would be unrealistic. Accordingly, additional equations were 

added to model the steady-state depletion of MEA and water in the stripper and to connect the enrichment effect of 

the reboiler in equation (4-9) to the recycled stream flowrates. These equations were designed rather than fitted, such 

that they accounted for the contributions made by all ‘fresh’ inlets of the depleting species (i.e., the makeup MEA and 

water as well as flue gas water content). In the absence of data regarding this behaviour, the depletion was assumed 

to increase proportionally to the fresh feeds provided and subsequently approach constant depletion as the fresh feeds 

approach their nominal value; this behaviour was approximated using exponential functions for use within the RTO 

optimization problem.  

Together with the reboiler approximation in equation (4-9), the RTO steady-state stripper is approximated to affect 

the recycle stream going from the stripper into the tank as follows: 

	𝐹H91&um = 𝑎H91 − 𝑏H91𝑒𝑥𝑝(𝑐H91𝐹H91
"vE%) (4-10)  
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𝐹7C!
&um = 𝐹H91&um 𝐿𝐿 = 𝐹H91&um (𝑎&uF + 𝑏&uF𝑄&uF) (4-11)  

𝐹.#@u&&um = 𝑎D!C + 𝑦D!C
}+Eu𝐹?

}+Eu − 𝑏D!C𝑒𝑥𝑝(𝑐D!C(𝐹D!C
"vE% + 𝑦D!C

}+Eu𝐹?
}+Eu)) (4-12)  

where the parameters for equations (4-10)–(4-12) are listed in Table 4-2.  
Table 4-2: Additional RTO model parameters. 

𝒊 𝑎* 𝑏* 𝑐* 

Reboiler 1.19 -5.94e-6 - 

MEA 3.2096 3.2096 -55000 

Water 27.68 27.68 -5000 

Due to the lack of data regarding species depletion in this specific pilot-scale system, the constants for the recycled 

stream parameters in equations (4-10) and (4-12) were designed such that the depletion follows the behaviour expected 

in a complete PCC plant. That behaviour is as follows: the MEA recycled from the absorber depletes exponentially to 

zero as less makeup MEA is added since this stream is the only source of fresh MEA into the system. In contrast, the 

recycled water depletes exponentially to a constant value specified by the flue gas water content as fresh water enters 

the system through both the makeup and flue gas streams. The pre-exponential coefficient for MEA (𝑎H91) was chosen 

such that the recycle flowrates were effectively zero if no fresh feeds were provided, while the decay rate (𝑏H91) was 

chosen to approximate linear increases in depletion that reach an asymptote as the makeup stream approaches its 

nominal value, this behaviour can be seen in Figure A-2a in Appendix A. For consistency, the behaviour of the water 

recycle was also modelled with an exponential function. However, since there are two fresh water streams (i.e., within 

the flue gas and the makeup stream), there will always be water in the recycled stream (as water vapour is a by-product 

of combustion). As such, the pre-exponential and decay rates for water (𝑎.#@u& , 	𝑏.#@u&, respectively) were chosen 

such that the water content in the recycle would increase approximately linearly with increased makeup, as shown in 

Figure A-2b in Appendix A. The behaviour approximated herein inherently assumes that the condenser duty (hence 

the depletion) remains constant. In principle, the condenser duty would be one of the manipulated variables in the 

stripper section, but this unit is out of the scope of the present study as noted previously. 

Note that these correlations approximate the steady-state effect of the reboiler and condenser on the makeup streams 

and do not attempt to capture dynamics. To account for the impact of these correlations on the recycle stream in the 

transient domain, a ramp disturbance is assumed to occur such that the recycled stream flowrate and composition are 

updated from their pre-RTO values to RTO-optimized values; these are described in detail in the following sections. 

The assumption of the recycle stream as a ramp is made here to reflect a typical operating condition of the stripper 

section. Note that the proposed operational framework is not limited to this assumption and can be extended to consider 

other profiles entering the absorber section from the recycle stream. With the treatments of stripper section effects as 

disturbances; the important effect of the stripper section on process dynamics is not disregarded. 
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4.2.3 Model Solution and Nominal Operation 

The set of PDAEs representing the PCC absorber section presented previously require the inputs outlined in Table 4-3 

whereby the steady-state version requires only boundary conditions, and the dynamic version requires initial and 

boundary conditions. The models are implemented in the Pyomo environment, an optimization modelling package for 

PYTHON (Hart et al., 2011). The absorber model is discretized in the axial (𝑧) domain in the steady-state version 

while additional discretization in the time (𝑡) domain is required in the dynamic model. This enables the differential 

equations comprising the continuous time/space models to be efficiently solved. The discretization is performed using 

four-point orthogonal Radau collocations on finite elements in the time domain and backward finite differences in the 

axial domain. Collocations were chosen for the time domain because of their accuracy and built-in functionality within 

Pyomo. To achieve an accurate dynamic model, this discretization was prioritized such that the time interval ∆𝑡 =

12.5	𝑠  (i.e., 8 intervals in a 100 second time horizon) was chosen as the finite element size in both absorber and tank 

models. A more parsimonious 𝑛}u~ = 10 finite elements were used in the absorber axial domain to keep the model 

size as small as possible without sacrificing accuracy in the solution.  
Table 4-3: Inputs required by the absorber section model 

 Initial conditions 

(𝟎 ≤ 𝒛 ≤ 𝑯, 𝒕 = 𝟎) 

Boundary conditions 

(	𝒛 = 𝟎, 𝒛 = 𝑯, 𝒕 ≥ 𝟎) 

Absorber 

(gas) 
𝐶*
?(𝑧, 0) = 𝐶*,=

? (𝑧) 𝐶*
?(0, 𝑡) = 𝐶*,*B

? (𝑡) 

 𝑇?(𝑧, 0) = 𝑇?,=(𝑧) 𝑇?(0, 𝑡) = 𝑇?,*B(𝑡) 

  𝑢?(0, 𝑡) = 𝑢*B
? (𝑡) 

Absorber 

(liquid) 
𝐶*+(𝑧, 0) = 𝐶*,=+ (𝑧) 𝐶*+(𝐻, 𝑡) = 𝐶*,*B+ (𝑡) 

 𝑇+(𝑧, 0) = 𝑇+,=(𝑧) 𝑇+(𝐻, 𝑡) = 𝑇+,*B(𝑡) 

  𝑢+(𝑧, 𝑡) = 𝑢*B+ (𝑡) 

Tank 𝑇@#Bv(0) = 𝑇=@#Bv  

 ℎ(0) = ℎ=  

 𝑛*(0) = 𝑛*,=  

 Prior to discretization, the models (i.e., absorber and tank) have a collective 16 states and 210 algebraic variables, 

which grows to 116 states and 1,977 algebraic variables with absorber axial discretization (i.e., when solving the RTO 

problem). This further grows to 3,712 states and 63,168 algebraic variables with axial discretization of the absorber 

and time discretization of the entire absorber section (i.e., when solving the NMPC and MHE problems). The states 

of the system are the differential variables in the previously presented differential equations (i.e., the liquid and gas 

concentrations and temperatures in the absorber as well as the molar holdups, liquid level, and temperature in the 

tank). The algebraic variables correspond to all other phenomenological and physical property models in the system. 

An interior-point algorithm (Wächter and Biegler, 2005) was used to solve the large-scale optimization problems 

described in the following sections on an Intel core i7-4770 CPU @ 3.4 GHz. Both steady-state and dynamic versions 
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of the models described in this Section 3.1 and Section 4.2 (in the steady-state case) are used in the proposed scheme. 

The collective vector of equations representing the discretized models is denoted as 𝒇𝒔 in its steady-state version and 

𝒇𝒅 its dynamic version. 

In addition to the initial and boundary conditions, the PCC absorber section case study considered herein also requires 

additional inputs in the form of the manipulated variables and the disturbance variables. In the PCC absorber section, 

the manipulated variables which act as control actions are the flowrate of solvent solution into the absorber, the fresh 

MEA makeup flowrate into the tank, the fresh water makeup flowrate into the tank, and the tank cooling duty; i.e., 

𝒖 = [𝐹+,*B#F- 𝐹H91
"vE% 𝐹.#@u&

"vE% 𝑄m''+]𝐓 as depicted in Figure 4-3. Manipulation of both makeup streams is a key 

novelty within this work as they can significantly impact the economics and operation of the absorber section of this 

plant. For this purpose, a centralized MPC approach is best suited as it can model and account for the interaction 

between the makeup streams, the amount of carbon captured, and the tank level. 

The operation of an actual PCC system is subjected to disturbances that can have significant effects on the process 

behaviour and economics. In this study, the main disturbances being considered are: 1) the flue gas flowrate, which 

varies based on the load variation in the upstream power plant; 2) the flue gas CO2 content, which varies based on the 

fuels being used in the upstream power plant; and 3) the recycle stream flowrates, which vary based on the makeup 

fed to the system and the operation of the stripper section reboiler. Changes in the flue gas CO2 content are assumed 

to be reflected by changes in the flue gas water content (i.e., a 0.01 fraction increase in CO2 is accompanied by a 0.01 

fraction decrease in H2O in the flue gas); hence, changes in the fractions are treated as a single disturbance variable. 

Accordingly, the disturbances considered in this work are denoted as 𝒅 = [𝐹?
}+Eu 𝑦7C!

}+Eu 𝐹H91&um 𝐹7C!
&um 𝐹D!C

&um ]𝐓; 

these are depicted in Figure 4-3. 

In the PCC absorber section, the controlled variables comprise the percent carbon capture (%𝐶𝐶), the MEA 

concentration in the lean solvent (𝐶H91@#Bv(𝑚𝑜𝑙/𝐿)) from buffer tank to absorber, the buffer tank temperature 

(𝑇@#Bv(𝐾)), and the buffer tank level (ℎ@#Bv(𝑚)); i.e.,	𝒚 = [%𝐶𝐶 𝐶H91@#Bv 𝑇@#Bv ℎ@#Bv]𝐓. The percent carbon 

capture is defined in. 

This nominal operation occurs at the nominal values for the manipulated variables 𝒖𝒏𝒐𝒎 =

[32.17 0.0002 0.2 139,000]𝑻 and the nominal values for the disturbances 𝒅𝒏𝒐𝒎 =

[4.012 0.175 3.2098 0.98 27.78]𝑻; these correspond to the nominal controlled variables 𝒚𝒏𝒐𝒎 =

[96.23 4847 314 1]𝑻 (Harun et al., 2012; Nittaya et al., 2012; Nittaya, 2014). The complete stream data for the 

nominal conditions as predicted by the current model can be found in Table A-1 (Appendix A). Combinations of 

nominal disturbance variables and nominal manipulated variables are used as the initial or final operating conditions 

for several of the operational cases presented in Section 4.3.  

4.2.4 Model Validation 

The model presented in the previous section was validated using different sources of data available in the literature as 

a single set of comprehensive data for this system is unavailable. Table 4-4 presents a comparison of outlet stream 

predictions for the nominal operation (i.e., corresponding to 𝒖𝒏𝒐𝒎, 𝒅𝒏𝒐𝒎, and 𝒚𝒏𝒐𝒎) of the absorber model as 

implemented in this study and of a previous mechanistic model reported in Harun et al. (2012). The authors of the 
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prior model provided detailed data on the outlet streams at the nominal operating condition defined previously and in 

Table A-1 (Appendix A); this included compositions, flowrates, and temperatures; these can be compared to 

predictions of the present model.  
Table 4-4: Comparison of absorber output predictions against previously reported mechanistic model implementation. Error of 

predictions of present study with respect to Harun et al. (2012) also presented. 

  Vent gas Rich solvent 

 Present 

study 

Harun et 

al. (2012). 

Present 

study 

Harun et 

al. (2012). 

Temperature (𝑲) 314.06 314.15 319.89 327.76 

Flowrate (𝒎𝒐𝒍/𝒔)     

MEA 0.0000 0.0000 3.2098 3.3560 

CO2 0.0427 0.0295 1.6393 1.6534 

Water 0.2340 0.2259 27.8460 27.8573 

N2 3.2100 3.2146 0.0000 0.0000 

Total 3.4867 3.4700 32.6951 32.87 

Mean error (%)  8.1641  1.3638 

As shown in Table 4-4, the predictions made by the current model conform well with previous model predictions 

(mean output predictions < 8.2	% error). In particular, the error of the vent gas stream is elevated by the CO2 

composition; nevertheless, this composition is very small in magnitude (~1	𝑚𝑜𝑙%) so small inaccuracies tend to 

inflate the error. This suggests that the absorber column boundaries (i.e., outlets) are being predicted well without 

making conclusions as to the accuracy along the absorber height. While having validation at the nominal operation is 

acceptable, a complete validation at various operating conditions is necessary to conclude that the model is valid for 

a range of operations. Two key process variables for which there is experimental as well as simulated data across 

several operating conditions are the solvent temperature and the	%𝐶𝐶. By analyzing solvent temperature profiles, the 

existence of the so-called temperature bulge, which is characteristic of the reactive mechanism in the PCC absorber, 

can be verified. Moreover, the conformance of the absorber predictions can be assessed. Although a set of 

experimental data of compositions along the absorber height is not available due to the intractability of online 

composition analysis for this system, the %𝐶𝐶 can be obtained from the boundary compositions and has been reported. 

By analyzing the %𝐶𝐶, it can be verified that this key performance variable is indeed being predicted accurately; this 

is particularly important in the RTO and NMPC layers where the %𝐶𝐶 is being used explicitly to define set points. 

Kvamsdal and Rochelle (2008) present two experimental data sets (temperature profiles and corresponding %𝐶𝐶) and 

an additional two simulated temperature profiles (generated by their own model). The former are named case 1 and 2 

in the present study while the latter simulated profiles are referred to as case 3 and 4 in the present study. The 

temperature profiles that comprise cases 3 and 4 were sampled at regular intervals to generate individual data points. 

Each case represents a significant change in operating conditions via the flue gas flowrate, composition, and 

temperature; the lean solvent flowrate, composition, and temperature; as well as the column packing height. The inlet 
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compositions required to achieve these profiles along with their naming conventions in Kvamsdal and Rochelle (2008) 

can be found in Appendix A, Table A-2. Figure 4-4 shows the temperature profiles predicted by the present model 

along with data for temperatures from Kvamsdal and Rochelle (2008) for the four different operational cases while 

Table 4-5 presents the error in the predictions made by the model in the present study with respect to the data from 

Kvamsdal and Rochelle (2008). 

 

  
Figure 4-4: Temperature profile prediction for various operating cases. a) experimental data, b) simulated data. 

Table 4-5: Comparison of absorber temperature profiles and  %𝐶𝐶 predictions against previously reported data. Error of 
predictions of present study with respect to Kvamsdal and Rochelle (2008) also presented. 

Case # %𝑪𝑪 present 

study  

%𝑪𝑪 

(Kvamsdal and 

Rochelle, 2008) 

Error in %𝑪𝑪 

(%) 

Mean error in 

𝑻𝒍 (%) 

1 95.03 93.85 1.257 0.310 

2 72.07 70.95 1.578 3.781 

3 86.77 86.20 0.661 2.700 

4 93.61 93.35 0.278 2.892 

As shown in Figure 4-4, the temperature profiles align closely with the data from Kvamsdal and Rochelle (2008), this 

is corroborated by the low mean errors in 𝑇+ presented in Table 4-5 (< 4% across all operating conditions). The present 

model slightly underestimates the profiles for the entire length of the column in case 2 while, in cases 3 and 4, the 

present model underestimates the profiles prior to the bulge and overestimates after the bulge. Moreover, they key 

%𝐶𝐶 predictions made by the present model conform with the data from Kvamsdal and Rochelle (2008) even more 

closely (< 2% across all operation conditions). This close agreement in temperature and %𝐶𝐶 predictions compared 

to Kvamsdal and Rochelle (2008) are well within the range of acceptability for the wide range of operating conditions 

summarized in Table B2. Moreover, the accuracy of outlet stream predictions compared to Harun et al. (2012) 

summarized in Table 4-4 given further confidence in the accuracy of the model as it is an independent data set. These 

findings suggest that the current absorber model conforms with past models as well as experimental data, thus it is 

adequate for use in the present study. Additionally, the simplified reboiler correlation in Section 4.2.2 was also shown 
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to accurately correlate reboiler duty to lean loading (which serves as an input to the absorber as show in Table B2) 

within the range being considered in this study with 𝑅, = 0.97, implying small residuals and highly correlated data. 

4.3. Scheme Implementation and Assessment 

The specifics of the implementation of the model presented in Sections 3.1 and 4.2.2 to the scheme proposed in Section 

4.1 are presented next along with the assessment tools used for different layers within the scheme.  

4.3.1. RTO Implementation and Assessment 

The RTO uses the economic function presented in equation (4-1) along with a steady-state version of the mechanistic 

process model and stripper approximations to determine the economically optimal steady state for the controlled 

variables. State measurements are typically fed to the RTO such that a parameter estimation problem is solved prior 

to the economic optimization procedure. In this study, we assume no parametric mismatch, thus not requiring the 

parameter estimation step. However, the steady-state wait-time associated with the parameter estimation step is 

enforced using the following heuristic for triggering of the RTO: 

𝒚𝒕 − 𝒚𝒕^𝒊 < 𝟎. 𝟎𝟎𝟓𝒚𝒏𝒐𝒎																																																																																																									∀𝑖 ∈ {1,… ,10} (4-13)  

which declares that the system is at steady state when the controlled variables are changing at a rate of less than 0.5% 

of their nominal value from the current sampling interval to the previous ten sampling intervals. A simple heuristic 

such as this is assumed to be acceptable for the present PCC case study; for more sophisticated methods, the field of 

steady-state detection provides ways to automate this trigger (e.g., Rhinehart, 2013).  

The additional correlations (5-9)–(5-12) are included within the steady-state model 𝒇𝒔 such that decisions can made 

regarding the reboiler operation without explicitly considering it in the control scheme. With the inclusion of the 

stripper section approximations within 𝒇𝒔, the RTO objective function in equation (4-1) as it pertains to the system 

described in Section 4.1 simplifies to: 

𝐶%&'mu-- = 𝑃H91𝑚̇H91
"vE% + 𝑃-#+u-(𝑚̇7C!,*B

? − 𝑚̇7C!,'E@
? ) + 𝑃7C!𝑚̇7C!,'E@

? + 𝑃-@u#"𝑄&uF (4-14)  

where 𝐶%&'mu--($𝐶𝐴𝐷/𝑠) is the cost of operating the PCC absorber section. 𝑚̇H91
"#vuE%(𝑡𝑛/𝑠) is the flowrate of fresh 

makeup MEA into the system as shown in Figure 4-3; this is the only chemical cost considered in this case. 𝑚̇7C!
m#% =

𝑚̇7C!,*B
? − 𝑚̇7C!,'E@

? (𝑡𝑛/𝑠) and 𝑚̇7C!,'E@
? (𝑡𝑛/𝑠) are the flowrate of carbon captured and emitted, respectively, by the 

absorber.	𝑄&uF(𝑊) is the reboiler duty as modelled by steady-state lean loading equation (4-9), which is an additional 

decision variable aside from the controlled variables; this is the only energy cost considered in this case. In this case 

study, the efficiency factor introduced in equation (4-1) was assumed to be  𝜁 = 1 for simplicity. Moreover, pumping 

and water costs are assumed to be negligible.  

Another consideration when optimizing the PCC plant is the impact it has on the upstream power plant. Namely, 

operating the PCC plant with higher reboiler duty decreases the power plant profits by using steam that could otherwise 

be used for power generation. To analyze the impact, the lost profits owed to reboiler operation were estimated as: 
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𝐶uBu&?w = ∆𝑄&uF(𝑃u+um − 𝑃-@u#")𝜂 (4-15)  

where 𝐶uBu&?w($𝐶𝐴𝐷/𝑦𝑟) are the lost profits (energy penalty) owing to reduced energy generation, ∆𝑄&uF(𝑀𝑊) 

denotes the difference between the current reboiler duty and its previous or nominal value, 𝑃u+um is the price of 

electricity sold to consumers. The efficiency factor (𝜂) accounts for the losses in converting thermal energy from 

combustion-generated steam to electrical energy for consumers. For the present absorber section case-study, this factor 

is defined as 𝜂 = 0.4 (Mac Dowell and Shah, 2013); however, this user-defined parameter may vary depending on the 

power plant. The price term uses the difference between the electrical sales cost and the steam cost to evaluate the 

losses not already considered within 𝐶%&'mu--; in this way, only sales cost mark-up is considered (i.e., the raw steam 

cost is not double counted). This additional energy penalty to the power plant can be compared against the savings 

achieved by the PCC RTO to have a more complete perspective on the economic impact. The prices associated with 

equations (4-14) and (4-15) are summarized in Table 4-6. 
Table 4-6: Prices for economic terms, adjusted for inflation and converted to $CAD. 

Term Value Source 

MEA (𝑃H91) 2420	$𝐶𝐴𝐷/𝑡𝑛	𝑓𝑟𝑒𝑠ℎ	𝑀𝐸𝐴 Straathof and Bampouli (2017) 

Sales (𝑃-#+u-) −50	$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂,	𝑠𝑜𝑙𝑑 Nwaoha and Tontiwachwuthikul (2019) 

CO2 (𝑃7C!) 176	$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂,	𝑟𝑒𝑚𝑜𝑣𝑒𝑑 Nordhaus (2017) 

Steam (𝑃-@u#") 0.065	$𝐶𝐴𝐷/𝑘𝑊ℎ Karimi et al. (2011) 

Electricity (𝑃u+um) 0.115	$𝐶𝐴𝐷/𝑘𝑊ℎ OEB (2021) 

There is little consensus on the true SCC, and various models have been proposed in the literature (Nordhaus, 2017). 

In this work, we estimated the price using the DICE-2016R with a 2.5% discount rate. Note that this is the first time 

this cost is used in the economic optimization of a PCC process. 

The lower and upper bounds for the controlled variables (𝒚𝒍 and 𝒚𝒉) are set as follows: 

0 ≤ %𝐶𝐶 ≤ 100 (4-16)  

3000 ≤ 𝐶H91@#Bv	(𝑚𝑜𝑙/𝐿) ≤ 6000 (4-17)  

300 ≤ 𝑇@#Bv	(𝐾) ≤ 345 (4-18)  

0.05ℎ@#Bv ≤ ℎ	(𝑚) ≤ 1.95ℎ@#Bv (4-19)  

The constraint on the controlled variable for the tank level is an important safety constraint to avoid overflowing and 

imposes that the tank level’s set point does not exceed the physical tank dimensions (within a 5% safety factor). 

Moreover, the tank temperature constraint ensures that the absorber feed temperature is within an acceptable range for 

this operation.  
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Using the new economic function described in equation (4-1) applied to this case study in equation (4-14), the RTO 

passes updated controlled variables as set points (i.e., 𝒚𝒔𝒑 = 𝒚) to the NMPC upon its execution which, as mentioned, 

requires for the controlled variables to be steady in time by the criteria described in equation (4-13).  

In addition to the set point update, the execution of the RTO also incites a ramp disturbance in the recycle flowrates 

through the approximated model described in Section 4.2.2. In other words, the recycled flowrates ramp from their 

outdated values to those specified by the RTO. A ramp is used such that there is a delay between making stripper side 

decisions and their effect on the absorber as these changes would not occur instantaneously in the plant. As mentioned 

in Section 4.2.2, the recycled stream is treated as a disturbance for the NMPC to reject when the set points are changed. 

The treatment as a disturbance is necessary as the NMPC does not have a stripper section model to predict the 

behaviour of the recycle stream. The ramp begins when the RTO is executed and last for 200 time intervals (i.e.~40 

minutes), when the recycle stream reaches its new flowrate and composition as specified by the RTO. This number of 

sampling intervals (~40 minutes) was chosen to model the time-delay between changes on the absorber/stripper 

sections and their effect on the recycled stream (i.e. changes in makeup streams and heat duty will not have immediate 

effects on the recycle stream). A similar delay was observed in open-loop tests by Nittaya (2014), thus supporting the 

assumption that stripper section dynamics would occur gradually. 

For the overall integrated scheme, the performance is economically driven, thus the process economics are assessed 

through an annualized version of the RTO objective function in equation (4-14) at every sampling interval. 

Additionally, the payback period 𝑡%#wF#mv(ℎ) is used to quantify the amount of time that the process must be operated 

at a new steady state for to justify the execution of the RTO. This term is defined as follows: 

𝑡%#wF#mv = 𝜏#BBE"
∫ 𝐶P77𝑑𝑡
@:
;<=

@>
;<=

𝐶P77= − 𝐶P77
}  (4-20)  

where 𝑡=4nCand 𝑡}4nC(ℎ𝑟) denote the initial and final times at which a given RTO execution imposes dynamic operation 

on the plant, respectively (i.e., 𝑡=4nC is the time at which the RTO is executed and 𝑡}4nC is the time at which the set 

point change is completed). 𝐶P77=  and 𝐶P77
} ($𝐶𝐴𝐷/𝑦𝑟) denote the initial (unoptimized) and the final (optimized) 

steady-state cost of the plant operation. 𝜏#BBE"	(8760	ℎ𝑟/𝑦𝑟) is used to convert the annualized costs to payback 

periods in hours. 

4.3.2. NMPC Implementation and Assessment 

In the proposed NMPC controller, the horizons are set to be equivalent and equal to 100 seconds (i.e., 𝑃 = 𝐶 = 100𝑠), 

these were previously found to provide good control performance (Chapter 3). The first term in the objective function 

in problem (4-2) is weighted using the diagonal matrix 𝑸𝒄 = 𝑑𝑖𝑎𝑔(4,2,3 × 10;, 5 × 10^;), which aims to regulate 

the system towards its set points. The second term in the objective function is weighted by the diagonal matrix 𝑹𝒄 =

𝑑𝑖𝑎𝑔(3.5 × 10�, 2 × 10/, 30,2 × 10^�), which supresses sudden changes in the manipulated variables. The dynamic 

performance of the proposed scheme is dependent on these tuning parameters as they balance tracking speed with 

aggressive changes in the manipulated variables. These must be balanced as fast tracking is desired for good 

performance, but overly quick control actions put undue burden on process equipment (i.e., manipulated variables). 
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For this case study, preliminary closed-loop simulations as well as RGA analysis were used to tune the controller 

weights. The former helped in tuning the move-suppression matrix to ensure unrealistically fast control actions were 

supressed, while the latter served as a guideline to assess interactions between variables such that high interaction was 

avoided while evenly prioritizing the control objectives. This unique tuning and structure of the controller makes it 

difficult to compare to previous control approaches, which have different control mechanisms and priorities. 

As with the RTO,	𝒚𝒍 and 𝒚𝒉 are the lower and upper bounds for the controller variables, respectively, as outlined in 

equations (4-16)–(4-19), and 𝒖𝒍 and 𝒖𝒉are the lower and upper bounds for the manipulated variables, respectively. 

The manipulated variable bounds are defined as follows: 

0 ≤ 𝐹+,*B#F-	(𝑚𝑜𝑙/𝑠) ≤ 100 (4-21)  

0 ≤ 𝐹H91
"vE%	(𝑚𝑜𝑙/𝑠) ≤ 5 (4-22)  

0 ≤ 𝐹.#@u&
"vE%	(𝑚𝑜𝑙/𝑠) ≤ 2 (4-23)  

−500,000 ≤ 𝑄m''+	(𝑊) ≤ 0 (4-24)  

These bounds are chosen such that they provide the manipulated variables with a realistic range, while still providing 

operational flexibility. Note that the cooling duty in equation (4-24) is negative as heating is positive in the convention 

used herein. Using this NMPC tuning, horizon, and bounds, the economically important controlled variables (i.e., 

carbon capture and MEA content going to the absorber) can be tracked quickly and flexibly using makeup streams 

while also considering safety limitations (i.e., in the tank level and temperature).  

Assessment of the control scheme is performed by analyzing the transient times and shape of the responses observed 

in the system. Moreover, the sum of squared errors (𝑆𝑆𝐸) between each controlled variable and its respective set point 

is computed as follows: 

𝑺𝑺𝑬 =��𝒚𝒊 − 𝒚𝒊,𝒔𝒑�
,

B

*A6

 (4-25)  

where 𝑛 is the number of sampling intervals un a given scenario and 𝑺𝑺𝑬 ∈ ℝB' denotes the vector of SSE for the 

controlled variables. The tracking performance of each variable is assessed separately as they have largely different 

magnitudes and controller tunings, thus prohibiting their direct comparison. Using SSE, the performance of the 

controller is quantified through its tracking performance.  

4.3.3. MHE Implementation and Assessment 

In the present work, the MHE is formulated such that only a few realistically achievable measurements are required 

for state estimation; this is enabled by the mechanistic MHE model. This is the first MHE implementations for any 

PCC plant that uses a mechanistic model, few measurements, and does not require decomposition of the column axial 

domain into subdomains with their own estimators. 
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The discretization necessary to solve the axially distributed absorber model poses a measurability challenge because 

each of the 𝑛}u~ discretization point along height domain requires an initial condition to solve the NMPC problem. 

For instance, online measurement of the concentrations along the column height is not practical because analysis of 

stream compositions is time and resource intensive. Accordingly, only the inlet stream (boundary) compositions into 

the absorber are assumed to be measurable; this leaves the compositions along the 𝑛}u~ − 2 remaining column heigh 

discretization points to be estimated. Conversely, the temperatures at every spatial discretization point in the column 

are assumed to be measurable. Having several temperature measurements is realistic since only conventional 

thermocouples are only required. Furthermore, the states in the storage tank are comparatively fewer as they only 

include the level, temperature, and molar holdup. The temperature measurement in the tank is realistic as it only 

requires a thermocouple, while measuring level is also commonplace using pressure transmitters/transducers. In total, 

32/116 system states are assumed to be measured online and are as follows: 

𝒛𝒕 = [𝑻𝒍𝒂𝒃𝒔
𝑻 𝑪B:?7

𝒍,𝒂𝒃𝒔𝑻 𝑻𝒈𝒂𝒃𝒔
𝑻 𝑪𝟎

𝒈,𝒂𝒃𝒔𝑻 𝑇+@#Bv ℎ+@#Bv]𝐓 (4-26)  

where 𝑻𝒍𝒂𝒃𝒔 and 𝑻𝒈𝒂𝒃𝒔 ∈ ℝB:?7 denote the liquid and gas temperature measurements along the absorber column height, 

respectively. 𝑪B:?7
𝒍,𝒂𝒃𝒔 and 𝑪𝟎

𝒈,𝒂𝒃𝒔 ∈ ℝB@ABC denote the liquid and composition measurements at the absorber column 

boundaries, respectively. 𝑇+@#Bv and ℎ+@#Bv ∈ ℝ denote the tank temperature and level measurements, respectively.  

The molar holdup in the tank is readily observable as it is assumed that the composition of inlet from tank to absorber 

is measurable; thus, the concentration of the tank is also known due to the well-mixed assumption. This is estimated 

as follows: 

𝒏𝒕𝒂𝒏𝒌 = 𝜋(𝐷@#Bv/2),ℎ+@#Bv𝑪B:?7
𝒍,𝒂𝒃𝒔 (4-27)  

where 𝒏𝒕𝒂𝒏𝒌 ∈ ℝB@ABC denotes the molar holdup in the tank. In the present PCC absorber section case study, as some 

of the states are directly measured and some can be calculated, 𝒉𝒅 is effectively a diagonal matrix of proper dimensions 

augmented with the tank holdup equation (4-27) (i.e., 𝒉𝒅 ∈ ℝ(l7SB@ABC)×l7).  

The MHE horizon used in this study was set to be of the same length as the NMPC horizons (i.e., 𝑁 = 𝑃 = 𝐶 =

100𝑠). This horizon was determined through preliminary closed-loop tests and was found to be long enough to achieve 

a good state estimate without the approximation of an arrival cost that is often required in MHE problems (Valipour 

and Ricardez-Sandoval, 2021). A shorter horizon resulting in a more parsimonious MHE problem would be enabled 

by the inclusion of arrival cost; however, this is out of the scope of the present study.  

In the present scheme, the measured/calculated buffer tank states are passed directly to the NMPC while the estimated 

absorber states must be solved for by the MHE and then passed to the NMPC. Since the tank measurement are noisy 

as they do not experience the filtering effects of the MHE, a first-order filter with a constant of 𝜆 = 0.5 is imposed on 

the states of the tank provided to the NMPC to mitigate the noise effects in the control actions, i.e.: 

𝑇+,@
@#Bv,i = 𝜆𝑇+,@^6

@#Bv,i + (1 − 𝜆)𝑇+,@
@#Bv," 

ℎ+,@
@#Bv,i = 𝜆ℎ+,@^6

@#Bv,i + (1 − 𝜆)ℎ+,@
@#Bv," 

𝒏𝒕
𝒕𝒂𝒏𝒌,𝑭 = 𝜆𝒏𝒕^𝟏

𝒕𝒂𝒏𝒌,𝑭 + (1 − 𝜆)𝒏𝒕
𝒕𝒂𝒏𝒌,𝒎 

(4-28)  
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where superscripts 𝐹 and 𝑚 denote a filtered and a measured value, respectively.  

Using the observation strategy and horizon outlined, the scheme can provide accurate state estimates for the NMPC 

to produce effective control actions. The quality of these estimates is assessed by analyzing the mean squared error 

(𝑀𝑆𝐸) between the estimated and true %𝐶𝐶. 𝑀𝑆𝐸 is defined as follows: 

𝑀𝑆𝐸 =
1
𝑛��%𝐶𝐶*,n −%𝐶𝐶*,u�

,
B

*A6

 (4-29)  

where 𝑛 is the number of sampling intervals in a given scenario (or for a given time span) and the subscripts 𝑇 and 𝑒 

denote the true and estimated %𝐶𝐶 for sample 𝑖, respectively. The 𝑀𝑆𝐸 of %𝐶𝐶 is used as a proxy to assess the 

performance of the MHE as only the absorber states are estimated and %𝐶𝐶 is the most crucial output from the 

absorber portion of the model.  

4.4. Results and Discussion 

To evaluate the performance of a real-life PCC plant, the proposed closed-loop scheme shown in Figure 4-1 was 

implemented in the pilot-scale system described previously. The transient operation of the system is described using 

the dynamic model 𝒇𝒅, where noise is added to the process and the measurements. Process noise (i.e., owed to 

unmodelled fluctuations in the system) is inserted via the initial conditions between one simulation interval and the 

next, while measurement noise (i.e., owed to instrumentation errors) is inserted via the measured states passed to the 

MHE. Both of these noises are assumed to be zero mean, normally distributed, with a standard deviation of 0.02% of 

the corresponding nominal state values, i.e. 𝒩(0, (0.0002𝒙𝒏𝒐𝒎),) where 𝒙𝒏𝒐𝒎 is the state vector corresponding to 

the nominal operation indicated in Table B1.  

As noted previously, the model parameters used herein are experimentally determined from prior studies. Accordingly, 

the present work assumes that they manifest at their nominal value in both the plant and the mechanistic models used 

in the proposed scheme (i.e., no structural or parametric mismatch was assumed). However, if parametric uncertainty 

were observed, the scheme would experience some deterioration owing to a loss in control, estimation, and RTO 

performance. 

4.4.1. Scenario A: Cofiring of Fuels 

Cofiring refers to the operation of a power plant that combusts different types of fuels within the same operating period 

to lessen the environmental impact of a highly emissive fuel. One such emissive fuel is coal and, as there is a greater 

shift to renewables, the potential of cofiring with biomass (Yang et al., 2019) is being increasingly investigated in 

terms of feasibility and benefits. However, this operational case (co-firing) has yet to be examined through an 

economic optimization framework, which can help to further reduce emissions as well as cost. 

In this scenario, the cofiring of biomass and coal is illustrated through its impact on the flue gas composition being 

supplied by the power plant to the downstream PCC absorber section. The scheme presented in this work is particularly 

well-suited for this scenario as the RTO can find new economically optimal steady states depending on the fuel used 

in the combustion process. In this scenario, only the transition between 100% biomass and 100% coal firing is studied; 

however, the proposed RTO framework for this case study is suited to determine set points for any fuel ratio in 
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between. The starting point for this scenario corresponds to the nominal manipulated variables values presented in 

Section 4.2.3 and the PCC plant operating downstream from a biomass-fired plant (𝑦7C! = 0.12). From this initial 

operation, coal (𝑦7C! = 0.175) is introduced into the upstream power plant with the fuel ramping up from 0% coal 

content to 100% coal content within a span of 200-time intervals (~40 minutes). This is reflected in a flue gas CO2 

fraction that ramps from 0.12 (fully biomass-fired) to 0.175 (fully coal-fired), as shown in Figure 4-5a. The controller 

first rejects the disturbance imposed on the flue gas composition by the change in fuel, reaching a new steady state at 

~7.5 hours as determined by meeting the criteria in equation (4-13). At this time, the RTO is executed such that an 

economically optimal set point is found for the new flue gas composition corresponding to coal-firing.  

  
Figure 4-5: Flue gas CO2 content, process cost (b shows full profile, g shows zoomed in profile), controlled variables, and 
manipulated variables for a cofiring scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting 
a set point change. 

 The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-3 (Appendix 

A). In general, the temperature is tracked quickly and has little impact on the process economics. Contrastingly, the 

other controlled variables (i.e., %𝐶𝐶, 𝐶H91@#Bv, and ℎ@#Bv; Figure 4-5c, d, e, respectively) are tracked more slowly. This 

occurs as the tank inlet and outlet flowrates, which affect the level, interact with the removal rate and MEA 

concentration; thus, a slower coordinated response is made by the NMPC to track these interacting controlled 

variables. 

Figure 4-5c shows the plant %𝐶𝐶 along with the MHE-estimated %𝐶𝐶; for this scenario, the MHE estimates were 

observed to be in good agreement with the true plant with an 𝑀𝑆𝐸 = 	1.239 × 10^/. This is the case for all scenarios 

in the present study and is owed to the use of the mechanistic model in this layer and the use of a long horizon in the 

MHE framework. Nevertheless, the MHE occasionally drifts from the true states as can be seen during some time 
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periods in Figure 4-5c (i.e.,	 𝑡 ≅ 6	ℎ → 6.9	ℎ with 𝑀𝑆𝐸 = 	6.830 × 10^, and 𝑡 ≅ 13.7	ℎ → 14.4	ℎ with 𝑀𝑆𝐸 =

	5.160 × 10^,).  

To gain further insight into the effect of the proposed RTO framework, a ‘no-MHE’ case was performed whereby the 

cofiring scenario is repeated with the assumption of full access to the system states. This occurs when all the true plant 

states can be measured thus making the state estimation framework (i.e., MHE) unnecessary. In principle such a ‘no-

MHE’ case is unrealistic as composition measurements are difficult to perform online for the PCC absorber; 

nevertheless, it is valuable to assess the performance of the proposed scheme under this assumption to assess the 

impact and need of a reliable estimation scheme. Note that previous economic operation studies in PCC have not 

considered an estimation scheme and hence have not addressed the issue of state accessibility. Since the MHE provides 

state estimates to the NMPC, which may differ from the true plant states, the controller and economic performance 

can be affected by using estimation. Hence, the ‘no-MHE’ case enables observation of the deterioration that an 

estimation scheme causes on the operational framework. For the present ‘no-MHE’ case, the first-order filter with 𝜆 =

0.5 is imposed on all states to smooth noise and the RTO is assumed to be executed at the same time as the MHE 

scenario. As the 𝑆𝑆𝐸 described in equation (4-25) quantifies the tracking performance of the NMPC, this measure can 

be used to assess the controller performance under the MHE and ‘no-MHE’ cases. To make a fair comparison, the 

NMPC controller tuning parameters, and characteristics remain the same for both scenarios. Table 4-7 summarizes 

the tracking performance under the MHE and ‘no-MHE’ scenarios.  
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Figure 4-6: Controlled variables in MHE and no-MHE cases for Scenario A. Sub-windows display ranges in which MHE-
induced performance loss is most severe. 

Table 4-7: Effect of MHE on control and economic performance for Scenario A. 

Controlled variable 
𝑺𝑺𝑬 

(MHE) 

𝑺𝑺𝑬 

(no-MHE) 

Performance 

loss (%) 

%𝐶𝐶	(%) 3827 3657 4.649 

𝐶H91@#Bv	(𝑚𝑜𝑙/𝐿) 1.530 × 10� 1.416 × 10� 8.051 

𝑇@#Bv	(𝐾) 30.68 23.56 30.22 

ℎ@#Bv(𝑚) 0.7931 0.7376 7.524 

Economics Cost (MHE) Cost (no-MHE)  

â 𝐶%&'mu--𝑑𝑡
6�k

=

	($𝐶𝐴𝐷) 9018 8977 0.4567 

As displayed in Table 4-7 and the drift observed in the controlled variable plots (Figure 4-6a, b, c, particularly the 

sub-windows), the tracking performance is better in all ‘no-MHE’ controlled variables as reflected by lower SSE 

values in Table 4-7. The ‘no-MHE’ case provides an upper bound for controller performance as it has access to the 

true plant states and, in principle, the control performance is best when true plant states can be measured. In contrast, 
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the MHE estimates were shown to sometimes drift from the actual plant states, thus adversely affecting performance. 

As such, the percent error of the MHE case with respect to the ‘no-MHE’ case reflects the loss in controller 

performance owed to the MHE. Nevertheless, the MHE case reflects a more realistic condition since most of plant 

states are often not available for online control. These losses due to the MHE estimation are generally low (< ~8%) 

except for that of the tank temperature; however, the temperature dynamics are fast compared to other controlled 

variables and the deviations from the set points are primarily due to noise as shown in Figure A-3 (Appendix A). The 

speed of the tank temperature dynamics, and the fact that there is little deviation from its set point in both MHE and 

‘no-MHE’ cases (SSE is on the order of 20–30 across the entire simulation while the nominal tank temperature is on 

the order of 314	𝐾) suggest that the deterioration in tank temperature tracking performance caused by the MHE is 

negligible in reality because the deviations are caused by noise, thus this variables will not have a significant impact 

on the rest of the process. In terms of economics, there is little difference in the total process cost as reflected by the 

cost integral in Table 4-7  whereby the economic loss of the MHE case with respect to the ‘no-MHE’ case is low. This 

implies that the loss in tracking performance caused by the MHE does not propagate to the economics because the 

economic improvements are being achieved in the steady-state phase. That is, the MHE was able to track the true plant 

states accurately using only a low number of measurements available in the plant. While at steady state, the behaviour 

of the controlled variables in the MHE and ‘no-MHE’ cases in Figure 4-6 are observed to have essentially no offset 

(hence no economic loss). Additionally, Figure 4-5c displays the true %𝐶𝐶 and the MHE-estimated %𝐶𝐶, which again 

show virtually no offset while at steady state. These results highlight the benefits in using an advanced state estimation 

scheme such as MHE for the optimal operation of PCC plants. We can conclude that the deterioration from a control 

and economic perspective caused by the MHE is acceptable considering how few measurements are used and the level 

of noise. Thus, the MHE performs well in estimating the system states and its application is not a significant detriment 

on the larger scheme. This result is of prime importance since state estimation will always be necessary for plants such 

as the PCC system since many plant states cannot be measured online. 

As shown in Figure 4-5c, d, and e, following the ramp disturbance at 𝑡 = 0	ℎ, the NMPC was able to track the system 

back to its original set points by 𝑡 ≅ 7.5	ℎ  with a few damped oscillations. The initial ramping in the flue gas content 

from 0 to 𝑡 ≅ 0.7	ℎ hours cause the flowrate manipulated variables (i.e., Figure 4-5h, i, and j) to also ramp to minimize 

the effect of the disturbance on the controlled variables. Once the ramp has been completed, hysteresis from this initial 

ramping action causes the NMPC to modulate the manipulated variables to quickly track the set points. A less 

aggressive controller tuning (i.e., more weight on control move suppression terms) could have resulted in less 

oscillation at the expense of control speed; however, due to the stable nature of the PCC system these small oscillations 

are deemed acceptable.  

The increase in CO2 content in flue gas initially disturbs the system such that the original %𝐶𝐶 cannot be maintained 

with the pre-disturbance MEA content in the solvent fed to the absorber; thus, rejecting the disturbance to the %𝐶𝐶 is 

achieved through the increase of the MEA makeup flowrate, as shown in Figure 4-5i. While the initial makeup flowrate 

is merely 0.0002	𝑚𝑜𝑙/𝑠, the flowrate after the disturbance rejection is ~0.4	𝑚𝑜𝑙/𝑠, thus constituting a two 

thousandfold increase in the flowrate. Despite the relatively low unit price of MEA, the disturbance rejection phase 

of the scenario leads the process to a very economically disadvantageous combination of controlled and manipulated 
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variables as the high MEA makeup flowrate is not accompanied by a commensurate increase in the %𝐶𝐶 because of 

the disturbance. Accordingly, this makeup stream is the primary driver of a drastic increase in process economics 

following the disturbance rejection compared to the initial process cost (~59,000	$𝐶𝐴𝐷/𝑦𝑟 at 𝑡 = 0	ℎ to 

~1.5𝑀	$𝐶𝐴𝐷/𝑦𝑟	𝑡 ≅ 7.5	ℎ; Figure 4-5g and b, respectively). That is, despite MEA being seemingly inexpensive per 

unit volume, the makeup flowrate is drastically elevated as to have a significant negative impact on the economics. 

The MEA cost as the primary driver of this condition is also confirmed by the similarity of trajectories of process 

economics and MEA makeup flowrate in Figure 4-5b and i, respectively. For the proposed NMPC structure to reject 

the large flowrate disturbance, this behaviour is unavoidable as the only way to substantially maintain %𝐶𝐶 on target 

is through the MEA makeup. These poor steady-state economics last until corrective action is taken by the RTO to 

find a new suitable set point for the system. 

The RTO is executed at 𝑡 ≅ 8	ℎ to re-optimize the plant economics under the new operating conditions. To achieve 

the new set points, which in principle represent a more economical operating point, the process must first undergo 

another dynamic phase while control actions are imposed. These dynamics are observed to be expensive; during this 

transient, a process cost peak occurs at 𝑡 ≅ 8.5	ℎ, which is caused by a similar peak in the MEA makeup flowrate. 

The peak occurs as the RTO imposes an increase in %𝐶𝐶 and 𝐶H91@#Bv set points, which are quickly acted upon by an 

increase in MEA makeup flowrate. This increased cost period is brief, however, and after the dynamics associated 

with the increase in reboiler duty shown in Figure 4-5f have elapsed, the MEA makeup decreases back to a near-zero 

value as the lean loading is decreased through the recycle stream; thus, a large amount of MEA makeup is no longer 

necessary to maintain the new %𝐶𝐶 set point. These expensive dynamics suggest that the approach presented herein 

should be applied especially when the system experiences significant and sustained disturbances. The set point 

increases in %𝐶𝐶 and 𝐶H91@#Bv take advantage of the fact that an increased composition of CO2 in the flue gas makes it 

economically advantageous to remove more CO2 to be sold at the expense of a small increase in reboiler cost, which 

allows for the reduction of the MEA makeup flowrate as the associated cost. After this initial peak, the controlled 

variables approach their set point at 𝑡 ≅ 18	ℎ and the new RTO-defined operating point for the process has a low 

operating cost of ~48,000	$𝐶𝐴𝐷/𝑦𝑟 with respect to the operating cost of pure biomass firing. 

The original ~59,000	$𝐶𝐴𝐷/𝑦𝑟 (biomass) steady-state cost is broken down into ~86,000	$𝐶𝐴𝐷/𝑦𝑟 from reboiler 

steam, ~− 32,000	$𝐶𝐴𝐷/𝑦𝑟 from CO2 sales, ~4,000	$𝐶𝐴𝐷/𝑦𝑟 from SCC, and ~1,000	$𝐶𝐴𝐷/𝑦𝑟 from MEA costs. 

This is compared to the final ~48,000	$𝐶𝐴𝐷/𝑦𝑟 (coal) steady-state cost broken down into ~90,000	$𝐶𝐴𝐷/𝑦𝑟 from 

reboiler steam, ~− 47,000	$𝐶𝐴𝐷/𝑦𝑟 from CO2 sales, ~5,000	$𝐶𝐴𝐷/𝑦𝑟 from SCC, and ~0	$𝐶𝐴𝐷/𝑦𝑟 from MEA 

costs. This breakdown shows that the RTO increases reboiler duty to achieve more capture (thus sales) despite the 

increased amount of CO2 content in the flue gas; this is reflected in an increased reboiler cost and an increased sales 

profit from the initial to the final steady state. This increased reboiling will typically have implications on the operation 

of the upstream power plant (e.g., reduction of the power plant’s energy output). As a consequence of increased 

reboiling, the absorber enrichment in the latter (coal-fired) state is primarily achieved through the reboiler rather than 

the makeup stream, leading to a low MEA makeup cost. The increase in sales profit seen here exemplifies the 

importance of a carbon economy where CO2 is treated as a sellable product rather than an unwanted biproduct as noted 

by Nwaoha and Tontiwachwuthikul (2019), thereby encouraging higher capture rates. Moreover, an increase in SCC 
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is observed due to the increased CO2 content in the flue gas, which leads to more total emissions as reflected in the 

cost (but less relative emissions considering that more CO2 is being fed to the absorber). This breakdown reflects the 

large effect that recoups can have to strengthen the incentive to remove CO2 as well as make the PCC process more 

economically feasible. From an energy standpoint, the execution of the RTO increases the reboiler duty from an 

original ~151,800	𝑊 to ~157,500	𝑊. As per equation (4-15), this increase constitutes approximately a 

1315	$𝐶𝐴𝐷/ℎ decrease in power plant profits, which is entirely justified considering the ~11,000$𝐶𝐴𝐷/ℎ (i.e., 

~12% energy penalty) decrease in the optimal steady-state PCC operating cost. 

In summary, the net (i.e., including energy penalties) optimal steady state cost for coal is ~19% cheaper than the 

optimal steady state cost associated with biomass. This occurs as the increased CO2 content in the flue gas from coal 

combustion allows for more carbon to be captured and sold at the expense of a minor increase in reboiler duty. 

Moreover, the evolution of the process economics in this scenario provides new insights with regards to the NMPC 

and RTO behaviour. The NMPC structure used in this study, while working well to reject disturbances, can lead to 

drastically increased steady-state operating costs as evidenced in the disturbance rejection phase of the scenario where 

a significant amount of MEA is required. These high costs, however, are quickly alleviated through the execution of 

the RTO which lessens the solvent enrichment caused by the MEA makeup and increases the solvent enrichment 

caused by the reboiler. Moreover, the process dynamics imposed by the NMPC when tracking a new set point can 

also be expensive because of brief peaks in the MEA makeup; these dynamics are acceptable as they are relatively 

short-term and are necessary to achieve a more economical operating point. Despite the expensive transients achieved 

by the proposed scheme, the manipulated variables make a coordinated response as the NMPC is a centralized (multi-

variable) control scheme. In contrast, decentralized control strategies would likely lead to even more expensive 

transient costs as interactions between various control loops would not be accounted for leading to slower control 

actions; this is a further benefit of the proposed NMPC-based control structure in the case-study. Nevertheless, the 

losses incurred while operating dynamically to reach a new RTO-defined steady state are justified as they will be 

recovered in the long term provided that the system is operated at steady state for a sufficiently long period thereafter. 

For instance, in this case the payback period is 𝑡%#wF#mv ≅ 18	ℎ. Moreover, with this control structure, the post-

disturbance steady state costs and dynamic costs are inflated due to the unavailability of reboiler duty as a manipulated 

variable and the high price of MEA. Lifting this restriction and manipulating the reboiler duty as well as makeup 

stream would likely shorten the payback period by making the dynamics less expensive; however, this is out of the 

scope of the present study. Still, the approach proposed in this work was shown effective for the cofiring of fuels, 

which is an increasingly common operational scheme in fuel-fired power plants, while incurring an acceptable energy 

penalty. 

4.4.2. Scenario B: Diurnal Variation of Inlet Flowrate 

It is common for power plants to respond to changing energy demands. Diurnal variation is one case that occurs over 

the course of the weekday for load-changing power plants, whereby the energy demand of the plant varies cyclically. 

Peak hours often occur in the late mornings, afternoon, and early night; while low demand occurs the late night, and 

early mornings. To accommodate cycling energy demands, the quantity of fuel combusted, and thus the quantity of 



 70  

flue gas, both undergo similar diurnal cycles. This scenario has been investigated before (Akula et al., 2021; Harun et 

al., 2012). In our previous works (Chapter 3 and Appendix A), however, the controller had limited flexibility as it only 

considered the absorber, thus the solvent could became easily saturated with CO2, limiting size of disturbances that 

could be rejected. Through the integration of the control layer in the absorber and buffer tank in this work, larger 

fluctuations in flue gas flowrate can be rejected as the solvent entering the absorber can be readily concentrated or 

diluted using the makeup streams.  

In this scenario, the cyclic behaviour is modelled as steps around a nominal flue gas flowrate as displayed in Figure 

4-7a; this signal has an amplitude equal to 40% of the nominal flue gas flowrate (i.e., there is a 20% step up and a 

20% step down from the nominal flue gas flowrate), which exceeds the amplitude explored in previous studies. 

Following each disturbance, the controller tracks to its outdated set point. Upon reaching an outdated steady state, the 

RTO is executed such that an updated operating point is defined. This procedure of disturbance rejection and set point 

tracking would be repeated daily; for the sake of brevity, only a single cycle is performed in this work. 

  
Figure 4-7: Flue gas flowrate, process cost (b shows full profile, g shows zoomed in profile), controlled variables, and manipulated 
variables for a diurnal variation scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting a 
set point change. 

The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-4 (Appendix 

A). For this scenario, the MHE estimates were observed to be in good agreement with the true plant with an 𝑀𝑆𝐸 =

	7.076 × 10^; and the similar trajectories displayed in Figure 4-7c. While a ‘no-MHE’ case was not performed in 

scenario B as in scenario A for brevity, an MSE on the same order as the scenario A suggests that the MHE performance 

is similarly good, thus allowing the NMPC to have good performance.  

This scenario begins at the economically optimal operating point corresponding to the nominal disturbances outlined 

in Section 4.2.3. A first disturbance is imposed at 𝑡 = 0	ℎ and constitutes a 20% step up in flue gas flowrate, thus 
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beginning the ‘peak’ hours. Such a disturbance would cause the %𝐶𝐶 to decrease drastically as the amount of solvent 

being fed into the absorber would no longer be sufficient; however, the disturbance is rejected by the controller through 

an increase in the MEA makeup flowrate, which enriches the solvent going into the absorber thereby accounting for 

the excess flue gas. The first disturbance is rejected by 𝑡 ≅ 4	ℎ with a few brief damped oscillations; however, the 

resulting process economics are unfavourable because of the new MEA makeup flowrate of  ~0.7	𝑚𝑜𝑙/𝑠 as shown in 

Figure 4-7i. This is also reflected in the increase of process cost from  ~48,000	$𝐶𝐴𝐷/𝑦𝑟 (Figure 4-7g) pre 

disturbance rejection to ~3.1𝑀	$𝐶𝐴𝐷/𝑦𝑟 (Figure 4-7b) post disturbance rejection. At this point (𝑡 ≅ 4	ℎ), the RTO 

is executed and leads to a transient lasting until 𝑡 ≅ 9	ℎ, whereby the reboiler duty is increased (Figure 4-7f) to enrich 

the recycle stream, thus allowing the system to maintain a high %𝐶𝐶 with a lower makeup flowrate. This quickly 

reduces the process cost to ~42,000	$𝐶𝐴𝐷/𝑦𝑟 (Figure 4-7g). This new set point is accompanied by an energy penalty 

to the upstream power plant of 654	$𝐶𝐴𝐷/𝑦𝑟 owed to the increase in reboiler duty; this is acceptable considering the 

price reduction from the previous optimal steady state of ~6000	$𝐶𝐴𝐷/𝑦𝑟. Without executing the RTO, the process 

would have remained at the elevated post-disturbance cost; thus, the cost maintaining the outdated set point (i.e., doing 

nothing) would be substantial. 

At 𝑡 ≅ 9	ℎ, a second 40% step down in flowrate is imposed, thus ending the peak hours. The controller works to reject 

this disturbance but as shown in Figure 4-7c, d, and e, there is a flattening of the controlled variables at 𝑡 ≅ 10	ℎ. At 

this point, the (40%) step-down disturbance makes the pre-disturbance %𝐶𝐶 set point too low to be reached by the 

controller as the high reboiler duty elevates the plant %𝐶𝐶. Despite the MEA flowrate being near its lower bound 

(Figure 4-7i) and the water flowrate being at its upper bound (Figure 4-7j), there remains a nearly 2%𝐶𝐶 upward 

offset as the size of the disturbance makes the outdated set point unreachable for the current reboiler duty. In addition 

to this offset, the system quickly reaches a point where the cost fluctuates noisily as a result of modulation of the MEA 

makeup near its lower bound (as reflected in Figure 4-7g at 𝑡 ≅ 9	ℎ → 10	ℎ ). This occurs owing to the strong 

interaction between the MEA makeup and its simultaneous (and conflicting) effect on both the tank level and the	%𝐶𝐶. 

Despite the MEA makeup still varying, it has very little effect on the controlled variables as they are nearly constant 

by ~10 hours. Moreover, the process cost is still varying at this point with a minimum of ~60,000	$𝐶𝐴𝐷/𝑦𝑟. As the 

controlled variables have flattened by 𝑡 ≅ 10	ℎ, the RTO is executed whereby a new reachable set point is computed 

and the system undergoes a transient that lasts until 𝑡 ≅ 17	ℎ hours and reduces the steady-state cost to 

~50,000	$𝐶𝐴𝐷/𝑦𝑟. The transient associated with this set point change (𝑡 ≅ 10	ℎ → 17	ℎ) is longer than the previous 

set point change (𝑡 ≅ 4	ℎ → 9	ℎ)  as the system starts far from its optimal operating point because the previous set 

point corresponds to a flue gas flowrate that is 40% higher. Despite the new optimal steady state having a cost that is 

~8000	$𝐶𝐴𝐷/𝑦𝑟 higher than the previous steady state, the energy penalty incurred to the upstream power plant is 

−2385	$𝐶𝐴𝐷/𝑦𝑟 because of the reduction in reboiler duty. In this case, the RTO decision helps the power plant 

operation as well as the PCC since ~30% of the losses imposed by the new disturbance on the system will be offset 

by increased power plant profits owing to the reduction of steam being routed to the PCC plant.  

At 𝑡 ≅ 17	ℎ, a third 20% step up in flowrate is imposed, thus returning the system to its nominal flue gas flowrate. 

This disturbance is successfully rejected by 𝑡 ≅ 20	ℎ but results in another high operating cost of  ~2.6𝑀	$𝐶𝐴𝐷/𝑦𝑟 

due to the high MEA makeup flowrate of ~0.5	𝑚𝑜𝑙/𝑠. The RTO is executed again at 𝑡 ≅ 20	ℎ, whereby the process 



 72  

cost is returned to its original ~48,000	$𝐶𝐴𝐷/𝑦𝑟 in just under 𝑡 ≅ 24	ℎ, thus completing a cycle. This new set point 

is accompanied by an energy penalty to the upstream power plant of  1731	$𝐶𝐴𝐷/𝑦𝑟, which is substantial as it negates 

~87% of the price reduction from the previous optimal steady-state cost of ~2000	$𝐶𝐴𝐷/𝑦𝑟. 

As with the Scenario A, large MEA makeup flowrates following disturbance rejection phases are observed. This re-

emphasizes the large economic effects that MEA cost can have despite its relatively low price. In contrast to Scenario 

A, the disturbances in the present scenario occur relatively frequently, resulting in a plant that is in the disturbance 

rejection phase more often. This leads to frequent dynamic operation, which was observed to be expensive. Despite 

this, when the RTO is executed the dynamic process cost (i.e., when a new set point is being tracked) typically 

decreases drastically following a peak as the NMPC often reduces the MEA makeup quickly. 

In the three RTO periods associated with a daylong operation with three disturbances observed in the present scenario, 

the optimal process cost decreases by ~6000	$𝐶𝐴𝐷/𝑦𝑟, increases by ~8000	$𝐶𝐴𝐷/𝑦𝑟, and decreases by 

~2000	$𝐶𝐴𝐷/𝑦𝑟 for each RTO period, respectively. The first cost decrease is enabled by the increase in flue gas 

flowrate, which allows for substantially more carbon to be captured and sold per unit time with only a slight increase 

in reboiler duty. It is associated with a sizable net (considering energy penalty) cost improvement of ~12% with 

respect to the pre-disturbance process cost. The second RTO period and its associated increase in cost occurs because 

of the significant decrease in flue gas flowrate, which allows for less sales recoups. Despite this, the RTO still enables 

the reduction of steady state cost from the post-disturbance steady state by ~17%; that is, while there is an increase 

of steady state cost with respect to the previous disturbance in this case, the RTO still results in significant loss 

abatement from the second disturbance-rejection phase. Furthermore, the third RTO period observed a more modest 

~0.6% of net cost improvement over the previous RTO period because of a large energy penalty as noted above. 

Dynamically, for the three RTO periods observed in this scenario, the payback periods were calculated to be 

𝑡%#wF#mv ≅ 8	ℎ, 𝑡%#wF#mv ≅ 12	ℎ, and 𝑡%#wF#mv ≅ 7	ℎ in chronological order. Thus, none of the RTO periods are 

operated at steady state for a sufficiently long time to justify the expensive dynamics as the payback period is not 

completed before a new disturbance is imposed. For a scenario such as this where the system has little time to settle 

before more disturbances are imposed, an EMPC structure may be more well-suited for the dynamic costs to be 

considered; however, EMPC also has disadvantages as stated in the introduction. Nevertheless, this scenario showed 

that the execution of the RTO decreased the steady-state costs from the disturbance-rejection phase cost in all three 

RTO periods observed herein, and that the scheme can handle very large disturbances in flue gas flowrate (with the 

caveat of expensive dynamics). For slower power plants that do not impose such large load changes on the PCC 

process, this approach would be more suitable. Moreover, the energy penalty of the power plant was relatively small 

or negative for two of the RTO periods; even when the penalty was large, it did not exceed the savings incurred by 

the RTO. 

4.4.3. Scenario C: Variation in Prices 

To assess the effect of the pricing of RTO economic cost terms on the system’s operation, disturbances were imposed 

on the prices associated with the two primary cost terms (i.e., those that incur the biggest profit or loss during nominal 

operation as established in the cost breakdown in scenario A). Accordingly, the largest contributors to the overall cost 
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were found to be the reboiler steam cost and CO2 sales profit. These prices were varied within ±10% of their nominal 

value in a series of steps over five RTO periods as depicted in Figure 4-8a. 

  
Figure 4-8: Price profiles, process cost, controlled variables (b shows full profile, g shows zoomed in profile), and manipulated 
variables for price variation scenario. Dashed vertical lines represent times at which the RTO was executed, thus inciting a set 
point change. 

 The responses on the buffer tank temperature and cooling duty in this scenario can be found in Figure A-5 (Appendix 

A). As with the previous scenarios, the MHE estimates were observed to be in good agreement with the true plant 

with an 𝑀𝑆𝐸 = 	1.075 × 10^/. Moreover, a ‘no-MHE’ case was performed for this scenario as summarized in 

Appendix A (Figure A-6 and Table A-3). The control and economic performance loss in this scenario were found to 

be similarly small to that observed in Scenario A; hence, it is deemed acceptable under the assumptions considered 

for the present MHE scheme. 

The starting point for this scenario corresponds to the nominal conditions outlined in Section 4.2.3 and Table A-1 

(Appendix A), in which the system starts far from its economically optimal steady state as reflected in the long initial 

transient (~8.5 hours) in %𝐶𝐶, 𝐶H91@#Bv, and ℎ@#Bv (Figure 4-8c, d, and e, respectively). Once the system reaches its new 

operating condition at the end of this transient, the subsequent dynamics related to price changes are comparatively 

short as they represent adjustments near the optimum rather than a move into a radically different operating point. 

This is reflected in the small magnitude of the adjustments and brief dynamics made on the %𝐶𝐶 and ℎ@#Bv in RTO 

periods 2–5. 

Figure 4-8b and g show the process cost after execution of the RTO with updated pricing and the subsequent tracking 

to the newly defined set points that were observed. This profile is compared to the process cost profile of a ‘no RTO’ 

case (also shown in Figure 4-8b and g) where the controlled and manipulated variables are maintained at their nominal 

values (i.e., 𝒀𝒏𝒐𝒎 and 𝒖𝒏𝒐𝒎, respectively). This way, the economic benefit of executing the RTO over remaining at 
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the nominal operating conditions suggested in the literature (Nittaya, 2014) can be assessed. The RTO always supplies 

economically advantageous operating points; however, the amount of improvement over the nominal scenario depends 

on the specific pricing as summarized in Table 4-8. These improvements range from modest (RTO period 3, nominal 

sales prices and high reboiler price) to substantial (RTO period 5, low sales price and high reboiler price). 
Table 4-8: PCC savings, energy penalty, and net savings for different RTO periods (price combinations) with respect to the ‘no 

RTO’ case. 

RTO 

period 

PCC savings 

($𝐶𝐴𝐷/𝑦𝑟) 

Energy penalty 

($𝐶𝐴𝐷/𝑦𝑟) 

Net savings 

(%) 

1 3047 1149 4.45 

2 2776 1005 3.50 

3 2417 876 2.64 

4 2608 946 3.38 

5 8742 −1032 14.47 

The second and third RTO periods, after the system reaches its first economic optimum and only reboiler prices are 

disturbed, provide modest economic advantages over the ‘no RTO’ operation. This suggests the economic optimum 

is only mildly dependent on the price of steam although steam comprises a large part of the total cost. The importance 

of steam price is corroborated by the increase in cost from ~39,000	$𝐶𝐴𝐷/𝑦 to ~56,000	$𝐶𝐴𝐷/𝑦 upon the two 

steam price increases, which represents a significant economic penalty. In other words, the reboiler cost makes up a 

large part of the process economics, but the RTO can only provide modest improvements to offset changes in this 

price if the system begins at an optimum. Nevertheless, these improvements are worthwhile if the price holds for a 

long time thereafter. These increases in reboiler cost also cause the RTO to generate lower %𝐶𝐶 set points as the 

removal of %𝐶𝐶 is disincentivized since it becomes more expensive for the reboiler to provide a MEA-rich recycle 

stream. Moreover, with the reboiler prices increasing during the second and third RTO periods, the system experience 

successive decreases in savings and energy penalty. The energy penalty to the power plant is decreased as the RTO 

dictates that less duty is required as the steam price becomes more expensive while the PCC savings also decrease as 

less carbon is captured as a result. In both periods, the decreases in PCC savings outpaces the decreases in energy 

penalty, resulting in lower net savings. 

During the fourth RTO period in which the sales price is increased, an increasing incentive to remove CO2 is observed 

through a slight increase in %𝐶𝐶 set point. This occurs along with a significant drop in process cost to 

~46,000	$𝐶𝐴𝐷/𝑦 as more economic benefits can be recouped through CO2 sales. This period also represents an 

increase in the improvement over the no RTO case from the previous period as displayed in Table 4-8, which suggests 

that there is a larger economic benefit to be gained by executing the RTO upon sales prices changes. In this fourth 

period, the energy penalty increases owing to the increased recoup price, which incentivizes removal and higher 

reboiler duty. In contrast to the previous two periods, the increase in PCC savings is greater than the increase in energy 

penalty, hence an increase in net savings is observed. 

The notion of potentially large savings to be made upon changes in sales price is further reinforced in the fifth RTO 

period, which represents the most substantial cost improvement over the ‘no RTO’ case. This occurs with a low sales 
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price, which decreases the %𝐶𝐶 set point by drastically decreasing the reboiler duty leading to a large price increase. 

In this period, the RTO allows less CO2 to be removed since the economic incentive of selling the capture material is 

significantly reduced. This is reflected in the process economics as there is a decrease in the money recouped through 

sales, causing the process cost to increase to a high of ~65,000	$𝐶𝐴𝐷/𝑦. A substantial decrease in reboiler duty such 

that it goes below the reboiler duty in the ‘no RTO’ case is dictated by the RTO in this period; hence the negative 

energy penalty as shown in Table 4-8. In this case, the savings are substantial as they are made with respect to both 

the PCC and the power plant, hence the large net savings. 

As observed in this scenario, there can be a significant dependence of optimal process cost on the material and energy 

prices as shown in Figure 4-8g ranging from ~39,000	$𝐶𝐴𝐷/𝑦 to ~56,000	$𝐶𝐴𝐷/𝑦. However, these all represented 

improvements with respect to the nominal operating point reported by Nittaya (2014) with net savings ranging from 

~3 − 14% as summarized in Table 4-8 (i.e., net because the associated energy penalties are accounted for). As in 

previous scenarios, the dynamics associated with some set point changes were observed to be costly during some 

periods of time. This was observed at the beginning of RTO periods 1 and 4 where there are short (~40 minute) spikes 

in MEA makeup. Accordingly, the RTO should be primarily executed if the prices are expected to hold thereafter such 

that the detriment from the spikes can be made up for by the improved steady-state economics. As in the previous 

scenarios, the energy penalty to the power plant never exceeded the RTO savings, thus justifying the use of an RTO 

framework. Day-to-day variations in typical commodity/energy prices are often noisy and small, thus they would not 

warrant set point changes. In contrast, price variation on the order observed in this scenario (i.e., ±10%) would occur 

less regularly; these would warrant the execution of the RTO as doing nothing would represent significant additional 

costs as shown by the comparison to the no RTO case in Table 4-8. That is, large price changes as observed in this 

scenario are outside the tolerance of noise and occur when there is a market change; these price changes would justify 

the use of RTO such that the payback period is short given the expensive dynamics observed. 

The averaged computational times for the RTO, NMPC, and MHE in the proposed scheme for this scenario are 4.33	𝑠, 

55.43	𝑠, and 64.65	𝑠, respectively. The CPU times do not change significantly across test scenarios as the optimization 

problems are of the same size and were carried out using the same hardware; thus, these times are representative for 

all scenarios. As can be observed in the CPU times for the dynamic optimization problems, the implementation of a 

large model as in the present study requires significant computational effort; this is one of the drawbacks of using a 

mechanistic model. Despite having the same number of equations, the MHE problem requires more CPU time than 

the NMPC problem, owing to an increased number of decision variables (i.e., manipulated variables trajectories in 

NMPC vs. state trajectories in MHE). The long computational times of the dynamic optimization problems used herein 

warrant adjustments in the solution strategy for the scheme to be used in a real plant. One option is to accept the 

computational delay caused by these long CPU times and asses its effect on the control and estimation layers; however, 

this can have detrimental effects on performance. Previous studies have proposed the use of terminal conditions to 

mitigate this issue (Chen et al., 2000), but this increases the implementational complexity of the control scheme. More 

attractively, a reduction in this computational effort can be achieved through efficient reformulations such as the 

advanced-step NMPC presented by (Zavala and Biegler, 2009).  
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4.4.4. Remarks 

The scheme was implemented on an MEA-solvent pilot-scale PCC absorber section and a mechanistic process model 

was used for the layers comprised in the proposed scheme. The absorber section and proposed scheme were subjected 

to test scenarios including cofiring, diurnal variations, and price variations to assess performance. A ~19% 

improvement in process cost was observed in the cofiring scenario (A) with only a small (~0.5%) of economic 

performance deterioration caused by the MHE. The diurnal variation scenario (B) revealed improvement in steady-

state economics upon the introduction of each new disturbance from ~12% cost improvements (in the cases where 

disturbances caused the cost to improve) to ~17% loss abatement (in the cases where the disturbances caused the cost 

to increase). Furthermore, a ~3% to ~14% cost improvement with respect to maintaining a constant set point was 

observed for different economic incentives (through price variations) in the scenario C. 

Dynamically, the NMPC layer was shown to track the RTO-supplied economically optimal set points quickly in all 

scenarios while maintaining non-economic variables, such as temperature and level, steady. Occasionally, the control 

actions in the NMPC were observed to be expensive because of the use of MEA makeup as a manipulated variable; 

this would make the proposed scheme expensive to execute for plants subject to continuous disturbances where steady-

state operation is not sustained for long periods. This finding is consistent with the fact that RTO is a steady-state 

optimization method, which does not consider dynamics when determining set points. Nevertheless, the payback 

periods for the scenarios observed in this work were found to be reasonable with respect to the RTO period lengths 

(i.e., the payback period were of similar lengths to the RTO periods). Moreover, the MHE was observed to provide 

consistently acceptable estimates of the absorber as observed through the NMPC performance, which showed little 

deterioration compared to when full state access was assumed. The fidelity of the estimates was also evidenced by the 

low error in the MHE-estimated %𝐶𝐶 with respect to the true %𝐶𝐶 . 

From a process economics perspective, it was found through the test scenarios that there is a substantial potential to 

recoup costs through CO2 sales; this was most salient at high inlet CO2 concentrations (i.e., with very emissive fuels) 

and high flue gas throughputs, whereby the PCC plant was operated at a high %𝐶𝐶. Furthermore, the energy penalty 

to the upstream power plant was always lower than the economic benefit incurred by the RTO; thus, justifying the 

execution of the RTO even if the energy consumption led to some reduction of its potential cost improvements. It is 

thus evident that the RTO, while not having a model of the power plant, is able to make sensible decisions regarding 

the energy use of the PCC plant such that the power plant does not experience an undue energy burden because of 

carbon capture. 

4.5. Summary 

An operating scheme was proposed for the economic optimization of PCC. The RTO layer introduces a novel 

economic function, which provides a comprehensive consideration of process economics through its inclusion of SCC, 

CO2 sales profit, chemical cost, and energy cost; this provides realistic and economical set points to the control layer 

through its use of the proposed economic function. The NMPC layer enables the centralized control of the absorber 

and buffer tank while keeping the system inside its physical and safety constraints. Moreover, the control structure in 

the case study provides adequate control flexibility because of its ability to concentrate and dilute the absorber feed 
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using the buffer tank makeup streams. The MHE layer provides accurate estimates of the states required to execute 

the previous two layers while only requiring a realistic number of measurements and ensuring that the estimates adhere 

to constraints. The case study results demonstrate that the operational approach presented herein do, in fact, provide 

an economically optimal operating approach for PCC operating downstream from fuel-fired power plants. Approaches 

such as this will be paramount in achieving economic viability in PCC such that fuel-firing can become 

environmentally viable. 
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5. Low-variance Parameter Estimation 

To the authors’ knowledge, a scheme to abate the effect of noise directly in parameter estimates in RTO has not been 

proposed in the literature. The present study introduces a low-variance PE (lv-PE) algorithm coupled with RTO for 

the economic operation of noisy processes. The lv-PE scheme reduces the error in parameter estimates with a twofold 

strategy. Firstly, the available measurements are probed for their information content to ensure low parameter 

variability (i.e., high precision) by performing “challenger” PE problems with different measurement combinations; 

this ensures that most of the information-rich measurements are used for PE. Secondly, a filter is introduced to reduce 

the frequency of high-error estimates by establishing parameter bounds; this prevents estimates beyond realistic 

bounds to be implemented in the system. Using the measurement-probing and data-filtering steps, the proposed 

method results in low measurement-to-parameter noise propagation and elimination of high-error estimates. The 

deployment of the proposed method does not entail a fundamental redesign of the two-layer RTO scheme that is 

prevalent in industry; this makes it an attractive way to augment RTO performance in any system that uses the two-

layer approach. As will be shown in the following sections, the method only requires additional computations to be 

performed using the recurrently sampled measurements which would be collected nonetheless. Notably, this approach 

is not mutually exclusive with any aforementioned technique (i.e., GED, DR, robust estimation) since it chooses 

favourable measurements (pre-estimation) and filters noise from the resulting estimates (post-estimation). The 

proposed method can be used to improve the efficacy of robust estimators in noisy conditions and be included as an 

extra data-processing step with data reconciliation, gross error detection, or any online estimation task (e.g., state 

estimation). 

The study is structured as follows: preliminary notation and standard definitions are defined at the outset; Section 5.1 

outlines the regular formulations for RTO, PE, and NMPC to expound on the arising issues with PE and provide 

context for the proposed algorithm. Section 5.2 presents, and rigorously motivates the proposed algorithm, also 

providing frameworks to analyze process economics and constraint violations in RTO-operated systems. Section 5.3 

illustrates the implementation of the proposed algorithm through two case studies: an evaporator process and the 

Williams-Otto process. Section 5.4 summarizes the findings and provides areas of future work. 

Preliminaries 

Bolded letters denote matrices and vectors, while plain letter done scalars. Lower-case bolded letters denote vectors, 

while upper-case bolded letters denote matrices. 𝑰B, ∈ ℝ
B,×B, denotes an identity matrix of dimensions 𝑛* × 𝑛*. 

𝑰B,:j ∈ ℝ
B,×(B,S6)  denotes a matrix composed of the identity matrix of dimensions 𝑖 × 𝑖 with a zero vector of length 

𝑖 inserted as column 𝑗, e.g.: 

𝑰/:/ = ç
1 0 0 0
0 1 0 0
0 0 0 1

è (5-1)  

Given a generic vector 𝒙 = [𝑥6 ⋯ 𝑥B]𝑻, some operations on the vector are defined. ‖𝒙‖𝑨
, denotes a quadratic 

form on the vector 𝒙 ∈ ℝB& with the weighting matrix 𝑨 ∈ ℝB&×B&. 𝒙T ∈ ℝB& denotes model prediction of 𝒙 ∈ ℝB&. 

Model predictions are not inputs to the model nor the decision variables; rather, they are generated while solving 

optimization problems but not conveyed to any other layers unless explicitly stated. {𝒙𝒕^𝒊}*A=l  denotes a discrete 
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sequence of the vector 𝒙 from the present time 𝑡 to time 𝑡 − 𝑁. 𝒙G ∈ ℝBD denotes the average of the sequence and 𝝈𝒙 

denotes the standard deviation of that sequence, i.e.: 

𝒙G =
1
𝑁 � 𝒙𝒕S𝒊

=

*A^l

 (5-2)  

𝝈𝒙 = é∑ (𝒙𝒕S𝒊 − 𝒙G),=
*A^l

𝑁 − 1  (5-3)  

Similarly, the covariances of elements within the vector 𝒙 given their discrete sequence {𝒙𝒕^𝒊}*A=l  is estimated as 

follows: 

𝐾*,j =
1
𝑁�(𝑥*,@^v − 𝑥̅*)(𝑥j,@^v − 𝑥̅j)

l

vA=

																																																		∀𝑖 ∈ {1,… , 𝑛$}, ∀𝑗 ∈ {1,… , 𝑛$} (5-4)  

The latter expression can be used to construct the covariance matrix 𝑲𝒙 ∈ ℝB&×B&. Lastly, this study uses 𝑈𝑆$ as the 

monetary basis. 

5.1 Real-time Optimization of Controlled Plants 

 
Figure 5-1: Typical RTO scheme for a controlled plant with a) independent optimization and control models, b) equivalent 
optimization and control models. 

Figure 5-1 depicts the exchange of information between the plant, RTO, PE, and controller via the two-step approach. 

Herein, a continuous plant is assumed to be subject to measurable disturbances (𝒅 ∈ ℝB1). Note that this assumption 

is made for simplicity (i.e., measurability is not necessary for the proposed method as will be discussed later in this 

section). Measurements (𝒛 ∈ ℝB7) can be acquired from the plant such that enough new data is collected to perform 

the PE problem at every RTO period Δ𝑇. The PE problem supplies the RTO economic optimization problem with 

updated model parameters (𝜽 ∈ ℝBE) which, in turn, supplies the controller with set points (𝒚𝒔𝒑 ∈ ℝB'). Note that 𝒚 

denotes the controlled variables that are regulated towards their respective set points (𝒚𝒔𝒑). The controller regulates 

the plant towards the RTO-supplied set points at every sampling interval Δ𝑡 such that the plant is kept on target. Note 

that Δ𝑇 = 𝑘Δ𝑡 where 𝑘 ∈ ℤS (i.e., the RTO period is a positive integer multiple of the sampling interval), and typically 

Δ𝑇 ≫ Δ𝑡. Moreover, while state accessibility is often an issue in process plants, we assume that the required 

measurements are accessible for the purposes of this work (i.e., full state access is considered); this is not necessary 

for the scheme but done for simplicity and to remove confounding factors. 

PE

RTO Plant

Measurements: 𝒛

Parameters: 𝜽

Set points: 𝒚𝒔𝒑

Controller
Control actions: 𝒖

Disturbances: 𝒅

a)

𝑡 ← 𝑡 + ∆𝑡𝑡 ← 𝑡 + ∆𝑇 PE

RTO Plant

Measurements: 𝒛

Parameters: 𝜽

Set points: 𝒚𝒔𝒑

NMPC
Control actions: 𝒖

Disturbances: 𝒅

b)

𝑡 ← 𝑡 + ∆𝑡𝑡 ← 𝑡 + ∆𝑇
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Two controller implementations are possible as depicted in Figure 5-1, a) when the controller uses an individual 

internal model/scheme and, b) when the RTO, PE, and controller models are equivalent (i.e., they use dynamic and 

steady state versions of the same model). The latter case is of primary interest as parameter updates are passed to both 

RTO and controller, thus affecting the scheme’s performance in a twofold manner. For the purposes of this study, the 

parameter estimates are passed to both layers; however, they need only be passed to the RTO or NMPC layers to affect 

the system operation. Indeed, in larger systems where the online mechanistic control problem is expensive to compute, 

the use of a mechanistic MPC may be impractical such that the controller will be incompatible with PE. The use of 

equivalent models often necessitates that the controller uses detailed process models to match the PE and RTO layers, 

which are typically nonlinear, hence the use of nonlinear model predictive control (NMPC), as depicted in Figure 

5-1b. The NMPCs employed herein use a dynamic version of the steady-state model deployed in the RTO and PE. 

Indeed, the interaction between NMPC and RTO has been studied previously (Adetola and Guay, 2010; Diehl et al., 

2002); to the authors’ knowledge, studies addressing a reduction of parameter variability owed to measurement noise 

are not available in the literature. Generally, RTO problems are formulated as follows: 

min
𝒚t
𝛷  

𝑠. 𝑡. 
𝒇𝒔(𝒙T, 𝒚T, 𝒖, 𝒅, 𝜽) = 𝟎 
𝒈𝒔(𝒙T, 𝒖, 𝒅) ≤ 𝟎 
𝒚𝒍 ≤ 𝒚 ≤ 𝒚𝒉		 
𝒖𝒍 ≤ 𝒖 ≤ 𝒖𝒉		 

(5-5)  

where 𝛷 ∈ ℝ denotes the economic model for which the process is optimized. In formulation (5-5), it is assumed that 

𝛷 is an economic loss function being minimized; however, maximization of a revenue function also occurs. The inputs 

to the RTO formulation (5-5) are the current process disturbances (𝒅) and the uncertain model parameters (𝜽), while 

the outputs are the economically optimal controlled variables (𝒚 ∈ ℝB'). The process state predictions (𝒙T ∈ ℝB&) and 

the manipulated variables (𝒖 ∈ ℝB)) corresponding to the optimal set points are also generated by the model. 

𝒇𝒔: ℝB) ×ℝB1 ×ℝBE ⟶ℝB& ×ℝB' denotes the steady-state process model. 𝒚𝒍 and 𝒚𝒉 ∈ ℝB' are lower and upper 

bounds for the set points, respectively, while 𝒖𝒍 and 𝒖𝒉 ∈ ℝB) are lower and upper bounds, respectively, for the 

manipulated variables. 𝒈𝒔: ℝB& ×ℝB) ×ℝB1 ⟶ℝB* are any constraints (aside from those on the inputs and set 

points) to which the economic optimum must adhere. The RTO supplies the controlled variable set points to the 

controller (i.e., 𝒚𝒔𝒑). Although the RTO may provide a set point that is challenging to match by the controller because 

of model uncertainty in both layers, the set point is nonetheless conveyed between the layers as it approximates the 

economic optimum (with some error); this point is described in the following section. Executing the RTO (and 

corresponding PE) problem too frequently would put undue computational burden on the plant and may not necessarily 

lead to drastic improvement in performance. Accordingly, the RTO problem is executed every RTO period Δ𝑇 as 

specified by the user, such that the set point is periodically being updated as more plant data becomes available. In 

contrast, the controller acts on the plant at every sampling interval Δ𝑡. 

The controller is tasked with regulating the controlled variables towards the RTO-defined set points. In the case of an 

equivalent model between layers (Figure 5-1b) an NMPC can be considered. NMPC (or MPC more generally) takes 

plant state measurements or estimates at every sampling interval Δ𝑡 and uses them as initial conditions for a process 
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model to predict plant behaviour on the horizon 𝑃. The manipulated variables are used as decision variables on the 

horizon 𝐶 such that the NMPC generates the sequence {𝒖𝒕S𝒊}*A67  (𝐶 ≤ 𝑃 such that 𝒖 is assumed to remain constant 

beyond 𝐶). The first instance of manipulated variables from this sequence 𝒖𝒕S𝟏 are subsequently provided to the plant 

such that the system is controlled. The NMPC problem is formulated as follows: 

min
𝒖𝒕#𝒊∀*∈{6,…,P}

�µ𝒚𝒔𝒑 − 𝒚T𝒕S𝒊µ𝑸𝒄
,

P

*A6

+�‖∆𝒖𝒕S𝒊‖𝑹𝒄
,

P

jA6

 

𝑠. 𝑡. 

𝒇𝒅(𝒙T𝒕S𝒊, 𝒚T𝒕S𝒊, 𝒖𝒕S𝒊, 𝒅𝒕S𝒊, 𝜽) = 𝒙T𝒕S𝒊S𝟏																																																																												∀𝑖 ∈ {1,… , 𝑃 − 1}	 

𝒙T𝒕 = 𝒙𝟎 

𝒈𝒅(𝒙T𝒕S𝒊, 𝒖𝒕S𝒊, 𝒅𝒕S𝒊) ≤ 𝟎																																																																																																										∀𝑖 ∈ {1,… , 𝑃}	 

𝒚𝒍 ≤ 𝒚T𝒕S𝒊 ≤ 𝒚𝒉																																																																																																																											∀𝑖 ∈ {1,… , 𝑃} 

𝒖𝒍 ≤ 𝒖𝒕S𝒊 ≤ 𝒖𝒉																																																																																																																										∀𝑖 ∈ {1,… , 𝑃} 

𝒖𝒕S𝒊S𝟏 = 𝒖𝒕S𝒊																																																																																																																					∀𝑖 ∈ {𝐶,… , 𝑃 − 1} 

(5-6)  

where all variables are defined as in the RTO with an additional dependence on time. The first term of the objective 

function represents a minimization of the sum of squared errors between the controlled variables and their set points 

over the horizon 𝑃, while the second term minimizes the squared changes in the manipulated variables from one time 

period to the next (i.e.,	 ∆𝒖𝒕S𝒊S𝟏 = 𝒖𝒕S𝒊S𝟏 − 𝒖𝒕S𝒊	∀𝑖 ∈ {1,… , 𝐶}). These objective function terms affect control 

performance and manipulated variable speed, and are subject to the diagonal weighting matrices 𝑸𝒄 ∈ ℝB'×B' and 

𝑹𝒄 ∈ ℝB)×B), respectively, which are determined from prior tuning. 𝒇𝒅: ℝB& ×ℝB) ×ℝB1 ×ℝBE ⟶ℝB& ×ℝB' 	

denotes the dynamic process model. 𝒈𝒅: ℝB& ×ℝB) ×ℝB1 ⟶ℝB* are the set of inequality constraints (aside from 

the controlled and manipulated variable constraints) that are imposed on the predicted trajectories. The inputs to the 

NMPC dynamic optimization problem are the initial conditions 𝒙𝟎 ∈ ℝB&, which are state measurements or estimates; 

as well as the disturbance trajectories (𝒅𝒕 = ⋯ = 𝒅𝒕S𝑷) and the model parameters (𝜽), which are assumed to remain 

constant at the latest disturbance and PE-defined value for the entire controller prediction horizon, respectively. The 

outputs of this problem are the optimal manipulated variable trajectory (𝒖𝒕S𝒊 ∈ ℝB)) as well as the predicted state 

(𝒙T𝒕S𝒊 ∈ ℝB&) and controlled variable trajectories (𝒚T𝒕S𝒊 ∈ ℝB'). Only the first time-instance of the manipulated 

variables trajectory (i.e., 𝒖𝒕S𝟏) is implemented in the plant. After this, the plant is operated for a sampling interval Δ𝑡 

whereby new measurements are given to the NMPC as feedback and the formulation in equation (5-6) is re-solved; 

therefore, the process of sampling and solving the NMPC problem is repeated recursively, and the scheme becomes 

closed-loop. 

The uncertain model parameters (𝜽) associated with formulations (5-5) and (5-6) must be estimated prior to every 

execution of the RTO problem (5-5) to reconcile the plant model with the current steady state operating conditions. 

The PE optimization problem is based on Bayesian inference, which allows for the embedding of prior information 

and determination of weighting terms in a statistically rigorous manner. This assumes that measurements (and thus 

the noise associated with measurements) obey a Gaussian distribution; the complete outline of the probabilistic 
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interpretation can be found elsewhere (Cox, 1964). As such, the work herein is limited to Gaussian noise, which is 

indeed a very common assumption in process systems. 

The PE problem uses a measurement sequence {𝒛𝒕^𝒊}*A=H , whereby the past 𝑀 steady-state samples are considered. 

This allows for averaged measurements (𝒛X ∈ ℝB7) to be computed using equation (5-2) along with the measurement 

covariance matrix (𝑲 ∈ ℝB7×B7) using equation (5-4). The PE problem is as follows: 

min
𝜽
‖𝒛W − 𝒛X‖𝑲3F

, 

𝑠. 𝑡. 
𝒇𝒔�𝒙T, 𝒚T, 𝒖G, 𝒅G, 𝜽� = 𝟎 
𝒉𝒔�𝒙T, 𝒖G, 𝒅G� = 𝒛W 
𝒈𝒔�𝒙T, 𝒖G, 𝒅G� ≤ 𝟎 
𝜽𝒍 ≤ 𝜽 ≤ 𝜽𝒉		 

(5-7)  

𝒇𝒔: ℝB) ×ℝB1 ×ℝBE ⟶ℝB& ×ℝB' is the steady-state process model that also corresponds to the model used in 

formulation (5-5).	 𝜽𝒍 and 𝜽𝒉 ∈ ℝB𝜽 are lower and upper bounds, respectively, for the parameter estimates. 

𝒈𝒔: ℝB& ×ℝB) ×ℝB1 ⟶ℝB* are any constraints (aside from those on the inputs and set points) to which the 

estimates must adhere. Moreover, 𝒉𝒔: ℝB& ×ℝB) ×ℝB1 ⟶ℝB7 denotes the function between the model inputs and 

measurement prediction. The measurements can coincide with the states or be functions of the model inputs/states. 

The objective function in problem (5-7) minimizes the differences between the model measurement predictions and 

the sample-averaged measurements by using the model parameters as the decision variables. The inverse covariance 

matrix (𝑲^6) weights the objective function such that high-variance measurements are assigned low weights with the 

converse occurring for low-variance measurements. By performing the sampling and averaging, less noisy 

reconciliation between plant and model are achieved; however, some noise will still propagate to the parameter 

estimates as experimental data are used. In executing this formulation, the plant and model are reconciled for current 

operating conditions as the latest available steady-state plant data including the measurements, manipulated variables, 

and disturbances are used. As such, the inputs to this problem are the averaged measurements (𝒛X), averaged 

manipulated variables (𝒖G), and disturbances (𝒅G) while the outputs are the parameter estimates (𝜽). While a large 𝑀 

would be preferable for its averaging effect (especially in the presence of noise), this can lead to the use of 

measurements that are not truly at steady state (e.g., owing to drift or subtle control actions over time); thus, the size 

of 𝑀	is typically limited. Note that this formulation can also be adapted for disturbance estimation or joint 

parameter/disturbance estimation; however, this work is restricted to cases involving parameter estimation. 

As both RTO and NMPC layers are privy to the parameter estimates, poor PE performance can lead to suboptimal 

operation via inaccurate RTO set points and set point offset in the NMPC layer when compared to the true optimum. 

Given the formulations presented above, the importance of the PE problem becomes clear from the dependence of the 

RTO and NMPC on 𝜽. Moreover, the gaps for a method to deal with variation in parameter estimates can be expounded 

upon: 

1) More information (i.e., measurements) do not necessarily mean that the PE problem (5-7) will yield better 

estimates as covariances (𝑲) may, in fact, weigh the problem unevenly such that it becomes ill-conditioned. 
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Typically, all available measurements (𝒛) are used when solving PE problems; accordingly, there is need for 

a method that can choose a favourable subset of measurements to provide to the PE step. 

2) Problem (5-7) uses a sample of measurements ({𝒛𝒕^𝒊}*A=H ), which are subject to noise through the sample 

average 𝒛X and the covariance matrix 𝑲. The propagation of noise from the measurements to the parameter 

estimates can cause economic losses, which accrue in the long-term. There remains a gap for a method to 

ensure this does not occur by filtering for erroneous estimates. 

To address these issues, the low-variance PE procedure is introduced herein and presented in the following section. 

This comprises an algorithm that determines favourable measurements to embed in the PE problem as well as a filter 

to reject instances where the parameters are poorly estimated. 

5.2 Low-variance Parameter Estimation (lv-PE) 

The proposed low-variance PE (i.e., lv-PE) scheme works by reducing the variability in parameter estimates with 

respect to their expected value, which is equivalent to their true value provided that the system is absent of systematic 

errors (see assumption 3 below).  Accordingly, any single estimate may not be more accurate at a given PE/RTO 

iteration; however, the estimates over time will be more precise, thus benefits will accrue over many RTO periods. In 

this section, the scheme is motivated through analysis of the set point error, which is attributed to parameter error. 

Then, the algorithm comprising the scheme is discussed step-by-step. Moreover, the economic implications of the 

method are discussed, with a novel algebraic and geometric interpretation of RTO economics. Assessment metrics for 

the scheme are introduced at the end of this section.  

The following assumptions are made herein: 

1) The time operating at steady state far exceeds the time operating dynamically. This is an underlying 

assumption in systems that operate with RTO (Darby et al., 2011) (i.e., not specific to the proposed approach) 

as the principle of steady-state optimization is that cost-optimal operating policy is steady while dynamic 

operation is expensive and should be minimized. 

2) The measurement noise is additive Gaussian and occurs owing to random errors. As noted earlier, this is an 

underlying assumption of standard PE in equation (5-7) as the least-squares objective embedded with prior 

measurements arises from Bayesian inference in the presence of Gaussian noise (Cox, 1964). 

3) Plant-model mismatch is owed to PE error. This is a standard assumption in the two-layer RTO ((Darby et 

al., 2011) whereby a mechanistic model is assumed to provide an adequate representation of the system and 

only requires parameter estimates to match the plant. Mechanistic process models are increasingly common 

and available for RTO; however, in cases where such model is not available, other approaches (Marchetti et 

al., 2009; Roberts and Williams, 1981) can be considered. The PE error herein is owed to large amounts of 

noise to which the measurements are subjected. Measurement bias and similar systematic errors are not 

addressed herein as they would require GED. In principle, GED could also be addressed within the proposed 

scheme but would require an extra processing layer as indicated in the introduction. However, as this is the 

first study to use the proposed approach, extra layers were not considered to explicitly assess the benefits and 

limitations of the method. 
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5.2.1. Effect of Parameter Errors on Set Point Tracking 

A theoretical argument is first made to motivate the proposed approach, which connects parameter error to set point 

error for an RTO-operated system. Consider a single RTO period during which the process loss is minimized 

(alternatively, revenue can be maximized). For a constrained RTO to operate the process at its “true” economic 

optimum (i.e., the economic optimum corresponding to the plant, not the mismatched model) the controlled variables 

must fulfill the Karush-Kuhn-Tucker (KKT) conditions, i.e.: 

∇Φ�𝒚𝒔𝒑𝒕𝒓𝒖𝒆� + 𝑱𝒇�𝒚𝒔𝒑𝒕𝒓𝒖𝒆�
n𝝀 + 𝑱𝒈�𝒚𝒔𝒑𝒕𝒓𝒖𝒆�

n𝝁 = 𝟎 

𝒇�𝒚𝒔𝒑𝒕𝒓𝒖𝒆� = 𝟎 

𝒈�𝒚𝒔𝒑𝒕𝒓𝒖𝒆� = 𝟎 

𝝁n𝒈�𝒚𝒔𝒑𝒕𝒓𝒖𝒆� = 0; 𝝁 ≥ 𝟎 

(5-8)  

where 𝑱𝒇 ∈ ℝB&×B' and 𝝀 ∈ ℝB& are the Jacobian matrix and KKT multipliers of the process model, respectively. 

Moreover 𝑱𝒈 ∈ ℝB*×B' and 𝝀 ∈ ℝB* are the Jacobian matrix and KKT multipliers of the process constraints, 

respectively. 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 ∈ ℝB' in equation (5-8) denotes the controlled variables set points that achieve a true economic 

optimum (i.e., plant KKT conditions). In practice, the true economic optimum 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 is difficult to achieve because of 

mismatch between the plant and RTO model. As such, the performance of an RTO optimizer can be assessed by the 

difference between the actual controlled variables achieved by the system and the true set points. Over time, this can 

be quantified using an error metric; herein the integral square error (𝐼𝑆𝐸) is considered owed to its common use in 

control systems. Accordingly, the error is quantified over the single RTO operating period (𝑇4nC = ∆𝑇): 

𝐼𝑆𝐸 = â µ𝒚𝑹𝑻𝑶 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,n;<=

=
𝑑𝑡 (5-9)  

where 𝒚𝑹𝑻𝑶 ∈ ℝB' denotes the actual controlled variables achieved by the RTO-operated system. 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 and 𝒚𝑹𝑻𝑶 are 

distinct as the RTO may not operate the system at the theoretical optimum owing to modelling errors, thus the gap 

between the achieved set point and the true optimum is expressed by the error metric in equation (5-9). The set point 

offsets in equation (5-9) provide a way to analyze the efficacy of an RTO-operated system on a theoretical basis. As 

values of 𝒚𝑹𝑻𝑶 are not known a priori, the effect of offset is analyzed under several hypothetical scenarios as shown 

next. 

The operation of process plants is composed of many RTO periods; however, taking a more granular view as done 

here, a single RTO operating period can be segmented into distinct phases: the suboptimal phase, the dynamic phase, 

and the optimal phase; these are depicted in Figure 5-2. The suboptimal phase corresponds to the time before the RTO 

is executed and the system is operating at a point that is outdated/suboptimal (𝒚𝒔𝒖𝒃 ∈ ℝB'), the dynamic phase occurs 

once the RTO has been executed and the system is in a transient state (𝒚𝒅𝒚𝒏 ∈ ℝB'), and the optimal phase occurs 

once the system is operating at its RTO-defined set point (𝒚𝒐𝒑𝒕 ∈ ℝB'). Note that the “optimal phase” here 

corresponding to 𝒚𝒐𝒑𝒕 refers to optimal as achieved by the PE/RTO-operated system and may, in fact, not be the true 

plant optimum 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 as the RTO can result in offset with respect to the true set point as show in equation (5-9). The 

segmentation of the RTO period into three phases allows for 𝒚𝑹𝑻𝑶 as defined previously to be decomposed into 𝒚𝒔𝒖𝒃, 
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𝒚𝒅𝒚𝒏,	and		𝒚𝒐𝒑𝒕.	These phases have durations 𝑡-EF,	𝑡(wB, and 𝑡'%@, such that for a single RTO period 𝑇4nC = 𝑡-EF +

𝑡(wB + 𝑡'%@.  

 
Figure 5-2: Segmentation of RTO period. Dotted (--) line denotes the true (theoretical) optimum. The integral of differences 
between true optimum and actual phase values highlighted red (suboptimal phase), green (dynamic phase), and blue (optimal 
phase). 

This allows for equation (5-9) to be segmented into phases, for which the set point difference in each phase is shown 

in Figure 5-2 as follows: 

𝐼𝑆𝐸 = â µ𝒚𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)H

=

+ â µ𝒚𝒅𝒚𝒏 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@1'-S@G)H

@G)H

+ â µ𝒚𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)HS@1'-S@AC/

@G)HS@1'-

 

(5-10)  

Since RTO is inherently a steady state method, assumption 1 outlined above is made; indeed, predominantly steady 

state operation is largely the case for many process plants. This leads to 𝑡-EF , 𝑡'%@ ≫ 𝑡(wB ⟹ 𝑇4nC ≅ 𝑡-EF + 𝑡'%@, thus 

simplifying equation (5-10) to: 

𝐼𝑆𝐸 = â µ𝒚𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)H

=

+ â µ𝒚𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)HS@AC/

@G)H

 (5-11)  

The RTO-defined controlled variables can be partitioned into the true value (as defined above) and their deviation 

from the true value (𝝈 ∈ ℝB' ), which allows for the expansion into: 

𝐼𝑆𝐸 = â µ𝒚𝒔𝒑𝒕𝒓𝒖𝒆 + 𝝈𝒔𝒖𝒃 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)H

=

+ â µ𝒚𝒔𝒑𝒕𝒓𝒖𝒆 + 𝝈𝒐𝒑𝒕 − 𝒚𝒔𝒑𝒕𝒓𝒖𝒆µ𝑰-'
,𝑑𝑡

@G)HS@AC/

@G)H

 (5-12)  

which simplifies to: 
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𝐼𝑆𝐸 = ∫ µ𝝈𝒔𝒖𝒃µ
𝑰-'

,𝑑𝑡@G)H
= + ∫ ‖𝝈𝒐𝒑𝒕‖𝑰-'

,𝑑𝑡@G)HS@AC/
@G)H

𝝁n𝒈�𝒚𝒔𝒑𝒕𝒓𝒖𝒆� = 0; 𝝁 ≥ 𝟎 (5-13)  

Moreover, as only steady state periods are being analyzed, the deviations from the true values are constant for a single 

given RTO period (i.e., not a function of time) as show geometrically in Figure 5-2. The solution of equation (5-13) 

provides a definition of the 𝐼𝑆𝐸 performance metric for RTO: 

𝐼𝑆𝐸 = µ𝝈𝒔𝒖𝒃µ
𝑰-'

,𝑡-EF + ‖𝝈𝒐𝒑𝒕‖𝑰-'
,𝑡'%@ (5-14)  

Using equation (5-14), the performance of two operating schemes can be compared: the first (𝑙𝑣), which reduces the 

set point deviation; and the second (𝑟), which is the regular RTO problem: 

𝐼𝑆𝐸+) − 𝐼𝑆𝐸& = µ𝝈𝒍𝒗𝒔𝒖𝒃µ𝑰-'
,𝑡-EF,+) + µ𝝈𝒍𝒗

𝒐𝒑𝒕µ
𝑰-'

,
𝑡'%@,+) − µ𝝈𝒓𝒔𝒖𝒃µ𝑰-'

,𝑡-EF,& − µ𝝈𝒓
𝒐𝒑𝒕µ

𝑰-'

,
𝑡'%@,& (5-15)  

To have an equivalent assessment of the schemes, it can be assumed that both operating schemes in equation (5-15) 

begin at the same suboptimum (i.e., 𝝈𝒍𝒗𝒔𝒖𝒃 = 𝝈𝒓𝒔𝒖𝒃) and can act at the same time (i.e., 𝑡-EF,+) = 𝑡-EF,& = 𝑡-EF and 

𝑡'%@,+) = 𝑡'%@,& = 𝑡'%@,), thus: 

𝐼𝑆𝐸+) − 𝐼𝑆𝐸& = ôµ𝝈𝒍𝒗
𝒐𝒑𝒕µ

𝑰-'

,
− µ𝝈𝒓

𝒐𝒑𝒕µ
𝑰-'

,
õ 𝑡'%@ (5-16)  

Which, since 𝑡'%@ > 0 by definition, leads to: 

𝐼𝑆𝐸+) − 𝐼𝑆𝐸& < 0⟺ µ𝝈𝒍𝒗
𝒐𝒑𝒕µ

𝑰-'

,
< µ𝝈𝒓

𝒐𝒑𝒕µ
𝑰-'

,
 (5-17)  

Following assumption 3, it can be concluded that by reducing the error in parameter estimates (𝜽), the deviations from 

the set points are also minimized as the uncertain parameters represent the only source of plant-model mismatch, thus: 

𝐼𝑆𝐸+) − 𝐼𝑆𝐸& < 0⟺ µ𝝈𝜽,𝒍𝒗
𝒐𝒑𝒕 µ

𝑰-'

,
< µ𝝈𝜽,𝒓

𝒐𝒑𝒕µ
𝑰-'

,
 (5-18)  

Since the set point corresponding to 𝒚𝒔𝒑𝒕𝒓𝒖𝒆 is indeed an economic optimum by definition, the minimization of parameter 

deviations will lead to improved economics as effected through the set points. This can be generalized to multiple 

RTO periods if the deviations 𝝈 are re-defined as standard deviations, thus they represent the mean deviation across 

many RTO periods. An algorithm to achieve this lowering of parameter deviation, which fulfills the assumptions made 

herein is presented next. 

5.2.2. Proposed Approach (lv-PE) 
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Figure 5-3: The proposed low-variation parameter estimation algorithm for RTO. The blue block denotes the restarting criteria 
for the measurement-probing block (in the red block). The green block denotes the parameter update procedure in the RTO and 
NMPC. 

The proposed algorithm to lower the variability in the parameter estimates is depicted in Figure 5-3 and divided into 

three blocks to facilitate discussion. The key idea is to test available measurements sequentially for whether they help 

or hinder the variability of the parameter estimates by performing “challenger” PE problems (i.e., potential PE 

formulations of which the results are not implemented in the RTO or NMPC). The parameter estimates of the 

challenger problems are compared to those of a benchmark problem, whereby the challenger problem is a version of 

the benchmark problem with an omitted measurement. If the challenger problem performs better with the omitted 

measurement, it becomes the new benchmark problem. At the first iteration of the algorithm, the benchmark problem 

contains all available measurements, this way they may all be probed as the algorithm progresses; as the progression 

occurs, each successive benchmark problem will have a lower parameter variability. The removal of measurements is 

preferable to the addition of measurements as addition will require an initial subset of fixed measurements to be chosen 

a priori. Both challenger and benchmark problems are executed several times; accordingly, data regarding the 

parameter estimates is collected to calculate their statistical parameters. These are used twofold: 1) to determine the 

combination of measurements that leads to the lowest 𝝈𝜽
𝒐𝒑𝒕; 2) as filters to discard inaccurate parameter estimates (i.e., 

those outside of the tightest ±𝝈𝜽
𝒐𝒑𝒕).  

The scheme can begin at any point in the operation of a process by going through the restart/terminate block in Figure 

5-3 (i.e., checking if an operating point change has occurred and if all conditions for the measurement-probing 

procedure are met). Once these conditions are met, the measurement-probing block in Figure 5-3 is activated (the 

Execute 𝑀 dummy and benchmark PE 
problems

New operating 
point?

𝝈𝜽(𝜻), 𝝈𝜽(𝒛)

𝜍𝑗 > 0?

Yes, 𝑗 = 1

Execute PE problem

Update MPC parameters and execute RTO 
problem

No: retain benchmark problem
𝑗 ← 𝑗 + 1

Yes: new benchmark problem
𝒛 ∈ ℝ𝑛𝑧 ⟵ 𝜻 ∈ ℝ𝑛𝑧−1

𝑡 ← 𝑡 + ∆𝑇𝑡 ← 𝑡 + 𝑀∆𝑡

No

𝜽

𝒚𝒔𝒑

No

𝜽 − 𝝈𝜽 ≤ 𝜽 ≤ 𝜽 + 𝝈𝜽?

Yes : 𝝈𝜽, 𝒛

𝑡 ← 𝑡 + ∆𝑡

No

Yes

𝑗 = 𝑛𝑧?

𝑛𝑧 = 𝑛𝑧,𝑚𝑖𝑛 ?
Yes : 𝝈𝜽, 𝒛

No

Probe measurements (offline) Update parameters (online)

Restart/terminate (offline)

No
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activation conditions will be explained in detail at the end of this section). Upon activation, a counter is set to 𝑗 = 1 

and all measurements are assumed to be used (i.e., 𝒛𝟎 ∈ ℝB7>  where 𝑛~ = 𝑛~>). The challenger problems as shown in 

the measurement-probing block of Figure 5-3 and defined in formulation (5-19) are solved 𝑀 times over 𝑀 sampling 

intervals ∆𝑡 such that each problem has a data window with a new measurement added and an old measurement 

discarded with respect to the previous problem. This process of executing	𝑀 challenger problems is performed by 

excluding a measurement from the benchmark PE problem via the formulation in equation (5-19). The challenger 

problems are performed offline such that their estimates are never conveyed to the other layers.  At 𝑗 = 1, the 

benchmark is the regular PE problem as defined in equation (5-7) with 𝒛𝟎, and it is also solved 𝑀 times over 𝑀 

sampling intervals. This benchmark problem will change if a better formulation is found by the challenger problem, 

otherwise is it kept. 

The challenger PE problems are formulated as a modified PE problem where the variables are defined as in equation 

(5-7) except for 𝜻 ∈ ℝB7^6.  The challenger problems are as follows: 

min
𝜽
µ𝜻̂ − 𝜻Xµ

𝜿3F
,
 

𝑠. 𝑡. 
𝒇𝒔�𝒙T, 𝒚T, 𝒖G, 𝒅G, 𝜽� = 𝟎 
𝒉𝒔�𝒙T, 𝒖G, 𝒅G� = 𝒛W 
𝑰𝒏𝒛^𝟏:𝒋𝒛W = 𝜻̂ 
𝒈𝒔�𝒖G, 𝒅G, 𝒙T� ≤ 𝟎 
𝜽𝒍 ≤ 𝜽 ≤ 𝜽𝒉		 

(5-19)  

where 𝜻̂ excludes measurement 𝑗 from the PE problem using 𝑰𝒏𝒛^𝟏:𝒋 ∈ ℝ
(B7^6)×B7 such that only a subset of 

measurements 𝜻 are used with the respective covariance matrix 𝜿 ∈ ℝ(B7^6)×(B7^6) and averages 𝜻X = 𝑰𝒏𝒛^𝟏:𝒋	𝒛X. 

After 𝑀 executions of problem (5-19), the parameter sequence ø𝜽(𝜻),𝒕^𝒊ù*A=
H

 is available, allowing for the calculation 

of the standard deviation of that sequence 𝝈𝜽(𝜻). Moreover, 𝑀 executions of a benchmark PE problem (i.e., with the 

full set of measurements 𝒛) have also been performed to obtain the sequence {𝜽(𝒛)	𝒕^𝒊}*A=H  with variation benchmark 

𝝈𝜽(𝒛). Note that 𝑀 is a system parameter and is limited by the RTO period size as it will determine the computational 

time associated with the proposed scheme along with the number of challenger problems required; more details about 

this parameter are provided in the following section. 

The information content (𝐼𝐶 ∈ ℝ) metric introduced by Vrugt et al. (2001) is adapted for PE as follows: 

𝐼𝐶*,v = 1 −
𝜎�(𝜻),*,v
𝜎�(𝒛),*,v

			∀𝑖 ∈ {1,… , 𝑛�} (5-20)  

where 𝑘 = 𝑗 + 𝑛~> − 𝑛~ denotes the number of measurements probed hitherto. 

The 𝐼𝐶 metric in equation (5-20) quantifies if, and by how much, the exclusion of a measurement helps in the decrease 

of parameter variability. 𝐼𝐶*,v > 0 implies that the removal of a measurement helps reduce variability while 𝐼𝐶*,v < 0 

implies that the removal increases the variation. The 𝐼𝐶 metric was chosen due to its simplicity and the fact that it 

does not require plant perturbations such as alternatives metrics like the sensitivity matrix (Kravaris et al., 2013). In 

essence, equation (5-20) determines whether each measurement is beneficial or detrimental to the expected error of 
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the PE problem via parameter standard deviations. The deviations are used in evaluating a benchmark problem (i.e., 

with lowest variance set of measurements found thus far in the measurement probing phase) and a challenger problem 

(i.e., with a potentially better set of measurements). To quantify the aggregate effect of measurement exclusion in 

systems with many parameters, the overall 𝐼𝐶 (𝜍v ∈ ℝ) is defined as follows:  

𝜍v =�𝐼𝐶*,v

BE

*A6

 (5-21)  

This is depicted within the measurement-probing block of Figure 5-3 to determine whether to exclude or keep a 

measurement as follows: 

If 𝜍v > 0, the exclusion of the measurement is deemed beneficial as cumulative impact of the exclusion is 

net positive across all estimated parameters in the system (i.e., the variation in some parameters may decrease while 

the variance in other may increase; however, the net effect is of decrease in variation). As such, the measurement 𝑗 

being tested is removed from the PE formulation and the challenger formulation becomes the new benchmark problem, 

thereby reducing the dimension of the measurements vector by one i.e., 

𝑛~ ⟵ 𝑛~ − 1⟹ 𝒛 ∈ ℝB7 ⟵ 𝜻 ∈ ℝB7^6  

following this, the probing process then proceeds whereby the previous second measurement, which is now the first 

measurement (i.e., 𝑧6 ⟵ 𝑧,), is probed for its information content. 

If 𝜍 ≤ 0, the exclusion of the measurement is not beneficial, thus the measurement is retained, and a new 

exclusion candidate is chosen i.e., 𝑗 ⟵ 𝑗 + 1. 

This process is then repeated sequentially for available measurements 𝑘 ∈ {1,… , 𝑛~>} until either of the three 

conditions in the restart/terminate block of  Figure 5-3 is fulfilled: 1) the operating point changes as dictated by a 

sudden disturbance to the system, thus interrupting the measurement-probing process and setting 𝑗 = 1, 2) the 

minimum number of allowable measurements are reached as specified by the user based on identifiability analysis 

(Guillaume et al., 2019) or process knowledge or, 3) the scheme has gone through all the available measurements and 

chosen only to exclude a small subset. The latter two conditions are reflected in the following:  

𝑛~ = 𝑛~,"*B (5-22)  

𝑛~ = 𝑗 (5-23)  

where 𝑛~,"*B is the minimum number of measurements required for the system to be identifiable. Condition (5-22) 

ensures that the minimum number of measurements needed (conversely, the maximum number of measurements that 

can be excluded) are retained. Additionally, condition (5-23) stops the data acquisition when all original measurements 

have been analyzed as reflected by the index 𝑘 being equivalent to the original number of measurements 𝑛~> (and 

condition (5-22) has not yet been fulfilled). Condition (5-22) is predominant as reflected in Figure 5-3 whereby it is 

checked before condition (5-23); this is to ensure sufficient measurements always remain such that the system is 

identifiable. 
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Once the measurement-probing block of the algorithm in Figure 5-3 is completed, the information-rich measurement 

vector 𝒛 is known and the filter bounds [𝜽G − 𝝈𝜽(𝒛), 𝜽G + 𝝈𝜽(𝒛)] can be calculated using the parameter sample 

{𝜽(𝒛)	𝒕^𝒊}*A=H  from the final benchmark problem (i.e., the one corresponding to the subset of measurements that were 

chosen to be used in the PE problem implemented in the RTO and NMPC). The sample of parameter estimates 

corresponding to the chosen subset of measurements is used to calculate these bounds as the standard deviation. Since 

the standard deviation is the average difference between the expected parameter value and the individual estimates 

within the sample, future estimates outside of the bounds established by the standard deviation (i.e., those with higher-

than-average distance from the expected parameter) are deemed unacceptable. This avoids potential high-error 

estimates whereby noisiness may be propagating excessively to the estimates. With this information, the PE problem 

(5-7) can be performed and implemented at every RTO period ∆𝑇 with the chosen subset of measurements 𝒛 as 

depicted in the update block of Figure 5-3. This PE problem corresponds to the one with the final 𝒛 determined by the 

measurement-probing block of the algorithm and generates the estimates 𝜽û, which are assessed with the filter bounds. 

If the estimates are outside the filter bounds, they are not accepted, and another sampling interval is taken to collect 

measurements; this process is repeated until an acceptable set of parameter estimates are generated. If the estimates 

are inside the filter bounds, the parameters are used to update the NMPC and execute the RTO problem.  

The update procedure is not repeated for another RTO period (i.e., 𝑡 ⟵ 𝑡 + ∆𝑇) unless a new operating point is 

introduced as depicted by the upper decision block in Figure 5-3, which restarts the measurement-probing process. 

When a sudden operating point change occurs, as indicated by a sudden large change in control actions or process 

economics, the measurement-probing block of the algorithm in Figure 5-3 is reactivated by the restart /terminate block. 

This is done to ensure that favourable measurements are being used for the PE problem under the new operating 

conditions. Note that ‘favourable’ measurements may not mean optimal as stopping criteria (5-22) may halt the 

algorithm before all measurements are probed for 𝐼𝐶. Nevertheless, the subset of ‘favourable’ measurements chosen 

by the proposed scheme will always lead to parameter estimates that are equally accurate or more accurate than the 

original set of measurements. Alternatively, the measurement-probing block can also be activated through the 

restart/terminate block if there is a sudden change occurs as the measurement probing procedure is proceeding, this is 

checked for after every new challenger problem is introduced (i.e., 𝑡 ⟵ 𝑡 +𝑀∆𝑡). 

In summary, the algorithm proceeds as follows: 

lv-PE algorithm applied to RTO: 

1.  New operating point? 

a.  Yes: activate measurement-probing block, go to step 4 

b.  No: go to step 2 

2.  𝑛~ = 𝑛~,"*B? 

a.  Yes: activate parameter update block, go to step 5 

b.  No: go to step 3 

3.  𝑛~ = 𝑗? 

a.  Yes: activate parameter update block, go to step 5 
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b.  No: activate measurement-probing block, go to step 4 

4.  Measurement-probing, set 𝑗 = 1 

a.  Execute 𝑀 challenger and benchmark problems (5-19) and (5-7), respectively 

i.  If 𝜍v > 0: 𝑗 = 1, measurement excluded, new benchmark problem established, go to 

step 1 

ii.  Else: 𝑗+= 1, measurement retained, keep old benchmark problem, go to step 1 

5.  Parameter update 

a.  Execute actual PE problem 

i. If 𝜽G − 𝝈𝜽 ≤ 𝜽û ≤ 𝜽G + 𝝈𝜽: update RTO and MPC parameters, 𝑡+= ∆𝑇, return to step 1 

ii. Else: 𝑡+= ∆𝑡, return to step 5a 

It should be noted that the algorithm presented above is designed to reduce parameter variation across RTO periods, 

not to detect gross errors. However, the method could be adjusted for GED through hypothesis testing (Özyurt and 

Pike, 2004) of the parameter estimate means generated by the benchmark and challenger problems in the lv estimation 

algorithm. Accordingly, a test statistic could be used to determine whether measurement removal in the probing 

procedure generates shifting means, thus identifying gross errors. The lv-PE, as proposed herein, has two major 

advantages over the regular PE applied to RTO: firstly, the most information-rich subset of measurements is chosen 

to reduce parameter variability; secondly, the parameter filter avoids RTO periods with poorly estimated parameters. 

As shown in the previous section, this will result in lower set point error and, in turn, better process economics. 

Importantly, the information content procedure only requires sampling and can be performed offline as its solutions 

are not implemented in the system being operated. The only time at which the proposed scheme interacts with the 

process control loop is when the RTO set points are updated. Otherwise, only an additional independent 

computer/processor is necessary for repeated execution of the PE problems, which do not interfere with the regular 

process control loop; this makes the requirements for implementation relatively simple, hence its appeal of industrial 

systems. The information content procedure may be adjusted through sample sizes such that it can fully occurs within 

the RTO period; the assessment of this computational expense to the PE computer will be elaborated on in the 

following section.  

5.2.3. Scheme Assessment and Economic Analysis 

The proposed scheme is mainly analyzed through variation, the process economics, and constraint violations; these 

are the factors that affect the PE, NMPC, and RTO problems, which the scheme aims to improve upon. The variation 

is captured through the standard deviation of parameters, the economics are calculated using the process 

revenues/losses and their rates, and the constraint violations can be quantified through their cumulative magnitude. 

As shown in Section 5.2.1, the 𝐼𝑆𝐸 of the operation of an RTO system is linearly dependent on the operating time; 

thus, the cumulative error can be written as a linear combination of the error terms of each individual RTO period. 

The same follows for the process economics 𝑅($), where a revenue is made if 𝑅 > 0 or a loss is incurred if 𝑅 < 0. 

This occurs as the operation is a combination of constant rates 𝑃($/𝑡𝑖𝑚𝑒). 𝑃 > 0 is a profit rate and occurs when the 
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operator is selling produced commodities; in contrast 𝑃 < 0 is a price rate and occurs when a process is operating at 

a loss. 

As stated previously, the RTO period consists of three phases (𝑇4nC = 𝑡-EF + 𝑡(wB + 𝑡'%@). These correspond to 

suboptimal operation before the set points are updated 𝑡-EF (𝑡𝑖𝑚𝑒), a fast (i.e., negligible) dynamic operation, and 

RTO-optimal operation once the set points are updated  𝑡'%@	(𝑡𝑖𝑚𝑒). The respective suboptimal, dynamic, and optimal 

process profit/cost rates are 𝑃-EF,*, 𝑃(wB,*, and 𝑃'%@,* ($/𝑡𝑖𝑚𝑒) are dependent on the specific RTO period 𝑖. This enables 

calculation of the cumulative process economics (i.e., as the process progresses), i.e.,  

𝑅 =�â 𝑃*
n;<=

=
𝑑𝑡

l

*A=

 (5-24)  

Again, this can be segmented into three phases: suboptimal, dynamic, and optimal, i.e.: 

𝑅 =�â 𝑃-EF,*
@G)H

=
𝑑𝑡 + â 𝑃(wB,*

@G)HS@1'-

@G)H
𝑑𝑡 + â 𝑃'%@,*

@G)HS@1'-S@AC/

@G)HS@1'-
𝑑𝑡

l

*A=

 (5-25)  

As the RTO operation is inherently steady state, the dynamics are assumed to ensure quickly, thus simplifying to: 

𝑅 =�â 𝑃-EF,*
@G)H

=
𝑑𝑡 + â 𝑃'%@,*

@G)HS@AC/

@G)H
𝑑𝑡

l

*A=

 (5-26)  

Both suboptimal and optimal phases are composed of constant profit/loss rates whereby the time that is not spent 

operating optimally during the RTO period is spent operating suboptimally instead, this can be expressed as: 

𝑅 =�𝑡-EF𝑃-EF,* +
l

*A=

𝑡'%@𝑃'%@,* (5-27)  

Substituting back the expression 𝑡'%@ = 𝑇4nC − 𝑡-EF, whereby the time that is not spent operating optimally during 

the RTO period is spent operating suboptimally instead, both terms can be expressed in terms of the total RTO period 

length and the suboptimal time: 

𝑅 =�𝑡-EF𝑃-EF,* +
l

*A=

(𝑇4nC − 𝑡-EF)𝑃'%@,* (5-28)  

For a single RTO period, equation (5-28) could be used to build forecasting tools such as payback periods as 

exemplified in the Appendix B (payback period). If the system were not to act promptly (i.e., be delayed beyond the 

regular suboptimal time), the time operating suboptimally would be protracted, thus causing diminished economic 

performance. For instance, suppose the delay incurred at a given RTO period is 𝜏, this causes further suboptimal 

operating time expressed as: 

𝑅 =�𝑃-EF,*�𝑡-EF,* + 𝜏*� + 𝑃'%@,*�𝑇4nC − 𝑡-EF,* − 𝜏*�
l

*A=

 (5-29)  

This situation is best avoided as the 𝑇4nC − 𝑡-EF,j − 𝜏* term diminishes the potential benefit of an RTO scheme over 

time. This is especially important in the lv-PE/RTO system as offline computations must be performed before set 

point updates. As a result, the computational burden, which is associated with the information content procedure must 

also be considered in order to avoid the delay.  
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The size of 𝑀 (i.e., the number of samples used for averaging in problems (5-7) and (5-19)) will determine whether 

delay occurs in the proposed lv-PE/RTO scheme through the information content procedure occurring in the PE 

computer. If 𝑀 is small, the estimation formulation (5-7) will not benefit from the smoothing of noise of a large sample 

size, thus resulting in high variance estimate. In contrast, a large 𝑀 may capture slow dynamics such as drift or, as 

noted above, computational delays in the execution of the RTO problem (5-5). Drift would result in high-error 

estimates as the data collected would not be dynamic, thus the steady-state estimation problem would aim to fit 

parameters to dynamic data using a steady-state model. Computational delays would result in performance 

deterioration that could become significant if they delay persists over time as shown in equation (5-29). 

The time required to perform 𝑘 = 𝑗 + 𝑛~> − 𝑛~ sets of challenger problems (as shown in Figure 5-3) each requiring 

𝑀 samples, depends on the length of the sampling time (∆𝑡) with respect to the CPU time of each challenger problem 

(∆𝑡mk#++uB?u&). Whichever time is greater limits the speed of the information content procedure, i.e., 

𝑡m'"% = ü
𝑘𝑀∆𝑡																									𝑖𝑓								∆𝑡 > ∆𝑡mk#++uB?u&
𝑘𝑀∆𝑡mk#++uB?u&								𝑖𝑓								∆𝑡mk#++uB?u& > ∆𝑡 (5-30)  

In the case studies considered in this work, 𝑀 was sized based on equation (5-30) such that the delayed revenue case 

in represented by equation (5-29) would be avoided. To do so, it is assumed that 𝑡m'"% ≔ ∆𝑇 such that the maximum 

allowable computational time (assuming no parallelization, which can also be considered through an integer multiple 

of equation (5-30)) was equal to the RTO period, as to avoid any delay. Moreover,  𝑘 ≔ 𝑛~> was assumed such that 

all available measurements are assumed to be probed via challenger problems. The time-limiting conditions can be 

verified through preliminary PE executions, and it was found that ∆𝑡 > ∆𝑡mk#++uB?u& for both case studies herein (i.e., 

the sampling period is longer than the computational time to execute a PE problem). Accordingly, the 𝑀 for each case 

study was determined by rearranging equation (5-30) and substituting the aforementioned definitions (≔) as follows: 

𝑀 =
∆𝑇	
∆𝑡𝑛~>

 (5-31)  

such that RTO delays are avoided. 

Furthermore, the proposed scheme also helps to avoiding constraint violations. To quantify this effect, the sum of 

absolute constraint violations is considered, i.e., 

𝑆𝐴𝑉 =�þ𝑔%+#B@,@ − 𝑔þ

n:

@A=

 (5-32)  

where 𝑇}(𝑡𝑖𝑚𝑒) is the total time for which the system is operated while 𝑔%+#B@,@ and 𝑔 are the actual (measured) and 

bound values for the constraints being violated, respectively. The absolute sum is used as it gives a good physical 

sense of the amount by which the constraint is being exceeded cumulatively over time. 𝑆𝐴𝑉 is preferred to an 

alternative metric like sum of squares, which also quantifies the violation but does not correspond to an actual plant 

quantity because of the squaring. 
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5.3 Case Studies 

The proposed scheme was tested for updating the RTO and NMPC parameters as depicted in Figure 5-1b with 

matching optimization and control models (however, they need only be passed to one of these layers to influence the 

process operation). Two simulated case studies are performed: a forced circulation evaporator (Lee et al., 1989) case 

exemplifies the benefit of avoiding constraint violations and the Williams-Otto CSTR (Williams and Otto, 1960) 

shows the economic benefit of the lv-PE/RTO scheme. Each case study is tested under different parameter realizations 

(i.e., where the plant manifests distinct parameter values/combinations) whereby both regular PE and lv-PE schemes 

must repeatedly estimate the parameters to feed to the RTO and NMPC. The initial conditions (i.e., at 𝑇 = 0, 𝑡 = 0) 

for all scenarios within each case study correspond to the optimal operating point given by the nominal parameter(s). 

Note that this is only the starting point, and each scheme then proceeds to pursue the true optimum corresponding to 

the actual parameters for a given scenario. A consistent starting point for both PE/RTO schemes (i.e., the regular and 

low-variance) and across all scenarios ensures comparability in the dynamic domain such that no scheme/scenario 

starts at a more advantageous point. As a result, the plant is assumed to have arrived at a new operating point in both 

case studies, thus progressing through the restart/terminate block in Figure 5-3 and triggering the measurement-

probing block. Both case studies assume full state accessibility as to not confound the performance of the proposed 

method with the performance of a potential state estimator. Nevertheless, many industrial systems require state 

estimation for unmeasured states; these estimators (e.g., Kalman filter, extended Kalman filter, and moving horizon 

estimation) also use noisy process measurements. As the proposed method targets measurement noise, it can be 

adapted to be compatible with the state estimators and improve the quality of estimates (provided that the system is 

both identifiable and observable). 

In both case studies, the time intervals (i.e., sampling times) are chosen based on literature values (Amrit et al., 2013). 

Moreover, the RTO intervals were chosen to be significantly longer than the transient times as to satisfy assumption 

1 (Section 5.2). The noise levels are set to be sufficiently high to cause large errors in PE, the minimum number of 

measurements were based on preliminary tuning experiments, and the sample size 𝑀 was for each case was determined 

using equation (5-31). The proposed scheme will be denoted as “RTO (lv-PE)” while the regular RTO will be denoted 

as simply “RTO”. 

The scheme is deployed for various combinations of uncertain parameter(s) as different scenarios within in each case 

study; the goal of the RTO is to repeatedly estimate the uncertain parameters and operate the system as close to the 

true optimum as possible. During this time, disturbances were assumed to be measurable and steady as to be able to 

assess the scheme in the neighbourhood of the optimal operating point and not in large transients; since RTO is a 

steady state scheme, significant dynamics could confound the analysis. As such, any dynamics observed are owed to 

set point fluctuations and control actions incited by changing parameter estimates in the RTO and NMPC layers, 

respectively. 

The schemes were assessed on three factors: parameter variability, process cost, and constraint violation (in cases 

where this occurs). Metrics to quantify these factors are computed a posteriori to each simulated case study for both 

RTO-operated systems with the standard PE and the lv-PE. Firstly, the variability is captured through the standard 

deviation of parameter estimates computed using formulations (5-7) and (5-19). The standard deviation of parameter 



 95  

estimates is central to the proposed approach as it is the main factor effected by the 𝐼𝐶 procedure in Section 5.2.2, 

which reduces variability using equation (5-21). As the system is repeatedly estimating parameters for each realization, 

the variability measures how much these parameters vary by PE execution such that low variability is desired. 

Secondly, the process economics, which the reduced parameter variability improves upon, are computed through the 

cumulative process revenue/cost in equation (5-28) divided by the total operating time of a given scenario. As the 

system should operate primarily at steady state, this mean process cost should approximate the RTO-optimal steady 

state cost achieved for each case/scenario. Furthermore, constraint violations can occur as previously mentioned; the 

cumulative violation is computed using equation (5-32). As these violations are undesirable, the constraint violation 

metric used herein is ideally minimized by estimating parameters that yield non-violating set points in the RTO layer. 

Both case studies were simulated and optimized in the Pyomo environment, which is a modelling package for 

PYTHON (Hart et al., 2011). Both dynamic simulations were discretized in the time domain using four-point Radau 

collocations on finite elements per sampling interval. The optimization problems were solved using the MA27 IPOPT 

solver from the HSL library on an Intel core i7-4770 CPU @ 3.4 GHz. 

5.3.1. Forced Circulation Evaporator 

 
Figure 5-4: Forced-circulation evaporator process. Blue denotes controlled variables, green denotes manipulated variables, and 
red denotes additional measurements (i.e., aside from the controlled variables) as implemented in the present study.  

The forced circulation evaporator (Figure 5-4) is a common unit in chemical plants; the mechanistic process model, 

along with its use in simulation studies, was first introduced by Lee et al. (1989). The system is of particular interest 

in the process control literature because of its nonlinearity and many potential control loops owed to the number of 

possible manipulated/controlled variable pairings (Govatsmark and Skogestad, 2001). Moreover, the optimal 

operating point of the system has been observed to occur at an active constraint, hence it provides a good setting in 
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which to investigate the effect of parameter estimates under a potential RTO constraint violation. The evaporator 

model consists of the following material balances: 

𝐻
𝑑𝑋,
𝑑𝑡 = 𝐹6𝑋6 − 𝐹,𝑋, (5-33)  

𝐾
𝑑𝑃,
𝑑𝑡 = 𝐹; − 𝐹< (5-34)  

𝐹, = 𝐹6 − 𝐹; (5-35)  

where 𝐹6, 𝐹,, 𝐹;, and 𝐹<	(𝑘𝑔/𝑚𝑖𝑛) are the stream mass flowrates outlined in Figure 5-4; 𝑋6 and 𝑋,(%) are the feed 

and product compositions of the product chemical, respectively, and 𝑃,(𝑘𝑃𝑎) is the evaporator pressure. Note that the 

third material balance (33-3) implies a constant mass holdup in the evaporator, which is reflected in the constant 

holdup term 𝐻(𝑘𝑔). The energy balance over the entire process is modelled as follows: 

𝑇, = 0.5616𝑃, + 0.3126𝑋, + 48.43    (5-36)  

𝑇/ = 0.507𝑃, + 55 (5-37)  

𝐹; =
𝑄6== − 𝐹6𝐶%(𝑇, − 𝑇6)

𝜅  (5-38)  

where 𝑇6, 𝑇,, and 𝑇/	(°𝐶) are the stream temperatures as outlined in Figure 5-4 whereas 𝑄6==(𝑘𝑊) is the steam jacket 

heat duty. The steam jacket energy balance is modelled as follows: 

𝑇6== = 0.1538𝑃6== + 90  (5-39)  

𝑄6== = 𝑈𝐴6(𝑇6== − 𝑇,) (5-40)  

𝑈𝐴6 = 0.16(𝐹6 + 𝐹/) (5-41)  

𝐹6== =
𝑄6==
	𝜅-

 (5-42)  

where 𝑇6==(°𝐶) , 𝑃6==(𝑘𝑃𝑎), and 𝐹6==(𝑘𝑔/𝑚𝑖𝑛) are the saturated steam temperature, pressure, and mass flowrate, 

respectively. 𝑈𝐴6(𝑘𝑊/°𝐶) is the heat jacket heat transfer coefficient. The condenser is modelled as follows: 

𝑄,== =
𝑈𝐴,(𝑇/ − 𝑇,==)

1 + 𝑈𝐴,
2𝐶%𝐹,==

 (5-43)  

𝐹< =
𝑄,==
𝜅  (5-44)  

where 𝑇,==(°𝐶) , 𝑄,==(𝑘𝑊) , and 𝐹,==(𝑘𝑔/𝑚𝑖𝑛) are the cooling water temperature, cooling duty, and mass flowrate, 

respectively. In this case, the manipulated variables are the steam pressure, cooling water flowrate, and recirculation 
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flowrate (i.e., 𝒖 = [𝑃6== 𝐹,== 𝐹/]n); the controlled variables are the product composition, temperature, and 

evaporator pressure (i.e., 𝒚 = [𝑋, 𝑃, 𝑇,]n); the uncertain parameter is the condenser heat transfer coefficient (i.e., 

𝜽 = [𝑈𝐴,]n). The initial measurements are the controlled variables, as well as the separator outlet temperature (i.e., 

𝒛= = [𝑋, 𝑃, 𝑇, 𝑇/]n). The process losses are to be minimized according to the following objective function: 

𝛷 = 𝑃u(𝐹, + 𝐹/) + 𝑃-𝐹6== + 𝑃.𝐹,== (5-45)  

where 𝑃u, 𝑃-, and 𝑃. are the electricity, steam, and cooling water prices, respectively, in Table B-1 (Appendix B). 

The RTO and NMPC problems (5-5) and (5-6) are subject to the following constraints on the controlled variables: 

25 ≤ 𝑋,(%) ≤ 100 (5-46)  

40 ≤ 𝑃,(𝑘𝑃𝑎) ≤ 80 (5-47)  

Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables: 

10 ≤ 𝑃6==(𝑘𝑃𝑎) ≤ 400 (5-48)  

10 ≤ 𝐹,==(𝑘𝑔/𝑚𝑖𝑛) ≤ 400 (5-49)  

1 ≤ 𝐹/(𝑘𝑔/𝑚𝑖𝑛) ≤ 100 (5-50)  

Lastly, following constraints are imposed on the estimated parameters in problems (5-7) and (5-19): 

0.1 ≤ 𝑈𝐴,(𝑘𝑊/°𝐶) ≤ 20 (5-51)  

Table B-1 (Appendix B) presents the model parameters and nominal values used in this study. 

The proposed scheme was implemented for this case study using the process model, controlled variables, manipulated 

variables, constraints, and uncertain parameters described in this section. The system is operated for 833	ℎ with an 

RTO period of ∆𝑇 = 16	ℎ𝑜𝑢𝑟𝑠 and a sampling interval of ∆𝑡 = 4	𝑚𝑖𝑛𝑢𝑡𝑒𝑠. 𝑛~,"*B = 1 was chosen based on prior 

identifiability analysis and the process and measurement noises (𝒘,𝒗; owed to mismatch and instrumentation error, 

respectively) are additive and zero-mean with 0.1% of the nominal state values as variance 𝒩(0, (0.001𝒙𝒏𝒐𝒎),). The 

NMPC controller tuning for formulation (5-6) is 𝑸 = 𝑑𝑖𝑎𝑔(1, 1, 1), 𝑹 = 𝑑𝑖𝑎𝑔(0.09, 15, 20) and 𝑃 = 𝐶 = 200∆𝑡; 

these are based on preliminary manual tuning to balance tracking speed and stability. Table 5-1 presents the 

formulations to the corresponding optimization problems (5-5), (5-6), and (5-7) associated with this case study. 
Table 5-1: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model 

is used in the corresponding layer. 

 PE RTO NMPC 

Objective 

function ‖𝒛W − 𝒛X‖𝑲3F
, Eq. (6-45) �µ𝒚𝒔𝒑 − 𝒚T𝒕S𝒊µ𝑸

,
,==

*A6

+�µ∆𝒖𝒕S𝒋µ𝑹
,

,==

jA6
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Decision 

variables 𝜽 = [𝑈𝐴,]n 𝒚 = [𝑋, 𝑃, 𝑇,]n 𝒖𝒕S𝟏 = [𝑃6==,@S6 𝐹,==,@S6 𝐹/,@S6]n 

Model Eqs. (5-33)-(5-44). S.S. 
model 

Eqs. (5-33)-(5-44). S.S. 
model 

Eqs. (5-33)-(5-44). Dynamic model 

Constraints Eq. (5-51) Eqs. (5-46)-(5-50) Eqs. (5-46)-(5-50) 

Inputs 
𝒛X = [𝑋X, 𝑃X, 𝑇X, 𝑇X/]n 
𝒖G = [𝑃X6== 𝐹X,== 𝐹X/]n 
𝒅G = [𝐹X6 𝑇X6 𝑋X6]n 

𝜽 = [𝑈𝐴,]n 
𝒅 = [𝐹6 𝑇6 𝑋6]n 

𝒙𝟎 = [𝑋, 𝑃,]n 
𝒚𝒔𝒑 = [𝑋,,-% 𝑃,,-% 𝑇,,-%]n 
𝒅𝒕 = [𝐹6,@ 𝑇6,@ 𝑋6,@]n 

The CPU time of each challenger problem is ~0.03	𝑠𝑒𝑐𝑜𝑛𝑑𝑠, which is significantly less than the sampling time. 

Accordingly, the sampling time dictates the computational burden of the information content procedure as per equation 

(5-30) and the RTO sample size is set to 𝑀 = 60 as per equation (5-31). All scenarios tested required 𝑘 = 4 sets of 

challenger problems as shown in Table 5-2, which corresponds to an actual computational burden of ~3.3	ℎ𝑜𝑢𝑟𝑠 (to 

perform all challenger problems), which is well within the RTO period of 16	ℎ𝑜𝑢𝑟𝑠, thus enough data can be collected 

within the RTO period to perform the information content procedure with no delay. 

The uncertain parameter is assumed to materialize in the interval [(1 − 𝛼)𝜃B'", (1 + 𝛼)𝜃B'"], where  𝛼 = 0.1, for 

simplicity. The nominal parameter value (corresponding to the initial operating point) can be found in Table B-1 

(Appendix B). In each scenario, the true plant parameter manifests at a value from the five uniformly spaced points 

shown in the first row of Table 5-2. It should be noted that the scheme can be used to estimate any realization of the 

“true” parameter value; however, the five scenarios in Table 5-2 were chosen such that they would be representative 

of the entire uncertain parameter domain while limiting the number of scenarios required for testing.  
Table 5-2: Results for parameter scenarios in the evaporator case study under low-variance and regular RTO implementations.  

 Scenario 1 

(S1) 

Scenario 2 

(S2) 

Scenario 3 

(S3) 

Scenario 4 

(S4) 

Scenario 5 

(S5) 

𝑈𝐴,	(𝑘𝑊/𝐾) 0.9𝜃B'" 0.95𝜃B'" 𝜃B'" 1.05𝜃B'" 1.1𝜃B'" 

𝜎�,+)	(𝐾) 0.67 0.61 0.03 0.28 0.65 

𝜎�,&	(𝐾) 1.85 1.17 0.82 0.82 2.45 

𝑃X4nC	(+)^P9)	($/𝑠) 272.77 343.11 270.71 270.39 370.00 

𝑃X4nC	($/𝑠) 245.20 272.18 303.32 261.73 255.52 

𝑆𝐴𝑉4nC	(+)^P9)	(%) 2151.51 21310.10 3878.97 5407.98 4023.45 

𝑆𝐴𝑉4nC	(%) 229805.00 186815.60 160069.42 146878.65 179640.75 

𝑘 4 4 4 4 4 

Figure 5-5a displays the process losses for several of the scenarios listed in Table 5-2. It should be observed that the 

losses and average price rate (𝑃X) in all scenarios (except S3) are lower (i.e., favourable) for the regular RTO 
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implementation than the lv-PE/RTO. This occurs despite the lower variation in the parameter estimates (𝜎) for all 

scenarios achieved by the lv-PE/RTO as summarized in Table 5-2. Figure 5-5b elucidates that the regular RTO is 

achieving this decreased cost through violation of the composition constraint in equation (5-46); this is also reflected 

in substantially lower 𝑆𝐴𝑉 when the lv-PE/RTO is implemented. The 𝑆𝐴𝑉, as defined in equation (5-32), ranges from 

one to two orders of magnitude lower when using the lv-PE/RTO than those achieved when using the regular RTO; 

this results in significant less product being off-specification. The constraint violation occurs as the RTO and NMPC 

models, which have the estimated parameters, are mismatched from the plant, which has the “true” parameters. Thus, 

the set points for the RTO and control actions for the NMPC, which appear constraint-abiding in their corresponding 

optimization problems, are not so when implemented in the plant. As a result, the better (i.e., lower) price rates of the 

regular RTO are misleading as the product being produced in the constraint-violating periods will not meet the required 

specifications. In reality, off-specification product such as that produced in the regular RTO implementation would 

have to be reprocessed, thereby increasing the processing costs. As the re-processing cost is not considered herein, the 

regular RTO misleadingly appears to be economically superior in all scenarios (except for S3, where the true parameter 

was set to their nominal value). In contrast, Figure 5-5b also shows that the lv-PE/RTO generally operates the plant 

directly at the constraint and does not vary the set point for 𝑋, as it does with the set points for 𝑇, and 𝑃, as shown in 

Figure 5-5c and Figure 5-5d, respectively. As such, most constraint violation that occurred using the lv-PE/RTO was 

likely owed to noisy plant fluctuations and not to the proposed parameter estimation scheme.  

 
Figure 5-5: Economics and controlled variables for the evaporator case study. a) losses ($), b) product composition, c) product 
temperature, d) evaporator pressure. 

This variation caused by the parameter on the RTO operation is seen most prominently on Figure 5-5c and Figure 

5-5d whereby the product temperature and evaporator pressure controlled variables vary when using the regular RTO 
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compared to a significantly more consistent operation produced by the lv-PE/RTO. This variation has a significant 

impact on the process cost as observed in the sub-window of Figure 5-5a, where the optimal cost for the lv-PE RTO 

implementation does not actually vary significantly with respect to the true parameter realizations while the cost of 

the PE/RTO does despite only a single parameter being assumed to be uncertain in this process. Aside from the 

constraint violation observed for this case study, the increased variability of the regular RTO also leads to a more 

active control layer, which is undesirable from an operation and maintenance perspective. 

5.3.2. Williams-Otto CSTR 

 
Figure 5-6: Williams-Otto CSTR. Blue denotes controlled variables and green denotes manipulated variables as implemented in 

the present study. 

The continuous stirred-tank reactor (CSTR) first described by Williams and Otto (1960) is another common system 

used for real-time optimization and control studies (e.g., Amrit et al., 2013; Matias and Le Roux, 2018; Miletic and 

Marlin, 1998). This system has been used as a benchmark example for many economic optimization methods as it 

provides a relatively small but nonlinear setting that can be used to highlight potential economic improvements. The 

process is depicted in Figure 5-6 and consists of two pure inlet streams of substrates 𝐴 and 𝐵 with mass flowrates 𝐹1 

and 𝐹3	(𝑘𝑔/𝑠), respectively. While the former flowrate is a disturbance variable, the latter serves as a manipulated 

variable. Three reactions occur in the system as shown in equations (5-52)-(5-54) whereby 𝐷 and 𝐸 are the desired 

products while 𝐶 and 𝐺 are intermediate and undesirable biproducts, respectively:        

𝐴 + 𝐵
vF→ 𝐶:		𝑘6 = 𝐴6𝑒^9F/n; (5-52)  

𝐵 + 𝐶
v!→𝐷 + 𝐸:		𝑘, = 𝐴,𝑒^9!/n; (5-53)  

𝐶 + 𝐷
vJ→𝐺:		𝑘/ = 𝐴/𝑒^9J/n; (5-54)  

where 𝑘6, 𝑘,, and 𝑘/	(𝑠^6) are the reaction rate constants as expressed by the rate laws with pre-exponential factors 

(𝐴6, 𝐴,, 𝐴/(𝑠^6)) and activation energies (𝐸6, 𝐸,, 𝐸/(𝐾)). The activation energies in this case study are in units of 

𝐹𝐵𝐹𝐴

𝐹𝑅 , 𝑋𝐴 , 	𝑋𝐵 , 	𝑋𝐶 , 	𝑋𝐷 , 	𝑋𝐸 ,	𝑋𝐺

𝑊,𝑇𝑅
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temperature as converted using ideal gas constant. These rate laws depend on the tank temperature 𝑇4(𝐾). The process 

dynamic and steady state behaviour are modelled using the equations: 

𝑊
𝑑𝑋1
𝑑𝑡 = 𝐹1 − 𝐹4𝑋1 − 𝑟6 (5-55)  

𝑊
𝑑𝑋3
𝑑𝑡 = 𝐹3 − 𝐹4𝑋3 − 𝑟6 − 𝑟, (5-56)  

𝑊
𝑑𝑋7
𝑑𝑡 = −𝐹4𝑋7 + 2𝑟6 − 2𝑟, − 𝑟/ (5-57)  

𝑊
𝑑𝑋8
𝑑𝑡 = −𝐹4𝑋8 + 𝑟, − 0.5𝑟/ (5-58)  

𝑊
𝑑𝑋9
𝑑𝑡 = −𝐹4𝑋9 + 𝑟, (5-59)  

𝑊
𝑑𝑋:
𝑑𝑡 = −𝐹4𝑋: + 1.5𝑟/ (5-60)  

where 𝑋1, 𝑋3, 𝑋7, 𝑋8, 𝑋9, and 𝑋: 	(𝑘𝑔/𝑘𝑔) are the respective component mass fractions. 𝑊	(𝑘𝑔) is the mass holdup 

in the tank, which is assumed to be constant such that the tank material is always at steady state, i.e., 

𝐹4 = 𝐹1 + 𝐹3                                                                                                                                  (5-61)  

where the tank outlet flowrate is 𝐹4(𝑘𝑔/𝑠). The reactions proceed according to the substrate concentrations as follows: 

𝑟6 = 𝑘6𝑋1𝑋3𝑊 (5-62)  

𝑟, = 𝑘,𝑋3𝑋7𝑊 (5-63)  

𝑟/ = 𝑘/𝑋7𝑋8𝑊 (5-64)  

where 𝑟6, 𝑟,, and 𝑟/(𝑠^6) are the reaction rates. The manipulated variables for this process are the inlet flowrate of 𝐵 

and tank temperature (i.e., 𝒖 = [𝐹3 𝑇4]n). The controlled variables, states, and initial measurements are the 

component mass fractions (i. e. , 𝒛= = 𝒚 = 𝒙 = [𝑋1 𝑋3 𝑋7 𝑋8 𝑋9 𝑋:]n). The model uncertain parameters 

considered in this case study are the activation energies (i.e., 𝜽 = [𝐸6 𝐸, 𝐸/]n). The process revenue is to be 

maximized in this case according to the following objective function:  

𝛷 = 𝑃8𝐹4𝑋8 + 𝑃9𝐹4𝑋9 − 𝑃1𝐹1 − 𝑃3𝐹3 − 𝑃n𝑇4 (5-65)  

where 𝑃8, 𝑃9, 𝑃1, and 𝑃3 are the prices of the products and substrates in Table B-2 (Appendix B).  

The RTO and NMPC problems (5-5) and (5-6) are subject to constraints on the controlled variables: 

0 ≤ 𝑦*(𝑘𝑔/𝑘𝑔) ≤ 1                                                                                                                  ∀𝑖 ∈ {1,… , 𝑛w} (5-66)  
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Moreover, the RTO and NMPC problems are also subject to constraints on the manipulated variables: 

2 ≤ 𝐹3(𝑘𝑔/𝑠) ≤ 10 (5-67)  

323.15 ≤ 𝑇4(𝐾) ≤ 423.15 (5-68)  

Lastly, following constraints are imposed on the estimated parameters in problems (5-7) and (5-19): 

0.1 ≤ 𝐸6,𝐸,,𝐸/(𝐾) ≤ 50,000 (5-69)  

Table B-2 (Appendix B) contains the model parameters and nominal values as used in this study. 

The proposed scheme was implemented for the present case study with the model, controlled variables, manipulated 

variables, constraints and uncertainty parameters described above. The system is operated for 500	ℎ with an RTO 

period of ∆𝑇 = 6.5	ℎ and a sampling interval of ∆𝑡 = 3	𝑚𝑖𝑛. 𝑛~,"*B = 3 was determined based on preliminary 

identifiability analysis and the process and measurement noises (𝒘,𝒗) are additive and zero-mean with 10% of the 

nominal state values as variance 𝒩(0, (0.1𝒙𝒏𝒐𝒎),). The NMPC controller tuning for formulation (5-6) is 𝑸 =

𝑑𝑖𝑎𝑔(1, 1, 1, 2, 1, 2), 𝑹 = 𝑑𝑖𝑎𝑔(3, 0.03), and 𝑃 = 𝐶 = 10∆𝑡, based on preliminary manual controller tuning. Table 

5-3 presents the formulations to the corresponding optimization problems (5-5), (5-6), and (5-7) associated with this 

case study. 
Table 5-3: PE, RTO, and NMPC formulations for evaporator case study. *S.S. indicates that a steady-state version of the model 

is used in the corresponding layer. 𝑆 = {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐺} is the set of all species. 

 PE RTO NMPC 

Objective 

function ‖𝒛W − 𝒛X‖𝑲3F
, Eq. (6-65) �µ𝒚𝒔𝒑 − 𝒚T𝒕S𝒊µ𝑸

,
6=

*A6

+�µ∆𝒖𝒕S𝒋µ𝑹
,

6=

jA6

 

Decision 

variables 
𝜽 = [𝐸6 𝐸, 𝐸/]n 𝒚 = [𝑋*∀𝑖 ∈ 𝑆]n 𝒖𝒕S𝟏 = [𝐹3,@S6 𝑇4,@S6]n 

Model Eqs. (5-52)-(5-64). S.S. 
model 

Eqs. (5-52)-(5-64). 
S.S. model 

Eqs. (5-52)-(5-64). Dynamic model 

Constraints          Eq. (5-69) Eqs. (5-66)-(5-68)  Eqs. (5-66)-(5-68) 

Inputs 
𝒛X = [𝑋X*∀𝑖 ∈ 𝑆]n 
𝒖G = [𝐹X3 𝑇X4]n 
𝒅G = [𝐹X1]n 

𝜽 = [𝐸6 𝐸, 𝐸/]n 
𝒅 = [𝐹1]n 

𝒙𝟎 = [𝑋*,@∀𝑖 ∈ 𝑆]n 
𝒚𝒔𝒑 = [𝑋*,-%∀𝑖 ∈ 𝑆]n 

𝒅𝒕 = [𝐹1,@]n 

In the present case study, each challenger RTO problem required ~0.02	𝑠 to perform and, as with the previous case 

study, this implies that ∆𝑡 > ∆𝑡(E""w. Thus, 𝑀 = 20 according to equation (5-31) to avoid delays. As stated in Table 

5-4, all scenarios required either 𝑘 = 5 or 𝑘 = 6  sets of challenger problems to be performed, leading to a total 

computational time of 5 and 6	ℎ𝑜𝑢𝑟𝑠 (to perform all challenger problems), respectively. This is within the RTO period 

time; thus, enough data can be collected, and the challenger problems can be performed with no computational delay 

to the RTO as determined with equation (5-31). 
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Each uncertain parameter is assumed to materialize only at a low (𝑙), nominal (𝑛), and high (ℎ) value in the interval 

[(1 − 𝛼)𝜽𝒏𝒐𝒎, (1 + 𝛼)𝜽𝒏𝒐𝒎], where 𝛼 = 0.1 and the nominal parameters listed in Table B-2 (Appendix B). To the 

authors’ knowledge, this represents the largest parameter uncertainty region to have been considered for the Williams-

Otto plant. Hence, a total of 3/ possible uncertainty scenarios were possible from which the 9 scenarios Table 5-4 

were randomly selected as a representative sample. As with the previous case study, the discretization of the 

uncertainty was done for simplicity and the proposed scheme can be used to estimate any parameter combination 

within the aforementioned interval (i.e., it is not limited to any particular set of parameter realizations).    
Table 5-4: Results for parameter combination scenarios in the Williams-Otto case study under low-variance and regular RTO 

implementations. 

 S1 S2 S3 S4 S5 S6 S7 S8 S9 

𝐸6 ℎ ℎ 𝑛 ℎ ℎ 𝑙 ℎ 𝑛 𝑛 

𝐸, 𝑛 𝑙 𝑛 ℎ ℎ 𝑙 𝑙 𝑙 𝑛 

𝐸/ ℎ 𝑙 ℎ 𝑛 ℎ 𝑙 𝑛 ℎ 𝑙 

𝜎�,+)	(𝐾) 99 106 51 59 66 71 201 250 128 

𝜎�,&	(𝐾) 3325 3734 1964 3678 3513 4693 4973 5198 4978 

𝑃X4nC(+)^P9)	($/𝑠) 2.99 −4.83 5.17 −6.39 −2.40 −1.69 1.21 7.90 −6.33 

𝑃X4nC	($/𝑠) 2.44 −5.01 5.00 −7.19 −2.77 −3.18 1.01 7.29 −7.51 

%𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡P�  18.39 3.73 3.29 12.52 15.42 88.16 16.53 7.72 18.64 

𝑘 6 6 6 5 6 6 6 6 5 

Figure 5-7 displays the process revenue/losses for several non-overlapping scenarios from Table 5-4 calculated using 

equation (5-28). As can be observed, the parameter combination affects whether the process will operate at a revenue 

or loss; the Williams-Otto plant is only profitable in some cases. Nevertheless, the lv-PE/RTO always results in a 

more economical operation. This is reflected in the average profit rates (𝑃X) for both schemes as shown in Table 5-4 

whereby the lv-PE/RTO has lower average rates in all scenarios as quantified in the %improvement. These improved 

economics are a result of the decreased variation in the parameter estimates over the 80 RTO periods analyzed, which 

are observed to generally have decreased by one or two orders of magnitude as per the 𝜎 values in Table 5-4. 

Depending on the parameter combination, the lv-PE/RTO can lead to modest (e.g., 3.28% for S3) or significant (e.g., 

88.16% for S6) improvements on revenue/loss with respected to the regular RTO. 
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Figure 5-7:Revenue/loss ($) for several of the scenarios in the Williams-Otto case study. 

The effect of variance manifests most directly on the manipulated variables, as shown for S8 and S9 in Figure 5-8 and 

Figure 5-9, respectively. Figure 5-8 exemplifies the effect that measurement noise has on the NMPC and RTO via the 

parameter updates in an operating scenario without active constraints. As displayed therein, both manipulated 

variables have brief spikes that correspond to the cases when parameters and set points are changed through execution 

of the PE and RTO. This is primarily due to the sudden change in controller parameters, which momentarily sends the 

system on a transient, but also corresponds to small set point corrections. These spikes were observed to be 

significantly smaller for the lv-PE/RTO than the regular RTO; the resulting transients, which are shorter when the lv-

PE/RTO is employed, ensure that the system operates near its optimum for a longer period, thus improving economic 

performance. The lv-PE/RTO can be observed to result in a far more consistent performance, thus damping the effect 

of the noisy measurements on the scheme. Figure 5-9 is an atypical scenario where the optimal operating policy occurs 

at the lower bounds of the manipulated variables in equations (5-67) and (5-68); however, this further elucidates how 

the lv-PE/RTO can maintain the system at its bound with smaller and less frequent deviations. Another consequence 

observed therein is the effect of the filter-step of the lv-PE/RTO to avoid periods where the system is operating at non-

optimal points. This is also observed between 𝑇 = 30 and 𝑇 = 40 in Figure 5-9 whereby both manipulated variables 

are not operating at their bounds (i.e., the economic optimum); meaning that the regular RTO was passed an 

significantly suboptimal set of set points and parameters, which did not reflect the current operating conditions. 
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Figure 5-8: Manipulated variables for S8 of the Williams-Otto case study under the lv-PE/RTO and the regular RTO 
implementations. (a) reactor temperature, (b) inlet flowrate of substrate “B”. 

 
Figure 5-9: Manipulated variables for S9 of the Williams-Otto case study under the lv-PE/RTO and the regular RTO 
implementations. (a) reactor temperature, (b) inlet flowrate of substrate “B”. 

Figure 5-10 provides contours of the process profit rates (i.e., $/𝑡𝑖𝑚𝑒) for S8 and S9. These were constructed using 

the true plant parameters such that they are the “true” profit rate contours. Since these are the “true” contours that 

correspond to the true parameters in S8 and S9, the performance of the PE scheme can be assessed by how closely 

they approach the top elevations therein. If the steady-state combinations of manipulated variables are treated as a 

sampled quantity, the confidence ellipsoids for these manipulated variables in both regular RTO and lv-PE/RTO can 

be constructed. By superimposing these ellipsoids on the contours, the precision and accuracy of the PE schemes is 

visualized through the size and closeness to the true optimum, respectively. Figure 5-10 shows these ellipses being 

centered in the contour region with the most economical profit rates as per the black-shaded elevations, this confirms 

that the RTO is indeed operating generally near the optimum. However, in both scenarios, the confidence ellipse for 

the lv-PE/RTO can be observed to be inside the confidence ellipse for the regular RTO; this confirms that the variance 

in the steady-state manipulated variables has decreased, and in some cases by a significant amount (e.g., S9). The 

statistical interpretation follows that if many different samples were taken to replicate the construction of the ellipses, 

then 95% of the constructed ellipses would contain the mean; as such small ellipses imply lower variation in the 
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sampled quantities — in this case, the manipulated variables. Accordingly, the improvement in process economics 

occurs through this decrease in variation. 

   
Figure 5-10: Contour plots with the process profit rates ($/s) on the elevations and manipulated variables on the axes for the 
Williams-Otto case. (a) S8, (b) S9. 95% confidence ellipsoids shown for the manipulated variables under the regular RTO (dashed 
lines) and lv-PE/RTO (solid lines). 

5.4 Summary 

Noisy measurements and model uncertainty are inevitable when operating chemical processes, which may lead to 

poor RTO performance. As RTO attempts to address model uncertainty by adapting model parameters, noisiness can 

propagate to these parameter estimates leading to poor process performance. An algorithm for reducing noise 

propagation from the measurements to the parameter estimates is introduced herein; with an error bound step to ensure 

high quality estimates are obtained. The scheme is motivated through an analysis of RTO economics as affected by 

set point error owed to parameter inaccuracy. Moreover, the potential computational cost of the scheme is analyzed 

to avoid any delays are incurred as a result. In two case studies, the estimated parameters are passed to both RTO and 

NMPC layers as to impact operation significantly. The proposed scheme was found to improve process economics 

with set points closer to the true plant optima and improved constraint adherence.  
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6. Parameter Estimation and Robust Optimization of a CO2 Capture System 

Based on the literature review in Section 2.3, uncertainty in the real-time optimization of PCC plants has not been 

explicitly addressed. To the authors’ knowledge, noisiness also remains an open issue as it pertains to PCC estimation 

schemes and no method has been tested to abate its effects in CO2 capture systems; hence, the effect of parameter 

fidelity on model-based control and optimization performance for PCC has not been reported. In addition, parameter 

and economic robustness have not been jointly addressed in the online optimization of PCC. In particular, the previous 

work in Chapter 4, which is the most comprehensive RTO implementation in PCC to date, did not consider any type 

of uncertainty and a very limited set of disturbances. Accordingly, a detailed exploration of the optima across possible 

disturbances ranges, the addition of novel parameter estimation, and robust optimization layers, will provide new 

insights on the remaining computational challenges (i.e., uncertainty and noise) that could inhibit the deployment of 

online economic optimization in PCC plants. The specific objectives considered in the present study are as follows: 

1. A high-fidelity framework is proposed for the estimation of uncertainties in high noise environments without 

requiring data reconciliation. Uncertainty in the thermodynamic parameters and flue gas compositions for 

post-combustion carbon capture is estimated in the context of RTO.  

2. The proposed estimation scheme is compared to standard PE and DR via their respective impacts on PCC 

performance. These analyses are performed on a long (i.e., month) timescale to assess the impact of real-time 

decisions on long-term PCC operation. 

3. A sensitivity analysis is performed for the optimal cost and rate of carbon capture. The effect of disturbances 

and economic incentives are quantified for the optimal operation of PCC. 

4. A new robust RTO scheme is presented along with an update strategy for PCC set points under diurnal 

operation. The proposed estimation scheme is also used for uncertainty quantification to yield robust 

solutions. This new robust RTO scheme explicitly and simultaneously considers uncertainty in the economic 

parameters and in the operational parameters of the CO2 capture plant.  

This work is structured as follows: Section 6.1 details the formulation for the PE scheme and the robust RTO 

formulation; Section 6.2 briefly overviews PCC and introduces assessment metrics and constraints for the proposed 

scheme; Section 6.3 exhibits the test scenarios on the proposed scheme; and Section 6.4 summarizes the insights 

gained from this study and outlines future works.  

6.1. Proposed Scheme and Formulations 

RTO is a model-based optimization method that has been proposed in the literature (e.g., Darby et al., 2011) to achieve 

the economically optimal steady-state operation of process systems. As the models used for RTO are subject to 

uncertainty, the two-step RTO approach is deployed, which continually updates the model via estimation of 

parameters. The estimation step, which uses available steady-state process measurements, can address parametric 

uncertainties in the phenomenological model parameters and external disturbances. In addition to parametric 

uncertainty, uncertainty also manifests through measurement noise. If the system is noisy, this can adversely impact 

the fidelity of estimates acquired using the measurements; no practical method or assessment of this issue has been 

proposed in the context of PCC. This section presents the general formulation for RTO under uncertainty, a noise-

abatement scheme to ensure estimates are indeed reliable, and a robust RTO to address price fluctuations.  
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Figure 6-1: Potential RTO architectures. a) parameter uncertainty considered; previous PCC works omitted green block and no 

uncertainty, b) parameter uncertainty considered using the method in Section 6.1.1, c) parameter and price uncertainties 
considered using the method in Section 6.1.2. Novel layers considered in this study are shown in red. 

RTO-operated systems work in the manner depicted in ca. The RTO computes controlled variable set points, which 

are passed to the controller. The controller (which could be PID, MPC, NMPC, etc., omitted for brevity) acts by 

receiving feedback from the plant in the form of state measurements and regulating the plant towards the RTO-defined 

set point through the manipulated variables, making the scheme closed loop. On a longer timescale, known as the 

RTO period ∆𝑇, the parameter estimation (PE) problem is executed such that uncertain parameters are updated and 

the RTO can re-compute the set points under changes in operating conditions.  

Generally, RTO is used to optimize process economics such that the process operating conditions can be adjusted as 

a response to varying disturbances. The formulation for RTO economic optimization with uncertain parameters can 

be found in Section 5.1, equation (5-5). In the context of energy systems, the economic function 𝛷 could represent 

emissions, energy consumption, or a comprehensive economic function. Moreover, measurable disturbances (𝒅𝒕) may 

include changes in electricity demands, fuel grades, or regulatory constraints. The uncertain parameters (𝜽𝒕) can 

include any experimentally determined phenomenological constants (e.g., kinetics, thermodynamics, and equilibrium) 

or unmeasured disturbances (e.g., compositions) that are built into the model 𝒇𝒔. While the uncertain parameters are 

inherent to the process model, the unmeasured disturbances are external (i.e., a function of factors outside the plant). 

For PCC, model parameters can include activity coefficients or reaction kinetic parameters, while unmeasured 

disturbances can include inlet compositions. In process systems, the uncertain model parameters and unmeasured 

disturbances can both be treated as uncertain parameters, thus necessitating an estimation scheme. 

6.1.1. Low-variance PE Formulation (lv-PE) 

As mentioned above, uncertain parameters are treated as inputs to the RTO model. Rather than assuming these 

parameters are fixed, they are updated at regular intervals in the two-step RTO implementation. Moreover, there are 

many external factors that can be considered as unmeasured disturbances in energy and CO2 capture systems, which 

are highly dependent on human behaviour, environmental factors, and process inputs. For instance, energy demands 

may vary diurnally as in Chapter 4, government production incentives may change as in Chapter 3, or process inputs 

material grades and types may fluctuate (e.g., Hodžić et al., 2016; Loeffler and Anderson, 2014). These unpredictable 

changes may result in changes in flue gas composition, which may be difficult or inaccurate to measure. These 
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unmeasured disturbances can also be treated as uncertain parameters. The uncertain parameters 𝜽 as defined in this 

work, are time-invariant, i.e., they do not change as an explicit function of the sampling interval but can vary because 

of the external factors, e.g., changes in the operating conditions. As such, they are updated every RTO period ∆𝑇 prior 

to the set point update. Moreover, the uncertain parameters are bounded such that they are assumed to materialize 

within a certain range determined a priori and constraints on their estimates can be considered in the PE problem to 

provide a search space. The uncertain parameters herein are classified into two subsets 𝜽 = [𝜽𝒅 𝜽𝒑]n.	𝜽𝒅 ∈ ℝ
BE1 	

are the uncertain parameters that come from external sources (e.g., unmeasured disturbance) while 𝜽𝒑 ∈ ℝ
BEC  are 

parameters that are inherent to the process model (e.g., physical properties); accordingly, 𝑛� = 𝑛�1 + 𝑛�C.  

As mentioned previously, the estimated uncertain parameters (𝜽) are passed to the RTO formulation in equation (5-

1) at time 𝑡 as depicted in Figure 6-1a and can also be passed to a controller with a matching model to the RTO. These 

are updated at every RTO period ∆𝑇 such that the plant and model are consistently being reconciled. However, the 

estimation scheme requires noisy measurements (𝒛𝒕) that will inherently include noise that may be propagated from 

the measurements to the parameter estimates. If the RTO economics are sensitive to these estimated quantities, 

substantial economic losses may occur. In a system such as PCC, this could manifest through increased energy 

consumption, resource use, or emissions, which are costly and have prices that accrue over time. Accordingly, the low 

variance estimation (lv-PE) method proposed in Chapter 5 is deployed herein to abate the propagation of noise from 

measurements to estimates. The lv-PE method uses formulation (5-19) to determine a measurement set that results in 

the lowest errors in 𝜽𝒕 a prior to the PE problem. Within the lv-PE algorithm, many PE problems are executed offline 

via a bootstrapping method. The standard deviations in estimates given multiple different measurement sets are 

compared to determine which measurements result in the highest precision. Additionally, lv-PE uses the statistics 

acquired by the bootstrap to provide error bounds and filter the estimates 𝜽𝒕 a posteriori to the online PE problem. 

Interestingly, lv-PE has yet to be applied to a large-scale system like PCC; thus, its benefit on this class of systems 

with many inputs and slow dynamics is unknown. PCC, for which uncertainty has not been addressed in online 

economic optimization, is well-suited to lv-PE as it has infrequent set point changes resulting in long periods at steady 

state. The measurements acquired at steady state will enable the repeated data collection required for the bootstrapping 

that lv-PE entails; as such, high-fidelity parameter estimates can be computed to operate the system near its true 

optima. Moreover, the mechanistic PCC has been shown to exhibit parameter sensitivity (e.g., Cerrillo-Briones and 

Ricardez-Sandoval, 2019; Hughes at al., 2022). The exchange of information between the lv-PE and PE layers are 

shown in Figure 6-1b while the full algorithm can be found in Section 5.2.2. 

6.1.2. Robust RTO (rRTO) 

In addition to the uncertain parameters (𝜽𝒕), the RTO presented in equation (5-5) can also manifest uncertainty in the 

economics. In this case, the economic function is denoted as 𝛷(𝒙T𝒕, 𝑷𝒕) where 𝑷𝒕 ∈ ℝ% are the economic uncertainties 

at time 𝑡. When economic uncertainty occurs, the operator may want to find an operating point that works well for a 

range of uncertain economic scenarios. For instance, when the economics (𝑷𝒕) and parameters (𝜽𝒕) are frequently 

fluctuating, a single solution that works well regardless of the actual realization of uncertainties that happen in the 

future may be advantageous (i.e., a robust solution that is also suitable for the short-term future); however, this robust 
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solution may sacrifice performance if uncertainties remain fixed and an accurate parameter estimation scheme is 

available. As mentioned in Section 2.3, previous studies have considered economic robustness in PCC; however, those 

schemes make decisions in scheduling and planning timescales, not in real-time. In this economically robust paradigm, 

one can also address uncertainty in the parameters by bypassing the PE problem and formulating a problem that is 

robust to both parameter and economic uncertainties.  

To achieve RTO robustness with uncertainty in both economics and model parameters (in contrast to uncertainty in 

parameters only as in Section 6.1.1), the multi-scenario approach can be employed where various model realizations 

are solved. This approach has been employed in PCC design (Cerrillo-Briones and Ricardez-Sandoval, 2019) and 

control (Chapter 3), but never considered in an online real-time economic optimization context such as RTO. As such, 

the multi-scenario approach is applied for robust RTO (rRTO) herein at time 𝑡 as follows: 

min
𝒚t𝒕

∑ 𝜔@,j𝛷
BK
jA6 (𝒙T𝒕,𝒋, 𝑷𝒕,𝒋)  

𝑠. 𝑡. 

𝒇𝒔,𝒋�𝒙T𝒕,𝒋, 𝒚T𝒕,𝒋, 𝒖𝒕,𝒋, 𝒅𝒕, 𝜽𝒕,𝒋� = 𝟎                                                                                              ∀𝑗 ∈ {1,… , 𝑛&} 

𝒈𝒔,𝒋�𝒙T𝒕,𝒋, 𝒖𝒕,𝒋, 𝒅𝒕� ≤ 𝟎                                                                                                            ∀𝑗 ∈ {1,… , 𝑛&} 

𝒚𝒍 ≤ 𝒚T𝒕,𝒋 ≤ 𝒚𝒉		                                                                                                                        ∀𝑗 ∈ {1,… , 𝑛&}                                                                                                                                    

𝒖𝒍 ≤ 𝒖𝒕,𝒋 ≤ 𝒖𝒉		                                                                                                                  ∀𝑗 ∈ {1,… , 𝑛&} 

𝒚T𝒕,𝟏 = ⋯ = 𝒚T𝒕,𝒋 = ⋯ = 𝒚T𝒕,𝒏𝒓 

(6-1)  

where all variables and functions have the additional index 𝑗 ∈ {1,… , 𝑛&}. This index represents individual scenarios 

being considered, which generates various instances of the process model; each instance j represents a realization of 

the uncertain parameters. Accordingly, the last constraint in formulation (6-1) ensures the set point decision variables 

for all realizations are equivalent. Through the set point equivalence, a single set point is found that is optimal for all 

realizations; this is the set point that is provided to the control layer as shown in Figure 6-1c. 

To choose which uncertainty combinations are featured in 𝑗, the uncertain parameters are assumed to manifest within 

[𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶], which represents the lower and upper bounds of the parameter uncertainty region, respectively. As 

with the uncertain parameters, the objective function 𝛷 has the dependence on 𝑷𝒕,𝒋, which can manifest within the 

region [𝑷𝒕𝒍 , 𝑷𝒕𝒉]. Accordingly, 𝑛&, which corresponds to the index 𝑗, is the number of scenarios considered within these 

regions upon discretization of the intervals. Note that the bounds of the regions are indexed in 𝑡 such that they may 

expand or contract across RTO periods to accommodate for changing levels of uncertainty. The scenarios encompass 

the bounds of the uncertainty region; however, the choice of discretization for the uncertainty regions is a user-defined 

choice that balances computational efficiency with robustness. As more scenarios are included, the model size grows 

but represents a better approximation of the continuous uncertainty region between the bounds.  

Owing to the parameter and economic uncertainty region discretization described above, the economics of the various 

model realizations are minimized jointly in the rRTO objective function in equation (6-1). Each objective function 

term is weighed by 𝜔@,j, which corresponds to the probability of a given realization occurring such that ∑ 𝜔@,j = 1BK
jA6 ; 

these must be established a priori based on the underlying statistical distribution that the uncertain parameters and 
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economics obey. As with the uncertainty regions above, the weights are indexed in 𝑡 to reflect changing realization 

probabilities. 

While 𝑷𝒕𝒍  and 𝑷𝒕𝒉 must be established based on knowledge of the economic process incentives, the size of the parameter 

uncertainty region (defined by 𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶) are typically difficult to quantify and are based on process knowledge 

rather than a systematic uncertainty quantification method. However, the lv-PE method presented in Section 5.2.2 

presents a bootstrap method that acquires data at every sampling period ∆𝑡 to quantify the parameter uncertainty region 

via the parameter standard deviations generated therein. As such, the parameter uncertainty region for the rRTO 

problem is defined as �𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶� = [𝜽G𝒕 −
�
√H
𝝈𝜽𝒕 , 𝜽G𝒕 +

�
√H
𝝈𝜽𝒕] where 𝜽G𝒕, 𝝈𝜽𝒕, and 𝑀 are the sample mean, 

standard deviation and size, respectively, as defined by the algorithm in Chapter 5. As the quantities acquired in the 

lv-PE procedure are indexed in time 𝑡 to accommodate for changing levels of uncertainty across RTO periods, these 

bounds also reflect changing uncertainty. Moreover, 𝜏	allows for the use of confidence intervals to reflect the error 

tolerance of the user and can be retrieved from a two-sided 𝑡-distribution; this gives statistical significance to the 

robustness in formulation (6-1). The parameter uncertainty region �𝜽𝒕
𝒍,𝒓𝑹𝑻𝑶, 𝜽𝒕

𝒉,𝒓𝑹𝑻𝑶� differs from the PE optimization 

bounds in Chapter 5 as it is acquired from the lv-PE algorithm while PE bounds are defined based on process 

knowledge. 

By bypassing the PE step in problem (5-7) and only conveying parameter bounds to problem (6-1), the rRTO 

formulation finds robust solutions that account for economics fluctuations and parameters uncertainties. Accordingly, 

the rRTO formulation (6-1) can be deployed instead of the hierarchical approach that uses formulations (5-5) and (5-

7). This exchange of information is shown in Figure 6-1c. 

6.2. Scheme Implementation and Assessment 

A pertinent application of the methods outlined in previous sections is PCC; a technology whose global industrial 

adoption is currently limited by its unfavourable process economics. Figure 6-2 shows the PCC plant and the 

uncertainties therein. 
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Figure 6-2: PCC plant layout. Blue denotes controlled variables, green denotes manipulated variables, red denotes disturbances, 

purple denotes uncertainties. 

The two-layer RTO and rRTO schemes outlined in Sections 6.1.1 and 6.1.2, respectively, are deployed on the PCC 

plant. Figure 6-1a shows the scheme deployed in Chapter 4; as shown therein, the previous RTO implementation for 

PCC assumes measurable disturbances and does not account for uncertainty, which are restrictive assumptions that 

could lead to significantly suboptimal operation. As summarized in the literature review, previous works did not 

consider the two-layer architecture shown in  Figure 6-1a as the green parameter estimation layer was omitted. 

Consequently, no previous work considered a noise-abatement scheme (e.g., Figure 6-1b) as outlined in the 

introduction. In contrast, the two schemes proposed in  Figure 6-1b and  Figure 6-1c lift these assumptions to explicitly 

account for noise , model, and economic robustness to the operation of the PCC plant.. 

Information regarding the manipulated and controlled variables, with their corresponding nominal values, can be 

found in Section 4.2.3. As noted earlier, uncertain parameters can be segmented into physical properties and 

unmeasured disturbances, which will be assessed individually through their respective estimates on the RTO scheme.  

In the PCC plant, both the flue gas flowrate and CO2 content entering the absorber are typical disturbances. Both 

disturbances are typically measurable in power plants (e.g., via a flowmeter and a katharometer, respectively). 

Although the accuracy of the katharometer is generally adequate for monitoring of emissions (e.g., ±0.5	𝑚𝑜𝑙% in 

absolute terms; ABB, 2003), it may not be adequate for RTO where the optimum is sensitive to the carbon content of 

the flue gas. Accordingly, an estimation scheme is proposed for the flue gas CO2 and H2O concentrations (i.e., 𝜽𝒅 =

�𝑦7C!
}+Eu 𝑦D!C

}+Eu�
n
) while flue gas flowrate is assumed to be a measured disturbance (i.e., 𝒅 = �𝐹=

?�n).  The estimated 

unmeasured disturbances are treated as uncertain parameters (𝜽𝒅) and provided to the RTO layers such that high-

fidelity composition estimates are generated and lead to high-fidelity set points. Only these two component fractions 

are taken as disturbances as the nitrogen fraction is fixed since it is inert in the upstream combustion process, and the 

MEA is assumed to be unevaporable. The nominal values for the measurable and unmeasured disturbances are 𝒅𝒏𝒐𝒎 =

[4.012	𝑚𝑜𝑙/𝑠]n and 𝜽𝒅,𝒏𝒐𝒎 = [0.175	𝑚𝑜𝑙/𝑚𝑜𝑙 0.025	𝑚𝑜𝑙/𝑚𝑜𝑙]n, respectively. Moreover, activity coefficients 

are assumed to be the cause of the parametric uncertainties in the PCC model and, as such, are considered uncertain 
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parameters (i.e., 𝜽𝒑 = [𝛾H91 𝛾7C! 𝛾D!C]n). While these parameters are assumed to be constant in the process 

model (i.e., time-invariant), their true values are not precisely known and are designed to capture non-idealities in 

fluid behaviour, which may vary over time as the operation of PCC is highly nonlinear. Accordingly, it is important 

to update the parameters on a regular basis as operating conditions change. The nominal values for the uncertain 

parameters are 𝜽𝒑,𝒏𝒐𝒎 = [0.381 0.677 0.974]n).  

The present analysis assumes that only 12 measurements are available for estimation, which are denoted as 𝒛 =

�𝑪𝑯
𝒈n 𝑪𝟎𝒍

n 𝑇?,= 𝑇?,D 𝑇+,= 𝑇+,D�
n
. These include the liquid (𝑪𝟎𝒍 ) and gas (𝑪𝑯

𝒈 ) compositions and temperatures at 

the bottom and top of the absorber column. Only a single set of gas and liquid absorber concentration measurements 

along the absorber height are used; thus, it is assumed that these are accessible at the column top and bottom outlets, 

respectively. This is done as sampling of inlet and outlet streams is more practical than sampling along the column 

height; moreover, good estimate quality was observed with these sampling locations in Chapter 4. The sample size 

assumed to be 𝑀 = 40 such that the estimation schemes can provide good estimates while not incurring any delays 

in the execution of the RTO. This sample size was chosen based on preliminary simulations and ensures significant 

measurement averaging occurs such that increasing beyond this size makes little difference. Conversely, significantly 

smaller sample sizes may allow noise propagation as they do not benefit from averaging effects. In addition to these 

measurements, the following bounds are also given to the PE problem (5-7) in the case of uncertain model parameters 

(𝜽𝒑): 

0 < 𝛾H91, 𝛾7C! , 𝛾D!C < 2 (6-2)  

The upper bound of equation (6-2) is chosen as to match the activity coefficient range for mixed amine solutions 

loaded with CO2 presented in Kaewsichan et al. (2001). Furthermore, the following constraints are included in the PE 

problem in the case of unmeasured disturbances (𝜽𝒅): 

𝑦7C!
}+Eu + 𝑦D!C

}+Eu = 0.2 

0 < 𝑦7C!
}+Eu , 𝑦D!C

}+Eu < 0.2 
(6-3)  

The former fixes the total amount of CO2 and water in the flue gas (since nitrogen is assumed to be 80	𝑚𝑜𝑙% of the 

flue gas), while the latter provides upper and lower bounds for the mole fractions. Equation (6-3) encompasses the 

potential carbon dioxide fraction of typical PCC power plants (Danaci et al., 2021). The lower and upper bounds for 

the PE problems establish a finite estimation search space and are not included in the RTO economic optimization 

problem as the disturbances and parameters are not decision variables in the RTO formulation. Similar constraints on 

manipulated and controlled variables in PCC can be found in Section 4.2.3. 

The foremost factor motivating the deployment of RTO is the process economics; thus, each scheme and scenario will 

be analyzed by their cumulative cost 𝐶($𝐶𝐴𝐷) across 𝑁 RTO periods tested, defined as follows: 

𝐶P77 = ∆𝑇�𝜙*

l

*A=

 (6-4)  

where 𝜙*($𝐶𝐴𝐷/ℎ𝑜𝑢𝑟) is the price of operating the PCC according to equation (6-4) at every RTO period 𝑖. 
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In addition to considering the cost of the PCC system, the effect that the reboiler has on the upstream power plant 

must also be accounted for. The reboiler requires steam that comes from the power plant, resulting in a reduction of 

the power generation capacity. This is accounted for by considering the cumulative energy penalty 𝐶uBu&?w($𝐶𝐴𝐷) 

across 𝑁 RTO periods tested in each scenario, defined as follows: 

𝐶uBu&?w = ∆𝑇�𝑄&uF,*(𝑃u+um − 𝑃-@u#")𝜂
l

*A=

 (6-5)  

where 𝑄&uF,*(𝑘𝑊) denotes the reboiler duty, 𝑃u+um and 𝑃-@u#"($𝐶𝐴𝐷/𝑘𝑊ℎ) denote the electricity price rate and the 

steam price rate, respectively, while 𝜂 = 0.4 (Mac Dowell and Shah, 2013) denotes the efficiency of converting steam 

to electricity in the power plant. The difference between energy sales and steam prices corresponds to the energy price 

markup upon sale. These are multiplied by the reboiler duty through an efficiency factor to quantify the profit loss 

incurred by using the steam in the PCC reboiler instead of using it in the power plant turbines. 

In addition to quantifying the potential economic and energy effects of the RTO. The environmental effects are also 

of utmost importance. To do this, the cumulative mass of CO2 emitted 𝑚7C!
u"*@@u((𝑡𝑛) over 𝑁 RTO operating periods 

is calculated as follows: 

𝑚7C!
u"*@@u( = ∆𝑇𝑀7C!�𝐹?,*)uB@𝑦7C!,*

)uB@
l

*A=

 (6-6)  

where 𝐹?,*)uB@(𝑚𝑜𝑙/ℎ𝑟) and 𝑦7C!,*
)uB@(𝑚𝑜𝑙/𝑚𝑜𝑙) are the vent gas flowrate and CO2 fraction for each RTO period, 

respectively, and 𝑀7C!(𝑡𝑛/𝑚𝑜𝑙) is the molar mass of CO2. In addition, an influencing factor in the PCC economics 

is the amount of MEA makeup added in the tank (as shown in Chapter 4). Accordingly, this is also considered in the 

assessment of the RTO across 𝑁 RTO periods tested in each scenario, i.e.,  

𝑚H91
"vE% = ∆𝑇𝑀H91�𝐹H91,*

"vE%
l

*A=

 (6-7)  

where 𝑚H91
"vE%(𝑡𝑛) is the amount of makeup MEA used and 𝑀H91(𝑡𝑛/𝑚𝑜𝑙) is the molar mass of MEA. 

6.3. Results 

The formulations outlined in Sections 6.1.1 and 6.1.2 are implemented in the PCC system described in Chapter 4. 

Measurement noise is inserted to the estimation scheme via the steady-state measurement samples {𝒛𝒕^𝒊}*A=H  and is 

assumed to be additive zero-mean Gaussian noise with a standard deviation of 5% of the nominal measurement values 

(i.e., 𝒩(0, (0.05𝒛𝒏𝒐𝒎),), such that the noise can substantially affect estimate quality. 𝒛𝒏𝒐𝒎 is the measurement vector 

corresponding to the nominal operating conditions outlined in Section 4.2.3. The sensitivity of the cost-optimal process 

operation is studied in Scenario A. Moreover, the proposed operating scheme in Section 6.1.1 is assessed in Scenario 

B and Scenario C. Furthermore, the proposed operating scheme in Section 6.1.2 is assessed in scenario D. Both 

schemes are evaluated through their effects on a long (months) timescale according to the metrics defined in Section 

6.2. 
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6.3.1. Scenario A: Sensitivity of Cost-optimal Operation 

Power plants often follow a diurnal schedule whereby the electricity produced observes a time-of-use (TOU) pricing 

model. TOU works such that price of energy is changed over the day so that providers can disincentivize excessive 

consumption through periods of peak demand.  

 
Figure 6-3: TOU variation in steam price (top), SCC and carbon sales (bottom). Cyan dotted lines denote update times for 

Scenario C. 

Consumer pricing fluctuation amplitudes and timings were retrieved from the Ontario Energy Board [61] for a 24-

hour summer cycle. These amplitudes were incorporated into the steam price reported in Karimi et al. [60]. As such, 

electrical losses via steam consumption to the PCC plant vary in the same manner as electricity price to consumer; 

this is depicted in Figure 6-3 (top). Moreover, SCC [18] and carbon sales rates [59] were also assumed to vary in the 

same schedule and amplitude with high, medium, and low values taken from the literature (Figure 6-3, bottom). These 

are scheduled to incentivize removal during on-peak hours of high demand, with lesser incentives in off-peak hours 

of low demand. 

A sensitivity analysis was performed for the cost-optimal PCC operation under variation of the disturbances of flue 

gas inlet flowrate (𝐹=
?) and flue gas CO2 content (𝑦7C!

}+Eu). This is done as previous studies only consider a limited set 

of disturbance realizations, which are far more limited than the ranges typically observed in the literature (e.g., Danaci 

et al. [16]). The flue gas flowrate is assumed to vary within a symmetric ±15% interval centred around its nominal 

value (reported in Section 4.3.2), i.e., 𝐹=
? = 𝛼𝒅𝒏𝒐𝒎 where 𝛼 ∈ [0.85,1.15]. Furthermore, the flue gas CO2 content can 

manifest between the range 𝑦7C!
}+Eu ∈ [0.12,0.175]. In addition to variation of disturbances, the prices can manifest at 

the three levels (off, mid, on) corresponding to TOU as depicted in Figure 6-3. For this scenario, the uncertain mode 

parameters are assumed to be perfectly known and manifesting at their nominal values as reported in Section 6.2. 

Figure 6-4 shows the sensitivity analysis performed of the cost optimal operation. 
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Generally, a trend of increasing and sensitive capture rates is observed with increasing flue gas CO2 content as 

evidenced in the first row of Figure 6-4. These increased optimal rates are coupled with a decreased process cost 

(second row of Figure 6-4) as the PCC process can operate more efficiently with a more concentrated inlet (i.e., a 

more concentrated flue gas has similar effect to a more concentrated solvent). In contrast, lower removal rates are 

coupled with lower removal costs as the flue gas flowrate increases; however, the sensitivity to this disturbance is 

significantly less than the sensitivity to flue gas composition. This is owed to less efficient operation as increased 

throughput of flue gas requires a commensurate increase in amine concentration or reboiler duty, which is 

economically disadvantageous. Accordingly, in situations of higher flue gas flowrates, the optimal operating policy is 

to settle for low removal to minimize cost. An exception to the behaviours listed above occurs for the process cost 

under the off-peak regime (bottom-left pane of Figure 6-4). Herein, it is observed that low flue gas compositions and 

flowrates result in lower costs and there is little sensitivity to either disturbance. This occurs due to the weak economic 

incentives in the low carbon and energy costs. Accordingly, the off-peak operating regime sees only small changes in 

optimal pricing regardless of the disturbance combination observed. 

 
Figure 6-4: Cost-optimal rate of carbon capture (first row) and process cost (second row) under varying disturbances and TOU. 

The columns represent the TOU prices. 

With respect to the TOU economic incentives, the off-peak prices result in the lowest overall capture rates with 

middling process costs. This occurs as the off-peak prices favour conservative operation due to low carbon costs 

(Figure 6-3); again, the off-peak prices result in decreased cost sensitivity to disturbances. This implies that the energy 

price dominates the operation during off-peak hours whereby low capture is favorable as there is little removal 

incentive and high energy detriment from excessive removal. In contrast, on-peak prices result in high capture rates 

with the highest costs due to the increased carbon and energy prices. In this case, reasonably high capture is achieved 

despite the high energy prices because the carbon prices are dominant. However, the highest removal rates and lowest 

prices in the TOU pricing scenarios are achieved using mid-peak incentives, which balance removal and process costs 

with middling carbon and energy pricing. The mid-peak incentives have unit costs that are sufficiently low to warrant 

high removal rates while not being low enough to drastically increase reboiling or makeup (Figure C-1, Appendix C).  
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The optimal price and rates of carbon capture are sensitive to both upstream disturbances and the economic incentives 

on the process; this is reflected in an 6.4% range in removal rates and a 48,000	$𝐶𝐴𝐷/𝑦𝑟 range in annualized process 

cost (see the corresponding colour bars in Figure 6-4). Accordingly, variation and uncertainty in these disturbances 

and prices will have a significant effect on the operation of PCC; thus, are suitable for parameter estimation and robust 

optimization in the forthcoming sections.  

6.3.2. Scenario B: Estimation of Flue Gas Carbon Content (𝜽𝒅) 

Flue gas compositions to the PCC plant may vary with respect to time as feedstock to the upstream power plant varies 

in grade (e.g., changes in the type of coal being used). Moreover, this variation is expected to occur in power plants 

that employ cofiring (e.g., Hodžić et al., 2016; Loeffler and Anderson, 2014), whereby various fuel types are used 

within the same power unit. This necessitates an operating scheme that is flexible to different flue gas composition 

profiles such that the process economics are optimized despite variation. 

Scenario B considers a parameter estimation approach as outlined in Section 6.1.1., whereby the uncertain parameters 

are provided to the RTO and control models. To explore the effect of measurement noise on scheme effectiveness, 

this scenario compares four RTO implementations: 1) RTO with a standard PE and no noise-abating step (denoted 

PE); this represents the scheme deployed in Chapter 4 with an additional PE layer, 2) RTO with traditional least-

squares DR (e.g., Albuquerque and Biegler, 1996; denoted DR-PE), 3) RTO with low-variance PE considering 

information content and estimation filters (denoted lv-PE), and 4) RTO with knowledge of the true value of the CO2 

content (denoted TV). The latter of these cases is unrealistic as composition measurements of the flue gas are difficult 

to perform online in practice; however, it provides an upper bound to economic performance as it results in an RTO 

model with no mismatch from the plant.   

The PE/RTO is run for 100 RTO periods of ∆𝑇 = 8	ℎ𝑜𝑢𝑟𝑠 (i.e., 33	𝑑𝑎𝑦𝑠) as to have a large sample of RTO executions 

and sufficiently long RTO periods as suggested in Chapter 4. The main unmeasured disturbance/estimated parameter 

(𝜽𝒅 as defined in Section 6.2) is the flue gas CO2 content (𝑦7C!
}+Eu), which is varied for each RTO period. Danaci et al. 

(2021) provides a breakdown of the flue gas CO2 compositions for different fuel types/grades; based on the range 

reported therein, the flue gas CO2 molar fraction was sampled from a uniform distribution between 0.12 and 

0.175	𝑚𝑜𝑙/𝑚𝑜𝑙 (i.e., 𝑦7C!
}+Eu~𝒰(0.12,0.175)). The PE deployed in this scenario must estimate this content such that 

it can provide the RTO and control models with accurate information regarding the disturbance. The results from these 

implementations are shown in Figure 6-5. 
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Figure 6-5: Cumulative a) PCC cost, b) energy penalty, c) CO2 emissions, d) fresh MEA used for scenario B. 

As illustrated in Figure 6-5a, the cumulative PCC cost, as defined in equation (6-4), over the 100 RTO periods tested 

is significantly more expensive for the PE and DR-PE than the lv-PE (~39% and ~25% more expensive, 

respectively). With respect to the TV case, the PE, DR-PE and lv-PE experience economic losses of ~50%, ~34%, 

and ~8%, respectively; as such, the lv-PE is the most cost-effective, followed by the DR-PE, and the PE. Comparing 

the benchmark DR-PE with the proposed lv-PE in Figure 6-5a, it can be observed that the two schemes indeed have 

similar performance until period 55 whereby the economic profiles diverge. This is owed to an erroneous parameter 

estimate, which was discarded by the lv-PE scheme by the filter bounds. In contrast, this does not occur with the DR-

PE scheme, leading to an expensive period of operation. Moreover, the estimation schemes make subtle difference in 

abating energy penalties as in Figure 6-5b (in fact, the TV case and lv-PE incur a slightly higher energy penalty). This 

is likely the main driver of decreased emissions (i.e., increased removal) observed in Figure 6-5c, whereby higher 

reboiler duty leads to increased removal. 

In contrast, as shown in Figure 6-5c and d respectively, the CO2 emissions and MEA consumption can vary 

substantially depending on the scheme used. The emissions over the 100 RTO periods tested are ~115%, ~137%, 

and ~70% higher when using the PE, DR-PE, and lv-PE, respectively, over the TV case. This constitutes another 

improvement of the lv-PE and a deterioration of the DR-PE with respect to the PE case. While the lv-PE performs 

better than the PE and DR-PE, it is worse than the measurable disturbance case. This suggests that the CO2 emissions 

predictions generated by the PCC model are highly sensitive to uncertainties in flue gas composition, which is 

reasonable as the upstream composition will directly impact the outlet compositions. Moreover, the DE/RTO and DR-

PE/RTO require a significantly higher amount of fresh MEA that the lv-PE and TV cases. Indeed, this appears to be 

the main factor elevating the PCC cost in the PE and DR-PE schemes as steps in the MEA consumption depicted in 
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Figure 6-5d align with steps in cost depicted in Figure 6-5a. As mentioned above, these are likely caused by outlier 

parameter estimates in the PE implementation, which are filtered by the lv-PE such that an unnecessary makeup is not 

used. This finding also aligns with our previous work, where the MEA makeup was shown to be a major source of 

PCC cost. In addition to the cumulative plots, the average parameter error across the three estimation schemes tested 

are ~30%, ~35%, and ~40% for the lv-PE, DR-PE, and PE schemes, respectively. Notably, the limitations of our 

previous work in Chapter 4 are shown in the PE case, whereby its economic and emissions performance are worse 

under uncertainty (~42% and ~45% additional deterioration with respect to the true parameter case, respectively). A 

sample set point transition using the controller/estimator from Chapter 4 with the estimated parameters for one RTO 

period is shown in Appendix C. 

As reported in Chapter 4, the averaged CPU time for the RTO is 4.33	𝑠. Additionally, the mean PE CPU time as 

determined in this study is 4.45	𝑠. As such, RTO and PE models are fit for online use. 

6.3.3. Scenario C: Estimation of Activity Coefficients (𝜽𝒑) 

Thermodynamic parameters are critical to capture non-idealities in behaviour, which are often nonlinear for PCC 

systems. Accordingly, the precise activity coefficients will never be exactly known and must be estimated to ensure 

model fidelity; as such they are considered uncertain for this scenario. As with the previous scenario, the main 

disturbance, flue gas CO2 content (𝑦7C!
}+Eu) is varied for each RTO period and sampled from a uniform distribution 

between 0.05 and 0.2	𝑚𝑜𝑙/𝑚𝑜𝑙 (i.e., 𝑦7C!
}+Eu~𝒰(0.05,0.2)). However, this scenario assumes that the disturbance is 

measurable and accurate (i.e., does not have to be estimated) and, instead, requires PE to be deployed to estimate the 

activity coefficients (𝜽𝒑) as defined in Section 6.2) such that they can be provided to the RTO and control models. 

The true parameter values are assumed to be constant and equal to the nominal parameter vector presented in Section 

6.2. 

As with scenario B, the PE/RTO is run for 100 RTO periods of ∆𝑇 = 8	ℎ𝑜𝑢𝑟𝑠 (i.e., 33	𝑑𝑎𝑦𝑠) and four RTO 

implementations are compared (PE, DR-PE, lv-PE, TV). The TV case herein is unrealistic as activities are not usually 

truly known; however, it provides an upper bound to economic performance since it assumes a perfect RTO model 

parameters with respect to the plant. Figure 6-6 shows the results from these implementations. 
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Figure 6-6: Cumulative a) PCC cost, b) energy penalty, c) CO2 emissions, d) fresh MEA used for scenario C. 

As shown in Figure 6-6a, all estimation schemes experience substantially less deterioration in cost with respect to the 

TV case (~4.25%, ~3.81%, and ~1.63% for the PE, DR-PE, and lv-PE, respectively). This suggests that the PCC 

process is less sensitive to the accuracy of parameter estimates than the disturbance estimates. Nevertheless, the lv-

PE still outperforms the regular PE and DR-PE by ~2.51% and ~2.15%, respectively, over the 100 RTO periods 

observed. While these improvements are more modest than in scenario B, it should be noted that this difference would 

only continue to increase over time. In terms of energy penalty, all cases perform similarly as depicted in Figure 6-6b. 

This reinforces the notion that the RTO does not take the power plant effect into consideration and is in line with the 

operational scheme design in Chapter 4. 

There is a more significant difference in terms of CO2 emissions (Figure 6-6c) between the four cases whereby the lv-

PE emits ~16.74% and ~12.44% less than the PE and TV, respectively,  and ~34.52% more than the DR-PE. 

Accordingly, the lv-PE and DR-PE RTOs are both over-removing while the PE RTO is under-removing CO2 with 

respect to the TV case with the true parameters. This is likely the largest dividing factor between the economic profiles 

in Figure 6-6a. Additionally, Figure 6-6d shows subtle differences with regard to the MEA consumed by the RTO in 

the four schemes; the TV case uses the least fresh MEA, followed by the PE case, the lv-PE case, then the DR-PE 

case. While the differences in energy consumption and MEA usage are subtle; they likely contribute to the benefits of 

the lv-PE observed herein, which occur more gradually than in the large jumps observed in scenario B. Accordingly, 

the lv estimation scheme is achieving its benefit through the lowered 𝐼𝐶 rather than the filters as in the previous 
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scenario. In addition to the plotted results, the average parameter error for the estimated parameters across the three 

estimation schemes tested are ~32%, ~40%, and ~67% for the lv-PE, DR-PE, and PE schemes, respectively. 

On aggregate, the accumulation of these lower steady-state costs is reflected in Figure 6-6a, where the benefit of lv-

PE scheme accrues across many RTO periods resulting in more an economical PCC operation. A sample set point 

transition using the controller/estimator from Chapter 4 with the estimated parameters for one RTO period is shown 

in Appendix C. 

6.3.4. Scenario D: rRTO Under Diurnal Economic Variation and Activity Coefficient Uncertainty 

In this scenario, the TOU pricing model in Figure 6-3 was considered to formulate an update strategy for the PCC that 

considers prices that vary at irregular intervals. Scenario C considers the rRTO update strategy described in Section 

6.1. and is assessed across 100	𝑑𝑎𝑦𝑠	worth of operation. The cyan vertical dotted lines in Figure 6-3 denote RTO 

update times; 12-hour periods lengths were chosen as the long and expensive transients observed in Chapter 4 prohibit 

frequent set point updating, especially in cases where prices vary quickly. The update strategy assumes the RTO is 

executed at the beginning of the off-peak night operation (19: 00) as shown in Figure 6-3, whereby the RTO can 

exploit the constant low overnight price. The second update occurs at the beginning of daytime (7: 00), which begins 

a succession of price changes to mid-peak (denoted 𝑚) and on-peak (denoted 𝑜) consumption levels. Both strategies 

are subject to the economic fluctuations (𝑷𝒕) depicted in Figure 6-3 as well as uncertainty in 𝜽𝒑 (i.e., the 

thermodynamic activity coefficients as described in Section 6.2.).  

Three contrasting RTO schemes were compared. An RTO with knowledge of the true parameter values (labelled 

tRTO) was implemented and uses a “live” price (i.e., the price at the time at which the RTO is executed). The tRTO 

is unrealistic since the true parameter values are never known; however, it provides an upper bound for the system’s 

performance. Moreover, a “naïve” update strategy (labelled nRTO henceforth) was also deployed, which updates the 

RTO set point based on the live price and updates the parameters using the two-step approach without making use of 

the lv estimation formulation (this is equivalent to Chapter 4 with an added PE layer). Lastly, a robust strategy (labelled 

rRTO henceforth) updates the set point based on the expectation that the price will vary a few times in the coming 12-

hour period and that the uncertain parameters manifest with a uniform distribution. Accordingly, the rRTO formulation 

in equation (6-1) is deployed with the following weights: 

𝜔@,v =
𝑡v

∑ 𝑡v
BC
vA6

×
𝑛%
𝑛&

 (6-8)  

where 𝑡v denotes the operating length associated with each economic scenario 𝑘 ∈ {1,… , 𝑛%} and 𝑛& is the total 

number of parameter scenarios. The operating times (𝑡v) weigh the scenarios in the objective function such that prices 

which are operated at for longer are prioritized; these timings known a priori as TOU timings schedules are pre-

determined by the Ontario Energy Board (2021). In the daytime period where the costs vary within a short amount of 

time, this formulation is deployed such that a single operating point that is robust to the prices is used rather than using 

an operating point that is optimal for a short period of time and subsequently suboptimal. To restrict the model size 

when using the multi-scenario formulation, the uncertain parameters are assumed to manifest at their 95% confidence 

interval lower (𝜽𝒑,𝒕𝒍 ) and upper (𝜽𝒑,𝒕𝒉 ) bounds as defined in Section 6.1.  Respective scenarios used in the formulation, 
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denoted as 𝑙 and ℎ, are shown in Table 6-1. These bounds are determined by the lv-PE algorithm using the parameter 

estimate statistics prior to the execution of the rRTO and are updated at new operating points to accommodate varying 

levels of uncertainty. Moreover, the uncertain economics are also assumed to manifest at the mid-peak (𝑚) and on-

peak (𝑜) prices when performing the daytime set point update, respectively 𝑷𝒕𝒍 = 𝑷𝒕𝒎 and 𝑷𝒕𝒉 = 𝑷𝒕𝒐, as shown in Figure 

6-3. Table 6-1 shows the economic scenarios considered in the present rRTO. 

The RTO-operated system is simulated for 100	𝑑𝑎𝑦𝑠 to generate costs/savings of the deployment of the rRTO with 

respect to the RTO; these are shown in Table 6-2 for clarity (plots can also be found in Figure C-2, Supplementary 

Information). 
Table 6-1: Realization in uncertain parameters and economic function for rRTO. 

Uncertainty S1 S2 S3 S4 S5 S6 S7 S8 S9 S1

0 

S1

1 

S1

2 

S1

3 

S1

4 

S1

5 

S1

6 

𝛾H91 ℎ ℎ ℎ ℎ 𝑙 𝑙 𝑙 𝑙 

𝛾7C! ℎ ℎ 𝑙 𝑙 𝑙 𝑙 ℎ ℎ 

𝛾D!C ℎ 𝑙 ℎ 𝑙 𝑙 ℎ 𝑙 ℎ 

𝜙 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 𝑚 𝑜 

Table 6-2: Cumulative results for Scenario C over the testing period. 

Scheme Period 𝐶P77 	($𝐶𝐴𝐷) 𝐶uBu&?w($𝐶𝐴𝐷) 𝑚7C!
u"*@@u( 	(𝑡𝑛) 𝑚H91

"#vuE%	(𝑘𝑔) 

rRTO 
Daytime 8148.80 9056.14 4.48 25.12 

Overnight 7119.14 8286.15 7.95 21.31 

nRTO 
Daytime 8271.48 9108.18 4.65 23.88 

Overnight 7207.64 8393.87 7.73 21.44 

tRTO 
Daytime 8076.01 9006.85 4.52 24.05 

Overnight 7117.63 8629.10 7.82 21.40 

A summarized in Table 6-2, the rRTO scheme only experiences total of  ~0.48% economic performance deterioration 

with respect to the tRTO case whereas the nRTO deteriorates by ~1.9% over the time observed herein. The former is 

achieved through a ~1.7% reduction in energy penalty enabled by ~2.2% higher MEA consumption, which results 

in ~0.75% higher CO2 emissions when compared to the tRTO. Distinguishing between daytime and overnight 

periods, the rRTO is found to only experience ~0.9% deterioration in the former and ~0.02% in the latter. When 

compared to the corresponding ~2.4% and ~1.3% daytime and overnight deteriorations for the nRTO, the benefit of 

economic robustness becomes apparent. During the daytime period when prices fluctuate, the multi-scenario economic 

function of the rRTO outperforms that of the nRTO and results in a larger discrepancy between the two schemes. 

The economic benefits of using a robust approach are less than those when the parameter update scheme is deployed 

for flue gas composition as in scenario B. This suggests that the PCC process is less sensitive to the activity coefficient 

estimates despite them being uncertain in reality. Moreover, this is consistent with the “price of robustness”, whereby 

a robust solution must sacrifice performance of a specific scenario for optimality in the uncertainty region. However, 
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small improvements can result in significant savings if the process is expensive as with PCC and longer time periods 

allow for further accretion of economic benefit. Extrapolating to a year’s worth of operation (this simulation length 

would be computationally prohibitive), the rRTO scheme would continue to outperform the nRTO leading to ~5% 

annual process cost improvement. This would result in total savings of ~2,250	$𝐶𝐴𝐷 over an extrapolated annual 

PCC cost of a ~45,000	$𝐶𝐴𝐷/𝑦𝑟. As the PCC plant studies herein is a pilot plant, the benefits of would be even more 

significant in an industrial scale plant where costs are higher. 

 
Figure 6-7: %𝐶𝐶 set point trajectory statistics over 100-day testing period. 

In terms of set point, the %𝐶𝐶 set point is lower in the overnight period as shown in Figure 6-7. This occurs as there 

is less incentive for carbon removal as reflected in the low overnight SCC and sales rates in Figure 6-3 (bottom). In 

contrast, the %𝐶𝐶 set point are significantly (~3%) higher during the daytime when the removal incentives are 

stronger. As the nRTO finds the daytime set point with the live 7: 00 prices, this under-incentivizes the removal during 

the daytime period where the prices increase owing to the TOU fluctuations. In contrast, the robust formulation in the 

rRTO takes this variation into account and chooses higher daytime removal set point to account for periods of high 

carbon prices, hence the higher %𝐶𝐶 set point. Additionally, the nRTO is over-removing CO2 in the overnight period 

where removal incentives are not as strong, hence a higher %𝐶𝐶 set point; this is owed to increased error in parameter 

estimates when using the traditional PE approach when compared to a robust approach like the rRTO.  

As the rRTO does not produce parameter estimates, the %𝐶𝐶 is used as a proxy for operational variability. Figure 6-7 

shows the statistics of the capture level’s diurnal schedule over the testing period, with lines representing means and 

shaded regions representing standard deviations for each scheme considered in this scenario. As displayed therein, the 

daytime set points under the rRTO, nRTO, and tRTO are 96.53 ± 0.50%, 96.40 ± 1.06%, and 96.46 ± 0.19%, 

respectively. Furthermore, the overnight set points under the rRTO, nRTO, and tRTO are 93.51 ± 0.45%, 93.83 ±

2.62%, and 93.61 ± 0.38%, respectively. Accordingly, operation variability (as reflected in the standard deviations) 

is significantly reduced using the rRTO with respect to the nRTO. In contrast, the nRTO set points experience higher 

deviation than the rRTO set points despite being subject to the same disturbances and the same lv estimation scheme. 

As observed in the previous scenarios and in Chapter 4, reduced dynamic operation that results from reduced set point 

variability can impact operational costs. While the tRTO remains the best-performing scheme in terms of economics 

and set point variability, the rRTO appears to show only small economic deterioration and set point variability (recall 

that tRTO is an idealistic scenario as discussed above). The latter is desirable from a controllability standpoint as the 
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controller is put under less burden while maintaining relatively inexpensive process economics. Finally, the price 

robustness of the rRTO appears to have an effect under the quickly fluctuating daytime price profiles explored herein, 

which are typical in the diurnal operation of power plants. Again, the use of the lv-PE layer to provide robustness 

provides performance benefits with respect to our work in Chapter 4; these are reflected in the improvement rRTO 

provides over nRTO with respect to cost, resource use, and emissions shown in Table 6-2 and Figure 6-7. 

6.4. Summary 

This work presents the first estimation scheme for the RTO of PCC systems under uncertainty. This is achieved 

through the flue gas composition and activity coefficients; however, the scheme is stated generically such that it can 

be applied to uncertainties that are identifiable given the measurements available. Additionally, the lv-PE approach is 

deployed, which is designed to abate the propagation of measurement noise to parameter estimates. lv-PE finds the 

best subset of measurements for each estimation task and filters high-error estimates, resulting in better estimation 

accuracy and precision over time. This is also the first noise-abatement data processing scheme deployed in the 

literature for PCC. The performance of the proposed schemes is assessed in terms of the steady-state economic and 

environmental outcomes. Furthermore, a robust RTO along with an update strategy for the diurnal operation of PCC 

systems are proposed to be used jointly with the lv-PE scheme, which serves to quantify the parametric uncertainty. 

The findings herein indicate that the lv-PE schemes are more successful in their estimation with respect to the 

traditional DR scheme and approach the true economic optima with an ~8% loss compared to a known parameter 

case; this is contrasted with ~34% loss for the DR scheme. Moreover, the emissions and solvent consumption of the 

lv estimation scheme was also found to be consistently lower than the DR/estimation scheme. The results indicate 

that, while estimation scheme with DR can work well, the use of lv-PE can significantly improve the system 

performance. Furthermore, the RTO with lv-PE can come very close to the theoretical limit (i.e., RTO with true 

parameter knowledge), thus resulting in nearly optimal performance observed in previous studies where uncertainties 

were left unaddressed. Over the period tested, the present study also found that the use of the rRTO updating strategy 

for periods of high price fluctuations can result in cost savings of about ~1.4% and up to ~80% set point variability 

reduction over the two-step approach. All case studies observe economic improvements of real-time decision-making 

on long timescales. With respect to our previous work (Patrón and Ricardez-Ssndoval, 2022a), the results herein 

indicate that a simple PE layer is insufficient to consistently provide high-quality operating points in noisy 

environments with fluctuating economics; this is seen through consistent improvements in cost, environmental 

performance, and resource use. Accordingly, the proposed schemes impart the necessary robustness to deal with these 

realistic scenarios. 
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7. Partial Modifier Adaptation 

In this work, we propose an MA variant for frequently disturbed periodic systems. Instead of adapting the MA problem 

with respect to all process inputs modifiers, the subset of modifiers is chosen that have the largest economic effects 

on the operating point. The proposed approach is shown to be a special case of dMA where the modified directions 

are limited to only include single inputs. While past approaches like dMA have used dimensionality reduction to 

address plant-model mismatch in many-input systems, we propose that dimensionality reduction can also be used in 

frequently-disturbed periodic systems, which has not been previously investigated in the context of dMA. The 

decreased experimental burden enabled by dimensionality reduction enables quicker action in the proposed approach. 

Moreover, an ancillary optimization problem is also proposed, which uses available plant and gradient information to 

drive the system to constraint adhering regions between MA iterations. To the authors' knowledge, the work presented 

in this study is the first dMA scheme to choose modification directions based on both model and plant (as opposed to 

only model) economics; thus, choosing modification directions based on plant knowledge (i.e., not solely based on 

model quantities). Moreover, it is the first dMA approach to address the effect of frequent periodic disturbances. This 

is also the first MA study in which constraint satisfaction during modifier refinement has been addressed through an 

optimal approach. Algorithms are outlined to integrate the partial modification and constraint satisfaction problems 

into a joint scheme referred from henceforth as partial modifier adaptation (pMA). The pMA algorithms determine: 

1) which inputs to use for adaptation such that perturbation time is reduced, 2) when and by how much to adjust the 

operating point to ensure constraint satisfaction, 3) the number of directions to modify for a given disturbance 

frequency. Using the proposed method, the system can approach the economic optimum before the occurrence of a 

new disturbance while improving constraint satisfaction at each iteration. The proposed scheme is evaluated through 

two case studies, which investigate the effect of number of modifiers, disturbance period, and filtering on cost 

optimality and constraint satisfaction.  

This work is structured as follows: Section 7.1 reviews the standard MA formulation, implementation procedure, and 

assumptions in this work; Section 7.2 builds on this formation and provides the pMA formulation, the constraint 

adjustment formulation, pMA properties, determination of modification directions, and corresponding algorithms; 

Section 7.3 tests the pMA schemes in a variety of systems; and conclusion are outlined in Section 7.4. 

7.1. Modifier Adaptation 

The standard steady-state economic optimization problem is formulated as follows: 
min
𝒖𝒕

𝜙@ 
𝒇(𝒙𝒕, 𝒖𝒕, 𝒅𝒕) = 0 
𝒈(𝒙𝒕, 𝒖𝒕, 𝒅𝒕) ≤ 0 
𝒖𝒍𝒃 ≤ 𝒖𝒕 ≤ 𝒖𝒖𝒃 

(7-1)  

where 𝒙𝒕 ∈ ℝB&, 𝒖𝒕 ∈ ℝB), and 𝒅𝒕 ∈ ℝB1 denote the model-predicted process states, inputs, and measured/estimated 

disturbances, respectively, at time 𝑡 (i.e., the current time at which the solution will be conveyed to the plant). 𝜙@ ∈ ℝ 

denotes economic objective function (e.g., steady-state cost, energy consumption); in this work we take the convention 

of minimization, however maximization is equally valid through the requisite reformulations.	𝒇: ℝB) ×ℝB1 → ℝB& 

denotes steady-state process model, which maps the disturbances and inputs to the states (this model must fulfil the 
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adequacy conditions like a positive definite Lagrangian Hessian matrix as outlined in Marchetti et al. (2009)). 𝒖𝒍 ∈

ℝB) and 𝒖𝒖 ∈ ℝB) denote the lower and upper bounds, respectively, for the process inputs. 𝒈:ℝB& ×ℝB) ×ℝB1 →

ℝB* denotes the process inequality constraints (e.g., grade requirements, safety specifications). Formulation (7-1) does 

not address uncertainty and is susceptible to model inaccuracies as 𝒇 may not fully match the true plant 𝒇𝒑. 

Accordingly, MA adjusts the inequality constraints as follows: 

𝒈𝑴𝑨,𝒕 ≔ 𝒈(𝒖𝒕, 𝒅𝒕) + 𝜺𝒈,𝒕 + 𝝁𝒈,𝒕n (𝒖𝒕 − 𝒖𝒕^𝟏) (7-2)  

where 𝜺𝒈,𝒕 ∈ ℝB* are 0th order modifiers (i.e., bias terms) and 𝝁𝒈,𝒕 ∈ ℝB)×B* are 1st order modifiers (i.e., gradient 

correction terms). Moreover, 𝒖𝒕^𝟏 ∈ ℝB) denotes the inputs from the previous MA execution with which the plant is 

operating prior to solving the updated MA problem. The 1st order modifiers, as will be explained later in this section, 

capture the difference between plant and model gradients (i.e., gradient error); hence the use of an input difference in 

equation (7-2). Additionally, MA modifies the objective function as follows: 

𝜙H1,@ ≔ 𝜙@ + 𝝁𝝓,𝒕n 𝒖𝒕 (7-3)  

where 𝝁𝝓,𝒕 ∈ ℝB) are 1st order modifiers. Note that the objective function is only adapted in the constraint gradients 

with respect to the decision variables (as opposed to the difference between the inputs and previous inputs). This 

occurs as objective bias terms (𝜺𝝓,𝒕) and modifiers with respect to prior inputs (𝝁𝝓,𝒕n 𝒖𝒕^𝟏) would be constant terms, 

thus would not contribute to the objective function as they would contribute to the feasible region via the constraints 

in equation (7-2) (Marchetti et al., 2016). 

Plant quantities are denoted with subscript 𝑝 while model quantities are denoted with the subscript 𝑚. The 0th order 

modifiers are the difference between the plant and model constraint predictions at the pre-update operating point 

defined by the previous MA iteration, defined as follows: 

𝜺𝒈,𝒕 = 𝒈𝒑,𝒕^𝟏 − 𝒈𝒎,𝒕^𝟏 (7-4)  

where 𝒈𝒑,𝒕^𝟏 ∈ ℝB* and 𝒈𝒎,𝒕^𝟏 ∈ ℝB* denote the plant and model constraints under the inputs (𝒖𝒕^𝟏) from the 

previous MA execution. Similarly, the 1st order modifiers are the difference between plant and model gradient 

predictions at the current time, i.e., 

𝝁𝒈,𝒕 = 𝑱𝒈𝒑(𝒖𝒕3𝟏) − 𝑱𝒈𝒎(𝒖𝒕3𝟏) (7-5)  

𝝁𝝓,𝒕 = ∇𝒖𝒕3𝟏𝜙% − ∇𝒖𝒕3𝟏𝜙" (7-6)  

where ∇𝒖𝒕3𝟏 denotes the gradient operator applied to scalar-valued plant and model economic functions (𝜙% and 𝜙" , 

respectively) at the operating point corresponding to 𝒖𝒕^𝟏. 𝑱𝒈𝒑(𝒖𝒕3𝟏) ∈ ℝ
B*×B) and 𝑱𝒈𝒎(𝒖𝒕3𝟏) ∈ ℝ

B*×B)  denote, 

respectively, the Jacobian matrices of the plant and model constraints with respect to the inputs at 𝒖𝒕^𝟏. The modifiers 

in equations (7-5) and (7-6) are calculated by perturbing the inputs around the operating point (i.e., corresponding to 

𝒖𝒕^𝟏) and using a gradient estimation method. For this study, finite difference approximation (FDA) is used as it has 
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been found to perform adequately in past studies (Marchetti et al., 2016); however, other techniques exist, which have 

been previously compared in the literature (Mansour and Ellis, 2003). Accordingly, the gradients from FDA, which 

populate the Jacobian and gradients in equations (7-5) and (7-6) are defined as follows: 

𝜕𝑔*
𝜕𝑢j

=
𝑔*,j,%u&@ − 𝑔*,B'"

𝛿𝑢j
																																																																								∀𝑖 ∈ ø1,… , 𝑛?ù,				∀𝑗 ∈ {1,… , 𝑛E} (7-7)  

𝜕𝜙
𝜕𝑢j

=
𝜙j,%u&@ − 𝜙B'"

𝛿𝑢j
																																																																																																													∀𝑗 ∈ {1,… , 𝑛E} (7-8)  

where 𝛿𝑢j denotes a small change (i.e., a perturbation) in the jth input 𝑢j. Note that the subscript 𝑝𝑒𝑟𝑡 and 𝑛𝑜𝑚 refer 

to the perturbed (i.e., post-perturbation) and nominal (i.e., pre-perturbation) quantifies, respectively.  

Furthermore, modifiers are also passed through first-order filters to abate the effect of measurement noise and ensure 

a smooth convergence to the true plant optimum; this also prevent sudden operating point changes that may be 

impractical from an instrumentation perspective (i.e., overly aggressive control actions). The filters are defined as 

follows: 

𝜺𝒈,𝒕
𝒇 = (𝑰𝒏𝒈 − 𝝀𝜺)𝜺𝒈,𝒕

𝒆 − 𝝀𝜺𝜺𝒈,𝒕^𝟏
𝒇  (7-9)  

𝝁𝒈,𝒕
𝒇 = È𝟏B*×B) − 𝝀𝒈É⨀𝝁𝒈,𝒕

𝒆 − 𝝀𝒈⨀𝝁𝒈,𝒕^𝟏
𝒇 																																																																							∀𝑗 ∈ {1,… , 𝑛E} (7-10)  

𝝁�,𝒕
𝒇 = (𝑰𝒏Q − 𝝀�)𝝁�,𝒕

𝒆 − 𝝀�𝝁�,𝒕^𝟏
𝒇  (7-11)  

where 𝝀𝜺 ∈ ℝB*×B* and 𝝀� ∈ ℝB)×B) are diagonal weighting matrices, which act on their respective modifers via 

matrix multiplication. The 𝑒 and 𝑓 superscripts denote estimated (via FDA) and filtered modifiers, respectively. 

Moreover, 𝝀𝒈 ∈ ℝB*×B) is a nonzero weighting matrix and 𝟏B*×B) ∈ ℝ
B*×B) is a matrix of ones; these act on its 

modifiers via the element-wise multiplication ⨀. The elements of the filter matrices 𝜆 ∈ [0,1) are user-defined tunable 

parameters that determines the rate of convergence of the MA scheme. 	

Figure 7-1 illustrates the standard MA procedure whereby the filtered modifiers are initialized at zero, 𝑛E perturbations 

occur, modifiers are calculated and filtered, the operating point is updated, and iterative refinement of the modifiers 

occurs.  
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Figure 7-1: Depiction of the standard MA algorithm. 

The standard MA procedure as depicted in Figure 7-1, and all the methods presented hereafter, are subject to the 

following assumptions for this work: 

1. The plant experiences periodic disturbance (i.e., they occur at fixed time intervals). 

2. Uncertain model parameters and their distributions are unknown as the plant only contains structural 

mismatch. 

3. Disturbances can be readily detected. 

Assumption 1 is applicable to many plants whereby inlet raw material grades are updated on a regular basis. These 

are treated as disturbances, which vary diurnally, seasonally, or according to upstream production schedules. Examples 

of periodic disturbances include: energy systems (industrial boilers: Yip and Marlin, 2004), chemical plants (ethylene 

production: Tian et al, 2013; polyamine production, distillation: Pan and Lee, 2003), biological systems 

(nitrification/denitrification: Kornaros et al., 2012), and agricultural systems (greenhouse: Pawlowski et al., 2011). 

Assumption 2 is generally the case in models that are not mechanistic whereby simplifying assumptions are made for 

the model to be solvable. A process operator may deliberately choose to omit phenomena from a process model to 

make it more parsimonious or the modeler may have formulated a mismatched model as complex analytical 

expressions can cause problems in optimization programs. In any case, most models have some degree of structural 

mismatch. Assumption 3 assumes that disturbance/steady-state detection is readily available; this means that the 

operating mode (i.e., transient or steady) can be ascertained at any given time. While this is a non-trivial problem, it 

is outside the scope of the current study. Examples of disturbance/steady-state detection use test statistics (Cao and 

Rhinehart, 1995), Monte Carlo sampling (Hou et al., 2016) and Wavelet transforms (Jiang et al., 2003). 
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7.2. Partial Modifier Adaptation 

A new variant on the standard MA scheme outlined in Section 7.1 is proposed whereby only some input modifiers are 

continually refined; thus, achieving quicker action in the presence of frequent periodic disturbances. This scheme is 

denoted as partial modifier adaptation (pMA) and is depicted in Figure 7-2. 

 
Figure 7-2: Depiction of the pMA algorithm. 
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7.2.1. pMA Formulations and Algorithm 

As shown in Figure 7-2, there are three distinct operations that can occur within the proposed algorithm. Prior to the 

first pMA iteration, initialization occurs whereby the filtered modifier values are defined as zero and the number of 

gradient modifiers 𝑛) is chosen; the choice of this term is discussed in section 7.2.3. Furthermore, we introduce 𝜶 and 

𝑎"#$, which are defined for the operating point adjustment at the outset; these are discussed in depth later. For 𝑡 = 0 

the MA procedure proceeds as usual through the full MA (i.e., red block in Figure 7-2); 𝑛E perturbations are made 

and the corresponding modifiers 𝜺𝒈,𝒕
𝒇 , 𝝁𝒈,𝒕

𝒇 , and 𝝁�,𝒕
𝒇  are computed as depicted in Figure 7-2.  

After every operating point update, the new operating point is checked for constraint violations. If violations are 

detected, the algorithm proceeds through the operating point adjustment (blue block in Figure 7-2), which is discussed 

later. If no violations are present, the system is checked for any new disturbances; a new disturbance would trigger 

the full adaptation procedure as depicted in Figure 7-2, otherwise the partial adaptation scheme is engaged as depicted 

in the green block in Figure 7-2.  

Assuming no disturbances and no constraint violations, the partial adaptation can begin after the initial iteration (i.e., 

𝑡 > 0). The modifiers corresponding to 𝑛) ∈ {ℤS: 𝑛) < 𝑛E} inputs are iteratively refined; these are chosen based on 

their impact on the economic predictions of the MA problem such that the inputs with the largest effect are chosen. 

This leverages the fact that not all inputs have the same effect on optimality and choosing the appropriate inputs will 

yield a sufficiently good operating point without taking as much perturbation time. To evaluate the impact of 

individual input modifiers on economic predictions, the “modified costs” are introduced herein to choose which 𝑛) 

inputs modifiers should be used. Since all modifiers are calculated in the first full MA iteration, they can be used to 

make process predictions at the current operating point; accordingly, the modified costs are defined as follows: 

𝜙̂j,@ ≔ 𝜇�,@,j𝑢@,j 																																																																																																																								∀𝑗 ∈ {1,… , 𝑛E} (7-12)  

where the modified costs are sorted into the ordered set (i.e., sequence) 𝑈 = {𝜙̂j,@}jA=
B)  and 𝒖𝒐𝒓𝒅 ∈ ℝB) is the 

corresponding vector of inputs sorted by modified cost. The modified cost in equation (7-12) is used to rank possible 

single-input modifications using the most recently available modifiers. Accordingly, the pMA scheme uses both plant 

and model information to choose the inputs with respect to which the cost gradient has the largest gradient error (i.e., 

the largest modifiers). This modifier is then multiplied by the most recent input value to normalize gradient with 

respect to the input magnitude. Accordingly, the inputs that are chosen by equation (7-12) are those that will lead to 

the largest corrections in the cost gradient. The modified cost of each input will be different owing to their distinct 

values and gradients. However, a situation may arise in which the difference is relatively small. Even if the small 

difference is owed to numerical or process noise, both inputs in question will have similar effects on plant-model 

mismatch so the choice of either input will have similar adaptation effects on the system. 

With the minimization convention, the first 𝑛) elements of 𝒖𝒐𝒓𝒅 are stored in the vector �𝒗 = 𝒖𝒐𝒓𝒅,𝟏:BR� ∈ ℝ
BS as 

these inputs yield the lowest modified costs; these correspond to the set of modified costs 𝑉 = {𝑈: 𝑗 ≤ 𝑛)}. Moreover, 

the remaining 𝑛E − 𝑛) elements of 𝒖𝒐𝒓𝒅 are stored in the vector �𝒘 = 𝒖𝒐𝒓𝒅,BR:B)� ∈ ℝ
(B)^BS); these correspond to 

the set of modified costs 𝑊 = {𝑈: 𝑗 > 𝑛)}. In other words, the input variable vector is decomposed into two 
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subvectors. 𝒖 = [𝒗 𝒘]n and the sequence of modified costs is such that 𝑈 = 𝑉 ∪𝑊. The inputs in 𝒗 are those whose 

modifiers lead to the best predicted economics (i.e., the least predicted costs); thus, only the modifiers corresponding 

to 𝒗 are adapted with respect to in the next partial MA execution. Thus, the partial adaptation objective function 

becomes: 

𝜙%H1,@ ≔ 𝜙@ + 𝜸𝝓,𝒕n 𝒗𝒕 +𝝎𝝓,𝒕
n 𝒘𝒕 (7-13)  

where 𝜸𝝓,𝒕 ∈ ℝBS and 𝝎𝝓,𝒕 ∈ ℝ(B)^BS) are the 1st order objective function modifiers corresponding to 𝒗 and 𝒘, 

respectively. Accordingly, like the input vector, the vector of objective function modifiers is decomposed into two 

subvectors 𝝁� = [𝜸� 𝝎�]n. 

Likewise, the adapted constraints become: 

𝒈𝒑𝑴𝑨,𝒕 ≔ 𝒈(𝒖𝒕, 𝒅𝒕) + 𝜺𝒈,𝒕 + 𝜸𝒈,𝒕n (𝒗𝒕 − 𝒗𝒕^𝟏) + 𝝎𝒈,𝒕
n (𝒘𝒕 −𝒘𝒕^𝟏) (7-14)  

where 𝜸𝒈,𝒕 ∈ ℝBS×B* and 𝝎𝒈,𝒕 ∈ ℝ(B)^BS)×B* are the 1st order constraint modifiers corresponding to 𝒗 and 𝒘, 

respectively. Accordingly, like the input vector, the matrix of gradient modifiers is decomposed into two block 

matrices, i.e., 𝝁𝒈 = [𝜸𝒈 𝝎𝒈]n. 

At each partial adaptation iteration, the members of 𝑉 and 𝑊 (and their corresponding vectors 𝒗 and 𝒘) are refined 

according to the ranked modified cost sequence in equation (7-12) as described above. This sequence is updated using 

the newly updated economic function gradient modifiers (𝜸�) along with the outdated modifiers (𝝎�). This allows 

for iterative refinement of the inputs that have the largest effect on economic function adaptation until convergence to 

their final modifiers and final membership of 𝑉 and 𝑊. This process of refinement is depicted in the “rank inputs” 

block of Figure 7-2. We note that, the ability to change modification directions through 𝑉 and the modified cost is 

present in pMA but not the standard dMA (Costello et al., 2016); the latter can yield myopic behaviour owed to its 

directional inflexibility. 

If a disturbance is detected after any partial adaptation iteration, the previous members of 𝑉 and 𝑊 are no longer valid 

as the operating point has changed and the gradients may be different in the new operating neighbourhood. This 

triggers the disturbance block in Figure 7-2 that toggles between the full and partial adaptation schemes. The toggling 

of schemes allows for a full set of modifiers 𝝁� and 𝝁𝒈 to be computed such that an entirely new 𝑈 and its 

corresponding 𝒖𝒐𝒓𝒅 can be found at the new operating point.  

As only plant economics are considered in the input ranking equation (7-12), constraint satisfaction is unaddressed at 

each partial adaptation iteration. Furthermore, constraint satisfaction upon convergence is not guaranteed when using 

partial modification (i.e., no KKT matching). Even with consideration of the Lagrangian as in directional MA 

(Costello et al., 2016), iteration satisfaction is not guaranteed. Indeed, full MA schemes (i.e., not only pMA) only 

ensure constraint satisfaction at convergence; hence, the “path” to the optimum may be subject to iterations where 

violations occur (Marchetti, 2022). Thus, recourse action is needed to avoid constraint violations at pMA iterations 

and upon convergence where these violations could lead to safety or economic concerns (e.g., violation of temperature 
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limits or production below purity specification). In systems with frequent disturbances, it is advantageous to satisfy 

constraints along the path as convergence to a final steady state may never be achieved. 

To minimize these iterative constraint violations, operating point “adjustments” ancillary problems are proposed to be 

solved after every adaptation iteration where constraint violations are detected. These are depicted in the blue block 

of Figure 7-2. The adjustment problems use process measurements and the plant gradient data available from the 

partial adaptation perturbations to formulate of a quadratic problem (QP) that reduces or altogether closes the 

constraint violation gap.  

The partial adaptation section of the algorithm features adjustments occurring after the solution is applied to the plant. 

As shown in Figure 7-2, these adjustments only occur if a constraint violation is detected. Once this occurs, the 

following problem is solved: 

min
∆𝒗
‖𝒈T𝒂𝒄𝒕‖𝑸𝑨

, 
𝒈T = 𝒈𝒑 + 𝑱𝒈(𝒗𝒕3𝟏)∆𝒗 
𝒈T𝒂𝒄𝒕 = 𝑨𝒈T 
𝒈T𝒊𝒏 = (𝑰B* − 𝑨)𝒈T 
𝒈T𝒊𝒏 ≤ 𝟎 
𝑸 = 𝑑𝑖𝑎𝑔(𝑔%,6 ⋯ 𝑔%,B*) 

𝑨 = 𝑑𝑖𝑎𝑔(𝑎6 ⋯ 𝑎B*): 𝑎* = ü
1 𝑔%,* > 0
0 𝑔%,* ≤ 0 

−𝜶 ≤ ∆𝒗 ≤ 𝜶 

(7-15)  

where 𝒈T and 𝒈𝒑 ∈ ℝB* are the linear model-predicted and current (measured) plant operating point for all constraints. 

𝑱𝒈(𝒗𝒕3𝟏) ∈ ℝ
B*×BS is the Jacobian of the constraints with respect to the subset of process inputs used in the partial 

adaptation step; this is constructed using the most recent partial plant perturbation results. Using the most recently 

calculated plant Jacobian, a local approximation of the constraint-input relationship is generated such that small input 

adjustments can be computed. This differs from a constraint adaptation scheme (e.g., Chachuat et al., 2009) since it 

uses a linear model with a satisfaction objective as opposed to a nonlinear model with an economic objective; 

moreover, the adjustment step is used to compliment the pMA problem defined above, which acts on an economic 

basis. The model-predicted constraint vector is partitioned into active and inactive constraints using the matrix 𝑨 ∈

ℝB*×B* and its identity matrix difference 𝑰 − 𝑨 where 𝑰B* ∈ ℝ
B*×B*. 𝑨 contains diagonal identity elements to indicate 

if the plant constraint 𝑔%,*∀𝑖 ∈ {1,… , 𝑛?} has been violated. Using the 𝑨 matrix, the inactive constraint entries are set 

to zero in the vector 𝒈T𝒂𝒄𝒕 ∈ ℝB*; conversely, the active constraint entries are set to zero in the vector 𝒈T𝒊𝒏 ∈ ℝB*. 

Using the inactive constraint predictions 𝒈T𝒊𝒏, the linearized model can be used such that they remain inactive using 

the inequality constraint in formulation (7-15). Moreover, the objective function in (7-15) features a minimization 

term for the active constraints 𝒈T𝒂𝒄𝒕 whereby their predicted value is minimized; this serves to bring their value to zero 

as constraints in MA are posed such that the RHS is zero. This objective is weighted by a diagonal matrix of the 

constraint violation magnitudes for the active constraints 𝑸𝑨 ∈ ℝB*×B* ; this way larger violations are prioritized over 

smaller violations. The decision variable for this problem is the vector of process inputs adjustments ∆𝒗 ∈ ℝBS, which 

are bounded by the user-specified 𝜶 ∈ ℝBS mentioned in the initialization section above. The adjustment bounds are 

designed to be small through the choice of 𝜶, thus requiring little computational or transient time. Also required in 
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initialization are the maximum number of constraint adjustments 𝑎"#$; this is imposed on the scheme such that there 

is little delay in returning to the partial adaptation loop. Accordingly, 𝜶 and 𝑎"#$ are user defined but should be small 

(i.e., since they are assumed to be adjustments and not large changes). We note that the disturbance block is checked 

at every iteration of the pMA algorithm as shown in Figure 7-2. Whether or not a constraint violation is detected, 

disturbances must be checked to accommodate for their potential effect of suddenly changing the memberships in 𝑉 

and 𝑊. The timeliness of this check is ensured by capping the number of adjustment iterations at 𝑎"#$. 

While the operating point adjustment problem (7-15) focuses solely on constraint attenuation, the main pMA objective 

in equations (7-13) and (7-14) is still to minimize plant-model mismatch through its modifiers. The reason for the 

additional adjustments is to decrease potential constraint violations in the modifier refinement process whereby the 

plant-model mismatch is not accounted for to its full possible extent within the pMA paradigm. Through the 

adjustment subproblem (7-15), constraint-violating operating points may be abated quickly. Firstly, the measurement 

of 𝒈𝒑 serves to localize problem (7-15) in the current constraint-space of the plant. This measurement is updated at 

every adjustment problem iteration such that the local linear prediction of constraints 𝒈T begins at the correct state. 

Additionally, only the inputs contained within 𝒗 are used for the constraint adjustment step as only the local plant 

gradients for these inputs are updated as part of the pMA algorithm. Despite no guarantee being available for whether 

violation will be avoided (this would require controllability of all states via all inputs); problem (7-15) uses readily 

available information via 𝒈𝒑 and 𝑱𝒈(𝒗𝒕3𝟏) as opposed to other constraint-feasibility approaches that require additional 

data be estimated from the system (e.g., Hessian matrices). Note that problem (7-15) constitutes a discrete time one-

step-ahead linear-quadratic regulator whereby no control-move suppression terms are used, and the state matrix is an 

identity matrix. In principle, such a linear quadratic regulator is solvable for an explicit feedback law using the 

dynamic Ricatti equation; however, the inactivity constraints prohibit this for the system shown in equation (7-15). 

The pMA algorithm is summarized as follows: 

pMA operation: 

 Initialize: define 𝑛), 𝜶, 𝑎"#$, 𝝁𝒈,𝒕^𝟏
𝒇 = 𝟎, 𝜺𝒈,𝒕^𝟏

𝒇 = 𝟎, 𝝁�,𝒕^𝟏
𝒇 = 𝟎.	

1.  For 𝑡 = 0: perform full MA and apply to plant. 

2.  Are constraints being violated? 

a.  Yes: 𝑎 = 0, activate constraint adjustment, go to step 3. 

b.  No: proceed to step 5. 

 Operating point adjustments 

3.  Solve problem (15) and apply to plant. 

4.  𝒈𝒗𝒊𝒐𝒍 < 𝟎 or 𝑎 > 𝑎"#$? 

a.  Yes: Proceed to step 5. 

b.  No: 𝑎+= 1, return to step 3. 

5.  New disturbance? 

a.  Yes: 𝑡+= 1, activate full MA, go to step 6. 
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b.  No: 𝑡+= 1, activate partial adaptation, go to step 9. 

 Full adaptation 

6.  Perturb 𝑛E inputs. 

7.  Estimate 𝑛E modifiers and filter. 

8.  Solve full MA problem using equations (2) and (3). Return to step 2. 

 Partial adaptation 

9.  Perturb 𝑛) inputs. 

10.  Estimate 𝑛) modifiers and filter. 

11.  Re-evaluate “modified costs” in equation (12) and refine modifiers in 𝒗. 

12.  Solve partial adaptation using equations (13) and (14). 

13.  Has the scheme converged to an operating point 

a.  Yes: end. 

b.  No: continue refining modifiers and return to step 2. 

The benefit to the proposed pMA approach is twofold: firstly, using 𝑛) < 𝑛E input modifiers result in a faster acting 

scheme that prioritizes economic modification; secondly, the adjustment step will enable iterates to be constraint 

abiding without any additional information (e.g., Hessian matrix). On the other hand, the adjustment step in the 

proposed pMA scheme is designed to act quickly and only take small steps. Accordingly, the system may not be able 

to close the constraint gap if the adjustment step begins far from the constraint as the number of adjustment iterations 

is limited in quantity and size. Crucially, the selection of 𝑛) is not a trivial and an algorithm that leverages disturbance 

periodicity to determine the number of modification directions is presented in Section 7.2.3.  

We note that pMA is not mutually exclusive other approaches in the literature; indeed, the modified cost metric 

introduced in this work can be used similarly to the sensitivity matrix in dMA to compute privileged directions (i.e., 

not limited to partial derivatives). Moreover, the dual methods and the use transient measurements introduced by 

Costello et al. (2016) and François and Bonvin (2014), respectively, can also be incorporated into the pMA scheme 

proposed in this work. 

7.2.2. pMA Properties 

The vector 𝒗𝒕 of inputs used in the pMA approach can alternatively be represented by the block matrix 𝑽𝒕 ∈ ℝB)×BS, 

i.e.: 

𝑽𝒕 = &
𝑑𝑖𝑎𝑔(𝑢6, … , 𝑢BS)
𝟎(B)^BS)×BS

' (7-16)  

where 𝟎(B)^BS)×BS ∈ ℝ
(B)^BS)×BS denotes a zero matrix. Similarly, dMA defines its directions using the block matrix 

𝑼𝒕 ∈ ℝB)×BS, i.e.: 

𝑼𝒕 = [𝜹𝒖6 ⋯ 𝜹𝒖BS] (7-17)  
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where (𝜹𝒖j ∈ ℝB))	∀𝑗 ∈ {1,… , 𝑛)} are the vectors containing input directions whereby a subset of the inputs elements 

is chosen for each direction. From equations (7-16) and (7-17), it is evident that 𝑽𝒕 is a special case of 𝑼𝒕 whereby 

only the diagonal elements in the top block are used. This represents an analogue to multivariable calculus whereby 

partial derivatives represent a special case of directional derivatives. Since pMA implies a special case of dMA, some 

properties of the latter can be applied to pMA.  

Theorem 1: (Plant optimality for chosen input adaptations). Consider the pMA algorithm without measurement noise 

and perfect estimation of plant derivatives in 𝑛) inputs. If the algorithm converges to the fixed point 

(𝒖>, 𝜺𝒈,>, 𝜸𝒈,>, 𝜸𝝓,>), this corresponds to a KKT point of the modified optimization problem in equations (7-13) and 

(7-14), then 𝒖> will be optimal for the plant in these 𝑛) directions. 

Proof: See Costello et al. (2018), Theorem 3.1. ∎ 

An advantage of pMA is that inputs are chosen based on readily available plant data whereby the information 

necessary to compute the modified costs is found as part of the pMA algorithm during the perturbation step. Instead 

of using model sensitivities with respect to uncertain parameters to determine 𝑼𝒕, the modified cost metric in equation 

(7-12) uses the cost gradient modifiers (i.e., the plant-model cost gradient error) to determine the inputs to which the 

cost is most sensitive (i.e., 𝑽𝒕). These modifiers are multiplied by the latest-acquired input values to normalize their 

magnitude; thus, pMA chooses the directions of highest normalized input error. Note that Costello et al. (2016) 

normalize the sensitivity matrix with uncertain parameter ranges; however, this does not abide by assumption 2 

(Section 7.1). Moreover, the approach presented offers benefits with respect to the active approach proposed by 

Singhal et al. (2018); namely, it does not rely on parameter uncertainty being present or access to a probability density 

as stated in assumption 2 (Section 7.1). With the approach presented in this work, we only consider the cost gradient 

sensitivities, which are equivalent to the Lagrangian gradient in the case of no active constraints. Only cost sensitivities 

are considered (as opposed to Lagrangian sensitivities) because the plant Lagrange multipliers cannot be readily 

measured.  

7.2.3. Disturbance Periodicity and the Number of Modification Directions 

The aforementioned weaknesses in the standard MA scheme can be seen most saliently in equations (7-7) and (7-8), 

which depend on the index ∀𝑗 ∈ {1,… , 𝑛E} and correspond to the perturbation block in Figure 7-1. As previously 

noted, these perturbations delay the operating point updates as they may be time-consuming. To analyze the refinement 

time that the MA scheme requires, we introduce a user-defined perturbation time 𝜏 (i.e., the required to perform a 

single perturbation), a system-defined settling time	𝛵 (i.e., the time required to reach a new operating point upon 

modifier refinement), and an externally defined disturbance period ∆𝑇 (i.e., the time between subsequent 

disturbances). The use of different 𝜏 and 𝛵 reflects the fact that small perturbations (of 𝜏 duration) may not require the 

same settling time as an operating point change (of	𝛵 duration). This occurs as perturbations are meant to be small 

(i.e., a fraction of an input’s value) while operating point changes are potentially large (i.e., a completely different set 

of input values). Accordingly, if 𝑛E, 𝜏, or 𝛵 are large, the MA refinement procedure will be time-consuming. 

Furthermore, if ∆𝑇 is small, convergence to the true optimum may not occur before a new disturbance is imposed. 



 136  

That is, if the MA scheme requires 𝑛H1 iterations to converge to the optimum, the following inequality must hold if 

convergence is to occur: 

𝑛H1𝑛E𝜏 + 𝑛H1𝛵 ≤ ∆𝑇 (7-18)  

However, this inequality may not be fulfilled if 𝑛E and 𝜏 are large, or ∆𝑇 small as mentioned previously. By treating 

equation (7-18) as an equality we can express the maximum number of MA iteration necessary to reach convergence 

as follows: 

𝑛H1 =
∆𝑇

𝑛E𝜏 + 𝛵
 (7-19)  

This ratio is not practically useful as many of these quantities are not known a priori; however, it serves for theoretical 

discussion of the MA schemes in periodic settings. In contrast to MA equation (7-19), the number of iterations to 

reach convergence for pMA is defined as follows: 

𝑛%H1 =
∆𝑇

𝑛)𝜏 + 𝛵
 (7-20)  

since 𝑛) < 𝑛E perturbations are performed on most iterations, a larger number of pMA iterations may be performed 

(i.e., 𝑛%H1 > 𝑛H1). This results in quicker modifier refinement, which is the working principle of pMA. These 

refinements will work towards the directional optimum given the chosen modification directions; as a full set of 

modifiers is not refined until convergence, the pMA scheme will not converge to the plant KKT points as noted for 

dMA (Costello et al., 2016). However, the directional optimum will certainly be better than a “do-nothing” case and 

convergence to this optimum may occur more quickly (i.e., within a given disturbance period). 

Recalling equations (7-19) and (7-20), which quantify the number of MA and pMA iterations that a given scheme 

must perform to reach convergence, we propose a scheme-independent metric to assess the efficacy of various pMA 

and MA schemes on a given system. While the number of modified inputs is scheme-dependent and the settling time 

is not known a priori, thus rendering equations (7-19) and (7-20) impractical; they elucidate how the number of 

iterations of each scheme is dependent on the disturbance period (i.e., 𝑛%H1 = 𝑓(∆𝑇)). Thus, for a given plant, the 

best number of inputs modified with respect to can be expressed as piecewise function of the disturbance period: 

𝑛) = +
1																 		∆𝑇 ≤ 𝜁6			
⋮ 										𝜁v < ∆𝑇 ≤ 𝜁vS6
𝑛E																 ∆𝑇 >𝜁B)				

 (7-21)  

where 𝑛) is segmented into 𝑛E regimes such that 𝑛) ∈ {1,… , 𝑛E} can be determined based on prior operation of the 

system. 𝜁j 	∀𝑗 ∈ {1,… , 𝑛E} are the corresponding disturbance period boundaries that define the how many modifiers 𝑗 

are suitable for refinement. According to equation (7-21), the number of inputs to be modified for (thus perturbed) 

could be tuned using the disturbance frequency. Determination of the regime boundaries 𝜁j can be performed through 

preliminary system runs, whereby data are collected for various frequencies such that equation (7-21) can be fully 

defined for a given process; however, this may be impractical. Establishing regimes for 𝑛E also allows for disturbances 

to be approximately periodic. Put concretely, disturbances that have periods within the same period regime use the 

same number of modifiers, thus exact periodicity is not needed for pMA to be applicable. 
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A limitation of dMA is that the number of privileged directions must be pre-specified by the user such that 𝑛) ≤ 𝑛�. 

With the pMA approach, we leverage the periodicity of the disturbances to determine the number of inputs for 

adaptation as a function of the disturbance period. The following algorithm enables the systematic determination of 

𝑛) for a given disturbance period ∆𝑇 under a performance metric 𝑃𝑀 and a minimization convention: 

Determination of 𝒏𝒗 for a disturbance period ∆𝑻 

 Initialize: define 𝑛) = 1, 𝑙 = 1, 𝜶, 𝑎"#$, B, 𝝁𝒈,𝒕^𝟏
𝒇 = 𝟎, 𝜺𝒈,𝒕^𝟏

𝒇 = 𝟎, 𝝁�,𝒕^𝟏
𝒇 = 𝟎. 

1.  Deploy pMA algorithm for 𝑛) modifiers. 

2.  𝐵 disturbance elapsed? 

a.  Yes: Calculate 𝑃𝑀 for 𝐵 previous disturbance period, go to step 3. 

b.  No: 𝑡 ← 𝑡 + ∆𝑡, go to step 2. 

3.  𝑙 > 2? 

a.  Yes: 𝑙+= 1, go to step 4. 

b.  No: 𝑙+= 1, go to step 1. 

4.  𝑃𝑀+ < 𝑃𝑀+^6?  

(7-1)  Yes: 𝑛)+= 1, go to step 1. 

(7-2)  No: 𝑛) = 𝑙 − 1, end. 

The 𝑛)-determination algorithm initial assumes that only one modification direction is being used (𝑛) = 1). The user 

defines an allowable computational budget 𝐵 along with all other pMA operational parameters. Once 𝐵 disturbances 

have elapsed, 𝑅 or 𝑃%&'( can be computed for unconstrained and constrained systems, respectively. After the initial 𝐵 

disturbance periods, another input direction is assumed to be available; hence 𝑛)+= 1. This allows for comparison 

between the previous 𝐵 and the next 𝐵 disturbance periods on the basis of a user-defined 𝑃𝑀 whereby a modification 

dimension is added until there is no significant improvement in the process cost (assuming a minimization convention). 

Examples of performance metrics are provided in the next section for constrained and unconstrained MA-operated 

systems. 

7.3. Case Studies 

The proposed scheme was tested using two case studies: the Williams-Otto CSTR (Williams and Otto, 1960) and the 

forced circulation evaporator (Lee et al., 1989). The former case study explored partial adaptation on a two-input 

system such that the effect of filtering and disturbance period can be isolated and assessed on an entirely economic 

basis. The latter case study provides a setting in which to test partial adaptation on a three-input system with active 

constraints such that the effect of number of adapted inputs and constraint satisfaction can be quantified on process 

economics and throughput, respectively. Moreover, the evaporator also provides a constrained setting in which to 

assess the proposed pMA against dMA. As stated in the introduction, we aim to improve on the aggregate performance 

of MA across many disturbances; hence, showing any iteration is not very instructive. Instead, we introduce the 

following performance metrics (𝑃𝑀), which summarize aggregate process performance over time. 

Accordingly, the cumulative process economics 𝑅($) are calculated as follows: 
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𝑅 =�𝜙v

n:

vA=

 (7-22)  

where 𝑇}(𝑡𝑖𝑚𝑒) is the final scenario length and 𝜙v are the instantaneous process economics at time 𝑘. Additionally, 

the time operating at constraint violating points is used as a measure to directly quantify constraint violation. This is 

defined as follows: 

𝑡)*'+ = � ∆𝑡v
∀v∈{=,…,n:^6}|?9�=

 (7-23)  

where ∆𝑡v are the sampling interval lengths; accordingly, the cumulative time at constraint violation over a test 

scenario is quantified. Furthermore, constraint violations influence the quantity of material processed (i.e., 

throughput); especially in cases where below-specification product may be produced. The cumulative mass of material 

process 𝑚	(𝑚𝑎𝑠𝑠) is defined as follows: 

𝑚 = � 𝑚v
∀v∈{=,…,n:}|?9�=

 (7-24)  

where 𝑚v is the instantaneous mass throughput at time 𝑘 and the expression in equation (7-24) sums over constraint-

satisfying product. Lastly, the cost per mass rate 𝑃%&'( is defined using equations (7-22) and (7-24) as follows: 

𝑃%&'( =
𝑅
𝑚 (7-25)  

The production metrics in equations (7-22)-(7-25) are computed a posteriori to the scenarios tested for each case 

study. 

7.3.1 Williams-Otto CSTR 

The CSTR proposed by Williams and Otto, which is depicted in Figure 5-6 and presented in Section 5.3.2, serves as 

a benchmark for MA. Its small size and nonlinearity make it a good example to examine price variation as a function 

of the operating conditions. 

The model in equation (5-52)-(5-62) captures the complete species dynamics and represents the Williams-Otto plant. 

In addition to this plant model, a simplified steady-state model has also been formulated for the Williams-Otto CSTR. 

The abbreviated model omits species 𝐶 and uses the follow two-reaction scheme to approximate the system: 

𝐴 + 2𝐵
vF→𝐷 + 𝐸:	𝑘6 = (2.189 × 10�)𝑒�

^�=��.�
n;

  (7-26)  

𝐴 + 𝐵 + 𝐷
v!→𝐺:	𝑘, = (4.310 × 106/)𝑒�

^6,;/�
n;

  (7-27)  

where all variables are defined as in Section 5.3.2 and the two-reaction scheme corresponds to the following steady-

state material balances: 

0 = 𝐹1 − 𝐹4𝑋1 − 𝑘6𝑋1𝑋3,𝑊− 𝑘,𝑋1𝑋3𝑋8𝑊 (7-28)  



 139  

0 = 𝐹3 − 𝐹4𝑋3 − 2𝑘6𝑋1𝑋3,𝑊− 𝑘,𝑋1𝑋3𝑋8𝑊 (7-29)  

0 = −𝐹4𝑋8 + 𝑘6𝑋1𝑋3,𝑊− 𝑘,𝑋1𝑋3𝑋8𝑊 (7-30)  

0 = −𝐹4𝑋9 + 𝑘6𝑋1𝑋3,𝑊 (7-31)  

0 = −𝐹4𝑋: − 3𝑘,𝑋1𝑋3𝑋8𝑊 (7-32)  

The inputs to the system are 𝒖 = [𝐹3 𝑇4]n and the disturbance is 𝒅 = [𝐹1]. The nominal input and disturbance values 

for the system are 𝒖𝒏𝒐𝒎 = [6.1 366.15]n and 𝒅𝒏𝒐𝒎 = [1.8]. The inputs have the bounds 𝐹3 ∈ [3,6] and 𝑇4 ∈

[343.15, 373.15] and the economic objective is to maximize the profit produced by the product species. This is 

denoted using the following minimization (note the negative to convert maximization to minimization) objective 

function: 

−𝜙 = 𝐹4(1143.38𝑋8 + 25.92𝑋9) − 76.23𝐹1 − 114.34𝐹3 (7-33)  

The mismatched model in equations (7-28)-(7-32) is deployed using the regular MA and pMA schemes shown in 

Figure 7-1 and Figure 7-2, respectively. Since only two inputs are available in this system, the pMA will only ever 

adapt with respect to one of them while the MA will adapt with respect to both. These competing schemes are 

evaluated on an economic basis using the cumulative profit function shown in equation (7-33) (i.e., 𝑃𝑀 = 𝑅). The 

disturbance variable is changed every period (∆𝑇) from the distribution 𝒅 ∼ [𝒰(0.3,3)]. All necessary 0th order system 

information for MA is assumed to be measurable and sampled every ∆𝑡 = 3	𝑚𝑖𝑛𝑢𝑡𝑒𝑠 = 1	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. The 

perturbation sizes for these inputs are 𝜹 = 0.001𝒖𝒕 (i.e., 0.1% of the current input value) and they are assumed to last 

𝜏 = 50 time intervals. 

Three test scenarios are performed, which feature forty disturbance realizations 𝒅𝒍	∀𝑙 ∈ {1,… , 𝐵}, 𝐵 = 40, each 

occurring every ∆𝑇 sampling intervals, such that the effect of the scheme can be analyzed over a long period of time 

and over a wide range of operating conditions.  

Scenario 1 has ∆𝑇 = 250. The filter matrices in equations (7-9)-(7-11) are assumed to all use an equivalent filter 

constant 𝜆. This filter constant is varied for each simulation, which features a different random disturbance sequence 

for each filter run. This allows for the performance of the scheme to be assessed across a wide array of disturbance 

trajectories.  

Scenario 2 sets ∆𝑇 = 250 and varies the filter constant (𝜆). However, this scenario has the same disturbance sequence 

for all filters runs. This way the efficacy of the scheme with respect to 𝜆 can be extricated from the disturbance 

trajectory. This filter is important in the performance of the scheme as it affects the speed at which the modifiers are 

updated (and can thus inhibit the speed of pMA). 

Scenario 3 has varying disturbance periods (∆𝑇), a filter constant of 𝜆 = 0.01, and the same disturbance sequence for 

each run. This extricates the effect of disturbance frequency on the scheme as it is designed to work best for increased 

frequencies. 
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Results from Scenario 1 are summarized in Table 7-1, where the pMA outperforms the standard MA scheme for small 

filter constants based on the total process revenue. Aside from 𝜆 = 0.01, the benefit of the pMA scheme appears to 

be increasing as the modifiers are filtered less; this suggests that the filters indeed inhibit the speed at which the 

proposed scheme finds an economically preferable operating point. Furthermore, a break-even point between full MA 

and pMA occurs between 𝜆 = 0.075 and 𝜆 = 0.1 whereby full MA is best for higher filtering and pMA for lower. 

This likely occurs as increased filtering inhibits the ability of pMA to act quickly, thus eliminating its advantage over 

full MA. A conflating factor of this scenario is the random and varying disturbance sequence used for each filter run, 

which makes the improvement of the proposed scheme a function of the filter and the specific disturbance sequence; 

to extricate the former from the latter, scenario 2 keeps the same disturbance sequence for all filter runs.  
Table 7-1: Results for all scenarios in the Williams-Otto case study. %𝐼 denotes the percent improvement (difference) in 𝑅 of 

pMA with respect to MA. 

Scenario 1 Scenario 2 Scenario 3 

𝜆 
𝑅 ($) 
MA 

𝑅 ($) 
pMA 

%𝐼 𝜆 
𝑅 ($) 
MA 

𝑅 
pMA 

%𝐼 ∆𝑇 
𝑅	($) 
MA 

𝑅 ($) 
pMA 

%𝐼 

0.01 108,988 111,719 2.50 0.01 106,784 129,272 21.06 150 46,555	 72,673	 56.10	

0.025 113,289 128,535 13.46 0.025 113,289 128,535 13.46 200 63,667	 92,379	 45.10	

0.05 127,230 138,401 8.78 0.05 114,611 128,404 12.03 250 106,784	 129,272	 21.06	

0.075 147,091 152,130 3.42 0.075 116,983 123,814 5.84 300 150,076	 115,675	 −23.26	

0.1 198,767 190,434 −4.19 0.1 122,488 117,857 −3.78     

The results from Scenario 2 are shown in Table 7-1, whereby the trend in improvement of the pMA over the standard 

MA scheme is more clearly appreciable than in Scenario 1 owed to the equivalent disturbance sequence in all filter 

runs. This is also illustrated in the time domain by Figure 7-3, where the cost trajectories corresponding to the filter 

runs are displayed. As shown therein, the respective process revenues of pMA and MA diverge as time progresses. 

This is owed to the accretion of revenue over time and would continue further for longer scenarios. As the filter 

constant is increased, the revenue dynamics of the two implementations become increasingly similar whereby the 

pMA and standard MA show more overlap. As in Scenario 1, a break-even point occurs between 𝜆 = 0.075 and 𝜆 =

0.1 whereby the full MA becomes more favourable than the pMA as increased filtering inhibits convergence speed. 

This scenario illustrates the merit of allowing the pMA to adapt with respect to a single input. As exemplified by better 

performance for lower filter constants, Scenario 2 verifies the notion also observed in Scenario 1 that the advantage 

the pMA has over the standard MA is inhibited by aggressive filtering.  
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Figure 7-3: Profit accretion profiles for Williams-Otto case study, scenario 2, increasing filter constant. 

The results from scenario 3 are also shown in Table 7-1, whereby a trend of increasing improvement of pMA over the 

standard MA is shown for runs with decreasing disturbance periods. This is also depicted transiently in Figure 7-4, 

whereby the revenue trajectories diverge increasingly as the disturbance period decreases (i.e., increased disturbance 

frequency). Note that the plots in Figure 7-4 are compressed/elongated to show the forty disturbance periods in the 

same range despite their varying period. As in the previous scenarios, a break-even point between the two schemes 

exists between ∆𝑇 = 250 and ∆𝑇 = 300. From this, we can conclude that the input-number regime for this system 

from equation (7-21) is as follows: 

𝑛) = ü1										 	∆𝑇 ≤ 250		
𝑛E									 ∆𝑇 >300		  (7-34)  

Once the disturbance period becomes sufficiently large (i.e., infrequent disturbances), the pMA loses its competitive 

advantage of acting quickly as the standard MA has sufficient time to approach and benefit from economically superior 

operating points. Nevertheless, for short disturbance periods, the advantage can be significant (e.g., ∆𝑇 = 150 with 

56.1% cost improvement); this exemplifies the applicability of the scheme for constantly disturbed systems as 

proposed in the outset.  
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Figure 7-4: Profit accretion profiles for Williams-Otto case study, scenario 3, increasing disturbance periods. 

A couple conclusions can be made from the Williams-Otto case. Firstly, the filters are found to inhibit, or conversely 

incite, the pMA scheme to perform better than the MA scheme through quick action. As this is a tuning parameter, 

we conclude that pMA should use as little filtering as possible. Moreover, the disturbance period was found to affect 

the efficacy of the pMA scheme as quick adaptation is more suitable for quick disturbances.  

While the Williams-Otto case-study explored herein is excellent as a benchmark as it has been used in multiple studies, 

it contains inherent features that leave some aspects of pMA unanswered. Firstly, it is a two-input system, which is 

the bare minimum requirement for pMA. While this number of inputs provides a simple way to assess the system, 

most industrial systems have more inputs. In this case study, only one of the two inputs is chosen for partial adaptation; 

in other systems, a subset (as opposed to only one) input can be chosen for this task. Moreover, the Williams-Otto 

optimization problem does not require any inequality constraints to be adapted; hence, the effect of the operating point 

adjustment step was not observed; these aspects will be addressed in the next case study. 

7.3.2 Forced Circulation Evaporator 

The forced circulation evaporator, depicted in Figure 5-4 and presented in Section 5.3.1, is another nonlinear industrial 

system that has been used for multiple model-based control and optimization studies. This system provides a different 

perspective from the previous case study as its optima occur at an active constraint, making is a good setting in which 

to observe potential constraint violations. 

Equations (5-33)-(5-44) represent the mechanistic (i.e., “perfect”) evaporator model. For the purposes of this study, 

equation and parameter values were changed to introduce a plant-model mismatch. Accordingly, the mismatched 

model uses 𝜅 = 35.5	(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 in equations (5-38) and (5-44), 𝜅- = 34.6(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 in equation (5-42), 

and substitutes equation (5-41) for the following: 
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𝑈𝐴6 = 0.16𝐹/ (7-35)  

Notably, the product composition is subjected to the following constraint to ensure a sufficiently high-quality product 

is generated by the evaporator: 

𝑋, ≥ 25% (7-36)  

The disturbance and manipulated variables for the forced circulation evaporator system are 𝒅 = [𝑋6 𝐹6 𝑇6 𝑇,==]n 

and 𝒖 = [𝑃6== 𝐹,== 𝐹/]n, respectively. The nominal disturbance and input values are 𝒅𝒏𝒐𝒎 = [5 10 40 25]n 

and 𝒖𝒏𝒐𝒎 = [200 200 50]n. The inputs have the bounds 𝑃6== ∈ [10,400], 𝐹,== ∈ [10, 400], and 𝐹/ ∈ [1,100]. 

The objective of this system is to minimize the cost expressed as follows: 

𝛷 = 0.1009(𝐹, + 𝐹/) + 60𝐹,== + 60𝑃6== (7-37)  

The disturbance variables are changed every period (∆𝑇) from individual uniform distributions that serve as multipliers 

for the nominal disturbance values i.e., 𝒅~[𝒰(0.8,1.2) ∙ 5 𝒰(0.8,1.2) ∙ 10 𝒰(0.8,1.2) ∙ 40 𝒰(0.8,1.2) ∙ 25]n. 

All necessary 0th order system information for MA is assumed to be measurable and sampled every ∆𝑡 = 1	𝑚𝑖𝑛𝑢𝑡𝑒 =

1	𝑡𝑖𝑚𝑒	𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙; moreover, a varying number of modifier directions are used for different scenarios in the case study. 

The perturbation sizes for these inputs are 𝜹 = 0.001𝒖𝒕 (i.e., 0.1% of the current input value) and assumed to last 

𝜏 = 300 time intervals. Moreover, the system is limited to only ten adjustment iterations 𝑗"#$ = 10 of 𝜶 = 0.01𝒗𝒕^𝟏 

such that the next operating point update is not delayed significantly. 

A few scenarios were performed for this case study, which features ten disturbances 𝒅𝒍	∀𝑙 ∈ {1,… , 𝐵}, 𝐵 = 10, each 

occurring every ∆𝑇 sampling intervals. The disturbance period (∆𝑇), number of inputs modified with respect to (𝑛)), 

and scheme (MA vs. pMA) are varied such that the timing and degree of modification can be analyzed. In addition to 

the full MA and pMA, a version of the pMA without the operating point adjustment step (blue block of Figure 7-2) is 

also deployed and denoted pMA(-); this scheme is impractical in practice but serves to observe the effect of the 

adjustment step for active constraints proposed in this scheme. A number after pMA denotes the number of modifiers 

being continually refined; for instance, pMA1(-) denotes that a single input is being modified with respect to and that 

the constraint adjustment scheme is not being deployed. 

The data for this scenario is shown in Appendix D, Supplementary Material for Chapter 7 

Table D-1. Figure 7-5 shows the cumulative cost calculated using equation (7-22) of the competing scheme under 

various disturbance periods. It should be noted first that the full MA is unable to ever perform a single iteration in the 

∆𝑇 = 2000 case; this occurs as performing 𝑛E perturbations is too protracted and a new disturbance always occurs 

before they finish. Moreover, longer disturbance periods entail longer simulation times, thus increasing values of 𝑅 

with increasing ∆𝑇, as shown in Figure 7-5. Nevertheless, as observed therein, the full MA outperforms the pMA and 

pMA(-) schemes on a cumulative cost minimization basis for all disturbance periods where it can perform an iteration. 

On this cumulative cost basis, there seems to be relatively little difference between pMA and pMA(-) as indicated by 

their nearly equivalent trajectories. However, this superficial interpretation does not consider constraint violations, 

thus the economic analysis should be adjusted to consider process throughput. 
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Figure 7-5: Cost accretion profiles for evaporator case study, increasing disturbance periods. 

As outlined in the introduction, basic MA schemes do not guarantee constraint satisfaction during modifier refinement; 

moreover, as this study uses frequent periodic disturbances, the constraint satisfaction upon convergence property is 

not observed since convergence is not reached. Table 7-2 summarizes the cumulative time at constrain violation as 

defined in equation (7-23) while Figure 7-7 displays the throughput for all competing schemes as defined in equation 

(7-24). Additionally, the constrain trajectories for all scenarios can be found in Figure D-1 (Appendix D). In terms of 

times at constrain violation and throughput, the analysis favours the partial schemes until the disturbance period is 

increased to ∆𝑇 = 4500. Regardless of the disturbance period, the pMA schemes are shown to always outperform 

their pMA(-) counterparts on a constraint violation and mass processed basis. This is owed to the constraint adjustment 

step, which ensures that the pre-perturbation operating point abides with the product purity requirement in equation 

(32); thus, the pMA iterations produce above-specification product while their pMA(-) equivalents may not. This 

effect of the adjustment step is further evident when comparing pMA to full MA whereby the former also outperforms 

the latter on constraint violation and throughput bases. As illustrated in Table 7-2, the cumulative time at constraint 

violation as defined in equation (7-23) is highest for the full MA scheme for all scenario except where the disturbances 

are sufficiently spaced at ∆𝑇 = 4000. With more frequent disturbances, even the pMA(-) without adjustments 

outperforms the full MA on constraint satisfaction; thus, the quick action given by the partial adaptation alone is 

observed to have the effect of staying in constraint violating points for less time.  
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Table 7-2: Cumulative time (min) at constraint violation 𝑡𝑣𝑖𝑜𝑙 for evaporator case study, increasing disturbance periods. 

 ∆𝑇 = 2000 ∆𝑇 = 2500 ∆𝑇 = 3000 ∆𝑇 = 3500 ∆𝑇 = 4000 ∆𝑇 = 4500 

MA − 240 302 328 310 281 

pMA2 148 176 233 237 249 286 

pMA2(-) 165 207 251 255 255 320 

pMA1 119 146 205 255 3222 349 

pMA1(-) 167 209 254 303 364 411 

Analyzing a subset of constraint trajectories from Figure D-1 (Appendix D) more closely, Figure 7-6 displays the 

results for the best (pMA1) scheme, its counterpart without the adjustment set (pMA1(-)), and the full MA scheme for 

∆𝑇 = 2500. In these trajectories, the result of the constraint adjustment step is more clearly appreciable. In several 

time instances (e.g., 𝑇~0.7, 4.6, 7.6), the adjustment step is activated to bring the composition above the quality 

constraint. The effects of the adjustment step with respect to constraint satisfaction are accrued over time, thus 

generating the operational differences between pMA and pMA(-) schemes observed in in Table 7-2; these will 

continue to accrue as the process operation evolves in time. 

 
Figure 7-6: Product quality trajectory for ∆𝑇 = 2500 scenario in evaporator case study. 

Figure 7-7 illustrates how the number of inputs modified with respect to (𝑛)) can impact the efficacy of the pMA 

scheme. For short disturbance periods (i.e., ∆𝑇 = 2000, ∆𝑇 = 2500, and ∆𝑇 = 3000), the pMA1 (i.e., 𝑛) = 1) 

scheme are best. This occurs as the disturbance happen frequently enough to require more iterations of the pMA that 

are facilitated by the pMA1 schemes. For intermediate disturbance periods (i.e., ∆𝑇 = 3500 and ∆𝑇 = 4000), the 

pMA2 (i.e., 𝑛) = 2) scheme is the best. In this case, the disturbances happen less frequently as to allow for more 

iterations of the pMA schemes performed in pMA2; however, they still occur frequently enough as to not favour the 
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full MA scheme. Furthermore, for long disturbance periods (i.e., ∆𝑇 = 4500), the full MA scheme dominates as 

enough time between disturbances occurs for the full MA to arrive near the plant optima. 

 
Figure 7-7: Material production profiles for evaporator case study, increasing disturbance periods. 

Figure 7-8 summarizes the aggregate effect of cost (Figure 7-5) and throughput (Figure 7-7) as defined in equation 

(7-25) (i.e., 𝑃𝑀 = 𝑃%&'(). As with the throughput, a clear pattern emerges whereby the pMA schemes are superior to 

the pMA(-) schemes, which are superior to the full MA scheme. Thus, for the evaporator case, the following regimes 

are established for the number of inputs modified with respect to: 

𝑛) = /
1									 							∆𝑇 ≤ 3000
2 3500 < ∆𝑇 ≤ 4000
𝑛E														 		∆𝑇 >4000			

 (7-38)  
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Figure 7-8: Cost per unit weight for evaporator case study, increasing disturbance periods. 

In contrast to the William-Otto scenario, the evaporator exemplifies the potential economic importance of producing 

constraint-adhering product as affected by increased production. Moreover, we observe the effect of different number 

of input modifications more concretely and its relationship to the disturbance period. 

While pMA was shown to outperform the traditional MA scheme in the case of frequent periodic disturbances, many 

MA variants could have similar benefits to pMA under these conditions; one such variant is dMA (Costello et al., 

2016). As noted previously, dMA can choose multi-input directions for adaptation but requires the one-time local 

computation of a parameter/input sensitivity matrix. While pMA can only use single-input adaptation directions, 

sensitivities are computed locally; thus, a potential tradeoff is present between the schemes, making them apt for 

comparison. 

After determining the suitable number of modifier directions (i.e., 𝑛) = 1) using the 𝑛)-determination algorithm for 

a disturbance period of ∆𝑇 =2000, several dMA scenarios were performed for the same ten-disturbance sequence was 

imposed on the pMA. The results from the dMA approach can be found in Table 7-3 whereby each scenario differs in 

the point around which the model sensitivity matrix is identified (as noted in Costello et al., 2016; this matrix is 

required for determining the privileged dMA directions 𝑼𝒕. 
Table 7-3: Performance of dMA scenarios with sensitivity matrix calculated at different operating point,  𝑛' = 1, and ∆𝑇 =

2000. 

Scenario Sensitivity matrix point 𝑹	($) 𝒎(𝒌𝒈) 𝑷𝒑𝒓𝒐𝒅	($/𝒌𝒈) 
1 𝒅 = [6.0 9.8 37.9 23.2]n 6926.08 38404.97 0.180 
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𝒖 = [350 200 40]n 
2 𝒅 = [4.1 12.7 37.1 23. 5]n 

𝒖 = [350 200 50]n 6314.30 24860.15 0.254 

3 𝒅 = [5.1 9.7 51.0 20.9]n 
𝒖 = [166 183 98]n 7004.76 38474.18 0.182 

4 𝒅 = [5.1 12.9 37.0 23.2]n 
𝒖 = [390 200 50]n 6724.96 33030.24 0.204 

5 𝒅 = [5.2 8.8 49.8 24]n 
𝒖 = [148 133 95]n 7024.16 38483.14 0.182 

6 𝒅 = [5.6 8.4 43.3 24.5]n 
𝒖 = [335 80 32]n 6418.26 28182.64 0.228 

7 𝒅 = [4.1 9.6 46.7 22.8]n 
𝒖 = [324 150 54]n 6928.07 36818.15 0.188 

8 𝒅 = [5.8 8.8 54.0 28.3]n 
𝒖 = [218 126 41]n 6477.56 30165.92 0.21 

dMA average − 6727.27 33552.42 0.204 
pMA − 5827.37 30852.88 0.189 

As shown in Table 7-3, and Figure D-2 (Appendix D), the performance of the dMA scheme on the evaporator is highly 

dependent on which point the sensitivity matrix is computed through the direction it chooses. Compared to the pMA, 

which is not dependent on this matrix, the dMA can perform moderately better (e.g., scenario 1; ~4.8% improvement) 

or significantly worse (e.g., scenario 2; ~34.4% deterioration). Note that pMA does not rely on a parameter 

distribution being known a priori, thus this assumption is alleviated by the proposed approach. Moreover, the potential 

variability in performance owed to the sensitivity matrix point is abated by using pMA. On aggregate, pMA 

outperforms dMA (~7.4% improvement in using pMA over the average in dMA), as shown in Table 7-3. Conversely, 

the dMA is shown to be able to outperform pMA if the sensitivity matrix is computed at an adequate point; thus, there 

is a tradeoff in the two schemes between average and variability in performance. As discussed above, this is mostly 

owed to the use of multi-input directions compared to the ability to update directions online. 

7.4. Summary 

MA is a commonly used method to abate model uncertainty, but its gradient estimation step can cause delays in the 

update of operating points. The pMA scheme presented in this chapter only modifies with respect to a subset of the 

inputs chosen using the modified cost metric. This subset is refined as the pMA scheme progresses such that the 

modifications are chosen to have the largest effect on the process economics. Additionally, pMA employs an operating 

point adjustment step, which drives constraint-violating systems into constraint adhering regions prior to the 

perturbation step. The proposed scheme was deployed on the Williams-Otto plant where it was found to be superior 

to the full MA for small disturbance periods and small filter constants; thus, leveraging modifier refinement speed to 

its economic advantage. Moreover, the pMA scheme was deployed for an evaporator case study with active constraints 

whereby it was shown to increase material throughput through decreased constraint violation compared to the full 

MA. Increased throughput was shown to also result in improved process economics. The evaporator case also 

exemplified how the best number of modifiers is dependent on the disturbance period such that different numbers of 

modifiers can be used in different disturbance regimes. With respect to dMA, pMA was found to lead to an average 

performance improvement owed to its lack of dependence on the initial sensitivity matrix. Conversely, some dMA 
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scenarios were found to outperform pMA if the initial sensitivity matrix was computed around certain operating points; 

thus, there is a tradeoff in robustness and performance between the two methods. 
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8. Conclusions and Recommendations 

This PhD thesis has developed various practical algorithms for the online model-based economic optimization of 

processes under uncertainty as well as economic operating schemes for processes that will contribute to sustainable 

development. In an increasingly competitive world, the ability to update processes online gives operators an edge in 

to addressing external disturbances and incentive changes.  The core ideas developed herein revolve around RTO, 

which continually updates process operating conditions with the assistance of ancillary layers (i.e., PE, MPC, MHE). 

Two principal approaches are taken for steady-state economic optimization of processes: the two-step RTO and MA. 

In two-step RTO, uncertain model parameters are updated prior to the economic optimization step; to this end, the 

quality of set points is dependent on the fidelity of the parameter estimates. Approaches like DR have been developed 

to help in the PE step; however, these aim to make measurements consistent with the model and are not selective of 

measurements that may be inhibiting PE performance. In the MA approach, bias and gradient-correction (i.e., 

modifiers) terms are used to reconcile the optimization model with the plant. The gradient-correction terms require 

perturbation to the plant in their estimation procedure, thus delaying the economic optimization of the plant. This 

delay is especially salient in frequently disturbed systems and approaches like directional MA have been proposed to 

modify a with respect to a subset of inputs and alleviate this delay. However, no approach in the open literature uses 

a purely economic criterion in the input selection process and no approach has been designed to correct for constraint 

violation in the modifier refinement process. 

In addition to the algorithmic gaps defined above, practical gaps remain in the economic optimization of sustainable 

many systems; in particular, this work concerns itself with PCC and RAS. While PCC has been widely studied from 

many perspectives, the online economic optimization literature is scant. Some RTO and EMPC approaches have been 

proposed but neither has considered the wide range of economic factors in PCC. Moreover, no PCC RTO scheme has 

been fully implementable beyond simulation owed to lack of state estimation and a method to deal with model 

uncertainty. Likewise, no online economic optimization schemes for RAS exist, primarily owing to the lack of process 

models to use in an optimization program. For this reason, no effort has been afforded to formulating an economic 

function and very little attention has been paid to treating RAS using a process controls/operations approach.  

This PhD thesis sought to advance the corresponding fields of the gaps mentioned above by providing efficient and 

practical algorithms for RTO under uncertainty as well as using economic incentives to operate novel processes 

cheaply and incite their further development. The principal conclusions gained from this work are outlined as follows: 

• A robust NMPC for a post-combustion CO2 capture absorber was presented in Chapter 3. The robust 

operation of the absorber under parametric and process uncertainty using the robust NMPC controller was 

compared against that of nominal and plant-model mismatched NMPCs for various disturbance rejection 

scenarios. The controllers were assessed in a simulated plant with plant-model mismatch to elucidate the 

benefits of the multi-scenario approach used in the design of the robust NMPC. As expected, the 

computational demands of the robust NMPC controllers were found to be increasing with increasing size of 

uncertainty regions and increasing number scenarios considered by the controller. Moreover, a larger 

uncertainty region was found to exhibit more conservativism in the control moves leading to offset. 

Nevertheless, it was found that for short simulation times the robust NMPCs generally led to better average 
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performance and less variability in performance across plants in which the controllers were tested. Further, 

for long simulations, where error can accrue over time; the performance of a robust NMPC controller was 

found to be significantly better than that of the NMPCs with no robustness. 

• A novel operational scheme was proposed and implemented for PCC plants in Chapter 4. This includes RTO, 

NMPC, and MHE layers. The RTO was found to provide consistent steady-state cost improvements across 

all scenarios tested. These cost improvements always exceeded the energy penalty imposed on the upstream 

power plant by the PCC plant; resulting in net gains despite any additional energy expended. In terms of 

resource used, the MEA cost was found to be large following disturbance rejection and when operating 

dynamically. Conversely, the MEA cost was found to be low when operating at the RTO-defined set points 

while allowing for low reboiler duty to be necessary. CO2 sales were found to significantly lessen the process 

cost in all scenarios. From an operational standpoint, the MHE was found to provide acceptable estimates to 

the NMPC, leading to good control performance that resulted in economically attractive operating points. 

Moreover, the NMPC was observed to perform well under an array of large disturbances through its use of 

the makeup streams and its coordination of control objectives. 

• Chapter 5 proposed a novel low-variance parameter estimation (lv-PE) scheme applied to RTO for noisy 

processes. The proposed scheme uses the information content (𝐼𝐶) metric, as well as establishing parameter 

bounds for filtering; these novelties reduce the variability in parameter estimates over time and eliminates 

poorly estimated parameters, respectively. The proposed scheme was implemented in two case studies, 

namely a forced circulation evaporator and the Williams-Otto CSTR. The evaporator displayed the ability of 

the proposed scheme to avoid constraint violations by one to two orders in magnitude, while the Williams-

Otto case study showed the improvement yielded by the proposed scheme on process economics ranging 

from ~4 to 88%, depending on the scenario. Although the benefit provided by the lv-PE to each case study 

was different, both were observed to result in significant reduction in parameter variation owing to the lv-

PE/RTO of one to two orders of magnitude. 

• Chapter 6 presents the first estimation scheme for the RTO of PCC systems under uncertainty. Both physical 

properties and external disturbances are estimated through the approach proposed in Chapter 5. Moreover, 

the lv-PE algorithm is used for uncertainty quantification to formulate an rRTO. In both estimation cases 

(physical property and disturbance), the lv-PE is shown to improve the quality of the set points achieved via 

their economics; this is compared with respect to traditional PE as well as PE with DR. The rRTO formulation 

was also found to result in modest cost savings with a large reduction in set point variability, which would 

reduce control burden. 

• The pMA scheme presented in Chapter 7 uses a directional approach to speed up the gradient estimation step 

in MA. This is suitable for frequent periodic disturbance where modifier convergence may not be achieved. 

A secondary constrain-adjustment problem is also presented to abate constrain violations and an algorithm 

is presented to determine the number of adjustment directions for a given disturbance frequency. The 

proposed scheme was found to provide up to ~56% improvement with respect to the standard MA scheme 
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in the Williams-Otto CSTR for short disturbance periods. Moreover, pMA was also found to outperform 

standard MA and dMA scheme in an evaporator case study. 

8.1. Recommendations for Future Research 

Despite the advances outlined in this thesis, gaps remain in the literature that should be addressed. Furthermore, some 

of the works presented herein have opened avenues for new areas of inquiry. These are as follows: 

• There remain a few issues to be solved before an approach using the NMPC in Chapter 3 becomes tractable. 

Namely, a reduction in CPU time is necessary for online implementation of the NMPCs presented in this 

study. This computational effort reduction can be achieved with fast NMPC algorithms, which use model 

reduction (Yu et al., 2015) and advanced step strategies (Zavala and Biegler, 2009). However, model 

reduction strategies may not be able to capture process nonlinearities and may not be able to consider 

parametric uncertainty in the same level of detail as presented in this study. Thus, advanced dynamic 

optimization decomposition techniques may be considered to reduce the computational effort.  

• Likewise, as shown in this work, the robust NMPC controllers do not have perfect performance and result in 

some set-point offset. A natural extension of the multi-scenario-based robust controller to further reduce this 

conservatism is the design of a multi-stage robust controller (Lucia and Engell, 2012).  

• The single-layer approach should also be considered by through the PCC objective function proposed in 

Chapter 4 through deployment of EMPC.  

• The significant effect of the PCC stripper reboiler in terms of cost was observed in this study through a 

simplified model. This finding warrants further investigation as to how the explicit inclusion of the reboiler 

could aid the control layer in conjunction with MEA makeup manipulation as proposed herein. Additionally, 

the loss of power plant efficiency resulting from steam used in reboiler heating also needs to be studied.   

• In PCC there exists a trade-off between changing the set point and the dynamics that ensue as a result, which 

are often expensive. These economic trade-offs and the computational effort involved should be compared 

to those frameworks that consider the process economics in the transient domain, i.e., EMPC. By adapting 

the novel economic function proposed herein to a dynamic optimization problem that considers transient 

costs in an approach like EMPC, a more comprehensive understanding of the connection between dynamics 

and process cost could be established. Moreover, steady state and dynamical operational approaches can then 

be compared such that the best PCC operational schedules and schemes can be determined for different power 

plant operational scenarios.  

• Corrosion is also assumed to be negligible in the present study but is an important factor preventing the 

uptake of PCC. A suitable control approach that explicitly models corrosion as noted in Rúa et al. (2021b), 

could potentially mitigate these effects by considering corrosion minimization as an additional operational 

incentive; this will be a topic of future work. 

• The mechanistic PCC model used in this work was developed using data from a pilot plant and, accordingly, 

the operating conditions, dynamics, and cost reflect this scale. In the future, a scale-up of this model must be 

performed to assess the operational advantages of the scheme in an industrial system. The results obtained 
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from this work also reflect the current economic incentives as manifested in the prices used. With scaled-up 

conditions as well as future process developments that change the economic incentives (e.g., energy-efficient 

solvents, increased carbon prices, decreased energy prices), the process can be re-optimized and reassessed 

through the economic framework developed in this work, thus resulting in an optimal operation that can 

simultaneously capture CO2 at low operational costs. 

• The concept of 𝐼𝐶 to pre-process measurements and generate parameter bounds could be adapted for a state, 

parameter, or disturbance estimation procedure (or a joint estimation procedure). Moreover, the respective 

estimators could also be adapted as dynamic problems to address issues such as parameter drift or frequent 

unmeasurable disturbances.  

• As noted in Section 5.2.2, another direction for future work is the extension of the current lv-PE methodology 

for joint estimation variance reduction and GED. 

• The pMA scheme proposed in Chapter 7 has been implemented using the traditional perturbation method; 

however, gradients acquisition can be made more efficient through dual MA. Future works will also 

investigate the joint use of pMA and dual MA, which could lead to further benefits in speeding up modifier 

refinement. The pMA scheme can be inhibited by filtering, this limits its applicability to low noise 

environments; thus, an alternative noise abatement scheme must be proposed to make the scheme suited to 

noisy measurements (e.g., the lv-PE scheme in Chapter 5).  
• Furthermore, pMA in Chapter 7 was only tested in systems whereby preliminary runs may be performed for 

tuning; this may not be achievable or desirable in all systems. Accordingly, online tuning and tuning budget 

sizing for pMA requires further attention. The case studies presented in Chapter 7 were selected such that 

they provide clear illustrations of the benefits and limitations of the proposed scheme. However, industrial 

plants are usually more complex; future works will thus deploy pMA in high-dimensional constrained 

chemical plants (i.e., those involving many inputs and constraints).  
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Appendix A - Supplementary Material for Chapter 4 

Supplementary Figures 

 
Figure A-1: Data and linear regression fit for recycle lean loading duty correlation. 

 
Figure A-2: Recycle stream correlations for a) MEA b) water, assuming nominal water content in the flue gas 
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Figure A-3: Scenario A plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions. 

 
Figure A-4: Scenario B plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions. 
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Figure A-5: Scenario C plots of a) tank temperature and b) cooling duty. Dashed lines denote RTO executions. 

 
Figure A-6: Controlled variables in MHE and no-MHE cases for Scenario C. Dashed lines denote RTO executions. 
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Table A-1: Nominal stream conditions for the present model. 

 Recycle 

stream 

Fresh 

MEA  

Fresh 

water 

Tank 

outlet 

(lean 

solvent) 

Flue gas Vent gas Rich 

solvent 

Temperature (𝑲) 366.50 298.00 298.00 314.00 319.71 314.06 318.43 

Flowrate (𝒎𝒐𝒍/𝒔)        

MEA 3.2098 0.0002 0.0000 3.2100 0.0000 0.0000 3.2098 

CO2 0.9800 0.0000 0.0000 0.9800 0.7020 0.0427 1.6393 

Water 27.780 0.0000 0.2000 27.980 0.1000 0.2340 27.846 

N2 0.0000 0.0000 0.0000 0.0000 3.2100 3.2100 0.0000 

Total 31.9698 0.0002 0.2000 32.170 4.0120 3.4869 32.6951 

 
Table A-2: Validation cases and conditions for the present model against data from Harun et al. (2012). 

 Composition (𝒎𝒐𝒍/𝒎𝒐𝒍)  

Case # Temperature (𝑲) Flowrate (𝒎𝒐𝒍/𝒔) 
Lean 

solvent 
Flue gas  

Current 

study 

[42] Lean 

solvent 

Flue gas Lean 

solvent 

Flue gas  𝐿𝐿 Water CO2 Packing height 

(𝑚) 

1 32 314 320 29.0 3.52 0.279 0.013 0.177 5.00 

2 43 313 327 29.3 5.28 0.231 0.022 0.170 7.80 

3 28 313 321 58.2 7.07 0.287 0.016 0.165 5.85 

4 39 313 328 60.0 7.02 0.228 0.016 0.169 6.10 

 

Table A-3: Effect of MHE on control and economic performance for scenario C. 

Controlled variable 
𝑺𝑺𝑬 

(MHE) 

𝑺𝑺𝑬 

(no-MHE) 

Performance 

loss (%) 

%𝐶𝐶	(%) 5240 4975 5.327 

𝐶H91@#Bv	(𝑚𝑜𝑙/𝐿) 2.747 × 10� 2.732 × 10� 0.549 

ℎ@#Bv(𝑚) 1.704 1.628 4.668 

Economics Cost (MHE) Cost (no-MHE)  

â 𝐶%&'mu--𝑑𝑡
6�k

=

	($𝐶𝐴𝐷) 4790 4636 3.322 
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Preliminary RTO Design 

The study herein employs the model and nominal controller used in Chapter 3 and proposes a novel RTO formulation 

to employ the two-layer approach for the PCC absorber. The RTO is accompanied by a nonlinear MPC (NMPC), both 

of which use a mechanistic model of the PCC absorber. To the authors’ knowledge, this is the first work that makes 

use of an RTO/NMPC formulation for the PCC absorber. In addition to the RTO/NMPC scheme, a Kalman filter (KF) 

is used to provide state estimates to the layers, another novelty for the PCC absorber. Moreover, this study also 

investigates the effects of time-varying carbon tax on the RTO/NMPC under transient changes in the operation of the 

CO2 capture absorber unit, which has also not been considered previously. Such carbon taxes are becoming 

increasingly prevalent as CO2 emission deterrents and their prices may fluctuate subject to market conditions. 

Scheme Formulations 

In this work, the two-layer approach was used to maintain the PCC absorber unit near its economic optimum. 

Moreover, a KF is used to provide state estimates from measurement. The RTO and NMPC are both formulated as 

nonlinear optimization problems (NLPs). These are employed in conjunction to affect the plant as depicted in Figure 

A-7. 

 

RTO Formulation 

The aim of the RTO in the operation of a process is to minimize the operating cost by computing an economically 

optimal set point at steady state. The RTO designed for the absorber model is formulated as follows: 

𝑚𝑖𝑛
𝒚t
𝑃H91𝑚̇7C!,'E@

+ (𝒙T) + 𝑃7C!𝑚̇7C!,'E@
? (𝒙T) + 𝑃u𝑊%E"% (𝒙T) 

𝑠. 𝑡. 

𝒇𝒔(𝒙T, 𝒚T, 𝒖, 𝒅) = 𝟎																											 

𝒖𝒍 ≤ 𝒖 ≤ 𝒖𝒉																														 

(A-1)  

where 𝒙T ∈ ℝB&, 𝒚T ∈ ℝB', 𝒖 ∈ ℝB), and 𝒅 ∈ ℝB1 are the estimated state, controlled variables, manipulated variable, 

and disturbance vectors, respectively.  𝑚̇7C!,'E@
+ (𝑡𝑛/𝑠) and 𝑚̇7C!,'E@

? (𝑡𝑛/𝑠) are the liquid and gas outlet CO2 mass 

flowrates, respectively, which are contained in the state vector 𝒙T. Moreover, 𝑊%E"%	(𝑘𝑊ℎ/𝑠) is the pump power 

Plant 
𝒇𝒅(𝒙𝒕S𝟏, 𝒖𝒕S𝟏, 𝒚T𝒕S𝟏) + 𝒘𝒕 

𝒛𝒕)𝟏 ⊂ 𝒙𝒕)𝟏 

𝒖𝒕)𝟏 

𝒚𝒔𝒑 = 𝒚A 
 

𝒙A𝒕 = 𝒙- 

NMPC  

𝒇𝒅�𝒙T𝒕S𝒊, 𝒖𝒕S𝒋 , 𝒚T𝒕S𝒊� 
		 

RTO  

𝒇𝒔(𝒙T, 𝒚T, 𝒖, 𝒅)	 

  

𝒙A𝒕 
KF 

𝑲𝑭#𝒛𝒕 + 𝒘𝒕, 𝑷𝟎, 𝑸𝒕, 𝑹𝒕 , 𝑱𝒇	- 

𝒛𝒕 +𝒗𝒕 

(𝑡 ← 𝑡 + 1) 

Figure A-7: Arrangement of exchange of information between the RTO, NMPC, KF, and the plant 
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needed to drive the inlets into the absorber, which is contained in the state vector 𝒙T. Further, 𝒚𝒔𝒑 = 𝒚T ∈ ℝB' is the 

optimization variable that is passed down as the set point to the NMPC framework, as depicted in Figure A-7. In the 

case of the PCC absorber column, the optimization variable is the CO2 removal percentage, defined as in equation (3-

13). 

In this study, the economic objective was formulated as the sum of three terms as shown in (6). These correspond to 

MEA degradation cost (𝑃H91), the carbon tax cost (𝑃7C!), and the cost of electricity (𝑃u). The specific rates for these 

economic terms are 𝑃H91 = 2.99	$𝐶𝐴𝐷	/𝑡𝑛	𝐶𝑂,	𝑐𝑎𝑝𝑡𝑢𝑟𝑒𝑑 (adjusted for inflation and converted to $CAD from Singh 

et al., 2003); 𝑃7C! = 50	$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂,	𝑒𝑚𝑖𝑡𝑡𝑒𝑑 (Canada.ca, 2019); and 𝑃u = 0.066	$𝐶𝐴𝐷/𝑘𝑊ℎ (AUC, 2019), 

respectively. The MEA degradation cost is incurred owing to the addition of fresh MEA to make up for solvent losses 

in the process. The carbon tax cost is imposed by state regulatory bodies for releasing CO2 into the atmosphere. The 

aforementioned carbon tax rate serves as a nominal value; however, the effect of price variations of this tax will be 

studied. Lastly, the electricity cost comes from pumping the solvent from an upstream holding tank to the absorber. 

	𝒇𝒔: ℝB) ×ℝB1 ⟶ℝB& ×ℝB' represents the set of mass, energy balances and algebraic equations shown in Chapter 

3. These are solved as a steady-state optimization problem for the RTO.  

In the case of the absorber model, the states are phase component concentration and temperatures as stated in Chapter 

3 and the manipulated variable for the absorber is the solvent flowrate into the column (𝐹*B+ ).	𝒖𝒍	and 𝒖𝒉 ∈ ℝB) are the 

lower (10	𝑚𝑜𝑙/𝑠) and upper (80	𝑚𝑜𝑙/𝑠) bounds of the manipulated variable, respectively. These bounds are the same 

as those used in the NMPC framework and reflect the physical limitations of the controller. While these are not 

necessary to execute the RTO, they are included in the formulation to ensure that the set points determined by the 

RTO are reachable by the controller. This ensures that the economically optimal set points are feasible by the overall 

two-layer scheme. 

The steady state model was discretized into ten finite elements in the axial domain using finite differences. Model 

validation showed that the implementation of the absorber model was in good agreement with previous 

implementations of the model. For the purposes of this study, the RTO is executed at a fixed 100 NMPC sampling 

intervals (~21 minutes). Preliminary simulations found that this was sufficient time for the NMPC to reach the 

setpoints dictated by the RTO for the sizes of disturbances in this study; thus, no steady-state detection measure was 

used.  Furthermore, this study assumes that the model parameters do not change substantially during operation, thus 

no data reconciliation step is implemented. These two issues will be addressed in future work. 

KF Formulation 

The axially discretized absorber model has 110 states, which are required to execute the RTO and NMPC. The NMPC 

deployed herein is the nominal realization of the controller described in Section 3.2. However, it is unlikely that all 

the states will be available for measurement during the operation of the absorber. Accordingly, a Kalman filter (KF) 

was used as a state estimator in the proposed scheme. In the current KF scheme, access to all temperatures, gas 

concentrations, as well as inlet and outlet (boundary) states is assumed, totalling to 74 states. Contrastingly, all interior 

liquid states, totalling to 36, are estimated. The measured states 𝒛𝒕 ∈ ℝB7, where  𝒛𝒕 ⊂ 𝒙𝒕, are used to predict all of 

states 𝒙T𝒕 ∈ ℝB&. Additionally, randomly sampled process (𝒘𝒕 ∈ ℝBT) and measurement (𝒗𝒕 ∈ ℝB7) noises were 
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introduced to the plant. These noises introduce uncertainty and plant-model mismatch into the system. The nonlinear 

mechanistic model was used to perform a priori state predictions, while the discretized equations were symbolically 

differentiated to produce the Jacobian matrix 𝑱𝒇 ∈ ℝB&×B& for the KF to yield a posteriori estimates. The initial state 

covariance matrix 𝑷𝟎,𝑲𝑭 ∈ ℝB&×B&, the process covariance matrix 𝑸𝒕,𝑲𝑭 ∈ ℝB&×B&, and measurement covariance 

matrix 𝑹𝒕 ∈ ℝ¡U×¡U were defined as follows: 

𝑷𝟎,𝑲𝑭 = 𝜎P>,¢i
,𝑑𝑖𝑎𝑔(𝑥6,B'",, … , 𝑥B&,B'"

,) 

𝑸𝒕,𝑲𝑭 = 𝜎£/,VW
,𝑑𝑖𝑎𝑔(𝑥6,B'",, … , 𝑥B&,B'"

,) 

𝑹𝒕,𝑲𝑭 = 𝜎4/,WV
,diag(𝑧6,B'",, … , 𝑧B7,B'"

,) 

(A-1)  

where 𝑥*,B'"∀𝑖{1,… , 𝑛$} and 𝑧*,B'"∀𝑖{1,… , 𝑛~} are the states and measurements during nominal operation, described 

in the following section. 𝜎P>,¢i = 𝜎£/,¢i = 1𝑒^< and 𝜎4/ = 1𝑒^� are the corresponding matrix weights. The complete 

KF scheme is denoted as 𝑲𝑭: ℝB7 → ℝB& for brevity in Figure A-7. As with the NMPC, the KF was executed every 

sampling interval (12.5 s).  

Results 

Three test scenarios were implemented to assess the performance of the RTO/NMPC implementation. The scenarios 

were subjected to the series of disturbances 𝒅 depicted in Figure A-8. These disturbances impose different sizes and 

directions of steps every 100 NMPC sampling intervals and were chosen to represent substantial variation around the 

nominal inlet flue gas flowrate (from 0.8 to 1.2 times its nominal value of 4.012	mol/s), which can be considered as 

the main disturbance that will affect the operation of this unit. The test scenarios included observing the effects of a 

fixed and a varying carbon tax;  the fixed price tax case used a price of 50$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂,	emitted, while the varying 

carbon tax cost features subsequent 5$𝐶𝐴𝐷 steps up from the base price of 50$𝐶𝐴𝐷/𝑡𝑛	𝐶𝑂,	emitted as displayed in 

Figure A-9. 

The test scenarios, presented next, correspond to 1) no RTO implemented (only regulation by NMPC to the initial 

nominal set-point), 2) RTO /NMPC framework (Figure A-7) with a fixed carbon tax, and 3) RTO/NMPC framework 

with a varying carbon tax (Figure A-9). In all scenarios, the disturbance followed the trajectory shown in Figure A-8 

whereby it is at its nominal value for 25 sampling intervals (~5 minutes) and a step change is introduced every 100 

sampling intervals (~21 minutes) thereafter. The inlet solvent flowrate (manipulated variable) and percent carbon 

captured (controlled variable) results for these scenarios are shown in Figure A-10 and Figure A-11, respectively.  



 176  

 
Figure A-8: Inlet flue gas flowrate (disturbance). 

 
Figure A-9: Carbon tax profile for varying tax case. 

 
Figure A-10: Inlet solvent flowrate (manipulated variable) for the scenarios tested. 
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Figure A-11: Percent carbon captured (controlled variable) for the scenarios tested. 

The scenarios were assessed on the basis of their process cost from the first to the final disturbance, these results are 

displayed in Table A-4. The costs were calculated using the expression employed in the RTO objective function shown 

in (6). This instantaneous price rate is multiplied by the time interval lengths to give a total process cost comprised of 

the MEA degradation, carbon tax, and electricity cost over the operating period considered in this study. The total cost 

is also broken down into its aforementioned sources. The results for each scenario are discussed next. 
Table A-4. Process cost for scenarios tested ($CAD). 

Scenario Total 

Cost  

Tax 

Cost 

MEA 

Cost 

Electrical 

Cost 

No RTO (fixed tax) 13.46 6.31 7.13 0.01 

No RTO (varying 

tax) 

14.64 7.50 7.13 0.01 

RTO (fixed tax) 11.98 6.31 5.67 0.01 

RTO (varying tax) 13.23 7.51 5.70 0.01 

NMPC Only (no RTO) 

The NMPC was implemented without the RTO to regulate the set point subject to the disturbances shown in Figure 

A-8. The 86.12 %CC set point in this case corresponds to the steady state operation of the absorber using the nominal 

inlet flue gas fractions reported in Harun et al. (2012). The objective of this case was to establish a “do-nothing” 

baseline cost, in which no set point updates based on process economics are considered. 

It can be observed in Figure A-11 that the controller is able to successfully regulate to the set point for all except one 

of the disturbances introduced. This exception occurs in the 5th disturbance interval (from ~5300 seconds to ~6600 

seconds) and corresponds to a large +18% step-up in the disturbance variable with respect to its nominal value, as 

shown in Figure A-8. During this period, Figure A-10 shows that the controller holds the manipulated variable at its 

upper bound (80 mol/s) and despite this, the set point appears to be unreachable as the %CC reaches an asymptote in 

Figure A-11. This unreachable set point occurs because it becomes increasingly difficult to achieve the same %CC 
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for flue gas flowrates that are largely increased due to the upper bound of the manipulated variable. For this upper 

solvent flowrate bound and concentration, the solution has been saturated with CO2 and has no remaining absorption 

capacity. Typically, the flue gas flowrate serves as a manipulated variable for smaller disturbances (i.e. ±10%). Larger 

disturbances in the system would be handled by a downstream reboiler or upstream MEA make-up stream that would 

enrich the concentration of the MEA solvent fed to the absorber, thereby increasing the CO2 absorption capacity. It is 

important to note that the issue of unreachable set points could have been avoided by executing RTOs when each 

disturbance was introduced. This will be shown in the next section. 

Using the results from the no-RTO scenario, the process costs were calculated for the fixed and varying tax rates. As 

noted in Table A-4, the cost of this experiment is about 8.77% higher in the varying cost case than the fixed cost case. 

This increase comes entirely from carbon tax. The increased cost occurs as the fixed cost case considers only the 

minimum cost in the varying cost case. This disparity would widen with longer periods of operation where the cost 

can accrue over time. 

NMPC and RTO 

The NMPC tested in the previous section was implemented along with the RTO for fixed and varying carbon taxes. 

From Figure A-10, it is clear that the NMPC is not required to perform as aggressive of control actions in the 

RTO/NMPC scheme compared to the no-RTO scheme. This is shown in the manipulated variable, which is at bounds 

substantially less than in the no-RTO scenario. Furthermore, it can be observed in Figure A-11 that the controller 

successfully tracks the new set points supplied by the RTO before the next disturbance enters the system for all 

intervals. In fact, steady state is generally reached quickly, resulting in short transition times. Generally, the control 

profiles (Figure A-10) for both the RTO/NMPC cases (fixed and varying carbon tax) look similar in shape; however; 

it can be observed that the RTO selects slightly different removal set points in Figure A-11 for the 5th and 6th 

disturbances (from ~5300 s to ~7800 s). The 5th disturbance corresponds to a combination in the highest carbon tax 

rate (70$CAD) and disturbance (4.814	mol/s) entering the process. The confluence of these factors results in the 

largest RTO set point disparity between the fixed and variable tax cost cases. The 6th disturbance is another large step 

down in both the flue gas flowrate (-20%) and carbon tax rate (-40%). Aside from these two periods, however, there 

is not a marked difference between the set points determined by the fixed and varying tax RTOs. This suggests that 

the RTO is insensitive to carbon tax and disturbance variable changes unless they are large. 

The RTO scenario with varying carbon tax incurred significantly (10.43%) more cost than the fixed carbon tax 

scenario This is to be expected as the tax is increasing from its nominal value, which was considered in the fixed tax 

case. Nonetheless, the economic benefit of employing the RTO is evident in Table A-4, which shows cost reductions 

of 11.00% and 9.63% for the fixed and varying carbon tax cases, respectively, with respect to the no-RTO cases. 

Moreover, as shown in Table A-4, the RTO in both tax cases gains most of its economic benefit by decreasing the 

MEA degradation cost, which is reflected in the similar tax cost incurred in these cases. This reinforces the idea that 

the RTO chooses to reduce costs via the MEA degradation cost and is insensitive to the carbon tax rate unless it is 

subjected to large changes. These results show economic differences over the short operational time of ~130 min. This 

would be even further apparent over a longer operational period of hours or days, which a PCC system would 
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experience in real operation. Moreover, this study considers the operation of a pilot-scale unit, the magnitude of these 

costs would be much higher in industrial-scale. 

Summary 

An RTO/NMPC implementation for a PCC absorber is presented. The implementation of a nonlinear mechanistic 

dynamic model used to formulate an RTO and an NMPC in tandem is a novelty for this process. The RTO 

simultaneously considers carbon taxes, energy prices, and solvent degradation; this is the most complete economic 

function used in online optimization of PCC to date. The proposed scheme leads to improved steady state process 

economics across disturbance and price change scenarios. 
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Appendix B - Supplementary Material for Chapter 5 

Payback Period  

Decomposing the RTO period revenues as in Section 5.2.1 for a single RTO period, the following expressions can be 

constructed for a system in which the set point is changed at 𝑡 = 0: 

𝑅} = 𝑃}�𝑇} − 𝜏� + 𝑅@ (B-1)  

And a system where the set point remains the same 𝑡 = 0: 

𝑅* = 𝑃*𝑇} (B-2)  

where 𝑅} and 𝑅* ($) in the LHS denote the revenue after and before the set point change, respectively. 𝑃} and 𝑃*  

($/𝑡𝑖𝑚𝑒) on the RHS denote the steady-state profit/price rates before and after the set point is changed, respectively. 

𝜏 (𝑡𝑖𝑚𝑒)  denotes the transient time and 𝑅@ ($)  denotes the transient revenue. 𝑇} (𝑡𝑖𝑚𝑒) denotes the total operating 

time.  

If the transient between set points (𝑅@) is expensive or less profitable, the revenue obtained when changing the set 

point can be compared to the revenue obtained if the system had remained at the old set point: 

𝑅} − 𝑅* = 𝑃}�𝑇} − 𝜏� + 𝑅@ − 𝑃*𝑇} (B-3)  

As such, the equivalence (i.e., break-even) point occurs when: 

0 = 𝑃}�𝑇} − 𝜏� + 𝑅@ − 𝑃*𝑇} (B-4)  

which allows for the payback period 𝑇%#wF#mv(𝑡𝑖𝑚𝑒) to be expressed as: 

𝑇%#wF#mv ≡ 𝑇} =
𝑃}𝜏 − 𝑅@
𝑃} − 𝑃*

 (B-5)  

as 𝑃}, 𝑃*, 𝑅@, and 𝜏 become known after the system reached its new set point, this expression can be used for the 

prediction of the length of time for a set point change to be economically justified. 
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Supplementary Data 

Table B-1: Model parameters for the forced-circulation evaporator. * denotes nominal value(s) for uncertain parameter(s). 

Parameter Value 

Mass holdup 𝐻 = 20	𝑘𝑔 

Unit conversion constant 𝐾 = 4	𝑘𝑔/𝑘𝑃𝑎 

Condenser heat transfer 

coefficient* 
𝑈𝐴, = 4	𝑘𝑊/°𝐶 

Heat capacity of water 𝐶% = 0.07(𝑘𝑊 ∙ 𝑚𝑖𝑛)/(𝑘𝑔 ∙ °𝐶) 

Latent heat of evaporation 

(water) 
𝜅 = 38.5	(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 

Latent heat of evaporation 

(saturated steam) 
 𝜅- = 36.6	(𝑘𝑊 ∙ 𝑚𝑖𝑛)/𝑘𝑔 

Price of electricity (pumping) 𝑃u = 0.001009	$/𝑘𝑔 

Price of steam 𝑃- = 0.60	$/𝑘𝑔 

Price of cooling water 𝑃. = 0.60	$/𝑘𝑔 

 

Table B-2: Model parameters associated with the Williams-Otto CSTR as implemented in this study. * denotes nominal value(s) 
for uncertain parameter(s). 

Parameter Value 

Mass holdup 𝑊 = 2104.7	𝑘𝑔 

Pre-exponential factor 1 𝐴6 = 1.6599 × 10�	𝑠^6 

Pre-exponential factor 2 𝐴, = 7.2117 × 10�	𝑠^6 

Pre-exponential factor 3 𝐴/ = 2.6745 × 106,	𝑠^6 

Nominal activation energy 1* 𝐸6 = 6666.7	𝐾 

Nominal activation energy 2* 𝐸, = 8333.3	𝐾 

Nominal activation energy 3* 𝐸/ = 11111	𝐾 

Price of substrate 𝐴 𝑃1 = 0.7623	$/𝑘𝑔 

Price of substrate 𝐵 𝑃3 = 5.5542	$/𝑘𝑔 

Price of heating tank 𝑃n = 0.01	$/(𝑠. 𝐾) 

Sales price of product 𝐷 𝑃8 = 11.4338	$/𝑘𝑔 

Sales price of product 𝐸 𝑃9 = 0.2592	$/𝑘𝑔 
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Appendix C - Supplementary Material for Chapter 6 

 
Figure C-1: Optimal manipulated variables under the sensitivity analysis Scenario A. 

 

 
Figure C-2:Cumulative a) PCC cost, b) energy penalty, c) CO2 emissions, d) fresh MEA used for scenario D.  
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Dynamic Transition  

The control and estimation structure deploys a nonlinear model predictive controller (NMPC) and moving horizon 

estimator (MHE), respectively. The sampling interval is assumed to be 12.5	𝑠𝑒𝑐𝑜𝑛𝑑𝑠 to capture quick process 

dynamics and allow for good feedback control. The NMPC and MHE employ the dynamic mechanistic model (𝒇𝒅) 

outlined in the supplementary information along with a least-squares objective; for brevity, the respective formulations 

are omitted herein. As depicted in Figure 4-1, the NMPC layer uses the manipulated variables to regulate the PCC 

plant towards the RTO-defined set points, while the MHE uses the available measurements to estimate states as 

feedback to the NMPC; together these layers to achieve closed-loop dynamic operation of the PCC plant. As it pertains 

to the assessment of the control scheme under different disturbance and parameter estimates, the sum of squared errors 

with respect to the true set point is used here to quantify control performance: 

𝑆𝑆𝐸w =��𝑦* − 𝑦-%@&Eu�
,

B

*A6

 (C-1)  

where 𝑦 and 𝑦-%@&Eu denote a controlled variable and its set point, respectively, as described in Chapter 4. In particular, 

the dynamics of the key performance variables %𝐶𝐶 and 𝐶H91@#Bv will be analyzed here as they will primarily dictate 

the removal performance of the absorber. 

Dynamics Example (Scenario B) 

From a dynamic performance standpoint, the transition between PCC periods 14 and 15 were observed as illustrated 

in Figure C-3 for the key performance variables and Figure C-4 for ancillary variables. The true flue gas CO2 

composition (i.e., disturbance) in period 14 is 𝑦7C!
}+Eu = 0.154. In period 15, the true disturbance value is 𝑦7C!,<X

}+Eu =

0.164 and the estimated values are 𝑦7C!,YZ
}+Eu = 0.137 and 𝑦7C!,+)^89

}+Eu = 0.163. Accordingly, the lv-PE leads to a 

significantly lower relative estimation error of ~0.6% (~0.09	𝑚𝑜𝑙% in absolute terms) while the regular PE leads to 

an estimation error ~16.4% for this period. As noted above, higher estimation error results in significant losses in 

steady state economics over long periods of time but also deterioration in control performance as shown in Figure 

C-3. 
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Figure C-3: Dynamic performance of transition between RTO periods 14 and 15. 

 
Figure C-4: Dynamic performance of ancillary controlled and manipulated variables in scenario B. 

Moreover, as defined in equation (13), the sums of squared errors are provided in Table C-1. 
Table C-1: Dynamic tracking metrics for transition between RTO periods 14 and 15. 

 PE lv-PE 

𝑆𝑆𝐸%77 2709 93.01 

𝑆𝑆𝐸	7RZ[/8-9 21.64 × 10� 9.962 × 10� 

The 𝑆𝑆𝐸 for %𝐶𝐶 and 𝐶H91@#Bv  is two and one order of magnitude lower for the lv-DE scheme than the DE scheme, 

respectively; this is attributable to the improved accuracy of the 𝑦7C!
}+Eu estimate for lv scheme. The lower estimation 

error results in the final operating conditions in Figure C-3a and b being closer to the true set points (i.e., less offset) 

in the controlled variables as affected by the NMPC and MHE whereby better disturbance estimates are provided to 

the dynamic mechanistic models used for control and estimation, respectively. Figure C-3c shows the dynamic cost 

for the competing schemes in which both schemes subject the system to temporary increases in cost through increased 

MEA makeup (Figure C-3e trajectory coincides with that of Figure C-3c). In the control scheme with lv-PE, the 
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elevated cost occurs through a single rapid (~1.25	ℎ𝑟) peak in MEA makeup, while the elevated cost in the PE/control 

scheme come from three consecutive long peaks in the MEA makeup. Both makeups eventually go to effectively zero 

as the steady state makeup burden is mostly achieved by solvent regeneration in the stripper-side reboiler in Figure 

C-3d. 

While the lv-PE RTO chooses to increase reboiler duty, the DE RTO chooses to decrease it. This results in lower 

recycle CO2 concentration, thus lower lean loading (i.e., CO2 content in the lean solvent) in the lv-PE control scheme. 

Moreover, Figure C-3f shows that the lv-PE control scheme also effectively adds zero water at the new steady state, 

while the PE control scheme continues adding water to the system, thus diluting the lean amine solution. In aggregate, 

these factors lead to the higher removal rate achieved by the lv-PE control scheme despite a lower MEA concentration 

in the buffer tank. The higher removal rate and higher carbon sales rate offset the higher reboiler duty used by the lv-

DE scheme with a low annualized steady-state operating cost of  50,224	$𝐶𝐴𝐷/𝑦𝑟 compared to a higher 

51,994	$𝐶𝐴𝐷/𝑦𝑟 achieved by the PE. 

Dynamic Example (Scenario C) 

Dynamically, the transition between PCC periods 5 and 6 were observed as illustrated in Figure C-5. The flue gas CO2 

composition (i.e., disturbance) in period 5 is 𝑦7C!
}+Eu = 0.170 while the disturbance value in period 6 is 𝑦7C!

}+Eu = 0.188. 

In this scenario, the PE must estimate the model parameters given in Chapter 6 (i.e., 𝜽𝒑,𝒏𝒐𝒎 =

[0.381 0.677 0.974]n) to pass to the NMPC and MHE. The lv-PE yielded an estimate of 𝜽û𝒑,𝒍𝒗^𝑷𝑬 =

[0.380 0.345 0.983]n while the regular PE yielded 𝜽û𝒑,𝑷𝑬 = [0.363 0.236 1.136]n. These estimates 

correspond to percent errors of [0.2 49 0.9]n and [4.7 65 17]n, respectively, thus the lv-PE scheme improves 

estimate quality across all parameters. It should be noted that the estimate for 𝜃, = 𝛾7C! is poor in both cases, 

suggesting that the sensitivity of the measurement predictions to this parameter is low. This occurs as the mass transfer 

model for CO2 is more elaborate and makes less simplifications than that of the other species; thus, it is less reliant on 

the activity coefficient for prediction accuracy. Moreover, mass transfer of CO2 is dictated greatly by the enhancement 

factor that is considered in the mass transfer coefficient calculation [9], not in the equilibrium pressure as effected by 

the activity coefficient. Nevertheless, the control performance is found to be adequate, as shown in Figure C-5 for the 

key performance variables and Figure C-6 for the ancillary variables. 
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Figure C-5: Dynamic performance of transition between RTO periods 5 and 6. 

 
Figure C-6: Dynamic performance of ancillary controlled and manipulated variables in scenario C. 

The sums of squared errors and dynamic costs are provided in Table C-2. 
Table C-2: Dynamic tracking metrics for transition between RTO periods 5 and 6. 

 PE lv-PE 

𝑆𝑆𝐸%77 4687 986.3 

𝑆𝑆𝐸	7RZ[/8-9 6221 × 10� 1312 × 10� 

Figure C-5a show the improvements in control performance of %𝐶𝐶, which is the key performance variable in this 

system, whereby the lv-PE control scheme can track the set point almost exactly in the given time while the regular 

PE scheme remains with a mismatch. This is also reflected in the 𝑆𝑆𝐸%77 in Table C-2, which is an order of magnitude 

lower for the lv-PE control scheme. Moreover, while there remains significant offset for 𝐶H91 in Figure C-5b, the 

tracking performance is also significantly better in the lv-PE control scheme as reflected in 𝑆𝑆𝐸	7RZ[/8-9. As with the 

previous scenario, the dynamic costs are mainly driven by the MEA makeup as indicated by the matching profiles in 

Figure C-5c and Figure C-5e, where the lv-PE control scheme uses significantly less MEA, leading to a more economic 
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transient. A less aggressive control approach is also reflected in the water makeup Figure C-5f, whereby the lv-PE 

control scheme peaks briefly while the regular PE control scheme applies bang-bang control for a small period of 

time. The more efficient control exhibited by the lv-PE scheme is facilitated by an increase in the reboiler duty (Figure 

C-5d) to a higher level that the regular PE scheme whereby less makeup is required as a result.  

Eventually, both schemes’ makeups (Figure C-5e and f) effectively approach zero as the systems approaches steady 

state, this is accompanied by a commensurate drop in process cost (Figure C-5c), whereby the final steady state costs 

for the lv-PE and PE scheme are 46,863	$𝐶𝐴𝐷/𝑦𝑟 and 47,886$𝐶𝐴𝐷/𝑦𝑟, respectively. 
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Appendix D - Supplementary Material for Chapter 7 
Table D-1: Data for the evaporator scenario. 

 Mean processing cost 𝑀G($/𝑘𝑔) Mass processed 𝑚× 10/(𝑘𝑔) 

𝑇 MA pMA2+ pMA2 pMA1+ pMA1 MA pMA2+ pMA2 pMA1+ pMA1 

2000 𝑁/𝐴 654 728 566 566 𝑁/𝐴 481	 535	 473	 617	

2500 724 613 694 	540 	540 524 601	 695	 	590	 778	

3000 764 644 691 593 593 603 723	 769	 694	 845	

3500 690 579 614 622 622 789 969	 1,029	 792	 940	

4000 600 558 573 669 669 1,057 	1,215	 1,236	 857	 998	

4500 526 535 595 644 644 1,413 	1,267	 1,401	 966	 1,168	

 

 
Figure D-1: Constraint trajectories for evaporator case, increasing disturbance periods. 
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Figure D-2: Profit rate (top) and constraint (bottom) for the evaporator case study under pMA, dMA (scenario 1), and dMA 

(scenario 2). 
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Appendix E - Economic Model Predictive Control of a RAS System 

Global consumption of seafood has undergone a fivefold increase over the past sixty years (FAO, 2022a). This has 

prompted advancements in seafood production as wild fisheries are unable to meet the surging demand because of 

stagnating wild fish populations. Accordingly, aquaculture, the process of human-reared farming of fish, has become 

an increasingly important means of production, comprising nearly half of worldwide fish capture in 2020 (FAO, 

2022a). 

Typically, RASs assume that the operational variables of the units outlined above are constant, including feed rates to 

the fish tank, solid removal fraction, ammonia conversion in the biological reactor, and oxygen flows to the aerators 

and fish tank. This continues for a fixed amount of time until the fish have reached maturity and are removed from 

the tank in a batch manner. After removal, the tank is refilled with juveniles, thus starting a new batch. Despite their 

benefits, RASs has been shown to be expensive as their controlled environment requires increased energy and resource 

(e.g., oxygen) use; thus, limiting their use to certain stages of the fish production cycle (e.g., hatcheries; D’Agaro et 

al., 2022). To this end, little attention has been paid as to how to optimize the economics of RAS systems in real time. 

Process systems engineering (PSE) provides systematized approach to generate optimal production strategies for 

chemical and biological processes. RASs can be modelled as batch processes whereby the products (fish) are processed 

(grown) for a finite amount of time until they are ready for harvesting. Moreover, RASs encompass the three 

interacting units outlined previously. In this context, PSE process control techniques have been applied to RASs (e.g., 

Dos Santos et al., 2022; Kamali et al., 2023). The former study implemented an economic control scheme for RAS 

while the latter implemented a regulatory model predictive control scheme complemented with a state estimator. PSE 

practitioners have also employed model-based economic optimization approaches for various chemical and energy 

systems (e.g., Mendiola-Rodriguez and Ricardez-Sandoval, 2022). However, online economic optimization has only 

been deployed once in the RAS literature (Dos Santos et al., 2022). While this constituted a step forward in the PSE 

for RAS literature, fish growth was not included in the economic model and a simplified process model was used in 

the control scheme. Mechanistic process models deployed with an economic optimization approach can therefore 

provide valuable decisions that influence fish growth dynamics and balance sales profits with operational costs. To 

use PSE tools, many of which are model based, a RAS production model is necessary. Dynamic models of each of the 

key process units have been developed in the literature. Moreover, fish growth and mortality models are also available. 

Recently, Kamali et al. (2022) combined mechanistic process, fish growth, and fish mortality models to evaluate RAS 

performance under several disturbance scenarios.  

Aquaculture has traditionally occurred in fenced or caged environments where fish and feed waste build-up occurs. 

The wastewater produced has prompted ecological and sustainability concerns owed to its disposal and resultant 

makeup water consumption. To allay these issues, the recirculating aquaculture system (RAS) has been proposed. The 

basic layout for RAS consists of three processes as depicted in Figure E-1: the fish tank, where fish are grown and 

fed, makeup water is introduced, and fresh oxygen is diffused; the solid removal, where wastewater from the fish tank 

is filtered to remove solid particles; and the biological reactors, where the water is aerated and dissolved waste is 

treated with microorganisms to maintain water quality for recycling into the fish tank. This RAS layout can 

significantly reduce water usage in fish rearing while maintaining fish population health.  
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Figure E-1:	RAS schematic. Clockwise from top left: fish tank, solid removal drum filter, biological reactors. 

As per the literature reviewed above, a gap exists for a rigorous model-based economic optimization scheme applied 

to aquaculture that considers fish growth and mortality within its decision-making. As such, we propose the use of an 

economic model predictive control (EMPC) scheme for the operation of a RAS; the model developed by Kamali et 

al. (2022) will be the basis of the present work. The EMPC proposed uses a novel economic function, which is the 

first to account for fish sales, utility, and energy usage simultaneously. Another novelty in the current work is the 

determination of RAS batch length through profit-tracking.  

This study is structured as follows: firstly, we outline the RAS model; secondly, we detail the EMPC formulation; 

thirdly, we test the proposed scheme across several scenarios; and, lastly, we highlight conclusions. 

RAS Model 

The dynamic mechanistic model presented by Kamali et al. (2022) was adapted for the present work. It consists of a 

fish tank (FT), two fixed-bed biofilters (FBB1, FBB2), two moving-bed bioreactors with aerators (BR1, BR2), and a 

drum filter; these units are shown in Figure E-1. The work herein assumes rainbow trout (Oncorhynchus mykiss) is 

being produced. The model was validated in Kamali et al. (2022) where it was found to be consistent with experimental 

RAS data from Fernandes et al. (2022). For brevity, only the most important features of the RAS model are outlined 

herein; more details about this model can be found in Kamali et al. (2022). The key assumptions made in developing 

the model are as follows: 

1. The fish tanks are modelled as perfectly mixed reactors. 

2. The solid removal is assumed to operate at steady state with constant efficiency. 

3. The RAS model does not consider an energy balance; hence, temperature cannot be controlled and is treated 

as a disturbance. 

As described in Kamali et al. (2022), the components being modelled in the system are: soluble inert organic matter 

(𝐼𝑂𝑀), readily biodegradable substrate (𝐵𝐷𝑆), particulate inert organic matter (𝑃𝑂𝑀), slowly biodegradable substrate 

(𝑆𝐵𝑆), heterotrophic biomass (𝐵𝐻), ammonia oxidizing bacteria (𝐴𝑂𝐵), nitrite oxidizing bacteria (𝑁𝑂𝐵), particulate 

𝑚𝑂2
𝐵𝑅2

𝑚𝑂2
𝐹𝑇

𝐹
𝑄𝑚𝑎𝑘𝑒𝑢𝑝

𝑚𝑂2
𝐵𝑅1
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products arising from biomass decay (𝑃𝑃), nitrite nitrogen (𝑁𝑂,), nitrate nitrogen (𝑁𝑂/), total ammonia nitrogen 

(𝑁𝐻), soluble biodegradable organic nitrogen (𝑆𝑁𝐷), particulate biodegradable organic nitrogen (𝑃𝑁𝐷) and alkaline 

components (𝐴𝐿𝐾). These comprise the set of components 𝐼.  

Fish Tank 

As noted above, a tank to grow fish is one of the RAS units. The changes in fish weight over time are modelled as 

follows: 

𝑑𝑊
𝑑𝑡 = 𝑏𝐹}*-k − 𝑎𝑏𝐹}*-k −𝐾𝑊B (E-1)  

where  𝑊(g) is the weight of a single fish and 𝐹}*-k(g/day) is the daily food intake of each fish. 𝑎(g/g) is the fraction 

of food assimilated, 𝑏(g/g) is the efficiency of food assimilation, 𝐾(g/day) is the catabolism coefficient, and 𝑛 is a 

weight/catabolism exponent. The size of fish population is modelled through the following mortality model: 

𝑑𝑁
𝑑𝑡 = −𝑀*B-𝑁 (E-2)  

where 𝑁 is the total number of fish in the tank and 𝑀*B-(s-1) is the instantaneous mortality rate. In addition to fish 

growth and population, waste components build up in the fish tank such that the water becomes contaminated. The 

concentration of a given waste component in the fish tank is modelled as follows: 

𝑉in
𝑑𝑍*
𝑑𝑡 = 𝑄in�𝑍*,*B − 𝑍*� + 𝜔* − 𝐿* (E-3)  

where 𝑍* and 𝑍*,*B(kg/kg) are the bulk and inlet concentrations of components 𝑖 ∈ 𝐼, respectively. 𝑉in(m3) and 𝑄in =

𝑄"#vuE% + 𝑄&um*&mE+#@u((m3/day) are the fish tank volume and inlet flowrate, respectively. 𝜔*(kg/day) and 𝐿*(kg/day) 

are the excretion and feed loss rates of components 𝑖 ∈ 𝐼, respectively. 

Waste Production and Solid Removal 

Fish and feed waste constitute the total waste production in RAS. The waste dynamics are as follows:  

𝜏
𝑑𝜔*
𝑑𝑡 = 𝐹𝛾*(1 − 𝜀+'--) − 𝜔* (E-4)  

where 𝜏	(days) is the residence time of the fish digestive system, which is treated as a well-mixed reactor. 𝐹(kg/day) 

and 𝜀+'-- are the total system feeding rate and feed loss fraction, respectively. 𝛾* denotes the component-specific was 

fraction of 𝑖 ∈ 𝐼. To remove the waste, a 40	µm drum filter is assumed to work at a 48% removal efficiency. 

Biological Reactors 

The biological reactors work to convert compounds that are toxic into inert compounds. They are modelled as follows: 

𝑉j
𝑑𝑆*

j

𝑑𝑡 = 𝑄j�𝑆*,*B
j − 𝑆*

j� + 𝑉j𝑟*
j (E-5)  
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where 𝑗 ∈ {𝐵𝑅1, 𝐵𝑅2}. 𝑆*
j and 𝑆*,*B

j (g/m3) are the bulk and inlet concentrations of components 𝑖 ∈ 𝐼 in unit 𝑗, 

respectively. 𝑉j(m3) and 𝑄j(m3/day) are the bioreactor volume and inlet flowrate, respectively, 𝑟*
j(g/m3-day) is the 

reaction rate of component 𝑖 ∈ 𝐼.  

Aeration and Oxygen Addition 

As show in Figure E-1, aeration occurs in the two BRs. Additionally, pure oxygen is introduced in the FT to 

supplement the aeration. Both these processes assist in reoxygenation and remove carbon dioxide from the system. 

Accordingly, the oxygen and carbon dioxide concentrations in units 𝑗 ∈ {𝐹𝑇, 𝐵𝑅1, 𝐵𝑅2} are modelled as follows:  

𝑉j
𝑑𝑆C!

j

𝑑𝑡 = 𝑄j�𝑆C!,*B
j − 𝑆C!

j � − 𝑟C!
j +𝑚C!

j  (E-6)  

𝑉j
𝑑𝑆7C!

j

𝑑𝑡 = 𝑄j�𝑆7C!,*B
j − 𝑆7C!

j � + 𝑟7C!
j −𝑚7C!

j  (E-7)  

where 𝑆C!
j (kg/m3), 𝑆C!,*B

j (kg/m3), 𝑟C!
j (kg/day), and 𝑚C!

j (kg/day) are the bulk concentration, inlet concentration, oxygen 

consumption rate, and fresh flowrate of oxygen, respectively, in unit 𝑗. Moreover, 𝑆7C!
j (kg/m3), 𝑆7C!,*B

j (kg/m3), 

𝑟7C!
j (kg/day), and 𝑚7C!

j (kg/day) are the bulk concentration, inlet concentration, carbon dioxide production rate, and 

removal flowrate of carbon dioxide, respectively. The carbon dioxide is removed as the water becomes increasingly 

aerated. 

Model Parameters and Implementation 

The dynamic model presented in equations (E-1)-(E-7) is denoted henceforth as 𝒇. The complete RAS model consists 

of 63 states. Model parameters and algebraic equations are outlined in Table E-1; the latter are part of 𝒇 but were not 

detailed for brevity and can be found in Kamali et al. (2022). The inputs to each algebraic variable are also stated in 

Table E-1. Moreover, the temperature dependence, which is crucial to the present study, occurs in these algebraic 

variables (e.g., 𝑟7C!
j  is a function of temperature 𝑇 (°C) and fish weight 𝑊).   

For the RAS control system proposed herein, the manipulated variables available for control are 𝒖 =

[𝐹 𝑄"#vuE% 𝑚C!
in 𝑚C!

346 𝑚C!
34,]𝑻; these are the feeding rate, water makeup rate, oxygen diffusion rate, and 

aeration rates, which are outlined with their corresponding unit in Figure E-1. The oxygen addition manipulated 

variables correspond to the 𝑚C!
j  value for their respective unit in (E-6). While feed and oxygenation rates affect fish 

health directly through metabolism and respiration, water makeup impacts water quality. The sampling interval of the 

RAS is ∆𝑡 = 0.1 days. The time-discretized dynamic optimization problem solved for the EMPC proposed in this 

work constitutes 6,569 variables and 6,519 constraints when discretized using the backward finite difference method. 

For a single sampling interval, the EMPC problem is solved in an average of 245	seconds; as the computational time 

is much less than the sampling interval, the control scheme is implementable. Note that the current work assumes full 

state accessibility (i.e., all feedback states are measurable). 
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Table E-1: Model parameters and algebraic variables; 𝒇(∙) denotes variable dependencies 

 Description Value 

𝑎 Fraction of food assimilated (g/g) 0.4 

𝑛 Body weight exponent 0.81 

𝑉in FT volume (m3) 5.5 

𝑉346,𝑉34, BR volume (m3) 0.4 

𝜀+'-- Feed loss fraction 0.05 

𝜏 Feed residence time (days) 0.211 

𝑏 Efficiency of food assimilation 𝑓(𝑊) 

𝐹}*-k Daily food intake of one fish 𝑓(𝐹, 𝑇,𝑊) 

𝐾 Catabolism coefficient 𝑓(𝑇) 

𝐿* Component waste fraction  𝑓(𝐹) 

𝑀*B- Instantaneous mortality rate (s-1) 𝑓(𝑊) 

𝑟7C!
j  CO2 reaction rate (kg/day) 𝑓(𝑇,𝑊) 

𝑟*
j BR reaction rates (g/m3-day) 𝑓(𝑆*

j) 

𝑟C!
j  O2 reaction rate (kg/day) 𝑓(𝑇,𝑊) 

𝛾* Waste fraction of component 𝑖 𝑓(𝑖) 

 

EMPC Formulation and Deployment 

 
Figure E-2: EMPC exchange of information with plant. 

Model predictive control (MPC) is a commonly used method to regulate the operation of variables in closed-loop 

process systems subject to feasibility constraints. MPC takes the form of an optimization problem that is solved at 

each sampling instant (∆𝑡). This problem employs a process model to predict future process behaviour and obtain 

optimal plant control actions to correct for future set point deviations. The MPC formulation is solved at every 

Plant

Measurements: 𝒙𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌

EMPC

Control actions: 𝒖𝒕+𝟏

Disturbances: 𝒅𝒕

𝑡 ← 𝑡 + ∆𝑡
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sampling interval, whereby the process model is updated via its initial conditions and the optimal control problem is 

re-solved with the updated state. 

EMPC is a variant of MPC that retains the internal predictive model but foregoes set point target tracking for an 

economic objective (Ellis et al., 2014). EMPC is often implemented as depicted in Figure E-2 wherein it receives 

measurements (or state estimates) as initial conditions to solve a dynamic optimization problem. The EMPC supplies 

the plant with manipulated variables, thus regulating plant behaviour towards the achievement of an optimal economy. 

Note that the EMPC does not use a constant set point like the traditional MPC scheme; rather, its control actions are 

inherently economical and need not be at steady state (Ellis et al., 2014). The EMPC is solved at every sampling 

interval ∆𝑡 such that it constantly obtains feedback from the plant and predicts further into the future, thus making the 

scheme closed loop. In the present study, the EMPC problem at time 𝑡 is formulated as follows: 

max
𝒖𝒕#𝒊∀*∈{6,…,P}

𝜙(𝒙𝒕S𝒊, 𝒖𝒕S𝒊) −�‖∆𝒖𝒕S𝒊‖𝑲𝟐
7

*A6

 

𝒇(𝒙𝒕S𝒊, 𝒖𝒕S𝒊, 𝜽) = 𝒙𝒕S𝒊S𝟏																																																																																																					𝑖 ∈ {0,… , 𝐶 − 1} 

𝒙𝒕 = 𝒙𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 

𝒈(𝒙𝒕S𝒊, 𝒖𝒕S𝒊) ≤ 𝟎																																																																																																																										𝑖 ∈ {0,… , 𝐶} 

𝒖𝒍 ≤ 𝒖𝒕S𝒊 ≤ 𝒖𝒉																																																																																																																													𝑖 ∈ {0,… , 𝐶} 

(E-8)  

where 𝒙 ∈ ℝ$ and 𝒖 ∈ ℝE denote the process states and manipulated variables, respectively. Moreover, 𝜽 ∈ ℝ� 

denotes the time-invariant model parameters (i.e., in Table E-1). 𝜙:ℝ$ ×ℝE → ℝ denotes the economic objective 

function, which generates economic prediction given the predicted states and manipulated variables. 𝒇:ℝ$ ×ℝE ×

ℝ� → ℝ$ denotes the process model, which maps the states and manipulated variables to the future states on the 

horizon 𝐶. 𝒖𝒍 and 𝒖𝒉 ∈ ℝE denote the lower and upper bounds, respectively, for the manipulated variables, which 

define the search space for the optimization problem. 𝒈:ℝ$ ×ℝE → ℝ?  denotes the process constrains that must be 

satisfied by the EMPC solution. 𝒙𝒇𝒆𝒆𝒅𝒃𝒂𝒄𝒌 ∈ ℝ$ denotes the state measurements (or estimates), which serve as initial 

conditions to the dynamic optimization problem. The RAS model 𝒇 is discretized using backward finite differences 

with a resolution 0.1 days. The control and prediction horizons are equivalent at 5 days (i.e., 𝐶 = 50); this was based 

on Kamali et al. (2022). 

In addition to the economic objective 𝜙, the EMPC formulation (E-8) minimizes the rate of change of the manipulated 

variables (i.e., ∆𝒖𝒕 = 𝒖𝒕 − 𝒖𝒕^𝟏) in the objective function such that aggressive control actions are penalized. The 

weighing matrix (𝑲) for this term ensures that the dynamics in the manipulated variables are balanced with the 

economic objective. The tuning matrix for the present RAS system 𝑲 = 𝑑𝑖𝑎𝑔(1𝑒^, 1𝑒^, 1𝑒^/ 1𝑒^/ 1𝑒^/) 

was determined using preliminary tuning simulations whereby each term was adjusted individually to yield smooth 

control actions; each element in this matrix corresponds to a manipulated variable in the vector 𝒖 defined in Section 

8.1.5. The bounds on the manipulated variables imposed on (E-8) provide the feasible region for the EMPC dynamic 

optimization problem. These bounds are adapted from Kamali et al. (2022) and are as follows: 

0 ≤ 𝐹(𝑔 𝑑𝑎𝑦⁄ ) ≤ 3 

0 ≤ 𝑄"#vuE%(𝑚/ 𝑑𝑎𝑦⁄ ) ≤ 3 
(E-9)  
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0 ≤ 𝑚C!
j (𝑘𝑔 𝑑𝑎𝑦⁄ ) ≤ 1 

The economic function in (E-8) is posed as a profit maximization problem in this work. It is formulated as follows: 

𝜙 = 𝜙¦ − 𝜙§ (E-10)  

where 𝜙¦ and 𝜙§ are the profit and cost elements of the process economics, respectively. For the present RAS system, 

the profit is directly related to fish production; accordingly: 

𝜙¦ = 𝑃}*-k𝑊@S7𝑁@S7 (E-11)  

where 𝑃}*-k($/g) is the wholesale price of the fish being produced (rainbow trout in the present study). The total live 

fish mass in the RAS system at the end of the horizon 𝑊@S7𝑁@S7(kg) is maximized. The endpoint (i.e., final) fish mass 

at time 𝐶 is considered as the fish only become products at the end of the batch. The cost element of the economic 

function is as follows: 

𝜙§ = ∆𝑡�Å𝑃}𝐹@S* + 𝑃C!𝑚C!,@S¨
in +�𝑃u𝐷v,@S*

v∈9

Ç
7

*A=

 (E-12)  

where 𝑃}($/g), 𝑃C!($/g), and  𝑃u($/kWh) denote the feed, oxygen, and electrical prices, respectively. Only oxygen 

input into the FT is accounted for in the cost function as the BRs receive their oxygen via aeration. 𝐷v,@S* denotes the 

energy duties for 𝑘 ∈ 𝐸 where 𝐸 is the set of all energy-consuming units (i.e., water pumping, water treatment, 

aeration, feed distribution, fish handling, fuel, and gas; D’Orbcastel et al., 2009). These utilities and energy are 

consumed throughout the RAS process in contrast to the fish, which are only capitalized on at the end of each batch. 

Accordingly, the path summation (as opposed to the endpoint) is considered in the objective function and minimized 

accordingly. The prices considered in this study are listed in Table E-2. 
Table E-2: RAS prices. 

Term Price Source 

𝑃}*-k 7.35	$/kg fish FAO (2022b) 

𝑃} 1550 $/tn feed D’Agaro (2022) 

𝑃C! 40 $/tn oxygen Dorris et al. (2016) 

𝑃u 0.20 $/kg fish D’Orbcastel et al. (2009) 

Despite the RAS system being a batch process, it is subject to disturbances and has a long batch length (i.e., in the 

orders of months); as such, an online method such as EMPC is best suited over formulating a single optimal control 

problem that considers the complete batch length. However, this implementation does not allow for the batch length 

to be considered explicitly as a decision variable. Instead, batch length is determined by tracking the cost over the 

time elapsed (i.e., 𝑅 = 𝜙¦(𝑇) − ∫ 𝜙§(𝑡)	𝑑𝑡
n
= ). 𝑅 is expected to increase initially as fish are quickly growing from 

juveniles provided that the fish remain in an acceptable environment for growth during the entire batch operation. 

Subsequently, as fish growth slows down, the profit stagnates as a case of diminishing returns begin to occur. 

Eventually, the profit will reach a maximum where the production costs (i.e., oxygen, feed, energy) begin to dominate; 
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and 𝑅 begins to decrease. The time at which the maximum occurs is therefore chosen as the batch length (𝑡F#@mk) of 

the RAS process.  

Results 

Five test scenarios involving the RAS system presented in Section 8.1 are considered in the present study. All scenarios 

begin by operating the RAS system at their constant nominal manipulated variables, i.e., 𝒖𝒏𝒐𝒎 =

[2 3 0.2 0.4 0.4]𝑻 corresponding to 𝒖. This constant operation is maintained for fifteen sampling intervals 

(i.e., 1.5 days). The EMPC, tasked with determining the optimal trajectory in the manipulated variables (𝒖), is 

deployed for three constant temperature scenarios at 10°C (scenario 1), 15°C (scenario 2), and 20°C (scenario 3). 

These temperatures are chosen based on the RAS operating range from Kamali et al. (2022). Moreover, scenario 4 

involves an initial RAS operation at 20°C followed by a temperature step disturbance to 15°C at 𝑡 = 80 days. This 

mid-batch disturbance is imposed such that the EMPC can adjust its operating policy on-line; such a disturbance could 

occur owing to seasonal ambient temperature changes. Seasonal changes are considered instead of diurnal changes as 

small daily fluctuations will negate over the timespans simulated herein. Lastly, scenario 5 maintains all manipulated 

variables at their nominal values until a cost profit maximum is observed. The key process variable and manipulated 

variable trajectories are displayed in Figure E-3 and Figure E-4, respectively; Table E-3 provides a summary of results. 

Firstly, it should be noted that scenario 1 is not productive. As shown in Figure E-3a and Figure E-3b, respectively, 

the fish decrease in weight and the highest population decline is observed. This is because the 10°C temperature is 

too cold for RAS operation as was noted in Kamali et al. (2022). Nevertheless, the EMPC acts to mitigate losses by 

imposing low feed conditions (Figure E-4a) and low oxygen diffusion (Figure E-4c) ; the former two settle at non-

zero values to slow fish mortality. As this is a poor environment for fish growth, the maximum profit is achieved at 

the beginning of the batch (Figure E-3c). Accordingly, it is best not to operate the RAS in these conditions as it can 

only negatively impact the health and growth of the fish population. In this scenario, the batch length is effectively 

zero and the profit correspond to the sales cost of the juveniles (Table E-3). 
Table E-3: Final batch results. 

Scenario Temperature 𝒕𝒃𝒂𝒕𝒄𝒉 (days) 𝑹 ($) 

1 10°C 0 740.18 

2 15°C 92.1 958.61 

3 20°C 83.4 905.41 

4 20 → 15°C 101.2 912.83 

5 20°C (𝒖𝒏𝒐𝒎) 4.9 748.98 
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Figure E-3: Key process variable trajectories for scenarios tested. 

In contrast to scenario 1, scenarios 2 and 3 result in acceptable environments for fish growth. Both scenarios have 

maximum feeding (Figure E-4a) and maximum water makeup (Figure E-4b) to encourage fish growth. Moreover, the 

oxygen diffusion in both scenarios (Figure E-4c) increases as the batch continues; this is to supplement the maximum 

aeration to the biological reactors (Figure E-4d. and e.) such that the oxygen requirements of increasingly large fish 

(Figure E-3a) are met. In a typical RAS operation, oxygen diffusion would be kept constant; thus, time-varying 

diffusion as shown herein has not been previously considered. Despite the similarities in scenarios 2 and 3, it is 

apparent that the former is a better environment for fish growth. With similar fish mortality rates (Figure E-3b), 

scenario 2 can result in ~6% higher final batch profit over scenario 3 with only an additional 8.7 days of batch length 
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(Table E-3, Figure E-3c). With respect to the starting price, scenarios 2 and 3 represent substantial valorisation in the 

fish, ~30.5% and ~22.3%, respectively; thus, justifying the RAS operation. 

 
Figure E-4: Manipulated variable trajectories for scenarios tested. 

Scenario 4 begins via the trajectories of scenario 3 until the occurrence of the temperature disturbance. At this point, 

the oxygen diffusion (Figure E-4c) is decreased below the level of scenario 2. The disturbance also causes the batch 

to be operated for a prolonged length of time as the profit (Figure E-3c) undergoes an upward inflection such that its 

maximum is delayed. As a result, the batch length of the scenario 4 (Table E-3) is longer that those of the constant 

temperature scenarios while only achieving small (~0.8%) improvements and large deterioration (~4.8%) with 

respect to the scenarios 3 and 2, respectively. Accordingly, it can be concluded that the temperature for RAS is best 

kept constant with tight control if possible. Finally, scenario 5 presents a counterfactual to scenario 3 in which the 

manipulated variables are kept constant at their nominal values as is typically done. As shown in Table E-3 and Figure 
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E-3 (omitted from Figure E-4 for simplicity); this results in only slight valorisation of the fish. Thus, the RAS is only 

profitable for 4.9 days before utility costs begin to dominate, after which continuing operation is not economically 

advantageous. 

Summary 

The present study proposes an EMPC scheme for RAS, which considers fish production profits as well as utility costs. 

The EMPC was applied to various scenarios and was always found to make economic decisions even in the case where 

conditions were not suited for fish growth. In suitable conditions, the EMPC was able to significantly increase fish 

profit through weight increase and low mortality rates while minimizing utility usage. In general, fish weights were 

only increased to ~80 g, which is too small for wholesale. This aligns with the current main use of RAS in the early 

fish life cycle (D’Agaro et al., 2022), whereby fish are graded by size and moved to traditional aquaculture 

environments to minimize cost.  

As shown in Kamali et al. (2020), the RAS model contains uncertainties such that it does not fully match experimental 

data. As such, an approach to address uncertainty in the EMPC proposed herein is necessary. It is suggested that a 

batch-to-batch implementation of MA is used for this system and compared to a dynamic parameter estimation 

procedure. Future works will also incorporate a dynamic energy balance within the current RAS model; accordingly, 

dynamic temperature control can be potentially implemented and further enhance the economics of this system. Other 

disturbance scenarios should also be considered for the present EMPC (e.g., aerator failure). Moreover, the 

relationship batch length and fish growth should be analysed in a multi-batch context such that the trade-off between 

resuming an old batch and beginning new batch can be understood. The simultaneous selection of design and control 

decisions (e.g., Rafiei and Ricardez-Sandoval, 2020) for RAS should also be explored as a potential avenue to improve 

regulatory and economic performance. Finally, the current work is limited to rainbow trout and can be applied to any 

aquaculture-reared fish.  

 


