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Abstract

This thesis introduces two main-memory systems sGrapp and sGradd for performing the
fundamental analytic tasks of biclique counting and concept drift detection over a streaming
graph. A data-driven heuristic is used to architect the systems. To this end, initially, the
growth patterns of bipartite streaming graphs are mined and the emergence principles of
streaming motifs are discovered. Next, the discovered principles are (a) explained by a
graph generator called sGrow; and (b) utilized to establish the requirements for efficient,
effective, explainable, and interpretable management and processing of streams. sGrow is
used to benchmark the stream analytics, particularly in the case of concept drift detection.

sGrow displays robust realization of streaming growth patterns independent of initial
conditions, scale and temporal characteristics, and model configurations. Extensive evalu-
ations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp
achieves mean absolute percentage error < 0.05/0.14 for the cumulative butterfly count
in streaming graphs with uniform/non-uniform temporal distribution and a processing
throughput of 1.5 x 105 data record per second. The throughput and estimation error of
sGrapp are 160x higher and 0.02x lower than baselines. sGradd demonstrates an improv-
ing performance over time, achieves zero false detection rates when there is not any drift
and when a drift is already detected, and detects sequential drifts in zero to a few seconds

after their occurrence regardless of drift intervals.
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Nomenclature

Streaming Graph, denoted as R = (r!,r2,...), is an unbounded sequence of partially
ordered streaming graph records (sgr), where each sgr ™ = (v, Vi, @, 7") with index
m denotes an edge e;; between i-vertex v; and j-vertex v;, weight w;;, and timestamp 7.

Degree of vertex v;, denoted as deg(i) = |N(v;)|, is the size of its neighbourhood

N(vi) ={v; | eij € E}.
A window, denoted as Wy := [W,f, W¢), with index k is a range of width [Wg|.

A burst-based graph snapshot, denoted as Gy, = (E,V), is a graph formed by
vertices and edges in a window of N;, bursts at time ¢.

A Caterpillar, denoted as =, is a three-path sub-structure and a butterfly, denoted
as »<, is a closed four-path sub-structure.

Butterfly Densification Power-law (BPL), denoted as B(z) o< f(|E|"), n > 1, states
that the butterfly count at time step ¢ follows a power law function of the edge/sgr counts.

Strength Diversification, denoted as u}g < ,u%, Y21 (S) < Y22(S), 1 < CVY(S) < CV2(S),
states that, given two consecutive burst-based graph snapshots at times #; and t9, the
probability distribution of butterfly vertex strengths Pr(S) gets broader and more skewed
since the average ug, excess kurtosis Y2(S), and coefficient of variation CV(S)=ou of
strengths increase.

Steady Strength Assortativity, denoted as Y21(6) < Y22(5), CVi(6) = CV3(9),
CV() ~ 1, Fl.1 = Fl.z, i =1,..,4, r* > 0.1, holds when the strength assortativity lo-
calization factor, denoted as r® = 1 — F, is fixed over two consecutive burst-based graph
snapshots at times 71 and f9, since the probability distribution of strength difference of

butterfly edges Pr(8) gets broader and more skewed while remaining fixed-shaped as

e the excess kurtosis Y2(6) of strengths differences ¢ increases,
e their coefficient of variation CV(8)=0s/us remains fixed to 1, and

e the proportion of s in four regions of the distribution F; does not change.

sGrow model is a generative function with four parameters: connection probability p,
the maximum batch size M, the slide parameter 8, and the range of random walk’s length

[Lmin s Lmax] .

sGrapp framework is a butterfly counting algorithm with two parameters: the number
of bursts per window N, and BPL exponent a. sGrapp estimates the cumulative butterfly
count at the end of window Wk as the summation of the followings

Xix



e By
e the number of butterflies introduced by window Wy, denoted as ng

e the approximate number of inter-window butterflies B¢™W

sGradd framework is a concept drift detection algorithm with one parameter: the
number of bursts per window Nj,. sGradd maps butterflies in the streaming graph to
unipartite vertices (which resemble phase oscillators with a phase 6, and frequency Q,);
and then detects drifts at time step ¢ by tracking the evolution of synchronization of phases

L (Byey 5ind) 2+ (8yey cos6)?) 2
= V] :

using a quantity called order parameter O|[t]

XX



Chapter 1

Introduction

A wide variety of real-world datasets include data records that are related to each other; for
example, citation datasets, transaction datasets, and social network data. Such datasets
are best modeled as graphs, where the data records are represented as a set of vertices
connected by edges capturing the relationships among entities. The graph model treats
both the entities (vertices) and relationships (edges) as first-class objects. The model can
also describe several types of many-to-many inter-dependencies among data records as well
as their compositions (Table 1.1).

Due to the aforementioned high representational ability, graphs have long been used to
represent datasets where it is important to explicitly capture relationships. Management
and processing of graph datasets have always been driven by the characteristics of the
datasets and/or workloads (often specified by the applications). In most modern appli-
cations (e.g. product order transactions, World Wide Web feeds, and social networks),
graphs are not static, but change over time. A particular type that is of interest in this
thesis is where the graph emerges over time as the entities and the relationships among
them are established and the corresponding data records with fine-grained temporal in-
formation (i.e. timestamps) stream into a processing unit. These are called streaming
graphs whose main characteristic is that they are unbounded and the full graph is never
available to algorithms processing them. The continuous rapid temporal evolutions lead
to unbounded /unknown stream length and non-stationary distributions of the underlying
data snapshots. In this context, the temporal evolutions usually occur with respect to
the most recent graph topology (i.e. update events are not global); the evolving stream-
ing rates lead to non-uniform inter-arrivals; and multiple generative sources (as well as
factors such as transmission delays) cause out-of-order arrival of data records to a pro-
cessing unit which has no control over the arrival order or data rate [251, Stream Data



Relation Type (Sub-)Graph Type

symmetric undirected or bi-directed graphs
asymmetric directed or oriented graphs
order and transitive directed triangles or feed forward loops
anti-symmetric non-bidirectional graphs
identity and reflexive self-loops
non-binary hyper-graphs
multiple multi-dimensional graphs
full complete graphs
empty isolated vertices
Composed Relations (Sub-)Graph Type
composition multi-hop paths with different edge types
transpose reversed edge directions
product loops
intersection /union /difference graph matching

Table 1.1: Data record inter-dependencies represented by graph data model.

Management|, [130, 205]). A streaming graph is different from aggregated temporal graphs
(or graph streams) that are a sequence of graph snapshots (representing a dynamic graph
with an entirely available structure that undergoes temporal changes). Moreover, weight
addition patterns [229], streaming context [251, Big Data Processing|, and data-driven se-
mantics 18] lead to burstiness in streaming record arrivals. A real example is the case of
user-product interactions in Alibaba e-commerce services that incurred a processing rate
of 470 million event logs per second during a peak interval [251, Big Data Processing].
The streaming graph model captures the characteristics of these real-world datasets. The
model assumes that the graph is built incrementally as data records arrive. Each arrival
consists of a timestamp assigned by the generative source and a payload that indicates the
vertex/edge that is generated and additional information such as edge weight.

This thesis presents an approach towards data-driven algorithm /system design for ex-
plainable and interpretable streaming graph analytics. The data-driven approach refers to
exploratory analysis of streaming graphs for in-depth understanding and identifying the
structural and temporal organizing principles of real-world streaming graphs to design ef-
fective and efficient processing algorithms. The explainable and interpretable approach is
concerned with performing iterative and stateful tasks over streaming graphs, such that
the operations are explainable and the outputs are interpretable.



1.1 Thesis Scope

The thesis has two foci:

1. Bipartite graphs. The streaming graph record (sgr)s in many real-world appli-
cations capture the interactions that naturally occur in a bipartite mode. These
bipartite streaming graphs represent heterogeneous connections between two disjoint
sets of vertices (in this thesis refered as i-vertices and j-vertices). For instance, affili-
ation graphs that model the membership of people in groups, authorship graphs that
model the links between authors and their works, text graphs that model the occur-
rence of words in documents, feature graphs that model the assignment of features
to entities, and user-item graphs with items spanning different domains such as so-
cial networks (users-hashtags [365]), web-based services (users-websites, multimedia
services, and products [3106, , , , |), financial systems (users-donation
campaigns [11]), transportation systems (users-registered vehicles [165]), and com-
munication systems (users-phone calls [353]). It has been shown that all complex net-
works have an underlying bipartite structure [324, |. Even those networks that are
naturally unipartite, e.g. social networks, have an inherent bipartite structure driv-
ing the topological structure of the unipartite version [213, , , |. Moreover,
bipartite graphs provide full representation without information loss for interactions
that naturally occur in one mode (compressed datasets as unipartite graphs [370]),
or multiple modes (high order interconnections as hyper-graphs [161, 13, .

A natural question that arises is why the bipartite graph cannot be projected into a
unipartite graph (via a common approach that connects vertices with shared neigh-
bours [339]) and then apply existing methods for data mining over unipartite graphs?
The answer is that projecting the graph based on just shared neighbours is mislead-
ing, and counting on it is inefficient since the projected graph displays different
patterns [52] due to following reasons. First, the projected unipartite graph loses
fine-grained pattern information [194], since the one-to-many relationship informa-
tion is projected to pairwise relationships and the projection is not bijective. Second,
the projected unipartite graph will have significantly more ed%es than the bipartite
: S . dy(dy—T1
graph since each i—(j—)vertex v with degree d, produces ==5— homogeneous edges.
That is, the number of edges in the original bipartite graph is X, d, while in the pro-
jected graph it is X, (dzv). It has been shown [194] that projection can lead to an edge
inflation of 200x. In the case of streaming bipartite graphs that already have a high
number of edges, the projection will exacerbate the computational footprint. Finally,
the patterns that emerge in the projected unipartite graph are not reliable signals of



the original bipartite graph since the edge inflation artificially changes the patterns.
For instance, it has been shown that the clustering coefficient is high in the projected
mode [244, 1411] and unipartite projection misleads the community detection anal-
ysis [143, 39]. Moreover, one-mode projection is a separate line of research. This
problem scope is devoted to devising metrics for the similarity of vertices of each
mode such that connecting similar vertices does not affect the structural patterns
such as degree distribution [331]. Therefore, it is important to devise techniques to
directly study bipartite structures.

j;’jz

Figure 1.1: Projecting a bipartite graph to two unipartite graphs.

2. Butterfly motifs. The particular subgraph of focus throughout the thesis is but-
terfly (a complete subgraph between two pairs of distinct vertices). Similar to the
triangles in unipartite graphs, butterflies are the simplest and most local form of
a cycle in bipartite graphs. Butterflies are identified as one of the main topologi-
cal drivers of structural features such as transitivity and degree assortativity, whose
understanding is critical for improving the studies and models of spreading phenom-
ena on social networks with bipartite backbone graphs [324]. Moreover, butterflies
are of great importance in measuring properties such as cohesion, network stability,
and error tolerance [378]. For instance, cohesion can be measured by counting the
number of butterflies adjacent to vertices or by the clustering coefficient computed
based on the fraction of paths of length three, which are adjacent to each vertex and
form butterflies. Recently, various butterfly-based data models and analytic algo-
rithms for cohesive subgraph detection in heterogeneous information networks have
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Figure 1.2: Bipartite graphs in fraud detection and recommendation systems.

been proposed [117, , 14, , , |. Study of cohesive substructures such
as butterflies in the streaming setting is challenging due to stateful analytics (O(n)
memory/space for at least finding butterflies, while requiring sublinear computa-
tional efficiency) and requires specialized techniques for processing and management
of data records. Moreover, butterfly-based processing impacts different applications
including the following cases in user-item data streams [283].

o Analytics for anomaly detection.

— (Fake user)-item graphs for detecting cases when a number of users are
hired to complete transactions to promote target items (Figure 1.2(a)).

— User-group graphs for detecting online gambling abnormal behaviours when
users join gambling groups for exchanging abnormal amount of money (Fig-
ure 1.2(b)).

— User-(fake user)-item graphs for detecting fraudulent money transfers (Fig-
ure 1.2(c)).

o Analytics for recommender systems.

— Extract item-item similarity graphs over which a random walk is performed
until reaching an item with different category for recommendation to a
shopping basket (Figure 1.2(d)).

— Find community of similar users for offering collaborative items (Figure 1.2(e)).

o Analysis for promoting sustainable life styles. United Nations has developed
17 Sustainable Development Goals (SDG) which are “the blueprint to achieve a



better and more sustainable future for all. They address the global challenges we
face, including poverty, inequality, climate change, environmental degradation,
peace, and justice”!. Particularly, SDG 12 titled sustainable consumption and
production? is aimed to promote sustainable life styles. For instance, in case of
user-item streams, one approach towards the mentioned goal is raising awareness
about conscious consumption. Since a butterfly represents a pair of users inter-
acting with two common items, analysis of butterfly interconnnections unveils
hidden orders of user preferences and/or item perceptions. Such analyses can
be conducted from different perspectives to gain insight on consumption trends
and inform policy makers or product managers. These perspectives include the
following cases:

— fast fashion brands are known to be not eco-friendly and the popularity of
the low quality new items produced in such ways can reveal consumption
patterns. This can be done through analysis of users interacting with new
items or perception of new-items;

— re-using products is a sustainable consumption approach and the extent
to which items are circulated among users/markets can reveal consump-
tion patterns. This can be done through analysis of reusable items pur-
chased/used by same users.

— long-lasting products and eco-friendly services can sometimes be costly and
incur sharing of the expenses. The extent to which expenses (for certain
items) are shared can reveal another consumption pattern. This can be
done through analysis of user interactions with same certain items.

1.2 Streaming Graph Analysis

The emergence patterns of butterflies as the meso-scale temporal building blocks in bi-
partite streaming graphs are studied in two phases. Meso-scale refers to the intermedi-
ate granularity of subgraphs between microscopic subgraphs such as vertices and edges
and macroscopic subgraphs covering most of the vertices in the graph such as the largest
connected components. In the first phase, subgraph pattern mining is performed using
vertex-centric methods (where the butterfly vertices are explored with respect to their

!United Nations sustainable development, un.org/sustainabledevelopment/

2“Sustainable consumption and production is about doing more and better with less. It is also about
decoupling economic growth from environmental degradation, increasing resource efficiency and promoting
sustainable lifestyles.”
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type, degree, support, and/or timestamp) and edge-centric methods (where the distribu-
tion of the inter-arrival of butterfly edges is explored). In the second phase, subgraph
pattern mining is performed using vertex-centric methods (where the butterfly vertices
are explored with respect to their type and weighted degree (strength)) and edge-centric
methods (where the distribution of strength difference of butterfly edges is explored). In
both phases, a landmark window is used for eager computations (where sgrs are appended
to the window), or lazy computations (where batches of sgrs are appended to the window).

The first phase [297, Section 3.2 shows that butterflies are temporal motifs with bursty
emergence patterns. Due to these emergence patterns, the number of butterflies is sig-
nificantly and continuously higher than that of random (null) graphs. The quantitative
emergence pattern is formulated as the butterfly densification power law (BPL) which
states that the number of butterflies at time ¢ follows a power law function of the number
of edges at time 7. Another finding is that the bursty butterfly formation is contributed by
vertices with degree above the average of unique vertex degrees (hubs) and timestamp in
the first 25% of ordered set of already seen timestamps (old hubs). The second phase |29,
Section 5.1 discovers a phenomenon called scale-invariant strength assortativity of
streaming butterflies, a co-occurrence of three patterns: butterfly densification, strength
diversification, and steady strength assortativity. The confounding data-driven semantics
are explained in the domain of user-item interactions as these patterns relate to three graph
theory concepts: burstiness, rich-get-richer, and core-periphery. These laws influence the
algorithms developed in this thesis.

The main challenge is performing the stream mining while simultaneously maintaining
effectiveness and efficiency. As discussed in the following, this is addressed with respect to
the data and techniques used throughout the analyses.

Data. Effective exploration relies on real-world bipartite streaming graphs with times-
tamps and weights. The focus of this research is user-item streams. The sequences of
user-item interactions in web-services are typically associated with a weight that can be an
explicit value such as rating, or an implicit value denoting the multiplicity of interactions
between a pair of vertices. Moreover, the time-labeled interactions are continuously gener-
ated with a non-stable rate giving rise to emergence of an unbounded dynamic structure.
The edge weights and fine grained temporal information enable exploring the temporal and
connectivity patterns. Publicly available data are used in which the timestamp and weight
are explicitly given in the data records (common in rating graphs). Implicit weights that
are computed by aggregating multiple edges between two vertices are not considered, since
such aggregations require aggregating the timestamps as well, which in turn manipulates
the temporal properties and makes the temporal analysis unreliable.
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Effective exploration also relies on configurable random graph models as null graph
models to generate synthetic streams with known properties. A null graph model [297,
Section 3.1] is proposed to better understand and explain what is happening in real world
graph streams through the comparisons and contradictory case investigations. The model
extends the popular and widely adopted Barabasi-Albert model [35] (e.g. used in [159, 221,

|) to generate bipartite streaming gaph with respect to a given real graph such that the
synthetic stream has (roughly) the same dynamic structural statistics but the timestamps
are static.

Techniques. Effective exploration also relies on data mining approaches which supports
the data characteristics (e.g. does not incur information loss, edge inflation, and artificial
graph patterns). This enables explainable, interpretable, and reliable pattern discovery. A
new metric, called strength assortativity localization factor [298, Section 4], is introduced.
This metric enables simple and effective (fair and accurate), statistical temporal analysis
(e.g. strength assortativity) for network inference in graphs having dynamic streaming
rate, abundant (bi)cliques, different scales, and multiple/skewed (strength) distributions.
It is based on tracking the localization of a low-dimensional vector, embedding data dis-
tributions in graph snapshots within/across streams.

Efficient exploration with a main-memory processing scheme requires incremental ap-
proaches to tackle the unboundedness and partial access to the graph structure. To this
end, several windowing schemes are used for setting the slide size/frequency and window
size /elements. Precisely, for the purpose of exploratory analyses, landmark windows are
used and the analyses are performed after appending of either one sgr or a variable-length
batch of sgrs. Also, an exact batched processing algorithm [297, Section 3.2| is devised for
butterfly enumeration. This algorithm follows a vertex-centric approach that does not re-
quire accessing two-hop neighbours (i.e. it is not triple/wedge-based) and can be computed
by looping over either i-vertices or j-vertices depending on their average degree. Therefore,
it is suitable for large graphs with high average degrees.

1.3 Streaming Graph Modelling

This component of the thesis involves modelling/explaining the growth patterns in stream-
ing graphs. As previous studies |29, , | describe, the graph models providing micro-
mechanics or high-order generative process of graph structure are generally deemed as
the explanation for the patterns observed in real-world graphs. Current works study and



model the generative patterns of static or aggregated temporal graphs commonly opti-
mised for down stream analytics or ignore (1) multi-partite/non-stationary data distribu-
tions, (2) emergence patterns (not just existence) of building blocks, and (3) streaming
paradigms such as unbounded/time-sensitive updates, evolving streaming rates, and out-
of-order /bursty records (e.g., [10, , , 14, , 25, , |). The thesis introduces a
streaming growth model, called sGrow [298, Section 6], which includes a set of microscopic
mechanisms to explain the discovered patterns (Figure 1.3). Microscopic mechanisms also
known as ‘local rules’ determine how new edges connect to the rest of the graph. sGrow
suits the following cases:

Microscopic Mechanisms

Preferential Random Walk

e Strength preferential selection
e BFS+DFS traversals

e Dynamic and random hop-count

Realistic sgr Generation
e Inactivity gaps
e Timestamp assignment

Scale-Invariant Strength Assortativity
— Out-of-order sgrs

— Bursty sgrs Butterfly Densification
o el sifiesinig vaite — Strength Diversification
— Batch of new sgrs
— Random batch size Steady Strength Assortativity

— Burst addition per sgr/batch
e Local/unbounded updates

— Sliding window

— Continuous sgr generation

Probabilistic Connections

e Random vertices

e Neighbor copying

Figure 1.3: Introduced microscopic mechanisms for explaining butterfly emergence patterns
by sGrow model.

e Streaming graph benchmarks by generating configurable realistic data streams sup-



ported by a reference guide for parameter configuration and stress testing analysis.

e Machine learning benchmarks by providing annotated data streams which are syn-
thesized by realistic instance injection and suit both testing and training purposes.

e Development of streaming algorithms and models (e.g. concept drift models) by
providing microscopic mechanisms and characteristic patterns.

The main challenge is reproducing the explored realistic patterns in an effective, effi-
cient, explainable, and configurable approach. As discussed in the following, this is ad-
dressed with respect to the functions and parameters of the introduced algorithms.

Functions. An effective, efficient, and explainable growth model requires pinpointing the
generative origins and modelling them via accurate and scalable micro-mechanics. sGrow
incorporates techniques for iterative addition of bursts of sgrs which satisfy streaming graph
model, preserve realistic patterns of butterfly emergence quantitatively and qualitatively,
and make the stream generation scalable. Moreover, sGrow enables generating sequence of
bipartite edges attributed with timestamps and weights, isolated/out-of-order edges, and
four-vertex graphlets.

Parameters. A configurable model requires designing a parameterized algorithm which
robustly realizes realistic growth patterns independent of initial conditions, scale and tem-
poral characteristics, and model configurations. sGrow is parameterized with user-specified
configurations for the scale, burstiness, level of strength assortativity, probability of out-
of-order records, generation time, and time-sensitive connections.

1.4 Streaming Graph Analytics

The third component of the thesis involves designing analytics algorithms as part of frame-
works for two cases in streaming graphs: butterfly counting and concept drift detection.

1.4.1 Butterfly Counting

The results from the previous research component confirm that butterflies are temporal
motifs in bipartite streaming graphs. On the other hand, as noted in various studies (e.g.
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[301, , O1]), motif counting is a fundamental problem in large-scale network analysis.
Therefore, in this part of the thesis, the problem of butterfly counting in bipartite streaming
graphs is studied. This benefits many applications where studying the cohesion in graph
data is of particular interest. Examples include investigating the structure of computational
graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks
over complex real graphs (Figure 1.4). Butterfly counting is computationally expensive,
and known techniques do not scale to large graphs; the problem is even harder in streaming
graphs.

Following a data-driven methodology, the thesis introduces sGrapp [297, Section 4], a
streaming graph approximation framework for butterfly counting. sGrapp uses a novel
window-based stream processing, which adapts to the temporal distribution of the stream.
The window management mechanism is general and conforms to any real stream with
no assumption about the order and number of arriving sgrs. This mechanism provides
load-balanced windows for efficient analytical workloads and also enables accurate conti-
nous,/temporal analysis which are based on comparing the analysis over different windows
of a stream as well as analysis over different streams having different temporal distributions.

Applications

Predictive Performance

‘ IBmeniily Ceumliing ‘ of Deep Neural Networks

‘ Realistic Graph Models ‘

‘ Representative Graph Sampling ‘
‘ Graph Cohesion ‘

Dynamic Phenomena

Metrics ) . )
e Social Collective Behaviors
e Butterfly Support o
e Synchronization

e Clustering Coefficient
e Information Propagation

e Transitivity Coefficient

e Epidemic Spreading

Community Structure Graph Analytics

Structural Measures o ik Precheiion

o Community Detection
e Cohesive Sub-structures

e Recommender Systems

Figure 1.4: Example applications of butterfly counting.

The main challenge is simultaneously achieving efficiency and effectiveness. Exact but-
terfly counting is feasible only when the entire graph is available to the processing al-
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gorithm. As discussed in the following, this is addressed with respect to the butterfly
emergence patterns and the windowing methods.

Patterns. An efficient streaming algorithm for butterfly counting can only deal with
a subset of the stream at any given point in time. Also, a precise streaming algorithm
demands taking into account all existing butterflies regardless of how long they take to
form and how much memory is available. According to the discovered patterns and based
on BPL, an estimate is provided for the count of a certain type of butterflies which are
computationally challenging. Also, optimisations are introduced based on learning accurate
values for the exponent of BPL.

Windowing. An efficient and accurate streaming algorithm for butterfly counting de-
pends on appropriate windowing approaches for setting the window size/slide such that no
butterfly is missed in counting. In window-based algorithms such as those in this thesis,
care is required as butterflies may be split across windows, affecting the butterfly count —
it is important to take into account the butterflies that may fall between windows. More-
over, when counting the number of multiple-window-spanning butterflies, it is important
to quantify them based on BPL. Based on the discovered patterns, a window manage-
ment method is introduced to deal with the bursty emergence patterns of butterflies. The
proposed approach uses burst-based tumbling windows that can adapt to the temporal dis-
tribution of the real streams with no assumption about the order and number of arriving
sgrs. The benefits are two-fold:

e providing load-balanced windows for efficient analytical workloads; and

e cnabling accurate comparison of graph snapshots of the same or different streams.

1.4.2 Concept Drift Detection

Concept Drift (CD) occurs when a change in a hidden context can induce changes in a
target concept. CD is a natural phenomenon in streaming data due to the non-stationary
setting. Understanding, detection, and adaptation to CD in streaming data is vital for
effective and efficient analysis/analytics as reliable outputs depend on adaptation to fresh
inputs. Also, a variety of practical use-case scenarios reside in streaming setting and incur
CD. This thesis defines CD in streaming graphs and introduces sGradd, a streaming graph
framework for drift detection.
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The main challenge is, again, simultaneously achieving efficiency and effectiveness, while
detecting and understanding the drifts with an explainable and unsupervised method.
Moreover, the evaluation methodology should be accurate and reliable. As discussed in
the following, this is addressed with respect to the framework design and its performance
evaluations.

Design. An accurate detection algorithm demands stateful operations over windows of
sgrs and this is computationally expensive. On the other hand, high velocity and dynamic
streaming rate of sgrs necessitate a rapid drift detection. In the thesis, transient concepts
in streaming graphs are defined. CD is defined in the case of transient, interconnected,
and sequence of data instances forming a streaming graph which serves as the input to any
online adaptive analytic task (in both supervised and unsupervised mode). Accordingly,
sGradd, a modular framework, is introduced with data management and drift detection
components based on the butterfly patterns. The components are composed of a collection
of explainable, unsupervised, and adaptive techniques for understanding and detecting
drifts in hidden contexts that are reflected in target transient concepts. The introduced
techniques display initial and improving performance (with respect to accuracy and latency
of detections) over the timeline of sgr arrivals.

Evaluation. An accurate evaluation demands drift labels and precise recognition of
true/false and missed/delayed detections. sGrow is used to generate streams with differ-
ent drift patterns (reoccurring versus gradual drifts) and intervals (close versus far drifts).
sGrow generates sgrs through adding bursts such that the stream reproduces realistic sub-
graph emergence patterns; Therefore, it simulates a drift in a hidden context (generative
process) rather than an explicit drift in the target concept (subgraph interconnnectivity
patterns). When the drifts are close to each other, there is a concern about evaluation of
both accuracy and latency since the detections can be delayed to a time point after the
next drifts [173]. In such situations, it is not certain whether a detection is a duplicate false
detection or it is a delayed detection corresponding to previous drifts. To address this con-
cern, the accuracy rates and latency of the sequential drifts are considered simultaneously
for close drifts and individually for far drifts.

1.5 Thesis Organization

The rest of thesis is organised as follows. Chapter 2 includes the definition and notations.
Chapters 3, 4, and 5-6 further explain the algorithms and results introduced by the stream-
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ing graph analysis, modelling, and analytics, respectively. Chapter 7 concludes the thesis
with a summary and future directions.
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Chapter 2

Background and Definitions

This chapter includes definitions and notations used for describing the data, processing
approaches, and subgraphs. Table 2.3 present the notations based on i-vertices. Similar
notations hold for j-vertices where applicable.

2.1 Streaming Graph Model

Definitions 1, 2, 3, and 4 describe the streaming graph data model introduced in this thesis
and [252, 253], as part of S-Graffito project!.

Definition 1 (Streaming Record) A streaming record (sr) r is a pair (7, p) where T is
the event (application) timestamp of the record assigned by the data source, and p defines
the payload of the record.

Definition 2 (Streaming Graph Record) A streaming graph record (sgr) is a stream-

ing record (Definition 1) denoted as a quadruple r™ = (v?’,v?,w?},‘rm), where m s the sgr
indezx, and the payload p = (vi", vT,w?}) indicates an edge with weight w?}. between vertices
m

Vi

m
and v T
Definition 3 (Streaming Graph) A streaming graph is an unbounded sequence of sgrs
denoted as R = (r',r%,---) in which each record r'™ arrives at a particular time t" (t™ < t"
form < n).

ldsg-uwaterloo.github.io/s-graffito/
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Figure 2.1: Streaming graph records arriving at sequential time points ! — ¢

Definition 4 (Burst) A burst is the batch of sgrs with same timestamp and arrival time.
b={r"|Br": " =", " =", r" ¢ b}.

Multiple generative sources or transmission delays cause out-of-order arrival of sgrs to a
processing unit which has no control over the arrival order or data rate. Therefore, a burst
is defined as the batch of sgrs with same timestamp which arrive at the computational
system together. It is not defined as all sgrs with same timestamp. Bursts can be repeated
over time. For instance, Figure 2.1 illustrates a stream with nine sgrs:

=@y, et = (ph) = (R ), = (), 1= (07 3), = (),
rt=(p'135), r° = (p° 15), and r” = (p”, 75)
In this example six bursts exist:

b1 = {rl,r?}, by = {r3,r1}, by = {r’}, by = {r%r®}, b5 = {r"}, and bg = {r’}

7

Where b? and b° include a same timestamp 7 as r’ is a late arrival.

The sequence of sgrs is considered to be ordered by arrival times rather than timestamps.
This helps to take into account late arrivals and enables defining a stream as a sequence
of arriving bursts.

2.2 Window Management

Definitions 6,7, and 8 describe existing approaches to manage a window as described in
Definition 5. Definitions 9, 10, and 11 describe the introduced burst-based windows in the
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thesis. Tables 2.1 and 2.2 present instances of these windows operating over the streaming
graph shown in Figure 2.1. The content of any of the defined windows form a graph
snapshot, which is described in Definition 12.

Definition 5 (Window) A window indezed by k, Wy, over a streaming graph is a finite
multi-set of sgrs denoted as a range [W,f, WY), where W]i’ and W[ are the beginning and end
borders.

Definition 6 (Time-based Sliding Window) A time-based sliding window with win-
dow size |Wy| and slide parameter B is a window (Definition 5) that slides every B time
units and at any time point t, W, = [t/B] - B and W,f = W{ — Wkl

Definition 7 (Tumbling Window) A tumbling window is a time-based sliding window
(Definition 6) that has a constant slide interval equal to the window size and covers disjoint

intervals as (|Wy| = B, Yk) and (W,fﬂ =W;, Wi, = W,f+1 + |Wis1l)-

Definition 8 (Landmark Window) A landmark window is a window (Definition 5)
that progresses as new sgrs are added and the window size increases. The beginning border

is fized and the window size is incremented as W,fﬂ = Wf: and W1 = W7 + [Wia].

Definition 9 (Burst-based Sliding Window) A burst-based sliding window with a pa-
rameter Np is a window (Definition 5) that progresses as Nj bursts (Definition 4) are
added and window size changes randomly as a random number of sqrs are retired from the
window.

Definition 10 (Burst-based Tumbling Window) A burst-based tumbling window with
a parameter Ny is a window (Definition 5) that covers disjoint intervals. It progresses as
Njp bursts are added and window size changes to the number of new sgrs. i.e. It is a
tumbling window (Definition 7) with dynamic slide interval and window size.

Definition 11 (Burst-based Landmark Window) A burst-based landmark window
with a parameter Ny is a landmark window (Definition 8) that progresses as Np new bursts
are added and the window size increases by the number of new sgrs.
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Table 2.1: Instances of time-based, count-based, tumbling, and landmark windows.
Windows capture the sgrs arriving according to Figure 2.1.

Window Instance Window Content
Time-based sliding 8 =1, |W| =
Wi = [ro,14) {r r?,r3,rt)
Wo = [t1,15) {r?, r3 r4 r5 ,r5}
W3 = [t29 tﬁ) {1”4, 5’ 6’ 1”7, 78}
Tumbling |W| =
W1 = [t0,12) {rt,r?}
Wy = [t2,14) {r®, r'}
W3 = [t4,16) {r>,r% 1% r7}
Landmark
W1 = [10,11) {}
Ws = [0, 12) {rt,r?}
W3 = [to, t3) ol r rty
Ws = [to, t5) {rt, ,,2’ r3,rt, b}
We = [to, t6) (2 3,k 0, 8, 8 Py
Wr = [to, t7) (12,3, e 0 S r T e Yy

Definition 12 (Graph Snapshot) A graph snapshot is a pair of vertex and edge sets

= (V,E) forming a graph at time point t by the sgrs within a corresponding window Wy.
For simplicity, graph snapshot denoted as Gw; and its corresponding window Wg are used
interchangeably throughout the thesis.

When the graph snapshot is unipartite, edges are denoted as E = {e,, = (v,n,w,,)}.
When the graph snapshot is bipartite, vertices are two disjoint sets of i- and j-vertices
V=V;UV;, V;nV; =0 and edges are denoted as E = {e;; = (v;,v;,w;j)} € V; xV;. The
set of one-hop neighbours of a vertex v is denoted as N(v) = {n | e,, € E}. Neighbours
of an i-vertex v; are called j-neighbours denoted as N;(v;). Similar notation stands for
i-neighbours of a j-vertex v;, denoted as N;(v;).

2.3 Subgraphs

Definitions 13,14, and 16 describe existing subgraphs (illustrated in Figure 2.2) and a graph
property used in this thesis. Definition 15 introduces an extension of Definition 14.
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Table 2.2: Instances of burst-based windows.
Windows capture the sgrs arriving according to Figure 2.1.

Window Instance Window Content
Burst-based sliding N, = 1

W1 = [t0, 12) {rt,r?}

W2 = [tO’t?)) {}’2,}"3,1”4}

W3 = [t()’t5) {rl’rZ,rA}

Wy = [to,16) {r', "4 r°}

W5 = [to, 16) {rl, rt, r}

Burst-based tumbling Nj =1

W1 = [10,12) {rt,r?}

Wo = [12,13) {r3, rt}

W3 = [t3,15) {r°}
= [15,16) {r0,r%)

W5 = [t5,16) {r'}

We = [t6,17) {r’}

Burst-based landmark Nj, =1

W1 = [t0, 12) {rt,r*}

Wg = [to,13) {r1,r2, 3, rt)
= [to,15) {rt, r2, 3,14, rd}
= [0, t6) {(rt 2 3, 0,8 8
= [t0,16) {rt e 3,k 0,8, 8 Ty
= [to,t7) {rl e 3,k 5,8 8 r T, P9}
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Figure 2.2: (a, b, ¢, d) Caterpillar and (e) butterfly sub-structures [11].

Definition 13 (Caterpillar) A caterpillar = is a three-path between two i-vertices v;,,
and vi, and two j-vertices vj, and v;,. Two pairs of i- and j-vertices can form four
different caterpillars. i.e. = ={e;, j,, iy j1sCis,jo} VI€i1,j1s €1 jos Cinjot VI€iy, jo» Cin,jos €in,j1 } V

{eil,jla €i,jo> eig,jl} (Fzgw“e 22(&)—((1))

Definition 14 (Butterfly) A butterfly Mi.ll’% is a 2,2-biclique between two i-vertices v, ,
Vi, and two j-vertices v, v;,. It is a closed four-path SUSHE {€i1,j15 Cig,j1» €in,jos €it,jo )}

Jij2™
formed by adding an edge to a caterpillar (Figure 2.2(¢e)).

Definition 15 (Young Butterfly) A young butterfly »< is a butterfly with j-vertices hav-
ing a timestamp within the last x percentage of seen unique timestamps in the stream, i.e.

pa= {Mljlll]zl It vy erovy, €rt, (", 7") € [Tt_[m]’ T ’TZ_I’TZ]}'

Considering young butterflies (i.e. restricting the set of j-vertices), enables case studies
where the freshness of input data is important and/or the goal is to perform processing
over transient data records rather than all seen data records (streaming processing). In
the thesis, x = 25%. Setting x = 100% would be equivalent to considering all seen vertices.
The set of unique timestamps in the stream grows over time and consequently the set of
j-vertices within the x percentage grows. Choosing a low percentage helps to keep the size
of this set balanced particularly when the streaming rate is high.

Definition 16 (Vertex Strength) Vertex strength (shortly strength) is the total weight
of edges connected to a vertex denoted as S; = Xy eN;(vi)Wijs Sj = ZyeN;(v,)Wij [305, 40, 41].
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Table 2.3: Frequent notations used to describe data.

Notation Description

r' Streaming graph record (sgr) with index m

vt i-vertex corresponding to sgr r™

T Timestamp of sgr r™

m Arrival time of sgr ™, a computational time point

w:.’]’. weight of the edge between v; and v; corresponding to sgr r”
R=(lr2.) Streaming graph

Vi ={v;} Set of i-vertices

E set of edges

deg (i) Degree of vertex v;

d; Average degree of i-vertices

N(v) One-hop neighbourhood of a vertex v

€vn A unipartite weighted edge between vertices v and n

eij A bipartite edge between vertices v; and v;

N Number of vertices in Barabasi-Albert model

m Initial number of vertices in Barabasi-Albert model

mg Number of connections of each new vertex in Barabasi-Albert model

A window with index k as a range of width |W|
A graph snapshot formed by window W at time ¢
A graph snapshot formed by a burst-based window
Slide parameter for a sliding window

A burst

Average /maximum seen burst size

Number of bursts per window

Caterpillar

Butterfly

Young butterfly

Number of wedges (two-paths)

Structural pattern
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Chapter 3

Streaming Graph Analysis

Bipartite graphs are rich data structures with prevalent applications and characteris-
tic structural features. However, less is known about their growth patterns, particu-
larly in streaming settings. Frequent subgraphs (motifs [232] or graphlets [281]) as the
building blocks of graphs [232]| play an important role in understanding the structure of
graphs |3, , b1, , , , , , , , , , , , |. Network
motifs are “patterns of interconnections occurring in complex networks at numbers that are
significantly higher than those in randomized networks” [232]. Identifying the motifs helps
characterize the graph and also benefits applications that are based on subgraph-centric
programming model (i.e. operates on subgraphs rather than vertices or edges) and can be
optimized by indexing the network motifs. That is, network motifs represent the regulari-
ties in the graph data and are helpful in building indexes over frequent and regular graph
structures (structural indexing) [350, , 290]. Butterflies are known to be motifs in
static graphs, however their temporal emergence patterns are not well studied. This chap-
ter presents investigations into the emergence patterns of butterflies in streaming graphs
and on the underlying contributors to these patterns. The goal is to understand How do
butterflies as the building blocks of bipartite streaming graphs emerge? This question is
answered in two phases: Phase 1: showing that butterflies are the building blocks (tempo-
ral motifs) across the timeline of sgr arrivals in bipartite streaming graphs and identifying
their emergence patterns [297]; and Phase 2: further explorations to explain the identified
patterns and discover all of their contributing factors [29%|. Both phases involve systematic
and extensive experimental analysis of real and synthetic graphs. This is the first empirical
study of how streaming graph substructures emerge.
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Table 3.1: Frequent notations in this chapter.

Notation Description

n Butterfly densification power-law exponent for all butterflies
Npup (1) Number of hubs at time ¢

B(1) The number of butterflies since the initial time point until ¢
B; Butterfly support of vertex i

Si Vertex strength of V;

r Assortativity coefficient

Pr(0) Probability distribution of strength difference of butterfly edges
Pr(S;) Probability distribution of strength of butterfly i-vertices

i Average strength of butterfly i-vertices

Us Average strength difference of butterfly edges

Ts Standard deviation of strength difference of butterfly edges
F; The i element of embedding vector of Pr(5)

ré Strength assortativity localization factor

cv Coefficient of variation

Yo Excess kurtosis

3.1 Data and Methods

Analyses are conducted on a machine with 15.6 GB native memory and Intel Core i7 —
677T0HQCPU@2.60GHz * 8 processor. All algorithms are implemented in Java (OpenJDK
versions 1.8.0 — 252 in Phase 1 and 11.0.11 in Phase 2).

3.1.1 Data

The set of real-world bipartite streaming graphs and the synthetic streams generated by a
proposed null graph model are described in the following.

Real-world graphs. The focus of research is the organizing principles in bipartite
streams such as user-item streams. The sequences of user-item interactions are typically
associated with a weight that can be an explicit value such as rating, or an implicit value de-
noting the multiplicity of interactions between a pair of vertices. Moreover, the time-labeled
interactions are continuously generated with a non-stable rate giving rise to emergence of
an unbounded dynamic structure. The edge weights and fine grained temporal informa-
tion enable exploring the temporal and connectivity patterns. The data used are publicly
available data in which the timestamp and weight are explicitly given in the data records
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(common in rating graphs). Implicit weights computed by aggregating multiple edges
between two vertices are not considered since such aggregations require aggregating the
timestamps as well, which in turn manipulates the temporal properties and makes the tem-
poral analysis unreliable. All datasets are available at public repositories KONECT [191]!
and Netzschleuder?. These datasets include naturally occurring bipartite interactions as a
set of records including the user ID, item ID, rating, and timestamp. The rating values are
in the set {1, 2, 3,4, 5} in all datasets except for WikiLens with ratings in {0, 0.5, 1, .., 4.5, 5}.
In WikiLens, the ratings are rounded and those ratings equal to 0 are replaced with 1 to
convert the rating scale to 1 — 5 (for fair comparison with other datasets). Tables 3.2 and
3.3 provide the statistics of the data streams used in the first and second phases of explo-
rations, respectively (notations are described in Table 2.3). These datasets cover graphs
with different structural properties (e.g. edge density, average vertex degree, and wedge
(i.e. two-path) count) and characteristics (e.g. number and average size of bursts) which
make them suitable for deep analysis. For instance, Ciao and Amazon have low average
degree of both i- and j-vertices, while they are bursty streams. Epinions® has higher aver-
age degree of i-vertices compared to that of j-vertices with a very high number of wedges
(the building blocks of butterflies), and it is a bursty stream with large bursts. WikiLens
has high average degree of i-vertices but it is not bursty. ML100k has high average degree
of i- and j-vertices and high number of wedges and it is roughly as bursty as ML1m and
Yahoo which have higher average degree of i- and j-vertices and higher number of wedges.

Synthetic graphs. In Phase 1 of explorations, synthetic random graphs are used in
addition to the real-world graphs to bolster the analysis over real-world graphs. In fact
synthetic graphs are configurable and have known structural properties that ease the un-
derstanding of their patterns. These synthetic graphs are used to better understand and
explain what is happening in real-world graphs through the comparisons and contradictory
case investigations. These synthetic graphs are generated with respect to the three real-
world graphs (Epinions, MovieLens100k, and MovieLenslm) in that the synthetic graphs
and the corresponding real-world graphs have (roughly) the same structural statistics (e.g.
the number of vertices and edges and the degree). The structure of these synthetic ran-
dom graphs is generated according to the attachment mechanism of Barabasi-Albert (BA)
model [38], which is a popular and widely adopted model for generating scale-free graphs.
Given the total number of vertices N, the initial number of vertices my and the number of
connections of new vertices m (m < myg) as inputs, the BA graph model applies the rich-

http://konect.uni-koblenz.de/networks/

2networks . skewed.de

3In literature, Epinions appears as both unipartite and bipartite graphs. In this thesis the bipartite
graph is used.
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Table 3.2: Datasets used in Phase 1 of explorations.

Vil \4] |E] d d; N m  Np
Epinions 22,164 296, 277 922, 267 41 3 4,318
BA-+Epinions 22,514 21,455 922, 254 41 43 22,51541 4,318
stamps
BA-+random stamps 22,514 21,455 922,254 41 43  22,51541 921,159
MLIm 6,040 3,706 1,000, 210 166 270 458, 455
BA-+ML1m stamps 6, 106 6,022 999, 901 164 166 6,107 166 458,312
BA-+random stamps 6,106 6,022 999, 901 164 166 6,107 166 994,467
ML100k 943 1,682 100, 000 106 59 49, 282
BA+MLOOk stamps 995 982 99,905 100 100 966 106 49,254
BA+random stamps 995 982 99,905 100 100 966 106 996,555
ML10m 69, 878 10,677 10,000,054 143 937 7,096, 905
Edit-FrWiki 288,275 3,992,426 46,168,355 160 11 39,190, 059
Edit-EnWiki 262,373,039 266,665,865 266,769,613 70 12 134,075, 025
Table 3.3: Datasets used in Phase 2 of explorations.
Vil V1 |E] di d; Ny B A
Ciao 17,615 16,121 72,665 4.1 4.5 4,919 14.8 4,896, 641
Epinions 120, 492 755, 760 13, 668, 320 113.4 18 501 27,282 69,245, 866, 714
WikiLens 326 5,111 26, 937 82.6 5.2 26, 239 1 6,316, 744
ML100k 943 1,682 100, 000 106 59.4 49,282 2 18,367, 254
MLIm 6,040 3,706 1,000, 210 165.6 269.9 458,455 2.2 602, 009, 923
Amazon 2,146,057 1,230,915 5,838,041 2.7 4.7 3,329 1,753.7 627,186,651

Yahoo 1,000,990 624,961 256,804,235  256.5 410.9 105,331,405 2.4 4,627,224, 528, 654

get-richer preferential attachment rule to generate a unipartite scale-free random graph.
Precisely, this graph model creates an initial complete graph with mg vertices and keeps
adding N — mg new vertices to this initial graph. The new vertices are connected to m
existing vertices with higher probability of attachment dictated by the attachment rule.
The BA preferential attachment rule states that the probability is determined based on
the degree of the vertex, therefore the higher the degree (i.e. the older the vertex), the
higher the probability of attachment. BA model produces growing unipartite graphs with
no timestamps. Therefore, in the following, the model is extended to generate bipartite
and scale-free streaming graphs with respect to a given real-world graph such that the
structure is dynamic but the timestamps are static.

1. Create Unipartite BA graph — The input parameters to the BA model (i.e. N,
m, and mg) should be set such that the average degree of i-vertices and the number
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of total edges (|E|) in real-world and synthetic graphs are (roughly) the same. That
is because of the edge-centric nature of the intended analysis. Therefore, the m and
mg are set as equal to the average degree of i-vertices (i.e. users) in the real-world
graph and the value of N is determined in a way that it satisfies the equation for the
number of edges in BA graph, that is mg(mg—1)/2+(N—mg)m = |E|. Given the input
parameters, the edge list of the scale-free unipartite directed graph is generated.

. Project the graph to bipartite mode — A common approach to project a bipartite
graph BG = (V, E;;) to unipartite modes G; = (V;, E;,) and G; = (V;, E}) is to connect
a pair of vertices if they have a common neighbour (Figure 1.1). That is, (v;,,v; ) € E;
iff v; eV, (vi,,vj) € Eij & (vi,,v;) € E;j and the same connection rule for j-
vertices. Accordingly, a reverse-engineering technique can be used for projecting the
unipartite graphs to bipartite mode. Precisely, given a unipartite BA graph G; with
N; or N; vertices (assuming the vertices as i- or j-vertices), the bipartite mode BG is
generated by the procedure below:

(a) Assign N; labels {Li|1 < k < N,} to arbitrary edges in G;.
(b) Create a set of N; j-vertices.

(c) Project each edge (v;,,v;,) € E; with label Ly into two edges (v;,,v;,) and
(V,‘n,ij).

Clearly, this procedure can yield a bipartite BA graph with a pre-specified number
of i- and j-vertices. Therefore, it can mimic the number of vertices in the real-world
graph exactly. However, the number of edges in the output bipartite BA graph
does not match that of the unipartite BA graph and if we create a unipartite BA
graph with specific number of edges, then the number of i-vertices would be affected
accordingly. Therefore, this projection method can not yield bipartite BA graphs that
have specific number of edges and vertices at the same time and solely adjusting the
number of edges will affect the number of vertices. On the other hand, the intended
analysis are edge-centric, therefore it is important to create synthetic bipartite graphs
with the same number of edges as the real-world graphs.

To address this problem, a simple projection method is followed. Given the list
of directed edges in the unipartite BA graph, the sources of edges are treated as
i-vertices and the destinations as the j-vertices. Hence, the BA graph is projected
to bipartite mode with the same number of edges as that of the unipartite and the
corresponding real-world graph. The number of i-vertices in the projected bipartite
BA graph (equal to the N of unipartite BA graph) is very close to that of the real-
world graph. In spite of different number of j-vertices in the projected and real-world
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graphs, this projection method is preferable as it solves the aforementioned issue.
Moreover, this method preserves the scale-free characteristic of the uni-partite graph
since the j-degree (i-degree) distribution in bipartite graph is equivalent to the in-
degree (out-degree) distribution of vertices in the unipartite graph and the j-degree
distribution is scale-free.

3. Assign timestamps to the synthetic edges — Given the timestamps of the real-
world graph and the bipartite structure of the corresponding random graph, times-
tamps are assigned to the edges in two ways:

(a) Each BA edge is randomly assigned a timestamp within the range of times-
tamps of the corresponding real-world graph and the resulting graph is called
BA -+random stamps.

(b) The un-ordered timestamps of the corresponding real-world graph are assigned
to arbitrary BA edges and the resulting graph is called BA-+real stamps. This
method guarantees same temporal distribution for the edges of BA and real-
world graphs and supports fair comparisons.

All the edge lists (real and synthetic) are sorted based on the timestamps to simulate
the streaming graph records in the analysis. When there are duplicate edge arrivals (i.e.
multiple connections between two vertices), the duplicates are ignored and only the first
edge is considered.

3.1.2 Methods

Exact Butterfly Counting. Analyses in both Phase 1 and Phase 2 rely on enumerating
butterflies. It is important to calculate the exact number of butterflies to make sure
that the analysis is correct and the identified patterns are reliable. Therefore, an exact
butterfly counting algorithm (Algorithm 1) is introduced to count the occurrence numbers
in sequential graph snapshots. Given a bipartite graph snapshot Gy, at a time point ¢,
the goal is to compute B(¢) as the number of all quadruples (v, vi,,v;;,V},) in Gw, such
that they form a butterfly (Definition 14). Algorithm 1 follows a vertex-centric approach
that does not require accessing two-hop neighbours (i.e. it is not triple-based) and can be
computed by looping over either i-vertices or j-vertices depending on their average degree
(denoted by d; and d;). The algorithm takes a vertex v;, (provided that d; < d;) and
considering each pair of j-neighbours v;, and v;,, identifies any vertex v;, which is a common
i-neighbour of v;, and vj, to form a butterfly (Figure 3.1). Sub-lists are used to avoid
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Figure 3.1: Schematic figure for the introduced algorithm countButterflies(G)

iterating over repeated j-neighbours (lines 4-6 in Algorithm 1) and the common neighbours
are identified by iterating over the lower degree j-vertex (line 8 in Algorithm 1). Quadruples
are added to a hash-set (line 10 in Algorithm 1) whose size determines the butterfly count
(line 11 in Algorithm 1). The algorithm is extended to compute the butterfly support of
each vertex as the number of butterflies incident to the vertex (Algorithm 2). In Phase 1,

Algorithm 1: Exact Butterfly Counting

1 Function countButterflies(G)
Input: Gw,=(V;UV,, E;;), Static graph
Output: B(7), The number of butterflies in G
Butter flies < 0 jneighbours <« 0 viss < () for i; € V; do
jneighbours «— N;,
for index1 € [1, size(jneighbours)] do
J1 < jneighbours|index1]
for index?2 € [index1 + 1, size(jneighbours)] do
Jo « jneighbours|index2]
Vigs «— le ﬂNj2
if (i1, j1,i2, j2) ¢ Butter flies then
L Butter flies.add({i1,i2, j1, j2))

© O N o ok~ W N

-
o

11 | B(t) « size(Butter flies)

an eager computation model is adopted where the exact number of butterflies is computed
after each edge is added. That is, Algorithm 1 runs over a landmark window (Definition 8).
This is done in the time period 0 to 5000 (i.e. first 5000 sgrs) due to the computational
overhead of the algorithm. Note that the frequency distribution of edge insertions occurring
in time-intervals of variant sizes follows the same shape. This means that the distribution
with respect to scaling across time scales is invariant (i.e. self-similar [333]). Therefore,
we can rely on the analysis of a fraction of the subsequent streaming edges. To compare
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Algorithm 2: Butterfly Support
1 Function ButterflySupport(G)

Input: G =(V; UV, E;;), static graph
Output: vSupport, butterfly support of vertices
2 vSupport < 0, Butter flies < O, jNeighbors < 0, vi2s « ()
3 for vi; € V; do
4 JNeighbors « N;(i1)
5 for index1 € [1,size(jNeighbors)] do
6 J1 < jNeighbors|index1]
7 for index?2 € |index1 + 1, size(jNeighbors)] do
8 Jo < jNeighbors|index2]
9 vigs < N;i(j1) N N:(j2)
10 for iy € vigs do
11 if (i1, j1,i2, j2) € Butter flies then
12 Butter flies.add({i1, 12, j1, j2))
13 vSupport.put(iy,vSupport.get(iy) + 1)
14 vSupport.put(ji,vSupport.get(ji) + 1)
15 vSupport.put(ia, vSupport.get(iz) + 1)
16 vSupport.put(jo,vSupport.get(j2) + 1)

the numbers with that of a random graph as a null graph for checking the motifs, only
the corresponding BA graph with the same real timestamp is used. This enables fair
comparison of structural evolution of real-world and synthetic random graphs.

In Phase 2, Algorithm 1 is used to list the butterflies over sequential graph snapshots
corresponding to a burst-based landmark window (Definition 11). The emergence of a
certain number of butterflies is studied in different streams with different structural /tem-
poral properties. That is, the prefix of streams is considered until the arrival of up to
~6.5 x 109 butterflies, which covers the entire stream in WikiLens with 26220 bursts and a
prefix of 10000, 9600, 460, 2000, and 15000 bursts in ML1m, M1100k, Epinions, Amazon,
and Yahoo, respectively. In Ciao, the entire stream is checked, which has 4900 bursts and
~6.4 x 10° butterflies (Table 3.4). The corresponding timeline of burst arrival is divided
into 20 equally distanced points and at each point the butterflies in the burst-based graph
snapshot are studied. In the analyses, it is important to care about the value and the trend
of data points; the number of graph snapshots (here 20) simply changes the smoothness of
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the plots and does not affect the results since streams with different distribution of times-
tamps are checked and the scale of graph snapshots differs in various streams. The number
of edges/butterflies in each burst varies in different graphs depending on the burstiness of
the stream.

Table 3.4: Statistics of the 20" graph snapshot in real-world streams.

|E?0| is edge count, Ngo is burst count, and butterfly count is denoted as »<C.
[ED| Ngo 20

Ciao 72,574 4,900 636,440

Epinions 296, 665 460 6,418, 862
WikiLens 26,918 26,220 6,556,913
ML100k 18,696 9,600 6,492,834
MLIm 22,795 10,000 6,678,784
Amazon 2,194,798 2,000 6,496,236
Yahoo 42,105 15,000 6,496,563

Strength Assortativity Measurement. The tendency of vertices to connect to
similar vertices with respect to one of their quantitative/qualitative attributes is called
assortativity /homophily |2411]. For instance, degree assortativity refers to the tendency of
vertices with similar degrees to connect. In a graph with degree (dis)assortative mixing
pattern, high degree vertices are connected to high (low) degree vertices. In a graph with
perfect (dis)assortativity, vertices connect only to same (different) degree vertices. In ad-
dition to connectivity insights (the primary goal in Phase 2 of explorations), assortativity
provides information about the dynamic behaviour and robustness of the graph [318, 100].
For instance, degree disassortative complex networks compared to degree assortative net-
works exhibit higher epidemiological threshold leading to easier immunization, while as-
sortative networks get higher resilience to systemic risk by degree-targeted immunization
policies [100] (Noldus and Van Mieghem [217] describe this in a complete survey). The
epidemiological threshold is defined as the critical ratio among the propagation rate and
recovery rate of a disease above which epidemics ensue and immunization is the policy
to stop the propagation process. Assortativity is usually studied with respect to vertex
degrees. A previous study [204]| has shown that studying the assortativity by considering
just the degree does not completely uncover the organizational patterns in the structure
of graphs. Leung and Chau [204] have introduced the weighted assortativity coefficient to
measure the tendency of having a high-weighted edge between vertices with similar degrees.
However, the goal of analyses in the phase two in this chapter is measuring the tendency
of having an edge between vertices with similar strength (i.e. measuring strength assor-
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tativity to discover the connection patterns with respect to weights as well as degrees),
particularly in butterflies. In the following, first the requirements are established for an
effective measurement of strength assortativity that can accommodate analysis of meso-
scale, bipartite, and temporal structures; next, a new metric is introduced for strength
mixing patterns called strength assortativity localization factor.

The assortativity coefficient (r) [211] is a common metric for assortativity [382, :

|]. Assuming that we are interested in quantifying the tendency of vertices to connect
to each other based on the similarity of their attribute K, r is computed as the pearson
correlation of K of linked vertices and lies in the range —1 < r < 1. Positive (negative) r
signals (dis)assortativity and r = 0 denotes random mixing. Another approach to study
assortativity is to compute the average K of nearest-neighbours for each vertex and then
aggregating the values by restricting the class of vertices with K = k. It is denoted as (K,,)
which is a function of K. An increasing (decreasing) (K,) signals (dis)assortativity. This
can be inferred by checking the sign of the slope of a linear fit in the log-log plot of (K},)
as a function of K. In the following, the effectiveness of r and (K,) in quantifying the
strength assortativity of butterflies is investigated.

The evolution of two distributions are considered over sequential graph snapshots:

e Pr(6), the probability distribution of strength difference for connected butterfly ver-

tices which is computed as Pr(d) = %, where F(0) is the number of butterfly

edges with strength difference 6 and the sum runs over the range of § values, and

e Pr(S;), the probability distribution of strength for butterfly i-vertices which is com-

puted as Pr(S;) = ;,((Sg), where F(S;) is the number of butterfly i-vertices with

strength ;. The same notations hold for j-vertices and Pr(S;).

115 230 345 460
Number of Bursts, Nb

Figure 3.2: Assortativity coefficient over timeline of burst arrival in Epinions stream.
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As a running example, the real-world stream Epinions is used with 20 equally-distanced
points in the timeline of burst arrivals. At each point (Np), r is calculated for the strengths
of linked butterfly vertices in the corresponding graph snapshot Gy, (Figure 3.2). Also,
Pr(6) is considered at two points corresponding to the arrival of 92 bursts (Figure 3.3(a))
and 437 bursts (Figure 3.3(b)). At N, = 92, the probability that a butterfly edge has
strength difference below the average strength difference us is Pr(6 < us) = 0.67. However,
the assortativity coefficient is r = 0.007 suggesting no (dis)assortativity (i.e. random
connection of butterfly vertices with no tendency to connect to (dis)similar vertices). Also,
at Np = 437, majority of butterfly edges fall in the region behind us with probability
Pr(6 < us) = 0.71, while r = —0.17 suggests strength disassortativity.

s s
(W) Ay
« 10 IS
2 2
° S
e e
a ~
0 500 1000 1500 2000 2500 3000 3500 4000
Strength Diffrence, ¢ Strength Diffrence, ¢
(a) Pr(6) at Np =92 (b) Pr(6) at Np =437

Figure 3.3: Distribution of strength differences of connected butterfly vertices.

The reason behind this confusing behaviour of r is its bias toward the distribution of
strength of i- and j-vertices with respect to their average. To clarify, consider Pr(S;) and
Pr(S;) at these two time points (Figure 3.4(a),(b),(c),(d)). At N, = 92, the probability
that a butterfly i(j)-vertex has strength less than or equal to the average strength of but-
terfly i(j)-vertices u;(u;) is almost equal to the probability that a butterfly i(j)-vertex has
strength greater than the average strength of butterfly i(j)-vertices (Pr(S; < ;) = 0.57
and Pr(S; < pj) = 0.54). Therefore, many strength deviations from the mean strength,
particularly for j-vertices, would be zero, making the coefficient an insignificant value close
to zero (r = 0.007). At Np = 437, a large majority of butterfly i(j)-vertices have strength
above the average strength of butterfly i(j)-vertices (Pr(S; > u;) = 0.9, Pr(S; > u;) = 0.8),
therefore their high deviations from the mean lowers the coefficient. In summary, the
assortativity coefficient reflects the global correlation between Pr(S;) and Pr(S;) (two sep-
arate distributions). The assortativity coefficient fails to capture the pairwise correlations
between strength of connected i- and j-vertices forming butterflies.
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Figure 3.4: Distribution of strength of butterfly i-vertices and j-vertices.

Next, the neighbourhood-based approach for studying assortativity is examined. Fig-
ure 3.5, shows the nearest-neighbour average strength of vertices with strength S [260] at
Np =92 and Nj = 437. At first glance, the decreasing trend suggests strength disassorta-
tivity: the higher the strength of a vertex, the lower the average strength of its neighbours
and vice versa. However, we should consider the skewed Pr(S;) and Pr(S;) with high-
strength vertices. Suppose that low-strength vertices are connected to many low-strength
vertices and one high-strength vertex. In this case, the average strength of neighbours
for these low-strength vertices would be high although the majority of neighbours have
similar low strengths. That is, relatively few vertices that have high strengths (because
of many connections and/or connections with high weights) skew the average strength
of their low-strength neighbours and hence mislead the assortativity interpretation. This
again highlights the issue of measuring strength assortativity in graphs with broad and
skewed strength distribution. To conclude, using conventional assortativity metrics is not
reliable for analyzing the strength assortativity of butterflies in bipartite streaming graphs
since
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Figure 3.5: Nearest-neighbour average strength of vertices with strength S.

e r is vertex-centric and reflects the global strength correlations rather than pairwise
strength correlations. In particular, in case of computing r for butterflies, each
butterfly vertex contributes duplicate values because of two adjacent edges; therefore,
vertices with strength equal/close to the mean (S — u ~ 0) decrease the overall
correlation, regardless of the strength of their neighbor.

e r is designed for unipartite graphs and using it in bipartite graphs can bias the
outcome by the strength distributions of i- and j-vertices.

e The neighbourhood-based approach can be misleading in case of graphs with broad
and skewed strength distributions since high-strength vertices have outlier impacts
and make the interpretation difficult.

Informed by the above discussion, an appropriate measure for the tendency of vertices
to connect to vertices with similar strength that is applicable to butterfly edges should
satisfy the following properties:

e It should directly reflect the probability distribution of strength differences rather
than the global correlations in the distribution of strengths.

e [t should not be designed based on neighbour information since in case of skewed
distribution of strengths, it would be biased by the outlier vertices.

e [t should enable comparison of strength assortativity for sequential graph snapshots
in the same stream as well as comparison of strength assortativity of graph snapshots
in different graph streams.
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The goal is to quantify and compare the distribution of strength differences in low di-
mension to enable temporal analysis over sequential graph snapshots of streams. A common
approach for comparing distributions (usually degree distributions) is Kolmogrov-Smirnov
test. However, this is sensitive to the distribution range and is not ideal for analyzing
sequential graph snapshots and different graph streams. The Degree Distribution Quan-
tification and Comparison (DDQC) approach [20] quantifies the degree distribution of a
graph based on 4 x 28 regions in the degree distribution and uses this quantification for
comparison. The regions are determined in two steps: first, the degree distribution is di-
vided into four regions covering the intervals between five subsequent points: min(degree),
u—ao, u, u+aoc, and max(degree), where u is the mean degree and o is the standard
deviation of degrees and « is a configurable parameter. Next, each region is divided into
28 equal sub-regions, where S is the second configurable parameter. Given these regions in
the probability distribution, a vector is constructed with 4 x 28 elements each representing
the summation of probabilities in a corresponding region.

The probability distribution of strength difference of connected butterfly vertices Pr(6)
is considered given a graph snapshot Gy,. Using graph snapshots corresponding to a burst-
based landmark window (Definition 11) enables fair comparison of different graphs with
different temporal characteristics. Inspired by the DDQC approach, Pr(9) is divided into
four regions based on the mean and standard deviation of ds (us and o, see Figure 3.3).
As long as the first region covers the low s, the number/coverage of other regions for the
tail of right-skewed distribution is not important in mixing pattern analyses. Accordingly,
the probability distribution is summarized as an embedding vector F with four elements
(Xi=1..4F; = 1). Each element corresponds to a region as below:

F1 = ZPr(5), V6 < us (3.1)
Fy=2Pr(6), Vus <6 < us+ s (3.2)
F3=2Pr(6),Vus+ o5 <6 < us + 20y (3.3)
Fi = SPr(6), V6 > us + 205 (3.4)

The vector F provides fine-grained information. Additionally, to express the strength
assortativity as an scalar for simple network inference in temporal analyses, the strength
assortativity localization factor is defined as r® = F; — 0.5 to track the localization
of s (F) on the region behind mean (F7). r* lies in the range [-0.5,0.5]. A positive r*
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highlights strength assortativity (i.e. vertices with similar strengths tend to connect to each
other), negative r* highlights strength disassortativity (vertices with dissimilar strengths
tend to connect to each other) and a zero value corresponds to random strength mixing.
r® = 0.5 denotes perfect strength assortativity and r* = —0.5 denotes perfect strength
disassortativity.

3.2 Analysis, Phase 1

3.2.1 Temporal Motifs

Real-world graphs display rapid temporal evolution of the number of butterflies (Fig-
ure 3.6). To further investigate the growth pattern of butterfly frequency in these graphs,
ten polynomial functions of degree one to ten are examined to fit the data points of tem-
poral butterfly frequency evolution (black lines in Figure 3.6) and the best fitting function
is picked (Table 3.5). The best fitting function satisfies three conditions:

e It has the lowest Root Mean Square Error (RMSE).
e It has the highest coefficient of determination (R?).

e [t is a non-decreasing function.

RMSE quantifies the estimation error, while R? quantifies the linear correlation between
the estimated fitting function and the data points. Figures 3.7, 3.8, and 3.9 illustrate the
best fitting function and its estimation errors (residuals) used in calculation of the RMSE.
Note that high RMSE values are due to the increasing function giving rise to high residuals.
The RMSE of different graphs are not compared; instead, the RMSE of different fitting
functions for each graph are compared. Therefore, the absolute value of RMSE is not as
important as its relative value for different functions. All the plots are properly fitted to
polynomial functions of degree above 5 (best fitted to 5th, 7th, 9th and 10th degrees -
Figures 3.7, 3.8, and 3.9). This is termed as the butterfly densification power-law (BPL,
following the power-law terminology [201]): the number of butterflies at time point ¢ (i.e.
B(t)) follows a power law function of the number of edges at 7 (i.e. B(z) o< f(|E(¢)|"),n > 1).
Moreover, the outstanding frequency of butterflies in the real-world graphs compared to
that of random graphs suggests that butterflies are network motifs across the time line.
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Table 3.5: R? and RMSE of polynomial fitting functions of degree d = 1 to d = 10 for

butterfly count in three real-world streams.
Filled cells decode increasing function and best fits are highlighted in gray cells.

R? . )

RMSE d=1 d=2 d=3 d=4 d=5 d=6 d=17 d=8 d=9 d=10
Epinions 0.99474 0.99514 0.99514 0499754 0.9977 0.9977 0.9978 0.9984 0.9987 0.9987

1.481e 1.435¢ 1.432¢ 1.028¢ 9751 9716 9598 8130 7409 7386

ML100K 0.931 0.9977 0.9978 0.9978 0.9983 0.9983 0.9993 0.9993 0.9997 0.9997
2.31e5 4.18e5 4.167¢° 4.126€° 3.673e” 3.584¢° 2.286e5 2.286e% 1.552¢° 1.552¢°

MLim 0.8751 0.9951 0.9953 0.9977 0.9989 0.9989 0.999 0.999_ 0.999 0.999
2.119¢6 4.196¢° 4.111e° 2.895¢° 1.976€° 1.961e° 1.94€% 1.937¢° 1.933¢° 1.933e5

ML10m 0.8943 0.9983 0.999 0.9992 0.9993 0.9993 0.9993 0.9994 0.9996 0.9997
3.223¢6 4.034e° 3.149¢° 2.841e" 2.701e 2.699¢° 2.605e° 2.493¢° 1.868¢° 1.781e°

FE— 0.9228 0.9932 0.9932 0.9953 0.9966 0.9968 0.99794 0.9988 0.9988 0.9989

8.09¢ 2.408¢ 2.397¢ 1.998¢ 1.693e 1.653¢ 1.319¢ 1.01e 9928 9725

it EnWiki 0.971 0.9879 0.9879 0.9903 0.9918 0.9928 0.9951 0.9957 0.9964 0.9967

1990 1288 1285 1150 1060 990 821.3 769.9 696.5 671.7
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Figure 3.6: Temporal evolution of butterfly frequency.

3.2.2 Butterfly Emergence Patterns - Densification

6000

Bursty Butterfly Formation. To study how butterflies as motifs are formed over time,
the distribution of inter-arrival time of pair of edges forming a butterfly is studied. That
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Figure 3.7: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in Epinions and ML100k
streams.

is, for any pair of edges (e, e2) with timestamps 71 and 7o that co-exist in a butterfly,
the inter-arrival time is |11 — 72|. A lazy computation model is adopted to compute the
inter-arrival distribution once at time point # = 5000 (i.e. after adding 5000 sgrs).

The distribution of inter-arrival values is skewed to the right (Figures 3.10 and 3.11).
The left peaks and the heavy tail of the distribution reveal different patterns. The leftmost
peaks highlight that many butterflies are formed by edges with close timestamps. On the
other hand, according to Figure 3.6, the number of butterflies increase significantly over
time. This suggests that butterflies are formed in a bursty fashion.

Next, the vertices that form the butterflies are investigated to see

e whether the bursty butterfly generation is contributed by hubs (i.e. vertices with
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Figure 3.8: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in ML1m and Edit-FrWiki
streams.

degree above the average of unique vertex degrees) or normal vertices; and

e if hubs are the main contributors, are they young, old, or both?

Hubs’ contribution to butterfly emergence. The followings are studied to test the
hypothesis that butterflies are contributed by hubs.

e The probability of forming butterflies by hubs
e The correlation between degree and support of vertices

e The connection patterns of hubs
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Figure 3.9: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in Edit-EnWiki and
ML10m streams.

The probability of forming butterflies by hubs — Butterflies formed at time r = 0
to t = 5000 are enumerated and the fraction of butterflies formed by zero to four hubs
(Table 3.6) and the fraction of butterflies formed by zero, one, or two i-/j-hubs (Table 3.7)
are checked. It is evident that, butterflies mostly include one or, with higher probability,
two hubs which are usually i-hubs.

The correlation between degree and support of vertices — The correlation
between degree deg(i) and butterfly support B; is studied, where B; is defined as the number
of butterflies incident to each vertex. The correlation computed over the i-vertices and j-
vertices is referred to as i-correlation and j-correlation (similarly computed), respectively.
The Pearson correlation coefficient is computed at ¢ = 5000 for all the |V;| or |V;| seen
i-(j-)vertices in the graph snapshot. A positive correlation coefficient means deg(i) and B;
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increase or decrease together, while a negative correlation means increasing one quantity
implies decreasing the other one. Values close to 1 demonstrate strong correlation. As
provided in Table 3.8, there is a strong positive correlation between the degree and the
support of vertices in real-world graphs. i.e. the higher the degree, the higher the butterfly
support and vice versa. This highlights the impact of hubs in the emergence of enormous
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Table 3.6: Fraction of butterflies including zero, one, two, three, or four hub(s) after adding

5000 sgrs.

Fraction 0 hub 1 hub 2 hubs 3 hubs 4 hubs
Epinions 0.09 0.29 0.55 0.07 0
BA-+Epinions stamps 0.11 0.44 0.39 0.06 0
ML100k 0.07 0.35 0.48 0.09 0.01
BA+ML100k stamps 0.24 0.28 0.28 0.15 0.05
ML1m 0.07 0.38 0.48 0.07 0
BA+MLIm stamps 0.01 0.33 0.6 0.06 0
ML10m 0.09 0.34 0.37 0.17 0.03
Edit-Frwiki 0.08 0.29 0.53 0.1 0
Edit-Enwiki 0.1 0.48 0.41 0.01 0

Table 3.7: Fraction of butterflies including zero, one, or two i-hub(s) or j-hub(s) after

adding 5000 sgrs.

Fraction 0 i-hub 1 i-hub 2 i-hubs 0 j-hub 1 j-hub 2 j-hubs
Epinions 0.11 0.35 0.54 0.85 0.13 0.02
A+FEpinions stamps 0.19 0.56 0.25 0.7 0.25 0.05
ML100k 0.10 0.46 0.44 0.75 0.21 0.04
BA+ML100k stamps 0.48 0.39 0.13 0.37 0.41 0.23
ML1m 0.1 0.43 0.47 0.84 0.15 0.01
BA+MLIm stamps 0.01 0.36 0.63 0.9 0.1 0
ML10m 0.25 0.54 0.21 0.47 0.33 0.2
Edit-Frwiki 0.11 0.35 0.54 0.81 0.18 0.01
Edit-Enwiki 0.1 0.5 0.4 0.97 0.03 0

number of butterflies in the real-world graphs.

The connection patterns of hubs — The extent to which i-(j-)hubs dominate the
edges over time is quantified by means of two equivalent measures:

e the fraction of i-(j-)hub connections (
the number of hubs at time point ¢ (denoted by Np,(¢)), and

e the average degree of i-(j-)hubs (

denoted by S0 ") (deg (huby))

ZNhub(z)

E(t)

(deg(hub))

denoted by ==L

Npup (1)

total number of edges at time point ¢ (denoted by |E()]).

Both quantities are calculated by =

i1

ZNhub(’)

(deg(hub;))

E()*Npup (1)
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Table 3.8: Correlation between the butterfly support and the degree of i-vertices (i-
correlation) and j-vertices (j-correlation).

i-correlation j-correlation
Epinions 0.86 0.73
BA-++Epinions stamps 0.56 0.72
ML1m 0.98 0.92
BA+MLIm stamps 0.92 0.89
MIL100k 0.95 0.93
BA+ML100k stamps 0.63 0.88
ML10m 0.83 0.93
Edit-Frwiki 0.91 0.85
Edit-Enwiki 0.89 0.62

computation model is adopted to compute this value when a new edge is added. The time
point ¢t can be interpreted as the number of edges added to the graph since the initial time
point ¢ = 0.

While the number of edges added to the graph increases, the normalized fraction of
i-(j-)hub connections (average degree of i-(j-)hubs) decreases over time in both real-world
and BA graphs (Figures 3.12 and 3.13). Also, unlike real-world graphs, i- and j-hubs
emerge later in the BA graphs (originated by the BA’s preferential attachment rule), and
the average degree of hubs in early time points is higher in real-world graphs than that of
BA graphs. This is due to the bursty characteristic of graph stream (i.e. arrival of a bunch
of edges with same time-stamp and same i- or j- vertex). In summary, early in the stream,
the BA graphs have lower number of hubs with lower degrees compared to the real-world
graphs. Figure 3.6 also illustrates the low number of butterflies in BA graphs earlier in
the stream when there are no hubs in these graphs or the average hub degree is low. On
the other hand, real world graphs have high number of hub connections and high number
of butterflies. These observations again verify the contribution of hubs to the emergence
of butterflies; When the number of hubs and the average degree of hubs are both low, the
number of butterflies is also low (as seen in BA graphs). Also, when the number of hubs
and their average degree is high, the number of butterflies is high (as seen in real-world
graphs).

Contribution of hubs’ age to butterfly emergence. The followings are studied to
test the hypothesis that butterflies are contributed by old hubs.

e The evolution of young and old hubs
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e The inter-arrival of butterfly edges

The evolution of young and old hubs — As mentioned before, the i-(j-)hub are defined
as any i-(j-)vertex whose degree is above the average of unique i-(j-)degrees in the graph.
Accordingly, young (old) hubs are defined as any hub whose timestamp is in the last (first)
25% of ordered set of already seen timestamps. The vertex timestamps are determined as
the timestamp of the sgr by which the vertex has been added to the graph for the first time.
For instance, if a vertex i arrives via the inserting edges ey = (i, j1) and es = (i, j2), the
timestamp of vertex i is set to the timestamp of e1, which has arrived before es (assuming
subscript identify order of arrival). A lazy computation model is adopted to compute
the number of young/old i-(j-)hubs using a burst-based landmark window (Definition 11),
where the computation is done over a growing graph generated by the edges in the append-
only window following each expansion. Window expansion lengths are set to cover 0.1 % N,
unique timestamps in each window in Epinions, ML100k, MLIm, and ML10m. In the
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larger streams Edit-EnWiki and Edit-FrWiki, this value is equal to 0.01 * Nj,.

As shown in the Figure 3.14, young i-hubs and/or j-hubs are formed in the real-world
graphs over time, while in BA graphs with random timestamps the number of young i-(j-
Yhubs is always zero. The timestamp of hubs in real graphs are randomly assigned to other
vertices in BA graphs with real timestamps, therefore the old hubs are identified as young
hubs that should be ignored. Figure 3.15 demonstrates that old hubs increase over time
in BA graphs, which is not always the case for real-world graphs. Moreover the number of
old hubs in real world graphs is less than that of BA graphs.

The inter-arrival of butterfly edges — Finally, the heavy tail of the inter-arrival
distribution is studied, which is over-represented in BA graphs (Figure 3.11). The heavy
tail is related to the butterfly edges with high inter-arrival times. These highly frequent
butterfly edges with high inter-arrivals reflect the connection between the young vertices
and old vertices. A hypothesis that young vertices are ordinary vertices and old ones are
hubs (i.e. old hubs signify the bursty butterfly emergence) is proved due to the following.
Young hubs can exist, however they are not the hubs dominating the butterflies.

e Hubs are main contributors to butterfly emergence; and

e The hubs forming the butterflies cannot be young hubs as BA graphs would be
contradiction; BA graphs do not have young hubs (Figure 3.15), while they have many
butterfly edges with high inter-arrival (Figure 3.6). Therefore, butterflies cannot
originate from young hubs.

3.2.3 Summary

Butterflies are network motifs across the time line of sgr arrivals since the number of
butterflies increases significantly over time in real-world streaming bipartite graphs, and at
each time point the number of butterfly occurrences in real-world graphs are significantly
higher than random graphs. This emergence of butterfly inter-connections is formulated
as the butterfly densification power law, stating that the number of butterflies at any time
point ¢ is a power law function of the size of stream prefix seen until ¢. In terms of how
these very large number of butterflies emerge over time, studies reveal the contribution of
hubs in the streaming graphs. Further investigation of the impact of hubs in terms of their
age reveal that the older hubs contribute more to the densification of butterflies.
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3.3 Analysis, Phase 2

3.3.1 Butterfly Emergence Patterns - Strength Assortativity

Figure 3.16 shows the growth of butterfly count in real-world streams. To quantify this
growth, the butterfly rate of each graph snapshot is defined as the number of butterflies in
the graph normalized by the number of edges. The average butterfly rate (plus/minus the
standard deviation) is computed over the sequential snapshots. The average butterfly rate
is greater than 1 in all streams (Figure 3.16), as the number of butterflies in each graph
snapshot is far higher than the number of edges and it can be calculated by a super-linear
function of the number of edges (e.g. follows a power law f(|E|"), n > 1 and the slope of
the plots for butterfly count versus |E| in the log-log scale is greater than 1 indicating that
the number of butterflies grows super-linearly with respect to the number of edges in the
sequential graph snapshots.) In some graphs the super-linearity starts after some time.

Pr(6), the probability distribution of strength-difference of connected vertices in but-
terflies, is computed for the graph snapshots in the streams. Each probability distribution
is embedded in a vector F. Figures 3.17 and 3.18 demonstrate the evolution of F elements
and their corresponding strength assortativity localization factor (r*) over the timeline of
burst arrivals. In all streams, butterfly edges have strength-difference less than equal to
the average strength-difference (us) with probability Pr(6<us)=~0.7 (F is localized on F).
The tail of Pr(6) for all graphs is heavier in the region [us, us+os] with probability of
Pr(us<é6<ps+0s)~0.25 (according to Fa values) and gets lighter at the end. This demon-
strates that the majority of butterfly edges are formed by vertices with similar strengths
at all time points. Also, the strength assortativity localization factor is 0.15<r°<0.2 in all
graphs at almost all time points (Figure 3.18).

Figure 3.19 shows the evolution of three statistical quantities for Pr(6):

e mean U
e coefficient of variation CV=05/us

e excess kurtosis Yo=(N"1Zs.(8; — ,u(;)4/0'§)—3

Figure 3.20 shows the evolution of the same quantities for the probability distribution of
strength of i- and j-vertices forming a butterfly, denoted as Pr(S;) and Pr(S;). CV, also
known as relative standard deviation (RSD), enables measuring the degree of variation
(dispersion) over distributions with different mean values. A high-variance distribution
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has CV>1 and a low-variance distribution has CV<1. Distributions such as exponential
distribution with equal mean and standard deviation have CV=1. The excess kurtosis Y
enables measuring the heaviness of the tail of distribution relative to a normal distribution
(which has Y2=3). A heavy-tailed distribution has a positive Y2 (called a lepto-kurtic distri-
bution) and a light-tailed distribution has a negative Y, (called a platykurtic distribution).
Distributions such as family of normal distributions have zero Y5 (called meso-kurtic). The
mean and standard deviation of strength-differences are equal to each other and evolve
synchronously (Figure 3.19, CV=1 for sequential Gy,). On the other hand, the tail of
right-skewed Pr(8) gets heavier and the distribution gets broader (Figure 3.19, Yo in-
creases). In Ciao, the tail gets lighter initially and then gets heavier. Moreover, all of the
graphs have right-skewed Pr(S) which gets broader and more skewed over time with the
tail of strength distribution becomes heavier /longer over time (Figure 3.20, Y2 and CV>1
increase). These observations make the steady behavior of strength assortativity more
interesting: despite the fact that new high-strength vertices form butterflies and Pr(6)
gets broader, the relative standard deviation of ds does not change significantly and the
strength assortativity localization factor r* remains steadily positive. This implies that
these graphs obey non-trivial mixing patterns.

The following concurrent mixing patterns hold in the real-world streams as butterflies
emerge over time:

1. Butterfly densification. The number of butterflies grows over time and at each time
point it is a super-linear function of the number of edges.

2. Strength diversification. Pr(S) of butterflies is initially meso-kurtic and gets more
right-skewed as the right tail grows heavier/longer (Y, starts from 0 and rises to
extremely high values). The dispersion of strengths increases over time (CV>1 in-
creases) as the standard deviation increases and the mean decreases.

3. Steady strength assortativity. The strength assortativity localization factor r* is fixed
at a positive value over time due to the fixed-shaped yet growing distribution of
strength-differences of butterflies. Pr(9) is initially meso-kurtic and gets more right-
skewed as the right tail grows heavier /longer (¥, starts from 0 and rises to extremely
high values). However, the dispersion of strength-differences does not change (CV~1)
due to synchronous evolution of mean and standard deviation. Also, the proportion
of ds in different regions of Pr(8) is constant (stable F elements). Therefore, the
shape of the distribution is stable although the range expands.

The following graph concepts explain the data-driven semantics of the observed patterns
in the domain of user-item rating streams.
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e Burstiness. User-item interactions can be viewed as human-initiated events which in-
troduce two levels of burstiness: individual-level and group-level. The former relates
to the interactions of each user with several items at each time point or sequential
time points with negligible differences. Barabasi [18] has shown that human-initiated
events are driven by the queuing processes of human decision making leading to non-
Poisson inter-event statistics. Such bursty interactions lead to formation of many
wedges incident to each user/item. The latter relates to the concurrent interactions
of several users at each time point. Such bursty interactions lead to merging the
individual-level wedges and densification of butterflies. The significance of this con-
tinuous burstiness can change over time due to different circumstances leading to
peak hours. For instance, Alibaba has reported that customer purchase activities
during a heavy period in 2017 resulted in generation of 320 PB of log data in a
six hour period [251, Big Data Processing|. There are other studies [229, 371], [251,
Stream Data Management| showing that weighted bipartite streaming graphs display
bursty patterns since eight additions in temporal graphs follow bursty patterns and
data streams are commonly characterized as bursty.

e Strong-get-stronger. Online platforms utilise filters such as trends, best sellers,
mostly viewed, hot/top categories, newly added, as well as timely promotions, point
collection rewarding strategies, and (advertised) recommendations. These systemat-
ically lead to the increasing popularity and visibility of the items with most inter-
actions and encouraging the users to interact more and become more active. Such
interaction mechanics are similar to the rich-gets-richer argument, where the rich-
ness denotes the vertex strength. The butterflies are formed incident to such highly
connected and high strength users/items (strong vertices) leading to butterfly densi-
fication and diversification of strengths.

e Core-periphery. Popular items attract the active users and in another view, ac-
tive users mostly engage with trending items or make items trending/popular. This
is similar to the mesoscale phenomenon ‘core-periphery’ [154, 99] also called ‘rich
club’ [375, 95| stating that high-degree vertices tend to connect to each other and
create a core attracting the new connections. Such core sets of vertices with high
degrees/strengths in user-item streams create numerous edges between strong users
and items with high butterfly support leading to assortativity patterns of butterfly
vertices.

48



(a) Epinions

3500
3000 o
)
K-
2 200 =
- a
£ 2000
3
o Epinions Y-scale=100
> o BA+Epinionslm stamps
45 1500 BA+random stamps
=
@
8 1000 o« .
E . .
-
£ s00 . ¢ "
.
0
12 3 4 5 6 7 8 9 10
window number
(d) Edit-Frwiki
6 .
"]
a
P .
L
o
c4a .
]
=]
2s .
-]
=
g 2F e .
£
21 .« .
0 .
1 2 3 a4 s & 1 8 9 10

window number

(a) Epinions

~

number of young j-hubs

of & a a - - N

Epinions1m
BA+EpinionsLm stamps.
BA+random stamps

- - -

1 2 3 4 5 6
window number

(d) Edit-Frwiki

1 . o« .

number of young j-hubs
M

=

o
.
.

7 8 9

1 2 3 a 5 6 7
window number

number of young j-hubs

number of young i-hubs
G

number of young i-hubs

-

&

8

5

w

o

”

S

w

N

-0.05

0.1

-0.15

number of young j-hubs

(b) MovieLens 100k

1000

3 2 2

number of young i-hubs
n

4 5 6 7 8 9
window number

(e) Edit-EnWiki
.

(¢) MovieLens 1m

(TR

n

number of young j-hubs
o o o

I3}

4 5 6 7 8 9 10
window number

(b) MovieLens 100k

4 5 6 7
window number

(f) MovieLens10m
e o

number of young j-hubs
-
»

a 5 6 7 8 9 10
window number

(e) Edit-EnWiki

4 5 6 7
window number

(c) MovieLens 1m

250

3

number of young i-hubs
"

3 4 5 6 7 8 9 10
window number

100

a 5 6 7
window number

(f) MovieLens10m

4 5 6 7
window number

Figure 3.14: The number of young (top 6) i-hubs and (bottom 6) j-hubs after

each batch of sgrs.
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batch of sgrs.
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3.3.2 Summary

Given two sequential graph snapshots Gy, ;, and Gy, ,, the followings hold.

e The number of butterflies grows according to a super-linear function of the number
of edges (e.g. follows a power law function f(|E|"), n > 1 and Bg,, , < Bay,,,)-

e Pr(S) gets broader and more skewed (/,cé < u%, Y21(S) < Y22(S), 1 < cvis) <
CV2(S)).

e Pr(6) gets broader and more skewed while remaining fixed-shaped (Y21 (0) < Y22(6),
CVi(8) ~ CV2(5), CV(0) ~ 1, Fl = F?i=1,..,4,r > 0.1).

The co-occurrence of these patterns is counter-intuitive and interesting. As the stream
and the number of butterflies grow rapidly, diversity of strengths for butterfly vertices in-
creases and strong (high-strength) vertices get stronger and obtain weak neighbours with
the increasing of variance of strength differences. Therefore, an increasing trend of disas-
sortativity is expected. However, the majority of butterfly edges are formed by vertices
with similar strength and this assortativity remains at a fixed level regardless of stream
size or butterfly count. This phenomenon is referred to as scale-invariant strength assor-
tativity of streaming butterflies, which is originated by the three parallel mixing patterns
of butterflies.
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Chapter 4

Streaming Graph Modelling

Explainable modelling of (bipartite) streaming graphs requires identifying the growth pat-
terns and devising local rules to pinpoint the generative origins. Chapter 3 discussed
analysis of real-world bipartite streaming graphs and presented the investigations into the
emergence patterns of butterflies as the building blocks of these streams, concluding in a
characteristic phenomenon called “scale-invariant strength assortativity of streaming but-
terflies”. This chapter focuses on the next step of devising local rules. Local rules (also
referred to as micro-mechanisms) are attachment mechanisms based on connections to
vertices and their neighbourhoods [326]. The goal is to answer the question What is the
generative process underlying this phenomenon? The question is addressed in four phases:
Phase 1: reviewing the existing and seminal local rules to investigate their ability to explain
the patterns and identify new local rules; Phase 2: analysis of the synthetic streams gen-
erated by the candidate local rules; Phase 3: introducing a streaming growth model called
sGrow to implement the micro-mechanisms reproducing the realistic growth patterns; and
Phase 4: Evaluating the performance of the introduced model. sGrow is the first model
that explains real-life patterns effectively and reproduces them efficiently. Table 4.1 lists
the frequent notations in this chapter.

4.1 Related Works

To explain the co-occurrence of butterfly densification, strength diversification, and steady
strength assortativity in streaming graphs, the local rules and graph models leading to
skewed distributions, degree correlation, and emergence of large numbers of cliques are
reviewed in the following.
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Table 4.1: Frequent notations in this chapter

Notation Description
t time step in sGrow
m Number of new edges at each iteration, batch size in sGrow,

Degree of new vertices in preferential attachment
M Maximum batch size in sGrow, a parameter
L length of Preferential Random Walk in sGrow, a parameter
w A random integer for operation selection in sGrow
4 Connection probability in Connecting Nearest-neighbour Model

DPh Probability of selecting a host vertex in Butterfly Model
Dstep Probability of traversing a random walk in Butterfly Model
D1 Probability of connections in Butterfly Model

De Probability of edge removal in Duplication Divergence Model
P; Pb Forward /backward probability in Forest Fire model

4.1.1 Graph Patterns

Graph patterns characterize a microscopic, mesoscopic, or macroscopic property of a graph
(depending on the granularity of the reporting pattern, i.e. vertices/edges, neighbour-
hoods and motifs, or the entire topology) and can be viewed as either static or dynamic
(depending on the underlying graph being a static snapshot or an evolving structure).
Examples of static patterns include small diameter accompanied by high clustering coeffi-

cient (CC) [310], degree (anti)correlation [211], community structure 128, and power-laws
(PL) such as degree distribution PL [35], weight PL [229], and snapshot/vertex strength
PL [229, 11]. Examples of dynamic patterns include gelling points [229], increasing aver-
age degree, shrinking/controlled diameter, edge densification [201, , |, and bursty

weight addition [229]. Table 4.2 provides instances of different patterns partitioned across
dynamism and granularity.

4.1.2 Growth Models

Two well-studied network growth mechanisms, preferential attachment and copying, form
the basis of many generative models (e.g. [105, 97, 59, 9, 29, , , : , 1)
and are widely adopted in the development of graph management approaches (e.g. [159,

, , , , , |). Both mechanisms are commonly applied in graph models
based on the conception of adding a new vertex at each time step during an iterative
process. Preferential attachment leads to skewed distributions, while copying mechanism
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Table 4.2: Graph Patterns.

Patterns Granularity Dynamism References

Small diameter & High CC Macroscopic Static [340]

Degree Correlation Microscopic Static [241]

Community structure Mesoscopic ~ Static [128]

Degree Distribution PL Microscopic Static [35]

Weight PL Microscopic Static [229]

Snapshot/Vertex Strength PL Mesoscopic ~ Static [229, 41]

Gelling points Macroscopic Dynamic  [229)]

Increasing Average Degree Microscopic Dynamic  [201, ]

Shrinking/Controlled Diameter Macroscopic Dynamic  [201, , 119]

Edge Densification Microscopic Dynamic  [201, 202]

Bursty Weight Addition Microscopic Dynamic  [229)]
leads to degree correlation [326] and emergence of large numbers of cliques when applied
explicitly [188] or implicitly and among other mechanisms [201]. In the following, these

mechanisms and their alternatives and extensions are reviewed.

Barabasi-Albert model [38] starts with a small clique with mq vertices and applies the
preferential attachment by connecting the new vertex to m<mg existing vertices selected
randomly with probability proportional to their degrees. The preferential attachment rule
has also been extended to strength-driven preferential attachment (SPA) where each new
vertex is connected to m existing vertices randomly selected with probability proportional
to their strength [12, 11, 204]. It has been shown that preferential attachment is induced by
the following microscopic mechanisms. All of these mechanisms imply that the probability
that a vertex receives a new edge is proportional to its degree, therefore they amount to
preferential attachment and lead to scale-free structures |L6].

e Copying [182, |: at every time step, a new vertex is connected to a constant
number of vertices and the end point of each new edge is a randomly selected vertex
with probability p or a neighbour of a prototype vertex with probability 1—p.

e Edge redirection [180]: at every time step, a new vertex is added and a directed
edge from the new vertex to a randomly selected vertex is created with probability
1 — p, or the edge is redirected to the ancestor of the randomly selected vertex with
probability p.

e Random walks [325]: at every time step, a new vertex is connected to a random vertex
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and the vertices reachable from it through breadth-first traversal with probability p
until no new target is found.

e Attaching to edges [107]: at every time step, a new vertex is connected to two
connected vertices.

The original version of copying, mentioned above, copies a neighbour of a randomly
selected vertex with some probability at each time step. Other works have modified it as
follows.

e Butterfly model [229] mixes copying and random walk mechanisms: at every time
step, with probability pp.ss @ new vertex picks a random vertex called host and
with probability pjiux forms edges with the vertices reachable from the host through
a probabilistic random walk with traversal probability pye,. This model exhibits
shrinking diameter, stabilized next-largest weakly connected component size, and
edge densification.

e Growing network model with copying [185] connects the new vertex to a randomly
selected vertex as well as its neighbours which leads to sparse ultra-small graphs with
logarithmic growth of the average degree with respect to the number of vertices while
the diameter equals 2.

e Duplication divergence model [326] removes the copied neighbours with some prob-
ability leading to power law decay of clustering coefficient as a function of degree.

e Nearest neighbours model [320] connects the new vertex to one randomly selected
vertex and copies one neighbour with some probability leading to clustering coefficient
power law and correlation between average neighbour degree and vertex degree.

e Forest Fire model [201, | applies the copying process by recursively connecting
each new vertex to a randomly selected vertex (called ambassador) and certain num-
bers of its randomly selected out- and in-neighbours with forward probability p and
backward probability p,. This process leads to heavy-tailed in- and out-degree dis-
tributions due to an implicit preferential attachment, community structures due to
neighbour copying mechanism [11], edge densification due to many internal-edge es-
tablishments, and shrinking diameter due to shortcut-edge establishments.
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4.2 Analysis of Microscopic Growth Mechanisms

As discussed in previous section, preferential attachment leads to skewed distributions, and
copying mechanism (particularly with the implementation scheme of Forest Fire model)
leads to degree correlation and emergence of cliques and edge densification as well. There-
fore, in an attempt to explain the origins of the observed patterns in real-world streams,
the properties of synthetic streams generated by these local rules are investigated.

4.2.1 Data

Weighted bipartite streaming graphs are synthesized such that the graph structure grows
according to the Forest Fire (FF) and strength preferential attachment (SPA) models.
To this end, directed graphs are created via the growth models and the source vertices
are treated as the i-vertices and destination vertices as the j-vertices. For the timestamp
assignment, the time step at which new vertices are connected to existing vertices are used
and for the weight assignments, random integers in the range [1, 5] (the same weight scale
as in real-world streams) are used. In FF model, when the backward-burning probability
pp is fixed and the forward-burning probability p increases, the graphs become denser
and more clique-like with low diameter [202|. Therefore, graphs with fixed p, = 0.3
and p = 0.15 (sparse region), 0.4 (transition region), and 0.7 (dense region) are generated.
Experiments show that most of the edges are burned (visited) after checking the neighbours
of the ambassador vertex, therefore no further edge is checked. This reduces computations
and also allows addition of new external links beside the internal densification. In the
SPA model, m € {10,50,100} is used since the average degree of vertices in real-world
streams are mostly below 100 (Table 3.3). The same analysis approach as for real-world
streams in Chapter 3 is used to investigate the emergence patterns of butterflies in the
synthetic streams quantitatively (by checking the growth patterns of butterfly count) and
qualitatively (by checking the assortativity patterns of butterflies and the confounding
distributions).

4.2.2 Analysis

Figures 4.1-4.6 show the mixing patterns in FF and SPA streams. In the following, these
patterns are investigated.

The butterfly count has a slow growth in FF streams and a speedy growth in SPA
streams. The average butterfly rate is less than 1 in FF streams and higher than 500 in
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SPA streams. That is, the growth of butterfly count with respect to the number of edges
in the sequential graph snapshots is sub-linear in FF streams and extremely super-linear
in SPA streams.

As the FF graph grows, in the transition region, the assortativity level fluctuates, and,
in the sparse and dense regions, it changes trivially (0.02).

Although in FF stream butterflies emerge such that the range of Pr(S;) and Pr(S;)
get broader and more skewed over time, strength-difference of butterfly edges retain the
same distribution. Pr(d) remains unchanged with a low dispersion (CV<1) as the graph
grows in each region since the mean, and standard deviation are fixed and the tail changes
slightly over time. Therefore, it is not surprising that r® is stable. Moreover, in the denser
graphs with more butterflies, assortativity patterns vanish (r*—0 as p increases).

The evolution of r* and the corresponding F elements in SPA streams shows that, for
small values of m, there is no assortativity pattern. For m = 100, the graph snapshots
display weak assortativity (0.05<r*<0.1). The statistics of the corresponding Pr(d)s and
that of Pr(S;)s and Pr(S;)s show that, as the graph grows, for all values of m, diversity
of the strengths of i- and j-vertices do not change significantly (small change in pu;, uj,
and corresponding CV and Y3). The strength-differences continuously follow a skewed
distribution with a short tail as most §s remain around the mean (F; + F2~0.85 and CV<1)
and the skewness does not grow to very high numbers.

4.2.3 Summary

FF streams follow strength diversification but not butterfly densification and steady
strength assortativity. In FF streams, as the new vertices attach to random vertices
(ambassadors) and reach high-degree vertices (hubs) through copying the neighbours of
ambassador, new butterflies emerge and the diversity of strength of butterfly vertices in-
creases. When the probability of neighbour copying p is low (sparse regions), the new
vertex establishes fewer connections, therefore, the probability of connecting to the high-
strength hubs is lower, and also the strength of the new vertex remains low. As a result,
many edges have low strength-difference, Pr(9) is broader, and strength assortativity lo-
calization factor is positive. On the other hand, when p is high, although the number of
butterflies is higher, the connections are established between pairs of vertices with both
low and high strength-difference, since the ambassadors and their neighbours are selected
uniformly at random. As a result, Pr(d) has a lower variance and the strength assortativity
displays randomness. Moreover, the butterfly count is a sub-linear function of the number
of edges over time even when the graph displays edge densification (in dense regions).
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Butterfly Densification Strength Diversification Steady Stregth Assortativity
SPA v X X
FF X v X

Table 4.3: Mixing patterns of butterflies in SPA and FF streams.

SPA streams follow butterfly densification but not strength diversification and steady
strength assortativity. In SPA streams, as new low-strength vertices attach to m vertices
with the highest strengths (strong vertices), many butterflies are formed around the high-
strength vertices with a rate much higher than that of real-world streams. When the
number of connections per new vertex m is higher, the probability of attachment to low-
strength vertices is higher since the number of strong vertices is limited, therefore the
number of edges among low-strength vertices increases. As a result, the graphs display
weak strength assortativity when average degree is high. When m is low, the number of
edges with high strength-difference is higher compared to the case with high m, although
they don’t exceed edges with low strength-difference. The diversity of Pr(S) and Pr(9)
does not increase significantly in either cases.

As summarized in Table 4.3, FF streams with implicit degree-driven preferential at-
tachment and neighbour copying yield graphs with increasing diversity of strengths of
butterfly vertices, however the quantity of butterflies and their mixing schemes do not
preserve realistic patterns. SPA streams with pure strength-driven preferential attachment
lead to graphs with rapidly growing butterfly density, however the mixing patterns do not
match realistic patterns. This highlights the essence of a growth model which has both
strength-driven preferential attachment and neighbour copying flavours to ensure a bal-
anced butterfly densification and incremental strength diversity. Further considerations
regarding the integration of these two mechanisms with other effective mechanisms are
also required to create realistic streams. The next section resolves this.

4.3 sGrow

Burstiness, strong-gets-stronger, and core-periphery are the semantic concepts explaining
the butterfly emergence patterns (Chapter 3) and also the strength preferential attachment
and neighbour copying are the microscopic mechanisms explaining the butterfly densifica-
tion and strength diversification (Section 4.2). In the following, these concepts and growth
mechanisms are integrated with further mechanisms introduced in a streaming growth
model, called sGrow [298]. This model explains the co-occurrence of the three realistic
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emergence patterns of butterflies in streaming graphs such that all four-vertex graphlets
emerge in the graph, the sgrs are realistic (i.e. preserve streaming data characteristics),
and the stream properties are configurable.

The introduced mechanisms (Figure 1.3) solve the drawbacks of existing works. For
instance, a preferential random walk and copying micro-mechanisms feature strength pref-
erential selection of vertices whose neighbours are copied with probabilistic connections.
These lead to butterfly densification as well as emergence of four-vertex graphlets and also
increase strength diversity of butterfly vertices. Moreover, the introduced random walk
utilizes BFS and DFS traversals with dynamic and random number of hops, which bal-
ances the butterfly emergence patterns. The realistic sgr generation techniques (such as
inactivity gaps, and techniques for timestamp assignment and evolving streaming rate)
yield graphs satisfying streaming paradigms such as burstiness and out-of-order arrivals.
These realistic sgr generation techniques also impact the temporal patterns of butterfly
emergence (for instance timestamp of sgrs converting a caterpillar to a butterfly influ-
ences the number of butterflies in the corresponding burst). The local /unbounded graph
updates, including the sliding window mechanism, avoid pure preferential attachment to
a few hubs (avoids perfectly disassortative mixing) and helps with the steady pattern of
strength assortativity of butterflies.

4.3.1 Overview

An overview of sGrow is provided in this section (Algorithm 3 - Figure 4.7). A time-
based sliding window (Definition 6) is used to generate a sequence of sgrs (Definition 2)
that constitute the synthetic weighted bipartite streaming graph (Definition 3). In the
following, Gw; refers to the computational graph snapshot formed by the sgrs within the
window. The output stream is a sequence of sgrs denoted as ‘R. The time step ¢ is the
computational time point used for controlling the window and the timestamp 7 is the sgr’s
time-label which follows the timestamp scale of an initial graph snapshot. A five-point
scale [1,5] (similar to that of real-world streams) is used to generate weights.

Gw, and R are initiated with an initial graph snapshot Gw,, = (Vo, Eg). The win-
dow’s beginning border W? is set to the first timestamp in Gy, (Algorithm 3, lines 1 -
Figure 4.7(a)). At each time step ¢, m (a random number in [0, M), where M is a parame-
ter) new sgrs rlzl’“’m:(vf., vi., a)ll.j, 7) with new vertices are created and added to R and Gy,
(Figure 4.7(b)(c)). The shared timestamp is one plus the last timestamp in Gy, and the
weights are random integers wll. J.e[l, 5] (Algorithm 3, line 4). To connect these new isolated
edges to the rest of sgrs, the following procedure is followed. A random integer we[-1, 5]
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VJ vy vj VJ VJ vy

(b) t=1, Wb = rOl v + B, L=1, m=4 (r'! incurs no-op, r'? & r'? incur removal, r'* adds
burst.)

(c) t=2, WP =0l 7428, L;2, m=2 (r?! adds burst, r*2 incurs no-op.)

Figure 4.7: (left) The computational graph G and (right) the stream R at the end of time
steps =0, 1,2 with =2, p=0.4, M=5, and Le|[1,2]. New edges are blue and PRW edges
are yellow dashed. Timestamps and weights are not depicted and it is assumed that the
edges in G expire from the window as their timestamps are below the W?.
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Algorithm 3: sGrow(p, M, B, [Lmin, Linax])

Data: Gw,,: an initial graph
Input: p: connection probability, M: maximum number of new edges, B: slide

parameter, [Lin, Lmax]: range of PRW’s length

Output: R, sequence of streaming graph records

1 G« Gwyy = Vo, Ep), R «— Ep, T « 1+ last timestamp in Gy, t < 0, WP —
first timestamp in Gw,
2 while true do

3
4

© o N o O«

10
11

12

13

14
15

16

17

18

19

20
21
22
23
24

te—t+1

Add m € [0, M) new sgrs r=bm = (vf,vi.,wf.j,r) with a)ll.j € [1,5] to R and
Gw,

for each r'=1" do

w « a random integer in [—1, 5]

switch w do

case -1 do

t Remove v!

i

vﬁ. from R and Gw.

case ( do
L No operation

otherwise do

u9<—SPS(Vj~)

L «— a random integer in [Luin, Liax]
(PRW;, PRW;) « PRW(u}, false, Gw,, L)
addBurst(vf., vi., PRW;,G,*R, p)
addBurst(vf., vi., PRW;,G,R,p)

e T4 |(w’—5)(w/2—4)(w’—3)|

Remove any newly added vertex vll. and vé. with less than 2 neighbours from
Gw,
T—71+1
Wl — WP +B
if r = 8 then
L Remove any edge with timestamp less than W? from Gy,
t<—20
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is generated based on which, one of the three operations (edge removal, no-operation, and
burst addition) is performed for each of the m new sgrs in parallel (Algorithm 3, lines 6-
18). This random integer is aimed to randomize the order of selected operations. The
range is set as [—1, 5] to incur a probability of 5/7 for additions, and 1/7 for removals and
no-operation. The intuition is the observation in real-world graphs where edge additions
dominate edge removals. This range is found to best match the characteristics of real-world
streams. Additions and removals happen as described in Section 4.3.2.

e w=-1, the connection between vf. and vﬁ. is removed from R and Gy, (Algorithm 3,

line 9). This edge removal introduces isolated vertices if the vertices do not acquire
neighbours from the current or next batch (v;?, V}Q, and v}? in Figure 4.7.b).

e w=0, nothing happens (Algorithm 3, line 11). This no-operation introduces a gap of
inactivity between streaming records to form bursts (Definition 4) and also introduces
isolated edges. If the current sgr # is not connected to the subsequent sgrs in current
batch (r'*1+™) or the following batches, it will remain isolated (r?? in Figure 4.7.c).

o w>0, a j-vertex u? in Gy (v?.1 in Figure 4.7.b and v}4 in Figure 4.7.c) is randomly
selected via Strength Preferential Selection (SPS, described in Section 4.3.3). Next,
a Preferential Random Walk (PRW, described in Section 4.3.4) starting from u? is
performed in Gy,;. The number of hops in PRW (i.e. walk length) is a random
integer L in the parameter range [Lyin, Lmax]. Using PRW as a backbone, bursts of
new sgrs between r/ and the rest of sgrs in Gy, and R are established (as described
in Section 4.3.5). The strength preferential attachment and neighbour copying are
necessary to ensure a balanced butterfly densification and incremental strength di-
versity. Therefore, these are incorporated into PRW, which serves as a backbone
of vertices for adding bursts of sgrs through connecting the new isolated sgrs to
these vertices and their neighbours. Since the vertices are connected through a ran-
dom walk, graphlets emerge efficiently. Since at each iteration, a random number of
PRW vertices are selected based on strength preferential probability, the graphlets
effectively obey the observed patterns in real-world streams. Moreover, this process
includes adding sgrs according to a parameterized probability as well as bounding
the random length of PRW according to a parameterized range, which enable con-
figurable sgr creation. After adding the last edge with weight «’, the timestamp 7 is
incremented as a function of w’: T=7+|(w’ = 5) (0’ —4)(«w’ —3)/2|. This function cre-
ates a timestamp interval as soon as generation of a sgr with low weight (i.e. @’ < 2),
therefore it helps characterize the burstiness of the stream (Algorithm 3, lines 13-18).
This is based on an observation in real-world streams that the last sgr in each burst
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has a low weight. It is noteworthy that there are two levels of burstiness: (1) the
bursts initiated by each r/ as described here, and (2) the bursts created concurrently
by m sgrs r'=1" which can be assumed as multiple generative sources.

The aforementioned procedure takes place for all m new sgrs in parallel'. After that,
any newly added vertex with less than two neighbours is removed from Gy, (Algorithm 3,
line 19 - vl.22 and v? in Figure 4.7.c). This removal of new isolated vertices/edges is
done to retain a connected computational graph, yet the old vertices whose adjacent edges

are discarded by the window (as described below) become isolated in Gy, (v(]).?’ in Fig-
ure 4.7(c)). Also, the stream may hold isolated vertices/edges (V?Q—V?Q, v12, v}Q, and v13
in Figure 4.7(c)). Next, the timestamp is incremented by one (Algorithm 3, line 20). The
window slides as W? is incremented by B; the edges with timestamps out of the sliding
window are removed from the graph after each B time steps; and the time step is reset
to zero (Algorithm 3, lines 21-24). This sliding window mechanism is used to avoid pure
preferential attachment to old vertices in global scale and create time-sensitive and local
connections leading to emergence of young hubs (high degree vertices) to support the ob-
servations of real-world stream analysis in 3. The generation process happens continuously
and ‘R streams-out as the sgrs are generated. This process can be restricted to continue

until a desired number of sgrs S are generated (|R| = §) and then return the stream R.

4.3.2 Data Structures

The following data structures and basic graph/stream operators are used to implement
sGrow’s algorithms.

e A vertex is an object with three attributes: ID, Strength, and timestamp 7. A new
i(j)-vertex v;(v;) is assigned an integer ID equal to the current number of i(j)-vertices,
a strength initialized to zero, and a timestamp equal to that of the edge by which
this vertex is added. Dot notation is used to refer to attributes of an object, e.g.
v;.ID denotes the ID of the vertex v;.

e An edge/sgr between vertices v; and v; is an object with four attributes: i-vertex
(object v;), j-vertex (object v;), timestamp (integer 1), and weight (integer w).

!This algorithm is implemented in a single machine architecture; a distributed version is doable but
not considered here.
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e The connections of graph Gy, are stored by two hash-map data structures to map
each vertex ID to the hash-set of its immediate neighbours: iNeighbours= {(v;.ID :
N;(v;))} and jNeighbours= {(v;.ID : N;(v;))}. Hash-sets are used to avoid storing
multiple edges between two vertices in the computational graph. Also, hash-map
provides fast access to the neighbourhoods.

e The sgrs in R are stored in a vector that retains the edges in the order of their
additions which include out-of-order sgrs with respect to the timestamps as explained
in Section 4.3.5.

When a new edge is added /removed to/from the graph or stream these data structures are
updated accordingly and also the strengths of the vertices at the either ends of the edge
are incremented /decremented by the weight of the edge.

4.3.3 Strength Preferential Selection

Function SPS(V) is invoked in Algorithms 3. This function selects a random vertex in the
set V according to strength preferential probability A, = % [12, 41]. Vertices in

V are concurrently added to a list with multiplicity equal to their strength. Next, the list
is shuffled and a random element v in the list is selected as the output vertex.

4.3.4 Preferential Random Walk

Function PRW (starter,isl, G, L) performs a random walk with L hops on a graph Gy.
It starts from a starter vertex whose type determines a boolean flag isl (true when
starter is an i-vertex and false otherwise). At each hop, a neighbour of the starter vertex
(u; € Nj(starter), uj € Nj(starter)) is selected via strength preferential selection (invoking
SPS(Nj(starter)), SPS(N(starter))). The selected neighbour (u;, u;) is added to a hash
set of unique vertices (PRW;, PRW;) and is set as the starter vertex. The starter flag
is accordingly set and the hop counter is incremented by one. The next hop starts with
the last added vertex. When the current selected neighbour is already in the hash set, if
it is the last element, the walk continues to another neighbour of that vertex (in depth
traversal) and if it is one of the previously selected vertices other than the last element,
the walk continues in breadth traversal. Therefore, the walk is a combination of BFS and
DFS with random preferential selection.
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4.3.5 Burst Addition

Function addBurst(vf. , vi., PRW;,G, R, p) is given in Algorithm 4. This function adds bursts
(Definition 4) of sgrs to Gw, and R based on the i-vertices in the PRW; and new vertices
vl and vé. given a probability parameter p (Figure 4.8.a). The same procedure is followed
to add bursts with respect to the j-vertices in the PRW;. As illustrated in Figure 4.8,
considering each i-vertex u; in the PRW;, the following connections are established:

Step 1. An edge between u; and the newly added vé. is formed with the timestamp of vé.

and a weight w’ € [1,5] (Algorithm 4, lines 3-4 — Figure 4.8.b). This edge connects
edge vf—vj to the graph and also leads to emergence of Nj + Ny caterpillars (solid
3-paths in Figure 4.8.e,f ), where N; and N3 are the number of 1-hop (immediate)
and 2-hop neighbours of u;, respectively.

Step 2. With probability p, an edge between u; and an existing j-vertex z;, selected
uniformly at random, is formed with timestamp Min(u;.7,z;.7) and a weight o’ €
[1,5] (Algorithm 4, lines 5-8 — Figure 4.8.c). Using a timestamp other than the
current timestamp (V;.T) introduces out-of-order sgrs (late arrival) since this sgr has

a timestamp less than (VéT) It also helps balance the burst sizes since the current
timestamp is not assigned to all edges in the current time step. This probabilistic
edge leads to converting the caterpillars between u; and z; into butterflies at the

generation time of either vertices (closed 4-path in Figure 4.8.g).

Step 3. With probability p, an edge between the newly added vf and each u;’s immediate
j-vertex neighbour n; is concurrently formed with n;’s timestamp n;.7 and a weight
w’ € [1,5] (Algorithm 4, lines 9-12 — Figure 4.8.d). In other words, each of the
adjacent links of u; is copied with probability p. Since n;.7 < vf.‘r, out-of-order sgrs
join previous burst of sgrs with same timestamp (including the sgr incident to n;s).
These probabilistic edges lead to converting the N caterpillars that emerge in Step 1
into butterflies (closed 4-path in Figure 4.8.e). This step is used to generate streams
with high number of sgrs per burst.

4.4 Performance Evaluations

The effectiveness and efficiency of sGrow are tested from three perspectives:
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(d) Step 3 (e) () (2)

Figure 4.8: Four-vertex graphlets (e, f, g) and schematic burst addition steps (b, ¢, d)
based on an i-vertex u; in the PRW starting from u? designated by yellow dashed lines (a).
New edges are blue and dotted lines denote probabilistic connections.

e Pattern reproduction (Section 4.4.1). The ability of sGrow to reproduce the realistic
patterns is compared with baselines and examined under different levels of burstiness,
initial graph snapshots, and butterfly counts.

e Stress testing (Section 4.4.2). The impact of introduced parameterized techniques
on the effectiveness, efficiency, and burstiness of the generated stream by sGrow is
examined.

e Computational complexity (Section 4.4.3). The computational complexity of sGrow
is analyzed theoretically.

Data. In the following, the generative methods for sGrow and baseline streams are de-
scribed.

sGrow streams. The streams generated by sGrow model are created with a prefix
of 1000 sgrs from real-world streams (Gw,,) and the rest of the stream synthesized via
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Algorithm 4: Add Burst
Function addBurst(vf, vi., PRW;,G,R,p)

=

2 for each u; € PRW; do

3 w’ « a random integer in [1, 5]

4 Add a new sgr (ui,vi.,a)’,v;..T) to R and Gy,

5 if coin(p) is Head then

6 zj < Select a random j-vertex

7 w’ « a random integer in [1, 5]

8 Add a new sgr (u;, zj, ', Min(u;.7,z;.7)) to R and Gw,
9 for each nj € Nj(u;) do // in highly bursty streams
10 if coin(p) is Head then

11 w’ « a random integer in [1, 5]

12 L Add a new sgr (vll.,nj,a)’,nj.?') to R and Gy,

sGrow model (Algorithm 3) with various parameter configurations and different number
of butterflies. The generated streams are referred to as S-{Go-name}. The streams used
for pattern reproduction and stress testing purposes are generated as follows.

e Pattern reproduction. Epinions, Amazon, and Ciao are bursty streams with average
burst sizes of b = 27282, 1753.7, and 14.8; Yahoo and ML1m are also bursty but
with lower values b = 2.4 and 2.2; ML100k and WikiLens have the lowest burstiness
with b = 2 and 1, respectively (Table 3.3). According to these burstiness profiles, the
parameters are set to control the temporal distribution of sgrs. That is, to simulate a
stream with high burstiness, M and [L,,in, Limax] are set to high values, which increase
(1) the probability of creating high number of new edges at each time step (M) and
(2) the burst size by generating backbone walks with more vertices ([Luin, Lmax]). To
simulate a stream with low burstiness (S-ML100k and S-WikiLens), the neighbour-
hood copying (Algorithm 4, lines 9-12 — step 3 in Section 4.3.5) is not performed.
The default value of p is 0.3 and it is further adjusted by decreasing (increasing) to
push the burst size towards lower (higher) values. 8 =5 in all streams. The exact
value of parameters are given in Table 4.4. All the reported results in these figures
are based on the same streams.

e Stress testing. To evaluate the impact of sGrow techniques (batch of isolated edges,
probabilistic connections, the random walk backbone, and the sliding window) on
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Table 4.4: Parameters for generating sGrow streams.

p M B [Lmin, Lmax]
S-Ciao 0.3 100 5  [23]
S-Epinions 0.2 300 5 [3,6]
S-WikiLens 0.4 100 5  [L3]
S-ML100k 0.3 100 5 [1,3]
S-ML1m 0.3 10 5 [L2]
S-Amazon 0.3 50 5 [1,2]
S-yahoo 0.3 50 5 [2, 3]

effectiveness, efficiency, and burstiness, the corresponding parameters are evaluated
statically and dynamically as follows:

— A diverse range of parameters M € {100, 150, 200, 250, 300}, p € {0.3,0.4, 0.5, 0.6,
0.7}, Liin € {1,2,3,4}, Liyyax € {3,4,5}, and B € {5, 10, 15,20} are used to create
S-Amazon stream. Each row of Tables 4.25, 4.26, and 4.28 illustrates the effect
of one parameter on effectiveness, efficiency, and frequency distribution of burst
sizes, respectively.

— S-Amazon stream is created with 107 sgrs such that after generating 5 x 100,
one of the parameters switches from M = 100, 8 =5, L € [15] and p = 0.4 to
M =300, 8 =20, L € [45] and p = 0.8. Figure 4.27 illustrates the effect of the
parameter switch on effectiveness and efficiency.

Baseline streams. The streams generated by baseline models are generated with a prefix
of 1000 sgrs from Amazon stream and the rest of the stream synthesized via three graph
models: Butterfly model (BM) [229], Connecting Nearest-neighbour model (CNM) [320],
and Duplication Divergence model (DDM) [326]. These baseline streams are generated
using random integers in [1, 5] as weights and the time step at which new vertices join the
graph as the timestamp of new sgrs. In all three models, the stream grows by adding a
new vertex at each time step and the original models generate unipartite graphs. Either
an i-vertex or a j-vertex is chosen to be added randomly with equal probability and the
same procedure is followed for adding new j-vertices and new i-vertices.

e In CNM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices. With
probability 1 — p, the new i-vertex is connected to a randomly selected j-vertex and
with probability p, an edge between two randomly selected and disconnected vertices
is established.
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e In BM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices residing
on a random walk started from one or more host vertex. Each new i-vertex picks a
host (a randomly selected j-vertex) with probability p, and is assigned a probability
Pstep (a random value in (0, 1]). The new i-vertex visits the host as it is linked to the
host with probability p; and then with probability pg., visits a two-hop j-vertex on
the random walk started from the host. This procedure continues until no new host
is chosen.

e In DDM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices by
following duplication and divergence rules. In duplication phase, the new i-vertex v;
connects to all j-neighbours n; of a randomly selected i-vertex vy (vi is duplicated)
and during the divergence phase, one of the two edges e;,; or e;,; is selected randomly
and removed with probability p,.

Metrics. The effectiveness of sGrow is evaluated and compared with real-world streams
with respect to the three patterns of scale-invariant strength assortativity of butterflies.
Qualitative evaluations are done by checking whether the patterns hold and quantitative
evaluations are done by checking the error of r* and F.

The efficiency of sGrow is evaluated by measuring the generation time (in seconds).
Moreover, the burstiness of the sGrow streams is evaluated by investigating the frequency
distribution of burst sizes.

Computing setup. Experiments are conducted on a machine with 15.6 GB native mem-
ory and Intel Core i7 — 6770HQCPU@Q2.60GHz * 8 processor. All sGrow’s algorithms and
experiments are implemented and performed in Java (OpenJDK version 11.0.11).

4.4.1 Pattern Reproduction

sGrow. The streams generated by sGrow obey the scale-invariant strength assortativity
of butterflies. This is because all the synthetic streams preserve the realistic mixing patterns
(Figures 4.9 - 4.15) regardless of the initial graph snapshot, butterfly count, and burstiness
level as described below.

e Butterfly densification. The number of butterflies grows over time with an average
butterfly rate higher than 1 in all the streams (Table 4.5) indicating that the butterfly
count grows super-linearly with respect to the number of edges.
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Figure 4.9: Mixing patterns of butterflies in Ciao stream.
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Figure 4.10: Mixing patterns of butterflies in Epinions stream.
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Figure 4.11: Mixing patterns of butterflies in WikiLens stream.
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Figure 4.12: Mixing patterns of butterflies in ML100k stream.
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Figure 4.13: Mixing patterns of butterflies in ML1m stream.
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Figure 4.14: Mixing patterns of butterflies in Amazon stream.
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Figure 4.15: Mixing patterns of butterflies in Yahoo stream.

e Strength diversification. The mean, relative standard deviation, and tail skew-
ness/heaviness of Pr(S) increases over time showing that butterfly vertex strengths
diversify over time.

e Steady strength assortativity. The synchronous evolution of mean and standard
deviation accompanied by increasing skewness/heaviness of the tail of Pr(§) plus the
stable values of F' elements over time demonstrate that Pr(6) is fixed-shaped yet
growing. Moreover, the strength assortativity localization factor changes trivially
over time and is positive with F; values between 0.5 and 0.7 indicating the steady
strength-assortativity of butterflies over time.

Table 4.6 presents the mean absolute error of r* and F elements in sGrow streams with
respect to that of real-world streams over the sequential burst-based graph snapshots. In all
synthetic streams the error is between 0.01 and 0.1. The low errors of F elements suggest
that sequential graph snapshots in the sGrow streams have similar strength difference
distribution to the corresponding real-world streams. Particularly the low error of Fi,
r¥ represents the similar strength assortativity localization factor. This indicates that
sGrow reproduces the similar strength difference distribution and strength assortativity of
butterfly edges as in the real-world streams.
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Table 4.5: Average butterfly rate in synthetic streams generated by our model.

average butterfly rate |E?Y| Ngo p<?V
S-Ciao 37.2440 + 31.4987 72,966 940 7,430,097
S-Epinions 9.4358 £ 6.1519 14, 495 300 304,417
S-WikiLens 6.3037 + 5.6897 25,957 4,000 69, 302
S-ML100k 2.191 £ 1.3045 87,951 12,000 204,118
S-ML1m 59.8963 + 29.2066 85,397 2,000 7,860, 689
S-Amazon 30.8994 + 28.8517 106,714 4,000 9,599, 739
S-Yahoo 51.1708 £ 27.891 120,616 3,200 10, 847,746

BM p; =0.3, pr =0.5 4.9294e -4 +£2.3263e -4 106716 81448 30
BM p; =0.5, pp, =0.7 0.0035 + 8.9103e — 04 106716 48944 253

BM p; =0.7, p, =0.9 0.2534 + 0.0453 106720 14660 26371
CNM p=0.3 0.0015 + 5.2659e — 04 106739 105841 94
CNM p=0.5 0.0064 + 9.4627e — 04 106739 105841 5936
CNM p =0.7 0.0423 + 0.0068 106739 105841 4420
DDM p, =0.3 8.4597 + 6.2345 106714 25524 2183130
DDM p. =0.5 1.2260 + 0.8530 106714 42644 294543
DDM p. =0.7 0.0928 + 0.0685 106714 69263 23342

Baselines. None of the baseline streams obey the scale-invariant strength assortativity
of butterflies (Figures 4.16-4.24) since by, b2, and bs are not preserved.

e Butterfly densification. The number of butterflies grows slowly in the streams (Ta~
ble 4.5). In BM streams, a butterfly forms when a new vertex connects to a host
(selected with probability pj) and its two hop neighbour with probability p;, there-
fore as pj and p; increase, butterfly count increases. In BM stream with p; = 0.3
and p, = 0.5, at some graph snapshots there is no new butterfly added to the graph
and butterfly count remains the same. However, the total number of butterflies in
each graph snapshot is far below the number of edges. In CNM streams, butterflies
have higher chance of emergence when potential edges are converted to edge with
probability p compared to addition of new edges with probability 1 — p, therefore
as p increases butterfly count increases, albeit insignificantly. In DDM, with prob-
ability 1 — p, butterflies emerge with the addition of each new vertex, which forms
wedges with degree(v;:) neighbour of vy. Consequently the lower p., the higher is
the butterfly count. However, the average butterfly rate is still lower than that of
sGrow, specifically S-Amazon with average butterfly rate 30.89994 and DDM with
pe = 0.3 having 8.4597. Moreover, the streams have low burstiness as Ngo is higher
than that of sGrow.
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Table 4.6: Mean absolute error of r® and F elements.

F1, rs F2 F3 F4
S-Ciao 0.0286 0.05 0.0569 0.0199
S-Epinions 0.0318 0.0389 0.0219 0.0163
S-WikiLens 0.0528 0.0705 0.08 0.0194
S-ML100k 0.0376 0.0513 0.0642 0.0384
S-ML1m 0.0617 0.0445 0.049 0.015
S-Amazon 0.1064 0.0539 0.0476 0.094
S-Yahoo 0.0578 0.0782 0.0519 0.0316

BM p; =0.5, pp =0.7 0.1436 0.0855 0.0855 0.0270
BM p; =0.7, pp, =0.9 0.1279 0.0768 0.0463 0.0156

CNM p =0.3 0.1869 0.1234 0.0997 0.0423
CNM p =0.5 0.1373 0.0593 0.0635 0.0179
CNM p =0.7 0.1418 0.0773 0.0561 0.0105
DDM p. =0.3 0.0654 0.0654 0.0415 0.0201
DDM p. =0.5 0.0690 0.0427 0.0306 0.0289
DDM p, =0.7 0.0851 0.0634 0.0415 0.0129

e Strength diversification. The vertex strengths do not diversify over time as Pr(S)
does not get broader and skewed. In all streams CV of vertex strength of butterfly
i- and j-vertices is greater than one and increases over time, however Yo and ug do
not show an increasing trend.

e Steady strength assortativity. The distribution of strength difference of connected
butterfly vertices does not get broader, however it retains a fixed shape. Yo and us
of Pr(d) do not increase over time, although CV is fixed at = 1 in BM with highest
p; and p, and CNM with p > 0.3. In BM and CNM streams, the localization of
ds below the mean (r*) is not stable at values at least above 0.1 and fluctuates over
time, although the streams display similar F values as Amazon stream (low errors as
shown in Table.

4.4.2 Stress Testing

Effectiveness. Figure 4.25 shows the evolution of r* as the number of butterflies grows
to 107 in S-Amazon stream with different parameter configurations. Data points are not
clustered by colours (corresponding parameters [Lyin, Limax], M, and B) in rows a, ¢, and
d, however they are clustered and ordered by p. Also, 0.1 < r® < 0.15 regardless of
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Figure 4.18: Mixing patterns of butterflies in BM stream with p; = 0.7, p;, = 0.9.
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Figure 4.19: Mixing patterns of butterflies in CNM stream with p = 0.3.
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Figure 4.20: Mixing patterns of butterflies in CNM stream with p = 0.5.
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Figure 4.21: Mixing patterns of butterflies in CNM stream with p = 0.7.
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Figure 4.22: Mixing patterns of butterflies in DDM stream with p, = 0.3.
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Figure 4.23: Mixing patterns of butterflies in DDM stream with p, = 0.5.
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Figure 4.24: Mixing patterns of butterflies in DDM stream with p, = 0.7.

[Lins Limax], M, and B. The value of r® is stable at a positive value, which is higher for
lower connection probabilities p. As the connection probability p increases, the probabil-
ity of establishing connections between the newly added vertices with low strength and
high strength neighbours of the PRW vertices increases, therefore the assortativity level
decreases. Figure 4.27, depicts the evolution of 7* as the number of butterflies grows to 107
in S-Amazon stream with parameter switch in the middle of stream generation. Compared
to the stream with static parameters, the data points of streams with dynamic parameters
follow the same pattern after the switch of [Lyin, Linax], M, and B. Increasing the value of
p slightly decreases r*; yet the steady state is retained after the switch.

Efficiency. Figure 4.26 displays the time for generation as the stream grows to 107 sgrs
in S-Amazon stream with different parameter configurations. Data points are not clus-
tered by colours (corresponding parameters [Lyin, Linax], M, and B) in rows a, ¢, and d,
however they are clustered by p and ordered by both p and [Lin, Linax]- That is, the
generation time is not impacted by M (Figure 4.26(c)) or B (Figure 4.26(d)), however it is
affected by p and [Lyin, Linax]- As the connection probability p increases, the generation
time decreases since the number and the size of bursts created at each time step increases
(Figure 4.26(b)). As the range of random walk length L € [Ln, Linax] increases, the
generation time decreases since the size of bursts created at each time step increases (Fig-
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ure 4.26(a)). Figure 4.27, depicts the time for generation as the stream grows to 107 sgrs
in S-Amazon stream with parameter switch in the middle of stream generation. Switching
M and B gradually decreases the slope of generation time curve, while switching L and
p promptly and significantly changes the slope. This confirms that L and p significantly
determine the generation time.

Burst Size. Figure 4.28 shows the frequency distribution of all burst sizes in S-Amazon
with 107 sgrs generated by different parameter configurations. For all values of p and Ly,
by increasing M, the range of burst sizes expands; Therefore, M significantly impacts burst
sizes. Also, the maximum burs size increases as p and L, increase.

4.4.3 Computational Complexity

In the following, it is shown that high degree/strength vertices and PRW hop count deter-
mine the computational cost of sGrow.

THEOREM 1 The worst case computational complexity of sGrow in each window with
graph G=(V; UV}, E) and PRW parameter L is O(Smax + L(Njpax + Niyay)), where Spmay is
the mazimum strength in G and N', . and Njq. are the mazimum number of i-neighbors

and j-neighbors for vertices in V; and V;.

PROOF 1 sGrow’s computations at each window are dominated by burst additions as
the initialisation, sgr addition/removals, and window sliding take O(1) computation. The
worst case computational complexity of burst additions is the following.

O(SPS(.)) + O(PRW(.)) + O(2addburst(.)) (4.1)

Let us assume that the mazimum strength in G=(V; UV;,E) is Siax, L is the param-
eter for the PRW hop count, and the maximum number of i-neighbors and j-neighbors
for wvertices in V; and V; are N}, and Nj... Accordingly, we would have the follow-
ing complexities: O(SPS(V})) = Smax since the value assignments and corresponding op-
erators, and the list shuffling take one unit of computations, and the outer for loop is
parallel and the inner loop sequentially performs Spax computational units. We have
O(PRW(M?.,false,G,L)) = (L/241)N;ux+(L/2)Ni, . since |PRW;| = L/2+1 and |PRW;| =
L/2. Also, O(addburst(vll., vé., PRW;,G,R,p)) = O(addburst(vll., vﬁ., PRW;,G,R,p)) =
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Figure 4.25: Strength assortativity localization factor versus butterfly count for S-Amazon.
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