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Abstract

This thesis introduces two main-memory systems sGrapp and sGradd for performing the
fundamental analytic tasks of biclique counting and concept drift detection over a streaming
graph. A data-driven heuristic is used to architect the systems. To this end, initially, the
growth patterns of bipartite streaming graphs are mined and the emergence principles of
streaming motifs are discovered. Next, the discovered principles are (a) explained by a
graph generator called sGrow ; and (b) utilized to establish the requirements for efficient,
effective, explainable, and interpretable management and processing of streams. sGrow is
used to benchmark the stream analytics, particularly in the case of concept drift detection.

sGrow displays robust realization of streaming growth patterns independent of initial
conditions, scale and temporal characteristics, and model configurations. Extensive evalu-
ations confirm the simultaneous effectiveness and efficiency of sGrapp and sGradd. sGrapp
achieves mean absolute percentage error ≤ 0.05/0.14 for the cumulative butterfly count
in streaming graphs with uniform/non-uniform temporal distribution and a processing
throughput of 1.5 × 106 data record per second. The throughput and estimation error of
sGrapp are 160× higher and 0.02× lower than baselines. sGradd demonstrates an improv-
ing performance over time, achieves zero false detection rates when there is not any drift
and when a drift is already detected, and detects sequential drifts in zero to a few seconds
after their occurrence regardless of drift intervals.
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Nomenclature

Streaming Graph, denoted as ℜ = ⟨𝑟1, 𝑟2, ...⟩, is an unbounded sequence of partially
ordered streaming graph records (sgr), where each sgr 𝑟𝑚 = ⟨𝑣𝑚

𝑖
, 𝑣𝑚

𝑗
, 𝜔𝑚

𝑖 𝑗
, 𝜏𝑚⟩ with index

𝑚 denotes an edge 𝑒𝑖 𝑗 between i-vertex 𝑣𝑖 and j-vertex 𝑣 𝑗 , weight 𝜔𝑖 𝑗 , and timestamp 𝜏.

Degree of vertex 𝑣𝑖, denoted as 𝑑𝑒𝑔(𝑖) = |𝑁 (𝑣𝑖) |, is the size of its neighbourhood
𝑁 (𝑣𝑖) = {𝑣 𝑗 | 𝑒𝑖 𝑗 ∈ 𝐸}.

A window, denoted as 𝑊𝑘 := [𝑊𝑏
𝑘
,𝑊 𝑒

𝑘
), with index 𝑘 is a range of width |𝑊𝑘 |.

A burst-based graph snapshot, denoted as 𝐺𝑁𝑏 ,𝑡 = (𝐸,𝑉), is a graph formed by
vertices and edges in a window of 𝑁𝑏 bursts at time 𝑡.

A Caterpillar, denoted as ⋊, is a three-path sub-structure and a butterfly, denoted
as ⊲⊳, is a closed four-path sub-structure.

Butterfly Densification Power-law (BPL), denoted as 𝐵(𝑡) ∝ 𝑓 ( |𝐸 |𝜂), 𝜂 > 1, states
that the butterfly count at time step 𝑡 follows a power law function of the edge/sgr counts.

Strength Diversification, denoted as 𝜇1
𝑆
< 𝜇22, 𝑌

1
2 (𝑆) < 𝑌

2
2 (𝑆), 1 < 𝐶𝑉

1(𝑆) < 𝐶𝑉2(𝑆),
states that, given two consecutive burst-based graph snapshots at times 𝑡1 and 𝑡2, the
probability distribution of butterfly vertex strengths 𝑃𝑟 (𝑆) gets broader and more skewed
since the average 𝜇𝑆, excess kurtosis 𝑌2(𝑆), and coefficient of variation 𝐶𝑉 (𝑆)=𝜎/𝜇 of
strengths increase.

Steady Strength Assortativity, denoted as 𝑌1
2 (𝛿) < 𝑌2

2 (𝛿), 𝐶𝑉
1(𝛿) ≈ 𝐶𝑉2(𝛿),

𝐶𝑉 (𝛿) ≈ 1, 𝐹1
𝑖
= 𝐹2

𝑖
, 𝑖 = 1, .., 4, 𝑟 𝑠 > 0.1, holds when the strength assortativity lo-

calization factor, denoted as 𝑟 𝑠 = 1− 𝐹1, is fixed over two consecutive burst-based graph
snapshots at times 𝑡1 and 𝑡2, since the probability distribution of strength difference of
butterfly edges 𝑃𝑟 (𝛿) gets broader and more skewed while remaining fixed-shaped as

• the excess kurtosis 𝑌2(𝛿) of strengths differences 𝛿 increases,

• their coefficient of variation 𝐶𝑉 (𝛿)=𝜎𝛿/𝜇𝛿 remains fixed to 1, and

• the proportion of 𝛿s in four regions of the distribution 𝐹𝑖 does not change.

sGrow model is a generative function with four parameters: connection probability 𝜌,
the maximum batch size 𝑀, the slide parameter 𝛽, and the range of random walk’s length
[𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥].

sGrapp framework is a butterfly counting algorithm with two parameters: the number
of bursts per window 𝑁𝑏 and BPL exponent 𝛼. sGrapp estimates the cumulative butterfly
count at the end of window 𝑊𝐾 as the summation of the followings

xix



• 𝐵𝑘−1

• the number of butterflies introduced by window 𝑊𝑘 , denoted as 𝐵𝑊𝑘
𝐺

• the approximate number of inter-window butterflies 𝐵𝑖𝑛𝑡𝑒𝑟𝑊

sGradd framework is a concept drift detection algorithm with one parameter: the
number of bursts per window 𝑁𝑏. sGradd maps butterflies in the streaming graph to
unipartite vertices (which resemble phase oscillators with a phase 𝜃𝑣 and frequency Ω𝑣);
and then detects drifts at time step 𝑡 by tracking the evolution of synchronization of phases

using a quantity called order parameter 𝑂 [𝑡] = ((
∑
𝑣∈𝑉 𝑠𝑖𝑛𝜃𝑣)2+(

∑
𝑣∈𝑉 𝑐𝑜𝑠𝜃𝑣)2)

1
2

|𝑉 | .
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Chapter 1

Introduction

A wide variety of real-world datasets include data records that are related to each other; for
example, citation datasets, transaction datasets, and social network data. Such datasets
are best modeled as graphs, where the data records are represented as a set of vertices
connected by edges capturing the relationships among entities. The graph model treats
both the entities (vertices) and relationships (edges) as first-class objects. The model can
also describe several types of many-to-many inter-dependencies among data records as well
as their compositions (Table 1.1).

Due to the aforementioned high representational ability, graphs have long been used to
represent datasets where it is important to explicitly capture relationships. Management
and processing of graph datasets have always been driven by the characteristics of the
datasets and/or workloads (often specified by the applications). In most modern appli-
cations (e.g. product order transactions, World Wide Web feeds, and social networks),
graphs are not static, but change over time. A particular type that is of interest in this
thesis is where the graph emerges over time as the entities and the relationships among
them are established and the corresponding data records with fine-grained temporal in-
formation (i.e. timestamps) stream into a processing unit. These are called streaming
graphs whose main characteristic is that they are unbounded and the full graph is never
available to algorithms processing them. The continuous rapid temporal evolutions lead
to unbounded/unknown stream length and non-stationary distributions of the underlying
data snapshots. In this context, the temporal evolutions usually occur with respect to
the most recent graph topology (i.e. update events are not global); the evolving stream-
ing rates lead to non-uniform inter-arrivals; and multiple generative sources (as well as
factors such as transmission delays) cause out-of-order arrival of data records to a pro-
cessing unit which has no control over the arrival order or data rate [251, Stream Data
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Relation Type (Sub-)Graph Type
symmetric undirected or bi-directed graphs
asymmetric directed or oriented graphs

order and transitive directed triangles or feed forward loops
anti-symmetric non-bidirectional graphs

identity and reflexive self-loops
non-binary hyper-graphs
multiple multi-dimensional graphs

full complete graphs
empty isolated vertices

Composed Relations (Sub-)Graph Type
composition multi-hop paths with different edge types
transpose reversed edge directions
product loops

intersection/union/difference graph matching

Table 1.1: Data record inter-dependencies represented by graph data model.

Management], [130, 205]). A streaming graph is different from aggregated temporal graphs
(or graph streams) that are a sequence of graph snapshots (representing a dynamic graph
with an entirely available structure that undergoes temporal changes). Moreover, weight
addition patterns [229], streaming context [251, Big Data Processing], and data-driven se-
mantics [18] lead to burstiness in streaming record arrivals. A real example is the case of
user-product interactions in Alibaba e-commerce services that incurred a processing rate
of 470 million event logs per second during a peak interval [251, Big Data Processing].
The streaming graph model captures the characteristics of these real-world datasets. The
model assumes that the graph is built incrementally as data records arrive. Each arrival
consists of a timestamp assigned by the generative source and a payload that indicates the
vertex/edge that is generated and additional information such as edge weight.

This thesis presents an approach towards data-driven algorithm/system design for ex-
plainable and interpretable streaming graph analytics. The data-driven approach refers to
exploratory analysis of streaming graphs for in-depth understanding and identifying the
structural and temporal organizing principles of real-world streaming graphs to design ef-
fective and efficient processing algorithms. The explainable and interpretable approach is
concerned with performing iterative and stateful tasks over streaming graphs, such that
the operations are explainable and the outputs are interpretable.
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1.1 Thesis Scope

The thesis has two foci:

1. Bipartite graphs. The streaming graph record (sgr)s in many real-world appli-
cations capture the interactions that naturally occur in a bipartite mode. These
bipartite streaming graphs represent heterogeneous connections between two disjoint
sets of vertices (in this thesis refered as i-vertices and j-vertices). For instance, affili-
ation graphs that model the membership of people in groups, authorship graphs that
model the links between authors and their works, text graphs that model the occur-
rence of words in documents, feature graphs that model the assignment of features
to entities, and user-item graphs with items spanning different domains such as so-
cial networks (users-hashtags [365]), web-based services (users-websites, multimedia
services, and products [316, 163, 310, 342, 329]), financial systems (users-donation
campaigns [11]), transportation systems (users-registered vehicles [165]), and com-
munication systems (users-phone calls [353]). It has been shown that all complex net-
works have an underlying bipartite structure [324, 141]. Even those networks that are
naturally unipartite, e.g. social networks, have an inherent bipartite structure driv-
ing the topological structure of the unipartite version [243, 324, 141, 323]. Moreover,
bipartite graphs provide full representation without information loss for interactions
that naturally occur in one mode (compressed datasets as unipartite graphs [376]),
or multiple modes (high order interconnections as hyper-graphs [161, 13, 336]).

A natural question that arises is why the bipartite graph cannot be projected into a
unipartite graph (via a common approach that connects vertices with shared neigh-
bours [339]) and then apply existing methods for data mining over unipartite graphs?
The answer is that projecting the graph based on just shared neighbours is mislead-
ing, and counting on it is inefficient since the projected graph displays different
patterns [52] due to following reasons. First, the projected unipartite graph loses
fine-grained pattern information [194], since the one-to-many relationship informa-
tion is projected to pairwise relationships and the projection is not bijective. Second,
the projected unipartite graph will have significantly more edges than the bipartite
graph since each 𝑖−( 𝑗−)vertex 𝑣 with degree 𝑑𝑣 produces 𝑑𝑣 (𝑑𝑣−1)

2 homogeneous edges.
That is, the number of edges in the original bipartite graph is Σ𝑣𝑑𝑣 while in the pro-
jected graph it is Σ𝑣

(𝑑𝑣
2

)
. It has been shown [194] that projection can lead to an edge

inflation of 200×. In the case of streaming bipartite graphs that already have a high
number of edges, the projection will exacerbate the computational footprint. Finally,
the patterns that emerge in the projected unipartite graph are not reliable signals of
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the original bipartite graph since the edge inflation artificially changes the patterns.
For instance, it has been shown that the clustering coefficient is high in the projected
mode [244, 141] and unipartite projection misleads the community detection anal-
ysis [143, 39]. Moreover, one-mode projection is a separate line of research. This
problem scope is devoted to devising metrics for the similarity of vertices of each
mode such that connecting similar vertices does not affect the structural patterns
such as degree distribution [384]. Therefore, it is important to devise techniques to
directly study bipartite structures.

Figure 1.1: Projecting a bipartite graph to two unipartite graphs.

2. Butterfly motifs. The particular subgraph of focus throughout the thesis is but-
terfly (a complete subgraph between two pairs of distinct vertices). Similar to the
triangles in unipartite graphs, butterflies are the simplest and most local form of
a cycle in bipartite graphs. Butterflies are identified as one of the main topologi-
cal drivers of structural features such as transitivity and degree assortativity, whose
understanding is critical for improving the studies and models of spreading phenom-
ena on social networks with bipartite backbone graphs [324]. Moreover, butterflies
are of great importance in measuring properties such as cohesion, network stability,
and error tolerance [378]. For instance, cohesion can be measured by counting the
number of butterflies adjacent to vertices or by the clustering coefficient computed
based on the fraction of paths of length three, which are adjacent to each vertex and
form butterflies. Recently, various butterfly-based data models and analytic algo-
rithms for cohesive subgraph detection in heterogeneous information networks have
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(a) (fake users)-
items

(b) users-groups (c) users-(fake
users)-items

(d) items (e) users-items

Figure 1.2: Bipartite graphs in fraud detection and recommendation systems.

been proposed [117, 149, 14, 370, 106, 220]. Study of cohesive substructures such
as butterflies in the streaming setting is challenging due to stateful analytics (𝑂 (𝑛)
memory/space for at least finding butterflies, while requiring sublinear computa-
tional efficiency) and requires specialized techniques for processing and management
of data records. Moreover, butterfly-based processing impacts different applications
including the following cases in user-item data streams [283].

• Analytics for anomaly detection.

– (Fake user)-item graphs for detecting cases when a number of users are
hired to complete transactions to promote target items (Figure 1.2(a)).

– User-group graphs for detecting online gambling abnormal behaviours when
users join gambling groups for exchanging abnormal amount of money (Fig-
ure 1.2(b)).

– User-(fake user)-item graphs for detecting fraudulent money transfers (Fig-
ure 1.2(c)).

• Analytics for recommender systems.

– Extract item-item similarity graphs over which a random walk is performed
until reaching an item with different category for recommendation to a
shopping basket (Figure 1.2(d)).

– Find community of similar users for offering collaborative items (Figure 1.2(e)).

• Analysis for promoting sustainable life styles. United Nations has developed
17 Sustainable Development Goals (SDG) which are “the blueprint to achieve a
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better and more sustainable future for all. They address the global challenges we
face, including poverty, inequality, climate change, environmental degradation,
peace, and justice”1. Particularly, SDG 12 titled sustainable consumption and
production2 is aimed to promote sustainable life styles. For instance, in case of
user-item streams, one approach towards the mentioned goal is raising awareness
about conscious consumption. Since a butterfly represents a pair of users inter-
acting with two common items, analysis of butterfly interconnnections unveils
hidden orders of user preferences and/or item perceptions. Such analyses can
be conducted from different perspectives to gain insight on consumption trends
and inform policy makers or product managers. These perspectives include the
following cases:

– fast fashion brands are known to be not eco-friendly and the popularity of
the low quality new items produced in such ways can reveal consumption
patterns. This can be done through analysis of users interacting with new
items or perception of new-items;

– re-using products is a sustainable consumption approach and the extent
to which items are circulated among users/markets can reveal consump-
tion patterns. This can be done through analysis of reusable items pur-
chased/used by same users.

– long-lasting products and eco-friendly services can sometimes be costly and
incur sharing of the expenses. The extent to which expenses (for certain
items) are shared can reveal another consumption pattern. This can be
done through analysis of user interactions with same certain items.

1.2 Streaming Graph Analysis

The emergence patterns of butterflies as the meso-scale temporal building blocks in bi-
partite streaming graphs are studied in two phases. Meso-scale refers to the intermedi-
ate granularity of subgraphs between microscopic subgraphs such as vertices and edges
and macroscopic subgraphs covering most of the vertices in the graph such as the largest
connected components. In the first phase, subgraph pattern mining is performed using
vertex-centric methods (where the butterfly vertices are explored with respect to their

1United Nations sustainable development, un.org/sustainabledevelopment/
2“Sustainable consumption and production is about doing more and better with less. It is also about

decoupling economic growth from environmental degradation, increasing resource efficiency and promoting
sustainable lifestyles.”
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type, degree, support, and/or timestamp) and edge-centric methods (where the distribu-
tion of the inter-arrival of butterfly edges is explored). In the second phase, subgraph
pattern mining is performed using vertex-centric methods (where the butterfly vertices
are explored with respect to their type and weighted degree (strength)) and edge-centric
methods (where the distribution of strength difference of butterfly edges is explored). In
both phases, a landmark window is used for eager computations (where sgrs are appended
to the window), or lazy computations (where batches of sgrs are appended to the window).

The first phase [297, Section 3.2] shows that butterflies are temporal motifs with bursty
emergence patterns. Due to these emergence patterns, the number of butterflies is sig-
nificantly and continuously higher than that of random (null) graphs. The quantitative
emergence pattern is formulated as the butterfly densification power law (BPL) which
states that the number of butterflies at time 𝑡 follows a power law function of the number
of edges at time 𝑡. Another finding is that the bursty butterfly formation is contributed by
vertices with degree above the average of unique vertex degrees (hubs) and timestamp in
the first 25% of ordered set of already seen timestamps (old hubs). The second phase [298,
Section 5.1] discovers a phenomenon called scale-invariant strength assortativity of
streaming butterflies, a co-occurrence of three patterns: butterfly densification, strength
diversification, and steady strength assortativity. The confounding data-driven semantics
are explained in the domain of user-item interactions as these patterns relate to three graph
theory concepts: burstiness, rich-get-richer, and core-periphery. These laws influence the
algorithms developed in this thesis.

The main challenge is performing the stream mining while simultaneously maintaining
effectiveness and efficiency. As discussed in the following, this is addressed with respect to
the data and techniques used throughout the analyses.

Data. Effective exploration relies on real-world bipartite streaming graphs with times-
tamps and weights. The focus of this research is user-item streams. The sequences of
user-item interactions in web-services are typically associated with a weight that can be an
explicit value such as rating, or an implicit value denoting the multiplicity of interactions
between a pair of vertices. Moreover, the time-labeled interactions are continuously gener-
ated with a non-stable rate giving rise to emergence of an unbounded dynamic structure.
The edge weights and fine grained temporal information enable exploring the temporal and
connectivity patterns. Publicly available data are used in which the timestamp and weight
are explicitly given in the data records (common in rating graphs). Implicit weights that
are computed by aggregating multiple edges between two vertices are not considered, since
such aggregations require aggregating the timestamps as well, which in turn manipulates
the temporal properties and makes the temporal analysis unreliable.
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Effective exploration also relies on configurable random graph models as null graph
models to generate synthetic streams with known properties. A null graph model [297,
Section 3.1] is proposed to better understand and explain what is happening in real world
graph streams through the comparisons and contradictory case investigations. The model
extends the popular and widely adopted Barabasi-Albert model [38] (e.g. used in [159, 221,
236]) to generate bipartite streaming gaph with respect to a given real graph such that the
synthetic stream has (roughly) the same dynamic structural statistics but the timestamps
are static.

Techniques. Effective exploration also relies on data mining approaches which supports
the data characteristics (e.g. does not incur information loss, edge inflation, and artificial
graph patterns). This enables explainable, interpretable, and reliable pattern discovery. A
new metric, called strength assortativity localization factor [298, Section 4], is introduced.
This metric enables simple and effective (fair and accurate), statistical temporal analysis
(e.g. strength assortativity) for network inference in graphs having dynamic streaming
rate, abundant (bi)cliques, different scales, and multiple/skewed (strength) distributions.
It is based on tracking the localization of a low-dimensional vector, embedding data dis-
tributions in graph snapshots within/across streams.

Efficient exploration with a main-memory processing scheme requires incremental ap-
proaches to tackle the unboundedness and partial access to the graph structure. To this
end, several windowing schemes are used for setting the slide size/frequency and window
size/elements. Precisely, for the purpose of exploratory analyses, landmark windows are
used and the analyses are performed after appending of either one sgr or a variable-length
batch of sgrs. Also, an exact batched processing algorithm [297, Section 3.2] is devised for
butterfly enumeration. This algorithm follows a vertex-centric approach that does not re-
quire accessing two-hop neighbours (i.e. it is not triple/wedge-based) and can be computed
by looping over either i-vertices or j-vertices depending on their average degree. Therefore,
it is suitable for large graphs with high average degrees.

1.3 Streaming Graph Modelling

This component of the thesis involves modelling/explaining the growth patterns in stream-
ing graphs. As previous studies [29, 199, 108] describe, the graph models providing micro-
mechanics or high-order generative process of graph structure are generally deemed as
the explanation for the patterns observed in real-world graphs. Current works study and
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model the generative patterns of static or aggregated temporal graphs commonly opti-
mised for down stream analytics or ignore (1) multi-partite/non-stationary data distribu-
tions, (2) emergence patterns (not just existence) of building blocks, and (3) streaming
paradigms such as unbounded/time-sensitive updates, evolving streaming rates, and out-
of-order/bursty records (e.g., [10, 133, 359, 14, 201, 25, 329, 373]). The thesis introduces a
streaming growth model, called sGrow [298, Section 6], which includes a set of microscopic
mechanisms to explain the discovered patterns (Figure 1.3). Microscopic mechanisms also
known as ‘local rules’ determine how new edges connect to the rest of the graph. sGrow
suits the following cases:

Realistic sgr Generation

• Inactivity gaps

• Timestamp assignment

– Out-of-order sgrs

– Bursty sgrs

• Evolving streaming rate

– Batch of new sgrs

– Random batch size

– Burst addition per sgr/batch

• Local/unbounded updates

– Sliding window

– Continuous sgr generation

Preferential Random Walk

• Strength preferential selection

• BFS+DFS traversals

• Dynamic and random hop-count

Probabilistic Connections

• Random vertices

• Neighbor copying

Strength Diversification

Butterfly Densification

Steady Strength Assortativity

Microscopic Mechanisms

Scale-Invariant Strength Assortativity

Figure 1.3: Introduced microscopic mechanisms for explaining butterfly emergence patterns
by sGrow model.

• Streaming graph benchmarks by generating configurable realistic data streams sup-
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ported by a reference guide for parameter configuration and stress testing analysis.

• Machine learning benchmarks by providing annotated data streams which are syn-
thesized by realistic instance injection and suit both testing and training purposes.

• Development of streaming algorithms and models (e.g. concept drift models) by
providing microscopic mechanisms and characteristic patterns.

The main challenge is reproducing the explored realistic patterns in an effective, effi-
cient, explainable, and configurable approach. As discussed in the following, this is ad-
dressed with respect to the functions and parameters of the introduced algorithms.

Functions. An effective, efficient, and explainable growth model requires pinpointing the
generative origins and modelling them via accurate and scalable micro-mechanics. sGrow
incorporates techniques for iterative addition of bursts of sgrs which satisfy streaming graph
model, preserve realistic patterns of butterfly emergence quantitatively and qualitatively,
and make the stream generation scalable. Moreover, sGrow enables generating sequence of
bipartite edges attributed with timestamps and weights, isolated/out-of-order edges, and
four-vertex graphlets.

Parameters. A configurable model requires designing a parameterized algorithm which
robustly realizes realistic growth patterns independent of initial conditions, scale and tem-
poral characteristics, and model configurations. sGrow is parameterized with user-specified
configurations for the scale, burstiness, level of strength assortativity, probability of out-
of-order records, generation time, and time-sensitive connections.

1.4 Streaming Graph Analytics

The third component of the thesis involves designing analytics algorithms as part of frame-
works for two cases in streaming graphs: butterfly counting and concept drift detection.

1.4.1 Butterfly Counting

The results from the previous research component confirm that butterflies are temporal
motifs in bipartite streaming graphs. On the other hand, as noted in various studies (e.g.
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[301, 256, 51]), motif counting is a fundamental problem in large-scale network analysis.
Therefore, in this part of the thesis, the problem of butterfly counting in bipartite streaming
graphs is studied. This benefits many applications where studying the cohesion in graph
data is of particular interest. Examples include investigating the structure of computational
graphs or input graphs to the algorithms, as well as dynamic phenomena and analytic tasks
over complex real graphs (Figure 1.4). Butterfly counting is computationally expensive,
and known techniques do not scale to large graphs; the problem is even harder in streaming
graphs.

Following a data-driven methodology, the thesis introduces sGrapp [297, Section 4], a
streaming graph approximation framework for butterfly counting. sGrapp uses a novel
window-based stream processing, which adapts to the temporal distribution of the stream.
The window management mechanism is general and conforms to any real stream with
no assumption about the order and number of arriving sgrs. This mechanism provides
load-balanced windows for efficient analytical workloads and also enables accurate conti-
nous/temporal analysis which are based on comparing the analysis over different windows
of a stream as well as analysis over different streams having different temporal distributions.

Butterfly Counting

Graph Cohesion

Metrics

• Butterfly Support

• Clustering Coefficient

• Transitivity Coefficient

Community Structure

Predictive Performance
of Deep Neural Networks

Realistic Graph Models

Representative Graph Sampling

Dynamic Phenomena

• Social Collective Behaviors

• Synchronization

• Information Propagation

• Epidemic Spreading

Graph Analytics

• Link Prediction

• Community Detection

• Cohesive Sub-structures

• Recommender Systems

Structural Measures

Applications

Figure 1.4: Example applications of butterfly counting.

The main challenge is simultaneously achieving efficiency and effectiveness. Exact but-
terfly counting is feasible only when the entire graph is available to the processing al-
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gorithm. As discussed in the following, this is addressed with respect to the butterfly
emergence patterns and the windowing methods.

Patterns. An efficient streaming algorithm for butterfly counting can only deal with
a subset of the stream at any given point in time. Also, a precise streaming algorithm
demands taking into account all existing butterflies regardless of how long they take to
form and how much memory is available. According to the discovered patterns and based
on BPL, an estimate is provided for the count of a certain type of butterflies which are
computationally challenging. Also, optimisations are introduced based on learning accurate
values for the exponent of BPL.

Windowing. An efficient and accurate streaming algorithm for butterfly counting de-
pends on appropriate windowing approaches for setting the window size/slide such that no
butterfly is missed in counting. In window-based algorithms such as those in this thesis,
care is required as butterflies may be split across windows, affecting the butterfly count –
it is important to take into account the butterflies that may fall between windows. More-
over, when counting the number of multiple-window-spanning butterflies, it is important
to quantify them based on BPL. Based on the discovered patterns, a window manage-
ment method is introduced to deal with the bursty emergence patterns of butterflies. The
proposed approach uses burst-based tumbling windows that can adapt to the temporal dis-
tribution of the real streams with no assumption about the order and number of arriving
sgrs. The benefits are two-fold:

• providing load-balanced windows for efficient analytical workloads; and

• enabling accurate comparison of graph snapshots of the same or different streams.

1.4.2 Concept Drift Detection

Concept Drift (CD) occurs when a change in a hidden context can induce changes in a
target concept. CD is a natural phenomenon in streaming data due to the non-stationary
setting. Understanding, detection, and adaptation to CD in streaming data is vital for
effective and efficient analysis/analytics as reliable outputs depend on adaptation to fresh
inputs. Also, a variety of practical use-case scenarios reside in streaming setting and incur
CD. This thesis defines CD in streaming graphs and introduces sGradd, a streaming graph
framework for drift detection.
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The main challenge is, again, simultaneously achieving efficiency and effectiveness, while
detecting and understanding the drifts with an explainable and unsupervised method.
Moreover, the evaluation methodology should be accurate and reliable. As discussed in
the following, this is addressed with respect to the framework design and its performance
evaluations.

Design. An accurate detection algorithm demands stateful operations over windows of
sgrs and this is computationally expensive. On the other hand, high velocity and dynamic
streaming rate of sgrs necessitate a rapid drift detection. In the thesis, transient concepts
in streaming graphs are defined. CD is defined in the case of transient, interconnected,
and sequence of data instances forming a streaming graph which serves as the input to any
online adaptive analytic task (in both supervised and unsupervised mode). Accordingly,
sGradd, a modular framework, is introduced with data management and drift detection
components based on the butterfly patterns. The components are composed of a collection
of explainable, unsupervised, and adaptive techniques for understanding and detecting
drifts in hidden contexts that are reflected in target transient concepts. The introduced
techniques display initial and improving performance (with respect to accuracy and latency
of detections) over the timeline of sgr arrivals.

Evaluation. An accurate evaluation demands drift labels and precise recognition of
true/false and missed/delayed detections. sGrow is used to generate streams with differ-
ent drift patterns (reoccurring versus gradual drifts) and intervals (close versus far drifts).
sGrow generates sgrs through adding bursts such that the stream reproduces realistic sub-
graph emergence patterns; Therefore, it simulates a drift in a hidden context (generative
process) rather than an explicit drift in the target concept (subgraph interconnnectivity
patterns). When the drifts are close to each other, there is a concern about evaluation of
both accuracy and latency since the detections can be delayed to a time point after the
next drifts [173]. In such situations, it is not certain whether a detection is a duplicate false
detection or it is a delayed detection corresponding to previous drifts. To address this con-
cern, the accuracy rates and latency of the sequential drifts are considered simultaneously
for close drifts and individually for far drifts.

1.5 Thesis Organization

The rest of thesis is organised as follows. Chapter 2 includes the definition and notations.
Chapters 3, 4, and 5-6 further explain the algorithms and results introduced by the stream-

13



ing graph analysis, modelling, and analytics, respectively. Chapter 7 concludes the thesis
with a summary and future directions.
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Chapter 2

Background and Definitions

This chapter includes definitions and notations used for describing the data, processing
approaches, and subgraphs. Table 2.3 present the notations based on i-vertices. Similar
notations hold for j-vertices where applicable.

2.1 Streaming Graph Model

Definitions 1, 2, 3, and 4 describe the streaming graph data model introduced in this thesis
and [252, 253], as part of S-Graffito project1.

Definition 1 (Streaming Record) A streaming record (sr) 𝑟 is a pair (𝜏, 𝑝) where 𝜏 is
the event (application) timestamp of the record assigned by the data source, and 𝑝 defines
the payload of the record.

Definition 2 (Streaming Graph Record) A streaming graph record (sgr) is a stream-
ing record (Definition 1) denoted as a quadruple 𝑟𝑚 = ⟨𝑣𝑚

𝑖
, 𝑣𝑚

𝑗
, 𝜔𝑚

𝑖 𝑗
, 𝜏𝑚⟩, where 𝑚 is the sgr

index, and the payload 𝑝 = ⟨𝑣𝑚
𝑖
, 𝑣𝑚

𝑗
, 𝜔𝑚

𝑖 𝑗
⟩ indicates an edge with weight 𝜔𝑚

𝑖 𝑗
between vertices

𝑣𝑚
𝑖

and 𝑣𝑚
𝑗
.

Definition 3 (Streaming Graph) A streaming graph is an unbounded sequence of sgrs
denoted as ℜ = ⟨𝑟1, 𝑟2, · · · ⟩ in which each record 𝑟𝑚 arrives at a particular time 𝑡𝑚 (𝑡𝑚 ≤ 𝑡𝑛
for 𝑚 < 𝑛).

1dsg-uwaterloo.github.io/s-graffito/
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𝑡0 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑡6

𝑟1 = ⟨𝑖11, 𝑗
1
1 , 𝜏

1
1 ⟩

𝑟2 = ⟨𝑖22, 𝑗
2
1 , 𝜏

2
1 ⟩

𝑟3 = ⟨𝑖33, 𝑗
3
3 , 𝜏

3
2 ⟩

𝑟4 = ⟨𝑖41, 𝑗
4
2 , 𝜏

4
2 ⟩

𝑟5 = ⟨𝑖52, 𝑗
5
4 , 𝜏

5
5 ⟩ 𝑟8 = ⟨𝑖84, 𝑗

8
4 , 𝜏

8
5 ⟩

𝑟6 = ⟨𝑖64, 𝑗
6
3 , 𝜏

6
5 ⟩

𝑟7 = ⟨𝑖72, 𝑗
7
3 , 𝜏

7
2 ⟩

𝑟9 = ⟨𝑖95, 𝑗
9
4 , 𝜏

9
6 ⟩

Figure 2.1: Streaming graph records arriving at sequential time points 𝑡1 − 𝑡6

Definition 4 (Burst) A burst is the batch of sgrs with same timestamp and arrival time.
𝑏 = {𝑟𝑚 | �𝑟𝑛 : 𝜏𝑚 = 𝜏𝑛, 𝑡𝑚 = 𝑡𝑛, 𝑟𝑛 ∉ 𝑏}.

Multiple generative sources or transmission delays cause out-of-order arrival of sgrs to a
processing unit which has no control over the arrival order or data rate. Therefore, a burst
is defined as the batch of sgrs with same timestamp which arrive at the computational
system together. It is not defined as all sgrs with same timestamp. Bursts can be repeated
over time. For instance, Figure 2.1 illustrates a stream with nine sgrs:

𝑟1 = (𝑝1, 𝜏11 ), 𝑟
2 = (𝑝2, 𝜏11 ), 𝑟

3 = (𝑝3, 𝜏32 ), 𝑟
4 = (𝑝4, 𝜏42 ), 𝑟

5 = (𝑝5, 𝜏55 ), 𝑟
6 = (𝑝6, 𝜏65 ),

𝑟7 = (𝑝7, 𝜏25 ), 𝑟
8 = (𝑝8, 𝜏85 ), and 𝑟9 = (𝑝9, 𝜏96 )

In this example six bursts exist:

𝑏1 = {𝑟1, 𝑟2}, 𝑏2 = {𝑟3, 𝑟4}, 𝑏3 = {𝑟5}, 𝑏4 = {𝑟6, 𝑟8}, 𝑏5 = {𝑟7}, and 𝑏6 = {𝑟9}
Where 𝑏2 and 𝑏5 include a same timestamp 𝜏2 as 𝑟7 is a late arrival.

The sequence of sgrs is considered to be ordered by arrival times rather than timestamps.
This helps to take into account late arrivals and enables defining a stream as a sequence
of arriving bursts.

2.2 Window Management

Definitions 6,7, and 8 describe existing approaches to manage a window as described in
Definition 5. Definitions 9, 10, and 11 describe the introduced burst-based windows in the
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thesis. Tables 2.1 and 2.2 present instances of these windows operating over the streaming
graph shown in Figure 2.1. The content of any of the defined windows form a graph
snapshot, which is described in Definition 12.

Definition 5 (Window) A window indexed by 𝑘, 𝑊𝑘 , over a streaming graph is a finite
multi-set of sgrs denoted as a range [𝑊𝑏

𝑘
,𝑊 𝑒

𝑘
), where 𝑊𝑏

𝑘
and 𝑊 𝑒

𝑘
are the beginning and end

borders.

Definition 6 (Time-based Sliding Window) A time-based sliding window with win-
dow size |𝑊𝑘 | and slide parameter 𝛽 is a window (Definition 5) that slides every 𝛽 time
units and at any time point 𝑡, 𝑊 𝑒

𝑘
= ⌊𝑡/𝛽⌋ · 𝛽 and 𝑊𝑏

𝑘
= 𝑊 𝑒

𝑘
− |𝑊𝑘 |.

Definition 7 (Tumbling Window) A tumbling window is a time-based sliding window
(Definition 6) that has a constant slide interval equal to the window size and covers disjoint
intervals as ( |𝑊𝑘 | = 𝛽, ∀𝑘) and (𝑊𝑏

𝑘+1 = 𝑊
𝑒
𝑘
, 𝑊 𝑒

𝑘+1 = 𝑊
𝑏
𝑘+1 + |𝑊𝑘+1 |).

Definition 8 (Landmark Window) A landmark window is a window (Definition 5)
that progresses as new sgrs are added and the window size increases. The beginning border
is fixed and the window size is incremented as 𝑊𝑏

𝑘+1 = 𝑊
𝑏
𝑘

and 𝑊 𝑒
𝑘+1 = 𝑊

𝑒
𝑘
+ |𝑊𝑘+1 |.

Definition 9 (Burst-based Sliding Window) A burst-based sliding window with a pa-
rameter 𝑁𝑏 is a window (Definition 5) that progresses as 𝑁𝑏 bursts (Definition 4) are
added and window size changes randomly as a random number of sgrs are retired from the
window.

Definition 10 (Burst-based Tumbling Window) A burst-based tumbling window with
a parameter 𝑁𝑏 is a window (Definition 5) that covers disjoint intervals. It progresses as
𝑁𝑏 bursts are added and window size changes to the number of new sgrs. i.e. It is a
tumbling window (Definition 7) with dynamic slide interval and window size.

Definition 11 (Burst-based Landmark Window) A burst-based landmark window
with a parameter 𝑁𝑏 is a landmark window (Definition 8) that progresses as 𝑁𝑏 new bursts
are added and the window size increases by the number of new sgrs.
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Table 2.1: Instances of time-based, count-based, tumbling, and landmark windows.
Windows capture the sgrs arriving according to Figure 2.1.

Window Instance Window Content
Time-based sliding 𝛽 = 1, |𝑊 | = 4

𝑊1 = [𝑡0, 𝑡4) {𝑟1, 𝑟2, 𝑟3, 𝑟4}
𝑊2 = [𝑡1, 𝑡5) {𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6}
𝑊3 = [𝑡2, 𝑡6) {𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8}

Tumbling |𝑊 | = 𝛽 = 2
𝑊1 = [𝑡0, 𝑡2) {𝑟1, 𝑟2}
𝑊2 = [𝑡2, 𝑡4) {𝑟3, 𝑟4}
𝑊3 = [𝑡4, 𝑡6) {𝑟5, 𝑟6, 𝑟8, 𝑟7}
Landmark
𝑊1 = [𝑡0, 𝑡1) {}
𝑊2 = [𝑡0, 𝑡2) {𝑟1, 𝑟2}
𝑊3 = [𝑡0, 𝑡3) {𝑟1, 𝑟2, 𝑟3, 𝑟4}
𝑊5 = [𝑡0, 𝑡5) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}
𝑊6 = [𝑡0, 𝑡6) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟8, 𝑟7}
𝑊7 = [𝑡0, 𝑡7) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟7, 𝑟8, 𝑟9}

Definition 12 (Graph Snapshot) A graph snapshot is a pair of vertex and edge sets
𝐺 = (𝑉, 𝐸) forming a graph at time point 𝑡 by the sgrs within a corresponding window 𝑊𝑘 .
For simplicity, graph snapshot denoted as 𝐺𝑊,𝑡 and its corresponding window 𝑊𝐺 are used
interchangeably throughout the thesis.

When the graph snapshot is unipartite, edges are denoted as 𝐸 = {𝑒𝑣𝑛 = (𝑣, 𝑛, 𝑤𝑣𝑛)}.
When the graph snapshot is bipartite, vertices are two disjoint sets of i- and j-vertices
𝑉 = 𝑉𝑖 ∪ 𝑉 𝑗 , 𝑉𝑖 ∩ 𝑉 𝑗 = ∅ and edges are denoted as 𝐸 = {𝑒𝑖 𝑗 = (𝑣𝑖, 𝑣 𝑗 , 𝑤𝑖 𝑗 )} ⊆ 𝑉𝑖 × 𝑉 𝑗 . The
set of one-hop neighbours of a vertex 𝑣 is denoted as 𝑁 (𝑣) = {𝑛 | 𝑒𝑣𝑛 ∈ 𝐸}. Neighbours
of an i-vertex 𝑣𝑖 are called j-neighbours denoted as 𝑁 𝑗 (𝑣𝑖). Similar notation stands for
i-neighbours of a j-vertex 𝑣 𝑗 , denoted as 𝑁𝑖 (𝑣 𝑗 ).

2.3 Subgraphs

Definitions 13,14, and 16 describe existing subgraphs (illustrated in Figure 2.2) and a graph
property used in this thesis. Definition 15 introduces an extension of Definition 14.
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Table 2.2: Instances of burst-based windows.
Windows capture the sgrs arriving according to Figure 2.1.

Window Instance Window Content
Burst-based sliding 𝑁𝑏 = 1

𝑊1 = [𝑡0, 𝑡2) {𝑟1, 𝑟2}
𝑊2 = [𝑡0, 𝑡3) {𝑟2, 𝑟3, 𝑟4}
𝑊3 = [𝑡0, 𝑡5) {𝑟1, 𝑟2, 𝑟4}
𝑊4 = [𝑡0, 𝑡6) {𝑟1, 𝑟4, 𝑟5}
𝑊5 = [𝑡0, 𝑡6) {𝑟1, 𝑟4, 𝑟7}

Burst-based tumbling 𝑁𝑏 = 1
𝑊1 = [𝑡0, 𝑡2) {𝑟1, 𝑟2}
𝑊2 = [𝑡2, 𝑡3) {𝑟3, 𝑟4}
𝑊3 = [𝑡3, 𝑡5) {𝑟5}
𝑊4 = [𝑡5, 𝑡6) {𝑟6, 𝑟8}
𝑊5 = [𝑡5, 𝑡6) {𝑟7}
𝑊6 = [𝑡6, 𝑡7) {𝑟9}

Burst-based landmark 𝑁𝑏 = 1
𝑊1 = [𝑡0, 𝑡2) {𝑟1, 𝑟2}
𝑊2 = [𝑡0, 𝑡3) {𝑟1, 𝑟2, 𝑟3, 𝑟4}
𝑊3 = [𝑡0, 𝑡5) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5}
𝑊4 = [𝑡0, 𝑡6) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟8}
𝑊5 = [𝑡0, 𝑡6) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟8, 𝑟7}
𝑊6 = [𝑡0, 𝑡7) {𝑟1, 𝑟2, 𝑟3, 𝑟4, 𝑟5, 𝑟6, 𝑟8, 𝑟7, 𝑟9}
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Figure 2.2: (a, b, c, d) Caterpillar and (e) butterfly sub-structures [14].

Definition 13 (Caterpillar) A caterpillar ⋊ is a three-path between two i-vertices 𝑣𝑖1,
and 𝑣𝑖2 and two j-vertices 𝑣 𝑗1, and 𝑣 𝑗2. Two pairs of i- and j-vertices can form four
different caterpillars. i.e. ⋊ = {𝑒𝑖1, 𝑗1 , 𝑒𝑖2, 𝑗1 , 𝑒𝑖2, 𝑗2}∨{𝑒𝑖1, 𝑗1 , 𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗2}∨{𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗2 , 𝑒𝑖2, 𝑗1}∨
{𝑒𝑖1, 𝑗1 , 𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗1} (Figure 2.2(a)-(d)).

Definition 14 (Butterfly) A butterfly ⊲⊳𝑖1,𝑖2
𝑗1, 𝑗2

is a 2, 2-biclique between two i-vertices 𝑣𝑖1,
𝑣𝑖2 and two j-vertices 𝑣 𝑗1, 𝑣 𝑗2. It is a closed four-path ⊲⊳

𝑖1,𝑖2
𝑗1, 𝑗2

= {𝑒𝑖1, 𝑗1 , 𝑒𝑖2, 𝑗1 , 𝑒𝑖2, 𝑗2 , 𝑒𝑖1, 𝑗2}
formed by adding an edge to a caterpillar (Figure 2.2(e)).

Definition 15 (Young Butterfly) A young butterfly ⊲⊳ is a butterfly with j-vertices hav-
ing a timestamp within the last 𝑥 percentage of seen unique timestamps in the stream, i.e.
⊲⊳= {⊲⊳𝑖1,𝑖2

𝑗1, 𝑗2
| ∃𝑟𝑚, 𝑟𝑛 : 𝑣 𝑗1 ∈ 𝑟𝑚, 𝑣 𝑗2 ∈ 𝑟𝑛, (𝜏𝑚, 𝜏𝑛) ∈ [𝜏𝑡−[𝑥𝑡] , · · · , 𝜏𝑡−1, 𝜏𝑡]}.

Considering young butterflies (i.e. restricting the set of j-vertices), enables case studies
where the freshness of input data is important and/or the goal is to perform processing
over transient data records rather than all seen data records (streaming processing). In
the thesis, 𝑥 = 25%. Setting 𝑥 = 100% would be equivalent to considering all seen vertices.
The set of unique timestamps in the stream grows over time and consequently the set of
j-vertices within the 𝑥 percentage grows. Choosing a low percentage helps to keep the size
of this set balanced particularly when the streaming rate is high.

Definition 16 (Vertex Strength) Vertex strength (shortly strength) is the total weight
of edges connected to a vertex denoted as 𝑆𝑖 = Σ𝑣 𝑗∈𝑁 𝑗 (𝑣𝑖)𝜔𝑖 𝑗 , 𝑆 𝑗 = Σ𝑣𝑖∈𝑁𝑖 (𝑣 𝑗 )𝜔𝑖 𝑗 [305, 40, 41].
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Table 2.3: Frequent notations used to describe data.
Notation Description
𝑟𝑚 Streaming graph record (sgr) with index 𝑚
𝑣𝑚
𝑖

i-vertex corresponding to sgr 𝑟𝑚

𝜏𝑚 Timestamp of sgr 𝑟𝑚

𝑡𝑚 Arrival time of sgr 𝑟𝑚, a computational time point
𝜔𝑚
𝑖 𝑗

weight of the edge between 𝑣𝑖 and 𝑣 𝑗 corresponding to sgr 𝑟𝑚

ℜ = ⟨𝑟1, 𝑟2, ...⟩ Streaming graph
𝑉𝑖 = {𝑣𝑖} Set of i-vertices
𝐸 set of edges
𝑑𝑒𝑔(𝑖) Degree of vertex 𝑣𝑖
𝑑𝑖 Average degree of i-vertices
𝑁 (𝑣) One-hop neighbourhood of a vertex v
𝑒𝑣𝑛 A unipartite weighted edge between vertices 𝑣 and 𝑛
𝑒𝑖 𝑗 A bipartite edge between vertices 𝑣𝑖 and 𝑣 𝑗
𝑁 Number of vertices in Barabasi-Albert model
𝑚 Initial number of vertices in Barabasi-Albert model
𝑚0 Number of connections of each new vertex in Barabasi-Albert model
𝑊𝑘 := [𝑊𝑏

𝑘
,𝑊𝑒

𝑘
) A window with index 𝑘 as a range of width |𝑊 |

𝐺𝑊,𝑡 A graph snapshot formed by window 𝑊 at time 𝑡
𝐺𝑁𝑏

A graph snapshot formed by a burst-based window
𝛽 Slide parameter for a sliding window
𝑏 A burst
𝐵, 𝑚𝑎𝑥𝐵 Average/maximum seen burst size
𝑁𝑏 Number of bursts per window
⋊ Caterpillar
⊲⊳
𝑖1,𝑖1
𝑗1, 𝑗2

Butterfly
⊲⊳ Young butterfly
∧ Number of wedges (two-paths)
þ Structural pattern
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Chapter 3

Streaming Graph Analysis

Bipartite graphs are rich data structures with prevalent applications and characteris-
tic structural features. However, less is known about their growth patterns, particu-
larly in streaming settings. Frequent subgraphs (motifs [232] or graphlets [281]) as the
building blocks of graphs [232] play an important role in understanding the structure of
graphs [8, 281, 51, 215, 312, 347, 256, 207, 221, 184, 359, 156, 331, 299, 297]. Network
motifs are “patterns of interconnections occurring in complex networks at numbers that are
significantly higher than those in randomized networks” [232]. Identifying the motifs helps
characterize the graph and also benefits applications that are based on subgraph-centric
programming model (i.e. operates on subgraphs rather than vertices or edges) and can be
optimized by indexing the network motifs. That is, network motifs represent the regulari-
ties in the graph data and are helpful in building indexes over frequent and regular graph
structures (structural indexing) [350, 369, 290]. Butterflies are known to be motifs in
static graphs, however their temporal emergence patterns are not well studied. This chap-
ter presents investigations into the emergence patterns of butterflies in streaming graphs
and on the underlying contributors to these patterns. The goal is to understand How do
butterflies as the building blocks of bipartite streaming graphs emerge? This question is
answered in two phases: Phase 1: showing that butterflies are the building blocks (tempo-
ral motifs) across the timeline of sgr arrivals in bipartite streaming graphs and identifying
their emergence patterns [297]; and Phase 2: further explorations to explain the identified
patterns and discover all of their contributing factors [298]. Both phases involve systematic
and extensive experimental analysis of real and synthetic graphs. This is the first empirical
study of how streaming graph substructures emerge.
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Table 3.1: Frequent notations in this chapter.
Notation Description
𝜂 Butterfly densification power-law exponent for all butterflies
𝑁ℎ𝑢𝑏 (𝑡) Number of hubs at time 𝑡
𝐵(𝑡) The number of butterflies since the initial time point until 𝑡
𝐵𝑖 Butterfly support of vertex 𝑖
𝑆𝑖 Vertex strength of 𝑉𝑖
𝑟 Assortativity coefficient
𝑃𝑟 (𝛿) Probability distribution of strength difference of butterfly edges
𝑃𝑟 (𝑆𝑖) Probability distribution of strength of butterfly i-vertices
𝜇𝑖 Average strength of butterfly i-vertices
𝜇𝛿 Average strength difference of butterfly edges
𝜎𝛿 Standard deviation of strength difference of butterfly edges
𝐹𝑖 The 𝑖𝑡ℎ element of embedding vector of 𝑃𝑟 (𝛿)
𝑟𝑠 Strength assortativity localization factor
𝐶𝑉 Coefficient of variation
𝑌2 Excess kurtosis

3.1 Data and Methods

Analyses are conducted on a machine with 15.6 GB native memory and Intel Core 𝑖7 −
6770𝐻𝑄𝐶𝑃𝑈@2.60𝐺𝐻𝑧 ∗ 8 processor. All algorithms are implemented in Java (OpenJDK
versions 1.8.0 − 252 in Phase 1 and 11.0.11 in Phase 2).

3.1.1 Data

The set of real-world bipartite streaming graphs and the synthetic streams generated by a
proposed null graph model are described in the following.

Real-world graphs. The focus of research is the organizing principles in bipartite
streams such as user-item streams. The sequences of user-item interactions are typically
associated with a weight that can be an explicit value such as rating, or an implicit value de-
noting the multiplicity of interactions between a pair of vertices. Moreover, the time-labeled
interactions are continuously generated with a non-stable rate giving rise to emergence of
an unbounded dynamic structure. The edge weights and fine grained temporal informa-
tion enable exploring the temporal and connectivity patterns. The data used are publicly
available data in which the timestamp and weight are explicitly given in the data records
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(common in rating graphs). Implicit weights computed by aggregating multiple edges
between two vertices are not considered since such aggregations require aggregating the
timestamps as well, which in turn manipulates the temporal properties and makes the tem-
poral analysis unreliable. All datasets are available at public repositories KONECT [191]1
and Netzschleuder2. These datasets include naturally occurring bipartite interactions as a
set of records including the user ID, item ID, rating, and timestamp. The rating values are
in the set {1, 2, 3, 4, 5} in all datasets except for WikiLens with ratings in {0, 0.5, 1, .., 4.5, 5}.
In WikiLens, the ratings are rounded and those ratings equal to 0 are replaced with 1 to
convert the rating scale to 1 − 5 (for fair comparison with other datasets). Tables 3.2 and
3.3 provide the statistics of the data streams used in the first and second phases of explo-
rations, respectively (notations are described in Table 2.3). These datasets cover graphs
with different structural properties (e.g. edge density, average vertex degree, and wedge
(i.e. two-path) count) and characteristics (e.g. number and average size of bursts) which
make them suitable for deep analysis. For instance, Ciao and Amazon have low average
degree of both i- and j-vertices, while they are bursty streams. Epinions3 has higher aver-
age degree of i-vertices compared to that of j-vertices with a very high number of wedges
(the building blocks of butterflies), and it is a bursty stream with large bursts. WikiLens
has high average degree of i-vertices but it is not bursty. ML100k has high average degree
of i- and j-vertices and high number of wedges and it is roughly as bursty as ML1m and
Yahoo which have higher average degree of i- and j-vertices and higher number of wedges.

Synthetic graphs. In Phase 1 of explorations, synthetic random graphs are used in
addition to the real-world graphs to bolster the analysis over real-world graphs. In fact
synthetic graphs are configurable and have known structural properties that ease the un-
derstanding of their patterns. These synthetic graphs are used to better understand and
explain what is happening in real-world graphs through the comparisons and contradictory
case investigations. These synthetic graphs are generated with respect to the three real-
world graphs (Epinions, MovieLens100k, and MovieLens1m) in that the synthetic graphs
and the corresponding real-world graphs have (roughly) the same structural statistics (e.g.
the number of vertices and edges and the degree). The structure of these synthetic ran-
dom graphs is generated according to the attachment mechanism of Barabasi-Albert (BA)
model [38], which is a popular and widely adopted model for generating scale-free graphs.
Given the total number of vertices 𝑁, the initial number of vertices 𝑚0 and the number of
connections of new vertices 𝑚 (𝑚 ≤ 𝑚0) as inputs, the BA graph model applies the rich-

1http://konect.uni-koblenz.de/networks/
2networks.skewed.de
3In literature, Epinions appears as both unipartite and bipartite graphs. In this thesis the bipartite

graph is used.
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Table 3.2: Datasets used in Phase 1 of explorations.
|𝑉𝑖 | |𝑉 𝑗 | |𝐸 | 𝑑𝑖 𝑑 𝑗 𝑁 𝑚 𝑁𝑏

Epinions 22, 164 296, 277 922, 267 41 3 4, 318
BA+Epinions
stamps

22, 514 21, 455 922, 254 41 43 22, 515 41 4, 318

BA+random stamps 22, 514 21, 455 922, 254 41 43 22, 515 41 921, 159

ML1m 6, 040 3, 706 1, 000, 210 166 270 458, 455
BA+ML1m stamps 6, 106 6, 022 999, 901 164 166 6, 107 166 458, 312
BA+random stamps 6, 106 6, 022 999, 901 164 166 6, 107 166 994, 467

ML100k 943 1, 682 100, 000 106 59 49, 282
BA+ML00k stamps 995 982 99, 905 100 100 966 106 49, 254
BA+random stamps 995 982 99, 905 100 100 966 106 996, 555

ML10m 69, 878 10, 677 10, 000, 054 143 937 7, 096, 905

Edit-FrWiki 288, 275 3, 992, 426 46, 168, 355 160 11 39, 190, 059

Edit-EnWiki 262, 373, 039 266, 665, 865 266, 769, 613 70 12 134, 075, 025

Table 3.3: Datasets used in Phase 2 of explorations.
|𝑉𝑖 | |𝑉 𝑗 | |𝐸 | 𝑑𝑖 𝑑 𝑗 𝑁𝑏 𝐵

∧
Ciao 17, 615 16, 121 72, 665 4.1 4.5 4, 919 14.8 4, 896, 641
Epinions 120, 492 755, 760 13, 668, 320 113.4 18 501 27, 282 69, 245, 866, 714
WikiLens 326 5, 111 26, 937 82.6 5.2 26, 239 1 6, 316, 744
ML100k 943 1, 682 100, 000 106 59.4 49, 282 2 18, 367, 254
ML1m 6, 040 3, 706 1, 000, 210 165.6 269.9 458, 455 2.2 602, 009, 923
Amazon 2, 146, 057 1, 230, 915 5, 838, 041 2.7 4.7 3, 329 1, 753.7 627, 186, 651
Yahoo 1, 000, 990 624, 961 256, 804, 235 256.5 410.9 105, 331, 405 2.4 4, 627, 224, 528, 654

get-richer preferential attachment rule to generate a unipartite scale-free random graph.
Precisely, this graph model creates an initial complete graph with 𝑚0 vertices and keeps
adding 𝑁 − 𝑚0 new vertices to this initial graph. The new vertices are connected to 𝑚
existing vertices with higher probability of attachment dictated by the attachment rule.
The BA preferential attachment rule states that the probability is determined based on
the degree of the vertex, therefore the higher the degree (i.e. the older the vertex), the
higher the probability of attachment. BA model produces growing unipartite graphs with
no timestamps. Therefore, in the following, the model is extended to generate bipartite
and scale-free streaming graphs with respect to a given real-world graph such that the
structure is dynamic but the timestamps are static.

1. Create Unipartite BA graph – The input parameters to the BA model (i.e. 𝑁,
𝑚, and 𝑚0) should be set such that the average degree of i-vertices and the number
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of total edges (|𝐸 |) in real-world and synthetic graphs are (roughly) the same. That
is because of the edge-centric nature of the intended analysis. Therefore, the 𝑚 and
𝑚0 are set as equal to the average degree of i-vertices (i.e. users) in the real-world
graph and the value of 𝑁 is determined in a way that it satisfies the equation for the
number of edges in BA graph, that is 𝑚0(𝑚0−1)/2+(𝑁−𝑚0)𝑚 = |𝐸 |. Given the input
parameters, the edge list of the scale-free unipartite directed graph is generated.

2. Project the graph to bipartite mode – A common approach to project a bipartite
graph 𝐵𝐺 = (𝑉, 𝐸𝑖 𝑗 ) to unipartite modes 𝐺𝑖 = (𝑉𝑖, 𝐸𝑖, ) and 𝐺 𝑗 = (𝑉 𝑗 , 𝐸 𝑗 ) is to connect
a pair of vertices if they have a common neighbour (Figure 1.1). That is, (𝑣𝑖𝑚 , 𝑣𝑖𝑛) ∈ 𝐸𝑖
iff ∃𝑣 𝑗 ∈ 𝑉 𝑗 : (𝑣𝑖𝑚 , 𝑣 𝑗 ) ∈ 𝐸𝑖 𝑗 & (𝑣𝑖𝑛 , 𝑣 𝑗 ) ∈ 𝐸𝑖 𝑗 and the same connection rule for j-
vertices. Accordingly, a reverse-engineering technique can be used for projecting the
unipartite graphs to bipartite mode. Precisely, given a unipartite BA graph 𝐺𝑖 with
𝑁𝑖 or 𝑁 𝑗 vertices (assuming the vertices as i- or j-vertices), the bipartite mode 𝐵𝐺 is
generated by the procedure below:

(a) Assign 𝑁 𝑗 labels {𝐿𝑘 |1 ≤ 𝑘 ≤ 𝑁 𝑗 } to arbitrary edges in 𝐺𝑖.

(b) Create a set of 𝑁 𝑗 j-vertices.

(c) Project each edge (𝑣𝑖𝑚 , 𝑣𝑖𝑛) ∈ 𝐸𝑖 with label 𝐿𝑘 into two edges (𝑣𝑖𝑚 , 𝑣 𝑗𝑘 ) and
(𝑣𝑖𝑛 , 𝑣 𝑗𝑘 ).

Clearly, this procedure can yield a bipartite BA graph with a pre-specified number
of i- and j-vertices. Therefore, it can mimic the number of vertices in the real-world
graph exactly. However, the number of edges in the output bipartite BA graph
does not match that of the unipartite BA graph and if we create a unipartite BA
graph with specific number of edges, then the number of i-vertices would be affected
accordingly. Therefore, this projection method can not yield bipartite BA graphs that
have specific number of edges and vertices at the same time and solely adjusting the
number of edges will affect the number of vertices. On the other hand, the intended
analysis are edge-centric, therefore it is important to create synthetic bipartite graphs
with the same number of edges as the real-world graphs.

To address this problem, a simple projection method is followed. Given the list
of directed edges in the unipartite BA graph, the sources of edges are treated as
i-vertices and the destinations as the j-vertices. Hence, the BA graph is projected
to bipartite mode with the same number of edges as that of the unipartite and the
corresponding real-world graph. The number of i-vertices in the projected bipartite
BA graph (equal to the 𝑁 of unipartite BA graph) is very close to that of the real-
world graph. In spite of different number of j-vertices in the projected and real-world
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graphs, this projection method is preferable as it solves the aforementioned issue.
Moreover, this method preserves the scale-free characteristic of the uni-partite graph
since the j-degree (i-degree) distribution in bipartite graph is equivalent to the in-
degree (out-degree) distribution of vertices in the unipartite graph and the j-degree
distribution is scale-free.

3. Assign timestamps to the synthetic edges – Given the timestamps of the real-
world graph and the bipartite structure of the corresponding random graph, times-
tamps are assigned to the edges in two ways:

(a) Each BA edge is randomly assigned a timestamp within the range of times-
tamps of the corresponding real-world graph and the resulting graph is called
BA+random stamps.

(b) The un-ordered timestamps of the corresponding real-world graph are assigned
to arbitrary BA edges and the resulting graph is called BA+real stamps. This
method guarantees same temporal distribution for the edges of BA and real-
world graphs and supports fair comparisons.

All the edge lists (real and synthetic) are sorted based on the timestamps to simulate
the streaming graph records in the analysis. When there are duplicate edge arrivals (i.e.
multiple connections between two vertices), the duplicates are ignored and only the first
edge is considered.

3.1.2 Methods

Exact Butterfly Counting. Analyses in both Phase 1 and Phase 2 rely on enumerating
butterflies. It is important to calculate the exact number of butterflies to make sure
that the analysis is correct and the identified patterns are reliable. Therefore, an exact
butterfly counting algorithm (Algorithm 1) is introduced to count the occurrence numbers
in sequential graph snapshots. Given a bipartite graph snapshot 𝐺𝑊,𝑡 at a time point 𝑡,
the goal is to compute 𝐵(𝑡) as the number of all quadruples ⟨𝑣𝑖1 , 𝑣𝑖2 , 𝑣 𝑗1 , 𝑣 𝑗2⟩ in 𝐺𝑊,𝑡 such
that they form a butterfly (Definition 14). Algorithm 1 follows a vertex-centric approach
that does not require accessing two-hop neighbours (i.e. it is not triple-based) and can be
computed by looping over either i-vertices or j-vertices depending on their average degree
(denoted by 𝑑𝑖 and 𝑑 𝑗). The algorithm takes a vertex 𝑣𝑖1 (provided that 𝑑𝑖 ≤ 𝑑 𝑗) and
considering each pair of j-neighbours 𝑣 𝑗1 and 𝑣 𝑗2 , identifies any vertex 𝑣𝑖2 which is a common
i-neighbour of 𝑣 𝑗1 and 𝑣 𝑗2 to form a butterfly (Figure 3.1). Sub-lists are used to avoid
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𝑣𝑖1

𝑣𝑖2

𝑣 𝑗1

𝑣 𝑗2

Figure 3.1: Schematic figure for the introduced algorithm countButterflies(G)

iterating over repeated j-neighbours (lines 4-6 in Algorithm 1) and the common neighbours
are identified by iterating over the lower degree j-vertex (line 8 in Algorithm 1). Quadruples
are added to a hash-set (line 10 in Algorithm 1) whose size determines the butterfly count
(line 11 in Algorithm 1). The algorithm is extended to compute the butterfly support of
each vertex as the number of butterflies incident to the vertex (Algorithm 2). In Phase 1,

Algorithm 1: Exact Butterfly Counting
1 Function countButterflies(G)

Input: 𝐺𝑊,𝑡 = ⟨𝑉𝑖 ∪𝑉 𝑗 , 𝐸𝑖 𝑗 ⟩, Static graph
Output: 𝐵(𝑡), The number of butterflies in G

2 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠← ∅ 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠← ∅ 𝑣𝑖2𝑠← ∅ for 𝑖1 ∈ 𝑉𝑖 do
3 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠← 𝑁𝑖1
4 for 𝑖𝑛𝑑𝑒𝑥1 ∈ [1, 𝑠𝑖𝑧𝑒( 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠)] do
5 𝑗1 ← 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠[𝑖𝑛𝑑𝑒𝑥1]
6 for 𝑖𝑛𝑑𝑒𝑥2 ∈ [𝑖𝑛𝑑𝑒𝑥1 + 1, 𝑠𝑖𝑧𝑒( 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠)] do
7 𝑗2 ← 𝑗𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠[𝑖𝑛𝑑𝑒𝑥2]
8 𝑣𝑖2𝑠← 𝑁 𝑗1 ∩ 𝑁 𝑗2

9 if ⟨𝑖1, 𝑗1, 𝑖2, 𝑗2⟩ ∉ 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 then
10 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠.𝑎𝑑𝑑 (⟨𝑖1, 𝑖2, 𝑗1, 𝑗2⟩)

11 𝐵(𝑡) ← 𝑠𝑖𝑧𝑒(𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠)

an eager computation model is adopted where the exact number of butterflies is computed
after each edge is added. That is, Algorithm 1 runs over a landmark window (Definition 8).
This is done in the time period 0 to 5000 (i.e. first 5000 sgrs) due to the computational
overhead of the algorithm. Note that the frequency distribution of edge insertions occurring
in time-intervals of variant sizes follows the same shape. This means that the distribution
with respect to scaling across time scales is invariant (i.e. self-similar [333]). Therefore,
we can rely on the analysis of a fraction of the subsequent streaming edges. To compare
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Algorithm 2: Butterfly Support
1 Function ButterflySupport(G)

Input: 𝐺 = ⟨𝑉𝑖 ∪𝑉 𝑗 , 𝐸𝑖 𝑗 ⟩, static graph
Output: 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡, butterfly support of vertices

2 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡 ← ∅, 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠← ∅, 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← ∅, 𝑣𝑖2𝑠← ∅
3 for 𝑣𝑖1 ∈ 𝑉𝑖 do
4 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← 𝑁 𝑗 (𝑖1)
5 for 𝑖𝑛𝑑𝑒𝑥1 ∈ [1, 𝑠𝑖𝑧𝑒( 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
6 𝑗1 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖𝑛𝑑𝑒𝑥1]
7 for 𝑖𝑛𝑑𝑒𝑥2 ∈ [𝑖𝑛𝑑𝑒𝑥1 + 1, 𝑠𝑖𝑧𝑒( 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠)] do
8 𝑗2 ← 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖𝑛𝑑𝑒𝑥2]
9 𝑣𝑖2𝑠← 𝑁𝑖 ( 𝑗1) ∩ 𝑁𝑖 ( 𝑗2)

10 for 𝑖2 ∈ 𝑣𝑖2𝑠 do
11 if ⟨𝑖1, 𝑗1, 𝑖2, 𝑗2⟩ ∉ 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 then
12 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠.𝑎𝑑𝑑 (⟨𝑖1, 𝑖2, 𝑗1, 𝑗2⟩)
13 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑝𝑢𝑡 (𝑖1, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑔𝑒𝑡 (𝑖1) + 1)
14 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑝𝑢𝑡 ( 𝑗1, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑔𝑒𝑡 ( 𝑗1) + 1)
15 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑝𝑢𝑡 (𝑖2, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑔𝑒𝑡 (𝑖2) + 1)
16 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑝𝑢𝑡 ( 𝑗2, 𝑣𝑆𝑢𝑝𝑝𝑜𝑟𝑡.𝑔𝑒𝑡 ( 𝑗2) + 1)

the numbers with that of a random graph as a null graph for checking the motifs, only
the corresponding BA graph with the same real timestamp is used. This enables fair
comparison of structural evolution of real-world and synthetic random graphs.

In Phase 2, Algorithm 1 is used to list the butterflies over sequential graph snapshots
corresponding to a burst-based landmark window (Definition 11). The emergence of a
certain number of butterflies is studied in different streams with different structural/tem-
poral properties. That is, the prefix of streams is considered until the arrival of up to
≈6.5× 106 butterflies, which covers the entire stream in WikiLens with 26220 bursts and a
prefix of 10000, 9600, 460, 2000, and 15000 bursts in ML1m, Ml100k, Epinions, Amazon,
and Yahoo, respectively. In Ciao, the entire stream is checked, which has 4900 bursts and
≈6.4 × 105 butterflies (Table 3.4). The corresponding timeline of burst arrival is divided
into 20 equally distanced points and at each point the butterflies in the burst-based graph
snapshot are studied. In the analyses, it is important to care about the value and the trend
of data points; the number of graph snapshots (here 20) simply changes the smoothness of
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the plots and does not affect the results since streams with different distribution of times-
tamps are checked and the scale of graph snapshots differs in various streams. The number
of edges/butterflies in each burst varies in different graphs depending on the burstiness of
the stream.

Table 3.4: Statistics of the 20𝑡ℎ graph snapshot in real-world streams.
|𝐸20 | is edge count, 𝑁20

𝑏
is burst count, and butterfly count is denoted as ⊲⊳20.
|𝐸20 | 𝑁20

𝑏
⊲⊳20

Ciao 72, 574 4, 900 636, 440
Epinions 296, 665 460 6, 418, 862
WikiLens 26, 918 26, 220 6, 556, 913
ML100k 18, 696 9, 600 6, 492, 834
ML1m 22, 795 10, 000 6, 678, 784
Amazon 2, 194, 798 2, 000 6, 496, 236
Yahoo 42, 105 15, 000 6, 496, 563

Strength Assortativity Measurement. The tendency of vertices to connect to
similar vertices with respect to one of their quantitative/qualitative attributes is called
assortativity/homophily [241]. For instance, degree assortativity refers to the tendency of
vertices with similar degrees to connect. In a graph with degree (dis)assortative mixing
pattern, high degree vertices are connected to high (low) degree vertices. In a graph with
perfect (dis)assortativity, vertices connect only to same (different) degree vertices. In ad-
dition to connectivity insights (the primary goal in Phase 2 of explorations), assortativity
provides information about the dynamic behaviour and robustness of the graph [318, 100].
For instance, degree disassortative complex networks compared to degree assortative net-
works exhibit higher epidemiological threshold leading to easier immunization, while as-
sortative networks get higher resilience to systemic risk by degree-targeted immunization
policies [100] (Noldus and Van Mieghem [247] describe this in a complete survey). The
epidemiological threshold is defined as the critical ratio among the propagation rate and
recovery rate of a disease above which epidemics ensue and immunization is the policy
to stop the propagation process. Assortativity is usually studied with respect to vertex
degrees. A previous study [204] has shown that studying the assortativity by considering
just the degree does not completely uncover the organizational patterns in the structure
of graphs. Leung and Chau [204] have introduced the weighted assortativity coefficient to
measure the tendency of having a high-weighted edge between vertices with similar degrees.
However, the goal of analyses in the phase two in this chapter is measuring the tendency
of having an edge between vertices with similar strength (i.e. measuring strength assor-
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tativity to discover the connection patterns with respect to weights as well as degrees),
particularly in butterflies. In the following, first the requirements are established for an
effective measurement of strength assortativity that can accommodate analysis of meso-
scale, bipartite, and temporal structures; next, a new metric is introduced for strength
mixing patterns called strength assortativity localization factor.

The assortativity coefficient (𝑟) [241] is a common metric for assortativity [382, 324,
322]. Assuming that we are interested in quantifying the tendency of vertices to connect
to each other based on the similarity of their attribute 𝐾, 𝑟 is computed as the pearson
correlation of 𝐾 of linked vertices and lies in the range −1 ≤ 𝑟 ≤ 1. Positive (negative) 𝑟
signals (dis)assortativity and 𝑟 = 0 denotes random mixing. Another approach to study
assortativity is to compute the average 𝐾 of nearest-neighbours for each vertex and then
aggregating the values by restricting the class of vertices with 𝐾 = 𝑘. It is denoted as ⟨𝐾𝑛⟩
which is a function of 𝐾. An increasing (decreasing) ⟨𝐾𝑛⟩ signals (dis)assortativity. This
can be inferred by checking the sign of the slope of a linear fit in the log-log plot of ⟨𝐾𝑛⟩
as a function of 𝐾. In the following, the effectiveness of 𝑟 and ⟨𝐾𝑛⟩ in quantifying the
strength assortativity of butterflies is investigated.

The evolution of two distributions are considered over sequential graph snapshots:

• 𝑃𝑟 (𝛿), the probability distribution of strength difference for connected butterfly ver-
tices which is computed as 𝑃𝑟 (𝛿) = 𝐹 (𝛿)

Σ𝐹 (𝛿) , where 𝐹 (𝛿) is the number of butterfly
edges with strength difference 𝛿 and the sum runs over the range of 𝛿 values, and

• 𝑃𝑟 (𝑆𝑖), the probability distribution of strength for butterfly i-vertices which is com-
puted as 𝑃𝑟 (𝑆𝑖) =

𝐹 (𝑆𝑖)
Σ𝐹 (𝑆𝑖) , where 𝐹 (𝑆𝑖) is the number of butterfly i-vertices with

strength 𝑆𝑖. The same notations hold for j-vertices and 𝑃𝑟 (𝑆 𝑗 ).

Figure 3.2: Assortativity coefficient over timeline of burst arrival in Epinions stream.
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As a running example, the real-world stream Epinions is used with 20 equally-distanced
points in the timeline of burst arrivals. At each point (𝑁𝑏), 𝑟 is calculated for the strengths
of linked butterfly vertices in the corresponding graph snapshot 𝐺𝑁𝑏 (Figure 3.2). Also,
𝑃𝑟 (𝛿) is considered at two points corresponding to the arrival of 92 bursts (Figure 3.3(a))
and 437 bursts (Figure 3.3(b)). At 𝑁𝑏 = 92, the probability that a butterfly edge has
strength difference below the average strength difference 𝜇𝛿 is 𝑃𝑟 (𝛿 ≤ 𝜇𝛿) = 0.67. However,
the assortativity coefficient is 𝑟 = 0.007 suggesting no (dis)assortativity (i.e. random
connection of butterfly vertices with no tendency to connect to (dis)similar vertices). Also,
at 𝑁𝑏 = 437, majority of butterfly edges fall in the region behind 𝜇𝛿 with probability
𝑃𝑟 (𝛿 ≤ 𝜇𝛿) = 0.71, while 𝑟 = −0.17 suggests strength disassortativity.

(a) 𝑃𝑟 (𝛿) at 𝑁𝑏 = 92 (b) 𝑃𝑟 (𝛿) at 𝑁𝑏 = 437

Figure 3.3: Distribution of strength differences of connected butterfly vertices.

The reason behind this confusing behaviour of 𝑟 is its bias toward the distribution of
strength of i- and j-vertices with respect to their average. To clarify, consider 𝑃𝑟 (𝑆𝑖) and
𝑃𝑟 (𝑆 𝑗 ) at these two time points (Figure 3.4(a),(b),(c),(d)). At 𝑁𝑏 = 92, the probability
that a butterfly i(j)-vertex has strength less than or equal to the average strength of but-
terfly i(j)-vertices 𝜇𝑖 (𝜇 𝑗 ) is almost equal to the probability that a butterfly i(j)-vertex has
strength greater than the average strength of butterfly i(j)-vertices (𝑃𝑟 (𝑆𝑖 ≤ 𝜇𝑖) = 0.57
and 𝑃𝑟 (𝑆 𝑗 ≤ 𝜇 𝑗 ) = 0.54). Therefore, many strength deviations from the mean strength,
particularly for j-vertices, would be zero, making the coefficient an insignificant value close
to zero (𝑟 = 0.007). At 𝑁𝑏 = 437, a large majority of butterfly i(j)-vertices have strength
above the average strength of butterfly i(j)-vertices (𝑃𝑟 (𝑆𝑖 > 𝜇𝑖) = 0.9, 𝑃𝑟 (𝑆 𝑗 > 𝜇 𝑗 ) = 0.8),
therefore their high deviations from the mean lowers the coefficient. In summary, the
assortativity coefficient reflects the global correlation between 𝑃𝑟 (𝑆𝑖) and 𝑃𝑟 (𝑆 𝑗 ) (two sep-
arate distributions). The assortativity coefficient fails to capture the pairwise correlations
between strength of connected i- and j-vertices forming butterflies.
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(a) 𝑃𝑟 (𝑆𝑖) at 𝑁𝑏 = 92 (b) 𝑃𝑟 (𝑆 𝑗 ) at 𝑁𝑏 = 92

(c) 𝑃𝑟 (𝑆𝑖) at 𝑁𝑏 = 437 (d) 𝑃𝑟 (𝑆 𝑗 ) at 𝑁𝑏 = 437

Figure 3.4: Distribution of strength of butterfly i-vertices and j-vertices.

Next, the neighbourhood-based approach for studying assortativity is examined. Fig-
ure 3.5, shows the nearest-neighbour average strength of vertices with strength 𝑆 [260] at
𝑁𝑏 = 92 and 𝑁𝑏 = 437. At first glance, the decreasing trend suggests strength disassorta-
tivity: the higher the strength of a vertex, the lower the average strength of its neighbours
and vice versa. However, we should consider the skewed 𝑃𝑟 (𝑆𝑖) and 𝑃𝑟 (𝑆 𝑗 ) with high-
strength vertices. Suppose that low-strength vertices are connected to many low-strength
vertices and one high-strength vertex. In this case, the average strength of neighbours
for these low-strength vertices would be high although the majority of neighbours have
similar low strengths. That is, relatively few vertices that have high strengths (because
of many connections and/or connections with high weights) skew the average strength
of their low-strength neighbours and hence mislead the assortativity interpretation. This
again highlights the issue of measuring strength assortativity in graphs with broad and
skewed strength distribution. To conclude, using conventional assortativity metrics is not
reliable for analyzing the strength assortativity of butterflies in bipartite streaming graphs
since
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(a) 𝑁𝑏 = 92 (b) 𝑁𝑏 = 437

Figure 3.5: Nearest-neighbour average strength of vertices with strength S.

• 𝑟 is vertex-centric and reflects the global strength correlations rather than pairwise
strength correlations. In particular, in case of computing 𝑟 for butterflies, each
butterfly vertex contributes duplicate values because of two adjacent edges; therefore,
vertices with strength equal/close to the mean (𝑆 − 𝜇 ≈ 0) decrease the overall
correlation, regardless of the strength of their neighbor.

• 𝑟 is designed for unipartite graphs and using it in bipartite graphs can bias the
outcome by the strength distributions of i- and j-vertices.

• The neighbourhood-based approach can be misleading in case of graphs with broad
and skewed strength distributions since high-strength vertices have outlier impacts
and make the interpretation difficult.

Informed by the above discussion, an appropriate measure for the tendency of vertices
to connect to vertices with similar strength that is applicable to butterfly edges should
satisfy the following properties:

• It should directly reflect the probability distribution of strength differences rather
than the global correlations in the distribution of strengths.

• It should not be designed based on neighbour information since in case of skewed
distribution of strengths, it would be biased by the outlier vertices.

• It should enable comparison of strength assortativity for sequential graph snapshots
in the same stream as well as comparison of strength assortativity of graph snapshots
in different graph streams.
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The goal is to quantify and compare the distribution of strength differences in low di-
mension to enable temporal analysis over sequential graph snapshots of streams. A common
approach for comparing distributions (usually degree distributions) is Kolmogrov-Smirnov
test. However, this is sensitive to the distribution range and is not ideal for analyzing
sequential graph snapshots and different graph streams. The Degree Distribution Quan-
tification and Comparison (DDQC) approach [20] quantifies the degree distribution of a
graph based on 4 × 2𝛽 regions in the degree distribution and uses this quantification for
comparison. The regions are determined in two steps: first, the degree distribution is di-
vided into four regions covering the intervals between five subsequent points: min(degree),
𝜇 − 𝛼𝜎, 𝜇, 𝜇 + 𝛼𝜎, and 𝑚𝑎𝑥(𝑑𝑒𝑔𝑟𝑒𝑒), where 𝜇 is the mean degree and 𝜎 is the standard
deviation of degrees and 𝛼 is a configurable parameter. Next, each region is divided into
2𝛽 equal sub-regions, where 𝛽 is the second configurable parameter. Given these regions in
the probability distribution, a vector is constructed with 4× 2𝛽 elements each representing
the summation of probabilities in a corresponding region.

The probability distribution of strength difference of connected butterfly vertices 𝑃𝑟 (𝛿)
is considered given a graph snapshot 𝐺𝑁𝑏 . Using graph snapshots corresponding to a burst-
based landmark window (Definition 11) enables fair comparison of different graphs with
different temporal characteristics. Inspired by the DDQC approach, 𝑃𝑟 (𝛿) is divided into
four regions based on the mean and standard deviation of 𝛿s (𝜇𝛿 and 𝜎𝛿, see Figure 3.3).
As long as the first region covers the low 𝛿s, the number/coverage of other regions for the
tail of right-skewed distribution is not important in mixing pattern analyses. Accordingly,
the probability distribution is summarized as an embedding vector 𝐹 with four elements
(Σ𝑖=1,..,4𝐹𝑖 = 1). Each element corresponds to a region as below:

𝐹1 = Σ𝑃𝑟 (𝛿), ∀𝛿 ≤ 𝜇𝛿 (3.1)

𝐹2 = Σ𝑃𝑟 (𝛿), ∀𝜇𝛿 < 𝛿 ≤ 𝜇𝛿 + 𝜎𝛿 (3.2)

𝐹3 = Σ𝑃𝑟 (𝛿), ∀𝜇𝛿 + 𝜎𝛿 < 𝛿 ≤ 𝜇𝛿 + 2𝜎𝛿 (3.3)

𝐹4 = Σ𝑃𝑟 (𝛿), ∀𝛿 > 𝜇𝛿 + 2𝜎𝛿 (3.4)

The vector 𝐹 provides fine-grained information. Additionally, to express the strength
assortativity as an scalar for simple network inference in temporal analyses, the strength
assortativity localization factor is defined as 𝑟 𝑠 = 𝐹1 − 0.5 to track the localization
of 𝛿s (𝐹) on the region behind mean (𝐹1). 𝑟 𝑠 lies in the range [−0.5, 0.5]. A positive 𝑟 𝑠
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highlights strength assortativity (i.e. vertices with similar strengths tend to connect to each
other), negative 𝑟 𝑠 highlights strength disassortativity (vertices with dissimilar strengths
tend to connect to each other) and a zero value corresponds to random strength mixing.
𝑟 𝑠 = 0.5 denotes perfect strength assortativity and 𝑟 𝑠 = −0.5 denotes perfect strength
disassortativity.

3.2 Analysis, Phase 1

3.2.1 Temporal Motifs

Real-world graphs display rapid temporal evolution of the number of butterflies (Fig-
ure 3.6). To further investigate the growth pattern of butterfly frequency in these graphs,
ten polynomial functions of degree one to ten are examined to fit the data points of tem-
poral butterfly frequency evolution (black lines in Figure 3.6) and the best fitting function
is picked (Table 3.5). The best fitting function satisfies three conditions:

• It has the lowest Root Mean Square Error (RMSE).

• It has the highest coefficient of determination (𝑅2).

• It is a non-decreasing function.

RMSE quantifies the estimation error, while 𝑅2 quantifies the linear correlation between
the estimated fitting function and the data points. Figures 3.7, 3.8, and 3.9 illustrate the
best fitting function and its estimation errors (residuals) used in calculation of the RMSE.
Note that high RMSE values are due to the increasing function giving rise to high residuals.
The RMSE of different graphs are not compared; instead, the RMSE of different fitting
functions for each graph are compared. Therefore, the absolute value of RMSE is not as
important as its relative value for different functions. All the plots are properly fitted to
polynomial functions of degree above 5 (best fitted to 5th, 7th, 9th and 10th degrees -
Figures 3.7, 3.8, and 3.9). This is termed as the butterfly densification power-law (BPL,
following the power-law terminology [201]): the number of butterflies at time point 𝑡 (i.e.
𝐵(𝑡)) follows a power law function of the number of edges at 𝑡 (i.e. 𝐵(𝑡) ∝ 𝑓 ( |𝐸 (𝑡) |𝜂), 𝜂 > 1).
Moreover, the outstanding frequency of butterflies in the real-world graphs compared to
that of random graphs suggests that butterflies are network motifs across the time line.
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Table 3.5: 𝑅2 and RMSE of polynomial fitting functions of degree 𝑑 = 1 to 𝑑 = 10 for
butterfly count in three real-world streams.

Filled cells decode increasing function and best fits are highlighted in gray cells.
𝑅2

RMSE
𝑑 = 1 𝑑 = 2 𝑑 = 3 𝑑 = 4 𝑑 = 5 𝑑 = 6 𝑑 = 7 𝑑 = 8 𝑑 = 9 𝑑 = 10

Epinions
0.9947

1.481𝑒4
0.9951

1.435𝑒4
0.9951

1.432𝑒4
0.9975

1.028𝑒4
0.9977
9751

0.9977
9716

0.9978
9598

0.9984
8130

0.9987
7409

0.9987
7386

ML100k
0.931

2.31𝑒6
0.9977

4.18𝑒5
0.9978

4.167𝑒5
0.9978

4.126𝑒5
0.9983

3.673𝑒5
0.9983

3.584𝑒5
0.9993

2.286e5
0.9993

2.286e5
0.9997

1.552𝑒5
0.9997

1.552𝑒5

ML1m
0.8751

2.119𝑒6
0.9951

4.196𝑒5
0.9953

4.111𝑒5
0.9977

2.895𝑒5
0.9989

1.976𝑒5
0.9989

1.961𝑒5
0.999

1.94𝑒5
0.999

1.937𝑒5
0.999

1.933𝑒5
0.999

1.933e5

ML10m
0.8943

3.223𝑒6
0.9983

4.034𝑒5
0.999

3.149𝑒5
0.9992

2.841𝑒5
0.9993

2.701𝑒5
0.9993

2.699𝑒5
0.9993

2.605e5
0.9994

2.493𝑒5
0.9996

1.868𝑒5
0.9997

1.781𝑒5

Edit-FrWiki
0.9228

8.09𝑒4
0.9932

2.408𝑒4
0.9932

2.397𝑒4
0.9953

1.998𝑒4
0.9966

1.693e4
0.9968

1.653𝑒4
0.9979

1.319𝑒4
0.9988

1.01𝑒4
0.9988
9928

0.9989
9725

Edit-EnWiki 0.971
1990

0.9879
1288

0.9879
1285

0.9903
1150

0.9918
1060

0.9928
990

0.9951
821.3

0.9957
769.9

0.9964
696.5

0.9967
671.7

Figure 3.6: Temporal evolution of butterfly frequency.

3.2.2 Butterfly Emergence Patterns - Densification

Bursty Butterfly Formation. To study how butterflies as motifs are formed over time,
the distribution of inter-arrival time of pair of edges forming a butterfly is studied. That
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Figure 3.7: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in Epinions and ML100k
streams.

is, for any pair of edges ⟨𝑒1, 𝑒2⟩ with timestamps 𝜏1 and 𝜏2 that co-exist in a butterfly,
the inter-arrival time is |𝜏1 − 𝜏2 |. A lazy computation model is adopted to compute the
inter-arrival distribution once at time point 𝑡 = 5000 (i.e. after adding 5000 sgrs).

The distribution of inter-arrival values is skewed to the right (Figures 3.10 and 3.11).
The left peaks and the heavy tail of the distribution reveal different patterns. The leftmost
peaks highlight that many butterflies are formed by edges with close timestamps. On the
other hand, according to Figure 3.6, the number of butterflies increase significantly over
time. This suggests that butterflies are formed in a bursty fashion.

Next, the vertices that form the butterflies are investigated to see

• whether the bursty butterfly generation is contributed by hubs (i.e. vertices with
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Figure 3.8: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in ML1m and Edit-FrWiki
streams.

degree above the average of unique vertex degrees) or normal vertices; and

• if hubs are the main contributors, are they young, old, or both?

Hubs’ contribution to butterfly emergence. The followings are studied to test the
hypothesis that butterflies are contributed by hubs.

• The probability of forming butterflies by hubs

• The correlation between degree and support of vertices

• The connection patterns of hubs
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Figure 3.9: (top) Best Fitting functions for the temporal evolution of butterfly frequency
and (bottom) the residual errors of the estimated fitting function in Edit-EnWiki and
ML10m streams.

The probability of forming butterflies by hubs – Butterflies formed at time 𝑡 = 0
to 𝑡 = 5000 are enumerated and the fraction of butterflies formed by zero to four hubs
(Table 3.6) and the fraction of butterflies formed by zero, one, or two i-/j-hubs (Table 3.7)
are checked. It is evident that, butterflies mostly include one or, with higher probability,
two hubs which are usually i-hubs.

The correlation between degree and support of vertices – The correlation
between degree 𝑑𝑒𝑔(𝑖) and butterfly support 𝐵𝑖 is studied, where 𝐵𝑖 is defined as the number
of butterflies incident to each vertex. The correlation computed over the i-vertices and j-
vertices is referred to as i-correlation and j-correlation (similarly computed), respectively.
The Pearson correlation coefficient is computed at 𝑡 = 5000 for all the |𝑉𝑖 | or |𝑉 𝑗 | seen
i-(j-)vertices in the graph snapshot. A positive correlation coefficient means 𝑑𝑒𝑔(𝑖) and 𝐵𝑖
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Figure 3.10: Distribution of inter-arrival time of edges forming butterflies in real-world
graphs.

Figure 3.11: Distribution of inter-arrival time of edges forming butterflies in BA+real
stamps graphs.

increase or decrease together, while a negative correlation means increasing one quantity
implies decreasing the other one. Values close to 1 demonstrate strong correlation. As
provided in Table 3.8, there is a strong positive correlation between the degree and the
support of vertices in real-world graphs. i.e. the higher the degree, the higher the butterfly
support and vice versa. This highlights the impact of hubs in the emergence of enormous
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Table 3.6: Fraction of butterflies including zero, one, two, three, or four hub(s) after adding
5000 sgrs.

Fraction 0 hub 1 hub 2 hubs 3 hubs 4 hubs
Epinions 0.09 0.29 0.55 0.07 0
BA+Epinions stamps 0.11 0.44 0.39 0.06 0
ML100k 0.07 0.35 0.48 0.09 0.01
BA+ML100k stamps 0.24 0.28 0.28 0.15 0.05
ML1m 0.07 0.38 0.48 0.07 0
BA+ML1m stamps 0.01 0.33 0.6 0.06 0
ML10m 0.09 0.34 0.37 0.17 0.03
Edit-Frwiki 0.08 0.29 0.53 0.1 0
Edit-Enwiki 0.1 0.48 0.41 0.01 0

Table 3.7: Fraction of butterflies including zero, one, or two i-hub(s) or j-hub(s) after
adding 5000 sgrs.

Fraction 0 i-hub 1 i-hub 2 i-hubs 0 j-hub 1 j-hub 2 j-hubs
Epinions 0.11 0.35 0.54 0.85 0.13 0.02
A+Epinions stamps 0.19 0.56 0.25 0.7 0.25 0.05
ML100k 0.10 0.46 0.44 0.75 0.21 0.04
BA+ML100k stamps 0.48 0.39 0.13 0.37 0.41 0.23
ML1m 0.1 0.43 0.47 0.84 0.15 0.01
BA+ML1m stamps 0.01 0.36 0.63 0.9 0.1 0
ML10m 0.25 0.54 0.21 0.47 0.33 0.2
Edit-Frwiki 0.11 0.35 0.54 0.81 0.18 0.01
Edit-Enwiki 0.1 0.5 0.4 0.97 0.03 0

number of butterflies in the real-world graphs.

The connection patterns of hubs – The extent to which i-(j-)hubs dominate the
edges over time is quantified by means of two equivalent measures:

• the fraction of i-(j-)hub connections (denoted by
∑𝑁ℎ𝑢𝑏 (𝑡 )
𝑖=1 (𝑑𝑒𝑔(ℎ𝑢𝑏𝑖))

𝐸 (𝑡) ) normalized over
the number of hubs at time point 𝑡 (denoted by 𝑁ℎ𝑢𝑏 (𝑡)), and

• the average degree of i-(j-)hubs (denoted by
∑𝑁ℎ𝑢𝑏 (𝑡 )
𝑖=1 (𝑑𝑒𝑔(ℎ𝑢𝑏𝑖))

𝑁ℎ𝑢𝑏 (𝑡) ) normalized over the
total number of edges at time point 𝑡 (denoted by |𝐸 (𝑡) |).

Both quantities are calculated by
∑𝑁ℎ𝑢𝑏 (𝑡 )
𝑖=1 (𝑑𝑒𝑔(ℎ𝑢𝑏𝑖))
𝐸 (𝑡)∗𝑁ℎ𝑢𝑏 (𝑡) at any given time point 𝑡. An eager
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Table 3.8: Correlation between the butterfly support and the degree of i-vertices (i-
correlation) and j-vertices (j-correlation).

i-correlation j-correlation
Epinions 0.86 0.73
BA+Epinions stamps 0.56 0.72
ML1m 0.98 0.92
BA+ML1m stamps 0.92 0.89
ML100k 0.95 0.93
BA+ML100k stamps 0.63 0.88
ML10m 0.83 0.93
Edit-Frwiki 0.91 0.85
Edit-Enwiki 0.89 0.62

computation model is adopted to compute this value when a new edge is added. The time
point 𝑡 can be interpreted as the number of edges added to the graph since the initial time
point 𝑡 = 0.

While the number of edges added to the graph increases, the normalized fraction of
i-(j-)hub connections (average degree of i-(j-)hubs) decreases over time in both real-world
and BA graphs (Figures 3.12 and 3.13). Also, unlike real-world graphs, i- and j-hubs
emerge later in the BA graphs (originated by the BA’s preferential attachment rule), and
the average degree of hubs in early time points is higher in real-world graphs than that of
BA graphs. This is due to the bursty characteristic of graph stream (i.e. arrival of a bunch
of edges with same time-stamp and same i- or j- vertex). In summary, early in the stream,
the BA graphs have lower number of hubs with lower degrees compared to the real-world
graphs. Figure 3.6 also illustrates the low number of butterflies in BA graphs earlier in
the stream when there are no hubs in these graphs or the average hub degree is low. On
the other hand, real world graphs have high number of hub connections and high number
of butterflies. These observations again verify the contribution of hubs to the emergence
of butterflies; When the number of hubs and the average degree of hubs are both low, the
number of butterflies is also low (as seen in BA graphs). Also, when the number of hubs
and their average degree is high, the number of butterflies is high (as seen in real-world
graphs).

Contribution of hubs’ age to butterfly emergence. The followings are studied to
test the hypothesis that butterflies are contributed by old hubs.

• The evolution of young and old hubs

43



Figure 3.12: [Best viewed in colored.] Temporal evolution of the normalized fraction of
i-hub connection (average i-hub degree).

Figure 3.13: [Best viewed in colored.] Temporal evolution of the normalized fraction of
j-hub connection (average j-hub degree).

• The inter-arrival of butterfly edges

The evolution of young and old hubs – As mentioned before, the i-(j-)hub are defined
as any i-(j-)vertex whose degree is above the average of unique i-(j-)degrees in the graph.
Accordingly, young (old) hubs are defined as any hub whose timestamp is in the last (first)
25% of ordered set of already seen timestamps. The vertex timestamps are determined as
the timestamp of the sgr by which the vertex has been added to the graph for the first time.
For instance, if a vertex 𝑖 arrives via the inserting edges 𝑒1 = ⟨𝑖, 𝑗1⟩ and 𝑒2 = ⟨𝑖, 𝑗2⟩, the
timestamp of vertex 𝑖 is set to the timestamp of 𝑒1, which has arrived before 𝑒2 (assuming
subscript identify order of arrival). A lazy computation model is adopted to compute
the number of young/old i-(j-)hubs using a burst-based landmark window (Definition 11),
where the computation is done over a growing graph generated by the edges in the append-
only window following each expansion. Window expansion lengths are set to cover 0.1 ∗𝑁𝑏
unique timestamps in each window in Epinions, ML100k, ML1m, and ML10m. In the
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larger streams Edit-EnWiki and Edit-FrWiki, this value is equal to 0.01 ∗ 𝑁𝑏.
As shown in the Figure 3.14, young i-hubs and/or j-hubs are formed in the real-world

graphs over time, while in BA graphs with random timestamps the number of young i-(j-
)hubs is always zero. The timestamp of hubs in real graphs are randomly assigned to other
vertices in BA graphs with real timestamps, therefore the old hubs are identified as young
hubs that should be ignored. Figure 3.15 demonstrates that old hubs increase over time
in BA graphs, which is not always the case for real-world graphs. Moreover the number of
old hubs in real world graphs is less than that of BA graphs.

The inter-arrival of butterfly edges – Finally, the heavy tail of the inter-arrival
distribution is studied, which is over-represented in BA graphs (Figure 3.11). The heavy
tail is related to the butterfly edges with high inter-arrival times. These highly frequent
butterfly edges with high inter-arrivals reflect the connection between the young vertices
and old vertices. A hypothesis that young vertices are ordinary vertices and old ones are
hubs (i.e. old hubs signify the bursty butterfly emergence) is proved due to the following.
Young hubs can exist, however they are not the hubs dominating the butterflies.

• Hubs are main contributors to butterfly emergence; and

• The hubs forming the butterflies cannot be young hubs as BA graphs would be
contradiction; BA graphs do not have young hubs (Figure 3.15), while they have many
butterfly edges with high inter-arrival (Figure 3.6). Therefore, butterflies cannot
originate from young hubs.

3.2.3 Summary

Butterflies are network motifs across the time line of sgr arrivals since the number of
butterflies increases significantly over time in real-world streaming bipartite graphs, and at
each time point the number of butterfly occurrences in real-world graphs are significantly
higher than random graphs. This emergence of butterfly inter-connections is formulated
as the butterfly densification power law, stating that the number of butterflies at any time
point 𝑡 is a power law function of the size of stream prefix seen until 𝑡. In terms of how
these very large number of butterflies emerge over time, studies reveal the contribution of
hubs in the streaming graphs. Further investigation of the impact of hubs in terms of their
age reveal that the older hubs contribute more to the densification of butterflies.
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3.3 Analysis, Phase 2

3.3.1 Butterfly Emergence Patterns - Strength Assortativity

Figure 3.16 shows the growth of butterfly count in real-world streams. To quantify this
growth, the butterfly rate of each graph snapshot is defined as the number of butterflies in
the graph normalized by the number of edges. The average butterfly rate (plus/minus the
standard deviation) is computed over the sequential snapshots. The average butterfly rate
is greater than 1 in all streams (Figure 3.16), as the number of butterflies in each graph
snapshot is far higher than the number of edges and it can be calculated by a super-linear
function of the number of edges (e.g. follows a power law 𝑓 ( |𝐸 |𝜂), 𝜂 > 1 and the slope of
the plots for butterfly count versus |𝐸 | in the log-log scale is greater than 1 indicating that
the number of butterflies grows super-linearly with respect to the number of edges in the
sequential graph snapshots.) In some graphs the super-linearity starts after some time.

𝑃𝑟 (𝛿), the probability distribution of strength-difference of connected vertices in but-
terflies, is computed for the graph snapshots in the streams. Each probability distribution
is embedded in a vector 𝐹. Figures 3.17 and 3.18 demonstrate the evolution of 𝐹 elements
and their corresponding strength assortativity localization factor (𝑟 𝑠) over the timeline of
burst arrivals. In all streams, butterfly edges have strength-difference less than equal to
the average strength-difference (𝜇𝛿) with probability 𝑃𝑟 (𝛿≤𝜇𝛿)≈0.7 (𝐹 is localized on 𝐹1).
The tail of 𝑃𝑟 (𝛿) for all graphs is heavier in the region [𝜇𝛿, 𝜇𝛿+𝜎𝛿] with probability of
𝑃𝑟 (𝜇𝛿<𝛿≤𝜇𝛿+𝜎𝛿)≈0.25 (according to 𝐹2 values) and gets lighter at the end. This demon-
strates that the majority of butterfly edges are formed by vertices with similar strengths
at all time points. Also, the strength assortativity localization factor is 0.15≤𝑟 𝑠≤0.2 in all
graphs at almost all time points (Figure 3.18).

Figure 3.19 shows the evolution of three statistical quantities for 𝑃𝑟 (𝛿):

• mean 𝜇𝛿

• coefficient of variation 𝐶𝑉=𝜎𝛿/𝜇𝛿

• excess kurtosis 𝑌2=(𝑁−1Σ𝛿𝑖 (𝛿𝑖 − 𝜇𝛿)4/𝜎4
𝛿
)−3

Figure 3.20 shows the evolution of the same quantities for the probability distribution of
strength of i- and j-vertices forming a butterfly, denoted as 𝑃𝑟 (𝑆𝑖) and 𝑃𝑟 (𝑆 𝑗 ). 𝐶𝑉 , also
known as relative standard deviation (RSD), enables measuring the degree of variation
(dispersion) over distributions with different mean values. A high-variance distribution
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has 𝐶𝑉>1 and a low-variance distribution has 𝐶𝑉<1. Distributions such as exponential
distribution with equal mean and standard deviation have 𝐶𝑉=1. The excess kurtosis 𝑌2
enables measuring the heaviness of the tail of distribution relative to a normal distribution
(which has 𝑌2=3). A heavy-tailed distribution has a positive 𝑌2 (called a lepto-kurtic distri-
bution) and a light-tailed distribution has a negative 𝑌2 (called a platykurtic distribution).
Distributions such as family of normal distributions have zero 𝑌2 (called meso-kurtic). The
mean and standard deviation of strength-differences are equal to each other and evolve
synchronously (Figure 3.19, 𝐶𝑉≈1 for sequential 𝐺𝑁𝑏). On the other hand, the tail of
right-skewed 𝑃𝑟 (𝛿) gets heavier and the distribution gets broader (Figure 3.19, 𝑌2 in-
creases). In Ciao, the tail gets lighter initially and then gets heavier. Moreover, all of the
graphs have right-skewed 𝑃𝑟 (𝑆) which gets broader and more skewed over time with the
tail of strength distribution becomes heavier/longer over time (Figure 3.20, 𝑌2 and 𝐶𝑉>1
increase). These observations make the steady behavior of strength assortativity more
interesting: despite the fact that new high-strength vertices form butterflies and 𝑃𝑟 (𝛿)
gets broader, the relative standard deviation of 𝛿s does not change significantly and the
strength assortativity localization factor 𝑟 𝑠 remains steadily positive. This implies that
these graphs obey non-trivial mixing patterns.

The following concurrent mixing patterns hold in the real-world streams as butterflies
emerge over time:

1. Butterfly densification. The number of butterflies grows over time and at each time
point it is a super-linear function of the number of edges.

2. Strength diversification. 𝑃𝑟 (𝑆) of butterflies is initially meso-kurtic and gets more
right-skewed as the right tail grows heavier/longer (𝑌2 starts from 0 and rises to
extremely high values). The dispersion of strengths increases over time (𝐶𝑉>1 in-
creases) as the standard deviation increases and the mean decreases.

3. Steady strength assortativity. The strength assortativity localization factor 𝑟 𝑠 is fixed
at a positive value over time due to the fixed-shaped yet growing distribution of
strength-differences of butterflies. 𝑃𝑟 (𝛿) is initially meso-kurtic and gets more right-
skewed as the right tail grows heavier/longer (𝑌2 starts from 0 and rises to extremely
high values). However, the dispersion of strength-differences does not change (𝐶𝑉≈1)
due to synchronous evolution of mean and standard deviation. Also, the proportion
of 𝛿s in different regions of 𝑃𝑟 (𝛿) is constant (stable 𝐹 elements). Therefore, the
shape of the distribution is stable although the range expands.

The following graph concepts explain the data-driven semantics of the observed patterns
in the domain of user-item rating streams.
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• Burstiness. User-item interactions can be viewed as human-initiated events which in-
troduce two levels of burstiness: individual-level and group-level. The former relates
to the interactions of each user with several items at each time point or sequential
time points with negligible differences. Barabasi [18] has shown that human-initiated
events are driven by the queuing processes of human decision making leading to non-
Poisson inter-event statistics. Such bursty interactions lead to formation of many
wedges incident to each user/item. The latter relates to the concurrent interactions
of several users at each time point. Such bursty interactions lead to merging the
individual-level wedges and densification of butterflies. The significance of this con-
tinuous burstiness can change over time due to different circumstances leading to
peak hours. For instance, Alibaba has reported that customer purchase activities
during a heavy period in 2017 resulted in generation of 320 PB of log data in a
six hour period [251, Big Data Processing]. There are other studies [229, 371], [251,
Stream Data Management] showing that weighted bipartite streaming graphs display
bursty patterns since eight additions in temporal graphs follow bursty patterns and
data streams are commonly characterized as bursty.

• Strong-get-stronger. Online platforms utilise filters such as trends, best sellers,
mostly viewed, hot/top categories, newly added, as well as timely promotions, point
collection rewarding strategies, and (advertised) recommendations. These systemat-
ically lead to the increasing popularity and visibility of the items with most inter-
actions and encouraging the users to interact more and become more active. Such
interaction mechanics are similar to the rich-gets-richer argument, where the rich-
ness denotes the vertex strength. The butterflies are formed incident to such highly
connected and high strength users/items (strong vertices) leading to butterfly densi-
fication and diversification of strengths.

• Core-periphery. Popular items attract the active users and in another view, ac-
tive users mostly engage with trending items or make items trending/popular. This
is similar to the mesoscale phenomenon ‘core-periphery’ [154, 99] also called ‘rich
club’ [375, 95] stating that high-degree vertices tend to connect to each other and
create a core attracting the new connections. Such core sets of vertices with high
degrees/strengths in user-item streams create numerous edges between strong users
and items with high butterfly support leading to assortativity patterns of butterfly
vertices.
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Figure 3.14: The number of young (top 6) i-hubs and (bottom 6) j-hubs after arrival of
each batch of sgrs.
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Figure 3.15: The number of old (top 6) i-hubs and (bottom 6) j-hubs after arrival of each
batch of sgrs.
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(a) Ciao, 8.9±1.8 (b) Epinions, 10.6±7.6 (c) WikiLens, 138±77 (d) ML100k, 171.4±99.7

(e) ML1m, 142.1±79.4 (f) Amazon, 0.9±1 (g) Yahoo, 73±52.1

Figure 3.16: Butterfly count versus edge count in real-world streams with various average
butterfly rates.

(a) Ciao (b) Epinions (c) WikiLens (d) ML100k

(e) ML1m (f) Amazon (g) Yahoo

Figure 3.17: F elements over the timeline of burst arrivals in real-world streams.
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(a) Ciao (b) Epinions (c) WikiLens (d) ML100k

(e) ML1m (f) Amazon (g) Yahoo

Figure 3.18: Strength assortativity localization factor (𝑟 𝑠) of butterflies over the timeline
of burst arrivals in real-world streams.

(a) Ciao (b) Epinions (c) WikiLens (d) ML100k

(e) ML1m (f) Amazon (g) Yahoo

Figure 3.19: Coefficient of variation (circles), excess kurtosis (squares), and mean (dia-
monds) of butterfly strength-differences over the timeline of burst arrivals in real-world
streams.
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(a) 𝑃𝑟 (𝑆𝑖), Ciao (b) 𝑃𝑟 (𝑆𝑖), Epinions (c) 𝑃𝑟 (𝑆𝑖), WikiLens (d) 𝑃𝑟 (𝑆𝑖), ML100k

(e) 𝑃𝑟 (𝑆𝑖), ML1m (f) 𝑃𝑟 (𝑆𝑖), Amazon (g) 𝑃𝑟 (𝑆𝑖), Yahoo

(h) 𝑃𝑟 (𝑆 𝑗 ), Ciao (i) 𝑃𝑟 (𝑆 𝑗 ), Epinions (j) 𝑃𝑟 (𝑆 𝑗 ), WikiLens (k) 𝑃𝑟 (𝑆 𝑗 ), ML100k

(l) 𝑃𝑟 (𝑆 𝑗 ), ML1m (m) 𝑃𝑟 (𝑆 𝑗 ), Amazon (n) 𝑃𝑟 (𝑆 𝑗 ), Yahoo

Figure 3.20: Coefficient of variation (circles), excess kurtosis (squares), and mean (dia-
monds) of strengths of butterfly (a-g) i-vertices and (h-n) j-vertices over the timeline of
burst arrivals in real-world streams.
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3.3.2 Summary

Given two sequential graph snapshots 𝐺𝑁𝑏 ,𝑡1 and 𝐺𝑁𝑏 ,𝑡2 , the followings hold.

• The number of butterflies grows according to a super-linear function of the number
of edges (e.g. follows a power law function 𝑓 ( |𝐸 |𝜂), 𝜂 > 1 and 𝐵𝐺𝑁𝑏,𝑡1 < 𝐵𝐺𝑁𝑏,𝑡2 ).

• 𝑃𝑟 (𝑆) gets broader and more skewed (𝜇1
𝑆
< 𝜇22, 𝑌

1
2 (𝑆) < 𝑌2

2 (𝑆), 1 < 𝐶𝑉1(𝑆) <
𝐶𝑉2(𝑆)).

• 𝑃𝑟 (𝛿) gets broader and more skewed while remaining fixed-shaped (𝑌1
2 (𝛿) < 𝑌

2
2 (𝛿),

𝐶𝑉1(𝛿) ≈ 𝐶𝑉2(𝛿), 𝐶𝑉 (𝛿) ≈ 1, 𝐹1
𝑖
= 𝐹2

𝑖
, 𝑖 = 1, .., 4, 𝑟 𝑠 > 0.1).

The co-occurrence of these patterns is counter-intuitive and interesting. As the stream
and the number of butterflies grow rapidly, diversity of strengths for butterfly vertices in-
creases and strong (high-strength) vertices get stronger and obtain weak neighbours with
the increasing of variance of strength differences. Therefore, an increasing trend of disas-
sortativity is expected. However, the majority of butterfly edges are formed by vertices
with similar strength and this assortativity remains at a fixed level regardless of stream
size or butterfly count. This phenomenon is referred to as scale-invariant strength assor-
tativity of streaming butterflies, which is originated by the three parallel mixing patterns
of butterflies.
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Chapter 4

Streaming Graph Modelling

Explainable modelling of (bipartite) streaming graphs requires identifying the growth pat-
terns and devising local rules to pinpoint the generative origins. Chapter 3 discussed
analysis of real-world bipartite streaming graphs and presented the investigations into the
emergence patterns of butterflies as the building blocks of these streams, concluding in a
characteristic phenomenon called “scale-invariant strength assortativity of streaming but-
terflies”. This chapter focuses on the next step of devising local rules. Local rules (also
referred to as micro-mechanisms) are attachment mechanisms based on connections to
vertices and their neighbourhoods [326]. The goal is to answer the question What is the
generative process underlying this phenomenon? The question is addressed in four phases:
Phase 1: reviewing the existing and seminal local rules to investigate their ability to explain
the patterns and identify new local rules; Phase 2: analysis of the synthetic streams gen-
erated by the candidate local rules; Phase 3: introducing a streaming growth model called
sGrow to implement the micro-mechanisms reproducing the realistic growth patterns; and
Phase 4: Evaluating the performance of the introduced model. sGrow is the first model
that explains real-life patterns effectively and reproduces them efficiently. Table 4.1 lists
the frequent notations in this chapter.

4.1 Related Works

To explain the co-occurrence of butterfly densification, strength diversification, and steady
strength assortativity in streaming graphs, the local rules and graph models leading to
skewed distributions, degree correlation, and emergence of large numbers of cliques are
reviewed in the following.
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Table 4.1: Frequent notations in this chapter
Notation Description
𝑡 time step in sGrow
𝑚 Number of new edges at each iteration, batch size in sGrow,

Degree of new vertices in preferential attachment
𝑀 Maximum batch size in sGrow, a parameter
𝐿 length of Preferential Random Walk in sGrow, a parameter
𝜔 A random integer for operation selection in sGrow
𝑝 Connection probability in Connecting Nearest-neighbour Model
𝑝ℎ Probability of selecting a host vertex in Butterfly Model
𝑝𝑠𝑡𝑒𝑝 Probability of traversing a random walk in Butterfly Model
𝑝𝑙 Probability of connections in Butterfly Model
𝑝𝑒 Probability of edge removal in Duplication Divergence Model
𝑝, 𝑝𝑏 Forward/backward probability in Forest Fire model

4.1.1 Graph Patterns

Graph patterns characterize a microscopic, mesoscopic, or macroscopic property of a graph
(depending on the granularity of the reporting pattern, i.e. vertices/edges, neighbour-
hoods and motifs, or the entire topology) and can be viewed as either static or dynamic
(depending on the underlying graph being a static snapshot or an evolving structure).
Examples of static patterns include small diameter accompanied by high clustering coeffi-
cient (CC) [340], degree (anti)correlation [241], community structure [128], and power-laws
(PL) such as degree distribution PL [38], weight PL [229], and snapshot/vertex strength
PL [229, 41]. Examples of dynamic patterns include gelling points [229], increasing aver-
age degree, shrinking/controlled diameter, edge densification [201, 202, 119], and bursty
weight addition [229]. Table 4.2 provides instances of different patterns partitioned across
dynamism and granularity.

4.1.2 Growth Models

Two well-studied network growth mechanisms, preferential attachment and copying, form
the basis of many generative models (e.g. [105, 97, 59, 9, 29, 142, 188, 185, 147, 259])
and are widely adopted in the development of graph management approaches (e.g. [159,
85, 221, 168, 213, 236, 351]). Both mechanisms are commonly applied in graph models
based on the conception of adding a new vertex at each time step during an iterative
process. Preferential attachment leads to skewed distributions, while copying mechanism
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Table 4.2: Graph Patterns.
Patterns Granularity Dynamism References
Small diameter & High CC Macroscopic Static [340]
Degree Correlation Microscopic Static [241]
Community structure Mesoscopic Static [128]
Degree Distribution PL Microscopic Static [38]
Weight PL Microscopic Static [229]
Snapshot/Vertex Strength PL Mesoscopic Static [229, 41]
Gelling points Macroscopic Dynamic [229]
Increasing Average Degree Microscopic Dynamic [201, 202]
Shrinking/Controlled Diameter Macroscopic Dynamic [201, 202, 119]
Edge Densification Microscopic Dynamic [201, 202]
Bursty Weight Addition Microscopic Dynamic [229]

leads to degree correlation [326] and emergence of large numbers of cliques when applied
explicitly [188] or implicitly and among other mechanisms [201]. In the following, these
mechanisms and their alternatives and extensions are reviewed.

Barabasi-Albert model [38] starts with a small clique with 𝑚0 vertices and applies the
preferential attachment by connecting the new vertex to 𝑚≤𝑚0 existing vertices selected
randomly with probability proportional to their degrees. The preferential attachment rule
has also been extended to strength-driven preferential attachment (SPA) where each new
vertex is connected to 𝑚 existing vertices randomly selected with probability proportional
to their strength [42, 41, 204]. It has been shown that preferential attachment is induced by
the following microscopic mechanisms. All of these mechanisms imply that the probability
that a vertex receives a new edge is proportional to its degree, therefore they amount to
preferential attachment and lead to scale-free structures [16].

• Copying [182, 188]: at every time step, a new vertex is connected to a constant
number of vertices and the end point of each new edge is a randomly selected vertex
with probability 𝑝 or a neighbour of a prototype vertex with probability 1−𝑝.

• Edge redirection [186]: at every time step, a new vertex is added and a directed
edge from the new vertex to a randomly selected vertex is created with probability
1 − 𝑝, or the edge is redirected to the ancestor of the randomly selected vertex with
probability 𝑝.

• Random walks [325]: at every time step, a new vertex is connected to a random vertex
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and the vertices reachable from it through breadth-first traversal with probability 𝑝

until no new target is found.

• Attaching to edges [107]: at every time step, a new vertex is connected to two
connected vertices.

The original version of copying, mentioned above, copies a neighbour of a randomly
selected vertex with some probability at each time step. Other works have modified it as
follows.

• Butterfly model [229] mixes copying and random walk mechanisms: at every time
step, with probability 𝑝ℎ𝑜𝑠𝑡 a new vertex picks a random vertex called host and
with probability 𝑝𝑙𝑖𝑛𝑘 forms edges with the vertices reachable from the host through
a probabilistic random walk with traversal probability 𝑝𝑠𝑡𝑒𝑝. This model exhibits
shrinking diameter, stabilized next-largest weakly connected component size, and
edge densification.

• Growing network model with copying [185] connects the new vertex to a randomly
selected vertex as well as its neighbours which leads to sparse ultra-small graphs with
logarithmic growth of the average degree with respect to the number of vertices while
the diameter equals 2.

• Duplication divergence model [326] removes the copied neighbours with some prob-
ability leading to power law decay of clustering coefficient as a function of degree.

• Nearest neighbours model [326] connects the new vertex to one randomly selected
vertex and copies one neighbour with some probability leading to clustering coefficient
power law and correlation between average neighbour degree and vertex degree.

• Forest Fire model [201, 202] applies the copying process by recursively connecting
each new vertex to a randomly selected vertex (called ambassador) and certain num-
bers of its randomly selected out- and in-neighbours with forward probability 𝑝 and
backward probability 𝑝𝑏. This process leads to heavy-tailed in- and out-degree dis-
tributions due to an implicit preferential attachment, community structures due to
neighbour copying mechanism [41], edge densification due to many internal-edge es-
tablishments, and shrinking diameter due to shortcut-edge establishments.
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4.2 Analysis of Microscopic Growth Mechanisms

As discussed in previous section, preferential attachment leads to skewed distributions, and
copying mechanism (particularly with the implementation scheme of Forest Fire model)
leads to degree correlation and emergence of cliques and edge densification as well. There-
fore, in an attempt to explain the origins of the observed patterns in real-world streams,
the properties of synthetic streams generated by these local rules are investigated.

4.2.1 Data

Weighted bipartite streaming graphs are synthesized such that the graph structure grows
according to the Forest Fire (FF) and strength preferential attachment (SPA) models.
To this end, directed graphs are created via the growth models and the source vertices
are treated as the i-vertices and destination vertices as the j-vertices. For the timestamp
assignment, the time step at which new vertices are connected to existing vertices are used
and for the weight assignments, random integers in the range [1, 5] (the same weight scale
as in real-world streams) are used. In FF model, when the backward-burning probability
𝑝𝑏 is fixed and the forward-burning probability 𝑝 increases, the graphs become denser
and more clique-like with low diameter [202]. Therefore, graphs with fixed 𝑝𝑏 = 0.3
and 𝑝 = 0.15 (sparse region), 0.4 (transition region), and 0.7 (dense region) are generated.
Experiments show that most of the edges are burned (visited) after checking the neighbours
of the ambassador vertex, therefore no further edge is checked. This reduces computations
and also allows addition of new external links beside the internal densification. In the
SPA model, 𝑚 ∈ {10, 50, 100} is used since the average degree of vertices in real-world
streams are mostly below 100 (Table 3.3). The same analysis approach as for real-world
streams in Chapter 3 is used to investigate the emergence patterns of butterflies in the
synthetic streams quantitatively (by checking the growth patterns of butterfly count) and
qualitatively (by checking the assortativity patterns of butterflies and the confounding
distributions).

4.2.2 Analysis

Figures 4.1-4.6 show the mixing patterns in FF and SPA streams. In the following, these
patterns are investigated.

The butterfly count has a slow growth in FF streams and a speedy growth in SPA
streams. The average butterfly rate is less than 1 in FF streams and higher than 500 in
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SPA streams. That is, the growth of butterfly count with respect to the number of edges
in the sequential graph snapshots is sub-linear in FF streams and extremely super-linear
in SPA streams.

As the FF graph grows, in the transition region, the assortativity level fluctuates, and,
in the sparse and dense regions, it changes trivially (0.02).

Although in FF stream butterflies emerge such that the range of 𝑃𝑟 (𝑆𝑖) and 𝑃𝑟 (𝑆 𝑗 )
get broader and more skewed over time, strength-difference of butterfly edges retain the
same distribution. 𝑃𝑟 (𝛿) remains unchanged with a low dispersion (𝐶𝑉<1) as the graph
grows in each region since the mean, and standard deviation are fixed and the tail changes
slightly over time. Therefore, it is not surprising that 𝑟 𝑠 is stable. Moreover, in the denser
graphs with more butterflies, assortativity patterns vanish (𝑟 𝑠−→0 as 𝑝 increases).

The evolution of 𝑟 𝑠 and the corresponding 𝐹 elements in SPA streams shows that, for
small values of 𝑚, there is no assortativity pattern. For 𝑚 = 100, the graph snapshots
display weak assortativity (0.05≤𝑟 𝑠<0.1). The statistics of the corresponding 𝑃𝑟 (𝛿)s and
that of 𝑃𝑟 (𝑆𝑖)s and 𝑃𝑟 (𝑆 𝑗 )s show that, as the graph grows, for all values of 𝑚, diversity
of the strengths of i- and j-vertices do not change significantly (small change in 𝜇𝑖, 𝜇 𝑗 ,
and corresponding 𝐶𝑉 and 𝑌2). The strength-differences continuously follow a skewed
distribution with a short tail as most 𝛿s remain around the mean (𝐹1+𝐹2≈0.85 and 𝐶𝑉<1)
and the skewness does not grow to very high numbers.

4.2.3 Summary

FF streams follow strength diversification but not butterfly densification and steady
strength assortativity. In FF streams, as the new vertices attach to random vertices
(ambassadors) and reach high-degree vertices (hubs) through copying the neighbours of
ambassador, new butterflies emerge and the diversity of strength of butterfly vertices in-
creases. When the probability of neighbour copying 𝑝 is low (sparse regions), the new
vertex establishes fewer connections, therefore, the probability of connecting to the high-
strength hubs is lower, and also the strength of the new vertex remains low. As a result,
many edges have low strength-difference, 𝑃𝑟 (𝛿) is broader, and strength assortativity lo-
calization factor is positive. On the other hand, when 𝑝 is high, although the number of
butterflies is higher, the connections are established between pairs of vertices with both
low and high strength-difference, since the ambassadors and their neighbours are selected
uniformly at random. As a result, 𝑃𝑟 (𝛿) has a lower variance and the strength assortativity
displays randomness. Moreover, the butterfly count is a sub-linear function of the number
of edges over time even when the graph displays edge densification (in dense regions).
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.1: Mixing patterns of butterflies in FF stream with 𝑝=0.15 and average butterfly
rate 0.04±0.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.2: Mixing patterns of butterflies in FF stream with 𝑝=0.4 and average butterfly
rate 0.08±0.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.3: Mixing patterns of butterflies in FF stream with 𝑝=0.7 and average butterfly
rate 0.09±0.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.4: Mixing patterns of butterflies in SPA stream with 𝑚=10 and average butterfly
rate 556.6±24.5.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.5: Mixing patterns of butterflies in SPA stream with 𝑚=50 and average butterfly
rate 558±22.4.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.6: Mixing patterns of butterflies in SPA stream with 𝑚=100 and average butterfly
rate 548.1±17.
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Butterfly Densification Strength Diversification Steady Stregth Assortativity
SPA ✓ × ×
FF × ✓ ×

Table 4.3: Mixing patterns of butterflies in SPA and FF streams.

SPA streams follow butterfly densification but not strength diversification and steady
strength assortativity. In SPA streams, as new low-strength vertices attach to 𝑚 vertices
with the highest strengths (strong vertices), many butterflies are formed around the high-
strength vertices with a rate much higher than that of real-world streams. When the
number of connections per new vertex 𝑚 is higher, the probability of attachment to low-
strength vertices is higher since the number of strong vertices is limited, therefore the
number of edges among low-strength vertices increases. As a result, the graphs display
weak strength assortativity when average degree is high. When 𝑚 is low, the number of
edges with high strength-difference is higher compared to the case with high 𝑚, although
they don’t exceed edges with low strength-difference. The diversity of 𝑃𝑟 (𝑆) and 𝑃𝑟 (𝛿)
does not increase significantly in either cases.

As summarized in Table 4.3, FF streams with implicit degree-driven preferential at-
tachment and neighbour copying yield graphs with increasing diversity of strengths of
butterfly vertices, however the quantity of butterflies and their mixing schemes do not
preserve realistic patterns. SPA streams with pure strength-driven preferential attachment
lead to graphs with rapidly growing butterfly density, however the mixing patterns do not
match realistic patterns. This highlights the essence of a growth model which has both
strength-driven preferential attachment and neighbour copying flavours to ensure a bal-
anced butterfly densification and incremental strength diversity. Further considerations
regarding the integration of these two mechanisms with other effective mechanisms are
also required to create realistic streams. The next section resolves this.

4.3 sGrow

Burstiness, strong-gets-stronger, and core-periphery are the semantic concepts explaining
the butterfly emergence patterns (Chapter 3) and also the strength preferential attachment
and neighbour copying are the microscopic mechanisms explaining the butterfly densifica-
tion and strength diversification (Section 4.2). In the following, these concepts and growth
mechanisms are integrated with further mechanisms introduced in a streaming growth
model, called sGrow [298]. This model explains the co-occurrence of the three realistic
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emergence patterns of butterflies in streaming graphs such that all four-vertex graphlets
emerge in the graph, the sgrs are realistic (i.e. preserve streaming data characteristics),
and the stream properties are configurable.

The introduced mechanisms (Figure 1.3) solve the drawbacks of existing works. For
instance, a preferential random walk and copying micro-mechanisms feature strength pref-
erential selection of vertices whose neighbours are copied with probabilistic connections.
These lead to butterfly densification as well as emergence of four-vertex graphlets and also
increase strength diversity of butterfly vertices. Moreover, the introduced random walk
utilizes BFS and DFS traversals with dynamic and random number of hops, which bal-
ances the butterfly emergence patterns. The realistic sgr generation techniques (such as
inactivity gaps, and techniques for timestamp assignment and evolving streaming rate)
yield graphs satisfying streaming paradigms such as burstiness and out-of-order arrivals.
These realistic sgr generation techniques also impact the temporal patterns of butterfly
emergence (for instance timestamp of sgrs converting a caterpillar to a butterfly influ-
ences the number of butterflies in the corresponding burst). The local/unbounded graph
updates, including the sliding window mechanism, avoid pure preferential attachment to
a few hubs (avoids perfectly disassortative mixing) and helps with the steady pattern of
strength assortativity of butterflies.

4.3.1 Overview

An overview of sGrow is provided in this section (Algorithm 3 - Figure 4.7). A time-
based sliding window (Definition 6) is used to generate a sequence of sgrs (Definition 2)
that constitute the synthetic weighted bipartite streaming graph (Definition 3). In the
following, 𝐺𝑊,𝑡 refers to the computational graph snapshot formed by the sgrs within the
window. The output stream is a sequence of sgrs denoted as ℜ. The time step 𝑡 is the
computational time point used for controlling the window and the timestamp 𝜏 is the sgr’s
time-label which follows the timestamp scale of an initial graph snapshot. A five-point
scale [1, 5] (similar to that of real-world streams) is used to generate weights.

𝐺𝑊,𝑡 and ℜ are initiated with an initial graph snapshot 𝐺𝑊,𝑡0 = (𝑉0, 𝐸0). The win-
dow’s beginning border 𝑊𝑏 is set to the first timestamp in 𝐺𝑊,𝑡0 (Algorithm 3, lines 1 -
Figure 4.7(a)). At each time step 𝑡, 𝑚 (a random number in [0, 𝑀), where 𝑀 is a parame-
ter) new sgrs 𝑟 𝑙=1,..,𝑚=⟨𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝜔𝑙

𝑖 𝑗
, 𝜏⟩ with new vertices are created and added toℜ and 𝐺𝑊,𝑡

(Figure 4.7(b)(c)). The shared timestamp is one plus the last timestamp in 𝐺𝑊,𝑡 and the
weights are random integers 𝜔𝑙

𝑖 𝑗
∈[1, 5] (Algorithm 3, line 4). To connect these new isolated

edges to the rest of sgrs, the following procedure is followed. A random integer 𝜔∈[−1, 5]
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 𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

 𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

(a) 𝑡=0, 𝑊𝑏 = 𝑟01.𝜏 𝑣11
𝑗

𝑣13
𝑗

𝑣14
𝑗

𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣11
𝑖

𝑣14
𝑖

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

 𝑣11
𝑗

𝑣12
𝑗

𝑣13
𝑗

𝑣14
𝑗

𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣11
𝑖

𝑣12
𝑖

𝑣13
𝑖

𝑣14
𝑖

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

(b) 𝑡=1, 𝑊𝑏 = 𝑟01.𝜏 + 𝛽, 𝐿=1, 𝑚=4 (𝑟11 incurs no-op, 𝑟12 & 𝑟13 incur removal, 𝑟14 adds
burst.) 𝑣21
𝑗

𝑣11
𝑗

𝑣13
𝑗

𝑣14
𝑗

𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣21
𝑖

𝑣11
𝑖

𝑣14
𝑖

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

 𝑣21
𝑗

𝑣22
𝑗

𝑣11
𝑗

𝑣12
𝑗

𝑣13
𝑗

𝑣14
𝑗

𝑣01
𝑗

𝑣02
𝑗

𝑣03
𝑗

𝑣21
𝑖

𝑣22
𝑖

𝑣11
𝑖

𝑣12
𝑖

𝑣13
𝑖

𝑣14
𝑖

𝑣01
𝑖

𝑣02
𝑖

𝑣03
𝑖

(c) 𝑡=2, 𝑊𝑏 = 𝑟01.𝜏 + 2𝛽, 𝐿=2, 𝑚=2 (𝑟21 adds burst, 𝑟22 incurs no-op.)

Figure 4.7: (left) The computational graph 𝐺 and (right) the stream ℜ at the end of time
steps 𝑡=0, 1, 2 with 𝛽=2, 𝜌=0.4, 𝑀=5, and 𝐿∈[1, 2]. New edges are blue and PRW edges
are yellow dashed. Timestamps and weights are not depicted and it is assumed that the
edges in 𝐺0 expire from the window as their timestamps are below the 𝑊𝑏.
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Algorithm 3: sGrow(𝜌, 𝑀, 𝛽, [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥])
Data: 𝐺𝑊,𝑡0 : an initial graph
Input: 𝜌: connection probability, 𝑀: maximum number of new edges, 𝛽: slide

parameter, [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]: range of PRW’s length
Output: ℜ, sequence of streaming graph records

1 𝐺 ← 𝐺𝑊,𝑡0 = (𝑉0, 𝐸0), ℜ← 𝐸0, 𝜏 ← 1+ last timestamp in 𝐺𝑊,𝑡0 , 𝑡 ← 0, 𝑊𝑏 ←
first timestamp in 𝐺𝑊,𝑡0

2 while true do
3 𝑡 ← 𝑡 + 1
4 Add 𝑚 ∈ [0, 𝑀) new sgrs 𝑟 𝑙=1,..,𝑚 = ⟨𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝜔𝑙

𝑖 𝑗
, 𝜏⟩ with 𝜔𝑙

𝑖 𝑗
∈ [1, 5] to ℜ and

𝐺𝑊,𝑡
5 for each 𝑟 𝑙=1,..,𝑚 do
6 𝜔← a random integer in [−1, 5]
7 switch 𝜔 do
8 case -1 do
9 Remove 𝑣𝑙

𝑖
− 𝑣𝑙

𝑗
from ℜ and 𝐺𝑊,𝑡 .

10 case 0 do
11 No operation

12 otherwise do
13 𝑢0

𝑗
←SPS(𝑉 𝑗)

14 𝐿 ← a random integer in [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]
15 (𝑃𝑅𝑊𝑖, 𝑃𝑅𝑊 𝑗 ) ← PRW(𝑢0

𝑗
, 𝑓 𝑎𝑙𝑠𝑒, 𝐺𝑊,𝑡 , 𝐿)

16 𝑎𝑑𝑑𝐵𝑢𝑟𝑠𝑡 (𝑣𝑙
𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊𝑖, 𝐺,ℜ, 𝜌)

17 𝑎𝑑𝑑𝐵𝑢𝑟𝑠𝑡 (𝑣𝑙
𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊 𝑗 , 𝐺,ℜ, 𝜌)

18 𝜏 ← 𝜏 + | (𝜔
′−5) (𝜔′−4) (𝜔′−3)

2 |

19 Remove any newly added vertex 𝑣𝑙
𝑖
and 𝑣𝑙

𝑗
with less than 2 neighbours from

𝐺𝑊,𝑡
20 𝜏 ← 𝜏 + 1
21 𝑊𝑏 ← 𝑊𝑏 + 𝛽
22 if 𝑡 = 𝛽 then
23 Remove any edge with timestamp less than 𝑊𝑏 from 𝐺𝑊,𝑡
24 𝑡 ← 0
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is generated based on which, one of the three operations (edge removal, no-operation, and
burst addition) is performed for each of the 𝑚 new sgrs in parallel (Algorithm 3, lines 6-
18). This random integer is aimed to randomize the order of selected operations. The
range is set as [−1, 5] to incur a probability of 5/7 for additions, and 1/7 for removals and
no-operation. The intuition is the observation in real-world graphs where edge additions
dominate edge removals. This range is found to best match the characteristics of real-world
streams. Additions and removals happen as described in Section 4.3.2.

• 𝜔=−1, the connection between 𝑣𝑙
𝑖
and 𝑣𝑙

𝑗
is removed from ℜ and 𝐺𝑊,𝑡 (Algorithm 3,

line 9). This edge removal introduces isolated vertices if the vertices do not acquire
neighbours from the current or next batch (𝑣12

𝑖
, 𝑣12

𝑗
, and 𝑣13

𝑖
in Figure 4.7.b).

• 𝜔=0, nothing happens (Algorithm 3, line 11). This no-operation introduces a gap of
inactivity between streaming records to form bursts (Definition 4) and also introduces
isolated edges. If the current sgr 𝑟 𝑙 is not connected to the subsequent sgrs in current
batch (𝑟 𝑙+1,..,𝑚) or the following batches, it will remain isolated (𝑟22 in Figure 4.7.c).

• 𝜔>0, a j-vertex 𝑢0
𝑗

in 𝐺𝑊,𝑡 (𝑣01
𝑗

in Figure 4.7.b and 𝑣14
𝑗

in Figure 4.7.c) is randomly
selected via Strength Preferential Selection (SPS, described in Section 4.3.3). Next,
a Preferential Random Walk (PRW, described in Section 4.3.4) starting from 𝑢0

𝑗
is

performed in 𝐺𝑊,𝑡 . The number of hops in PRW (i.e. walk length) is a random
integer 𝐿 in the parameter range [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]. Using PRW as a backbone, bursts of
new sgrs between 𝑟 𝑙 and the rest of sgrs in 𝐺𝑊,𝑡 and ℜ are established (as described
in Section 4.3.5). The strength preferential attachment and neighbour copying are
necessary to ensure a balanced butterfly densification and incremental strength di-
versity. Therefore, these are incorporated into PRW, which serves as a backbone
of vertices for adding bursts of sgrs through connecting the new isolated sgrs to
these vertices and their neighbours. Since the vertices are connected through a ran-
dom walk, graphlets emerge efficiently. Since at each iteration, a random number of
PRW vertices are selected based on strength preferential probability, the graphlets
effectively obey the observed patterns in real-world streams. Moreover, this process
includes adding sgrs according to a parameterized probability as well as bounding
the random length of PRW according to a parameterized range, which enable con-
figurable sgr creation. After adding the last edge with weight 𝜔′, the timestamp 𝜏 is
incremented as a function of 𝜔′: 𝜏=𝜏+|(𝜔′ − 5) (𝜔′ − 4) (𝜔′ − 3)/2|. This function cre-
ates a timestamp interval as soon as generation of a sgr with low weight (i.e. 𝜔′ ≤ 2),
therefore it helps characterize the burstiness of the stream (Algorithm 3, lines 13-18).
This is based on an observation in real-world streams that the last sgr in each burst
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has a low weight. It is noteworthy that there are two levels of burstiness: (1) the
bursts initiated by each 𝑟 𝑙 as described here, and (2) the bursts created concurrently
by 𝑚 sgrs 𝑟 𝑙=1,..,𝑚 which can be assumed as multiple generative sources.

The aforementioned procedure takes place for all 𝑚 new sgrs in parallel1. After that,
any newly added vertex with less than two neighbours is removed from 𝐺𝑊,𝑡 (Algorithm 3,
line 19 - 𝑣22

𝑖
and 𝑣22

𝑗
in Figure 4.7.c). This removal of new isolated vertices/edges is

done to retain a connected computational graph, yet the old vertices whose adjacent edges
are discarded by the window (as described below) become isolated in 𝐺𝑊,𝑡 (𝑣03

𝑗
in Fig-

ure 4.7(c)). Also, the stream may hold isolated vertices/edges (𝑣22
𝑖

-𝑣22
𝑗

, 𝑣12
𝑖

, 𝑣12
𝑗

, and 𝑣13
𝑖

in Figure 4.7(c)). Next, the timestamp is incremented by one (Algorithm 3, line 20). The
window slides as 𝑊𝑏 is incremented by 𝛽; the edges with timestamps out of the sliding
window are removed from the graph after each 𝛽 time steps; and the time step is reset
to zero (Algorithm 3, lines 21-24). This sliding window mechanism is used to avoid pure
preferential attachment to old vertices in global scale and create time-sensitive and local
connections leading to emergence of young hubs (high degree vertices) to support the ob-
servations of real-world stream analysis in 3. The generation process happens continuously
and ℜ streams-out as the sgrs are generated. This process can be restricted to continue
until a desired number of sgrs 𝑆 are generated (|ℜ| = 𝑆) and then return the stream ℜ.

4.3.2 Data Structures

The following data structures and basic graph/stream operators are used to implement
sGrow ’s algorithms.

• A vertex is an object with three attributes: ID, Strength, and timestamp 𝜏. A new
i(j)-vertex 𝑣𝑖(𝑣 𝑗) is assigned an integer ID equal to the current number of i(j)-vertices,
a strength initialized to zero, and a timestamp equal to that of the edge by which
this vertex is added. Dot notation is used to refer to attributes of an object, e.g.
𝑣𝑖 .𝐼𝐷 denotes the ID of the vertex 𝑣𝑖.

• An edge/sgr between vertices 𝑣𝑖 and 𝑣 𝑗 is an object with four attributes: i-vertex
(object 𝑣𝑖), j-vertex (object 𝑣 𝑗), timestamp (integer 𝜏), and weight (integer 𝜔).

1This algorithm is implemented in a single machine architecture; a distributed version is doable but
not considered here.

69



• The connections of graph 𝐺𝑊,𝑡 are stored by two hash-map data structures to map
each vertex ID to the hash-set of its immediate neighbours: iNeighbours= {(𝑣 𝑗 .𝐼𝐷 :
𝑁𝑖 (𝑣 𝑗 ))} and jNeighbours= {(𝑣𝑖 .𝐼𝐷 : 𝑁 𝑗 (𝑣𝑖))}. Hash-sets are used to avoid storing
multiple edges between two vertices in the computational graph. Also, hash-map
provides fast access to the neighbourhoods.

• The sgrs in ℜ are stored in a vector that retains the edges in the order of their
additions which include out-of-order sgrs with respect to the timestamps as explained
in Section 4.3.5.

When a new edge is added/removed to/from the graph or stream these data structures are
updated accordingly and also the strengths of the vertices at the either ends of the edge
are incremented/decremented by the weight of the edge.

4.3.3 Strength Preferential Selection

Function 𝑆𝑃𝑆(𝑉) is invoked in Algorithms 3. This function selects a random vertex in the
set 𝑉 according to strength preferential probability Λ𝑣 =

𝑣.𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ

Σ𝑣′ ∈𝑉𝑣′ .𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ
[42, 41]. Vertices in

𝑉 are concurrently added to a list with multiplicity equal to their strength. Next, the list
is shuffled and a random element 𝑣0 in the list is selected as the output vertex.

4.3.4 Preferential Random Walk

Function 𝑃𝑅𝑊 (𝑠𝑡𝑎𝑟𝑡𝑒𝑟, 𝑖𝑠𝐼, 𝐺, 𝐿) performs a random walk with 𝐿 hops on a graph 𝐺𝑊,𝑡 .
It starts from a 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 vertex whose type determines a boolean flag 𝑖𝑠𝐼 (true when
𝑠𝑡𝑎𝑟𝑡𝑒𝑟 is an i-vertex and false otherwise). At each hop, a neighbour of the 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 vertex
(𝑢𝑖 ∈ 𝑁𝑖 (𝑠𝑡𝑎𝑟𝑡𝑒𝑟), 𝑢 𝑗 ∈ 𝑁 𝑗 (𝑠𝑡𝑎𝑟𝑡𝑒𝑟)) is selected via strength preferential selection (invoking
𝑆𝑃𝑆(𝑁𝑖 (𝑠𝑡𝑎𝑟𝑡𝑒𝑟)), 𝑆𝑃𝑆(𝑁 𝑗 (𝑠𝑡𝑎𝑟𝑡𝑒𝑟))). The selected neighbour (𝑢𝑖, 𝑢 𝑗) is added to a hash
set of unique vertices (𝑃𝑅𝑊𝑖, 𝑃𝑅𝑊 𝑗) and is set as the 𝑠𝑡𝑎𝑟𝑡𝑒𝑟 vertex. The starter flag
is accordingly set and the hop counter is incremented by one. The next hop starts with
the last added vertex. When the current selected neighbour is already in the hash set, if
it is the last element, the walk continues to another neighbour of that vertex (in depth
traversal) and if it is one of the previously selected vertices other than the last element,
the walk continues in breadth traversal. Therefore, the walk is a combination of BFS and
DFS with random preferential selection.
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4.3.5 Burst Addition

Function 𝑎𝑑𝑑𝐵𝑢𝑟𝑠𝑡 (𝑣𝑙
𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊𝑖, 𝐺,ℜ, 𝜌) is given in Algorithm 4. This function adds bursts

(Definition 4) of sgrs to 𝐺𝑊,𝑡 and ℜ based on the i-vertices in the 𝑃𝑅𝑊𝑖 and new vertices
𝑣𝑙
𝑖
and 𝑣𝑙

𝑗
given a probability parameter 𝜌 (Figure 4.8.a). The same procedure is followed

to add bursts with respect to the j-vertices in the 𝑃𝑅𝑊 𝑗 . As illustrated in Figure 4.8,
considering each i-vertex 𝑢𝑖 in the 𝑃𝑅𝑊𝑖, the following connections are established:

Step 1. An edge between 𝑢𝑖 and the newly added 𝑣𝑙
𝑗
is formed with the timestamp of 𝑣𝑙

𝑗

and a weight 𝜔′ ∈ [1, 5] (Algorithm 4, lines 3-4 – Figure 4.8.b). This edge connects
edge 𝑣𝑙

𝑖
-𝑣𝑙
𝑗

to the graph and also leads to emergence of 𝑁1 + 𝑁2 caterpillars (solid
3-paths in Figure 4.8.e,f ), where 𝑁1 and 𝑁2 are the number of 1-hop (immediate)
and 2-hop neighbours of 𝑢𝑖, respectively.

Step 2. With probability 𝜌, an edge between 𝑢𝑖 and an existing j-vertex 𝑧 𝑗 , selected
uniformly at random, is formed with timestamp 𝑀𝑖𝑛(𝑢𝑖 .𝜏, 𝑧 𝑗 .𝜏) and a weight 𝜔′ ∈
[1, 5] (Algorithm 4, lines 5-8 – Figure 4.8.c). Using a timestamp other than the
current timestamp (𝑣𝑙

𝑗
.𝜏) introduces out-of-order sgrs (late arrival) since this sgr has

a timestamp less than (𝑣𝑙
𝑗
.𝜏). It also helps balance the burst sizes since the current

timestamp is not assigned to all edges in the current time step. This probabilistic
edge leads to converting the caterpillars between 𝑢𝑖 and 𝑧 𝑗 into butterflies at the
generation time of either vertices (closed 4-path in Figure 4.8.g).

Step 3. With probability 𝜌, an edge between the newly added 𝑣𝑙
𝑖
and each 𝑢𝑖’s immediate

j-vertex neighbour 𝑛 𝑗 is concurrently formed with 𝑛 𝑗 ’s timestamp 𝑛 𝑗 .𝜏 and a weight
𝜔′ ∈ [1, 5] (Algorithm 4, lines 9-12 – Figure 4.8.d). In other words, each of the
adjacent links of 𝑢𝑖 is copied with probability 𝜌. Since 𝑛 𝑗 .𝜏 < 𝑣𝑙𝑖 .𝜏, out-of-order sgrs
join previous burst of sgrs with same timestamp (including the sgr incident to 𝑛 𝑗s).
These probabilistic edges lead to converting the 𝑁1 caterpillars that emerge in Step 1
into butterflies (closed 4-path in Figure 4.8.e). This step is used to generate streams
with high number of sgrs per burst.

4.4 Performance Evaluations

The effectiveness and efficiency of sGrow are tested from three perspectives:
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𝑣𝑙
𝑗

𝑢0
𝑗

𝑢 𝑗

𝑣𝑙
𝑖 𝑢𝑖

(a)

𝑣𝑙
𝑗

𝑣𝑙
𝑖 𝑢𝑖

(b) Step 1

𝑣𝑙
𝑗

𝑧 𝑗

𝑣𝑙
𝑖 𝑢𝑖

(c) Step 2

𝑣𝑙
𝑗

𝑛 𝑗 𝑛 𝑗 𝑛 𝑗 𝑛 𝑗

𝑣𝑙
𝑖 𝑢𝑖

(d) Step 3

𝑣𝑙
𝑗

𝑛 𝑗

𝑣𝑙
𝑖 𝑢𝑖

(e)

𝑣𝑙
𝑗

𝑛 𝑗

𝑢𝑖

(f)

𝑧 𝑗

𝑢𝑖

(g)

Figure 4.8: Four-vertex graphlets (e, f, g) and schematic burst addition steps (b, c, d)
based on an i-vertex 𝑢𝑖 in the PRW starting from 𝑢0

𝑗
designated by yellow dashed lines (a).

New edges are blue and dotted lines denote probabilistic connections.

• Pattern reproduction (Section 4.4.1). The ability of sGrow to reproduce the realistic
patterns is compared with baselines and examined under different levels of burstiness,
initial graph snapshots, and butterfly counts.

• Stress testing (Section 4.4.2). The impact of introduced parameterized techniques
on the effectiveness, efficiency, and burstiness of the generated stream by sGrow is
examined.

• Computational complexity (Section 4.4.3). The computational complexity of sGrow
is analyzed theoretically.

Data. In the following, the generative methods for sGrow and baseline streams are de-
scribed.

sGrow streams. The streams generated by sGrow model are created with a prefix
of 1000 sgrs from real-world streams (𝐺𝑊,𝑡0) and the rest of the stream synthesized via
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Algorithm 4: Add Burst
1 Function addBurst(𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊𝑖, 𝐺,ℜ, 𝜌)

2 for each 𝑢𝑖 ∈ 𝑃𝑅𝑊𝑖 do
3 𝜔′← a random integer in [1, 5]
4 Add a new sgr ⟨𝑢𝑖, 𝑣𝑙𝑗 , 𝜔′, 𝑣𝑙𝑗 .𝜏⟩ to ℜ and 𝐺𝑊,𝑡
5 if coin(𝜌) is Head then
6 𝑧 𝑗 ← Select a random j-vertex
7 𝜔′← a random integer in [1, 5]
8 Add a new sgr ⟨𝑢𝑖, 𝑧 𝑗 , 𝜔′, 𝑀𝑖𝑛(𝑢𝑖 .𝜏, 𝑧 𝑗 .𝜏)⟩ to ℜ and 𝐺𝑊,𝑡
9 for each 𝑛 𝑗 ∈ 𝑁 𝑗 (𝑢𝑖) do // in highly bursty streams

10 if coin(𝜌) is Head then
11 𝜔′← a random integer in [1, 5]
12 Add a new sgr ⟨𝑣𝑙

𝑖
, 𝑛 𝑗 , 𝜔

′, 𝑛 𝑗 .𝜏⟩ to ℜ and 𝐺𝑊,𝑡

sGrow model (Algorithm 3) with various parameter configurations and different number
of butterflies. The generated streams are referred to as S-{𝐺0-name}. The streams used
for pattern reproduction and stress testing purposes are generated as follows.

• Pattern reproduction. Epinions, Amazon, and Ciao are bursty streams with average
burst sizes of 𝑏 = 27282, 1753.7, and 14.8; Yahoo and ML1m are also bursty but
with lower values 𝑏 = 2.4 and 2.2; ML100k and WikiLens have the lowest burstiness
with 𝑏 = 2 and 1, respectively (Table 3.3). According to these burstiness profiles, the
parameters are set to control the temporal distribution of sgrs. That is, to simulate a
stream with high burstiness, 𝑀 and [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] are set to high values, which increase
(1) the probability of creating high number of new edges at each time step (𝑀) and
(2) the burst size by generating backbone walks with more vertices ([𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]). To
simulate a stream with low burstiness (S-ML100k and S-WikiLens), the neighbour-
hood copying (Algorithm 4, lines 9-12 – step 3 in Section 4.3.5) is not performed.
The default value of 𝜌 is 0.3 and it is further adjusted by decreasing (increasing) to
push the burst size towards lower (higher) values. 𝛽 = 5 in all streams. The exact
value of parameters are given in Table 4.4. All the reported results in these figures
are based on the same streams.

• Stress testing. To evaluate the impact of sGrow techniques (batch of isolated edges,
probabilistic connections, the random walk backbone, and the sliding window) on

73



Table 4.4: Parameters for generating sGrow streams.
𝜌 𝑀 𝛽 [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]

S-Ciao 0.3 100 5 [2, 3]
S-Epinions 0.2 300 5 [3, 6]
S-WikiLens 0.4 100 5 [1, 3]
S-ML100k 0.3 100 5 [1, 3]
S-ML1m 0.3 10 5 [1, 2]
S-Amazon 0.3 50 5 [1, 2]
S-yahoo 0.3 50 5 [2, 3]

effectiveness, efficiency, and burstiness, the corresponding parameters are evaluated
statically and dynamically as follows:

– A diverse range of parameters 𝑀 ∈ {100, 150, 200, 250, 300}, 𝜌 ∈ {0.3, 0.4, 0.5, 0.6,
0.7}, 𝐿𝑚𝑖𝑛 ∈ {1, 2, 3, 4}, 𝐿𝑚𝑎𝑥 ∈ {3, 4, 5}, and 𝛽 ∈ {5, 10, 15, 20} are used to create
S-Amazon stream. Each row of Tables 4.25, 4.26, and 4.28 illustrates the effect
of one parameter on effectiveness, efficiency, and frequency distribution of burst
sizes, respectively.

– S-Amazon stream is created with 107 sgrs such that after generating 5 × 106,
one of the parameters switches from 𝑀 = 100, 𝛽 = 5, 𝐿 ∈ [15] and 𝜌 = 0.4 to
𝑀 = 300, 𝛽 = 20, 𝐿 ∈ [45] and 𝜌 = 0.8. Figure 4.27 illustrates the effect of the
parameter switch on effectiveness and efficiency.

Baseline streams. The streams generated by baseline models are generated with a prefix
of 1000 sgrs from Amazon stream and the rest of the stream synthesized via three graph
models: Butterfly model (BM) [229], Connecting Nearest-neighbour model (CNM) [326],
and Duplication Divergence model (DDM) [326]. These baseline streams are generated
using random integers in [1, 5] as weights and the time step at which new vertices join the
graph as the timestamp of new sgrs. In all three models, the stream grows by adding a
new vertex at each time step and the original models generate unipartite graphs. Either
an i-vertex or a j-vertex is chosen to be added randomly with equal probability and the
same procedure is followed for adding new j-vertices and new i-vertices.

• In CNM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices. With
probability 1 − 𝑝, the new i-vertex is connected to a randomly selected j-vertex and
with probability 𝑝, an edge between two randomly selected and disconnected vertices
is established.
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• In BM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices residing
on a random walk started from one or more host vertex. Each new i-vertex picks a
host (a randomly selected j-vertex) with probability 𝑝ℎ and is assigned a probability
𝑝𝑠𝑡𝑒𝑝 (a random value in (0, 1]). The new i-vertex visits the host as it is linked to the
host with probability 𝑝𝑙 and then with probability 𝑝𝑠𝑡𝑒𝑝 visits a two-hop j-vertex on
the random walk started from the host. This procedure continues until no new host
is chosen.

• In DDM, the stream grows as new i(j)-vertices connect to existing j(i)-vertices by
following duplication and divergence rules. In duplication phase, the new i-vertex 𝑣𝑖
connects to all j-neighbours 𝑛 𝑗 of a randomly selected i-vertex 𝑣𝑖′ (𝑣𝑖′ is duplicated)
and during the divergence phase, one of the two edges 𝑒𝑖′𝑛 𝑗 or 𝑒𝑖𝑛 𝑗 is selected randomly
and removed with probability 𝑝𝑒.

Metrics. The effectiveness of sGrow is evaluated and compared with real-world streams
with respect to the three patterns of scale-invariant strength assortativity of butterflies.
Qualitative evaluations are done by checking whether the patterns hold and quantitative
evaluations are done by checking the error of 𝑟 𝑠 and 𝐹.

The efficiency of sGrow is evaluated by measuring the generation time (in seconds).
Moreover, the burstiness of the sGrow streams is evaluated by investigating the frequency
distribution of burst sizes.

Computing setup. Experiments are conducted on a machine with 15.6 GB native mem-
ory and Intel Core 𝑖7 − 6770𝐻𝑄𝐶𝑃𝑈@2.60𝐺𝐻𝑧 ∗ 8 processor. All sGrow ’s algorithms and
experiments are implemented and performed in Java (OpenJDK version 11.0.11).

4.4.1 Pattern Reproduction

sGrow. The streams generated by sGrow obey the scale-invariant strength assortativity
of butterflies. This is because all the synthetic streams preserve the realistic mixing patterns
(Figures 4.9 - 4.15) regardless of the initial graph snapshot, butterfly count, and burstiness
level as described below.

• Butterfly densification. The number of butterflies grows over time with an average
butterfly rate higher than 1 in all the streams (Table 4.5) indicating that the butterfly
count grows super-linearly with respect to the number of edges.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.9: Mixing patterns of butterflies in Ciao stream.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.10: Mixing patterns of butterflies in Epinions stream.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.11: Mixing patterns of butterflies in WikiLens stream.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.12: Mixing patterns of butterflies in ML100k stream.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.13: Mixing patterns of butterflies in ML1m stream.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.14: Mixing patterns of butterflies in Amazon stream.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.15: Mixing patterns of butterflies in Yahoo stream.

• Strength diversification. The mean, relative standard deviation, and tail skew-
ness/heaviness of 𝑃𝑟 (𝑆) increases over time showing that butterfly vertex strengths
diversify over time.

• Steady strength assortativity. The synchronous evolution of mean and standard
deviation accompanied by increasing skewness/heaviness of the tail of 𝑃𝑟 (𝛿) plus the
stable values of 𝐹 elements over time demonstrate that 𝑃𝑟 (𝛿) is fixed-shaped yet
growing. Moreover, the strength assortativity localization factor changes trivially
over time and is positive with 𝐹1 values between 0.5 and 0.7 indicating the steady
strength-assortativity of butterflies over time.

Table 4.6 presents the mean absolute error of 𝑟 𝑠 and 𝐹 elements in sGrow streams with
respect to that of real-world streams over the sequential burst-based graph snapshots. In all
synthetic streams the error is between 0.01 and 0.1. The low errors of 𝐹 elements suggest
that sequential graph snapshots in the sGrow streams have similar strength difference
distribution to the corresponding real-world streams. Particularly the low error of 𝐹1,
𝑟 𝑠 represents the similar strength assortativity localization factor. This indicates that
sGrow reproduces the similar strength difference distribution and strength assortativity of
butterfly edges as in the real-world streams.
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Table 4.5: Average butterfly rate in synthetic streams generated by our model.
average butterfly rate |𝐸20 | 𝑁20

𝑏
⊲⊳20

S-Ciao 37.2440 ± 31.4987 72, 966 940 7, 430, 097
S-Epinions 9.4358 ± 6.1519 14, 495 300 304, 417
S-WikiLens 6.3037 ± 5.6897 25, 957 4, 000 69, 302
S-ML100k 2.191 ± 1.3045 87, 951 12, 000 204, 118
S-ML1m 59.8963 ± 29.2066 85, 397 2, 000 7, 860, 689
S-Amazon 30.8994 ± 28.8517 106, 714 4, 000 9, 599, 739
S-Yahoo 51.1708 ± 27.891 120, 616 3, 200 10, 847, 746

BM 𝑝𝑙 = 0.3, 𝑝ℎ = 0.5 4.9294𝑒− 4± 2.3263𝑒− 4 106716 81448 30
BM 𝑝𝑙 = 0.5, 𝑝ℎ = 0.7 0.0035 ± 8.9103𝑒 − 04 106716 48944 253
BM 𝑝𝑙 = 0.7, 𝑝ℎ = 0.9 0.2534 ± 0.0453 106720 14660 26371
CNM 𝑝 = 0.3 0.0015 ± 5.2659𝑒 − 04 106739 105841 94
CNM 𝑝 = 0.5 0.0064 ± 9.4627𝑒 − 04 106739 105841 536
CNM 𝑝 = 0.7 0.0423 ± 0.0068 106739 105841 4420
DDM 𝑝𝑒 = 0.3 8.4597 ± 6.2345 106714 25524 2183130
DDM 𝑝𝑒 = 0.5 1.2260 ± 0.8530 106714 42644 294543
DDM 𝑝𝑒 = 0.7 0.0928 ± 0.0685 106714 69263 23342

Baselines. None of the baseline streams obey the scale-invariant strength assortativity
of butterflies (Figures 4.16-4.24) since þ1, þ2, and þ3 are not preserved.

• Butterfly densification. The number of butterflies grows slowly in the streams (Ta-
ble 4.5). In BM streams, a butterfly forms when a new vertex connects to a host
(selected with probability 𝑝ℎ) and its two hop neighbour with probability 𝑝𝑙 , there-
fore as 𝑝ℎ and 𝑝𝑙 increase, butterfly count increases. In BM stream with 𝑝𝑙 = 0.3
and 𝑝ℎ = 0.5, at some graph snapshots there is no new butterfly added to the graph
and butterfly count remains the same. However, the total number of butterflies in
each graph snapshot is far below the number of edges. In CNM streams, butterflies
have higher chance of emergence when potential edges are converted to edge with
probability 𝑝 compared to addition of new edges with probability 1 − 𝑝, therefore
as 𝑝 increases butterfly count increases, albeit insignificantly. In DDM, with prob-
ability 1 − 𝑝𝑒 butterflies emerge with the addition of each new vertex, which forms
wedges with 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣𝑖′) neighbour of 𝑣𝑖′ . Consequently the lower 𝑝𝑒, the higher is
the butterfly count. However, the average butterfly rate is still lower than that of
sGrow, specifically S-Amazon with average butterfly rate 30.89994 and DDM with
𝑝𝑒 = 0.3 having 8.4597. Moreover, the streams have low burstiness as 𝑁20

𝑏
is higher

than that of sGrow.
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Table 4.6: Mean absolute error of 𝑟 𝑠 and 𝐹 elements.
𝐹1, 𝑟𝑠 𝐹2 𝐹3 𝐹4

S-Ciao 0.0286 0.05 0.0569 0.0199
S-Epinions 0.0318 0.0389 0.0219 0.0163
S-WikiLens 0.0528 0.0705 0.08 0.0194
S-ML100k 0.0376 0.0513 0.0642 0.0384
S-ML1m 0.0617 0.0445 0.049 0.015
S-Amazon 0.1064 0.0539 0.0476 0.094
S-Yahoo 0.0578 0.0782 0.0519 0.0316

BM 𝑝𝑙 = 0.5, 𝑝ℎ = 0.7 0.1436 0.0855 0.0855 0.0270
BM 𝑝𝑙 = 0.7, 𝑝ℎ = 0.9 0.1279 0.0768 0.0463 0.0156
CNM 𝑝 = 0.3 0.1869 0.1234 0.0997 0.0423
CNM 𝑝 = 0.5 0.1373 0.0593 0.0635 0.0179
CNM 𝑝 = 0.7 0.1418 0.0773 0.0561 0.0105
DDM 𝑝𝑒 = 0.3 0.0654 0.0654 0.0415 0.0201
DDM 𝑝𝑒 = 0.5 0.0690 0.0427 0.0306 0.0289
DDM 𝑝𝑒 = 0.7 0.0851 0.0634 0.0415 0.0129

• Strength diversification. The vertex strengths do not diversify over time as 𝑃𝑟 (𝑆)
does not get broader and skewed. In all streams CV of vertex strength of butterfly
i- and j-vertices is greater than one and increases over time, however 𝑌2 and 𝜇𝑆 do
not show an increasing trend.

• Steady strength assortativity. The distribution of strength difference of connected
butterfly vertices does not get broader, however it retains a fixed shape. 𝑌2 and 𝜇𝛿
of 𝑃𝑟 (𝛿) do not increase over time, although 𝐶𝑉 is fixed at ≈ 1 in BM with highest
𝑝𝑙 and 𝑝ℎ and CNM with 𝑝 > 0.3. In BM and CNM streams, the localization of
𝛿s below the mean (𝑟 𝑠) is not stable at values at least above 0.1 and fluctuates over
time, although the streams display similar 𝐹 values as Amazon stream (low errors as
shown in Table.

4.4.2 Stress Testing

Effectiveness. Figure 4.25 shows the evolution of 𝑟 𝑠 as the number of butterflies grows
to 107 in S-Amazon stream with different parameter configurations. Data points are not
clustered by colours (corresponding parameters [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥], 𝑀, and 𝛽) in rows a, c, and
d, however they are clustered and ordered by 𝜌. Also, 0.1 ≤ 𝑟 𝑠 ≤ 0.15 regardless of
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.16: Mixing patterns of butterflies in BM stream with 𝑝𝑙 = 0.3, 𝑝ℎ = 0.5.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.17: Mixing patterns of butterflies in BM stream with 𝑝𝑙 = 0.5, 𝑝ℎ = 0.7.

82



(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.18: Mixing patterns of butterflies in BM stream with 𝑝𝑙 = 0.7, 𝑝ℎ = 0.9.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.19: Mixing patterns of butterflies in CNM stream with 𝑝 = 0.3.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.20: Mixing patterns of butterflies in CNM stream with 𝑝 = 0.5.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.21: Mixing patterns of butterflies in CNM stream with 𝑝 = 0.7.
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(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.22: Mixing patterns of butterflies in DDM stream with 𝑝𝑒 = 0.3.

(a) Butterfly count (b) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.23: Mixing patterns of butterflies in DDM stream with 𝑝𝑒 = 0.5.
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(a) Butterfly count (b) CV, 𝜇 𝑗 , 𝑌2 of 𝑃(𝑆𝑖) (c) CV, 𝜇𝑖, 𝑌2 of 𝑃(𝑆 𝑗 )

(d) CV, 𝜇𝛿 , 𝑌2 of 𝑃(𝛿) (e) 𝐹1, 𝐹2, 𝐹3, 𝐹4 (f) 𝑟𝑠

Figure 4.24: Mixing patterns of butterflies in DDM stream with 𝑝𝑒 = 0.7.

[𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥], 𝑀, and 𝛽. The value of 𝑟 𝑠 is stable at a positive value, which is higher for
lower connection probabilities 𝜌. As the connection probability 𝜌 increases, the probabil-
ity of establishing connections between the newly added vertices with low strength and
high strength neighbours of the PRW vertices increases, therefore the assortativity level
decreases. Figure 4.27, depicts the evolution of 𝑟 𝑠 as the number of butterflies grows to 107

in S-Amazon stream with parameter switch in the middle of stream generation. Compared
to the stream with static parameters, the data points of streams with dynamic parameters
follow the same pattern after the switch of [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥], 𝑀, and 𝛽. Increasing the value of
𝜌 slightly decreases 𝑟 𝑠, yet the steady state is retained after the switch.

Efficiency. Figure 4.26 displays the time for generation as the stream grows to 107 sgrs
in S-Amazon stream with different parameter configurations. Data points are not clus-
tered by colours (corresponding parameters [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥], 𝑀, and 𝛽) in rows a, c, and d,
however they are clustered by 𝜌 and ordered by both 𝜌 and [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]. That is, the
generation time is not impacted by 𝑀 (Figure 4.26(c)) or 𝛽 (Figure 4.26(d)), however it is
affected by 𝜌 and [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]. As the connection probability 𝜌 increases, the generation
time decreases since the number and the size of bursts created at each time step increases
(Figure 4.26(b)). As the range of random walk length 𝐿 ∈ [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] increases, the
generation time decreases since the size of bursts created at each time step increases (Fig-
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ure 4.26(a)). Figure 4.27, depicts the time for generation as the stream grows to 107 sgrs
in S-Amazon stream with parameter switch in the middle of stream generation. Switching
𝑀 and 𝛽 gradually decreases the slope of generation time curve, while switching 𝐿 and
𝜌 promptly and significantly changes the slope. This confirms that 𝐿 and 𝜌 significantly
determine the generation time.

Burst Size. Figure 4.28 shows the frequency distribution of all burst sizes in S-Amazon
with 107 sgrs generated by different parameter configurations. For all values of 𝜌 and 𝐿𝑚𝑎𝑥,
by increasing 𝑀, the range of burst sizes expands; Therefore, 𝑀 significantly impacts burst
sizes. Also, the maximum burs size increases as 𝜌 and 𝐿𝑚𝑎𝑥 increase.

4.4.3 Computational Complexity

In the following, it is shown that high degree/strength vertices and PRW hop count deter-
mine the computational cost of sGrow.

THEOREM 1 The worst case computational complexity of sGrow in each window with
graph 𝐺=(𝑉𝑖 ∪ 𝑉 𝑗 , 𝐸) and PRW parameter 𝐿 is O(𝑆𝑚𝑎𝑥 + 𝐿 (𝑁 𝑗

𝑚𝑎𝑥 + 𝑁 𝑖𝑚𝑎𝑥)), where 𝑆𝑚𝑎𝑥 is
the maximum strength in 𝐺 and 𝑁 𝑖𝑚𝑎𝑥 and 𝑁 𝑗

𝑚𝑎𝑥 are the maximum number of i-neighbors
and j-neighbors for vertices in 𝑉𝑖 and 𝑉 𝑗 .

PROOF 1 sGrow’s computations at each window are dominated by burst additions as
the initialisation, sgr addition/removals, and window sliding take O(1) computation. The
worst case computational complexity of burst additions is the following.

O(𝑆𝑃𝑆(.)) + O(𝑃𝑅𝑊 (.)) + O(2𝑎𝑑𝑑𝑏𝑢𝑟𝑠𝑡 (.)) (4.1)

Let us assume that the maximum strength in 𝐺=(𝑉𝑖 ∪ 𝑉 𝑗 , 𝐸) is 𝑆𝑚𝑎𝑥, 𝐿 is the param-
eter for the PRW hop count, and the maximum number of i-neighbors and j-neighbors
for vertices in 𝑉𝑖 and 𝑉 𝑗 are 𝑁 𝑖𝑚𝑎𝑥 and 𝑁

𝑗
𝑚𝑎𝑥. Accordingly, we would have the follow-

ing complexities: O(𝑆𝑃𝑆(𝑉 𝑗 )) = 𝑆𝑚𝑎𝑥 since the value assignments and corresponding op-
erators, and the list shuffling take one unit of computations, and the outer for loop is
parallel and the inner loop sequentially performs 𝑆𝑚𝑎𝑥 computational units. We have
O(𝑃𝑅𝑊 (𝑢0

𝑗
, 𝑓 𝑎𝑙𝑠𝑒, 𝐺, 𝐿)) = (𝐿/2+1)𝑁 𝑗

𝑚𝑎𝑥+(𝐿/2)𝑁 𝑖𝑚𝑎𝑥 since |𝑃𝑅𝑊 𝑗 | = 𝐿/2+1 and |𝑃𝑅𝑊𝑖 | =
𝐿/2. Also, O(𝑎𝑑𝑑𝑏𝑢𝑟𝑠𝑡 (𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊 𝑗 , 𝐺,ℜ, 𝜌)) = O(𝑎𝑑𝑑𝑏𝑢𝑟𝑠𝑡 (𝑣𝑙

𝑖
, 𝑣𝑙

𝑗
, 𝑃𝑅𝑊𝑖, 𝐺,ℜ, 𝜌)) =
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L𝒎𝒂𝒙=3−5 L𝒎𝒊𝒏=1−4

(a)
𝑀=100

𝜌=0.3, 0.5, 0.7
𝛽=5

𝐿∈[1, 3] 𝐿∈[1, 4] 𝐿∈[1, 5]

(b)
𝑀=100

ρ=0.3− 0.7
𝛽=5

(c)
M=100− 300
𝜌=0.3, 0.5, 0.7

𝛽=5

(d)
𝑀=100

𝜌=0.3, 0.5, 0.7
β=5− 20

Figure 4.25: Strength assortativity localization factor versus butterfly count for S-Amazon.
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L𝒎𝒂𝒙=3−5 L𝒎𝒊𝒏=1−4

(a)
𝑀=100

𝜌=0.3, 0.5, 0.7
𝛽=5

𝐿∈[1, 3] 𝐿∈[1, 4] 𝐿∈[1, 5]

(b)
𝑀=100

ρ=0.3− 0.7
𝛽=5

(c)
M=100− 300
𝜌=0.3, 0.5, 0.7

𝛽=5

(d)
𝑀=100

𝜌=0.3, 0.5, 0.7
β=5− 20

Figure 4.26: Generation time (s) versus the number of sgrs for S-Amazon.
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Figure 4.27: Strength assortativity localization factor versus butterfly count and genera-
tion time (s) versus the number of sgrs in S-Amazon. Parameters switch from 𝑀 = 100,
𝛽 = 5, 𝐿 ∈ [1, 5] and 𝜌 = 0.4 to 𝑀 = 300, 𝛽 = 20, 𝐿 ∈ [4, 5] and 𝜌 = 0.8 after generation of
5 × 106 sgrs.

O(1) since the value assignments, and probabilistic connections are done in O(1) and Step
3 is performed via a parallel loop. Therefore, the total complexity of burst additions would
be 𝑆𝑚𝑎𝑥 + (𝐿/2 + 1)𝑁 𝑗

𝑚𝑎𝑥 + (𝐿/2)𝑁 𝑖𝑚𝑎𝑥 + O(1), i.e. high degree/strength vertices and PRW
hop count determine the computational cost.

4.5 Summary

Essence and features. Study of the existing local rules for graph growth that yield
skewed distributions, degree correlation, and cohesive structures shows that implicit degree-
driven preferential attachment and copying mechanisms or solely strength-driven prefer-
ential attachment with random assignment of timestamps to the edges can only partially
preserve the observed patterns but are not effective enough to reproduce these patterns
simultaneously. Therefore, a set of microscopic mechanisms, in the body of a proposed
streaming growth model called sGrow, are introduced. These mechanisms are based on
realistic sgr generation, probabilistic connections, and strength-driven preferential random
walks which explain the emergence patterns of streaming butterflies. sGrow is designed
as an iterative addition of bursts of sgrs which satisfies streaming data model, preserves
realistic patterns of butterfly emergence quantitatively and qualitatively, and makes the
stream generation scalable. Moreover, sGrow enables generating sequence of bipartite
edges attributed with timestamps and weights, isolated/out-of-order edges, and four-vertex
graphlets.

Use cases. sGrow suits the following cases:
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𝐿∈[1, 3] 𝐿∈[1, 4] 𝐿∈[1, 5]

(b)
𝜌=0.3
𝛽=5

(c)
𝜌=0.5
𝛽=5

(d)
𝜌=0.7
𝛽=5

Figure 4.28: Frequency of burst sizes in S-Amazon.
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• Streaming graph benchmarks. Performance evaluation of algorithms including but
not limited to butterfly-based algorithms relies on considering the characteristics of
input graphs [22, 25, 63]. Given the lack of streaming graph generators, sGrow assists
in understanding the important graph characteristics as well as providing realistic
configurable and scalable graphs for stress testing purposes.

• Machine learning benchmarks. Collecting/annotating the training/testing datasets
for graph-based models in domains such as outlier detection and computer vision is
challenging due to the nature of data (e.g. rare outliers and diverse image instances),
and high cost of manually labeling the instances [367, 329, 258]. Solutions include
building benchmark datasets via artificial instance injection [79, 367, 114] and apply-
ing weakly-supervised techniques [216, 329, 140]. sGrow ’s analytical approach can
be extended to such domains to inform the design of graph-based models with the
temporal connectivity patterns and also generating realistic yet synthetic datasets to
which the artificial instances are injected.

• Concept drift modeling. To improve the performance of online adaptive learning
algorithms in stream-based recommender systems for web activities, it is important
to consider the temporal evolution of modeled concepts due to a change in the dis-
tribution of log data or a change in the relation between data and target variable
(i.e. concept drift) [15, 274, 125]. Considering a butterfly as two users with mutual
preferences and two items with mutual perceptions, sGrow impacts modeling the
parallel drift of concepts such as user preferences and item perception.

• Algorithm developments. Graph analytics and generative models utilise microscopic
mechanisms and graph pattern for algorithm design [329, 297]. sGrow ’s microscopic
mechanisms and growth patterns benefit these cases as well.

Parameter Configuration. The introduced techniques with configurable parameters
enable generating realistic bipartite streaming graphs with generation time sub-linear with
respect to the number of sgrs. The more bursty the stream, the lower the generation time.
In the following, a reference guide for configuring the parameters is elaborated.

• 𝑀: The upper bound for the random number of new batched sgrs added at each
time step does not impact the strength assortativity patterns and the generation
time. This parameter can be comfortably used to adjust the level of burstiness of the
streaming graph without affecting the performance of the generative algorithm.
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• 𝜌: The probability of creating an edge between each random walk vertex and a
random vertex or an edge between each new sgr and neighbours of the random walk
vertices impacts the level of strength assortativity but not its steady state. It also
affects the generation time. This parameter can be used to trade off scalability
and the level of strength assortativity. The default value is 𝜌 = 0.3, yet increasing
𝜌 would decrease the generation time and strength assortativity level. Values less
than or equal to 0.7 ensure positive strength assortativity. Also, 𝜌 determines the
probability of out-of-order sgrs.

• [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥]: The range for random length of PRW backbone used for establishing
burst of sgrs does not impact the strength assortativity patterns. It affects the
generation time. This parameter can be used to increase the scalability of the stream
generation. The default range is [1, 2] and shifting/expanding the range by increasing
the lower and/or upper bound would decrease the generation time.

• 𝛽: The sliding window parameter used as the frequency and the size of sliding does
not impact the strength assortativity patterns and generation time. This parameter
can be comfortably used for creating streams in which sgrs are semantically time-
sensitive and need a user-specified slide parameter. The default value is 𝛽 = 5, while
any other value can be set.

Evaluations. Comprehensive evaluations validate the efficacy of sGrow in realization
of streaming growth patterns effectively and independent of initial conditions, scale and
temporal characteristics, and model configurations. Analyses also verify the robustness
of sGrow in generating streaming graphs based on user-specified properties for the scale
and burstiness of the stream, level of strength assortativity, probability of out-of-order
streaming records, generation time, and time-sensitive connections.
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Chapter 5

Streaming Graph Analytics - Butterfly
Counting

Enumerating and counting butterflies is important in measuring graph cohesion and clus-
tering or community structure [14]. Clustering or community structure is measured by the
transitivity/clustering coefficient that is computed as the fraction of caterpillars which form
a butterfly [210, 363, 14]. Graph cohesion can be measured by the number of butterflies-
per-vertex and by the local clustering coefficient. Study of such local structural measures
unveils hidden ordering and hierarchies in graphs displaying structural deviations from
uncorrelated random connections [78, 275, 242]. A recent study investigates the predictive
performance of deep neural networks by means of clustering coefficient [354]. Other appli-
cations are realistic graph models [14, 179] and representative graph sampling [362]. The
study of different phenomena in complex graphs such as social collective behaviours [102],
synchronization [299, 379], information propagation [175], and epidemic spreading [268]
rely on the clustering coefficient. Moreover, clustering coefficient plays an important role
in graph analytics tasks such as link prediction [160] and community detection [363], and
in general any graph processing algorithm relying on counting the mutual neighbours or
Jaccard similarity. For example, in author-publication streams, it is important to count
the butterflies to discover cohesive substructures with high clustering coefficient represent-
ing the research groups; in user-item and trader-stock streams, butterfly counting helps
detect abnormal activities by means of calculating clustering coefficient or discovering the
k-bitruss subgraphs. Also, the distribution of local clustering coefficient is used as a feature
to uncover statistical differences between normal and fraudulent data in applications such
as spam detection [45]. Furthermore, butterfly counting provides similarity measures for
product recommendation over user-product streams. Other application areas include hash-
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tag recommendation in user-hashtag streams of social networks and intrusion detection in
source-destination data flows of telecommunication networks.

Motif counting is a fundamental problem in large-scale network analysis [301, 256, 51]
and given the manifest of new data models such as streaming graphs, it is critical to study
this problem in streaming contexts. Particularly, butterfly counting is computationally
expensive, and known techniques do not scale to large graphs; the problem is even harder
in streaming graphs. While there are many algorithms proposed for triangle counting
in static and streaming unipartite graphs, counting the butterfly occurrences is still a
challenging problem in bipartite streaming graphs due to the following reasons.

• Bipartite streaming graphs are triangle free and current approaches for triangle count-
ing over unipartite streams (e.g. [45, 46, 72, 196, 303, 170, 304]) are not useful, be-
cause, as Sanei-Mehri et al. [286] describe, the bimodal structure should be considered
for effectiveness.

• Exact butterfly counting algorithms (e.g. [330, 149, 301, 285, 331]) are not able
to deal with the unboundedness and high velocity of temporal evolutions in graph
streams.

• Simultaneously achieving effectiveness and efficiency is a pressing issue which requires
special attention [117].

5.1 Butterfly Counting over Streaming Graphs

In view of the streaming graph properties discussed in Chapter 1, the precise problem
definition is as follows: Given a sub-sequence of streaming graph records ordered by their
timestamps, how to compute the total number of butterflies in the entire emerging graph 𝐺
at time point 𝑡 – denoted as 𝐵(𝑡).

Computing the exact value of 𝐵(𝑡) over a streaming graph is not feasible, since complete
access to the graph is not possible. It is known [26, 33] that without knowing the size of the
streaming input data, it is not possible to determine the memory required for processing
the data, and unless there is unbounded memory, it is not possible to compute exact
answers for this data stream problem. Exact counting is not even possible in massive
static graphs [220, 68]. Even if it is assumed that enough memory is available to maintain
the input graph corresponding to a subset of the stream from a certain starting point in
time to the current time, the growing graph needs to be continually maintained. Moreover,
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the iterative and stateful algorithm that retains the intermediate results and state of the
computation should be continually executed. This is equivalent to using landmark windows.
These append-only windows are computationally expensive for exact butterfly counting.
According to the following analysis, given a graph snapshot at 𝑡1, a landmark window
appending |𝑊 | new edges and Δ𝑉𝑖 new i-vertices to the graph snapshot at 𝑡2 incurs a lower
bound for computations of 𝑂 (( |𝑉𝑖,𝑡1 | + Δ𝑉𝑖)𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1) which is, in the worst case, on the
order 𝑂 (𝑐 |𝑉𝑖,𝑡1 |3 + |𝑊 | |𝑉𝑖,𝑡1 |2) making landmark windows computationally too expensive.

The alternative is approximation. One such approach is to use random sampling or
sparsification [73, 285, 286], which requires determining the sampling probability, reservoir
size, and scaling factor. The sampling process is done several times and can be a potential
overhead, lowering the processing throughput. Moreover, to provide accurate results the
sampling is performed over the entire prefix of the received streaming graph records and
this has high memory and time overhead unless the sampling rate is increased, which results
in low processing throughput. Consequently, providing both efficiency and effectiveness is
a major challenge in sampling-based methods.

Another approximation approach is to use sliding windows over the incoming sgrs.
Sliding windows are known as a natural approximation method over data streams [33].
Most existing streaming proposals (e.g. [73, 37, 74]) assume that (a) all the edges incident
to a vertex arrive together (i.e. incidence streams), and (b) vertex degrees are bounded.
Neither of these is likely to hold in real-life streaming graphs. In the following, a butterfly
counting framework is introduced that can efficiently return an accurate answer over any
stream without these unrealistic assumptions. It has been shown that an approximate
butterfly count that bounds the relative error to 0 < 𝛿 < 0.01 needs to store the entire
graph, which is possible in 𝜃 (𝑛2) where 𝑛 is the number of vertices [286]. This is not feasible
in streaming systems.

Computational Complexity of Exact Counting. An exact counting algorithm over
streaming graphs requires a landmark window to collect all the streaming edges from
a beginning time point to now. A multi-pass counting algorithm is executed over the
graph snapshot in the window. In what follows, a landmark window with subsequent
window expansions yields graph snapshots at two subsequent time points 𝑡1 and 𝑡2. The
computational complexity of a butterfly counting algorithm with 𝑂 (∑𝑖1∈𝑉𝑖

∑
𝑗1∈𝑁𝑖1 𝑑𝑒𝑔( 𝑗1))

over a streaming graph that follows a densification power law is analyzed at these two time
points. The lower bound of i-degree at time 𝑡1 is denoted as 𝐾𝑖,𝑡1 .

Given a graph snapshot at 𝑡1, a landmark window appending |𝑊 | new edges and Δ𝑉𝑖
new i-vertices to the graph snapshot at 𝑡2 with lower bound i-degree at time 𝑡1 denoted as
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𝐾𝑖,𝑡1, a butterfly counting algorithm with 𝑂 (∑𝑖1∈𝑉𝑖
∑
𝑗1∈𝑁𝑖1 𝑑𝑒𝑔( 𝑗1)) incurs a lower bound for

computations of Ω(( |𝑉𝑖,𝑡1 | + Δ𝑉𝑖)𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1) which is in worst case of Ω(𝑐 |𝑉𝑖,𝑡1 |3 + |𝑊 | |𝑉𝑖,𝑡1 |2)
due to the following.

1. It has been shown empirically that at any time 𝑡, the number of edges in the real world
graph snapshots 𝐸 (𝑡) follows a power law function of the number of vertices |𝑉 (𝑡) |.
This is known as densification power law denoted as |𝐸 (𝑡) | ∝ |𝑉 (𝑡) |𝑎, where 𝑎 is the
exponent that generally lies strictly between 1 (asserting constant average degree
over time) and 2 (corresponding to the extremely dense graphs where each vertex is,
on average, connected to a constant fraction of all vertices)[201]. According to the
densification power law, the graphs grow superlinearly and the vertex out-degrees
grow over time. This natural pattern in bipartite graphs with directed edges from
i-vertices to j-vertices is interpreted as the growing of average i-vertex degrees.

Also, when the power law exponent is 𝑎 = 2 (worst case), we would have

𝑏 |𝑉 𝑗 ,𝑡1 | ≤ 𝐾𝑖,𝑡1 (5.1)

𝑏 |𝑉 𝑗 ,𝑡2 | ≤ 𝐾𝑖,𝑡2 (5.2)

where 𝑏 is a constant 0 < 𝑏 < 1 and 𝐾𝑖,𝑡1 and 𝐾𝑖,𝑡2 are the lower bound i-degree
at times 𝑡1 and 𝑡2. That is the shared minimum degree of i-vertices in the graph
snapshot at times 𝑡1 and 𝑡2, respectively.

2. Now, consider a butterfly counting algorithm for static graphs, which has the com-
putational complexity of 𝑂 (∑𝑖1∈𝑉𝑖

∑
𝑗1∈𝑁𝑖1 𝑑𝑒𝑔( 𝑗1)). The lower bound computational

complexity of running the counting algorithm at 𝑡1 and 𝑡2 will be:

Ω( |𝑉𝑖,𝑡1 |𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1) (5.3)

Ω( |𝑉𝑖,𝑡2 |𝐾𝑖,𝑡2𝐾 𝑗 ,𝑡2) (5.4)

and according to the densification power law,

Ω( |𝑉𝑖,𝑡2 |𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1) < Ω( |𝑉𝑖,𝑡2 |𝐾𝑖,𝑡2𝐾 𝑗 ,𝑡2) (5.5)

3. Furthermore, the expansion of a landmark window at time 𝑡2 introduces |𝑊 | new
edges which include Δ𝑉𝑖 ≤ |𝑊 | new i-vertices. That is,

|𝑉𝑖,𝑡2 | = |𝑉𝑖,𝑡1 | + Δ𝑉𝑖 ≤ |𝑉𝑖,𝑡1 | + |𝑊 | (5.6)

Therefore, the lower bound of computations at 𝑡2 will be Ω(( |𝑉𝑖,𝑡1 | + Δ𝑉𝑖)𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1).
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4. The worst case scenario can be analyzed when there are |𝑊 | new i-vertices (right side
of inequality 5.6). Accordingly, the worst case lower bound at 𝑡2 will be Ω(( |𝑉𝑖,𝑡1 | +
|𝑊 |)𝐾𝑖,𝑡1𝐾 𝑗 ,𝑡1). When the power law exponent is 𝑎 = 2 (Equation 5.1), the worst
case lower bound at 𝑡2 will become Ω(𝑏( |𝑉𝑖,𝑡1 | + |𝑊 |) |𝑉 𝑗 ,𝑡1 |𝐾 𝑗 ,𝑡1). Since |𝑉 𝑗 ,𝑡1 |𝐾 𝑗 ,𝑡1 ∝
𝑑 |𝐸 𝑡1 | ∝ 𝑑 |𝑉𝑖,𝑡1 |2, where 0 < 𝑑 < 1, the worst case lower bound at 𝑡2 will be Ω(𝑐( |𝑉𝑖,𝑡1 |+
|𝑊 |) |𝑉𝑖,𝑡1 |2) = Ω(𝑐 |𝑉𝑖,𝑡1 |3 + |𝑊 | |𝑉𝑖,𝑡1 |2) where 0 < 𝑐 < 1.

In order to evaluate the computational footprint of a main memory algorithm that
returns exact answers, it is necessary to consider the memory required to store the input
and the state of computations as well as the processing latency. Although steaming graphs
have unbounded size, suppose the memory requirement is relaxed with the (unrealistic) as-
sumption that enough memory is available to store the streaming graph without discarding
any graph elements. Performing exact butterfly counting over the dense real streams after
adding each batch of edges to a graph snapshot at 𝑡1 incurs a high lower bound of com-
putational footprint on the order Ω( |𝑉𝑖,𝑡1 |3). Interpreting this computational complexity
according to the time and memory overhead per unit of computation and considering the
growth patterns (i.e. growing number of vertices) elaborates the overhead of exact butter-
fly counting over streaming graphs. This highlights the essence of approximate counting
methods which do not introduce expensive computations.

In the following, first, the related works on butterfly counting are reviewed in Sec-
tion 5.2. This is followed by introducing a butterfly counting approach called sGrapp in
Section 3.2. The design of sGrapp is informed by the graph mining insights from the
Phase 1 of the streaming graph analysis. The computational complexity of sGrapp and
its performance are evaluated in Section 5.4. sGrapp demonstrates superior performance
in terms of estimation error for butterfly count and processing throughput compared to
baseline algorithms. Table 5.1 lists the frequent notations in this chapter.

5.2 Related Works

The existing works in butterfly counting can be classified along three dimensions: graph
characteristics (bipartite/unipartite), data location (disk-resident/in-memory) and graph
availability (static/dynamic/streaming). Detailed coverage of each design point is beyond
the scope of this thesis; in the following, the focus is on two particular design points that
are most relevant: static bipartite graphs and streaming bipartite graphs.
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Table 5.1: Frequent notations in this chapter.
Notation Description
𝛼 Butterfly densification power-law exponent for the inter-window butterflies
𝐵(𝑡) The number of butterflies since the initial time point until 𝑡
𝐵𝑊𝑘 Number of butterflies introduced by at least one vertex in 𝑊𝑘

𝐵𝑘 Estimation of number of butterflies at time 𝑡 = 𝑊𝑒
𝑘

𝐵
𝑊𝑘

𝐺
Number of butterflies in graph corresponding to 𝑊𝑘

𝐵𝑖𝑛𝑡𝑒𝑟𝑊 Number of inter-window butterflies
𝐵𝑖𝑛𝑡𝑒𝑟𝑊 Estimation of number of inter-window butterflies
𝐾𝑖,𝑊𝑘

the lower bound of degree of i(j)-vertices in 𝑊𝑘

𝑉𝑖,𝑊𝑘
/𝐸𝑊𝑘

Set of i-vertices/edges in [𝑊𝑏
𝑘
,𝑊𝑒

𝑘
)

𝐸𝑘 Set of edges in the interval [𝑊𝑏
0 ,𝑊

𝑒
𝑘
)

𝑃 Sampling probability in FLEET algorithms
𝛾 Sub-sampling probability
𝑀 Reservoir capacity in FLEET algorithms

𝑣𝑖1

𝑣𝑖2

𝑣 𝑗1

𝑣 𝑗2

(a)

𝑣𝑖1

𝑣𝑖2

𝑣 𝑗1

𝑣 𝑗2

(b)

𝑣𝑖1

𝑣𝑖2

𝑣 𝑗1

𝑣 𝑗2

(c)

Figure 5.1: Butterfly counting methods.

5.2.1 Counting in Static Bipartite Graphs

The literature on counting (bi)cliques in static bipartite graphs (e.g. [330, 331, 285]) and
static unipartite graphs (e.g. [334, 152]) is quite rich. A major challenge in this context is
the massive size of these graphs. Some studies (e.g. [152, 92, 45, 158, 157, 254]) have focused
on disk-resident data and optimised I/O access patterns for counting the exact number of
cliques. Other studies consider in-memory algorithms and use random sampling so that
the induced graph can fit in main memory for estimating the number of (bi)cliques [73,
285]. There are also studies (e.g. [176, 27]) that propose scaling out computation by
parallelization.

Butterfly counting algorithms in bipartite graphs follow either vertex-centric or edge-
centric processing. One straightforward edge-centric approach is to take each pair of dis-
joint edges (𝑒𝑖1, 𝑗1 , 𝑒𝑖2, 𝑗2) in the graph (Figure 5.1(a)) and check for the existence of the
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two other edges that complete the butterfly pattern. The complexity of this approach is
O(|𝐸 |2), which is too expensive for graphs with a high number of edges. Another edge-
centric approach [91] takes an edge 𝑒𝑖1, 𝑗1 and examines the existence of the three comple-
mentary edges. That is, the algorithm checks the connections between neighbours of 𝑖1
and neighbours of 𝑗1 denoted as 𝑗2 and 𝑖2, respectively, to see whether they are connected
by an edge 𝑒𝑖2, 𝑗2 (Figure 5.1(b)). This approach can be implemented with an algorithm
that has complexity O(∑⟨𝑖1, 𝑗1⟩∈𝐸 𝑀𝑖𝑛(𝑑𝑒𝑔(𝑖1), 𝑑𝑒𝑔( 𝑗1))), but this is not appropriate for
dense graphs with high number of edges and high average degrees. The state-of-the-art
approach [330, 331, 285] is vertex-centric that takes a vertex 𝑣𝑖 and traverses all two-hop
neighbours to identify triples ⟨𝑖1, 𝑗1, 𝑖2⟩ and ⟨𝑖1, 𝑗2, 𝑖2⟩. That is, it finds all triples (i.e.
two-paths) with common incident vertices (i.e. the same two-hop neighbour) and then
combines them to get the number of all butterflies (Figure 5.1(c)). The complexity of this
approach is O(∑𝑖1∈𝑉𝑖

∑
𝑗1∈𝑁𝑖1 𝑑𝑒𝑔( 𝑗1)), which is challenging for graphs with high average i-

and j-degrees as a result of traversing two hop neighbours [331].

5.2.2 Counting in Streaming Bipartite Graphs

In the streaming graph context, the literature is also rich for counting in unipartite graphs
(e.g. [335, 334, 73, 37, 45, 74, 53, 67]). A state-of-the-art butterfly counting study over bi-
partite streaming graphs is FLEET [286], which introduces a suite of algorithms. FLEET1
samples the sgrs of a landmark window with probability 𝑃 into a reservoir with fixed ca-
pacity 𝑀 to bound the memory consumption and increments the butterfly count by the
number of incident butterflies for each sampled edge. When the size of reservoir exceeds
𝑀, the sgrs are sub-sampled with probability 𝛾 and the butterfly count is set to the ex-
act number of butterflies in the reservoir. The sampling probability is then multiplied by
𝛾 for the following sgrs. FLEET2 avoids re-computing the exact number of butterflies
in the reservoir during the sub-sampling iterations. FLEET3 avoids re-computation and
also updates the estimate before sampling the sgrs into the reservoir. FLEETSSW uses
count-based sliding windows with limited graph size in each window, and FLEETTSW
uses time-based sliding windows with fixed window length across windows. To overcome
the variable number of sgrs inside each window, FLEETTSW assumes an upper-bound
for the number of sgrs in a window on top of a first-in, first-out (FIFO)-based sampling
scheme. As will be discussed in Section 5.3, there exist a number of inter-window butter-
flies in the stream; these are missed by the FLEET algorithms which use sliding windows.
The FLEET variants which are based on landmark windows (FLEET1, FLEET2, and
FLEET3) do not provide a proper trade-off between accuracy and processing throughput.
Moreover, FLEET requires determining a sub-sampling probability and a normalization
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factor to scale-up the estimation computed over the sampled sgrs, and the specification of
a time when the result is ready to be returned. FLEET requires a sufficiently large amount
of memory to guarantee a desired level of accuracy.

5.3 sGrapp

Section 5.1 proved the impossibility of exact counting of butterflies in a streaming graph and
discussed the constraints for a proper window-based approximation. This section describes
a new approximate butterfly counting algorithm called sGrapp that uses tumbling windows.
Tumbling windows are used in order to avoid double counting of repeated butterflies, as
will be described – tumbling windows do not overlap when windows move, thus avoiding
the double-counting problem.

It is possible to adopt a time-based tumbling window model with lazy computation and
calculate the exact number of butterflies introduced by each window of disjoint edge inser-
tions, 𝑊𝑘 , at the end time of the window denoted by 𝐵𝑊𝑘

𝐺
, and increment the cumulative

value accordingly: 𝐵(𝑡 = 𝑊 𝑒
𝑘
) = 𝐵(𝑡 = 𝑊 𝑒

𝑘−1) + 𝐵
𝑊𝑘
𝐺

. This processing is incremental. An
important issue is that there may exist some butterflies that are formed by the edges with
large inter-arrival times (heavy and long tail in Figure 3.10). These butterflies, referred to
as inter-window butterflies, are not captured within one window (unless it is sufficiently
large). However, setting the window length to a large value to cover the inter-window
butterflies imposes a high computational footprint in terms of memory and time. This
conflicts with the goal of using a windowed approach to lower this footprint by performing
incremental processing over subsets of sgrs.

sGrapp addresses this issue by (a) using tumbling windows whose lengths are adaptive
to the temporal distribution of sgrs (hence dealing with bursty arrivals) instead of using
heavily-loaded and lengthy sliding windows, and (b) approximating the number of inter-
window butterflies individually instead of aggregating their count with that of window 𝑊𝑘 .
These two ideas are the keys to simultaneously enabling efficiency and accuracy. Precisely,
sGrapp estimates the number of butterflies from the beginning of the first window 𝑡 = 𝑊𝑏

0

until the end of 𝑘th window denoted as 𝐵(𝑡 = 𝑊 𝑒
𝑘
) = 𝐵𝑘 by counting the exact number

of butterflies in the graph corresponding to the current window 𝑊𝑘 denoted as 𝐵𝑊𝑘
𝐺

and
approximating the number of inter-window butterflies denoted as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 . The estimated
cumulative value would be 𝐵𝑘 = 𝐵𝑘−1 + 𝐵𝑊𝑘𝐺 + 𝛿(𝑘 ≠ 0)𝐵𝑖𝑛𝑡𝑒𝑟𝑊 , where the function 𝛿(·)
returns 1 for true input and 0, otherwise. Note that the first window 𝑊0 has no inter-
window butterflies and hence the corresponding term would become zero by means of the
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Algorithm 5: Adaptive windows
Data: ℜ = ⟨𝑟1, 𝑟2, · · · ⟩, sequence of sgrs
Input:
𝑁𝑏, Number of unique timestamps per window
Output: 𝑥, Analysis output collection

1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩, 𝑡 ← 0, 𝑢𝑛𝑞𝑡 ← ∅, 𝑥 ← ∅, 𝑘 ← 0, 𝑊𝑏
𝑘
← 𝜏0

2 while true do
3 𝑟 𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟 𝐼𝑛𝑔𝑒𝑠𝑡 ()
4 if 𝑟 𝑡 ≠ ∅ then
5 𝑢𝑛𝑞𝑡.add(𝜏𝑡)
6 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟 𝑡 , 𝐺)
7 if 𝑢𝑛𝑞𝑡.𝑠𝑖𝑧𝑒() == 𝑁𝑏 then
8 𝑥 [𝑡] ← 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠(𝐺)
9 𝑘 ← 𝑘 + 1

10 𝑊𝑏
𝑘
← 𝜏𝑡

11 for 𝑒 ∈ 𝐺 : 𝑒.𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝 ≤ 𝑊𝑏
𝑘

do
12 𝐺 ← 𝐷𝑒𝑙𝑒𝑡𝑒(𝑒, 𝐺)

13 𝑡 ← 𝑡 + 1

delta function.

Adaptive burst-based tumbling Windows. This subsection introduces an adaptive
window framework for butterfly approximation. A main challenge with time-based windows
is how to set the length of windows. A common approach in stream processing is setting
the length of a window using a predetermined value 𝐿 (|𝑊𝑖 | = 𝐿, ∀𝑖). This is sensible
in online querying workloads where the user may be interested in results of a particular
window size. However, this is not a suitable approach in analytical workloads, such as
butterfly counting, where the objective is to count occurrences over the entire timeline of
the graph evolution. The temporal distributions of edge arrivals (frequency distribution
of sgr timestamps) are different in each window, meaning that the number of sgrs is not
uniform across all time intervals. Therefore, a fixed window size would result in windows
of sgrs that cover differing numbers of timestamps, which imposes unbalanced loads on the
processing algorithms, particularly in the case of sgr arrivals with bursty characteristics
and non-uniform temporal distribution.
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To tackle this issue, an adaptive approach is introduced to set the window length.
This approach determines the window length according to the timestamps of the stream
and adapts to the temporal distribution of the stream (Algorithm 5) with no assumption
about the order and number of arriving sgrs per time unit. Hence, streams with differing
arrival rates and temporal distributions can be accommodated. Precisely, a burst-based
tumbling window (Definition 10) is used, which includes a variable number of sgrs but
a certain number of unique timestamps in the stream, 𝑁𝑏. That is, given the number of
unique timestamps per window 𝑁𝑏, sgrs are ingested to the window (Algorithm 5, lines 3-6).
When 𝑁𝑏 timestamps are seen, the window is closed and the intended analysis is performed
over the corresponding snapshot (Algorithm 5, line 8). The outputs of the analysis are
streamed out correspondingly. Next, the window slides forward (Algorithm 5, lines 9-10)
and the retired edges are deleted from the graph snapshot corresponding to the window
(Algorithm 5, lines 11-12). In tumbling windows, all the sgrs are retired when the window
slides, and the graph snapshot is renewed. The time step is incremented and the algorithm
continues until there is a sgr (i.e. continuously in real world streams).

This may appear as a count-based window, but it is not. A count-based window would
contain a fixed number of sgrs, while here only the number of unique timestamps (i.e. the
number of bursts) in the window is fixed. Therefore, it is burst-based with adaptive width
since the window borders adapt to the temporal distribution of the stream. In fact adaptive
windowing would reduce to count-based windowing, if and only if the temporal distribu-
tion of stream is uniform and unique timestamps occur with equal frequency numbers.
Therefore this windowing mechanism is general and conforms to real streams. Sequen-
tial adaptive windows cover the same fraction of distribution of the sgrs (load-balanced
windows for efficient analytical workloads) and also enables comparing the analysis over
different windows of a stream as well as analysis over different streams having different
temporal distributions (time-based windows for the accuracy of temporal analysis).

Approximating the Number of Inter-Window Butterflies. This section explains
how sGrapp approximates the 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 and consequently 𝐵𝑘 . Algorithm 6 describes how
sGrapp uses the adaptive windowing framework (Algorithm 5) to estimate the number
of butterflies in the streaming graph. Since sGrapp uses tumbling windows, instead of
checking the timestamp of windowed sgrs to decide on the retirement (Algorithm 5, lines 11-
12), the processing graph is renewed (line 13 of Algorithm 6). As mentioned earlier, the
total number of butterflies (Algorithm 6, line 10) is calculated as the summation of the
following:

• Total number of butterflies computed at the end of previous window;
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• The exact number of butterflies in the current window (Algorithm 6, line 9 - invoking
Algorithm 1);

• The estimated number of inter-window butterflies contributed by current window.

Algorithm 6: sGrapp(𝑁𝑏, 𝛼)
Data: ℜ = ⟨𝑟1, 𝑟2, · · · ⟩, sequence of time-ordered sgrs
Input: 𝑁𝑏, Number of unique timestamps (bursts) per window
𝛼, Approximation exponent
Output: 𝐵[𝑡], Approximated number of butterflies at t

1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩, 𝑡 ← 0, 𝑢𝑛𝑞𝑡 ← ∅, 𝑘 ← 0, 𝐵← ∅, 𝐵𝑊𝑘
𝐺
← 0, 𝐵𝑘 ← 0, 𝐸 ← 0

2 while true do
3 𝑟 𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟 𝐼𝑛𝑔𝑒𝑠𝑡 ()
4 if 𝑟 𝑡 ≠ ∅ then
5 𝑢𝑛𝑞𝑡.add(𝜏𝑡)
6 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟 𝑡 , 𝐺)
7 𝐸 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐸 (𝑟 𝑡 , 𝐸)
8 if 𝑢𝑛𝑞𝑡.𝑠𝑖𝑧𝑒() == 𝑁𝑏 then
9 𝐵

𝑊𝑘
𝐺
← 𝑐𝑜𝑢𝑛𝑡𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠(𝐺)

10 𝐵𝑘 ← 𝐵𝑘−1 + 𝐵𝑊𝑘𝐺 + 𝛿(𝑘 ≠ 0)𝐸𝛼
11 𝐵[𝑡] ← 𝐵𝑘
12 𝑘 ← 𝑘 + 1
13 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩
14 𝑡 ← 𝑡 + 1

According to the butterfly densification power law, the number of butterflies follows
a power-law function of the number of existing edges in the graph. Moreover, recall the
observation from analyses of real graphs that butterflies are formed by hubs. Thus, the
number of inter-window butterflies is approximated as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 = |𝐸 (𝑡 = 𝑊 𝑒

𝑘
) |𝛼, where

|𝐸 (𝑡 = 𝑊 𝑒
𝑘
) | is the total number of edges since 𝑡 = 𝑊𝑏

0 until 𝑡 = 𝑊 𝑒
𝑘
. The total number of

added edges are updated at ingestion time (Algorithm 6, line 7) as 𝐸 is increased when
the sgr is an edge insertion and decreased when sgr is an edge deletion and 𝛼 is the
approximation exponent.
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5.3.1 Optimised Algorithm: sGrapp-x

The approximation exponent used in sGrapp (Algorithm 6) is constant over sequential
graph snapshots. However, the estimated number of butterflies using a static exponent
can be over or under the true value in subsequent windows. To understand the underlying
reason, recall the butterfly emergence patterns. Old hubs are the main contributors to
butterflies; since the number of edges connecting to old hubs varies across different windows,
the estimated number of inter-window butterflies should not increase linearly with respect
to the number of sgrs. Therefore, sGrapp is optimised by changing the exponent over
windows. To this end, sGrapp is modified to a semi-supervised algorithm that is called
sGrapp-x.

The algorithm is provided with true value of butterflies for an initial subset of the
stream (the percentage of the available ground truth is denoted by 𝑥). Based on the true
value, the relative error 𝐵𝐾−𝐵𝐾

𝐵𝐾
is computed in the corresponding window𝑊𝐾 (Algorithm 7,

line 17). If the relative error is lower than a user-specified negative tolerance value (in the
experiments −0.05 is used), that means there is an underestimation, therefore the exponent
is increased by 0.005 (Algorithm 7, lines 12-13). Similarly the exponent is decreased in
case the relative error is above positive tolerance value to avoid over-estimation in the
next window (Algorithm 7, lines 10-11). The exponent is stabilized when the error is
tolerable and after the supervised search for the exponent is finished. In summary, the
optimised version of sGrapp is an adaptive algorithm using reinforcement learning that
learns the most accurate approximation exponent for any given window parameter 𝑁𝑏 in
a subset of stream and generalizes the learned exponent to the rest of stream. sGrapp-x is
semi-supervised with outstanding performance given limited ground truth.

5.4 Performance Evaluation

The effectiveness and efficiency of sGrapp and its optimised version sGrapp-x are tested
from three perspectives:

• Accuracy (Sections 5.4.1, 5.4.2, and 5.4.4). The ability of sGrapp and sGrapp-x to
approximate the butterfly count is compared with baselines and examined under
different levels of burstiness, exponent values, and available ground truth.

• Throughput (Section 5.4.3). The processing latency as well as the number of pro-
cessed elements by sGrapp and sGrapp-x are examined for each window individually
and all windows cumulatively.
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Algorithm 7: sGrapp-x(𝑁𝑊
𝑏

, 𝛼, 𝑥)
Data: {𝑟 𝑡}, sequence of time-ordered sgrs
𝐵, ground truths
Input: 𝑁𝑏, Number of unique timestamps (bursts) per window
𝛼, Approximation exponent
𝑥, Percentage of the available ground truth
Output: 𝐵[𝑡], Approximated number of butterflies at t

1 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩, 𝑡 ← 0, 𝑢𝑛𝑞𝑡 ← ∅, 𝑘 ← 0, 𝐵← ∅, 𝐵𝑊𝑘
𝐺
← 0, 𝐵𝑘 ← 0, 𝐸 ← 0,

𝑒𝑟𝑟𝑜𝑟 ← 0
2 while true do
3 𝑟 𝑡 = (𝜏𝑡 , 𝑝) ← 𝑠𝑔𝑟 𝐼𝑛𝑔𝑒𝑠𝑡 ()
4 if 𝑟 𝑡 ≠ ∅ then
5 𝑢𝑛𝑞𝑡.add(𝜏𝑡)
6 𝐺 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐺 (𝑟 𝑡 , 𝐺)
7 𝐸 ← 𝑢𝑝𝑑𝑎𝑡𝑒𝐸 (𝑟 𝑡 , 𝐸)
8 if 𝑢𝑛𝑞𝑡.𝑠𝑖𝑧𝑒() == 𝑁𝑏 then
9 𝐵

𝑊𝑘
𝐺
← 𝑐𝑜𝑢𝑛𝑡𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠(𝐺)

10 if 𝑡 < 0.01 ∗ 𝑥 ∗ 𝑠𝑖𝑧𝑒(𝐵) & 𝑒𝑟𝑟𝑜𝑟 > 0.05 then
11 𝛼− = 0.005

12 if 𝑡 < 0.01 ∗ 𝑥 ∗ 𝑠𝑖𝑧𝑒(𝐵) & 𝑒𝑟𝑟𝑜𝑟 < −0.05 then
13 𝛼+ = 0.005

14 𝐵𝑘 ← 𝐵𝑘−1 + 𝐵𝑊𝑘𝐺 + 𝛿(𝑘 ≠ 0)𝐸𝛼
15 𝐵[𝑡] ← 𝐵𝐾
16 if 𝑡 < 0.01 ∗ 𝑥 ∗ 𝑠𝑖𝑧𝑒(𝐵) then
17 𝑒𝑟𝑟𝑜𝑟 ← 𝐵𝑘−𝐵𝑘

𝐵𝑘

18 𝑘 ← 𝑘 + 1
19 𝐺 ← ⟨𝑉 = ∅, 𝐸 = ∅⟩
20 𝑡 ← 𝑡 + 1

• Complexity analysis (Section 5.4.5). The approximation properties of sGrapp are
analyzed theoretically in terms of computational and error bounds.
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Data. The real-world streams used in Phase 1 of the analysis in Chapter 3 are used in
experiments (Table 3.2). The ground truths for sGrapp-x are obtained by running the exact
counting Algorithm 1 over the streams. 𝑥 is the percentage of the available ground truth.
𝑥 = 25, 50, 75, and 100 are used throughout the experiments. Due to the computational
expense of Algorithm 1, the truth values are collected over a limited number of sgrs: 72344
in Epinions, 12259 in ML100k, 21696 in ML1m, 21778 in ML10m, 75000 in Edit-EnWiki,
and 75000 in Edit-FrWiki.

Metrics. The effectiveness of sGrapp and sGrapp-x is evaluated using Mean Absolute
Percentage Error (MAPE), which is computed for windows with variable number of unique
timestamps and different exponent values. The number of unique timestamps per window,
𝑁𝑏, varies in different streams and the value of 𝑁𝑏 is set differently for each stream. The
values of 𝛼 and 𝑁𝑏 are cross validated to explore the region including the best accuracy
(lowest MAPE illustrated by the lightest color) for sGrapp. 𝑀𝐴𝑃𝐸 = 1

𝑛
Σ
|𝐵𝑘−𝐵𝑘 |
𝐵𝑘

, where 𝐵𝑘
is the ground truth computed over the growing graph at 𝑡 = 𝑊 𝑒

𝑘
by Algorithm 1 and 𝐵𝑘 is

the approximated value at 𝑡 = 𝑊 𝑒
𝑘
, and 𝑛 is the number of windows. The data tips in the

figures demonstrate the pair of 𝛼 and 𝑁𝑏 yielding the lowest MAPE.

The efficiency of sGrapp and sGrapp-100 is evaluated by averaging over 50 independent
cases. The efficiency metrics are not reported for 𝑥 < 100 since their efficiency is close to
that of sGrapp-100. For each stream, the performance is studied for the parameter settings
that yield the best accuracy (highlighted data points in Figures 5.2 and 5.7) to see the
overhead of a highly accurate approximation. Note that parameter values do not affect the
efficiency. The latency of sGrapp and sGrapp-100 is checked for each processing window
(Figures 5.16 and 5.17). The window latency of all the streams (except the Epinions)
is not decreasing. The window latency of each stream follows its temporal distribution
pattern. Therefore, to omit the effect of temporal distribution, the performance is studied
by considering both the processing time (latency) and the number of processed elements.
To this end, at the end point of each window, the window throughput (i.e. the number of
processed edges in the window divided by the elapsed time in seconds, Figures 5.20 and
5.21) is checked as well as the total throughput (i.e. the total number of processed edges
since the first window until the end of the current window divided by the total elapsed
time in seconds, Figures 5.18 and 5.19).

Computing setup. Experiments are conducted on a machine with 15.6 GB native mem-
ory and Intel Core 𝑖7−6770𝐻𝑄𝐶𝑃𝑈@2.60𝐺𝐻𝑧∗8 processor. FLEET algorithms and sGrapp
algorithms are implemented in Java (OpenJDK version 1.8.0 − 252).
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Table 5.2: The approximation MAPE for different window lengths and exponents.
Exponents are calculated as the probability of one or two i-hub plus the probability of one

or two j-hubs at different time points in Epinions stream.
MAPE 0.006∗𝑁𝑏 0.007∗𝑁𝑏 0.008∗𝑁𝑏 0.009∗𝑁𝑏 0.01 ∗ 𝑁𝑏
𝛼 = 𝑃𝑟 (𝑡 = 1𝑘) = 1.2178 3.0036 2.5461 2.5005 2.2996 2.2602
𝛼 = 𝑃𝑟 (𝑡 = 2𝑘) = 1.077 0.4472 0.4591 0.3318 0.2359 0.2632
𝛼 = 𝑃𝑟 (𝑡 = 3𝑘) = 1.1274 1.0295 0.8281 0.8212 0.6954 0.7079
𝛼 = 𝑃𝑟 (𝑡 = 4𝑘) = 1.0806 0.4778 0.3551 0.3574 0.2597 0.2864
𝛼 = 𝑃𝑟 (𝑡 = 5𝑘) = 1.0389 0.14286 0.1016 0.0778 0.0864 0.0456
𝛼 = 𝑃𝑟 (𝑡 = 6𝑘) = 1.0296 0.0953 0.0723 0.524 0.0709 0.0315
𝛼 = 𝑃𝑟 (𝑡 = 7𝑘) = 1.0438 0.1760 0.1176 0.1054 0.1014 0.0597
𝛼 = 𝑃𝑟 (𝑡 = 8𝑘) = 1.0591 0.2897 0.1950 0.2000 0.1525 0.1446
𝛼 = 𝑃𝑟 (𝑡 = 9𝑘) = 1.0546 0.2553 0.1658 0.1713 0.1370 0.1188
𝛼 = 𝑃𝑟 (𝑡 = 10𝑘) = 1.0420 0.1639 0.1189 0.0953 0.0959 0.0508

5.4.1 Effectiveness of sGrapp

The approximation accuracy of sGrapp is not sensitive to window length and the exponent,
since there exists a combination of approximation exponent and window length for each
stream that yields appropriate MAPE (Figure 5.2). In fact, the best MAPE of sGrapp is
significantly lower than 0.1 in all of the rating streams, demonstrating that sGrapp outputs
a good approximate of actual butterfly count.

When the approximation exponent is high and the window is compact (bottom right
corners in Figure 5.2), the error is high. In this case, sGrapp overestimates the number
of inter-window butterflies due to high exponent value. Also, when the exponent is low
and the window includes a large number of sgrs (top left corner in Figure 5.2), the error is
high. The reason in this case is that sGrapp underestimates the number of inter-window
butterflies. An appropriate parameter region to gain a reasonable accuracy is where 𝛼 and
𝑁𝑏 are both high or low (middle diameter from top right corner to bottom left corner in
Figure 5.2). The best accuracy is always obtained for higher exponent values. For rating
networks, an appropriate exponent value for sGrapp is 𝛼 = 1.4.

According to the contribution of hubs to the emergence of butterflies (Section 3.2),
the value of approximation exponent is related to the probability of having at least one
i-hub (𝑃𝑟 (𝑁 𝑡

𝑖𝐻𝑢𝑏
≥ 1)) plus the probability of having at least one j-hub (𝑃𝑟 (𝑁 𝑡

𝑗𝐻𝑢𝑏
≥ 1))

in the butterflies at time 𝑡, i.e. 𝛼 = 𝑃𝑟 (𝑡) = 𝑃𝑟 (𝑁 𝑡
𝑖𝐻𝑢𝑏

= 1) + 𝑃𝑟 (𝑁 𝑡
𝑖𝐻𝑢𝑏

= 2) + 𝑃𝑟 (𝑁 𝑡
𝑗𝐻𝑢𝑏

=

1) + 𝑃𝑟 (𝑁 𝑡
𝑗𝐻𝑢𝑏

= 1) (Table 3.7). That is, the value of 𝛼 can be determined based on
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(a) Epinions (b) MovieLens 100k

(c) MovieLens 1m (d) MovieLens 10m

(e) Edit-EnWiki (f) Edit-FrWiki

Figure 5.2: Accuracy of sGrapp for different values of 𝛼 and 𝑁𝑏
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(a) Epinions, 𝛼 = 1.03, 𝑁𝑏 = 42, 𝑀𝐴𝑃𝐸 = 0.02 (b) ML100k, 𝛼 = 1.4, 𝑁𝑏 = 912, 𝑀𝐴𝑃𝐸 = 0

(c) ML1m, 𝛼=1.4, 𝑁𝑏=1050, 𝑀𝐴𝑃𝐸=0.04 (d) ML10m, 𝛼=1.4, 𝑁𝑏 = 80, 𝑀𝐴𝑃𝐸=0.1

(e) Edit-EnWiki, 𝛼=0.5, 𝑁𝑏=295, 𝑀𝐴𝑃𝐸=0.7 (f) Edit-FrWiki, 𝛼=0.9, 𝑁𝑏=500, 𝑀𝐴𝑃𝐸=0.2

Figure 5.3: Relative Error of sGrapp over windows for the best obtained MAPE.
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the probability of i- or j-hubs forming butterflies at a certain time point 𝑡. The time
point 𝑡 is likely a tipping point where the number of hub connections in the graph is
stabilized (Figures 3.12 and 3.13). To check this, the value of 𝑃𝑟 (𝑡) is calculated for 𝑡 ∈
{1000, 2000, .., 9000, 10000} in the Epinions graph stream. The value of MAPE is computed
for sGrapp(𝑁𝑏, 𝛼). 𝛼 = 𝑃𝑟 (𝑡) and 𝑁𝑊

𝑏
∈ {0.006𝑁𝑏, 0.007𝑁𝑏, 0.008𝑁𝑏, 0.009𝑁𝑏, 0.01𝑁𝑏}.

Table 5.2 reports the value of MAPE for the approximations with different exponent values
and different fraction of unique timestamp per adaptive window. At 𝑡 = 6000, where the
exponent is equal to 𝛼 = 𝑃𝑟 (𝑡 = 6000) ≈ 1.03, the approximation error is the lowest.
This time point is a tipping point where the fraction of average hub degree is steadily low
afterward and high backward (Figures 3.12 and 3.13). Moreover, in Figure 5.2, the best
accuracy is obtained when the exponent is equal to 𝑃𝑟 (𝑡 = 6000) = 1.03.

Next experiments investigate how sGrapp’s performance evolves over windows to track
the origins of the accuracy gain. The most accurate 𝛼 and 𝑁𝑏 (highlighted data points in
Figure 5.2) are picked and the signed value of relative error |𝐵𝑘−𝐵𝑘 |

𝐵𝑘
for each window 𝑊𝑘

is depicted in Figure 5.3. Depending on the value of 𝑁𝑏, the number of windows vary in
different streams. Positive errors (depicted by red upward triangles) reflect over-estimations
and negative errors (depicted by blue downward triangles) reflect under-estimations. In
ML10m, Edit-EnWiki and Edit-FrWiki, the approximation begins with over-estimation
and ends up with under-estimation. The underlying reason is the static exponent over
sequential windows with different number of connections to the old hubs and consequently
different number of inter-window butterflies.

5.4.2 Effectiveness of sGrapp-x

The accuracy of sGrapp-x is evaluated in terms of MAPE in the region that sGrapp displays
the lowest errors in Figures 5.4 – 5.7. While this is not the optimal parameter region for
sGrapp-x, it enables a fair comparison of sGrapp with its optimised version sGrapp-x to
evaluate the effectiveness of the introduced optimisations. Note that, sGrapp-x begins
with a given exponent value and ends up with a modified value after the supervision phase
reaches an error below 0.05. Therefore sGrapp-x is fed with same input values of 𝛼 and
𝑁𝑏 as sGrapp. The values shown in Figures 5.4 – 5.7 reflect the inputs.

It is evident from these figures that sGrapp-x further improves the accuracy. To further
explore the impact of the introduced optimisations on accuracy, Figures 5.4 – 5.7 are
compared with Figure 5.2 according to three factors:

• Improving the minimum MAPE (Figure 5.8);
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(a) Epinions (b) ML100k

(c) ML1m (d) ML10m

(e) Edit-EnWiki (f) Edit-FrWiki

Figure 5.4: Accuracy of sGrapp-25 for different values of 𝛼 and 𝑁𝑏.
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(a) Epinions (b) ML100k

(c) ML1m (d) ML10m

(e) Edit-EnWiki (f) Edit-FrWiki

Figure 5.5: Accuracy of sGrapp-50 for different values of 𝛼 and 𝑁𝑏
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(a) Epinions (b) ML100k

(c) ML1m (d) ML10m

(e) Edit-EnWiki (f) Edit-FrWiki

Figure 5.6: Accuracy of sGrapp-75 for different values of 𝛼 and 𝑁𝑏.
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(a) Epinions (b) ML100k

(c) ML1m (d) ML10m

(e) Edit-EnWiki (f) Edit-FrWiki

Figure 5.7: Accuracy of sGrapp-100 for different values of 𝛼 and 𝑁𝑏.
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Figure 5.8: Minimum approximation MAPE.

Figure 5.9: Maximum approximation MAPE.

• Improving the maximum MAPE (Figure 5.9);

• Expanding the coverage of MAPE≤ 0.15 and MAPE≤ 0.2 (Figures 5.10 and 5.11).

The minimum MAPE value in the studied parameter space is roughly the same for both
sGrapp and sGrapp-x (x = 25–100) in all rating graph streams (Figure 5.8). sGrapp-x
lowers the minimum MAPE with respect to sGrapp in Edit-EnWiki graph from 0.681 to
0.376 (via x = 25), 0.105 (via x = 75), 0.101 (via x = 50), and 0.097 (via x = 100); in Edit-
FrWiki graph from 0.201 to 0.235 (via x = 25), 0.137 (via x = 100), 0.134 (via x = 75), and
0.130 (via x = 50). That is, the minimum MAPE is lowered ranging from 44.79% to 85.76%
in Edit-EnWiki and 31.84% to 35.32% in Edit-FrWiki. The maximum MAPE related to
the over-estimations (bottom right corners in Figures 5.4 – 5.7) is notably decreased in
all graph streams (Figure 5.9). The most significant decrease corresponds to Edit-FrWiki
stream with the highest change from 2 to 0.26 (via x = 75, 100) and Edit-EnWiki stream
with highest change from 0.715 to 0.15 (via x = 100).

Figure 5.10: Probability of approximation with MAPE less than equal 0.15.
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Figure 5.11: Probability of approximation with MAPE less than equal 0.2.

(a) Epinions, 𝛼=1.032, 𝑁𝑏=42, MAPE=0.022 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910, MAPE=0.009

(c) ML1m, 𝛼=1.4, 𝑁𝑏=1050, MAPE=0.043 (d) ML10m, 𝛼=1.394, 𝑁𝑏=55, MAPE=0.187

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=250, MAPE=0.376 (f) FrWiki, 𝛼=0.843, 𝑁𝑏=480, MAPE=0.235

Figure 5.12: Relative Error of sGrapp-25 over windows for the best obtained MAPE.
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(a) Epinions, 𝛼=1.028, 𝑁𝑏=42, MAPE=0.027 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910, MAPE=0.009

(c) ML1m, 𝛼=1.396, 𝑁𝑏=1050, MAPE=0.048 (d) ML10m, 𝛼=1.393, 𝑁𝑏=80, MAPE=0.151

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=290, MAPE=0.101 (f) FrWiki, 𝛼=0.869, 𝑁𝑏=460, MAPE=0.138

Figure 5.13: Relative Error of sGrapp-50 over windows for the best obtained MAPE.
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(a) Epinions, 𝛼=1.028, 𝑁𝑏=42, MAPE=0.027 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910, MAPE=0.009

(c) ML1m, 𝛼=1.397, 𝑁𝑏=1050, MAPE=0.062 (d) ML10m, 𝛼=1.391, 𝑁𝑏=80, MAPE=0.169

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=290, MAPE=0.105 (f) FrWiki, 𝛼=0.938, 𝑁𝑏=500, MAPE=0.134

Figure 5.14: Relative Error of sGrapp-75 over windows for the best obtained MAPE.
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Figure 5.15: Relative Error of sGrapp-100 over windows for the best obtained MAPE.
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Figures 5.10 and 5.11 present the probability of approximation with MAPE≤ 0.15 and
MAPE≤ 0.2 (𝑃𝑟 (MAPE ≤ 0.15(0.2))) by calculating the fraction of approximations that
satisfy MAPE≤ 0.15 and MAPE≤ 0.2. That is the relative coverage of light blue areas in
Figures 5.2 – 5.7. When the approximation MAPE is above 0.15 or 0.2, the corresponding
bars are omitted in Figures 5.10 and 5.11. Since sGrapp-100 approximates the number of
butterflies in Edit-EnWiki with highest MAPE equal to 0.15, the corresponding bar has a
height of 1. sGrapp-25 improves the accuracy of sGrapp in MovieLens10m better than other
sGrapp-x versions. For the other graph streams, when x ≥ 50, sGrapp-x displays fairly well
accuracy improvement as the probability of accurate approximation (i.e. average window
error below 0.15 and 0.2) is amplified. As expected sGrapp-100 has the most improvement,
however sGrapp-75 and sGrapp-50 are reliable improvement alternatives for Edit-FrWiki
and the rest of graph streams, respectively. sGrapp-x, x = 25, 50, 75, and 100 can achieve
the 𝑃𝑟 (MAPE ≤ 0.15(0.2)) equal to 67.13% (78.53%), 60.94% (94.55%), 79.74% (84.27%),
and 99.31% (100%). Most notably, sGrapp-50(75) increases 𝑃𝑟 (MAPE ≤ 0.2) from 0 to
94.55(100)% in Edit-EnWiki.

Next, the evolution of the signed value of relative error are checked over windows for
the data points with the lowest sGrapp-x MAPE. As shown in Figures 5.12, 5.13, 5.14, and
5.15, dynamically changing the approximation exponent heals the under/over-estimation
problem; Hence the average window error is diminished. sGrapp-x lowers the average
approximation error of sGrapp to a value less than equal 0.05 in rating graphs and 0.14 in
Wikipedia graphs for any given window length and approximation exponent.

5.4.3 Efficiency of sGrapp and sGrapp-x

The window throughput displays fluctuations due to variable number of sgrs in each win-
dow; however overall it is higher in later windows for both sGrapp and sGrapp-100. The
total throughput of both sGrapp and sGrapp-100 increases over time. As mentioned in
previous section, the old hubs are the main contributors to the butterfly formation. Since
old hubs occur in the early windows, the later windows mostly include butterfly vertices
with lower degree. That is, there are fewer windowed butterflies in later windows than
the inter-window butterflies. Therefore, the exact counting algorithm that computes the
number of windowed butterflies finishes quicker. Also, rapid approximation of the inter-
window butterflies plays the main role in reducing the processing time, enhancing the total
throughput. An evidence is the throughput for MovieLens100k that has almost uniform
temporal distribution: There is an increasing total throughput over windows. This is im-
portant since the number of sgrs in the windows is not decreasing while the throughput is
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(a) Epinions, 𝛼=1.032, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=912

(c) ML1m, 𝛼=1.4, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.402, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.525, 𝑁𝑏=295 (f) FrWiki, 𝛼=0.935, 𝑁𝑏=500

Figure 5.16: Average window latency (s) of sGrapp.
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(a) Epinions, 𝛼=1.028, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910

(c) ML1m, 𝛼=1.396, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.391, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=290 (f) FrWiki, 𝛼=0.927, 𝑁𝑏=500

Figure 5.17: Average window latency (s) of sGrapp-100.
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(a) Epinions, 𝛼=1.032, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=912

(c) ML1m, 𝛼=1.4, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.402, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.525, 𝑁𝑏=295 (f) FrWiki, 𝛼=0.935, 𝑁𝑏=500

Figure 5.18: Average total throughput (edge/s) of sGrapp at the end of each window.
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(a) Epinions, 𝛼=1.028, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910

(c) ML1m, 𝛼=1.396, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.391, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=290 (f) FrWiki, 𝛼=0.927, 𝑁𝑏=500

Figure 5.19: Average total throughput (edge/s) of sGrapp-100 at the end of each window.
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(a) Epinions, 𝛼=1.032, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=912

(c) ML1m, 𝛼=1.4, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.402, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.525, 𝑁𝑏=295 (f) FrWiki, 𝛼=0.935, 𝑁𝑏=500

Figure 5.20: Average window throughput (edge/s) of sGrapp at the end of each window.
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(a) Epinions, 𝛼=1.028, 𝑁𝑏=42 (b) ML100k, 𝛼=1.435, 𝑁𝑏=910

(c) ML1m, 𝛼=1.396, 𝑁𝑏=1050 (d) ML10m, 𝛼=1.391, 𝑁𝑏=80

(e) EnWiki, 𝛼=0.481, 𝑁𝑏=290 (f) FrWiki, 𝛼=0.927, 𝑁𝑏=500

Figure 5.21: Average window throughput (edge/s) of sGrapp-100 at the end of each window.
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increasing. This confirms (a) the algorithm’s power is independent of the structural/tem-
poral characteristics of the input data and (b) the algorithm is efficient particularly in
dense streams.

5.4.4 Comparison with Baselines

The effectiveness and efficiency of sGrapp suit are compared against those of FLEET
suit. Experimental results of FLEET suit show that FLEET3, FLEET2 and FLEET1
have the best performance (in that order), therefore these are used as baselines. These
three FLEET variants are based on landmark windows, while the other weaker FLEET
variants FLEETSSW and FLEETTSW use sliding windows. While sGrapp has the 𝛼
(approximation exponent) and 𝑁𝑏 (number of unique timestamps per window) parameters,
FLEET has the 𝑀 (reservoir size) and 𝛾 (sub-sampling probability) parameters. Since the
performance of FLEET algorithms is sensitive to its parameters, sGrapp algorithms are
compared against the FLEET settings which achieve the best performance. The sub-
sampling probability is set as 𝛾 = 0.7 as suggested by FLEET’s authors [286].

When the reservoir size 𝑀 is greater than the entire stream, latency is negatively im-
pacted since sub-sampling does not occur and all the edges are added to the reservoir and for
each new edge the exact butterfly counting is executed. Hence, for evaluating the accuracy
over the prefix of a stream, reservoir size is set as 𝑀 = 0.01𝑆, where 𝑆 is the size of available
stream. For evaluating the efficiency, a range of values 𝑀 ∈ {75𝑘, 150𝑘, 300𝑘, 600𝑘} are
also used to examine the throughput over the entire stream; these values are the ones of-
fered in the original paper [286]. The approximation exponent values that yield the lowest
MAPE in sGrapp are used; these do not necessarily yield the best MAPE in the optimised
variant sGrapp-x. Since FLEET algorithms use different window semantics than sGrapp,
virtual burst-based adaptive windows over FLEET algorithms are used to extract the esti-
mated values at the end of virtual windows for accuracy evaluations only (not for efficiency
tests). The same value of 𝑁𝑏 is used for sGrapp and FLEET suits to compute MAPE:
𝑁𝑏 ∈ [42, 912, 1050, 80, 290, 500] for Epinions, ML100k, Ml1m, Ml10m, Edit-EnWiki, and
Edit-FrWiki, respectively. For efficiency comparisons, the same value used in effectiveness
experiments is used since the goal is to check the efficiency cost of the most accurate ap-
proximation. For each 𝑁𝑏, there exists an alpha yielding a high precision estimate. 𝑁𝑏
does not affect accuracy.

Table 5.3 reports the total throughput over the entire streams for sGrapp and FLEET
suits. Since FLEET1’s throughput is very low, it is not included in this experiment. By

128



Table 5.3: Throughput of different algorithms for γ=0.7.
Throughput FLEET2

M=75k
FLEET3
M=75k

FLEET2
M=150k

FLEET3
M=150k

FLEET2
M=300k

FLEET3
M=300k

FLEET2
M=600k

FLEET3
M=600k

sGrapp sGrapp-
100

Epinions 89575 137411 59336 53077 16912 16360 11028 10907 182427 166895
ML100k 3664 5652 4691 4717 3509 3424 4268 4378 8026 8629
ML1m 23490 23292 12038 7355 2383 1673 1004 857 26698 26487
ML10m 147665 72918 62905 23536 16719 5358 4410 2337 234571 228021
Edit-FrWiki 554741 155343 298019 57477 116917 16856 41051 6240 1000861 985265
Edit-EnWiki 2564565 719375 1373708 305347 911170 114806 324183 34283 1085185 1098382

Table 5.4: MAPE of different algorithms for γ=0.7 and M=0.1S and same 𝑁𝑏.
MAPE FLEET1 FLEET2 FLEET3 sGrapp sGrapp-25 sGrapp-50 sGrapp-75 sGrapp-100

Epinions 0.058 13.789 0.336 0.022 0.022 0.028 0.028 0.028
ML100k 0.959 2.287 0.399 0.009 0.009 0.009 0.009 0.009
ML1m 0.085 5.261 0.047 0.043 0.043 0.053 0.067 0.055
ML10m 0.156 0.839 0.086 0.143 0.247 0.162 0.180 0.170
Edit-FrWiki 1.575 49.165 57.563 0.201 0.313 0.217 0.134 0.137
Edit-EnWiki 2.689 467.747 178.702 0.684 0.494 0.161 0.141 0.137

increasing the size of reservoir the throughput of all FLEET algorithms decreases since
the frequency of exact butterfly counting per edge increases. It is always the case that
𝑀 = 75𝑘 and 𝑀 = 600𝑘 yield the highest and the lowest throughput, respectively. sGrapp
outperforms FLEET for every setting: minimum (maximum) ratios of sGrapp to FLEET
throughput are 1.32 (16.7), 1.5 (2.5), 1.13 (31.1), 1.58 (100.3), 1.8 (160.4), and 0.4 (32) in
Epinions, ML100k, ML1m, ML10m, Edit-FrWiki, and Edit-EnWiki, respectively. sGrapp
and sGrapp-x outperform FLEET suit within a range of [1.13, 160.4], with the performance
improvement increasing as streams become larger (i.e. Edit-FrWiki, ML10m, and Edit-
Enwiki).

Table 5.4 reports accuracy (in terms of MAPE) of sGrapp and FLEET suits over
the subset of stream with available true values. sGrapp and sGrapp-x achieve MAPE
values equal to 0.022, 0.009, 0.043, 0.143, 0.134, and 0.137 in Epinions, ML100k, ML1m,
ML10m, Edit-FrWiki, and Edit-EnWiki which are significantly lower than those of FLEET
– sGrapp errors are 0.38×, 0.02×, 0.91×, 1.66×, 0.08×, and 0.05× of FLEET for these
graphs. Table 5.4 shows that for ML10m, FLEET3’s accuracy is 0.057 better than sGrapp.
Table 5.3 similarly dhows that FLEET3’s throughput for the same dataset is up to 100×
lower, explaining the high computational cost of FLEET3 in this specific dataset. FLEET3
updates the estimate for each new edge by enumerating butterflies incident to that edge.
This increases the probability of detecting the incident butterflies by a factor of 𝑃 (i.e.
sampling probability), however the computations are much increased. This technique is
more impactful in ML10m with high butterfly density. Butterfly estimate 𝐵 is updated as
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𝛾 𝑃 𝐵

𝑀 𝐹

Figure 5.22: Impact of FLEET parameters on estimate.

soon as an edge arrives in FLEET3 or during the sampling and (or) sub-sampling phase
in FLEET1 (FLEET2). In FLEET1, when 𝑃 is not high or 𝑀 is small and 𝛾 is low, 𝐵 is
not frequently updated and error goes up. In FLEET2, many butterflies are missed due to
sampling. Moreover, FLEET has poor accuracy when the butterflies are distributed across
the edges uniformly (e.g. Edit-EnWiki with a low butterfly density of 9.1×10−21 according
to the statistics in [286]). The reason is that 𝐵 is updated for some edges only.

In summary, the accuracy of FLEET algorithms are highly dependent on 𝑀, 𝛾, and
the frequency of updating 𝐵, because 𝐵 is updated with respect to the 𝑃; and 𝑃 is updated
as 𝑝 ← 𝑝 ∗ 𝛾 in each sampling round, which in turn increases 𝐵 more. As depicted in
Figure 5.22, 𝑀 and 𝛾 (confounding variables) impact 𝑃 and 𝑃 impacts 𝐵 directly through
the formula and indirectly through the frequency of updates. A high frequency of but-
terfly counting and high sub-sampling come at the cost of low throughput. A large 𝑀
comes at the cost of memory consumption as well as latency issues. FLEET suit cannot
guarantee both efficiency and effectiveness at the same time. sGrapp does not suffer from
the aforementioned issues since it does not rely on exact counting and sampling; rather it
relies on counting the inter-window butterflies. sGrapp keeps the computational footprint
of exactly counting the in-window butterflies low by means of the load-balanced adaptive
windows and then, effectively estimates the number of inter-window butterflies which are
the dominant butterflies based on the butterfly densification power law formalism.

5.4.5 Complexity Analysis

A previous study of space bounds [286] has shown that any butterfly counting algorithm,
either randomized or deterministic, that returns an accurate (exact/approximate) answer
(i.e. bounds the relative error to a small value 0 < 𝛿 < 0.01 for each computation round)
requires storing the entire graph in 𝜃 (𝑛2) bits, where 𝑛 is the number of vertices. On the
other hand, it is not possible to determine the size of stream (i.e. 𝑛) in real world streaming
graphs. Hence, it is not possible to determine the memory required for processing the data
without knowing the size of data [26]. In the following, the properties of the introduced
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estimator are analyzed in terms of computational and error bounds.

Computational Bound

THEOREM 2 The upper bound of computational complexity of sGrapp for each window
𝑊𝑘 is O( 𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘−1)2 𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑡 ), where R is the average stream rate and 𝐾𝑖,𝑊𝑘(𝐾 𝑗 ,𝑊𝑘) is

the lower bound of degree of i(j)-vertices in 𝑊𝑘 .

PROOF 2 sGrapp’s computations at each window are dominated by the exact counting
algorithm as calculating the number of inter-window butterflies is negligible and we ignore
it as well as the summations. When i-vertices are the vertex set with lower average degree,
the computational complexity of the core exact counting algorithm is the following.

O(
∑︁
𝑖1∈𝑉𝑖

∑︁
𝑗1, 𝑗2∈𝑁𝑖1

𝑀𝑖𝑛(𝑑𝑒𝑔( 𝑗1), 𝑑𝑒𝑔( 𝑗2))) (5.7)

Assume the lower bound i-degree and j-degree in the graph snapshot corresponding to
the tumbling window 𝑊𝑘 be 𝐾𝑖,𝑊𝑘 and 𝐾 𝑗 ,𝑊𝑘 , respectively. Accordingly, the computational
complexity for this window would be 𝑂 ( 𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘−1)2 𝐾 𝑗 ,𝑊𝑘 |𝑉𝑖,𝑊𝑘 |), where 𝑉𝑖,𝑊𝑘 denotes the
set of i-vertices in the window 𝑊𝑘 . Since the stream can include edges connecting already
existing vertices, the total number of edges in 𝑊𝑘 , denoted as 𝐸𝑊𝑘 , is greater than equal the
total number of i-vertices in 𝑊𝑘 , i.e. |𝑉𝑖,𝑊𝑘 | ≤ |𝐸𝑊𝑘 |. Therefore,

O(
𝐾𝑖,𝑊𝑘

(𝐾𝑖,𝑊𝑘
− 1)

2
𝐾 𝑗,𝑊𝑘

|𝑉𝑖,𝑊𝑘
| ) ≤ O(

𝐾𝑖,𝑊𝑘
(𝐾𝑖,𝑊𝑘

− 1)
2

𝐾 𝑗,𝑊𝑘
|𝐸𝑊𝑘

| ) (5.8)

sGrapp uses tumbling windows with adaptive lengths, therefore |𝐸𝑊𝑘 | ≈ R𝑁
𝑊𝑘
𝑏

, where R is
the average stream rate (i.e. number of edges per timestamp) and 𝑁𝑊

𝑏
is the number of

unique timestamps (bursts) in 𝑊𝑘 . Hence, the upper bound of computational complexity of
sGrapp for a tumbling window 𝑊 at 𝑡 is O( 𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘−1)2 𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑏
). Note that this stands

for all sequential windows.

Error Bound

LEMMA 1 The exact number of inter-window butterflies at the end of each window 𝑊𝑘 ,
∀𝑘 > 0, denoted as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 is bounded as |𝐸𝑊𝑘 | − 2|𝑉𝑖,𝑊𝑘 | ≤ 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 ≤

( |𝑉𝑖,𝑊𝑘 |
2

)
, where 𝑉𝑖 is

the set of all i-vertices in the 𝑊𝑘 .
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Figure 5.23: Schematic butterfly formation. i(j)-vertices are in the bottom (top).

PROOF 3 The number of inter-window butterflies contributed by window 𝑊𝑘 denoted
as 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 , is minimum when the 𝑊𝑘 ’s edges 𝐸𝑊𝑘 are uniformly distributed over vertices
by connecting each i-vertex in 𝑊𝑘 to at least 2 j-neighbors in 𝑊𝑘 and previous windows
forming a series of caterpillars (solid edges in Figure 5.23–left). In this case, according
to the pigeonhole principle, the number of edges that complete the caterpillars (dashed
edges in Figure 5.23–left) will determine the number of inter-window butterflies: 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 =

|𝐸𝑊𝑘 | − 2|𝑉𝑖,𝑊𝑘 |. 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 is maximum when all of the 𝑊𝑘 ’s i-vertices are connected to two
j-vertices such that at least one of them is not in 𝑊𝑘 (Figure 5.23–right). (Note, when
all of j-neighbors are in previous windows, there wouldn’t be any in-window butterfly in
𝑊𝑘). In this case, the number of inter-window butterflies reduces to the number of ways
we can choose two i-vertices from the entire set of i-vertices: 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 =

( |𝑉𝑖,𝑊𝑘 |
2

)
. Therefore,

|𝐸𝑊𝑘 | − 2|𝑉𝑖,𝑊𝑘 | ≤ 𝐵𝑖𝑛𝑡𝑒𝑟𝑊 ≤
( |𝑉𝑖,𝑊𝑘 |

2

)
.

THEOREM 3 The absolute error of sGrapp at the end of each window 𝑊𝑘 is bounded
as Σ𝑘

𝑙=1 |𝐸𝑙 |
𝛼 −

( |𝑉𝑖,𝑊𝑘 |
2

)
≤ 𝐸𝑟𝑟 ≤ Σ𝑘

𝑙=1 |𝐸𝑙 |
𝛼 − |𝐸𝑊𝑘 | + 2|𝑉𝑖,𝑊𝑘 | where 𝐸𝑘 , 𝐸𝑊𝑘 , and 𝑉𝑖,𝑊𝑘 denote

the number of edges in the interval [𝑊𝑏
0 ,𝑊

𝑒
𝑘
), the number of edges in the interval [𝑊𝑏

𝑘
,𝑊 𝑒

𝑘
),

and the number of i-vertices in the interval [𝑊𝑏
𝑘
,𝑊 𝑒

𝑘
), respectively.

PROOF 4 sGrapp estimates the total number of butterflies at the end of each window 𝑊𝑘 ,
∀𝑘 > 0, as 𝐵𝑘 = 𝐵𝑘−1 + 𝐵𝑊𝑘𝐺 + |𝐸𝑘 |

𝛼 with initial term 𝐵0 = 𝐵
𝑊0
𝐺

. Expanding this recursive
equation would yield 𝐵𝑘 = Σ𝑘

𝑙=0𝐵
𝑊𝑙
𝐺
+ Σ𝑘

𝑙=1𝐸
𝛼
𝑙
. On the other hand, according to the lemma

1, the true value of the total number of butterflies at the end of each window 𝑊𝑘 , ∀𝑘 > 0,
denoted as 𝐵𝑘 lies in the range Σ𝑘

𝑙=0𝐵
𝑊𝑙
𝐺
+𝐸𝑘 −2|𝑉𝑖,𝑊𝑘 | < 𝐵𝑘 < Σ𝑘

𝑙=0𝐵
𝑊𝑙
𝐺
+
( |𝑉𝑖,𝑊𝑘 |

2

)
, where 𝑉𝑖,𝑊𝑘

is the set of all seen i-vertices in the interval [𝑊𝑏
𝑘
,𝑊 𝑒

𝑘
). Therefore, the absolute error of

sGrapp 𝐸𝑟𝑟 = |𝐵𝑘 − 𝐵𝑘 | falls in the range Σ𝑘
𝑙=1 |𝐸𝑙 |

𝛼 −
( |𝑉𝑖,𝑊𝑘 |

2

)
≤ 𝐸𝑟𝑟 ≤ Σ𝑘

𝑙=1 |𝐸𝑙 |
𝛼 − |𝐸𝑊𝑘 | +

2|𝑉𝑖,𝑊𝑘 |.
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5.5 Summary

Essence and features. Butterfly counting is a fundamental problem in mining bipartite
streaming graphs. Butterfly counting is computationally expensive, and known techniques
do not scale to large graphs; the problem is even harder in streaming graphs. The insights
from Phase 1 of analysis of real-world streams shed light on developing a streaming graph
approximation framework for butterfly counting, sGrapp, as follows.

• The streaming graph mining findings establish the requirements for an efficient and
effective analytical stream processing framework. Accordingly, a window manage-
ment method is introduced to deal with the bursty emergence patterns of butterflies.
This approach uses burst-based tumbling windows that can adapt to the temporal
distribution of the real streams with no assumption about the order and number of
arriving streaming graph records. The benefits are two-fold:

– Providing load-balanced windows for efficient analytical workloads.
– Enabling accurate continous/temporal analysis which are based on comparing

the analysis over different windows of a stream as well as analysis over different
streams having different temporal distributions.

• Statistical analyses uncover the temporal organizing principles of butterflies that
impact the identification of any potential butterfly that should be counted by the
algorithm. Specifically, the study reveals the dominant contribution of old hubs with
young neighbours on shaping butterfly structures over time. That is, the stream min-
ing reveals the emergence of a certain type of butterflies (inter-window butterflies),
which are computationally challenging to capture since they span a long time interval
to form (as it takes a while before newly added vertices get connected to old hubs
and the butterfly structure completes) and demand lengthy time-based windows to
cover them (performance bottleneck of incremental butterfly approximation). The
enumeration of these butterflies is separated from the rest of streaming butterflies
and their count is estimated according to the BPL. This separation has two impacts:

– Increases the accuracy due to capturing frequent butterflies.
– Increases efficiency due to enumerating the rest of the streaming butterflies using

the proposed exact counting core algorithm on top of an adaptive burst-based
windowing method.

• The results of streaming graph mining (contribution of old hubs to butterfly emer-
gence and their dynamic degree) explain the fluctuating over/under-estimation of

133



butterfly count. Accordingly, optimisations are introduced to enhance the approxi-
mate count particularly in dense graphs. sGrapp is optimised by changing the expo-
nent of BPL over windows. To this end, it is modified to a semi-supervised algorithm
that is called sGrapp-x. The performance is improved as the following.

– The minimum average window error is lowered for up to 85.76%.

– The maximum average window error is lowered for up to 87%.

– The probability of low approximation error (i.e. error below 0.15 and 0.2) in-
creases up to 100% in the densest graphs.

Use cases. Similar to triangles in unipartite graphs, enumerating butterflies is crucial
in understanding the structure of bipartite graphs. This benefits many applications where
studying the cohesion in a graph shaped data is of particular interest. Examples include
investigating the structure of computational graphs or input graphs to the algorithms, as
well as dynamic phenomena and analytic tasks over complex real graphs.

Evaluations. sGrapp displays average window error below 0.05 in streams with almost
uniform temporal distribution and its optimised variant yields average window error be-
low 0.14 in streaming graphs with non-uniform temporal distribution. sGrapp can handle
streams with both high number of edges and high average degree with a sub-linear memory
footprint, which is lower than that of the baselines and processes 1.5×106 sgrs-per-second.
Experimental analysis show that sGrapp achieves 160× higher throughput and 0.02× lower
estimation error than baselines. Moreover, empirical analyses demonstrate that the per-
formance of sGrapp is independent of its input data, hence can be applied to any real
stream.
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Chapter 6

Streaming Graph Analytics - Concept
Drift Detection

Concept drift (CD) is a phenomenon that occurs when “changes in hidden context can
induce more or less radical changes in target concept” [344]. Hidden context refers to
insufficient, incomplete, or unobservable information about the dataset [113], and target
concept refers to known and/or observable information which have direct impact on the
output of a downstream task over this dataset. The task can be training a learner model or
some form of data analytics/analysis; in both cases the processing task is required to adapt
to the changes in its fresh input so as to generate relevant and reliable outputs. CD has
been identified as the main cause of decreased effectiveness in many data-driven information
systems such as data-driven decision support systems and early warning systems [218]. CD
detection benefits applications including cases where it is important to detect a change
in the streaming sensor data that affects the automatic monitoring of operation of an
industrial plant, a smart home management system, or a robotic mobile system.

CD is natural in non-stationary settings where temporal or spatial evolutions in data
characteristics or generative source(s) are the origins of the drift [173, 237]. Streaming
data are good representatives of such non-stationary settings, where changes are reflected
in data snapshots/samples created at different time points or locations over streaming data
records generated by one or multiple generative sources. Another source of change can
be sampling bias in supervised machine learning tasks where the generating distribution
and/or labelling function of source training data (a source domain) is different from those
of target/test data (a target domain) used for operation/evaluation of the trained model.
This case is referred to as domain adaptation [49, 48, 50, 101, 43]. In this thesis, the
former case is studied: detecting changes in streaming data records which are transient,
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sequential (partially ordered by their arrival time), and heterogeneously interconnected,
forming a bipartite streaming graph. No assumptions are made on the downstream task(s)
and the availability of data labels in the source and target domains. The goal is to answer
the question how to detect/understand concept drift in a bipartite streaming graph. It is an
important problem for the following reasons:

• Study of CD is vital in various application areas such as monitoring and control (for
“real-time monitoring or control of some automated activity”), information manage-
ment (for “organizing and personalizing information”), and analytics and diagnostics
(for “characterizing health, well-being, or a state of humans, economics, or enti-
ties”) [381].

• Current works mostly focus on supervised learning tasks where the training stream-
ing data records are labelled and statistically independent (usually stream of data
points or unipartite graphs). In these studies, CD is considered as a change in a sta-
tistical property of data, particularly the joint probability distribution of data and a
target label. On the other hand, in many real-world scenarios, the data records are
structured as biparte streaming graph records: heterogeneously interconnected and
not statistically independent. Also, in the aforementioned applications, the process-
ing task includes pattern recognition, anomaly detection, and clustering, where the
ground truth is not always available and the task is unsupervised.

• Research in CD management covers three aspects [218]:

– CD detection: identify changes to characterize and quantify the drift.

– CD understanding: describe the drift event by providing information about the
time, severity, and/or the contributing factors of drift.

– CD adaptation: update a downstream task whenever a need for adaptation is
identified.

While many specialized techniques are introduced in the literature for online drift
adaptation as part of supervised prediction tasks such as classification, limited num-
ber of works consider drift detection over a streaming graph as an independent com-
ponent that can be combined with downstream analytics. Therefore, there is still a
need for a general purpose CD management framework that

– integrates with any downstream analytics (both supervised and unsupervised
adaptive tasks as discussed above),

136



– incurs low computational overhead in terms of both time and memory, while
accurately detecting the drifts,

– supports various drift types,

– provides information about the drifts’ time and location,

– enables unsupervised drift detection, and addresses the lack of ground truth for
drift events in real-world data streams, and

– does not require user-defined threshold for drift evaluations.

6.1 Drift Detection over Streaming Graphs

Detecting drifts in streaming graphs can be done by tracking either the changes of the
generative source or the performance of a downstream task operating on the data. While
the latter method depends on the task, the former depends on the data source, which
may or may not be related to the task. For instance, certain tasks require specific data
formats/availability, while different tasks using the same data can be designed for a certain
goal. This thesis takes the former approach to detect a change in a transient concept by
detecting a change in data source. The precise problem definition is as follows: Given a
sub-sequence of streaming graph records partially ordered by their arrival time steps, how
to detect a concept drift as close as possible to its occurrence, while providing descriptive
information about the drift.

While different structures can be considered for transient concept, temporal motifs are
better candidates since their abundance over the timeline of sgr arrivals benefits drift de-
tection; less frequently occurring structures challenge the detection method. As shown in
Chapter 3, butterflies are temporal motifs and their emergence patterns imply the gen-
erative patterns of sgrs. Therefore, butterflies can be utilised to effectively detect drifts
over streaming graphs. Moreover, butterflies, as the smallest bipartite cohesive subgraphs,
enable incremental processing during drift detection. As new sgrs are added to the graph
snapshot, butterflies can be maintained without re-examining. Other bipartite structures
(maximal subgraphs including several butterflies such as k-bitruss [332], k-wing [288], and
𝑠(𝛼, 𝛽)𝜏−core [151]) require dynamic maintenance. Therefore, butterflies can be utilised to
effectively and efficiently detect drifts over streaming graphs.

Efficiency and effectiveness of the detection approach should be simultaneously achieved
since:
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Table 6.1: Frequent notations in this chapter.
Notation Description
𝑃(⊲⊳𝑣) = 𝑣 Function mapping a young butterfly to a unipartite vertex 𝑣⋂(⊲⊳𝑢, ⊲⊳𝑣) Set of common vertices in ⊲⊳𝑢 and ⊲⊳𝑣
Ω𝑣 Frequency of a phase oscillator vertex 𝑣
𝜃𝑣 Phase of a phase oscillator vertex 𝑣
𝑂 [𝑡] Order parameter values at sequential time points
𝑆 Drift detection suffix size

• Accuracy of drift detection can be influenced by the amount of analyzed data records.
For instance, detecting an abrupt drift does not require a lengthy window of data
records compared to gradual, incremental, or reoccurring drifts which require a win-
dow spanning a longer time interval and larger amount of data to be examined.

• Accuracy of detections relies on the efficiency, since late detections can be misleading
and detections should be as close as possible to the drift events.

On the other hand, similar to other analytic tasks, CD detection over streaming graphs
is computationally expensive due to the volume and velocity of the data, as well as the
iterativeness and statefulness of the processing task. As discussed in Section 5.1, computing
exact answers for analytic tasks over streaming graphs is not feasible since (1) it is not
possible to maintain the entire graph, intermediate results, and system states in memory
due to unboundedness of the graph, and (2) exact answers demand performing the analytics
over the entire stream. Even if we relax the memory constraint, analytics such as butterfly-
based tasks enumerating butterfly cliques are compute-intensive, incurring a lower bound
of computation of 𝑂 (𝑛3), where 𝑛 is the growing size of vertices in the stream. Therefore,
a butterfly-based drift detection algorithm requires design of efficient and effective sliding
window management techniques.

In the following, first, the related works on concept drift management are reviewed
in Section 6.2. Next, transient concept and concept drift in a streaming graph are de-
fined, according to which a framework for streaming graph drift detection called sGradd
is introduced and evaluated in Sections 6.3 and 6.4. sGradd demonstrates efficiency and
effectiveness in detecting drifts with different types and occurrence intervals. Table 6.1
lists the frequent notations in this chapter.
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6.2 Related Works

The related works are viewed through the lens of a modular framework for performing drift
detection, understanding, and adaptation. The framework has three components:

• Data management for retrieving streaming data and memory management to decide
how to retain data and system state in memory;

• Drift detection for identifying changes and corresponding metadata; and

• Drift adaptation for updating the downstream task.

Accordingly, the existing works are divided in two groups: active (Figure 6.1) and passive
(Figure 6.2) approaches. In active approaches, streaming data is continuously ingested
and windowed via data management component and then drifts are explicitly detected
and explained via drift detection component, which triggers a signal for updating the
downstream task via drift adaptation component. In passive approaches, a data model
is learned in the data management component to extract the most important features of
data for dimensionality reduction purposes, and the target predictions of downstream task.
Based on the performance of this model (for instance, the learner’s error), an implicit
drift alert is signaled for drift adaptation. Since the focus in this thesis is on concept
drift detection and understanding, in the following, only the data management and drift
detection components in active and passive approaches are reviewed. More comprehensive
review of the works on drift adaptation exist in literature [218, 125, 4].

6.2.1 Data management

Data records are continuously ingested and windowed through the window management
sub-component and possibly fed into a learner model through the data model sub-component
(green boxes in Figures 6.1 and 6.2).

Window management. While in most passive approaches, a model is learned over the
stream of incoming data records using a landmark window, active approaches usually use a
two-window method: a reference window and a data window. Contents of data window are
evaluated when the window closes using the reference window as a baseline to determine
whether or not a change has happened. While the data window covers the newly arrived
data records, the reference window can be fixed [292, 219] or moving [173, 35]. Another
windowing method in active approaches is to use one data window. Contents of each
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window instance are compressed to low dimensional embeddings. This results in a sequence
of embeddings as the drift criterion, which is evaluated to detect a change [352, 358, 262].
Different techniques have been used in drift detection literature for maintaining windowed
contents with respect to the window borders, window size, and sliding approach. Active
approaches commonly use landmark windows [124], while others use sliding windows [246,
352, 358, 262] with static time-based or count-based sizes [34, 352, 358, 262] or dynamic
and optimised sizes [60, 132]. When the window size is fixed, all/sampled streaming records
are added/removed according to the size [352, 358, 262] or a weighting function is used to
gradually remove elements with low weights [125]. Passive approaches update the learner
upon the arrival of each new data record. These approaches do not remove the contribution
of old data and slowly adapt to abrupt changes as adaptation only happens when new data
records omit the old concepts. Window management raises a trade-off between efficiency
and effectiveness of drift detection in both active and passive approaches as small windows
can detect sudden/abrupt drifts, however gradual and slow drifts require sufficiently large
window sizes.

Data model. In passive approaches, given a window of streaming data, a data model is
learned which performs the target adaptive task (green boxes in Figure 6.2). The decrease
in model’s effectiveness determines the need for an adaptation (yellow box in Figure 6.2).
For instance, when the online error rate of a classifier reaches a drift threshold, a model
update is required [124, 212, 349, 122]. Some methods also consider a warning threshold
to prepare a new model and replace it with the old model when the drift threshold is
reached. Since there is no explicit drift detection in passive approaches, understanding the
drift events (i.e. when, where, and how the drift has happened) is not possible and the
adaptation can not be informed by the drift patterns. For instance, reoccurring concept
drifts can be more efficiently adapted by reusing the trained models or re-training the
poor performers only, especially in case of ensemble learning. Unnecessary updates can
be avoided in case of insignificant drifts. Moreover, the adaptation can be triggered too
often in noisy environments, or too slowly in case of gradual drifts, which requires lengthy
windows that in turn increase the computational cost. In those cases where a user feedback
is required for model updates, the drift adaptation is further delayed.

6.2.2 Drift detection

In active approaches, given the windows of streaming data, drift criteria is evaluated to de-
cide whether or not a drift has occurred (yellow boxes in Figure 6.1). Hidden concepts that
are recognized as the root source of drifts are not tractable/measurable, therefore concept
drift is usually detected when a statistical property of data stream changes over time. The

141



first formal definition of change detection in data streams [173] considers windows as data
samples and compute their distribution distance to identify a drift using a hypothesis test
method. This type of drift detection is also done using multiple hypothesis tests running
in parallel or as a hierarchy of sequential tests [366, 356]. Other works on graph streams
(sequence of graph snapshots arriving one at each time point) compute embeddings [358] or
entropy of discriminative subgraphs [262, 352] over a batch of graph snapshots and detect
a change over the sequence of embeddings/entropy values. The drift evaluation is done by
means of a diversion dissimilarity measure [262] or a hypothesis test [358] and utilising a
static user-defined threshold.

6.3 sGradd

In this section the concept of drift in a streaming graph is defined and a streaming graph
framework for drift detection called sGradd is proposed. The framework features the
following properties:

• It has only one parameter, 𝑁𝑏, which determines the number of bursts in the window
ingesting the sgrs. This parameter can be adjusted based on the expected level of
burstiness in the stream. For bursty streams, 𝑁𝑏 = 1 is a reasonable setting, while in
case of low streaming rates, 𝑁𝑏 > 1 is a more efficient setting.

• Equipped with efficient window management techniques, the framework balances the
computational workload and conforms to real-world streams with varying streaming
rates over time. It uses one data window only, and does not require a reference
window. The data window is a burst-based sliding window which is projected to a
predicate-based (logical) sliding window. Contrary to existing works that use fixed-
size sliding windows with a fixed slide size of one step, in the proposed framework,
the sizes of both windows adapt to the evolving streaming rate. Also, the burst-based
sliding window moves forward as soon as it is projected by retiring all of its elements
(i.e., it is a tumbling window). The predicate-based window moves forward after the
drift detection, if a predicate over the stream burstiness is satisfied, by removing a
fraction of its randomly selected elements.

• It employs an active approach with a data management component (similar to data
modelling in passive approaches), which reduces time and memory consumption
through the extraction of effective information from the sgrs and efficiently main-
tain this information as the system state. The drift evaluation is done by means
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of a simple and efficient measure, and utilises a dynamic threshold adaptive to the
number of detections without user input initialization.

6.3.1 Definitions

Definition 17 (Structural Pattern) Structural pattern þ is a quantified pattern of ver-
tex inter-connectivities in a graph snapshot, i.e. þ(𝐺𝑊,𝑡) : 𝐺𝑊,𝑡 ↦→ R.

Definition 18 (Transient Concept) Transient concept is a non-stable structural pat-
tern in transient data records, i.e. þ(𝐺𝑊,𝑡) | ∃(𝑊1, 𝑡1), (𝑊2, 𝑡2) : þ(𝐺𝑊1,𝑡1) ≠ þ(𝐺𝑊2,𝑡2).

Definition 19 (Concept Drift in Streaming Graphs) Concept drift in a streaming
graph is the event of a change in a transient concept over successive graph snapshots.
In other words, given a certain pattern þ, concept drift is the event of observing two suc-
cessive windows 𝑊1 and 𝑊2 corresponding to the sequential time points 𝑡1 and 𝑡2, where
𝑡2 − 𝑡1 ≥ 1 and þ(𝐺𝑊1,𝑡1) ≠ þ(𝐺𝑊2,𝑡2).

As shown in Figure 6.3, a concept drift can occur in four different modes according to
the progress of drift [125]: gradual, reoccurring, incremental, or abrupt.

6.3.2 Overview

The sGradd framework (Figure 6.4) takes sgrs from a stream as input, maintains an incre-
mentally updatable graph structure, and streams-out the drift signals as triggers for any
online adaptive algorithm. It has a modular architecture with two main components for
data management and drift detection.

Data Management. Given the arriving sgrs, in this stage data is managed through
windowing and abstracting important information. The goal is to create efficient and
effective workload for ultimate processing in the drift detection component. The main idea
is to use a tumbling window to ingest raw data records and update information about the
burstiness of the stream followed by a projection of the window into a more compact window
to effectively reduce the computational overhead of drift detection. This component has
two sub-modules:
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CD mode Description
Gradual

the transient concept changes gradually and frequently,
while spanning a considerable time interval until

a new concept is stabilized.

Reoccurring

the transient concept switches to a new concept
and then it is repeated.

Incremental

the transient concept changes as incremental steps
towards a new concept.

Abrupt

the transient concept switches to a new concept
suddenly at an trivial time interval.

Figure 6.3: Concept drift modes.
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Figure 6.4: sGradd ’s architecture.

• Window Management : This sub-module ingests the sgrs and uses two windows𝑊𝐵𝐵𝐺

and𝑊𝑈𝑊𝐺𝑂 to manage the sgrs and system state, respectively. 𝑊𝐵𝐵𝐺 is a burst-based
tumbling window with a corresponding bipartite graph snapshot. It accepts ingested
sgrs (raw data records). 𝑊𝐵𝐵𝐺 is projected to 𝑊𝑈𝑊𝐺𝑂 , which is a predicate-based
window with a corresponding unipartite weighted graph of oscillators. It updates
the system state as described below.

• System State Management : The key temporal and structural features of the stream
(burstiness properties and butterfly inter-connectivities) are extracted from𝑊𝐵𝐵𝐺 and
embedded into UWGO to form system states. Drift detection component operates
on UWGO and then a number of vertices are removed from UWGO if a predicate is
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satisfied. This removal completes a computation round1.

UWGO is aimed to reduce the computational expenses due to the following reasons:

– The butterflies in 𝑊𝐵𝐵𝐺 are mapped to vertices forming UWGO. The unipartite
graph of UWGO resembles a network of oscillators, where each oscillator 𝑣 has
a phase 𝜃𝑣 ∈ [0, 2𝜋] which oscillates with a frequency Ω𝑣. The phase of an
oscillator embeds the neighborhood of the corresponding butterfly. Therefore,
projecting 𝐵𝐵𝐺 to UWGO implies projecting the butterfly neighborhoods to a
latent space of phases in [0, 2𝜋].

– The contents of 𝑊𝐵𝐵𝐺 are entirely retired as soon as they are projected to
UWGO. This frees up memory and avoids redundancy. In another words,
UWGO decreases the memory consumption by reducing the size of system state
and retiring the processed sgrs.

– Similar to 𝑊𝐵𝐵𝐺 , 𝑊𝑈𝑊𝐺𝑂 adapts to sgr streaming rate by adjusting its slide
interval and slide size to the burstiness of stream. Therefore, UWGO balances
the workload assigned to data management and drift detection components in
the next round as it adapts to the stream burstiness.

– UWGO is constructed based on mapping butterfly structures to UWGO ver-
tices. Butterflies do not change with the addition of new sgrs, therefore UWGO
is maintained incrementally by adding new vertices/edges. In contrast, other
bipartite structures such as k-bitruss [332], k-wing [288], and 𝑠(𝛼, 𝛽)𝜏−core [151]
require dynamic maintenance in streaming settings since they are maximal sub-
graphs, which include butterflies. Using such structures would add the overhead
of recomputing the UWGO structure.

Drift Detection. Given the UWGO snapshot, in this stage concept drifts are detected.
Since butterflies are building blocks of the stream (Chapter 3), the transient concept (Defi-
nition 18) is considered to be the butterfly inter-connectivity pattern in the original stream.
The goal is to detect a change in this concept (Definition 19) to figure out a change in the
streaming graph. The main idea is to quantify and evaluate two evolution trends of the
transient concept, an observed evolution trend and a predicted one. Briefly, the current
and future information about the data are extracted and utilised to learn a drift in the past.

1In a distributed/parallel setting, each computation round can start with ingesting sgrs to a window
𝑊𝐵𝐵𝐺,𝐾+1 in parallel to detecting drifts on a previous window 𝑊𝑈𝑊𝐺𝑂,𝐾 , right after the projection is done.
This reduces the interval between two execution of drift detection for as much as O(𝑀𝑎𝑥𝑖𝑚𝑢𝑚(𝑖𝑛𝑔𝑒𝑠𝑡 (𝑘 +
1), 𝑑𝑒𝑡𝑒𝑐𝑡 (𝑘) + 𝑟𝑒𝑡𝑖𝑟𝑒(𝑘))).
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This is done efficiently through the UWGO to learn the drifts as close as their occurrences.
This component has two sub-modules:

• Drift Criteria: This sub-module computes the concept drift criteria (the density of
butterfly inter-connections) over UWGO. For each UWGO snapshot, two instances
of the drift criteria are quantified and appended to their corresponding sequence: one
based on the observed butterfly inter-connectivities and another based on a prediction
of future inter-connectivities.

• Drift Evaluation: The quantified drift criteria are evaluated to detect a drift in
transient concept. The trend of evolutions in the two sequences of drift criteria are
examined while considering the burstiness profile of the stream. At the detection of
a change, a drift alert is signaled with descriptive information about the time and
location of the drift.

Data Structure. The bipartite graph snapshots of BBG are implemented similarly to the
object oriented data structure described in Section 4.3.2. The unipartite graph snapshots
of UWGO are also implemented using an object oriented approach as following.

• A vertex is an object with three attributes: an integer ID, a double phase, and a
double frequency. To assign the vertex ID, the vertex object 𝑣 is created with zero
values for all attributes and next the hash code of the object 𝑣 sets the ID.

• An edge is an object with four attributes: a String ID concatenating the ID of
vertices, two vertex objects and a double weight.

• A hash set retains vertices in 𝑉 and two hash indexes are used to store 𝑁 (𝑣) and
fast retrieval of graph elements: One hash index retains 𝑁 (𝑣) by mapping the vertex
IDs to a hash set of neighbours; Another hash index retains 𝐸 by mapping the edge
IDs to the edge objects. New vertices are added to 𝑉 and to 𝑁 (𝑣) if their ID is
absent, therefore the stored vertices have distinct IDs. When an sgr arrives, The ID
of sgr vertices are added to 𝑁 (𝑣) according to the aforementioned method and their
corresponding hash set of neighbours are updated. Duplicate edges are not stored.

sGradd is precisely described in Algorithm 8.
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Algorithm 8: sGradd(𝑁𝑏)
Data: ℜ = ⟨𝑟1, 𝑟2, · · · ⟩, sequence of sgrs
Input: 𝑁𝑏, Size of BBG window

1 𝐵𝐵𝐺 ← ⟨𝑉1 = 𝑉𝑖 ∪𝑉 𝑗 = ∅, 𝐸1 = ∅⟩, 𝑈𝑊𝐺𝑂 ← ⟨𝑉2 = ∅, 𝐸2 = ∅⟩, 𝑢𝑛𝑞𝑡 ← ∅, 𝑘 ← 0,
𝑡 ← 0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵← 1, 𝐵← 0, 𝑏𝑢𝑟𝑠𝑡𝑦 ← 𝑓 𝑎𝑙𝑠𝑒, 𝑚𝑎𝑥𝐵← 0, 𝑏2𝑣 ← ∅, 𝑑 ← 0

2 while true do
3 ⟨𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, 𝐵, 𝑚𝑎𝑥𝐵, 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦⟩ ← 𝑖𝑛𝑔𝑒𝑠𝑡 (𝑟 𝑡 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, 𝐵, 𝑚𝑎𝑥𝐵, 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦)
4 if (𝜏𝑡 ∉ 𝑢𝑛𝑞𝑡 & ( |𝑢𝑛𝑞𝑡 | + 1)%𝑁𝑏 = 0 & |𝑢𝑛𝑞𝑡 | > 1) then
5 𝑢𝑛𝑞𝑡.𝑎𝑑𝑑 (𝜏𝑡)
6 𝑈𝑊𝐺𝑂 ← 𝑝𝑟𝑜 𝑗𝑒𝑐𝑡 (𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠, 𝑢𝑛𝑞𝑡, 𝐵𝐵𝐺,𝑈𝑊𝐺𝑂, 𝑏2𝑣)
7 System.gc()
8 ⟨𝑂1, 𝑂2⟩ ←DriftCriteria(𝑈𝑊𝐺𝑂, 𝑡)
9 𝑑 ← 𝐷𝑒𝑡𝑒𝑐𝑡𝐷𝑟𝑖 𝑓 𝑡𝑣1(𝑂1, 𝑂2, 𝑑, 𝑡, 𝑤𝑖𝑛𝑁𝑢𝑚) or

𝐷𝑒𝑡𝑒𝑐𝑡𝐷𝑟𝑖 𝑓 𝑡𝑣2(𝐵, 𝑚𝑎𝑥𝐵,𝑂1, 𝑂2, 𝑑, 𝑡, 𝑤𝑖𝑛𝑁𝑢𝑚)
10 ⟨𝑈𝑊𝐺𝑂,𝑘⟩ ←slide(𝑈𝑊𝐺𝑂)

11 else
12 𝑢𝑛𝑞𝑡.𝑎𝑑𝑑 (𝜏𝑡)
13 𝑡 + +

6.3.3 Data Management

The interleaved procedures of window management and system state management sub-
modules are as follows (steps 1 and 2 and green boxes in Figure 6.4).

1) Arriving sgrs are continuously ingested into 𝑊𝐵𝐵𝐺 (Algorithm 8, line 3 invoking
Algorithm 9). Edges are added to 𝐵𝐵𝐺 and the burstiness profile of the stream,
which includes the following four quantities, is updated online.

– 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, the current burst size
– 𝐵, the average burst size
– 𝑚𝑎𝑥𝐵, the largest seen burst size
– 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦, a boolean flag for burstiness of the arriving sgrs

𝑊𝐵𝐵𝐺 is a burst-based tumbling window (Definition 10), same as the window used in
sGrapp (described in Section 5.3). When 𝑁𝑏 bursts are seen, the window closes and
the following steps are performed (Algorithm 8, lines 4-10).
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2) The full window𝑊𝐵𝐵𝐺 is projected to𝑊𝑈𝑊𝐺𝑂 as follows (Algorithm 8, line 6 invoking
Algorithm 10 – Figure 6.5).

2.a) The structure of UWGO is updated by identifying the young butterflies, map-
ping them to UWGO vertices, and connecting the UWGO vertices.
The young butterflies (Definition 15) ⊲⊳ ∈ 𝑊𝐵𝐵𝐺 are identified using the ex-
act butterfly listing algorithm in sGrapp suit (Algorithm 10, lines 3-15). Fig-
ure 6.5(b) illustrates the eight young butterflies identified among eleven butter-
flies (butterflies incident to 𝑗1 are excluded):

⊲⊳𝑣1= {𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗2 , 𝑒𝑖2, 𝑗3 , 𝑒𝑖1, 𝑗3}

⊲⊳𝑣2= {𝑒𝑖1, 𝑗3 , 𝑒𝑖2, 𝑗3 , 𝑒𝑖2, 𝑗4 , 𝑒𝑖1, 𝑗4}
⊲⊳𝑣3= {𝑒𝑖1, 𝑗2 , 𝑒𝑖2, 𝑗2 , 𝑒𝑖2, 𝑗4 , 𝑒𝑖1, 𝑗4}
⊲⊳𝑣4= {𝑒𝑖2, 𝑗5 , 𝑒𝑖3, 𝑗5 , 𝑒𝑖3, 𝑗6 , 𝑒𝑖2, 𝑗6}
⊲⊳𝑣5= {𝑒𝑖4, 𝑗7 , 𝑒𝑖5, 𝑗7 , 𝑒𝑖5, 𝑗8 , 𝑒𝑖4, 𝑗8}
⊲⊳𝑣6= {𝑒𝑖5, 𝑗9 , 𝑒𝑖6, 𝑗9 , 𝑒𝑖6, 𝑗10 , 𝑒𝑖5, 𝑗10}
⊲⊳𝑣7= {𝑒𝑖6, 𝑗11 , 𝑒𝑖7, 𝑗11 , 𝑒𝑖7, 𝑗12 , 𝑒𝑖6, 𝑗12}
⊲⊳𝑣8= {𝑒𝑖8, 𝑗13 , 𝑒𝑖9, 𝑗13 , 𝑒𝑖9, 𝑗14 , 𝑒𝑖8, 𝑗14}

UWGO vertices are created and connected to each other (Algorithm 10, line 16
invoking Algorithm 11). Each young butterfly is mapped to a unipartite vertex
using a projection function 𝑃 : ⊲⊳ ∈ 𝑊𝐵𝐵𝐺 ↦→ 𝑣 ∈ 𝑊𝑈𝑊𝐺𝑂 . Two unipartite vertices
are connected iff the corresponding butterflies share at least one i-(j-)vertex
and the number of shared vertices determines the edge’s weight (Algorithm 10,
lines 5-19). i.e. for any UWGO vertices 𝑢 and 𝑣,

𝑒𝑣𝑛 = (𝑣, 𝑛, | ∩ (⊲⊳𝑣, ⊲⊳𝑛) |) ∈ 𝑈𝑊𝐺𝑂 ⇐⇒ 𝑣 = 𝑃(⊲⊳𝑣), 𝑛 = 𝑃(⊲⊳𝑛), | ∩ (⊲⊳𝑢, ⊲⊳𝑣) | ≥ 1

where ∩(⊲⊳𝑢, ⊲⊳𝑣) is the set of shared i-(j-)vertices in ⊲⊳𝑢 and ⊲⊳𝑣. In user-item
streams, i-vertex based connections reveal patterns of user preferences over new
items and j-vertex based connections reveal patterns of new item perceptions.
For example, in Figure 6.5(c), 𝑣1 and 𝑣2 are connected by an edge with weight
equal to two since ⊲⊳𝑣1 and ⊲⊳𝑣2 share two i-vertices 𝑖1 and 𝑖2.

2.b) The local data structures are set to null. Also, all of the sgrs in 𝑊𝐵𝐵𝐺 are
retired to free up memory and avoid redundant updates to the system state
(Algorithm 10, line 17).
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𝑖1 𝑖2 𝑖3 𝑖4 𝑖5 𝑖6 𝑖7 𝑖8 𝑖9

𝑗1 𝑗2 𝑗3 𝑗4 𝑗5 𝑗6 𝑗7 𝑗8 𝑗9 𝑗10 𝑗11 𝑗12 𝑗13 𝑗14

(a)

𝑖1

𝑖2 𝑖3

𝑖4 𝑖5

𝑖6

𝑖7

𝑖8 𝑖9

𝑗1 𝑗2 𝑗3 𝑗4

𝑗5 𝑗6

𝑗7 𝑗8 𝑗9 𝑗10

𝑗11 𝑗12

𝑗13 𝑗14

(b)

𝑣3 𝑣2 𝑣5 𝑣7

𝑣4 𝑣1 𝑣6 𝑣8

2

1
2

2
1
1

1 1

(c)

𝜃8 = 0

𝜃5,𝜃7 = 0.23𝜋

𝜃6 = 0.58𝜋

𝜃1 = 1.2𝜋
𝜃2 = 1.27𝜋
𝜃3 = 1.33𝜋

𝜃4 = 1.38𝜋

(d)

Figure 6.5: Projecting 𝐺𝐵𝐵𝐺 to UWGO. (a) 𝐺𝐵𝐵𝐺 . (b) Identified young butterflies with
shared i-vertices. (c) Structure of UWGO. Where not clear, the label on the right side of
an edge denotes the weight. (d) Phases of UWGO vertices.

2.c) The attributes of UWGO vertices (connected phase oscillators) are updated
(Algorithm 10, lines 18-23). To this end, each vertex 𝑣 ∈ 𝑊𝑈𝑊𝐺𝑂 is assigned a
frequency Ω𝑣 sampled from a normal distribution with mean equal to one and
a phase 𝜃𝑣 = (∑𝑛∈𝑁 (𝑣) 𝐻 (𝑛))%2𝜋, where 𝐻 (𝑛) is the hash code of the object2
representing the vertex 𝑛. Isolated vertices would have 𝜃 = 0 and vertices with
same neighbourhoods would have same phases. Figure 6.5(d) shows example
phases for oscillators, where ⊲⊳𝑣8 has 𝜃 = 0 since it is not connected to other
butterflies, ⊲⊳𝑣5 and ⊲⊳𝑣7 have a same phase as they have one shared neighbour
⊲⊳𝑣6 , and the rest of butterflies except for ⊲⊳𝑣6 have close phases due to similar
neighbourhoods.

2The hash code is implemented using Java method hashCode() which must consistently return the same
integer for ’equal’ objects during one execution of a Java application. This method is not required to return
distinct integers for unequal objects by general contract indicated in https://docs.oracle.com/. In
sGradd ’s implementation, this concern is resolved since the butterflies are distinct and their corresponding
vertex objects are unequal.
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Algorithm 9: Add sgrs into 𝑊𝐵𝐵𝐺 and update burstiness profile of the stream
1 Function ingest(𝑟 𝑡, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, 𝐵, 𝑚𝑎𝑥𝐵, 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦)

Data: 𝑟 𝑡 , a sgr with index 𝑡
Input:
𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, the current burst size
𝐵, average burst size
𝑚𝑎𝑥𝐵, the largest seen burst size
𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦, a boolean flag for burstiness of stream
Output:
⟨𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, 𝐵, 𝑚𝑎𝑥𝐵, 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦⟩, updated burstiness profile

2 if 𝑟 𝑡 ∉ 𝐵𝐵𝐺 then
3 𝐵𝐵𝐺.𝑎𝑑𝑑 (𝑟 𝑡 = (𝑣𝑡

𝑖
, 𝑣𝑡

𝑗
, 𝜏𝑡))

4 if 𝑢𝑛𝑞𝑡 ∋ 𝜏𝑡 then
5 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵 + +
6 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦 ← (𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵 > 𝐵 & 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵 > 𝑚𝑎𝑥𝐵)

7 else
8 𝐵← (𝐵 × |𝑢𝑛𝑞𝑡 | + 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵)/(|𝑢𝑛𝑞𝑡 | + 1)
9 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵← 1

10 if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵 > 𝑚𝑎𝑥𝐵 then
11 𝑚𝑎𝑥𝐵← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵

12 return ⟨𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝐵, 𝐵, 𝑚𝑎𝑥𝐵, 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦⟩
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Algorithm 10: Project 𝑊𝐵𝐵𝐺 to 𝑊𝑈𝑊𝐺𝑂

1 Function project(𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, 𝑢𝑛𝑞𝑡, 𝐵𝐵𝐺,𝑈𝑊𝐺𝑂, 𝑏2𝑣)
Input:
𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, a boolean flag
𝑢𝑛𝑞𝑡, a hash set of seen unique timestamps
𝐵𝐵𝐺 = (𝑉𝑖 ∪𝑉 𝑗 , 𝐸𝑖 𝑗 ), the bipartite graph structure to capture arriving sgrs
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
𝑏2𝑣, A hash map of butterflies to UWGO vertices
Output: 𝑈𝑊𝐺𝑂, updated 𝑈𝑊𝐺𝑂

2 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠← ∅, 𝑗𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← ∅, 𝑣𝑖2𝑠← ∅, 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡 ← ∅, 𝑖2𝑏 ← ∅,
𝑗2𝑏 ← ∅

3 forall 𝑖1 ∈ 𝑉𝑖 do
4 𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑠𝑜𝑟𝑡 (𝑢𝑛𝑞𝑡)
5 𝑠𝑜𝑟𝑡𝑒𝑑 ← 𝑠𝑜𝑟𝑡𝑒𝑑 [|𝑢𝑛𝑞𝑡 | − [|𝑢𝑛𝑞𝑡 |/4], .., |𝑢𝑛𝑞𝑡 | − 1]
6 𝑦𝑜𝑢𝑛𝑔𝐽𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠← ∀𝑣 𝑗 ∈ 𝑁 𝑗 (𝑖1) : 𝑣 𝑗 .𝜏 ∈ 𝑠𝑜𝑟𝑡𝑒𝑑
7 forall 𝑖𝑛𝑑𝑒𝑥1 ∈ [1, |𝑦𝑜𝑢𝑛𝑔𝐽𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) |] do
8 𝑗1 ← 𝑦𝑜𝑢𝑛𝑔𝐽𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖𝑛𝑑𝑒𝑥1]
9 forall 𝑖𝑛𝑑𝑒𝑥2 ∈ [𝑖𝑛𝑑𝑒𝑥1 + 1, |𝑦𝑜𝑢𝑛𝑔𝐽𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠) |] do

10 𝑗2 ← 𝑦𝑜𝑢𝑛𝑔𝐽𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠[𝑖𝑛𝑑𝑒𝑥2]
11 𝑖2𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠← 𝑁𝑖 ( 𝑗1) ∩ 𝑁𝑖 ( 𝑗2)
12 forall 𝑖2 ∈ 𝑖2𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠, 𝑖2 ≠ 𝑖1 do
13 ⊲⊳← [𝑖1.𝐼𝐷, 𝑗1.𝐼𝐷, 𝑖2.𝐼𝐷, 𝑗2.𝐼𝐷]
14 if ⊲⊳∉ 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠 then
15 𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑖𝑒𝑠.𝑎𝑑𝑑 (⊲⊳)
16 𝑢𝑝𝑑𝑎𝑡𝑒𝑈𝑊𝐺𝑂𝑠𝑡𝑟𝑢𝑐𝑡𝑢𝑟𝑒(⊲⊳,𝑈𝑊𝐺𝑂, 𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, 𝑏2𝑣)

17 𝑖2𝑏 ← ∅, 𝑗2𝑏 ← ∅, 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡 ← ∅, 𝐵𝐵𝐺 ← ∅
18 forall 𝑣 ∈ 𝑉 do
19 forall 𝑛 ∈ 𝑁 (𝑣) do
20 𝜃𝑣+ = 𝑛.ℎ𝑎𝑠ℎ𝐶𝑜𝑑𝑒()
21 𝜃𝑣 = 𝜃𝑣 % 2𝜋
22 v.setPhase(𝜃𝑣)
23 Ω𝑣 ← sample from a Gaussian distribution
24 v.setFrequency(Ω𝑣)

25 return 𝑈𝑊𝐺𝑂
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Algorithm 11: Update the structure of UWGO
1 Function updateUWGOstructure(⊲⊳,𝑈𝑊𝐺𝑂, 𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, 𝑏2𝑣)

Input:
⊲⊳, a butterfly
𝑖𝑉𝑒𝑟𝑡𝑒𝑥𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛, a boolean flag
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
𝑏2𝑣, A hash map of butterflies to UWGO vertices

2 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡 ← ∅
3 𝑖2𝑏.𝑝𝑢𝑡 (⟨𝑖1 : ⊲⊳⟩, ⟨𝑖2 : ⊲⊳⟩)
4 𝑗2𝑏.𝑝𝑢𝑡 (⟨ 𝑗1 : ⊲⊳⟩, ⟨ 𝑗2 : ⊲⊳⟩)
5 𝑣 ← new UWGO vertex with 𝜃 = 0, Ω = 0, 𝐼𝐷 = 0
6 𝑣.𝑠𝑒𝑡𝐼𝐷 (𝑣.ℎ𝑎𝑠ℎ𝐶𝑜𝑑𝑒())
7 𝑈𝑊𝐺𝑂.𝑎𝑑𝑑 (𝑣)
8 𝑏2𝑣.𝑝𝑢𝑡 (⟨⊲⊳, 𝑣⟩)
9 if iVertexConnection then

// add all butterflies adjacent to 𝑖1 and 𝑖2 to mergedList
10 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙 (𝑖2𝑏.𝑔𝑒𝑡 (𝑖1.𝐼𝐷))
11 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙 (𝑖2𝑏.𝑔𝑒𝑡 (𝑖2.𝐼𝐷))
12 else

// add all butterflies adjacent to 𝑗1 and 𝑗2 to mergedList
13 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙 ( 𝑗2𝑏.𝑔𝑒𝑡 ( 𝑗1.𝐼𝐷))
14 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡.𝑎𝑑𝑑𝐴𝑙𝑙 ( 𝑗2𝑏.𝑔𝑒𝑡 ( 𝑗2.𝐼𝐷))
15 forall ⊲⊳∈ 𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡 do
16 𝑢 ← 𝑏2𝑣.𝑔𝑒𝑡 (⊲⊳)
17 if 𝑣 ≠ 𝑢 then
18 𝑒 ← new UWGO edge between 𝑢 and 𝑣 with weight=|𝑚𝑒𝑟𝑔𝑒𝑑𝐿𝑖𝑠𝑡 |
19 𝑈𝑊𝐺𝑂.𝑎𝑑𝑑 (𝑒)
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6.3.4 Drift Detection

The sequential procedures of drift criteria and drift evaluation sub-modules are as follows
(steps 3-7 and yellow boxes in Figure 6.4).

Drift Criteria. The degree of global synchronization (phase coherence) is calculated
as a drift criterion (Algorithm 8, lines 2-5). The intuition is that, a UWGO vertex embeds
a butterfly in BBG and its phase embeds the neighbourhood of the vertex. Therefore,
global phase synchronization of UWGO vertices reflects the neighbourhood similarities
in UWGO, which in turn reflects the density of butterfly inter-connections in BBG. The
global phase synchronization in UWGO at time point 𝑡 is quantified using a metric called
order parameter [280]:

𝑂 [𝑡] = ((
∑︁
𝑣∈𝑉

𝑠𝑖𝑛𝜃𝑣)2 + (
∑︁
𝑣∈𝑉

𝑐𝑜𝑠𝜃𝑣)2)
1
2 /|𝑉 |

0 ≤ 𝑂 [𝑡] ≤ 1, the higher the value of 𝑂 [𝑡], the greater the degree of synchronization.
𝑂 [𝑡] = 1 denotes a phase synchrony state where all of the vertices have a same phase.
Two sequences of the order parameter, 𝑂1 and 𝑂2, as the current and future state of the
transient concept are recorded over time:

3) The order parameter is first computed over UWGO’s structure and phases as 𝑂1 [𝑡]
(Algorithm 8, line 2). The phases in Figure 6.5(d) would result in 01 [𝑡] = 0.17.

4) The next phases in UWGO (Θ′ = {𝜃′𝑣}) are estimated. To this end, Kuramoto
model [280] is used. This model provides a mathematically tractable and simple
realization of dynamic process of phase oscillation on complex networks. Given the
current/initial phases in the network Θ = {𝜃𝑣}, edge weights {𝑤𝑣𝑛}, and frequencies
{Ω𝑣}, Kuramoto model provides the phase evolution of a vertex 𝑣 as 𝑑𝜃𝑣

𝑑𝑡
= Ω𝑣 +∑

𝑛∈𝑁 (𝑣) 𝑤𝑣𝑛𝑠𝑖𝑛(𝜃𝑣 − 𝜃𝑛). This ordinary differential equation is solved using Runge
Kutta method with ℎ = 0.01 (Algorithm 8, line 3).

𝜃′𝑣 = 𝜃𝑣 +
ℎ

6
(𝐾 (1)𝑣 + 2𝐾 (2)𝑣 + 2𝐾 (3)𝑣 + 𝐾 (4)𝑣)

𝐾 (1)𝑣 = Ω𝑣 + Σ𝑛∈𝑁 (𝑣)𝑤𝑣𝑛 sin (𝜃𝑛 − 𝜃𝑣)

𝐾 (2)𝑣 = Ω𝑣 + Σ𝑛∈𝑁 (𝑣)𝑤𝑣𝑛 sin (𝜃𝑛 +
ℎ

2
𝐾 (1)𝑛 − 𝜃𝑣 −

ℎ

2
𝐾 (1)𝑣)

𝐾 (3)𝑣 = Ω𝑣 + Σ𝑛∈𝑁 (𝑣)𝑤𝑣𝑛 sin (𝜃𝑛 +
ℎ

2
𝐾 (2)𝑛 − 𝜃𝑣 −

ℎ

2
𝐾 (2)𝑣)

154



𝐾 (4)𝑣 = Ω𝑣 + Σ𝑛∈𝑁 (𝑣)𝑤𝑣𝑛 sin (𝜃𝑛 + ℎ𝐾 (3)𝑛 − 𝜃𝑣 − ℎ𝐾 (3)𝑣)
The model results in the following phases for the example UWGO snapshot in Fig-
ure 6.5: 𝜃′1 = 0.12, 𝜃′2 = −0.07, 𝜃′3 = −0.14, 𝜃′4 = −0.16, 𝜃′5 = 0, 𝜃′6 = −0.2, 𝜃′7 = 0.05,
𝜃′8 = −0.18.

5) The order parameter is again computed as 𝑂2 [𝑡] over the same structure of UWGO,
yet predicted phases Θ′ = {𝜃′𝑣} as the phases of oscillators (Algorithm 8, lines 4-5).
The computed phases in the running example have 𝑂2 [𝑡] = 0.87.

Drift Evaluation. A drift is detected by evaluating the trend of evolutions of 𝑂1 and 𝑂2

(Algorithm 8, line 9).

6) Two versions are proposed for Drift Evaluation sub-module: V1 (Algorithm 15) and
V2 (Algorithm 16). Both algorithms signal a drift when two conditions 𝐶1 and 𝐶2

are satisfied.

𝐶1: a local maximum/minimum is observed in 𝑂2.

𝐶2: 𝑂1 remains steadily fixed.

The algorithms differ in the way they check for 𝐶1 and 𝐶2. Algorithm V1 implements
𝐶1 as (10𝛼𝜇1 − 10𝛼𝑂1 [𝑡])/10𝛼 < 10−𝛼, where

– 𝜇1 is the average of last 𝑆 values of 𝑂1,

– 𝑂1 [𝑡] is the most recent value in 𝑂1, and

– 𝛼 is a dynamic value used for determining (a) a threshold and (b) a precision
for difference of 𝜇1 and 𝑂1 [𝑡].

Algorithm V1 implements 𝐶2 as (𝑁𝑚𝑜𝑟𝑒 ≥ 𝑆′ or 𝑁𝑙𝑒𝑠𝑠 ≥ 𝑆′), where

– 𝑁𝑚𝑜𝑟𝑒 and 𝑁𝑙𝑒𝑠𝑠 denote the number of elements in the most recent suffix of 𝑆
elements in 𝑂2 that are greater and less than 𝑂2 [𝑡], respectively, and

– 𝑆′ is a fraction of 𝑆.

Soon after a drift occurs, the structure of streaming graph perturbs and 𝑂1 and 𝑂2

experience frequent fluctuations, therefore 𝐶1 and 𝐶2 should adapt to these pertur-
bations through proper setting of 𝑆, 𝑆′, and 𝛼.
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– 𝑆 is determined based on a function of the number of detections, 𝑑 (Algo-
rithm 15, line 2). 𝑆 decreases slowly as 𝑑 increases, therefore 𝜇1, 𝑁𝑚𝑜𝑟𝑒, and
𝑁𝑙𝑒𝑠𝑠 are computed over smaller suffix sizes to pass the fluctuated values.

– 𝑆′ decreases with a rate of 0.05 as the number of detections increases in order
to make 𝐶2 easier and avoid missing drifts.

– 𝛼 is calculated as the current number of detections plus two; therefore, as de-
tections increase, 𝐶1 gets more difficult in order to avoid false detections.

Algorithm V2 implements 𝐶1 similar to V1 except that the threshold is higher (5 ×
10−𝛼) and 𝜇1 is calculated over 𝑆′ elements. Also, 𝐶2 is the same as in V1, however
𝑆 is determined based on a function of average burst size, maximum burst size seen,
as well as 𝑑 (Algorithm 16, line 2). This function makes 𝑆 increasing and decreasing
by a factor depending on the size of the burst arrivals. Overall, these strategies aim
reaching a balanced state between sensitivity and robustness.

7) Finally, the predicate-based window 𝑊𝑈𝑊𝐺𝑂 retires a fraction of its randomly se-
lected vertices if the stream is identified as bursty (i.e. when a burst arrives whose
size is greater than both the maximum seen burst size and the average burst size
(Algorithm 8, line 10 invoking Algorithm 17). The fraction of vertices for removal is
determined by a function of maximum seen burst size to adapt the window size (equiv-
alently the number of vertices in UWGO) to the stream burstiness. Consequently
the workload imposed to the data management and drift detection components in
the next round would be balanced across the timeline of burst arrivals.

6.4 Performance Evaluation

In the following, the effectiveness and efficiency of sGradd are tested from three perspec-
tives:

• Accuracy (Sections 6.4.1 and 6.4.3). The ability of sGradd to effectively detect con-
cept drifts is examined under different drift patterns and drift intervals.

• Latency (Section 6.4.2 and 6.4.3). The detection latency is examined under different
drift patterns and drift intervals.

• Complexity analysis (Section 6.4.5). The computational complexity of sGradd is
analyzed theoretically.
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Algorithm 12: Drift Criteria
1 Function DriftCriteria(𝑈𝑊𝐺𝑂, 𝑡)

Input:
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
𝑡, current time step
Output:
⟨𝑂1, 𝑂2⟩, updated sequences of order parameters for observed and estimated
phases

2 𝑂1 [𝑡] ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑟𝑑𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑈𝑊𝐺𝑂)
3 Θ′← 𝐾𝑢𝑟𝑎𝑚𝑜𝑡𝑜(𝑈𝑊𝐺𝑂, 0.01)
4 𝑈𝑊𝐺𝑂.𝑠𝑒𝑡𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑃ℎ𝑎𝑠𝑒𝑠(Θ′)
5 𝑂2 [𝑡] ← 𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑂𝑟𝑑𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 (𝑈𝑊𝐺𝑂)
6 return ⟨𝑂1, 𝑂2⟩

Algorithm 13: Compute Order Parameter
Input:
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
Output: 𝑜, order parameter value

1 Function computeOrderParameter(𝑈𝑊𝐺𝑂)
2 forall 𝑣 ∈ 𝑉 do
3 𝑠𝑢𝑚𝑐+ = 𝑐𝑜𝑠𝑖𝑛𝑒(𝜃𝑣)
4 𝑠𝑢𝑚𝑠+ = 𝑠𝑖𝑛𝑒(𝜃𝑣)

5 𝑜 = (𝑠𝑢𝑚2
𝑐 + 𝑠𝑢𝑚2

𝑠 )
1
2

6 return 𝑜

Data. Simulated streaming graphs with ground truth about drift time and pattern are
used in the experiments. While sGradd works over unbounded stream length, for the
purpose of evaluations, synthetic streams with size |ℜ| = 106 are used. Streams are
generated by sGrow, given a prefix of 1000 sgrs from Amazon user-item stream. sGrow as
a configurable model enables generating sgrs through adding bursts such that the streaming
graph reproduces realistic subgraph emergence patterns. Therefore, it enables simulating
a drift in a hidden context (generative process) rather than an explicit drift in the target
concept (subgraph inter-connectivity patterns).

A drift is introduced to the generative process by increasing/decreasing two parame-
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Algorithm 14: Compute the Kuramoto phases via Runge Kutta method
1 Function Kuramoto(𝑈𝑊𝐺𝑂, ℎ)

Input:
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
ℎ, a numerical parameter
Output: Θ′, set of computed phases

2 forall 𝑣 ∈ 𝑉 do
3 𝑠𝑢𝑚 ← 0
4 forall 𝑛 ∈ 𝑁 (𝑣) do
5 𝑠𝑢𝑚+ = 𝑤𝑛𝑣𝑠𝑖𝑛(𝜃𝑢 − 𝜃𝑛)
6 𝐾1𝑣 ← Ω𝑣 + 𝑠𝑢𝑚
7 forall 𝑣 ∈ 𝑉 do
8 𝑠𝑢𝑚 ← 0
9 forall 𝑛 ∈ 𝑁 (𝑣) do

10 𝑠𝑢𝑚+ = 𝑤𝑛𝑣𝑠𝑖𝑛(𝜃𝑢 + ℎ
2𝐾1𝑣 − 𝜃𝑛 −

ℎ
2𝐾1𝑛)

11 𝐾2𝑣 ← Ω𝑣 + 𝑠𝑢𝑚
12 forall 𝑣 ∈ 𝑉 do
13 𝑠𝑢𝑚 ← 0
14 forall 𝑛 ∈ 𝑁 (𝑣) do
15 𝑠𝑢𝑚+ = 𝑤𝑛𝑣𝑠𝑖𝑛(𝜃𝑢 + ℎ

2𝐾2𝑣 − 𝜃𝑛 −
ℎ
2𝐾2𝑛)

16 𝐾3𝑣 ← Ω𝑣 + 𝑠𝑢𝑚
17 forall 𝑣 ∈ 𝑉 do
18 𝑠𝑢𝑚 ← 0
19 forall 𝑛 ∈ 𝑁 (𝑣) do
20 𝑠𝑢𝑚+ = 𝑤𝑛𝑣𝑠𝑖𝑛(𝜃𝑢 + ℎ𝐾3𝑣 − 𝜃𝑛 − ℎ𝐾3𝑛)
21 𝐾4𝑣 ← Ω𝑣 + 𝑠𝑢𝑚
22 forall 𝑣 ∈ 𝑉 do
23 𝜃′𝑣 ← 𝜃𝑣 + ℎ

6 (𝐾1𝑣 + 2𝐾2𝑣 + 2𝐾3𝑣 + 𝐾4𝑣)
24 Θ′.𝑎𝑑𝑑 (𝜃′𝑣)
25 return Θ′

ters of sGrow that contribute the most to the emergence of butterflies and caterpillars:
[𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] (range of preferential random walk dynamic lengths), and 𝜌 (burst connection
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Algorithm 15: Drift Detection V1
1 Function DetectDriftv1(𝑂1, 𝑂2, 𝑑, 𝑡, 𝑤𝑖𝑛𝑁𝑢𝑚)

Input: 𝑂1, sequence of order parameter values for observed phases
𝑂2, sequence of order parameter values for estimated phases
𝑑, number of detections
𝑡, current timestep, index of the last ingested sgr
𝑤𝑖𝑛𝑁𝑢𝑚, current window number
Output: Drift event with description

2 𝑆 ← 500(𝑑 + 2)/(𝑑 + 1)
3 𝑆′← (1 − 0.05𝑑)𝑆
4 𝜇1 ← mean of last 𝑆 values in 𝑂1

5 𝑁𝑚𝑜𝑟𝑒 ← number of elements among the last 𝑆 elements of 𝑂2 which are
greater than 𝑂2 [𝑡]

6 𝑁𝑙𝑒𝑠𝑠← number of elements among the last 𝑆 elements of 𝑂2 which are less
than 𝑂2 [𝑡]

7 𝛼← 𝑑 + 2
8 if ( | [(10𝛼𝜇1 − 10𝛼𝑂1 [𝑡])] |/10𝛼) < 10−𝛼) & (𝑁𝑚𝑜𝑟𝑒 ≥ 𝑆′ or 𝑁𝑙𝑒𝑠𝑠 ≥ 𝑆′) then
9 Signal a drift at sgr index ≤ 𝑡 and window 𝑤𝑖𝑛𝑁𝑢𝑚

10 𝑑 + +
11 return 𝑑

probability). Two other parameters of the model (window parameter 𝛽 and batch size 𝑀)
are fixed. Parameters are set as follows:

• 𝑀 and 𝛽 can be set to any user-specified value without affecting the patterns of
generated stream. Therefore, the default values 𝛽 = 5 and 𝑀 = 10 are used in the
experiments.

• The default value for 𝜌 is 0.3 and for [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] is [1, 2]. Increasing 𝜌 to values
less than 0.7 and expanding the range of [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] ensure preserving butterfly
emergence patterns, while decreasing the generation time and increasing burst size.
Therefore, 𝜌 = 0.4 and [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] = [1, 4] are used as initial values to reduce the
generation time while preserving realistic patterns and leaving room for increment
during drift simulation.

For gradual CD (Figure 6.6(a)), parameters switch as follows:
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Algorithm 16: Drift Detection V2
1 Function DetectDriftv2(𝐵, 𝑚𝑎𝑥𝐵,𝑂1, 𝑂2, 𝑑, 𝑡, 𝑤𝑖𝑛𝑁𝑢𝑚)

Input: 𝐵, average burst size
𝑚𝑎𝑥𝐵, Maximum seen burst size
𝑂1, sequence of order parameter values for observed phases
𝑂2, sequence of order parameter values for estimated phases
𝑑, number of detections
𝑡, current timestep, index of the last ingested sgr
𝑤𝑖𝑛𝑁𝑢𝑚, current window number
Output: Drift event with description

2 𝑆 ← 1000( ⌊𝑙𝑜𝑔10 (𝑀𝑎𝑥(𝑚𝑎𝑥𝐵,100))⌋⌊𝑙𝑜𝑔10 (𝑀𝑎𝑥(𝐵,10))⌋
) (−1)𝑑

3 𝑆′← (1 − 0.05𝑑)𝑆
4 𝜇1 ← mean of last 𝑆′ values in 𝑂1

5 𝑁𝑚𝑜𝑟𝑒 ← number of elements among the last 𝑆 elements of 𝑂2 which are
greater than 𝑂2 [𝑡]

6 𝑁𝑙𝑒𝑠𝑠← number of elements among the last 𝑆 elements of 𝑂2 which are less
than 𝑂2 [𝑡]

7 𝛼← 𝑑 + 2
8 if ( | [(10𝛼𝜇1 − 10𝛼𝑂1 [𝑡])] |/10𝛼) < 5 × 10−𝛼) & (𝑁𝑚𝑜𝑟𝑒 ≥ 𝑆′ or 𝑁𝑙𝑒𝑠𝑠 ≥ 𝑆′)

then
9 Signal a drift at sgr index ≤ 𝑡 and window 𝑤𝑖𝑛𝑁𝑢𝑚

10 𝑑 + +
11 return 𝑑

• [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] = [1, 4] and 𝜌 = 0.3 increase to [3, 4] and 0.6 when 2/5|ℜ| or 4/5|ℜ|
sgrs are generated.

• [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] = [3, 4] and 𝜌 = 0.6 decrease to [1, 4] and 0.3 when 3/5|ℜ| sgrs are
generated.

For recurring CD (Figure 6.6(b)), parameters switch as follows:

• [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] = [1, 4] and 𝜌 = 0.3 increase to [3, 4] and 0.6 when 2/5|ℜ| sgrs are
generated.

• [𝐿𝑚𝑖𝑛, 𝐿𝑚𝑎𝑥] = [3, 4] and 𝜌 = 0.6 decrease to [1, 4] and 0.3 when 3/5|ℜ| sgrs are
generated.
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Algorithm 17: Slide
1 Function slide(𝑈𝑊𝐺𝑂)

Input:
𝑈𝑊𝐺𝑂 = (𝑉, 𝐸), the graph structure to maintain the system state
𝑘, current window number
Output:
⟨𝑈𝑊𝐺𝑂,𝑘⟩, updated system state

2 if 𝑖𝑠𝐵𝑢𝑟𝑠𝑡𝑦 & 𝑈𝑊𝐺𝑂 ≠ ∅ then
3 Randomly remove 0.1𝑙𝑜𝑔2𝑚𝑎𝑥𝐵 of vertices in 𝑉

4 𝑤𝑖𝑛𝑁𝑢𝑚 + +
5 return ⟨𝑈𝑊𝐺𝑂,𝑘⟩

2|ℜ|
5

3|ℜ|
5

4|ℜ|
5

0.4,[1,4]
0.6,[3,4]

(a) Gradual CD

2|ℜ|
5

3|ℜ|
5

0.4,[1,4]
0.6,[3,4]

(b) Reoccurring CD

Figure 6.6: Evolution of sGrow ’s parameters over the timeline of sgr generation.

Drift intervals of 1× 105 and 2× 105 sgrs are used. The timestamp at which the drift is
introduced is recorded for the evaluations. Five stream instances are generated per pattern
per drift interval for a total of 20 streams. The streams are denoted as 𝑅𝑎𝑏 and 𝐺𝑎𝑏, where

• 𝑅 refers to recurring drifts.

• 𝐺 refers to gradual drifts.

• 𝑎 = 1 refers to a stream with drift interval of 1 × 105 sgrs (called close-drift stream).

• 𝑎 = 2 refers to a stream with drift interval of 2 × 105 sgrs (called far-drift stream).

• 𝑏 ∈ {1, 2, 3, 4, 5} refers to the stream instance number.

Butterflies are connected through shared j-vertices. 𝑁𝑏 = 1 is fixed in all experiments since
the data streams are bursty.
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Metrics. Two variants of V2 are considered, one with decreasing rate of 0.05 for S′ (V2
0.05) and the other with 0.1 (V2 0.1) to evaluate the impact of this value.

The effectiveness of Algorithms V1 and V2 is evaluated with respect to accuracy. The
accuracy is evaluated using three rates computed over 50 executions of sGradd over each
data stream:

• True detection rate (𝑇): the fraction of detections that are true (precede a drift
within less than 30 seconds or the first detection following a drift).

• False detection rate (𝐹): the fraction of detections which duplicate a true detection
(𝐹𝑑𝑢𝑝) or fraction of detections which occur early in the stream before any drift
happens (𝐹𝑒𝑎𝑟𝑙𝑦).

• Miss detection rate (𝑀): the fraction of drifts that are not detected.

𝑇𝑖/𝐹
𝑑𝑢𝑝

𝑖
/𝑀𝑖 denote the true/false/miss detection rates of the 𝑖-th drift, that is the fraction

is calculated over the detections corresponding to 𝑖-th drift. 𝑇/𝐹/𝑀 denote the overall
rates, that is the fraction is calculated over all detections. Therefore, the following hold:

𝑇𝑖 + 𝐹𝑒𝑎𝑟𝑙𝑦 + 𝐹𝑑𝑢𝑝𝑖
= 1, 𝑖 = 1

𝑇𝑖 + 𝐹𝑑𝑢𝑝𝑖
= 1, 𝑖 ≠ 1

𝑇 + 𝐹 = 1

The efficiency of V1 and V2 is evaluated by measuring the detection delay, which is
defined as the elapsed time (in milliseconds) between a true detection and a drift. Average
detection delays are calculated over 50 execution instances of algorithms. Delay-𝑖 denotes
the average detection delay for 𝑖-th drift. The reported numbers for latency and accuracy
correspond to the same execution of algorithms.

When the drifts are closer to each other (i.e. in 𝑅11 − 𝑅15 and 𝐺11 − 𝐺15), there is
a concern about the evaluation of both accuracy and latency since the detection can be
delayed to a time point after the next drifts [173]. In such situations, we cannot be certain
whether a detection is a duplicate false detection or it is a delayed detection corresponding
to previous drifts. In another view, we cannot be certain whether a detection is missed or
delayed to a time after subsequent drifts. To address this concern, the accuracy rates and
latency of the sequential drifts are evaluated simultaneously for 𝑅11 − 𝑅15 and 𝐺11 − 𝐺15

and individually for 𝑅21 − 𝑅25 and 𝐺21 − 𝐺25.
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Computing setup. Experiments are conducted on a machine with 15.6 GB native mem-
ory and Intel Core 𝑖7 − 6770𝐻𝑄𝐶𝑃𝑈@2.60𝐺𝐻𝑧 ∗ 8 processor. All algorithms are imple-
mented in Java (OpenJDK 17.0.5).

6.4.1 Accuracy over far-drift streams

Table 6.2: True detection rates of V1 and V2.
Bold numbers in each row denote the top values of 𝑇𝑖/𝑇 among three versions.

V1 V2 0.05 V2 0.1
𝑇1 𝑇2 𝑇3 𝑇 𝑇1 𝑇2 𝑇3 𝑇 𝑇1 𝑇2 𝑇3 𝑇

𝑅11 0.94 0.26 0.32 1 0.36 0.36 0.55 0.48 0.49
𝑅12 0.5 0.26 0.27 0.56 0.65 0.6 0.4 0.87 0.48
𝑅13 0.48 0.4 0.43 0.42 0.77 0.53 0.37 0.96 0.46
𝑅14 0.57 0.3 0.36 0.43 0.64 0.52 0.41 0.88 0.59
𝑅15 0.53 0.01 0.23 0.54 0.64 0.59 0.6 0.62 0.61

𝑅21 0.61 0.88 0.7 0.39 0.72 0.49 0.33 0.25 0.38
𝑅22 0.8 0.75 0.77 0.46 0.62 0.53 0.37 0.76 0.44
𝑅23 0.82 0.32 0.38 0.5 0.68 0.57 0.35 0.81 0.43
𝑅24 0.79 0.39 0.5 0.47 0.28 0.37 0.33 0.96 0.42
𝑅25 0.55 0.49 0.51 0.46 0.61 0.52 0.38 0.95 0.46

𝐺11 0.91 1 0.91 0.91 0.92 0 0.82 0.86 0.85 0 0.53 0.61
𝐺12 0.63 0.8 0.79 0.72 0.67 1 0.87 0.8 0.59 1 0.88 0.75
𝐺13 0.63 0.69 0.85 0.69 0.56 1 0.93 0.72 0.58 1 0.67 0.68
𝐺14 0.68 0 0.7 0.78 0.88 1 0.74 0.84 0.68 0.93 0.58 0.78
𝐺15 0.79 0.8 1 0.83 0.9 1 1 0.95 0.77 1 0.87 0.85

𝐺21 0.64 0.64 0.88 0.69 0.46 0.75 0.9 0.61 0.35 0.76 0.91 0.48
𝐺22 0.89 0.45 0.75 0.54 0.54 0.71 0.8 0.65 0.42 0.75 0.84 0.55
𝐺23 0.69 0.44 1 0.51 0.6 0.91 0.9 0.8 0.59 0.88 0.71 0.67
𝐺24 0.71 0.56 0.9 0.61 0.78 0.6 0.83 0.7 0.54 0.7 0.96 0.66
𝐺25 1 0.5 0.62 0.58 0.83 0.88 0.95 0.87 0.6 0.76 1 0.67
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Table 6.3: False detection rates of V1 and V2.
Bold numbers in each row denote the lowest values of 𝐹𝑖/𝐹 among three versions.

V1 V2 0.05 V2 0.1
𝐹𝑒𝑎𝑟𝑙𝑦 𝐹

𝑑𝑢𝑝

1 𝐹
𝑑𝑢𝑝

2 𝐹
𝑑𝑢𝑝

3 𝐹 𝐹𝑒𝑎𝑟𝑙𝑦 𝐹
𝑑𝑢𝑝

1 𝐹
𝑑𝑢𝑝

2 𝐹
𝑑𝑢𝑝

3 𝐹 𝐹𝑒𝑎𝑟𝑙𝑦 𝐹
𝑑𝑢𝑝

1 𝐹
𝑑𝑢𝑝

2 𝐹
𝑑𝑢𝑝

3 𝐹

𝑅11 0 0.06 0.74 0.68 0 0 0.64 0.64 0 0.44 0.52 0.51
𝑅12 0 0.5 0.74 0.73 0 0.44 0.35 0.4 0 0.6 0.13 0.52
𝑅13 0.15 0.37 0.6 0.57 0 0.58 0.23 0.47 0 0.63 0.04 0.54
𝑅14 0.31 0.12 0.54 0.64 0.18 0.36 0.48 0.08 0.32 0.27 0.12 0.23
𝑅15 0.16 0.31 0.99 0.77 0 0.46 0.36 0.41 0 0.4 0.38 0.39

𝑅21 0.13 0.39 0.12 0.3 0 0.61 0.28 0.51 0 0.67 0.07 0.62
𝑅22 0.08 0.12 0.25 0.23 0.02 0.52 0.38 0.37 0.05 0.58 0.24 0.56
𝑅23 0.18 0 0.69 0.62 0.01 0.49 0.32 0.43 0.03 0.62 0.19 0.57
𝑅24 0.04 0.17 0.61 0.5 0 0.52 0.71 0.63 0.01 0.66 0.04 0.58
𝑅25 0.08 0.37 0.51 0.49 0 0.54 0.39 0.48 0 0.62 0.05 0.54

𝐺11 0 0.09 0 0.09 0.09 0 0.08 0 0.18 0.14 0 0.15 0 0.47 0.39
𝐺12 0 0.37 0.2 0.21 0.28 0 0.33 0 0.12 0.2 0 0.4 0 0.12 0.25
𝐺13 0.08 0.29 0.31 0.15 0.31 0.05 0.39 0 0.06 0.28 0.11 0.31 0 0.33 0.32
𝐺14 0.2 0.14 0 0.3 0.22 0 0.12 0 0.26 0.16 0 0.32 0.07 0.42 0.32
𝐺15 0.14 0.07 0.2 0 0.17 0 0.1 0 0 0.05 0 0.23 0 0.12 0.15

𝐺21 0.26 0.1 0.36 0.12 0.31 0.04 0.5 0.25 0.1 0.39 0.12 0.53 0.24 0.09 0.52
𝐺22 0.11 0 0.55 0.25 0.46 0 0.46 0.29 0.2 0.35 0 0.58 0.25 0.16 0.45
𝐺23 0.25 0.06 0.56 0 0.49 0 0.4 0.09 0.1 0.2 0 0.41 0.12 0.29 0.33
𝐺24 0.24 0.05 0.44 0.1 0.39 0 0.22 0.4 0.17 0.3 0 0.46 0.3 0.04 0.34
𝐺25 0 0.17 0.12 0.05 0.13 0 0 0.5 0.38 0.42 0 0.4 0.24 0 0.33

According to Tables 6.2, 6.3, and 6.4, V1 has better accuracy in detecting the first drift,
while V2 outperforms V1 in detecting the next drifts.

• True/False detection rate. V1 has a higher true detection rate for the first drift due
to lower duplicate false detections (higher 𝑇1 and lower 𝐹𝑑𝑢𝑝1 on average and in all
data streams except for 𝐺25 - higher 𝑇 on average and in all data streams except for
𝑅23 and 𝑅25). In detecting the next drifts, V2 displays a better true detection rate
especially when 𝑆′ decreases with a faster rate of 0.1 (higher 𝑇2 on average and in
all data streams except for 𝑅21, higher 𝑇3 on average and in all data streams with
gradual CD except for 𝐺23). V2 has almost zero early false detection, while V1 has
a 10% rate.

• Miss detection rate. V2, especially with decreasing rate of 0.05 for 𝑆′, has better
miss detection rate for each drift (lower 𝑀1, 𝑀2, and 𝑀3) and overall (lower 𝑀) in
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Table 6.4: Miss detection rates of V1 and V2.
Bold numbers in each row denote the lowest value of 𝑀𝑖/𝑀 among three versions.

V1 V2 0.05 V2 0.1
𝑀1 𝑀2 𝑀3 𝑀 𝑀1 𝑀2 𝑀3 𝑀 𝑀1 𝑀2 𝑀3 𝑀

𝑅11 0.68 0 0.34 0.98 0 0.49 0.9 0.02 0.46
𝑅12 0.9 0 0.45 0.02 0.12 0.07 0 0.6 0.3
𝑅13 0.2 0.02 0.11 0 0.08 0.04 0 0.52 0.26
𝑅14 0.46 0 0.23 0.08 0.06 0.08 0.04 0.42 0.23
𝑅15 0.38 0.02 0.18 0.08 0 0.04 0.12 0.08 0.1

𝑅21 0.08 0.3 0.19 0 0.22 0.11 0 0.74 0.37
𝑅22 0.04 0.16 0.1 0.1 0.08 0.09 0.04 0.56 0.3
𝑅23 0.34 0 0.32 0.04 0.08 0.06 0.02 0.58 0.3
𝑅24 0.24 0.02 0.13 0 0.34 0.17 0 0.5 0.25
𝑅25 0.34 0.16 0.25 0 0.12 0.06 0 0.6 0.3

𝐺11 0.58 0.98 0.8 0.79 0.52 1 0.36 0.63 0.56 1 0.2 0.59
𝐺12 0.62 0.92 0.48 0.67 0.02 0.32 0.44 0.26 0 0.46 0.12 0.19
𝐺13 0.52 0.82 0.78 0.71 0.12 0.62 0.42 0.39 0.08 0.52 0.22 0.27
𝐺14 0.4 1 0.54 0.65 0 0.58 0.2 0.26 0 0.44 0.06 0.17
𝐺15 0.78 0.92 0.9 0.87 0.1 0.22 0.94 0.42 0.18 0.46 0.86 0.5

𝐺21 0.5 0.36 0.56 0.47 0.06 0.22 0.48 0.25 0.1 0.56 0.62 0.43
𝐺22 0.84 0.1 0.64 0.53 0.1 0.3 0.44 0.28 0.1 0.58 0.48 0.39
𝐺23 0.78 0.06 0.84 0.56 0.08 0.42 0.6 0.37 0.1 0.42 0.5 0.39
𝐺24 0.7 0.22 0.64 0.52 0.28 0.12 0.62 0.34 0.02 0.22 0.46 0.23
𝐺25 0.68 0.06 0.74 0.49 0.02 0.14 0.62 0.26 0.02 0.3 0.88 0.4

all data streams (except for 𝑀1 in 𝑅22 and 𝑀2 in 𝑅23, 𝑅24, 𝐺22, and 𝐺23) and on
average.

6.4.2 Detection Latency over far-drift streams

According to Table 6.5, average detection delay has the lowest value for the first drift and
the highest values for the second drift in all data streams with either pattern. This is due
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to the change of burstiness profile in data stream as the bursts sizes get high with the
increase of generator parameters in the interval between the first and second drift.

According to Figures 6.7, 6.8, 6.9, and 6.10, V2 has lower delay-1 and delay-2 and
higher delay-3 compared to V1. Unlike V1, V2 has a consistent performance across the
execution instances and across the sequential drifts since V2 is more robust to the random
removal of vertices from the 𝑊𝑈𝑊𝐺𝑂 .

• Delay-1. For recurring CD, V1 has a cluster of delay-1 values between 0 to 4 (s) and
a rest of values between 15 to 160 (s), while V2 clusters the values between 0 to 2 (s)
and a rest of values around 16 (s). For Gradual CD, both V1 and V2 have cluster
of delay-1 values between 1 to 5 (s). However V2 has a denser cluster due to lower
miss rate for the first drift , thus the average delay-1 over the execution instances of
V1 is up to 2.8× higher (e.g. see delay-1 for 𝐺11 and 𝐺13 in Table 6.5).

• Delay-2. For recurring CD, similar observations can be made as delay-1 stands. For
instance, executing V1 over 𝑅25 incurs delay-2 of 0 to 400 (s), whereas V2 incurs
latency below 100 (s) for this stream. For gradual CD, V1 has a cluster of delay-2
values between 0 to 200 (s) and values centered around 500 and 1400 (s) for 𝐺23 and
𝐺25, while V2 has a cluster compacted around 0 to 100 (s) and values between 100 to
400 for 𝐺13 and 700 to 900 for 𝐺25. The average of delay-2 values over the execution
instances of V1 is up to 1.8× higher (e.g. see delay-2 for 𝐺25 in Table 6.5).

• Delay-3. For gradual CD, V1 displays 0 to 100 (s) and outliers up to 380 (s), while
V2 has delay-3 values between 0 to 200 (s) and outliers up to 800 (s).

6.4.3 Accuracy and detection latency over close-drift streams

According to Tables 6.2, 6.3, 6.4, and 6.5, for recurring CD, similar to far-drift streams,
V1 has higher latency compared to V2s and as a result the detections for the first and
second drifts are closer and more difficult to evaluate. The (average) true detection rates
are higher than those of running algorithms over 𝑅21− 𝑅25. For gradual CD, the true/miss
detection rates and detection delay of both algorithms are higher than those of running
algorithms over 𝐺21 − 𝐺25.

• First drift. For recurring CD, V1 has a higher true detection rate for the first drift
compared to that of the second drift, however the rates are not very high (𝑇1 > 𝑇 > 𝑇2

and average 𝑇1 is 0.6). The first drift is either never detected (𝑇2<𝑇 , 𝐹𝑒𝑎𝑟𝑙𝑦+𝐹𝑑𝑢𝑝1 < 𝐹,
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and 𝑀1 > 𝑀 in 𝑅11 and 𝑅12) or detected with a delay higher than the drift interval
(𝑀2 ≈ 0, 𝑀1 > 𝑀 in 𝑅13, 𝑅14, and 𝑅15) with a low probability of rapid detection
(delay-1 lower than average delay). V2 0.05 and V2 0.1 detect the first drift mostly
with low miss rate (𝑀1 ≤ 𝑀 in 𝑅12, 𝑅13, 𝑅14, 𝑅15 – 𝑇2 < 𝑇 , 𝐹𝑒𝑎𝑟𝑙𝑦 + 𝐹𝑑𝑢𝑝1 < 𝐹,
and 𝑀1 > 𝑀 V2 0.05 and V2 0.1 over 𝑅11) with high probability of rapid detection
(delay-1 lower than average). For gradual CD, both V1 and V2 (especially V2 0.05)
have high true detection rate and low false duplicate detection rate for the first drift
(𝑇1 up to 92%). 𝑇1 is high regardless of 𝑀1 being high or low, which means 𝑇1 is
certainly high.

• Second drift. For recurring CD, while the second drift is rarely missed, it has a low
true detection rate (𝑀2 ≈ 0 and 𝑇2 < 𝑇), since its detection is dominated by the false
duplicate detections due to delayed detections of the previous drift. V2 0.05 and
V2 0.1 detect the second drift with higher miss detection rate compared to that of
the first drift (average 𝑀2 > average 𝑀1), however the true detection rate is higher
(𝑇2 > 𝑇1 in all streams except for 𝑅11). For gradual drift, both V1 and V2 (especially
V2 0.05) extremely high/low true detection rate for the second drift (𝑇2 either zero
or 100%). 𝑇2 > 𝑇 accompanied with 𝐹𝑑𝑢𝑝3 < 𝐹, 𝑀2 > 𝑀, and delay-2 lower than the
average delay suggests that whenever the second drift is detected with a delay lower
than the time interval between the second and third drifts, the detection is certainly
a true detection (V2’s detections of the second drift in 𝐺12, 𝐺13, and 𝐺14 and V1’s
detection of the second drift in all streams). While there are cases that the detections
are not delayed (𝑀3 > 𝑀, while 𝑀1/𝑀2 < 𝑀, e.g. V2 0.05 and V2 0.1 over 𝐺15), the
detection of the second drift is sometimes delayed to a time after the occurrence of
the next drift since 𝑀2 > 𝑀 (𝑀2 is high), 𝑀3 < 𝑀 (𝑀3 is low).

• Third drift. for gradual CD, both V1 and V2 (especially V2 0.05) have high true
detection rate and low false duplicate detection rate for the third drift (𝑇3 up to
100%). Average delay of detecting the third drift is relatively low considering the
burstiness of the stream and average delay over different streams (V2 0.05 and V2
0.1 over 𝐺13). On the other hand, the miss detection rate in most streams follows
the order of 𝑀1 < 𝑀3 < 𝑀2 and V2 has better miss detection rates than V1.

6.4.4 Discussion

The high values of 𝑇1 for V1’s detections, as well as significantly increasing trend of 𝑇1 for
V2’s detections, indicate that V1 has better true detection rate for the first drift, whereas
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(a) Delay-1, V1 (b) Delay-2, V1

(c) Delay-1, V2 0.05 (d) Delay-2, V2 0.05

(e) Delay-1, V2 0.1 (f) Delay-2, V2 0.1

Figure 6.7: Delay of detecting the first and second drifts for 50 runs of V1, V2 0.05, and
V2 0.1 over 𝑅21 − 𝑅25.
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(a) Delay-1 (b) Delay-2

(c) Delay-3

Figure 6.8: Delay of detecting the first, second, and third drifts for 50 runs of V1 over
𝐺21 − 𝐺25.
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(a) Delay-1 (b) Delay-2

(c) Delay-3

Figure 6.9: Delay of detecting the first, second, and third drifts for 50 runs of V2 0.05 over
𝐺21 − 𝐺25.
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(a) Delay-1 (b) Delay-2

(c) Delay-3

Figure 6.10: Delay of detecting the first, second, and third drifts for 50 runs of V2 0.1 over
𝐺21 − 𝐺25.
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Table 6.5: Detection latency of V1 and V2.
V1 V2 0.05 V2 0.1

Delay-1 Delay-2 Delay-3 Delay-1 Delay-2 Delay-3 Delay-1 Delay-2 Delay-3
𝑅11 22253.94 540702.6 65451 624864.28 61605.4 611761.71
𝑅12 12885.4 230963.56 2691.24 153758.73 2829.88 144740.85
𝑅13 6442.05 387632.51 2672.9 244856.89 3119.18 124455.04
𝑅14 6073.93 345451.08 4338.02 390906.19 7616.46 257873.07
𝑅15 32094.67 291978.9 49691.87 186069.56 49207.61 130548.09
AVG 15950 359345.73 24969 320091.13 24875.71 253875.75

𝑅21 7904.56 263194.57 1595.76 213102.95 1646.28 102230.31
𝑅22 23296.79 144621.17 47818.8 138562.91 4530.041 102385.82
𝑅23 9527.39 301745.36 2667.17 298226.19 2823.408 214460.95
𝑅24 6108.92 400390.28 1710.5 478270.94 1624.56 240721.36
𝑅25 45147.09 171777.07 16367.92 87739.32 14983.04 120420.85
AVG 18396.95 256345.69 14032.03 243180.36 5121.465 156043.86

𝐺11 3065.39 254034 74091.64 6273.62 N/A 185651.43 6413.59 N/A 169774.77
𝐺12 36950.37 1525 113011.57 23050.69 28158.76 158805.28 18692.88 20054.96 138997.42
𝐺13 11139.46 77988.33 39305.18 5961.59 20913.79 80479.9 7109.22 13042.25 88383.59
𝐺14 12866.43 N/A 82805.56 12950.94 29216.95 90990.2 12289.02 21878.64 83301.49
𝐺15 5925.91 162395.5 78400.2 2382.42 142926.92 93514.67 2361.71 131756.78 115332.71
AVG 13900.4 117986.6 142771.42 50619.26 55304.1 121888.3 9102.36 37346.53 119158

𝐺21 11218.52 40456.31 66766.95 5292.89 42777.05 77775.42 3899.82 51292.14 57129.53
𝐺22 12731.37 169076.82 160692.11 10764.84 115692.66 122396.76 10842.87 186502.62 121164.73
𝐺23 4966 439955.25 70503.12 1933.37 481555.79 190583.1 1744.58 347943.43 166380.04
𝐺24 2041 46369.79 34844.17 2592.05 44344.66 43166.95 1527.61 29315.36 43271.15
𝐺25 4670.25 1445005.02 82159.38 3416.57 795168.6 71119.58 5959.61 939723.46 173239.5
AVG 7125.43 428172.64 82993.15 4799.94 295907.75 102135.55 4794.9 310955.4 112236.99

V2, particularly with decreasing rate of 0.1 for 𝑆′, has improving true detection rate over
time. The almost zero values of 𝐹𝑒𝑎𝑟𝑙𝑦 as well as significantly decreasing trend of 𝐹𝑑𝑢𝑝1 for
both V1 and V2 indicate that V1 and V2 have very low false detection rates particularly
false positives. The low range of 𝑀1 for V2s’ detections and significant negative magnitude
of 𝑀2 − 𝑀1 for V1’s detections indicate that that V1 has improving miss detection rate
and V2s have better initial miss detection rates.

To explain the performance of V1 and V2, the impact of variables/parameters are
discussed in the following (Figure 6.11). V1 adapts to the number of detections (through
parameter 𝑑), while V2 adapts to the streaming rate (through parameters 𝑚𝑎𝑥𝐵 and 𝐵) as
well as the number of detections. Both algorithms signal a drift when two conditions are
satisfied: C1 (including variable 𝛼 and 𝜇1, dotted nodes in Figure 6.11) and C2 (including
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𝑑 𝛼

𝑆 𝑆′

𝑁𝑚𝑜𝑟𝑒𝑁𝑙𝑒𝑠𝑠 𝜇1

(a) V1

𝑑 𝛼

𝑆 𝑆′

𝜇1

𝑚𝑎𝑥𝐵

𝐵

𝑁𝑚𝑜𝑟𝑒𝑁𝑙𝑒𝑠𝑠

(b) V2

Figure 6.11: Impact of algorithm parameters on drift detection.

variables 𝑁𝑚𝑜𝑟𝑒, 𝑁𝑙𝑒𝑠𝑠, and 𝑆′, dashed nodes in Figure 6.11).

As 𝑑 increases over time, V1 signals more detections for each drift. This increases 𝐹𝑑𝑢𝑝
𝑖

and lowers 𝑀𝑖 and 𝑇𝑖. The reason is that C1 is the bottleneck performance of V1, which
becomes more difficult over time as the followings happen.

• 𝛼 increases and the upper bound of C1 is decreased.

• 𝑆 and 𝑆′ decrease in V1 and fluctuate in V2. Consequently, 𝑁𝑚𝑜𝑟𝑒, 𝑁𝑙𝑒𝑠𝑠, and
𝜇1 are computed over smaller 𝑂2 suffix sizes in V1 and smaller/longer suffixes in
V2; Moreover, the fluctuations in 𝑂2 values, which occur due to the drift, are not
examined in V1.

As 𝑚𝑎𝑥𝐵 and 𝐵 increase over time, V2 adapts to the streaming rate and signals fewer
duplicate detections. This lowers 𝐹𝑑𝑢𝑝

𝑖
and increases 𝑇𝑖. The reason is that the performance

of V2 changes according to both C1 and C2 and C2 becomes more difficult/easier in V2
due to the followings.

• 𝑆 and 𝑠′ increase/decrease when 𝑑 is even/odd.

• 𝑁𝑚𝑜𝑟𝑒, 𝑁𝑙𝑒𝑠𝑠, and 𝜇1 are computed over smaller/longer 𝑂2 suffixes.

6.4.5 Computational Complexity

THEOREM 4 At each time step, sGradd has either of following computational complex-
ities depending on the drift detection module used.

O(
𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 − 1)

2
𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑡 ) + O(𝑑2)
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O(
𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘 − 1)

2
𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑡 ) + O((𝑑 + 1) (𝑚𝑎𝑥𝐵/𝐵) (−1)

𝑑 )

where R is the average stream rate, 𝐾𝑖,𝑊𝑘(𝐾 𝑗 ,𝑊𝑘) is the lower bound of degree of i(j)-vertices
in 𝑊𝑘 , 𝑚𝑎𝑥𝐵 is the maximum seen burst size, 𝑏 is the average burst size, and 𝑑 is the
number of drift detections.

PROOF 5 The computations of sGradd at each time step are dominated by the win-
dowed analytics since data ingestion and window sliding have constant computational cost.
The windowed analytics include projection to create/update UWGO, computing the drift
criteria, and evaluating the drift criteria as described below.

• The function project(.) identifies the butterflies, maps them to connected phase oscil-
lators (i.e. creates the structure of UWGO), and next assigns phases and frequencies
to oscillators. Therefore, it takes O(𝐵𝑢𝑡𝑡𝑒𝑟 𝑓 𝑙𝑦𝐿𝑖𝑠𝑡𝑖𝑛𝑔)O(𝑀𝑎𝑝𝑝𝑖𝑛𝑔)+O(𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝑠).
To identify the butterflies, the exact listing algorithm in sGrapp is used, which is
O( 𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘−1)2 𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑡 ), where R is the average stream rate and 𝐾𝑖,𝑊𝑘(𝐾 𝑗 ,𝑊𝑘) is

the lower bound of degree of i(j)-vertices in 𝑊𝑘 (Theorem 2). To map the butter-
flies to unipartite vertices and connect them to create the UWGO’s structure, the
function updateUWGOstructure(.) is executed which takes constant units of com-
putation. The final phase of attribute assignment also runs in constant units of
computations as it happens in a parallel loop. Consequently, the projection occurs in
O( 𝐾𝑖,𝑊𝑘 (𝐾𝑖,𝑊𝑘−1)2 𝐾 𝑗 ,𝑊𝑘R𝑁

𝑊𝑘
𝑡 ).

• The function DriftCriteria(.) computes the order parameter twice: once using the
current phases, and once using the Kuramoto phases computed via Runge Kutta
method. Therefore, it takes O(𝑂𝑟𝑑𝑒𝑟𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟) + O(𝐾𝑢𝑟𝑎𝑚𝑜𝑡𝑜). The function
computeOrderParameter(.) takes constant units of computations. The function Ku-
ramoto(.) has five sequential parallel loops, with the first four loops including an
inner parallel loop; Therefore, this function takes constant units of computation as
well. Consequently, computing the drift criteria occurs in O(𝑐).

• Either of the functions DriftDetectv1(.) or DriftDetectv2(.) is used to evaluate the
drift criteria and signal a drift. DriftDetectv1(.) takes O(𝑆) units of computation,
where 𝑆, the suffix size for drift detection, is determined based on a function of
𝑑2 (𝑑 is the number of detections). Therefore, it takes O(𝑑2). DriftDetectv2(.)
takes O(𝑆 + 𝑆′), where 𝑆′ ∈ O(𝑆 × 𝑑) and 𝑆 ∈ O((𝑚𝑎𝑥𝐵/𝐵) (−1)𝑑 ); hence it takes
O((𝑑 + 1) (𝑚𝑎𝑥𝐵/𝐵) (−1)𝑑 ). Consequently, drift detection occurs in O(𝑑2) or O((𝑑 +
1) (𝑚𝑎𝑥𝐵/𝐵) (−1)𝑑 ).
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6.5 Summary

Essence and features. CD is a natural phenomenon in streaming data. Understanding,
detection, and adapting to CD in streaming data is vital for effective and efficient anal-
ysis/analytics since reliable outputs are generated based on adaptation to fresh inputs.
The problem is challenging due to the pressing issue of drift label acquisition and the fact
that CD detection intrinsically requires stateful yet efficient operations as well as effective
mechanisms for CD evaluations. Finally being able to detect and adapt to CD is impactful
since a variety of practical use-case scenarios reside in streaming settings that experience
CD. The research on this topic is mostly focused on (i) black-box drift adaptation, (ii)
drift detection over independent data instances or sequences of graph snapshots, and/or
(iii) drift detection with respect to a supervised downstream task which determines the
target concept. These assumptions do not always hold.

To address the aforementioned issues, a definition is introduced for CD in the case of
transient, interconnected, and sequential data instances forming a streaming graph which
serves as the input to any online adaptive analytic task (in both supervised and unsuper-
vised mode). Powered by this definition, a modular framework, sGradd, is proposed for
understanding and unsupervised detection of transient concept drifts. The components of
sGradd are designed as a collection of explainable, unsupervised, and adaptive techniques
for understanding and detecting the drifts in hidden contexts (generative source) which are
reflected as drifts in target transient concepts (inter-connectivity patterns). Specifically,
sGradd has a data management component with two sub-components for window manage-
ment and system state management. For window management, two different windowing
methods are used, which are adaptive to the streaming rate. For system state management,
a graph structure is used to retain the system state incrementally. For the drift detection
component, two versions (V1 and V2) of an algorithm are introduced each incorporating
a different adaptation technique for evaluating the occurrence of drifts. V1 and V2 are
parameterized as described below.

Evaluations. sGradd is examined in different scenarios where the drift pattern, drift
interval, and stream burstiness vary. Experiments show that while V1’s drift detection
strategies, which adapt to just the number of detections, display higher initial true de-
tection rate and improvement (decreasing trend) of miss detection rate over time, V2’s
adaptation to the streaming rate (burstiness), as well as the number of detections, display
improving true detection rate, better initial miss detection rate, and lower detection la-
tency. Both strategies result in almost zero false positives in streams with either gradual
or reoccurring drift patterns and are able to effectively lower the duplicate false detections
down to almost zero. Detection latency in both algorithms increases with the increase of
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burstiness regardless of the drift detection’s adaptation mechanism and the drift pattern.
However, as the detection algorithm adapts to the streaming rate, the delay is lowered and
the latency performance becomes more consistent. This occurs in spite of sliding window
mechanisms that randomly remove vertices from the window while adapting the window
to the streaming rate.
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Chapter 7

Conclusions and Future Works

7.1 Conclusion

A wide variety of real-world datasets include inter-connected entities best modeled as a
graph. The graph model treats both the entities (vertices) and relationships (edges) as
first-class objects. The model can also describe several types of inter-dependencies among
data records as well as their compositions. Management and processing of graphs have
always been driven by the characteristics of the data and/or workloads (often specified
by the applications). In most modern applications (e.g. user-item interactions), graphs
are not static, but change over time. A particular type that is of interest is streaming
graphs, an unbounded sequence of arriving graph data records (a timestamp, and a payload
indicating the vertex/edge). The streaming graph model assumes that the graph emerges
incrementally as data records arrive. The main characteristics are unknown stream length,
unavailable full structure, non-stationary distributions of the underlying data snapshot,
non-global updates, out-of-order arrivals, non-uniform inter-arrival times, and burstiness.

The focus of this thesis is data-driven algorithm design for explainable and interpretable
analytics over streaming graphs with respect to (2,2)-bicliques (known as butterflies) in
bipartite structures (Table 7.1). This is done in three steps (Table 7.1).

Step 1: Given the real-world streaming graphs as input, exploratory analysis is performed
for in-depth understanding and discovery of the emergence principles in data.

Step 2: Real-world data and the discovered patterns are utilised to model and explain the
growth patterns in streaming graphs as sGrow model. These two steps provide the
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requirements for ultimately designing effective and efficient processing algorithms in
the next step (i.e. accomplish the data-driven approach).

Step 3: The mined patterns and sGrow model as well as the data are utilised to architect
two frameworks sGrapp and sGradd.

These frameworks are designed to perform iterative and stateful tasks (butterfly counting
and concept drift detection) over streaming graphs. The reason behind design choices of
algorithms are explained and the outputs provide actionable descriptions. For instance,
sGrow ’s choices of target vertices for establishing new connections are explained via the
introduced local rules; And sGradd ’s alerts include details about time/location of drifts
that can be used to improve the performance of a down-stream online algorithm.

Input Component Output
Step 1 data analysis streaming graph emergence patterns

Step 2 data,
patterns modelling sGrow : a streaming growth model

Step 3
data,

patterns,
sGrow

analytics

sGrapp: a framework for streaming
graph butterfly-count approximation,
sGradd : a framework for streaming

graph drift detection

Table 7.1: Research components.

7.2 Future Work

Future directions of the research in this thesis can be either application-driven data mining
tasks, or designing data-driven algorithms and frameworks based on updates to the data,
to the methodology, or to the computational approaches considered in this thesis.

Application-driven data mining. In many real-world scenarios, a scheme such as the
followings can be used to represent the snapshots of streaming data by a bipartite streaming
graphs.

• When the payload in streaming records denotes interactions between two disjoint
sets, a batch of streaming records form a naturally occurring bipartite streaming
graph.
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• When the payload in streaming records denotes interactions between two or more
vertices of the same mode, a batch of streaming records form a unipartite or hyper-
graph that can be projected to a bipartite structure. For instance, social networks
inherit a backbone bipartite structure which can be extracted based on some heuristic
data modeling approach; or the vertices and edges in hyper-graphs can be conceived
as two connected disjoint sets; or property graphs include vertices/edges attributed
with numeric/vectorized properties, and the property values and the corresponding
vertices/edges can form two connected disjoint sets.

• When the payload in streaming records denotes a non-graph element such as items in
spatial/sensory time series with an entity ID as well as a variable such as geographic
location, the IDs and instances of variable can be represented as two connected
disjoint sets.

Once the data is represented as a bipartite streaming graph, it can be analyzed to discover
knowledge for practical purposes in the corresponding domain-specific context. In this
stage, the butterfly-based analytics approaches proposed in this thesis can be applied and
further extended. For instance, when there is a data mining task based on data cohesion,
sGrapp can be utilised to effectively and efficiently estimate the clustering coefficient; or
when there is an online adaptive data mining task, sGradd can enhance a down-stream
adaptation algorithm.

Data-driven algorithm design. This thesis followed a data-driven approach for devis-
ing techniques and algorithms for graph modelling and graph analytics. This approach can
be modified in the following directions to cover other use cases.

• The followed methodology includes exploratory data analysis to inform the design of
pattern-driven data modelling/analytics. The exploratory phase can be performed
to discover other patterns such as the following examples to introduce generative
models and analytics tasks.

– Temporal patterns for the generative mechanisms of timestamps can be studied
by considering bipartite graphs of edge-timestamps.

– Temporal-structural patterns for other types of subgraphs/connectivities can
be studied by defining other assortativity measures. For example, a (times-
tamped) subgraph assortativity measure can be defined as the tendency of
(close-timestamped) vertices to form a certain subgraph.
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– The connection between the probability of butterflies formed by hubs and the
magnitude of the power law exponent can be investigated to further optimise
sGrapp. Since this probability changes over windows, the exponent will dynam-
ically change based on the hub connectivity patterns. As mentioned in [297],
butterfly approximation can be highly accurate when the exponent equals to the
probability of having at least one i-hub plus the probability of having at least
one j-hub in the butterflies at a time when the number of hubs is stabilized in
the graph. This tipping point can be studied to better understand the best way
to initialize the approximation exponent.

• The computational approach can be modified based on other processing techniques
(e.g. parallel/distributed settings, or windowing techniques) and/or storage setups
(e.g. applying the algorithms to the data stored in a database, or optimising low-level
main-memory data structures).
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[190] Ludmila I Kuncheva and Indrė Žliobaitė. On the window size for classification in
changing environments. Intelligent Data Analysis, 13(6):861–872, 2009.

[191] Jérôme Kunegis. Konect: the koblenz network collection. In Proc. 22nd Int. World
Wide Web Conf., pages 1343–1350, 2013.

[192] Marialena Kyriakidi, Kostas Stefanidis, and Yannis Ioannidis. On achieving diversity
in recommender systems. In Proc. Int. Workshop on Exploratory Search in Databases
and the Web, page 4, 2017.

[193] Hamilton William L., Zhitao Ying, and Jure Leskovec. Inductive representation learn-
ing on large graphs. In Proc. 30th Annual Conf. on Neural Information Processing
Systems, pages 1024–1034, 2017.

[194] Matthieu Latapy, Clemence Magnien, and Nathalie Del Vecchio. Basic notions for
the analysis of large two-mode networks. Social Networks, 30(1):31–48, 2008.

[195] Matthieu Latapy, Clémence Magnien, and Nathalie Del Vecchio. Basic notions for
the analysis of large two-mode networks. Social Networks, 30(1):31–48, 2008.

[196] Dongjin Lee, Kijung Shin, and Christos Faloutsos. Temporal locality-aware sampling
for accurate triangle counting in real graph streams. VLDB J., 29(6):1501–1525, 2020.

[197] Xi Tong Lee, Arijit Khan, Sourav Sen Gupta, Yu Hann Ong, and Xuan Liu. Mea-
surements, analyses, and insights on the entire ethereum blockchain network. In
Proc. The Web Conf., pages 155–166, 2020.

[198] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. Pytorch-biggraph: A large-scale graph embedding
system. arXiv preprint arXiv:1903.12287, 2019.

[199] Jure Leskovec, Lars Backstrom, Ravi Kumar, and Andrew Tomkins. Microscopic
evolution of social networks. In Proc. 14th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 462–470, 2008.

198



[200] Jure Leskovec and Christos Faloutsos. Sampling from large graphs. In Proc. 12th
ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 631–636,
2006.

[201] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graphs over time: densi-
fication laws, shrinking diameters and possible explanations. In Proc. 11th ACM
SIGKDD Int. Conf. on Knowledge Discovery and Data Mining, pages 177–187, 2005.

[202] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Trans. Knowl. Discov. Data, 1(1):2–es, 2007.

[203] Jure Leskovec, Anand Rajaraman, and Jeffrey D. Ullman. Mining of Massive
Datasets, 2nd Ed. Cambridge University Press, 2014.

[204] CC Leung and HF Chau. Weighted assortative and disassortative networks model.
Physica A: Statistical Mechanics and its Applications, 378(2):591–602, 2007.

[205] Jin Li, Kristin Tufte, Vladislav Shkapenyuk, Vassilis Papadimos, Theodore Johnson,
and David Maier. Out-of-order processing: a new architecture for high-performance
stream systems. Proc. VLDB Endowment, 1(1):274–288, 2008.

[206] Rundong Li, Pinghui Wang, Peng Jia, Xiangliang Zhang, Junzhou Zhao, Jing Tao,
Ye Yuan, and Xiaohong Guan. Approximately counting butterflies in large bipartite
graph streams. IEEE Trans. Knowl. and Data Eng., 2021.

[207] Xiaodong Li, Reynold Cheng, Kevin Chen-Chuan Chang, Caihua Shan, Chenhao Ma,
and Hongtai Cao. On analyzing graphs with motif-paths. Proc. VLDB Endowment,
14:1111–1123, 2021.

[208] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw.
Detecting product review spammers using rating behaviors. In Proc. 19th ACM Int.
Conf. on Information and Knowledge Management, pages 939–948, 2010.

[209] Yongsub Lim, Minsoo Jung, and U Kang. Memory-efficient and accurate sampling
for counting local triangles in graph streams: from simple to multigraphs. ACM
Trans. Knowl. Discov. Data, 12(1):1–28, 2018.

[210] Pedro G. Lind, Marta C. Gonzalez, and Hans J. Herrmann. Cycles and clustering in
bipartite networks. Physical Review E, 72:056127, 2005.

[211] Pedro G Lind, Marta C Gonzalez, and Hans J Herrmann. Cycles and clustering in
bipartite networks. Physical Review E, 72(5):056127, 2005.

199



[212] Anjin Liu, Guangquan Zhang, and Jie Lu. Fuzzy time windowing for gradual concept
drift adaptation. In Proc. 2017 IEEE Int. Conf. on Fuzzy Systems, pages 1–6, 2017.

[213] Kun Liu and Evimaria Terzi. Towards identity anonymization on graphs. In Proc.
ACM SIGMOD Int. Conf. on Management of Data, pages 93–106, 2008.

[214] Ling Liu and M Tamer Özsu. Encyclopedia of Database Systems, volume 6. Springer,
2009.

[215] Paul Liu, Austin R Benson, and Moses Charikar. Sampling methods for counting
temporal motifs. In Proc. 12th ACM Int. Conf. Web Search and Data Mining, pages
294–302, 2019.

[216] Weide Liu, Chi Zhang, Guosheng Lin, Tzu-Yi Hung, and Chunyan Miao. Weakly
supervised segmentation with maximum bipartite graph matching. In Proc. 28th
ACM Int. Conf. on Multimedia, pages 2085–2094, 2020.

[217] Pasquale Lops, Dietmar Jannach, Cataldo Musto, Toine Bogers, and Marijn Koolen.
Trends in content-based recommendation - preface to the special issue on recom-
mender systems based on rich item descriptions. User Model. User Adapt. Interact.,
29:1–11, 2019.

[218] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. Learning
under concept drift: A review. IEEE Trans. Knowl. and Data Eng., 31(12):2346–
2363, 2019.

[219] Ning Lu, Guangquan Zhang, and Jie Lu. Concept drift detection via competence
models. Artificial Intelligence, 209:11–28, 2014.

[220] Bingqing Lyu, Lu Qin, Xuemin Lin, Ying Zhang, Zhengping Qian, and Jingren Zhou.
Maximum biclique search at billion scale. Proc. VLDB Endowment, 13(9):1359–1372,
2020.

[221] Chenhao Ma, Reynold Cheng, Laks VS Lakshmanan, Tobias Grubenmann, Yixiang
Fang, and Xiaodong Li. Linc: a motif counting algorithm for uncertain graphs. Proc.
VLDB Endowment, 13(2):155–168, 2019.

[222] Antonio Maccioni and Daniel J Abadi. Scalable pattern matching over compressed
graphs via dedensification. In Proc. 22nd ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 1755–1764, 2016.

200



[223] Hamidreza Mahyar, Elahe Ghalebi K, S. Mojde Morshedi, Saina Khalili, Radu Grosu,
and Ali Movaghar. Centrality-based group formation in group recommender systems.
In Proc. 26th Int. Conf. World Wide Web Companion, pages 1187–1196, 2017.

[224] Víctor Martínez, Fernando Berzal, and Juan-Carlos Cubero. A survey of link pre-
diction in complex networks. ACM Computing Surveys, 49:1–33, 2016.

[225] Sergei Maslov and Yi-Cheng Zhang. Extracting hidden information from knowledge
networks. Physical Review Letters, 87(24):248701, 2001.

[226] Judith Masthoff. Group modeling: Selecting a sequence of television items to suit a
group of viewers. In Personalized Digital Television: Targeting Programs to individual
Viewers, volume 6 of Human-Computer Interaction Series, pages 93–141. Kluwer /
Springer, 2004.

[227] Naoki Masuda and Renaud Lambiotte. A Guide to Temporal Networks. World
Scientific, 2016.

[228] Joseph F. McCarthy and Theodore Anagnost. an arbiter of group preferences for
computer supported collaborative workouts. In ACM Conf. on Computer-Supported
Cooperative Work, page 348, 1998.

[229] Mary McGlohon, Leman Akoglu, and Christos Faloutsos. Weighted graphs and
disconnected components: patterns and a generator. In Proc. 14th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, pages 524–532, 2008.

[230] Andrew McGregor. Graph stream algorithms: A survey. ACM SIGMOD Record,
43(1):9–20, 2014.

[231] Frank McSherry, Derek Gordon Murray, Rebecca Isaacs, and Michael Isard. Differ-
ential dataflow. In Proc. 6th Biennial Conf. on Innovative Data Systems Research,
2013.

[232] Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and
Uri Alon. Network motifs: simple building blocks of complex networks. Science,
298(5594):824–827, 2002.

[233] Einat Minkov, William W Cohen, and Andrew Y Ng. Contextual search and name
disambiguation in email using graphs. In Proc. 29th Annual Int. ACM SIGIR Conf.
on Research and Development in Information Retrieval, pages 27–34, 2006.

201



[234] Koji Miyahara and Michael J. Pazzani. Collaborative filtering with the simple
bayesian classifier. In In Proc. Pacific Rim International conf. on Artificial Intelli-
gence, pages 679–689, 2000.

[235] Koji Miyahara and Michael J. Pazzani. Collaborative filtering with the simple
bayesian classifier. In In Proc. Pacific Rim International Conf. on Artificial In-
telligence, 2000.

[236] Jayanta Mondal and Amol Deshpande. Managing large dynamic graphs efficiently.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 145–156, 2012.

[237] Jose G Moreno-Torres, Troy Raeder, Rocío Alaiz-Rodríguez, Nitesh V Chawla, and
Francisco Herrera. A unifying view on dataset shift in classification. Pattern Recog-
nition, 45(1):521–530, 2012.

[238] Rajeev Motwani and Ying Xu. Evolution of page popularity under random web
graph models. In Proc. 25th ACM SIGACT-SIGMOD-SIGART Symp. on Principles
of Database Systems, pages 134–142, 2006.

[239] Arjun Mukherjee, Bing Liu, and Natalie Glance. Spotting fake reviewer groups in
consumer reviews. In Proc. 21st Int. World Wide Web Conf., pages 191–200, 2012.

[240] Olfa Nasraoui, Jeff Cerwinske, Carlos Rojas, and Fabio Gonzalez. Performance of
recommendation systems in dynamic streaming environments. In n Proc. 2007 SIAM
Int. Conf. on Data Mining, pages 569–574, 2007.

[241] Mark EJ Newman. Assortative mixing in networks. Physical Review Letters,
89(20):208701, 2002.

[242] Mark EJ Newman. The structure and function of complex networks. SIAM Review,
45(2):167–256, 2003.

[243] Mark EJ Newman and Juyong Park. Why social networks are different from other
types of networks. Physical Review E, 68(3):036122, 2003.

[244] Mark EJ Newman, Steven H Strogatz, and Duncan J Watts. Random graphs with ar-
bitrary degree distributions and their applications. Physical Review E, 64(2):026118,
2001.

[245] Mathias Niepert, Mohamed Ahmed, and Konstantin Kutzkov. Learning convolu-
tional neural networks for graphs. In Proc. 4th Int. Conf. on Learning Representa-
tions, pages 2014–2023, 2016.

202



[246] Kyosuke Nishida and Koichiro Yamauchi. Detecting concept drift using statistical
testing. In Proc. Int. Conf. on Discovery Science, pages 264–269, 2007.

[247] Rogier Noldus and Piet Van Mieghem. Assortativity in complex networks. Journal
of Complex Networks, 3(4):507–542, 2015.

[248] Felix L. Opolka, Aaron Solomon, Cătălina Cangea, Petar Veličković, Pietro Liò,
and R. Devon Hjelm. Spatio-temporal deep graph infomax. arXiv preprint
arXiv:1904.06316, 19.

[249] Timur Osadchiy, Ivan Poliakov, Patrick Olivier, Maisie Rowland, and Emma Foster.
Recommender system based on pairwise association rules. In Expert Systems with
Applications, volume 115, pages 535–542, 2019.

[250] Mingdong Ou, Peng Cui, Jian Pei, Ziwei Zhang, and Wenwu Zhu. Asymmetric
transitivity preserving graph embedding. In Proc. 22nd ACM SIGKDD Int. Conf.
on Knowledge Discovery and Data Mining, pages 1105–1114, 2016.

[251] M Tamer Özsu and Valduriez Patrick. Principles of Distributed Database Systems,
4th Edition. Springer, 2020.

[252] Anil Pacaci, Angela Bonifati, and M Tamer Özsu. Regular path query evaluation
on streaming graphs. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 1415–1430, 2020.

[253] Anil Pacaci, Angela Bonifati, and M Tamer Özsu. Evaluating complex queries on
streaming graphs. In Proc. 38th Int. Conf. on Data Engineering, pages 272–285,
2022.

[254] Rasmus Pagh and Francesco Silvestri. The input/output complexity of triangle enu-
meration. In Proc. 33rd ACM SIGACT-SIGMOD-SIGART Symp. on Principles of
Database Systems, pages 224–233, 2014.

[255] Kishore Papineni and Pratik Worah. A dynamical system on bipartite graphs. In
Proc. 27th ACM Int. Conf. on Information and Knowledge Management, pages 1479–
1482, 2018.

[256] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal net-
works. In Proc. 10th ACM Int. Conf. Web Search and Data Mining, pages 601–610,
2017.

203



[257] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura, Hiroki
Kanezashi, Tim Kaler, Tao Schardl, and Charles Leiserson. Evolvegcn: Evolving
graph convolutional networks for dynamic graphs. In Proc. 34th National Conf. on
Artificial Intelligence, volume 34, pages 5363–5370, 2020.

[258] Deokhwan Park, Joosoon Lee, Junseok Lee, and Kyoobin Lee. Deep learning based
food instance segmentation using synthetic data. In Proc. 18th Int. Conf. on Ubiq-
uitous Robots, pages 499–505, 2021.

[259] Himchan Park and Min-Soo Kim. Lineageba: A fast, exact and scalable graph gener-
ation for the Barabási-Albert model. In Proc. 37th Int. Conf. on Data Engineering,
pages 540–551, 2021.

[260] Romualdo Pastor-Satorras, Alexei Vázquez, and Alessandro Vespignani. Dynamical
and correlation properties of the internet. Physical Review Letters, 87(25):258701,
2001.

[261] Kostas Patroumpas and Timos Sellis. Window specification over data streams. In
Advances in Database Technology, Proc. 10th Int. Conf. on Extending Database Tech-
nology, pages 445–464, 2006.

[262] Ramesh Paudel and William Eberle. An approach for concept drift detection in a
graph stream using discriminative subgraphs. ACM Trans. Knowl. Discov. Data,
14(6):1–25, 2020.

[263] Georgina Peake and Jun Wang. Explanation mining: Post hoc interpretability of
latent factor models for recommendation systems. In Proc. 24th ACM SIGKDD Int.
Conf. on Knowledge Discovery and Data Mining, pages 2060–2069, 2018.

[264] David M. Pennock, Eric Horvitz, Steve Lawrence, and C. Lee Giles. Collaborative
filtering by personality diagnosis: a hybrid memory- and model-based approach. In
Proc. 36th Conf. on Uncertainty in Artificial Intelligence, 2000.

[265] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social
representations. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 701–710, 2014.

[266] Veličković Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio,
and Yoshua Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903,
2017.

204



[267] Christen Peter. Data matching: concepts and techniques for record linkage, entity
resolution, and duplicate detection. Data-Centric Systems and Applications. Springer,
2012.

[268] Thomas Petermann and Paolo De Los Rios. Role of clustering and gridlike ordering
in epidemic spreading. Physical Review E, 69, 2004.

[269] Mason A. Porter and James P. Gleeson. Dynamical systems on networks: A tutorial.
arXiv preprint arXiv:1403.7663, 2014.

[270] Yanjun Qi, Ziv Bar-Joseph, and Judith Klein-Seetharaman. Evaluation of different
biological data and computational classification methods for use in protein interaction
prediction. Structure, Function, and Bioinformatics, 63:490–500, 2006.

[271] Huaijun Qiu and Edwin R Hancock. Image segmentation using commute times. In
Proc. British Machine Vision Conf., pages 929–938, 2005.

[272] Abdul Quamar, Amol Deshpande, and Jimmy Lin. Nscale: neighborhood-centric
large-scale graph analytics in the cloud. VLDB J., 25(2):125–150, 2016.

[273] Rajeev Rajaram and Brian Castellani. An entropy based measure for comparing
distributions of complexity. Physica A: Statistical Mechanics and its Applications,
453:35–43, 2016.

[274] Jérémie Rappaz, Julian McAuley, and Karl Aberer. Recommendation on live-
streaming platforms: Dynamic availability and repeat consumption. Interactions,
20:40, 2021.

[275] Erzsébet Ravasz and Albert-László Barabási. Hierarchical organization in complex
networks. Physical Review E, 67(2):026112, 2003.

[276] Xiang Ren, Jialu Liu, Xiao Yu, Urvashi Khandelwal, Quanquan Gu, Lidan Wang,
and Jiawei Han. Cluscite: Effective citation recommendation by information network-
based clustering. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge Discovery
and Data Mining, pages 821–830, 2014.

[277] Ying Rex, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,
and Jure Leskovec. Graph convolutional neural networks for web-scale recommender
systems. In Proc. 24th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data
Mining, pages 974–983, 2018.

205



[278] Francesco Ricci and Quang Nhat Nguyen. Acquiring and revising preferences in
a critique-based mobile recommender system. IEEE Intelligent Systems, 22:22–29,
2007.

[279] Burke Robin. Hybrid recommender systems: Survey and experiments. In Proc. User
Modeling and User-Adapted Interaction, volume 12, pages 331–370, 2002.

[280] Francisco A Rodrigues, Thomas K DM Peron, Peng Ji, and Jürgen Kurths. The
kuramoto model in complex networks. Physics Reports, 610:1–98, 2016.

[281] Ryan A Rossi, Nesreen K Ahmed, Aldo Carranza, David Arbour, Anup Rao,
Sungchul Kim, and Eunyee Koh. Heterogeneous graphlets. ACM Trans. Knowl.
Discov. Data, 15(1):1–43, 2020.

[282] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer Özsu.
The ubiquity of large graphs and surprising challenges of graph processing: extended
survey. VLDB J., pages 1–24, 2019.

[283] Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, and M Tamer Özsu.
The ubiquity of large graphs and surprising challenges of graph processing: extended
survey. VLDB J., 29:595–618, 2020.

[284] Unicomb Samuel, Gerardo Iñiguez, James P Gleeson, and Márton Karsai. Dynamics
of cascades on burstiness-controlled temporal networks. Nature Communications,
12(1):1–10, 2021.

[285] Seyed-Vahid Sanei-Mehri, Ahmet Erdem Sariyuce, and Srikanta Tirthapura. But-
terfly counting in bipartite networks. In Proc. 24th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 2150–2159, 2018.

[286] Seyed-Vahid Sanei-Mehri, Yu Zhang, Ahmet Erdem Sariyüce, and Srikanta Tirtha-
pura. Fleet: Butterfly estimation from a bipartite graph stream. In Proc. 28th ACM
Int. Conf. on Information and Knowledge Management, pages 1201–1210, 2019.

[287] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. Dy-
namic graph representation learning via self-attention networks. arXiv preprint
arXiv:1812.09430, 2018.

[288] Ahmet Erdem Sarıyüce and Ali Pinar. Peeling bipartite networks for dense subgraph
discovery. In Proc. 11th ACM Int. Conf. Web Search and Data Mining, pages 504–
512, 2018.

206



[289] Badrul Munir Sarwar, George Karypis, Joseph A. Konstan, and John Riedl. Item-
based collaborative filtering recommendation algorithms. World Wide Web J., 1:285–
295, 2001.

[290] Yuya Sasaki, George H.L. Fletcher, and Makoto Onizuka. Structural indexing for
conjunctive path queries. arXiv preprint arXiv:2003.03079, 2020.

[291] Nadathur Satish, Narayanan Sundaram, Md Mostofa Ali Patwary, Jiwon Seo, Jong-
soo Park, M Amber Hassaan, Shubho Sengupta, Zhaoming Yin, and Pradeep Dubey.
Navigating the maze of graph analytics frameworks using massive graph datasets. In
Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 979–990, 2014.

[292] Junming Shao, Zahra Ahmadi, and Stefan Kramer. Prototype-based learning on
concept-drifting data streams. In Proc. 20th ACM SIGKDD Int. Conf. on Knowledge
Discovery and Data Mining, pages 412–421, 2014.

[293] B. Shen, X. Su, R. Greiner, P. Musilek, and C. Cheng. Discriminative parameter
learning of general bayesian network classifiers. In Proc. 15th IEEE Int. Conf. on
Tools with Artificial Intelligence, pages 296–305, 2003.

[294] Yilin Shen, Yue Deng, Avik Ray, and Hongxia Jin. Interactive recommendation via
deep neural memory augmented contextual bandits. In Proc. 12th ACM Conf. on
Recommender Systems, pages 122–130, 2018.

[295] Aida Sheshbolouki and M. Tamer Özsu. Scale-invariant strength assortativity of
streaming butterflies. CoRR, abs/2111.12217, 2021.

[296] Aida Sheshbolouki and M. Tamer Özsu. sGrapp: Butterfly approximation in stream-
ing graphs. CoRR, abs/2101.12334, 2021.

[297] Aida Sheshbolouki and M Tamer Özsu. sGrapp: Butterfly approximation in stream-
ing graphs. ACM Trans. Knowledge Discovery from Data, 16(4):1–43, 2022.

[298] Aida Sheshbolouki and M. Tamer Özsu. sGrow: Explaining the scale-invariant
strength assortativity of streaming butterflies. ACM Trans. Web, 17(3):1–46, 2023.

[299] Aida Sheshbolouki, Mina Zarei, and Hamid Sarbazi-Azad. Are feedback loops de-
structive to synchronization? EPL (Europhysics Letters), 111(4):40010, 2015.

[300] Aida Sheshbolouki, Mina Zarei, and Hamid Sarbazi-Azad. The role of leadership in
the synchronization of directed complex networks. Journal of Statistical Mechanics:
Theory and Experiment, 2015(10):P10022, 2015.

207



[301] Jessica Shi and Julian Shun. Parallel algorithms for butterfly computations. In Proc.
1st Symp. on Algorithmic Principles of Computer Systems, pages 16–30, 2020.

[302] Yue Shi, Martha Larson, and Alan Hanjalic. Collaborative filtering beyond the user-
item matrix: A survey of the state of the art and future challenges. ACM Computing
Surveys, 47, 2014.

[303] Kijung Shin, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Think before you dis-
card: Accurate triangle counting in graph streams with deletions. In Proc. European
Conf. on Machine Learning and Knowledge Discovery in Databases, pages 141–157,
2018.

[304] Kijung Shin, Sejoon Oh, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Fast, ac-
curate and provable triangle counting in fully dynamic graph streams. ACM Trans.
Knowl. Discov. Data, 14(2):1–39, 2020.

[305] Yook Soon-Hyung, Hawoong Jeong, Albert-Laszlo Barabási, and Yuhai Tu. Weighted
evolving networks. Physical Review Letters, 86:5835–5838, 2001.

[306] Isabelle Stanton and Ali Pinar. Constructing and sampling graphs with a prescribed
joint degree distribution. Journal of Experimental Algorithmics, 17:3–1, 2012.

[307] X. Su and T. M. Khoshgoftaar. Collaborative filtering for multi-class data using belief
nets algorithms. In Proc. 18th IEEE Int. Conf. on Tools with Artificial Intelligence,
pages 497–504, 2006.

[308] Xiaoyuan Su and Taghi M. Khoshgoftaar. A survey of collaborative filtering tech-
niques. Advances in Artificial Intelligence, 2009, 2009.

[309] Karthik Subbian, Charu Aggarwal, and Kshiteesh Hegde. Recommendations for
streaming data. In Proc. 25th ACM Int. Conf. on Information and Knowledge Man-
agement, pages 2204–2227, 2016.

[310] Jianing Sun, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Xiuqiang He,
Chen Ma, and Mark Coates. Neighbor interaction aware graph convolution networks
for recommendation. In Proc. 43rd Annual Int. ACM SIGIR Conf. on Research and
Development in Information Retrieval, page 1289–1298, 2020.

[311] Özge Sürer, Robin Burke, and Edward C. Malthouse. Multistakeholder recommen-
dation with provider constraints. Proc. 12th ACM Conf. on Recommender Systems,
pages 54–62, 2018.

208



[312] Zeeshan Syed, Collin Stultz, Manolis Kellis, Piotr Indyk, and John Guttag. Motif
discovery in physiological datasets: a methodology for inferring predictive elements.
ACM Trans. Knowl. Discov. Data, 4(1):1–23, 2010.

[313] Partha Pratim Talukdar, Zachary G Ives, and Fernando Pereira. Automatically
incorporating new sources in keyword search-based data integration. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 387–398, 2010.

[314] Jiliang Tang, Huiji Gao, Huan Liu, and Atish Das Sarma. etrust: Understanding
trust evolution in an online world. In Proc. 18th ACM SIGKDD Int. Conf. on
Knowledge Discovery and Data Mining, pages 253–261, 2012.

[315] Carlos HC Teixeira, Arlei Silva, and Wagner Meira Jr. Min-hash fingerprints for
graph kernels: A trade-off among accuracy, efficiency, and compression. J. Inf. Data
Manag., 3(3):227–242, 2012.

[316] Yu Ting, Cao Yan, and Mu Xiang-wei. Personalized recommendation system based
on web log mining and weighted bipartite graph. In Proc. 2013 Int. Conf. on Com-
putational and Information Sciences, pages 587–590, 2013.

[317] Junyu Tong, Hongyuan Ma, Wei Liu, and Bo Wang. Time and location-based hy-
brid recommendation system. In Proc. IEEE 2nd International Conf. on Big Data
Analysis, pages 677–683, 2017.

[318] Stojan Trajanovski, Javier Martín-Hernández, Wynand Winterbach, and Piet
Van Mieghem. Robustness envelopes of networks. Journal of Complex Networks,
1(1):44–62, 2013.

[319] Silke Trißl and Ulf Leser. Fast and practical indexing and querying of very large
graphs. In Proc. ACM SIGMOD Int. Conf. Management of Data, pages 845–856,
2007.

[320] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. Dyrep:
Learning representations over dynamic graphs. In Proc. 6th Int. Conf. on Learning
Representations, 2018.

[321] Alexey Tsymbal. The problem of concept drift: definitions and related work. Techni-
cal Report TCD-CS-2004-15, The University of Dublin, Trinity College, Department
of Computer Science, 2004.

209



[322] Katherine Van Koevering, Austin R Benson, and Jon Kleinberg. Random graphs
with prescribed 𝑘-core sequences: A new null model for network analysis. arXiv
preprint arXiv:2102.12604, 2021.

[323] Demival Vasques Filho and Dion RJ O’Neale. Degree distributions of bipartite net-
works and their projections. Physical Review E, 98(2):022307, 2018.

[324] Demival Vasques Filho and Dion RJ O’Neale. Transitivity and degree assorta-
tivity explained: The bipartite structure of social networks. Physical Review E,
101(5):052305, 2020.

[325] Alexei Vazquez. Knowing a network by walking on it: emergence of scaling. arXiv
preprint cond-mat/0006132, 2000.

[326] Alexei Vázquez. Growing network with local rules: Preferential attachment, cluster-
ing hierarchy, and degree correlations. Physical Review E, 67(5):056104, 2003.

[327] Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,
and R. Devon Hjelm. Deep graph infomax. arXiv preprint arXiv:1809.10341, 2018.

[328] Thanh Vinh Vo and Harold Soh. Generation meets recommendation: proposing novel
items for groups of users. In Proc. 12th ACM Conf. on Recommender Systems, pages
145–153, 2018.

[329] Andrew Z. Wang, Rex Ying, Pan Li, Nikhil Rao, Karthik Subbian, and Jure Leskovec.
Bipartite dynamic representations for abuse detection. In Proc. 27th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, page 3638–3648, 2021.

[330] Jia Wang, Ada Wai-Chee Fu, and James Cheng. Rectangle counting in large bipartite
graphs. In Proc. 2014 IEEE Int. Congress on Big Data, pages 17–24, 2014.

[331] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. Vertex priority
based butterfly counting for large-scale bipartite networks. Proc. VLDB Endowment,
12(10):1139–1152, 2019.

[332] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. Efficient bitruss
decomposition for large-scale bipartite graphs. In Proc. 36th Int. Conf. on Data
Engineering, pages 661–672, 2020.

[333] Mengzhi Wang, Tara Madhyastha, Ngai Hang Chan, Spiros Papadimitriou, and
Christos Faloutsos. Data mining meets performance evaluation: Fast algorithms

210



for modeling bursty traffic. In Proc. 18th Int. Conf. on Data Engineering, pages
507–516, 2002.

[334] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony KH Tung. On triangulation-
based dense neighborhood graph discovery. Proc. VLDB Endowment, 4(2):58–68,
2010.

[335] Pinghui Wang, Yiyan Qi, Yu Sun, Xiangliang Zhang, Jing Tao, and Xiaohong Guan.
Approximately counting triangles in large graph streams including edge duplicates
with a fixed memory usage. Proc. VLDB Endowment, 11(2):162–175, 2017.

[336] Wei Wang, Furu Wei, Wenjie Li, and Sujian Li. Hypersum: hypergraph based semi-
supervised sentence ranking for query-oriented summarization. In Proc. 18th ACM
Int. Conf. on Information and Knowledge Management, pages 1855–1858, 2009.

[337] Weiqing Wang, Hongzhi Yin, Zi Huang, Qinyong Wang, Xingzhong Du, and Quoc
Viet Hung Nguyen. Streaming ranking based recommender systems. In Proc. 41th
Annual Int. ACM SIGIR Conf. on Research and Development in Information Re-
trieval, pages 525–534, 2018.

[338] Yaojing Wang, Yuan Yao, Hanghang Tong, Feng Xu, and Jian Lu. A brief review of
network embedding. Big Data Mining and Analytics, 2(1):35–47, 2018.

[339] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and
applications. 1994.

[340] Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-
world’networks. Nature, 393(6684):440, 1998.

[341] Anatol Wegner. Random graphs with motifs. Available at https: // www. mis. mpg.
de/ preprints/ 2011/ preprint2011_ 61. pdf , 2011.

[342] Yinwei Wei, Xiang Wang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng
Chua. Mmgcn: Multi-modal graph convolution network for personalized recommen-
dation of micro-video. In 27th ACM Int. Conf. Multimedia, pages 1437–1445, 2019.

[343] Steven Euijong Whang and Hector Garcia-Molina. Incremental entity resolution on
rules and data. VLDB J., 23, 2014.

[344] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and
hidden contexts. Machine Learning, 23(1):69–101, 1996.

211

https://www.mis.mpg.de/preprints/2011/preprint2011_61.pdf
https://www.mis.mpg.de/preprints/2011/preprint2011_61.pdf


[345] Baoning Wu and Kumar Chellapilla. Extracting link spam using biased random
walks from spam seed sets. In Proc. 3rd Int. Workshop on Adversarial Information
Retrieval on the Web, pages 37–44, 2007.

[346] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Wein-
berger. Simplifying graph convolutional networks. In Proc. 36th Int. Conf. on Ma-
chine Learning, pages 6861–6871, 2019.

[347] Guangyu Wu, Martin Harrigan, and Pádraig Cunningham. Characterizing wikipedia
pages using edit network motif profiles. In Proc. 3rd Int. Workshop on Search and
Mining User-Generated Contents, pages 45–52, 2011.

[348] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi,
and Stefanie Jegelka. Representation learning on graphs with jumping knowledge
networks. arXiv preprint arXiv:1806.03536, 2018.

[349] Shuliang Xu and Junhong Wang. Dynamic extreme learning machine for data stream
classification. Neurocomputing, 238:433–449, 2017.

[350] Xifeng Yan, Philip S Yu, and Jiawei Han. Graph indexing: a frequent structure-
based approach. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
335–346, 2004.

[351] Shengqi Yang, Xifeng Yan, Bo Zong, and Arijit Khan. Towards effective partition
management for large graphs. In Proc. ACM SIGMOD Int. Conf. on Management
of Data, pages 517–528, 2012.

[352] Yibo Yao and Lawrence B Holder. Detecting concept drift in classification over
streaming graphs. In Proc. KDD Workshop on Mining and Learning with Graphs,
pages 2134–42, 2016.

[353] Josh Jia-Ching Ying, Ji Zhang, Che-Wei Huang, Kuan-Ta Chen, and Vincent S
Tseng. Fraudetector+ an incremental graph-mining approach for efficient fraudulent
phone call detection. ACM Trans. Knowl. Discov. Data, 12(6):1–35, 2018.

[354] Jiaxuan You, Jure Leskovec, Kaiming He, and Saining Xie. Graph structure of neural
networks. In Proc. 37th Int. Conf. on Machine Learning, pages 10881–10891, 2020.

[355] Kai Yu, Anton Schwaighofer, Volker Tresp, Xiaowei Xu, and H-P. Kriegel. Proba-
bilistic memory-based collaborative filtering. IEEE Trans. Knowl. and Data Eng.,
pages 56–69, 2004.

212



[356] Shujian Yu, Xiaoyang Wang, and José C Príncipe. Request-and-reverify: Hierarchical
hypothesis testing for concept drift detection with expensive labels. arXiv preprint
arXiv:1806.10131, 2018.

[357] Zhiwen Yu, Xingshe Zhou, Yanbin Hao, and Jianhua Gu. Tv program recommen-
dation for multiple viewers based on user profile merging. User Model. User Adapt.
Interact., 16:63–82, 2006.

[358] Daniele Zambon, Cesare Alippi, and Lorenzo Livi. Concept drift and anomaly de-
tection in graph streams. IEEE Trans. Neural Networks and Learning Systems,
29(11):5592–5605, 2018.

[359] Giselle Zeno, Timothy La Fond, and Jennifer Neville. Dymond: Dynamic motif-nodes
network generative model. In Proc. The Web Conf. 2021, pages 718–729, 2021.

[360] Hongyuan Zha. Generic summarization and keyphrase extraction using mutual rein-
forcement principle and sentence clustering. In Proc. 25th Annual Int. ACM SIGIR
Conf. on Research and Development in Information Retrieval, pages 113–120, 2002.

[361] Haotian Zhang, Elaheh Fata, and Shreyas Sundaram. A notion of robustness in
complex networks. IEEE Trans. on Control of Network Systems, 2(3):310–320, 2015.

[362] Jianpeng Zhang, Kaijie Zhu, Yulong Pei, George H.L. Fletcher, and Mykola Pech-
enizkiy. Clustering-structure representative sampling from graph streams. In Proc.
Int. Conf. Complex Networks and their Applications, pages 265–277, 2017.

[363] Peng Zhang, Jinliang Wang, Xiaojia Li, Menghui Li, Zengru Di, and Ying Fan.
Clustering coefficient and community structure of bipartite networks. Physica A:
Statistical Mechanics and its Applications, 387(27):6869–6875, 2008.

[364] Shuai Zhang, Lina Yao, Aixin Sun, and Yi Tay. Deep learning based recommender
system: A survey and new perspectives. ACM Computing Surveys, 52:5:1–5:38, 2019.

[365] Yang Zhang. Language in our time: An empirical analysis of hashtags. In Proc. 28th
Int. World Wide Web Conf., pages 2378–2389, 2019.

[366] Yuhong Zhang, Guang Chu, Peipei Li, Xuegang Hu, and Xindong Wu. Three-layer
concept drifting detection in text data streams. Neurocomputing, 260:393–403, 2017.

[367] Lingxiao Zhao and Leman Akoglu. On using classification datasets to evaluate
graph outlier detection: Peculiar observations and new insights. arXiv preprint
arXiv:2012.12931, 2020.

213



[368] Peixiang Zhao, Charu Aggarwal, and Gewen He. Link prediction in graph streams.
In Proc. 32nd Int. Conf. on Data Engineering, pages 553–564, 2016.

[369] Peixiang Zhao, Jeffrey Xu Yu, and S Yu Philip. Graph indexing: Tree+ delta ≥
graph. In Proc. 33rd Int. Conf. on Very Large Data Bases, pages 938–949, 2007.

[370] Yi Zheng, Hongchao Qin, Jun Zheng, Fusheng Jin, and Rong-Hua Li. Butterfly-
based higher-order clustering on bipartite networks. In Proc. Int. Conf. on Knowledge
Science, Engineering and Management, pages 485–497, 2020.

[371] Zheng Zhong, Shen Yan, Zikun Li, Decheng Tan, Tong Yang, and Bin Cui. Bursts-
ketch: Finding bursts in data streams. In Proc. ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 2375–2383, 2021.

[372] Dawei Zhou, Si Zhang, Mehmet Yigit Yildirim, Scott Alcorn, Hanghang Tong, Hasan
Davulcu, and Jingrui He. High-order structure exploration on massive graphs: A local
graph clustering perspective. ACM Trans. Knowl. Discov. Data, 15(2):1–26, 2021.

[373] Dawei Zhou, Lecheng Zheng, Jiawei Han, and Jingrui He. A data-driven graph
generative model for temporal interaction networks. In Proc. 26th ACM SIGKDD
Int. Conf. on Knowledge Discovery and Data Mining, pages 401–411, 2020.

[374] Jie Zhou, Ganqu Cui, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, and Maosong
Sun. Graph neural networks: A review of methods and applications. arXiv preprint
arXiv:1812.08434, 2018.

[375] Shi Zhou and Raúl J Mondragón. The rich-club phenomenon in the internet topology.
IEEE Communications Letters, 8(3):180–182, 2004.

[376] Tao Zhou, Jie Ren, Matúš Medo, and Yi-Cheng Zhang. Bipartite network projection
and personal recommendation. Physical Review E, 76(4):046115, 2007.

[377] Yu Qing Zhou, Ga Wu, Scott Sanner, and Putra Manggala. Aesthetic features for
personalized photo recommendation. CoRR, abs/1809.00060, 2018.

[378] Qiuyu Zhu, Jiahong Zheng, Hao Yang, Chen Chen, Xiaoyang Wang, and Ying Zhang.
Hurricane in bipartite graphs: The lethal nodes of butterflies. In Proc. 32nd Int.
Conf. on Scientific and Statistical Database Management, pages 1–4, 2020.

[379] Abolfazl Ziaeemehr, Mina Zarei, and Aida Sheshbolouki. Emergence of global syn-
chronization in directed excitatory networks of type i neurons. Scientific Reports,
10(1):1–11, 2020.

214



[380] Abolfazl Ziaeemehr, Mina Zarei, Alireza Valizadeh, and Claudio R Mirasso.
Frequency-dependent organization of the brain’s functional network through delayed-
interactions. Neural Networks, 132:155–165, 2020.
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