

Brandon Van Huizen^{1,2}, James M. Waddington², Richard M. Petrone¹

(1) Hydrometerology Research Group, University of Waterloo (2) McMaster Ecohydrology Lab, McMaster University

Measuring Moss Resistance in Peatlands

Measuring Evapotranspiration in peatlands is made difficult by the heterogenous vegetation cover (Figure 1), which contains both vascular and non-vascular species, including extensive moss carpets comprised of various Sphagnum species.

Figure 1. Heterogenous vegetation cover of a peatland. The ground is primarily comprised of Sphagnum moss species

- Estimating sphagnum moss evaporation necessitates the use of a surface resistance
- term for the non-vascular species Sphagnum moss resistance to evaporation initiates when the upward flux of water, as controlled by the unsaturated hydraulic conductivity (K_{unsat}) can no longer meet evaporative demand

Figure 2. Showing the different stages of evaporation resistance. As soil moisture in the unsaturated zone decreases, the unsaturated hydraulic conductivity (K_{unsat}) decreases also, limiting the amount of moisture that can be conducted up the evaporating surface. This reduction is assumed to be the resistance.

- Approaches often use the inversion of an evaporation equation that contains a surface resistance term, such as the Dalton Equation
- There is a wide range in the literature for reported moss resistance values and so it is a difficult parameter to constrain when estimating moss evaporation
- In order to improve our estimates of peatland evapotranspiration and gain a better understanding of peatland feedbacks to drought, it is important to better understand Sphagnum moss resistance
- **Research Questions:** How does Sphagnum moss resistance vary with species and microform and ecohydrological conditions?

Study Location and Data Collected

Sphagnum Moss evaporation data, measured using chamber measurements from 2 peatland sites in Alberta, Canada, were used to determine Sphagnum Moss resistance values (sec/m)

Site	Time	Sphagnum Species	Microform
Pauciflora (50 Km South of Fort McMurray Alberta)	June, July, (2013) May, June (2017) April, May (2018)	S. angustifolium (n=19) S. magellanicum (n=5)	Hummocks and Hollows
BD35 (70 Km North of Slave Lake)	June, July, August, September (2008) May, June, July, August (2009)	S. fuscum (n=6) S. angustifolium (n=2)	Hummocks and Hollows
a)			Figure 3. Sphagnum species found in chambers including a) S.fuscum b) S.angustifollium c) S.maggellanicum

sity

