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Abstract

The implementation of a Nonlinear Model Predictive Control (NMPC) scheme for the integra-
tion of design and control demands the solution of a complex optimization formulation, in which
the solution of the design problem depends on the decisions from a lower tier problem for the
NMPC. This formulation with two decision levels is known as a bilevel optimization problem. The
solution of a bilevel problem using traditional Linear Problem (LP), Nonlinear Problem (NLP) or
Mixed-Integer Nonlinear Problem (MINLP) solvers is very difficult. Moreover, the bilevel problem
becomes particularly complex if uncertainties or discrete decisions are considered. Therefore, the
implementation of alternative methodologies is necessary for the solution of the bilevel problem for
the integration of design and NMPC-based control. The lack of studies and practical methodologies
regarding the integration of design and NMPC-based control motivates the development of novel
methodologies to address the solution of the complex formulation.

A systematic methodology has been proposed in this research to address the integration of design
and control involving NMPC. This method is based on the determination of the amount of back-off
necessary to move the design and control variables from an optimal steady-state design to a new
dynamically feasible and economic operating point. This method features the reduction of com-
plexity of the bilevel formulation by approximating the problem in terms of power series expansion
(PSE) functions, which leads to a single-level problem formulation. These function are obtained
around the point that shows the worst-case variability in the process dynamics. This approximated
PSE-based optimization model is easily solved with traditional NLP solvers. The method moves
the decision variables for design and control in a systematic fashion that allows to accommodate
the worst-case scenario in a dynamically feasible operating point. Since approximation techniques
are implemented in this methodology, the feasible solutions potentially may have deviations from a
local optimum solution.

A transformation methodology has been implemented to restate the bilevel problem in terms of
a single-level mathematical program with complementarity constraints (MPCC). This single-level
MPCC is obtained by restating the optimization problem for the NMPC in terms of its conditions
for optimality. The single-level problem is still difficult to solve; however, the use of conventional
NLP or MINLP solvers for the search of a solution to the MPCC problem is possible. Hence, the
implementation of conventional solvers provides guarantees for optimality for the MPCC’s solution.
Nevertheless, an optimal solution for the MPCC-based problem may not be an optimal solution for
the original bilevel problem.

The introduction of structural decisions such as the arrangement of equipment or the selection
of the number of process units requires the solution of formulations involving discrete decisions.
This PhD thesis proposes the implementation of a discrete-steepest descent algorithm for the inte-
gration of design and NMPC-based control under uncertainty and structural decisions following a
naturally ordered sequence, i.e., structural decisions that follow the order of the natural numbers.
In this approach, the corresponding mixed-integer bilevel problem (MIBLP) is transformed first
into a single-level mixed-integer nonlinear program (MINLP). Then, the MINLP is decomposed
into an integer master problem and a set of continuous sub-problems. The set of problems is solved
systematically, enabling exploration of the neighborhoods defined by subsets of integer variables.
The search direction is determined by the neighbor that produces the largest improvement in the
objective function. As this method does not require the relaxation of integer variables, it can de-
termine local solutions that may not be efficiently identified using conventional MINLP solvers.
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To compare the performance of the proposed discrete-steepest descent approach, an alternative
methodology based on the distributed stream-tray optimization (DSTO) method is presented. In
that methodology, the integer variables are allowed to be continuous variables in a differentiable dis-
tribution function (DDF). The DDFs are derived from the discretization of Gaussian distributions.
This allows the solution of a continuous formulation (i.e., a NLP) for the integration of design and
NMPC-based control under uncertainty and structural decisions naturally ordered set.

Most of the applications for the integration of design and control implement direct transcrip-
tion approaches for the solution of the optimization formulation, i.e., the full discretization of the
optimization problem is implemented. In chemical engineering, the most widely used discretization
strategy is orthogonal collocation on finite elements (OCFE). OCFE offers adequate accuracy and
numerical stability if the number of collocation points and the number of finite elements are prop-
erly selected. For the discretization of integrated design and control formulations, the selection of
the number of finite elements is commonly decided based on a priori simulations or process heuris-
tics. In this PhD study, a novel methodology for the selection and refinement of the number of
finite elements in the integration of design and control framework is presented. The corresponding
methodology implements two criteria for the selection of finite elements, i.e., the estimation of the
collocation error and the Hamiltonian function profile. The Hamiltonian function features to be
continuous and constant over time for autonomous systems; nevertheless, the Hamiltonian function
shows a nonconstant profile for underestimated discretization meshes. The methodology system-
atically adds or removes finite elements depending on the magnitude of the estimated collocation
error and the fluctuations in the profile for the Hamiltonian function.

The proposed methodologies have been tested on different case studies involving different fea-
tures. An existent wastewater treatment plan is considered to illustrate the implementation of
back-off strategy. On the other hand, a reaction system with two continuous stirred reaction tanks
(CSTRs) are considered to illustrate the implementation of the MPCC-based formulation for design
and control. The D-SDA approach is tested for the integration of design, NMPC-based control, and
superstructure of a binary distillation column. Lastly, a reaction system illustrates the effect of the
selection and refinement of the discretization mesh in the integrated design and control framework.
The results show that the implementation of NMPC controllers leads to more economically at-
tractive process designs with improved control performance compared to applications with classical
descentralized PID or Linear MPC controllers. The discrete-steepest descent approach allowed to
skip sub-optimal solution regions and led to more economic designs with better control performance
than the solutions obtained with the benchmark methodology using DDFs. Meanwhile, the refine-
ment strategy for the discretization of integrated design and control formulations demonstrated that
attractive solutions with improved control performance can be obtained with a reduced number of
finite elements.
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Chapter 1

Introduction

Traditionally, chemical processes have been designed in a sequential fashion around steady-state

points taken from production design targets, followed by the design of a control scheme. This

approach is referred to as a sequential process design and has been found to result often in high

operating costs or even intractable process dynamics. In recent years, the academia and the industry

have pointed out the need to consider dynamic and controllability aspects at the early stages of

the process design. The integrated design and control approach aims to consider the interactions

between operability and economic aspects simultaneously. This approach can lead to attractive

designs with improved dynamic performance, and higher profits [1].

Over the past decade, a substantial number of studies have proposed a variety of approaches for

the integration of design and control [2, 3, 4]. Those studies have focused mainly on the implemen-

tation of classical decentralized PID control frameworks [5]. Nevertheless, the implementation of

modern control approaches using model predictive controllers has demonstrated improvements in

control performance compared to applications using decentralized PID control frameworks [2, 6, 7].

A model predictive controller (MPC) solves an online optimization problem where a cost function

penalizes deviations in the controlled and manipulated variables with respect to reference trajec-

tories, i.e., set-points. To achieve this, the optimization problem is subject to a dynamic process

model. If a linear process model is used, the controller is called a LMPC. On the other hand, if a

nonlinear dynamic process model is enforced, the controller is referred to as a NMPC. An important

feature of MPC is the possibility to include constraints in the formulation.

The interest for the implementation of LMPC strategies for simultaneous design and control

has been reflected in the publication of multiple studies [4, 8, 9, 10, 2, 11]. On the other hand,

when dealing with highly nonlinear processes that require a wide range of operating conditions,

a LMPC may not be sufficient to adequately capture the process dynamics [12]. It thus becomes

necessary to incorporate nonlinear process models for control [13]. A promising alternative for the

control of highly nonlinear processes is the use of NMPC. Although it has been shown that NMPC
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can improve the process performance for complex nonlinear systems, and can also manage wide

operational changes in highly nonlinear processes, very few works have addressed the integration

of design and NMPC-based control [14], i.e., the economic and operability benefits in the solution

of an integrated design and NMPC-based control approach have not been fully explored while

using NMPC. That study has focused on the solution of formulations with continuous variables.

Moreover, the solution of the corresponding optimization problem for integrated design and NMPC-

based control is a challenging task because the optimization problem for the NMPC is embedded

within the problem for optimal process design, i.e., a formulation with two decision levels, in which

the design problem requires the control actions to accommodate the process design, whereas the

controller requires the information of the process to compute optimal control actions. This problem

is referred to as a bilevel problem, which are very difficult to solve with conventional NLP solvers [15].

Hence, there is a lack of practical solution methodologies for integrated design and NMPC-based

control formulations in the literature. Furthermore, design decisions such as the arrangement of

equipment, or the determination of the number of stages/equipment are often modeled using discrete

variables (i.e., integer/binary variables). These formations involving integer/binary variables for the

integration of design and NMPC-based control (i.e., a MIBLP) have not been addressed yet. Thus,

the implementation of NMPC for these purposes emerges as a strong research area. To fill in the

gap in the literature, the focus of this thesis is to develop novel methodologies for the integration

of design and NMPC-based control involving continuous and discrete variables.

In chemical engineering applications, it is not possible to have complete knowledge or under-

standing of a process due to uncertainties. These uncertainties can arise from various factors, such

as variability in input materials or parameters, lack of precise mechanistic models, inherent process

complexity, or limitations in measurement or analysis techniques. Uncertainty in process design and

control can have adverse effects on the economy, quality, efficiency, and safety of the process. This

may lead to unexpected outcomes or deviations from the desired dynamic process performance,

particularly for highly nonlinear processes. Uncertainty is often introduced by assuming a discrete

set of realizations of uncertain parameters, which can be estimated from observations based on his-

torical data or process heuristics [1]. Managing uncertainty in process design and control involves
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identifying sources of uncertainty, quantifying their impact, and implementing appropriate design

and control schemes to mitigate or accommodate them. Effective management of uncertainty in

process design and control can help ensure the reliability, consistency, and optimality of the process

performance. Classical PID or LMPC integrated design and control applications may result in sub-

optimal solutions or complicated process dynamics under such conditions; alternatively, NMPC may

offer better control performance by incorporating a nonlinear process model in its formulation. Note

that if the process model in the NMPC uses nominal conditions for parameters under uncertainty,

it is called a nominal NMPC controller; whereas if the NMPC has access to information about the

uncertain parameters, it is referred to as a robust NMPC controller. Robust model-based control

has been proven to enhance control performance compared to nominal control schemes [16]. How-

ever, employing robust control approaches poses a challenge due to the fast increase of size of the

NMPC formulation, leading to large-scale formulations for an integrated design and NMPC-based

control framework in the presence of uncertainty. Hence, it is essential to develop a methodology

for the integration of design and NMPC-based control that allows the simplification and systematic

solution of formulations under uncertainty.

Optimization problems for the integration of design and control typically involve formulations

with DAE models. In chemical engineering, the most widely used method for the solution of

DAE models is the discretization of the differential equations using OCFE. OCFE offers adequate

accuracy and numerical stability if the number of finite elements is properly selected [17]. Thus,

one key aspect in the implementation of OCFE is the selection of the number of finite elements (i.e.,

discretization meshing), which is often decided based on a priori simulations or process heuristics

[18, 19]. Also, the selection of the number of finite elements is related to the size of the optimization

model. Traditionally, finite elements in an OCFE strategy are selected to be uniformly distributed

(equidistribution), i.e., finite elements have the same length. To the author’s knowledge, the effect

of the discretization size on the solution of integrated design and control problems has not been

addressed. From an integrated point of view, the process design and its dynamic behavior are closely

related, i.e., variations in the process design can lead to variations in the process dynamics, and vice

versa. Therefore, an accurate discretization of the integrated design and control problem may help

3



to avoid the computation of suboptimal solutions, e.g., processes with small time constants exhibit

fast dynamic variations to external disturbances; therefore, it is necessary to implement small finite

elements to capture of the process dynamics accurately. Accurate selection of the discretization

meshing is expected to contribute to the computation of more economically attractive process

designs with improved control performance.

1.1 Research objectives

Although NMPC offers significant features and better control performance compared to classical

PID or LMPC controllers, their application for the integration of design and control under uncer-

tainty has not been widely studied. Therefore, this research aims to develop practical and systematic

methods for the integration of design and NMPC-based control for continuous and discrete appli-

cations. The current PhD study focuses on the following specific objectives:

� Propose an iterative methodology for the integration of design and NMPC-based control under

uncertainty and process disturbances.

� Develop a transformation methodology for the integration of design and NMPC-based control

under uncertainty and process disturbances such that the corresponding bilevel problem is

transformed into a single-level formulation that can be solved using conventional NLP solvers.

� Develop a systematic methodology for the integration of design and NMPC-based control un-

der uncertainty, process disturbances, and structural decisions in a naturally ordered discrete

set (i.e., superstructures that follow the order of the natural numbers).

� Develop a methodology for the selection and refinement of the discretization finite elements

for the integration of design and control.

1.2 Contributions of this research

The research conducted in this PhD thesis is expected to provide the following contributions:
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� A practical decomposition back-off methodology that reduces the complexity of the original

bilevel formulation by approximating the problem in terms of low-order process models. These

low-order models correspond to a single-level formulation that is explicit in terms of the

decision variables and can be efficiently solved with conventional NLP solvers. The proposed

method can be easily adapted to different control schemes, such as LMPC or PID controllers,

in addition to formulations using NMPC.

� A transformation method for the integration of design and NMPC-based control under un-

certainty that avoids the use of decomposition or approximation strategies for the solution of

the corresponding optimization formulation. Moreover, since the restated formulation (i.e.,

a single-level problem) can be solved using conventional NLP solvers, the method provides

optimality guarantees for the solution of such restated problem. However, the solution for the

single-level problem may not be an optimal solution for the original bilevel problem.

� A systematic strategy that transforms the MIBLP formulation into a single-level MINLP. The

problem structure is exploited, such that the single-level MINLP can be expressed in terms

of a reduced set of variables that represent positions over one-dimensional discrete space.

This allows the reduction of the complexity of the MINLP by decomposing the problem into

simpler linear and nonlinear problems that can be solved with state-of-the-art NLP solvers.

Moreover, the method features the implementation of the definition of integral convexity;

therefore, it allows the computation of local solutions that cannot be efficiently identified

using conventional MINLP solvers, which are based on the classical definition of convexity for

integer programs.

� Provide insights for the selection of finite elements for the discretization of integrated design

and control formulations.

� A systematic methodology that implements physical and mathematical selection criteria for

the refinement and selection of finite elements. The use of a refined discretization formulation

is expected to result in improved solutions for design and control using fewer finite elements

compared to implementations involving equidistributed discretization meshes.
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1.3 Structure of the Thesis

A description of the structure of this thesis is presented next:

Chapter 2 presents a literature review of the subjects that are relevant for this thesis. First, the

optimization formulation for the NMPC is introduced. The concept of bilevel problem is presented

next, this is followed by a review of the available methodologies for the integration of design and

MPC-based control. Lastly, a review of the methods for the selection and refinement of discretization

meshes implemented in chemical engineering for process design is presented. The gaps in knowledge

that motivate this research are discussed at the end of this chapter. The content in section 2.4 in

this chapter is part of the work published in AIChE Journal [20].

Chapter 3 presents a systematic strategy for the integration of design and NMPC-based control

under uncertainty. This methodology aims to determine the amount of necessary back-off to move

the process design and control from an optimal steady-state design (that may be dynamically

infeasible) to a new dynamically feasible process design and control. This methodology reduces the

complexity of the original bilevel problem by approximating the bilevel problem in terms of PSE

functions. This approximated PSE-based formulation corresponds to a single-level formulation

that can be efficiently solved with traditional NLP solvers. The implementation of this method

is illustrated for the integrated design and NMPC-based control of a WWTP. The challenges,

features, and limitations of this methodology are highlighted and discussed in this chapter. The

work presented in this chapter has been published in the IFAC World Congress Germany 2020 [21]

and in Journal of Process Control [22].

Chapter 4 introduces the classical KKT transformation strategy to transform the bilevel problem

presented in Chapter 2 into a single-level problem. Moreover, the potential reformulation strategies

to restate the complementarity constraints in the MPCC to avoid violation of CQs are also presented.

The implementation of this strategy is depicted for a WWTP case study. The main features and

limitations of this approach are discussed in this chapter. The results of this chapter have been

published in Computers & Chemical Engineering [23].
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Chapter 5 presents D-SDA approach for the integration of design and NMPC-based control

under uncertainty, process disturbances, and structural decisions in a naturally ordered set. The

corresponding MIBLP is transformed first into a single-level MINLP using a classical KKT transfor-

mation. Then, the integer decisions are partitioned in sub-sets called external variables, such that

the MINLP can be decomposed into an integer-based master problem and primal sub-problems in

the form of FNLPs. The master and primal problems are solved using the D-SDA approach. The

implementation of algorithmic methodology is illustrated in a case study for a binary distillation

column. This work has been published in the IFAC World Congress Japan 2023 [24] and submitted

for publication to AIChE Journal [25].

Chapter 6 introduces the proposed methodology for the selection and refinement of finite ele-

ments for the integration of process design and control. The widely used discretization with OCFE

is implemented for this study. This chapter presents the Hamiltonian conditions for optimality and

the definition of the estimated collocation error as the criteria for the selection and refinement of

finite elements. The proposed methodology is tested using two case studies featuring a reaction

system with two Continuous Stirred Tank Reactor (CSTRs) in series and the WOR, respectively.

The results indicate that the accurate selection of the finite elements return economically attractive

design with fewer elements than those obtained with naive approaches with equidistributed finite

element strategies. The results of this chapter have been published in AIChE Journal [26].

Chapter 7 presents the concluding remarks achieved by the present research work. This chapter

also provides recommendations for potential future work.

7



Chapter 2

Literature Review

The integration of design and model-based control has been an area of active research in recent

years, driven by the need for more efficient and effective processes. Model-based control approaches

have emerged as a promising method for improving control performance and process economy, as

they allow to manage complex systems dynamics. Model predictive control (MPC) is a multi-

variable optimization-based control framework that has been widely used in chemical engineering.

Numerous efforts involving LMPC for integrated design and control have been presented in the

literature. Those studies have improved the efficiency, accuracy, and robustness of the correspond-

ing optimization formulation. On the other hand, DAE models are the base for the optimization

formulations in simultaneous design and control. Solving DAE models can be challenging doe to

the presence of algebraic equations. Discretization of DAE models using OCFE is the most popular

approach to convert the continuous-time model into a set of discrete-time equations that can be

solved using conventional NLP or MINLP solvers. In this approach, the continuous-time dynamic

model is approximated by a set of piecewise functions (commonly polynomials) leading to a set of

nonlinear algebraic equations. The selection of the discretization mesh has demonstrated to have

an impact in the solution of DAE models. Although the importance of this selection, the effect

of the discretization accuracy has not been reported in the literature for application in integrated

design and control. This chapter reviews the concepts and mathematical methods that are relevant

for this work. Moreover, the knowledge gaps that serve the motivation for this PhD study are also

identified in this chapter.

This chapter is organized as follows: Section 2.1 provides a background on process design and

control. Section 2.2 provides an overview on nonlinear model predictive control (NMPC), followed

by an overview on the concept of bilevel programming that is relevant for this study (Section 2.3).

An overview of the Hamiltonian function obtained from the implementation of the Pontryagin’s

Minimum Principle (PMP) is provided in Section 2.4. Current applications with model-based

control schemes for the integration of design and control are summarized in Section 2.5. Section
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2.6 presents a overview of the current methodologies for the selection of finite elements in process

design. Lastly, Section 2.7 provides a summary of this chapter.

2.1 Process design and control

The current global market’s dynamic nature compels industries to strive for sustainable and near-

optimal operations. Traditionally, profitability was the primary concern, but now there is a shift

towards developing and operating processes that are both profitable and sustainable. Factors such

as climate change, resource scarcity, and waste production have motivated the inclusion of sus-

tainability in chemical process industries. Sustainability now encompasses economic, social, safety,

and environmental aspects of company policies. Furthermore, industries need to connect their net-

works to customers and suppliers for efficient operations. However, various aspects of processes

are traditionally handled independently, limiting their potential for improvement. Simultaneously

optimizing process design and control is a core aspect of the combined problem. In the past, these

two aspects were treated separately and solved sequentially, leading to poor control performance

or overly conservative and expensive designs. Integrating design and control allows for transparent

links between conflicting objectives and enables the identification of reliable and optimal designs

while ensuring feasible operation under internal and external disruptions.

2.1.1 Classical approach for design and control of processes

A steady-state process operation refers to a condition where a process has reached a state of equi-

librium, and the key process variables remain constant over time. In a steady-state operation, the

process inputs, outputs, and operating conditions are maintained at a constant level, e.g., process

variables such as temperature, pressure, flow rates, concentrations, and other parameters remain

constant. However, processes are not operated in a steady-state mode continuously. Processes may

experience transient behavior or non-steady-state conditions at certain stages. Nonetheless, the

goal is often to reach a steady state as quickly as possible and maintain it for as long as required

to achieve the desired process objectives.
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In a classical design and control approach, chemical plants have been designed using a sequential

method that involves an initial steady-state process design stage relying on economic calculations.

This is then followed by the development of a control strategy, typically, based on heuristic control-

lability measures. Consequently, the aspects of process design and process control have traditionally

been investigated as separate entities. However, this sequential approach for process design is often

insufficient, as process design has the potential to strongly influence process control, i.e., an optimal

steady-state design does not account for transient behavior or dynamic responses of the process.

This can lead to suboptimal dynamic performance during normal operation under the effect of pro-

cess disturbances. Moreover, optimal steady-state designs are often tailored to specific operating

conditions and may not easily accommodate future process changes or advancements. This can

limit the ability to incorporate new technologies or adapt to evolving market demands.

2.1.2 Integrated approach for process design and control of processes

Integration of design and control combines steady-state design and dynamic control considerations

into a single optimization step. Process design involves decisions related to equipment sizing and

determining nominal operating conditions, whereas process control involves control structure strate-

gies that minimize variability, ensuring quality and keeping key variables within specified limits.

Simultaneous optimization of the design and control of a process often involves reconciling

conflicting objectives, e.g., smaller process units may be designed based on steady-state capital cost

considerations, whereas larger units are needed to handle disturbances during transient conditions.

A crucial aspect in the integrated design and control framework is ensuring process flexibility, i.e.,

the system can meet constraints despite external disturbances or uncertainties in process parameters.

The integration of design and control problem can be conceptually formulated as a mixed-integer

nonlinear dynamic optimization (MIDO) formulation, e.g.,

min
η,x(t),u(t),y(t)

Φ(η,x(t),u(t),y(t),dp(t), z, t) (2.1a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),y(t),dp(t), z, t) = 0, (2.1b)

h(η, ς,x(t), ū(t),y(t),dp(t), z, t) = 0, (2.1c)
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g(η, ς,x(t), ū(t),y(t),dp(t), z, t) ≤ 0, (2.1d)

where h : RNx × RNu × RNη × ×RNy × RNd × RNt → RNh and g : RNx × RNu × RNη × RNy ×

RNd × RNt → RNsi denote the equality and inequality constraints of the process, respectively;

f : RNx×RNu×RNη ×RNy ×RNd×RNt → RNx represent the dynamic process model, i.e., Problem

(2.1) is constrained by a differential-algebraic equation (DAE) model. x ∈ RNx are the states of the

system. ū ∈ RNu represents the vector of control actions. Vector y ∈ RNy represents the measured

states of the system. The set of decision variables that does not depend on time (η ∈ RNη) contains

the process design variables and the controller tuning parameters. z represents integer decision

variables including the choice and sequencing of process units or control structure selection. The

aim of simultaneous design and control is not only to identify an optimal process design but also to

maintain an acceptable level of operation in the presence of parameter uncertainty and disturbances

[1].

Process control plays a crucial role in ensuring the optimal operation and performance of in-

dustrial processes. Over the years, various control strategies and schemes have been developed to

address the challenges associated with process control. Among the control strategies considered in

optimal design and control [27, 28], Proportional-Integral-Derivative (PID) controller has been the

dominant control strategy. That control scheme is present on a large fraction of all control loops in

the industry. The function for a PID is stated as follows:

u(t) = u0 +KC ē(t) +KI

∫ tf

t0

ē(t) dt+KD
dē(t)

dt
(2.2)

ē(t) = x(t)− xsp (2.3)

where KC , KI , and KD are the controller’s proportional, integral, and derivative gains, respec-

tively. ē(t) corresponds to the error signal in the PID controller. A PID controller is intuitive and

simple. Moreover, cascade control frameworks can be easily handled using PID schemes. Never-

theless, PID controllers may not be based on process models; consequently, knowledge of process
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dynamics (e.g., deadtime or nonlinearity of the system) may not be explicitly used to determine the

control actions. Then, process control of highly nonlinear processes in a wider range of operation

conditions may be very difficult [29].

Other control techniques such as the internal model control (IMC) structure involve the use of

a linear process model in conjunction with the actual process. Although it can be rearranged into

the conventional feedback control structure, there are several reasons for employing the IMC design

procedure. Firstly, when applied to an open-loop stable process and an open-loop stable controller,

the nominal closed-loop system is guaranteed to maintain stability. Additionally, the IMC design

procedure facilitates the identification of inherent limitations to closed-loop performance arising

from open-loop characteristics. Implementing the IMC structure offers advantages such as effective

handling of manipulated variable constraints and compensation for deadtime in the control system.

However, model uncertainty may not be rigorously addressed using IMC. Moreover, this controller

is a multi-loop controller that does not take into account process interactions.

Advanced process control multi-variable strategies, such as model predictive control (MPC),

have shown economic and performance benefits in chemical process industries and represent the

state-of-the-art in process control. Integrating MPC into simultaneous design and control has

been explored, considering economic objectives, controllability, and disturbance response. MPC

can improve system performance by providing optimal control actions obtained from constrained

optimization. It handles process variable interactions and constraints, potentially leading to better

process designs compared to decentralized control strategies. However, the online optimization

involved in advanced control schemes increases the complexity of the design framework. Stability

and feasibility are key considerations in MPC, and their integration into design and control strategies

is crucial for specifying a stable and efficient closed-loop process design. Various studies have

incorporated MPC into simultaneous design and control, addressing aspects like process dimensions,

system parameters, flexibility, and robustness. Some studies have also explored the integration of

advanced control strategies with sustainability assessment tools. While most applications have

used linear MPC, nonlinear MPC (NMPC) offers the potential for considering nonlinear dynamics

and constraints. However, the non-convexity of NMPC introduces challenges in terms of problem
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complexity and computational effort. Further details on NMPC are presented below in the following

section.

The methodologies available in the open literature for the integration of design and control can

be classified in different ways. Most of those methodologies rely on steady-state models to calculate

capital costs and operating costs. Therefore, the key distinction among those methods lies in how

they measure the dynamic performance of the closed-loop system, i.e., the classification can be based

on how the dynamic behavior and its impact on cost are quantified. This classification consists of

three approaches as follows [30, 31]:

� Controllability index-based approach: In this approach, the capital and operating costs

are minimized based on steady-state models while incorporating specific controllability objec-

tives. Various controllability indicators such as the relative gain array (RGA) [32], condition

number [33], disturbance condition number [34], or integral error criterion have been employed

to quantify dynamic performance [35]. Nevertheless, those methodologies have limitations.

The economic cost associated with product variability is not explicitly considered in the pro-

cess economic function. Controllability indicators are often treated as constraints or included

in the cost function with ad hoc weightings, lacking a clear correlation to their actual impact

on costs. Additionally, the use of steady-state or linear dynamic models in calculating con-

trollability indices limits their applicability to a small range around a nominal steady-state.

Consequently, these factors may lead to suboptimal solutions.

� Dynamic optimization-based approach: To address the limitations of the controllabil-

ity index-based approach, a set of methodologies based on dynamic optimization has been

proposed in the open literature. Instead of relying on steady-state or matrix measures, the

dynamic optimization-based approach evaluates process variability through simulations us-

ing the full nonlinear dynamic model. However, the computational demands associated with

nonlinear dynamic simulations often limit the analysis to a specified time horizon. Con-

sequently, those methodologies have limitations. The computational complexity of solving

nonlinear dynamic optimization problems hinders their practicality for real industrial prob-
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lems. The impact of variability is not explicitly assigned an economic cost in the overall cost

function, unlike capital and operating costs. The dynamic optimization-based methodolo-

gies offer advantages in handling process nonlinearity and time-dependent perturbations but

face challenges related to computational complexity, e.g., the absence of clear economic cost

assignment to variability, and inadequate explicit consideration of system stability.

� Robust model-based approach: To overcome the difficulties associated with dynamic

optimization, an approach based on calculating estimated bounds on process variables is

available in the open literature. Those bounds determine the system’s flexibility, stability,

and controllability are obtained from linear models with uncertainty instead of using the full

nonlinear dynamic model. One drawback of these methodologies is that they may lead to

conservative and suboptimal designs by using estimated bounds instead of actual maximal

values for flexibility and controllability. Furthermore, disturbances are considered in terms

of their maximal magnitude rather than their actual time profile, potentially resulting in

conservative designs compared to dynamic optimization-based approaches. Nevertheless, the

robust approach offers the advantage of requiring significantly less computational effort than

dynamic optimization-based formulations.

Integration of design and control offers several valuable features that contribute to improved ef-

ficiency, productivity, and operational effectiveness. It enables organizations to improve operations,

safety, a costs. However, it is essential to be aware of the limitations associated with process design

and control, such as complexity of the formulation or uncertainties associated to the process. This

PhD thesis is focused on the implementation of NMPC-based controllers; therefore, the literature

review presented in the following sections is focused on the integration of design and MPC-based

control.

2.2 Nonlinear Model Predictive Control

Nonlinear model predictive control (NMPC) is formulated as a horizon open-loop optimal control

problem subject to a nonlinear dynamic process model and a set of operational constraints. The ba-
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sic principle of operation of an NMPC-based controller is presented in Figure 2.1. NMPC generates

predictions of the dynamic behavior of the system over a prediction horizon (tP ) and determines the

control trajectory, over a control horizon (tC), to maintain the process about the reference trajec-

tory (set-point), such that a performance objective function is optimized [12]. Typically, prediction

and control horizons are chosen to be finite, where tC ≤ tP . The performance objective function

for the NMPC aims to penalize deviations in the controlled with respect to their set-points and the

changes in the manipulated variables.

Figure 2.1: Process dynamics prediction in a nonlinear model predictive controller.

If a detailed nonlinear process model is available, the NMPC allows the accurate prediction

of dynamic trajectories [36]. Accurate process models are commonly derived from first principle

knowledge. On the other hand, if no first principle process model is available, it is possible to

obtain a good approximation for the process model based on identification techniques; nevertheless,

control strategies with LMPC are preferred under those conditions [12]. The search for a solution

for the NMPC’s optimization problem is time critical for on-line applications. Recent advances

in computational hardware allow the solution of more complex optimization problems within a

reasonable amount of time compared to past decades. The conceptual optimization problem for an

NMPC-based controller can be formulated as follows:

min
x̂(τc),û(τc)

Ψnmpc =

∫ t+tP

t
||x̂(τc)− x̂sp||2Qout

dτc +

∫ t+tC

t
||∆û(τc)||2Qin

dτc (2.4a)
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s.t. F ( ˙̂x(τc), x̂(τc), û(τc),dp, τc) = 0, (2.4b)

H(x̂(τc), û(τc),dp, τc) = 0, (2.4c)

G(x̂(τc), û(τc),dp, τc) ≤ 0, (2.4d)

û(τc) = û(t+ tC), ∀τc ∈ [t+ tC , t+ tP ) (2.4e)

x̂(τc) = x(t), ∀τc = t (2.4f)

û(τc) ∈ U, ∀τc ∈ [t, t+ tC) (2.4g)

x̂(τc) ∈ X, ∀τc ∈ [t, t+ tP ) (2.4h)

X :=
{
x̂ ∈ RNx |xlb ≤ x̂ ≤ xub

}
, U :=

{
û ∈ RNu |ulb ≤ û ≤ uub

}
(2.4i)

T :=
{
τc ∈ RNτc |t ≤ τc ≤ t+ tP

}

where H : RNx × RNu × RNd × RNτ → RNh and G : RNx × RNu × RNd × RNτ → RNs represent

the sets of equality and inequality constraints that define the feasibility region of the process,

respectively. The function that describes the derivatives of states ( ˙̂x(τc)) is given by F : R2Nx ×

RNu ×RNd ×RNτ → RNx , i.e., the dynamic process model. dp ∈ Rd represents the set of measured

disturbances affecting the process; note that disturbances are assumed to remain constant along the

prediction horizon (tP ). t represents to actual time of the process whereas τc represents the future

time instants within the NMPC framework. At each time interval t, the NMPC is initialized from

state measurement at time t as shown in Equation (2.4f). The NMPC uses this information, together

with the process model F and constraints G and H to find a control action that can optimize the

cost function (Equation (2.4a)) within the prediction horizon time tP , i.e., τc ∈ [t, t + tP ). States

are measured on intervals of time kt. The controller implements the first control action at the

simulation time τc = t + kt. Then, the optimal control problem is re-evaluated after the sampling

time kt, using a new set of measured states at time t = t+ kt. Predicted states are given by x̂(τc);

∆û(τc) represents the change in the manipulated variables. In this formulation, û(τc) and x̂(τc) are
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bounded by ulb, uub and xlb, xub, respectively. Similarly, Qout ∈ RNq×Nq and Qin ∈ RNu×Nu are

positive-defined diagonal matrices that penalizes the deviations in the predicted states x̂(τc), with

respect to their desired reference (set-point) trajectories xsp, and in the control actions, respectively.

In this PhD study, it is assumed that the controller has access to measurements for all states and

disturbances at every sampling time t. Disturbances remain constant and equal to their measured

values along the prediction and control horizons in the NMPC, i.e., predicted states (x̂(τc)) are

the same as measured states (x(t)) at any time τ0c = t (Equation (2.4f)). Qout, Qin, tC , and

tP represent the tuning parameters for the NMPC. The selection of the sampling (measurement)

time (kt) is based on heuristics and depends on the dominant time constant of the process and the

physical limitations of the measurement devices [37]. The features of NMPC and the effect of the

tuning parameter can be found elsewhere [37, 38].

2.2.1 Robust NMPC

The formulation in Equation (2.4) assumes that the actual system (i.e., the real process) is identical

to the process model in Equations (2.4b)-(2.4c), i.e., there is no model/plant mismatch or missing

information for the computation of predictions in the NMPC. This scenario is seldom possible in

practical applications, i.e., the actual system may deviate from the process model due to uncertain-

ties in the system parameters, unmodeled dynamics, measurement noise, missing measurements,

or unmeasured process disturbances. The inherent robustness of the nominal NMPC in Equation

(2.4) corresponds to the fact that the nominal controller may manage uncertainties and disturbances

without taking them directly into account [12]. However, a nominal controller does not provide any

guarantee that the in actual system will satisfy feasibility constraints due to the presence of uncer-

tainties or disturbances, i.e., a nominal NMPC may lose feasibility; hence, its guarantee of stability

[16]. A robust NMPC framework aims to design controllers that can handle these uncertainties and

disturbances by incorporating them explicitly into the NMPC formulation, or by designing feedback

laws that are robust to such uncertainties [39]. The goal is to ensure that the NMPC can maintain

the system’s performance and stability under a wide range of uncertain conditions, which is critical

for real-world applications. Careful formulation of problem (2.4) is essential to satisfy boundedness,
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continuity and differentiability properties, which lead to stable and robust NMPC strategies [36].

The importance of considering model uncertainty in the analysis and design of MPC controllers has

been widely studied. For LMPC, both robust stability and robust performance have been studied

[40], whereas studies for NMPC have focused on robust stability rather than performance [41].

A robust NMPC explicitly accounts for uncertainties within the controller formulation. Also,

it can be interpreted as a min-max formulation, in which the best control actions are computed

based on the worst expected realization of the uncertainties [42]. Therefore, the control actions are

feasible for all the realization in the uncertainty set (ς). Alternative robust NMPC schemes account

for infinite horizon formulations in a receding horizon framework [43], or the implementation of

multiobjective optimization strategies involving conflicting objectives (e.g., objectives accounting

for both nominal and robust performance terms) [44].

This PhD research focuses on the study and implementation of robust NMPC based on a multi-

scenario NLP formulation with state independent uncertainty realizations. The formulation for the

robust NMPC (multi-scenario based controller) is as follows:

min
x̂(τc),û(τc)

Nς∑
ju=1

wjuΨnmpc(x̂(τc), û(τc), ς) (2.5a)

s.t. F ( ˙̂x(τc), x̂(τc), û(τc), ς,dp, τc) = 0, (2.5b)

H(x̂(τc), û(τc), ς,dp, τc) = 0, (2.5c)

G(x̂(τc), û(τc), ς,dp, τc) ≤ 0, (2.5d)

û(τc) = û(t+ tC), ∀τc ∈ [t+ tC , t+ tP ) (2.5e)

x̂(τc) = x(t), ∀τc = t (2.5f)

û(τc) ∈ U, ∀τc ∈ [t, t+ tC) (2.5g)

x̂(τc) ∈ X, ∀τc ∈ [t, t+ tP ) (2.5h)

X :=
{
x̂ ∈ RNx×Nς |xlb ≤ x̂ ≤ xub

}
, U :=

{
û ∈ RNu×Nς |ulb ≤ û ≤ uub

}
(2.5i)

T :=
{
τc ∈ RNτc |t ≤ τc ≤ t+ tP

}
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where ju corresponds to the uncertain scenarios index and wju stands for the weights associated

to each scenario. This weighting parameter satisfies 0 ≤ wju ≤ 1 and
∑Nς

ju=1wju = 1. Moreover,

note that the process model in Equations (2.5b)-(2.5d) is also stated in function of the uncertain

parameter (ς). The nominal NMPC (Equation (2.4)) exhibits inherent robustness if uncertainties

do not lead to any feasibility loss, i.e., there are no violations to process constraints. If the control

actions conduct to violations of process constraints, the closed-loop system may lose stability. The

robust NMPC (Equation (2.5)) formulation increases the computational burden, this may be critical

for on-line applications. Note that robust NMPC may yield offset for controller variables [42].

2.3 Bilevel optimization

A bilevel optimization problem corresponds to a hierarchical optimization formulation, in which a

leader problem (upper-level problem) has a second optimization problem (lower-level problem) as

part of its constraints [45]. Bilevel problems are NP -hard nonconvex formulations, often CQs are

violated at every feasible point; therefore, the search for a solution to this problems is a challenging

[46]. Nevertheless, bilevel problems are widely used in chemical engineering, e.g., process design and

scheduling [47], water management [48], planning and scheduling [49, 50], optimization of reaction

systems [51], waste-heat recovery [52], separation processes [53], etc.

2.3.1 Transformation of the bilevel problem into a single-level problem

The conceptual formulation of a bilevel optimization problem is given as follows:

min
x
{Φ(x, y) : g(x) ≤ 0, (x, y) ∈ gphΥ, x ∈ XU} (2.6)

where Φ : RNx × RNy → R is the upper-level problem cost function, g : RNx → RNs is a set of

inequality constraints, and XU ⊆ RNx is a closed set. gphΥ := {(x, y) ∈ RNx × RNy : y ∈ Υ(x)}

corresponds to the graph of the mapping Υ, i.e.,
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Υ(x) := {y ∈ Y ′(x) ∩XL : Ψ(x, y) ≤ φov(x)} (2.7)

Let the lower-level problem be defined as follows:

min
y
{Ψ(x, y) : G(x, y) ≤ 0, y ∈ XL} (2.8)

where Ψ : RNx ×RNy → R corresponds to the lower-level problem cost function, a set inequality

constraints is given by G : RNx → RNs , and XL ⊆ RNx is a closed set. The bilevel problem

described in Equations (2.6) and (2.8) can be described as a hierarchical game with two players.

Each player make a decision according to the hierarchical order, e.g., the upper-level problem takes

the first decision (x) and communicates it to the lower-level problem. Then, the lower-level problem

can compute an optimal response (y) and gives it back to the upper-level problem. Therefore, the

upper-level problem is able to compute a new decision [54]. Bilevel problem formulations are very

difficult to solve using conventional NLP solvers. Commonly, the most practical approach to solve a

bilevel formulation is by the sequential solution of the individual problem levels while updating the

parameters and dependencies in each problem in an iterative fashion. Bilevel problem have been

extrensively investigated by the mathematical community. The study of further properties and

solution methods for bilevel problem formulations is out of the scope of this PhD study, interested

readers on these subjects can review the studies by [46, 55, 45].

For engineering applications, the usual approach for the solution of the bilevel optimization

problem in Equations (2.6) and (2.8) is to transform it into a single-level problem formulation. To

do so, in the literature, there are at least three possible transformation strategies available [15], i.e.,

� Primal KKT transformation: In this transformation strategy, the lower-level problem is

replaced with its necessary and sufficient optimality conditions. This strategy requires that

the lower-level problem to be convex. Otherwise, the global solution of the original bilevel

problem is in general not a stationary solution for the corresponding single-level problem [46].

Thus, the primal KKT transformation of problem (2.6) is as follows:
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min
x,y
{Φ(x, y) : g(x) ≤ 0, 0 ∈ ∂yF (x, y) +NCY ′(x)∩XL

(y), x ∈ XU} (2.9)

where ∂yF (x, y) is the partial derivative of the convex function y 7→ F (x, y) with respect to y,

and NCY ′(x)∩XL
(y) corresponds to the normal cone (convex analysis) to the set Y ′(x)∩XL at

the point y ∈ Y ′(x)∩XL, in which Y ′(x) := {y : g(x, y) ≤ 0} and XL ⊆ RNx . The single-level

formulation in Equation (2.9) has the feature to be fully equivalent to the bilevel optimization

problem (2.6) [46]. Therefore, an optimal solution for Equation (2.9) corresponds to a solution

for the original bilevel problem (Equation (2.6)).

� Classical KKT transformation: In this strategy, the lower-level problem in Equation (2.6)

is replaced with its necessary optimality conditions (KKT conditions) [55], i.e.,

Φ(x, y)→ min (2.10)

g(x, y) ≤ 0

0 ∈ ∂yF (x, y) + µ⊺∂yG(x, y)

µ(x, y) ≥ 0, G(x, y) ≤ 0, µ⊺G(x, y) = 0

x ∈ XU

The single-level problem in Equation (2.10) corresponds to a nonsmooth mathematical pro-

gram with complementarity constraints (MPCC). If the lower-level problem (Equation (2.8))

is nonconvex, then the introduction of the Lagrange multipliers (µ) in Equation (2.10) pro-

duces a single-level formulation that is no longer fully equivalent to the original bilevel problem

(Equation (2.6)). MPCCs are nonconvex and highly degenerate formulations; therefore, mul-

tiple CQs are violated at every feasible point [18], e.g., LICQ [56] and MFCQ [57], which are

required for a well-posed NLP. Note that implementations using MPCCs in process engineer-

ing are gaining increasing interest [18], in particular, for formulations involving nonconvex

lower-level problems [58, 59]. Classical KKT transformation is the most often used approach
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for the direct solution of bilevel problems.

� Optimal value transformation: The implementation of this transformation strategy re-

quires the assumption that the lower-level problem (Equation (2.8)) admits an optimal solution

for each x ∈ XU [55]. Hence, the objective function and constraints of the lower-level problem

can be moved to the upper-level problem as follows:

Φ(x, y)→ min (2.10)

g(x, y) ≤ 0

F (x, y) ≤ φov(x)

G(x, y) ≤ 0, y ∈ XL

x ∈ XU

where φov denotes the optimal value function of the lower-level problem in Equation (2.8).

This function is defined in Equation (2.12). An optimal value transformation leads to non-

smooth optimization problems since function φov is not differentiable, even if the objective

function and constraints in the lower-level problem are smooth. Similar to a primal KKT

transformation, the optimal value transformation leads to a formulation that is fully equiva-

lent to the original bilevel problem (Equation (2.6)) [46].

φov(x) := min
y
{Ψ(x, y) : G(x, y) ≤ 0, y ∈ XL} (2.12)

This PhD study focuses on the implementation of MPCCs for the transformation of the original

bilevel formulation into a single level optimization formulation for the integration of design and

NMPC-based control under uncertainty and process disturbances. As mentioned above, a MPCC

formulation violates multiple constraint qualifications (CQs), which makes challenging the compu-

tation of a solution for these formulations. Accordingly, the use of reformulation strategies becomes

necessary to avoid the violations of CQs and to facilitate the search of optimal solutions. The use
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of MPCCs has been extended to chemical engineering for the integration of scheduling and control

[60]; moreover, MPCCs have been a powerful tool in the solution of equilibrium operations, such as

distillation [59, 61], and for the optimization of heat exchanger networks [58]. Design and control

problems are specially difficult to solve due to the close dependence of the decision variables, i.e.,

changes in the process design has a strong effect on the process dynamics. Compared to conventional

applications of MPCCs in chemical engineering that just include variables that depend on time in

the formulation, a simultaneous design and control problem incorporates variables that depend on

time (e.g., control laws and states profiles) together with design variables that do not depend on time

(e.g., equipment sizes and operating set-points). This increases the problem’s complexity since the

NMPC directly depends on the process design decisions. Meanwhile, the nonconvexity of MPCCs

demands an educated initialization to the problem. This is particularly challenging for applications

on design and control with NMPC, since it requires to provide initialization for variables that are

physically unknown a priori, e.g., initialization for Lagrange multipliers. A reformulated MPCC

offers the feature that the problem can be solved explicitly with state-of-the-art NLP solvers, such

as IPOPT; consequently, methodologies involving iterative procedures are not required. Since the

MPCC can be solved as a conventional NLP, local optimality in the solution of such MPCC-based

problem is guaranteed. However, an optimal solution for the MPCC-based formulation may not

be an optimal solution for the original bilevel problem due to non-convexities in the lower-level

problem.

2.3.2 Properties of MPCCs

If the lower-level problem in Equation (2.8) is a nonconvex formulation, its KKT conditions cor-

respond to the necessary conditions for optimality, i.e., the corresponding KKT conditions for

optimality are not sufficient to guarantee optimality in the solution for the lower-level problem.

Therefore, in order to classify a solution for the MPCC (Problem (2.10)), the concept of station-

arity is introduced. Certain stationary points from the MPCC problem (Problem (2.10)) such as

B-stationary or S-stationary verify an optimal solution for the original bilevel problem (Problem

(2.6)).

23



A point Ω∗ = [x∗,⊺, y∗,⊺]⊺ is a B-stationary point if it is feasible for Problem (2.10), and s = 0 is

a solution to the following linear program [18]:

min
s
∇Φ(x∗, y∗)⊺s (2.13a)

s.t. g(x∗, y∗) +∇g(x∗, y∗)⊺s ≤ 0 (2.13b)

∇L(x∗, y∗) +∇2L(x∗, y∗)⊺s = 0 (2.13c)

0 ≤ µ(x∗, y∗) + sµ ⊥ −(G(x∗, y∗) + sG) ≥ 0 (2.13d)

The linear Problem (2.13) verifies that locally there is no feasible direction that improves the

objective function. On the other hand, to verify strong stationarity consider the following sets:

I+0(x, y) := {si ∈ {1, . . . , Ns}|µ(x, y) > 0 and G(x, y) = 0} ,

I0+(x, y) := {si ∈ {1, . . . , Ns}|µ(x, y) = 0 and −G(x, y) > 0} ,

I00(x, y) := {si ∈ {1, . . . , Ns}|µ(x, y) = 0 and G(x, y) = 0} ,

Weaker stationarity conditions such as weak, A-, C-, and M-stationary points can be verified.

Nevertheless, these conditions are not sufficient to identify local optimality for the original bilevel

problem (2.6) since they allow negative Lagrange multipliers and have feasible descent directions

[18, 62], i.e.,

� Weak-stationary : A point is weak-stationary if there exists multipliers λ ∈ RNx×RNy×RNs

such that

∇ΩLMPCC(Ω
∗, λ) = 0

min (−g(Ω∗), λg) = 0,

∀si ∈ I+0(Ω∗), λµsi = 0, and∀si ∈ I0+(Ω∗), λGsi = 0

� C-stationary : A C-stationary point is obtained if Ω∗ is weak-stationary and
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∀si ∈ I00(Ω∗), λµsiλ
G
si ≥ 0

� A-stationary : An A-stationary point can be identified if Ω∗ is weak-stationary and

∀si ∈ I00(Ω∗), λµsi ≥ 0 or λGsi ≥ 0

� M-stationary : A M-stationary point is obtained if Ω∗ is weak-stationary and

∀si ∈ I00(Ω∗), either λµsi > 0, λGsi ≥ 0 or λµsiλ
G
si = 0

� Strong-stationary : A S-stationary point is obtained if Ω∗ is weak-stationary and

∀si ∈ I00(Ω∗), λµsi ≥ 0, λGsi ≥ 0

The assumption of Strong-stationarity plays a crucial role in enabling the solution of bilevel

problem using NLP formulations (i.e., the implementation of MPCCs). This property ensures that

a properly defined set of Lagrange multipliers can confirm the optimality of the original bilevel

problem (2.6), and by appropriately reformulating the MPCC (Problem (2.10)), several equivalent

and well-defined nonlinear programs can be obtained [18]. A detailed review of stationary conditions

is beyond the scope of this PhD research. Further information about stationary conditions can be

found elsewhere in the literature [46, 63, 64].

2.3.3 Applications involving mixed-integer bilevel problems

Design decisions such as the arrangement of equipment, or the determination of the number of

stages/equipment are often modeled using integer/binary variables. A nonlinear bilevel problem

involving integer decisions is referred to as a mixed-integer bilevel problem (MIBLP). Depending
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on the location of the integer and continuous decision variables in the optimization formulation, the

problem can be classified into four different categories [46]: i) integer upper, continuous lower; ii)

purely integer problem; iii) continuous upper, integer lower; or iv) mixed-integer upper and lower.

A few algorithms can be found in the literature for the solution of MIBLPs for specific appli-

cations [65]. Edmunds and Bard [66] proposed a branch and bound algorithm for the solution of

MIBLPs. Dominguez and Pistikopoulos [67] presented two algorithms using multiparametric pro-

gramming techniques for the solution of integer bilevel problems. Faisca et al. [68, 69] extended

the implementation of multiparametric strategies for the solution of bilevel quadratic and linear

mixed-integer bilevel problems, with or without right-hand-side uncertainty. Mitsos [70] proposed

an algorithm for the global optimization of nonlinear mixed-integer bilevel problems. Applications

with MIBLP formulations in chemical engineering are mainly focused on the following areas: (i)

supply chain management; (ii) traffic and transportation network design; (iii) energy management;

(iv) safety and accident management; and (v) process system engineering. Dempe et al. [54]

presented a mathematical framework for the minimization of cash-out penalties of a natural gas

distribution network. They proposed to move a Boolean variable from the lower to the upper-level

problem, the resulting two linear bilevel programming problems were solved using a penalty func-

tion approach. Clark [71] implemented a bilevel formulation for the steady-state optimization of a

process for aniline production. Smith and Missen [72] proposed a set of bilevel problem formulations

for the synthesis of chemical equilibrium processes. It can be noted that applications and solution

methods for MIBLPs are more focused on a restricted class of problems. Further reviews on the

methodologies for the solution of MIBLPs can be found elsewhere [73, 74, 75, 65, 76, 77]. Along

this PhD thesis, the optimization problems for the integration of design and NMPC-based control

correspond to mixed-integer upper and continuous lower problems. The analysis and solution of

other bilevel formulations are out of the scope of this study.

2.4 Pontryagin’s minimum principle and the Hamiltonian function
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In the hierarchy of the decision making stages (e.g., process design, scheduling, real-time opti-

mization, and process control) in the chemical industry, DO problems appear in process design,

(dynamic) real-time optimization and process control activities [78]. In an DO problem, the goal is

to find a solution for manipulated variables (e.g., optimal temperature profile) and the associated

states (e.g., product concentration), such that a user-defined performance measure is optimized

(e.g., throughput maximization), subject to the system dynamics and process constraints (e.g.,

temperature boundaries). In the context of process control, DO helps to find the operating condi-

tions that lead to an optimal process performance while keeping the operation within the feasible

operating region [79]. Finding a solution for the DO formulation by solving the necessary condi-

tions for optimality is commonly known as the indirect approach. For large-scale problems, this

approach becomes quite involved. As a result, methods that transform the original problem into a

finite-dimensional optimization model emerged as an alternative to solve large problems more effi-

ciently [80]. These methods belong the category referred to as the direct approach. A central result

from the implementation of calculus of variations and the classical control theory in the context of

a indirect approach is the celebrated Pontrygin’s maximum principle developed in the mid-1950s

by Pontryagin et al. [81]. The principle provides the necessary conditions for an optimal solution.

For practical purposes, it is referred to as the PMP as most problems in chemical engineering are

cast as minimization problems.

Although direct methods are becoming more popular in the solution of chemical engineering

problems, the DO theory in the sense of PMP is still used due to the unique and distinctive

information that can be derived from the optimality conditions. This information allows for a deep

understanding of the problem and has been used to find solutions with higher accuracy than those

obtained with the direct approach [82]. Furthermore, the necessary conditions can also be used to

study the sensitivity of the optimal solution with respect to changes in the model, the inputs and

the constraints [83].

The literature review presented in this section focuses on the determination of the Hamiltonian

necessary conditions for optimality (i.e., an indirect solution approach) for autonomous formula-

tions involving design (time-independent) and control (time-dependent) decisions variables. Further
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formulations are out of the scope of this PhD study. Note that the content presented in this section

is part of the work published in AIChE Journal [20].

DO problems involving parameters (i.e., time-independent decision variables) as part of the

formulation, e.g.,the simultaneous optimal design and operation of a system, or when the final time

appears as a parameter to be optimized. In order to illustrate this situation, consider the following

problem with parameters and fixed final time:

min
x(t),u(t),η

Φ (x(tf ), η) +

∫ tf

t0

ψ (x(t),u(t), η, t) dt (2.15a)

s.t. f (x(t), ẋ(t),u(t), η, t) = 0, x(t0) = x0 (2.15b)

h (x(tf ), η) = 0 (2.15c)

where η correspond to the time-independent decision variables. Process states are given by x(t).

The objective function (2.15a) (performance measure) can take three different forms:

Bolza Φ (x(tf ), η) +

∫ tf

t0

ψ (x(t),u(t), η, t) dt (2.16)

Lagrange

∫ tf

t0

ψ (x(t),u(t), η, t) dt (2.17)

Mayer Φ (x(tf ), η) (2.18)

The three forms are equivalent in the sense that a problem with the objective function expressed

in one form (e.g., Bolza) can be restated using an alternative objective function expression (e.g.,

Mayer) by applying an appropriate transformation, e.g., by moving the integral term in objective

function as an ODE constraint in the formulation. The corresponding Hamiltonian function for the

problem (2.15) is as follows:

H (x(t),u(t), λ(t), η, t) = ψ (x(t),u(t), η, t) + λ⊺(t)f (x(t), ẋ(t),u(t), η, t) (2.19)

The Hamiltonian function allows to express the necessary conditions for optimality as a Hamil-

ton’s system of equations commonly used in the calculus of variations. For some problems, the

constancy of the Hamiltonian is used as an indicator of optimality. To simplify the notation, the
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Hamiltonian is expressed as H(t). The necessary conditions for optimality based on PMP are stated

as follows [84]:

dx(t)

dt
=
∂H(t)

∂λ
(2.20a)

dλ(t)

dt
= −∂H(t)

∂x
(2.20b)

dγ(t)

dt
= −∂H(t)

∂η
, γ(t0) = 0 (2.20c)

h (x(tf ), η) = 0 (2.20d)

u(t) = argmin
w̄∈U

H (x(t), w̄(t), λ(t), η, t) (2.20e)

γ(tf ) =
∂Φ(tf )

∂η
+
∂h(tf )

⊺

∂η
b̄ (2.20f)

λ(tf ) =
∂Φ(tf )

∂x
+
∂h(tf )

⊺

∂x
b̄ (2.20g)

where γ(t) ∈ RNγ is a vector of auxiliary functions of t. The minimization of H is with respect

to admissible controls w̄(t) that belong to a set U. Note that If the Hamiltonian function in

Equation (2.19) does not depend explicitly on t, then in addition to conditions (2.20f) and (2.20g),

the Hamiltonian function must satisfy to be constant over time. This condition is referred to as

constancy of the Hamiltonian function. The set of optimality conditions (2.20) generally leads to

a well-posed DAE system in the form of a TPBVP. Moreover, a key feature of PMP is that the

Hamiltonian function is continuous, even if the control law is not [85].

For the solution of the conditions for optimality (2.20) using a full discretization approach

(direct transcription), if sufficient discretization points are not provided, this returns a nonconstant

Hamiltonian function profile [85, 86]. Therefore, this feature of the Hamiltonian function can be

considered a criterion for the refinement of the number of finite elements.

Pontryagin’s principle has been a powerful tool for the optimization of many chemical processes.

Necessary conditions for optimality have been derived for various DO formulations. Moreover,

efforts have been made to solve these conditions by applying analytical and numerical strategies.

However, as chemical engineering applications become more complex and diverse, the use of PMP

becomes more involved.
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2.5 Integration of design & MPC-based control

The integration of design and control allows to establish a clear connection between the conflicting

goals of steady-state economics and dynamic performance during the early stages of process design.

An integrated design and control approach aims to identify optimal process designs and also ensure

acceptable operation under parameter uncertainty and process disturbances, i.e., by accounting for

uncertainties, the optimization problem can accommodate undesired scenarios and minimize pro-

cess variability [1]. The specification of a sustainable process involves several key aspects, including

profitability, controllability, flexibility, reliability, product quality satisfaction, safety, and environ-

mental considerations. Process profitability refers to the ability of a process to generate a profit for

a business. It is a measure of how effectively a process converts inputs (such as labor, materials,

and energy) into outputs (such as goods or services) that can be sold for a profit. Controllability

refers to the ability of a system to maintain desired output variables within specific bounds despite

external or internal disruptions by adjusting available manipulate variables. Flexibility refers to the

ability of the process to adapt to changes in demand, production requirements, or other external

factors without significant disruptions or loss of efficiency. On the other hand, process reliability

refers to the ability of a process to consistently produce output that meets the desired specifications

and performance requirements, without unexpected failures or errors.

The use of integrated approaches to specify a sustainable process can be challenging because

it involves multiple complex aspects, specially for large-scale applications. Those challenges may

involve the following aspects: (i) uncertainties and disturbances, (ii) multiple (conflicting) objec-

tives, (iii) increased problem scale, (iv) structural (discrete) decision variables, (v) local vs. global

optimality, and (vi) consideration of advanced control schemes (e.g., MPC-based control schemes).

The development of comprehensive solution strategies that encompasses all aspects using state-of-

the-art technology is still very difficult to accomplish. Initially, available techniques for chemical

process design were classified into three main categories: controllability index-based approaches, dy-

namic optimization, and robust-based approaches [31]. Two additional categories were added later:

embedded control optimizations and black-box optimization approaches [30]. This PhD study does
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not pretend to review all the methodologies and applications developed thus far for simultaneous

design and control. This study is focused on the implementations for design and control using MPC-

based control schemes. Further reviews regarding the integration of design and control, including its

features, methodologies, and potential applications, can be found elsewhere [1, 8, 31, 87, 30, 88, 89].

Table 2.1: Prominent works that have addressed the integration of design and model-based control.
Author Contributions

Brengel & Seider [10] Implementation of a transformation strategy to obtain a single-
level formulation using KT conditions for linear model formula-
tions.

Loeblein & Perkins [90] Implemented a back-off approach to determine a feasible steady-
state design and process dynamics using a unconstrained LMPC.

Sakizlis et al. [4, 8, 91] Incorporation of discrete decisions and the implementation of an
approximation strategy to explicitly state the LMPC as part of
the design model constraints.

Backer & Swartz [92] Implementation of a KKT transformation strategy to replace the
quadratic problem for LMPC in the formulation for integrated
design and control.

Chawankul et al. [11] Incorporation of variability, capital, and operability costs in a sin-
gle objective function.

Ricardez-Sandoval et al.
[93, 94, 95]

Robust stability and performance measures based on Lyapunov
functions theory for applications under uncertainty.

Francisco et al. [96, 97,
98]

Cost functions involving investment, operating costs, and dynam-
ical indexes in multi-model formulations.

Gutierrez et al. [99] Implementation with interconnection structures to determine the
combination of manipulated and controlled variables using cen-
tralized and decentralized LMPC controllers.

Sanchez-Sanchez &
Ricardez-Sandoval [100]

Implementation of structural decisions using convex formulations
for robust flexibility and asymptotic stability analyses.

Bahakim & Ricardez-
Sandoval [2]

Analysis and computation of stochastic-based worst-case variabil-
ity index.

Burnak & Pistikopoulos
[101]

Implementation of multi-parametric programming to embed the
LMPC into a MIDO formulation.

Carvalho & Alvarez
[102]

Multistage solution procedure for the integration of design and
infinite horizon LMPC-based control

Hoffmann et al. [14] Implementation of economic NMPC control for process design un-
der uncertainty.

Oyama & Durand [103] Evaluation of the interaction between the process design and the
process control using an economic nonlinear model predictive con-
troller (eNMPC).

Tian et al. [104] Implementation of PAROC platform for design, operational op-
timization, and multi-parametric LMPC for intensified reactive
distillation columns
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The integration of design and control has been widely studied for application with classical

control schemes. Despite the advantages of MPC-based control approaches for integrated design

and control, this is still an emerging research area. The main challenge in the implementation of

advanced control schemes lies in the solution of an optimization problem on-line, which leads to a

drastic increase in the complexity of the formulation for simultaneous design and control. Neverthe-

less, during the past three decades, the industry and the academia have recognized the potential of

LMPC. Nowadays, LMPC represents the current state-of-the-art for process control. As mentioned

previously in Chapter 1, model-based control offers the feature of handling constraints in the ma-

nipulated and controlled variables explicitly in its formulation. Moreover, model-based controllers

may exhibit better control performance than conventional feedback controllers [105]. This section

presents an overview of the most significant methodologies and contributions to simultaneous design

and model-based control such that the current gaps in the literature can be identified. A summary

of the methodologies for the integration of design and model-based control is presented in Table

2.1.

The publication of multiple studies has reflected the interest for the implementation of model-

based control schemes for simultaneous design and control. The implementation of model-based

controller is expected to improve the performance of the designed system compared to conven-

tional decentralized PI or PID control strategies. One of the first studies that incorporated LMPC

for simultaneous design and control was presented by Brengel and Seider [10]. They replaced the

LMPC problem in the bilevel formulation using its Kuhn-Tucker conditions; a Newton homotopy

solution strategy was implemented for the solution of small scale problem. They recognized that

the solution of a coordinated problem is challenging due to the presence of Lagrange multipliers.

Loeblein & Perkins [90] implemented a non-constrained LMPC control law to assess the variance of

the constrained variables of the closed-loop system subject to stochastic disturbances. Therefore,

the amount of necessary back-off from the constrains can be calculated. It aimed to determine a

feasible steady-state design and process dynamics. Significant contributions to simultaneous design

and MPC-based control area has been proposed by Pistikopoulos et al. [4, 8, 91, 106]. They have

proposed the use of parametric-MPC to include an explicit form of the controller in the optimiza-

32



tion model for design and control. Sakizlis et al. [4] included the parametric explicit form of the

LMPC controller as part of the process model. They implemented an outer approximation decom-

position method for the simultaneous identification of the optimal process and control design with

discrete decisions, i.e., a control master problem aimed to determine the controller tuning param-

eters, whereas a structural master problem provided the values for the discrete design decisions.

Chawankul et al. [11] integrated in one objective function the costs associated to the variability,

capital, and operability aspects; whereas the process design variables and the controller tuning

parameters were calculated simultaneous. Robust stability and performance measures based on

Lyapunov functions theory for applications in simultaneous design and LMPC-based control under

uncertainty were presented by Ricardez-Sandoval et al. [93, 94, 95]. They estimated the worst

case variability, process feasibility, and process stability using a structured singular value analy-

sis. Francisco et at. [96, 97, 98] developed different methodologies for the integration of design

and LMPC-based control for chemical processes. In those studies, they considered cost functions

that included investment, operating costs, and dynamical indexes in multi-model formulations.

Moreover, Francisco et al. [98] selected a LMPC with infinite horizon and a terminal penalty to

guarantee closed-loop process stability. Results from that approach showed an improvement in

control performance compared to those obtained with a classical design approach (i.e., optimal

steady-state design approach). Sanchez-Sanchez & Ricardez-Sandoval [100] presented an iterative

decomposition framework for integration of process flowsheet and MPC design under uncertainty;

that approach considered a dynamic flexibility analysis, a robust dynamic feasibility test, a nom-

inal stability analysis, and a robust asymptotic test for the process flowsheet selection. While in

the past, those analyses were formulated as MINLPs, Sanchez-Sanchez & Ricardez-Sandoval im-

plemented convex formulations to address such analyses. Thus, they proposed a computationally

attractive methodology. Bahakim & Ricardez-Sandoval [2] introduced an stochastic-based method-

ology for simultaneous design and LMPC-based control under uncertainty. They determined the

dynamic variability of the system using a stochastic-based worst-case variability index. On the

other hand, Pistikopoulos et al. [107, 106] presented a methodology that makes use of the software

platform PAROC to integrate a multi-parametric MPC (mpMPC) for process design and control
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under uncertainty. In that methodology, the explicit control actions are expressed as a function of

the design variables (i.e., the control is design dependent); this leads to a single design dependent

mpMPC formulation. Those promising strategies contributed to reduce the computational burden

associated with optimal design and control problems. Recently, Carvalho & Alvarez [102] presented

a multistage solution procedure for the integration of design and infinite horizon LMPC-based

control; that methodology showed an excellent performance to compute economically attractive

solutions. Those previous works have pointed the features and benefits of the use of model-based

controllers for optimal design and control. In further works, Oyama & Durand [103] explored the

interactions between the implementation of an economic nonlinear model predictive controller (eN-

MPC) and the corresponding process design. They studied the impact of these interactions to the

computational complexity of the controller and the process design procedure. That study suggested

a set of controller design variables that can be considered as key decision variables for simultane-

ous process design and control problems in presence of process disturbances. Hoffmann et al. [14]

implemented an unscented transform method to approximate the probability density function of

inequality constrains in applications with economic NMPC under stochastic disturbances. For high

probability levels, their methodology found difficulties to retrieve a feasible solution, i.e., the search

for a solution for application with NMPC may represent a challenge.

In general, most of the applications addressing the integration of design and model-based control

have considered LMPC frameworks. However, the dynamic behavior of highly nonlinear processes

may not be effectively approximated by linear formulations. The implementation of NMPC is

expected to improve the control performance and the process economics compared to application

with LMPC for application in integrated design and control; moreover, note that there are no studies

that have compared the LMPC and NMPC for these purposes. Integrating design and NMPC-

based control remains a challenging task, as the non-convexity of the nonlinear problem adds to

the size of the integrated problem, resulting in increased complexity and computational effort. To

better understand the advantages and disadvantages of NMPC embedded in simultaneous design

and control, a more thorough investigation is necessary, including a fair comparison of associated

features and limitations, such as computational costs.
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2.6 Selection of finite elements in process design

The accuracy of the discretization mesh has been intensively studied for applications in simulation

and control of flow of fluids [108, 109], distillation operations [110], reaction system operations [111,

112], heat transfer [113], optimal control [86, 85, 114], among others [115, 116]. In the literature, the

approaches for the selection and refinement of the discretization mesh can be divided into two classes:

relocation methods and grid point insertion and elimination. In the relocation method, the number of

discretization points is kept constant whereas they are relocated depending on the nonsmoothness of

the dynamic profiles for the decision variables (i.e., dynamic profiles for controlled and manipulated

variables). Liu et al. [117] implemented a mesh refining methodology that compares two different

meshes to approximate a solution for optimal control problems. An adaptive finite element method

based on variable knot spline interpolation was presented by Davis and Flaherty [115]. Zhao and

Tsiotras [118] implemented local density functions for the refinement of the discretization mesh in the

optimal control framework. They implemented different density functions based on local curvature

of the graph of the intermediate solution and the first order derivative of the control variable.

Assassa and Marquart [86] proposed a switching function-based methodology for the refinement of

the number of finite elements. That study found that Pontryagin’s minimum principle (PMP) is not

sufficient as a stopping criterion on the refinement of the discretization grid, i.e., additional criteria

becomes necessary for the selection and refinement of finite elements. The implementation of the

PMP allows one to obtain the Hamiltonian first order necessary conditions for optimality. A key

feature of PMP is that the Hamiltonian function is continuous, even if the control law is not, and

constant over time for autonomous systems [85]. If sufficient discretization points are not provided

for the solution of the Hamiltonian optimality conditions, this returns a non-constant Hamiltonian

function profile. Therefore, this feature of the Hamiltonian function can be considered a criterion

for the refinement of the number of finite elements.

Orthogonal collocation on finite elements (OCFE) is a powerful numerical technique widely used

in chemical engineering to solve DAE models, ODEs, and PDEs. The OCFE method involves the

use of finite element methods for discretization and orthogonal collocation to discretize the time
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domain. This approach leads to a system of algebraic equations that can be efficiently solved using

numerical techniques, allowing for the prediction of system behavior over time. The OCFE method

has proven to be particularly useful in the simulation of complex chemical processes such as reaction

kinetics, mass transfer, and heat transfer. The ability to accurately model these processes has been

instrumental in the design and optimization of chemical processes, making OCFE an essential tool

in the field of chemical engineering. For instance, Chen et al. [85] developed a methodology for the

selection and refinement of finite elements for applications in optimal control. That methodology

added/removed finite elements based on the criterion of the Hamiltonian function, whereas the

size of the finite elements is refined using the criterion of the estimation of the collocation error

at noncollocation points. In a grid point insertion and elimination strategy, the number of dis-

cretization points (e.g., the number of finite elements and collocation points in an OCFE strategy)

are increased or reduced depending on the accuracy of the approximation to the functions in the

optimization formulation. In most of the cases, that strategy with equidistributed finite elements

provides a reasonably accurate approximation to the solution. Wright [119] found that in cases

where the accuracy of the approximation is low with a collocation strategy, equidistributed finite

elements may not return a unique solution to the differential equations. Russell and Christiansen

[120] reviewed multiple strategies for the refinement of the discretization with collocation methods.

In particular, that study pointed out the effectiveness of two methods for estimating the colloca-

tion error: extrapolation of the collocation solutions using similar meshes, and a method based on

residuals. In this PhD study, OCFE is adopted as the preferred discretization technique. other

discretization approaches are out of the scope of this study. The methodology and implementation

of OCFE is described in Chapter 6. Further reviews on the discretization mesh refinement can be

found elsewhere [116, 121].

2.7 Summary

In summary, this chapter has presented the methods, mathematical formulations, and background

that are relevant for this PhD thesis. The first section presented the approaches for design and
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control. The second section presented the conceptual formulation for NMPC. The consideration

of uncertainty in its process model introduces robustness to the formulation. It aims to determine

optimal control actions to maintain the process dynamically feasible under uncertainty. In the third

section, the conceptual formulation for a bilevel problem was introduced. Potential strategies to

transform the bilevel problem into a single-level problem were discussed. A classical KKT transfor-

mation strategy corresponds to the most often used for the direct solution of bilevel problems. This

transformation strategy returns a single-level MPCC, which is also difficult to solve; nevertheless,

there are reformulation strategies that facilitate the solution of MPCC formulations. The imple-

mentation of discrete decisions introduces an additional complexity layer to the bilevel formulation.

To the author’s knowledge, an implementation using NMPC for integrated design and control under

uncertainty and structural decisions has not been addressed. The methods presented in the liter-

ature for the solution of MIBLPs may be case specific. A fourth section introduces the concept of

Hamiltonian function and the corresponding Pontryagin’s minimum principle. In the fifth section, a

literature review of the development and innovations for integrated design and NMPC-based control

framework was presented. Most of those studies are focused on the implementation of LMPC. The

implementation of NMPC has been identified as a challenging task for the integration of design

and control. In the the sixth section, an overview of the methods and applications of discretization

refinement regarding process design in chemical engineering was presented. An important amount

of studies has pointed out the necessity of considering the selection of the discretization mesh for the

accurate approximation of DAE models. Although the importance of this selection, there is an ab-

sence of studies involving simultaneous design, control, and discretization mesh selection/refinement

using OCFE. A potential criterion for the selection of the discretization mesh using OCFE is the

implementation of the Hamiltonian function. This function leads to the solution of a set of necessary

conditions for optimality that are described as a TPBVP. The next chapter presents a methodology

that is proposed in this PhD study for the integration of design and NMPC-based control under

uncertainty.
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Chapter 3

Simultaneous design and nonlinear model pre-
dictive control under uncertainty: A back-off
approach

As mentioned above in Chapters 1 and 2, integrated design and NMPC-based control results in

a bilevel formulation. The search for a solution to this formulation may become challenging even

for medium-scale applications. Moreover, the introduction of uncertainties in the process model

increases the complexity and scale of the formulation. The potential benefits of using NMPC for

integrated design and control has not been widely assessed in the literature; consequently, there is

a lack of practical methodologies to address the solution of such complex formulation.

The back-off approach offers an attractive alternative, as it begins the search for a solution

at the steady-state and systematically moves the process design towards an optimal, dynamically

feasible operating point. Perkins [122] proposed the first idea of back-off. Then, Narraway and

Perkins [123] refined this idea by considering linear process models, enabling the estimation of the

required amount of back-off to accommodate the effect of disturbances from active constraints at the

optimum steady-state. Then, the back-off approach was implemented for simultaneous design and

control by Kookos and Perkins [124, 125], in which tighter upper and lower bounds on the optimal

design and control were systematically generated to ensure feasibility in the process dynamics of the

resulting solutions. A PSE strategy for the back-off approach was presented by Mehta and Ricardez-

Sandoval [126]. This strategy was refined by Rafiei and Ricardez-Sandoval [127, 128], in which an

application for the integration of design and control using decentralized PI was presented. The

primary challenge of this approach is determining the necessary amount of back-off to accommodate

the transient process operation [129]. Linearization of constraints [130], use of probability density

functions [131], and Monte Carlo simulations [132] are among the techniques implemented for the

determination of the amount of back-off.

In this PhD thesis, the proposed back-off method reduces the complexity of the original bilevel

38



problem by approximating the problem in terms of PSE functions. This approximation is explicitly

defined for the decision variables and features the property to be a single-level problem that can be

solved using conventional NLP solvers. In a systematic fashion, the proposed methodology searches

for the amount of back-off to move the design and control variables from the optimal steady-state to

a new dynamically feasible economic operating point that can explicitly accommodate uncertainty

in the system parameters.

This chapter is organized as follows: the next section presents the formulation for simultaneous

design and NMPC-based control. Section 3.2 introduces the proposed back-off methodology. The

implementation of this methodology is illustrated in a case study involving a highly nonlinear

wastewater treatment plant (WWTP) in Section 3.3. A summary of this chapter is presented in

Section 3.5.

3.1 Simultaneous design & NMPC-based control

The dynamic process model in the NMPC framework is generally given by first principle models.

These models condense the information of the process behavior and process design. Thus, an

adequate process model in the NMPC enables the computation of accurate predictions with optimal

control actions. When NMPC is implemented for a simultaneous design and control framework, it

becomes a complex formulation since the design problem requires the information from the control

actions whereas the NMPC-based controller needs to have access to process design decisions in

order to compute the optimal control actions, i.e., both the design and control problems depend of

each other. This leads to a called bilevel optimization formulation [46]. The computation of optimal

solutions for a bilevel optimization problem is known to be a challenging task. In this work, for

simultaneous design and NMPC-based control, the conceptual mathematical bilevel formulation is

defined as follows:

min
η,x(t),ū(t),û(τc),y(t)

J∑
ju=1

wjuΦ(η, ς,x(t), ū(t),y(t),dp(t), t) (3.1a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),y(t),dp(t), t) = 0, (3.1b)
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h(η, ς,x(t), ū(t),y(t),dp(t), t) = 0, (3.1c)

g(η, ς,x(t), ū(t),y(t),dp(t), t) ≤ 0, (3.1d)

û(τc) = arg

{
min
û

Ψ(·) s.t. F (·) = 0, H(·) = 0, G(·) ≤ 0, û ∈ RNu
+

}
(3.1e)

ū(t) = û(τc), ∀ τc = t (3.1f)

where h : RNx × RNu × RNη × RNς × RNy × RNd × RNt → RNh×Nς and g : RNx × RNu × RNη ×

RNς × RNy × RNd × RNt → RNsi×Nς denote the equality and inequality constraints of the process,

respectively; f : RNx × RNu × RNη × RNς × RNy × RNd × RNt → RNx×Nς represent the dynamic

process model; x ∈ RNx are the states of the system with derivatives indicated by ẋ ∈ RNx . ū

∈ RNu represents the vector of control actions retrieved from the controller (i.e., the NMPC) as

shown in Equation (3.1e). Vector y ∈ RNy represents the measured states of the system. The set of

decision variables that does not depend on time (η ∈ RNη) contains the process design variables (ηp)

(e.g., areas, volumes, flows) and the controller tuning parameters (ηc) in the NMPC framework,

i.e., η = [ηp, ηc]. In this study, these tuning parameters correspond to the positive-defined diagonal

matrices that penalizes the deviations in the predicted controlled variables with respect to their

desired set-points, and the changes in the manipulated variables, i.e., Qout and Qin, respectively

[12]. Note that the control actions ū ∈ RNu computed by Equation (3.1e) are given by the solution

of the optimization problem shown in Equation (2.4).

In this study, uncertainty in the model parameters is considered. Uncertainty quantification is

addressed in terms of a finite number of scenarios defined a priori. These scenarios of uncertainty

can be defined from observations based on historical data or process heuristics [28]. The formulation

shown in Problem (3.1) considers the introduction of a set of uncertainties ς ∈ RNς indexed by ju.

Similarly, the probability of occurrence of the ju
th uncertainty realization is weighted by wju . Fol-

lowing Problem (3.1), the process model implemented in the design problem (upper-level problem)

and in the NMPC formulation (lower-level problem) has the same structure. However, the process

model in the upper-level problem has access to the complete set of parameter uncertainties (ς), while
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the NMPC only has access to the nominal values of the uncertain model parameters, i.e., a nominal

NMPC-based controller. Consequently, functions f , g, and h (Equations (3.1b)-(3.1d), respectively)

map onto the domain of uncertainties (RNς ), while the functions F , G, and H (Equations, (2.4b)

-(2.4d), respectively) do not map onto this domain. To ensure dynamic feasibility in the process

to external perturbation during the normal operation, a set of disturbances dp(t) is included in

the formulation. This set of disturbances aims determine the magnitude of the controller tuning

parameters such that the NMPC can reject the expected disturbances during the normal operation.

Consistently, in a real operation, the information about the future changes in the disturbances is

not available. Therefore, it is assumed that the NMPC does not have access a priori to the set of

disturbances dp(t). However, the disturbances dp are assumed to be part of the measurements for

the NMPC, but these remain constant along the prediction horizon at every sampling time (t+ kt).

As shown in Problem (3.1), the NMPC (Equation (3.1e)) has a different dimension in time

with respect to the upper-level problem (i.e., the design problem in Equations (3.1a) to (3.1d));

that is, the NMPC generates predictions in a time τnmpc ∈ [t, t + tP ] as shown in Equation (2.4),

while the upper-level problem takes place between the initial simulation time t0 and the final time

tf (i.e., t ∈ [t0, tf ]). The direct solution of the bilevel formulation in Equation (3.1) may become

challenging even for medium-scale applications [46]. The implementation of direct approaches lead

to complex highly nonlinear large-scale formulations. The proposed back-off methodology reduces

the complexity of the bilevel formulation by the approximation of the original in explicit terms

of PSE functions. This PSE-based model returns a single-level formulation that can be efficiently

solved with conventional NLP solvers. The proposed sequential methodology is detailed next.

3.2 Back-off methodology

The back-off method seeks for the optimal design and control parameters that maintain the process

in a dynamically feasible state, given a set of process disturbances. The algorithm is initialized with

an optimal steady-state process design point and systematically moves away from that point to a

new dynamically feasible and optimal operating point. The flowchart corresponding to the back-off
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algorithm is presented in Figure 3.1. To implement this algorithm, Equation (3.1) is approximated

by the use of PSE functions. These functions approximate the nonlinear model in Equation (3.1)

around a WCV point. The concept of WCV-point is described later in this section. Since a PSE-

based formulation has a limited region of validity, the algorithm sequentially seeks for a region in

which the process design improves the process economics and dynamic feasibility. The description

of each step in the algorithm is presented next.

3.2.1 Step 1: Initialization

The algorithm is initialized by defining the trajectory profiles for the disturbances dp(t); the maxi-

mum number of iterations (Niter) and the iteration index rb is set to 1; the order of approximation

for the PSE functions; the step-size for sensitivity calculations (∆ηp); the search space region for

the decision variables δb (i.e., region of validity for the PSE functions); and an initial guess for the

controller tuning parameters. Note that the parameter δb is a tuning parameter for this back-off

methodology. This parameter is problem-specific and often defined based on heuristics or prior

simulations. In this study, the matrices Qout and Qin are considered in the NMPC framework as

the controller tuning parameter targets. Moreover, tP and tC in the NMPC framework are defined a

priori using preliminary closed-loop simulations. Furthermore, a set of finite number of realizations

(Nς) for the uncertain parameters ς is defined. Each value in the set of realizations is assigned with

a probability of occurrence (wju). The values for the uncertainty realizations can be determined a

priori using process heuristics or historical data from similar applications.
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Figure 3.1: Back-off framework for integration of design and NMPC-based control.

3.2.2 Step 2: Optimal steady-state design

In Step 2, an optimal steady-state design problem is solved first to obtain a feasible starting point

for the present algorithm. The solution of this problem provides the nominal values for process

design variables (ηpnom) for the first iteration (i.e., rb = 1). This problem can be formulated as

follows:

min
ηpnom

Φss(η
p
nom,x,y,dpnom , ςnom) (3.2a)
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s.t. fss(η
p
nom,x,y,dpnom , ςnom) = 0 (3.2b)

hss(η
p
nom,x,y,dpnom , ςnom) = 0 (3.2c)

gss(η
p
nom,x,y,dpnom , ςnom) ≤ 0 (3.2d)

where Φss : RNx × RNγ × RNy × RNd × RNς → R represents the cost function for steady-

state process design. In this problem, the cost function involves only the capital and operation

costs associated to the process design. In Problem (3.2), the disturbances are assumed to be con-

stant model parameters that are set to their corresponding nominal values (dpnom). The functions

fss: RNx × RNγ × RNy × RNd × RNς → RNx , hss: RNx × RNγ × RNy × RNd × RNς → RNh , and

gss: RNx × RNγ × RNy × RNd × RNς → RNs represent the process model, the equality, and in-

equality constraints at steady-state, respectively. Note that uncertain parameters are set to their

corresponding nominal values in Problem (3.2), (i.e., ςnom). As mentioned above, the results of the

solution of the optimization model (ηpnom) are used as the starting point for the design variables

in this methodology. Therefore, ηnom = [ηpnom, ηcnom]. The development of PSE-based functions is

presented next.

3.2.3 Step 3: Development of PSE-based functions

PSE functions are implemented to obtain analytical expressions of the constraints in the optimiza-

tion model (i.e., Equation (3.1)). Moreover, these PSE functions are defined as explicit terms of the

system’s uncertain parameters (ς) and the decision variables at their nominal values (ςnom). Then,

these PSEs-based functions are developed around the point that produces the largest variability to

the process feasibility constraints under the effect of disturbances and uncertain realizations in the

model parameters. This point is referred to as the worst-case variability point (WCV-point), as

shown next in Figure 3.2.
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Figure 3.2: Worst case variability point (WCV-point) identified as the largest variation of the sith

function g, for the ju
th realization in the uncertainty set, at the time t = twc.

To identify the WCV-point, the closed-loop model is simulated using the nominal condition

defined in step 2 (i.e., ηnom) for all realizations in the uncertainty vector ς under the disturbances

effects defined by dp(t). At the WCV-point, it is located the time at which the large variability

occurs (twc) for the ςju uncertainty realization, as shown in Figure 3.2. Thus, the formulation used

for the identification of the WCV-point for each of the inequality feasibility constraints g is as

follows:

ǧ∗si,ju = max
x(t),y(t)

ǧsi,ju (3.3a)

s.t. f(ηnom, ς, ẋ(t),x(t),y(t), ū(t),dp(t), t) = 0, (3.3b)

h(ηnom, ς,x(t),y(t), ū(t),dp(t), t) = 0, (3.3c)

ǧsi,ju = gsi(ηnom, ς,x(t),y(t), ū(t),dp(t), t), ∀si ∈ {1, . . . , S} (3.3d)

ū(τc) = arg

{
min
û

Ψ(·) s.t. F (·) = 0, H(·) = 0, G(·) ≤ 0, û ∈ RNu

}
(3.3e)

where ǧ∗ ∈ RNsi×Nς is an auxiliary variable that takes the values of sith functions g at the point

that causes the larges variation, i.e., the WCV-point. Index si denotes to the number of inequality

constraints g (si ∈ {1, . . . , S}). Note that Equation (3.3) is solved ju times for every inequality

constraint si, i.e., for each realization of the uncertain parameters included in the set ς. Equation
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(3.3) assumes that the decision variables remain constant at their nominal values (ηnom) and aim to

determine the WCV-point for functions g in closed-loop under process disturbances and for every

ju
th realization in the uncertainty set. Similarly, this procedure is followed for the determination of

the WCV-point for the objective function Φ, i.e.,

Φ̌∗
ju = max

x(t),y(t)
Φ̌ju (3.4a)

s.t. f(η, ς, ẋ(t),x(t),y(t), ū(t),dp(t), t) = 0, (3.4b)

h(η, ς,x(t),y(t), ū(t),dp(t), t) = 0, (3.4c)

Φ̌ = Φ(η, ς,x(t),y(t), ū(t),dp(t), t) (3.4d)

ū(τc) = arg

{
min
û

Ψ(·) s.t. F (·) = 0, H(·) = 0, G(·) ≤ 0, û ∈ RNu

}
(3.4e)

where Φ̌ ∈ RNς is an auxiliary variable that will take the values of the cost functions Φ at the

WCV-point. As in Equation (3.3), Equation (3.4) is solved ju times until all the realizations in the

set of uncertainties (ς) are tested. PSE-based approximations for the sith inequality constraint gsi

and the cost function Φ are developed around the WCV-point, i.e.,

gsi,PSE(η)|dp(t),ςju ,twc
= ǧ∗si,ju(ηnom) +

∞∑
kl=1

1

kl!
∇klgsi(η)|twc,ςju (η − ηnom)kl , ∀si ∈ {1, . . . , S},

ju ∈ {1, . . . , J} (3.5a)

ΦPSE(η)|dp(t),ςju ,twc
= Φ̌∗

ju(ηnom)+
∞∑

kl=1

1

kl!
∇klΦ(η)|twc,ςju (η − ηnom)kl , ∀ju ∈ {1, . . . , J} (3.5b)

where ∇klgsi,ju(η) and ∇klΦ(η) are the kl
th-order gradients for the sith constraint function g

and for the objective function Φ, respectively, for the jthu uncertainty realization. These gradients

are calculated with respect to the decision variables (η) and evaluated at the WCV-point that was

determined at time twc, as shown in Figure 3.2. Both ǧ∗ and Φ̌∗ correspond to the values of the

solution of models (3.3) and (3.4), respectively. To calculate the first and second order gradients of

the functions g and Φ around the WCV-point (i.e. at t = twc as shown in Figure 3.2), forward (η+)

and backward (η−) point evaluations of the functions are enforced around the WCV-point. The
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values for η+ and η− correspond to small forward and backward step points around the nominal

condition (ηnom). Thus, closed-loop simulations are carried out where the values for the decision

variables are set to η+ and η−, respectively. The gradients can thus be calculated using for example

finite differences, i.e.,

∂gsi
∂ηp
|twc,ςju =

(
ǧsi
(
η+p
)
|twc,ςju − ǧsi

(
η−p
)
|twc,ςju

)
∆ηp

, ∀p = {1, . . . , P}, si ∈ {1, . . . , S} (3.6)

∂2gsi
∂η2p
|twc,ςju =

(
ǧsi
(
η+p
)
|twc,ςju − 2ǧsi

(
η+pnom

)
|twc,ςju + ǧsi

(
η−p
)
|twc,ςju

)
∆η2p

, ∀p = {1, . . . , P},

si ∈ {1, . . . , S} (3.7)

∂Φ

∂ηp
|twc,ςju =

(
Φ̌
(
η+p
)
|twc,ςju − Φ̌

(
η−p
)
|twc,ςju

)
∆ηp

, ∀p = {1, . . . , P}, si ∈ {1, . . . , S} (3.8)

∂2Φ

∂η2p
|twc,ςju =

(
Φ̌
(
η+p
)
|twc,ςju − 2Φ̌

(
η+pnom

)
|twc,ςju + Φ̌

(
η−p
)
|twc,ςju

)
∆η2p

, ∀p = {1, . . . , P},

si ∈ {1, . . . , S} (3.9)

where ∆ηp represents the difference between the forward step (η+p ) and the backward step (η−p )

for the pth decision variable. Further details about sensitivity and calculation of the finite difference

step can be found elsewhere [127].

Since the PSE functions are developed in closed-loop, they already take into account the NMPC

performance; consequently, the sensitivity of the process constraints and objective function with re-

spect to the optimization variables is also identified. The use of a PSE-based function approximation

allows to express the optimization model in Equation (3.1) as a low-order model representation.

3.2.4 Step 4: Solution of the PSE-based optimization model

The PSE-based functions developed in Step 3 are used to rewrite the problem of design and control

in explicit terms of the decision variables (η) and the system’s uncertain parameters (ς). The new

PSE-based optimization for integration of design and control is as follows:
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min
η,ϖ

ΦPSE(η)|twc,ςju +

S∑
si=1

J∑
ju=1

M̄ϖsi,ju (3.10a)

s.t. gsi,PSE(η)|twc,ςju ≤ ϖsi,ju , ∀si = {1, . . . , S}, ju = {1, . . . , J} (3.10b)

ηnom(1− δb) ≤ η ≤ ηnom(1 + δb) (3.10c)

ϖsi,ju ≥ 0, ∀si = {1, . . . , S}, ju = {1, . . . , J} (3.10d)

where ΦPSE : RNη × RNς → R and gsi,PSE : RNη × RNς → RNs×Nς are the PSE-based functions

for the cost and the inequality constraint functions, respectively; δb is a prespecified parameter

used to determine the search space for each decision variable in the solution of the PSE-based

optimization problem stated in Equation (3.10). This parameter is considered as an indicator of

the region of feasibility for the PSE-based functions. Since the PSE-based function approximation

of the optimization model is only valid around the WCV-point, the correct selection of the value for

parameter δb can determine the ratio of convergence of the algorithm. Below in this chapter, Section

3.4.3 presents a discussion about the selection of parameter δb when a NMPC-based framework is

considered. Following Equation (3.10), ϖsi,ju is an optimization variable used to penalize violations

to the sith constraint equation and it ensures feasibility in the solution of the PSE-based optimization

problem for all realizations ju in the uncertainty set. With the aim to reduce constraint violations,

the variables ϖsi,ju are added to the cost function as a penalty term; note that M̄ is a sufficiently

large parameter used to drive the variable ϖsi,ju to zero. Reduction of variable ϖsi,ju to zero forces

the algorithm to converge to a point in which the design and control parameters are dynamically

feasible under simultaneous realizations in the disturbances (dp) and parameter uncertainty (ς).

3.2.5 Step 5: Convergence criterion

As shown in Figure 3.1, the values obtained from the solution of the PSE-based problem (η∗) are

evaluated for convergence in this step. Evaluation of convergence consists of a comparison between
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mean values of the cost function for two different iteration intervals (i.e., interval ā and b̄) with Nr

elements each. The convergence criterion can be expressed as follows:∣∣∣∣∣∣ 1Nr

 rb−Nr∑
ā=rb−2Nr+1

Φa −
rb∑

b̄=rb−Nr+1

Φb

∣∣∣∣∣∣ ≤ ε (3.11)

where Φa and Φb represent the values of the objective function ΦPSE(η) for iterations in the

intervals ā and b̄, respectively; ε is a user-defined tolerance criterion. As shown in Equation (3.11),

the mean value of the cost function obtained from iterations in the interval ā (i.e., rb−2Nr+1 ≤ ā ≤

rb −Nr) is compared with the mean value of the same function for the period b̄ (i.e., rb −Nr +1 ≤

b̄ ≤ rb). If the difference in the mean of the objective function value is less than or equal to the

threshold ε, then the back-off algorithm has converged to a local optimum solution; otherwise, the

values η∗ are set as the new nominal values (ηnom) for the next iteration, i.e., rb = rb + 1, and

return to Step 3. This procedure continues until a convergence criterion is met or the maximum

number of iterations (Niter). Note that the algorithm assumes that there are no integer decisions

in the formulation [27].

3.3 Case study

To illustrate the features of the proposed back-off methodology, the integration of design and NMPC-

based control of an existent WWTP is used as a case study. The WWTP process is assumed to

take place in a biological reactor and a settler tank connected in series (see Figure 3.3). The

settler tank has two effluents: a clean water stream and an activated sludge stream. The latter

stream is recycled to the bioreactor to maintain the biological reaction activity. Since the activated

sludge is constantly growing, the excess is eliminated by a purge stream (qp). This process aims

to control the substrate concentration (sw) in the biodegradable waste stream and the dissolved

oxygen concentration in the bioreactor (cw). Since the bioreactor is an aerobic-activated reaction

equipment, control on the dissolved oxygen concentrations is of special relevance for degradation of

organic matter. The model of the WWTP is as follows:
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dxw
dt

= ywµ̄w
swxw
ksc + sw

− kcaxw − kdr
x2w
sw

+
xinqin
VR

+
xrqr
VR
− xwq

VR
(3.12)

dsw
dt

=
fkdkdrx

2
w

sw
− µ̄wswxw

(ksc + sw)
+ fkdkcaxw +

sinqin
VR

+
swqr
VR
− xwqout

VR

dxd
dt

=

(
1

Adld

)(
qout(xb − xd)−Adnnrxde

(aarxd)
)

dxb
dt

=

(
1

Adlb

)
(qxw − xb(qout + q2) +Adnnr (NLT ))

dxr
dt

=

(
1

Adlr

)(
q2(xb − xr) +Adnnrxbe

(aarxb)
)

dcw
dt

= kotwfk(cs − cw)− kodµ̄w
xwsw

(ks + sw)
− cwq

V

NLT = xde
(aarxd) − xbe(aarxb)

qr = q2 − qp

q1 = qi + qr

qout = q1 + q2

where xw corresponds to the biomass concentration in the bioreactor, xin is the inlet biomass

concentration, qin stands for the feed flow rate, the plant’s outlet flow rate is described by qout. The

biomass concentration at the different depth zones in the settler tank are described by xd, xb, xr,

respectively; whereas the depth of the settler tank’s zones are given by lrd, lrb, lrr, respectively

(see Figure 3.3). Moreover, q1 and q2 stand for the bioreactor’s outlet flow rate and settler tank’s

bottoms flow rate, respectively. Values for the plant’s model parameters are listed on Table 3.1.
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Figure 3.3: Integrated design and NMPC-based control for a wastewater treatment plant.

Table 3.1: Process model parameters: wastewater treatment plant
Parameter Value

yw [-] 0.5948
ksc [hr

−1] 300
kotw [hr−1] 0.7
kod [hr−1] 1.0× 10−4

cs [mg/L] 8
fkd [-] 0.2
nnr [-] 3.1563
aar [-] -7.8567× 10−4

lb [m] 1.0
ld [m] 2.0
lr [m] 0.5

This process aims to maintain the substrate concentration (sw) in the bioreactor at a desired

set-point (sspw ). The cost function considered in this study consists of an annualized capital cost

(CCa), an annual operating cost (OCa), and a variability cost (V Ca). Capital cost is given by the

size of the installed equipment, i.e., bioreactor’s volume (VR) and settler’s cross-sectional area (Ad),

i.e.,

CCa = 0.16(3500VR + 2300Ad) (3.13)

The annual operating cost for the system (OCa) is given by the cost of the energy consumed by

effect of the manipulated variables: the speed of the aeration turbines (fk) and the purge flow rate
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(qp) from the settler’s recycle flow rate (qr), i.e.,

OCa = 870(fk + qp) (3.14)

Moreover, a key objective of the process is given by the annualized variability cost (V Ca), which

aims to maintain the substrate concentration (sw) close to an specific threshold. As shown in

Equation (3.15), the variability cost has a higher penalty given its environmental significance, i.e.,

substrate concentrations in the treated water to the effluent should remain close to 100 mg/L during

operation but they cannot exceed this limit. Note that this last condition can be expressed as a

constraint in the optimization problem, i.e., sw(t) ≤ 100.

V Ca = 1.0× 105(100− sw)2 (3.15)

3.4 Results

The optimal design and NMPC-based control subject to process disturbances and model uncertainty

of the WWTP presented in the previous section was solved under different scenarios. The first sce-

nario (Section 3.4.1) compares the control performance of NMPC, LMPC, and a decentralized-PI.

Scenario 2 (Section 3.4.2) describes the effect on the solution to variations in the number of uncer-

tainty realizations. A sensitivity analysis on the impact of the parameter δb on the performance of

the proposed back-off algorithm using a NMPC control strategy is presented in Scenario 3. Scenario

4 presents the effect of different types of disturbance profiles. For all the scenarios, the implemen-

tation was performed in GAMS V30.2.0 using CONOPT4 as the NLP solver in a platform with an

Intel(R) Core(TM) i7-8700 CPU 3.20 GHz processor, 16 GB of RAM and using Windows Server

2019 Standard. The discretization of the process and NMPC optimization model was performed

using orthogonal collocation on finite elements. The NMPC optimization formulation consists 20

finite elements and 3 collocation points that represents a total of 1,061 nonlinear algebraic equations

with 961 variables. Each of the scenarios considered for this case study are presented next.
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3.4.1 Scenario 1: Effect of the control framework

Table 3.2 shows the set of disturbances considered in this scenario. As shown in this table, the

set of disturbances considers step changes in the input parameters: inlet flow rate (qin [m3/h]),

inlet biomass concentration (xin [mg/L]), and inlet substrate concentration (sin [mg/L]). The step

disturbances for this scenario are performed every 5h until a total simulation time of 35h is reached.

The set of uncertainty realizations is listed in Table 3.3.

Table 3.2: Disturbance trajectory profiles (Step changes).
t xin sin qin
[h] [mg/L] [mg/L] [m3/h]

0 80 366 500
5 75 371 480
10 85 361 520
15 80 366 480
20 75 371 500
25 85 366 520
30 80 366 520

The uncertain parameters in Table 3.3 correspond to biological experimental parameters that

may exhibit variations in their magnitude, i.e., specific microbial growth rate (µ̄w), biomass death

rate (kdr), specific cellular activity (kca). Further information regarding these parameters can be

found elsewhere [133]. The uncertainty realizations listed in Table 3.3 were determined under

the assumption that the parameters may change within ±10% of their nominal values [127]. The

maximum number of iterations (Niter) in the algorithm was set to 185. The prediction and control

horizons for the model-based control frameworks (i.e., LMPC and NMPC) are set to 2h. Since the

bilevel formulation in Equation (3.1) may exhibit a highly nonlinear behaviour, second order PSE

functions were used in the analysis to balance out accuracy in the predictions and computational

costs. Rafiei & Ricardez-Sandoval [27] validated the accuracy of the PSE-based approximation for

the WWTP presented in this case study. They found that the order selected for the PSE (i.e.,

second order) was suitable for integrated design and control applications. Note that higher order

PSE approximations demand additional computational cost.
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Figure 3.4: Scenario 1: Cost function convergence chart for implementations with LMPC, NMPC,
and decentralized-PI.

The step size sensitivity parameter (∆ηp) is set to ±0.005ηnom. The tuning parameter δb was set

to ±0.05ηnom. For the present scenario: ηNMPC = ηLMPC = [Ad, VR, s
sp
w , c

sp
w , Qsw , Qcw ], and ηPI =

[Ad, VR, s
sp
w , c

sp
w ,Kc1,Kc2, τi1, τi2] represent the sets of time-independent decision variables for the

implementations with NMPC-based control, LMPC-based control and PI-based control strategies,

respectively. The floating point average criterion for convergence was set to ε = 1.0× 10−2 with a

sampling interval of Nr = 5, i.e., number of iterations considered for the evaluation of mean value

of the cost function in Equation (3.11). The total cost of the process is expected to be in the orders

of millions; thus, a small ε (i.e., < 1.0 × 10−2) may significantly increases the computational cost.

Further reduction of this parameter (i.e., < 1.0×10−4) did not improve the results significantly, i.e.,

decision variables and cost function values remained the same to those obtained using ε = 1.0×10−2,

whereas the CPU times increased a 28%, 23%, and 25% for the implementations using decentralized-

PI, LMPC, and NMPC controllers, respectively. Hence, solutions obtained using this parameter

value as the stopping criterion are accepted. In this scenario, the closed-loop sampling time for
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measurement of states is set to 7.5min. The dynamic model of the WWTP was linearized using first-

order Taylor series expansion. The linear version of the process model is used as the internal model

in the LMPC framework. This linear process model is identified around the nominal operating

conditions of the system given by the steady-state values of the process states, inputs and the

manipulated variables, respectively. Note that in the present back-off algorithm, the steady-state

values of the system are updated at each iteration step. Hence, the linear process models are also

updated with the revised steady-state operating conditions obtained at each iteration step to ensure

that the LMPC has a consistent model of the process with respect to the changes in the decision

variables. For the decentralized control strategy, the control pairing between the controlled and

manipulated variables was selected based on the use of a relative gain array (RGA) approach. For

control purposes in the decentralized PI framework, purge flow rate (qp) and turbine speed (fk)

are selected as manipulated variables to control the substrate concentration (sw) and the dissolved

oxygen concentration (cw), respectively.

Table 3.3: Scenario 1: Uncertainty realizations for model parameters (WWTP).
Uncertainty Specific growth Biomass death Specific cellular Weight
realizations rate (µ̄w) rate (kdr) activity (kca) distribution (wju)

1 0.18240 5× 10−5 1.330× 10−4 0.3
2 0.20064 5.5× 10−5 1.466× 10−4 0.1
3 0.16416 4.5× 10−5 1.199× 10−4 0.1
4 0.20064 4.5× 10−5 1.466× 10−4 0.1
5 0.16416 5.5× 10−5 1.199× 10−4 0.1
6 0.19152 4.7× 10−5 1.399× 10−4 0.1
7 0.17328 5.5× 10−5 1.266× 10−4 0.1
8 0.17875 5.35× 10−5 1.293× 10−4 0.1

As shown in Table 3.4, the results for Scenario 1 show that the implementation with NMPC

results into an economic improvement compared with the LMPC-based framework and the PI-

based control strategy, i.e., the total plant cost with an NMPC is 42% and 22% lower compared

with the PI-based control framework and the LMPC-based approach, respectively. Note that the

total cost in Table 3.4 involves the capital cost, operating cost, and variability cost. From the

operability parameters, it is observed that the substrate set-point (sspw ) is closer to the saturation

limit (sw ≤ 100) when a NMPC-based control is implemented, which enables a reduction in the
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total plant costs. The implementations resulted in important differences in the process design, i.e.,

the settler’s area (Ad) is almost 2 times larger when NMPC is implemented, compared with the

application with decentralized-PI. On the contrary, the reactor’s volume (VR) is 30% smaller when

NMPC is implemented with respect to the implementation with decentralized-PI. Table 3.4 also

shows that there are differences in the process design between the solutions with LMPC and NMPC

frameworks, i.e., the LMPC resulted in a 5% larger settler’s area (Ad) and a 9% larger reactor’s

volume (VR) compared with the results obtained for the NMPC framework. As shown in Figure

3.4, the amount of back-off required is larger for applications involving LMPC and PI controllers,

i.e., the magnitude of the back-off is 30% larger with a LMPC and 2.1 times larger with a PI-based

controller than that obtained with the NMPC-based formulation. In principle, the applications

with PI and LMPC required a larger number of iterations to reach the convergence (i.e., 102 and

125, respectively). However, the CPU time required for the application with NMPC is 3 orders of

magnitude larger than that required by the PI-based control strategy. This difference in CPU cost

between the classical control approach (PI) and the model-based control frameworks (LMPC and

NMPC) is mostly due to the identification of the PSE-based functions (Step 3 in Section 3.2.3).

From Figure 3.4, it can be observed that the LMPC strategy reports an objective function value

in the first iteration that is larger than that reported by the other two control schemes (NMPC

and Decentralized-PI) at the same iteration point. Therefore, the LMPC framework begins to

iterate from a point that is farther from the convergence point; thus, it requires a larger number

of iterations to converge. This happens because of the use of an internal linear process model in

the LMPC scheme, which caused larger constraint violations at the initial iteration steps in the

algorithm. Therefore, the formulation with a LMPC required more iterations than those needed by

the NMPC framework; consequently, this resulted in longer CPU times to reach converge compared

with the NMPC strategy (51% larger CPU time). From Figure 3.5, it can be observed that the

three control schemes tested in this study returned a feasible dynamic operation by maintaining the

substrate concentration (sw) around their corresponding set-point and under the saturation limit

in the presence of process disturbances and parameter uncertainty.
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Figure 3.5: Scenario 1: Solution based closed-loop simulations for the control of the substrate (sw)
under process disturbances and parameter uncertainty; (a) decentralized PI; (b) Linear-MPC-based
control; (c) NMPC-based control.

The results from this scenario show that the NMPC-based framework has multiple economic

and operational benefits for process design and control; however, the CPU cost acts as a limitation
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Table 3.4: Results for Scenario 1 (Effect of the control framework for WWTP)
Controller Decentralized PI LMPC NMPC

Ad [m2] 691.9 2070.3 1974.2
VR [m3] 2513.9 2002.0 1831.1
sspw [mg/L] 93.0 95.4 97.0
cspw [mg/L] 0.06 0.06 0.001
Qsw – 32.18 31.71
Qcw – 0.001 0.001
KC1 0.9297 – –
KC2 0.4053 – –
τI1 15.512 – –
τI2 17.0925 – –
Total cost [$/yr] 6.51× 106 5.60× 106 4.33× 106

Iterations 102 125 82
Amount of Back-off 5.16× 106 4.24× 106 2.98× 106

CPU time [s] 256 7.7× 105 5.1× 105

to perform the optimal design and NMPC-based control for larger-scale applications [134, 135, 136,

137]. To validate the quality of the solutions, the back-off method was also tested using a different

initial condition with Ad = 2830.2m2 and VR = 1573.8m3, whereas the optimal steady-state design

was obtained at Ad = 1774.5m2 and VR = 1241.6m3. In this validation test, the method converged

to the same local solutions reported in Table 3.4, which is an indication of the quality of the

solution obtained by the present method. The use of reduced MPC formulations, such as explicit

MPC [138], might reduce the required CPU time and can be investigated in a future study. On

the other hand, note that the sampling time for Scenario 1 (7.5min) may be too optimistic since

the measurement of biological parameters, such as biomass and substrates, requires sophisticated

techniques, e.g., biochemical oxygen demand, and therefore require longer sampling times. Thus,

the next scenarios for this case study assume larger sampling times for the measurement of states

in the NMPC framework.

3.4.2 Scenario 2: Effect of uncertainty

This scenario illustrates the effect of the number of uncertainty realizations considered in the for-

mulation. In this scenario, the integration of design and control was performed under 3 different

instances: (i) no uncertainty, (ii) 8 uncertainty realizations, and (iii) 13 uncertainty realizations.

58



Table 3.5: Scenario 2 (Back-off method): Uncertainty realizations in design parameters.
Realization
#

8 Uncertainty realizations scenario 13 Uncertainty realizations scenario

Specific
growth
rate (µ̄w)

Biomass
death rate
(kdr)

Specific
cellular
activity
(kca)

Weight
distribu-
tion

Specific
growth
rate (µ̄w)

Biomass
death rate
(kdr)

Specific
cellular
activity
(kca)

Weight
distribu-
tion (wju)

1 0.1824 5× 10−5 1.333×10−4 0.3 0.1824 5× 10−5 1.333×10−4 0.23
2 0.1641 4.5× 10−5 1.199×10−4 0.1 0.2006 5.5× 10−5 1.466×10−4 0.0775
3 0.1641 5.5× 10−5 1.999×10−4 0.1 0.1641 4.5× 10−5 1.199×10−4 0.0775
4 0.1732 5.5× 10−5 1.266×10−4 0.1 0.2006 4.5× 10−5 1.466×10−4 0.0775
5 0.2188 4× 10−5 1.396×10−4 0.1 0.1641 5.5× 10−5 1.199×10−4 0.0775
6 0.2097 4.25× 10−5 1.596×10−4 0.1 0.1915 4.75× 10−5 1.399×10−4 0.0775
7 0.1459 6× 10−5 1.170×10−4 0.1 0.1732 5.5× 10−5 1.266×10−4 0.0775
8 0.1550 5.75× 10−5 1.064×10−4 0.1 0.1787 5.35× 10−5 1.293×10−4 0.0775
9 0.2188 4.0× 10−5 1.396×10−4 0.0455
10 0.2097 4.25× 10−5 1.596×10−4 0.0455
11 0.1459 6.0× 10−5 1.170×10−4 0.0455
12 0.1550 5.75× 10−5 1.064×10−4 0.0455
13 0.2042 4.40× 10−5 1.529×10−4 0.0455

The corresponding uncertain design parameters and their realizations are shown in Table 3.5. From

this table, for the case with no uncertainty, the design parameters µ̄w, kdr, and kca take on values

from the first realization in the uncertainty sets. In this scenario, the realizations in the sets of

uncertainty parameters are assumed to vary ±15% of their nominal values. Moreover, the sampling

time considered for the present closed-loop NMPC framework is 30min. Note that this sampling

time is still optimistic for a WWTP, e.g., BOD is often a 5 day measurement; also, the measurement

of the COD may take a few hours to complete. However, a sampling time of 30min still demon-

strates the effect of the variation in this parameter for the integration of design and NMPC-based

control with respect to the results obtained in Scenario 1 (Table 3.4). In this scenario, the prediction

and control horizons, the set of process disturbances, Niter, ∆ηp are the same used as in Scenario

1. Parameter δb is fixed to ±0.01ηnom, and second order PSE-based function were used. For this

scenario: ηNMPC = [Ad, VR, s
sp
w , c

sp
w , Qsw , Qcw ] represent the set of decision variables. In addition,

ε = 0.01 and Nr.

As shown in Table 3.6, the instance with 13 uncertainty realizations resulted in larger equipment

sizes compared to the instances with no uncertainty and 8 uncertainty realizations, respectively, e.g.,

the reactor’s volume (VR) in the instance with 13 uncertainty realizations is 33% and 14% larger

compared to the instances with no uncertainty and 8 uncertainty realizations, respectively. A similar
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comparison can be made for the Ad, where the instance with 13 uncertainty realizations showed a

cross-sectional area that is 38% and 81% larger compared with the instances with no uncertainty

and 8 uncertainty realizations, respectively. The results for the substrate set-point (sspw ) indicate

that, when no uncertainty is present, the operation of the plant is closer to the saturation limit

(i.e., sw(t) ≤ 100). The addition of uncertainty into the analysis forces the operation to move

away (i.e., back-off) to a farther set-point to remain dynamically operable. For the instances with

8 and 13 uncertainty realizations, the substrate operating set-point is almost the same (∼ 1% of

difference between these instances). Note that the substrate operating set-point is slightly higher for

the instance with 13 uncertainty realizations; this increase in the operating point is possible since

larger equipment are specified for this instance. An increase in the equipment size also increases

the time constant of the process and therefore reduces the effect of the disturbances. This also

has the effect to increase the time required to reject a disturbance. As shown in Figures 3.6b and

3.6c, the design and control scheme with 8 uncertainty realizations exhibits shorter closed-loop time

constants compared to the instance with 13 uncertainty realizations. This is because the former

case specifies a smaller equipment sizes which enables faster disturbance rejection.

Table 3.6: Results for Scenario 2 (Back-off method)
Uncertainty realizations 0 8 13

Ad [m2] 2003.4 1530.0 2774.2
VR [m3] 1267.3 1635.3 1903.8
sspw [mg/L] 95.5 80.9 82.6
cspw [mg/L] 0.0099 0.0011 0.0016
Qsw 29.3 33.48 42.25
Qcw 9.8× 10−4 1.0× 10−3 1.5× 10−3

Total cost [$/yr] 8.02× 106 3.24× 107 7.26× 107

Iterations 70 72 62
Amount of Back-off 6.67× 106 3.10× 107 7.13× 107

CPU time [s] 1.29× 105 2.01× 105 3.74× 105

The addition of uncertainty realizations also resulted in higher plant costs, as shown in Table 3.6.

The cost function for the instance with 13 uncertainty realizations is 85% more expensive compared

to the instance with 8 uncertainty realizations. Therefore, the amount of back-off is also higher

for the instance with 13 uncertainty realizations, i.e., the back-off is 2.3 times higher compared
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to the instance of 8 uncertainty realizations. As shown in Table 3.6, the CPU costs increases as

the number of uncertainty realizations increases; this is because the PSE identification step in the

algorithm requires longer times to generate the forward and backward step simulations to calculate

the corresponding gradients with respect to all decision variables for each realization considered in

the uncertainty. Note that this step must be performed at every iteration step thus increasing the

computational costs of the proposed algorithm.
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Figure 3.6: Scenario 2: Substrate closed-loop simulations under process disturbances and parameter
uncertainty; (a) No uncertainty; (b) 8 uncertainty realizations; (c) 13 uncertainty realizations.

From results of Scenarios 1 and 2 listed in Tables 3.4 and 3.6, respectively, it can be observed

that the set-point for sw is closer to the saturation limit (100 mg/L) when the sampling time is

set to 7.5 min, i.e., sspw = 97 mg/L. On the other hand, when the sampling time is set to 30min
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sspw = 82.6 mg/L. Therefore, the reduction in the sampling time for the measurement of states allows

the controller to detect the disturbances faster compared with the scenario with a sampling time of

30min. Note that the results for Scenario 1 were obtained under the assumption that the uncertain

parameters have a variation within ±10% their nominal values whereas the results for Scenario 2

were obtained under the assumption that the uncertain parameters have a variation within ±15%

their nominal values. Thus, it is not possible to perform a direct comparison of the decision variables

for design (i.e., Ad and VR). However, the effect in the operation under different sampling times

for the measurement of states is shown here to reflect the impact that sampling time may have for

integration of design and control problems subject to parameter uncertainty and disturbances.

3.4.3 Scenario 3: Effect of tuning parameter δb

In this scenario, the effect of the tuning parameter δb under an NMPC framework is investigated. A

set of 3 different values were evaluated in this scenario, i.e., δb1 = ±0.01ηnom, δb2 = ±0.03ηnom, and

δb3 = ±0.05ηnom. The set of disturbances and uncertainty realizations for this scenario are the same

as in Scenario 1 (see Tables 3.2 and 3.3, respectively). The selection of values for Niter, the order of

approximation for the PSE-based function polynomials, ∆η, the floating point average criterion for

convergence, the process sampling time, the prediction and control horizons, the sampling time for

measurement of states for the NMPC, and the set of decision variables (ηNMPC) remain the same

as in Scenario 2.

Table 3.7 shows a comparison of the results obtained for the different values of δb considered

in this scenario. From these results, it can be noted that for lower values of δb (δb1 = ±0.01ηnom),

the methodology requires more iterations though the solution obtained from this instance resulted

in lower costs when compared to the cases with δb2 and δb3. Table 3.7 also shows that the solution

with δb1 exhibits a design with smaller equipment sizes, i.e., a bioreactor with slightly smaller

volume (VR) and a settler tank with a smaller area (Ad) than those obtained for the cases with

δb2 and δb3, respectively. Moreover, the operating point specified for the substrate concentration

set-point (sspw ) is slightly closer to its saturation limit for the solution obtained with δb2, which

overall improves the process economics. Despite the difference in the number of iterations required
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to achieve convergence with δb2 and δb3 (i.e., 49 and 57 iterations, respectively), the results for

the design variables remained somewhat similar, e.g., the results using δb3 specifies equipment sizes

for the settler’s tank and reactor’s volume that are 5% and 1% larger compared to those obtained

using δb2, respectively. The results show that parameter δb has a direct effect on the convergence

of the methodology and in the accuracy of the solution. Figure 3.7 illustrates the convergence of

the cost function for the different values of δb considered in this study. As shown in this Figure

3.7, the convergence for δb2 and δb3 does not follow smooth trajectories, i.e., the trajectory presents

peaks at certain iteration steps. This is an indication that the PSE-based optimization model was

out of the region of validity for the approximation. Then, for each decision variable, the region of

validity can be different and depends of the nonlinearity of the model with respect to each decision

variable. Therefore, there is the possibility that the validity region with respect to each decision

variable is different. A potential approach for the implementation of adaptive δb is the use of a trust-

region methodology [27, 28]. The key idea is to optimize the maximum acceptable search region

δb for all the decision variables around the nominal values. Although that approach eliminates

the possibility that the PSE-based model converges to values out of the region of validity, it also

introduces an additional layer of optimization thus increasing the computational costs. Hence, a

direct implementation of such approach within the present framework would further increase the

already taxing computations costs.

Table 3.7: Results for Scenario 3: Effect of the tuning parameter deltab
Decision variable δb1 = ±0.01ηnom δb2 = ±0.03ηnom δb3 = ±0.05ηnom
Ad [m2] 2510.3 2923.1 3061.2
VR [m3] 1453.6 1477.9 1495.9
sspw [mg/L] 88.0 89.1 88.8
cspw [mg/L] 0.0015 0.0016 0.0015
Qsw 39.82 42.25 42.25
Qcw 8.4× 10−4 7.3× 10−4 8.9× 10−4

Total cost [$/yr] 4.39× 107 4.62× 107 4.65× 107

Iterations 62 49 57
Amount of Back-off 4.25× 107 4.48× 107 4.51× 107

CPU time [s] 1.29× 105 2.01× 105 3.74× 105
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Figure 3.7: Scenario 3: Cost function convergence chart for different tuning parameter δb.

3.4.4 Scenario 4: Effect of disturbance dynamics

In this scenario, the effect of two different sets of disturbances for the integration of design and

control is considered. This scenario is performed using step changes (Instance A) and sinusoidal

changes (Instance B) as the disturbances entering the process. For the sinusoidal disturbance profile

(Instance B) the amplitude and frequency follow the same magnitude and pattern as the unit steps

disturbances in Table 3.2 (see Figure 3.8). In this scenario, the number of uncertainty realizations

is set to 8 realizations as listed in Table 3.3. Similarly, the sampling time for measurement of states

for the NMPC, the prediction and control horizons, Niter, the floating point average criterion for

convergence and its sampling interval (Nr), the order of approximation for the PSE-based function

polynomials, ∆η, and the set of decision variables (ηNMPC) remain the same as in Scenario 2. The

tuning parameter δb is set to ±0.01ηnom.
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Figure 3.8: Scenario 4: Step and sinusoidal disturbance pattern

Table 3.8: Results for Scenario 4: effect of disturbance dynamics
Instance A B

Disturbance profile Step Sinusoidal
Ad [m2] 2510.3 1974.3
VR [m3] 1453.6 1455.5
sspw [mg/L] 88.0 89.2
cspw [mg/L] 0.0015 0.0017
Qsw 39.82 42.25
Qcw 8.4× 10−4 6.6× 10−4

Total cost [$/yr] 4.39× 107 5.72× 107

Iterations 62 72
Amount of Back-off 4.25× 107 5.58× 107

CPU time [s] 1.29× 105 1.45× 105

As shown in Table 3.8, sinusoidal disturbances (Instance B) returned differences in the equipment

design compared to those obtained from step disturbances (Instance A). The solution obtained for

Instance B reported a settler’s tank cross-sectional area (Ad) that is 21.3% smaller compared to
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that obtained for Instance A. Also, the use of sinusoidal disturbances allows to operate under a

slightly higher set-point concentration of substrate (sspw = 89 mg/L) than that obtained for Instance

A (sspw = 88 mg/L). On the other hand, the cost for Instance A is 23% lower than that obtained

for Instance B. This variation in the plant cost can be explained by comparing the control actions

required to maintain the substrate (sw) at the optimal set-point. From Figure 3.9a, it can be

observed that the magnitude of the control actions in the purge flow rate (qp) is almost 30% lower

when step disturbances are implemented, compared to the control actions observed with sinusoidal

disturbances (Figure 3.9b). To further investigate the robustness of the solutions obtained from

Instances A and B, the sensitivity of the process design and NMPC strategies to different disturbance

scenarios was considered. To perform this test, the process design and NMPC scheme obtained from

Instance B was tested using step disturbances; similarly, the solution obtained from Instance A was

tested using sinusoidal disturbances. Results for the test using the solution from Instance B with

step disturbances are shown in Figure 3.10a. Likewise, Figure 3.10b shows the results for the test

using the solution from Instance A with sinusoidal disturbances. From Figure 3.10b, it can be noted

that the presence of process infeasibilities, up to 0.2% over the saturation value, i.e., the effect of

step disturbances on Instance B resulted in violation of the process constraints. On the other hand,

Figure 3.10b shows that the design and NMPC-based control scheme obtained from Instance A can

maintain a feasible dynamic operation when sinusoidal disturbances enter the plant. This analysis

shows that disturbance profiles may change the optimal design and NMPC-based control scheme.

Also, the design and NMPC scheme obtained from Instance A was able to reject step and sinusoidal

process disturbances. This result suggests that optimal design and NMPC schemes obtained from

aggressive disturbances (e.g., step changes) can accommodate smoother disturbance profiles (e.g.,

ramp or sinusoidal disturbances).
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Figure 3.9: Scenario 4: Control results (a) control actions in the purge flow rate (qp) for step
disturbances; (b) control actions in the purge flow rate (qp) for sinusoidal disturbances.

From the results presented in Scenarios 1 to 4 (i.e., Tables 3.4, 3.6-3.8), it can be noted that

the NMPC’s weighting parameters for the dissolved oxygen (i.e., Qcw) are at least 4 orders of

magnitude lower than the weighting parameter for the substrate (i.e., Qsw). This result indicates

that the current formulation is giving more importance to the control of sw. This becomes evident

when it is considered that the deviations of sw from the saturation limit are highly penalized by the

variability cost (V Ca) in the objective function. By comparing the results from Scenario 2 for Qsw

without uncertainty (see Table 3.6) and the results in Scenarios 1, 3, and 4 (see Tables 3.4, 3.7, and

3.8, respectively) when step disturbances are enforced, the value of Qsw is lower when no uncertainty

is considered, i.e., Qsw in Scenario 2 without uncertainty is 30% lower in magnitude with respect to
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the highest weighting parameter reported for Scenarios 2 and 3 (Qsw = 42.25). For all the scenarios

considered in this case study, it is observed that there are offsets in the controlled variables. These

offsets are caused by the mismatch that the uncertainty parameter generate between the process

model considered in the design problem and the internal process model in the NMPC formulation.

Figure 3.10: Scenario 4: Test results (a) closed-loop validation simulations for the control of sub-
strate for the sinusoidal-based design under step disturbances; (b) closed-loop validation simulations
for the control of substrate for the step-based design under sinusoidal disturbances.
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3.5 Summary

This chapter presented a back-off approach for the integration of design and NMPC-based control

under uncertainty and process disturbances. The methodology finds first the optimal steady-state

design and then evaluates the dynamic performance of this process design in closed-loop. This

allows the identification of the point that produces the largest variability to the process feasibility

constraints under the effect of disturbances and uncertain realizations in the model parameters, i.e.,

the worst-case scenario. Model sensitivity terms are identified around this worst-case scenario to

obtain an approximated explicit PSE-based optimization formulation. This formulation is explicit

in terms of the optimization variables making it easily solvable using NLP solvers. The minimization

of the cost function and the violations to process constraints drives the search for a solution for the

integrated design and control problem.

To evaluate the performance and benefits of the proposed method, a wastewater treatment

plant has been implemented. The effect of the control framework, the uncertainty realizations,

disturbance profiles, and the PSE search space were assessed. The results show that the use of a

NMPC-based framework leads to reduced plant costs with improved control performance compared

to decentralized-PI control schemes or a LMPC strategy. The back-off method efficiently determined

a solution for the bilevel problem. However, the identification of the sensitivity terms for the PSE

approximation demands most of the CPU time in the proposed methodology, which may increase

as more decision variables appear for larger scale formulations.

70



Chapter 4

Integration of design and NMPC-based control
for chemical processes under uncertainty: A
MPCC-based framework

The methodology presented in Chapter 3 has pointed out the benefits of using NMPC-based ap-

proaches for the integration of design and control under uncertainty. Although the back-off method-

ology computed economically attractive solutions with suitable control performance, the implemen-

tation of sequential approaches and approximation strategies may not guarantee optimality in the

solution. As explained above in Sections 2.5 and 2.3, transformation strategies can be implemented

for the transformation of bilevel problems into single-level MPCC-based formulations. Consequently,

the problem may be solved using conventional NLP solvers. Nevertheless, the search for a solution

for a MPCC is a challenging task, as mentioned in Section 2.3, the problem is a degenerate highly

nonconvex formulation and multiple CQs are violated at every feasible point. A series of reformula-

tion strategies for complementarity constraints have been proposed to circumvent this issue. In this

chapter, the classical KKT transformation strategy (presented in Section 2.3.1) is implemented for

the solution of the bilevel problem for integrated design and NMPC-based control under uncertainty.

This chapter is organized as follows: Section 4.1 presents the transformation strategy for the

bilevel formulation, a brief overview of the quality for the solutions to MPCCs (i.e., the stationarity

points) is also provided. The potential reformulation strategies for complementarity constraints in

the MPCC for the integrated design and NMPC framework are shown also in this section. Section

4.2 illustrates the implementation of MPCCs in three case studies. In Section 4.3 a summary of the

chapter is presented.

4.1 Transformation of Bilevel formulation

As mentioned above in Chapter 2, bilevel problems are hierarchical optimization problems that

combine decisions of two decision makers, i.e., the so-called upper-level problem (leader level) and
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a lower-level problem (follower level). The leader level takes the first decisions whereas the follower

level reacts optimally to such decisions. The leader level problem aims to find the set of decisions,

together with the follower level problem, that would optimize a cost function [139]. Bilevel problems

are members of a more general class of problems called MPEC [46]. Recall from Chapter 2 that there

exist at least three possible strategies to transform a bilevel problem into a MPCC: Primal KKT

transformation, Classical KKT transformation, and Optimal value transformation. This PhD study

focuses on the implementation of Classical KKT transformations for the reformulation of the bilevel

problem that emerge in the integration of design and NMPC-based control. The implementation and

further analysis of the Primal KKT and Optimal value transformations is beyond the scope of this

research. Interested readers on these subjects can review the studies by Dempe et al. [46, 55, 63].

In a Classical KKT transformation, the lower-level problem is expressed in terms of their KKT

conditions, i.e., necessary (and under certain conditions, also sufficient) conditions for optimality.

These optimality conditions are included as constraints in the upper-level problem. Thus, the

classical KKT transformation for the bilevel problem shown in Equation (3.1) into an MPCC is as

follows:

min
η,x(t),ū(t),û(τc),y(t)

J∑
ju=1

wjuΦ(η, ς,x(t), ū(t),y(t),dp(t), t) (4.1a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),y(t),dp(t), t) = 0, x̂(τc0) = x(t), ∀ τc = t (4.1b)

h(η, ς,x(t), ū(t),y(t),dp(t), t) = 0, (4.1c)

g(η, ς,x(t), ū(t),y(t),dp(t), t) ≤ 0, (4.1d)

∇ΩcL(η, x̂(τc), û(τc), λ(τc), ν(τc), µ(τc),dp, τc) = 0, (4.1e)

F (η, ẋ(τc), x̂(τc), û(τc),dp, τc) = 0 (4.1f)

H(η, x̂(τc), û(τc),dp, τc) = 0, (4.1g)

G(η, x̂(τc), û(τc),dp, τc) ≤ 0, (4.1h)

0 ≥ G(η, x̂(τc), û(τc),dp, τc), ⊥ µ(τc) ≥ 0, (4.1i)

ū(t) = û(τc), ∀ τc = t (4.1j)
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where ∇L(·) in Equation (4.1e) represents the gradient of the Lagrangian function, i.e., the

stationarity conditions. This gradient is determined with respect to the decision variables in the

NMPC problem (Equation ((2.4))), i.e., Ωc = [x̂(τc), û(τc)]. The Lagrangian function is defined as

L = Ψ(·) + λ⊺F (·) + ν⊺H(·) + µ⊺G(·). Equations (4.1g) and (4.1h) are the feasibility conditions

whereas Equation (4.1i) represents the complementarity conditions to enforce that at least one of the

bounds is active at the optimal solution. Variables λ ∈ RNλ , ν ∈ RNν , and µ ∈ RNµ

+ are the Lagrange

multipliers for functions F , H, andG, respectively. Note that the complementary constraints exhibit

a disjunctive behavior, which can be reformulated into equivalent expressions [18]. These alternative

forms of complementarity constraints are of interest for the potential reformulations of MPCCs into

NLPs.

The Problem (4.1) represents a challenging problem with NMPC for simultaneous design and

control. The introduction of design variables strongly affects all the dynamic decision variables

(e.g., the control profiles and trajectories of states). That is, changes in the process design impact

the process dynamics, e.g., an increase or decrease in the size of the equipment modifies the time

constant of the process, this may lead to unsatisfied dynamic constraints. Moreover, applications

of MPCCs in process engineering, scheduling, and control of systems under uncertainty have not

been widely considered. The model in Equation (4.1) explicitly incorporates uncertainty in process

parameters, which have a direct effect on the process design and control decisions. Note that even

applications with LMPC lead to nonconvex MPCCs. Therefore, an implementation with NMPC

increases the complexity of the MPCC compared to applications with LMPC. For highly nonconvex

optimization problems, a poor educated initial guess may lead to regions of feasible process designs

with complicated process dynamics. This may complicate the search for an optimal solution, i.e.,

the optimization solver may not converge to a solution. In order to provide an educated initial

guess, and reduce potential divergences in the solution process, a feasibility problem can be solved

in closed-loop with the process and the NMPC for an specific process design. The NMPC was

stated in terms of its KKT conditions. This allows to determine a first guess for the Lagrange

multipliers. The solution of the feasibility problem in closed-loop was then used as the initial guess

for the MPCC optimization problem.
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4.1.1 Stationarity

The MPCC in Problem (4.1) is a singular optimization problem, i.e., it violates multiple constraint

qualifications (CQs) at every feasible point. Singular problems cannot be solved directly with

most of the NLP solvers [18]. Therefore, the use of reformulation strategies becomes necessary to

overcome violations to CQs. In the literature there are at least three reformulation strategies for

complementarity constraints. Those reformulation strategies allow to avoid violations to CQs. As a

result, the MPCC is reformulated into a conventional NLP that can be solved with standard NLP

solvers.

If constraint qualifications (CQs) hold for the MPCC in Equation (4.1), the KKT conditions in

Equations (4.1e)-(4.1i) are necessary conditions of optimality [63]. However, the linear independence

constraint qualification (LICQ), which requires the gradient of the active constraints to be linearly

independent, is not satisfied for MPCCs at all feasible points. That is, at a given feasible point for the

KKT conditions (x̂◦, û◦) that satisfy Equations (4.1g) and (4.1h), i.e., H(η, x̂◦(τc), û
◦(τc),dp, τc) =

0, G(η, x̂◦(τc), û
◦(τc),d, τc) ≤ 0, and µ◦(τc) ≥ 0. We note that for all G(η, x̂◦(τc), û

◦(τc),d, τc) = 0,

the constraints µT (τc)G(η, x̂
◦(τc), û

◦(τc),dp, τc) = 0 are satisfied; however, a similar condition holds

for µ = 0. This implies that the multipliers µ, if they exist, are nonunique, then the LICQ is not met

[18, 62]. Moreover, a weaker condition is the MFCQ, which requires linear independence gradients

for the equality constraints and the existence of a feasible search direction into the interior of the cone

of inequality constraint gradients. MFCQ is a necessary and sufficient condition for boundedness

of the multipliers. However, the MFCQ is also violated at all feasible points by the MPCCs. This

implies that an MPCC formulation is highly degenerate and finding a solution may be a difficult

task. Note that a local optimal solution of an MPCC needs not to be related to local optimal

solutions of the corresponding bilevel optimization problem [46]. Then, with the aim to classify the

solutions for an MPCC, it is necessary to introduce the concept of stationary points. A solution

point Θ∗ = [η∗,x∗(t), ū∗(t),y∗(t)] and Ω∗
c = [x̂∗(τc), û

∗(τc)] is weak stationary point if it is feasible

and satisfy the necessary conditions of optimality [46, 62]. Additional weaker stationary conditions

to identify A-, B-, C-, and M-stationary points contribute to the identification of potential optimal
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solutions for the MPEC formulation in Equation (3.1). The verification of a B-stationary point,

under certain conditions, can indicate that the MPEC-LICQ property holds [61]. A stationary

point, where MPEC-LICQ holds, is an indication of bounded and unique Lagrange multipliers in

the relaxed LPEC to determine B-stationarity. A stronger stationarity for a MPCC is the strong

stationarity. Strong stationarity with a well-posed set of multipliers in the relaxed LPEC, for B-

stationarity, verifies optimality of the MPCC formulation (Equation (4.1)).

4.1.2 Reformulation strategies for complementarity constraints

The inherent violations to CQs, at all feasible points for MPCCs, demands to reformulate the

MPCC in order to avoid such violations. As mentioned above in Chapter 2, there are at least three

reformulation strategies for complementarity constraints: Regularization, Smoothing and Penalty

[140, 141, 64, 142, 143]. In a regularized formulation, the complementarity constraints are relaxed

with a positive parameter ϵs. In cases where the complementarity constraints are regularized,

the solution of the MPCC is obtained by the sequential solution of the regularized problem as ϵs

approaches zero [18]. The properties and convergence features of this reformulation strategy are

discussed elsewhere [141]. Smoothing functions (also known as NCP functions) is an alternative

strategy used to replace the complementarity constraints in the MPCC formulation. This strategy

is widely used for the solutions of MPCCs. The most popular smoothing function is the smoothed

Fischer-Burmeister function ϕBF , i.e.,

ϕBF (µ, π̄) = µ+ π̄ −
√
µ2 + π̄2 + ϵs = 0 (4.2)

where π̄ ∈ RNs is the set of positive slack variables for constraints G(·) (Equation (4.1h)). As

in the regularization strategy, the solution of a smoothed MPCC is obtained from the sequential

solution of the problem as ϵs approaches zero. In the literature, there is a large number of possible

forms of NCP functions; a review of the different functions can be found elsewhere [144]. For the

implementation of a Penalty strategy, the complementarities are moved from the constraints to the

objective function as a penalty term. In this strategy, the challenge lies in the selection of the

magnitude of the positive defined penalty parameter (M̄). The magnitude of this parameter is not

75



known a priori. A complete review on the selection of the magnitude for the penalty parameter

(M̄), features, and convergence properties of the that reformulation strategy can be found elsewhere

[141].

4.1.3 Solution strategy

For the solution of the MPCC in Equation (4.1), OCFE was considered. This discretization strategy

allows to express the ODEs in the MPCC as a set of nonlinear algebraic equations. In this study,

an OCFE strategy based on Lagrange polynomials (ℓ) using Radau points (k) was implemented.

Radau collocation points offer the feature of continuity across element boundaries [145]. Further

details on the features of OCFE can be found elsewhere [18, 146]. The discretized MPCC-based

formulation presented in Equation (4.1) is as follows:

min
η,xju,i,k,ūi,yju,i,k

J∑
ju=1

I∑
i=1

K∑
k=1

wjuΦju(η, ςju , xju,i,k, ūi, yju,i,k, dpi,k) (4.3a)

s.t.
K∑
j=0

ℓ̇j(τk)xju,i,j − ᾱifju(η, ςju , xju,i,k, ūi, yju,i,k, dpi,k) = 0, ∀ ju = {1, . . . , J},

i = {1, . . . , NFE}, k = {1, . . . ,K} (4.3b)

hju(η, ςju , xju,i,k, ūi, yju,i,k, dpi,k) = 0, ∀ ju = {1, . . . , J}, i = {1, . . . , NFE}, k = {1, . . . ,K} (4.3c)

gju(η, ςju , xju,i,k, ūi, yju,i,k, dpi,k) ≤ 0, ∀ ju = {1, . . . , J}, i = {1, . . . , NFE}, k = {1, . . . ,K} (4.3d)

xi+1,0 =
K∑
k=0

ℓk(1)xi,k, i = {1, . . . , NFE − 1} (4.3e)

xf =
K∑
k=0

ℓk(1)xNFE ,k, x1,0 = x(t0) (4.3f)

∇ΩcL(η, x̂i,i′,k′ , ûi,i′,k, λi,i′,k′ , νi,i′,k′ , µi,i′,k′ , dpi) = 0, ∀ i = {1, . . . , NFE}, i′ = {1, . . . , N ′
FE},

k′ = {1, . . . ,K ′} (4.3g)

K∑
j=0

ℓ̇j(τk′)xi,i′,k′ − ᾱi′F (η, x̂i,i′,k′ , ûi,i′,k′ , dpi) = 0, ∀ i = {1, . . . , NFE}, i′ = {1, . . . , N ′
FE},

k = {1, . . . ,K ′} (4.3h)
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H(η, x̂i,i′,k′ , ûi,i′,k′ , dpi) = 0, ∀ i = {1, . . . , NFE}, i′ = {1, . . . , N ′
FE}, k′ = {1, . . . ,K ′} (4.3i)

G(η, x̂i,i′,k′ , ûi,i′,k′ , dpi) ≤ 0, ∀ i = {1, . . . , NFE}, i′ = {1, . . . , N ′
FE}, k′ = {1, . . . ,K ′} (4.3j)

x̂i,i′+1,0 =
K∑
j=0

ℓk(1)x̂i,i′,k′ , i
′ = {1, . . . , N ′

FE − 1} (4.3k)

x̂f =
K∑
j=0

ℓk(1)x̂i,I,k, xi,1,0 = x(τ0c ) (4.3l)

0 ≥ G(η, x̂i,i′,k′ , ûi,i′,k′ , di), ⊥ µi,i′,k′(τc) ≥ 0, (4.3m)

where ti,k = ti−1 + ᾱiτk, τ0 = 0, 0 < τk ≤ 1, k = {1, . . . ,K} are shifted Radau points (τ).

Finite elements for the upper-level problem (Equations (4.3a) - (4.3f)) are indexed by i, whereas,

finite elements for the lower-level problem (Equations (4.3g) - (4.3m)) are indexed by k′. NFE

represents the total number of finite elements in the upper-level problem whereas N ′
FE represents

the total number finite elements in the lower-level problem. ᾱi is the length of the finite elements i

and k′. Lagrange polynomials are defined as ℓk(τ) =
∏K

j=0,̸=k
(τ−τj)
(τk−τj)

and ℓ̇k(τ) =
dℓk(τ)
dτ . The NLP

formulation in Problem (4.3) provides an accurate approximation to the MPCC in Equation (4.1).

4.2 Case studies

This section presents three case studies to illustrate the implementation of MPCCs for the inte-

gration of design and NMPC-based control. The first case study addresses the optimal design and

liquid level and temperature control of a storage tank. The second case study addresses the optimal

design and control of a two continuous stirred tank reactors (CSTRs) system. This case study aims

to maintain the outlet concentration of reactant around the desired set-point. In the third case

study, an existent wastewater treatment plant is presented. This plant is subject to process distur-

bances in the inlet stream and uncertainty in the process parameters that describe the kinetics of

the biological reactions. The first case study aims to demonstrate the implementation of the clas-

sical KKT transformation strategy for integration of design and NMPC-based control. In the first
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case study (Section 4.2.1), the corresponding bilevel problem is presented first, followed by MPCC-

based formulation. Three reformulation strategies for complementarity constraints were considered

for the solution of the MPCC-based formulation, as presented in section 4.1.2. Those reformulation

strategies for complementarity constraints aim to avoid violations to CQs in the solution of the

optimization problem. The second case study illustrates the use of MPCCs for a medium scale

design and NMPC-based control problem. In the third case study, the use of MPCCs is illustrated

for the integration of design and control of a highly nonlinear process under uncertainty. Moreover,

the proposed integrated approach was compared with the traditional sequential design and control

approach for the case studies 2 and 3. In all case studies, the results are discussed and point out

the features and weakness of the solution strategy. All numerical implementations were performed

in GAMS 37.1 and IPOPT was used as the NLP solver. OS and hardware specifications are as

follows: 64-bit Windows Server 2019, Intel(R) Core(TM) i7-8700 CPU, 3.20GHz, and 16GB RAM.

4.2.1 Storage tank

The first case study proposes the integration of design and NMPC-based control of a heated storage

tank (Figure 4.1). Controlled variables in this process are the liquid’s temperature (T ) and the tank’s

outlet stream (F̄ ). Since there is no pump installed at the output flow rate, the storage tank must

maintain a certain liquid holdup set-point (hspT = 5m) to guarantee a certain discharge pressure,

while the temperature T must be kept at 313.3K (Temperature set-point (T sp)). Moreover, due to

special requirements, the tank has an extra outlet stream (i.e., a purge (F̄p)). The magnitude of the

purge stream is assumed to follow a square function of the liquid holdup (i.e., F̄p = Cv
√
hT (t)).

The dynamic model of this storage tank is given by the mass and energy balances and is as follows:

dhT (t)

dt
=
F̄in(t)− F̄ (t)− F̄p(t)

ρAd
, (4.4a)

dT (t)

dt
= F̄in(t)

(Tin(t)− T (t))
ρAdhT

+
UhAe(Tc(t)− T (t))

ρAdhTC l
p

, (4.4b)

hT (t0) = hspT , T (t0) = T sp (4.4c)
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where Cv is the purge valve size coefficient, ρ is the liquid’s density, Ad is the tank’s cross

sectional area, Uh is the universal heat transfer coefficient, the heat transfer area is given by Ae,

and C l
p is the liquid’s heat capacity. hspT and T sp correspond to the liquid’s holdup and temperature

set-points, respectively. The values for the model parameters presented in Equation (4.4) are shown

in Table 4.1. To ensure the robustness in the solution, Table 4.2 presents a set of step disturbances in

the flow rate and temperature of the inlet stream (i.e., F̄in and Tin, respectively). These disturbances

are enforced in intervals of 20 minutes upto a total simulation time of 110 minutes.

Table 4.1: Values for the model parameters (Storage tank case study)
Parameter Value

ρ [kg/m3] 900
UhAe [J/(minK)] 5.0× 104

T sp [K] 313.3
hspT [m] 5.0
C l
p [J/(kgK)] 239

Table 4.2: Disturbance trajectory profiles (Step Changes) for the storage tank case study
t Tin F̄in

[min] [K] [kg/min]

0 293 100
5 298 85
25 285 120
45 293 150
65 305 95
85 293 100

An NMPC is implemented in this first case study. It is assumed that the liquid’s level and

temperature are controlled through the manipulation of the temperature on a heating coil (Tc) and

the outlet stream flow rate (F̄ ), as shown in Figure 4.1. Moreover, it is assumed that the NMPC

has a perfect process model and that the NMPC has access to the measurements for all the states

and disturbances. The optimization problem for the NMPC is as follows:

min
F̄ (τ),T̂c(τ),ĥ(τ),T̂ (τ)

Qh

∫ t+tP

t
(ĥ(τc)− hsp)2 dτc +QT

∫ t+tP

t
(T̂ (τc)− T sp)2 dτc

+ QF̄

∫ t+tC

t
∆F̂ 2(τc) dτc + QTc

∫ t+tC

t
∆T̂ 2

c (τc) dτc (4.5a)
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Figure 4.1: Integrated design and control of a liquid storage tank.

s.t.
dĥT (τc)

dτc
=
F̄in(τc)− F̂ (τc)− F̄p(τc)

ρAd
, (4.5b)

dT̂ (τc)

dτc
= F̄in(τc)

(Tin(τc)− T̂ (τc))
ρAdhT

+
UhAe(T̂c(τc)− T̂ (τc))

ρAdhTC l
p

, (4.5c)

hT (τc0) = hT (t), T (τc0) = T (t), (4.5d)

F̄ lb ≤ F̂ (τc) ≤ F̄ ub, T lb
c ≤ T̂c(τc) ≤ T ub

c (4.5e)

where Qh and QT are the weighting tuning parameters (Qout = [Qh, QT ]) to penalize deviations

on the controlled variables (ĥT (τc) and T̂ (τc), respectively) with respect to the set-points (hspT =

5m and T sp = 313.3K, respectively). QF̄ and QTc are the weighting tuning parameters (Qin

= [QF̄ , QTc ]) to penalize changes in the manipulated variables and represent optimization variables

in the present formulation (i.e., F̂ (τc) and T̂c(τc), respectively). The dynamic model of the process

in Equations (4.5b) and (4.5c) corresponds to the model in Equations (4.4a) and (4.4b). The

initial values for the controlled variables are given by the measurements for the liquid level and
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temperature (i.e., hT and T ) at time t (Equation 4.5d). Equation 4.5e enforces bounds on the

manipulated variables. The lower bounds are given by F̄ lb and T lb
c whereas the upper bounds are

given by F̄ ub and T ub
c . In this case study, tP and tC in the NMPC are both set to 5 minutes. This

horizon was selected by performing closed-loop simulations under process disturbances with a fixed

tank design. The closed-loop simulations aimed to maintain the controlled variables on the desired

set-points. The sampling period for the measurement of states was set to 1 minute.

For the integration of design and control, the cost function considered in this case study consists

of the addition of an annualized capital cost (CCa) and a variability cost (V Ca). Capital cost is

defined as a function of the tank’s volume (VR), i.e.,

CCa = 10V 1.085
R (4.6)

Similarly, V Ca is described by the penalization of the deviations in time of the liquid’s temper-

ature and the liquid’s holdup with respect to their corresponding set-points, i.e.,

V Ca = 100

∫ tf

t0

(T (t)− T sp)2 dt+ 1000

∫ tf

t0

(hT (t)− hspT )2 dt (4.7)

The bilevel problem is formulated with the objective function in terms of Equations (4.6) and

(4.7) subject to the dynamic process model (Equation (4.4)) and the optimization problem for the

NMPC (Equation (4.5)), i.e.,

min
Ad,VR,T (t),hT (t),F̄ (t),Tc(t),Qin,Qout

CCa + V Ca (4.8)

s.t. Dynamic process model (Equation (4.4)),

Process constraints,

Optimization problem for NMPC (Equation (4.5)).

From Equation (4.8), it can be observed that the decision variables selected for this problem

are the tank’s cross sectional (Ad) and volume (VR), the time-dependent state profiles (hT (t) and

T (t)) and the control actions (F̄ (t) and Tc(t)), and the weights Qh, QT , QF̄ , and QTc in the
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NMPC formulation. Process constraints consider bounds on decision variables, these are included

in Equation (4.8) to ensure that the final design and control scheme remain within the acceptable

feasible region. Implementation of the classic KKT transformation strategy leads to the formulation

of the corresponding MPCC for this problem:

min
Ad,VR,T (t),hT (t),F̄ (t),Tc(t),Qin,Qout

CCa + V Ca (4.9a)

s.t.
dhT (t)

dt
=
F̄in(t)− F̄ (t)− F̄p(t)

ρAd
, (4.9b)

dT (t)

dt
= F̄in(t)

(Tin(t)− T (t))
ρAdhT

+
UhAe(Tc(t)− T (t))

ρAdhTC l
p

, (4.9c)

hT (t0) = hspT , T (t0) = T sp, F̄ (t) = F̄ (τc + kt), Tc(t) = Tc(τc + kt) (4.9d)

∇ΩcL(Ad, VR, T̂ (τc), ĥT (τc), F̂ (τc), T̂c(τc), λ1(τc), λ2(τc), µ
L
F (τc), µ

U
F (τc), µ

L
Tc
(τc), µ

U
Tc
(τc)) = 0 (4.9e)

dĥT (τc)

dτc
=
F̂in(τc)− F̂ (τc)− F̂p(τc)

ρAd
,
dT̂ (τc)

dτc
= F̂in(τc)

(Tin(τc)− T̂ (τc))
ρAdhT

+
UhAe(T̂c(τc)− T̂ (τc))

ρAdhTC l
p

,

(4.9f)

0 ≥ F̄ lb − F̂ (τc) ⊥ µLF ≤ 0, 0 ≥ F̂ (τc)− F̄ ub ⊥ µUF ≤ 0, (4.9g)

0 ≥ T lb
c − T̂c(τc) ⊥ µLTc

≤ 0, 0 ≥ T̂c(τc)− T ub
c ⊥ µUTc

≤ 0, (4.9h)

where λ1(τc) ∈ RNλ , λ2(τc) ∈ RNλ , µLF (τc) ∈ RNµ , µUF (τc) ∈ RNµ , µLTc
(τc) ∈ RNµ , and

µUTc
(τc) ∈ RNµ are the Lagrange multipliers for the NMPC’s optimization problem. Equations

(4.9a)-(4.9d) correspond to the objective function and the process model, i.e., the design prob-

lem whereas Equations (4.9e)-(4.9h) are the KKT conditions for the NMPC in Equation (4.5),

i.e., the control problem. In the KKT conditions, Equation (4.9e) describes the stationarity con-

ditions, Equation (4.9f) are the feasibility constraints, and Equations (4.9g) and (4.9h) are the

complementarity constraints. The gradient of the Lagrangian function for the NMPC problem

(Equation (4.9e)) is defined with respect to the set of decision variables in Equation (4.5), i.e.,

Ωc = [F̂ (τc), T̂c(τc), ĥT (τc), T̂ (τc)]. The formulation of the MPCC was solved using a different refor-

mulation strategy for the complementarity constraints, i.e., regularization (Scenario 1), smoothing
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(Scenario 2), and penalty (Scenario 3). In the regularization strategy, the regularized-MPCC was

solved in two NLP stages while the magnitude of the relaxation parameter ϵs was reduced. The

regularized-MPCC was solved with ϵs = 1 × 10−2 and the solution was then used to re-initialize

that same problem but with the relaxation parameter reduced to ϵs = 0. The penalty parameter M̄

in the penalty strategy was selected to be M̄ = 1× 106. In all scenarios, the model was discretized

using OCFE. For the upper-level problem, 110 finite elements were implemented. The lower-level

problem was discretized with 5 finite elements. In both problems, 3 Radau collocation points were

used. Closed-loop simulations showed that this mesh size (discretization) can accurately approxi-

mate the model functions. The corresponding number of variables and equations of the MPCCs for

each scenario are shown in Table 4.3.

Table 4.3: Results for the temperature-level tank case study.
Scenario 1 2 3

Strategy Regularization Smoothing Penalty
Ad [m2] 7.1 7.1 7.1
VR [m3] 45.9 45.9 45.9
Qh 1.55× 106 2.604 8.48× 104

QT 1.08× 104 9× 10−3 2.93× 105

QF̄ 1.06 1.04× 10−5 1.08× 105

QTc 5.02 1.53× 10−6 1.54× 105

Model equations 36,417 36,417 23,773
Model variables 36,424 36,424 36,424
Total cost [$/yr] 124.9 125.1 125.3
CPU time [s] 692.4 1003.5 189.3
Solution B-stationary weak-stationary weak-stationary

As shown in Table 4.3, the design of the tank is the same in all the scenarios, i.e., tank’s volume

VR and cross-sectional area Ad. However, the controller tuning parameters (i.e., matrices Qout and

Qin) exhibit significant differences between the solutions obtained from each reformulation strategy.

In Scenario 2 (smoothing), the tuning parameters have differences of at least 4 orders of magnitude

with respect to results obtained with the regularization and penalty strategies (i.e., Scenarios 1 and

3, respectively). When comparing Scenarios 1 and 3, the tuning parameters Qout have a difference

of only one order of magnitude. Moreover, in Scenario 3, it can be noted that the tuning parameters

Qin are 5 orders of magnitude larger than those obtained in Scenario 1 (regularization strategy).
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Closed-loop simulations were performed on each scenario to validate the resulting design and control

scheme. As shown in Figure 4.2a), the dynamic profile for temperature takes slightly longer times

to return to the set point for the smoothing strategy (i.e., Scenario 2). This difference in the control

performance is explained by the differences of the orders of magnitude in the controller tuning

parameters; the controller has lower penalizations for deviations in the control trajectories. The

results in Figure 4.2 also show that the smoothing strategy (Scenario 2) exhibited the largest closed-

loop settling time. Figure 4.2b) shows slightly less aggressive control actions on Tc for Scenario 2

compared with Scenarios 1 and 3. This also agrees with the observations in the temperature profile

in Scenario 2. The results for the tuning parameters Qout and Qin, in particular for this case

study, revealed that the sensitivity of the model to these decision variables is not significant. This

is confirmed with the results from IPOPT; the solver reported shadow prices for these decision

variables around 1× 10−11, i.e., a unit increase in the decision variable has an effect of 1× 10−11 on

the cost of the objective function. Therefore, the process economics in the formulation is dominated

by the design variables (VR and Ad). Hence, the design variables in all scenarios converged to the

same results. Note that the optimal solutions to the MPCC satisfy process operation targets and

constraints at a minimum cost.
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Figure 4.2: Validation simulations under process disturbances for the storage tank case study,
with the different reformulation strategies: regularization (Scenario 1), smoothing (Scenario 2), and
penalty (Scenario 3); a) Dynamic profiles for controlled variables (i.e., hT and T ); b) Dynamic
profiles for manipulated variables (i.e., F̄ and Tc).

In this case study, the implementation of three reformulation strategies reported in the literature

was presented [46, 18]. The implementation of each one of these strategies mainly depends on the

user’s experience, the characteristics of the problem and the complementarities, model’s size and

complexity. For instance, a regularization strategy has a wide popularity because it is easy to im-

plement. On the other hand, the most widely used strategy to solve MPCCs is smoothing functions

since they allow to break the nonlinearity that arises by the product of decision variables. Moreover,
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the penalty strategy is preferred when barrier optimization solvers are implemented (like KNITRO

or IPOPT). Additional details describing the features and challenges on the implementation of

different reformulation strategies can be found in the literature [46, 64, 141, 142, 143].

4.2.2 Two CSTRs in series

The second case study is based on a system presented by Luyben [147]. This case study presents

a simple reaction system with 2 CSTRs in series as shown in Figure 4.3. An irreversible liquid

phase exothermic reaction A → B is taking place on each reactor. The reactors have cooling

jackets to remove the heat of the reaction. The feed flow rate to the system (F̄ [lbmol/min])

has a concentration CA0 and a temperature Tin [◦F ]. The reactant leaving the first reactor has a

concentration CA1, while the corresponding concentration at the outlet stream of the second reactor

is given by CA2. The original problem presented by Luyben [147] requires that both reactors have

the same size, i.e., these are symmetric units. Reactor’s volume is given by VR (since both reactors

are the same size, the reactor’s volume is assumed to be the same), whereas the temperatures of

the reaction media in each reactor are T1 and T2, respectively. The design decisions are given by

the diameter (De [ft]) and height (hT [ft]) of the CSTRs. The aspect ratio (hT /De) is set to 2.

Moreover, the cooling jacket volume (V j) and heat-transfer area (Ae) are functions of hT and De,

i.e., V j = fV j(hT , De) and Ae = fAe(hT , De). Fresh water streams are introduced to the jackets

as cooling media (F̄w1 and F̄w1, respectively) with an initial temperature T 0
c [◦F ]. Therefore, the

temperatures for the cooling jackets are Tc1 and Tc2, respectively. This process aims to reach a

specified concentration of A in the product stream CA2 = 0.05 [lbmolA/ft
3]. The dynamic model

of this process considers mass and energy balances (6 ODEs) and a set of equality constraints (4

algebraic equations). The NMPC considered for this case study uses the plant model, i.e., there

is no mismatch between the actual process model and the dynamic model used by the controller.

In this case study, it is assumed that the controlled variables are the concentrations in the CSTRs

(i.e., CA1 and CA2), while, the manipulated variables are the flow rates of the cooling water on

each reactor (i.e., F̄w1 and F̄w2). For this case study, the process model is shown in Equation

(4.10), Table 4.4 shows the values for model parameters, and the MPCC-based formulation are
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included in the Appendix A. Additionally, to demonstrate the benefits of the integrated design and

control approach, in this case study, a sequential design and control study is also performed. In this

sequential approach, the reaction system is designed at steady-state. Then, the controller is tuned

in closed-loop subject to changes in the disturbances [37].

Table 4.4: Values for the model parameters (CSTRs case study)
Parameter Value

C l
p [BTU/(ft3R)] 37.5

∆Hrx [BTU/lbmole] -15,000
E [BTU/lbmole] 30,000
kre [hr−1] 4.08× 1010

ρ [lb/ft3] 50
MW [lb/lbmole] 50
Cw
p [BTU/(ft3R)] 62.38

Uh [BTU/(hr ft2R)] 150
Tref [R] 600
TL
1 , T

L
2 [R] 542.8

TU
1 , TU

2 [R] 670.0
TL
c1, T

L
c2 [R] 532.0

TU
c1, T

U
c2 [R] 668.0

F̄U
w1 [ft3/hr] 600.7
F̄U
w2 [ft3/hr] 100.8

∆F̄w [ft3/hr] 40.0

Figure 4.3: Integrated design and NMPC-based control of a reaction system with 2 CSTRs in series.
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dCA1

dt
=

F̄

VR
(CA0 − CA1)− ra1, CA1(t0) = CA1(0) (4.10a)

dT1
dt

=
F̄

VR
(Tin − T1) +

(−∆Hrx)ra1
C l
p

− UhAe(T1 − Tc1)
VRC l

p

, T1(t0) = T1(0) (4.10b)

dTc1
dt

=
F̄w1

V j
(T 0

c − Tc1) +
UhAe(T1 − Tc1)

V jCw
p

, Tc1(t0) = Tc1(0) (4.10c)

dCA2

dt
=

F̄

VR
(CA1 − CA2)− ra2, CA2(t0) = CA2(0) (4.10d)

dT2
dt

=
F̄

VR
(T1 − T2) +

(−∆Hrx)ra2
C l
p

− UhAe(T2 − Tc2)
VRC l

p

, T2(t0) = T2(0) (4.10e)

dTc2
dt

=
F̄w2

V j
(T 0

c − Tc2) +
UhAe(T2 − Tc2)

V jCw
p

, Tc2(t0) = Tc2(0) (4.10f)

ra1 = kree
−E
RT1CA1 (4.10g)

ra2 = kree
−E
RT2CA2 (4.10h)

where C l
p is the liquid’s phase heat capacity, the heat of reaction is given by ∆Hrx, E stands for

the activation energy for the reaction, kre is the reaction rate constant, Cw
p corresponds to the heat

capacity of water. For the integration of design and control, a cost function consists of the addition

of an annualized capital cost (CCa), an operating cost (OCa), and a variability cost (V Ca). The

CCa is related to the size of the required equipment. Hence, the pressure vessel costs functions

reported by Douglas [148] are implemented, i.e.,

CCa = 3834(D1.066
e + h0.802T ) (4.11)

The OCa depends on the cost of the conditioning, pumping, and availability of the cooling water,

i.e.,

OCa = 37

∫ tf

t0

F̄w1(t) + F̄w2(t) dt (4.12)

With regards to the V Ca function, the deviations of CA2 with respect to the set-point are

penalized, i.e.,
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V Ca = 1.0× 106
∫ tf

t0

(CA2(t)− Csp
A2)

2 dt (4.13)

where Csp
A 2 corresponds to the set-point of CA2. The bilevel problem is formulated with the

objective function subject to the dynamic process model and the optimization model for the NMPC-

based controller as follows:

min
De,hT ,x(t),u(t),Csp

A1,Qout

Φ = CCa +OCa + V Ca (4.14)

s.t. Dynamic process model,

Process constraints,

Optimization problem for NMPC,

Operation boundaries.

where the matrixQout corresponds to the tuning parameters for the NMPC-based formulation in

Equation (2.4a). From the objective function in Equation (4.14), it can be observed that the decision

variables include De and hT , the concentration set-point for reactant A in the first CSTR (Csp
A1), and

the trajectories of the states (i.e., x(t) = [CA1(t), T1(t), Tc1(t), CA2(t), T2(t), Tc2(t)]). The control

decisions correspond to the trajectories for the manipulated variables (ū(t) = [F̄w1(t), F̄w2(t)]).

Table 4.5 shows the set of process disturbances considered in this case study, these correspond to

step changes in the parameters CA0 and Tin in the inlet flow rate. The disturbances are enforced in

intervals of 25 hours upto a total simulation time of 75 hours. Prediction and control horizons in

the NMPC are both set to 5 hours. As in the first case study, control and prediction horizons were

selected using closed-loop simulations under process disturbances with a fixed design for the CSTRs.

To simplify the analysis, the weighting parameters Qin (Equation (2.4a)) to penalize changes in

the manipulated variables (F̄w1 and F̄w2) were fixed to 0.16 and 0.38. Closed-loop simulations were

implemented for the selection of the magnitude for the weighting parameters Qin. Note that the

changes in the manipulated variables raised to the square are in the orders of 1× 102, whereas the

integral square error for the controlled variables is in the order of 1 × 10−6. These changes are

quantified in the objective function for the NMPC, therefore, to make significant the effect of the
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Table 4.5: Disturbance trajectory profiles (Step Changes) for the 2 CSTRs case study.
t CA0 Tin
[h] [molA] [◦F ]

0 1.0 600
5 0.95 585
30 0.98 615
55 1.0 600

changes in the controlled variables, the magnitude of matrix Qout is expected to be large and the

magnitude of matrix Qin should be set to relatively small values. More details about the selection of

NMPC tuning parameters can be found elsewhere [37]. The MPCC-based problem was reformulated

with a regularization strategy. This strategy required three sequential solutions of the formulation

as the parameter ϵs was reduced in magnitude, i.e., a first solution to the regularized-MPCC was

obtained with ϵs = 1 × 10−2, the solution was taken as the initial guess to re-solve the problem

but the relaxation parameter was reduced to ϵs = 1 × 10−6, this procedure was repeated with

ϵs = 1 × 10−8. Smoothing and Penalty strategies were also implemented, however, no convergence

to a solution in a reasonable CPU limit of time (1.0 × 106 s) was obtained with these strategies.

Furthermore, OCFE was implemented for the discretization of the model. The optimization model

was discretized with 300 finite elements for the upper-level problem and 20 finite elements for the

lower-level problem with 3 Radau collocation points in both problems. As in the first case study,

closed-loop simulations showed that this mesh size can accurately approximate the model functions.

The regularized-MPCC has 629,717 nonlinear equations and 950,861 variables. For the sequential

design and control study, the optimization problem consists of the minimization of the CCa subject

to the process model at steady-state. In this optimization problem, no disturbances are enforced,

i.e., CA0 and Tin were fixed at their nominal values (i.e., 1.0 lbmolA/ft
3 and 600◦F , respectively).

In the sequential approach, design and control variables are the same as in the integrated method.

Note that the controller tuning parametersQout for the sequential steady-state design were adjusted

based on closed-loop simulations of the process subject to the disturbance specifications presented

in Table 4.5.

As shown in Table 4.6, the controller weighting parameter Qout is in the orders of thousands
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Table 4.6: Results for the reaction system with two CSTRs case study.
Optimization
variable

Integrated ap-
proach (MPCC)

Sequential
approach

De [ft] 8.7 7.6
hT [ft] 17.5 15.2
Csp
A1 0.35 0.223

QCA1
8.8× 104 1.0× 105

QCA2
6.8× 104 1.0× 104

Capital cost [$/yr] 3.86× 105 2.95× 105

Total cost [$/yr] 1.29× 106 5.89× 106

CPU time [s] 3.55× 105 0.113
Solution weak-stationary -

for the integrated design and control approach. This is due to the small deviations observed in

the controlled variables with respect to the set points, i.e., squared deviations are in the orders of

1× 10−6. Therefore, the values for the weighting parameters Qout are expected to be large. Figure

4.4 shows the dynamic profiles for the controlled and manipulated variables in closed-loop simulation

under the process disturbances used in this case study (Table 4.5) for the integrated approach. Note

that the system is able to reject the disturbances and to keep the process on target. From results

in Table 4.6 and Figure 4.4 for the integrated approach, it is observed that the largest conversion of

reactant A is carried out in the first reactor; therefore, the requirements of cooling water are higher

(i.e., > 500ft3/h) compared to the water services required for the second reactor (i.e., < 85ft3/h).

Furthermore, Figure 4.4 also shows that the largest effects of the disturbances are observed on CA1

in the first reactor. Therefore, a larger weight is assigned to QCA1
(i.e., QCA1

> QCA2
) to force the

controller to implement more aggressive control actions in the first CSTR. By comparing the results

in case study 2 (Table 4.6), with those obtained for case study 1 (Table 4.3), it can be observed

that there is an increase of two orders of magnitude in the CPU time for case study 2. Note that

the model in case study 2 is approximately 17 times larger than the model in case study 1, i.e.,

the model in Equation (4.14) (case study 2) has 629,717 nonlinear equations whereas the model in

Equation (4.8) has 36,417 nonlinear equations. Therefore, the CPU time increased proportionally

with the increase of the size in the optimization model. As it is shown below for the third case study,

this proportional increase in the computational cost may not always hold. The results show that the
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Figure 4.4: Validation simulations under process disturbances for the reaction system with two
CSTRs case study. Dynamic profiles for the controlled variables (i.e., CA1 and CA2) and manipulated
variables (i.e., F̄w1 and F̄w2).

reaction system minimizes costs and complies with the process requirements for the conversion of

component A while the controller is able to reject the process disturbances. As shown in Table 4.6,

the sequential approach returned a 15% smaller equipment compared with the integrated approach;

hence, the capital cost is 23% smaller for the former. However, the quantification of the operability

and variability costs shows that the total cost obtained from the sequential approach is 5 times larger

than those obtained from the integrated approach. This is mostly because the sequential design

and control approach returned processes with complex dynamics (open-loop unstable system) that

is quite challenging to control. Note that the results obtained for the sequential approach are in

agreement with the observations and analysis presented by Luyben [147].
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4.2.3 Wastewater treatment plant

The next case study considers the integration of design and NMPC-based control of a WWTP under

uncertainty and process disturbances. This process is based on the case study presented in Chapter

3 (Section 3.3). The process takes place in a biological reactor and a settler tank (clarifier) connected

in series (Figure 3.3). The settler tank has two effluents: a clean water stream and an activated

sludge stream. The latter stream is recycled to the bioreactor to maintain the biological reaction

activity. Since the activated sludge is constantly growing, the excess is eliminated by a purge

stream (qp). This process aims to control the substrate concentration (sw) in the biodegradable

waste stream and the dissolved oxygen concentration in the bioreactor (cw). Since the bioreactor is

an aerobic-activated reaction equipment, control on the dissolved oxygen concentrations is of special

relevance for degradation of organic matter. Therefore, this process must maintain the substrate

concentration (sw) in the bioreactor at a desired set-point. As in CSTRs case study, the benefits

of the integration of design and NMPC-based control of the WWTP are demonstrated through the

comparison with a sequential design and control study. In this sequential approach, the WWTP is

designed in steady-state under uncertainty. Then, the controller is tuned in closed-loop, based on

the dynamic response of the process to disturbances.

The cost function considered in this study consists of the sum of an annualized capital cost

(CCa), operating cost (OCa), and a variability cost (V Ca). The annualized capital cost is given by

the size of the installed equipment, i.e., bioreactors volume (VR) and settler’s cross-sectional area

(Ad). The expression for CCa is as follows:

CCa = 0.16(3500VR + 2300Ad) (4.15)

The operating cost for the system (OCa) is given by the cost of the energy consumed by effect of

the manipulated variables: the speed of the aeration turbines (fk) and the purge stream (qp) from

the settler’s recycle stream (qr), i.e.,

OCa = 870

∫ tf

t0

fk(t) dt+ 1131

∫ tf

t0

qp(t) dt (4.16)
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The annualized variability cost (V Ca) aims to maintain the substrate concentration (sw) close

to an specific saturation value. This term in the objective function is highly penalized due to

its environmental significance, i.e., the substrate concentrations in the treated water at the outlet

stream must remain close to the saturation limit (100 mg/L) during the normal operation but this

cannot be exceed. The expression for the V Ca is as follows:

V Ca = 1000

∫ tf

t0

(100− sw(t))2 dt (4.17)

Based on the above, the cost function subject to the dynamic process model and the optimization

problem for the NMPC-based controller leads to the following bilevel problem for the integration

of design and control of the WWTP under uncertainty:

min
Ad,VR,x(t),fk(t),qp(t),s

sp
w ,cspw ,Qin,Qout

Φ =
J∑

ju=1

wju (CCa +OCa + V Ca) (4.18)

s.t. Dynamic process model, ∀ ju = {1, . . . , J}

Process constraints,

Optimization problem for NMPC.

Operation boundaries.

where wju is the weighting parameter for the probability of occurrence of the jthu realization of

uncertainty. In this case study, the decision variables include parameters for the controller, e.g.,

the operating set-points for the substrate and dissolved oxygen (i.e., sspw and cspw , respectively), the

matrices Qout and Qin for the NMPC, and the control action trajectories (i.e., qp(t) and fk(t)).

Moreover, the decisions related to the design are given by Ad, VR as well as the dynamic trajectories

for the plant states (x(t) = [xw, sw, xd, xb, xr, cw]). Additional to the control targets sw and cw, the

plant states include the biomass concentrations in the bioreactor (xw) and in the different layers

of the settler’s tank (i.e., xd, xb, xr, respectively). The dynamic model for this process is given by

6 ODEs, 3 equality constraints, and 5 inequality constraints. The model for the process is shown

in Equation (3.12), where as the formulation for the MPCC are included in Appendix B. Table

4.7 shows the set of disturbances considered for this case study. These disturbances consider step

changes in the input parameters for the inlet flow rate (qin [m3/h]), the inlet biomass concentration
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(xin [mg/L]), and the inlet substrate concentration (sin [mg/L]). These step disturbances are

performed every 5 hours until a total simulation time of 35 hours is reached. Moreover, Table 4.8

shows the set of uncertainty realizations considered for the present case study. The parameters

under uncertainty correspond to biological experimental parameters that may exhibit variations in

their values, i.e., specific microbial growth rate (µ̄w), biomass death rate (kdr), and the specific

cellular activity (kca). It is assumed that the values of the parameters under uncertainty may vary

within ±10% of their nominal values [127]. Note that the upper-level problem has access to all

the realizations in the uncertain parameter set. As explained in Section 3.1, the process model in

the NMPC uses the nominal values (Scenario 1) for the parameters under uncertainty (i.e., ju = 1

in Table 4.8). Note that the NMPC requires the measurement or estimation for all the states at

time t to compute a prediction for the control actions. The presence of uncertainties in the upper

level problem generates a mismatch with the dynamic model in the NMPC. Thus, to determine

the effect of uncertainty on the process design and controller performance, 3 different scenarios for

this case study are proposed: Scenario 1 considers that the controller receives the measurement for

all the plant states, which is assumed to operate under the nominal realization of the uncertain

parameters. Scenario 2 considers that the controller receives the measurement for all the plant

states, which is assumed to operate under the second realization in the uncertain parameters (i.e.,

ju = 2 in Table 4.8). Scenario 3 assumes that the plant operates under the third realization of

uncertainty (i.e., ju = 3 in Table 4.8). The prediction and control horizons in the NMPC are set

both to 4 hours. The MPCC-based formulation for the integration of design and NMPC-based

control of the WWTP was solved with a penalty reformulation strategy for the complementarity

constraints, the penalty parameter was set to M̄ = 1×1011. Smoothing and Regularization strategies

were also implemented; however, no convergence to a solution in a reasonable CPU limit of time

(1.0 × 106 s) was obtained with these strategies. OCFE is implemented for the discretization of

the model (70 finite elements for the upper-level problem and 8 finite elements for the lower-level

problem with 3 Radau collocation points for both problem levels). Accordingly, the penalty-MPCC

considers 71,731 equations with 106,572 variables.

As shown in Table 4.9, slight differences in the design parameters for each scenario were obtained,
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Table 4.7: Disturbance trajectory profiles (Step Changes) for the WWTP case study.
t xin sin qin
[h] [K] [kg/min] [m3/h]

0 80 366 500
5 75 371 480
10 85 361 520
15 80 366 480
20 75 371 500
25 85 366 520
30 80 366 520

Table 4.8: Uncertainty realizations in design parameters for the WWTP case study.
Uncertainty
realizations

Specific
growth rate

Biomass
death rate

Specific cel-
lular activity

Weight distri-
bution

(ju) (µ̄w) (kdr) (kca) (wju)

1 0.1824 5.0× 10−5 1.333× 10−4 0.50
2 0.2006 5.5× 10−5 1.466× 10−4 0.25
3 0.1732 5.5× 10−5 1.266× 10−4 0.25

i.e., the settler’s area (Ad) is 8% and 4% smaller for Scenarios 2 and 3, respectively, compared with

the solution obtained for Scenario 1. Likewise, the reactor’s volume (VR) is 16% and 5% larger

for Scenarios 2 and 3, respectively, compared with the solution obtained for scenario 1. From an

operational point of view, Scenario 3 allowed an operation at a higher set-point for sspw , i.e., 92.9

[ppm] whereas Scenario 2 resulted in a higher set-point for cspw , i.e., 3.0 [ppm]. Moreover, it can

be noted that the controller weighting parameters Qsw and Qcw are approximately the same in all

the scenarios. However, the weight Qcw in Scenario 1 is 5 orders of magnitude smaller compared to

those obtained for Scenarios 2 and 3. Additionally, it is observed that the values for the controller

parameters Qin are negligible in magnitude for all scenarios, this indicates that the changes in the

manipulated variables are not penalized in the NMPC strategy. Note that the MPCC-based problem

is highly non-convex, the differences in the controller tuning parameters may be a consequence of

the implementation of local NLP solvers, i.e., the solver may converge to different local solutions.

Additionally, the differences in the set-points for the substrate (sspw ) and dissolved oxygen (cspw ) may

demand different controller tuning parameters. Also, since in each scenario the controller receives

the measurement of process states produced by different realizations in the uncertain parameters,
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Table 4.9: Results for the WWTP case study.
Optimization
variable

Scenario 1
(Nominal)
(ju = 1 in Table
4.8)

Scenario 2
(ju = 2 in Table
4.8)

Scenario 3
(ju = 3 in Table
4.8)

Augmented
model
(Analysis on
the effect of the
discretization)

Ad [m2] 2716.3 2577.7 2569.9 2720.0
VR [m3] 1705.8 1986.5 1787.9 1720.8
sspw 90.7 87.2 92.9 90.5
cspw 1.13 3.0 1.09 1.6
Qsw 22.58 23.58 22.60 22.91
Qcw 1× 10−4 22.25 13.38 0.01
Qqp 0.0 0.88 0.01 0.01
Qfk 0.0 0.0 0.0 0.44
Capital cost [$/yr] 1.95× 106 2.02× 106 1.95× 106 1.96× 106

Total cost [$/yr] 7.15× 106 9.49× 106 7.22× 106 7.16× 106

CPU time [s] 2,019 19,036 8,339 71,606
Solution Weak-stationary Weak-stationary Weak-stationary Weak-stationary

differences in the magnitude of the controller tuning parameters are expected (Table 4.9).

A closed-loop simulation under process disturbances and uncertainty for all the scenarios are

presented in Figure 4.5. In this closed-loop simulation, the simulation time was extended to allow

the process to reach steady-state. From Figure 4.5a), it is noted that for Scenario 1, where plant

operates using nominal realizations in the uncertain parameters, the system tends to operate around

the set-point. This was expected since there is no mismatch between the dynamic model for the

actual process and the NMPC for this scenario. On the other hand, from Figures 4.5b) and 4.5c),

it can be observed that the process reaches a steady-state condition but none of the dynamic

trajectories are able to operate around their corresponding set-points, i.e., there is an offset between

the process operation and the actual desired set-point. Although Scenario 3 specified a higher

operation set-point for substrate (sspw ), the offsets in the operation with respect to the set-point

produces dynamic profiles for substrate sw around the same operation region in all scenarios, i.e.,

steady-state concentrations of sw above 80 ppm and below 97 ppm. Even when the parameters

under uncertainty present variations within 10% with respect to their nominal values, it was found

that the plant operation under different realizations of uncertainty resulted in process designs with

up to 16% of variations in the equipment sizes with respect to the nominal scenario. To further
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investigate the differences between the solutions in the scenarios for this case study, the solution for

Scenario 1 was tested assuming that the plant operates under the second realization in the uncertain

parameters (i.e., ju = 2 in Table 4.8). As shown in Figure 4.6, an offset with respect to the set-

point in the profile for sw is observed. However, note that the plant remained dynamically feasible

in the presence of this operational condition. These results indicate that the implementation of

robust-NMPC frameworks may reduce the presence of offsets in the plant operation. Additionally,

for the sequential design and control study, the optimization problem consists of the minimization

of the CCa subject to the process model at steady-state under uncertainty. The set of uncertain

parameters is shown in Table 4.8. In this sequential design approach, design and control decision

variables remain the same as in the integrated approach. Moreover, no disturbances are enforced

at the design stage. The controller tuning parameters Qout for the steady-state design were then

adjusted based on the closed-loop response under the disturbance specifications presented in Table

4.7.

As expected, the sequential approach resulted in smaller equipment sizes (a 30% smaller reactor

and settler tank). This represents a 34% smaller capital cost for the sequential approach with

respect to the integrated approach. However, the process is dynamically infeasible due to constraint

violations (see Figure 4.7).

To compare the solutions in this case study, the Back-off approach presented in Chapter 3 is

also implemented in this case study. As mentioned above in Chapter 3, the Back-off methodology

approximates the bilevel formulation using power series expansions (PSE) to reformulate the prob-

lem into a single level optimization formulation that is explicit for the decision variables. Then, the

model is iteratively solved until an economically attractive process design and an operating point

that is dynamically feasible under process disturbances and parameter uncertainty is found. The

results for Scenario 1 with the back-off approach resulted in significant differences in the solution

compared to that obtained by the MPCC framework, i.e., Ad = 2630.0m2 and VR = 1431.0m3;

this represent a settler’s area 7.5% smaller and a reactor’s volume 14.5% smaller compared to the

results obtained from the proposed MPCC framework. However, the operating set-points for sub-

strate (sspw ) and dissolved oxygen (cspw ) are lower in the implementation of the back-off approach, i.e.,
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Figure 4.5: Substrate closed-loop simulations under process disturbances and parameter uncer-
tainty; a) Measurement in the nominal uncertainty realization; b) Measurement in the second
uncertainty realization; c) Measurement in the third uncertainty realization.

sspw = 89.8 ppm and cspw = 1.7× 10−3 ppm; this represents differences of 3% and 99.9%, respectively,

compared with the results with the MPCC framework. Note that the composition for cspw is small

in magnitude from both solutions; this tends to inflate the differences when comparing these values.

Moreover, the results for the controller weighting parameters are in the same order of magnitude for

both approaches (Back-off and MPCC). The total cost for both approaches has notable differences,

i.e., total cost (Back-off) is 8.29 × 106 $/yr; this represents an increase of 13% compared with the

solution obtained with the MPCC approach. On the other hand, the CPU time for the back-off

methodology was of 7.2× 104 s. As shown in Table 4.9, the MPCC strategy reduces the CPU time

by one order of magnitude compared with the implementation with the back-off approach (2,019
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s). Nevertheless, finding a solution with the MPCC-based formulation is not an easy task. It was

found that the initial guess plays a crucial role in the solution of the optimization model using

MPCC. An inaccurate initialization of the Lagrange multipliers for the controller’s KKT conditions

makes overly challenging the optimization solver to converge to a solution. Hence, a first guess for

the Lagrange multipliers was computed using closed-loop simulations with a fixed process design

that was selected using heuristics (e.g., optimal steady-state design). In those simulations, the

NMPC optimization formulation is substituted with its KKT conditions for optimality. Then, the

values for the Lagrange multipliers were used to initialize the MPCC for the simultaneous design

and NMPC-based control of the WWTP under process disturbances with no uncertainty in design

parameters. This MPCC formulation with no uncertainty required a CPU time of 5.03 × 104 s to

compute an optimal solution. The complete set of values for the solution of the MPCC without

uncertainty was used to initialize the problem under uncertainty. This allowed to the optimization

solver to converge to optimal solutions with a reduction of orders of magnitude in the CPU time.

0 10 20 30 40 50 60 70

time [h]

86

88

90

92

94

96

98

100

102

S
w

 [
p

p
m

]

Substrate Concentration (S
w

)

Saturation Limit = 100 ppm

Set-point

S
w

 profile

Figure 4.6: Validation closed-loop simulation for the WWTP assuming that the plant operates
under the second realization in the uncertain parameters.

Additionally, for the first scenario presented in this case study, it was proposed to evaluate the

effect on the selection of the mesh size for discretization of the MPCC problem in Equation (4.1).

As explained above, the results for case study 3 in Table 4.9 were computed for a discretization
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with 70 finite elements for the upper-level problem and 8 finite elements for the lower-level problem

with 3 Radau collocation points for both problem levels. It is proposed to evaluate the effect of the

discretization on the solution of the optimization problem. To consider this effect, the number of

finite elements for Scenario 1 was increased to 140 for the upper-level problem and 16 for the lower-

level problem with 3 Radau collocation points for both problem levels. The resulting optimization

formulation (Augmented model) includes 143,462 equations with 213,140 variables, which is double

the size of the formulation considered for Scenario 1.
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Figure 4.7: Closed-loop simulation for the optimal steady-state design (WWTP case study).

As shown in Table 4.9, the differences in the design variables are small between the results for

Scenario 1 and those obtained from the augmented model, i.e., design variables from the latter have

an average of 0.22% difference with respect to the solution from the former. The differences in the

process dynamics were calculated through the evaluation of the ISE for the substrate (sw). The ISE

obtained from both Scenario 1 and the augmented model are similar (229.8 for Scenario 1 and 206.7

for the augmented model). Table 4.9 also shows that increasing the number of finite elements has a

large impact on the CPU time, i.e., the CPU time reported for the augmented model is one order

of magnitude larger to that reported for the Scenario 1. For more complex systems, the selection

on the number of finite elements for the discretization of the optimization model may lead to larger
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differences in the process design and the economics of the system. The selection of the discretization

depends on the nature of the problem, e.g., for stiff problems the size of the discretization mesh

is key to capture events that occur at different time scales thus requiring a combination of large

and small finite elements. Typically, it is recommended to perform a previous numerical analysis

to determine a good discretization of the model. This analysis can be performed via simulation

with fixed process designs and evaluation of the dynamic response of the system under different

discretization meshes.

4.3 Summary

This chapter presented a direct method for the solution of the bilevel formulation for the integration

of design and NMPC-based control under uncertainty. This method assumes the transformation

of the bilevel formulation into a single-level problem referred to as a mathematical program with

complementarity constraints (MPCC). In this transformation strategy, the lower-level problem is

substituted by its first order necessary conditions for optimality, which are a set nonlinear algebraic

equations. Then, this set of algebraic equations are added to the upper-level problem as part

of the constraints. The implementation of complementarity constraints introduces an inherent

nonconvexity and linear dependence of constraints. To overcome this issue, it is necessary the use

of reformulation strategies to rewrite the complementarity constraints in equivalent forms, which

allows the solution of the MPCC using conventional NLP solvers.

The first case study showed the features and benefits of three different reformulation strategies

for the complementarity constraints in the solution of the MPCC formulation. Moreover, the effect

of uncertainty in design parameters was illustrated for a case study with a highly nonlinear process.

Although the solutions for the MPCCs may not represent a solution to the original bilevel formu-

lation, the solutions for the formulations with MPCCs resulted in economically attractive process

design and NMPC-based control schemes. On the other hand, when a proper initialization is avail-

able, the formulation with MPCCs showed an improvement of orders of magnitude in the CPU times

compared with the back-off approach presented in Chapter 3. The formulations addressed in this
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chapter and Chapter 3 involve only continuous variables. However, discrete decisions such as the ar-

rangement of equipment or the determination of the number of stages/equipment are often modeled

using integer/binary variables. The solution of those formulations may require the implementation

of different strategies to address the discontinuities resulting from the integer decisions.
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Chapter 5

Integrated Design and NMPC-based Control
under Uncertainty and Structural Decisions: A
Discrete-Steepest Descent Algorithm Approach

The methodologies presented in Chapters 3 and 4 are focused on the solution of integrated design

and NMPC-based control formulations involving continuous decision variables, i.e., no discrete

variables were considered. Nevertheless, process design decisions in chemical engineering such as

the arrangement of equipment, or the determination of the number of stages/equipment are often

modeled using integer/binary variables. A nonlinear bilevel problem involving integer decisions is

referred to as a MIBLP. As mentioned in Chapter 2, MIBLPs can be classified in different categories

depending on the location of the integer and continuous decision variables. In this PhD thesis, it

is assumed that the discrete decisions are associated to the upper-level problem (design problem);

therefore, the NMPC is assumed as a continuous optimization problem.

This chapter presents a methodology that aims to determine the optimal location of processing

units or streams over a naturally ordered discrete set, e.g., number of trays in a distillation column

or the number of reaction units in series. Since the NMPC is assumed a continuous formulation,

the MIBLP for simultaneous design and control can be restated in terms of its KKT conditions

for optimality (i.e., a classical KKT transformation strategy). As in Chapter 4, complementarity

constraints in the corresponding MI-MPCC can be reformulated to obtain a single-level MINLP.

The proposed methodology introduces the concept of external variables, in which the set of

binary variables describing the process superstructure are partitioned in sub-sets of integer variables.

This partition of discrete variables allows the decomposition of the single-level MINLP into a master

IPLC and a set of primal sub-problems. This decomposition approach allows the solution of the

single-level MINLP in an iterative fashion through the exploration of neighborhoods described by

the external variables. The proposed methodology implements a steepest-descent search direction

to explore the discrete search space. The algorithmic framework implements a stopping criterion
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based on the concept of integral convexity. Therefore, local feasible solutions can be found efficiently

compared to commercial MINLP solver. The convergence of the algorithm is guaranteed [149].

The current chapter is organized as follows: Section 5.1 introduces the MIBLP formulation for

the integration of design and NMPC-based control under uncertainty and structural decisions over

naturally ordered discrete set; in Section 5.2 the MIBLP is transformed into a conventional MINLP;

the concept of external variables and the decomposition of the single-level MINLP are presented in

Section 5.3; Section 5.4 presents the D-SDA methodology; meanwhile, an illustrative case study is

included in Section 5.5; finally, Section 5.5 provides a chapter summary.

5.1 Mixed-integer bilevel problem formulation

The conceptual mathematical formulation for the MIBLP for the integration of design and NMPC-

based control under uncertainty and structural decisions is stated as follows:

min
η,x(t),ū(t),z

J∑
ju=1

wjuΦ(η, ς,x(t), ū(t),dp(t), z, t) (5.1a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),dp(t), z, t) = 0, (5.1b)

h(η, ς,x(t), ū(t),dp(t), z, t) = 0, (5.1c)

g(η, ς,x(t), ū(t),dp(t), z, t) ≤ 0, (5.1d)

û(τc) = arg

{
min
û(τc)

Ψ(·) s.t.F (·) = 0, H(·) = 0, G(·) ≥ 0, û ∈ RNu

}
(5.1e)

ū(t) = û(τc), ∀ τc = t (5.1f)

where h : RNx ×RNu ×RNη ×RNς ×RNd ×ZNz ×RNt → RNh×Nς represents the set of inequality

constraints that define the feasibility region of the design problem; f : R2Nx ×RNu ×RNη ×RNς ×

RNd × ZNz × RNt → RNx×Nς represents the dynamic process model; x(t) ∈ RNx are the states of

the system with time derivatives indicated by ẋ(t) ∈ RNx . ū(t) ∈ RNu represents the vector of

control actions retrieved from the controller (i.e., the NMPC in Equation (2.4)). The set of decision

variables that does not depend on time (η ∈ RNη) contains the process design variables (e.g., areas,
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volumes, flows) and the controller tuning parameters in the NMPC framework. In this study, these

tuning parameters correspond to the positive-defined diagonal matrices that penalizes the deviations

in the predicted controlled variables with respect to their desired set-points, and the changes in the

manipulated variables, i.e., Qout and Qin, respectively [12]. The set of binary variables is given

by z ∈ ZNz . Moreover, the vector ς ∈ RNς represents the uncertain parameters included in the

optimization model. Note that the control actions ū ∈ RNu computed by Equation (5.1e) are given

by the solution of the optimization problem for the NMPC. In Equation (5.1), t represents the actual

time of the process whereas τc is the future time instants within the NMPC framework. At each time

interval t+ kt (sampling time) in the upper-level problem, the NMPC computes a prediction of the

dynamic behavior of the process within a prediction horizon time tP , i.e., τc ∈ [t, t+ tP ). Then, the

controller implements the first control action at the simulation time τc = t+ kt. To ensure dynamic

feasibility in the process to external perturbation during the normal operation, for the formulation

in Equation (5.1) a set of disturbances dp(t) is included. This set of disturbances aims determine

the magnitude of the controller tuning parameters such that the NMPC can reject the expected

disturbances during the normal operation. Consistently, in a real operation, the information about

the future changes in the disturbances is not available. Therefore, it is assumed that the NMPC

does not have access a priori to the set of disturbances dp(t). However, it is assumed that the

disturbances dp are part of the measurements for the NMPC, but these remain constant along the

prediction horizon at every sampling time (t + kt). The uncertainty is quantified through a finite

number of scenarios defined a priori. These uncertain scenarios are defined from observations based

on historical data or process heuristics [150]. Thus, the bilevel formulation considers the introduction

of jthu uncertainty realizations; the probability of occurrence of each realization ju is weighted in the

objective function by wju . In Equation (5.1e), F : R2Nx × RNu × RNd × RNτ → RNx corresponds

to the dynamic process model in the NMPC; whereas the inequality constraints are given by the

function G : RNx × RNu × RNd × RNτ → RNs . Note that the process model in the design problem

(upper-level problem) and the process model in the NMPC (lower-level problem) have the same

structure. Nevertheless, the controller does not have access to the complete set of parameters under

uncertainty (ς). Alternatively, uncertain parameters may appear also in the lower-level problem. If
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the controller (lower-level problem) does not have full access to the parameters under uncertainty,

it is referred to as a nominal NMPC controller. Conversely, if the controller has full access to the

parameters under uncertainty, it is referred to as a robust NMPC controller [12]. Accounting for

the uncertain parameters in the upper-level problem allows to accommodate uncertainties in the

process design to guarantee dynamic feasibility in the solution. In the optimization formulation

(Equation (5.1)), the introduction of uncertainty realizations increases the size of the optimization

model; consequently, the computational burden for the search of a solution also increases.

From Equations (5.1a) and (5.1e), note that the binary variables are part of the decision vari-

ables only in the upper-level problem. Although NMPC requires information from the upper-level

problem, the binary variables are considered as parameters for the lower-level problem, i.e., the

NMPC does not consider binary (structural) decisions in its formulation. Therefore, the NMPC is

a nonlinear program (NLP). This is particularly useful because it is possible to obtain the necessary

conditions for optimality for the NMPC problem.

5.2 Classical KKT Transformation

To transform the MIBLP stated in Equation (5.1) into a single-level MINLP, a Classical KKT

transformation is implemented. This transformation strategy requires that the optimization prob-

lem for the NMPC (lower-level problem) to be a continuous formulation, i.e., a NLP. Therefore,

the lower-level problem can be expressed in terms of its KKT conditions. The set of algebraic

equations corresponding to the KKT conditions for the NMPC are included as constraints in the

upper-level problem. This leads to a Mixed-Integer Mathematical Program with Complementarity

Constraints (MI-MPCC). MI-MPCC is a singular problem, i.e., multiple constraint qualifications

(CQs) are violated at every feasible point [18]. To overcome this issue, a regularization strategy was

implemented, in which the complementarity constraints are relaxed with a positive parameter ϵs.

Note that there are other reformulation strategies reported in the literature, e.g., the implementa-

tion of smoothing functions or the use of penalty terms in the objective function. The analysis of

the features and convergence properties of those reformulation strategies is out of the scope of this
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PhD research for formulations involving discrete decisions but interested readers can review those

techniques elsewhere [141, 144]. Thus, the resulting regularized MINLP for the integration of design

and NMPC-based control under uncertainty and structural decisions can be stated as follows:

Φ̄MINLP = min
η,x(t),ū(t),z

J∑
ju=1

wjuΦ(η, ς,x(t), ū(τ),dp(t), z, t) (5.2a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),dp(t), z, t) = 0, x(t0) = x0, (5.2b)

h(η, ς,x(t), ū(t),dp(t), z, t) = 0, (5.2c)

g(η, ς,x(t), ū(t),dp(t), z, t) ≤ 0, (5.2d)

∇ΩL(η, x̂(τc), û(τc), λ(τc), ν(τc), µ(τc),dp, z, τc) = 0, (5.2e)

F (η, ˙̂x(τc), x̂(τc), û(τc),dp, z, τc) = 0, x̂(τc0) = x(t), ∀ τc = t (5.2f)

G(η, x̂(τc), û(τc),dp, z, τc) ≥ 0, µ(τc) ≥ 0 (5.2g)

µ⊺(τc)G(η, x̂(τc), û(τc),dp, z, τc) ≤ ϵ, (5.2h)

ū(t) = û(τc), ∀ τc = t (5.2i)

where ϵs is a positive relaxation parameter. ∇ΩcL : RNx̂×RNû×RNη×RNλ×RNν×RNµ

+ ×RNd×

ZNz × RNτ → RNx̂×Nû×Nŷ is the gradient of the Lagrangian function, i.e., the stationarity condi-

tions. This gradient is determined with respect to the decision variables in the NMPC problem, i.e.,

states and control actions (Ωc = [x̂(τc), û(τc)]). λ(t) ∈ RNλ , ν(t) ∈ RNν , and µ(t) ∈ RNµ

+ in Equa-

tions (5.2e) and (5.2h) are the Lagrange multipliers associated to constraints in the optimization

formulation for the NMPC, respectively.

The solution strategy for the formulation in the Problem (5.2) is critical due to the complexity

of the MINLP. Traditional local deterministic strategies such as GBD or ECP highly depend on the

initialization [151, 152, 153]. On the other hand, global MINLP solvers are computationally expen-

sive and beyond the scope of this PhD study. Those algorithms work best with the reformulation of

the MINLP in Equation (5.2) as a GDP. In a GDP formulation, disjunctions and logic propositions

are used to consider discrete decisions. The presence of integer variables complicates the search for a
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solution to problem (5.2) because of the nonlinear relations in the integer domain and the nonlinear

expressions in the integer-continuous domain. Therefore, a general-purpose MINLP solver may not

be able to find a solution. In this study, a specialized algorithm proposed by Linan et al. [149]

is implemented, i.e., a Discrete-Steepest Descent Algorithm (D-SDA). This algorithm exploits the

problem structure such that the optimization problem can be expressed in terms of a set of variables

that represent positions over one-dimensional discrete space (external variables).

A local search is possible in the neighborhood described by these external variables. To do so,

the original MINLP (Equation (5.2)) is decomposed into a master IPLC and primal sub-problems

with discrete variables fixed at integer values, i.e., FNLPs. This decomposition strategy is presented

next.

5.3 Decomposition of the MINLP framework

This section introduces the mathematical framework for the decomposition of the MINLP in Equa-

tion (5.2) into a master IPLC and primal FNLPs. In the original MINLP, the integer decisions (z)

determine the optimal placement of units or streams. The set of integer variables can be partitioned

into sub-groups referred to as external variables. Since the constraints represented with function g

(Equation (5.2d)) contains a finite number of linear inequalities to define the locations of streams

or units, i.e., logical constraints, a set of purely integer logical constraints can be represented by a

polyhedron Z ⊆ ZNz as follows:

Z =

z ∈ ZNz :

Nz∑
k̂=1

al̂,k̂zk̂ ≤ bk̂ ∀l̂ ∈ L

 (5.3)

where z ∈ ZNz are integer variables with index k̂, if the integer variables of the MINLP in Equa-

tion (5.2) are fixed at a value z = ẑ, the problem becomes a FNLP, i.e., the formulation only includes

continuous optimization variables. The purpose of fixing the integer variables in Equation (5.2) is

to represent the MINLP as a set of nonlinear problems: Φ̄MINLP = min {Φ̄FNLP (ẑ) : ẑ ∈ ZNz}.

Therefore, a solution for the MINLP (Equation (5.2)) may be found by solving a finite series of
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FNLPs (∀ ẑ ∈ ZNz) and comparing their solutions, e.g., through a complete enumeration strategy.

On the other hand, an enumeration strategy is only tractable with low-dimensional problems if the

MINLP is properly bounded.

In this study, the location of streams/units is defined by a set of binary variables. Thus, it

is assumed that the discrete variables in Equation (5.2) are binary variables (i.e., z ∈ {0, 1}Nz)

that represent the position of streams/units in the optimal superstructure. These binary vari-

ables can be partitioned into NE groups; one group for each external variable (zE ∈ ZNE ), i.e.,

zE = [zE,1, zE,2, . . . , zE,Nz ]. For the external variables, each vector zE,̂i = [zE,̂i,1, zE,̂i,2, . . . , zE,̂i,Nzs
î

],

∀ î ∈ E = {1, 2, . . . , NE} contains the binary variables that define the optimal location of a

single stream/unit of type î ∈ E over a naturally ordered one-dimensional discrete set zsî =

{1, 2, . . . , Nzs,i}, ∀ î ∈ E. Also, n̂ is defined as the index of the elements in the naturally or-

dered set zsî. Moreover, the constraint
∑

n̂∈zsî
zn̂,̂i = 1 ∀ î ∈ E must hold to apply a decomposition

of Equation (5.2) in terms of the external variables (zE). This constraint ensures that each stream

or unit in the superstructure is associated only to one physical position. Each binary variable must

be expressed as a piecewise function as follows:

zn̂,̂i =


1, zE,̂i = n̂, ∀n̂ ∈ zsî, ∀î ∈ E

0, otherwise

(5.4)

Y1 =
{
zE ∈ ZNE : 1 ≤ zE ≤ Nzs,̂i, ∀î ∈ E

}
(5.5)

Y2 =

zE ∈ ZNE :

NE∑
î=1

am̂,̂izE,̂i ≤ bm̂, ∀m̂ ∈M

 (5.6)

zE ∈ Y = Y1 ∩ Y2 (5.7)

where Equations (5.4)-(5.7) allow expressing each binary variable in terms of the NE external

variables, which allows the constructions of a convex polyhedron (Equation (5.5)) for the search

range of the external variables. The set Y1 contains the external variables and their boundaries;

whereas the set Y2 contains the equivalent form of the logical constraints in Z that can be repre-

sented linearly in the external variables’ domain (Equation (5.6)). The convex polyhedron of the
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external variables Y (Equation (5.7)) is the intersection between the optimal delimitation (Y2) and

the required delimitation (Y1). In this study, it is assumed that all the constraints in Z can be rep-

resented linearly in the optional convex polyhedron Y2, i.e., all logical constraints are represented

in the external variables’ domain. The implementation of the reformulation with external variables

is illustrated in below in Section 5.5. The single-level MINLP for simultaneous design and control

(Equation (5.2)) can be decomposed into a master IPLC and primal FNLPs sub-problems using

external variables. The corresponding master IPLC is as follows:

Φ̄MINLP = min
ẑE

Φ̄FNLP (ẑE) (5.8)

ẑE ∈ Y

where the objective function Φ̄FNLP (ẑE) is given by the solution of the primal FNLPs sub-

problems. These primal sub-problems are obtained by stating Equation (5.2) in terms of the

external variables (zE), i.e.,

Φ̄FNLP (ẑE) = min
η,x(t),ū(t)

J∑
ju=1

wjuΦ(η, ς,x(t), ū(t),dp(t), ẑE, t) (5.9a)

s.t. f(η, ς, ẋ(t),x(t), ū(t),dp(t), ẑE, t) = 0, x(t0) = x0, (5.9b)

h(η, ς,x(t), ū(t),dp(t), ẑE, t) = 0, (5.9c)

g(η, ς,x(t), ū(t),dp(t), ẑE, t) ≤ 0, (5.9d)

∇ΩcL(η, x̂(τc), û(τc), λ(τc), ν(τc), µ(τc),dp, ẑE, τc) = 0, (5.9e)

F (η, ˙̂x(τc), x̂(τc), û(τc),dp, ẑE, τc) = 0, x̂(τc0) = x(t), ∀ τc = t (5.9f)

H(η, x̂(τc), û(τc),dp, ẑE, τc) = 0, (5.9g)

µ⊺(τc)G(η, x̂(τc), û(τc),dp, ẑE, τc) ≤ ϵ, (5.9h)

ū(τc) = û(τc), ∀ τc = t (5.9i)

The primal FNLPs in Equation (5.9) can be solved with state-of-the-art NLP solvers. The

master problem (Equation (5.8)) oversees the logical requirements by verifying that ẑE ∈ Y . The
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decomposition of the MINLP in Equation (5.2) aims to use the binary variables as parameters in

the primal sub-problems. In the primal FNLPs, any expression that can be calculated as a function

of the binary variables is expressed in terms of the external variables (ẑE). The primal FNLPs

can be solved with conventional NLP solvers, e.g., IPOPT [154]. On the other hand, the master

IPLC problem is aimed to be solved with a Discrete-Steepest Descent Algorithm (D-SDA) [155].

This algorithm is based on the discrete convex analysis theory. The usual definition of convexity

in integer programming states that an integer program is convex if a convex problem is obtained

when relaxing the integer requirement [151]. Instead, the field of discrete convex analysis uses

its own definition, i.e., integral convexity. This result is useful, because an integer problem may

be integrally convex, even if the RMINLP is non-convex according to the traditional definition of

convexity [149]. Therefore, if a discrete convex analysis based method (such as the D-SDA) is used

to solve a problem, different local solutions with improved costs and control performance can be

found compared to applications with traditional MINLP solvers [149]. The theory proposed by

Murota [155] states that the condition of integral convexity can be verified with the value of the

objective function exclusively at integer points. The review of the theory of integral convexity is

beyond the scope of this research. Interested readers on this subject can review the study presented

in [155].

A simplification that arises when solving the master IPLC (Equation (5.8)) is that the domain

of the objective function Φ (Equation (5.2a)) can be further reduced to a subset A ⊆ ZNz by using

the convention Φ(z) = +∞, ∀z /∈ Z, e.g., if Z is a polytope (i.e., Z is bounded as defined in [156]),

the subset A ⊆ ZNz corresponds to the collection of points that surround Z. The surroundings of Z

are referred to as a disjoint envelope, which is defined according to the number of integer neighbors

of a point β ∈ ZNz inside Z (i.e., boundary points in Z) defined as follows:

B(β) = {zE ∈ Z : ∥β − zE∥∞ ≤ 1} , β ∈ ZNz (5.10)

A =
{
β ∈ ZNz \ Z : |B(β)| ≥ 1

}
(5.11)

where Equation (5.10) defines the set of integer neighbors (inside Z) of a point β, whereas the

definition of the disjoint envelope of Z is given by Equation (5.11). These definitions are useful
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to determine the size of the partitions of the binary variables (z) into external variables zE. In

this work, we assume that (zE) can form neighborhoods N∞(zE) = {zE + χZ1 − χZ2 , ∀Z1, Z2 ⊆

{1, . . . , NE}} denoted as ∞-neighborhoods. In this definition of N∞(zE), χZ1 = [χZ1,1, . . . , χZ1,NE
]

is the indicator or characteristic vector of the subset Z1 of {1, . . . , NE}. Applying this theory to the

master IPLC, it is possible to develop a systematic algorithm for the search of a local solution for

the original MINLP. Further details about the features, methodologies, and theorems that support

the mathematical framework discussed in this section can be found elsewhere [149].

5.4 Discrete-Steepest Descent Algorithm

In this section, the Discrete-Steepest Descent Algorithm (D-SDA) is described for the solution of

the master IPLC and the primal FNLPs, i.e., the strategy proposed in this work to address the

integration of design and NMPC-based control under uncertainty for naturally ordered structures.

The local search strategy implemented in this work is presented in Algorithm 1. This algorithm

uses the D-SDA guidelines proposed in [157], in which the master problem executes a local search

in the neighborhood described by the external variables. This local search consists of the solution

of the primal FNLPs in the neighborhood described by the external variables. The solutions of the

FNLPs in the neighborhood are evaluated and used to determine a search direction, if that exists.

The search direction corresponds to the one that provides the steepest descent in the objective

function. A brief description of this logic-based optimization algorithm presented in Algorithm 1 is

provided next.

� Stage 1 (Initialization): The algorithm is initialized with a feasible initial solution for

the discrete and continuous variables, i.e., a feasible initial design and control (ẑE,init, ηinit,

xinit(t), ūinit(τc)).

� Stage 2 (Feasibility): The feasibility of the initial superstructure is verified according to

the logical constraints in the set Y , i.e., if the initial superstructure does not satisfy the logical

constraints in Y , the algorithm stops and determines that the problem is infeasible. The topic
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Figure 5.1: Local searches in the ∞-neighborhoods (N∞) described by the external variables (ẑE)
and line search in Algorithm 1.

of the initialization of the superstructure is out of the scope of this work. Interested readers

on this subject can review the study presented by Turkay and Grossmann [158].

� Stage 3 (∞-Neighborhoods): In this stage, the search sets N∞(zE) and S∞(ẑE) are cre-

ated. The set N∞(zE) contains the points that are compared with ẑE at Stage 4 to verify

local optimality. This verification for optimality over N∞(zE) assumes the solution of 3NE −1

FNLPs. Note that the computational burden increases exponentially as NE increases.

� Stage 4 (Local search): The solutions of the FNLPs in the neighborhood N∞(ẑE) are cal-

culated and compared to determine if there exists a superstructure that improves the solution

with respect to the initial point. If the initial solution of a FNLP at ẑE (i.e., Φ̄FNLP (ẑE))

is lower than the solutions of the FNLPs in the N∞(ẑE) (i.e., Φ̄FNLP (β)), then a solution

at ẑE was found, i.e., if Φ̄FNLP (ẑE) ≤ Φ̄FNLP (β), ∀β ∈ N∞(ẑE) is satisfied, a local solution

is found; otherwise, the set S∞ contains the potential directions s for the steepest-descent

direction (sd). In this local search, infeasible solutions of the FNLPs in in the neighbor-

hood N∞(ẑE) are not considered for the determination of potential search directions. Note

that the initialization for the continuous variables of the FNLPs during the local search (i.e.,

Φ̄FNLP (β), ∀β ∈ N∞(ẑE)) corresponds to the values for the continuous variables from the

initial solution in the neighborhood at Φ̄FNLP (ẑE). This allows the suitable initialization of
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the primal and dual variables in the FNLPs during the neighborhood exploration.

� Stage 5 (Steepest descent): The steepest-descent direction sd is selected from the set

S∞(ẑE) such that the vector ẑE+sd is in the domain of Y and provides the greatest improve-

ment for the objective function, i.e., Φ̄FNLP (ẑE + sd) ≤ Φ̄FNLP (β), ∀β ∈ N∞(ẑE). Once the

steepest-descent direction sd was selected, the algorithm stores this vector (i.e., s̄d ← sd) such

that a line search can be executed in this search direction.

� Stage 6 (Line search): In this stage, the algorithm solves only the FNLPs in the search

direction given by the vector s̄d, i.e., Φ̄FNLP (ẑE + s̄d). A complete neighborhood search in

N∞(ẑE + s̄d) is not executed; nevertheless, if ẑE + s̄d /∈ Y or Φ̄FNLP (ẑE + s̄d) ≥ Φ̄FNLP (ẑE),

the algorithm goes back to Stage 3 to execute a new neighborhood search in order to determine

a new steepest-descent direction (see Figure 5.1). A local variable Φ̄P is introduced in Stages

5 and 6 to avoid calculating Φ̄FNLP twice for the same input. This procedure is repeated until

the convergence criterion specified in Stage 4 is satisfied.

This algorithm efficiently explores the feasible region of discrete variables using partitions of

the integer variables (external variables). This aims to avoid multiple binary variables for a single

discrete decision. Consequently, the D-SDA allows the implementation of an alternative stopping

criterion that is not available in any of the existing MINLP or logic-based local solvers [149].

Furthermore, decision variables in the master IPLC are only integer, this allows two important

features of the D-SDA: (i) additional reformulations for the logical constraints or relaxation of the

integer variables in the master problem are not required; and (ii) all discrete decisions found by

the master IPLC are integer solutions. On the other hand, the proposed algorithmic framework

does not support generalized formulations, in which the binary variables do not follow a particular

structured order. In this study, local solutions are accepted; hence, the implementation of local

solvers (e.g., IPOPT [154]) for the solution of the primal FNLPs is preferred because unbounded

KKT multipliers can be handled in the NMPC problem. Further details on the implementation,

features, and mathematical proofs of the D-SDA for the optimization of superstructures can be

found elsewhere [149, 159].
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Algorithm 1 Pseudocode for the Discrete-Steepest Descent Algorithm (D-SDA).

Input: ẑE,init, ηinit, xinit(t), ūinit(t)
Output: z∗, η∗, x∗(t), ū∗(t)
Stage 1. Initialization: Initialize the external and continuous variables: ẑE ← ẑE,init;
η, x(t), ū(t)← ηinit, xinit(t), ūinit(t)
Stage 2. Feasibility:
if ẑE /∈ domZΨFNLP ⊆ Y then return stop: The problem is infeasible
else

Continue to Stage 3.
end if
Stage 3. ∞-Neighborhoods: Create the sets N∞(ẑE) = {β ∈ Y : ∥β − ẑE∥∞} and S∞(ẑE) =
{s : β − ẑE = s, ∀β ∈ N∞(ẑE)}.
Stage 4. Local Search: Calculate ΦFNLP (β), ∀β ∈ N∞(ẑE).
if ΦFNLP (ẑE) ≤ ΦFNLP (β), ∀β ∈ N∞(ẑE), then return stop: ẑE = ẑ∗E is a local minimizer of
the problem. z∗ ← ẑ∗E
else

Continue to Stage 5.
end if
Stage 5. Steepest Descent: Select a vector sd from S∞(ẑE) such that ẑE+ sd ∈ domZΦFNLP

and ΦFNLP (ẑE + sd) ≤ ΦFNLP (β), ∀β ∈ N∞(ẑE). Let ΦP ← ΦFNLP (ẑE), ẑE ← ẑE + sd,
ΦFNLP (ẑE − sd)← ΦP , and s̄d ← sd.
Stage 6. Line Search: Calculate ΦFNLP (ẑE + s̄d)
if ẑE + s̄d /∈ Y or ΦFNLP (ẑE + s̄d) ≥ ΦFNLP (ẑE), then return Let ẑE ← ẑE and go to Stage
3.
else

Let ΦP ← ΦFNLP (ẑE), ẑE ← ẑE + s̄d, ΦFNLP (ẑE − s̄d)← ΦP , repeat Stage 6.
end if

5.5 Case Study: Binary distillation column

To illustrate the features of the proposed D-SDA approach, the integration of design and NMPC-

based control of a binary distillation column under uncertainty is considered. This case study

is based on the system presented by Schweiger and Floudas [160]. The goal is to determine the

column design that separates a saturated liquid feed into bottoms and distillate products with a

purity above 90% in the distillate (i.e., xD ≥ 0.9) in a total simulation time of 80min (Minimum

reflux is not allowed in order to avoid a distillation column design with infinite number of trays).

This study aims to determine the number of trays (N), location of the feed stream (F̄in), and the

diameter of the column (De). The superstructure for the distillation column is shown in Figure 5.2.
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It is assumed equimolar overflow, constant relative volatility (α), partial reboiler, total condenser,

adiabatic operation, no pressure drop, and thermodynamic equilibrium at each stage. The trays in

the distillation column are indexed by n̂. Structural decisions are modeled by the binary variables

zfn̂ ∈ {0, 1}, ∀n̂ ∈ INT and zrn̂ ∈ {0, 1}, ∀n̂ ∈ INT (i.e., the existence of feed and reflux streams,

respectively, at the n̂th tray). INT ⊆ N represents the set of trays in the superstructure. Thus,

the location of the reflux stream determines the total number of trays (N). The dynamic process

model for the binary distillation column is shown in Equation (5.12), while the model parameters

are displayed in Table 5.1.

Figure 5.2: Superstructure for the Binary Distillation Column case study. The integer decisions
aim to determine the optimum feed tray and the total number of trays (N).

Table 5.1: Model parameter for the binary distillation column case study.
Parameter Value

hw [m] 0.0254
θpy [yr] 4.0
α 2.5
θtx 0.4
F̄in [kmol/min] 1.00
tC [min] 30
tP [min] 30
kt [min] 5
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MR
dxB
dt

= L1(x1 − xB) + V (xB − yB) (5.12a)

MT
dxn̂
dt

= Ln̂+1(xn̂+1 − xn̂) + V (yn̂−1 − yn̂) + zfn̂F̄in(xf − xn) + zrn̂R̄(xD − xn̂) (5.12b)

MC
dxD
dt

= V (yNmax − xD) (5.12c)

τh
dF̄B

dt
= L1 − V̄B − F̄B (5.12d)

τh
dLn̂

dt
= Ln̂+1 − Ln̂ + zfn̂F̄in + zrn̂R̄ (5.12e)

τh
dF̄D

dt
= V̄B − R̄− F̄D (5.12f)

yn̂ =
αxn̂

1 + xn̂(α− 1)
(5.12g)

MT = 7.538115

(((
0.0014134

De

)2/3
)

+ hw

)
D2

e (5.12h)

dκ

dt
= t(xD − xspD )2 + t(xB − xspB )2 (5.12i)

MC = 100MT , MR = 100MT (5.12j)

τh = 0.05271D4/3
e (5.12k)

Dc ≥ 0.6719
√
Vss (5.12l)

xf = 0.45 +
0.9

1 + e−80(t−5)
(5.12m)

For the tray hydraulics, it is implemented the Francis weir formulation in Equation (5.12h)

to calculate the molar hold-ups (MT ). The tray time constants (τh) are stated in function of the

column’s diameter (Equation (5.12k)). The reboiler and condenser liquid hold-ups are in function

of the tray hold-ups (Equation (5.12h)), i.e., MR and MC , respectively.

As shown in Figure 5.2, the controlled variables correspond to the liquid compositions at distil-

late (xD(t)) and bottoms (xB(t)), whereas the manipulated variables are the reflux (R̄(t)) and boil

up (V̄B(t)) streams. Also, the set of dynamic variables involve the liquid composition (xn̂(t)), liquid

flowrates from each tray (Ln̂(t)), bottoms and distillate flowrates (F̄D(t) and F̄B(t), respectively),

and vapor composition (yn̂(t)). Additional continuous time invariant decision variables involve the
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tray liquid hold up (MT ), the tray hydraulic time constant (τh), the operation set-points for dis-

tillate and bottoms (xspD and xspB , respectively), and the NMPC controller tuning parameters. The

tuning parameters in the objective function for the NMPC correspond to the weighting parameters

QxD and QxB that penalize the deviations in the predicted controlled variables with respect to

their desired set-points, i.e., QxD

(
x̂D(τc)− xspD

)2
and QxB

(
x̂B(τc)− xspB

)2
, respectively. Also, the

optimal selection of the weighting parameters QR̄ and QV̄ that penalize the changes in the pre-

dicted manipulated variables is considered, i.e., QR̄

(
∆R̂(τc)

)2
and QV̄

(
∆V̂B(τc)

)2
, respectively.

To enforce process dynamics, it is considered a step disturbance in the feed stream composition

(xf ), i.e.,

xf = 0.45 +
0.09

1 + e−80(t−5)
(5.13)

For the NMPC, prediction and control horizons are both set to 30min. These horizons were

selected using closed-loop simulations subject to the disturbance in Equation (5.13). As explained

in Section 5.1, it is assumed that the binary variables are only related to the upper-level problem,

i.e., the NMPC is a continuous formulation. Therefore, it is possible to obtain the first order

conditions for optimality for the NMPC (lower-level problem).

In this case study, the objective function aims to minimize the annualized capital cost (CCa)

that depends on the equipment design (i.e., CCa = fc(De, N)), an utility cost (UCa) that depends

on the boil up stream (i.e., UCa = fu(V̄B)), and the weighted controllability index (ϕISE) given by

the ISE, i.e.,

Φ = θtx(19390Vss)︸ ︷︷ ︸
UCa

+
12.3(615 + 324D2

e + 486(6 + 0.76N)De) + 61.25N(0.7 + 1.5D2
e)

θpy︸ ︷︷ ︸
CCa

+WISE κ(tf )︸ ︷︷ ︸
ϕISE

(5.14)

where WISE is a weighting parameter that aims to penalize the process variability. In this case

study, WISE is set to 1 × 104. The controllability term (κ(tf )) is given by the integration of the

time-weighted ISE of the distillate and bottoms compositions:
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dκ

dt
= t(xD − xspD )2 + t(xB − xspB )2 (5.15)

The set of logical constraints to describe the superstructure in Figure 5.2 are as follows:

N =

Nmax∑
n̂=1

n̂zrn̂ (5.16a)

Nmax∑
n̂=1

zfn̂ = 1 (5.16b)

Nmax∑
n̂=1

zrn̂ = 1 (5.16c)

Nmax∑
n̂=1

n̂zfn̂ ≥ 4 (5.16d)

Nmax∑
n̂=1

n̂zrn̂ ≥ 10 (5.16e)

Nmax∑
n̂=1

n̂zrn̂ − n̂z
f
n̂ ≥ 4 (5.16f)

where the number of trays in the distillation column is obtained from Equation (5.16a). Equation

(5.16b) ensures the existence of only one feed stream. Equation (5.16c) avoids the existence of

multiple reflux stream. Equation (5.16d) ensures that the feed stream enters on tray 4 or above,

while Equation (5.16e) allows the reflux stream to enter on tray 10 or above. Equation (5.16f)

allows the existence of at least four trays between the feed and reflux streams. As mentioned above,

the discrete decisions correspond to the location of the feed streams (zfn̂) and the total number of

trays (zrn̂), i.e., the location of the reflux stream. The associated binary variables zfn̂ and zrn̂ can be

represented as functions of 2 external variables, i.e., zfE and zrE , respectively. In this case study, the

reformulation of binary variables in terms of external variables is as follows:

zfn =


1, zfE = n̂ ∀n̂ ∈ INT

0, otherwise

(5.17)

120



zrn =


1, zrE = n̂ ∀n̂ ∈ INT

0, otherwise

(5.18)

Y1 =

 zE ∈ Z2 : 1 ≤ zfE ≤ Nmax

1 ≤ zrE ≤ Nmax

 (5.19)

Y2 =



N − n̂zrE = 0, ∀n̂ ∈ INT

zE ∈ Z2 : n̂zfE − 4 ≥ 0 ∀n̂ ∈ INT

n̂zrE − 10 ≥ 0 ∀n̂ ∈ INT

n̂zrE − n̂z
f
E − 4 ≥ 0 ∀n̂ ∈ INT


(5.20)

Y = Y1 ∩ Y2 =



N − n̂zrE = 0, ∀n̂ ∈ INT

n̂zfE − 4 ≥ 0 ∀n̂ ∈ INT

n̂zrE − 10 ≥ 0 ∀n̂ ∈ INT

n̂zrE − n̂z
f
E − 4 ≥ 0 ∀n̂ ∈ INT

zE ∈ ZNE : 1− zfE ≤ 0 ∀n̂ ∈ INT

zfE −N ≤ 0

1− zrE ≤ 0

zrE −N ≤ 0



(5.21)

where Y contains the set of constraints for themaster problem. This case study was solved under

different scenarios. The first scenario (Section 5.5.1) evaluates the performances of the D-SDA using

different initial points for the structural decisions for the distillation column under no uncertainty.

Scenario 2 (Section 5.5.2) presents the distributed stream-tray optimization method (DSTO) and

evaluates its performance given the initial points stated in Scenario 1 for the distillation column

under no uncertainty. The effect on the solution subject to model uncertainty using the D-SDA

approach is presented in Scenario 3 (Section 5.5.3). Furthermore, in Scenario 4 (Scenario 5.5.4),

the DSTO method for the solution of the problem under uncertainty is implemented. For all the

scenarios, the implementation was performed in GAMS V40.4.0 in a platform with an Intel®CoreTM
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17-8700 CPU 3.20 GHz processor, 16GB of RAM using Windows Server 2019 Standard. IPOPT

3.14.3 was implemented as the main NLP solver using linear solver MA86 and a desired convergence

tolerance set to 1.0 × 10−7, all other solver options are as default. OCFE is implemented for the

discretization of the single-level optimization problem in Equation (5.2), i.e., 16 finite elements

for the upper-level problem with 5 Radau collocation points, and 6 finite elements with 3 Radau

collocation points for the lower-level problem are implemented for all scenarios. Two different

levels of discretization are needed because the design problem (upper-level problem) is solved over a

longer simulation time compared to the NMPC controller (lower-level problem), i.e., the upper-level

problem is simulated over an 80min horizon, whereas the NMPC has a prediction horizon of 30min.

Note that the lower-level problem dominates the size of the optimization formulation; therefore,

a selection of fewer collocation points in the lower-level problem also reduces the computational

burden. Also, note that this may produce a process model mismatch between the model in the

different problem levels. Closed-loop simulations showed that this discretization can accurately

approximate model functions on each problem level. The maximum number of equilibrium trays

(Nmax) is set to 30.

5.5.1 Scenario 1: D-SDA with no uncertainty

To evaluate the performance of the D-SDA for the search of a local solution for the binary distillation

column in this case study, three different initialization for the structural decisions are proposed: (i)

15 total trays and the feed stream located at the 5th tray (Instance 1); (ii) 16 total trays with the

feed stream located at the 8th tray (Instance 2); (iii) 25 total trays and the feed stream located

at the 5th tray (Instance 3). As shown in Table 5.2 (Scenario 1: D-SDA), slight differences in

the superstructure were obtained for the distillation column. Instance 3 returned smaller column’s

diameter (De) compared to Instances 1 and 2, i.e., De for Instance 3 is 0.12% and 1.6% smaller

compared to the result for Instances 1 and 2, respectively. From an operational point of view, the

three instances determined a mole fraction set-point for the distillate around 0.98. Moreover, it is

noted that the controller weighting parameters QxD have significant differences. The magnitude of

QxD for Instance 1 is 50% smaller compared to Instance 2, whereas QxD for Instance 3 is one order
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of magnitude smaller compared to the results for Instance 2. Regarding the process economics, the

solution for Instance 3 returned the lowest total cost, i.e., 3.590× 104 [$/yr]. Although, Instance 2

led to a 2.5% lower capital cost compared to the results for Instance 3, the utility cost for Instance

2 is 7.4% higher than those obtained for Instance 3. Hence, this explains the difference in the total

cost of Instance 3 with respect to Instances 1 and 2. Furthermore, from the results for Instances

1 and 3, it is observed that the discrete decisions for the distillation column returned the same

results; nevertheless, the results for the continuous variables (e.g., controller tuning parameters,

column’s diameter, etc.) have differences between those instances. Since the FNLPs for this case

study are nonconvex, the same values in the discrete decisions may not converge to unique solutions

for the continuous variables. The solutions obtained for the FNLPs depend on the initial points.

As mentioned above, during the neighborhood search and line search, the FNLPs are initialized

using previous feasible solutions. Hence, the solutions for the structural decisions for Instances 1

and 3 are near the solution obtained for Instance 2 (i.e., the superstructure for Instance 2 is an

immediate neighbor to the superstructure found for Instances 1 and 3). This implies that even if

the combination of values for the discrete decisions is the same as for Instance 2 (i.e., 15 trays and a

feed stream at the 8th tray), the algorithm may not find an improvement in the objective function

for Instances 1 and 3. This is because the initialization for the continuous variables at that neighbor

may be different in each case.

5.5.2 Scenario 2: DSTO with no uncertainty

To compare the solutions obtained with the proposed framework, it is implemented an alternative

methodology based on the DSTO method presented in [161]. In that methodology, the stream

locations for feed and reflux are allowed to be continuous variables in a DDF. That methodology

assumes the solution of a continuous formulation that can be solved with conventional NLP solvers.

In this case study, the DDF is derived from a discretization of a Gaussian distribution with mean

value Nc and standard deviation σ. Moreover, for the DSTO method, the number of trays (N) is

defined as the integer value of Nc (i.e., N = int[Nc]) and a real variable a = Nc − N . Therefore,

the DDFs (ϱn̂) are defined as follows:
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Table 5.2: Results for the binary distillation column case study for Scenarios 1 and 2.

Optimization variable
Scenario 1: D-SDA Scenario 2: DSTO

Instance 1 Instance 2 Instance 3 Instance A Instance B Instance C

Trays (N) 16 15 16 15 16 19
Feed tray 9 8 9 9 9 10
De [m] 0.784 0.796 0.783 0.793 0.776 0.747
xspD 0.978 0.98 0.978 0.978 0.978 0.978
xspB 0.02 0.02 0.02 0.02 0.02 0.02
QxD 28.1 57.7 5.49 1.76 1.25 0.89
QXB

0.5 0.5 0.5 0.5 0.5 0.5
QR̄ 0 4.3 0 6.0× 10−4 0 0
QV̄ 0 9.9 0 0 0 0
Initial Feed tray 5 8 5 5 8 5
Initial Reflux tray 15 16 25 15 16 25

Equations 141,743 146,444
Variables 141,596 146,326

ISE 0.031 0.0038 0.039 0.036 0.044 0.014
Capital cost [$/yr] 2.537× 104 2.473× 104 2.536× 104 2.465× 104 2.514× 104 2.705× 104

Utility cost [$/yr] 1.055× 104 1.132× 104 1.054× 104 1.080× 104 1.035× 104 9.582× 103

Total cost [$/yr] 3.593× 104 3.605× 104 3.590× 104 3.545× 104 3.549× 104 3.664× 104

CPU [s] 1.200× 105 1.003× 104 5.263× 105 1.175× 105 1.194× 105 1.102× 105

Neighborhoods 4 2 4 - - -
Iterations - - - 4 4 6

ϱn̂ =
e−(

n̂−Nc
σ )

2

∑N
n̂′=1 e

−
(

n̂′−Nc
σ

)2 n̂ ∈ {1, . . . , Nmax} n̂′ ∈ {1, . . . , Nmax} (5.22)

where the DDF features the following properties: (i) The values of the DDF are positive every-

where, i.e., ϱn̂ ≥ 0, n̂ ∈ {1, . . . , Nmax}. (ii) Summation of the DDF over the index of trays (n̂) is

equal to unity, i.e.,
∑

n̂ ϱn̂ = 1. (iii) The distribution is symmetric to N if a = 0, i.e., Nc = N . If

a = 0.5, then Nc = N + 0.5 and the values of the DDF are symmetric to N + 0.5. (iv) Asymmetric

distribution if a ̸= 0 and a ̸= 0.5. (v) The skewness in the asymmetric property depends on the

values of a. If 0 < a < 0.5, skewness is positive; whereas if 0.5 < a < 1, skewness is negative. (vi) If

Nc = 1 or Nc = Nmax, the DDF is skewed to one direction only. (vii) The distribution function can

be concentrated to a single tray in the column as long as the value of σ is small enough such that

ϱK̂ = 1 and ϱn̂ = 0 ∀ n̂ ̸= K̂, n̂ ∈ {1, . . . , Nmax}. For this, standard deviation is set to σ ≥ 0.35

[161]. Although a solution strategy with a decreasing sequence of values for σ may yield a better re-

sults. Further description and details about the features of DDF and the selection of σ can be found
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Figure 5.3: Concentration profiles of distillate and bottom for Scenarios 1 (Instances 1 to 3) and 2
(Instances A to C) for the binary distillation column case study.

elsewhere [161]. In this work, the solution of the continuous formulation for simultaneous design

and NMPC-based control is addressed by solving a series of NLP’s with a decreasing sequence of σ,

starting each iteration from the previous solution. The implementation of the DSTO also requires

the specification of the feed and reflux streams in terms of DDFs as follows:

R̄n̂ = R̄ϱr̄n̂ and V̄Bn = V̄Bϱ
v̄
n̂ ∀ n̂ ∈ {1, . . . , Nmax} (5.23)

where ϱr̄n̂ and ϱv̄n̂ are the values for the DDFs (Equation (5.22)) for the reflux and boil up streams,

respectively. R̄n̂ and V̄Bn̂
are the reflux and boil up streams entering into the n̂th tray, respectively,

i.e., on each tray enters a fraction of the flow rates of streams R̄ and V̄B equivalent to the values of

the DDFs (ϱr̄n̂ and ϱv̄n̂). In the cases when Nc << Nmax, the trays between Nc and Nmax may be

dry because no liquid is flowing through them. To address this issue, the methodology introduces

new complementarity conditions that allows to model the phase equilibrium as follows:

yn̂ − ζn̂Kn̂(Tn̂, xn̂)xn̂ = 0 ∀ n̂ ∈ {1, . . . , Nmax} (5.24)

1− ζn̂ = sn̂L − sn̂V ∀ n̂ ∈ {1, . . . , Nmax} (5.25)
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Ln̂ ≥ 0, sn̂L ≥ 0, ∀ n̂ ∈ {1, . . . , Nmax} (5.26a)

Vn̂ ≥ 0, sn̂V ≥ 0, ∀ n̂ ∈ {1, . . . , Nmax} (5.26b)

Ln̂s
n̂
L ≤ ϵs ∀ n̂ ∈ {1, . . . , Nmax} (5.26c)

Vn̂s
n̂
V ≤ ϵs ∀ n̂ ∈ {1, . . . , Nmax} (5.26d)

where sn̂L is a positive defined slack variable corresponding to the complementarity constraint

in Equation (5.26); Distillation K-values are given by Kn̂; yn̂ and xn̂ are the mole fractions in the

vapor and liquid phase, respectively, on the n̂th tray; Ln̂ and Vn̂ corresponds to the flowrate of liquid

and vapor flowing in the n̂th tray, respectively; whereas ζn̂ is a correction factor that is necessary

to ensure feasibility in the equilibrium for dry trays. If ζn̂ < 1, then sn̂L > 0 and Ln̂ = 0. If ζn̂ > 1,

then sn̂V > 0 and Vn̂ = 0. The complementarity constraints are approximated in Equation (5.26)

using a regularization strategy. In this case study, the relaxation parameter for complementarity

constraints ϵs is set to 1.0×10−6. For the integration of design and control of the binary distillation

column, Equations (5.22) to (5.26) are added to the upper-level problem (Equation (5.1d)) as part

of the constraints.

To evaluate the effectiveness of the DSTO method for the search of a local solution for the

binary distillation column case study with no uncertainty, the same initialization superstructures

as in Scenario 1 is implemented, i.e., (i) 15 trays and a feed stream located at the 5th tray (Instance

A); (ii) 16 trays and a feed stream located at the 8th tray (Instance B); (iii) 25 trays and a feed

stream located at the 5th tray (Instance C). The results for the continuous formulation using the

DSTO method (Scenario 2) are shown in Table 5.2. From the results, it can be noted that Instance

C returned smaller column’s diameter with respect to Instances A and B, i.e., De for Instance C

is 6% and 3% smaller compared to Instances A and B, respectively. Moreover, it is observed that

the controller tuning parameters Qout are in the same order of magnitude with slight differences.

From an economic point of view, the solution for Instance A shows a lower total cost compared to

Instances B and C, i.e., total cost for Instance A is 0.11% and 3.2% smaller with respect to the
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results for Instances B and C, respectively.

As shown in Table 5.2, the D-SDA approach returned solutions around the 16 trays in the

distillation columns, whereas the DSTO method led to varied solutions, i.e., distillation column

designs with 15 to 19 trays. Moreover, Instances 1-3 (Scenario 1) averaged 0.787m for the dis-

tillation column’s diameter (De) with a standard deviation of 0.007m. In comparison, Instances

A-C (Scenario 2) averaged 0.772m for De with a standard deviation of 0.023m. In other words,

variations in the column’s designs are one order of magnitude smaller in the solutions with the

D-SDA compared to the DSTO method. With regards to the process economics, it is noted that

Instance A (Scenario 2) returned the lowest total cost (i.e., 3.545 × 104). On the contrary, the

controllability aspect indicates that the solution for Instance 2 (Scenario 1) led to a better control

performance, i.e., Instance 2 returned the lowest ISE. This is visually demonstrated in Figure 5.3.

From this figure, it is observed smaller variations and a faster response in the control profiles in

the solution for Instance 2 compared to the other instances. Additionally, from Table 5.2, it can

be appreciated that Instance B returned the smallest utility cost (i.e., 1.035× 104) in detriment of

the ISE (i.e., the worst control performance). Additionally, in this case study, the implementation

of commercial local solvers (i.e., an Outer Approximation (OA) solver (DICOPT) and a Branch &

Bound (B&B) solver (SBB)) for the solution of the corresponding MINLP (Problem (5.2)) did not

return a solution within a reasonable amount of time (i.e., 1.0× 106s).

As to comparison of the CPU times (Table 5.2), it can be noticed that Instance 2 (Scenario 1)

required the shortest CPU time to converge, i.e., 1.003 × 104s. Note that the CPU time for the

rest of instances is in the same order of magnitude, while Instance 3 demanded the largest CPU

time 5.263× 105. This is almost five times larger the CPU time required by Instances A-C. For the

implementation of the D-SDA (Scenario 1), only 1% of the CPU time was spent on the solution

of master IPLC problems. Note that the D-SDA solves 8 primal FNLPs during the neighborhood

search. As a result, the neighborhood search (Stage 3 in the algorithm) demanded 77.6% of the

CPU time. The rest of the CPU time was mainly dedicated to the line search and initialization of

the algorithm. On the other hand, the DSTO method demanded on average 71% of the CPU time

for the location of an initial point. The rest of the CPU time was spent in the solution of the NLPs
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using a decreasing sequence of values for σ.

Additionally, we implemented alternative NLP solvers such as CONOPT and KNITRO for both

methodologies (i.e., D-SDA and DSTO) for Scenarios 1 and 2, i.e., i) D-SDA/CONOPT; ii) D-

SDA/KNITRO; iii) DSTO/CONOPT; iv) DSTO/KNITRO. In this scenario, the superstructure

was initialized using 16 total trays with the feed stream located at the 8th tray. The maximum

number of equilibrium trays (Nmax) was set to 30. The rest of the parameters for the NMPC

controller and the discretization scheme remained the same as in the case study. The configuration

for the solvers is presented in Table 5.3.

Table 5.3: Configuration for the solvers CONOPT and KNITRO
Settings CONOPT Settings KNITRO

lim_variable 1.0× 1013 linsolver MA86
Tol_Feas_Max 1.0× 10−5 ftol_iters 150
Tol_Feas_Min 4.0× 10−7 infeastol_iters 200
Tol_Opt_LinF 1.0× 10−7 bar_linsys_storage 1

hessopt LBFGS
algorithm 2

As shown in Table 5.4, the D-SDA using KNITRO converged to the same values for the struc-

tural decision variable as that obtained for Instance 2 (Scenario 1). However, the column’s diameter

for Instance 2 is slightly smaller (i.e., 1%) compared to the results using KNITRO. The largest dif-

ferences between the results for Instance 2 (Scenario 1) and the implementation of the D-SDA

with KNITRO are in the controller tuning parameters, i.e., the D-SDA/KNITRO returned tun-

ing parameters that are 2 orders of magnitude larger compared to those obtained for Instance

2. In contrast, the controller performance for Instance 2 returned an ISE that is one order of

magnitude smaller compared to the D-SDA/KNITRO. In terms of computational demands, the

D-SDA/KNITRO required CPU times that are 8 times larger than those needed by Instance 2.

Moreover, the DSTO/CONOPT converged to the same values for the discrete decision variables as

that obtained for Instance C (Scenario 2). The largest differences between the results for Instance

C and the DSTO/CONOPT are observed for the controller tuning parameters, i.e., QxD and QR̄

obtained from DTSO/CONOPT are two and four orders of magnitude larger, respectively, when

compared to Instance C. This leads to a slight difference in the Utility costs, where the process is
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0.18% more economic in terms of the utility cost for Instance C compared to the DSTO/CONOPT.

Furthermore, the DSTO/CONOPT required twice the CPU time compared to the computational

demands needed by IPOPT for Instance C.

Table 5.4: Results for the binary distillation column case study using alternative NLP solvers.
Optimization D-SDA DSTO
variable (KNITRO) (CONOPT)

Trays (N) 15 19
Feed tray 8 10
De [m] 0.804 0.747
xspD 0.98 0.98
xspB 0.02 0.02
QxD 0.5 12.8
QXB

708.5 0.5
QR̄ 108.4 8203
QV̄ 2054 0.0

Equations 236,932 256,221
Variables 235,846 255,118
¯ISE 0.067 0.014

Capital cost [$/yr] 2.499× 104 2.708× 104

Utility cost [$/yr] 1.111× 104 9.600× 103

Total cost [$/yr] 3.611× 104 3.668× 104

CPU [s] 8.457× 104 2.408× 105

Neighborhoods 2 -
Iterations - 4

The implementation of other NLP solvers led to similar results to those obtained for Scenarios

1 and 2 (Table 5.2). However, there are significant variations in the CPU times depending on the

selection of the NLP solver (Table 5.4). Also, note that the solutions shown in Table 5.4 correspond

to instances ii) D-SDA/KNITRO and iii) DSTO/CONOPT, whereas the implementations for i) D-

SDA/CONOPT and vi) DSTO/KNITRO did not converge to feasible solutions. Further comparison

and selection of NLP solvers can be found elsewhere [18].

5.5.3 Scenario 3: D-SDA under uncertainty

In this scenario, a set of uncertainty realizations in three model parameters is introduced for the

distillation column case study. The formulation under uncertainty is solved using the D-SDA ap-

proach. Table 5.5 shows the set of uncertainty realizations considered in the present case study. The

parameters under uncertainty correspond to the feed stream flowrate (F̄in), the relative volatility

(α), and the height over the weir on the trays (hw). It is assumed that the values for the parameters
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under uncertainty may vary within ±15% of their nominal values. Note that the nominal values for

the uncertain parameters correspond to the first realization listed in Table 5.5 (i.e., ju = 1). The

upper-level problem (design problem) has access to all the realizations in the uncertain parameter

set, whereas the NMPC (lower-level problem) has only access to the nominal values (realization

ju = 1), i.e., a nominal NMPC controller is implemented. The presence of uncertainties in the

upper-level problem generates a mismatch with the internal dynamic model used by the NMPC

framework. The rest of the model parameters remain the same as in Scenario 1 (see Table 5.1).

Note that the presence of uncertainties in the bilevel formulation does not modify the number of

logical constraints, i.e., the formulation of the master IPLC problem in the D-SDA is not affected

by the presence of the uncertainties in Table 5.5. Nevertheless, these uncertainties are accounted

for in the primal FNLPs. Therefore, the objective function for the primal FNLPs considers the

probability of occurrence of each realization ju in the set of uncertainties, i.e.,

Φju = θtx (19, 390Vss)︸ ︷︷ ︸
UCa

+
12.3(615 + 324D2

e + 486(6 + 0.76N)De) + 245N(0.7 + 1.5D2
e)

θpy︸ ︷︷ ︸
CCa

+WISE κju(tf )︸ ︷︷ ︸
ϕISE

(5.27)

where the controllability term (κ(ς, tf )) is in function of the uncertainty realizations. κju(tf ) is

given by the integration of the time-weighted ISE of the distillate and bottoms compositions, i.e.,

dκju
dt . The superstructure for the distillation column is initialized with 25 trays and the feed stream

at the 5th tray.

Results for Scenario 3 are shown in Table 5.6. From these results, it can be noted that a larger

column’s diameter (De) is obtained in Scenario 3 compared to the results in Scenario 1 (Table 5.2),

i.e., De in Scenario 3 is 78% larger compared to the averaged diameter in Scenario 1. Moreover, it is

observed that Scenario 3 returned a design with fewer trays (14 trays) compared to Scenarios 1 and

2 (Table 5.2). The economic aspects show an increase of 76% in the total cost for Scenario 3 with

respect to Instances 1-3 in Scenario 1. This is explained by the increase in the capital cost observed

in Scenario 3 with respect to the solutions in Scenario 1, i.e., Scenario 3 returned a 95% larger
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Table 5.5: Uncertainty realizations in the model parameters for the binary distillation column case
study.

Uncertainty
realizations

Feed
stream

Relative
volatility

Height
over the
weir

Weight
distribu-
tion

(ju) (F̄in)
[kmol/min]

(α) (hw)
[m]

(wju)

1 1.00 2.500 0.025400 0.60
2 1.10 2.375 0.022860 0.10
3 0.90 2.625 0.027940 0.10
4 1.13 2.450 0.026416 0.05
5 0.87 2.550 0.024384 0.05
6 1.05 2.575 0.027178 0.04
7 0.95 2.425 0.023622 0.04
8 0.92 2.600 0.026670 0.02

capital cost compared to Instances 1-3 in Scenario 1. The increase in the capital cost observed for

Scenario 3 is attributed to the increase in the column’s diameter with respect to the solutions in

Scenarios 1 and 2. On the other hand, utility cost in Scenario 3 showed an increase of 30% with

respect to Scenario 1. From a controllability point of view, Scenario 3 averaged an integral squared

error ( ¯ISE) two orders of magnitude larger than the results for Scenario 1. These differences in the

ISE values can be attributed to the presence of uncertainty in the process model parameters.

Table 5.6: Results for Scenarios 3 and 4: binary distillation column under uncertainty.
Optimization Scenario 3: Scenario 4:
variable D-SDA DSTO

Trays (N) 14 21
Feed tray 9 9
De [m] 1.407 2.26
xspD 0.98 0.99
xspB 0.01 0.01
QxD 0.5 2.11
QXB

0.5 0.5
QR̄ 0.0007 0.004
QV̄ 0 0.0004

Equations 236,932 256,221
Variables 235,846 255,118
¯ISE 1.853 17.962

Capital cost [$/yr] 4.924× 104 9.198× 104

Utility cost [$/yr] 1.412× 104 1.240× 104

Total cost [$/yr] 6.336× 104 1.043× 105

CPU [s] 7.204× 105 7.193× 105

Neighborhoods 5 -
Iterations - 3
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5.5.4 Scenario 4: DSTO under uncertainty

In Scenario 4, the DSTO method is implemented for the integration of design and NMPC-based

control of the binary distillation column (Figure 5.2) under uncertainty. In this scenario, the set of

uncertainty realizations shown in Table 5.5 that correspond to the same realizations implemented

in Scenario 3 are introduced. The upper-level problem has access to the complete set of uncertainty

realizations, whereas the NMPC (lower-level problem) uses the nominal values for the parameters

under uncertainty (i.e., realization ju = 1). The rest of the model parameters, objective function,

and discretization remain the same as in Scenario 3. The initial superstructure for the distillation

column remains the same as in Scenario 3, i.e., 25 trays and the feed stream at the 5th tray. The

results for this Scenario are shown in Table 5.6. From these results, it can be observed an increase in

the size of the distillation column with respect to the results in Scenario 2 (Table 5.2), i.e., Scenario

4 returned a column design with 21 trays and a column’s diameter (De) of 2.26m, whereas Instance

C (Scenario 2) returned a design with 19 trays and De = 0.747m. The economic results for Scenario

4 show an increase of one order of magnitude in the total cost with respect to the results in Scenario

2 (Table 5.2). Also, it is noted an increase of three orders of magnitude in the ¯ISE for Scenario 4

with respect to the results in Scenarios 1 and 2.

Additionally, a comparison of the results in Scenarios 3 and 4 shows that the D-SDA converged to

a smaller distillation column design, i.e., De is 37% smaller for the solution in Scenario 3 compared

to the solution in Scenario 4; moreover, a design with fewer trays was computed using the D-

SDA (Scenario 3) compared to the DSTO method (Scenario 4). Consequently, the total cost is

higher in Scenario 4 with respect to Scenario 3, i.e., Scenario 4 returned a 64% higher total cost

compared to Scenario 3. From a controllability point of view, the D-SDA returned a solution with

an averaged ISE that is one order of magnitude smaller to the solution obtained with the DSTO

method (Figure 5.4). Furthermore, note that the CPU times for Scenarios 3 and 4 are in the same

orders of magnitude (Table 5.6), i.e., the CPU time in Scenario 3 is only 0.15% larger than the CPU

time reported for Scenario 4.

The implementation of the D-SDA requires the solution of several FNLPs for the exploration
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Figure 5.4: Concentration profiles of distillate and bottom for Scenarios 3 and 4 for the binary
distillation column case study.

of the neighborhoods defined by the external variables. On the other hand, the DSTO method

demands the solution of a highly nonconvex NLPs, i.e., the introduction of Gaussian functions in

the DSTO method increases the nonconvexity of the optimization formulation. On the contrary,

the FNLPs in the D-SDA approach are simpler formulations compared to the NLP in the DSTO

method because all the logical constraints are not included in the FNLPs but in the master IPLC.

Therefore, the DSTO method converged to local solutions that were closer to the initial point,

whereas the D-SDA is able to circumvent this issue. Also, it was found that the presence of logical

constraints, complementarity constraints, and Gaussian functions in the formulation for the DSTO

method made the search harder for a solution of the corresponding NLP, i.e., the search for a

solution to the NLP in the DSTO method demanded the proper selection of boundaries in most of

the decision variables; otherwise, the NLP would produce convergence to low-quality local optima

or overall lack of convergence. Note that the NLP solver and its configuration for tolerances was

the same for both methods (i.e., D-SDA and DSTO) for all the scenarios. This was done to make

a fair comparison between the proposed D-SDA and the DSTO algorithms.
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5.6 Summary

The formulation for integrated design and NMPC-based control under uncertainty and structural

decisions demands the solution of a MIBLP. In this chapter, a D-SDA approach to address the

simultaneous design and NMPC-based control of process under uncertainty and naturally ordered

structural decisions is proposed. The key idea is to implement an algorithm-based methodology

to determine the optimal location of processing units or streams over a naturally ordered discrete

set. In this methodology, the MIBLP is transformed into a single-level MINLP by the implemen-

tation of a KKT transformation strategy. The binary variables associated to the superstructure

can be expressed as a function of reduced variable sets called external variables. This allows the

decomposition of the single-level MINLP into a master (IPLC) and a set of primal sub-problems.

The master problem is constructed from the external variables and solved with a D-SDA approach,

whereas the primal sub-problems are conventional nonlinear problems (NLPs) obtained by fixing

the binary variables according to the solution obtained from the master problem, i.e., the D-SDA

executes a local search, in which the master problem explores the neighborhoods described by the

external variables. This aims to determine a search direction that provides the steepest descent in

the objective function. The proposed algorithmic framework does not follow the usual definition of

convexity for integer programs, but it is based on the definition of integral convexity. Consequently,

a steepest-descent direction strategy can be implemented to explore the discrete search space. Thus,

the proposed D-SDA computes local solutions that cannot be efficiently identified using conventional

MINLP solvers. Note that the decomposition strategy reduces the complexity of the formulation be-

cause all logical constraints are solved in the master problem; consequently, the primal sub-problems

are simpler NLPs compared to the original MINLP. To compare the performance of the proposed

D-SDA approach, an alternative well established methodology based on the DSTO method was

implemented. In that methodology, the integer decisions in the single-level MINLP are allowed to

be continuous variables in a DDF. Therefore, the resulting continuous formulation can be solved

with conventional NLP solvers.

The D-SDA and DSTO methods were illustrated in a case study for the integration and NMPC-
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based control under uncertainty and structural decisions for a binary distillation column. Results

from the case study showed that the DSTO method converged to local solutions that were closer to

the initialization point. On the other hand, the D-SDA allowed to skip sub-optimal solution regions

because the framework does not demand the relaxation of the discrete variables.
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Chapter 6

Selection and refinement of finite elements for
the integration of design and control: A Hamil-
tonian function approach

The literature has pointed out that process dynamic performance is strongly coupled with process

design decisions [103, 162]. In the integration of design and control framework, dynamic decision

variables (e.g., controlled variables, manipulated variables, states, etc.) and static decision variables

(e.g., equipment size, controller tuning parameters, etc.) are closely related.

This chapter describes a methodology for the selection and refinement of the discretization mesh

for integrated design and control in formulations involving continuous variables, i.e., nonlinear pro-

gramming (NLP) formulations. The discretization of the optimization problem is performed with

OCFE. The proposed methodology improves the algorithm-based method introduced by Chen et

al. [85] through the implementation of static and dynamic decision variables in the optimization

formulation for integrated design and control, i.e., changes in the process design that modify the

process dynamics are accounted. The proposed methodology features the relocation of finite ele-

ments and the systematic addition/elimination of finite elements. The Hamiltonian function and

the estimation of the collocation error at noncollocation points are implemented as the criteria for

the selection and refinement of the finite elements. Note that the implementation of further strate-

gies for the selection and refinement of the finite elements for the discretization of the optimization

formulation is out of the scope of this study. To the author’s knowledge, studies addressing the

accurate selection of finite elements using OCFE in the context of integration of design and control

framework are not available.

The present chapter is organized as follows: Section 6.1 introduces the Mayer formulation of the

problem for the integration of design and control. The algorithm for the refinement and selection of

finite elements is detailed in Section 6.2. Section 6.3 illustrates the implementation of the proposed

methodology in two case studies. A chapter summary is presented at the end in Section 6.4.
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6.1 Problem for the integration of design and control

In this chapter, the optimization formulation for the integration of design and control is stated in

terms of a DAE formulation as follows:

min
η,x(t),u(t),y(t)

Φd(η) + ψc(η,x(tf ),u(tf ),y(tf ),dp(tf ), tf ) (6.1a)

s.t. f(η, ẋ(t),x(t),u(t),y(t),dp(t)) = 0, x(t0) = x0 (6.1b)

Φc(η, ψ̇c(t), ψc(t), ẋ(t),x(t),u(t),y(t),dp(t)) = 0, ψc(t0) = 0 (6.1c)

h(η,x(t),u(t),y(t),dp(t)) = 0, (6.1d)

g(η,x(t),u(t),y(t),dp(t)) ≤ 0, (6.1e)

ulb ≤ u(t) ≤ uub, xlb ≤ x(t) ≤ xub, t ∈ [t0, tf ] (6.1f)

where h : RNx×RNu×RNη×RNy×RNd → RNh and g : RNx×RNu×RNη×RNy×RNd → RNs rep-

resent the sets of equality and inequality constraints that define the feasibility region of the design

problem, respectively; f : R2Nx × RNu × RNη × RNy × RNd → RNf represents the dynamic process

model; x(t) ∈ RNx are the states of the system with derivatives indicated by ẋ(t). u(t) ∈ RNu

represents the vector of control actions. Vector y(t) ∈ RNy is the vector of algebraic variables. The

set of decision variables that do not depend on time (η ∈ RNη) contains the process design variables

(e.g., cross-sectional areas and equipment capacities) and the controller tuning parameters (e.g.,

proportional gains, integration reset constants and derivative time constants for a PID control). A

set of deterministic disturbances dp(t) ∈ RNd is also included in the formulation. In the objective

function, the first term Φd(η) ∈ R1
+ represents an economic term that only depends on static deci-

sion variables, e.g., capital cost; whereas the second term ψc : RNx ×RNu ×RNη ×RNy ×RNd → R1

accounts for transient costs in the process operation, e.g., operating cost. The formulation in Equa-

tion (6.1) is stated as a “Mayer problem”. The optimization formulation in Equation (6.1) can

be stated in some other equivalent forms, e.g., Lagrange or Bolza formulations [20]. To transform

Equation (6.1) into a Bolza formulation, differential Equation (6.1c) is moved to the objective func-

tion as an integral term replacing function ψc; whereas a Lagrange formulation requires only an
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integral term in the objective function, i.e., no scalar terms such as function Φd(η) is present in

the objective function. In this work, a Mayer formulation is adopted for simplicity; this allows a

straightforward specification of the corresponding Hamiltonian function for the optimization prob-

lem (6.1). The implementation of other formulation is out of the scope of this study. Interested

readers are encouraged to review [20] regarding the implementation of PMP in chemical engineering.

The optimization problem (6.1) can be discretized with OCFE and solved with conventional NLP

solvers. Traditionally, the number of finite elements is fixed and equidistributed (equally sized finite

elements). Nevertheless, the accuracy in the selection of the number of finite elements is not taken

into account while solving this problem. In the context of integration of design and control, there are

no studies addressing an adequate selection of the discretization mesh for problem (6.1). As men-

tioned above, the implementation of PMP through the calculation of the Hamiltonina function may

serve as a criterion for the selection of the finite elements. The Hamiltonian function is continuous

and constant over time for autonomous systems; conversely, underestimation of the dicretization

points may lead to non-constant profiles for the Hamiltonian function. This feature can determine

the accuracy of the discretization for problem (6.1). The evaluation of the Hamiltonian function

demands the solution of the first order necessary conditions for optimality. For the optimization

model in Equation (6.1), Hamiltonian first order necessary conditions for optimality are stated in

terms of a DAE problem. From the Mayer problem (6.1), the corresponding Hamiltonian function

can be stated as follows:

H(t) = λcΦc(η, ψ̇c(t), ψc(t),x(t),u(t),y(t),dp(t)) + λ(t)⊺f(η,x(t),u(t),y(t),dp(t))

+ ν(t)⊺h(η,x(t),u(t),y(t),dp(t)) + µ(t)⊺g(η,x(t),u(t),y(t),dp(t)) + γLu (t)
⊺(ulb − u(t))

+ γUu (t)
⊺(u(t) − uub) + γLx (t)

⊺(xlb − x(t)) + γUx (t)
⊺(x(t) − xub) (6.2)

where λ(t) ∈ RNλ , λc(t) ∈ RNλc , ν(t) ∈ RNν , µ(t) ∈ RNµ

+ , γLu (t) ∈ RNγu
+ , γUu (t) ∈ RNγu

+ ,

γlbx (t) ∈ RNγx
+ and γubx (t) ∈ RNγx

+ are adjoint variables that serve as multipliers on the constraints

for the optimization formulation. From the Hamiltonian function H: R2Nx × RNu × RNη × RNy ×

RNd ×RNλ ×RNλc ×RNν ×RNµ

+ ×RNγu
+ ×RNγx

+ → RNH in Equation (6.2) the necessary conditions
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for optimality for the problem (6.1) are as follows:

dλ(t)

dt
= −∂H(t)

∂x
,
dλc(t)

dt
= −∂H(t)

∂ψ
(6.3a)

dx(t)

dt
=
∂H(t)

∂λ
= f(η,x(t),u(t),y(t),dp(t)), x(t0) = x0 (6.3b)

dψc(t)

dt
=
∂H(t)

∂λc
= Φc(η, ψc(t),x(t),u(t),y(t),dp(t)), ψc(t0) = ψc0 (6.3c)

∂H(t)

∂ν
= h(η,x(t),u(t),y(t),dp(t)) = 0, (6.3d)

dγ(t)

dt
= −∂H(t)

∂η
, γ(t0) = 0 (6.3e)

∂H(t)

∂u
= 0,

∂H(t)

∂y
= 0 (6.3f)

λ(tf ) =
∂Φ(tf )

∂x
+
∂h(tf )

⊺

∂x
b̄, γ(tf ) = −

∂Φ(tf )

∂η
+
∂h(tf )

⊺

∂η
, λc(tf ) = 1 (6.3g)

0 ≤ γLu (t)⊥ (u(t)− ulb) ≥ 0, 0 ≤ γUu (t)⊥ (uub − u(t)) ≥ 0 (6.3h)

0 ≤ γLx (t)⊥ (x(t)− xlb) ≥ 0, 0 ≤ γUx (t)⊥ (xub − x(t)) ≥ 0 (6.3i)

where γ(t) ∈ RNγ is a vector of auxiliary functions to account for the effect of the static decision

variables on the optimality conditions. The formulation in Equation (6.3) represents the solution

of a TPBVP. From the solution of the TPBVP, states, control laws, static variables, and adjoint

variables are determined, which can then be used to evaluate the Hamiltonian function (6.2). The

differential equations in the optimization formulation (6.1) can be transformed into a set of algebraic

equations by the implementation of discretization techniques. This is described next.

6.1.1 Dicretized model: Orthogonal collocation on finite elements

In OCFE, the approximation with polynomials satisfies the differential equations exactly at specific

collocation points. In this study, OCFE strategy based on Lagrange polynomials using Radau

collocation points is implemented. Note that the refinement strategy considered in this research for

the finite elements does not depend on the selection of the trial function and polynomial roots in

the OCFE; therefore, other polynomials and roots may be chosen. The OCFE approach requires

K + 1 interpolation points to approximate the states (x(t) ∈ RNx) in a given finite element i.
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The approximation of the system states (Equations (6.3b) and (6.3c)) using Lagrange interpolation

polynomials is as follows:

xk(t) =

K∑
k=0

ℓk(τ)xi,k, ℓk(τ) =

K∏
j=0,̸=k

(τ − τj)
(τk − τj)

, t ∈ [ti−1, ti], τ ∈ [0, 1] (6.4)

where t = ti−1 + ᾱiτ , τ0 = 0, 0 < τk ≤ 1, k = {1, . . . ,K} are shifted Radau points and ᾱi is

the length of the ith finite element. OCFE with Radau points has the property that x(ti,k) = xi,k,

where ti,k = ti−1 + τkᾱi. The length of each finite element i is given by ᾱi. Moreover, Radau

collocation points feature a better numerical stability compared with other frameworks such as

Gauss collocation points [163]. Nevertheless, Gauss collocation points can achieve a higher algebraic

precision (O(ᾱK+2
i )). Lagrange polynomials offer the feature to produce physically meaningful

quantities (e.g., temperatures, concentrations, etc.). Note that other polynomials such as power

series polynomials or B-splines do not offer these features [114]. The corresponding discretized

formulation with OCFE for the optimization problem shown in (6.5) is as follows:

min
η,xi,k,ūi,k,yi,k

Φd(η) + ψc(η, xNFE ,K , uNFE ,K , yNFE ,K , dpNFE,K ) (6.5a)

s.t.

K∑
j=0

ℓ̇j(τk)xi,j − ᾱif(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.5b)

K∑
j=0

ℓ̇j(τk)ψci,j − ᾱiΦc(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.5c)

h(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.5d)

g(η, xi,k, ui,k, yi,k, dpi,k) ≤ 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.5e)

xi+1,0 =

K∑
j=0

ℓj(1)xi,j , i = {1, . . . , NFE − 1} (6.5f)

xf =

K∑
j=0

ℓk(1)xNFE ,j , x1,0 = x(t0) (6.5g)

ulb ≤ ui,k ≤ uub, xlb ≤ xi,j ≤ xub, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.5h)

where ℓ̇k(τ) is the derivative of the Lagrange polynomials (i.e., ℓ̇k(τ) =
dℓk(τ)
dτ ), finite elements

and collocation points are indexed by i and k, respectively. Note that index j is an alias of index

k. If the finite elements are sufficiently small in length, the discretized formulation in Equation
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(6.5) provides an accurate approximation to the optimization problem in Equation (6.1) [145]. The

size of the optimization problem depends on the selection of the number collocation points (K) and

the number of finite elements (NFE). Thus, conventional NLP solvers can be implemented for the

solution of the discretized problem (6.5). Similarly, the Hamiltonian function and the optimality

conditions in Equations (6.3) and (6.2) can be discretized using OCFE, respectively. A complete

review of the development, features, and numerical properties of OCFE can be found elsewhere

[145, 17, 164].

6.1.2 Estimation of the collocation error

Optimization formulations that are discretized with equidistributed finite elements (i.e., same size

finite elements ᾱ1 = ᾱ1 = . . . = ᾱI) are generally easier to solve [18]. Nevertheless, by allowing the

finite elements to “move” (i.e., finite elements are allowed to change in size), the finite elements can

concentrate in those regions where states profiles experience large variations in the states gradients.

This may provide a more accurate approximation to the differential equations in the optimization

problem (6.1) with fewer finite elements. Note that the formulation in Equation (6.1) considers

continuous process design and control decisions. The implementation of discrete controllers (con-

trol actions defined by sampling intervals) may affect the distribution of the discretization points

by restricting the discretization of states in defined sampling intervals. Discrete control schemes

such as discrete-PID or MPC/NMPC is out of the scope of this research. To allow the finite ele-

ments to move, it becomes necessary to estimate the collocation error via the implementation of

a monitor function [121]. These functions can be constructed in different ways: i) estimate error

using correlations to determine the arclength or curvature of the functions; ii) estimate error such

as solution residuals or the estimation of derivative jumps on the element boundaries; and iii) error

estimation based on the physics of the problem [165]. Interested readers are encouraged to consult

the work presented by Budd et al. [121] to know more about monitor functions in moving grids

for discretization. In this study, the collocation error is estimated using the information embedded

in the polynomials of the discretization strategy (a posteriori error estimation strategy), i.e., the

residuals are evaluated at noncollocation points (τnc). This approach was selected because avoids
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the use of additional correlations for the estimation of the collocation error compared with other

strategies. The global collocation error (ec(t) = x(t)−xp(t)), in the discretization of the DAE-based

formulation (Equation (6.5)), satisfies the following local equalities [120]:

∥eci(t)∥ ≦ C̄ncᾱi∥Λi(ti,nc)∥+O(ᾱk+1) (6.6)

where xp(t) represents the approximated discrete solution of states (x(t)). Λi(ti,nc) is called a

monitor function of ith finite element evaluated at the ncth noncollocation point, C̄nc is a constant

that depends on noncollocation points. In the open literature, there are multiple options to define

Λi, a complete review on the selection of function Λi can be found elsewhere [120]. In this study,

function Λi is directly evaluated from the residuals of the DAE model (Equations (6.5b)-(6.5e)) at

noncollocation points ti,nc as follows:

Λi(ti,nc) =


dxi,nc

dτ (ti,nc)− ᾱif(η, xi,nc, ūi, yi,nc, dpi,nc)

h(η, xi,nc, ūi, yi,nc, dpi,nc)

g(η, xi,nc, ūi, yi,nc, dpi,nc)

 i = {1, . . . , NFE}, nc = {1, . . . , NC} (6.7)

C̄nc =
1

Ānc

∫ τnc

0

K∏
k=1

(ι− τk)dι, Ānc =
K∏
k=1

(τnc − τk) (6.8)

where ti,nc = ti−1 + ᾱiτnc, τnc ∈ [0, 1]. At collocation points, the function Λi will be zero;

therefore, τnc ̸= τk. Then, the approximation error is estimated to be ∥eci(t)∥ ≤ C̄nc∥Λi(ti,nc)∥. If

an error tolerance (ϵΛ) is assigned to the estimation of the collocation error, finite elements can be

adjusted such that the following constraint is satisfied:

C̄nc∥Λi(ti,nc)∥ ≤ ϵΛ (6.9)

6.2 Algorithmic framework

This section describes the proposed methodology to address the refinement and selection of the

number of finite elements for integration of design and control. The strategy consists in the iterative
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solution of optimization problems to determine if the finite elements are moved, eliminated, or added

to the formulation for simultaneous design and control. To do so, the present algorithm identifies

those sections where the residual error of the collocation strategy or the constant profile over time

of the Hamiltonian function are not achieved. Algorithm 2 and Figure 6.1 present the proposed

algorithm for the refinement of the discretization mesh in the integration of design and control

framework. As shown in Algorithm 2, a feasible distribution and number of finite elements is

calculated in the first stage. This initial calculation is carried out by the recursive solution of the

formulation for optimal design and control given an estimated control law (u(t)), a process design,

and constrained by the monitor function Λi. In a second stage, the problem of simultaneous design

and control is solved using a fixed size and number of finite elements. In the third stage, the size of

the finite elements is refined based on the criteria of function Λi and the Hamiltonian function H(t).

If the criteria is not satisfied, the number of finite elements is recalculated, as shown in Algorithm

2. Finite elements can be bisected in those regions where the Hamiltonian function is not constant,

whereas relatively small finite elements may be removed. The problem converges if the criteria of

function Λi and H(t) is satisfied. The detailed description of each stage in the algorithm is presented

next.

6.2.1 Stage 1: Initialization

The algorithm is initialized by setting the iteration index re = 1; the tolerance for the estimation

of the collocation error in Stage 1 (ϵsΛ); and the maximum number of iteration (Nr). Moreover,

additional parameters are defined as follows: the tolerance for the Hamiltonian function profile (ϵH),

which aims to determine if function is constant over time; the step-size for sensitivity calculations

(∆ᾱ), which determines the gradients of the decision variables; the tolerance for the estimation of the

collocation error in Stage 3 (ϵΛ) that aims to improve the refinement of finite elements from Stage 1;

and the search space region for the finite elements (δ) in the refinement stage (Stage 3). In this first

stage, a feasible initial discretization mesh is calculated by the solution of a sequence of NLPs. The

initialization accounts for the residual DAEs at noncollocation points given the dicretized model

of the process (Equation (6.5)). The aim is to maximize the length of each finite element such
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Figure 6.1: Algorithm for the refinement of the discretization mesh on the integration of design and
control.

that the approximation error at noncollocation points remain below a user defined tolerance (ϵsΛ);

this reduces the number of finite elements required in the discretization. The initialization stage

requires of an initial guess for the process design (ηinit) and control actions (ūinit(t)). The initial

guess for η and ū(t) can be obtained by solving the problem in Equation (6.5) using equidistributed

finite elements. This allows the algorithm to obtain feasible guesses for process design and control

actions. The formulation of the optimization problems for the initialization stage is as follows:

α̂i = max ᾱi (6.10a)

s.t.

K∑
j=0

ℓ̇j(τk)xj − ᾱif(ηinit, xk, ūinit, yk, dpk) = 0, x0 = xi−1,K ∀ k = {1, . . . ,K} (6.10b)

h(ηinit, xk, ūinit, yk, dpk) = 0, ∀ k = {1, . . . ,K} (6.10c)
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−ϵsΛ ≤ C̄ncΛi(ti,nc) ≤ ϵsΛ (6.10d)

0 ≤ ᾱi ≤ min (ᾱmax, tf −
i−1∑
i=1

α̂i) (6.10e)

This problem is solved piecewise to determine the size of ith finite element (α̂i), i.e., Equation

(6.10) determines the size of a single finite element at a time. Note that initial values for ODEs are

given by x0. These values correspond to the last point of a previous iteration of Equation (6.10),

i.e., xi−1,K (states at the last collocation point K in the (i− 1)th finite element). The initialization

problem (Equation(6.10)) is solved NFE times until the summation of the length of finite elements

is equal to the simulation time horizon, i.e.,
∑N

i=1 ᾱi = tf . Therefore, the initial number of finite

elements corresponds to NFE . In this stage, it is recommended to select relatively large tolerances,

e.g., ϵsΛ > 1× 10−3; this selection reduces the initial number of finite elements. Then, the algorithm

can refine and increase the number of finite elements (if needed) in the following stages.

6.2.2 Stage 2: Integrated design and control problem

In this stage, the monitor function (residual function) Λi is appended to the integration of design and

control problem shown in Equation (6.5). In the formulation for stage 2, the length and number of

finite elements are fixed to the values determined in Stage 1, i.e., ᾱi = α̂i with NFE finite elements.

The problem formulation for stage 2 is as follows:

min
η,xi,j ,ui,j ,yi,j

Φd(η) + ψc(η, xNFE ,K , uNFE ,K , yNFE ,K , dpNFE,K ) (6.11a)

s.t.
K∑
j=0

ℓ̇j(τk)xi,j − α̂if(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE}, (6.11b)

K∑
j=0

ℓ̇j(τk)ψci,j − α̂iΦc(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE} (6.11c)

h(η, xi,k, ui,k, yi,k, dpi,k) = 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE}, (6.11d)

g(η, xi,k, ui,k, yi,k, dpi,k) ≤ 0, ∀ k = {1, . . . ,K}, i = {1, . . . , NFE}, (6.11e)
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xi+1,0 =

K∑
k=0

ℓk(1)xi,k, ψci+1,0 =

K∑
k=0

ℓk(1)ψci,k , i = {1, . . . , NFE − 1}, (6.11f)

xf =

K∑
k=0

ℓk(1)xI,k, ψcf =

K∑
k=0

ℓk(1)ψcNFE,k
x1,0 = x(t0) (6.11g)

Λi(ti,nc) =


dxi,nc

dτ (ti,nc)− α̂if(η, xi,nc, ui,nc, yi,nc, dpi,nc)

h(η, xi,nc, ui,nc, yi,nc, dpi,nc)

g(η, xi,nc, ui,nc, yi,nc, dpi,nc)

 i = {1, . . . , NFE}, nc = {1, . . . , NC}

(6.11h)

Optimal solution for the decision variables (η∗,x∗(t),u∗(t),y∗(t)) are obtained from the solu-

tion of Equation (6.11). Note that function Λi is not constrained, as shown in Equation (6.11h).

Therefore, the solution of this optimization problem is straightforward since function Λi is being

only evaluated. In this stage, it is necessary to calculate the gradients of the decision variables with

respect to the size of each finite element, i.e., ∇α̂i
η,∇α̂i

x(t),∇α̂i
u(t),∇α̂i

y(t). To evaluate these

gradients, forward (α̂+) and backward (α̂−) point evaluations of the finite elements are enforced

around the nominal sizes of the finite elements (α̂). Then, the optimization problem (6.11) is sys-

tematically solved where each of the finite elements is set to α̂+
i and α̂−

i at a time, respectively,

i.e., the optimization problem is solved assigning the ith finite element ᾱi = α̂+
i or ᾱi = α̂−

i while

keeping the rest of the finite elements constant and equal to their nominal values (α̂i). Therefore,

the optimization problem in Equation (6.11) is solved 2NFE times to determine the sensitivity of

the decision variables with respect to the size of each finite element, i.e., first order gradients can

thus be calculated using finite differences as follows:

∂x∗

∂ᾱ
|α̂=

(x∗ (ᾱ+) |α̂ −x∗ (ᾱ−) |α̂)
∆ᾱ

(6.12)

where ∆ᾱ represents the difference between the forward step (α̂+
i ) and the backward step (α̂−

i )

for the ith finite element. The gradients for the remaining decision variables are calculated in
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a similar fashion. Note that these gradients are only valid around the nominal point ᾱi = α̂i.

Higher order gradients can be calculated but additional forward and backward evaluations around

the nominal points are needed thus increasing the computational costs. Recommended values for

∆ᾱ can be 0.001α̂i ≤ ∆ᾱ ≤ 0.1α̂i. Further details on the calculation of sensitivity gradients

and the selection of parameter ∆ᾱ can be found elsewhere [127]. Alternative options such as the

implementation of analytic derivatives together with optimization solvers such as sIPOPT may

reduce the computational burden [166]. Numerical alternatives such as automatic differentiation

arise as a promising alternative for the determination of sensitivity gradients [167]. The potential

of this numerical technique is out of the scope of this work; however, it will be considered as part

of the future work.

6.2.3 Stage 3: Refinement of finite element sizes

As explained above, the Hamiltonian function must be continuous and constant over time for au-

tonomous systems with optimized control actions (u∗(t)) in the context of the simultaneous design

and control tuning problems considered in this study and an accurate discretization mesh. Cal-

culation of the Hamiltonian function depends on the solution of Equation (6.3), these optimality

conditions provide information about adjoint variables (λ(t), ν(t), µ(t), γLu (t), γ
U
u (t), γ

L
x (t) and

γUx (t)). Kameswaran and Biegler [168] showed that the KKT multipliers from the solution of Equa-

tion (6.11) provide an O(ᾱK) approximation to the adjoint variables calculated in Equation (6.3).

In this stage, the decision variables and the adjoint variables can be evaluated in terms of the size

of the finite elements depending on the order of the gradients determined in the previous stage, i.e.,

x(ᾱ) |α̂= x∗(α̂) +
∞∑

kl=1

1

kl!
∇klx(ᾱ) |α̂ (ᾱ− α̂)kl (6.13)

where ∇klx(ᾱ) is the kthl -order gradient for the states (x). Gradients are calculated with respect

to the length of the finite elements (ᾱ) and evaluated at the nominal mesh distribution (i.e., α̂). x∗

corresponds to the optimal values of the states obtained from the solution of Equation (6.11) (see

Algorithm 2). The rest of the decision variables and adjoint variables are evaluated in terms of the
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size of the finite elements in the same fashion. Consequently, the Hamiltonian function in Equation

(6.2) can be stated as a function of the size of the finite elements, i.e., H(ᾱ). The Hamiltonian

function can then be implemented as a physical criterion of the refinement of the length of the finite

elements by enforcing the condition that this function must be constant over time [169]. Thus, the

size of the finite elements can be refined in terms of the criteria given by functions Λi(ᾱ) and H(ᾱ).

To do so, the economic objective function (Equation (6.11a)) is optimized and constrained by the

criteria given by functions Λi(ᾱ) and H(ᾱ) whereas the decision variables are the lengths of the

finite elements (ᾱ). Therefore, the optimization problem for the refinement of the length of the

finite elements is as follows:

min
ᾱi,ωi,k,ϑi,nc,H̄

Φd(η(ᾱi)) + ψc(xI,K(ᾱi), uI,K(ᾱi), yI,K(ᾱi), dpI,K )

+ M̄

(
I∑

i=1

K∑
k=1

ωi,k +

I∑
i=1

NC∑
nc=1

ϑi,nc

)
(6.14a)

−(ϑi,nc+ϵΛ) ≤ C̄ncΛi(ᾱi) ≤ (ϑi,nc+ϵΛ), ϑi,nc ≥ 0, i = {1, . . . , NFE}, nc = {1, . . . , NC} (6.14b)

−(ωi,k + ϵH) ≤ H(ᾱi)− H̄ ≤ (ωi,k + ϵH), ωi,k ≥ 0, i = {1, . . . , NFE}, k = {1, . . . ,K} (6.14c)

max (0, α̂i(1− δ)) ≤ ᾱi ≤ α̂i(1 + δ) (6.14d)
I∑

i=1

ᾱi = tf (6.14e)

where ωi,k ∈ R1
+ and ϑi,nc ∈ R1

+ are dummy variables that are necessary to ensure feasibility

in the solution of the formulation in Equation (6.14). ϵΛ and ϵH are error tolerances for the

approximation in the OCFE strategy and the Hamiltonian profile, respectively. The variable H̄ aims

to enforce the Hamiltonian function profile to be constant over time. If the Hamiltonian function

profile (H(ᾱi)) is not constant over time, the artificial variable ωi,k will take values different from

zero, i.e., ωi,k > 0; likewise, if the approximation error accounted by the residual function Λi is

greater than the tolerance (ϵΛ), the artificial variable ϑi,nc will be greater than zero (ϑi,nc > 0).

Since stage 3 aims to improve the sizing of finite elements across the iterations of the algorithm, the

tolerance for the estimation of the collocation error must be improved with respect to the collocation

tolerance in Stage 1, i.e., ϵΛ < ϵsΛ. Note that the dummy variables are added to the cost function
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as a term penalized by M̄ > 0. The magnitude of this penalty parameter (M̄) is not know a

priori. A strategy for the selection of this penalty term is to consider the magnitude of the adjoint

variables, i.e., M̄ ≥ ∥Ξ∥∞, where Ξ = [λ(t), ν(t), µ(t), γLu (t), γ
U
u (t), γ

L
x (t), γ

U
x (t)]. From Equation

(6.14d), it can be observed that the bounds for the search space in the optimization formulation

are given by the parameter δ. This parameter serves as an indicator of the region of feasibility of

the approximation for the design and control variables, and the adjoint variables (Equation (6.13)).

The approximation expressions stated in Equation (6.13) are only valid around the nominal length

of the finite elements and the optimal solution of the optimization problem in Equation (6.11).

6.2.4 Stage 4: Refinement of the number of finite elements

The methodology adds finite elements in sections where the Hamiltonian function profile H(t) is

not constant over time or the collocation error criterion is not satisfied, i.e., sections where the

dummy variables in Stage 3 are ωi,k > 0 and ϑi,nc > 0, respectively. The strategy proposed in

this work consists of the bisection of the finite elements where the dummy variables ωi,k ̸= 0 and

ϑi,nc ̸= 0. Similarly, it is accounted for the standard deviation (σ) of the lengths of the finite element

to determine if a finite element should be removed or not, i.e., relatively small finite elements are

removed from the formulation. Thus, the heuristics for the the refinement of the number of finite

elements (addition/elimination) are as follows:

� If the artificial variable ωi,k > 0 or ϑi,nc > 0, then the ith finite element is bisected.

� If ith finite element has a length ᾱi < āσ, then this finite element is merged to the ith + 1

finite element. Where ā ∈ R+ is a multiplier to determine the confidence interval for finite

element merging. The selection of this parameter determines the sensitivity of the algorithm

to remove finite elements. A suggested selection for this parameter is ā ≥ 1. Note that setting

ā < 1 may merge relatively large finite elements, which may be difficult to accomplish with

the collocation error criterion. Moreover, increasing the magnitude of ā (e.g., ā >> 1) may
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also increase the number of finite elements thereby increasing the computational burden in

the algorithm.

The implementation of these heuristics returns a refined number of finite elements N∗
FE with

corresponding lengths ᾱ∗
i .

6.2.5 Convergence criteria

As shown in Algorithm 2, the values obtained from Stage 3 for ωi,k and ϑi,nc are used to determine

if a suitable number of elements, and their sizes, have been found. If ωi,k and ϑi,nc are equal to

zero in all the discretization points and the noncollocation points, then stop, an optimal solution

has been found, i.e., the criteria for the residual function Λi and the Hamiltonian function profile

H(t) comply with the tolerances for the approximation in the OCFE strategy:

−ϵH ≤ H(ᾱ)− H̄ ≤ ϵH , −ϵΛ ≤ C̄ncΛi(ᾱ) ≤ ϵΛ (6.15)

Otherwise, if the convergence criteria stated in Equation (6.15) is not satisfied, the number of

finite elements is refined as described above in Stage 4. The refined finite elements in Stage 4 are

set as the new estimation, i.e., NFE and ᾱi for the next iteration re = re + 1, respectively. Then,

return to Step 2. This procedure continues until the convergence criteria is met or the maximum

number of iterations (Nr) is reached. As mentioned in section 6.2.1, it is recommended to select

a relatively large tolerance ϵΛ in the initialization stage. This aims to estimate a small initial

number of finite elements. Then, the algorithm can increase and refine the finite elements until the

convergence criteria is satisfied. If a unnecessary large number of finite elements is given at the

initialization stage, there is the possibility that the convergence criteria is satisfied but a minimum

of finite elements is not guaranteed, e.g., assume a refined solution retrieved from the refinement

algorithm with N∗
FE and ᾱ∗

i , if all the finite elements are bisected (i.e., 2N∗
FE and ᾱ∗

i /2) the criteria

of functions Λi and H(t) is still satisfied, but the number of finite elements was increased to 2N∗
FE .

If the algorithm converges in the first iteration, it is recommended to increase ϵΛ for Stage 1. The
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algorithm presented in this chapter assumes that there are no integer decisions in the optimal design

and control formulation.

As described above, convergence of the algorithm depends on minimization of the collocation

error and the reduction of fluctuations in the Hamiltonian function profile to acceptable tolerances,

i.e., tolerances ϵΛ and ϵH must be satisfied. Convergence of the algorithm may not be guaranteed

due to relatively small tolerances for the collocation error (ϵΛ) may not be achieved with a finite

number finite elements, i.e., the collocation error is not indefinitely improved if the number of finite

elements are increased indefinitely. Wright [119] compared five adaptive methods for discretization

refinement. They found that increasing the number of discretization points may not improve the

estimation of the collocation error. Thus, the selection of tolerance ϵΛ plays a relevant role in

the convergence of the proposed algorithm. Therefore, relatively small values on ϵΛ may not be

possible to achieve by increasing indefinitely the number of finite elements. Wright [119] also found

that the discretization of differential equations has an asymptotical behavior in the approximation

error; thus, increasing the number of discretization points does not improve the approximation

indefinitely. The selection of ϵΛ may depend on the scale of the process, the smoothness and

stiffness of the differential equations, etc.; for example, processes with small time constants that

experience large sudden changes to small variations in the process conditions may demand the

implementation of relatively small finite elements to accurately describe the process dynamics; these

scenarios are observed in most of the chemical processes. Further analysis on the estimation of the

collocation error and selection of tolerance ϵΛ can be found elsewhere [116]. The later convergence

criterion requires that the discretization mesh guarantees the accurate approximation of the control

trajectories that satisfy the tolerance ϵH for the Hamiltonian function profile. However, there is

not rigorous proof that the discretization of problem (6.1) (i.e., a Mayer problem) with a finite

number of finite elements will always return a continuous over time Hamiltonian function profile.

Nevertheless, some guidelines are provided for the termination of the iterative procedure. These

guidelines ensure the convergence to a solution that satisfies the user-defined tolerances (ϵΛ and ϵH)

or increases the magnitude of the tolerances such that they can be satisfied. These guidelines are

as follows:
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� If after NR consecutive iterations of the algorithm there are no changes in ϑi,nc (i.e., if

GRDΛ = (ϑi,nc)re − (ϑi,nc)re−1 = 0 after NR consecutive iterations), then increase ϵΛ by an

order of magnitude (i.e., ϵΛ = 10 (ϵΛ)).

� If afterNR consecutive iterations of the algorithm there are no changes in ωi,k (i.e., ifGRDH =

(ωi,k)re − (ωi,k)re−1 = 0 after NR consecutive iterations), then increase ϵH by an order of

magnitude (i.e., ϵH = 10 (ϵH)).

� If after NR consecutive iterations of the algorithm the magnitude of ωi,k or ϑi,nc increases

(i.e., if GRDΛ = (ϑi,nc)re − (ϑi,nc)re−1 > 0 or GRDH = (ωi,k)re − (ωi,k)re−1 > 0 after NR

consecutive iterations), then take the last number and lengths of finite elements in which

GRDΛ/GRDH < 0 and increase ϵΛ/ϵH by an order of magnitude according.

� If after NR consecutive iterations of the algorithm the net number of finite elements does not

vary (i.e., GRDNFE
= (NFE)re − (NFE)re−1 = 0) and there are no changes in ωi,k or ϑi,nc,

then bisect the largest finite element in Stage 4, i.e., max (ᾱi) = max (ᾱi) /2. This increases

the number of finite elements by 1 thus allowing the algorithm to conduct a new search.

For simplicity, only the first two items in the guidelines are indicated in the Algorithm (2) as

part of the convergence criteria; the rest of the items follow the same structure.

6.3 Case studies

The methodology described in the previous section is illustrated using two case studies. All the

numerical implementations were performed in GAMS 37.1 and IPOPT was used as the NLP solver.

Operating system (OS) and hardware specifications are as follows: 64-bit Windows Server 2019, 2

Intel(R) Xeon(R) E5-2620 v4 CPU, 2.10GHz, and 96GB RAM.

6.3.1 Two CSTRs in series

The first case study presents a reaction system with 2 continuous stirred tank reactors (CSTRs)

connected in series (see the process’ diagram Figure 6.2). This case study is based on the system
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Algorithm 2 Pseudocode for the algorithm for the refinement of the discretization mesh on the
integration of design and control

Input: ϵsΛ, ϵH , ϵΛ, ∆ᾱ, δ, ā, η̄, ū(t), Nr, NR
Output: x∗(t), u∗(t), y∗(t), η∗, ᾱ, H̄
Stage 1: α̂i, NFE ← Equation (6.10) (ϵΛ, η̄, ū(t))
while re ≤ Nr do

Stage 2: η∗,x∗(t),u∗(t),y∗(t),∇α̂i
η∗,∇α̂i

x∗(t),∇α̂i
u∗(t),∇α̂i

y∗(t) ← Equation (6.11)
(α̂i, NFE)

Stage 3: ᾱ∗
i , ωi,j , υi,nc ← Equation (6.14) (η∗,x∗(t), u∗(t), y∗(t), ∇α̂i

η∗, ∇α̂i
x∗(t), ∇α̂i

u∗(t),
∇α̂i

y∗(t))
if ωi,j = 0 and υi,nc = 0 then return x∗(t),u∗(t),y∗(t), η∗, ᾱ, H̄

Algorithm has converged
else if GRDT = (υi,nc)re − (υi,nc)re−1 = 0 (NR consecutive iterations) then return εT =

10(εT )
re = re + 1, go to Stage 2

else if GRDH = (ωi,j)re − (ωi,j)re−1 = 0 (NR consecutive iterations) then return εH =
10(εH)

re = re + 1, go to Stage 2
else

re = re + 1, go to Stage 4
end if
Stage 4: Refine number of finite elements (I)
if ωi,j > 0 or υi,nc > 0 then

Bisect ith finite element
else if ᾱi < āσ then

ith finite element is merged to the ith + 1 finite element
end if

end while

presented by Schweiger and Floudas [170], where an irreversible liquid phase exothermic reaction

A → B takes place. The temperature in each reactor is controlled using water cooling flow rates

passing through the cooling jackets. ReactantA is fed to the system by the flow rate F̄in [lbmol/min]

at a concentration CA0 [lbmol/ft3] and an inlet temperature Tin [◦F ]. Concentration of A leaving

the first reactor is given by CA1, whereas the concentration at the outlet stream of the second reactor

is given by CA2. The liquid holdup in both reactors is given by hT (i.e., both reactors are assumed

to have the same size), whereas the temperatures of the reaction media are T1 and T2, respectively.

Likewise, the design decision variables are given by the diameter (De [ft]) of the CSTRs. The

aspect ratio (hT /De) is set to 2 [147]. The cooling jackets volume (V j [ft3]) and heat-transfer

area (Ae [ft2]) are functions of hT and De, i.e., V j = hV j(hT , De) and Ae = hAe(hT , De). The
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fresh water introduced to the jackets as cooling media (F̄w1 and F̄w2, respectively) has an initial

temperature T 0
c [◦F ]; thus, the temperatures for the cooling jackets are Tc1 and Tc2, respectively.

Boundaries for the temperatures of the cooling jackets are 80◦F ≤ Tc ≤ 212◦F . The system aims

to maintain the concentration of component A at the outlet flow rate (i.e., CA2) at an specific

concentration of 0.05 [lbmol/ft3]. To enforce process dynamics, it is considered the implementation

of a disturbance in the input parameters CA0 and Tin. This disturbance consists on the following

step changes CA0 = [1, 0.85] and Tin = [600, 575]. The step change is enforced in both variables

at t = 5h. The dynamic model is shown in Equation (4.10), the controller models are given by

Equation (6.16), whereas the corresponding model parameters are presented in Table 6.1.

Figure 6.2: Reaction system with 2 CSTRs in series.

F̄w1 = F̄ 0
w1 +KC1ē1(t) +KI1

∫ tf

t0

ē1(t) dt+KD1
dē1(t)

dt
(6.16a)

F̄w2 = F̄ 0
w2 +KC2ē2(t) +KI2

∫ tf

t0

ē2(t) dt+KD2
dē2(t)

dt
(6.16b)

where the manipulated variables are denoted by F̄w1 and F̄w2, respectively; F̄
0
w1 and F̄

0
w2 are bias

steady-state values of cooling water; KC , KI , and KD are the controller’s proportional, integral, and

derivative gains, respectively. Error signal in the PID controller (ē(t)) is defined as the difference

between the controller variables and the reference set-point, i.e., ē(t) = x(t)− xsp.

The cost function consists of an annualized capital cost (CCa), an operating cost (OCa), and a

variability cost (V Ca). The CCa is related to the size of the required equipment. The OCa depends
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Table 6.1: Model parameters for the CSTRs case study.
Parameter Value

Cp [BTU/(ft3R)] 37.5
∆Hrx [BTU/lbmole] -3,000
E [BTU/lbmole] 30,000
kre [hr−1] 4.08× 1010

ρ [lb/ft3] 50
MW [lb/lbmole] 50
Cw
p [BTU/(ft3R)] 62.38

Uh [BTU/(hr ft2R)] 300
Tref [R] 600
TL
1 , T

L
2 [R] 542.8

TU
1 , TU

2 [R] 670.0
TL
c1, T

L
j2

[R] 532.0

TU
c1, T

U
j2

[R] 668.0

on the cost of the availability, conditioning and transportation of the cooling water to cool down the

reactors. In the V Ca, the deviations of CA1 and CA2 with respect to the corresponding set-points

are penalized, i.e.,

CCa = 2(1917(D1.066
e + h0.802T )) (6.17)

OCa = 32.77

∫ tf

t0

F̄w1(t) + F̄w2(t) dt (6.18)

V Ca = 1.0× 109
(∫ tf

t0

(CA1(t)− Csp
A1)

2 dt+

∫ tf

t0

(CA2(t)− Csp
A2)

2 dt

)
(6.19)

where the OCa depends on the cost of the availability, conditioning and transportation of the

cooling water to cool down the reactors; in the V Ca, the deviations of CA1 and CA2 with respect to

the corresponding set-points are penalized; Csp
A1 and Csp

A2 correspond to the set-points of CA1 and

CA2, respectively.

In this study, decentralized PID controllers are considered to maintain the concentration of each

reactor for component A at the set-points. Manipulated variables correspond to the flow rates of

cooling water in each reactor F̄w1 and F̄w2, respectively. Boundaries for the manipulated variables

are 0 ≤ F̄w ≤ 100ft3/h. Therefore, the control pairing was selected from a RGA analysis and is as

follows: F̄w1 is manipulated to control the concentration of A in the first reactor (CA1) whereas F̄w2
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is manipulated to control the concentration of A in the second reactor (CA2). Controller’s gains

(KC1, KI1, KD1, KC2, KI2, and KD2) are part of the decision variables. The set-point for CSTR

1 (Csp
A1) is included as part of the decision variables in the optimization formulation, where as the

set-point for CSTR 2 is set to Csp
A2 = 0.05 [lbmol/ft3]. In this case study, three Radau collocation

points were selected (K = 3). Also, three noncollocation points per finite element are implemented

(τnc = [0.77525, 0.399999, 0.822474]); these were selected to be the middle point between each

collocation point (i.e., τnc = (τk − τk+1)/2). The rest of the parameters for the algorithm are as

follows: ϵsΛ = 1 × 10−3, ∆ᾱ = 0.01, ϵH = 1 × 10−9, ϵΛ = 1 × 10−6, M̄ = 1 × 109, δ = 0.15, and

ā = 1.5.

The initial estimation of finite elements in the first stage of the algorithm determined 26

nonequidistant finite elements, as shown in Table 6.2 (Scenario 1-Instance A). The refinement

methodology returned a solution with 43 refined finite elements (Scenario 1-Instance B). As shown

in Table 6.2, it is observed a difference of 60% in the size of the reactor’s volume (VR) between the

solutions with 26 and 43 finite elements, that is, the solution with the refined finite elements shows

a reduction in the equipment size. Moreover, the set-point for the first reactor is 58% larger in the

solution with the refined finite elements (43 refined finite elements) with respect to the solution with

the initial estimation of finite elements (26 finite elements). These differences between the initial

estimation (Instance A) and the refined number of finite elements (Instance B) are also extended to

the objective function. The total cost with the refined number of finite elements (2.37× 105 [$/yr])

is 39% lower than the total cost obtained with the initial estimation of finite elements (3.92 × 105

[$/yr]). Moreover, from Table 6.2 it can be noted a differences in the steady-state cooling water

flow rates (F̄ 0
w1 and F̄ 0

w2). The solution with 26 finite elements (Instance A) demands higher flow

rates of cooling water at steady-state, i.e., 48% and 359% higher cooling flow rates in the reactors

1 and 2, respectively, compared to the solution with 43 refined finite elements.

The formulation for the integration of design and control in this case study was also solved with

a conventional equidistributed finite elements strategy (Scenario 2). The optimization problem was

solved using 26 (Instance C) and 43 (Instance D) equidistributed finite elements, i.e., the initial

estimation and final solution of finite elements in Scenario 1, respectively. The results for Scenario
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Table 6.2: Results for the two CSTRs in series case study.

Optimization variable

Refined Equidistributed Augmented
Elements Elements Model

(Scenario 1) (Scenario 2) (Scenario 3)
Instance A Instance B Instance C Instance D

NFE 26 43 26 43 86
De [ft] 7.36 5.53 7.34 6.73 6.06
VR [ft3] 626.7 266.7 622.9 480.3 350.6
Csp
A1 [lbmole/ft3] 0.1487 0.235 0.239 0.248 0.250

F̄ 0
w1 [ft3/h] 37.5 25.3 51.6 43.4 33.8
KC1 4442.8 1472.4 4531.2 3692.4 3958.5
KI1 2744.3 527.85 2863.6 3774.5 4284.3
KD1 2110.8 794.96 3161.8 3028.3 2271.1
F̄ 0
w2 [ft3/h] 34.1 7.21 8.68 6.72 5.75
KC2 3226.6 1607.4 3230.3 2392.1 1987.9
KI2 804.04 684.89 1143.4 1338.3 1584.3
KD2 0.0 936.41 2767.8 2409.2 1965.1
Equations 1785 2941 1785 2941 5865
Variables 1787 2943 1787 2943 5867
Capital cost [$/yr] 2.78× 105 1.64× 105 2.77× 105 2.36× 105 1.94× 105

Operating cost [$/yr] 5.53× 104 2.43× 104 3.99× 104 3.02× 104 2.03× 104

Variability cost [$/yr] 5.86× 104 4.96× 104 7.93× 104 5.83× 104 3.85× 104

Total cost [$/yr] 3.92× 105 2.37× 105 3.96× 105 3.25× 105 2.53× 105

CPU [s] 98.2 7.1× 103 17.6 31.2 238.4
Iterations 1 3 - - -

2 in Table 6.2 show that an increase in the number of equidistributed finite elements from 26

(Instance C) to 43 (Instance D) improves the economics since the objective function improved 18%

from Instance C to Instance D. This improvement was similar to that observed for Scenario 1. From

the design’s point of view, reactor’s volume (VR) for Instance D is 22% smaller compared to that

obtained for Instance C. This represents a reduction of 14% in the equipment size. Moreover, it

can be observed reductions of 15% and 22% in the steady-state cooling water flow rates (F̄ 0
w1 and

F̄ 0
w2, respectively) from Instance C to Instance D, respectively. Furthermore, the results in Table

6.2 show that the solution on Instance B returns a more economically attractive process design

compared to the solution from Instance D (Scenario 2), i.e., the total cost with the refined finite

elements (43 finite elements) is 27% lower than the solution with an equidistributed finite elements

strategy. Also, it is noted that the controller gains are larger for the solution in Instance D (Scenario

2) with respect to the solution obtained on Instance B. Thus, the controller’s gains KI and KD

are larger for the solution with equidistributed finite elements. This may lead to a controller with

a faster response. From Figure 6.3, it can be confirmed that the amplitude of the changes in
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the controlled variables due to changes in the process disturbances, is smaller in the solution on

Instance D (Scenario 2). Furthermore, it is distinguished that the reactors are larger in the solution

on Instance D (Scenario 2) compared with the equipment size computed in Scenario 1, i.e., reactor’s

volume in Scenario 1 is 44% smaller than the solution on Instance D (Scenario 2). A comparison

of the operating costs for the solutions with 43 finite elements (Scenarios 1 and 2) shows that the

solution with refinement finite elements returned a 20% more economic process operation. Figure

6.4 displays the manipulated variables profiles, note that CSTR 1 demands the largest amount of

cooling water to operate. Also, Figure 6.4 shows that the flow rate of cooling water on Instance

D (Scenario 2) is 70% larger compared to the solution in Scenario 1, which further explains the

difference in the operating costs. Therefore, the refinement algorithm returned a more economically

attractive solution compared with the naive implementation with equidistributed finite elements.

The solution in Instance B is more attractive because the equipment (reactor’s volume) is smaller at

expense of larger close-loop variability in the controlled and manipulated variables (see Figures 6.3

and 6.4). Moreover, Figure 6.5 shows the length distribution of finite elements. From this figure,

it can be noted that most of the shortest finite elements are concentrated in the process transient

time.

To provide further insight, it can be compared the solutions in this case study to another scenario

where the number of equidistributed finite elements is increased (Augmented model (Scenario 3)).

In Scenario 3, the number of finite element is duplicated such that the optimization problem was

discretized with 86 equidistributed finite elements. A comparison of total costs for Instance D

(Scenario 2) and Scenario 3 shows that by increasing the number of finite elements the cost improved

by 22%. The augmented model returned a solution with a cost that is 7% higher than the solution in

Scenario 1-Instance B. The size of the equipment in Scenario 3 is still 22% larger than the reported

in the solution for Scenario 1-Instance B. From Figure 6.3, it is noted that the amplitude of the

changes in the controlled variables for Scenario 3 is smaller compared to the profiles observed for

the solution in Scenario 1-Instance B (43 refined finite elements). Moreover, from the manipulated

variables profiles depicted in Figure 6.4, it is observed that the controller is more conservative in

Scenario 3 compared to the solution in Scenario 1-Instance B, i.e., the magnitude of the control
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Figure 6.3: Dynamic profiles for the controlled variables (i.e., CA1 and CA2) for different selections
of finite elements (FE) (two CSTRs case study): 43 FE Scenario 1-Instance B (S1-IB), 26 FE
Scenario 1-Instance A (S1-IA), 26 FE Scenario 2-Instance C (S2-IC), 43 FE Scenario 2-Instance D
(S2-ID), and 86 FE Augmented model (AUG).

actions are smaller in Scenario 3 compared with the solution for Scenario 1-Instance B. To evaluate

the accuracy of the selection of finite elements in Scenarios 2 and 3, the Hamiltonian function

profiles for these scenarios was computed. As shown in Figure 6.6, the solutions in Scenario 1 and 3

returned a Hamiltonian function profile that is close to be constant over time. On the other hand,

an estimation of the collocation error (i.e., evaluation of the monitor function Λi in Equation (6.7))

for the solutions in Scenario 2 (Instance D) and Scenario 3 averaged collocation errors of 1.1 and 0.5,

respectively, i.e., the collocation errors in Scenarios 2 and 3 are orders of magnitude larger than the

tolerance of ϵΛ = 1.0×10−6. This suggests that the solutions in Scenarios 2 and 3 may not guarantee

an adequate accuracy in the approximation to the functions in the optimization formulation. On the

other hand, it is observed that the algorithm (Scenario 1) required relatively large computational

time to converge; nevertheless, this allowed to determine an optimal design and control with an

adequate discretization mesh that resulted in an economically attractive and dynamically feasible

solution. In Scenario 2, it was implemented a naive approach with equidistributed finite elements

using the same number of finite elements obtained in Scenario 1. For all scenarios, the initialization
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Figure 6.4: Dynamic profiles for the manipulated variables (i.e., F̄w1 and F̄w2) for different selections
of finite elements (FE) (two CSTRs case study): 43 FE Scenario 1-Instance B (S1-IB), 26 FE
Scenario 1-Instance A (S1-IA), 26 FE Scenario 2-Instance C (S2-IC), 43 FE Scenario 2-Instance D
(S2-ID), and 86 FE Augmented model (AUG).

of the decision variables in the optimization problem for simultaneous design and control was the

same. This avoids the determination of different local optimums for each scenario. The CPU costs

in these scenarios were expected to be small since a refinement strategy was not implemented, i.e.,

those scenarios are the result of a simulation using insights gained from Scenario 1. However, from

a comparison of the CPU costs for Scenarios 2 and 3, it is noted that CPU cost in Scenario 3 is one

order of magnitude larger than that obtained for Scenario 2.

Moreover, the number of collocation points was increased from 3 to 4 to analyze their effect;

accordingly, K = 4 using the proposed methodology for the selection and refinement of finite

elements. The rest of the parameters considered in the algorithm remained the same. The results

for Scenario 1 with K = 4 collocation points returned almost similar results to those obtained with

K = 3, i.e., VR = 266.1 [ft3], Csp
A1 = 0.234 [lbmole/ft3]. This represents a reactor’s volume 0.2%

smaller and the same operation set-point for reactor 1 compared to the results with K = 3. In

Stage 1, the algorithm initialized the methodology with 22 refined finite elements and converged to

39 finite elements. Total cost of Scenario 1 with K = 4 is 2.37×105 $/yr, which is similar to K = 3.

On the other hand, the solution for Scenario 1 (i.e., 39 refined finite elements) with K = 4 returned
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Figure 6.5: Distribution of finite element lengths for the CSTRs case study. Process transient time
is shown in the red circle.

a model with 3915 equations and 3919 variables; this represents an increase of 33% in the model

size with respect to the solution of Scenario 1 with K = 3. Dynamic profiles for the controlled and

manipulated variables for Scenario 1 with 4 collocation points were the similar to those obtained for

K = 3 (not shown for brevity). Thus, increasing the number of collocation points did not improve

the solution. Moreover, the CPU time required to converge with 4 collocation points was 1.15×104s;

this is an increase of one order of magnitude of CPU time compared to the implementation with 3

collocation points (7.1× 103).

6.3.2 Williams-Otto reactor

In the second case study, it is proposed the integration of design and optimal control of the Williams-

Otto CSTR (WO-CSTR) [171]. This nonisothermal CSTR is fed by two pure inlet streams of

components A and B with mass flow rates F̄A and F̄B [kg/s], respectively. The outlet streams

contains the six components involved in the following three parallel reactions: A+B k1−→ C; B+C k2−→

D+M; and C+D k3−→ Q. This process aims to control the transition between two different market

concentrations of products, i.e., a set-point tracking control problem. In a simulation horizon of
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Figure 6.6: Comparison of the Hamiltonian function profiles for different selections of finite elements
(FE) (two CSTRs case study): 43 FE Scenario 1-Instance B (S1-IB), 26 FE Scenario 1-Instance A
(S1-IA), 43 FE Scenario 2-Instance D (S2-ID), and 86 FE Augmented model (AUG).

5h, the process transitions from initial set-points xspM = 0.2951 and xspD = 0.1103 (called normal

operation condition) to a second operating condition xspM = 0.2265 and xspD = 0.0909 at t = 1h.

Then, at t = 3h the process operation return to the initial operation condition mentioned above.

The process can manipulate the flow rate of component B (F̄B) and the reactor’s temperature (T ) to

reach the control targets for componentsM and D (i.e., xM and xD). Inlet flow rate of component

A (i.e., F̄A) is fixed to 1.8 [kg/s]. The mass holdup in the reactor is given by hT [kg]. The dynamic

model of the WO-CSTR is as follow:

dxA
dt

=
F̄A

hT
−
(
F̄A + F̄B

)
hT

xA −
r1
hT

(6.20a)

dxB
dt

=
F̄B

hT
−
(
F̄A + F̄B

)
hT

xB −
r1
hT
− r2
hT

(6.20b)

dxC
dt

= −
(
F̄A + F̄B

)
hT

xC + 2
r1
hT
− 2

r2
hT
− r3
hT

(6.20c)

dxM
dt

= −
(
F̄A + F̄B

)
hT

xE + 2
r2
hT

(6.20d)

dxQ
dt

= −
(
F̄A + F̄B

)
hT

xG + 1.5
r3
hT

(6.20e)
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dxD
dt

= −
(
F̄A + F̄B

)
hT

xP +
r2
hT
− 0.5

r3
hT

(6.20f)

r1 = k1xAxBhT (6.20g)

r2 = k2xBxChT (6.20h)

r3 = k3xCxDhT (6.20i)

k1 = 1.6599× 106exp(−6666.77/(T (◦C) + 273.15)) (6.20j)

k2 = 7.2117× 108exp(−8333.33/(T (◦C) + 273.15)) (6.20k)

k3 = 2.6745× 1012exp(−11111/(T (◦C) + 273.15)) (6.20l)

2 ≤ F̄B(t) ≤ 10, 50 ≤ T (t) ≤ 150 (6.20m)

where xA, xB, xC , xM , xQ, xD are the mass fraction of each component in the reactions taking

place in the reactor; reactions rates are given by r1, r2, r3 [s−1]; whereas the reaction constants

given by k1, k2, k3 [s−1] are functions of the rector’s temperature (T [◦C]).

In this case study, the objective function consists of the maximization of the economic profit (i.e.,

maxCCa − V Ca) where CCa (gross profit) depends on the equipment sizing (i.e., the reactor’s mass

holdup (hT ) and the production of the process; V Ca quantifies the effect of the process dynamics

(Variability cost) relating the deviations of the concentration of main products E and P in the

outlet flow rate with respect to their corresponding target set-points. The process economics are

obtained from empirical correlations and considers the annualized cost of raw materials and products

for a determined plant lifetime [171]. Therefore, the economic terms in the objective function are

described as follows:

CCa = 100
topMG− topSARE − topUF − FCP

PIN
(6.21)

where top is the operation time per year. In this study, top = 8400 [h/yr]. MG is the gross

return per hour defined as the difference between the revenue and cost of raw materials, SARE is
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defined as the cost related to sales, administration, research, and engineering expenses. Associated

costs to utilities and process flows are given by UF . FCP stands for the depreciation and labor

taxes, i.e., fixed cost. The total initial investment of the plant is given by PIN . Expressions for

each of these terms are as follows:

MG = PM F̄M + PDF̄D − PAF̄A − PBF̄B (6.22)

SARE = 0.124
(
PM F̄M + PDF̄D

)
(6.23)

UF = 0.001
(
F̄A + F̄B

)1.5
(6.24)

FCP = 60hT , P IN = 600hT (6.25)

where PM = 125.91 [$/kg], PD = 5554.1 [$/kg], PA = 370.3 [$/kg], and PB = 555.42 [$/kg] are

the market prices of products mathcalM and D, and reactants A and B, respectively. On the other

hand, the variability cost is stated as follows:

V Ca = 1.0× 105
∫ tf

t0

(
xspM − xM (t)

)2
+ 1.0× 106

∫ tf

t0

(
xspD − xD(t)

)2
(6.26)

where the dynamic decision variables include the vector of states x(t) and the control laws

for F̄B(t) and T (t), whereas a static decision variable (design variable) is given by hT . For dis-

cretization, three collocation points (K = 3) were selected. As in the previous case study (Sec-

tion 6.3.1), a discretization using three noncollocation points per finite element is implemented

(τnc = [0.77525, 0.399999, 0.822474]). The set of parameters for the algorithm of selection and re-

finement of finite elements are as follows: ϵsΛ = 1× 10−3, ∆ᾱ = 0.05, ϵH = 1× 10−7, ϵΛ = 1× 10−6,

M̄ = 1× 107, δ = 0.10, and ā = 1.5.

As shown in Table 6.3, the initial estimation of finite elements in stage 1 determined 32 finite

elements (Scenario 1-Instance A) whereas the refinement methodology resulted in a solution with

66 finite elements (Scenario 1-Instance B). Table 6.3 shows slight differences between the solutions

for the initial estimation of finite elements (Instance A) and the final solution with the selection

strategy (Instance B). The reactor’s volume presents a variation of 0.02%, and the gross profit

increased 1.1% for Instance B with respect to the solution on Instance A (Scenario 1). However,
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Table 6.3: Results for the Williams-Otto case study.

Optimization variable

Refined Equidistributed
Elements Elements

(Scenario 1) (Scenario 2)
Instance A Instance B Instance C Instance D

NFE 32 66 32 66
hT [Kg] 2080.1 2079.6 2079.9 2079.7
Equations 2479 5193 2479 5193
Variables 2570 5290 2570 5290
Gross Profit (CCa) [$/yr] 6.22× 105 6.29× 105 6.16× 105 6.28× 105

Variability cost (V Ca) [$/yr] 4.85× 104 4.10× 104 5.09× 104 1.4× 105

Net Profit [$/yr] 5.73× 105 5.88× 105 5.66× 105 3.5× 105

CPU [s] 1.73× 103 6.84× 103 18 153
t2N [s] 6.92× 102 9.6× 102 - -
Iterations 1 11 - -

Instance B showed a reduction of 18% in the variability cost with respect to the initial solution on

Instance A. Therefore, the refinement strategy improved the annualized profit by 2.56% with respect

to the initial estimation of finite elements i.e., this represents an additional income of $14,697.6 per

year.

Figure 6.7: Dynamic profiles for the controlled variables (i.e., xE(t) and xP (t)) with refined (FE-
RF) and equidistributed (FE-EQ) finite elements for the Williams-Otto case study.

To provide further insight, the solutions of the selection and refinement strategy were compared

with a conventional equidistributed finite elements strategy (Scenario 2). The optimization problem

was solved using 32 (Scenario 2-Instance C) and 66 (Scenario 2-Instance D) equidistributed finite
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Figure 6.8: Dynamic profiles for the manipulated variables (i.e., F̄B(t) and T (t)) with refined (FE-
RF) and equidistributed (FE-EQ) finite elements for the Williams-Otto case study.

elements, the initial estimation and final solution of finite elements in Scenario 1, respectively. The

results for Scenario 2 (Table 6.3) show slight differences between the Instances C and D for the

reactor’s volume, i.e., Instance D returned a reactor’s volume 0.01% smaller compared to Instance

C. The same relationship was observed for a comparison between Instance B (refined finite elements)

and Instance D, the refinement strategy led to a reactor’s volume 0.01% smaller compared to the

equidistribution strategy (Instance D). Moreover, economic aspects follow the same tendency. In

Scenario 2, the gross profit improved 2% by in creasing the number of equidistributed finite elements

from 32 to 66. In addition, the solutions from Scenarios 1 and 2 showed that the refinement strategy

returned a slight improvement in the gross profit, i.e., gross profit in Instance B (Scenario 1) is 0.15%

higher compared to Instance D (Scenario 2).
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Figure 6.9: Comparison of the Hamiltonian function profiles for the initial estimation of refined
finite elements (32 FE) and the final discretization mesh (66 FE) for the Williams-Otto case study.

Figure 6.10: Distribution of finite element lengths for the Williams-Otto case study. Process tran-
sient time is shown in the red square.

As shown in Figure 6.7, similarities in the dynamic control profiles between Instances A and B

can be noticed. Component xD seems to reach faster the set-point after the second step change

(i.e., at t = 3h). Figure 6.8 shows that additional control actions are executed in the solution of
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Instance A. Nevertheless, a larger control action on F̄B was observed at t = 3h for Instance B. This

may explain the slight faster response of xD to the set-point change at t = 3h. Furthermore, the

discretization for Instance A does not lead to a constant Hamiltonian function profile (see Figure

6.9). Moreover, the averaged estimated collocation error for instance A was ēc(t) = 1.68×10−2. This

estimated collocation error is 4 orders of magnitude larger than the desired tolerance ϵΛ = 1×10−6.

Therefore, the accuracy of the solution on Instance A is not guaranteed. Despite the slight differences

in the solutions in Scenario 1 (i.e., Instances A and B in Table 6.3), it is observed an improvement

in the process profits. On the other hand, from an inspection of the process dynamics in Figures

6.7 and 6.8 for the solutions in Scenario 2 (Instances C and D), it is noted that Instance D returns

noisy dynamic profiles. Therefore, the discretization with 66 equidistributed finite elements is not

able to properly capture the process dynamics. This explains the large variability cost observed for

this instance in Table 6.3. Variability cost has a high impact in the net profit for the solution in

Instance D compared to the solution with refined finite elements in Instance B, i.e., the solution

with refined finite elements returned a net profit 68% larger than the solution with equidistributed

finite elements. Similarly as in the CSTRs case study, the length distribution for finite elements

shows that the smallest finite elements are concentrated in the process transient time (Figure 6.10).

On the other hand, the largest contribution to the CPU time reported in Table 6.3 for Scenario 1

is associated to the determination of the sensitivity gradients. By increasing the number of finite

elements, the estimation of gradients requires longer CPU times. To provide further insight in

Scenario 1, the CPU time required to compute the sensitivity gradients (∇ᾱiη, ∇ᾱix(t), ∇ᾱiu(t),

∇ᾱiy(t)) in the first and the last iterations of the algorithm (t2N ) was compared. An increase of

38% was observed in the CPU time required to calculate such gradients in the last iteration with

respect to the first iteration for the preset case study. The ratios between t2N and the CPU time

per iteration for the first and the last iterations of the algorithm, i.e., t2N/CPU, it was found that

40% of the CPU time in the first iteration is dedicated to the calculation of the sensitivity gradients

whereas the last iteration spent 97% of the CPU time in the same calculation. From these results,

it was observed a linear relationship between the computational costs required to estimate the

sensitivity gradients and the number of finite elements. Note that this linear dependency may not
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always hold and is only provided here as a general guideline on the expected CPU costs associated

with the sensitivity estimation.

From a comparison of process dynamics in both case studies, it is observed that the process in

the CSTRs case study (Section 6.3.1) is subject to longer-period changes compared to Williams-

Otto case study (Section 6.3.2), i.e., the process in the CSTRs case study takes longer to reach

a steady-state; moreover, the magnitude of variations of the controlled and manipulated variables

(Figures 6.3 and 6.4, respectively) in former case study are larger compared to the variations of

process dynamics in the last case study (Figures 6.7 and 6.8). Therefore, the optimization model

in the CSTRs case study needs a more accurate discretization to correctly capture the process

dynamics. Also, note that changes of process dynamics at short time scales may not be captured

with an equidistributed discretization strategy if no sufficient finite elements are selected.

6.4 Summary

A methodology for the selection and refinement of finite elements for the discretization of the

optimization formulation for integrated design and control was presented in this chapter. This

methodology considers two criteria for the refinement of the discretization mesh. The first criterion

is based on the implementation of the PMP to calculate the Hamiltonian function associated with

the optimization formulation. In comparison, the second criterion accounts for the estimation of

the collocation error at noncollocation points. The performance of the proposed methodology is

evaluated in two illustrative case studies. Results show that the transient time and the magnitude

of the process dynamics affect the selection of the discretization mesh. The refined discretization

model returned more economically attractive solutions and an improved control performance using

fewer finite elements compared to the naive approach involving equidistributed finite elements.

Similarly, as in the back-off method in Chapter 3, the selection/refinement method presented in

this chapter required most of the CPU time for the computation of sensitivity parameters for model

approximation.
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Chapter 7

Conclusions and Future Work

Integration of design and control aims to optimize economic, environmental, and operational aspects

that result in sustainable processes. This can lead to improved product quality, reduced variability,

environmental friendly operation, increased throughput, safer operation, and reduced operating

costs. An integrated approach allows for greater flexibility and adaptability in the face of changing

market conditions or process requirements. The ability to quickly adjust process parameters or

operating conditions can be critical in today’s rapidly changing business environment. Just recently,

early implementations regarding the integration of design and control with NMPC are unveiling the

economic and operational benefits of this framework.

In this PhD thesis, novel methodologies addressing the integration of design and NMPC-based

control were proposed. The implementation of NMPC schemes represents a challenging task due

to the complexity of the bilevel formulation. Most of the studies reported in the open literature

regarding the integration of design and control using MPC has focused on the implementation of

linear control schemes. The implementation of nonlinear control schemes introduces a new level of

complexity by increasing the nonconvexity of the formulation. The lack of practical methodologies

for the implementation of NMPC for integrated design and control has motivated this PhD research.

A systematic back-off approach for the integration of design and NMPC-based control was

initially proposed. This methodology allows the systematic identification of dynamically feasible

operating conditions and process designs by the determination of the back-off from an optimal stead-

state design that it is dynamically infeasible. The proposed methodology has the attractive feature

of reducing the resulting bilevel formulation that emerge when NMPC is used for design and control.

The bilevel formulation is transformed into a single-level optimization problem that is represented

by power series expansions (PSE) formulated as explicit functions of the decision variables and

uncertain parameters. This PSE-based optimization problem reduces the computational burden

and determines the feasible search direction in the optimization framework. The formulation was

successfully adapted for optimization formulations involving LMPC and classical PI controllers. The

170



results show that the use of an NMPC-based framework leads to improved control performance and

reduced of plant costs, compared to implementations involving decentralized PI control or LMPC

schemes. The presence of uncertainties in some of the model parameters leaded to important

differences in the solutions computed using the proposed back-off approach. The CPU cost for the

implementation of NMPC-based frameworks acts as one of the main limitations for the application

of this methodology for larger scale applications. Most of the CPU time required by the back-

off algorithm is dedicated to the identification step for the sensitivity parameters required for the

computation of the PSE-based approximation model. On the other hand, the optimality of the

solutions computed with the proposed back-off approach may not be guaranteed.

The implementation of the back-off approach resulted in economically attractive solutions; how-

ever, the optimality of the solutions obtained with this methodology are still not rigorously proved.

On the other hand, a direct solution strategy using NLP solvers may provide optimality guaran-

tees to the solutions for integrated design and NMPC-based control problems. In this research, a

transformation strategy was proposed for the solution of the bilvel problem for integrated design

and NMPC-based control under uncertainty as a single-level problem referred to as a mathematical

program with complementarity constraints (MPCC). In this transformation strategy, the optimiza-

tion problem for the NMPC is stated in terms of its KKT conditions for optimality. Then, the

corresponding set of nonlinear algebraic equations for the KKT-based controller are embedded in

the design problem (upper-level) as part of the constraints. The introduction of complementarity

constraint assumes the solution of a degenerate highly nonlinear formulation, which violates multi-

ple CQs at every feasible point. Potential reformulation strategies for complementarity constraints

are necessary to overcome this issue. Although the solutions for the MPCCs may not represent a so-

lution to the original bilevel formulation, the solutions for the reformulations with MPCCs resulted

in economically attractive process design and NMPC-based control schemes. On the other hand,

when a proper initialization is available, the formulation with MPCCs showed an improvement of

orders of magnitude in the CPU times compared with the benchmark (the back-off approach). Since

the MPCC formulation is a single-level problem, the use of systematic solution algorithms is not

required. Therefore, the full problem for the integration of design and NMPC-based control can be
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solved with state-of-the-art optimization solvers as a conventional NLP formulation.

Formulations involving continuous decision variables have multiple applications in chemical en-

gineering; nevertheless, integer decisions such as the location of equipment or selection of number

of process units are described with discrete variables. The formulation for integrated design and

NMPC-based control under uncertainty and structural decisions requires the solution of a MIBLP.

Likewise to the continuous bilevel problem, the MIBLP is hard to solve using conventional MINLP

solvers. In this PhD study, a proposed D-SDA approach addresses the simultaneous design and

NMPC-based control of process under uncertainty and naturally ordered structural decisions. This

method determines the optimal location of processing units or streams over a naturally ordered

discrete set, e.g., a sequence of liquid-liquid separators, the number of trays in a distillation column,

or the order of reactions units. This methodology requires the transformation of the associated MI-

BLP into a single-level MINLP by the implementation of a classical KKT transformation strategy.

The binary variables within the formulation can be expressed as a function of reduced variable sets

called external variables. A decomposition of the single-level MINLP into a master (IPLC) and

a set of FNLPs primal problems. The master problem contains all the logical constraints for the

selection of the superstructure. This master IPLC is solved with a D-SDA approach, whereas the

primal FNLPs are solver as traditional NLPs. The D-SDA enables the exploration of neighborhoods

described by the external variables, in which the primal FNLPs are solved in concordance with su-

perstructure provided by the master problem in terms of the external variables. A search direction

that provides the steepest descent in the objective function is calculated through the comparison of

the neighborhood solution from the primal FNLPs. The proposed algorithmic framework is based

on the definition of integral convexity. Consequently, a steepest-descent direction strategy can be

implemented to explore the discrete search space. This allows the computation of local solutions

that cannot be efficiently identified using conventional MINLP solvers. Note that the decomposition

strategy reduces the complexity of the formulation because all logical constraints are solved in the

master problem; consequently, the primal sub-problems are simpler NLPs compared to the original

MINLP. A comparison of the performance of the proposed D-SDA approach and the DSTO method

shows that the DSTO method is more sensitive to the initialization of the superstructure than the
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D-SDA approach. Moreover, the DSTO method converged to local solutions that were closer to the

initialization point. On the other hand, the D-SDA approach allowed to skip sub-optimal solution

regions because the framework does not demand the relaxation of the discrete variables.

The methodology for the selection and refinement of finite elements for the discretization of the

optimization formulation for the integration of design and control accounts for two criteria for the

refinement of the discretization mesh. The results indicate that the selection of the discretization

mesh may severely affect the solution for the integrated design and control framework, i.e., the

number and quality of the finite elements returned solutions with significant differences in the

process design and process dynamics. For those cases with process dynamics variations in long term

periods, the discretization strategy demands higher accuracy to describe the changes in the process

dynamics. On the contrary, short term variations in the process dynamics (i.e., a process with

long term periods operating at steady-state) does not require high accuracy in the discretization.

Furthermore, the proposed refinement strategy returned more economically attractive solutions

with improved control performance using fewer finite elements compared to the naive approach

involving equidistributed finite elements. Similarly, as in the back-off method, the methodology

for selection/refinement of finite elements required most of the CPU time for the computation of

sensitivity parameters for model approximation.

7.1 Recommendations for future work

The insights gained through this thesis have demonstrated an important number of applications for

the proposed methodologies; however, several potential improvements can be considered as part of

future work. The mayor recommendations derived from this research are as follows:

� The high computational demand of the proposed methodologies in this PhD study limits their

application for larger scale problems. In Chapters 3 and 6, the computation of sensitivity terms

demands the higher CPU times; thus, alternative techniques such as automatic differentia-

tion can be explored in the future to enable faster computation of model sensitivities. On the

other hand, in Chapter 4, the classical KKT transformation strategy returns higher dimension
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NLP formulations compared with the original bilevel problems. Moreover, the substitution of

the NMPC by its KKT conditions introduces new decision variables that are not physically

meaningful for the system, this complicates the search for a solution. Therefore, the imple-

mentation of decomposition strategies for the solution of large-scale formulations, e.g., the

decomposition of the optimization model and parallel solution can be explored in the future

to improve the computational time required to converge to a solution [172]. In Chapter 5, the

D-SDA approach expended most of the CPU time in the solution of the primal sub-problem

during the neighborhood explorations. A strategy involving linear approximations of the pri-

mal sub-problems for the neighborhood exploration may reduce the computational burden. A

validation strategy for the solutions obtained in every neighbor involving linear model approx-

imations may consists in the evaluation of such linear solutions in the nonlinear formulation.

Therefore, the solution of nonlinear primal sub-problems is enforced only for those neighbors

in which the linear and nonlinear formulations have clear differences given a tolerance.

� The back-off approach presented in Chapter 3 addresses the solution of formulations for inte-

grated design and NMPC control under uncertainty involving continuous decision variables.

However, decisions associated with the topology of the process and control schemes represent

discrete decisions, e.g., number and location of units. The introduction of discrete decisions

increases the flexibility of the formulation for improving economic and performance aspects of

the processes. Future work could focus on an enhanced version of the back-off approach that

can handle formulations with both discrete and continuous decision variables, i.e., MINLP

formulations for integrated design and NMPC-based control.

� The methodologies proposed in Chapters 4 and 5 implement a classical KKT transforma-

tion strategy to restate the bilevel problem for integrated design and NMPC-based control.

For a convex optimization formulation for the MPC, the KKT conditions may be necessary

and sufficient conditions for optimality. However, for chemical processes, a control scheme

with NMPC requires the implementation of nonconvex control formulations. Under these

conditions, the KKT conditions for the NMPC problem may not be sufficient conditions for

optimality. Therefore, depending on the quality of the solution (i.e., a the stationarity point)

174



for the corresponding single-level MPCC, this solution may not be a solution to the original

bilevel problem. Future work may consider the implementation of the first and second order

conditions for optimality for the NMPC problem in order to determine optimal solutions for

the single-level MPCC that guarantee optimal solutions for the original bilevel problem. The

implementation of second order conditions for optimality drastically increases the complex-

ity of the corresponding MPCC, thus the search for a solution to this formulation may be a

challenging task.

� The D-SDA approach presented in Chapter 5 requires the initialization of the algorithm from

an educated guess for the discrete decisions; otherwise, the algorithm may not converge.

Moreover, the proposed D-SDA approach performs neighborhood explorations near the ini-

tialization of external variables, i.e., the algorithm does not evaluate distant neighbors from

the initialization point. Thus, the algorithm may explore a large number of neighbors before

it can find an optimal solution if such solution is relatively far from the initial guess. Future

work may consider the application of LD-BD algorithm, in which the algorithm generates cuts

that approximate the convex envelope of the objective function based on the neighborhood of

potential solution candidates [173]. Moreover, the LD-BD algorithm allows the exploration

of neighbors that are far from the initial guess and does not require a feasible initialization

point.

� In Chapter 6, the proposed algorithm for the selection and refinement of finite elements

does not consider uncertainties and discrete decisions in the integrated design and control

framework. The outcome of the implementations addressed in this PhD thesis point out the

close interactions of the process design and its corresponding dynamic behavior. Therefore,

a future work can address the accurate selection of the discretization mesh for applications

involving structural decisions for integrated design and MPC-based control problems under

uncertainty.

� The methodologies proposed in this PhD thesis assume the measurement of the complete set

of process states, i.e., full access to the states. In real world applications, it is not always
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possible to have access to the measurements for all process states. Moreover, previous studies

have shown the need to consider process noise and uncertainty within state estimation schemes

to avoid infeasible operating scenarios [174, 175, 176]. Future studies can incorporate state

estimation techniques to investigate more realistic scenarios under measurement noises and

uncertainties for the integration of design and NMPC-based control. These studies aim to

improve the process design and control performance for real world applications.

� The proposed methodologies can be extended for the intensification of process systems, e.g.,

reactive distillation columns [149, 177]. These systems aim to improve efficiency, reduce costs,

and minimize environmental impact by increasing the effectiveness of process equipment and

operations management. Integrated implementations using NMPC-based control approaches

may enhance process performance, reduce energy consumption and waste generation, improve

product quality and yield.

� Modern approaches with machine learning are rapidly gaining popularity in the process system

engineering community [178, 179, 180]. Application with machine learning for the integration

design and control have pointed out the benefits in terms of computational times, in particular

for stochastic formulations that may lead to large scale problems [181]. Future work could

explore the use of machine learning techniques, such as RL, to evaluate discrete decisions in

integrated design and NMPC-based control formulations that involve structural decisions.
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Appendix A

MPCC-based formulation for two CSTRs in se-
ries

This appendix provides the complete discretized MPCC-based formulation for the integration of
design and NMPC-based control under uncertainty of the two CSTRs in series. This problem
corresponds to the case study 2 in Chapter 4.

min
De,hT ,xi,k,ui,k,C

sp
A1,Qout

Φ = 3834(D1.066
e + h0.802T ) + 37

NFE∑
i=1

F̄w1i(t) + F̄w2i(t)dt

+ 1.0 × 106
NFEK∑
i,j=1

(CA2i,k − C
sp
A2)

2 (A.1)

s.t.

K∑
j=1

ℓ̇j,kCA1i,j =
F̄

VR
(CA0 − CA1i,k)− kree

−E
RT1i,k CA1i,k , i = {1, . . . , NFE} k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kT1i,j =
F̄

VR
(Tin − T1i,k) +

(−∆Hrx)

Cpl
kree

−E
RT1i,k CA1i,k −

UhAe(T1i,k − Tc1i,k)
VRCpl

,

i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kTc1i,j =
F̄w1

V j
(T 0

c − Tc1i,k) +
UhAe(T1i,k − Tc1i,k)

V jCw
p

, i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kCA2i,j =
F̄

VR
(CA1i,k − CA2i,k)− kree

−E
RT2i,k CA2i,k , i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kT2i,j =
F̄

VR
(T1i,k − T2i,k) +

(−∆Hrx)

C l
p

kree
−E

RT2i,k CA2i,k −
UhAe(T2i,k − Tc2i,k)

VRC l
p

,

i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kTc2i,j =
F̄w2

V j
(T 0

c − Tc2i,k) +
UhAe(T2i,k − Tc2i,k)

V jCw
p

, i = {1, . . . , NFE}, k = {1, . . . ,K}

CA11,1 = CA0, T11,1 = T 0
1 , Tc11,1 = T 0

c1, CA21,1 = C0
A1, T21,1 = T 0

2 , Tc21,1 = T 0
c2

hT /De = 2, VR = π
D2

ehT
4

, Ad = πDehT , V j = π
DehT
3
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∇CA1i,1
L =

dΦ

dCA1i,1

+
K∑
j=1

ℓ̇1,jλ1i,j − ℓ1,Kν1i+1 + ν1i − µ9i,1 + µ10i,1 = 0,

i = {1, . . . , NFE − 1}

∇T1i,1
L =

K∑
j=1

ℓ̇1,jλ2i,j − ℓ1,Kν2i+1 + ν2i − µ1i,1 + µ2i,1 = 0, i = {1, . . . , NFE − 1}

∇Tc1i,1
L =

K∑
j=1

ℓ̇1,jλ3i,j − ℓ1,Kν3i+1 + ν3i − µ3i,1 + µ4i,1 = 0, i = {1, . . . , NFE − 1}

∇CA2i,1
L =

dΦ

dCA2i,1

+
K∑
j=1

ℓ̇1,jλ4i,j − ℓ1,Kν4i+1 + ν4i − µ11i,1 + µ12i,1 = 0,

i = {1, . . . , NFE − 1}

∇T2i,1
L =

K∑
j=1

ℓ̇1,jλ5i,j − ℓ1,Kν5i+1 + ν5i − µ5i,1 + µ6i,1 = 0, i = {1, . . . , NFE − 1}

∇Tc2i,1
L =

K∑
j=1

ℓ̇1,jλ6i,j − ℓ1,Kν6i+1 + ν6i − µ7i,1 + µ8i,1 = 0, i = {1, . . . , NFE − 1}

∇CA1NFE,1
L =

dΦ

dCA1NFE,1

+

K∑
j=1

ℓ̇1,jλ1NFE,j + ν1NFE
− µ9NFE,1 + µ10NFE,1 = 0,

∇T1NFE,1
L =

K∑
j=1

ℓ̇1,kλ2NFE,k
+ ν2NFE

− µ1NFE,1 + µ2NFE,1 = 0,

∇Tc1NFE,1
L =

K∑
j=1

ℓ̇1,jλ3NFE,j + ν3NFE
− µ3NFE,1 + µ4NFE,1 = 0,

∇CA2NFE,1
L =

dΦ

dCA2NFE,1

+
K∑
j=1

ℓ̇1,jλ4NFE,j + ν4NFE
− µ11NFE,1 + µ12NFE,1 = 0,

∇T2NFE,1
L =

K∑
j=1

ℓ̇1,jλ5NFE,j + ν5NFE
− µ5NFE,1 + µ6NFE,1 = 0,

∇Tc2NFE,1
L =

K∑
j=1

ℓ̇1,jλ6NFE,j + ν6NFE
− µ7NFE,1 + µ8NFE,1 = 0
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∇CA1i,k
L =

dΦ

dCA1i,k

+
K∑
j=2

ℓ̇j,kλ1i,k − ᾱiλ1i,k
df1(·)
dCA1i,k

− ᾱiλ2i,k
df2(·)
dCA1i,k

− ᾱiλ4i,k
df4(·)
dCA1i,k

− ℓk,Kν1i+1 − µ9i,k + µ10i,k = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇T1i,k
L =

K∑
j=1

ℓ̇j,kλ2i,k − ᾱiλ1i,k
df1(·)
dT1i,k

− ᾱiλ2i,k
df2(·)
dT1i,k

− ᾱiλ3i,k
df3(·)
dT1i,k

− ᾱiλ5i,k
df5(·)
dT1i,k

− lk,Kν2i+1 − µ1i,k + µ2i,k = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇Tc1i,k
L =

K∑
j=1

ℓ̇j,kλ3i,k − ᾱiλ2i,k
df2(·)
dTc1i,k

− ᾱiλ3i,k
df3(·)
dTc1i,k

− ℓk,Kν3i+1 − µ3i,k + µ4i,k = 0,

i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇CA2i,k
L =

dΦ

dCA2i,k

+
K∑
j=1

ℓ̇j,kλ4i,k − ᾱiλ4i,k
df4(·)
dCA2i,k

− ᾱiλ5i,k
df5(·)
dCA2i,k

− ℓk,Kν4i+1

− µ11i,k + µ12i,k = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇T2i,k
L =

K∑
j=1

ℓ̇j,kλ5i,k−ᾱiλ4i,k
df4(·)
dT2i,k

−ᾱiλ5i,k
df5(·)
dT2i,k

−ᾱiλ6i,k
df6(·)
dT2i,k

−ℓk,Kη5i+1−µ5i,k+µ6i,k = 0,

i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇Tc2i,k
L =

K∑
j=2

ℓ̇j,kλ6j,k − ᾱiλ5i,k
df5(·)
dTc2i,k

− ᾱiλ6i,k
df6(·)
dTc2i,k

− ℓk,Kν6i+1 − µ7i,k + µ8i,k = 0,

i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇CA1NFE,k
L =

dΦ

dCA1NFE,k

+
K∑
j=2

ℓ̇j,kλ1NFE,k
−ᾱNFE

λ1NFE,k

df1(·)
dCA1NFE,k

−ᾱNFE
λ2NFE,k

df2(·)
dCA1NFE,k

− ᾱNFE
λ4NFE,k

df4(·)
dCA1NFE,k

− µ9NFE,k
+ µ10NFE,k

= 0, i = {NFE}, k = {1, . . . ,K − 1}
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∇T1NFE,k
L =

K∑
k=1

ℓ̇j,kλ2NFE,k
− ᾱNFE

λ1NFE,k

df1(·)
dT1NFE,k

− ᾱNFE
λ2NFE,k

df2(·)
dT1NFE,k

− ᾱNFE
λ3NFE,k

df3(·)
dT1NFE,k

− ᾱNFE
λ5NFE,k

df5(·)
dT1NFE,k

− µ1NFE,k
+ µ2NFE,k

= 0, i = {NFE}, k = {1, . . . ,K − 1}

∇Tc1NFE,k
L =

K∑
j=2

ℓ̇j,kλ3NFE,k
− ᾱNFE

λ2NFE,k

df2(·)
dTc1NFE,k

− ᾱNFE
λ3NFE,k

df3(·)
dTc1NFE,k

− µ3NFE,k

+ µ4NFE,k
= 0, i = {NFE}, k = {1, . . . ,K − 1}

∇CA2NFE,k
L =

dΦ

dCA2NFE,k

+

K∑
j=1

ℓ̇j,kλ4NFE,k
−ᾱNFE

λ4NFE,k

df4(·)
dCA2NFE,k

−ᾱNFE
λ5NFE,k

df5(·)
dCA2NFE,k

− µ11NFE,k
+ µ12NFE,k

= 0, i = {NFE}, k = {1, . . . ,K − 1}

∇T2NFE,k
L =

K∑
j=2

ℓ̇j,kλ5NFE,k
− ᾱNFE

λ4NFE,k

df4(·)
dT2NFE,k

− ᾱNFE
λ5NFE,k

df5(·)
dT2NFE,k

− ᾱNFE
λ6NFE,k

df6(·)
dT2NFE,k

− µ5NFE,k
+ µ6NFE,k

= 0,

i = {NFE}, k = {1, . . . ,K − 1}

∇Tc2NFE,k
L =

K∑
j=2

ℓ̇j,kλ6i,k − ᾱNFE
λ5NFE,k

df5(·)
dTc2NFE,k

− ᾱNFE
λ6NFE,k

df6(·)
dTc2NFE,k

− µ7NFE,k

+ µ8NFE,k
= 0, i = {NFE}, k = {1, . . . ,K − 1}

∇CA1i,K
L =

dΦ

dCA1i,K

+

K∑
j=1

ℓ̇K,kλ1i,k − ᾱiλ1i,K
df1(·)
dCA1i,K

− ᾱiλ2i,K
df2(·)
dCA1i,K

− ᾱiλ4i,K
df4(·)
dCA1i,K

− ℓK,Kν1i+1 − µ9i,K + µ10i,K = 0, i = {1, . . . , NFE − 1}

∇T1i,K
L =

K∑
j=1

ℓ̇K,kλ2i,k − ᾱiλ1i,K
df1(·)
dT1i,K

− ᾱiλ2i,K
df2(·)
dT1i,K

− ᾱiλ3i,K
df3(·)
dT1i,K

− ᾱiλ5i,K
df5(·)
dT1i,K

− ℓK,Kν2i+1 − µ1i,K + µ2i,K = 0, i = {1, . . . , NFE − 1}
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∇Tc1i,K
L =

K∑
j=1

ℓ̇K,kλ3i,k − ᾱiλ2i,K
df2(·)
dTc1i,K

− ᾱiλ3i,K
df3(·)
dTc1i,K

− ℓK,Kν3i+1

− µ3i,K + µ4i,K = 0, i = {1, . . . , NFE − 1}

∇CA2i,K
L =

dΦ

dCA2i,K

+
K∑
j=1

ℓ̇K,kλ4i,k − ᾱiλ4i,K
df4(·)
dCA2i,K

− ᾱiλ5i,K
df5(·)
dCA2i,K

− ℓK,Kη4i+1 − µ11i,K + µ12i,K = 0, i = {1, . . . , NFE − 1}

∇T2i,K
L =

K∑
j=2

ℓ̇K,kλ5i,k − ᾱiλ4i,K
df4(·)
dT2i,K

− ᾱiλ5i,K
df5(·)
dT2i,K

− ᾱiλ6i,K
df6(·)
dT2i,K

− ℓK,Kν5i+1

− µ5i,K + µ6i,K = 0, i = {1, . . . , NFE − 1}

∇Tc2i,K
L =

K∑
j=1

ℓ̇K,kλ6i,k − ᾱiλ5i,K
df5(·)
dTc2i,K

− ᾱiλ6i,K
df6(·)
dTc2i,K

− ℓK,Kν6i+1

− µ7i,K + µ8i,K = 0, i = {1, . . . , NFE − 1}

∇CA1NFE,K
L =

dΦ

dCA1NFE,K

+
K∑
j=1

ℓ̇K,kλ1NFE,k
− ᾱiλ1NFE,K

df1(·)
dCA1NFE,K

− ᾱiλ2NFE,K

df2(·)
dCA1NFE,K

− ᾱiλ4NFE,K

df4(·)
dCA1NFE,K

− µ9NFE,K + µ10NFE,K = 0

∇T1NFE,K
L =

K∑
j=2

ℓ̇K,kλ2NFE,k
−ᾱiλ1NFE,K

df1(·)
dT1NFE,K

−ᾱiλ2NFE,K

df2(·)
dT1NFE,K

−ᾱiλ3NFE,K

df3(·)
dT1NFE,K

− ᾱiλ5NFE,K

df5(·)
dT1NFE,K

− µ1NFE,K + µ2NFE,K = 0,

∇Tc1NFE,K
L =

K∑
j=1

ℓ̇K,kλ3NFE,k
− ᾱiλ2NFE,K

df2(·)
dTc1NFE,K

− ᾱiλ3NFE,K

df3(·)
dTc1NFE,K

− µ3NFE,K

+ µ4NFE,K = 0,
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∇CA2NFE,K
L =

dΦ

dCA2NFE,K

+
K∑
j=2

ℓ̇K,kλ4NFE,k
− ᾱiλ4NFE,K

df4(·)
dCA2NFE,K

− ᾱiλ5NFE,K

df5(·)
dCA2NFE,K

− µ11NFE,K + µ12NFE,K = 0

∇T2NFE,K
L =

K∑
j=2

ℓ̇K,kλ5NFE,k
−ᾱiλ4NFE,K

df4(·)
dT2NFE,K

−ᾱiλ5NFE,K

df5(·)
dT2NFE,K

−ᾱiλ6NFE,K

df6(·)
dT2NFE,K

− µ5NFE,K + µ6NFE,K = 0

∇Tc2NFE,K
L =

K∑
j=1

ℓ̇K,kλ6NFE,k
− ᾱiλ5NFE,K

df5(·)
dTc2NFE,K

− ᾱiλ6NFE,K

df6(·)
dTc2NFE,K

− µ7NFE,K

+ µ8NFE,K = 0

∇F̄w1i
L = − dΦ

dqw1i

+ ν7i + µ13i + µ15i − µ16i − ᾱi

K∑
j=1

λ3i,j
df3(·)
dF̄w1i

= 0, i = {1}

∇F̄w2i
L = − dΦ

dqw2i

+ ν8i + µ14i + µ17i − µ18i − ᾱi

K∑
j=1

λ6i,j
df6(·)
dF̄w2i

= 0, i = {1}

∇F̄w1i
L =

dΦ

dqw1i−1

− dΦ

dqw1i+1

+ µ13i − ᾱi

K∑
j=1

λ3i,j
df3(·)
dqw1i

+ µ15i − µ15i+1 − µ16i + µ16i+1 = 0,

i = {2, . . . , NFE − 1}

∇F̄w2i
L =

dΦ

dqw2i−1

− dΦ

dF̄w2i+1

+ µ14i − ᾱi

K∑
j=1

λ6i,j
df6(·)
dF̄w2i

+ µ17i − µ17i+1 − µ18i + µ18i+1 = 0,

i = {2, . . . , NFE − 1}

∇F̄w1i
L =

dΦ

dqw1i

+ µ13i − µ15i + µ16i − ᾱi

K∑
j=1

λ3i,j
df3(·)
dF̄w1i

= 0, i = {NFE}

∇F̄w2i
L =

dΦ

dqw2i

+ µ14i − µ17i + µ18i − ᾱi

K∑
j=1

λ6i,j
df6(·)
dF̄w2i

= 0, i = {NFE}

K∑
j=1

ℓ̇j,kCA1i,j − ᾱif1(De, hT , CA1i,k , T1i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}
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K∑
j=1

ℓ̇j,kT1i,j − ᾱif2(De, hT , CA1i,k , T1i,k , Tc1i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kTc1i,j − ᾱif3(De, hT , CA1i,k , T1i,k , Tc1i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kCA2i,j − ᾱif4(De, hT , CA2i,k , T2i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇j,kT2i,j − ᾱif5(De, hT , CA2i,k , T2i,k , Tc2i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}

K∑
j=1

ℓ̇jkTc2i,j − ᾱif6(De, hT , CA2i,k , T2i,k , Tc2i,k) = 0, i = {1, . . . , NFE}, k = {1, . . . ,K}

g1(CA1i,k) = CA1i+1,1 −
K∑
j=1

ℓ̇j,KCA1i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g2(T1i,k) = T1i+1,1 −
K∑
j=1

ℓ̇j,KT1i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g3(Tc1i,k) = Tc1i+1,1 −
K∑
j=1

ℓ̇j,KTc1i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g4(CA2i,j ) = CA2i+1,1 −
K∑
j=1

ℓ̇j,KCA2i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g5(T2i,k) = T2i+1,1 −
K∑
j=1

ℓ̇j,KT2i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g6(Tc2i,k) = Tc2i+1,1 −
K∑
j=1

ℓ̇j,KTc2i,j = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K}

g1(CA11,1) = CA11,1 − C0
A1 = 0, g2(T11,1) = T11,1 − T 0

1 = 0 g3(Tc11,1) = Tc11,1 − T 0
c1 = 0,

g4(CA21,1) = CA21,1 − C0
A2 = 0, g5(T21,1) = T21,1 − T 0

2 = 0, g6(Tc21,1) = Tc21,1 − T 0
c2 = 0,

T lb
1 −T1i,j ≤ 0, T1i,j−T ub

1 ≤ 0, T lb
c1−Tc11,1 ≤ 0, Tc11,1−T ub

c1 ≤ 0, i = {1, . . . , NFE}, j = {1, . . . ,K}

T lb
2 −T2i,j ≤ 0, T2i,j−T ub

2 ≤ 0, T lb
c2−Tc21,1 ≤ 0, Tc21,1−T ub

c2 ≤ 0, i = {1, . . . , NFE}, j = {1, . . . ,K}
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F̄w1i − F̄ ub
w1 ≤ 0, F̄w2i − F̄ ub

w2 ≤ 0, i = {1, . . . , NFE}

∆F̄w1 − F̄w1i + F̄w1i−1 ≤ 0, F̄w1i − F̄w1i−1 +∆F̄w1 ≤ 0, i = {2, . . . , NFE}

∆F̄w2 − F̄w2i + F̄w2i−1 ≤ 0, F̄w2i − F̄w2i−1 +∆F̄w2 ≤ 0, i = {2, . . . , NFE}

where index i indicates the discretization finite elements in the upper-level problem, index i′

indicates the discretization finite elements in the lower-level problem, index j and k indicate the
internal collocation points. Discretization in Equation (A.1) is based on Lagrange polynomials using
Radau points. Functions f1(·) to f6(·) are defined as follows:

f1(CA1, T1) =
F̄in

VR
(CA0 − CA1)− kree

−E
RT1CA1,

f2(CA1, T1, Tc1) =
F̄

VR
(Tin − T1) +

(−∆Hrx)

C l
p

kree
−E
RT1CA1 −

UhAe(T1 − Tc1)
VRC l

p

,

f3(CA1, T1, Tc1) =
F̄w1

V j
(T 0

c − Tc1) +
UhAe(T1 − Tc1)

V jCw
p

,

f4(CA2, T2) =
F̄

VR
(CA1 − CA2)− kree

−E
RT2CA2,

f5(CA2, T2, Tc2) =
F̄

VR
(T1 − T2) +

(−∆Hrx)

C l
p

kree
−E
RT2CA2 −

UhAe(T2 − Tc2)
VRCw

p

,

f6(CA2, T2, Tc2) =
F̄w2

V j
(T 0

c − Tc2) +
UhAe(T2 − Tc2)

V jCw
p

,
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Appendix B

WWTP case study (Continuous MPCC formu-
lation)

This appendix presents the complete discretized MPCC-based formulation for the integration of
design and NMPC-based control under uncertainty of the Wastewater Treatment Plant (WWTP).
This problem corresponds to the case study 3 in Chapter 4.

min
Ad,VR,x(t),fk(t),qp(t),s

sp
w ,cspw ,Qin,Qout

0.16(3500VR + 2300Ad) + 870

NFE∑
i=1

(fki + qpi)

+ 1 × 105
NFEK∑
i,j=1

(100− swi,j )
2 (A.2)

s.t.

K∑
j=1

ℓ̇j,kxwi,j = ywµ̄w
swi,k

xwi,k

ksc + swi,j

− kcaxwi,k
− kdr

x2wi,k

swi,k

+
xinqin
VR

+
xri,kqr

VR
−
xwi,k

q

VR

K∑
j=1

ℓ̇j,kswi,j =
fkdkdrx

2
wi,k

swi,k

−
µ̄wswi,k

xwi,k

(ksc + swi,k
)
+ fkdkcaxwi,k

+
sinqin
VR

+
swi,k

qr

VR
−
xwi,k

q

VR

K∑
j=1

ℓ̇j,kxdi,j =

(
1

Adld

)(
qout(xbi,k − xdi,k)−Adnnrxdi,ke

(aarxdi,k
)
)

K∑
j=1

ℓ̇j,kxbi,j =

(
1

Adlb

)(
qxwi,k

− xbi,k(qout + q2) +Adnnr

(
xdi,ke

(aarxdi,k
) − xbi,ke

(aarxbi,k
)
))

K∑
j=1

ℓ̇j,kxri,k =

(
1

Adlr

)(
q2(xbi,k − xri,k) +Adnnrxbi,ke

(aarxbi,k
)
)

K∑
j=1

ℓ̇j,kcwi,k
= kotwfk(cs − cwi,k

)− kodµ̄w
xwi,k

swi,k

(ksc + swi,k
)
−
cwi,k

q

VR

qr = q2 − qp, q = qi + qr, qout = q + q2

xw1,1 = x0w, sw1,1 = s0w, xdi,k = x0d, xbi,k = x0b , xri,k = x0r , cwi,k
= c0w,

∇xwi,1
L =

K∑
j=2

ℓ̇1,jλ1i,j − l1,Kν1i+1 + ν1i + µ3i,1VR − µ4i,1VR = 0, i = {1, . . . , NFE − 1}
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∇swi,1
L =

dΦ

dswi,1

+
K∑
j=2

ℓ̇1,jλ2i,j − ℓ1,Kν2i+1 + η2i + µ9i,1 = 0, i = {1, . . . , NFE − 1}

∇xdi,1
L =

K∑
j=2

ℓ̇1,jλ3i,j − ℓ1,Kν3i+1 + ν3i = 0, i = {1, . . . , NFE − 1}

∇xbi,1
L =

K∑
j=2

ℓ̇1,jλ4i,j − ℓ1,Kν4i+1 + ν4i = 0, i = {1, . . . , NFE − 1}

∇xri,1
L =

K∑
j=2

ℓ̇1,jλ5i,j − ℓ1,Kν5i+1 + ν5i + µ3i,1
dg3(·)
dxri,1

+ µ4i,1
dg4(·)
dxri,1

= 0, i = {1, . . . , NFE − 1}

∇cwi,1
L =

dΦ

dcwi,1

+

K∑
j=2

ℓ̇1,jλ6i,j − ℓ1,Kν6i+1 + ν6i = 0, i = {1, . . . , NFE − 1}

∇xwNFE,1
L =

K∑
j=2

ℓ̇1,jλ1NFE,j + ν1NFE
+ µ3NFE,1VR − µ4NFE,1VR = 0,

∇swNFE,1
L =

dΦ

dswNFE,1

+
K∑
j=2

ℓ̇1,jλ2NFE,j + ν2NFE
+ µ9NFE,1 = 0,

∇xdNFE,1
L =

K∑
j=2

ℓ̇1,jλ3NFE,j + ν3NFE
= 0,

∇xbNFE,1
L =

K∑
j=2

ℓ̇1,jλ4NFE,j + ν4NFE
= 0,

∇xrNFE,1
L =

K∑
j=2

ℓ̇1,jλ5NFE,j + ν5NFE
+ µ3NFE,1

dg3(·)
dxrNFE,1

+ µ4NFE,1

dg4(·)
dxrNFE,1

= 0,

∇cwNFE,1
L =

dΦ

dcwNFE,1

+
K∑
j=2

ℓ̇1,jλ6NFE,j + ν6NFE
= 0,

∇xwi,k
L =

K∑
k=2

ℓ̇j,kλ1i,k − ᾱiλ1i,k
df1(·)
dxwi,k

− ᾱiλ2i,k
df2(·)
dxwi,k

− ᾱiλ4i,k
df4(·)
dxwi,j

− ᾱiλ6i,j
df6(·)
dxwi,k

− ℓj,Kν1i+1 + µ3i,k
dg3(·)
dxwi,k

− µ4i,k
dg3(·)
dxwi,k

= 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}
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∇swi,j
L =

dΦ

dswi,k

+
K∑
k=2

ℓ̇j,kλ2i,k − ᾱiλ1i,k
df1(·)
dswi,k

− ᾱiλ2i,k
df2(·)
dswi,k

− ᾱiλ6i,k
df6(·)
dswi,k

− ℓj,Kν2i+1 + µ9i,k = 0, i = {1, . . . , NFE − 1}, k = {1, . . . ,K − 1}

∇xdi,k
L =

K∑
k=2

ℓ̇j,kλ3i,k − ᾱiλ3i,k
df3(·)
dxdi,k

− ᾱiλ4i,k
df4(·)
dxdi,k

− ℓj,Kν3i+1 = 0, i = {1, . . . , NFE − 1},

j = {1, . . . ,K − 1}

∇xbi,k
L =

K∑
k=2

ℓ̇jkλ4i,k − ᾱiλ3i,j
df3(·)
dxbi,j

− ᾱiλ4i,j
df4(·)
dxbi,j

− ᾱiλ5i,j
df5(·)
dxbi,j

− ℓj,Kν4i+1 = 0,

i = {1, . . . , NFE − 1}, j = {1, . . . ,K − 1}

∇xri,j
L =

K∑
k=2

ℓ̇jkλ5i,k − ᾱiλ1i,j
df1(·)
dxri,j

− ᾱiλ5i,j
df5(·)
dxri,j

− ℓj,Kν5i+1 + µ3i,j
dg3(·)
dxri,j

+ µ4i,j
dg4(·)
dxri,j

= 0,

i = {1, . . . , NFE − 1}, j = {1, . . . ,K − 1}

∇cwi,j
L =

dΦ

dcwi,j

+
K∑
k=2

ℓ̇j,kλ6j,k − ᾱiλ6i,j
df6(·)
dcwi,j

− ℓj,Kη6i+1 = 0, i = {1, . . . , NFE − 1},

j = {1, . . . ,K − 1}

∇xwNFE,j
L =

K∑
k=2

ℓ̇j,kλ1NFE,k
− ᾱNFE

λ1NFE,j

df1(·)
dxwNFE,j

− ᾱNFE
λ2NFE,j

df2(·)
dxwNFE,j

− ᾱNFE
λ4NFE,j

df4(·)
dxwNFE,j

− ᾱNFE
λ6NFE,j

df6(·)
dxwNFE,j

+ µ3NFE,j

dg3(·)
dxrNFE,j

− µ4NFE,j

dg3(·)
dxrNFE,j

= 0,

i = {NFE}, j = {2, . . . ,K − 1}

∇swNFE,j
L =

dΦ

dswNFE,j

+

K∑
k=2

ℓ̇j,kλ2NFE,k
− ᾱNFE

λ1NFE,j

df1(·)
dxwNFE,j

− ᾱNFE
λ2NFE,j

df2(·)
dxwNFE,j

− ᾱNFE
λ6NFE,j

df6(·)
dxwNFE,j

+ µ9NFE,j = 0, i = {NFE}, j = {2, . . . ,K − 1}
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∇xdNFE,j
L =

K∑
k=2

ℓ̇j,kλ3NFE,k
− ᾱNFE

λ3NFE,j

df3(·)
dxdNFE,j

− ᾱNFE
λ4NFE,j

df4(·)
dxdNFE,j

= 0,

i = {NFE}, j = {1, . . . ,K − 1}

∇xbNFE,j
L =

K∑
k=2

ℓ̇jkλ4NFE,k
− ᾱNFE

λ3NFE,j

df3(·)
dxbNFE,j

− ᾱNFE
λ4NFE,j

df4(·)
dxbNFE,j

− ᾱNFE
λ5NFE,j

df5(·)
dxbNFE,j

= 0, i = {NFE}, j = {1, . . . ,K − 1}

∇xrNFE,j
L =

K∑
k=2

ℓ̇jkλ5NEF ,k
−ᾱNFE

λ1NFE,j

df1(·)
dxrNFE,j

−ᾱNFE
λ5NFE,j

df5(·)
dxrNFE,j

+µ3NFE,j

dg3(·)
dxrNFE,j

+ µ4NFE,j

dg4(·)
dxrNFE,j

= 0, i = {NFE}, j = {1, . . . ,K − 1}

∇cwNFE,j
L =

dΦ

dcwNFE,j

+

K∑
k=2

ℓ̇j,kλ6i,k − ᾱNFE
λ6NFE,j

df6(·)
dcwNFE,j

= 0, i = {NFE},

j = {1, . . . ,K − 1}

∇xwi,K
L =

K∑
k=2

ℓ̇K,kλ1i,k − ᾱiλ1i,K
df1(·)
dxwi,K

− ᾱiλ2i,K
df2(·)
dxwi,K

− ᾱiλ4i,K
df4(·)
dxwi,K

− ᾱiλ6i,K
df6(·)
dxwi,K

− ℓK,Kν1i+1 + µ3i,K
dg3(·)
dxwi,K

− µ4i,K
dg3(·)
dxwi,K

= 0, i = {1, . . . , NFE − 1}

∇swi,K
L =

dΦ

dswi,K

+

K∑
k=2

ℓ̇K,kλ2i,k − ᾱiλ1i,K
df1(·)
dxwi,K

− ᾱiλ2i,K
df2(·)
dxwi,K

− ᾱiλ6i,K
df6(·)
dxwi,K

− ℓK,Kν2i+1 + µ9i,K = 0, i = {1, . . . , NFE − 1}

∇xdi,K
L =

K∑
k=2

ℓ̇Kkλ3i,k − ᾱiλ3i,K
df3(·)
dxdi,K

− ᾱiλ4i,K
df4(·)
dxdi,K

− ℓK,Kν3i+1 = 0, i = {1, . . . , NFE − 1}

∇xbi,K
L =

K∑
k=2

ℓ̇K,kλ4i,k − ᾱiλ3i,K
df3(·)
dxbi,K

− ᾱiλ4i,K
df4(·)
dxbi,K

− ᾱiλ5i,K
df5(·)
dxbi,K

− ℓK,Kν4i+1 = 0, i = {1, . . . , NFE − 1}
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∇xri,K
L =

K∑
k=2

ℓ̇K,kλ5i,k − ᾱiλ1i,K
df1(·)
dxri,K

− ᾱiλ5i,K
df5(·)
dxri,K

− lK,Kν5i+1 + µ3i,K
dg3(·)
dxri,K

+ µ4i,K
dg4(·)
dxri,K

= 0, i = {1, . . . , NFE − 1}

∇cwi,K
L =

dΦ

dcwi,K

+
K∑
k=2

ℓ̇K,kλ6i,k − ᾱiλ6i,K
df6(·)
dcwi,K

− ℓK,Kν6i+1 = 0, i = {1, . . . , NFE − 1}

∇xwNFE,K
L =

K∑
k=2

ℓ̇K,kλ1NFE,k
− ᾱNFE

λ1NFE,K

df1(·)
dxwNFE,K

− ᾱNFE
λ2NFE,K

df2(·)
dxwNFE,K

− ᾱNFE
λ4NFE,K

df4(·)
dxwNFE,K

− ᾱNFE
λ6NFE,K

df6(·)
dxwNFE,K

+ µ3NFE,K

dg3(·)
dxrNFE,K

− µ4NFE,K

dg3(·)
dxrNFE,K

= 0,

∇swNFE,K
L =

dΦ

dswNFE,K

+

K∑
k=2

ℓ̇K,kλ2NFE,k
− ᾱNFE

λ1NFE,K

df1(·)
dswNFE,K

− ᾱNFE
λ2NFE,K

df2(·)
dswNFE,K

− ᾱNFE
λ6NFE,K

df6(·)
dswNFE,K

+ µ9NFE,K = 0,

∇xdNFE,K
L =

K∑
k=2

ℓ̇K,kλ3NFE,k
− ᾱNFE

λ3NFE,K

df3(·)
dxdNFE,K

− ᾱNFE
λ4NFE,K

df4(·)
dxdNFE,K

= 0,

∇xbNFE,K
L =

K∑
k=2

ℓ̇Kkλ4NFE,k
− ᾱNFE

λ3NFE,K

df3(·)
dxbNFE,K

− ᾱNFE
λ4NFE,K

df4(·)
dxbNFE,K

− ᾱNFE
λ5NFE,K

df5(·)
dxbNFE,K

= 0,

∇xrNFE,K
L =

K∑
k=2

ℓ̇K,kλ5NFE,k
− ᾱNFE

λ1NFE,K

df1(·)
dxrNFE,K

− ᾱNFE
λ5NFE,K

df5(·)
dxrNFE,K

+ µ3NFE,K

dg3(·)
dxrNFE,K

+ µ4NFE,K

dg4(·)
dxrNFE,K

= 0,

∇cwNFE,K
L =

dΦ

dcwNFE,K

+
K∑
k=2

ℓ̇K,kλ6NFE,k
− ᾱNFE

λ6NFE,K

df6(·)
dcwNFE,K

= 0,
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∇qpi
L = − dΦ

dqpi
+ ν7i + ν9i + µ1i − µ2i −

K∑
j=1

µ3i,j
dg3(·)
dqpi

+
K∑
j=1

µ4i,j
dg4(·)
dqpi

− µ5i+1

dg5(·)
dqpi+1

+ µ6i+1

dg6(·)
dqpi+1

= 0, i = {1}

∇fki
L = − dΦ

dqpi
+ ν8i − µ7i+1

dg7(·)
dfki+1

+ µ8i+1

dg8(·)
dfki+1

= 0, i = {1}

∇qpi
L =

dΦ

dqpi−1

− dΦ

dqpi+1

+ ν9i + µ1i − µ2i −
K∑
j=1

µ3i,j
dg3(·)
dqpi

+

K∑
j=1

µ4i,j
dg4(·)
dqpi

+ µ5i = 0,

− µ5i+1

dg5(·)
dqpi+1

− µ6i + µ6i+1

dg6(·)
dqpi+1

, i = {2, . . . , NFE − 1}

∇fki
L =

dΦ

dqpi
− dΦ

dqpi+1

+ µ7i − µ7i+1

dg7(·)
dfki+1

− µ8i + µ8i+1

dg8(·)
dfki+1

= 0, i = {2, . . . , NFE − 1}

∇qpi
L =

dΦ

dqpi
+ ν9i + µ1i − µ2i −

K∑
j=1

µ3i,j
dg3(·)
dqpi

+
K∑
j=1

µ4i,j
dg4(·)
dqpi

+ µ5i − µ6i = 0,

i = {NFE}

∇fki
L =

dΦ

dqpi
+ µ7i − µ8i = 0, i = {NFE}

∇qri
L = −ᾱi

K∑
j=2

λ1i,j
df1(·)
dqri

− ᾱi

K∑
j=2

λ2i,j
df2(·)
dqri

+ ν9i − ν10i = 0, i = {1, . . . , NFE}

∇qiL = −ᾱi

K∑
j=2

λ1i,j
df1(·)
dqi

− ᾱi

K∑
j=2

λ2i,j
df2(·)
dqi

− ᾱi

K∑
j=2

λ4i,j
df4(·)
dqi

− ᾱi

K∑
j=2

λ6i,j
df6(·)
dqi

+ ν10i − ν11i = 0, i = {1, . . . , NFE}

∇qouti
L = −ᾱi

K∑
j=2

λ3i,j
df3(·)
dqouti

− ᾱi

K∑
j=2

λ4i,j
df4(·)
dqouti

+ ν11i = 0, i = {1, . . . , NFE}

K∑
j=1

ℓ̇j,kxwi,j − ᾱif1(Ad, VR, xwi,j , swi,j , xri,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}

K∑
j=1

ℓ̇j,kswi,j − ᾱif2(Ad, VR, xwi,j , swi,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}
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K∑
j=1

ℓ̇j,kxdi,j − ᾱif3(Ad, VR, xdi,j , xbi,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}

K∑
j=1

ℓ̇j,kxbi,j − ᾱif4(Ad, VR, xwi,j , xdi,j , xbi,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}

K∑
j=1

ℓ̇j,kxri,j − ᾱif5(Ad, VR, xbi,j , xri,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}

K∑
j=1

ℓ̇j,kcwi,j − ᾱif6(Ad, VR, xwi,j , swi,j , cwi,j ) = 0, i = {1, . . . , NFE}, k = {2, . . . ,K}

g1(q) = −
qpi

qri + qpi
≤ −0.01, i = {1, . . . , NFE − 1}

g2(q) =
qpi

qri + qp)i
≤ 0.2, i = {1, . . . , NFE − 1}

g3(xwij ) = −
VRxwi,j (t) +Ad lr xri,j (t)

24 qpi,j xri,j (t)
≤ −0.8, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g3(xwij ) =
VRxwi,j (t) +Ad lr xri,j (t)

24 qpi xri,j (t)
≤ 15, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g5(swi,j ) = swi,j (t) ≤ 100, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g6(xwi,j ) = xwi+1,1 −
K∑
j=1

ℓ̇j,Kxwi,j = 0, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g7(swi,j ) = swi+1,1 −
K∑
j=1

ℓ̇j,Kswi,j = 0, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g8(xdi,j ) = xdi+1,1
−

K∑
j=1

ℓ̇j,Kxdi,j = 0, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g9(xbi,j ) = xbi+1,1
−

K∑
j=1

ℓ̇j,Kxbi,j = 0, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g10(xri,j ) = xri+1,1 −
K∑
j=1

ℓ̇j,Kxri,j = 0, i = {1, . . . , NFE − 1}, j = {1, . . . ,K}

g11(cwi,j ) = cwi+1,1 −
K∑
j=1

ℓ̇j,Kcwi,j = 0, i = {1, . . . , NFE − 1}
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g6(xw1,1) = xw1,1 − x0w = 0, g7(sw1,1) = sw1,1 − s0w = 0 g8(xd1,1) = xd1,1 − x0d = 0,

g9(xb1,1) = xb1,1 − x0b = 0, g10(xr1,1) = xr1,1 − x0r = 0, g11(cw1,1) = cw1,1 − c0w = 0,

qlbp − qpi ≤ 0, f lbk − fki ≤ 0, i = {1, . . . , NFE}, j = {1, . . . ,K}

qpi − qubp ≤ 0, fki − f
ub
k ≤ 0, i = {1, . . . , NFE}

where functions f1(·) to f6(·) are defined as follows:

f1(xw, sw, xr) = ywµ̄w
swxw
ksc + sw

− kcaxw − kdr
x2w
sw

+
xinqin
VR

+
xrqr
VR
− xwq

VR

f2(xw, sw) =
fkdkdrx

2
w

sw
− µ̄wswxw

(ksc + sw)
+ fkdkcaxw +

sinqin
VR

+
swqr
VR
− xwq

VR

f3(xd, xb) =

(
1

Adld

)(
qout(xb − xd)−Adnnrxde

(aarxd)
)

f4(xw, xd, xb) =

(
1

Adlb

)(
qxw − xb(qout + q2) +Adnnr

(
xde

(aarxd) − xbe(aarxb)
))

f5(xb, xr) =

(
1

Adlr

)(
q2(xb − xr) +Adnnrxbe

(aarxb)
)

f6(xw, sw, cw) = kotwfk(cs − cw)− kodµw
xwsw

(ksc + sw)
− cwq

VR
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