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Abstract

Galaxy clusters are massive objects composed of hundreds or thousands of galaxies,
hot gas and an extended dark matter (DM) halo. They are the largest gravitationally
bound structures in the Universe. As such, they result from the growth and collapse of
the highest peaks in the density perturbation field. Because fundamental properties of
the Universe determine the statistics and evolution of those peaks, clusters can be used for
cosmology. The most common method to do that is to use their abundance, which requires
counting them in bins of mass and redshift (distance). The main challenge in using this
method is accurately estimating their mass through observational proxies. This method
has the advantage of requiring only the mass and redshift of each cluster, but neglects other
cluster properties that could contain cosmological information. Since clusters are complex
multi-component objects that can be detected in optical, X-ray, and radio wavelengths, a
wealth of information is discarded and compressed into a single mass estimate. Moreover,
the abundance of clusters is influenced in the same way by increased power in the initial
spectrum of density fluctuations, or by increased growth at later times. This induces
a degeneracy in estimates of the amount of matter in the Universe Ωm—governing the
growth—and how “clumpy” the matter distribution is, σ8—governing the height of initial
peaks.

In this thesis, I explore another way to exploit clusters to gain cosmological insight.
Inspired by original work from Richstone et al. (1992), Evrard et al. (1993) and Mohr et al.
(1995), I study how clusters’ structural properties and dynamical state can provide useful
constraints on Ωm and σ8.

In the first part of this thesis, I study how cluster formation time varies as a function
of Ωm and σ8 through analytical models and DM-only simulations, and find that cluster
age constraints are almost orthogonal to typical abundance and structure-growth ones.
Moreover, the formation redshift varies by a factor of 2 from one end to the other of the
relevant part of the Ωm and σ8 plane. Using cluster concentration as a tool to measure
age, we would need about 10,000 clusters to get measurements of σ8 up to 1% accuracy.

I continue in the second part to study the cosmological dependence of cluster and dark
matter halo dynamical states but focus on the instantaneous equivalent of age, specifically,
the halo growth and merger rates. Here again, I use analytical models and DM-only simu-
lations and find that growth rates’ dependence on Ωm and σ8 is also orthogonal to cluster
abundance constraints. However, the sensitivity is weaker in this case, ranging between
60% to 90%. Using cluster and galaxy growth and merger rates becomes challenging when
considering the current scatter in observational measurements.
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Finally, the last part of this thesis is to link the dynamical state of haloes to their
structural properties in detail. I use a set of high-resolution simulations that I have run
for different cosmologies to study what information is contained in the accretion history
of haloes, and show that the mass accretion history (MAH) of haloes is mainly a one-
dimensional quantity. Moreover, a halo’s age is well-described by its state during the
middle of its growth, such as the time it reaches 50% of its final mass z50.

The halo concentration and the offset between the centre-of-mass and peak of the
density contours are particularly good age predictors when used individually. If we use
them together and/or with another structural property, such as shape, they become even
better by reducing scatter in individual relations and segregating very young and very old
halo populations.

In conclusion, in this thesis, I show how we can use cluster structural properties to
constrain Ωm and σ8. First, I show how cluster age and growth rate vary with cosmology,
and then how age correlates with cluster structural properties.
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Chapter 1

Introduction

1.1 The Standard Cosmological Model

In 1922, Alexander Friedmann, a Russian physicist, published for the first time a solu-
tion to Einstein’s equations of General Relativity that describes an expanding Universe
(Friedmann, 1922). Five years later, independently from Friedmann, a Belgian cosmolo-
gist and priest named George Lemâıtre published similar solutions proposing a model of
an expanding Universe; in the same article, he uses the redshifts of galaxies (then known
as “Nebulae”) as measured by Vesto Slipher (Slipher, 1915) to link their distance to their
receding velocities for the first time, proving observationally the validity of his model
(Lemâıtre, 1927). This leads Lemâıtre to propose a “hypothesis of the primaeval atom”
where the Universe started from a tiny particle exploding and expanding. This theory
would be ridiculed by the British cosmologist Fred Hoyle during a radio show labelling it
“The Big Bang”

A century later, Friedmann’s solutions and Lemâıtre’s model are still the basis of the
current standard model of cosmology, but we have come a long way in learning more about
its composition and the processes by which the observed matter and structures formed. The
current general consensus describes the Universe starting from a period of rapid expansion,
Inflation, necessary to explain the apparent Euclidean geometry of the Universe and its
isotropy on very large scales. This is followed by a period of slowing expansion until
the current epoch, where the expansion accelerates again. The rate of this expansion is
typically given by the Hubble parameter H(t), which describes the rate of relative change
in the Universe’s “size” Its current value H0 ≡ H(t0) is one of the cosmological parameters
of the standard cosmological model.
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Because the Universe is in expansion, light from distant objects is systematically shifted
to longer wavelengths due to the Doppler effect. This “redshift” is denoted z

1 + z ≡ λ0

λe

, (1.1)

and is straightforward to measure with spectroscopic or even photometric data. It is
typically used as a proxy for the distances of astronomical objects and the age of the
Universe when those objects were observed.

The Universe has different components with very different physical properties. Non-
relativistic (Cold) matter, which is composed of particles from the Standard Model of
particle physics, and is referred to as “Baryonic” Matter. This accounts for all the ordinary
matter in stars, planets gas etc. It has an energy density ϵb(t). The second “Dark”
component is not part of the particle physics Standard Model and manifests its existence
through gravitational effects. The energy density of the total (baryonic + dark) matter is
denoted ϵm(t).

The second main component of the Universe is relativistic matter, referred to as “ra-
diation”, composed mainly of photons (light) and neutrinos; it has energy density ϵr(t).
Finally, most of the Universe’s energy density today is in the form of a negative pressure
fluid with the equation of state p = −ρ, accelerating the Universe’s expansion, called “dark
energy”, often assumed to be a cosmological constant Λ with energy density ϵΛ(t). The
total energy density if the Universe were to have a purely Euclidean geometry is the critical
density ϵc(t). It is convenient to express the densities of each component “i” relative to the

critical density Ωi(t) ≡ ϵi(t)
ϵc(t)

. These constitute another set of parameters of the standard
cosmological model.

Although the standard cosmological model is built on the key principle of homogeneity
and isotropy, this can obviously not be completely true; otherwise, the wide variety of
observed structures could not have been formed. Initial inhomogeneities in the density
field must have existed at the end of the inflation era. The spatial distribution of the
overdensities and underdensities δ(x) is assumed to follow an isotropic and homogeneous
Gaussian random field. Hence, according to the Wiener-Khintchine theorem (Wiener, 1930;
Khintchine, 1934), it is completely determined by a unique function, the power spectrum
P (k). In the simplest case, the initial post-inflation power spectrum is a power law with
index ns: P (k) ∝ kns . A common way to express the amplitude of the power spectrum is
through the r.m.s. of the overdensity field today at a specific scale of 8 Mpc/h: σ8.

My work takes place within the general framework described above, called the ΛCDM
model (Λ Cold Dark Matter). It will specifically focus on the structures of the Universe,
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Figure 1.1: CMB power spectrum generated using CAMB (Lewis et al., 2000). The left
panel illustrates how Ωm influences the peaks, while the right panel shows the change in
the normalisation As, which relates to σ8.

their growth and the cosmological parameters that influence them the most, namely the
matter density Ωm and the amplitude of density fluctuations σ8. But first, I summarize
briefly the formalism of the structure growth within the standard cosmological model.

1.1.1 The Growth of Structures

Gravitationally bound structures such as galaxies and galaxy clusters have formed from
the gravitational collapse of dense regions. However, the Universe started from a highly
homogeneous state with small perturbations; these proceeded to grow due to the effect of
gravity. This means that the formation of structures is determined by two different factors,
the initial perturbation field and its subsequent growth.

The perturbation field is described by δ(x) ≡ ρ(x)−ρ̄m
ρ̄m

where ρ is the (cold) matter
density field and ρ̄m is the average matter density in the Universe. In Fourier space, the
variance of the Fourier transform of the perturbation field is the power spectrum

P (k) ≡
〈
|δ(k)|2

〉
. (1.2)

This is enough to describe the properties of an isotropic Gaussian random field fully
(Bardeen et al., 1986).

Quantum fluctuations result in an initial power spectrum, right after the inflationary
period, that is assumed to be a power law with index ns

Pi(k) ∝ kns . (1.3)
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At that epoch, the Universe was hot enough for baryonic matter to couple with radiation,
inducing radiative pressure pushing dense regions out. The interplay of gravity pulling
in and pressure pushing out provoked acoustic oscillations in the density field that can
be observed in the temperature distribution of the Cosmic Microwave Background
(CMB) and the spatial distribution of large-scale structures. The effect of baryons and
radiation coupling at different scales on the shape of the matter power spectrum is typically
accounted for through the Transfer function T (k). This gives a matter power spectrum
after decoupling with a form

P (k) = Pi(k)T (k)2 . (1.4)

The form of the transfer function is determined by the complex physics of baryon-
radiation fluid, which depends on the composition of the Universe, notably, the total
amount of matter Ωm (for gravitational effects) and the amount of baryonic matter Ωb.

If we fix every cosmological parameter necessary to get the transfer function and the
initial power spectrum, the overall amplitude of the matter power spectrum is still a free
parameter. It is typical in modern cosmology to use the variance of density fluctuations
observed today to fix the normalisation of the power spectrum

σ2(R) ≡
〈
δ2R(x)

〉
=

1

2π2

∫ ∞

0

k2P (k)W̃ 2
R(k)dk , (1.5)

where the perturbation field δR(x) is smoothed at a scale R using the filter W̃R(k).

The value of σ8 ≡ σ(R = 8Mpc/h) is used to fix the amplitude of the power spectrum.

After decoupling, the Universe enters a matter-dominated epoch, and the perturbations
start growing effectively due to gravity. When they are small |δ| << 1, they evolve linearly

δ(r, t) = δ(r, t0)D(t)/D(t0)) , (1.6)

where D(t) is the growth factor and can be estimated by applying Newtonian gravity in an
expanding Universe. In a universe dominated by matter and dark energy (Λ), the growth
factor is given by (Heath, 1977; Peebles, 1980; Hamilton, 2001)

D(a) =
5ΩmH̃(a)

2

∫ a

0

da′

a′3H̃(a′)3
, (1.7)

where a is the scale factor, parametrizing the relative expansion of the Universe and varies
between 0 at the beginning of the Universe and 1 today, and H̃(a) is the Hubble parameter
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normalized to today’s value. In a Universe with cold dark matter (CDM) and dark energy
(Λ)-the ΛCDM model- the Hubble parameter evolves following:

H̃(a) =
H(a)

H0

=
√

Ωma−3 + ΩΛ + (1 − Ωm − ΩΛ)a−2 . (1.8)

Note that for a “flat” ΛCDM, we have Ωm + ΩΛ = 1, which means that the growth factor
is completely determined by Ωm alone. This is an important property; the growth of linear
perturbations in such a Universe is governed solely by the matter density Ωm.

When perturbations become large enough that δ ∼ 1, they enter the non-linear regime
of gravitational instability and eventual collapse and virialize to form bound structures.
With some assumptions, this process can be analysed analytically using the spherical
collapse model (Gunn & Gott, 1972).

The model considers spherical perturbations of amplitude δ with radius R and density
ρ = ρ̄(1+δ). This perturbation is taken to be only dark matter (only subject to gravity) and
composed of many individual mass shells evolving in an Enstein-de-Sitter (EdS) universe
(Ω = Ωm = 1). The mass enclosed by any mass shell will be

M(< r) =
4

3
πr3(t)ρ(t)

=
4

3
πr3(t)ρ̄[1 + δ(t)] ,

(1.9)

and will be subject to equations of motion. In Newtonian gravity it is simply

d2r

dt2
= −GM

r2
. (1.10)

Integrating the equation and assuming negative total energy (collapse), we find parametric
solutions of the form

r = A(1 − cos θ)

t = B(θ − sin θ) .
(1.11)

In this scenario, a shell expands from r = 0 at t = 0, reaches a maximum rmax = r(θ = π) at
tmax, then collapses to r = 0 at tcol = t(θ = 2π). The maximum radius and corresponding
time are often referred to as the turn-around radius and time.

Now that we have the equations of motion, we can easily calculate the evolution of the
overdensity δ(t)

1 + δ =
ρ

ρ̄
=

9(θ − sin θ)2

2(1 − cos θ)3
,
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which means that at turn-around we have 1 + δ(θ = π) = 9π2

16
≃ 5.55.

The overdensity never fully collapses; otherwise, it would result in a black hole. In
reality, it reaches a virial equilibrium at rvir. Using the virial theorem, one can easily
find that rvir = rta/2, which means that the density at virial radius is 8 times the density
at the turn-around radius. In addition to that, it takes the overdensity tcol = tta/2 to
virialise, time during which the average density of the Universe has dropped with a rate of
ρ̄ ∝ a(t)−3. In Einstein-de-Sitter Universe (EdS) we have a ∝ t2/3 giving that the average
density drops by

ρ̄(tcol) = ρ̄(tta)

(
tcol
tta

)−2

= ρ̄(tta)/4 . (1.12)

The combination of the fact that the density at the virial radius is eight times larger and
the average density of the Universe is four times lower by the time of virialisation results
in the average virial overdensity

1 + ∆vir ≃ 32 × 5.55 ≃ 178 . (1.13)

This calculation can also be done for non-EdS cosmologies (Bryan & Norman, 1998), and
the results are typically used as a definition of the overdensity at the virial radius in
simulations and analytical models.

Since we assumed an EdS Universe, we also know that linear overdensity evolves as
δ ∝ a ∝ t2/3. This allows us to find the value of the overdensity at tcol if the perturbation
continues to be linear and we find δc ≃ 1.686. This is the value of the linear overdensity
that would have reached when the overdensity collapses.

These two values, δc and ∆vir will be important throughout this work because δc provides
a condition on the linear field for a structure to collapse and ∆vir gives the average density,
and consequently also the size and mass of the newly-formed structure.

In summary, the formation of structures is influenced by the state of perturbations
at recombination and their subsequent growth, during the matter and then dark energy-
dominated eras. The matter power spectrum and growth factor contain most of the infor-
mation necessary to predict the statistical properties of the observed distribution of matter
in the Universe. Consequently, studying those properties allows one to estimate the power
spectrum and growth factor, constraining the cosmological parameters to which they are
sensitive. In this specific case, Ωm influences the power spectrum’s growth, form, and am-
plitude and σ8 its amplitude. These two parameters are typically referred to as the growth
of structure parameters, and the heart of this thesis is constraining their value.
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1.1.2 Measuring Ωm and σ8 : current methods

Most current methods that are used to constrain the values of Ωm and σ8 are ways to
probe the power spectrum. A variety of observable quantities can be used to measure the
power spectrum using different objects subject to very different types of physics at different
epochs of the Universe’s history. Most of these observables are sensitive to a combination
of Ωm and σ8 and are not able to disentangle their respective effects. The most common
degeneracy follows contours of constant S8 ≡ σ8

√
Ωm/0.3 where S8 is often called the

Structure Growth Parameter.

CMB Power Spectrum

The Cosmic Microwave Background (CMB) is the first light in the Universe after it became
transparent. The temperature anisotropies observed in the CMB are the result of the den-
sity fluctuations when the CMB light is emitted; consequently, the CMB power spectrum
is determined by the pre-recombination physics. The physical matter density ρm ∝ H2Ωm

influences the amplitude and location of the peaks as seen in the left panel of Fig. 1.1,
while its amplitude As is trivially related to σ8.

Cluster Counts

Galaxy clusters are the largest bound objects in the Universe. They are at the heart of
this thesis, and I will talk in detail about them in Sec. 1.4. For now, we will focus on how
we can use their abundance to constrain Ωm and σ8 (Allen et al., 2011).

For small enough redshift ranges, over which the cluster mass function is assumed to
not vary, the number of clusters between masses Mi −Mi+1 and redshifts zj − zj+1 can be
written as

N(Mi, zj) =
∆Ω

4π

∫ zj+1

zj

dz
dV

dz

∫ Mi+1

Mi

dn

dM
dM , (1.14)

Where ∆Ω is the total solid angle that the survey spans, dn/dM is the cluster mass
function, which can be found either through analytical models (Press & Schechter, 1974,
e.g. ), N-body simulations (Tinker et al., 2008, e.g. ) or both. The cluster mass function
depends on both the power spectrum and the growth factor, hence, on both Ωm and σ8,
roughly following contours of constant S8.

The main challenge in these methods is getting the cluster mass, often obtained through
observable proxies such as the cluster richness N(M) or luminosity L(M), which need to
be calibrated.
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Weak Gravitational Lensing

When light passes through a gravitational potential, it follows the local geodesics, which
changes its direction (Dyson et al., 1920). The source of the potential effectively acts as
a lens. Consequently, by looking at statistics of lensed light, we probe the underlying
gravitational potential (Walsh et al., 1979). One way to find lensed light is to look at
the statistics of galaxy shapes; this is called the cosmic shear. Looking at correlations
between galaxy shapes in bins of redshift gives a direct estimation of the underlying density
correlation function, and hence the matter power spectrum.

Instead of correlating galaxy shapes, one could also look at the correlation between
galaxy shapes and galaxy positions using a method called galaxy-galaxy lensing (e.g. Brain-
erd et al., 1996). The idea is similar to cosmic shear since, in effect, we are looking at
overdense regions which are more likely to contain galaxies and to bend the light coming
from background galaxies. This method necessitates linking galaxy number densities to
matter density and introduces an additional bias parameter, because galaxies are more
likely to populate the highest-density regions.

Additionally, one can look at galaxy clustering, that is, correlations in galaxy positions,
as a probe of the underlying matter density. Typical weak lensing surveys combine all three
methods to obtain better constraints and break the degeneracy between Ωm and σ8; this
combination is referred to as a 3x2pt correlation function (Abbott et al., 2022, e.g. ).

Peculiar Velocities

Real Space

The gravitational effect of the matter density field on galaxies can be seen through
their “Peculiar Velocity”, which is the velocity relative to the expansion of the Universe
called the “Hubble flow” The statistics of the galaxies’ peculiar velocity relate directly to
the power spectrum and growth factor through (Peebles, 1980; Gorski, 1988)〈

v2
〉

=
H2f 2a2

2π2

∫
P (k)dk , (1.15)

where f ≡ d lnD
d ln a

is the dimensionless growth factor, H the Hubble parameter and a the
scale factor. Since the power spectrum is directly proportional to σ2

8 by design, this method
can only constrain a combination of the parameters fσ8. Additionally, accurate distance
measurement remains challenging in astronomy beyond the local Universe.

Redshift-Space Distortion (RSD)
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The RSD method uses the systematic change in galaxies’ redshifts due to their pecu-
liar velocities to probe the underlying matter density field. As for the peculiar velocities
method, the RSD can only constrain a combination of fσ8.

Results and the S8 Tension

Recent results have highlighted a discrepancy between the value of S8 inferred from the
CMB power spectrum and through probes of the low-redshift matter density field. Specif-
ically, the latest results from the Planck collaboration Planck Collaboration et al. (2020)
provide a value of S8 = 0.832 ± 0.013, while the most accurate weak lensing results from
the Kilo Degree Survey (KiDS-1000) (Asgari et al., 2021) find a value of S8 = 0.7660.020

−0.014,
that is a three standard deviation difference away from the Planck result. Moreover, other
recent weak lensing results from the three-year data collection from Dark Energy Survey
(DES Y3) also find a significantly lower value of S8. Results from cluster counts, peculiar
velocities and redshift space distortions also tend to favour a lower value of S8. Abdalla
et al. (2022) summarize all recent results in Fig. 1.2 which clearly shows a systematic
preference of late-Universe studies to lower value of S8 compared to early-Universe ones.

1.2 Dark Matter Haloes

When dark matter overdensities grow and then collapse, following the process described
in section 1.1.1, they form bound structures in virial equilibrium called haloes. These
structures represent the gravitational backbone of large structures such as galaxies and
clusters. In a “Cold” dark matter (CDM) universe, they develop and grow by accretion
and mergers through a bottom-up process, giving rise to a hierarchical structure made
of haloes that host clusters and large galaxies, subhaloes that host satellite galaxies and
sometimes even subhaloes within subhaloes (Springel et al., 2008).

Density Profile

Navarro et al. (1996) initially proposed a universal, spherically symmetric, two-parameter
profile to fit the density of CDM haloes found in their simulations. The two parameters
are an overall normalisation ρs and a characteristic radius rs or r−2 called the scale radius
which represents the radius at logarithmic slope −2. The profile is universal; that is, it
has the same shape independently of halo mass, initial power spectrum or cosmology; it
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has a logarithmic slope of −1 at small radii where r/rs ≪ 1 and decreases to −3 at large
radii where r/rs ≫ 1; the transition is set by rs

ρNFW (r) =
ρs

(r/rs) (1 + r/rs)
2 . (1.16)

The halo size rvir and mass Mvir are typically set by the expected overdensity at radius
of virialisation

ρvir ≡ (1 + ∆vir)ρ̄m , (1.17)

where ∆vir is the virial overdensity that is the result of the spherical collapse model we
described in section 1.1.1. In practice, other definitions of virial radius and halo mass are
used in analytical models and simulations (see White, 2001, for a comparison); in this
work, I mostly use ρvir ≡ 200ρc where ρc is the critical density.

Given a halo size rvir one can define a measure of how concentrated a given halo is with
c ≡ rvir/rs, which measures how extended the core of the halo is.

I will use this profile in Chapter 4 to perform density profile fits, measure concentrations,
and calculate the χ2 of the profiles.

Mass Profile

Integrating the NFW profile is straightforward since it is assumed to be spherically sym-
metric

M(< r) = 4π

∫ r

0

ρ(r)r2dr

= 4πr3sρs

[
ln(1 + r/rs) −

r/rs
1 + r/rs

]
.

(1.18)

Note that for a given definition of virial radius, ρs is actually fixed for a given concentration
since

ρvir =
M(rvir)

4/3πr3vir

=
4πr3sρs [ln(1 + c) − c/(1 + c)]

4/3πr3vir
= ρs

3 [ln(1 + c) − c/(1 + c)]

c3

ρs = ρvir × c3/3f(c) ,

(1.19)

where f(c) ≡ ln(1 + c) − c/(1 + c) and ρvir is any chosen definition of virial radius, e.g.

ρvir = (1 + ∆vir)ρ̄m or 200ρc .
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Projected Surface-Density Profiles

When we observe the density or mass profiles of dark matter haloes or clusters, we observe
the density of the halo integrated along the line of sight, which makes the observed surface-
density profile different from the 3D one. This gives a surface-density profile (see Coe, 2010,
for details):

Σ(X) = 2ρsrs
1 − fc(1/X)/

√
|1 −X2|

X2 − 1
, (1.20)

where X ≡ R/rs and fc(x) is cos−1(x) if X < 1 and cosh−1(x) if X > 1. Note that in the
limit X = 1, Σ(X) = 2ρsrs/3.

The projected mass profile is

M(X) = 4ρsr
3
s

[
ln

X

2
+

fc(1/X)

X
√

|1 −X2|

]
. (1.21)

Three-Parameter Profiles

Subsequent studies found that three-parameter profiles were more accurate in fitting the
simulations data; in particular, profiles allowing the inner density profile parameter γ to be
a free parameter were proposed as the generalised Navarro-Frenk-White (gNFW) profile

ρgNFW (r) =
ρs

(r/rs)
γ (1 + r/rs)

3−γ . (1.22)

Moore et al. (1998) found that the haloes of their simulation had a cusp γ = 1.5,
significantly steeper than the NFW cusp γ = 1. This was in contradiction with observations
of the rotation curves of dwarf galaxies, which suggests that DM haloes have a core γ = 0.
This is commonly known as the cusp-core controversy, and it is believed to be the result
of baryonic effects that flatten the inner profiles of DM haloes.

Further improvement of the fits was found with profiles where the logarithmic slope
is a power-law d log ρ/d log r = rα, the most universally used being the Einasto profile
(Einasto, 1965)

ρEin(r) = ρs exp

{
− 2

α

[(
r

r−2

)α

− 1

]}
. (1.23)
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A step further, recent studies found that the shape parameter α can vary with halo
mass (Gao et al., 2008) and/or peak height. In particular, Klypin et al. (2016) find the
following fit for haloes in the MultiDark simulations

α(ν) = 0.115 + 0.0165ν2 . (1.24)

Concentration

One of the key properties describing a halo is its concentration c. It measures how dense
the inner region of a halo is relative to the outer part, or equivalently, what fraction of the
halo mass is enclosed in the central part.

Early work using N-body simulations studied the evolution of the halo concentration
and found that not only does it evolve with redshift and halo mass, but is also tightly linked
to cosmology, the growth history of the halo and environmental effects. (e.g. Navarro et al.,
1997; Wechsler et al., 2002; Zhao et al., 2003; Neto et al., 2007; Gao et al., 2008; Zhao
et al., 2009).

Evolution with mass and redshift

Initial studies found that the median concentration of haloes is a monotonically decreasing
function of mass and redshift. Navarro et al. (1997) modelled the concentration dependence
on redshift and mass by relating the density at the scale radius rs to the density of the
Universe when 50% of the halo mass was in progenitors of a mass of 1% or more. Bullock
et al. (2001) showed that this model failed to reproduce their data and provided a model
where c ∝ 1/(1 + z). Later on, Zhao et al. (2009) noticed a flattening in the concentration
evolution at high z for the most massive haloes; this happens because, for low-mass haloes,
the structural parameters vary very little at low-z, suggesting very stable inner structures,
and since, by definition, the virial radius increases with time, the concentration of these
haloes increases with decreasing redshift. However, for larger mass haloes, the inner struc-
ture continues to evolve quickly by accreting matter. Hence the concentration evolution is
slower.

Prada et al. (2012) used the ratio Vmax/Vvir as their prescription for studying halo
concentration, where Vmax is the maximum circular velocity and

Vvir =

√
GMvir

rvir
, (1.25)
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where Mvir and Rvir are the virial mass and radius. They argue that since NFW is not
accurate for all haloes, particularly the most massive ones, the concentration defined for
the NFW profile does not reflect the true halo concentration and depends on the profile one
fits. So they propose Vmax/Vvir as a profile independent measure of concentration, which
for NFW can be expressed as

Vmax

Vvir

=

(
0.216c

f(c)

)1/2

, (1.26)

where f(c) ≡ ln(1 + c) − c/(1 + c) as defined above.

With this method, they find an upturn in the concentration-mass-redshift relation at
high z for the most massive halos, taking a step further the flattening observed by Zhao
et al. (2009). They also show that, despite the apparent complexity of the evolution of the
median concentration as a function of z and M , the relation is much simpler if expressed
in terms of the rms of the density fluctuation field σ(M, z) (or equivalently the peak height
ν = δc/σ(M, z)), and that c(log σ−1) has a clean U-shape.

Concentration and growth history of halos

Haloes grow through mergers and smooth accretion; consequently, the inner density of
a halo is tightly linked to the density of the Universe when this central part was first
accumulated. Empirical models relating the concentration of haloes to their growth history
have emerged since the initial works of Wechsler et al. (2002) and Zhao et al. (2003),
who linked concentration to transitions in growth rates of haloes. They argued that the
concentration is set when a halo transitions from the fast growth phase to a slower one.
Going a step further, Ludlow et al. (2013) claimed that the accretion history and the mass
profile of a halo are self-similar if we express the accretion history in terms of the density of
the Universe M(ρcrit(z)) instead of M(z) and the halo profile using the mass as a function
of the average enclosed density M(⟨ρ(r)⟩). This can be understood as each “layer” of the
observed halo has a density related to the density of the Universe when this “layer” was
accreted.

Correa et al. (2015b) further explored the link between concentration and halo mass
accretion history, relating the concentration to the formation redshift defined as zs the
redshift at which the halo mass was equal to the mass inside the rs sphere where rs is the
NFW scale radius. They found a correlation between the density within the NFW scale
radius ρ(< rs) and the critical density at the formation redshift as they defined it ρcrit(zs)
of the form

⟨ρ⟩ (< rs) = 900 ± 50ρcrit(zs), (1.27)

14



and used this relation to relate the concentration to zs.

1.3 Numerical Cosmological Simulations

We have seen previously that structure formation happens in the highly non-linear regime of
cosmological perturbations, making it impossible to represent accurately through analytical
models. It is even more complex to model the physics of galaxy and stellar formation when
we account for baryonic effects. As for most domains, we can resort to numerical methods
when analytical ones reach their limit. In the case of cosmological simulations that follow
the evolution of a large number of galaxies and dark matter haloes in a cosmological-
size box, there are two main categories, N-body simulations, where the only physics is
gravitational, and hydrodynamical simulations, where baryonic physics is accounted for.

1.3.1 N-body Dark Matter Only Simulations

The physics behind structure formation becomes significantly simpler to model when we
only consider dark matter, because we know that it is not affected by the electromagnetic
interaction. Therefore it is sufficient to model the evolution of a set of particles subject
only to gravity. This allows a good prediction of structure formation, in particular at
larger scales, at a cost that permits simulating larger portions of the Universe. In N-
body simulations, the matter distribution is discretised into mass elements—particles—,
which are subject to the gravitational attraction of all other particles. Two main steps are
necessary to run an N-body simulation: setting up the initial conditions (ICs) and then
evolving the particles with Newtonian gravity.

Initial Conditions

We mentioned in section 1.1.1 that the matter density field is assumed to be an isotropic
Gaussian random field. Thus, it is fully described by its power spectrum P (k). The
ICs have, therefore, the role of generating an instance of a Gaussian random field, with
a particle distribution having the intended power spectrum at a given initial redshift zi.
This can be done in two steps, arranging the particles “randomly”, and then moving
them to positions where they satisfy the target power spectrum. Neither of these steps is
trivial; the arrangement of particles cannot be homogeneous and isotropic; otherwise, the
gravitation force on each will be null, and they cannot be white noise; otherwise, we will
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generate dense regions which will quickly enter the non-linear regime without additional
perturbation. Grid-like distributions can work but will artificially introduce non-physical
intrinsic scales (grid spacing). One way to generate a uniform set of points with none of the
problems mentioned before is by placing the particles randomly and then evolving them
with a repulsive gravitational force until they reach near-equilibrium (e.g. White, 1996).

Once a very uniform distribution of particles has been created, one can use linear
perturbation theory to generate a set of particles with the desired power spectrum. A
popular approach is using the Zel’dovich (Zel’dovich, 1970) approximation where displace-
ments scale linearly with the growth factor D. This consists of generating the gravitational
potential of the desired perturbation Φ and then moving each particle according to

x(t) = xi −
D(a)

4πGρ̄i
∇Φ,

which comes from the Zel’dovich approximation.

Recently, more accurate approaches have been developed using second-order Lagrangian
perturbation theory (Jenkins, 2010) which adds a second-order term to calculate the dis-
placement of the form D2∇Φ2, here D2 ≈ −3D2/7 and Φ2 is the potential of a “second-
order overdensity” δ2 which can be derived from the potential Φ

δ2 =
1

2

[
(tr(Φ,ij))

2 − tr((Φ,ij)
2)
]

, (1.28)

where tr is the trace and Φ,ij ≡ ∂2ϕ
∂qi∂qj

is a tensor.

N-body Evolution

The most straightforward way to evolve a set of particles subject only to Newtonian gravity
is the Particle-Particle (PP) method, which simply consists of calculating the force
(acceleration) on each particle induced by the gravitational attraction of all other particles.
This acceleration is then integrated numerically to find the velocity and next position

ai ∝
∑
j

mj

r2ij
, (1.29)

where rij is the distance between particles i and j. The computational cost of this method
scales as N2, where N is the total number of particles, which quickly becomes prohibitive.
Two approximate methods allow for much faster computation.

16



The Tree method consists of grouping particles in boxes with increasing sizes the
further they are from the particle of interest. This allows an accurate calculation of the
force from close particles but significantly reduces computation time in the force calculation
from distant particles. If the size of the boxes scales exponentially with the distance,
e.g.doubles every d units, then the cost of calculating the force on each particle scales
as logN , therefore N logN for all particles. This is significantly less costly than the PP
method.

The second widely used alternative is the Particle Mesh (PM) method, which takes
an Eulerian approach to solve the problem. The idea is to subdivide the space into a grid
of a given size L and store the kinematic properties of all the particles in each cell, then
move the particles according to the properties of each cell. This method is very fast (it
scales with N) but requires a significant amount of memory to store the information of
each cell, which typically sets the limit on L. Furthermore, we can easily see how small-
scale force contributions in this method can be inaccurate, but it has the advantage of
being much more accurate than the Tree method on the contributions of particles that are
far away. Some codes adopt a hybrid approach, “TreePM”. It consists of dividing the
force into contributions of close and distant particles, where the close short-range force is
calculated through the Tree algorithm and the distant particles’ contributions through the
PM algorithm.

During my thesis, I have used and run simulations made with the publicly available
code Gadget 41 (Springel et al., 2021), which uses the hybrid TreePM method.

1.3.2 Hydrodynamical Simulations

N-body simulations are reasonably good at modelling the formation of structures in the
Universe. However, in order to study the complex physics of clusters, galaxies, and gas,
such as gas cooling, turbulence and stellar feedback, one needs to solve the hydrodynamical
equations governing the evolution of different types of fluids. Both Lagrangian particle-
based and Eulerian grid-based approaches have been developed to model the behaviour of
the baryonic fluid.

The most widely used Lagrangian approach is the Smoothed Particle Hydrody-
namics (SPH) developed by Lucy (1977), Gingold & Monaghan (1977) and Evrard (1988,
1990) where a set of N particles samples the fluid. Any specific field F (x) (e.g. energy or
momentum) can then be calculated by adding all the relevant contributions from particles

1https://wwwmpa.mpa-garching.mpg.de/gadget4/
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at the position x given a particle smoothing kernel W (r, h)

F (x) =
N∑
j=1

mj
Fj

ρj
W (x− xj , h) , (1.30)

where mj, ρj and Fj are the mass, density and field value of the particle j. The smoothing
kernel determines how much a particle contributes to the value of the field F in the position
x depending on its distance from x.

Given this discretisation of the fluid, one can use numerical integration methods to
solve the Lagrangian formulation of the hydrodynamical equations.

In contrast to this, Eulerian approaches divide the volume into grid cells and store the
physical properties of each cell, calculate the flux of energy, momentum and mass at each
boundary and evolve the physical properties at each cell. The most popular grid-based
algorithm is the Adaptative Mesh Refinement (AMR) first described in Berger &
Oliger (1984) and Berger & Colella (1989), which uses grids of adaptative sizes to have
higher resolution in dense regions. The Euler equations —typically in integral form to
handle shocks— are solved on the grid. Then numerical integration methods are used to
find the temporal evolution of the different physical properties. However, this is insuffi-
cient to model all aspects of galaxy formation, particularly at smaller scales. “Subgrid”
prescriptions are typically added to account for star formation, supernova feedback, Active
Galactic Nuclei (AGN) feedback, black hole formation and other physical phenomena that
go into galaxy formation.

While hydrodynamical simulations play an important role in the description of the
complex physics of galaxy formation, they are computationally expensive, limiting their
resolution and box size. The former forces the use of subgrid prescriptions, and the latter
forbids their use on the largest cosmological scales.

An alternative to hydrodynamical simulations is the use of semi-analytical and semi-
empirical models. These consist of using a large box N-body simulation and populating
dark matter haloes with galaxies and clusters either using subgrid prescriptions in the case
of semi-analytical models or with population statistics obtained through observations in
the semi-empirical case.

1.3.3 Post Processing: Finding Haloes

The output of an N-body simulation, at any given time, is the positions and velocities
of all the discretised mass elements —particles— used. This gives no real information

18



Figure 1.3: Slice of an output of one of the N-body simulations I have run (see Chapter 4.3.1
for details). It illustrates the distribution of large-scale structures. The length of the box
is L = 500Mpc/h, and the brightness measures the local density. Local bright spots are
haloes linked together through thinner filaments of matter.
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about the structures in the Universe which, in ΛCDM, organise hierarchically in haloes
and subhaloes, linked through filamentary structures as can be seen in Fig. 1.3.

Therefore, we need an algorithm to group particles that are supposed to be part of
the same structure. Two main approaches to accomplish this task are using a clustering
algorithm to group particles together, or using the local density to assess whether each
particle is supposed to be part of a collapsed structure. The Friends of Friends (FoF)
algorithm (Huchra & Geller, 1982; Press & Davis, 1982; Einasto et al., 1984) is a standard
clustering method; in the case of N-body simulations, it links together particles that are
within a linking length from each other (typically around 0.2 times the average inter-particle
separation). The Spherical Overdensity (SO) (Lacey & Cole, 1994) algorithm uses
contours of isodensity to detect regions that are above the chosen threshold. For haloes, it
is usually chosen to be the density at the virial radius, found through the spherical collapse
model (see section 1.1.1). More complex criteria are typically used for the substructure.

Most of the analysis of this work has been done using the publicly available code Amiga
Halo Finder (AHF)2 (Knollmann & Knebe, 2009), which uses a spherical overdensity
method. I also used data results from the Subfind (Rodriguez-Gomez et al., 2015) and
Rockstar 3 (Behroozi et al., 2013a) codes.

1.4 Clusters of Galaxies

Galaxy clusters are the largest bound structures in the Universe; as such, they represent
a unique laboratory for studying galaxies’ properties, the Universe’s large-scale structure,
and the nature of dark matter. Their large gravitational potential results in a hot gas
distributed between galaxies in Intra-Cluster Medium (ICM). Thanks to their large mass,
hot gas and galactic component, they can be detected in a variety of ways.

X-ray

Diffuse gas accounts for most of the baryons in the Universe, and is usually difficult to
observe. But in clusters of galaxies, the gas in the ICM gets heated up to X-ray emitting
virial temperatures (107 − 108K). Since clusters are the only large, luminous, spatially
extended, and non-varying X-ray source, they are relatively easy to detect in the high-
energy range.

2http://popia.ft.uam.es/AHF/
3https://github.com/yt-project/rockstar
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The ICM is a hot, tenuous plasma with densities ranging from 10−5 to 10−1 cm−3 and
energies of several keV per particle, which causes the hot plasma to emit the bulk of the
thermal energy in the regime of soft X-rays. Bremsstrahlung is the dominant radiative
process at high temperatures relevant for massive clusters and has a spectrum of the form
(Böhringer & Werner, 2010)

e(ν, Te) ∼ n2
eT

−0.5
e exp(−hν/kTe) , (1.31)

where Te and ne are the temperature and density of electrons. The most important feature
of the spectrum is the sharp cut-off at high energy that provides a good temperature
estimation.

The normalisation is given by the emission measure, E, which is the rate of the free-
free events. It is proportional to the integral along the line of sight of the squared plasma
density n2

e

E =

∫
los

n2
edV (1.32)

On top of the thermal continuum, we also find line emission with increasing contribution
with decreasing plasma temperatures.

In general, the X-ray spectrum provides temperature and chemical composition infor-
mation through the general shape and specific features.

If we want a mass profile, we need to assume that the ICM is in hydrostatic equilibrium.
This is justified by the fact that the sound crossing time through the cluster core (108 years)
is generally much less than the age of the clusters (several 109 years). Thus, if we can
measure the density and temperature distribution, we can measure the mass distribution.
Through simple thermodynamics derivations, we get

M(r) = − kT (r)

Gµmp

(
d lnn

d ln r
+

d lnT

d ln r

)
, (1.33)

where µmp the mean molecular mass and n(r) is the gas particle density.

SZ effect

When low-energy photons of the Cosmic Microwave Background (CMB) travel through
the hot ICM, they get scattered by the very energetic free electrons of the plasma and
experience an energy boost, producing a shift in the CMB spectrum. This is known as the
thermal Sunyaev-Zel’dovich effect (SZ or tSZ hereafter) (Sunyaev & Zeldovich, 1972).
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In the non-relativistic limit, one can express the SZ distortion as a change in CMB
temperature ∆TSZ with a simple formula (Carlstrom et al., 2002)

∆TSZ

TCMB

= −2y , (1.34)

where y, the Comptonization parameter, is the key measure of the SZ effect and can be
interpreted as a dimensionless measure of the time CBM photons spend in the electron
cloud, or alternatively the pressure integrated along the line of sight and has the form

y ≡
∫

neσTdl
kTe

mec2
, (1.35)

where ne, Te, and me are the electron particle density, temperature and mass, respectively,
and σT is the Thomson cross-section.

Note that the SZ distortion is redshift independent. Hence, SZ is particularly useful for
detecting high-z clusters. We can also notice that it is proportional to the integral along
the line of sight of the electron density times its temperature ne×Te, whereas X-ray surface
brightness is proportional to the integral of n2

e × T
−1/2
e . Thus, the angular distribution of

SZ and X-ray images will likely differ.

Given the different specific properties of the SZ effect seen above, we can draw several
conclusions on cluster detection:

• Combining SZ and X-ray data could provide 3D maps of clusters. However, the
change in the 3D shape is not sensitive enough to be an efficient tool.

• Combining SZ and X-ray data on clusters provides valuable information on the ther-
mal composition of ICM, as they depend on Te and ne in different ways. SZ is a
map of electron pressure and is sensitive to ne while X-ray is sensitive to n2

e, so SZ
is sensitive to the outer part of the cluster where the X-ray signal drops.

• SZ effect is a direct measurement of the projected mass of gas along the line of sight.
This means that one can compare it to other total mass (gas + DM) probes (e.g.
lensing) and get information on the baryon composition and fraction in clusters.

Gravitational Lensing

Because of their very large mass, clusters are expected to produce effective gravitational
lensing phenomena whenever they are in the path of an observed background object. This
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allows their detection and mass and density profile measurements (Hattori et al., 1999;
Mellier, 1999; Mandelbaum, 2018, for eview).

The observable is usually a source galaxy shape, either through strong lensing events
generating giant arcs (assuming a spherically symmetric shape) or through averaging many
source galaxy shapes (assuming no bias in the ellipticity distribution).

One method of using arcs and arclets is to assume a mass profile model with one
parameter and fit the model. This would be through fitting the shear profile γ(θ), which is
related to the projected surface-density profile Σ(θ). The mass model is generally described
as a linear sum of clumps modelled analytically to avoid having too many parameters to
constrain compared to the number of observational constraints.

Optical

While X-ray and SZ methods detect the ICM and weak lensing the overall mass distribu-
tion, dominated by the dark matter halo, one can also detect a cluster through its galaxies
using optical/IR telescopes. For large enough clusters, the radial distribution of the galaxy
number density provides very useful information about its density profile and concentration
and is a proxy for its total mass.

It is, however, not trivial to accurately associate a given observed galaxy with a clus-
ter, particularly if measured redshifts are not very precise. Moreover, background and
foreground galaxies can be falsely associated with a cluster, making richness and profile
measurements challenging when using only galaxies.

Current and Forthcoming Surveys

We have seen that clusters can be detected in optical, X-ray and radio wavelengths. At
the time of writing, a number of surveys, some of which are already gathering data, are
expected to increase the number and accuracy of cluster detections by more than an order
of magnitude. I will review some of the current and future prospects of each.

EUCLID

EUCLID4 is an optical/NIR space telescope which is scheduled to launch around the
time of writing this thesis. It will cover 15,000 deg2, which represents about a third of the
sky and is expected to detect O(105) clusters up to z=2 (Sartoris et al., 2016) at a 5σ level,

4https://www.euclid-ec.org/
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Figure 1.4: The Bullet Cluster (1E 0657-56) observed through different channels. The
optical image of the background galaxies is from Hubble Space Telescope(HST), while the
red and blue images show X-ray emission (from the Chandra space telescope) and the mass
profile reconstructed from lensing using HST data. The Bullet Cluster is a famous example
of two clusters merging, as seen through lensing that follows the mass component. Note
that the ICM gas from the two clusters traced by X-ray is interacting, and caught up in a
shock between the two mass peaks, while the galaxies and most of the mass have passed
through each other. This is one of the strongest pieces of evidence that most of the matter
in clusters is collisionless, and thus not baryonic.

24



which will represent almost all clusters above 1014M⊙. Of these, almost 20000 will be very
high signal-to-noise detections —7σ—. This represents more than an order of magnitude
increase from existing cluster surveys.

Vera C. Rubin Observatory (LSST)

The Rubin5 observatory is a ground-based telescope located in the Atacama desert in
Chile, which is also set to start collecting light around the time of writing this thesis. It will
cover about 18,000 deg2 of the sky and boasts the largest digital camera ever constructed,
observing the optical and NIR. It is expected to detect over 100,000 clusters up to z=1.2
(LSST Dark Energy Science Collaboration (LSST DESC) et al., 2021).

Roman Space Telescope

Roman (ex-WFIRST)6 (Akeson et al., 2019) is a NIR deep-field survey expected to be
launched in the mid-2020s. It will have a primary mirror with a diameter 2.4 meters, the
same size as the Hubble Space Telescope and will have a Wide Field Instrument that covers
a 0.281 deg2 field, nearly 100 times larger than HST. It will be able to detect lower-mass
clusters at high redshift and provide crucial hints on cluster and proto-cluster formation
and evolution, which makes it very complementary to wide surveys such as Euclid and
Rubin. In particular, its high density of lensed galaxies (50 galaxies per square arcminute)
will produce more detailed weak lensing maps of dark matter in clusters.

The Dark Energy Spectroscopic Instrument (DESI)

DESI7 is an ongoing ground survey located in Arizona, whose goal is to provide a 3D
map of the sky by measuring spectra of about 30 million galaxies and cover 14,000 deg2 over
a five-year span (DESI Collaboration et al., 2016). It will provide accurate spectroscopic
redshifts of galaxies and clusters complementing photometric data from Roman, Euclid
and Rubin.

CMB-S4

CMB-S4 8 is a next-generation radio survey consisting of 21 ground-based telescopes
at the South Pole and in the Chilean Atacama desert. It will be able to detect clusters
through analysis of the change of the CMB spectrum through the SZ effect. It will detect
clusters up to z=3, and will increase the number of SZ-clusters from the hundreds currently
with SPT-SZ to almost a hundred thousand (Abazajian et al., 2019a). This is particularly
complementary with optical surveys detecting galaxies while SZ probes ICM gas.

5https://www.lsst.org/
6https://roman.gsfc.nasa.gov/
7https://www.desi.lbl.gov/
8https://cmb-s4.org/
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eROSITA

eROSITA (extended ROentgen Survey with an Imaging Telescope Array)9 is a wide-
field X-ray survey on-board of the Russian-German Spectrum-Roentgen-Gamma (SRG)
space observatory. The survey started collecting light in December 2019 but is paused at
the time of writing as a consequence of the Russian invasion of Ukraine. The main science
target of eROSITA is the detection of a large sample (∼ 100, 000) of galaxy clusters out to
z > 1 (Merloni et al., 2012) targeting the ICM gas in soft X-rays in the energy range 0.2–8
keV. These clusters will also be detected in optical thanks to the surveys listed above,
providing a unique opportunity to study how the ICM gas, the galaxies and the dark
matter halo interact in each cluster.

1.5 This work

In light of the increase in quantity and accuracy of the expected galaxy cluster data dis-
cussed above, we want to provide novel ways to extract information about structure for-
mation and the background cosmology. Specifically, this thesis aims to demonstrate the
possibility that cluster structural properties can be used to constrain the cosmological
parameters Ωm and σ8.

To achieve this, we use the fact that the structure of a galaxy cluster is mainly deter-
mined by aspects of its dynamical state; this means how perturbed it is, whether it had
a recent merger, and the state of the Universe when it was formed. Because cosmology,
more specifically Ωm and σ8, will influence the average dynamical state of clusters, we can
predict how Ωm and σ8 will impact the distribution of cluster structural properties, such
as their shapes and density profiles. This allows one to obtain constraints on Ωm and σ8

by studying the statistics of the structural properties of a population of clusters.

In Chapter 2, I study how the age at which galaxy clusters form depends on Ωm and σ8

and compare this dependence to cluster abundance, the typical way to constrain cosmology
with clusters. I do this first with analytical predictions, and then compare them to DM-only
cosmological simulations.

I extend the study in Chapter 3 by looking at the differential version of these tests,
namely the growth and merger rate of clusters and DM haloes. Here again, I use both
analytical predictions and tests using simulations.

9https://erosita.mpe.mpg.de/
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The first two chapters lay the ground for the theoretical predictions of how cluster
dynamical state varies with Ωm and σ8; In Chapter 4, I explore how to link the cluster
dynamical state to potentially observable structural properties. I do this by studying
correlations between different structural properties, using a set of high-resolution DM-only
simulations, run for a range of cosmologies.

Finally, I summarize the findings of this thesis and give the main conclusions and
outlook for the future in Chapter 5.
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Chapter 2

Cluster Assembly Times as a
Cosmological Test

2.1 Abstract

The abundance of galaxy clusters in the low-redshift universe provides an important cosmo-
logical test, constraining a product of the initial amplitude of fluctuations and the amount
by which they have grown since early times. The degeneracy of the test with respect to
these two factors remains a limitation of abundance studies. Clusters will have different
mean assembly times, however, depending on the relative importance of initial fluctuation
amplitude and subsequent growth. Thus, structural probes of cluster age such as concen-
tration, shape or substructure may provide a new cosmological test that breaks the main
degeneracy in number counts. We review analytic predictions for how mean assembly time
should depend on cosmological parameters, and test these predictions using cosmological
simulations. Given the overall sensitivity expected, we estimate the cosmological param-
eter constraints that could be derived from the cluster catalogues of forthcoming surveys
such as Euclid, the Nancy Grace Roman Space Telescope, eROSITA, or CMB-S4. We show
that by considering the structural properties of their cluster samples, such surveys could
easily achieve errors of ∆σ8 = 0.01 or better.
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2.2 Introduction

The ‘concordance’ Λ-Cold Dark Matter (ΛCDM) cosmological model is now well estab-
lished as a single theoretical framework that is consistent with many different observa-
tional tests. The present-day abundance of dark matter and dark energy and the statistical
properties of the matter distribution are increasingly well constrained, as expressed by cos-
mological parameters with gradually decreasing uncertainties (e.g. Planck Collaboration
et al., 2020). As the uncertainties in parameter values shrink; however, they reveal tension
in several places in the model. Most notably, the Hubble parameter H0 appears to differ
significantly between high-redshift and low-redshift tests, with the tension in independent
measurements of this parameter now exceeding 4σ (Riess et al. 2019; see Verde et al. 2019
for a review). In addition to the H0 tension, there is also growing evidence that the am-
plitude of the matter fluctuations (typically expressed as σ8, the r.m.s. of fluctuations in
the matter density on a scale of 8h−1Mpc) may display a similar tension at the 2–3σ level
(or ∼ 0.1 in this parameter, e.g. Battye et al., 2015; Douspis et al., 2019; To et al., 2021;
Heymans et al., 2021a). More generally, the fundamental natures of dark energy and dark
matter remain unknown, raising the possibility of new, exotic physics not yet included in
the standard cosmological model.

Given the evidence for tension in the current results, multiple, independent tests of
the standard cosmological model are needed, on different mass and length scales and at
different redshifts, to either reconcile the current results, or to reveal the physical origin of
the disagreements. Current and forthcoming space missions, including Euclid, the Nancy
Grace Roman Space Telescope (Roman), and eROSITA (Pillepich et al., 2012), together
with data from large ground-based surveys such as UNIONS (Chambers et al., 2020), DESI
(DESI Collaboration et al., 2016) or Rubin LSST (LSST Science Collaboration et al., 2009),
or experiments such as CMB-S4 (Abazajian et al., 2019b), will provide remarkable new
datasets, mapping out structure over a significant fraction of the observable universe, out
to redshifts of a few. Given, on the one hand, the enormous potential of this data, and,
on the other hand, the exacting precision required to resolve current parameter tensions,
there is a need for new tests of the cosmological model that make full use of our growing
understanding of structure formation.

The measured abundance of massive galaxy clusters is a classic cosmological test. Clus-
ter abundance has been estimated using samples detected in the X-ray (e.g. Henry et al.,
2009; Mantz et al., 2010; Böhringer et al., 2014), via the Sunyaev-Zel’dovich (SZ) effect
(e.g. de Haan et al., 2016; Planck Collaboration et al., 2020), in optical galaxy redshift
surveys (e.g. Abdullah et al., 2020), in weak lensing surveys (Kacprzak et al., 2016), or
using combinations of these techniques (e.g. Abbott et al., 2020; Costanzi et al., 2021).
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These rare objects evolve from peaks in the matter distribution present at early times, and
their present-day abundance places a tight constraint on the function S = σ8Ω

γ
m, where

Ωm is the present-day matter density parameter, and γ ≈ 0.5 is the growth index. Cluster
abundance measurements alone do not place very tight constraints on Ωm or σ8 individu-
ally, due to the degeneracy between them. Simply counting clusters does not leverage the
full potential of the underlying datasets, however. The structural properties of clusters
— their projected shape, central concentration, substructure and non-axisymmetry — are
all related to their degree of dynamical relaxation, which in turn traces their formation
history (see Taylor, 2011, for a review). Thus, measurements of these properties provide
a separate constraint on the growth rate. While measurements of structural parameters
in individual clusters may be noisy, the sheer number of systems expected in forthcoming
surveys should allow us to make robust measurements of the average trends, using the
expertise developed in fields like weak lensing.

The idea of using the structural properties of clusters to constrain cosmological param-
eters is not new (e.g. Richstone et al., 1992; Evrard et al., 1993; Mohr et al., 1995), but
the context for these tests has changed radically in the 30 years since the idea was first
proposed. First, the size of the datasets has grown enormously, giving better statistics.
Second, our understanding of the systematics in individual structural measurements has
developed considerably. Third, there is increasing sophistication in understanding and ex-
ploiting large, complex datasets. In particular, fields such as cosmic shear have illustrated
how it is possible to extract parameter constraints from large sets of noisy measurements,
even when the link between parameters and observables is indirect and non-linear. Finally,
simulations of structure formation have progressed dramatically, allowing us to calibrate
some aspects of non-linear structure formation at the per cent level, even if other aspects
remain uncertain. Thus, it seems high time to reconsider cosmological tests based on the
internal structure of haloes.

In this chapter, we consider the possibility of estimating from their structural properties
the mean assembly time or formation epoch for a large sample of galaxy clusters. This
measurement of mean ‘age’ would leverage the same data already collected for cluster
abundance studies, providing an independent constraint on the cosmological parameters.
We focus in particular on the parametric dependence of halo age, and its sensitivity to
the parameters Ωm and σ8; in a subsequent chapter, we will consider the (non-trivial)
path to developing practical observational tests based on age estimates. The outline of the
chapter is as follows. In Section 2.3, we review theoretical models of cluster abundance and
age, and use them to predict how these properties vary as a function of the cosmological
parameters. Given the approximate nature of the theoretical estimates, in Section 2.4
we test these predictions using catalogues from several different N-body simulations. We
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show that with some careful analysis, we can reconcile the analytic and numerical results
to reasonable accuracy. In Section 2.5, we estimate the sensitivity a realistic observational
program could achieve, using concentration as a proxy for age. Finally, in Section 2.6,
we review and summarize our results. The details of the analytic calculations and the
dependence of several important quantities on the cosmological parameters are discussed
in the appendices. We consider a range of cosmologies throughout the chapter, but assume
flatness (Ωm + ΩΛ = 1), and take a model with Ωm = 0.3 as the fiducial case.

2.3 Cosmological Sensitivity of Halo Abundance and

Halo Age

We will begin by estimating the potential sensitivity of age tests, using theoretical predic-
tions of how cluster abundance and age depend on the cosmological parameters. We use
analytic models of abundance and age based on the extended Press & Schechter formalism,
and calculated using standard tools and techniques summarized in Appendix A.1.

2.3.1 Analytic Models of the Halo Mass Function

The Press–Schechter (PS – Press & Schechter, 1974; Bond et al., 1991) and extended
Press–Schechter (EPS – Lacey & Cole, 1993) formalisms provide a convenient analytic
framework for computing the number density of dark matter haloes and their growth rate,
given a background cosmological model. The basic expression for the halo mass function,
derived assuming spherical collapse, is

n(M)dM =

√
2

π

ρ0
M

δc
σ2

exp

(
− δ2c

2σ2

) ∣∣∣∣ dσdM
∣∣∣∣ dM , (2.1)

where ρ0 is the matter density at the redshift of interest, σ = σ(M) is the r.m.s. amplitude
of fluctuations in the density field smoothed on mass scale M , and δc is the threshold for
collapse to a virialized halo. Although fluctuations grow in amplitude as z decreases to
zero, the condition for collapse by redshift z can also be considered at some fixed, early
redshift, taking σ(M) to be a function of mass only, and δc = δc(z) to be a function of the
collapse redshift.

The mass function can also be written in a more compact form as

n(M, t)dM =
ρ0
M

fPS(ν)

∣∣∣∣ dνdM

∣∣∣∣ dM , (2.2)
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where ν(M, z) ≡ δc(z)/σ(M) is the height of the collapse threshold at redshift z, relative
to typical fluctuations on mass scale M , and

fPS(ν) =

√
2

π
exp

(
−ν2

2

)
(2.3)

is the mass fraction that has collapsed per unit interval of ν1.

It is well known, however, that this basic form of the mass function fails to reproduce
the halo abundance found in N-body simulations, particularly for low-mass haloes (Sheth &
Tormen, 1999, 2002; Jenkins et al., 2001). This failure is due to several simplifying assump-
tions made in the model, the most important one being a fixed threshold for (spherical)
collapse δc that is independent of mass and environment. To solve this problem, Sheth &
Tormen (1999, ST hereafter) considered a mass-dependent collapse threshold (or ‘moving
barrier’), to derive a functional form that better fits the mass function from simulations

fST (ν) = A

√
2a

π

(
1 +

1

(
√
aν)

2p

)
exp

(
−aν2

2

)
, (2.4)

with A = 0.322, a = 0.707 and p = 0.3.

A number of subsequent studies have improved our understanding of the mass function.
Tinker et al. (2008) demonstrated that the HMF is not completely universal, but evolves
with redshift; allowing the parameters A, a, and p in the fit to evolve as a power-law of 1+z
provides a better match to simulations. This non-universality has since been confirmed by
other groups (e.g. Watson et al., 2013). Despali et al. (2016), argued that it is in fact, an
artifact of the halo mass definition, and that the common choices of overdensity of 200 or
178 times the critical density induce much of the non-universality. Finally, several authors
(Velliscig et al., 2014; Bocquet et al., 2016; Castro et al., 2021) have studied the impact
of baryonic effects on the HMF by measuring halo masses, profiles, and abundance in
hydrodynamic simulations. These improvements to the HMF fit are required in precision
applications, but are generally secondary in importance (≤ 20% – Tinker et al. 2008;
Velliscig et al. 2014; Bocquet et al. 2019a), relative to the large variations in abundance
with cosmology shown below. Thus, for simplicity in what follows, we will assume the ST
form of the collapsed fraction (Eq. 2.4), in order to study how abundance and age depend
on cosmology. We discuss the possible effect of baryons on the internal structure of haloes
in Section 2.5.4 below.

1Note the mass fraction is often defined per unit ln ν; the expressions for fPS and fST (Eqs. 2.3 & 2.4)
then contain an extra factor of ν.
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2.3.2 Cosmological Dependence of Halo Abundance

Cluster abundance depends on the cosmological parameters both through the cluster mass
function and through the survey volume. Within a survey volume subtending a solid angle
∆Ω, the expected number of clusters in the mass bin i: [M i,M i+1] and redshift bin j:
[zj, zj+1] is

N(Mi, zj) =
∆Ω

4π

∫ zj+1

zj

dz
dV

dz

∫ Mi+1

Mi

dn

dM
dM , (2.5)

where dn/dM is the HMF given above and dV/dz is the volume element per unit solid
angle and per unit redshift. As discussed previously, the HMF is calculated as a fraction of
the material in a region that has collapsed to form haloes on some mass scale. Thus, rather
than relating the halo abundance to the volume probed by the survey, we can express it in
terms of the total mass MV of material in the survey volume:

N(Mi, zj) =
∆Ω

4π

∫ zj+1

zj

dz
dMV

dz

∫ Mi+1

Mi

f(ν)
dν

dM
dM . (2.6)

The advantage of this form is that we can now separate the cosmological dependence of
the first factor, the total mass MV probed by the survey in a given redshift range ∆z, from
that of the second factor, which is the fraction f(ν)∆ν of that mass that has collapsed to
form haloes in the mass range ∆ν = (dν/dM)∆M by that redshift.

To make explicit the cosmological dependence of the HMF, in Appendices A.2 and A.3
we consider each of these factors separately. Over a realistic range of (Ωm, σ8), the survey
mass MV varies by a factor of ≲ 2, while the collapsed fraction can vary by several orders
of magnitude, and thus dominates the parametric dependence of the HMF.

As demonstrated in Appendix A.3, the peak height ν varies approximately as ν(M, z) ∝
(σ8)

−1Ω
α(z)
m Ω

−β(M)
m . The resulting behaviour in the Ωm–σ8 plane is shown in Fig. 2.1,

for several mass/redshift combinations. We see that peak height depends mainly on σ8;
variations in Ωm introduce a slight tilt in the contours, that goes from negative at low
mass/redshift, where β(M) > α(z), to slightly positive at high mass/redshift (and low
Ωm), where α(z) > β(M) (see also Appendix A.3, and the lower right panel of Fig. A.2,
which shows the dependence on Ωm for fixed σ8, at several different masses and redshifts).

In both spherical collapse (PS – Eq. 2.3) and ellipsoidal collapse (ST – Eq. 2.4) models,
the collapsed fraction exhibits power-law growth for ν < 1, and an exponential decay for
ν > 1. Thus, there are two main regimes, the first where the abundance of haloes increases
with ν, and the second where it decreases rapidly. The effect of the cosmological parameters
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Figure 2.1: Variation of the peak height ν, for a halo of the mass and redshift indicated,
in the Ωm–σ8 plane.
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on the two regimes is shown, for instance, in Fig. A.4. The amplitude of fluctuations σ8

controls the mass at which the transition between regimes occurs, while Ωm controls the
sharpness of the transition. In the case of clusters, we are generally in the second regime,
where increases in ν produce an exponential decrease in abundance. Thus, the parametric
dependence of the collapsed fraction (shown in the right panel of Fig. A.1) is very similar
to the corresponding figure for peak height, Fig. 2.1, but with an inverted and logarithmic
colour scale, since f(ν) ∝ exp(−ν2/2) implies that in a log scale, ln(f) ∝ −ν2/2.

Finally, we can combine the parametric dependence of the survey volume and the
collapsed fraction (shown in the left and right panels of Fig. A.1 respectively) to plot the
dependence of number counts on Ωm and σ8. This is shown in Fig. 2.2, for the same
mass/redshift combinations considered previously. We note that the variation of the total
mass within the survey volume has a minimal effect, and aside from the change in the
overall scale, the contours are almost identical to those for the collapsed fraction.

2.3.3 Theoretical Estimates of Halo Assembly Time

In CDM cosmologies, dark matter haloes grow through repeated, stochastic mergers, grad-
ually assembling their mass from a large number of smaller progenitors. Thus, deciding
when a given halo has ‘formed’ is rather arbitrary. Most definitions in the literature are
based on the Mass Accretion History (MAH) (van den Bosch, 2002). This is calculated
by tracing the growth of the halo backwards in time and selecting the largest progenitor
of each merger, to produce a single monotonic growth sequence M(z); the MAH is then
defined as the relative value M(z)/M(0). Given a MAH, the formation epoch is often
defined as the redshift by which a halo has reached some fixed fraction f of its final mass
(e.g. z50 for f = 0.5 – Lacey & Cole 1993).

As for the HMF, the EPS formalism provides an analytic framework for exploring the
cosmological dependence of halo age. We will first consider the predicted z50 distribution
derived by Lacey & Cole (1993) assuming spherical collapse, and then give two different
models of the ellipsoidal collapse equivalent, derived by Sheth & Tormen (2002) and Zhang
et al. (2008) respectively.

Given a halo of mass M0 at redshift z0, the fraction of its mass that was in progenitor
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haloes of mass M1 ± dM1/2 at redshift z1, is given by the conditional probability

fSC(M1, z1|M0, z0)dM1 =
1√
2π

δc(z1) − δc(z0)

(S(M1) − S(M0))3/2

× exp

(
− (δc(z1) − δc(z0))

2

2(S(M1) − S(M0))

)
dS1 ,

(2.7)

where S(M) = σ2(M), and the other variables are as in Section 2.3.1

Multiplying by the factor M0/M1, we get the progenitor mass function (PMF), that is
the number of progenitors of mass M1

PMF (M1, z1|M0, zo)dM1 =
M0

M1

f(M1, z|M0, z0)dM1 . (2.8)

Following Lacey & Cole (1993), if we integrate the PMF from masses M0/2 to M0, we
are calculating the average number of progenitors at redshift z1 that have more than half
the final halo mass at z0. Since the halo cannot have more than one progenitor with more
than half of its final mass, this quantity is also the probability that the halo had built up
at least half of its mass in a single progenitor by redshift z1. Thus, it gives the cumulative
distribution of the formation redshift z50:

P (z50 > z|M0, z0) ≡
∫ M0

M0/2

M0

M
f(M, z|M0, z0)dM . (2.9)

(We note that this approach only works for formation redshifts zf with f ≥ 0.5; there is
no simple analytic way to obtain the distribution of zf for f < 0.5.)

As with the HMF, this estimate of halo formation redshift is limited by the assumption
of spherical collapse. Sheth & Tormen (2002) provided a version of the conditional mass
function using a Taylor expansion of their moving barrier from (Sheth & Tormen, 1999)
that can be used to calculate z50 (e.g. Giocoli et al., 2007). Their conditional probability
is

fc,ST (M1, z1|M0, z0) =
|T (M1, z1|M0, z0)|√

2π (S(M1) − S(M0))
3

× exp

(
−(B(M1, z1) −B(M0, z0))

2

2(S(M1) − S(M0)

)
,

(2.10)
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where B is the moving barrier

B(M, z) =
√
aδc(z)

[
1 + β

(
S(M)

a(δc(z))2

)γ]
, (2.11)

with parameters a = 0.7, β = 0.485 and γ = 0.615, while T is the first terms of a Taylor
expansion of the function B

T (M1, z1|M0, z0) =
5∑
0

(S0 − S1)
n

n!

∂n [B(M1, z1) −B(M0, z0)]

∂Sn(M1)
. (2.12)

Inspired by the ellipsoidal collapse model, Zhang et al. (2008) also developed a fitting
function for the conditional probability based on ellipsoidal collapse:

fEC(M1, z1|M0, z0)dM1 =
A0√
2π

δc(z1) − δc(z0)

(S(M1) − S(M0))3/2
exp

(
−A2

1

2
S̃

)

×

exp

(
−A3

(δc(z1) − δc(z0))
2

2(S(M1) − S(M0))

)
+ A2S̃

3/2

1 + 2A

√
S̃

π

 dM1 ,

(2.13)

where A0 = 0.8661(1 − 0.133ν−0.615
0 ), A1 = 0.308ν−0.115

0 , A2 = 0.0373ν−0.115
0 , A3 = A2

0 +

2A0A1

√
∆SS̃/∆ω, ν0 = ω2

0/S(M0), S̃ = ∆S/S(M0), ∆S = S(M1) − S(M0) and ωi ≡
δc(zi).

The probability distributions obtained using the three models (Eqs. 2.7, 2.10 and 2.13)
in Eq. 2.9 are shown in Fig. 2.3. The ellipsoidal collapse models predict earlier formation
times z50 at all masses, although the difference is largest at low mass. The figure also
illustrates a well-known feature of hierarchical structure formation, that massive haloes
have formed more recently. The predictions of the two ellipsoidal collapse models are very
similar, so we will use the model from Zhang et al. (2008) as our base model in what
follows, as it is slightly faster to calculate.

2.3.4 Cosmological Dependence of Halo Assembly Time

Given a prediction for the distribution of halo formation redshifts, we can study how it
varies with cosmological parameters. We have tested the dependence of three quantities in
particular:
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• The median formation redshift, defined as ⟨z50⟩ = zm such that P (Z > zm) = 0.5

• The peak of the differential probability distribution, zp = max
[
dP
dz

(z)
]

• The average formation redshift, za =
∫∞
zobs

z dP
dz
dz .

Of these three, we will focus on the median formation redshift, noting that the average
formation redshift is slightly higher.

Both spherical and ellipsoidal collapse models predict the same behaviour of the median
formation time, as shown in Fig. 2.4. Haloes form earlier in high–σ8 cosmologies, since a
greater mean fluctuation amplitude causes typical peaks in the density field to cross the
threshold for collapse earlier in the process of structure formation. The Ωm-dependence is
less trivial and differs between low-mass and high-mass haloes. As explained in Appendix
A.3, high-Ωm cosmologies have more power on small scales relative to large ones. Thus at
fixed σ8, low-mass haloes form earlier in higher Ωm universes, while high mass haloes form
slightly later. This agrees with the previous findings of Giocoli et al. (2012).

The general dependence of formation epoch z50 on Ωm and σ8 is shown in Fig. 2.5. The
main trend is for age to increase with σ8; since the masses shown here are all beyond the
cross-over point in Fig. 2.4, median age also decreases slightly with Ωm, particularly at
large masses. We explore how the dependence of z50 on Ωm and σ8 arises in more detail in
Appendix B.

Comparing Figs. 2.2 and 2.5 closely, we note an important feature of halo age relative
to halo abundance: for lower mass haloes and/or at lower redshift, the contours for the
two are fairly orthogonal over much of the Ωm–σ8 plane. To highlight this point, Fig. 2.6
shows the two sets of contours superimposed, for the ranges of mass and redshift accessible
to large cluster surveys. In the region of particular interest, around the concordance
model (Ωm = 0.3, σ8 = 0.8), the two sets of contours are almost exactly orthogonal for
lower masses and/or redshifts, where ν ∼2–3 (top and middle left hand panels). They only
become similar for the most massive clusters, at z ≥ 1, where ν ∼ 4–6 (bottom right panel).
This implies that age or age proxies, measured for clusters with masses M < 5 × 1014M⊙
at z < 1, can potentially break the main degeneracy in cluster abundance measurements.
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Figure 2.6: A comparison of age and abundance contours in the Ωm–σ8 plane, for the
halo mass and redshift indicated at the top of each panel. Filled contours show curves of
constant number density per unit logM . Dashed lines show curves of constant z50, with
the scale given by the colorbar.
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2.4 Comparison to simulations

2.4.1 Simulation Data

In Section 2.3.3, we provided analytic EPS estimates of how the halo formation time z50
depends on Ωm and σ8. Given the approximations made in these models, it is worth testing
the accuracy of their predictions in N-body simulations.

Previous work has demonstrated that different merger tree algorithms can produce
significantly different MAHs (Avila et al., 2014; Srisawat et al., 2013). The exact value of
z50 may be particularly sensitive to these differences, as discussed in Srisawat et al. (2013).
In particular, some merger tree algorithms allow fragmentation events, where haloes lose
mass with time, such that MAHs are not always monotonic. Our previous EPS estimates
assume strictly hierarchical growth, and thus we anticipate that the numerical results may
disagree with them to some degree. To test the effect of different methods of analysis, we
consider three sets of simulations (two public, and one of our own), that employed three
different merger tree algorithms:

• The Illustris TNG simulation, (Nelson et al., 2019) using the Sublink merger tree
algorithm (Rodriguez-Gomez et al., 2015).

• The Bolshoi/BolshoiP simulation, (Klypin et al., 2011) using the Rockstar halo finder
(Behroozi et al., 2013a) and the Consistent Trees merger tree code (Behroozi et al.,
2013b). (Note that Bolshoi uses WMAP cosmological parameters, whereas BolshoiP
uses Planck ones.)

• Our own set of 9 cosmological simulations, spanning a range of cosmological param-
eters, and analyzed using the AHF halo finder and merger tree code (Knollmann &
Knebe, 2009; Gill et al., 2004). These will be labelled MxSy, where x = 25/3/35
indicates the value of Ωm, and y = 7/8/9 indicates the value of σ8.

The simulation parameters are summarized in Table 2.1. Data from the TNG and
Bolshoi simulations were obtained directly from their respective websites. In particular,
we used the Rockstar merger tree data available for the Bolshoi simulation. For the TNG
and MxSy simulations, mass accretion histories were calculated using the Sublink and AHF
codes, respectively. For the Bolshoi simulations, they were generated by following the main
progenitor sequence in the Rockstar files.
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Simulation Ωm σ8 part mass [M⊙/h] Npart merger tree Nsnap

TNG 0.31 0.81 3 × 109 6253 Sublink 100
Bolshoi 0.27 0.82 1.35 × 108 20483 Consistent Trees 181

BolshoiP 0.31 0.82 1.55 × 108 20483 Consistent Trees 178
MxSy 0.25/0.3/0.35 0.7/0.8/0.9 4 × 109 5123 AHF 44

Table 2.1: Summary of the simulations used and their main parameters, including cosmo-
logical parameters, particle mass, total number of particles Npart, merger tree code, and
the number of snapshots Nsnap used to make the merger trees. The MxSy simulations are
a set of 9 of our own simulations that span a range of different values of Ωm and σ8.

2.4.2 Formation Time Distributions Compared

In each numerical MAH, we define z50 to be the lowest redshift at which the mass of the
halo has dropped to less than half of the mass at z = 0. Fig. 2.7 compares the distribution
of these formation redshifts to the analytic (EC) predictions. For all three simulations
considered, but particularly for the Bolshoi and M3S8 simulations, we see a clear offset
between the numerical results and the EC predictions, that is largest at small masses. In
general, the numerical formation redshifts are larger than predicted, by up to 0.1–0.2 on
average.

One possible explanation for this shift lies in the different definitions of merger time
assumed. Given a particular merger event, EPS theory takes the corresponding collapse
redshift (that is, roughly, the time by which newly-accreted mass has first fallen to the
centre of the halo) to be the moment at which a halo’s virial mass is said to increase.
In contrast, numerical group finders may link haloes when their outer virial surfaces first
touch. Thus, numerical mergers may occur up to one infall time earlier than analytic
ones. Adding a delay equal to the infall time to the numerical results, we obtain the z50
distributions in Fig. 2.8. The discrepancy between the numerical and analytic results is
greatly reduced, although some differences remain, as seen most clearly in the cumulative
distributions.

The remaining differences may have several possible explanations. There are slight
offsets between the distributions for the three simulations, suggesting that the differ-
ent halo finders and merger tree algorithms used to analyze them affect the results. A
detailed comparison of halo finders and merger tree algorithms, including AHF, Rock-
star/ConsistentTrees and Subfind/Sublink, was presented in Knebe et al. (2011). They
highlight a number of significant differences between methods, notably in how they treat
fragmentation events and non-monotonic MAHs. We note that the discrepancy between
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numerical and analytic results is greatest at low mass, so resolution may also play a role.
Finally, even the revised EC version of EPS remains an approximate theory, so its predic-
tions may be inaccurate at some level.

We summarize the comparison between numerical and analytic results in Fig. 2.9, which
shows the median z50 of each of the simulations, together with the uncertainty (points
with errorbars), compared to the analytical predictions from the EC model of Zhang et al.
(2008). As discussed in Section 2.3.4, age is most sensitive to the amplitude of fluctuations
σ8, and depends only weakly on Ωm. At high mass, the numerical results agree well with
the analytic prediction, at least in terms of the median value of z50. Since this mass range
is the one relevant for cluster surveys, we conclude that our previous analytic estimates are
reasonably valid, although the details of the halo age distribution require further study in
future work.

2.5 Observational prospects

A number of ongoing and future surveys are expected to produce very large samples of
galaxy clusters, with O(105) significant detections, out to redshifts of z = 1 or higher (e.g.
Pillepich et al., 2012; Sartoris et al., 2016; Abazajian et al., 2019b). Supposing such a
sample were available, with age information based on one or more observational proxies,
we can ask what sensitivity this dataset would have to the cosmological parameters, or
equivalently how large a sample would be needed to provide significant improvement on
parameter constraints.

To estimate age observationally, we need a structural proxy for age (as expressed, say,
by the formation epoch z50). There are several known examples of structural properties
that correlate with z50 (Wong & Taylor, 2012), including concentration (Zhao et al., 2003;
Wang et al., 2020), shape (as a product of major mergers -Drakos et al. 2019a), substructure
(e.g. Gao et al., 2004; Taylor & Babul, 2005; Diemand et al., 2007), or overall degree
of relaxation, as measured by a centre-of-mass offset (Macciò et al., 2007; Power et al.,
2012). We will take concentration as an example here, as its age dependence is the best
studied. We note that on some mass scales and at some redshifts, baryons may have an
important effect on halo structure, and on concentration specifically. We will start by
discussing concentration measurements ignoring these possible effects, but then consider
them separately in Section 2.5.4 below.
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2.5.1 Mean Concentration versus z50

Since the discovery of the universal density profile (Navarro et al., 1997, NFW hereafter),
the value of the concentration parameter c = rvir/rs has been linked to the halo’s formation
history. In NFW, concentration depends on how early a critical fraction of the final mass
was first assembled into (any number of) progenitors. Subsequent models (e.g. Bullock
et al., 2001; Wechsler et al., 2002; Zhao et al., 2003, 2009; Ludlow et al., 2014; Correa et al.,
2015a) related concentration instead to the growth history of a single main progenitor, as
expressed by the mass accretion history (MAH). In the simplest picture (Wechsler et al.,
2002; Zhao et al., 2003), c ≃ c0(a0/ar) where ar is the scale factor at the end of the period
of rapid growth in the MAH, and c0 ∼ 3–4 is the concentration of newly-formed systems
at this time. In these models, there is, therefore, a direct correlation between c and z50, or
any similar estimate of the formation epoch zf (Wong & Taylor, 2012).

All of these models focus on the relation between the average growth rate and the mean
concentration of a sample of haloes of a given range of mass and redshift (although Ludlow
et al. 2013 does consider the connection between individual MAHs and concentration val-
ues.) Major mergers can lead to large variations in concentration, however, depending on
the net input of (orbital) energy (Drakos et al., 2019b). Most recently, Wang et al. (2020)
have shown that the measured value of the concentration parameter oscillates during ma-
jor mergers, and that these fluctuations may dominate the statistics of the average values
measured for large ensembles. Clearly, the subject is complicated and requires further
study; we will not consider it in further detail here, but will assume a correlation between
c and z50, that makes mean concentration measurements sensitive to mean age.

Fig. 2.10 shows this correlation in practice, as measured from our grid of MxSy sim-
ulations for different cosmological parameters (we have chosen a lower halo mass range,
1–3×1012M⊙, to reduce Poisson noise in the figure). The basic pattern is similar for each
set of cosmological parameters, and has been explored extensively in the literature (e.g.
Wechsler et al., 2002; Zhao et al., 2003, 2009; Giocoli et al., 2012; Correa et al., 2015b;
Ludlow et al., 2013), though interestingly, there is also a slight change in the mean relation
over the range of parameters explored. In particular, the intercept of the linear regression
relation between log c and log(1 + z) increases monotonically, both with Ωm, and with σ8.
This indicates that the concentration has an additional cosmological sensitivity, beyond
its main dependence on formation history. Here too, there is clearly further complexity to
explore in the concentration-mass-redshift relation; in future work, we will focus on un-
derstanding and calibrating the mean c(z,M) and c–z50 relationships, and consider more
generally the links between concentration, mass accretion history, and cosmology. For the
purpose of our present calculations, we will assume a power-law correlation with a fiducial

50



scatter of 30%, which provides a reasonable fit to the results from all nine cosmologies.

2.5.2 Measured Concentration versus Mean Concentration

From the preceding results, the actual 3D concentration of an individual halo should scatter
by ∼ 30% for a given value of z50. This actual concentration can be estimated in various
ways, including weak lensing convergence, detailed modelling of the lensing potential in
strong lensing systems, X-ray or SZ emission, or even the galaxy distribution within a
group or cluster. Each of these techniques will add observational errors and biases; see,
for instance, Groener et al. (2016), which provides a fairly recent review of individual
concentration estimates in clusters. Generally, the observational errors are 0.1 or 0.2 dex,
i.e. 25–60%, for each individual system. There are also systematic uncertainties, both
identified and unidentified, associated with each method. In principle, future work with
large samples, dedicated simulations, and comparison between observational modalities
may help reduce these. Overall, we will assume typical errors of either 30% or 50% in
going from an actual 3D concentration to an observational estimate.

Combining these errors with the intrinsic scatter in the c–z50 relation, we expect a net
scatter of ϵz50 = 40–60% in the relation between an observational estimate of concentra-
tion and the formation epoch z50. This large uncertainty makes individual measurements
relatively uninteresting; we can compare the situation to weak gravitational lensing, how-
ever, where shape measurements for individual galaxies are extremely noisy, but careful
averaging extracts the mean value in an unbiased way.

2.5.3 z50 versus Cosmology

The remaining factor in our calculation is the connection between an estimate of the mean
value of z50 and the values of the cosmological parameters. From Fig. 2.9, to achieve a
nominal precision of 0.01 in σ8, we need 0.55% precision in the estimate of ⟨z50⟩. Assum-
ing unbiased averaging over a sample of N clusters, σ⟨z50⟩ = ϵz/

√
N . Solving, we get

N = (0.40/0.0055)2–(0.60/0.0055)2 ∼ 5,000–12,000. Thus, with low-precision but unbi-
ased concentration measurements for O(10,000) clusters, we could obtain constraints on
the value of σ8 that correspond to 1/10 or less of the current range of uncertainty in this
parameter.
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Figure 2.10: Concentration versus z50 for present-day haloes with masses between 1012M⊙
and 3 × 1012M⊙, in the 9 MxSy simulations.
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2.5.4 Baryonic Corrections

A major uncertainty in the preceding calculations is the net effect of baryons on cluster
concentrations. Baryons may alter the halo density profile, increasing halo concentration
via adiabatic contraction, or reducing it through outflows driven by stellar or AGN feed-
back. These effects are complex, and depend on mass, redshift, and radius within the halo.
Overall, these processes can affect halo concentration and masses significantly (Debackere
et al., 2021). Although simulations suggest that baryonic effects are largest in galaxy-scale
haloes (e.g. Velliscig et al., 2014), they may still be significant when measuring concentra-
tion or internal structure in clusters – Debackere et al. (2021), for instance, find a 10% bias
in estimates of the scale length rs at masses of 5×1014h−1M⊙.

Baryonic effects are not yet well enough understood to include in our predictions; in
particular, their detailed dependence on the cosmological parameters is not yet known. We
can point out a few possible avenues, however, to calibrating and correcting for their effects
on structural measurements. First, simulations now model these effects with increasing
accuracy, allowing the potential for calibration of any net bias in structural properties.
Second, observations of nearby, well-studied systems allow verification of the simulations,
independent of the samples used for cosmological tests. Third, as pointed out in Section
2.3.4, over some mass and redshift ranges, cluster age and abundance are predicted to vary
almost identically with the cosmological parameters Ωm and σ8. This should provide an
independent test of any assumed concentration-mass relationships, at least for this range
of mass and redshift, as the constraint in the Ωm–σ8 plane derived from age/concentration
measurements must agree with the one derived from abundance, and since the contours
for the two are parallel, there is little room for bias in one relative to the other.

A final, and basic, reason for optimism is the differential nature of structural tests,
whether based on concentration or on other structural properties. These would depend on
the relative distribution of structural properties, measured across a population of systems.
A simple proxy for the mean age of the sample, for instance, might be the number of high-
concentration systems, relative to low-concentration ones. Thus, to lowest order, a net
shift in concentration for the whole population would largely cancel out, reducing the bias
in the final results. At the same time, the shape of the measured concentration distribution
for the whole sample would provide another test of the consistency of the method, and any
biases or effects due to sample selection.

Overall, it is clear that the impact of baryonic effects on halo structure requires much
more detailed study, to see whether and to what degree they would compromise structural
tests of cosmology, for a given survey and methodology.
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2.5.5 What is Achievable?

In summary, in previous sections, we have shown that with low-precision but unbiased
concentration estimates for O(104) clusters, one could obtain excellent constraints on σ8,
assuming the net effect of baryons is small, or can be corrected using simulations. While
measuring concentration observationally is challenging, our method does not require par-
ticularly accurate measurements for individual systems – given the intrinsic scatter in the
c–z50 relation, the errors in individual estimates need only be accurate at the ∼30% level.

We can consider this goal in more detail for a particular survey. The Euclid mission
is a 1.2m space telescope, operating in the visible and near-infrared (NIR). As part of
its wide survey, it will image 15,000 deg2 of the sky in one optical and three NIR bands,
detecting galaxies down to an AB magnitude of 24 or fainter. Photo-zs will be derived for
these objects, using ancillary data from ground-based surveys such as UNIONS (Chambers
et al., 2020). The Euclid wide survey should provide large catalogues of clusters detected
photometrically (that is by clustering in projection and in photo-z space), and also as peaks
in weak lensing maps. Based on the forecasts of (Sartoris et al., 2016), the photometric
detections should include all clusters with masses M ≳ 1014M⊙ out to redshift z ∼ 2.
Below redshift z = 0.5, the wide survey is expected to detect 1.5 million clusters at 3σ
or greater significance, and 200,000 clusters at 5σ significance. Extrapolating from these
predictions, the number of 7σ detections is in excess of 20,000 (with half that number
at redshifts z < 0.7). Admittedly, these objects may be slightly more massive than the
example considered above in section 2.5.3 (3.5×1014M⊙/h, versus 2×1014M⊙/h) but they
are close enough that the slope of the ⟨z50⟩–σ8 relation should be similar.

The Roman Space Telescope mission is a 2.4m wide-field space telescope, with op-
tical/NIR imaging and slitless spectroscopy capabilities. Its High Latitude Survey will
image ∼2000 deg2 of sky in four NIR bands, reaching depths 1–2 AB magnitudes deeper
than Euclid Wide, as well as providing slitless spectroscopy of brighter targets. This deeper
data over a smaller area should produce a cluster sample that extends to lower masses and
higher redshifts, and thus provides an interesting counterpoint to Euclid data. In particu-
lar, we note that at high redshift, the complementarity of age and abundance is reduced
(cf. the left-hand panels of Fig. 2.6). This could provide an important consistency check on
age estimates, as discussed previously. Finally, a number of other forthcoming experiments
expect to detect large numbers of clusters, including eROSITA (Pillepich et al., 2012) in
the X-ray, CMB-S4 (Abazajian et al., 2019b) in the mm, and the ground-based UNIONS
(Chambers et al., 2020), DESI (DESI Collaboration et al., 2016), and Rubin LSST (LSST
Science Collaboration et al., 2009) surveys.

Overall, we conclude that multiple samples of O(104) clusters with sufficient signal-
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to-noise ratio (SNR) to allow structural measurements should become available in the
near future. One could imagine using a large, uniform survey such as Euclid for the
low-redshift sample selection, together with other complementary observations to make
structural measurements on individual clusters. A high-redshift sample could then be
used to test and calibrate age proxies, as mentioned above. It might also be possible to
stack clusters to use a mean projected density profile, measured at high SNR, to derive
constraints. We will consider these and other approaches in future work.

As in weak lensing studies, the challenge of averaging over large numbers of low SNR
measurements will be in controlling for and reducing systematics. Beyond the baryonic
effects discussed in the previous section, systematics related to basic structure formation
could also affect sample selection (e.g. by preferentially highlighting or neglecting dis-
turbed systems); they could bias individual mass estimates (although the slope of the
concentration-mass relation is fairly shallow, so accurate masses are less important than
in abundance studies); or they could bias concentration measurements, e.g. by biasing the
sample selection towards objects with a particular 3D shape, or with a disturbed IGM (if
the confirmation or structural measurements are performed in the X-ray). In lensing-based
studies, false peaks and projections could be a particular problem, as these may look less
regular and have lower concentrations, biasing the average. Environment can also have an
impact on formation time through assembly bias, as simulations have shown that haloes
form earlier in dense environments (Gao et al., 2005; Wechsler et al., 2006; Harker et al.,
2006), so unbiased sampling of large volumes is important. Here again, there is much future
work to be done considering the the possible biases for different observational modalities
and survey strategies.

2.6 Conclusion

The enormous success of CMB analyses and large cosmological surveys over the last few
decades has been driven, for the most part, by a robust and detailed understanding of
structure formation in the linear regime. Cluster number counts are an important excep-
tion, but they only probe one limited aspect of non-linear structure formation. As cluster
catalogues grow by several orders of magnitude in size over the next decade, it is worth con-
sidering what other cosmological information we might extract from them. Measurements
of internal halo structure can, in principle, tell us about the rate of non-linear structure
formation, and are worth considering as a next-generation cosmological test.

Previous work has established that as haloes grow through hierarchical merging, this
process leaves structural signatures that can last for many dynamical times, that is, for
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many Gyr at low redshift. As a result, structural measurements provide several different
avenues to estimate cluster assembly times or “ages”. In this chapter, we have shown that
for typical clusters at z < 1, age varies almost orthogonally to abundance in the space
of the cosmological parameters Ωm and σ8. The same datasets that provide abundance
constraints could be used to estimate mean values for structural parameters, and thus age,
providing significantly tighter parameter constraints from a single set of observations.

Of course, given the accuracy of current constraints from the CMB, it may seem less
interesting to invest further in other techniques. A survey of current results hints at tension
between the different measurements, however, emphasizing the importance of redundant
cosmological tests, over different ranges of redshift, mass and/or spatial scale. To resolve
the deep mysteries of dark energy and dark matter, and to rule out yet-undiscovered
variations on the current cosmological model, we need to test it as sensitively as possible,
across as broad as possible a range of parameter space. In pursuit of this goal, our growing
understanding of non-linear structure formation will open up many exciting possibilities
for new tests and new tools.
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Chapter 3

Halo Growth and Merger Rates as a
Cosmological Test

3.1 Abstract

Dark matter haloes grow at a rate that depends on the value of the cosmological param-
eters σ8 and Ωm through the initial power spectrum and the linear growth factor. While
halo abundance is routinely used to constrain these parameters, through cluster abundance
studies, the halo growth rate is not. In recent work, we proposed constraining the cosmo-
logical parameters using the overall dynamical “age” of clusters, expressed, for instance,
by their half-mass assembly redshift z50. Here we explore the prospects for using the in-
stantaneous growth rate, as determined from the halo merger rate, the average growth
rate over the last dynamical time, or from the fraction of systems with recent episodes
of major growth. We show that the merger rate is mainly sensitive to the amplitude of
fluctuations σ8, while the rates of recent growth provide constraints in the Ωm–σ8 plane
that are almost orthogonal to those provided by abundance studies. Data collected for
forthcoming cluster abundance studies, or studies of the galaxy merger rate in current
and future galaxy surveys, may thus provide additional constraints on the cosmological
parameters complementary to those already derived from halo abundance.
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3.2 Introduction

The standard Lambda Cold Dark Matter (Λ CDM) cosmological model provides an ex-
tremely effective framework for understanding and predicting cosmological observations.
As the accuracy of observational constraints increases, however, several small discrepancies
have begun to challenge the success of the ΛCDM model. In particular, in measurements
of the amplitude of density perturbations, (commonly represented by the parameter σ8,
the rms of density fluctuations smoothed on scales of 8 Mpc/h), and the growth of pertur-
bations (determined by the matter density parameter Ωm), a tension has emerged between
results based on the CMB power spectrum (Planck Collaboration et al., 2020; Aiola et al.,
2020) and studies probing the late-time matter density field directly through weak grav-
itational lensing (e.g. Heymans et al., 2021a) or cluster abundance (e.g. Abdullah et al.,
2020; Bocquet et al., 2019b).

This discrepancy, referred to as the “S8 tension” in reference to the growth of structure
parameter S8 ∝

√
Ωmσ8, has grown significantly in recent years as more precise weak-

lensing studies have been released, in particular the Dark Energy Survey (DES Y3) (Abbott
et al., 2022) and the Kilo Degree Survey (KiDS-1000) (Heymans et al., 2021b), and is about
∼ 3σ at the time of writing. Various solutions to the tension have been proposed, including
systematic problems in the analysis (e.g. Sánchez, 2020), biased cluster mass estimates (e.g.
Douspis et al., 2019; Debackere et al., 2021) or modifications to the standard cosmological
model (e.g. Di Valentino et al., 2015; Böhringer & Chon, 2016; Planck Collaboration et al.,
2016b; Heimersheim et al., 2020), but it is not clear that any of these fully resolve the
problem. Given the persistent discrepancy, it is worth exploring other independent methods
for estimating σ8 and Ωm, to investigate all possible origins for the tension.

In the standard cosmological model, dark matter becomes non-relativistic (cold) at early
times, and structures grow hierarchically after the initial gravitational collapse of peaks in
the density field (Jõeveer et al., 1978; Peebles, 1980; White & Frenk, 1991; Padmanabhan,
1993; Dodelson, 2003). Within this framework, the largest structures, galaxy clusters, are
the last objects to assemble most of their mass, yet they also form around and thus probe
the highest peaks in the initial density field. Consequently, present-day cluster abundance
can be used to estimate the early abundance and subsequent growth of the density peaks,
which in turn have a clear dependence on σ8 and Ωm (Press & Schechter, 1974). The cluster
count method has been used extensively for several decades to constrain these parameters
(Evrard, 1989; Henry & Arnaud, 1991; Lilje, 1992; Wang & Steinhardt, 1998; Abdullah
et al., 2020).

This cosmological test uses remarkably little information about individual clusters, re-
quiring only their observed redshift and mass proxy, as determined from observations in
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the X-ray (e.g. Henry et al., 2009; Mantz et al., 2010; Böhringer et al., 2014), weak-lensing
surveys (e.g. Kacprzak et al., 2016), optical galaxy surveys, or sub-mm imaging via the
Sunyaev-Zel’dovich effect (e.g. de Haan et al., 2016; Planck Collaboration et al., 2020).
Despite the wealth of information present in these observational data, structural features
of clusters such as their concentration, substructure and shape have not been exploited for
cosmological purposes. This is partly because of the difficulty of measuring, modelling and
understanding these features, but also because the large data sets necessary to perform cos-
mological analyses using highly variable, complex properties such as cluster structure were
previously unavailable. This situation is now changing rapidly, as forthcoming missions
and surveys, including Euclid, DESI (DESI Collaboration et al., 2016), the Vera C. Rubin
Observatory (LSST Science Collaboration et al., 2009), eRosita (Pillepich et al., 2012),
the Nancy Grace Roman Telescope, or UNIONS (Chambers et al., 2020), are expected to
provide data for very large samples of galaxy clusters. Furthermore, new approaches to the
analysis of complex nonlinear data, such as those associated with machine learning, are
becoming more common. These new data sets and new analysis tools make cosmological
analyses with cluster structural properties a promising avenue to explore.

The idea of using the cosmological dependence of cluster formation histories to constrain
cosmology is not new, but was discussed in the literature three decades ago (Richstone
et al., 1992; Evrard et al., 1993; Mohr et al., 1995). These original tests leveraged the
fact that the structural properties of galaxy clusters are related to how relaxed they are
– their projected shape and non-axisymmetry – and to the state of the universe when
they accreted their mass – concentration – (see Taylor, 2011, for a review). Subsequent
work has examined structural properties, showing that they are generally consistent with
expectations from LCDM (e.g. Oguri et al., 2010; Sereno et al., 2018), but has not used
them to constrain cosmological parameters specifically.

In Amoura et al. (2021) (Chapter 2), we showed that for values of σ8 varying between
0.75-0.85, the resulting median age of galaxy clusters, as expressed by the epoch z50 by
which a system had accreted half its final mass, would vary by more than 10%. Combining
accurate, unbiased measurements of structural parameters such as concentration for a large
enough sample, such a difference could easily be distinguished in future cluster samples.
More importantly, for clusters of mass ∼ 1014M⊙/h at low redshift, the constraints obtained
this way are orthogonal to the typical banana-shaped constraints following contours of
constant S8.

While our previous work focussed on the overall ‘age’ of clusters, i.e. some average
measure such as z50 defined over their whole accretion history, the instantaneous growth
rate may sometimes be easier to determine from observations. This rate is reflected in halo
merger rates, the mean increase in mass over some recent interval of time, or the fraction
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of systems that have recently experienced a large increase in mass.

Tests of halo growth or the merger rate could in principle be applied on any mass scale
traced by visible matter. The merger rate on galaxy scales has been studied extensively
both observationally and in simulations, using various tracers of merger activity, including
close pairs of galaxies, starbursts, and morphologically distorted galaxies (e.g. Lotz et al.,
2011; Xu et al., 2012; Mundy et al., 2017). Since the machinery for estimating halo merger
rates is the same independent of scale, we will also consider galaxy-scale growth and merger
rates, although constraining these with observations involves several additional challenges,
as discussed in Section 4.

The outline of the chapter is as follows. In Section 2, we use analytical models based on
the Extended Press-Schechter (EPS) formalism to estimate how various measures of halo
growth vary with Ωm and σ8. In Section 3 we compare these predictions to dark-matter-
only N -Body simulations, and discuss the discrepancies between the two. In Section 4
we consider the prospects for measuring halo growth observationally, either directly on
cluster scales, or indirectly on galaxy halo scales. We summarize our results and conclude
in Section 5.

3.3 Cosmological Sensitivity of Halo Merger Rates

An analytic estimate for the halo merger rate was first derived by Lacey & Cole (1993),
using the approach of Press & Schechter (1974) to create the so called ‘Extended Press-
Schechter’ (EPS) formalism. Sheth & Tormen (2002) derived a major correction to Press-
Schechter theory, accounting for ellipsoidal collapse; this was subsequently included in EPS
theory, e.g. by Zhang et al. (2008). The halo merger rate has also been measured in N -body
simulations, starting with Lacey & Cole (1994). Early work by Gottlöber et al. (2001),
for instance, studied the dependence on environment, while Fakhouri & Ma (2008) and
Fakhouri et al. (2010) used the Millenium simulations to obtain accurate global merger
rates, providing a framework to count mergers and compare numerical results to EPS
predictions, as well as a universal fitting formula. We will use these results as the basis for
most of our calculations. (For an alternative approach, that counts the rate per progenitor
instead of the rate per descendant halo, see Genel et al. 2009.)

Given the indirect connection between galaxies and haloes, the galaxy merger rate
should behave slightly differently from the halo merger rate, as discussed further in Section
4. Stewart et al. (2009) used N -body simulations to estimate how observable indicators of
galaxy mergers should scale with galaxy luminosity, stellar mass, merger mass ratio and
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redshift. More recently, galaxy merger rates have been estimated from hydrodynamical
simulations (e.g Rodriguez-Gomez et al., 2015). We expect these estimates to be more
accurate than earlier, dark-matter only results, although they are typically only applicable
to a single cosmology.

3.3.1 Merger Rate Definitions

We will follow the definitions of Fakhouri & Ma (2008) in describing the merger rate: first,
the symmetric merger rate B(M1,M2, zD)dM1dM2 is the average rate per unit volume per
unit redshift, between progenitors of masses between M1+dM and M2+dM , where zD is the
redshift at which the descendant is identified. This rate has units of mergers/volume/(unit
redshift). If we want to express the rate in terms of the descendant mass M0 = M1+M2 and
the merger mass ratio ξ = M2/M1 instead, we can use the function B(M0, ξ, zD)dMdξ, also
with units mergers/volume/(unit redshift). If we normalise the rate by the halo number
density n(M0, zD), we get the dimensionless quantity B/n, with units mergers/dz/dξ:

B/n ≡ B(M0, ξ, zD)

n(M0, zD)
(3.1)

This quantity will be the basis for all the rates that we consider in this chapter. We can
also integrate B/n in order to calculate the rate of all mergers between mass ratios x and
X, at fixed descendant mass.

dN

dz
(M0, zD, x,X) =

∫ X

x

B

n
(M0, zD)dξ (3.2)

3.3.2 Analytical Models

The Extended Press-Schechter (EPS) formalism provides an analytic framework to estimate
the merger or growth rates of dark matter haloes (Lacey & Cole, 1993), based on the
spherical collapse model. The merger rate per halo, as a function of the descendant mass
M0 and the merger ratio ξ = M2/M1, is

B(M0, ξ, z)

n(M0, z)
=

√
2

π

dδc
dz

1

σ(M1)

∣∣∣∣ d lnσ

d lnM1

∣∣∣∣ [1 − S(M0)

S(M1)

]−3/2

, (3.3)

where M1 is one of the progenitors, δc is the critical overdensity for collapse, and S ≡ σ2(M)
is the variance of the linear density field smoothed at a scale corresponding to a mass M .
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This model can be made more accurate by using an ellipsoidal collapse model instead
(Sheth & Tormen, 1999, 2002). Zhang et al. (2008) provide an ellipsoidal collapse correction
to the spherical collapse merger rate

B(M0, ξ, z)

n(M0, z)
=

B(M0, ξ, z)

n(M0, z)

∣∣∣∣
sph

× A0 exp

(
−A2

1S̃

2

)[
1 + A2S̃

3/2

(
1 +

A1S̃
1/2

Γ(3/2)

)]
,

(3.4)

where A0 = 0.8661(1−0.133ν−0.615
0 ), A1 = 0.308ν−0.115

0 , A2 = 0.0373ν−0.115
0 , ν0 = ω2

0/S(M0),
S̃ = ∆S/S(M0), ∆S = S(M1) − S(M0), and ω ≡ δc(z). The difference between spheri-
cal and ellipsoidal collapse-based merger rates is illustrated in Fig. 3.1. Throughout this
chapter, our analytical predictions will all be based on Eqn. 3.4.

3.3.3 Cosmological Dependence of Merger Rate

Analytical models provide a practical way to estimate how merger and growth rates will
vary with the cosmological parameters. The merger rate is sensitive to cosmology through
the power spectrum, as reflected by the variance of the smoothed field of density perturba-
tions S(M |Ωm, σ8), and the growth factor D, through the critical overdensity for collapse
δc(z) = δc/D(z|Ωm) where δc = 1.686Ω0.0055

m . Details of how Ωm and σ8 influence the clus-
ter number count and formation time through their effect on the matter power spectrum
and linear perturbation growth rate, as well as the resulting banana-shaped constraints,
are discussed in Amoura et al. (2021).

In Fig. 3.2, we show how the merger rate estimated from Eqn. 3.4 varies in the Ωm–σ8

parameter space, for group- (left-hand panels) and cluster-mass (right-hand panels) haloes,
and for three different mass ratios (top to bottom), at z = 0.3. The colour scale shows the
variation in the rate relative to a fiducial value calculated for Ωm = 0.3, σ8 = 0.8:

∆B/Bfid =
B/n(M, z, ξ|Ωm, σ8) −B/n(M, z, ξ|0.3, 0.8)

B/n(M, z, ξ|0.3, 0.8)
. (3.5)

We see that the sensitivity to Ωm and σ8 is independent of merger mass ratio. The rate
varies by about 20% to 30% over the range of σ8 considered here, but depends only weakly
on Ωm, with almost no dependence at the group mass scale. Thus, the halo merger rate
can in principle be used to measure σ8 independently from Ωm.
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Figure 3.1: Halo merger rates predicted by the spherical collapse (Lacey & Cole, 1993)
and ellipsoidal collapse (Zhang et al., 2008) models, for the two halo masses indicated, at
z=0.1. The bottom panel shows the rate weighted by ξ2 to highlight the differences.
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Figure 3.2: Variation in the merger rate per halo B/n at z = 0.3, as a function of Ωm and
σ8, relative to a fiducial rate for Ωm = 0.3 and σ8 = 0.8. The rate is calculated assuming
the ellipsoidal collapse model (Eqn. 3.5).
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3.3.4 Average Halo Growth

Material accreted onto a halo through mergers will settle into the main potential through
tidal stripping and dynamical friction, over a timescale on the order of the dynamical time
tdyn. Thus, in addition to the instantaneous merger rate, we also consider the the net
increase in halo mass over this timescale. For a given final redshift z0, we first calculate
the redshift z1 corresponding to one dynamical time in the past. The amount by which a
halo grows over this redshift interval should then be

∆M =

∫ z1

z0

dz

∫ 1

0

B/n(M(z), z, ξ)

[
ξ

1 + ξ
M(z)

]
dξ . (3.6)

Since the merger rate varies slowly with mass, and the dynamical time is short enough that
major mergers are rare, we can make the approximations B/n(M(z), z, ξ) ∼ B/n(M0, z, ξ)
and (1/(1 + ξ))M(z) ∼ M1 and define the Average Halo Growth (AHG) as:

AHG(M0, z0) =

〈
∆M

M1

〉
≡
∫ z1

z0

dz

∫ 1

0

B/n(M0, z, ξ)ξdξ , (3.7)

that is, it is the increase in mass a halo experiences over one preceding dynamical time,
relative to its initial mass, as a function of the final mass and redshift.

Fig. 3.3 shows the cosmological dependence of the AHG, for three different redshifts
(top to bottom), and the same group and cluster masses as in Fig. 3.2. As expected, haloes
tend to grow faster at these redshifts in low σ8 and/or high Ωm universes. The influence of
ΩM becomes weaker relative to σ8 for lower masses, and for higher redshifts. We note that
contours of constant AHG are almost orthogonal to those typical of cluster abundance or
weak lensing constraints (cf. Chapter 2). While the amplitude of the variation depends on
the mass and redshift, there is generally between 50% to 100% change in the AHG between
cosmologies with σ8 = 0.7 and those with σ8 = 0.9.

3.3.5 Large-growth Systems

Another summary statistic with a close connection to observable phenomena is the fraction
of haloes that experience a large increase in mass over a given period of time. As for the
AHG, we choose the dynamical time tdyn as the relevant timescale, and count the fraction
of systems that have grown by more than 1/3 over this time. To estimate this fraction
analytically, we make the approximation that the growth involves a single large merger
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Figure 3.3: The average halo growth (AHG) over the last dynamical timescale tdyn, as a
function of Ωm and σ8 relative to the value at Ωm = 0.3 and σ8 = 0.8, for the masses and
redshifts indicated.
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with ξ > 1/3, such that

LGS(M0, z0) ≡
∫ z1

z0

dz

∫ 1

1/3

B/n(M0, z0, ξ)dξ . (3.8)

Fig. 3.4 shows how the LGS fraction depends on Ωm and σ8, for the same mass and
redshift bins as Fig. 3.3. The cosmological dependence is almost identical to that of the
AHG, such that both quantities could in principle provide cosmological tests of comparable
sensitivity.

3.4 Comparison to simulations

As discussed in Chapter 2, the analytic models of the previous section are only approximate.
To test their validity, we will also consider merger rates measured in several different N -
body simulations.

3.4.1 Simulation Data

We use a set of dark-matter-only simulations to test the analytical predictions of the
ellipsoidal collapse model. These include publicly available halo catalogues and merger
trees, but also our own set of simulations run for different cosmologies, as follows :

1. The Illustris-TNG simulation (Nelson et al., 2019) which uses the Subfind halo
finder and the Sublink merger tree algorithm (Rodriguez-Gomez et al., 2015).

2. The Bolshoi/BolshoiP simulation (Klypin et al., 2011), with a halo catalog gener-
ated with Rockstar (Behroozi et al., 2013a) and merger trees generated with the
Consistent Trees algorithm (Behroozi et al., 2013b).

3. A set of 9 of our own simulations, introduced in Chapter 2. We will refer to these
as MxSy, where x can be 25/3/35 for Ωm = 0.25/0.3/0.35 respectively, and y can be
7/8/9, for σ8 = 0.7/0.8/0.9 respectively. These simulations were run with Gadget
2 (Springel, 2005), and the halo catalogue and merger trees were generated with the
Amiga Halo Finder (AHF; Knollmann & Knebe, 2009).

Simulation parameters are summarized in Table 3.1.
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Figure 3.4: The fraction of large-growth systems (LGS) as a function of Ωm and σ8 relative
to the value at Ωm = 0.3 and σ8 = 0.8, for the same mass and redshift bins as in Fig. 3.3.
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Name Ωm σ8 mpart [M⊙/h] Npart merger tree Nsnap

TNG 0.31 0.81 3 × 109 6253 Sublink 100
Bolshoi 0.27 0.82 1.35 × 108 20483 Cons. Trees 181

BolshoiP 0.31 0.82 1.55 × 108 20483 Cons. Trees 178
MxSy 0.25/0.3/0.35 0.7/0.8/0.9 4 × 109 5123 AHF 44

Table 3.1: Summary of the simulations used and their main parameters, including the
cosmological parameters, the particle mass, the total number of particles Npart, the merger
tree code, and the number of snapshots Nsnap used to make the merger trees. The MxSy
simulations are a set of 9 of our own simulations that span a range of different values of
Ωm and σ8.

3.4.2 Merger Rates

To estimate the merger rate per descendent halo, B/n, in the simulations, we count the
individual mergers associated with a given descendent as follows. Going to the previous
snapshot, we identify all Nprog progenitors of the descendent, and count a total of Nprog−1
mergers, each with the most massive progenitor (implying merger mass ratios ξ < 1). The
exact definition of the progenitors varies, depending on the simulation and the merger tree
algorithm. In addition, each simulation has a different snapshot frequency, which can affect
the measured merger rate at high redshift. After some experimentation, for most of our
tests we restricted ourselves to merger rate estimates from our own simulations, where the
analysis is homogeneous.

Fig. 3.5 shows the numerical merger rate as a function of mass ratio ξ from each
simulation, compared to the analytical predictions. Generally, the numerical results are
in reasonable agreement with the analytical models, but include far fewer major mergers.
This may be an artefact of our method for counting mergers. If the progenitors of a
given descendent include one large halo and several smaller ones, we always count N − 1
minor mergers between the largest progenitor and each of the other progenitors. With a
higher frequency snapshots, we might find that intervening major mergers had occurred
between pairs of low-mass progenitors, before they merged with the largest progenitor. In
addition, tidal stripping can cause systems to lose some mass even before they are recorded
as merging. Either of these effects could explain the deficit of large mass-ratio mergers and
the slight excess of low mass-ratio mergers.

In order to study the cosmological dependence of the merger rate more specifically, we
calculated the number of mergers between z=0.05 and z=0.45, for mass ratios between
0.01 < ξ < 0.03, 0.03 < ξ < 0.1 and 0.1 < ξ < 0.3. We avoided major mergers, given
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the MxSy simulations (points and shaded regions), compared to the EPS rate predicted by
the ellipsoidal collapse model. Note the deficit of major mergers, relative to the analytic
predictions.
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the potential problems described above. We also restricted ourselves to lower redshifts,
where the snapshot cadence is reasonably frequent relative to the dynamical time. We
considered all haloes with M > 1013M⊙, first to avoid mass resolution effects at low mass,
and second to have enough statistics given the first constraint. Binning all masses together
is reasonable, given that the merger rate is only weakly sensitive to mass, going as ∼ M0.13

(Fakhouri et al., 2010; Genel et al., 2009).

Fig. 3.6 shows these merger rates, as a function of Ωm at fixed σ8 (top panels), and
as a function of σ8 at fixed Ωm (bottom panels), compared to the analytical predictions.
Both numerical and analytic results show the same general behaviour. The simulations
contain more minor mergers (0.01 < ξ < 0.03) than predicted by theory, which may reflect
the counting problems discussed above, but the dependence on cosmological parameters is
similar between the numerical and analytic results.

3.4.3 Average Halo Growth

Next, we compare the average halo growth rate measured in simulations to the rate pre-
dicted by EPS theory. The comparison is particularly interesting, since the simulations and
halo finders have finite resolution, and will always miss a component of the merger history
below their resolution limit. For this test, we consider results from all the simulations listed
in Table 1, to highlight the differences between them. For every halo in each simulation,
we measure the mass growth over one dynamical time (M(z − zdyn) −M(z)) /M(z) and
average this quantity in each mass bin. We then calculate the same quantity in analytical
models by integrating the instantaneous merger rate over the same redshift range. The
resulting rates are shown in Fig. 3.7.

Bolshoi simulations agree with very well at all redshifts, while Illustris shows a flat-
tening at high mass. The set of MxSy simulations agree well at low z and less at high z.
Most simulations have lower growth rates at high redshift than predicted by theory. On
the other hand, all the numerical results agree with the analytic predictions in the general
mass and redshift dependence in the growth rate, often differing by a single overall shift
in normalization. We speculate that halo-finding algorithms may be at the origin of this
discrepancy between different simulations, and between simulations and analytical predic-
tions, as discussed in the literature (Knebe et al., 2011; Avila et al., 2014; Hopkins et al.,
2010). Cases of haloes losing mass, flyby events and other numerical artifacts introduced
by the different ways haloes are defined, detected and linked in different halo-finder and
merger tree algorithms can cause an artificial increase in the average growth. Even after
accounting for and removing the most spectacular events, where haloes appear to gain
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Figure 3.6: Cosmological dependence of the merger rate for various mass ratios. The points
with errorbars indicate rates estimated from the MxSy simulations, while the smooth curves
show the analytic predictions.
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several times their mass between consecutive snapshots, the average growth at low redshift
remains larger than analytical predictions.

We now consider the cosmological dependence of the AHG. Given the differences be-
tween different simulations and analysis tools shown above, we will restrict ourselves to our
own MxSy simulations, which represent a homogeneous set. To simplify the comparison
between simulations, we fit the simulation results with a power-law

AHG(M) = A(M/M0)
α + p , (3.9)

where the parameters A, M0 and α are fixed in each panel, and the normalisation p varies
with σ8. For z=1, we find that a broken power law is a better fit. This fit is meant to
reproduce the overall mass dependence of the AHG specifically for our set of simulations.
We show the fits and discuss them further in Appendix C.

In Fig. 3.8, we compare the dependence of the AHG on σ8, for different values of Ωm, and
for different masses and redshifts. As we have seen already in Fig. 3.7, the halo growth from
simulations is significantly lower at high redshift than the analytic prediction. Accounting
for this redshift-dependent offset, the numerical results show the predicted drop in growth
with increasing σ8, but seem less sensitive to σ8 than expected, particularly at high redshift.
The numerical values in high-σ8 (low growth) cosmologies exceed the analytic predictions.
The origin of this discrepancy is not immediately clear. One possibility is that because of
the relatively large spacing between snapshots in the MxSy simulations, the true growth
rate is over-estimated in cosmologies where it is intrinsically low. We will investigate this
possibility in future work.

3.4.4 LGS Fraction

In Fig. 3.9 we show the LGS fractions measured in the simulations, compared to the
analytic predictions. Unlike the AHG, all simulations are in agreement with the analytic
predictions at z=0.05; at higher redshift, the mass dependence seems slightly flatter than
predicted. Note that Illustris is the outlier again, finding considerably more large growth
systems at high redshift.

As for the AHG, we fit the power law in Eqn. 3.9, for each of the MxSy simulations, and
show the variation of the normalisation at different values of σ8 in Fig. 3.10. The range of
variation of the LGS fraction with σ8 is closer to the analytical predictions at low redshift,
but still slightly smaller at higher redshift.

74



0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e 

gr
ow

th

Analytical, m =  0.25
Simulations

z=0.05
m =  0.3 m =  0.35

M=3e+13
M=1e+13
M=3e+12

0.3

0.4

0.5

0.6

0.7

Av
er

ag
e 

gr
ow

th

m =  0.25

z=0.55
m =  0.3 m =  0.35

0.6 0.8 1.0

8

0.4

0.6

0.8

1.0

Av
er

ag
e 

gr
ow

th

m =  0.25

0.6 0.8 1.0

8

z=1  
m =  0.3

0.6 0.8 1.0

8

m =  0.35

Figure 3.8: Average halo growth as a function of σ8, for the redshifts, masses, and values
of Ωm indicated. The points show the results measured in the MxSy simulations, while the
curves show the EPS prediction.

75



0.1

0.2

0.3

0.5
0.7

1.0

La
rg

e 
gr

ow
th

 fr
ac

tio
n Bolshoiz = 0.05 Analytical

z = 0.5
z = 1.5

BolshoiP Illustris

0.1

0.2

0.3

0.5
0.7

1.0

La
rg

e 
gr

ow
th

 fr
ac

tio
n M25S07 M25S08 M25S09

0.1

0.2

0.3

0.5
0.7

1.0

La
rg

e 
gr

ow
th

 fr
ac

tio
n M03S07 M03S08 M03S09

1012 1013 1014

M [M /h]

0.1

0.2

0.3

0.5
0.7

1.0

La
rg

e 
gr

ow
th

 fr
ac

tio
n M35S07

1012 1013 1014

M [M /h]

M35S08

1012 1013 1014

M [M /h]

M35S09

Figure 3.9: Fraction of haloes that experienced a large growth (> 1/3) since the last
dynamical timescale tdyn, as a function of mass (points with shaded error regions). Solid
lines show the EPS predictions.
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between simulations and analytical models. The cosmological trend is similar, with a lower
amplitude.
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3.4.5 Simulations vs. Analytic Predictions: Summary

Comparing numerical and analytic results, we find broad agreement, but also some dis-
crepancies. Unfortunately, without further detailed work, it is not clear which if either is
the most accurate, although we suspect at least some of the discrepancies are related to
the snapshot cadence and merger tree algorithms used to analyse the simulations. The
predicted and measured cosmological dependence are in closest agreement for the halo
merger rate and the LGS fraction. Focussing on these quantities, we infer that we could
differentiate between values of σ8 between 0.7 and 0.9 if we could measure either one with
a precision of better than 10% while avoiding any observational systematics. In Section
3.5 below, we will consider whether this goal is realistically achievable.

3.5 Observational prospects

The results of the previous section suggest that ∼10% precision would be required in merger
or growth rate measurements, in order to provide useful cosmological constraints. We will
now examine whether this precision could be reached in practice. We consider tests on two
scales, either the galaxy cluster scale, or the scale of individual galaxy haloes.

3.5.1 Measuring Merger and Growth Rates on Cluster Scales

While galaxy clusters are relatively rare, in the near future multiple missions and sur-
veys including Euclid in the optical and IR (Sartoris et al., 2016), eROSITA (Pillepich
et al., 2012) in the X-ray, CMB-S4 (Abazajian et al., 2019b) in the mm, and the ground-
based UNIONS (Chambers et al., 2020), DESI (DESI Collaboration et al., 2016), and Ru-
bin LSST (LSST Science Collaboration et al., 2009) surveys should produce mass-limited
samples of O(104) clusters with sufficient signal-to-noise ratio (SNR) to allow structural
measurements. Clusters with sufficient SNR to detect major mergers should number in
the hundreds or thousands. Furthermore, these will typically be low redshift, massive
systems where complementary information from many modalities is available, including
galaxies with measured redshifts, weak and/or strong lensing mass models, X-ray surface
brightness maps, and SZ maps in the sub-mm.

To measure the instantaneous halo merger rate for clusters would require identifying
all infalling groups at or near the virial radius. This could be challenging due to projection
effects and/or limited galaxy redshift information. Furthermore, one would need to esti-
mate total masses for the infalling systems, with errors in the mean mass for a sample not
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exceeding 10%. A realistic survey of O(400) massive clusters with weak lensing mass maps
might identify infalling systems in, say the range ξ = 0.1-0.2, with 50-70% completeness,
over a narrow redshift range where the average number of mergers is one per cluster. The
Poisson uncertainty in the merger rate would then be 1/

√
400 = 5%; the uncertainty in

the mean mass of the infalling systems would be 200%/
√

400 =10%, while the uncertainty
in the completeness might be ∼20%. We conclude that while the first two sources of un-
certainty are close to the goal of 10% errors, the uncertainty in the completeness would be
too large to obtain useful cosmological constraints.

Alternately, one could consider measuring the LGS fraction. Systems that have re-
cently accreted a third or more of their material would be easier to identify, via kinematic
substructure, offsets between the gaseous, stellar and dark components (e.g. Clowe et al.,
2006; Mann & Ebeling, 2012; Zenteno et al., 2020), or overall X-ray morphology (e.g. Yuan
et al., 2022). Assuming these features can be detected regardless of projection effects, we
may assume approximately 100% completeness in the LGS sample. Assuming a LGS frac-
tion 20-30% for massive clusters at low redshift, a sample of 400 might produce 100 LGS
systems, resulting in Poisson errors with the required uncertainty of 10%. On the other
hand, distinguishing between degrees of relaxation (e.g. systems that had experienced large
growth within the past 1.0 dynamical times, versus 2.0 or 0.5 dynamical times) might be
more challenging, and would require extensive calibration with simulations.

Overall, we conclude that measuring the halo merger rate or growth rate on cluster
scales seems challenging, but not impossible. At a minimum, future cluster samples should
provide a consistency test for parameters derived from other methods.

3.5.2 Measuring Merger and Growth Rates on Galaxy Scales

Given that halo merger and growth rates depend only weakly on halo mass, and galaxy
haloes are far more abundant, it is worth considering tests based on this smaller mass scale.
Galaxy merger rates have been studied extensively, both theoretically, either through semi-
analytical/semi-empirical models (e.g. Stewart et al., 2009; Huško et al., 2022) or hydro-
dynamical simulations (e.g. Rodriguez-Gomez et al., 2015; Pfister et al., 2020; Contreras-
Santos et al., 2022), and observationally (e.g. Lotz et al., 2011; Xu et al., 2012; Mundy
et al., 2017). Two important complications arise in relating galaxy merger rates to galaxy
halo merger rates; first, the delay between the two, and second the relation between halo
mass and stellar mass. We consider each of these in turn.
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Delay Time Due to Infall

Mergers between galaxy haloes, as defined in most analyses of numerical simulations, occur
around the virial radius. Assuming both haloes contain visible galaxies, halo mergers
then lead to galaxy mergers, after some delay for infall to the centre of the main halo.
Galaxy mergers are identified observationally using features—close pairs, tidal distortion
and debris, or triggered starbursts—that trace the first and second pericentric passages.
We note that the delay due to infall means that ‘merging’ galaxies identified via these
features at one redshift actually trace the halo merger rate at a higher redshift.

Fig. 3.11 shows the observed redshift at which the first (top curve) and second (bottom
curve) pericentric passages occur for a given halo merger redshift zhm. (The dotted line
shows a 1-1 correspondence for reference.) To calculate these, we have assumed that the
orbital properties of the satellite and the potential of the main system are conserved, and
that pericentric passages occur around 1/8 and 9/8 of the radial orbital period at the virial
radius (Taylor & Babul, 2004), which corresponds to 0.1 and 0.9 times the period of a
circular orbit at the virial radius, Pvir, or 0.06 and 0.57 times the Hubble timescale H(z)−1

at the redshift zhm.

From this figure, we see that while the first pericentric passage occurs at only slightly
lower redshift than the initial merger, the second pericentric passage occurs significantly
later, and is only observable for halo mergers at zhm > 1.5. These calculations assume
conservation of the orbit and the potential over 1 or more radial periods; the reality in
major mergers is more complicated, and a significant fraction of orbits may get scattered
in these cases (de Luna et al. in prep.).

The Impact of the Stellar-to-Halo Mass Relation

In this chapter, we have considered the growth and merger rates for haloes. In contrast,
observational studies of galaxy-scale mergers measure these rates as a function of luminosity
or stellar mass. The stellar-to-halo mass relation (SHMR) is fairly well constrained from
a variety of observations (e.g. Behroozi et al., 2019, and references therein), and has the
form of a broken power-law that changes slope abruptly on group scales. Since the halo
merger rate is close to a single power-law in halo mass ratio ξ, the shape of the SHMR
should produce a kink in the merger rate measured as a function of stellar mass ratio.

To illustrate this effect, we approximate the halo merger rate shown in Fig. 3.1 as a
power law B/n ∼ R0ξ

−1.66M0.13
h,1 . We then use the SHMR of (Behroozi et al., 2019) to

convert halo masses and mass intervals to stellar masses and mass intervals. Fig. 3.12
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The dotted line shows a 1-1 correspondence for reference.
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Figure 3.12: Merger rate onto central galaxies in haloes of the mass indicated, as a function
of stellar mass ratio, at z=0.1. Note the feature in the merger rate on group and cluster
scales.

shows how the merger rate is expected to vary with stellar mass ratio, for galaxies merging
into systems with various primary halo masses. While the merger rate onto galaxy-mass
haloes retains a simple power-law form, on group and cluster scales, the kink in the SHMR
appears as a change in the slope of the merger rate in stellar mass unites. This feature might
be observable when recording the rate of group or galaxy-scale accretion onto clusters.

Uncertainties in the Galaxy Merger Rate

Having taken into consideration the complications discussed above in relating the galaxy
merger rate to the halo merger rate, there remains the question of how accurately the
latter can be determined. Galaxy mergers can be detected by either looking at objects
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that are very likely to merge, such as close pairs, or objects which exhibit recent evidence
for merger activity, such as tidal features.

Recent measurements of the galaxy close pair fraction in particular show that the scat-
ter between different studies is significantly reduced if selection criteria are closely matched.
Mundy et al. (2017), Mantha et al. (2018) and Duncan et al. (2019), for instance, find simi-
lar trends in the merger rate as a function of redshift and stellar mass ratios ξ, with a scatter
that is about a factor of 2–3. The combined sample also matches theoretical predictions
from the Illustris hydrodynamical simulations (Rodriguez-Gomez et al., 2015) at about
this level. While this precision may improve with future work, including machine-learning
(ML) approaches to identifying merging systems (e.g. Goulding et al., 2018; Ackermann
et al., 2018; Bottrell et al., 2019; Martin et al., 2020), the current uncertainty significantly
exceeds our target accuracy of 10%. We conclude that galaxy-scale mergers, although
abundant and intrinsically interesting for the study of galaxy evolution, are unlikely to
produce useful cosmological constraints.

3.6 Summary and Conclusions

Tensions between current cosmological results at high and low redshift, as well as the flood
of data on low-redshift clusters and galaxies expected from forthcoming surveys, encourage
us to consider new methods for constraining cosmological parameters, based on non-linear
structure formation and halo properties. In recent work, we found that measurements of
the overall dynamical age of clusters via structural proxies such as concentration might
provide quite sensitive constraints on the parameters Ωm and σ8. This is in part because,
over a reasonable range of halo mass and redshfit, the degeneracy direction for age is almost
orthogonal to the direction for abundance, and thus age constraints are very complimentary
to abundance constraints.

In this chapter, we have considered instead the instantaneous growth rate of haloes,
as determined either from the halo merger rate, or through measures of overall accretion
within the preceding dynamical time. Estimating these rates analytically, we find that
halo merger rates, average growth rates, and the fraction of systems with significant recent
growth (the LGS fraction) should all have slightly different dependence on the cosmological
parameters, but should also be complimentary to abundance-based constraints.

Measuring merger and growth rates in a number of different numerical simulations,
we find trends similar to the analytic predictions, but do not confirm all of these exactly.
Further work is needed here, to understand how mass resolution, snapshot cadence and
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the merger tree algorithm affect the results. Assuming the analytic predictions are correct,
however, a measurement of the halo merger rate or the LGS fraction with an accuracy of
∼10% would be required to distinguish between cosmologies with σ8 = 0.7 and σ8 = 0.9.

Finally, we have considered several different paths to obtaining accurate measurements
of the merger or growth rates observationally. On cluster scales, counting individual merg-
ers may result in large uncertainties related to completeness, so a target of 10% seems
optimistic. On the other hand, a measurement of the LGS fraction seems more feasible,
since clusters with recent episodes of significant growth should be easy to identify. Galaxy
mergers provide a completely different path to determining the merger rate. There are
several complications here, however, including the offset between halo merger times and
galaxy merger times, and scatter in the relation between halo mass and stellar mass. Given
current uncertainties in the galaxy merger rate, our target accuracy seems unrealistic on
galaxy scales, although the galaxy merger rate remains extremely interesting for other
reasons.

Considering these results together with those of Chapter 2, we conclude that structural
studies of galaxy clusters provide several promising avenues for constraining cosmological
parameters. The distribution of cluster concentration parameters or projected shapes, or
the prevalence of disturbed clusters, should all provide tests of the cosmological model
complimentary to those already in use. We will continue to explore this possibility in
future work.
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Chapter 4

What structural properties tell us
about halo age

4.1 Abstract

We have seen in Chapters 2 and 3 that halo age and growth rate can be used to constrain
cosmology, and because halo age is expected to correlate with structural properties, we can
use the observational measurement of structural properties to constrain cosmology directly.
In this chapter, I investigate the relationship between the formation history of dark matter
haloes and their structural properties. Using a set of high-resolution simulations, I track the
history of haloes across 100 snapshots to measure growth history quantities and structural
properties. Most haloes’ mass accretion histories (MAHs) differ along one dimension, which
is associated with the halo general “age”. I also identify different indicators of halo age
and assess their connection to halo structure. I investigate which age indicator correlates
with the internal structure of haloes, finding that the redshift at which haloes amassed
half their mass (z50) and when they had their last major merger (zmm30) have the most
significant correlation with structural properties, specifically concentration and the offset
between the centre-of-mass and the density peak. Combining different structural probes
can efficiently reduce the scatter in z50 predictions. This work highlights the potential of
using the relationship between halo age and structure to constrain cosmological models.
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4.2 Introduction

Because dark matter haloes grow hierarchically through merger and smooth accretion, we
expect this process to leave imprints on their structures. For example, since the central
parts of haloes are likely to be accreted earlier, they are expected to be denser as a reflection
of the density of the Universe when those parts were accreted; hence older haloes are
predicted to have larger concentrations than younger ones (Jing, 2000; Bullock et al., 2001;
Wechsler et al., 2002; Gao et al., 2005; Jing et al., 2007; Correa et al., 2015c). Other
structural parameters have also been shown to depend on halo age or merger history,
including shape (Drakos et al., 2019a), substructure (Gao et al., 2004; Diemand et al.,
2007) and centre-of-mass offset (Macciò et al., 2007; Power et al., 2012).

While the link between the halo structural parameters and age has been established
and extensively studied, there is no real consensus on how to best describe halo age and
how many quantities are necessary to describe the formation history fully. Wong & Taylor
(2012) attempted to answer this question by using a non-parametric Principal Component
Analysis (PCA) on the mass accretion history (MAH) and found that more than half of
the total variance between haloes was happening along one axis and 80 per cent across
two, suggesting that the MAH is a two-dimensional quantity. In this chapter, I attempt
the same type of analysis with a larger sample of haloes at higher masses and with several
other indicators to study the nature of the halo age and dynamical state in more detail.

Other halo properties have been subject to similar analyses by Jeeson-Daniel et al.
(2011); Skibba & Macciò (2011) and Wong & Taylor (2012) and found that much of the
variance is accounted for by one axis along concentration and mass and a second along the
relaxedness of the halo. They also found a strong correlation between age and concentra-
tion.

Building upon these analyses, one can look at which structural properties correlate with
age and whether they can inform about different populations of haloes with different ages.
More specifically, I want to try to answer how to predict halo age with structural properties
reliably and accurately. This would allow us to link observable structural properties to Ωm

and σ8, since we have seen in Chapters 2 and 3 that age and growth rate are sensitive to
cosmology.

Because we can measure halo structural properties such as shape and concentration
from observations, successfully linking those properties to halo or cluster age would allow
for constraints on Ωm and σ8 with cluster structure observations given the results shown
in Chapter 2. In practice, we might eventually be able to go directly from structure to cos-
mological constraints using simulations and mock observations to calibrate the theoretical
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relationship inferred from age.

The outline of this chapter is as follows. In Section 4.3, I describe the simulations used
and different halo age and structural properties that I will study and give their definitions.
In Section 4.4, I attempt to find the best way to quantify the halo formation history while
losing the least amount of information and then see which structural properties correlate
with these parameters in Section 4.5. Finally, I summarize my findings and conclude in
Section 4.6.

4.3 Halo properties

4.3.1 Simulations

To study the link between halo age parameters and structural properties, I have run a set of
more than 20 high-resolution DM-only N-body simulations with N = 10243 particles, each
with different values of Ωm and σ8 and all other parameters (cosmological and simulation)
fixed. They have large enough box sizes (L = 500Mpc/h) to have enough cluster- and
group-sized haloes and enough snapshots (Nsnap = 119), to track the history of DM haloes
up to z = 5. All simulations have been run using the publicly available code GADGET-41

(Springel et al., 2021). They all have a softening length ls = 2.5kpc, a particle mass of
mp = 9.69 × 109M⊙, a Hubble parameter H0 = 70km/s/Mpc and initial spectral index
ns = 0.965. Most of this chapter’s analysis was done with one of the simulations with
Ωm = 0.3 and σ8 = 0.85. I have repeated the analysis with simulations with different Ωm

and σ8 and found similar results.

I have run the Amiga Halo Finder (AHF) (Gill et al., 2004; Knollmann & Knebe,
2009) on each simulation and snapshot, together with the AHF merger tree algorithm.
Each halo has a minimum of 100 particles, which sets the minimum mass of haloes to
M > 9.69 × 1011M⊙. This limit is set to have reliable structural property measurements,
but it is arguably large and will introduce a loss of information about low-mass haloes’
early growth because they will quickly reach the minimum halo mass and either stay there
or disappear. This is a compromise between the desire to have a large enough sample of
group and cluster mass haloes, limiting poor structural parameter fits and being able to
track a halo’s history far enough into the past.

Given a merger tree algorithm and halo mass definition, in our case, Mhalo ≡ M200c

where M200c is the mass inside a sphere defined by the radius where the density drops

1https://wwwmpa.mpa-garching.mpg.de/gadget4/
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below 200 times the critical density ρc, we can track the mass history of any given halo
M(z). We define a halo’s mass accretion history (MAH) as M(z) ≡ M(z)/M(z = 0). Note
that because of the nature of Amiga Halo Finder and merger tree algorithm, the MAH is
not monotonic; a halo can, and will often, undergo mass loss.

4.3.2 Halo age

After they collapse into gravitationally bound structures, haloes grow their masses in two
main ways, slow smooth accretion and rapid growth through mergers. One can get in-
formation about the accretion phases and merger events by analysing the halo’s mass
accretion history M(z). Still, it is not obvious how to define a halo’s “age” or formation
time. Different phases of halo growth could, in principle, be more critical than others or
encompass more age information. To explore a wide range of age parameters, I chose to
use three categories of halo age indicators :

• redshift at which the halo had amassed a fraction x of its z0 mass, where x can
be 90%, 75%, 50%, 10% and 1%. These will be referred to as z90, z75, z50, z10, z1
respectively.

• last redshift at which the halo has grown by a given x fraction where x here can be
30%, 25%, 20% and 10%, referred to as zmm30, zmm25, zmm20, zmm10. The growth here
is measured with respect to the initial mass, specifically, where M(z0)−M(zi)

M(zi)
> x and

zi > z0. The maximum initial redshift zi considered is taken to be early enough for
mergers to be fully accounted for in the host halo’s mass; I found that five snapshots
at low z are usually enough.

• fraction of z=0 mass a halo had at a given redshift z. This is, in practice, a sampling
of the MAH M(z) in a few redshifts: z=0.1, 0.3, 1, 2, 3.

• the parameters γ and β from the McBride et al. (2009) fitting function : M(z) =
M0(1 + z)βe−γz. Since they are degenerate, I use the logarithmic growth rate at z=0,
−dM

dz
|z=0 = γ − β as the age indicator.

4.3.3 Structural properties

Dark matter haloes are complex objects which exhibit a variety of features, many of which
result from the more-or-less recent growth and merger history of the halo. I looked at
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a selection of structural properties to study how they link to the different age quantities
described in 4.3.2, some of which were measured directly by AHF:

• cNFW: concentration parameter c = rvir/rs where rs is the scale radius of a fitted
Navarro-Frenk-White (NFW) density profile.

• b: modelling the halo as an ellipsoid, ratio of its second to first principal axes.

• c: ratio of the third to first principal axes.

• λ: spin parameter as defined by Bullock et al. (2001).

• com offset: offset, in Mpc, between the centre-of-mass of the halo and the halo centre
defined as the peak of the density contours. Note that normalising by the halo’s virial
radius does not change correlations with age.

• Elongation: E ≡ (b2 + c2)/2.

• Triaxiality: T ≡ 1−b2

1−c2
.

• Vrat: the ratio of the maximum circular velocity and the virial velocity Vrat = Vmax

Vvir
.

Projected quantities were also either fitted or calculated for more direct comparison
with observables:

• Conc: 2D NFW concentration where I used a maximum likelihood fit using particle
positions directly, without binning. This typically gives more robust and accurate
fits.

• χ2
ρ: the χ2 of the 2D density profile fit calculated as

χ2 ≡ 1

M

∑
i

(ρNFW (ri) − ρ(ri))
2

σ2
i

where σi is taken to be Poissonian errors.

• χ2
M : same as above, for the mass profile.

• axis ratio: the halo’s minor to major axis ratio; modelled as an ellipse. I calculate the
axis ratio by finding the eigenvalues and eigenvectors of the reduced inertia tensor,
then rotate the particle coordinates towards the eigenvector axes and iterate the
process until convergence.

89



• 2D com offset: the offset (in Mpc) between the centre-of-mass and centre of the halo
in a projected 2D plane.

These projected quantities can all be measured through observations, as well as Vrat.
The 3D real space quantities, such as Triaxiality and Elongation, are included to study
their behaviour with halo age in general and understand aspects of halo dynamical state
on a more fundamental level.

4.4 Quantifying the halo history

4.4.1 What information is contained in the mass accretion his-
tory ?

A halo’s mass accretion history contains all the information about its growth journey. It is
worth questioning how many aspects of the MAH differentiate haloes from each other. In
the simplest case, all MAHs are self-similar and determined by the halo mass, or it could
be a more complex function characterized by growth at different epochs. To assess the
dimensionality of the MAH, we can use a Principal Component Analysis (PCA) (Pearson,
1901).

PCA is a change of basis in variable space to a new orthogonal basis where each of
the new axes, called principal components (PCs), is in a direction that captures the most
variance in the dataset. It is a standard dimensionality reduction method since it gives
information about the relevant variables that hold the most information. It can be used to
know the variables that capture the same information, the irrelevant ones, and those that
are independent.

In our case, PCA is useful to assess the intrinsic dimensionality of the MAH; in other
words, how many parameters are needed to fully describe a halo’s MAH and what combi-
nations of epochs can describe these parameters.

I used a selection of 38,247 haloes with masses M > 1013M⊙/h, and found that the
MAH is very close to a one-dimensional quantity. As shown in Fig. 4.1, 60% of the total
variance among halo MAHs occurs along a unique axis in the MAH space, similar to what
Wong & Taylor (2012) found where the first PC accounted for 58.4% of the total variance.
Other axes have minor contributions to the total variance at around 10%, which differs from
Wong & Taylor (2012) which found that the second axis accounted for 25% of the total.
More interestingly, the first axis is a global linear combination of the values of the MAH at
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Figure 4.1: Left: the fraction of the total explained variance along each principal compo-
nent. Note that more than 60% of the total variance is along the first axis, significantly
more than all others. Most of the MAH information is contained along that axis. Right:
weights of each of the first four PCA axes. The first one is a weighted sum of the MAH
at all snapshots, with slightly more importance given to epochs that are not too recent
or too early, corresponding to 0.25 < z < 0.65. Other principal axes show Fourier-like
decomposition, distinguishing between haloes by the number of fast growth periods they
had and whether those periods happened at early or late times.
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Figure 4.2: Left: the mean of the MAHs for all haloes (black), haloes with PC1 values
larger than half a standard deviation (blue) from the mean, and haloes with PC1 values
lower than half a standard deviation (orange) from the mean. We can see that large PC1
haloes have grown early, stopped, and lost mass in some instances, while low PC1 haloes
have grown recently. Right: mass accretion histories from a random selection of haloes
colour coded by the value of their PC1.

all snapshots, with slightly more emphasis on the halo’s middle age between 0.6 < a < 0.8
or 0.25 < z < 0.65. The first principal component is the closest to a halo “age” measure
one can have. Other principal components show Fourier-like behaviour, capturing different
merger/growth frequencies, which might be linked to different halo environments.

This is further illustrated when we look at the average of the MAHs for haloes having
low and large PC1 values as shown in Fig. 4.2, it is clear that large PC1 haloes have not
had any recent growth, and most their mass was amassed before a=0.7, while haloes with
low PC1 had most their growth recently. This behaviour is almost identical to the one
found in Wong & Taylor (2012), showing that the first PC in both cases are the same
physical quantity. This shows that PC1 is an excellent “age” quantifier and that the halo
states at different times convey equivalent amounts of information, making a weighted sum
of all of them the best way to know when a halo had most of its growth. In practice, this
is just because old haloes have had larger masses for longer, so a sum of their relative mass
throughout their history is going to be mechanically larger than young haloes that had
lower relative masses throughout their history.

Other subsequent principal components separate haloes according to their growth phase
at z=0 for each subsequent growth frequency, as shown in Fig. 4.3. They differentiate
whether the most recent halo growth phase was slow or fast in cases where haloes have
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Figure 4.3: Difference of the mean MAH between haloes with lower principal component
values and haloes with larger ones for each PC2, PC3, PC4 and PC5. Each PC contains
information about halo growth at different frequencies.
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Figure 4.4: The fraction of variance that occurs along each of the first six axes of a PCA
performed on the halo age indicators defined in Section 4.3.2. The results are similar to
Fig 4.1 where the PCA was performed on the MAH, indicating that the same type of
information is carried through the collection of age indicators and the MAH.

had alternating fast and slow growth phases.

4.4.2 What are the best indicators of halo “age”?

A variety of quantities can be used as a halo “age”. In Chapter 2, I chose z50, but one can
argue for the use of any of the quantities described in Section 4.3.2 as an age indicator. We
can try to perform the same type of analysis as in Section 4.4.1 with all quantities described
in Section 4.3.2 to check which combination of indicators contains the most information
about halo history.

First, we can perform a PCA with all age indicators defined in Section 4.3.2 which are
the redshifts where the halo had reached a fraction x of its mass zx, the redshift of the
last major increase in mass zmmx, the fraction of current halo mass at different redshifts
and γ − β the logarithmic growth rate at z = 0. With the addition of the first principal

94



z90

z75

z50

z10

z1 zm
m

30
zm

m
25

zm
m

20
zm

m
10

M
/M

0(z=
0.1)

M
/M

0(z=
0.3)

M
/M

0(z=
1.0)

M
/M

0(z=
2.0)

M
/M

0(z=
3.0)

M
AH

-PC
1

Age indicator

0.8

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

C
oo

rd
in

at
e 

va
lu

e

PC1
PC2
PC3
PC4

Figure 4.5: The linear decomposition of each of the first four PCs in terms of different age
indicators. The red line is a threshold at 0.3 used to indicate which property is significant
to different PCs. The first PC, responsible for more than 50% of the variance, is correlated
with all indicators. Other axes capture early or late growth information.
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component of the MAH found in Section 4.4.1 (MAH-PC1). It is clear that a lot of these
convey very similar information but the Principal Component Analysis will naturally show
which ones do and to what extent they do it.

The fraction of the explained variance is shown in Fig. 4.4. Almost half the total
variance happens along one axis; the second and third principal component account for a
significant part of the variance, while other subsequent axes are less important.

The weights of each property on the first four PCs are shown in the right panel of
Fig. 4.5. Most age indicators are correlated with the first PC, which suggests that they
are almost equivalent indicators of age; notably, the first principal component of the MAH
(MAH-PC1) has the largest weight in PC1, confirming that a weighted average of a halo
MAH is a good formation history indicator. The second PC correlates with early-time
indicators and anti-correlates with late-time indicators; it carries information about how
much the halo has grown in the early stage of its formation history. The third PC is
correlated with the redshift of the last major merger and is broadly a measure of the very
recent state of the halo, as shown by the fact that it anti-correlates with z90 and M at
z=0.1. Finally, the fourth PC is also linked to very recent history but mostly captures slow
growth and minor merger information exclusively near z=0.

Given that many of the variables used above are redundant, we can try to do the same
analysis with a subset of them: z50, z1, zmm30, M/M0(z = 0.1)), M/M0(z = 3)), γ− β and
MAH-PC1.

We see from Fig. 4.6 that the first PC captures the same amount of variance and
represents the same first axis as previously. The second and third PCs capture more
variance, while subsequent axes are less important.

From Fig. 4.7, we observe that the first PC is roughly the same as previously, with a
sign difference, which does not change fundamentally the information conveyed through
the axis. Notably, z50, zmm30, and the MAH-PC1 stand out as good overall formation
time estimates. The second PC captures information about the very early-time formation
history, while the third PC captures the very recent history.

The MAHs of haloes with different values of PC1 are shown in Fig. 4.8; it is a visual
confirmation that haloes with high PC1 tend to reach half their mass at lower z, that they
had a 1–3 major merger more recently.

Combining two age indicators is usually enough to describe a halo’s formation history
without losing too much information. The most important is a global age indicating when
most of the halo’s growth happened, typically when it went from 10% to 90% of its current
mass. z50 is a good indicator for this period, so is zmm30; although, z75, zmm25, zmm20 will
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Figure 4.6: Same as in Fig. 4.4 with a subset of the indicators.
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carry the same information. The second complementary formation history indicator is the
growth rate at very early or late times. We have seen that the redshift at which the halo
has amassed any of its ten first per cent of mass, e.g. z1 or z10, provides information about
the early stages of the formation history and can segregate haloes with similar “global age”
by their early time growth. Additional information can be provided by indicators of the
growth rate in very late stages, such as γ − β fit parameters.

4.5 The dependence of structural properties on age

4.5.1 Structure and age correlations

After determining the main indicators of the haloes’ formation history, we can try to see
how they correlate with different aspects of their structure. I chose to look at four age
indicators: z50, zmm30, z10 and γ − β; the first carries general age information, but major
mergers might have a different, more obvious, structural impact. z10 carries the early
formation information; I use z10 instead of z1 or other early-time growth indicators to have
larger halo samples and not be restricted by mass resolution effects. γ−β is the logarithmic
growth rate at z=0.

We can see how different structural properties correlate with the dynamical state in-
dicators in Figs. 4.9, 4.10 and 4.11 which show the density plots, smoothed using a 2D
Gaussian Kernel Density Estimator (KDE).

A first significant observation is that remarkably few structural properties correlate
with the logarithmic growth rate at z=0: γ − β except for the centre-of-mass offset both
in 3D and in projection. This suggests that recent slow growth has little impact on the
structure of the halo.

We can also note that z50 and z10 correlate with halo structure in very similar ways.
How fast a halo gets its first 10% or 50% mass will have the same impact, although
some correlations are more pronounced with z50 such as with concentration, the centre-
of-mass offset and the χ2 of the mass profile. This is consistent with our findings of
Section 4.4 that the halo “age”, which I associated with the first principal component,
can be represented by zf at any fraction of the mass f and they would carry equivalent
amounts of information. The fact that z50 and z10 have similar impacts on structure also
shows that the age-independent growth rate at early times that we associated with the
second principal component in Section 4.4.2 is not correlated with halo structure.
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Figure 4.9: Density plots of the centre of mass offset, spin, second to first axis ratio, third to
first axis ratio, and concentration taken from the Amiga Halo Finder (AHF) as a function
of different dynamical state indicators: z50, z10, the redshift of last major merger zmm30,
and parameters from the McBride et al. (2009) fitting formula γ − β. All properties are
described in Sections 4.3.3 and 4.3.2. The colour scale is linear.
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Figure 4.10: Density plots of the Triaxiality, Elongation, and ratio of Vmax/Vvir calculated
from properties taken from Amiga Halo Finder (AHF) as a function of different dynamical
state indicators: z50, z10, the redshift of last major merger zmm30, and parameters from the
McBride et al. (2009) fitting formula γ − β. All properties are described in Sections 4.3.3
and 4.3.2. The colour scale is linear.
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Figure 4.11: Density plots of the projected 2D concentration, axis ratio, centre of mass
offset, χ2 of the density profile and thee mass profile as a function of different dynamical
state indicators: z50, z10, the redshift of last major merger zmm30, and parameters from the
McBride et al. (2009) fitting formula γ − β. All properties are described in Sections 4.3.3
and 4.3.2. The colour scale is linear.
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One interesting feature in almost all correlations between the redshift of the last major
merger zmm30 is the appearance of two distinct halo populations, one of which has had
a major merger very recently zmm30 < 0.25. It can be seen clearly when looking at the
centre-of-mass offsets (both in 3D and in projection) as well as the 3D concentration
cNFW, Elongation and Vrat = Vmax/Vvir. It is also present for most other properties.
This low zmm30 halo population is almost the only one having low values of axis ratio
b < 0.8 and c < 0.7; they have large centre-of-mass offsets have much lower concentrations
and typically density profiles that are poorly fitted by an NFW profile. The population of
haloes which had a recent major merger is the unrelaxed population and has been typically
been distinguished from the relaxed haloes by looking at their centre of mass offset, virial
ratio, shape and amount of substructure (Neto et al., 2007; Macciò et al., 2008; Meneghetti
et al., 2014). This is similar to our findings that centre of mass offset and shape clearly
distinguish between relaxed and unrelaxed objects.

Some structural properties show weak correlations with age. The halo spin λ does not
seem to vary much with the halo age parameters. Similarly, halo shape indicators are
weakly correlated with age parameters, except for zmm30. Thus, halo shape is an excellent
probe for recent mergers, as elongated haloes appear to be exclusively the result of a recent
major merger.

The best halo age predictors are measures of concentration; either of the NFW concen-
tration or Vmax/Vvir show linear trends with z50 with limited scatter. The offset between
the centre-of-mass and the density peak is also a reasonable age estimate but might be
more challenging to observe.

4.5.2 Combining structural properties

Each of the different relations seen in Figs. 4.9, 4.10 and 4.11 show some level of scatter,
but we do not need to restrict ourselves to one age predictor. We might expect that part of
the scatter seen in one relation can be reduced by looking at another structural property,
particularly if they capture different aspects of halo structure.

in Fig. 4.12. we can look at how z50 changes in a parameter space defined by two
structural properties, specifically looking at the projected quantities that could be observ-
able; here haloes with different z50 are distributed in the concentration versus axis ratio,
centre-of-mass offset and χ2

M planes at different masses.

We saw in Section 4.5.1 that the halo axis ratio, by itself, was not a good predictor
of z50; however, it does help when combined with concentration. In particular, for low-
concentration haloes, those that are highly non-spherical are almost all very young ones.
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χ2 of the mass profile, colour-coded by z50 for each halo.
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Although, the best combination of predictors is concentration and centre of the mass offset
where there is an apparent gradient, and both concentration and centre-of-mass offset
help reduce the scatter of each individual property. The scatter in z50 values at low and
medium concentrations is significantly reduced by looking at the centre-of-mass offset, and
similarly for medium values centre-of-mass offset. Another way to reduce the scatter in
the concentration-z50 relation is to look at χ2

M , particularly at higher masses; at any given
concentration, younger haloes will have a higher χ2

M than older ones.

In practice, several approaches can be used to estimate halo age by combining structural
properties. A simple fit of the data with z50 = f(conc, com offset) would provide accurate
enough z50 measurements. This is illustrated in Fig. 4.13 where I show how differentiating
between haloes with a centre-of-mass offset criteria changes the ⟨z50⟩ =f(concentration)
relation, allowing more accurate estimates. A more ambitious approach is to train a ma-
chine learning regression model to predict z50 and zmm30 using all observable structural
properties. This is the subject of ongoing work, and has the advantage of being able to
use a larger part of the information in the data.

Note that at low mass, there is a population of haloes with very low concentration
and large z50. These are poorly fitted concentrations, likely due to resolution effects and
insufficient particles for a good fit. This is confirmed by the fact that they have large χ2

and only appear at low masses.

4.6 Summary and conclusion

The formation and growth of dark matter haloes in the standard ΛCDM cosmology is
a complex and non-linear process, that gives rise to collapsed structures with different
formation histories. Since the halo formation history varies with cosmology, one might
expect that cosmology will also influence the structural properties of haloes. And samples
of clusters are expected to grow substantially over the next decade, there is the potential to
use this relationship between cosmology and halo internal structure to constrain cosmology.

To understand halo formation history and dynamical state and how it influences its
structure, I ran a set of high-resolution simulations with a large enough box size (500Mpc/h)
to have a good sample of group and cluster size haloes. I tracked the assembly of haloes
across 100 snapshots to measure different growth history quantities, together with struc-
tural properties calculated at z=0.

I started by studying the dimensionality of the accretion history of dark matter haloes.
To do that, I performed a Principal Component Analysis (PCA) and found that much of
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Figure 4.13: Top: density contour plot of z50 as a function of projected concentration for
halos M > 1013M⊙/h. Bottom: the same figure, segregated by the projected centre-of-
mass offset values in kpc/h. Solid lines show the average of z50 while the shaded region is
a one standard deviation region.
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the variation in halo growth histories is one-dimensional; that is, it can be described by a
single parameter, which can be seen as their “age” and quantified by a weighted sum of
the halo mass at all points in its history. The next step was to assess whether and which
age indicators provide different information about a halo’s formation history. I performed
a PCA on various quantities typically used to measure haloes’ age and dynamical state.
I found that haloes’ history differs in one major and two minor ways. The first one is a
general age, well described by quantities like the redshift at which a halo has amassed a
reasonable fraction of its mass, typically between 20% and 80% of its mass. The second
and third way they differ is through their growth rate at very early and very late times.

Once we have quantities that capture different aspects of a halo’s formation history, we
can look at how these quantities influence the internal structure of haloes. I found that
the redshift at which haloes amassed half their mass —z50— and when they had their last
major mergers —zmm30— affect most structural properties, specifically, concentration and
the offset between the centre-of-mass and the density peak show clear linear trends with
z50. Other quantities, such as the halo’s elongation or its spin, also show correlations, but
they tend to be weaker and with significant scatter.

While looking at correlations between zmm30 and concentration, shape and centre-of-
mass offset, the population of haloes that had recent major mergers (zmm30 < 0.3) are
clearly segregated from the rest of haloes. This is expected from the initial phase of a
merger as they alter shape (Drakos et al., 2019a), have lower concentration because the
merger results in more mass at large radii as it falls in, and a large centre-of-mass offset
(Drakos et al., 2019b). As the merging halo reaches the first pericentre and starts a damped
oscillation behaviour, concentration and centre-of-mass offset will alternate between higher
and lower values depending on the phase of the merger as shown by Wang et al. (2020).

Combining different structural probes allows us to estimate z50 more accurately, par-
ticularly with concentration and either the centre-of-mass offset, the axis ratio or the χ2

of the mass profile. For example, populations of group-sized haloes with low concentration
and large centre-of-mass offsets are almost exclusively young, while the opposite is also
true.

Given that we have already established in Chapter 2 that z50 varies by almost a factor
of two in the Ωm–σ8 plane, and that with only concentration as a predictor, we would need
around 10 000 clusters to have competitive constraints on σ8, we expect a combination of
concentration, shape and centre-of-mass offset to allow to achieve the same results with
far fewer clusters.
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Chapter 5

Conclusion

5.1 Summary of the Thesis

In the work conducted during my doctoral thesis, I explored new avenues to exploit cluster
data for cosmological purposes. My focus was towards using the structural properties of
galaxy clusters as tools to constrain Ωm and σ8. I did that by first studying how cluster
age and growth rate were influenced by Ωm and σ8 and then showed how we could measure
age through cluster internal structure.

The Cosmological Dependence of Cluster Age

Galaxy clusters are the result of the evolution and gravitational collapse of rare, high-
amplitude density peaks. Their abundance is a degenerate combination of the amplitude
of the initial power spectrum—parameterised by σ8—which controls the number of high
peaks, and the amount by which they have grown which is sensitive to Ωm. Their formation
epoch, however, does not have the same dependence. Higher peaks will result in earlier for-
mation, whereas a higher present-day growth factor will result in clusters assembling later.
Cluster age is, therefore, an interesting property with unique cosmological dependence.

Analytical models are a valuable tool for studying the cosmological dependence of
cluster age. These models allow inexpensive ways to span a wide range of parameter space
while maintaining a relatively accurate prediction of structure formation.

Extended Press-Schechter theory (EPS) predicts that the median time when haloes
form varies by 100% over the range of the Ωm-σ8 plane allowed by other observational
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constraints. Interestingly, the sensitivity in this plane is almost orthogonal to typical
structure growth constraints from weak lensing or cluster counts at low redshift.

Although age predictions from simulations vary, depending on the halo finders and
merger tree algorithms used, they all agree with the general sensitivity of the halo age as
a function of Ωm-σ8. This suggests that the cosmological dependence of age is present,
roughly of the amplitude predicted by EPS theory.

It is worth noting that cluster age is not directly observable. However, it correlates
with observable structural quantities such as concentration. If we assume a net scatter of
40–60% in the relation between age and measured concentration and use concentration as
a test, we would need an unbiased sample of 10,000 clusters to obtain impactful constraints
on σ8 about 10% of the current 2–σ contours. Overall, the use of analytical models and
simulations has provided valuable insights into the cosmological dependence of cluster age
and has the potential to provide further constraints on important cosmological parame-
ters such as σ8. This has two major advantages: first, the constraints break the Ωm–σ8

degeneracy, and second they make use of information available “for free” in cluster survey
data.

The Cosmological Dependence of Growth Rate

The growth rate is a differential analogue of the formation time. Analytical models, specif-
ically EPS, also provide useful predictions of its dependence on Ωm and σ8. We looked at
three different growth rate quantities: the merger rate per halo, the average growth in a
dynamical timescale, and the fraction of haloes that experienced a major merger in the
last dynamical timescale.

Analytical models predict fairly similar cosmological dependence for all three quantities,
mostly orthogonal to cluster count constraints but with varying sensitivity. At low redshift,
the merger rate varies by 40% in the Ωm–σ8 plane, while the analytical models predict a
variation of up to 80% at low redshift and cluster mass for both the average growth and
fraction of systems with large growth.

Despite the fact that the best time resolution of instantaneous growth rates in simula-
tions can only be as good as the inter-snapshot time, and that different halo finders and
merger tree algorithms will give different results, we found that the growth rates measured
in simulations have similar cosmological sensitivity similar to that predicted in analytical
models. The amplitude of the variation in simulations tends to be slightly smaller than
the analytical predictions. In order to provide constraints that would distinguish between
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values of σ8 = 0.7 and σ8 = 0.9, we need to measure the merger rate on either cluster or
galaxy scales with a precision of 10% or better.

While challenging, measuring merger and growth rates at cluster scales is not impossible
but will likely require large samples and accurate simulations for calibration. On the other
hand, on galaxy scales, statistical analysis of merger rates has been performed theoretically
and observationally. The difficulty, in this case, lies in linking the halo and galaxy merger
rates. Recent measurements of galaxy merger rates show a scatter of about a factor of 2–3,
which significantly exceeds the targeted 10% uncertainty.

This means that, although galaxy mergers are abundant, it is unlikely that we will be
able to use them as a cosmological constraint in the near future, as long as the scatter in
merger rate observational estimates is not significantly reduced.

Measuring the Age of Clusters

While cosmological dependence of cluster age and growth rate provides new constraints and
possibilities, it is only useful if we can have accurate enough measurements of them through
observations. Although it has been established that the formation history of clusters and
dark matter haloes leaves imprints in their observed internal structure, a detailed study of
the interplay between the two is necessary to understand how we can probe halo age with
structures.

While studying the history and structure of haloes in this thesis, several findings
emerged. Firstly, the halo mass accretion history can be represented as a largely one-
dimensional quantity that describes the halo’s relative mass throughout its past. This
history varies primarily based on the halo’s global age, the growth rate at early times,
and the growth rate at recent times. However, age is the primary factor that distinguishes
between different halo histories.

Secondly, any property describing the halo’s state near the middle of its growth indicates
the halo’s general age. These quantities, such as z50, show the clearest correlations with
halo concentration and the offset between the halo’s centre-of-mass and density peak.

Finally, combining multiple structural probes helps to reduce scatter in halo age es-
timates significantly. Notably, using concentration in combination with either shape or
centre-of-mass offset can help to distinguish between young and old halo populations.
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Summary

Galaxy clusters are massive structures that can be used to constrain cosmological param-
eters due to their abundance, which requires accurately estimating their mass through
observational proxies. However, this method neglects other properties of clusters that
could contain cosmological information and induces a degeneracy in estimates of Ωm and
σ8. Various statistics of the dynamical state of galaxy clusters can be used to differentiate
between values of Ωm and σ8. These include cluster formation time, merger rate, and
growth rate, which vary with cosmology differently than cluster abundance. Simulations
predict that a number of potentially observable structural properties can predict cluster
dynamical states, such as the halo concentration and the offset between the centre-of-mass
and the centre of the halo. These findings suggest that other clusters’ properties should
also be considered when constraining cosmological parameters using galaxy clusters.

5.2 Challenges and Future Work

This thesis’ aim is to show that using future samples to constrain cosmology with cluster
structure is a promising avenue that is worth exploring and has the potential to open a new
door in the cosmological exploitation of the highly non-linear scales of structure formation.
Any concrete plan aimed at this end is subject to challenges that will require further work
and resources to overcome; these come in two main categories:

Linking simulations to observables

Most of the work in this thesis has been done using either analytical models or N-body
simulations. Relating structural properties in simulations to specific observables is not
always trivial. Halo mass, for example, is usually difficult to measure and requires either
weak lensing, which can induce errors (e.g. Becker & Kravtsov, 2011), or another mass
proxy, such as cluster richness (e.g. Capasso et al., 2019), which involves calibrating the
richness-mass relationship. Consequently, if one wants to measure the density profile of
the dark matter in the cluster, its shape, its centre-of-mass, the peak of its matter density,
they would need to link them with observables accurately.

In practice, this task is made easier if we have access to multi-probe studies of clusters,
X-ray tracks the ICM gas, but only the central parts of the cluster, but combined with SZ
detection of the ICM, we can reach outer parts of the cluster. In contrast, optical surveys
detect the galactic and collisionless parts of the cluster. In all three all cases, there is
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still a need to match observables to the target structural properties and take into account
projection effects.

One way to solve this problem is through mock observations, simulations which are
supposed to replicate the anticipated observations from a given survey (e.g. Contarini et al.,
2022). Good quality mocks will be crucial in accurately mapping structural properties from
simulations to observables and, even more important, in assessing the accuracy of those
measurements.

Baryonic effects

The internal structure of dark matter haloes can be affected by various effects originating
from the gaseous and stellar components. Gas cooling may typically produce a denser
central core and a more concentrated halo because of the adiabatic contraction of the gas
and the subsequent additional gravitational effect of the more centrally concentrated gas
on the dark matter (Schaller et al., 2015). Conversely, stellar and Active Galactic Nuclei
(AGN) feedback may lead to more extended and less massive haloes because of gas ejection
(Velliscig et al., 2014; Lee et al., 2018; Castro et al., 2020). This may also alter the shape
of dark matter haloes because of the gas carrying away angular momentum, making the
halo more spherical (Lee et al., 2018).

The main worry in the context of this thesis is that these effects induce more scatter,
not accounted for in DM-only simulations, making the cosmological sensitivity of cluster
structure weaker. For example, If baryons make haloes rounder, detecting very young
haloes by looking at the highly non-spherical population, as I suggested in Section 4.5,
can become more challenging. Moreover, since baryonic effects depend on the properties
of their host galaxies, galaxy formation is a very cosmology-sensitive process (Mo et al.,
2010; van Daalen et al., 2011), the way baryons affect halo structure can also, in principle,
be cosmology-dependent and might alter the predicted cosmological dependence of halo
structure.

More work is required to properly account for the impact of baryons on the relationship
between cosmology and halo internal structure. Good-quality hydrodynamical simulations
with cosmological scale box sizes are needed. Still, they are computationally costly and
are dependent on the underlying subgrid prescriptions of stellar and AGN feedback, which
happens to be the most likely source of disruption of halo internal structure. Current and
future hydrodynamical are trying to address these shortcomings, FIRE simulations (Hop-
kins et al., 2018, 2023) study baryonic effects with a very good resolution ( 104M⊙) while
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Figure 5.1: Change in the median value of the projected offset between the centre-of-mass
and density peak (top left), concentration (top right) and axis ratio (bottom) for group-
mass haloes calculated in simulations with different values of Ωm and σ8. The grey shaded
area shows a contour of constant S8.
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the MilleniumTNG project aims at bridging the gap between cosmological-size simulations
(500Mpc/h) and hydrodynamical effects (Pakmor et al., 2022).

What is observable ?

I show in Fig. 5.1 how three different structural properties which are, in practice, directly
observable vary across the Ωm–σ8 plane. These are the offset between the centre-of-mass
and density peak, concentration and axis ratio.

The centre-of-mass offset is of particular interest because, for one, it varies along the
contour of constant S8 as shown in Fig. 5.1 and second, because there are multiple ways
to measure it. Using X-ray, lensing or combining probes. Although the relative change
is about 20%, the absolute value is relatively small 11kpc–15kpc. As a test study, we
can imagine a rough measurement of the offset between the X-ray peak and the Brightest
Central Galaxy (BCG) of the cluster up to 100kpc accuracy. If we do this for 10,000
clusters, assuming only statistical errors, then we would get to an accuracy of 1 kpc,
sufficient to distinguish between values of (Ωm–σ8) of (0.35–0.75) and (0.25–0.9).

Cluster and dark matter halo shape can be measured in various ways, most commonly
through gravitational lensing (e.g. Robison et al., 2022) or by looking at the distribution
of satellite galaxies (e.g. Shin et al., 2018). In either case, one can expect between 5% and
10% accuracy with a sample of O(104) clusters (Shin et al., 2018; Gonzalez et al., 2022).
With a larger sample of O(105), and better signal-to-noise on individual detections, we
could reach an accuracy of a few percent that would be required to have useful constraints
according to the bottom panel of Fig. 5.1.

Concentration can also be estimated through lensing and galaxy number density pro-
files, as well as with X-ray and SZ (Groener et al., 2016). Provided we can accurately
calibrate simulation predictions, according to the top right panel of Fig. 5.1, if we want to
measure σ8 at the 5% level, we would need roughly a 1% measurement of concentration.
Assuming a conservative 60%-80% error on individual concentration estimates, we would
“only” need about 4000-7000 clusters for our target. This is a very promising avenue, given
we expect an order of magnitude more detections.

Next steps

The immediate next step for this work is to combine the findings of Chapters 2, 3 and 4
to go directly from cluster structure to Ωm and σ8 predictions. A few examples of this are
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illustrated in Fig. 5.1, where I show how the projected centre-of-mass offset, concentration
and axis ratio vary for different cosmologies. These come for the set of high-resolution N-
body simulations that I have run as described in section 4.3.1. We can clearly see that this
has the potential to break the Ωm-σ8 that follows contours of constant structure growth
parameter S8. Once we have a good sampling of Ωm-σ8 plane, multiple ways can be used
to “fill” the plane and be able to associate structural parameters to any value of Ωm and
σ8:

• Emulators In an ideal scenario, we could run thousands of simulations to effec-
tively cover the relevant cosmological parameter space if we had access to unlimited
computing power. However, the reality is that both N-body and hydrodynamical sim-
ulations are computationally intensive and can be a strain on computing resources.
Furthermore, using these simulations to determine the differences between nearby
regions in cosmological parameter space may not be necessary. Recent advancements
in Machine Learning-based inference methods (e.g. Jamieson et al., 2022) provide
a promising solution to this issue by offering a cost-effective way to generate simu-
lation outputs at different cosmologies. These methods leverage a sample to learn
and generate predictions, allowing for the simulation of a wider range of cosmologi-
cal parameter space. Although the accuracy of these methods needs to be assessed
further, the field is rapidly evolving and has great potential for use in cosmological
predictions.

• Interpolation One noteworthy aspect of the behaviour displayed in Fig. 5.1 is the
smooth and monotonic variation of the centre-of-mass offset across the plane. This
is an encouraging indication of the quality of a simple interpolation of the function
com offset = f(Ωm, σ8) and for predicting other desired structural properties. Re-
cently Chapman et al. (2022, 2023) have used Machine Learning-based interpolation
methods to model the clustering of galaxies in the non-linear regime for different
values of a set of five cosmological parameters. However, simpler and more effective
interpolation methods can also be used since we are only focused on Ωm and σ8.

• Machine Learning Both methods described above make use of one quantity at a
time for the cosmological inference; however, it is expected that a prediction from
a combination of structural properties used together will typically be better than
a combination of predictions from individual properties. This has been illustrated
in section 4.5.2, where we saw that a combination of properties could split halo
populations and significantly reduce scatter. Therefore, it is useful to think of ways
of using all structural properties available to infer values of Ωm and σ8. Since we
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already have a good sampling of the relevant parameter space, we could train a
machine learning algorithm to predict the most likely combination of Ωm–σ8 given
a set of median values of structural parameters. The data could be split into bins
of mass and redshift to increase the amount of data used to predict cosmology if we
expect to have observations across multiple ranges of masses and redshifts.
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Gómez-Valent A., Solà Peracaula J., 2018, MNRAS, 478, 126
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Klypin A., Yepes G., Gottlöber S., Prada F., Heß S., 2016, MNRAS, 457, 4340

Knebe A., et al., 2011, MNRAS, 415, 2293

Knollmann S. R., Knebe A., 2009, ApJS, 182, 608
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Appendix A

On the origin of the cosmological
dependence of the Halo Mass
Function

A.1 Details of the Analytic Calculations

We use standard tools and techniques for the analytic calculations in Section 2.3. In
particular, the growth factor g(z) is calculated using the approximation given by Carroll
et al. (1992), which is accurate to a few percent:

g(z) ≈ 5Ωm(z)

2
[
Ω

4/7
m (z) − ΩΛ(z) + (1 + Ωm(z)/2)(1 + ΩΛ(z)/70)

] . (A.1)

The critical overdensity δc is the value a linearly-extrapolated density perturbation
needs to reach to collapse and form a virialized object, and can be estimated using the
spherical collapse model. Its present-day value varies weakly with Ωm (Mo et al., 2010):

δc =
3

5

(
3π

2

)2/3

Ω0.0055
m ≈ 1.686Ω0.0055

m . (A.2)

The linear matter power spectrum

P (k) = AknsT (k) (A.3)
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is computed using the approximation to the transfer function T (k) given by Equation 16 in
Eisenstein & Hu (1998). We take the primordial amplitude to be A=1 initially, and then
adjust this value retroactively to set the correct value for σ8. The index of the primordial
spectrum is taken to be ns = 0.965.

The variance of the density fluctuation field, σ2, is computed numerically by convolving
the power spectrum P (k) with a top hat smoothing filter:

σ2(R) =
1

2π2

∫ ∞

0

k2P (k)W̃ 2
R(k)dk , (A.4)

where

W̃R(k) = 3
sin(kR) − kR cos(kR)

(kR)3
(A.5)

We have compared our derived values of P (k) and σ(M) to values calculated using the
Colossus python package (Diemer, 2018), and find good agreement.

A.2 Survey mass versus Ωm

Halo abundance depends on the total mass of material sampled in a survey volume, MV ,
and on the collapsed fraction f at that scale and redshift. The survey mass obviously
depends on the mean matter density ρm and thus on Ωm directly, but it also depends on
Ωm indirectly, through the volume sampled for a given solid angle and redshift range. The
left panel of Fig. A.1 shows the total mass contained within a survey volume per unit
redshift per unit solid angle at two different redshifts, as a function of the cosmological
parameter Ωm. While the volume element is a decreasing function of Ωm for flat ΛCDM
cosmologies (since volume at a given redshift grows as Λ increases), the total mass enclosed
increases overall, with the greatest Ωm sensitivity at low redshift.

In the end, however, the total mass MV has relatively little influence on the overall
shape of the abundance contours in the Ωm–σ8 plane, because its variation is of order a
factor 2 or less, while the collapsed fraction varies over several orders of magnitude as
Ωm changes (right panel of Fig. A.1; see Appendix A.3 for a discussion of the parametric
dependence of the collapsed fraction).
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Figure A.1: Left : total mass MV contained within a survey volume, per unit solid angle
and per unit redshift interval, as a function of Ωm, at redshifts 0.3 and 1 (note a flat ΛCDM
cosmology is assumed). Right : Variation of the (EC) collapsed fraction fST in the Ωm–σ8

plane, for the particular choice of halo mass and redshift indicated. Note the similarity to
the dependence of peak height (Fig. 2.1), although the colour scale here is now inverted,
and logarithmic.

A.3 Peak Height and collapsed fraction versus Ωm and

σ8

We can write peak height as the product of three factors:

ν =
δc(z)

σ(M)
=

δc(z)

σ8Γ(M)
, (A.6)

where we have defined Γ(M) ≡ σ(M)/σ8. The redshift evolution of the collapse threshold
stems from the linear growth of fluctuations

δc(z) = δc(0)
D(0)

D(z)
= δc(0)

a0g(0)

ag(z)
, (A.7)

where D is the fluctuation amplitude, g is the linear growth factor, and a is the scale factor.
Combining these,

ν =
(1 + z)

σ8

1

Γ(M)

δc(0)

g(z)/g(0)
. (A.8)

Thus, while peak height scales simply as 1/σ8, the dependence on Ωm is through both the
shape of the matter power spectrum Γ(M) and the relative growth factor g(z)/g(0). We
consider each of these in turn.
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Figure A.2: Upper left: Variation of the power-spectrum P (k) with Ωm at fixed primordial
amplitude (dashed lines) and for fixed σ8 (solid lines). The upper middle and upper right
panels show how σ(M) and Γ(M) depend on Ωm. The lower left and lower middle panels
show how the growth factor and the normalized growth factor vary with Ωm. The lower
right panel shows how, as a consequence of these dependencies, the peak height ν varies
with Ωm at fixed σ8, following Eq. A.12.

Γ(M)

The function Γ(M) describes the shape of the amplitude of fluctuations as a function of
mass, σ(M), independent of its normalization σ8. This shape will depend on the value
of the matter density parameter Ωm. More specifically, matter-radiation equality occurs
sooner in cosmologies with larger matter densities. Growth is suppressed by radiation
on all scales below the horizon scale at recombination, but these scales are smaller and
spend less time inside the horizon when Ωm is larger. Thus, for a fixed amplitude A of
the primordial power spectrum, small-scale power at recombination will increase with Ωm

(dashed curves in the top left panel of Fig. A.2).

Fixing σ8, the amplitude of fluctuations at scales of 8h−1Mpc, reduces some of the
difference in power (solid curves in the top left panel of Fig. A.2), but the shape of σ(M)
remains steeper in cosmologies with larger values of Ωm (top middle panel of Fig. A.2).
Thus, over the range of interest, the ratio Γ = σ(M)/σ8 increases with Ωm, especially at
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lower mass (top left panel of Fig. A.2). We can model this dependence as

Γ(M) ∼ Ωβ(M)
m , (A.9)

where β(M) decreases with mass, and becomes negative at M = M8 ≈ 2 × 1015M⊙/h
where σ(M) = σ8.

Growth factor

The lower panels of Fig. A.2 show how g(z) and g(z)/g(0) vary with Ωm. In a flat ΛCDM
model, the growth factor g(z) at a fixed redshift z is reduced for low Ωm, as dark energy
suppresses the growth of fluctuations. The relative amplitude of the effect is greater for
very low values of Ωm, or for large redshift ranges, and thus the ratio g(z)/g(0) is largest
for low Ωm and/or high redshift (middle panel). Mathematically, we can estimate the

dependence on the density parameter by using the approximation g(z) ∝ Ω
3/7
m (z) (Carroll

et al., 1992):

g(z)

g(0)
∝
(

Ω(z)

Ω0

)3/7

∝
(
ρ̄m(z)ρc(0)

ρ̄0ρc(z)

)3/7

∝ ((1 + z)3)3/7

E(z)3/7
∝ Ω−α(z)

m , (A.10)

where

E(z) =
H(z)

H(0)
∼
√

(1 + z)3Ωm + ΩΛ (A.11)

is the Hubble ratio. The index 0 < α(z) < 1 is an increasing function of z, and approaches
the value 3/14 at high redshift.

Peak Height

Given these results, the overall dependence of the peak height on Ωm and σ8 can be written

ν(M, z) ∝ 1

σ8

Ωα(z)
m Ω−β(M)

m , (A.12)

where α > 0 and increases with redshift to the limiting value 3/14, while β(M) is a
decreasing function of mass, and is negative at large masses. Combining the positive slope
of Γ with the negative slope of g(z)/g(0), the bottom right-hand panel of Fig. A.2 shows
how ν generally decreases with Ωm, but can increase for large masses and high redshifts.
This explains the slight ν-dependence seen in Fig. 2.1. The summary of how the peak
height varies with mass and redshift for different values of Ωm and σ8 is shown in Fig. A.3.
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Figure A.3: Variation of the peak height ν with mass (left panels) and redshift (right
panels), for different values of the cosmological parameters. The two top panels show the
dependence on σ8 at fixed Ωm = 0.3, while the bottom panels show the dependence on Ωm

at fixed σ8 = 0.8.
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Collapsed Fraction

Combining the peak height dependence described above with the functional form of the
collapsed fraction as a function of peak height (Eqs. 2.3 or 2.4) we obtain the collapsed
fraction as a function of mass for different values of σ8 and Ωm, shown in the left and right
panels of Fig. A.4 respectively. It shows two regimes, a power-law increase at low masses,
followed by an exponential decrease for cluster mass haloes. The figure also shows why the
collapsed fraction sensitivity to σ8 and Ωm varies with mass, and the transition between
the two regimes occurs at different masses for different values of σ8.
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Figure A.4: Variation of the collapsed fraction with σ8 (up) and Ωm (bottom). The col-
lapsed fraction increases slowly for low values of ν, but then drops exponentially at high
values; σ8 changes the mass at which the transition to exponential behaviour occurs, while
Ωm changes the sharpness of the transition.
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Appendix B

Parametric Dependence of the
Formation Time

To understand the dependence of formation time on the cosmological parameters Ωm and
σ8, we consider the simplest, SC or Press-Schechter (PS) expression for z50:

PPS(z50 > z|M0, z0) ≡
∫ M0

M0/2

M0

M
fPS(M, z|M0, z0)dM , (B.1)

where

fPS(M1, z1|M0, z0)dM1 =
1√
2π

δc(z1) − δc(z0)

(S(M1) − S(M0))3/2

× exp

(
− (δc(z1) − δc(z0))

2

2(S(M1) − S(M0))

)
dS1 .

(B.2)

We can express fPS as a function of a single variable

Dν ≡ δc(z1) − δc(z0)√
S(M1) − S(M0)

,

as follows:

fPS(M1, z1|M0, z0)dM1 =

√
2

π
exp

(
−(Dν)2

2

)
|d(Dν)| . (B.3)

Thus, we see that the conditional probability has the same form as the unconditional one,
but with the argument Dν rather than ν.
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Figure B.1: Peak height ν as a function of mass and redshift, in our fiducial (Ωm =
0.3,ΩΛ = 0.7) cosmology.

The formation redshift distribution is proportional to the average value of the PMF
between M0/2 and M0, and since the factor M0/M does not vary much over this range, it is
also approximately equal to the conditional probability evaluated around the middle of the
range. This probability fPS in turn goes as exp[−(Dν)2/2], so we expect the parametric
dependence of ⟨z50⟩ to resemble an inverted, logarithmic version of the dependence for Dν.

Fig. B.1 shows ν as a function of mass and redshift, while the top 4 panels of Fig. B.2
show the value of Dν as a function of z1 and mass fraction M1/M0, for various values of
M0 and z0. We see that the shape of the Dν contours is generally similar to those for ν,
except when z1 is close to z0 (bottom of the plot), or when the mass fraction is close to 1
(right hand side of the plot).
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The second set of 4 panels in Fig. B.2 shows the value of the conditional probability.
As expected, the conditional probability is similar to an inverse, logarithmic mapping of
Dν.

Finally, we can consider the behaviour of Dν and the PMF in the Ωm–σ8 plane. The
top 4 panels of Fig. B.3 show the value of Dν in this plane, for the values of (M0, z0)
indicated, a mass fraction M1/M0 = 0.5, and ∆z = z1 − z0 = 0.1. The overall pattern is
very similar to that of ν (cf. Fig. 2.1). The bottom four panels show the value of the PMF,
for the same choices of (z0, z1,M0,M1). Relative to the top panels, we see that the colour
scale is inverted and logarithmic, as expected. The overall behaviour explains the shape
of the contours in Fig. 2.5, and their relative orthogonality to abundance contours in the
same plane.
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Figure B.2: Top 4 panels: The variable Dν as a function of mass fraction M1/M0 and z1, for
the values of (M0, z0) indicated, in our fiducial cosmology. Bottom 4 panels: corresponding
conditional probability fPS(Dν)d(Dν).
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Appendix C

Fits to the Average Halo Growth and
Large Growth

Analytical models and simulations show that the main cosmological dependence of both the
average halo growth (AHG) and the fraction of haloes with large growth (LGS fraction) is
through σ8, while they depend only weakly with Ωm. In order to capture that dependence,
we fit a power-law of the form

f(M |A,M0, α, p) = A(M/M0)
α + p (C.1)

for both these quantities. Note that for the average halo growth at z=1, a two-power-law
function seemed more appropriate

f(M |A,M0, α, p) = A(M/M0)
α(1 + M/M0)

β + p (C.2)

The parameters A, M0, α and β capture the overall shape of the function and depend
on Ωm and z, but are all made constant with σ8. In contrast, the overall normalisation p is
the only parameter that varies with σ8. This was motivated by the fact that in analytical
models, the value of σ8 does not affect the shape of either function.

We show the fits to the LGS fraction and the AHG in Figs. C.1 and C.2 respectively,
for a range of masses 1012M⊙/h < M < 1014M⊙/h.
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Figure C.1: The cosmological dependence of the LGS fraction. Dashed lines represent
power-law fits where only the normalisation between each simulation is fitted.
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Figure C.2: The cosmological dependence of the AHG. Dashed lines represent power-law
fits where only the normalisation between each simulation is fitted.
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