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Abstract

Networking performance has become especially important in the current age with grow-
ing demands on services over the Internet. Recent advances in network controllers has
exposed bottlenecks in various parts of network processing. User-level networking, which
bypasses the operating system’s network stack and replaces it with one re-implemented in
the userspace, is often framed as a silver bullet to mitigate any performance issues arising
in the kernel network stack. However, there is often no comprehensive study on where this
performance increase ultimately comes from.

This work aims to explore potential areas from which improvements in overall perfor-
mance can arise. Most importantly, it is identified that asynchronous interrupts and their
handling is a major source of overhead associated with the kernel network stack. Several
proposals are presented with the goal of reducing the need for interrupts in the kernel
network stack, simulating the execution model of user-level networking. It is shown that
a small kernel modification with around 30 lines of code change results in a substantial
performance increase without the need to replace the kernel network stack in its entirety.
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Chapter 1

Introduction

With growing demand on services and content served through the Internet, networking
performance has become an especially popular topic of research. Many modern server
applications are inherently I/O-bound, and specifically network-bound, with a majority of
their execution time spent in the network stack (see Chapter 3). Therefore, the performance
of the network stack often plays a decisive role in the performance of the application. It
is thus crucial to understand the performance characteristics and bottlenecks of network
stacks in order to improve their processing capability.

Recent literature (see Chapter 2) as well as reports from practitioners [28, 36, 42, 48]
often attest to significant performance gains arising from user-level networking in compar-
ison to using the kernel network stack. However, abandoning the kernel network stack and
instead re-implementing it at the user level often implies severe limitations on how the
application is designed and deployed. For example, some user-level network stacks restrict
the use of multi-threading, and most of them require dedicated network and CPU resources
to function, at least to some extent. A study on exactly which elements of user-level net-
working bring about the claimed performance increase would be beneficial in balancing the
advantages against limitations of user-level networking, and in improving the performance
of the existing kernel network stacks by applying these observations.

While no such comprehensive study exists today, by inspecting popular user-level net-
working implementations (see Chapter 3), two main aspects of user-level networking can be
identified that improve performance, in contrast to kernel network stacks in their default
configuration:

1. Customization: The reduced functionality of some user-level stacks directly leads to a
corresponding reduction in memory footprint and processing overhead. The removal
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of security-related system overheads (kernel-to-user memory copies, security checks,
etc.), as an indirect result of customization, also contributes to a performance gain.

2. Alignment: Current user-level network stacks cannot directly receive hardware inter-
rupts and thus use polling to interact with the Network Interface Controller (NIC).
This leads to both spatial (core locality) and temporal (application-managed syn-
chronous polling) alignment of network- and application-level processing, both of
which are known to improve performance.

A customized network stack presents opportunities for optimization, but comes with
significant caveats. As network protocols and their internals continue to evolve, a net-
work stack often must be updated for the best functionality and performance with the
rest of the Internet. High-efficiency and low-latency implementations are complex and
error-prone, and very extensive testing is often needed to ensure correctness. Even well-
known and mature network stacks, such as those found in Linux or *BSD, occasionally
suffer from incorrectness. It is thus foreseeable that a custom and less mature implementa-
tion increases possibilities for errors. In addition, the Application Programming Interface
(API) of a custom stack might need to differ from established APIs to fully realize the
customization benefits. This presents challenges in integrating existing applications, es-
pecially considering their diversity. Similarly, user-level network stacks are not integrated
with the operating system’s scheduler and interrupt delivery mechanisms, requiring dedi-
cated resource allocation and bypassing the kernel’s resource management system, which
potentially reduces overall system efficiency and utilization.

The main conjecture of this work is that better alignment of network- and application-
level processing is possible without requiring massive changes or additions to a vanilla
Linux system using the regular kernel network stack. It is shown that several simple
configuration changes can bring the performance of the Linux kernel network stack much
closer to user-level counterparts1. However, these configurations on an unchanged kernel
often involve significant caveats similar to user-level networking. The core result of this
work is a small kernel modification with around 30 lines of code change that replaces
these restrictive configuration schemes, enabling the kernel network stack to simulate the
execution model of many user-level network stacks. This code change is demonstrated to
achieve a significantly higher throughput without compromising tail latency, and without
many of the restrictions associated with user-level networking and/or a manually optimized
kernel network stack through configurations. An up to 45% performance increase can be
observed with the aforementioned modification compared to a vanilla Linux kernel.

1When their set of functionalities implemented is similar.
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The rest of this work is organized as follows. Chapter 2 presents background and related
work. In Chapter 3, the overhead of network processing is analyzed through a series of
preliminary experiments on kernel- and user-level network stacks. Chapter 4 introduces
various schemes to improve the alignment of the application and the kernel network stack
are proposed. Chapter 5 comprehensively evaluates the effects of these schemes. Taken
together, these chapters provide strong evidence substantiating the conjecture above. The
thesis is concluded in Chapter 6 with an overview of future work with regard to both
kernel- and user-level network stacks.
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Chapter 2

Background and Related Work

2.1 Kernel- vs. User-Level Networking

Traditionally, most of the network protocol stack resides inside the operating system kernel
as part of the basic infrastructure it provides to applications. The kernel typically ingests
memory-mapped buffers of network data from the NIC after receiving a notification via
an Interrupt Request (IRQ). Then, it passes these buffers through the link (Ethernet),
network (IP), and transport (TCP, UDP, etc.) protocol layers. The buffers ultimately
become part of a queue called socket buffer [7] (one per transport instance), from which
the data is made available to applications through standard system calls (read, write,
etc.).

Commensurate with the increase in link transmission speeds and NIC capabilities (now
reaching 100s of Gbps), kernels, such as Linux, have been continually improving the per-
formance of their network stacks. These improvements include efforts to streamline the
network stack, such as reducing data copying and avoiding interrupts when possible, scaling
multiple transmit (TX) and receive (RX) queues to multiple processor cores, and efforts to
optimize communication and cooperation between kernel(s) and application(s). For exam-
ple, early applications rely solely on blocking-based I/O system calls to synchronize with
the kernel network stack under a thread-per-connection model, placing enormous pressure
on the kernel’s scheduler when the number of connections is large. Later, operating sys-
tems started to introduce I/O multiplexing based on select, poll [5] and their successors
epoll [27] (Linux) / kqueue [43] (BSD), enabling one application thread to operate on
a much larger set of File Descriptors (FDs), removing this bottleneck. The more recent
io uring [6] interface attempts to further reduce overhead by allowing the kernel and the
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application to communicate I/O events and requests using a ring buffer, shared directly
between the address spaces of the kernel and the application. While its potential for high
performance is sometimes eclipsed by its lack of optimization and backwards compatibility,
its maturity, if achieved, could mean a significant performance boost for kernel networking.

Nevertheless, the network processing path inside the Linux kernel involves a large
amount of asynchronous notification delivery, even after the aforementioned attempts at
streamlining the network stack. This complexity is in part due to the need for the kernel
to remain generic and agnostic of application behaviour. Even though the kernel attempts
to moderate interrupts when possible, they are still needed to drive network processing
independent of applications. The receive path of the kernel network stack is executed
largely in the interrupt-serving softirq context. Packet events are delivered across kernel
threads, and sometimes across CPU cores or even Non-Uniform Memory Access (NUMA)
domains because the ksoftirqd threads are decoupled from application threads.

Resulting from this perceived datedness and inefficiency of the kernel network stack, a
recent line of work seeks to abandon the kernel network stack in its entirety. Such work
includes library-based network protocol stack implementations that are executed in the
context of user-level application processes. Unlike the kernel, however, a userspace appli-
cation is typically not granted direct access to hardware queues provided by the network
controller for security reasons. As a result, they usually leverage specialized provisions
made in kernel-mode drivers of NIC allowing ring buffers to be mapped directly into the
address space of an application. On the other hand, in the context of cloud computing with
virtual machines, there is a need for secure direct access to hardware with minimal host
overhead, resulting in hardware-based device virtualisation solutions such as the Input-
Output Memory Management Unit (IOMMU) [2] along with the Virtual Function I/O
(VFIO) kernel module, which can expose a Virtual Function (VF) of the NIC to a virtual
machine. This approach can also be adapted for user-level networking, where an applica-
tion, instead of a virtual machine, receives a memory mapping controlled by the IOMMU
that grants direct access in both directions (application to hardware and vice-versa).

Levels of kernel involvement in network processing can vary even among stacks labelled
as user-level. The term kernel-bypass is used to denote minimal involvement of the kernel in
the data path, where the application takes complete control of at least a subset of hardware
RX/TX queues. This design is used for the majority of high-performance user-level network
stacks today. As a result, in most of this work, except when clearly indicated otherwise to
highlight the differences, the two terms user-level networking and kernel-bypass networking
are used interchangeably.

A side effect of processing network protocol stacks in userspace is that the user-level pro-
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cess must often run in a constant polling loop on dedicated CPU cores. This requirement
results from the fact that major operating systems available today provide no mechanism
for routing interrupts to specific user-level processes. Instead of hardware interrupts them-
selves, only their effects1 can be made available to applications. As a result, to receive
interrupts in a userspace process necessarily means kernel processing, which kernel-bypass
networking by definition cannot rely on. Even with IOMMU, an application process, with-
out at least access to a virtualized ring0 2, cannot receive interrupts from hardware. This
contrast between kernel- and user-level networking is illustrated in Figure 2.1. However,
depending on the exact execution model chosen, even with user-level networking, it is pos-
sible to designate only a subset of cores to run in polling mode, and to rely on user-level
communication for the rest of the application to receive data. Such a model is nevertheless
very different from the fundamentally interrupt-based handling in kernel space.

2.2 User-Level Networking Frameworks

Increased interest in user-level, and more specifically, kernel-bypass networking from both
academia and industry has resulted in a number of frameworks that abstract away some
of the complexity of performing network processing within applications themselves. This
section explores Data Plane Development Kit (DPDK) [25], the most popular one based
on which there is a plethora of high-performance network stacks, along with a number of
its alternatives.

2.2.1 DPDK

DPDK is a prominent framework widely adopted as a basis of kernel-bypass network stacks
and applications. As a library, DPDK provides network stacks and applications built on top
of it with common infrastructure and abstractions needed by almost all types of user-level
networking. For example, DPDK includes various Poll Mode Drivers (PMDs) that interface
with different mechanisms for accessing the underlying hardware RX/TX queues. A series
of drivers under the umbrella term UIO3 interface with DPDK-specific provisions made in
kernel-mode NIC drivers to allow full control from userspace. The kernel counterparts of
these drivers are also developed as part of the DPDK project. Additionally, there are PMD

1For example, TCP streams and UDP datagrams exposed after network stack processing.
2Kernel privilege level on x86.
3This acronym does not have an official full expansion. It can be understood as Userspace I/O.
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Figure 2.1: Kernel- vs. User-Level Networking
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drivers for VFIO, which work with all NICs with virtual functions and IOMMU support
without model- or vendor-specific adaptations, and newer partial (but more generic) kernel-
bypass mechanisms such as AF XDP (see Section 2.2.3). In some cases, kernel drivers of
NICs, such as ones from Mellanox, support coexisting with DPDK and exposing part of
the data path (e.g. a VF) to DPDK without IOMMU and VFIO (bifurcated drivers).

All PMDs expose a common interface to the rest of DPDK and applications built on
top, enabling application code to be agnostic over the specific kernel-bypass mechanism
in use. As the name may suggest, most if not all PMDs require polling-mode execution.
A polling loop is managed by DPDK on each available core that drives execution of the
application. The polling loop scans the RX rings for traffic, and if the result is non-empty,
it then hands over control to the application for processing. Applications must, in response,
return to the polling loop once any handling logic is complete. In contrast to the default
kernel network stack, there is near-perfect coordination between the application and the
network stack when running under this polling loop. This relationship comes at the cost
of dedicated resource allocation, since typical DPDK applications must be assigned an
exclusive set of cores in order to be constantly polling.

When generic kernel-bypass mechanisms cannot be used, DPDK becomes bound to
specific ranges of Linux kernel versions. The nature of UIO necessitates its existence
(partially) in kernel space, and since Linux provides no stable in-kernel Application Binary
Interface (ABI) and API [22], there is no guarantee that a UIO driver developed for an older
kernel even compiles on a newer kernel. In practice, even a minor version increment almost
always introduces some ABI and API incompatibility. As a result, DPDK applications
often require a more extensive update procedure than typical userspace applications, to
which the in-kernel ABI and API is usually of minimal concern.

Beyond basic driver abstractions and management of the main polling loop, DPDK
comes with various additional libraries to ease the development of kernel-bypass network
stacks. The Environment Abstraction Layer (EAL) hides platform-specific details on mem-
ory mapping, memory allocation and thread creation. The mbuf and mempool libraries
provide abstractions for memory allocation and deallocation from a pool shared by the ap-
plication and the NIC to form RX/TX queues. The Ring library supplies the application
with a lock-free and bounded implementation of queues to be used as the ring buffer. Over
time, the collection of libraries included with DPDK has grown significantly, removing
much of the development work from both the network stack on top and the application.

It is important to note that DPDK, as the name Data Plane implies, was originally
developed (and still very often used) for implementing fast-path software-defined data
planes on software routers and switches. However, due to its wide coverage of abstractions,
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it has since grown far beyond simple raw packet processing and become the foundation of
high-performance user-level network stacks.

2.2.2 PF RING and PacketShader

While DPDK is the most mature and popular framework for both user-level packet pro-
cessing and full network stack implementations, other frameworks and mechanisms do
exist to enable userspace customization of network processing. This section documents
two examples of DPDK alternatives, namely PF RING and PacketShader. Note that even
though all of these frameworks enable user-level packet processing or at least some level of
customization, not all of them constitute as full kernel-bypass networking. While it would
be intriguing to investigate full network stacks on top of these alternatives without full
kernel-bypass to contrast with those based on DPDK, it is unfortunately the case that full
network stacks realized on top of them with at least comparable performance claims are
not common.

PF RING [30] is a Linux kernel module for fast-path packet capturing, aiming to replace
traditional solutions such as raw sockets and libpcap [46]. It extends the kernel with a new
socket type, with which applications can receive raw Ethernet frames copied directly into
userspace memory. Buffers used by applications are recycled similar to those utilized for
NIC rings, improving efficiency. PF RING can also perform preliminary parsing of some
higher-level protocol headers, reducing the amount of code required for the application.
In its zero-copy mode, PF RING can achieve kernel-bypass networking, where rings used
by NICs are directly mapped into userspace instead of being copied into a separate ring,
thus kernel processing is almost entirely bypassed. Under this operating mode, PF RING
also requires driver- or hardware-specific provisions and polling-mode execution, similar to
DPDK.

PacketShader [15] is a different approach to networking than both kernel- and other
user-level networking solutions. While user-level networking solutions employ different
strategies for data ingestion, they nevertheless execute on the CPU, in contrast with the
parallelized nature of GPUs. Based on the observation that many routing and switching
workloads are highly parallel in nature, the authors of PacketShader proposed that the
GPU can be used instead to perform any transformation on the data, hence the name
(Shader referring to a type of GPU program). To implement such a processing path, the
authors produced their own engine for user-level packet processing. However, in newer
versions of PacketShader, this I/O engine is abandoned in favor of DPDK.

9



2.2.3 eXpress Data Path (XDP)

As user-level (kernel-bypass) networking grows in popularity, developers of the Linux kernel
are also exploring new approaches to potentially enable more customizability in the kernel
network stack. One such approach is the eXpress Data Path (XDP) [16]. Instead of
permitting userspace applications access to hardware queues, XDP employs the extended
Berkeley Packet Filter (eBPF) [9] subsystem in the Linux kernel, providing userspace with
injection points at the very start of the kernel network stack, immediately after network
data is ingested into a kernel driver. Albeit incomplete, this approach bypasses most
processing normally performed in the kernel stack, and instead delegates it to an eBPF
program injected by an application. The possibility of inserting code into the kernel enables
applications to customize the kernel network stack without excessive performance penalties
associated with packet capturing. Before XDP, such performance was only possible using
full kernel-bypass frameworks like DPDK. Note that XDP itself only addresses the first
aspect of userspace networking mentioned in Chapter 1, customization.

Unfortunately, in order to allow programs submitted by userspace to be executed di-
rectly in the kernel, trade-offs have to be made in the eBPF virtual machine. The virtual
machine in the Linux kernel carries out extensive security checks on all eBPF programs.
Most importantly, such checks include a maximum cap on the time and space complexity
of the code, which means that, at the very least, variable-dependent loops are forbidden.
In other words, the eBPF virtual machine is not Turing Complete. This limits its com-
putational capability. Consequently, XDP with eBPF is unsuitable for implementing a
complete alternative network stack in the kernel.

Recent Linux versions have introduced a workaround for this limitation with a new
socket type, AF XDP, that redirects network traffic to applications, leveraging the same
infrastructure of XDP. This mode is conceptually similar to the custom socket type im-
plemented by PF RING (see Section 2.2.2). AF XDP is also supported by DPDK as a new
PMD backend, making it possible for DPDK to run without full kernel bypass, and without
VFIO/IOMMU or hardware support. However, the performance implication of this PMD
backend on DPDK applications is unclear. To avoid unknown effects, this work uses native
DPDK drivers instead of AF XDP at this time.

2.3 User-Level Network Stacks

Since its release, DPDK has seen wide adoption in industry to realize user-level networking.
In this section, two types of stacks based on DPDK – userspace ports of kernel stacks like
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F-Stack / Linux Kernel Library (LKL), and complete re-implementations of network stacks
such as Shenango / Caladan – are introduced as the focus of comparison for this work.
Both provide relevant points of reference for different reasons.

Other user-level networking approaches exist, with Onload [50] being an example based
on AF XDP or ef vi, a kernel-bypass mechanism specific to Xilinx NICs. Seastar [39], an
asynchronous programming framework for C++, includes a network stack primarily tar-
geting DPDK. mTCP [20] can switch among a number of user-level networking backends,
including DPDK and PacketShader’s I/O engine. Some library implementations of net-
work protocol stacks are agnostic of any underlying packet ingestion framework, lwIP [41]
being a prominent example. However, none listed above provide or claim levels of source
compatibility, performance, or maturity that eclipse those described below.

2.3.1 F-Stack and Linux Kernel Library (LKL)

As alluded to in Chapter 1, maintaining a new network stack written from scratch is non-
trivial and often bug-prone. However, to achieve the benefits of user-level networking, a
network stack must be able to execute in user mode, which is not the case for most mature
network stacks, as they are developed as part of operating system kernels. One workaround,
however, is to provide shims for kernel services they depend on, such that these in-kernel
network stacks can be executed in userspace, on top of user-level networking frameworks
such as DPDK. F-Stack [47] and the LKL [26] are two prominent examples of this approach.

F-Stack is a port of the FreeBSD network stack to DPDK. The project includes the
complete source code of the FreeBSD kernel, but replaces all functions pertaining to multi-
threading, synchronization, and device drivers with empty stubs. Instead, the network
stack, along with any application code, is executed within the main polling loop managed
by DPDK. When network data is retrieved by the polling loop, it is emitted through the
FreeBSD network stack, now with all system dependencies removed or replaced. This adap-
tation is facilitated through a virtual ethernet device (veth) registered with the FreeBSD
network stack. After processing, an application-supplied callback will be invoked by F-
Stack within the same synchronous execution path, from which application logic can be
performed.

Although F-Stack advertises inclusion of the kqueue [43] system-call interface (but
relegated to being a function instead of a system call) and a compatibility layer for epoll,
they are ultimately only used for event retrieval in the application within the callback
supplied to F-Stack. FreeBSD’s original event notification mechanisms depend on the
scheduler, which has been removed as part of the porting process to userspace. Neither
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does F-Stack support multiple thread contexts for the event notification mechanism to
function, as the porting effort has removed all multi-threading synchronization primitives.
A program on top of F-Stack operates in the same synchronous execution model as any
DPDK program, alternating between polling, network stack and application processing,
limiting them to one single thread. To make use of multi-core systems, the application
must be designed to spawn multiple processes without a shared address space as opposed
to threads, such that a separate instance of F-Stack can be launched within each process.

It would be tempting to explore whether F-Stack can be extended to support true
multi-threading. However, two major issues prevent this from being done as part of this
work.

• Singletons. One simple idea of supporting multi-threading is to allow spawning mul-
tiple instances of F-Stack within one address space. However, as an operating system
kernel, the source code of FreeBSD is littered with global variables that are initial-
ized once for each address space. Large portions of its code depend on the existence
of these variables. To remove them is to refactor all the functions to take a con-
text parameter or use Thread-Local Storage (TLS) instead of assuming the existence
of global singletons, requiring extensive code changes. In addition, such a ”multi-
threading” model does not eliminate most of the limitations as seen in the current
multi-process operating mode, as each instance is bound to one system thread, and
application logic is still limited to executing as a callback of the polling loop run by
each instance.

• Performance. Another potential approach is to enable one instance of F-Stack to
support multiple application threads. Or, even in the multi-instance multi-threading
case laid out above, in order to decouple F-Stack instances from application threads,
each instance also effectively needs to communicate with multiple application threads.
This necessitates some type of userspace inter-thread/process communication, which
can often lead to a heavy performance overhead. The inter-process signalling mech-
anism used by Shenango / Caladan (see Section 2.3.2) is tightly coupled to their
user-level threading runtime, making it not applicable to F-Stack either.

To summarize, comparing against a customized F-Stack with multi-threading support
cannot be considered fair in this study, both for other stacks and for F-Stack itself. In
this work, any comparison against F-Stack is either performed in single-threaded mode, or
with an application designed for operating as multiple processes.

On the other hand, LKL does not share this limitation of F-Stack. Unlike F-Stack, LKL
is a Library Operating System, rather than merely a network stack. It is a complete port of
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the Linux kernel to userspace, not unlike User-Mode Linux (UML) [8], though it does not
rely on system call hijacking thanks to its integration with application code. LKL not only
includes the network stack but also file systems, partial multi-threading, and even some
device drivers through VFIO. A virtual Ethernet driver is provided as part of the network
stack that employs DPDK for host access. Unfortunately, in order to satisfy in-kernel
synchronization constraints, LKL implements a global lock that only allows “kernel” code
to be executed on one single thread at any moment in time. This locking effectively limits
network processing power to that of a single core. While the application can use multiple
threads, this global lock presents a severe performance bottleneck.

2.3.2 Shenango and Caladan

In addition to industrial applications, DPDK and user-level networking enjoy increasing
popularity in the research literature. Shenango [32], and its successor Caladan [12], are
recent user-level network stacks built on DPDK. Both add significantly to the default
behaviour of DPDK – instead of dedicating all cores to one application for polling, in
both Shenango and Caladan, only one core is needed to run the DPDK polling loop as
their iokerneld process. To allow application threads to sleep while idling, their work
includes a fast-path inter-process signal delivery mechanism exposed through a custom
kernel module, ksched. One polling iokerneld process can support multiple applications
through this notification mechanism. A custom user-level threading runtime is provided
as part of the application runtime, such that iokerneld can make scheduling decisions
through ksched and through all application runtimes.

The majority of the network stack, other than the polling loop in iokerneld, runs in
the application, similar to other DPDK-based network stacks. Each application receives
data with its own polling loop called softirq, which effectively functions as a separate
user-level thread in their custom threading runtime. Despite similar naming, unlike the
softirq context in the Linux kernel, the softirq thread in the Shanango / Caladan
runtime is unable to directly preempt a running application thread. Polling can only be
performed when application code yields to the runtime, resulting in a similar execution
model as other DPDK applications. The difference is that kernel threads in Shenango /
Caladan can be put to sleep while idle-looping, relying on iokerneld to wake them up
when events of interest arrive.

One important aspect to point out is that the Caladan / Shenango work mainly focuses
on scheduling and its evaluation. Nevertheless, it is built upon the assumption that user-
level network stacks have inherent performance advantages and presents extraordinary
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performance gains over vanilla Linux. In this work, Caladan is used without interfering
background applications such that the scheduler is minimally involved.

2.4 Applications of User-Level Networking

User-level network stacks are often targeted at high-performance server applications. F-
Stack includes both Nginx [29], a well-known and popular HTTP server, and Redis [35],
an in-memory database engine, in their repository as sample use-cases. The authors also
claim to have deployed F-Stack as the network stack for their Domain Name System
(DNS) service. Both Shenango and Caladan include a port of Memcached [10], which
is a widely deployed in-memory key-value store often used as a caching daemon for web
servers. Seastar’s kernel-bypass networking optionally powers ScyllaDB [38], a real-time
database engine developed by the same authors. In all of these cases, the application
requires a complete Layer 44 protocol stack.

On the other hand, user-level processing of network packets is also a popular technique
in software routing and switching. In this scenario, user-level processing frameworks such
as DPDK or AF XDP are used only as a method for efficient packet capturing, and net-
work traffic does not terminate at the router or switch. The application includes minimal
Layer 4 processing, if any, and most logic operates directly on raw Ethernet frames or IP
packets. For example, NetVM [17] leverages the flexibility of DPDK’s user-level processing
to implement Network Function Virtualization (NFV). Rubik [24] seeks to simplify the
programming of network middleboxes by designing a new special-purpose programming
language that targets DPDK as its packet processing infrastructure. When hardware off-
loading is involved, with or without application-level networking, DPDK-based solutions
are also often used as state-of-the-art “best-case scenario” for software processing [33, 18].

It is important to note that this work focuses on the server application aspect of user-
level, specifically kernel-bypass networking. While findings presented may also apply to
other scenarios, for example, for middleboxes that parse application-level traffic before
forwarding, they are not evaluated as part of this work.

4Transport Layer
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Chapter 3

Network Processing Overhead

This chapter attempts to assess the performance overhead associated with system services,
and in case of user-level networking, the network stack and user-level runtimes. In selecting
experiments and network stacks for the purpose of this chapter, one important concern is
the need to distinguish between (potential) performance improvements arising from two
sources:

• user-level, synchronous execution; and

• customization of the network protocol stack.

In practice, most user-level stacks, as discussed in Chapter 2, implement both improve-
ments at the same time. To facilitate studying this distinction, F-Stack (see Section 2.3.1)
and Caladan (see Section 2.3.2) are chosen as representative examples of user-level network
stacks: F-Stack serves as an example of a production-proven full-featured kernel network
stack repurposed for userspace, while Caladan is a fully customized user-level network stack
written from scratch claiming outstanding performance. By contrasting these two stacks
against each other and the vanilla kernel as a baseline, insight can be gained into which
part of networking overhead is reduced or eliminated from the processing path through
their respective user-level networking approaches.

Memcached and Nginx are used as application workloads on top of different network
stacks. These two applications are commonly included as benchmark use-cases in user-
level network stacks (see Section 2.4). They are widely deployed in production, yet simple
enough such that performance characteristics of the underlying network stacks dominate
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in benchmarks. Assessments in this chapter are performed using a server with 2 Xeon
E5-2680 8-core processors in a NUMA configuration. Note that the NUMA boundary is
never involved in benchmarks unless otherwise specified. Load generation is handled by
a separate set of 7 servers. This experimental configuration is identical to that used in
Chapter 5, where a more in-depth description can be found.

3.1 Methods

In order to study networking overheads, it can be tempting to attempt a detailed breakdown
of the execution of each network stack. Unfortunately, such a breakdown can often be
difficult and unreliable. As an example, the kernel network stack is tightly integrated with
other subsystems. At the very least, it relies on the memory management subsystem for
NIC and socket buffers, the Virtual Filesystem (VFS) subsystem for I/O system calls, and
the scheduling subsystem for event notification. Which part of the overhead can be said to
originate from the network stack is not well-defined, and modifications in the network stack
may in reality affect execution of other subsystems in a non-negligible way. In addition,
the kernel by definition also requires system calls to interact with userspace applications,
the effects of which may not be local to the network stack either.

On the other hand, however, the execution path of any program consists of application
code and system services (or runtime services, in case of user-level networking). The
breakdown between application and system code is clear and should be less problematic to
obtain. Changes in network stacks, while maintaining a similar API, is expected to mainly
affect the system portion rather than the application itself, assuming minimal adaptation
in application code. In a slight generalization of Amdahl’s Law [3], one could ask how
the affected portion (system) can lead to the overall performance improvements. In other
words, assuming an unchanged application, what portion of its total execution overhead is
attributable to system services and how much of this overhead can be eliminated?

3.1.1 Performance Model

To assess the performance of a network stack before and after a certain change, the fol-
lowing metrics are proposed to aid in this task. Any change in overall efficiency must
result in changes in one or more of the following global metrics along with their respective
application-system breakdown.
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The application throughput performance, Queries-per-(unit)-Time (QPT), can be mea-
sured as

QPT = queries/time (3.1)

The average CPU resource utilization, Cycles-per-(unit)-Time (CPT), is given by

CPT = cycles/time (3.2)

On superscalar processors [40] with deep pipelines, Instructions-per-Cycle (IPC) is a
well-established metric describing how efficient the pipeline can process a particular work-
load. Additionally, Instructions-per-Query (IPQ) is proposed here to capture how many
instructions are executed for each application-level query. This metric is used as an es-
timate for functionality, i.e., the amount of processing that is done for each application
query on average:

IPC = instructions/cycle (3.3)

IPQ = instructions/query (3.4)

It is not difficult to see that

QPT =
CPT × IPC

IPQ
⇔ QPT

CPT
=

IPC

IPQ
. (3.5)

Fundamentally, this model illustrates that an increase in performance or efficiency
(QPT/CPT) must be accompanied by an increase in IPC or a decrease in IPQ or both,
regardless of what types of overhead are involved. A decrease in IPQ could be caused by
an algorithmic improvement or reduced functionality. In the case of user-level network
stacks, assuming that there are no fundamental changes in the design of algorithms and
data structures in the protocol stack, a dramatic decrease in IPQ most likely results from
a reduction in functionality1.

It is important to note that some overheads associated with operating systems, such as
system calls, can also contribute to IPQ. For example, memory copies between userspace
and the kernel require at least a number of instructions of the order O(N), where N
denotes the length of the buffers. However, such an overhead is often also experienced

1Referring to major protocol features that involve processing in the hot path, e.g. congestion control.
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by user-level network stacks, especially in the TCP stack, where packets must be copied
into a continuous buffer to satisfy TCP’s stream semantics [11]. Other overheads, such as
context switches, should show minimal direct impact on IPQ due to their comparatively
low asymptotic complexity in terms of the number of instructions needed. Overall, IPQ
should be a good approximation for functionality for user-level network stacks. While small
changes in IPQ can occur due to other effects, any major difference found in IPQ would
be a strong indication of significant changes in functionality. This expectation is further
studied in the rest of this chapter by comparing against F-Stack, whose functionality should
be similar to that of the Linux kernel; and Caladan, whose network stack is rewritten from
scratch and may not share the same level of maturity and completeness.

On the other hand, an IPC increase typically means fewer stalled cycles due to improved
efficiency of the processor pipeline, caused by increased cache hit rates (including for page
translation and branch prediction) or similar effects. Any indirect overheads should mani-
fest as a change in IPC, because by definition their ”indirect” effects can only mean those
on the processing pipeline and not on the code path itself.

3.1.2 Performance Data Collection

To collect performance data in order to compute metrics proposed in Section 3.1.1, the
perf [44] tool, included as part of the Linux kernel, is used to monitor application behaviour
during a number of representative experiments.

perf is composed of two main operating modes as two sub-commands: perf stat,
and perf record. In perf stat, the tool monitors aggregate statistics exposed through
hardware or software performance counters. These counters are usually managed by either
the CPU or the kernel, adding very minimal performance overhead since the userspace tool
does not need to perform much computation while the observed program is running. Two
of the performance counters are relevant to this chapter:

• instructions: The number of instructions executed in the context of the monitored
process(es) or CPU(s). This counter can be reported separately for kernel- and user-
space (named instructions:u and instructions:k respectively).

• cycles: The number of cycles spent in the context of the monitored process(es)
or CPU(s). Similar to instructions, this value can separately report kernel- and
user-space execution (cycles:u, cycles:k).
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Along with the Queries-per-Second (QPS) typically reported by benchmark load-generation
tools, which equals QPT where T = 1s, these metrics are enough to separately compute
all metrics mentioned in Section 3.1.1 for the kernel and the application. However, as user-
level network stacks exist within the context of the application, the user-kernel separation
provided by perf stat cannot distinguish between them and the application(s).

To further break down userspace execution, it is necessary to make use of perf record.
This mode generates a record comprised of statistical sampling taken at a given period
/ frequency, with regard to a user-specified type of event. For example, when invoked
with perf record -c 1000 -e cycles, the tool emits a sample in the record log every
1000 cycles, recording which function is executing at that time. perf record can also
take samples at a frequency with regard to time instead for better consistency (with the
-F parameter), in which case the kernel dynamically adjusts the period of sampling to
approximate the specified frequency. With enough time and a sufficient number of samples,
this tool provides an estimate of how many cycles, instructions, or any other type of events
each function generates. Because user-level network stacks examined in this chapter are
static libraries, and because they are open-source and compiled binaries can include debug
symbols2, execution in user-level network stacks can be approximately distinguished from
the rest of the application by filtering on their known symbols. With reports emitted by
perf record, the ratio of cycles or instructions can be calculated between the stack and
application logic. This, combined with the output of perf stat, gives the instructions
and cycles spent by the network stack versus the application.

There are two major caveats in this approach:

• perf stat and perf record, or multiple perf record invocations cannot be used
at the same time. This restriction is due to the fact that perf record comes with a
non-negligible overhead, and can interfere with itself when multiple copies of perf are
executed simultaneously. Consequently, every IPC and IPQ calculation for network
stacks essentially involves 3 distinct experiment runs with different perf commands
invoked alongside the application:

1. perf stat only, providing base statistics such as the total number of cycles and
instructions executed

2. perf record on cycles, providing the breakdown of cycles used by application,
libraries and kernel

2A symbol table that maps the names and locations of most functions, including functions internal to
the program and not exported for dynamic linkage.
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3. perf record on instructions, providing the same breakdown of instructions.

It is assumed that application behaviour investigated in this chapter does not change
fundamentally for the sole reason of a different perf command used.

• User-level network stacks have inlined code that does not exist as separate symbols
inside static libraries. Without separate symbols, perf record cannot distinguish
between them and application logic. This compile- and link-time optimization can
lead to a slight over-estimation of applications’ own overheads when user-level net-
working is in use.

Overall, however, this approach should provide a good estimation of each metric re-
quired for this chapter. Note that for consistency, perf record is used even for the
kernel-user breakdown in cases where the kernel network stack is examined, regardless of
the fact that perf stat already supports such a distinction. The intention of consistently
using perf record is to cancel the effect of any potential bias inherent to perf record,
whether beneficial or not to user-level networking.

3.2 Performance Assessment

The performance model is used for basic observations pertaining to the cost of I/O-heavy
server applications, specifically Memcached and Nginx. Experiments reported below are
performed with closed-loop clients that guarantee 100% CPU utilization on all server cores,
eliminating the need to report CPT. For QPT, raw reports from the benchmark tools are
adopted, which uses QPS, i.e. QPT where T = 1s.

In all reported experiments, IPQ and cycle (CPU cycle) measurements are divided into
an App and Sys part denoting overhead in the application versus the rest of the system
(libraries and kernel), according to techniques laid out in Section 3.1.2. In most cases,
server software examined in this section is either unmodified upstream versions, or a port
directly taken from the software repository of the respective network stacks, maintained by
the same authors of the network stacks. The exception is Memcached on F-Stack3, where a
simple source-level transformation to use epoll is first performed, and then I/O functions
along with epoll are replaced with compatible functions from F-Stack.

These experiments are shown as tables of performance metrics along with a brief report
on the observations. A further discussion is presented in Section 3.3.

3Source code available at https://git.uwaterloo.ca/p5cai/memcached-fstack.
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Table 3.1: Memcached: Vanilla vs. F-Stack (1 core)

QPT IPQ Cycles
(T=1s) App Sys Total App Sys IPC

Vanilla 84124 1905 18512 20417 10.6% 89.4% 0.64
F-Stack 106468 1930 20579 22509 10.2% 89.8% 0.89
(±%) (+27%) (+10%) (+39%)

3.2.1 Memcached / F-Stack

This scenario compares Memcached in a default Linux setup with a Memcached version
that uses F-Stack (on DPDK) for user-level networking. Note that this experiment is
performed on a single core with single-threaded Memcached servers due to the limitations
of F-Stack (see Section 2.3.1). The results are listed in Table 3.1, where ’Vanilla’ denotes
the default Linux setup.

Firstly, it is worth pointing out that only about 10% of Memcached’s overhead is
actually attributable to Memcached code itself. As confirmed by the rest of the experiments
in this section, in I/O heavy server applications, system code constitutes the majority
of program execution. While cycles consumed by libraries such as libc are not shown
separately here, they are observed to incur very minimal (less than 1%) overhead.

In terms of throughput, it can be observed that replacing kernel networking with F-
Stack results in an overall performance increase of 27%. The IPQ of F-Stack is slightly
higher than the vanilla Linux kernel by around 10%, which is likely a difference between
the specific versions of the Linux and FreeBSD network stacks adopted here under this
specific load scenario, or (though unlikely) a result of porting Memcached to F-Stack.
Regardless, the IPQ of the two cases shown here and their breakdown are still similar
compared to some later experiments (specifically, Section 3.2.3, comparing Linux against
Caladan). This implies that when functionality is similar (as is the case with Linux vs.
FreeBSD), simply running a network stack in userspace may not drastically decrease IPQ
enough to constitute multiple-fold performance gains. On the other hand, a significant IPC
increase by 39% compensates for the added IPQ and leads to the substantial performance
improvement associated with F-Stack.
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Table 3.2: Nginx: Vanilla vs. F-Stack (8 cores)

QPT IPQ Cycles
(T=1s) App Sys Total App Sys IPC

Vanilla 508828 5749 19245 24994 24.3% 75.7% 0.59
F-Stack 647441 6330 18037 24367 32.9% 67.1% 0.73
(±%) (+27%) (-3%) (+24%)

3.2.2 Nginx / F-Stack

To confirm the behavior of F-Stack on multiple cores, a similar experiment is repeated
with Nginx. As Nginx is a web server, which does not require excessive shared states, it
is designed to work as multiple worker processes by default. This enables Nginx to spawn
multiple instances of F-Stack to make full use of multi-core systems.

Results for this scenario in Table 3.2 show a similar overall performance improvement of
27%. It is worth pointing out that for Nginx, cycles and IPQ for the application seem to be
higher than those under the Memcached scenario. Nginx, in general, is a much larger code
base than Memcached, which likely contributes to this difference. A production HTTP
server must handle a plethora of different web browser and client OS implementations,
along with various different protocols and mitigations for common abuses. These factors
all increase the complexity of the application.

Comparing within Table 3.2, it can also be noticed that the port of Nginx to F-Stack
has resulted in a slight increase in the application-level IPQ. While both use the same
version of Nginx (see Chapter 5), the version provided by the authors of F-Stack makes
use of dynamic redirection of I/O system calls as part of the integration effort with F-
Stack. This, along with other rewriting and refactoring effort, likely results in such an
increase. The inherent limitation of perf record (see Section 3.1.2) can also lead to a
slight over-estimation of application IPQ and cycles when user-level network stacks are in
use. Overall, however, the IPQ is still similar between the two cases, and the performance
improvement is still driven by the IPC increase of 24%.
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Table 3.3: Memcached: Vanilla vs. Caladan (6 cores)

QPT IPQ Cycles
(T=1s) App Sys Total App Sys IPC

Vanilla 577653 1783 17549 19332 9.89% 90.11% 0.69
Caladan 2108154 2103 5282 7385 28.5% 71.5% 0.97
(±%) (+265%) (-62%) (+41%)

3.2.3 Memcached / Caladan

It is suggested in the Caladan research proposal [12] that an approximately 11-fold perfor-
mance increase for Memcached results from Caladan’s user-level network stack compared
to vanilla Linux4, even when the actual scheduling proposal central to Caladan is not in
use. This scenario attempts to reproduce and break down such a phenomenal performance
observation.

Results for running the same Memcached benchmark on the vanilla Linux kernel and
Caladan are shown in Table 3.3. Note that these experiments are run on 6 cores, and for
Caladan this means 1 scheduler (iokerneld, see Section 2.3.2) core and 5 application cores.
The reason for this specific choice of cores is that Caladan experiences bottlenecks with its
iokerneld process, which must handle all incoming packet notifications. Beyond 6 cores
on this specific server, Caladan fails to deliver significantly higher throughput, meaning
that around 6 cores represents the highest efficiency of Caladan for this specific hardware.
In the original work, Caladan implements a feature named “directpath” by which the NIC
is programmed to directly place frames in per-flow-specific buffers, which are consumed
by worker threads, alleviating the iokerneld bottleneck. As this feature is not supported
by the experiment hardware used for this work, these experiments have to be limited to a
point before Caladan experiences such slowdowns.

In this scenario, Caladan achieves an impressive 3.65-fold performance improvement
over the default Linux setup, which is a combination of an IPQ reduction by almost 2.6X,
while the IPC is increased by 41%. The dramatic IPQ improvement is mostly contributed
by the Sys portion (i.e., network stack), while the App portion sees a slight increase.
Similar to the F-Stack case, this slight increase can be caused by the porting effort, where
extensive refactoring is required, or static linkage and inlining that cause difficulties with
perf record. Overall, the IPQ decrease in network stack processing far eclipses any such
effect, resulting in its phenomenal performance.

4Figure 4 on Page 290: inflection points of solid green vs. solid blue line.
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Table 3.4: Memcached/Vanilla: 8 cores vs. 4+4 cores/NUMA

Cores QPT IPQ Cycles
(T=1s) App Sys Total App Sys IPC

8 724077 1832 17570 19402 9.6% 90.4% 0.65
4 + 4 601494 1851 17672 19522 8.6% 91.4% 0.55
(±%) (-17%) (+1%) (-15%)

To understand such a dramatic decrease in IPQ, especially when F-Stack, another es-
tablished user-level network stack, does not show such a dramatic discrepancy with the
Linux stack, a code inspection was performed on Caladan. This investigation revealed that
the stack implements only the bare minimum functionality for TCP/IP processing that is
needed to run these experiments. For example, the stack’s TCP component does not im-
plement round-trip time (RTT) estimation or maximum segment size (MSS) adjustments,
but instead uses entirely constant values. Most importantly, it does not implement any
congestion control. As outlined in Chapter 1, user-level networking brings about flexibility
of customization, which can be seen as both a strength and/or a weakness. While it is true
that a user-level network stack can omit advanced features not required by specific appli-
cations in order to reduce overhead, excluding basic features such as congestion control in
TCP can be considered unfair in such comparisons.

In trying to compare the observations here with the 11-fold increase previously reported
for Caladan, two further aspects need pointing out:

1. The exact configuration of the vanilla Linux system is not provided in the original
paper.

2. The original experiments utilize 24 cores (or 48 hyperthreads) across two CPUs.

While the authors of Caladan state that NUMA is not considered, it is highly likely that
NUMA effects have a detrimental impact on the interrupt-driven default setup, but do not
affect a polling-based system like Caladan as much. Both these aspects are investigated
further in the remainder of this work.

3.2.4 Memcached / NUMA

The final preliminary experiment investigates the effect of locality in general and NUMA
in particular on network stack and application performance. It compares Memcached on 8
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cores on a single socket with an equivalent dual-socket 4+4 setup. The results are shown
in Table 3.4. While IPQ numbers are largely unchanged between both setups, it is clear
that reduced locality comes with a performance penalty of about 17%, which is caused by
a corresponding reduction in IPC.

3.3 Discussion

Observations reported in this chapter, in general, point to IPC, rather than overhead
arising from actual processing associated with the network stack itself (”Sys” IPQ, cycles),
as the driving factor in performance improvements, provided that the network stack is not
simplified to fit only one or a few potential use case(s). As described in Section 3.1.1, IPC
describes the efficiency of the processor pipeline, and specifically how often stalls occur in
the pipeline.

Factors affecting pipeline efficiency include branch prediction misses, cache misses (L1,
L2, L3, or Translation Look-aside Buffer (TLB)), or pipeline distortions forced by external
sources such as interrupt handling. In addition to a similar IPQ, under the assumption
that algorithmic factors remain similar between network stacks, it is safe to assume that
no significant differences in branch prediction should occur. The memory footprint of all
stacks far exceed typical L1 and L2 sizes, and as such their effect should be constant across
all cases. While experiments studied later in this work show some variability in Last-Level
Cache (LLC)5 cache misses, they are not enough to explain the performance difference
between network stacks. For data caching and locality in general, there also seems to be
a limited impact. For example, the first experiment in Section 3.2.1 runs on a single core,
so there are no locality issues by definition, yet the IPC increases by almost 40% with
user-level networking. Both factors are further studied in the remainder of this work.

When functionality remains the same, if neither branch prediction and cache misses
can explain the significant performance increase associated with user-level networking, the
only possibility for such a difference is pipeline distortions. In this case, it means either
hardware interrupts from the NIC, or software interrupts associated with system calls,
which are not external but nevertheless distort the processing path. Note that as IPQ
remains similar in the F-Stack cases, it is safe to assume that system calls present minimal
direct overhead. Their effect, if significant at all, should be indirect ones manifesting in
the processing pipeline, for example, from software interrupts and context switches. Even

5Level 3 cache on most modern x86 64 processors.
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in this case, they are not expected to incur an excessive overhead thanks to optimizations
in modern processors6.

It is non-trivial on Linux to only remove system calls but not (hardware) interrupts.
However, the opposite can be tested – it is theoretically easier to transform the kernel
network stack into the same IRQ-less synchronous execution model as user-level network
stacks. The rest of this work focuses on such a transformation for the kernel network stack.
In particular, how much of the overhead associated with the kernel stack can be eliminated
purely with better alignment rather than fundamental changes?

6Speculative execution bugs that may add more overhead on system calls also tend to be mitigated on
latest hardware.
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Chapter 4

Network Stack Alignment

Reports presented in Chapter 3 suggest that temporal and spatial alignment of the network
stack may be at the core of a large portion of performance uplifts associated with user-level
networking. Here, temporal alignment refers to a synchronous execution path, as opposed
to asynchronous interrupt processing, while spatial alignment refers to core locality. As
mentioned in Chapter 1 and Chapter 2, there is typically very strong alignment under
user-level networking, both temporally and spatially.

To illustrate and corroborate the performance potential of alignment, a number of pro-
posals with increasing practicality are presented in this chapter to reorganize IRQ handling
for the Linux kernel network stack. The goal is to avoid asynchronous interrupt handling
and simulate patterns of execution in a user-level network stack as much as possible. At the
end of this chapter, a scheme is introduced with both high performance and practicality.

It is important to note that the presentation of these schemes is focused on RX interrupt
handling, because it has a much larger effect than that of TX interrupts. The transmission
(TX) path of the network stack does not rely on TX interrupts, but rather executes syn-
chronously with the application’s requests to transmit. TX interrupts are typically only
used to recycle stale entries from TX queues, and sensible default configurations do not
generate an excessive amount of them to constitute a significant effect.

4.1 IRQ Routing

Most modern hardware platforms provide programmable interrupt controllers, which can
be configured through the operating system. In the Linux kernel, each IRQ number is
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associated with a property called affinity, defining which CPU cores receive and potentially
handle the corresponding interrupt. The respective CPU core also typically executes the
deferred portion of interrupt handling (termed softirq in Linux). A set of in-kernel threads
(one per core), ksoftirqd, are responsible for running callbacks defined by device drivers
registering for interest on IRQs. Most processing in the RX path as required by the
network stack is performed in the context of these kernel threads. Notifications signalling
data availability are delivered asynchronously after network processing is completed by
ksoftirqd.

Configurations on the specific way to service each IRQ have a tremendous effect on
the network stack, as a majority of the RX path resides in the IRQ handler’s context.
Opinions differ among practitioners on the optimal strategy under various scenarios, with
some advocating for balancing IRQs among CPU cores [45, 31, 21], while others believe
that they should be packed onto a small number of dedicated cores [34], especially for
latency-sensitive workloads.

4.1.1 IRQ Balancing

It is often recommended to balance total IRQ workload across CPU cores in order to
achieve higher performance. Each IRQ number in a system is not guaranteed to always
receive the same amount of workload. The irqbalance [49] daemon automatically observes
traffic generated by each interrupt source and directs the highest volume interrupts to
a single unique CPU core each, while lower-volume sources can share other CPU cores.
This ensures that each CPU handles an approximately equal amount of IRQs and their
associated workload. However, there are two caveats:

• The IRQ balancing process does not necessarily take into account the placement
and scheduling of network-intensive applications, which results in less than optimal
alignment.

• Consequently, the very nature of dynamic interrupt balancing can lead to perfor-
mance variations that make reproducibility difficult.

As a result, disabling irqbalance and controlling interrupt routing statically is usually
the preferred approach for reproducible high-performance networking experiments.

For an application deployed on N cores, a typical static approach is configuring N RX
and N TX queues and assigning one RX and one TX interrupt per core. In networking-
focused experiments, it is generally expected that the NIC attempts to balance each RX
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Figure 4.1: IRQ Balancing

and TX queue in the amount of traffic, resulting in an approximately equal amount of
interrupts generated. Consequently, this simple static configuration should result in a near
optimal balancing of IRQ workload, without needing dynamic schemes such as irqbalance.

The setup described above forms the baseline for the experiments reported in this paper
and is conceptually illustrated in Figure 4.1. Note that in a realistic workload, a ksoftirqd
thread, which processes and delivers notifications for network traffic, does not necessarily
execute on the same core(s) as the corresponding application thread. Mechanisms exist
in Linux that attempt to improve locality on the data path between NIC and application
threads, such as Receive Flow Steering (RFS) as well as thread pinning in combination
with the SO INCOMING NAPI ID or SO INCOMING CPU socket options. However, none of
these mechanisms significantly shift the baseline, at least not when all cores are in the
same NUMA domain, so Figure 4.1 shows the most optimistic (but unrealistic) case of
perfect spatial alignment.
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4.1.2 IRQ Packing

In the Linux kernel, New API (NAPI) [37] serves as the framework of all modern NIC
drivers. This framework abstracts away infrastructure for raw packet processing, but most
importantly, it already includes an opportunistic mechanism to moderate interrupts, albeit
incomplete compared to user-level networking.

In NAPI, after an interrupt is received, the respective interrupt number is temporarily
masked. The kernel enters polling mode and retrieves available network packets from the
RX ring where the interrupt is generated. This polling loop can run continuously for a
period of time up to a certain budget, configurable through kernel parameters. When the
budget is exhausted, the corresponding interrupt is re-enabled. If the RX ring is still not
empty at this point, the kernel opportunistically restarts another polling episode if allowed
by scheduling constraints. Therefore, the more cores the RX workload is distributed over
(thus each core is less loaded by RX path processing), the less likely this new polling episode
can happen. The presence of application workload on the same core also delays the onset
of the new polling episode, resulting in interrupts generated before being suppressed again
due to the next polling episode.

Based on this observation, an IRQ packing scheme is proposed. The objective is to force
the kernel into an almost perpetual polling mode on a subset of cores by excluding the
influence of application workload, and by minimizing the probability of fully exhausting
the RX ring during any polling episode. This configuration scheme is expected to facilitate
aggressive interrupt moderation in both the NAPI layer and the NIC driver. The resulting
performance changes illustrate the cost of interrupts and their handling. Note that this
objective is not necessarily the same as the recommendation of a similar assignment scheme
in the context of real-time workloads [34].

Instead of distributing the interrupt load, under IRQ packing, interrupts are assigned
to a minimal set of dedicated cores, while application threads are restricted to a set of
different cores. The number of NIC queues is also set to the number of dedicated IRQ
handling cores. This IRQ packing scheme is illustrated in Figure 4.2. In an ideal case,
it uses just enough cores to handle all network traffic, causing all IRQ-handling cores to
be constantly saturated. Although this does not spatially align the application with the
network stack, IRQ packing makes interrupt mitigation extremely effective and suppresses
most interrupts. The resulting performance improvements, shown in Chapter 5, indirectly
confirm the conjecture that IRQ handling has a significant performance impact. How-
ever, IRQ packing is often not straightforward to configure, since it relies on configuration
settings that are hard to adapt dynamically. Most importantly, CPU cores can only be
allocated in whole integers and need to be fully saturated by network traffic to effectively
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Figure 4.2: IRQ Packing

mitigate interrupts. These requirements result in a bottleneck – when a non-integer num-
ber of cores are required, assigning any more than the closest rounded-down number of
cores would prevent effective polling. Some polling iterations end up empty, causing a fall
back to interrupt-based handling.

Another potential limitation of this scheme is NUMA scalability. While spatial non-
locality does not cause significant degradation when all cores are located on the same
socket, the same cannot be said when a NUMA domain boundary is present. Under this
scenario, it is not clear how IRQ packing should be configured. As no binding exists
between cores serving IRQs and cores executing application code under this scheme, there
can be significant NUMA penalties experienced by such a configuration. This issue with
NUMA is examined further in Chapter 5.
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4.2 Network Polling

While IRQ packing illustrates the overhead of IRQ handling, it cannot be regarded as a
general-purpose scheme, as explained in the previous section. In the vanilla IRQ balancing
scheme, on the other hand, IRQ arrivals compete with network processing and application
processing for the same set of cores. The limitations of both of these schemes display a
fundamental issue with IRQ-based network processing – minimal to no coordination exists
between IRQ handling and the application.

In contrast, user-level (kernel-bypass) network stacks put the application in charge of
the execution of the entire network stack (see Chapter 2). Interrupts are disabled globally,
and the application coordinates execution by alternating between processing existing re-
quests and polling the RX queues for new data. Modern programmable NICs address the
exclusivity problem by allowing fine-grained control over which network traffic arrives in
which RX queue.

This execution pattern can be emulated in the existing kernel network stack, albeit in
an imperfect way. Mechanisms to promote application-initiated polling-based packet recep-
tion are already present in the Linux kernel. One such feature, though disabled by default,
is sysctl net.core.busy poll, sometimes used in combination with the SO BUSY POLL

socket option. When this parameter is set, the kernel enters a short busy polling pe-
riod, as defined by the value of the parameter, when an application uses any of the I/O
multiplexing calls (select(), poll(), or epoll wait()) and no events are immediately
available. If network packets are received during polling, network protocol processing is
performed in the same synchronous execution path, resulting in the desired cooperation
between the application and the network stack similar to user-level networking. Note that
this operating mode is fundamentally different and distinct from the opportunistic polling
mode of NAPI mentioned in Section 4.1.2. While both are termed “polling” here, the
short opportunistic polling episodes performed by NAPI are still tightly integrated in the
interrupt-oriented processing path. They are not initiated by the application through any
of the system calls, and have no direct knowledge of application workload. Here, with
sysctl net.core.busy poll, polling is only performed when the application explicitly
informs the kernel of its lack of workload through one of the aforementioned system calls.

On the other hand, none of the mechanisms described above eliminates asynchronous
interrupt handling sufficiently on their own. The kernel suppresses interrupts during a
busy-polling episode, but afterwards interrupts are immediately re-enabled. Thus, while
the application is processing data received previously, IRQs continue to arrive and distort
the application’s execution, incurring a large portion of the direct and indirect costs of IRQ
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Figure 4.3: Network polling

handling. These IRQs also significantly limit the effectiveness of busy polling, because they
allow some network packets to be available before the application calls I/O multiplexing
again (e.g. epoll wait()), preventing busy-polling episodes from being activated. Con-
sequently, even with sysctl net.core.busy poll enabled, applications still tend to fall
into a “habit” of interrupt-based processing. To fully emulate the pattern of user-level
network stacks, a separate mechanism is needed to mitigate these interrupts. The rest of
this section explores such mechanisms, with the ideal case illustrated in Figure 4.3.

4.2.1 IRQ Suppression

The first potential approach to mitigating these (often unnecessary) interrupts and enforce
network polling is to use the interrupt coalescing feature of modern NICs. This mecha-
nism is a counter- and/or timer-based parameter to request the NIC to delay interrupt
generation. These parameters are accessible through the ethtool program on Linux and
can be set to high values to effectively suppress interrupt generation. In combination with
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the existing kernel busy polling mechanism described above, this results in the majority of
packets being received via polling, while interrupt generation is heavily limited.

As an example, assuming closed-loop clients, where network traffic is expected to be
always available, one could use the following command1 to request maximal coalescing.

ethtool -C <NIC> rx-usecs 65534 rx-frames 65534 adaptive-rx off

This command instructs the NIC to only generate one interrupt every 65534 ethernet
frames, or every 65534 microseconds if not enough frames are received, eliminating the
vast majority of interrupts. On the other hand, this tuning would affect performance
negatively in all but closed-loop scenarios, because after an empty polling iteration, the
application would block waiting for notification, which depends on IRQs being issued. The
NIC cannot be notified of this fact, and IRQs can still only be fired after the number of
frames or microseconds have passed as set in the ethtool command. Application utilization
is thus reduced and time is wasted in the blocked state.

In general, such a tuning-based approach is not very robust and requires meticulous
configuration for each application and in fact, each workload situation. Any tuning in the
coalescing parameters involves a trade-off between latency and throughput, as the lack
of interrupts during a low-rate (lower than that anticipated for a specific tuning) arrival
phase causes delays before packets are retrieved. However, this scheme along with results
shown in Chapter 5 does show that there is at least a possibility to realize a high level of
coordination between application and network processing without abandoning or modifying
the kernel network stack.

4.2.2 Kernel Polling

The missing piece for improved coordination between application and network stack is
for the application to gain control over the masking of IRQs. As mentioned before, I/O
multiplexing system calls in the Linux kernel (epoll etc.) already support busy polling
before idle application threads are allowed to sleep. While interrupts are unmasked by
default whenever a busy polling episode stops, a minor kernel modification can maintain
masking while application logic is processing data retrieved from previous iterations.

The modification is implemented as part of epoll wait(), the main component of the
epoll series of system calls that enables applications to wait on events of interest. Instead
of re-enabling the respective interrupt(s) as soon as epoll wait() returns from its busy
loop, IRQs stay masked until a subsequent epoll wait() call finds no events of interest

1TX IRQs can also be tuned accordingly if required.
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1: procedure ep poll(ep) ▷ epoll wait() implementation
2: avail ← are events available(ep)
3: loop
4: if avail then ▷ Return path
5: events ← get events(ep)
6: new napi id ← events[0].napi id
7: if new napi id ̸= ep.last napi id then
8: unmask interrupts(ep.last napi id)
9: end if
10: ep.last napi id ← new napi id
11: mask interrupts(ep.last napi id)
12: return events ▷ Copy to user
13: end if
14: avail ← do busy poll(ep)
15: if avail then
16: continue
17: end if
18: unmask interrupts(ep.last napi id)
19: sleep until notified(ep)
20: avail ← are events available(ep)
21: end loop
22: end procedure

Figure 4.4: Kernel Polling (Pseudo-code; Changes Highlighted)

and the application thread is about to be blocked. To facilitate this change, a new IRQ
inhibition flag is added to NAPI instances, which correspond to RX queues. This kernel
flag is set in the return path of epoll wait() as long as the application has data to process.
When the flag is set, NAPI advises the NIC driver against re-enabling hardware interrupts.
With this change, no network interrupt is delivered while the application is busy receiving
and processing data, and interrupts are only used as a fallback when the application is
idle. The modification is illustrated with pseudo-code in Figure 4.4 and implemented by
about 30 lines of kernel modifications at the boundary between generic event polling and
NAPI code.

The resulting execution model mimics the execution model of typical user-level network
stacks at full load and does not add any requirements compared to user-level networking.
At lower loads, in fact, it is slightly better, because it can resort to blocking and inter-
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rupt delivery, instead of having to continuously busy-loop during idle times. In order to
maximize efficiency, there needs to be a 1:1 mapping between application threads and RX
queues, as illustrated in Figure 4.3, so that no ambiguity exists on which queue should be
polled by each application thread. A lack of such a mapping does not result in catastrophic
failures as the polling loop can ”float” to different RX queues, as shown in Figure 4.4 –
only efficiency is affected due to the need to unmask interrupts while a thread switches
between different queues to poll on. On the other hand, thread affinity to cores is not
required for this scheme to function effectively.

The socket flag SO INCOMING NAPI ID can be used to implement the aforementioned 1:1
mapping. When new connections are accepted, this flag indicates the ID of the in-kernel
NAPI instance where the connection originates. A NAPI instance typically corresponds
to a unique RX queue of the NIC. Under the condition that the number of threads and
RX queues is set to equal, the application can simply distribute accepted connections
according to the value of this flag. For example, it can be enforced that the i mod N -th
thread handles connections whose SO INCOMING NAPI ID value is i and the total number
of RX queues is N . This ensures a near-perfect polling pattern in each application thread.

While the currently proposed modifications are largely a proof-of-concept and not yet
production-ready, there is a clear path towards a production-grade kernel polling scheme
and possible adoption. As mentioned above, modern programmable NICs can alleviate
cross-traffic concerns due to fine-grained flow classification and routing to specific RX
queues. There is, however, still a security risk where (misbehaving) applications may
stop calling epoll wait() even with work remaining, resulting in interrupts being masked
indefinitely. A fallback technical approach would use a kernel timeout set on the return path
from epoll wait(). If the application fails to re-enter the system call after the timeout,
interrupts should be forcibly re-enabled. An administrative approach towards production-
level robustness would encode the interrupt masking request in a privileged socket option
or epoll wait() flag, only available to threads with a suitable capability [14] flag.
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Chapter 5

Evaluation

In this chapter, proposals laid out in Chapter 4 are evaluated in a controlled environment.
Experiments are designed to confirm the impact of IRQs on network stack processing
performance. Results from these experiments illustrate the potential of better aligned
network stack processing, in particular, kernel polling.

5.1 Experimental Setup

5.1.1 Hardware

The evaluation is performed on a server with dual-socket octa-core Intel Xeon E5-2680
CPUs (NUMA setup, 16 cores in total). This server is equipped with 64 GiB of RAM (32
GiB per NUMA node), enough for all experiments reported in this chapter, and a Mellanox
ConnectX-3 10 GbE network controller. In all experiments, Turbo Boost is manually
disabled to rule out any unpredictable effects, and both CPUs run at their maximum non-
Turbo Boost frequency of 2.7 GHz. Hyperthreading is avoided by only scheduling threads
on the respective first hyperthread of each core. An additional 7 machines identical to the
one described above are used as clients to generate load on the experiment server.

5.1.2 System Software

All servers in the experiments are set up with Ubuntu 20.04, with updates up to Q4 2022.
User-level network stacks, such as Caladan, require an older version of the Linux kernel.
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As a result, these experiments (primarily in Chapter 3) are performed on kernel version
5.4, provided by the official Ubuntu 20.04 repositories. Since these stacks bypass the kernel
and require dedicated CPU cores and/or implement their own scheduling, the older kernel
version is not expected to cause any distortion of performance observations - advantageous
or disadvantageous. All other experiments are performed on kernel version 5.15, enhanced
by the kernel polling patch described in Section 4.2.2 when appropriate.

It is also worth pointing out that even for experiments labelled ’Vanilla’, a static IRQ
assignment (see Section 4.1.1) is performed with each core mapped to one dedicated RX
and TX queue on the NIC, in order to rule out inconsistencies in the default assignment
or interference from dynamic IRQ assignment schemes such as irqbalance. Normally, this
change should result in a slight performance increase for the vanilla kernel due to better
locality compared to a true default setup. The kernel is booted with the boot setting
mitigations=off, which disables various mitigations for older CPUs’ security vulnera-
bilities. In addition, automatic NUMA balancing is turned off via the respective sysctl

parameter to avoid interfering with the intended thread placement during experiments.

5.1.3 Benchmark Software

Memcached is an attractive target application for benchmarking network stacks and sys-
tems software. It is a widely deployed production-grade tool, while also being lightweight
enough to expose the performance and efficiency of the underlying runtime system stack.
Memcached 1.6.9 is used for all experiments using the Linux kernel’s network stack. This
is the earliest version with support for NAPI locality based on the SO INCOMING NAPI ID

socket option, which is required for kernel polling (Section 4.2.2). The reason for such a
selection is that it is closest to Memcached 1.5.9, provided by the authors of Caladan as
part of its software repository.

While porting Memcached to F-Stack, it was necessary to revert most of the changes
in 1.6 to support user-level networking. For example, the SO INCOMING NAPI ID socket
option is irrelevant and must not be used when Memcached is running on a user-level
network stack. To avoid mixing too many versions, Memcached 1.5.9 is also used for the
F-Stack experiments. Any porting effort to Caladan or F-Stack consists of extensive code
modification and refactoring that, at the very least, fully rewrites the main event loop of
Memcached. This results in much greater differences than those between Memcached 1.5.9
and 1.6.9.

Memcached workload is generated with Mutilate [23], a well-established benchmark
client for Memcached, using 8 threads (cores) on each of the 7 client machines, each client
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thread creating 20 connections to the server with a pipeline depth of 1. The experiments
use Mutilate’s synthetic recreation of the Facebook ”ETC” workload described in the
literature [4] with 1,000,000 records.

Chapter 3 also presents experiments based on Nginx 1.16.1, since it is the latest version
supported by F-Stack, and part of the F-Stack software repository. Wrk [13] is used for
load generation, with 1000 concurrent connections repeatedly requesting the same small
file1.

5.1.4 Scripting

For consistency between experiment runs, a shell script2 is developed to perform all the
experiments in a predictable and reproducible manner, for example, by always re-applying
the base IRQ assignment scheme mentioned above before the rest of the experiments.
The script consists of different sub-scripts in the experiments directory for each type of
experiment shown in both this chapter and Chapter 3. The configs directory contains
parameters required for running the experiments, such as the paths to Memcached and
Nginx executables, which must be adapted for the specific server where experiments are
run. Finally, the tunings directory contains kernel and application-level configurations for
each scenario (e.g. ethtool tuning for IRQ suppression).

The main entry point of the script is the file run.sh. Executing the shell file with dif-
ferent command-line parameters corresponds to different experiments shown in this work.
Experimental output is always produced in the data directory, within subdirectories whose
names reflect command-line parameters used. Typical command-line parameters to this
file include:

• -e <str>, where <str> denotes the name of the experiment to run. This must
correspond to a sub-script in the experiments directory.

• -t <num>, where <num> specifies the number of threads to run the experiments. The
script also applies a limit on the CPU cores that can be used for the experiment using
taskset. The limit is set as cores with IDs 0-<num>, except when --first-cpu is
specified.

• --first-cpu <num>, which applies an offset of <num> to the IDs of CPU cores used
for the experiment. On the server described earlier, cores 0-7 are from the first

1A plaintext file with content “Hello, world”.
2Available at https://git.uwaterloo.ca/p5cai/netstack-exp/.
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NUMA node, while cores 7-15 are from the second NUMA node. This configuration
allows the use of the --first-cpu offset as a way to force the application to run
across a NUMA boundary.

• --extra-tunings <str>, where <str> refers to a specific tuning configuration script
to apply in the tunings directory.

• --fstack and --caladan, instructing the experiment to be performed on F-Stack or
Caladan, respectively.

Some experiment sub-scripts also have their own command-line parameters. These
can be specified after the aforementioned parameters to run.sh by separating them with
--. Experiment-specific parameters are mainly intended to produce breakdowns shown
in Chapter 3, where the parameter --perf-record <type> is supplied to produce perf

record reports in the output directory. Parameters not mentioned in this section and their
usage can be examined by inspecting the first few lines of each file in the repository.
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Table 5.1: Memcached: Alignment Proposals, 8 cores

QPT IPQ Cycles pkts/
(T=1s) App Sys Total App Sys IPC irq

Vanilla 724077 1832 17570 19402 9.6% 90.4% 0.65 1.05
IRQ Packing 847669 1981 17549 19530 10.7% 89.3% 0.77 22.1
(±%) (+17%) (+1%) (+18%)
IRQ Suppression 967675 1842 17123 18965 11.7% 88.3% 0.85 262
(±%) (+34%) (-2%) (+31%)
Kernel Polling 947021 1853 16716 18569 11.9% 88.1% 0.82 15.6
(±%) (+31%) (-5%) (+26%)

5.2 Alignment

This section directly compares the performance characteristics of proposals in Chapter 4
against each other. Firstly, mirroring performance assessments presented in Chapter 3, Ta-
ble 5.1 shows the sustained throughput performance and IPQ/IPC breakdown, as observed
in a representative closed-loop experiment, for each of the proposals along with the vanilla
configuration for reference. For the IRQ packing scheme, a configuration of 2 interrupt-
processing cores and 6 application cores is set up for this experiment. This decision is
based on the observation that 2 is the maximum number of cores that can be fully loaded
by serving interrupts generated by this particular workload. IRQ suppression parameters
are also manually tuned for maximum throughput in this particular experiment. In this
case, it means maximum suppression on the RX side with rx-usecs 65534 and rx-frames

65534. TX interrupts are also reduced using tx-usecs 1024 and tx-frames 256 while
maintaining reasonable levels of ring buffer entry recycling in the kernel. Such a manual
tuning configuration represents close to the best possible case in terms of throughput and
the elimination of IRQs.

From Table 5.1, it can be noted that all alignment proposals result in a substantial
performance increase over the vanilla configuration (Column 1, QPT). Moreover, it can be
observed that, similar to the observations for F-Stack reported in Chapter 3, most of the
performance improvement can be attributed to an increase in IPC, which closely mirrors
the difference in throughput achieved by the respective proposed scheme. All schemes also
significantly reduce the number of IRQs generated (or a higher number of packets processed
per IRQ, as shown in the last column, pkts/irq), with IRQ suppression representing the
best case scenario. There is a diminishing return in terms of the reduction of the number
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of IRQs (or the increase in pkts/irq), because the first 15- to 20-fold reduction of IRQs,
as shown by IRQ packing and kernel polling, already eliminates at least 90% of the IRQ
overhead by definition. The remaining IRQs, however many there may be, cannot account
for more than 10% of the original IRQ overhead. Therefore, while the IRQ suppression
scenario sees a further 15x reduction in IRQs compared to kernel polling, the resulting
throughput is similar.

However, maximum throughput is not sufficient to characterize the performance of I/O-
heavy server applications. To fully assess the overall performance of each of the proposed
schemes, a second experiment is used to assess the resulting tail latency behavior in relation
to throughput. Clients generate a fixed rate of service requests in open-loop mode and
the experiment measures the 99th percentile latency achieved for the resulting throughput.
Figure 5.1 shows this tail latency on the Y-axis (logarithmic scale) for varying throughputs
for all alignment proposals. Each data point shows the average result of 20 independent
repetitions of the same experiment. The resulting standard deviation is shown with error
bars. It is again very apparent that all alignment proposals result in better performance
compared to the vanilla kernel. In particular, they are able to maintain a lower tail latency
up to higher rates of throughput. However, the curves differ significantly for the different
schemes. This and other details are discussed next for each alignment scheme.

5.2.1 IRQ Packing

Figure 5.1 shows that IRQ packing maintains a very competitive tail latency, but Table 5.1
indicates its limited throughput capacity when compared to that of IRQ suppression or ker-
nel polling. While IRQ packing promotes polling-based network processing, this processing
is still performed in softirq kernel contexts, and is ultimately opportunistic in nature. At
high load, IRQ packing increases the number of packets that are received per interrupt to
about 22. Furthermore, IRQs do not distort application processing, but are delivered to
dedicated cores that do not perform much other work. Overall, the performance of the
IRQ packing proposal corroborates the conjecture that IRQ handling is a significant source
of network processing overhead, as stated in Chapter 3, because IRQ packing results in
minimal locality between the application and the network stack, yet the performance still
increases significantly over vanilla.

IRQ packing shows good potential to improve network processing performance without
any kernel modification. Unfortunately, its requirement of fully loading an integer number
of cores severely limits the possibilities of adopting it as a general-purpose mechanism.
This requirement also dictates that network processing is bottlenecked by the number of
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Figure 5.1: Memcached: Latency vs. Throughput, 8 cores (lower is better)

IRQ handling cores under all circumstances3, which most likely also contributes to the
limited throughput performance shown in Table 5.1 and visible in Figure 5.1.

5.2.2 IRQ Suppression

IRQ suppression results in an impressive 34% throughput increase over the vanilla version
(Column 1 in Table 5.1), with a corresponding improvement in IPC. This increase further
confirms the basic conjecture about IRQ handling, while also verifying that system calls

3Except in the extremely unlikely case where the network load exactly matches the processing power
of an integer number of cores.
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are not the main contributing factor, at least not in these experiments, because IRQ sup-
pression is done purely through tuning of networking parameters without any modification
in the kernel network stack. Note that compared to vanilla and IRQ packing, there is also a
slight decrease in IPQ under IRQ suppression. This is due to the fact that in polling mode,
asynchronous network processing logic is largely removed from the code path, resulting in
the observed IPQ decrease.

However, as pointed out before, IRQ suppression requires fine-grained manual tuning
for each target load scenario and even then, remains a fundamentally fragile mechanism.
Its tail latency, while better than the vanilla case, is not competitive compared to the
other two alignment schemes. In fact, the tail latency starts to grow much earlier than the
saturation point where the system becomes overloaded.

Furthermore, Figure 5.1 shows very high variations in the measured 99th percentile
latency, even at relatively low load, which points to difficulties in coordinating between
application and network stack. Given the current implementation of interrupt coalescing
in NICs and kernel, parameters have to be chosen without taking into account applica-
tion dynamics. Therefore, any given configuration implies an inherent trade-off between
throughput capacity and tail latency. Specific choices of parameters can reduce tail latency
for one target throughput, at the cost of overall throughput capacity and latency under
even a slightly different target throughput. The converse is also true – the system can be
tuned for maximum throughput capacity with maximum IRQ suppression, as is done for
this experiment, at the cost of latency under non-full load. Based on these observations, it
is questionable whether IRQ suppression could be deployed in dynamic workload scenarios,
especially when a consistent tail latency is as important as throughput capacity.

5.2.3 Kernel Polling

The limitations suffered by IRQ packing and IRQ suppression, as evident in the last two
sections, are not present for kernel polling, where a change in the kernel enables the decision
whether to poll or use interrupts to be made automatically based on application workload.
It shows strong performance in both maximum throughput and tail latency, as evident
by Table 5.1 and Figure 5.1. There is a further decrease in IPQ even compared to IRQ
suppression, because full elimination of asynchronous RX processing under high load can
only be guaranteed with kernel polling.

With regard to tail latency, kernel polling is far superior to IRQ suppression. However,
the IRQ suppression scheme achieves a slightly better IPC and maximum throughput
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than kernel polling. The difference likely results from moderating both TX and RX in-
terrupts in tuning for IRQ suppression, while kernel polling only disables RX interrupts
whenever possible, as the interrupts reported for kernel polling in Table 5.1 are almost
exclusively TX interrupts. Including TX interrupts in the scheme would require substan-
tially more refactoring than the current RX-only approach, where code modifications are
simple and non-intrusive, and can already facilitate the vast majority of the improvements.
As mentioned earlier, IRQ suppression is intended to represent the best possible case for
throughput in these experiments. This observation confirms that TX interrupts only have
a limited impact on performance, at least in the Linux kernel.

5.3 Locality

Section 5.2 establishes the kernel polling scheme with a patched Linux kernel as the best-
performing option for better network stack alignment among those described in Chapter 4.
In addition, it is established that IRQs, instead of system calls or locality within a sin-
gle NUMA node, are the driving factor in network processing performance, confirmed by
experimental data with IRQ packing. However, locality might play a role when consider-
ing processor topologies with one or more NUMA boundaries, as shown in Table 3.4 in
Chapter 3.

In this section, effects of NUMA boundaries are examined by comparing kernel polling,
IRQ packing and the vanilla configuration. Specifically, IRQ packing should result in
maximal spatial non-locality between the application and the network stack, since the sep-
aration of IRQ serving cores is central to this scheme. On the contrary, near-perfect spatial
locality (at least at high load) automated by kernel polling is expected to require minimal
communication across the NUMA boundary within the network stack. In other words,
NUMA effects should manifest clearly in the comparison between these two proposals.

In producing Figure 5.2, the same latency-vs-throughput experiment from the previous
section is repeated among the vanilla kernel, IRQ packing and kernel polling. For both
vanilla and kernel polling, the application is spread across 4 cores in each of the two NUMA
domains present on the system (4+4). For vanilla, as before, each core receives interrupts
from one dedicated RX and TX queue on the NIC. As for IRQ packing, the 2 cores serving
IRQs are configured to be on the second NUMA node, while the 6 application cores are
kept on the first NUMA node. Application threads are not pinned to individual cores,
and the scheduler is allowed to decide the placement of each thread within the specified
groupings. These configurations should result in maximum communication across the
NUMA boundary for all schemes examined while maintaining fairness of comparison. The
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Figure 5.2: Memcached: Latency vs. Throughput, 4 + 4 cores

dotted lines in Figure 5.2 represent the same single-NUMA-domain cases from Figure 5.1
as reference.

From Figure 5.2, it can be seen that IRQ packing suffers the worst NUMA penalty,
bringing down its performance to less than that of the NUMA configuration of vanilla
kernel, along with high latency variation near its saturation point. On the other hand,
kernel polling retains very good performance in both throughput capacity and tail latency
thanks to its aforementioned automatic locality and appears to incur a relatively smaller
NUMA penalty than the vanilla configuration. This fact confirms that in general, locality
in between NUMA nodes does have a profound effect on performance, and that benchmarks
and optimization proposals for network stacks need to take NUMA into account.
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Figure 5.3: Memcached: Closed-loop Throughput (NUMA, higher is better)

To further evaluate the effect of NUMA, Figure 5.3 presents the closed-loop throughput
of the vanilla kernel versus kernel polling for an increasing number of cores in each NUMA
domain. Notice, both vanilla and kernel polling exhibit near-linear scaling with more cores
even under NUMA, with very consistent throughput among experiment runs. The gap
between vanilla and kernel polling is also largely constant, hovering at 43-46% for these
experiments. Compared to 30-31% in the single-domain case (see Table 5.1 QPT column
and Figure 5.1), this quantitatively verifies that for kernel polling, the network stack suffers
less from NUMA overheads.

These results are consistent with Figure 5.4, where IPQ and IPC are shown for each
of the NUMA configurations in Figure 5.3 for both vanilla and kernel polling. Both IPC
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Figure 5.4: Memcached: IPQ / IPC (NUMA)

and IPQ remain largely constant as the number of cores increase in a NUMA configura-
tion, reflecting the near-linear nature of the scalability of this workload. IPC still closely
mirrors the performance difference, with a gap of 43% at 8 + 8 cores between vanilla and
kernel polling, while IPQ remains similar with a decrease due to the elimination of the
asynchronous processing path as described previously.

When taken together, the results reported here demonstrate that while locality does
not play an important role within the same NUMA domain, NUMA overheads incurred by
cross-domain communication can be substantial, as shown for IRQ packing. However, in
all but the most extreme circumstances (IRQ packing), the vanilla Linux kernel with its
internal packet routing and thread placement logic is largely successful in keeping NUMA
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overheads limited. Kernel polling, as proposed in this paper, shows superior performance,
as its automatic locality (see Section 4.2.2) further reduces NUMA overheads in the network
stack.

5.4 Cache Capacity

While experimenting with Memcached, a phenomenon was observed where an increased
number of connections, even at moderate values, results in a noticeable throughput de-
crease. This peculiarity of the kernel network stack appears to be closely connected to
LLC misses. Figure 5.5 shows a set of closed-loop experiments with an increasing number
of connections with kernel polling and the vanilla configuration, along with F-Stack for ref-
erence. Throughput for each examined number of connections is displayed as the curves,
while LLC misses per query (i.e. normalized by QPS) are shown under the curves as bars.
Results for the kernel network stack (kernel polling and vanilla) demonstrate an inverse
correlation between throughput and the number of connections, while F-Stack appears to
be unaffected. At 10 connections per client (560 total), kernel polling achieves a through-
put about 8% higher than that of F-Stack, but this performance lead eventually dissolves
as the number of connections increases. The kernel suffers from an increasing number of
LLC misses per request, while for F-Stack, this number remains constant regardless of the
number of connections. Note that the gap between the vanilla configuration and kernel
polling remains an almost constant 30%.

The only meaningful explanation for this observation is that the effective cache footprint
of the Linux network stack exceeds the LLC capacity of our particular server when handling
a certain number of TCP connections. F-Stack appears to have a smaller memory footprint
per connection on average, which removes LLC as a limiting factor on this specific hardware
platform for these experiments. It might be a difference between Linux and FreeBSD
networking, or can be considered a consequence of network stack customization.

Additionally, F-Stack seems to exhibit fairness issues at higher number of connections.
This fact was observed using a customization4 in Mutilate that reports the average and
median data transmission rate over connections along with values at a few additional repre-
sentative percentiles. At around 60 connections per client, the 10-th percentile transmission
rate observed among the connections becomes 0. The same behaviour is not observed for
other network stacks investigated in this work. This indicates an effectively smaller work-
ing set for F-Stack, which could also be part of the explanation for its lack of throughput

4By Thierry Delisle, unpublished.
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Figure 5.5: Memcached: Throughput & LLC misses, 1 core

degradation with an increased number of connections.

It is beyond the scope of the thesis to further research this specific peculiarity. All
experiments reported in this work are run at a lower number of connections, before the
effect described in this section becomes significant. A further comprehensive investigation
would be necessary to fully understand the issue at hand and possible mitigations. Finally,
as trends in hardware show an increasing amount of LLC, with some recent processors [1]
approaching gigabyte-sized LLCs, the real-world relevance of this observation might be
limited.

50



Chapter 6

Conclusion

This work presents an examination into the overheads of kernel- and user-level networking
stacks. In doing so, IRQs and their handling are identified as a significant fraction of
the overhead associated with the kernel network stack. As a secondary concern, core
locality matters, though only eclipsing the overhead incurred by IRQs when operating
across NUMA domains.

While user-level network stacks are often limited to interrupt-less processing, the kernel
is not bound to relying on IRQs in principle. In practice, however, kernels prefer IRQ-
based network processing due to generality and security concerns. This design results
in an apparent disadvantage for the kernel, where serving IRQs results in less temporal
(asynchronous / synchronous execution) and spatial (core locality) alignment compared to
polling-mode processing employed by user-level network stacks.

It is important to realize that this discrepancy is of a practical nature rather than
a fundamental one. In this thesis, a series of proposals were introduced to reduce this
difference and improve the alignment between the kernel network stack and application. It
is shown by evaluating these proposals that interrupt reduction is a key driving factor in the
increase in IPC and overall performance. The best-performing scheme, kernel polling, can
be implemented with a small (˜30 lines) and non-intrusive kernel change. Kernel polling
increases throughput by up to 45% in a NUMA configuration without compromising tail
latency. It also shows comparable performance to a comprehensive user-level stack, such
as F-Stack.

Compared to user-level networking, kernel polling poses a minimal set of constraints
on hardware and software. The only requirements on the NIC are that its driver must be
modern enough to use NAPI, and must support receive side scaling and dynamic interrupt
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moderation. Perfect alignment is guaranteed by executing the polling loop in the same
application thread context with interrupts masked unless idling. Workload dynamics are
handled automatically, with control handed over to the application itself, without the need
for manually tuning configuration parameters. Compared to user-level networking, this
method does not require reserving dedicated cores, nor pinning threads to physical cores.
There is a clear path to adoption in production through capability-based permissions or a
timer to guard against misbehaving applications.

Results presented in this work suggest the following. IRQs and their assignment are a
major factor in deciding network processing performance. When presenting a comparison
between several network processing schemes, it is necessary to carefully investigate similar-
ities and differences in IRQ assignment and handling schemes to rule out their influence.
Moreover, when proposing major restructuring of an existing software system, it is impor-
tant to properly attribute relevant overheads and their reduction. In understanding the
source of changes in performance characteristics, it may be possible to realize the same
benefits without incurring the full cost of refactoring said system.

There are several avenues for future work arising from the findings reported here. While
this work is focused on server-side network processing, it would be interesting to investigate
whether kernel polling can lead to similar benefits in other application domains, such as
software switches or middleboxes. Separately, a specific and detailed investigation of the
Linux kernel stack might reveal opportunities to trim its per-connection memory footprint.
Memory alignment, especially in NUMA scenarios, can possibly be improved by coordi-
nating the scheduling of application threads in polling mode with ring buffer allocation in
NIC drivers.

On the other hand, it can be envisioned that in the long run, high-performance net-
working efforts may converge in several ways. Kernel polling, as a patchset, can be adopted
in the mainline kernel after adaptations for production-level security. The kernel network
stack is offering increasingly many options for customization, for example, XDP and/or
eBPF. New transport-level protocols, such as QUIC [19], tend to be implemented as user-
level libraries with partial kernel involvement (e.g. on top of UDP). On the kernel-bypass
networking side, it may become possible (with some restructuring of the kernel) to deliver
interrupts directly to applications to avoid continuous polling. For either case, as shown
in this thesis, there is often no silver bullet to improve performance by many folds, and it
is crucial to thoroughly understand the overheads and trade-offs among the approaches.
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Appendix A

Kernel Polling Patch1

1 diff --git a/fs/eventpoll.c b/fs/eventpoll.c

2 index cf326c53d ..71 ec31a9b 100644

3 --- a/fs/eventpoll.c

4 +++ b/fs/eventpoll.c

5 @@ -395,7 +395,7 @@ static bool ep_busy_loop(struct eventpoll *ep , int nonblock)

6

7 if (( napi_id >= MIN_NAPI_ID) && net_busy_loop_on ()) {

8 napi_busy_loop(napi_id , nonblock ? NULL : ep_busy_loop_end , ep, false ,

9 - BUSY_POLL_BUDGET);

10 + BUSY_POLL_BUDGET , true);

11 if (ep_events_available(ep))

12 return true;

13 /*

14 @@ -440,6 +440 ,10 @@ static inline void ep_set_busy_poll_napi_id(struct epitem *epi)

15 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)

16 return;

17

18 + /* Ensure that IRQs are re-enabled for the NAPI instance being replaced */

19 + if (ep->napi_id >= MIN_NAPI_ID)

20 + napi_suppress_interrupts(ep ->napi_id , false);

21 +

22 /* record NAPI ID for use in next busy poll */

23 ep->napi_id = napi_id;

24 }

25 @@ -1779,6 +1783 ,7 @@ static int ep_poll(struct eventpoll *ep , struct epoll_event __user *

events ,

26 u64 slack = 0;

27 wait_queue_entry_t wait;

28 ktime_t expires , *to = NULL;

29 + unsigned int napi_id;

30

31 lockdep_assert_irqs_enabled ();

32

1Based on Linux 5.15.79
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33 @@ -1806,6 +1811 ,16 @@ static int ep_poll(struct eventpoll *ep, struct epoll_event __user

*events ,

34

35 while (1) {

36 if (eavail) {

37 + /* Disable IRQs as we already have enough work.

38 + * Even if we fail in ep_send_events , as

39 + * long as we have not timed out , we will end up

40 + * polling again. */

41 + if (! timed_out) {

42 + napi_id = READ_ONCE(ep->napi_id);

43 + if (napi_id >= MIN_NAPI_ID && net_busy_loop_on ())

44 + napi_suppress_interrupts(napi_id , true);

45 + }

46 +

47 /*

48 * Try to transfer events to user space. In case we get

49 * 0 events and there ’s still timeout left over , we go

50 @@ -1819,6 +1834 ,8 @@ static int ep_poll(struct eventpoll *ep , struct epoll_event __user *

events ,

51 if (timed_out)

52 return 0;

53

54 + napi_id = READ_ONCE(ep->napi_id);

55 +

56 eavail = ep_busy_loop(ep , timed_out);

57 if (eavail)

58 continue;

59 @@ -1826,6 +1843 ,11 @@ static int ep_poll(struct eventpoll *ep, struct epoll_event __user

*events ,

60 if (signal_pending(current))

61 return -EINTR;

62

63 + /* Re-enable IRQs if we are about to enter a waiting state

64 + * Otherwise we will wait forever if we have disabled interrupts before */

65 + if (napi_id >= MIN_NAPI_ID && net_busy_loop_on ())

66 + napi_suppress_interrupts(napi_id , false);

67 +

68 /*

69 * Internally init_wait () uses autoremove_wake_function (),

70 * thus wait entry is removed from the wait queue on each

71 diff --git a/include/linux/netdevice.h b/include/linux/netdevice.h

72 index 3b97438af ..80 f04f4eb 100644

73 --- a/include/linux/netdevice.h

74 +++ b/include/linux/netdevice.h

75 @@ -341,6 +341,7 @@ struct napi_struct {

76 struct hlist_node napi_hash_node;

77 unsigned int napi_id;

78 struct task_struct *thread;

79 + bool suppress_interrupts;

80 };

81

82 enum {

83 @@ -478,6 +479,8 @@ static inline bool napi_reschedule(struct napi_struct *napi)

84 return false;

85 }

86
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87 +void napi_suppress_interrupts(unsigned int napi_id , bool suppress);

88 +

89 bool napi_complete_done(struct napi_struct *n, int work_done);

90 /**

91 * napi_complete - NAPI processing complete

92 diff --git a/include/net/busy_poll.h b/include/net/busy_poll.h

93 index 3459 a04a3 ..13 d7470ee 100644

94 --- a/include/net/busy_poll.h

95 +++ b/include/net/busy_poll.h

96 @@ -45,7 +45,8 @@ bool sk_busy_loop_end(void *p, unsigned long start_time);

97

98 void napi_busy_loop(unsigned int napi_id ,

99 bool (* loop_end)(void *, unsigned long),

100 - void *loop_end_arg , bool prefer_busy_poll , u16 budget);

101 + void *loop_end_arg , bool prefer_busy_poll , u16 budget ,

102 + bool skip_schedule);

103

104 #else /* CONFIG_NET_RX_BUSY_POLL */

105 static inline unsigned long net_busy_loop_on(void)

106 @@ -109,7 +110,8 @@ static inline void sk_busy_loop(struct sock *sk, int nonblock)

107 if (napi_id >= MIN_NAPI_ID)

108 napi_busy_loop(napi_id , nonblock ? NULL : sk_busy_loop_end , sk,

109 READ_ONCE(sk->sk_prefer_busy_poll),

110 - READ_ONCE(sk->sk_busy_poll_budget) ?: BUSY_POLL_BUDGET);

111 + READ_ONCE(sk->sk_busy_poll_budget) ?: BUSY_POLL_BUDGET ,

112 + false);

113 #endif

114 }

115

116 diff --git a/net/core/dev.c b/net/core/dev.c

117 index be51644e9 ..926 f5a788 100644

118 --- a/net/core/dev.c

119 +++ b/net/core/dev.c

120 @@ -6545,6 +6545 ,21 @@ void __napi_schedule_irqoff(struct napi_struct *n)

121 }

122 EXPORT_SYMBOL(__napi_schedule_irqoff);

123

124 +void napi_suppress_interrupts(unsigned int napi_id , bool suppress)

125 +{

126 + struct napi_struct *napi;

127 +

128 + napi = napi_by_id(napi_id);

129 + if (napi) {

130 + napi ->suppress_interrupts = suppress;

131 + /* If we need to re-enable interrupts , we have to poll once to ensure IRQs get re-

enabled */

132 + if (! suppress) {

133 + napi_schedule(napi);

134 + }

135 + }

136 +}

137 +EXPORT_SYMBOL(napi_suppress_interrupts);

138 +

139 bool napi_complete_done(struct napi_struct *n, int work_done)

140 {

141 unsigned long flags , val , new , timeout = 0;

142 @@ -6613,7 +6628 ,7 @@ bool napi_complete_done(struct napi_struct *n, int work_done)
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143 if (timeout)

144 hrtimer_start (&n->timer , ns_to_ktime(timeout),

145 HRTIMER_MODE_REL_PINNED);

146 - return ret;

147 + return !n->suppress_interrupts && ret;

148 }

149 EXPORT_SYMBOL(napi_complete_done);

150

151 @@ -6652,9 +6667 ,9 @@ static void __busy_poll_stop(struct napi_struct *napi , bool

skip_schedule)

152 }

153

154 static void busy_poll_stop(struct napi_struct *napi , void *have_poll_lock , bool

prefer_busy_poll ,

155 - u16 budget)

156 + u16 budget , bool _skip_schedule)

157 {

158 - bool skip_schedule = false;

159 + bool skip_schedule = _skip_schedule;

160 unsigned long timeout;

161 int rc;

162

163 @@ -6698,7 +6713 ,8 @@ static void busy_poll_stop(struct napi_struct *napi , void *

have_poll_lock , bool

164

165 void napi_busy_loop(unsigned int napi_id ,

166 bool (* loop_end)(void *, unsigned long),

167 - void *loop_end_arg , bool prefer_busy_poll , u16 budget)

168 + void *loop_end_arg , bool prefer_busy_poll , u16 budget ,

169 + bool skip_schedule)

170 {

171 unsigned long start_time = loop_end ? busy_loop_current_time () : 0;

172 int (* napi_poll)(struct napi_struct *napi , int budget);

173 @@ -6755,7 +6771 ,7 @@ void napi_busy_loop(unsigned int napi_id ,

174

175 if (unlikely(need_resched ())) {

176 if (napi_poll)

177 - busy_poll_stop(napi , have_poll_lock , prefer_busy_poll , budget);

178 + busy_poll_stop(napi , have_poll_lock , prefer_busy_poll , budget , skip_schedule);

179 preempt_enable ();

180 rcu_read_unlock ();

181 cond_resched ();

182 @@ -6766,7 +6782 ,7 @@ void napi_busy_loop(unsigned int napi_id ,

183 cpu_relax ();

184 }

185 if (napi_poll)

186 - busy_poll_stop(napi , have_poll_lock , prefer_busy_poll , budget);

187 + busy_poll_stop(napi , have_poll_lock , prefer_busy_poll , budget , skip_schedule);

188 preempt_enable ();

189 out:

190 rcu_read_unlock ();
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