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Abstract 

The rising trends in infectious disease burden, alongside the recent COVID-19 pandemic, underline the 

need for effective public health disease mitigation strategies like pathogen surveillance. Improvements 

to surveillance systems can be realized by incorporating a variety of surveillance data sources such as 

comprehensive genomics and simpler point-of-care approaches. In this thesis, a novel bioinformatic-

focused surveillance platform is presented for executing scientific workflows in cloud-based 

environments. The platform in question, AlignDx, addresses gaps in available surveillance systems via 

its modular component-based design providing security, workflow management, summary reports and 

data archiving. Two workflows were created and tested using this platform. First, a metagenomics next-

generation sequencing workflow was developed for human pathogenic virus surveillance. Using a 

clinical nasopharyngeal RNA-seq test dataset, the workflow performed well in classification of severe 

acute respiratory syndrome coronavirus 2. Also, a lateral flow assay workflow was developed for mass 

automated point-of-care pathogen surveillance. Using an original test dataset of serially diluted LFA 

images, under controlled lighting, the workflow performed well in correctly classifying tests according 

to their manually curated results. Overall, the AlignDx platform is an effective system for automated 

surveillance applications and its constituent workflows are flexible and primed for further development.   
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Chapter 1 – Introduction 

Waves of infectious diseases carried devastating consequences throughout human history. Despite 

significant efforts to combat infectious diseases through vaccination, sanitation and other public health 

strategies, the threat of emerging infectious diseases (EIDs) and re-emerging infectious diseases 

(REIDs) remains [1,2]. One useful metric for understanding the cost of illness is the global burden of 

disease. Typically, it is calculated using measurements of population health according to the effects of 

disability/disease and death, represented as disability-adjusted life years (DALYs)  [3].  According to 

the 2019 global burden of disease (GBD) report, a comprehensive assessment of health and injuries for 

204 countries and territories, six infectious diseases (lower respiratory infections, diarrheal, malaria, 

meningitis, whooping cough and sexually transmitted infections) were among the top causes of DALYs 

[4]. Global disease surveys such as the GBD and the World Health Statistics report point to 

communicable diseases amongst the principle purveyors of disease burden in low to middle-income 

countries [4,5].  

Technological change has caused unprecedented disturbances, leading to dramatic differences in 

human interconnectivity, farming practices, climate conditions, etc. [1]. This, alongside increased 

population sizes within human-dominated ecosystems, has magnified the human-animal interface 

increasing the risk of zoonotic EIDs [6]. EIDs most commonly originate via zoonosis (estimated to be 

75% of EIDs) and are trending upwards in incidence [7,8].  The impact of the novel Coronavirus 

Disease 2019 (COVID-19) pandemic on global healthcare systems supports these trends. Severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2), the prevailing causative agent of COVID-19, is an 

example of an EID, spread primarily as a respiratory infection [9].  

Amongst the most common infectious diseases are upper respiratory tract infections (URI), with 

global incidence having increased from 1990 to 2019, accounting for 43% of  the GBD [10]. Similarly, 

the patterns in the burden of lower respiratory tract infections (LRI) have increased globally [11].  

Efforts have been made to estimate the global burden of COVID-19 and while these are varied across 

countries, overall mortality contributes significantly to the global burden [12].Recent studies have 

shown how the pandemic disrupted urgent care, leading to larger consequences in the healthcare system 

[13]. Given these trends, there is a clear need for concerted efforts towards disease control. Numerous 

disease containment strategies exist, and they can be placed within the scopes of therapeutic 

countermeasures and public health interventions [14].  To mitigate the burden of infectious diseases, as 



 

 2 

well as the risk of potential pandemics, early public intervention strategies such as surveillance are 

essential.  

1.1 Infectious Disease Surveillance 

Surveillance concerns the collection, analysis and interpretation of health data, acting as an 

intervention or disease control strategy [15]. Infectious disease surveillance methods vary based on the 

effective goal, such as those of population, aggregation, syndromic and laboratory-confirmed 

surveillance, amongst others [16]. Modern surveillance systems make use of a variety of lab techniques, 

and incorporate multiple data sources for disease monitoring via the internet and computer systems for 

digital epidemiology [17].  

Traditionally, techniques such as microscopy, culture-based methods, and serology were commonly 

used for pathogen diagnostics. However, in the past few decades, there has been a transition to 

molecular technologies, including nucleic acid amplification tests (NAATs) [18], lateral flow assays 

(LFAs), and increasingly, although less common, genomics-based methods. Polymerase chain reaction 

(PCR) and other NAATs are a gold standard in pathogen diagnostics [19]. PCR for example, can be 

very effective at detecting low quantities of DNA/RNA [19], and in pathogen detection, can exhibit a 

high sensitivity and specificity [20].  However, NAATs are limited in simultaneous identification of 

multiple species [20] and they rely on primers that recognize known diagnostic sequences within a 

target genome [19]. In a recent study on reverse transcription-polymerase chain reaction (RT-PCR)  

screening of SARS-CoV-2 variants highlighted limitations in following viral evolution [21]. These 

methods may fail to detect newly emerging pathogen variants within an acceptable time frame for a 

public health response. Furthermore, as these approaches are targeted, these methods are incapable of 

detecting novel pathogens or EIDs.   

Below, two technologies for pathogen detection in the context of infectious disease surveillance are 

explored: metagenomics via high throughput sequencing technologies and lateral flow immunoassays 

(LFIAs). While these are not the only technologies to exist for pathogen detection, these are specifically 

explored as they represent two extremes of a spectrum in terms of their resolution, speed, and use cases. 

Multiple pathogens, whether EID or REID, can be detected at a high resolution with metagenomics. 

Although it is currently a relatively slow and expensive method, it can produce an enormous amount 

of data. On the other end are point-of-care (POC) technologies like LFIAs, which are widely available, 

cost-effective, and rapid [22]. These provide single pathogen detection within minutes at the cost of 
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accuracy and little diagnostic information. In infectious disease surveillance, high throughput 

sequencing technologies represent a comprehensive future approach to pathogen detection, whereas 

LFIA technology is a simple but modern alternative. 

1.1.1 Metagenomics 

Next-generation sequencing (NGS) based molecular strategies are quite commonly developed and 

put into use by individual laboratories for diagnostic purposes [19]. Metagenomics then combines these 

single-diagnostic methods to analyze all the genetic material from a patient sample for a variety of 

disease markers [23]. The diagnostic value of metagenomics is in detecting all potential pathogens 

within a sample without bias or reliance on culture [24]. It thus offers several advantages over 

traditional pathogen detection, due to its capabilities in detecting novel pathogen variants and species. 

Like other NGS based sequencing strategies, metagenomics involves a complex series of steps. Once 

a clinical specimen is sampled, DNA/RNA is extracted and purified to undergo massive parallel 

sequencing, and then subsequent bioinformatic analyses [25] (Figure 1.1). In terms of sequencing 

platforms, current metagenomic strategies typically favor short-read NGS sequencing platforms (e.g. 

Illumina), although there is growing use of long-read platforms (e.g. Oxford Nanopore Technology 

(ONT)) [26]. Pearman and colleagues compared long-read vs short-read eukaryotic metagenomics to 

confirm the error-prone issues of long-read technology, but also concluded that taxonomic group of 

interest impacts the methodology [27]. This suggests that with a targeted approach, a wider set of NGS 

platforms may be viable. However, the reality is that for targeted approaches, there are more cost-

effective alternatives with shorter turn-around times. In contrast to traditional differential diagnostics 

that are hypothesis-driven, untargeted metagenomics is hypothesis-free [23]. The untargeted approach 

of metagenomics is therefore powerful in surveillance, or generally any early diagnostics, when no 

specific causative agent is suspected.   

Gardy and Loman [17] suggested a surveillance model which combines syndromic and localized 

surveillance, where sequencing data is integral to pathogen identification. While this may be feasible 

at the scale of an individual laboratory, wide-scale adoption for surveillance poses massive challenges. 

This includes but is not limited to access, sample collection, nucleic acid extraction, library preparation, 

sequencing, analysis and reporting [23]. In addition, bioinformatic pipelines require complex 

knowledge of programming, computer infrastructure and expertise in a variety of algorithms for 

specific analyses [23]. Kraken is an example of a rapid metagenomic classification tool well-suited for 
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a clinical metagenomics pipeline [28]. However, domain-specific knowledge is required to translate its 

predictions into biologically/clinically meaningful results. Thus, new methods are needed to simplify 

bioinformatic workflows and associated prediction reports, such as through automated cloud-based 

systems that require minimal technical input by the user.  

 

Figure 1.1 - General overview of metagenomics-based pathogen detection.  A patient, with or 

without symptoms, is targeted for this molecular workflow. Samples are taken from areas of interest. 

Nucleic acids are extracted, isolated, and processed for genome sequencing. Finally, various 

bioinformatic workflows are run to aid in the identification of a suspect pathogen. Adapted icons from 

Flaticon and Icons8, and vectors from nf-core pipeline components [29].  
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1.1.2 LFAs 

LFAs consist of a paper-based assay that enables rapid quantification of a biomolecule, classified by 

their recognition element as either antibody-based or nucleic acid-based [30]. Immunodiagnostics POC 

tests like LFIAs are a widely adopted approach, typically used within the confines of routine clinical 

microbiology [31]. Typically, the configuration of an LFIA involves a membrane strip embedded into 

several pads and a backing plate, allowing a sample liquid to travel via capillary action to a zone of 

conjugates and then detection to produce a visual response [30] (Figure 1.2). The visual response can 

then be compared to a control line [30].  

 

Figure 1.2 - General lateral flow assay diagram.  Samples flow from the left sample pad to the right 

absorbent pad, passing the test and control lines through membrane material.  

 In the past few years, there has been a wide-scale adoption of LFIA tests for clinical and at-home 

screening of SARS-CoV-2 infections. Several studies have demonstrated highly sensitive and specific 

detection of SARS-CoV-2 antigens using these tests [32]. Their categorization as a POC test makes 

them ideal for mass-testing, particularly in having a short-turnaround time, cost-effectiveness and 

reasonable accuracy [33]. However, there are several limitations when using LFAs. One significant 

challenge is that test performance is largely operator dependent [33]. Relying on the subjective 

interpretation of the human eye can lead to varying results. Quality data on the recording accuracy of 

the human eye is scarce due to a lack of empirical data, but some details regarding diversity in color 

perception do underline this subjectivity [34,35]. Furthermore, correct usage of the LFA requires a 

correct understanding of their non-standardized manufacturer’s manual. Another significant challenge 
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is that few are FDA-approved, with great variance in which tests show acceptable sensitivity and 

specificity [32,33]. Perhaps the most-overlooked limitation is the lack of automation and in general, 

documentation of results. These limitations could in part be addressed using a central cloud-based 

surveillance framework to process, store and share results of LFA tests.  
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1.2 Current Bioinformatic-Focused Surveillance Platforms 

  While POC and NGS approaches are promising data sources for digital epidemiology, end-to-end 

surveillance pipelines incorporating these approaches are uncommon.  This is in part because these 

approaches often require skilled technicians or bioinformaticians to have a full understanding of these 

domain specific workflows. For routine adoption, a system that abstracts complexities, and eases the 

analysis and interpretation components of the surveillance pipeline is essential. Efforts at generating 

such an end-to-end surveillance pipeline are rapidly developing, especially in digital epidemiology.  

Platforms are in development for POC LFA approaches. One study proposed REASSURED (Real-

time connectivity, Ease of specimen collection, Affordable, Sensitive, Specific, User-friendly, Rapid, 

Equipment-free, and Deliverable) diagnostics, in which a machine learning (ML) strategy is 

implemented alongside the use of smartphone technology to produce a robust, manageable system [36]. 

Such a model could be enhanced via a user-interface, connected to an archiving system. LFA App is 

an example of an open-source smartphone-based system for quantitative analysis of LFA that attempts 

this, but is focused on singular usage, thus it is not suited to wide-scale surveillance deployment [37].  

Sequencing approaches have seen much more usage and implementation, although with different 

barriers. Galaxy for example, an open-source collective integrating multiple, well-established 

bioinformatic tools in a cloud environment, has been repurposed for clinical analyses [38].  It is 

primarily built as a workbench, thus is more suited to educational and research-focused workflows [39].  

In contrast, Nextstrain is a real-time pathogen tracking platform, built for monitoring viral outbreaks 

[40]. Although effective, it is focused largely on phylodynamics, and does not implement other types 

of upstream bioinformatic analyses required for initial pathogen detection [40].    

Bioinformatic-focused surveillance requires a personalized approach prioritizing a simple user 

interface (UI), focused pipelines, security, and scalability [41]. User-centered design (UCD) is also 

often ignored within the scope of bioinformatic tools and workflows, often due to its complexity [42]. 

Typically, there is a steep learning curve for using these tools, and interfaces are bustling with 

tweakable parameters that may be unnecessary for usage. A UCD approach could be valuable in 

generating a domain-specific UI that is minimally viable and allows for reproducibility [43]. 

Bioinformatic workflows are also highly dynamic, as tools are ever-changing, so an abstraction layer 

is typically required. Workflow managers are a popular solution as they provide data provenance, 

portability of pipelines, scalability and reentrancy of failed executions [44]. Containerization is the 

driving technology behind these workflow managers, which allows the packaging of workflow 
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processes into modular, portable, units that can be orchestrated at any desired scale [44]. This system 

is certainly not complete without an archive/database, that can store, and manipulate analysis results 

for collection and further interpretation. Numerous technologies exist, but relational database models 

are well suited to strongly structured data, such as those generated by bioinformatic workflows [45]. 

Finally, the individual components of these systems in unison must be scalable, and widely accessible. 

In terms of scalability, cloud computing has revolutionized access to computational resources, and is 

in regular use in every major tech adjacent industry. The internet is also widely accessible; thus, it acts 

as an excellent interface for any potential bioinformatics platform.  
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1.3 Thesis Objectives and Outline - Construction of an online bioinformatic platform for 

automated pathogen surveillance  

As described above, there is a need for a computational infectious disease surveillance platform with 

features that address the limitations of existing systems including: user-centered design, flexibility in 

technology implementation, data inputs and workflows, method automation, online data archiving, 

security and scalability. The following chapters describe the development and testing of a new system 

called AlignDx, a cloud-based, user-friendly web platform for surveillance, via modern imaging and 

sequencing-based bioinformatic approaches. In Chapter 2, the methods for the construction of the 

AlignDx platform are explored, with a focus on the system architecture, and its implementation. 

Chapter 3 describes the AlignDx genomic workflow in detail, alongside test cases and applications 

using original datasets. Chapter 4 details the AlignDx LFA image analysis workflow similarly to the 

genomic workflows, as well as accuracy testing via a dataset of LFA images. Finally, Chapter 5 

explores the AlignDx platform and its workflows.   
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Chapter 2 – The AlignDx Platform   

Modern surveillance systems adopting digital epidemiology could greatly benefit from a 

bioinformatics-focused approach to disease control.  Current systems face limitations such as tightly 

coupled data sources, narrow target audiences, and unintuitive, complex user interfaces. Herein, the 

construction of “AlignDx”, a cloud-based web platform for running bioinformatics-focused 

surveillance workflows is outlined. This system is designed to address the current gaps in surveillance 

systems, through a simple UI, returning consistent, workflow-specific reports (Figure 2.1).  

 

Figure 2.1 - AlignDx platform scope.  Users access workflow specific forms through a dynamic UI 

which returns a summary report that highlights relevant results.  Adapted icons from Flaticon and 

vectors from nf-core pipeline components [29].  
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2.1 Architecture Overview  

Development of the AlignDx platform began with the construction of a high-level client-server 

architecture, shown in Figure 2.2. Through this architecture, users are expected to interact with the 

system using any web browser, via a web-UI client, that allows them to run curated bioinformatic 

workflows on a remote server. Workflow outputs are then used to generate workflow-specific reports, 

summarizing key findings with pertinent visualizations and descriptions. Underneath lies a service-

oriented software stack, where major components are split into container-based operators running on a 

cloud-server.  

 

Figure 2.2 - Client-server architecture for AlignDx.  Representative diagram for the overall 

architecture and communication pathways of system services. Client architecture is generated by the 

UI service on a remote server, and then sent to the client to be displayed in browser. DB: Database, UI: 

User Interface, API: Application Programming Interface. 
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Components can be grouped according to their core usage, being the front-facing web UI, and the 

rear, application programming interface (API) for orchestrating surveillance tasks.  The UI is a client 

web application with a responsive design capable of running on any modern browser. Users can select 

a workflow and fill out its form with the required data, which is sent to the API on a remote server. The 

UI further enables monitoring of workflow execution, and finally, exploration of workflow results. The 

construction, execution and monitoring of workflows are managed internally by the API running on the 

remote server. This component acts as a middleman, coordinating user requests from the frontend UI 

to the corresponding service.  

From a surveillance perspective, core features provided by the API include authentication, task 

scheduling, archiving, workflow management and report generation. The authentication service 

provides data privacy essential when dealing with sensitive information such as health data. Task 

scheduling ensures that massive datasets, alongside users, do not overwhelm the system. This is critical 

to handling varying levels of traffic. Archiving tracks submission metadata, providing a historical 

record of previous submissions that is fully controllable by the user. Workflow management is a 

function of previous components and enables the execution of any data pipeline using containerization. 

Report generation summarizes the findings of a specific workflow.  
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2.2 Software Stack – Implementation Details 

The system is split into Docker [46] container-based services running on a cloud-server, described 

below. Each service has its own set of software dependencies and build requirements defined using the 

Dockerfile text file format [46]. From these text files, an executable package representing a snapshot 

or “image” of the service can be constructed, and then run as a process/container. All services can then 

be managed using an orchestration software, such as the Docker Compose tool [47],  which controls 

service lifecycles and communication through a Compose configuration file. More advanced 

orchestration solutions that offer computer cluster-level deployment can also be used, due to the 

ubiquity of Docker containerization technology.           

2.2.1 Web UI  

The UI was built using the React.js [48] library and the Next.js [49] framework following UCD. The 

source code follows the functional programming paradigm, implemented using the TypeScript 

programming language for maintainability.  This UI is server-side rendered and updated when 

necessary for rapid-response times. Rendering refers to the process by which the source code is 

converted to an interactive web page. By performing this server-side, significant computational load is 

taken away from the user. The code loosely follows atomic design methodology, where simple 

components serve as building blocks for larger and more complex components. The resulting 

components can be loosely categorized as either stateless or stateful units. Stateless components require 

no inputs, whether from users, or system processes such as API requests, making up the surface layer 

of the UI. Stateful components do the bulk of functional processing, relaying user inputs, as well as 

system responses back to the web client. This allows for rapid adoption of novel web technologies that 

may supersede current implementations. Stateful and stateless components are then combined to 

generate complex features, such as the dynamic form components. These then come together in page-

spanning layouts that map them as required, making up an application dashboard. Each component is 

designed to be easily customizable and can be carried over to any React-based framework. Additionally, 

they are responsive, meaning their dimensions are dynamically adjusted to available screen space.  

As a data-centric platform, an application dashboard ensures data-driven decision-making, where 

tooling is at the forefront of the users’ capabilities. Currently, the dashboard is split into two core pages: 

the “Analyze”, and “Archive” pages (Figure 2.3).  
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Figure 2.3 - Web UI dashboard.  Central application dashboard with buttons to access “Analyze” and 

“Archive” pages. Shown is the “Analyze” page, with the pipeline/workflow selection menu.   

The analyze page consists of several core components, key among them being the pipeline form and 

monitor component. The pipeline form component serves to dynamically assemble UI workflow forms 

as requested by the user upon selection. Forms are constructed based on keyword input declarations in 

the JavaScript Object Notation (JSON) [50] schema provided by the API. This includes meta-field 

descriptors, which can provide the user with necessary information on input requirements. Each input 

field also has a dynamic validation function, where incorrect or missing required inputs prevent 

submission, and consequent errors are visually highlighted to the user. In this manner, users receive 

immediate feedback through metadata, as well as form interaction.  The monitor component enables a 

user to visually identify submission progress through status indicators, and progress bars. Progress data 

is fetched in real-time between the client web UI and the server API using the WebSocket 

communication protocol. Status updates follow a subset of workflow event triggers such as submission 

setup, analysis, completion, and error. Progress bars are however reserved for file data uploading and 

provide resumable functionality through a pause/play button.  This component is given priority over 

other UI, to ensure that in the event of a network failure, users are immediately prompted to resume 

interrupted submission attempts. The archive page consists of a table component that enables 

exploration of previous submissions to the user. The metadata includes the submission name, selected 

pipeline, timestamps, and status of the submission. Additionally, each submission’s output data and 
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corresponding report can be accessed here. Data, including reports are downloadable in a compressed 

format from any device; similarly reports can be viewed in browser (Figure 2.4). 

 

Figure 2.4 - Example workflow report in browser view.  The report was generated using the 

MetaSense taxonomic profiling workflow, with an Ion Torrent SARS-CoV-2 positive FASTQ sample. 

The top 100 most represented species are visualized in the shown relative abundance plot, generated 

from the workflow output.   
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2.2.2 API 

At the core of the system lies an API, built using the asynchronous FastAPI [51] web framework, to 

direct  incoming and outgoing traffic to the appropriate service. An API can be thought of as a set of 

rules defining how two or more computers may communicate, such as over the web. Asynchronous 

here refers to the execution nature of the API, where incoming requests can overlap, and are scheduled 

as necessary. This translates to better performance and scalability for the client, since content can be 

handled dynamically. Like the web UI, the API design also follows atomic design methodology, where 

smaller units are used to build up more complex services. At the lowest level, there are asynchronous 

functional units, that provide a singular purpose. These functions are then combined with data models 

into a programmatic object to generate a service. Data models can be highly complex, or simple 

representations of incoming and outgoing data. Using the Pydantic python library [52], these are 

created, providing model validation and an intentional structure to service execution, which feed into 

system monitoring and execution control. At the highest level, these services can then work together to 

create complex functionality, accessible through API endpoints (Figure 2.5). 

 

 

Figure 2.5 - Submission API endpoints.  Submission endpoints visualized in swagger UI interactive 

documentation, following the OpenAPI specification. At the left, request methods (GET, POST) are 

highlighted. At the right, locks indicate authorization scoped endpoints.  
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Web API endpoints are communication pathways for a particular service, and each endpoint can have 

a set of rules about inputs, outputs, and communication protocol. The implementation of these 

endpoints follows representational state transfer (REST) design principles. In short, each endpoint has 

a uniform interface, is stateless, cacheable, decoupled from the client and consists of communication 

layers [53]. This allows for flexible implementation of services, and ensures that client-server 

communication is predictable, making the overall system robust. The API utilizes common HTTP 

request methods for communication including the GET, POST and DELETE methods. These define 

the type of action carried out by the endpoint; a GET request retrieves data, whereas a POST request 

submits data, and DELETE removes data [54]. Each endpoint is organized by a common use case, as 

seen in figure 2.5, including metadata, user, submission, socket and finally webhook requests. Metadata 

endpoints inform the client on dynamic information created by the server, including analytics or in the 

case of this system, available workflows. User endpoints invoke authentication services, which enable 

or disable access to other endpoints, depending on access granted to the requestee. Simple examples 

include registering a user or signing in to access previous work. Submission endpoints are used to 

trigger workflows and retrieve results, including reports and other output data. Unlike other endpoints, 

socket and webhook routes differ in communication protocols, thus they serve different purposes. In 

the case of socket endpoints, these provide real-time updates on the state of workflows using the 

WebSocket protocol.  Webhooks provide similar functionality but use the HTTP protocol to allow 

communication between third-party services and the system API.   

The flexibility of the API design gives way to the integration of any feature enhancing third party-

tool. One key element missing from this system was fault tolerance for network failures, especially 

when working with large files for bioinformatic workflows. As a result, data uploads are managed 

through the tus resumable protocol, via a tusD server [55]. Briefly, “resumability” provides a 

mechanism by which partial uploads may be continued by the user when network stability has returned. 

Webhooks provide the communication layer between upload events and the API, meaning the system 

can track when data is ready or in stasis. Furthermore, once uploads for a particular submission have 

been completed, the system works independently of users’ network availability for analysis of 

submitted data.  
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Every service implemented by this API makes use of 2 types of storage: disk and database (DB). 

These two storage types are used in sync to accommodate different purposes, where data storage can 

be organized by size and longevity. Files ranging between fractions to hundreds of gigabytes (GB) are 

common data inputs/outputs for bioinformatic workflows. Long-term storage with this data can be 

tricky in terms of cost, performance, and security, thus these are considered low priority in terms of 

storage for the system. Most of the other data input by users, namely form data or user information can 

be structured, easily predicted and relatively small. The system combines disk and DB storage to 

manage all these data types using the relational PostgreSQL DB management system [56] and the in-

memory Redis DB [57]. The PostgreSQL DB provides long-term stable storage, while Redis provides 

rapid-access temporary storage. For file data, relevant file metadata and workflow tracking information 

will be temporarily stored in the Redis database and upon completion, a subset of data will be kept 

long-term in PostgreSQL. Form data, user data and any of their kin can be directly stored in 

PostgreSQL. As a relational DB, data groups can be categorized as “tables”, with rules mapping 

relations between groups. In this manner, user information can be associated with their submissions, 

and in turn any cascading data. The DB is accessed using a DB interface that is framework agnostic, 

meaning one could easily swap out DB paradigms if performance or technological creep necessitates 

it. DB querying is used extensively in key services, including authentication and workflow 

management, amongst others. Querying, much like network requests with the API, is done 

asynchronously between the API and the PostgreSQL database. Similarly, this increases the efficiency 

of the system, as resources can be allocated as necessary, without blocking the execution of other tasks. 

The querying methods are shared between tables, as defined by the DB interface. Each table can, 

however, have different structures defining the data they hold.  

Task execution is the final layer in the system, and is managed by the Celery asynchronous task 

queue library  [58]. This system acts as a light wrapper around tasks and can easily be swapped for 

alternative implementations. Using Redis as a message broker between the API and a task queue 

“worker”, tasks such as workflows are scheduled and then executed as resources are made available.   

In this manner, API tasks can be scaled horizontally, meaning more computer nodes running workers 

can be added, increasing the workload capacity for the system.  Celery is primarily used for resource- 

intensive tasks such as workflow execution or monitoring.   
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2.2.3 Factory – Workflow Engine 

“Factory” is a workflow execution system, that creates and runs pipelines through a schematic 

system. Given a remote/local repository of pipelines, it looks for YAML Ain’t Markup Language 

(YAML) [59] format files, to provide the API access to various workflows. On the client-side, available 

workflows are populated using the corresponding JSON schema via the API allowing new pipelines to 

be added dynamically. It is a “meta” system, as it is framework agnostic, meaning it can run any valid 

pipeline regardless of the implementation. Each schema consists of descriptor, resource location and 

command constructor elements (Figure 2.6). Descriptor elements provide metadata on the workflow 

itself, and its inputs. Workflows are composed according to the schema specification; workflows can 

be rigid and bound to a singular pipeline, or flexible, and combine multiple pipelines.  

The primary driver behind Factory is containerization technology, where each workflow has a 

defined Docker image, hosted locally or in a cloud repository. Going outwards from the API to the web 

client, the workflow schema has predefined UI element types associated with input elements, which 

are used to construct forms.  When a workflow has been submitted by a user via a web client, the 

associated workflow and input identifiers are then used to construct the workflow launch command. 

Using the Docker Python API library, and the Celery task execution system, the appropriate workflow 

image can be retrieved and then used to construct a container that will run that command.    

 Factory also generates reports for each workflow through IPYNB files co-located with each pipeline 

schematic in the provided repository. These files provide all the necessary information required to 

generate a workflow specific IPYNB, including data transformations, figure generation and descriptive 

text. In short, workflow outputs and any relevant tracking metadata are used here to generate an HTML 

report. The report is derived from the IPYNB file and a global HTML template, available to the entire 

system, ensuring that they are generated consistently.  
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Figure 2.6 - Diagram of example Factory schema.  Nodes indicate items, and arrows relationships 

between these items. Input items are categorized by the input type parameter.  

2.3 Envisioned AlignDx User Workflow  

The above-described components come together in a process that can generally be described in terms 

of the envisioned user workflow. First, a prospective user can access the web client through their 

preferred browser, and device using the website Uniform Resource Locator (URL). On arrival, they are 

greeted with some details on what the platform does, what it seeks to achieve, and next steps through a 

landing page. Access to web application services can be gained through registration. Once 

authenticated, users are redirected to a central dashboard, from which analyses can be submitted or later 

reviewed securely. From an “Analyze” tab, various workflows can be browsed, with associated 

metadata and descriptions. These include instructions on data requirements and expected outcomes of 

selecting the focused workflow. For example, current workflows include a data analysis pipeline for 

detecting a custom panel of viral pathogens in user-uploaded sequencing datasets (Chapter 3) and a 

line-detection pipeline for LFA images (Chapter 4).   

Once a workflow has been chosen, the necessary data required for processing can be filled out via 

the prompted form and then submitted via a prompt button. In the event of a network issue, uploads 

can be resumed as necessary once connectivity is restored. On the server side, workflow processing is 

initiated, which initiates a recording cascade for execution, including inputs, outputs, and intermediary 

events. At this point, the workflow pipeline is on standby, however, once all input data has been 

uploaded, including any pending file uploads, execution begins. On the user side, both upload progress 

and analyses progress can be monitored via web client. Upon completion, workflow termination 
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triggers report generation, summarizing key findings using workflow outputs and tracking metadata, 

producing a final Hypertext Markup Language (HTML) report. This report, execution logs and output 

raw data are all stored on the server. Users can then access these reports in browser, and similarly 

download data. A record of these workflow submissions and corresponding results can be explored and 

manipulated from an “Archive” dashboard tab. This webpage is populated with this data alongside 

associated metadata, enabling more complex analyses by the user.  
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Chapter 3 – Genomics Workflows 

Pathogen detection using genomic sequencing technologies presents a ripe opportunity for 

surveillance efforts. There are numerous sequencing-based approaches, with several different protocols 

and applications. In the domain of public health, key amongst them is whole-genome sequencing 

(WGS) of cultured isolates, and meta-omics (metagenomic or metatranscriptomic) sequencing of 

samples. With WGS, taxonomic classification is used to identify/verify the taxonomy of a single 

organism, but with meta-omics, bioinformatic methods are used to taxonomically profile a dataset. In 

surveillance applications with the latter approach, focusing on a subset of the resultant taxonomic 

composition becomes important. Specifically, this can be done by tailoring the analysis towards a 

“panel” of target pathogens and estimating their presence/absence or abundance.  

Previously in Chapter 2, the AlignDx platform for running targeted bioinformatic workflows over 

the web was described. This chapter details the implementation of a genomic taxonomic classification 

workflow for human pathogenic virus surveillance via the AlignDx platform.    

 

 

 

 

 

 

 

 

 

 

 



 

 23 

3.1 Base Pipeline 

A general taxonomic classification workflow was developed using the Nextflow workflow system 

and the nf-core framework (Figure 3.1). Nextflow consists of a domain specific language (DSL), used 

to build bioinformatic pipelines [60]. This framework was chosen to demonstrate the “meta”-workflow 

capabilities of the AlignDx platform. Similarly to the Factory workflow engine, it takes advantage of 

containerization technology to bundle pipelines, aiming to provide reproducible, error-tolerant, and 

finally observable workflows [60]. The workflow also uses the nf-core framework, which automates 

pipeline creation and testing to standardize Nextflow implemented bioinformatic pipelines [61]. This 

gives it access to the repository of curated nf-core modules, making it flexible, and battle-tested. 

Additionally, it is tweakable, with the capability of restarting from the last common shared parameter 

thanks to the usage of Nextflow.  

 

 

Figure 3.1 - Base pipeline architecture.  Input genomic data is grouped according to samplesheet 

data, and then iteratively queried against a k-mer database until abundance measurements are 

collected and visualized. Round nodes indicate pipeline checkpoints, each making up separate nodes 

within the workflow. Inputs are all provided by the executor; either the user or system executing the 

pipeline. Adapted vectors and icons from nf-core pipeline components [29].  
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The pipeline is split by key processes that manage integral checkpoints that input data will flow 

through within an analysis. The first checkpoint evaluates the data input for correctness of type and 

format. FASTQ [62] or compressed FASTQ files act as input data types for this workflow and on 

encounter, the pipeline groups them according to metadata provided via a comma delimited file, 

generated automatically, or submitted by the user. Data can be grouped according to sample site or read 

pairing within this sample sheet. The submitted or automatically generated sample sheet is validated 

internally by the pipeline, and then files are made available for analysis. Optionally, files can be 

subsampled before taxonomic analysis using the Seqtk tool [63], either fractionally or using a fixed 

number of reads. This data is then taxonomically classified using Kraken2’s [64] k-mer based approach 

with a chosen k-mer database. Briefly, k-mers are short genomic substrings, which Kraken uses with a 

reference database to classify reads via their lowest common ancestor taxa [64]. Kraken2 output files 

are then submitted to a Bracken [65]  process for calculating the relative abundance of species within 

the sample. The resulting abundance measurements can then be filtered for contaminant reads, or any 

other organisms not of interest. Finally, abundance measurements for each submitted sample are 

collected and then used to generate interactive abundance plots via the Plotly visualization library [66]. 

All data output from the pipeline is additionally automatically aggregated into an HTML report via the 

MultiQC tool [67]. Workflow parameters, progress and errors are provided through tracebacks logged 

to a designated text file, alongside the executing terminal. Together, these components make up the 

base taxonomic classification pipeline and are used to construct genomic workflows used by the 

AlignDx Platform. 
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3.2 Audience Targeted Genomic Workflows 

Using the base pipeline, three different genomic workflows were created, differing based on their 

output report targeted towards different audiences, defined within their pipeline schemas for the Factory 

workflow engine (Figure 3.2).  

 

Figure 3.2 - Targeted genomics workflows.   The depicted workflows continue from the last node of 

the base pipeline diagram (Figure 3.1). Nodes branch at the custom report, which summarizes the 

workflow data according to the target audience. Adapted graphics from the nf-core pipeline components 

[29]. 

For the MetaSense/researcher workflow, the report summarizes the unfiltered taxonomic profile of 

the submitted dataset. Using the bracken output results from the pipeline and the python Pandas data 

analysis library [68], the top 100 most represented species across each submitted sample are 

extrapolated. This is done by first extrapolating fractional abundance measurements from the bracken 

output of the base pipeline and using the DataFrame.nlargest function from Pandas to sort raw values 

in sample columns.  It is difficult to show all species within the sample, as comprehensive Kraken2 k-

mer databases, typically necessary for accurate taxonomic classification, can identify tens of thousands 

of organisms. Although this greatly depends on the nature and complexity of the sample, with 

metagenomics, a diverse taxonomic composition is often expected. Within a single HTML report, 

embedding larger datasets can reduce performance significantly, as it is not a data storage format. 

Additionally, many species may be taxonomically classified with negligible reads, thus a subset may 

still be representative of the taxonomic profile. The tabulated data is shown first in the report, and then 

additionally visualized in an interactive, relative abundance plot using the Plotly library in a stacked 

relative abundance bar plot. Finally, software versions used to analyze the input data and produce the 
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report are collated into a table, for transparency, which is done for each genomic workflow. Overall, 

the MetaSense report provides a glance at the taxonomic composition of the input dataset. 

The PathoSleuth workflow is experimental, where it generates a binary detection report of pathogens 

within the submitted dataset. Similarly, to the MetaSense workflow, abundance measurements are 

extrapolated from the bracken output, but a subset of the raw table is used for further analysis, using a 

curated database referred to as the Pathogen Panels DB, described in the next section. The fractional 

measurements are then converted to a Yes/No classification for each sample, based on an abundance 

threshold value that can be defined in the system (default value = 0). Finally, the Lookout/surveillance 

workflow similarly uses this DB but instead provides raw detected read numbers, fractional abundance 

measurements and human filtered abundance measurements. 

3.3 Pathogen Panels DB 

The Pathogen Panels Db is an ongoing flexible flat-file database that detects 228 human pathogen 

viruses (Figure 3.3). Viruses are the focus of this database, as bacterial pathogens introduce additional 

complexities to taxonomic classification in humans. Organisms are listed by genus and species, 

alongside their corresponding National Center for Biotechnology Information (NCBI) taxonomy ID. 

Organisms are classified by a domain of interest using a “panel”, through a binary classification. 

Currently, three panels are in use: a COVID-19 panel for detecting SARS-CoV-2 virus, a CDC high-

consequence virus panel and finally a Human Pathogenic Viruses panel. The CDC high-consequence 

panel is tailored according to viruses listed by the Division of High-Consequence Pathogens and 

Pathology (DHCPP) [68]. Finally, the Human Pathogenic Viruses panel makes up the entirety of the 

database. This panel was built as a team effort (M. Hunjan, N. Abu Mazen, A. Doxey) by curating 

human pathogenic viruses based on several sources (CDC, Health Canada, Expasy ViralZone, and 

others). 

 

Figure 3.3 - Snippet of the Pathogen Panels Db. 
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3.4  Wastewater – Surveillance Workflow Run 

With continued interest in making a surveillance platform, further experiments were done with the 

Lookout/surveillance workflow. To demonstrate its utility using the AlignDx platform, a wastewater 

dataset was selected and run through the system (Figure 3.4). The dataset is 0.15 GB in total size, 

consisting of paired-end compressed FASTQ format sequence data generated from two different RNA 

shotgun sequencing runs on wastewater treatment plant samples obtained from collaborators (Charles 

Lab, U. Waterloo). These were 24-hour composite samples taken by autosamplers from the following 

plants: GE Booth Lakeview wastewater treatment plant, the York-Peel OCF/Humber wastewater 

treatment plant, the Kitchener wastewater treatment plant and the Waterloo wastewater treatment plant. 

First, a user was registered with the platform, and after signing in with credentials, and navigating to 

the dashboard, the Lookout/surveillance workflow was chosen using the pipeline select menu (Figure 

3.4A). The input form elements (Figure 3.4B) were dynamically generated after selection, alongside 

metadata on the workflow, and its inputs. These were then filled out using the run name “wastewater”, 

the pathogen panel “Human Pathogenic Viruses” and all input FASTQ files from the dataset. 

Submission progress was monitored using the status card and upload progress bars in the monitor UI 

(Figure 3.4C). Once the status card indicated that the run had been completed, the report could then be 

seen (Figure 3.4D) and then later reviewed in the archive (Figure 3.4E), when necessary. From the 

report, two of the samples were found to contain reads matching SARS-related coronavirus, and no 

other viral pathogens. Using the archive, this report alongside the raw Bracken and Kraken2 results and 

metadata on submission time, status, and duration could be explored. 
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Figure 3.4 - Surveillance/Lookout workflow via AlignDx client UI.  Stepwise utilization of Lookout 

in the AlignDx Platform. (A) Workflow/pipeline selection menu and available workflow options. (B) 

Filled out surveillance form, with input dataset, and chosen pathogen panel. (C) Status card for 

monitoring submissions. (D)  Wastewater dataset report. (E) Archive entry for submission. Adapted 

vectors from nf-core pipeline components [29]. 
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3.5 COVID-19 clinical swab dataset 

With an interest in the performance capabilities of the base pipeline, a clinical dataset was chosen 

for testing. Through collaborators (Dr. Samira Mubareka, Sunnybrook Health Sciences Centre), a 

shotgun RNA-seq dataset was obtained of nasopharyngeal swabs collected from 66 patients throughout 

October 2020 – 2021. Samples underwent qPCR analysis for SARS-CoV-2 and were then labelled 

positive and negative accordingly based on standard cycle thresholds (Ct). Samples were also split into 

outpatient, ICU or Non-ICU categories. Samples were sent for sequencing in November 2021. RNA-

seq libraries were prepared from 50ng of RNA samples via the NEBNext rRNA Depletion Kit v2 

(Human/Mouse/Rat) (NEB Cat# E7405) in conjunction with NEBNext Ultra II RNA Library Prep Kit 

for Illumina (NEB Cat# E7765). rRNA depleted libraries were pooled equimolar and quantified using 

the NEBNext Library Quant Kit for Illumina (NEB Cat# E7630). Finally, libraries were sequenced 

151c paired-end at 65M per sample on the NovaSeq6000 platform at the Donnelly Sequencing Centre 

(Toronto,ON), using the S2 v1.5, 300-cycle kit (lllumina Cat# 20028314). The sequencing reads 

displayed a high percentage (~85%) of uniquely mapped reads, and the correlation between sequenced 

replicates was high (Pearson Correlation R=~0.9). A total of 66 paired-end read FASTQ files, making 

up 667 GB of data, was generated by this process in three batches.  

The base pipeline was then run on this dataset for each data batch, using the publicly hosted Standard 

Kraken2 DB capped at 8 GB, run with Bracken at a species level resolution, filtering out human host 

reads. The combined Bracken output fractional data was then used to visualize the taxonomic profile 

of the data using a clustered heatmap, where SARS-CoV-2 was found to cluster with high fractional 

abundance on positively labelled samples (Figure A.1). For further characterization of the dataset, 

SARS-CoV-2 abundance measurements were extrapolated from the collated data to overview relative 

abundance across samples (Figure 3.5). Positively identified samples using the base pipeline were 

found to corroborate qPCR labels from provided metadata. 
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Figure 3.5 - Proportional abundance of SARS-CoV-2 across samples.  Clinical swab samples were 

analyzed using the base pipeline, producing a combined Bracken output containing the taxonomic 

profile of the dataset. SARS-CoV-2 abundance values were extrapolated from these results and then 

graphed in a bar plot. Dark blue bars represent proportional abundance on a 0-1 scale, and light blue 

bars represent the log-scale representation of these values. Samples are ordered as follows: 1-16 

(Negative), 17-32 (Outpatient), 33-48 (non-ICU), 49-66 (ICU).  
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3.6 Performance Evaluation   

To get a sense of the sequencing depth required to make accurate predictions to the 

presence/absence of SARS-CoV-2 in this dataset, various performance metrics were calculated. Using 

qPCR metadata as “ground truth” labels for samples, the same analysis from above was re-run, but with 

fractional and fixed read reservoir subsampling at magnitudes of 10. Fractional subsampling was 

performed for values 10%, 1%, 0.1%, 0.01%. Fixed read subsampling was performed for values 10M, 

1M, 100K, 10K, 1K, which were chosen based upon the smallest file size in all batches, being ~44 

million reads. First, an array of thresholds was generated for each sampling condition based on the 

relative abundance scores for each sample. Each of these thresholds were then used to classify samples 

as SARS-CoV-2 positive or negative, using binary values of 1 and 0 respectively (Figure 3.6). 

 

Figure 3.6 - Example scatterplot for SARS-CoV-2 detection classification.  Clinical swab samples 

were separated using a threshold of 0.40892 for classification of SARS-CoV-2. Data points above this 

threshold were predicted as positive, and below as negative. Samples are ordered as follows: 1-16 

(Negative), 17-32 (Outpatient), 33-48 (non-ICU), 49-66 (ICU). 
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 These detection predictions, alongside the positive and negative labels from the SARS-CoV-2 

dataset, were manipulated using Pandas, and then used to generate confusion matrices with the Sklearn 

confusion_matrix function. True negative, false positive, false negative and true positive values were 

retrieved from the flattened matrix and used to calculate multiple metrics for performance evaluation 

at each threshold for unsampled (Table A.1), fractional (Table A.2-5) and fixed subsampling (Table 

A.6-10). At a threshold of 0.0056, for reads required to classify a sample as SARS-CoV-2 positive, 

accuracy was found to be 97 % (Table A.1). The calculated TPR and FPR values were then used to 

visualize the performance of the base pipeline for the subsampling conditions, as well as unsampled 

data, using Receiver Operating Characteristic (ROC) curves (Figure 3.7A, B). The pipeline was found 

to classify the clinical swab dataset reads according to the qPCR metadata very well across all 

subsampling conditions, until subsampling conditions reach below 0.1% or 100k reads. The trend in 

the corresponding Area under the ROC Curve (AUC) scores was also visualized for each of the 

subsampling conditions (Figure 3.7C, D). This similarly reflects the observations seen in the ROC 

curves; as subsampling conditions get deeper; the pipeline performance gets worse.  
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Figure 3.7 - Accuracy of SARS-CoV-2 detection on the clinical swab RNA-seq dataset using the 

AlignDx genomic workflow.  (A) ROC curves across multiple thresholds for fractional sampling 

conditions. (B) ROC curve across multiple thresholds for fixed read sampling conditions. (C) AUC 

curve across fractional sampling conditions. (D) AUC curves across fixed sampling conditions. 
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Chapter 4 – LFA Workflow   

Pathogen detection approaches such as LFA tests have been critical during the COVID-19 pandemic 

towards surveillance efforts. As a POC approach, they are key in public health, offering low-cost, 

portability and ease-of-use. Alongside these factors, the maturity of this technology has been an 

important factor in creating this opportunity. Together, these strengths are realized by both healthcare 

professionals and everyday individuals to improve public health efforts. Although this enables 

decentralization, with the plethora of LFA test kits available commercially, and a lack of 

standardization industry wide, reliability of test interpretation can be variable. An integrated approach 

leveraging smartphone camera technology, along with the security, UI experience and archiving 

capability of AlignDx can provide consistency. This can further be adopted in healthcare settings to 

monitor outbreaks through mass-surveillance. Thus, in this chapter, a POC approach to mass automated 

LFA-based pathogen surveillance via the AlignDx platform is described.  
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4.1 LFA Tests 

Three commercially available LFA tests from different suppliers were purchased to generate a 

training image dataset for an LFA diagnostic machine learning algorithm “VisuFlow”, representative 

of a range of potential real-world conditions. The three tests purchased were, i) Quidel Strep A, ii), 

ICON DS Strep A, and iii) BD Veritor Flu A+B.  An undiluted positive control sample was generated 

according to manufacturer directions, to act as a maximum signal for each test in the dataset. These 

samples then underwent a serial half dilution (undiluted to 1/64) with a diluent control representing a 

negative condition (Figure 4.1). 

 

Figure 4.1 - Overview of serially diluted LFA tests under controlled light conditions.  

Representative images of the three commercially available (A: Quidel Strep A, B: ICON DS Strep A, 

C: BD Veritor Flu A+B) LFAs performed in serial half dilutions from 1/2 to 1/64 using the provided 

positive control reagent under 5500K light. D: Representative images of the controlled lighting 

conditions that each assay and dilution series were collected under (The Quidel test is shown as 

example).  Lighting conditions started at 3200K (upper left image: warm – orange tint) and underwent 

twenty-four 100K increments to 5500K (bottom right image: cold – blue tint).  
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The ICON DS and Quidel tests were performed according to manufacturer’s direction with results 

read “wet” immediately following 5 minutes of LFA being immersed in sample. Additional images 

were taken for the ICON DS and Quidel tests 30 minutes following test completion to represent a “dry” 

condition that would occur if a user did not analyze their assay as directed by the manufacturer.  The 

“wet” and “dry” conditions were selected to represent the ideal (wet) and sub-optimal (dry) conditions 

where a LFA test would be analyzed.  The BD Veritor tests were removed from the OEM casing to 

enable image acquisition under controlled lighting in a narrow field of view, resulting only in “dry” 

images being collected.  Ground truth labels were assigned to each test for each condition. Furthermore, 

undiluted samples for BD Veritor had smeared control lines, making it challenging to assign a ground 

truth label to this subset of the data, therefore it was excluded from further analysis. 

4.2 Training Dataset  

LFA images were captured under controlled lighting conditions using a Canon 5DMK3 full frame 

digital single lens reflex camera with 35mm Canon L lens, aperture f4.0, shutter 1/200, and file format 

as CR2 RAW (Figure 4.2).  

 

Figure 4.2 - Schematic of image acquisition workflow.  
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Lighting was provided by two Nanlite LumiPad 11 BiColor Slim Soft Light LEDs placed in a custom 

light box that would exclude ambient room light. The lightpads allowed for 100 kelvin light temperature 

ramps and image acquisition from 3200 kelvin (warm) to 5500 kelvin (cool). This was done to model 

real-world varying light conditions that operators would face when analyzing LFA tests. RAW (DNG) 

image formats were then converted to JPG images for easier downstream analysis. Using this process, 

24 images were collected from the three serially diluted (8 total dilutions each) LFA tests resulting in 

a training image dataset of 960 images.    

4.3 The VisuFlow Pipeline 

An LFA based pathogen detection pipeline “VisuFlow” was developed in python using OpenCV 

(Figure 4.3). First, the training dataset was used to establish optimal line detection, noise identification, 

and result output. JPG images from the training dataset were first cropped manually to simulate user 

operations. Then images were further cropped programmatically using a custom function based on the 

OpenCV and Numpy python libraries.  This reduced image border by a fixed value of 10%, focusing 

detection on the LFA and removing extraneous noise from the dataset. Additional image smoothing 

and noise-reduction was done using a gaussian filter (block size = 5x5 pixels). Finally, images were 

resized to fixed dimensions (512 height x 256 width pixels).  

Local adaptive thresholding was done using OpenCV to binarize the image using a block size of 2.5. 

This step assigns pixels to a binary value according to an intensity threshold. The threshold is 

determined based on local regions within a single image. Pixels exceeding the threshold are assigned a 

value of 1 and below 0. Following binarization, further noise was eliminated, alongside smoothing 

using OpenCV morphological operations to generate a 10x10 pixel kernel. Finally, a sliding window 

(width = image width, height = 10 pixels) was applied from the top to the bottom of the image. For 

each window, a fraction was measured based on pixels assigned a value of 1. Using a fraction threshold 

of 0.8, windows above were predicted as a positive window (contain an LFA line segment) and two 

consecutive positive windows identified a complete LFA control/test line. The algorithm would repeat 

this method to find additional lines, and then the algorithm would output the number of lines detected, 

and optionally, an image displaying the detected lines overlayed on the original image.  
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Figure 4.3 - Overview of the Visuflow pipeline.  Lateral flow assay images were cropped to reveal 

only the region of interest for analysis, followed by grey scale conversion, binarization of the image 

using OpenCV adaptive threshold function (see methods), and line detection using a slide window 

function. Results are displayed in RBG color.  

4.4 Performance and Validation 

A metric analysis of the pipeline was performed by comparing its predictions to the manually labeled 

images (considered “ground truth”). These values were manipulated using Pandas, where labels were 

binarized as 1 for positive, and 0 for negative values. Confusion matrices were then generated for each 

block size of each test using the Sklearn confusion_matrix function. True negative, false positive, false 

negative and true positive values were retrieved from the flattened matrix and used to calculate multiple 

metrics (Appendix A - Calculations) for performance evaluation (Table A.11-14). Predictions were as 

follows: 

True positive (TP) tests were those for which two lines were correctly predicted. True negative (TN) 

tests had one-line (positive control) lines correctly detected. False positives (FP) and false negatives 

(FN) were quantified in parallel for downstream use in sensitivity, specificity, and F1 score 

calculations. Finally, two exception cases were handled: if zero or more than two lines were detected, 

it was flagged as an error.  
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It was found that the size of the pixel neighborhood used to calculate the pixel threshold (block size) 

impacted image binarization greatly (Figure 4.4). All 960 images were analyzed under 2-unit 

incremental increases in the hyperparameter (41 through 281) for all metrics.   

 

Figure 4.4 - Impact of hyperparameter variation on image binarization.  Hyperparameter variation 

impacts binarization of image and contributes to variation in line detection. Representative binarized 

images under increasing hyperparameter values for the ICON Strep A lateral flow assay are shown. 

ROC curves were then used to visualize performance (Figure 4.5). Across multiple hyperparameters 

(block size, light temperature, and dilution), the pipeline performed robustly on this dataset, with little 

variation in AUC scores. Although performance was relatively stable across the tested hyperparameters, 

further exploration was done with the block size and light temperature parameters.   

 

Figure 4.5 - ROC Curve across multiple hyperparameters for each test.  AUC scores were 

calculated using the Sklearn AUC function. (A) ROC based on block size variation. (B)  ROC based 

on temperature variation. (C) ROC based on dilution variation. 
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Analysis was performed with and without the BD Veritor LFA images as the assay presented the 

least visible lines under even ideal light conditions and in non-diluted samples.  Across all LFA tests 

including or excluding the BD Veritor images, the hyperparameter set at 201 generated the largest F1 

score (0.944 with BD Veritor, 0.977 without BD Veritor) and was chosen as the optimal value. The 

average TP rate and FP rate for all LFA tests over a range of hyperparameter values were used to 

generate a ROC curve (Figure 4.6).  Performance improved with the exclusion of the BD Veritor 

images. 

 

Figure 4.6 - Impact of hyperparameter value with and without BD Veritor.  Model performance 

was evaluated using TPR and FPR performance metrics, with removal or inclusion of BD Veritor data 

points. The hyperparameter values for each datapoint are highlighted. 

Using the optimized hyperparameter value and the ground truth labelled images, the impact of 

lighting temperature on TP rate, FP rate, and F1 score were next investigated (Figure 4.7). Irrespective 

of the inclusion or exclusion of the BD Veritor LFA images, it was found that 100 kelvin lighting ramps 

from 3200 kelvin (warm) to 5500 kelvin (cool) had minimal impact on the TP rate, FP rate, and F1 

score metrics of performance.  
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Figure 4.7 - Impact of lighting temperature on image analysis algorithm performance.  TPR (A), 

FPR (C) and F1 (E) statistics were calculated for all five lateral flow assays under a range of colour 

temperatures including (blue) or excluding (red) the BD Veritor data. 
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4.5 Implementation of VisuFlow in The AlignDx Platform 

To demonstrate the utility of the VisuFlow workflow using the AlignDx platform, the training dataset 

from above was selected and run through the system (Figure 4.8). User credentials were authenticated 

via the client sign in form, redirecting to the central dashboard, where the VisuFlow pipeline could be 

selected (Figure 4.8A). Once selected, the input form components were generated, consisting of a run 

name input and an image upload input. Images could additionally be taken using a native camera on 

mobile/desktop devices or uploaded from remote cloud storage services. Two analysis paths were 

chosen to demonstrate the capabilities of this system: a singular image analysis (Figure 4.8B - Left) 

and multiple image analysis (Figure 4.8B - Right). Singular image analysis was performed to represent 

a self-testing scenario, where an individual at-home could perform an LFA test according to the 

manufacturer’s direction, and then utilize this workflow to determine a detection result. Multiple image 

analysis falls in line with mass surveillance, which could be utilized for outbreak monitoring, amongst 

other surveillance purposes. The analysis progress was monitored using the status card UI (Figure 4.8C) 

until all images were uploaded, at which point the VisuFlow report could be viewed (Figure 4.8D). 

Finally, metadata regarding the submission was reviewed in the archive (Figure 4.8E), alongside 

downloading raw output data from the workflow. 
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Figure 4.8 - Visuflow workflow via AlignDx client UI.  Stepwise utilization of Visuflow in the 

AlignDx Platform for single/multiple LFA image analysis. (A) Available workflow/pipeline workflow 

options. (B) Left – Single image upload; Right – Multiple image upload. (C) Status monitor. (D)  Image 

analysis Report. (E) Archive entry for submission. Adapted vectors from the nf-core pipeline 

components [29]. 



 

 44 

Chapter 5 – Discussion and Conclusions 

5.1 The AlignDx Platform 

5.1.1 Challenges in Digital Surveillance 

The pandemic raised alarms regarding the current state of the public health sector, calling for the 

improvement of public health countermeasures, specifically mitigation strategies such as surveillance. 

Additionally, with the increasing trends in EIDs [8] , surveillance is an integral barrier to public safety. 

From the context of surveillance data inputs to the outgoing reports, gaps appear in the diversity of data 

sources and the intended target audiences of reports. The AlignDx platform seeks to solve these 

limitations, ultimately bettering these systems, and the corresponding public health response.  

Surveillance data is typically tightly coupled into the premise of the surveillance platform, making 

flexibility in data sources across domains quite difficult. Nextstrain for example, heavily focuses on 

strain-level epidemiology using publicly available sequencing data, and its associated metadata [40]. 

Consider  the study by Karr et al., [69], which identified 26963 potential coronavirus genomes from the 

NCBI, with questionable data quality. Curating this data case by case becomes essential and is not 

feasible at scale without additional processing steps. Bias is inevitable as well, with resource inequity, 

meaning the dataset may not be representative of the larger population. In the case of cost, although 

sequencing has gotten cheaper, the availability of sequencing instruments alongside reagents may be 

limited in low-middle income countries, making global surveillance difficult, via this platform. The 

interdisciplinary nature of public health necessitates a general multi-domain approach, where any data 

source, and subsequent workflow can be incorporated into the platform. Data-driven systems of the 

modern era are strengthened by their variety, and can provide necessary contextualization for 

downstream decision making [70]. AlignDx attempts to solve this issue by supporting any workflow, 

no matter the domain, through the Factory workflow engine. Data sources do not just have to be 

genomic, nor do they have to be of a singular type; a variety of input streams can be utilized to perform 

surveillance analyses. Data sources are tied to the workflow, so they can be as simple, or as complex 

as desired, even replicating analyses and reports produced by other platforms, such as those provided 

by Nextstrain. Of course with varying sources, issues of data integration and interoperability begin to 

arise [70]. In a review of a variety of technologies for surveillance in Tanzania by Mustafa and 

colleagues [71], researchers found fragmentation and a lack of interoperability, limiting the impact of 

otherwise promising surveillance endeavors. The AlignDx platform includes these considerations 
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through separation of concerns, where each major component makes up a module of the larger system. 

In the case of incoming data, interoperability becomes increasingly difficult, especially as data variety 

increases. As workflows are independent of each other, each phase of the pipeline, including input 

processing, is defined only by that workflow, and its corresponding web UI form.  

Data privacy is another large concern with surveillance systems, as the abundance of sensitive health 

data flowing through them brings up legal and ethical challenges. Health-relevant data has typically 

been a challenge to integrate in data science, due to complex security regulations [72].  By giving users 

full control over their data, AlignDx can circumvent many of these issues through its privacy first 

design. Bentotahewa and colleagues suggest that only required information should be collected by the 

system, following data minimization principles [73]. Crafting guidelines for mandatory and 

supplemental information is subjective but aims to follow the demands of the system. In the example 

of user registration, only authentication-relevant information is stored within the system database. 

Broadening to the perspective of workflows, all submitted form data is stored, but anonymized. These 

are, notably, accessible for review through the archiving system, where they can be removed as desired. 

Another key aspect of data minimization is limited data retention, where user submitted information is 

only retained for a limited time frame [73]. In the case of uploaded data, such as genomes, AlignDx 

prunes them immediately upon completion.  Besides the cost and performance benefits of removing 

this data from the hosting servers, this greatly reduces the risk of any potential data breach. Although 

workflow outputs and reports are stored by the platform, this data is anonymized and can only be linked 

to a user through database queries.  

The target audience of surveillance platforms can also be quite narrow, which can act as a barrier to 

the public health response. In terms of outgoing responses, this can be solved through a standardized 

reporting system, tied directly to each workflow. Reporting in the modern surveillance pipeline can be 

thought of as a series of steps beginning with researchers and ending with the public health response 

[74]. AlignDx provides such a system where reports can be tailored to any entity within that reporting 

hierarchy, as well as reviewed at any time. Reports are disseminated via the web using the HTML 

format, and thus can be viewed through the web platform, or locally through a browser on any device. 

Workflow outputs are additionally accessible and can be used by other platforms or tools as desired, 

playing into outgoing interoperability. UI is a less-considered challenge in the realm of surveillance 

platforms; few, if any bioinformatic tooling, alongside platforms, are intuitive to use. Some research 

has explored the impact of UI in the context of disease surveillance systems, suggesting a 
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simplified/minimal UI that focuses on dynamic elements [75].  A myriad of options and layers provide 

researchers excellent control over inquiries but act as a barrier to interpretation. On the opposite 

extreme, purely functional design can be prohibitive in a web medium that is privy to intuitive design 

patterns. AlignDx therefore strikes a balance on this spectrum, with a minimal, consistent, but flexible 

UI design.  

5.1.2 Design advantages of AlignDx  

 The modular design of AlignDx through its container-based service architecture is key to the 

longevity it can sustain as a surveillance platform. Each service communicates primarily through 

common networking protocols, meaning that maintenance, or replacement is service dependent. This 

brings with it the capacity to keep up with rapid technological changes. One study on technological 

improvement rate in the United States found that the majority of fast improving technologies, being 

those with greater than 36.5 % improvement per year, were dependent on software [76]. Turnover rates 

in software longevity specific to web development have not been comprehensively studied, but the 

same study identified web-specific domains such as networking, encryption, data flow and software 

delivery methods as among the 20 fastest improving technological domains [76]. In the span of this 

thesis alone, authentication, UI, and workflow technologies in the AlignDx platform have been 

superseded by novel technologies, which have been used in replacement. The flexibility of this design 

pattern means architecture is not tied directly to the software implementation, at the cost of increased 

required expertise. Better service implementations can be prioritized, leading to a more efficient 

platform, overall. Coordinating these services and managing them as separate entities is largely a result 

of containerization. Containers acts as standard units of software that can be scaled, reproduced and 

managed [77]. This standardization provides a necessary layer of control over the various services 

offered by AlignDx. In the case of a surveillance system, consider that usage may peak during 

outbreaks, but remain moderate otherwise. Using orchestration software and modern cloud computing, 

resources can be acquired as necessary, minimizing computing costs. Workflows can similarly take 

advantage of container technology. Modern orchestration software is also tightly integrated with the 

DevOps model, a set of practices and tools to oversee development life cycle from implementation, all 

the way to deployment [77]. At the scale of services, this ensures that AlignDx technologies are 

consistently subject to testing, and validation practices, delivering quality code, leading to a better 

surveillance platform. The AlignDx workflow engine is more lenient in terms of this model in 

comparison to its service implementation, as any valid containerized pipeline can be used.   
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5.1.3 Avenues for Improvements 

As a web-based platform, AlignDx is in a favorable position to take advantage of recent and coming 

technological advances. Consider the proliferation of smart devices, which has led to an increase in the 

volume and variety of health data, through accelerated data collection [78]. As these devices can 

communicate over a network, workflows can be designed to intake this data. This information can then 

be used to contextualize surveillance data. As these devices are not limited to human, but also animal 

and environmental health, these could potentially be utilized together in a one health surveillance 

model. This is an integrated approach to public health that seeks to combine human, animal and 

ecosystem health towards more-informed health solutions [15]. There are certainly existing systems 

that loosely follow this model, with varying degrees to implementation [15]. Although current AlignDx 

workflows are human-centric, the flexibility of the design makes it simple to design a novel workflow 

incorporating multi-domain surveillance data to generate comprehensive reports. While the system is 

currently focused on single workflows, there is also potential to chain multiple workflows together. 

Following the one health model with the input of multiple data streams, a workflow of interest could 

trigger contextual workflows. The commercialization of AI technologies, primarily through web APIs, 

could also be very useful for the platform. Consider the large language model Chat Generative Pre‐

trained Transformer (ChatGPT), which could play a pivotal role in human-computer interactions [79]. 

In the case of the surveillance workflow, this AI model could be used in combination with additional 

input parameters (sampling location, method, etc.) to construct comprehensive reports.  

Although the workflow engine is an integral driver behind the AlignDx platform, it is a simple and 

novel approach with room for growth. From a system-wide perspective, pieces of the engine are 

fragmented, and could provide more functionality with tighter integration. These include workflow 

scheduling, execution, and monitoring, which are managed by the Celery, Factory and API services 

respectively.  By joining these components end-to-end, the observability over the workflow process 

would increase, leading to greater user control over the entire surveillance analyses process. At the 

component level, changes in the current YAML structure for pipeline creation could lead to a more 

efficient system. This could range from including resource requirements for pipeline execution, typical 

runtimes, and more metadata for the related web-client form. Additionally, other file extensions could 

be explored for pipeline schemas, such as a native Python file format that provides greater integration 

in comparison to the YAML format. Alternatively, there are novel technologies within the workflow 

engine domain that could replace this component altogether.  
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5.2 Genomics Workflows 

5.2.1 Using diverse data sources for better surveillance outcomes  

Testing the metagenomic workflows with a wastewater and nasopharyngeal dataset provides 

critical information on their capabilities. From a surveillance perspective, these are two different 

methods of disease monitoring, each with their input source to output response. Together, they 

demonstrate the variety in valid data sources for the AlignDx genomic workflows, and the outcomes 

of their usage. 

The surveillance workflow analysis of the wastewater dataset models an approach to environmental 

surveillance for disease monitoring [80]. Unlike the one-to-one nature of nasopharyngeal datasets, 

wastewater surveillance can dynamically monitor pathogen occurrence in communities [81]. This 

approach has been fruitful in early-detection of community-wide disease prevalence, such as with 

COVID-19 [82]. In the case of the wastewater dataset run in Chapter 3 by the Lookout workflow, 

SARS-related coronavirus was detected and reported at low abundance across two sampling sites. 

The presence of SARS-CoV-2 reads within these metagenomic samples is not unexpected, as it has 

previously been detected in patient fecal specimens, amongst other sites [83]. Additionally, detecting 

SARS-CoV-2 in wastewater treatment plant samples has been shown in numerous studies to correlate 

with diagnosed COVID-19 cases [84]. While SARS-CoV-2 was the only viral pathogen detected 

within this dataset, the diversity of profiled microbes suggests room for further analysis. Microbiome 

profiling for COVID-19 monitoring is an example where there is suggested co-occurrence of SARS-

CoV-2 and certain microbiota [82]. Within this wastewater dataset run, Pseudmonas spp., Bacteroides 

spp. and Prevotella spp. were some examples of observed positive correlating species with SARS-

CoV-2 positive samples [82]. However, the low sequencing depth of this dataset makes it unsuitable 

for further analysis. This is amongst some of the many barriers currently impeding the use of 

wastewater surveillance in the public health response effectively. These include data uncertainty, 

measurement variability, method standardization, lack of expertise and resources, ethics and clear 

examples of utility [84]. AlignDx, in combination with the Lookout workflow, can address many of 

the post-sequencing issues, which similarly face these barriers. By curating this workflow further, or 

even developing a wastewater specific workflow, many of these barriers can be avoided by the end 

user. Thus, this provides a glimpse into the capabilities of wastewater as a data source for AlignDx 

genomic workflows. 
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While wastewater surveillance is more applicable to broad community surveillance, the 

nasopharyngeal approach allows for direct testing of individuals, and monitoring of their infections. 

This is in line with the standard approach to disease surveillance, which makes the clinical swab dataset 

suitable for performance evaluation of the genomic workflows. Nasopharyngeal swabs are a typical 

sampling site for respiratory pathogen diagnostics. Although optimal sampling sites may differ 

depending on the target microorganism, the nasopharynx is a principal colonization site for these 

pathogens [85]. With respiratory infections such as URIs and LRI on an upward trend, as detailed in 

Chapter 1, this dataset is good representative of modern surveillance interests. First, the genomic 

workflow was found to accurately predict SARS-CoV-2 in qPCR labelled samples (positive/negative).  

Accuracy is a common metric that generalizes the performance of a model by informing the reader on 

how well a prediction is correct but can be misleading. In the case of the clinical swab dataset, 16/66 

samples are negatively labelled, demonstrating a major class imbalance, which in binary classification 

can greatly influence accuracy [86]. The impact of the classification threshold also greatly skews 

accuracy. Note that the qPCR analysis for SARS-CoV-2 genes used to generate “ground truth” labels 

on the dataset for performance evaluation does introduce some biases. Some studies have shown RT-

qPCR sensitivity to vary greatly depending on component materials (buffer, reagents, etc.) [87]. Others 

have shown variation in diagnostic based on sampling site or even primer set [88]. These findings 

underline that all calculated performance metrics are only applicable for this dataset, under these 

conditions.  

As these workflows run in a remote cloud environment, understanding the impact of sequencing 

depth on prediction accuracy within this dataset via subsampling could lead to performance benefits. 

This was done by calculating sensitivity and specificity, which have been shown in screening processes 

to be critical in performance assessment [89]. Reservoir subsampling was done in fixed and fractional 

values, where the former provides a consistent read size across samples, and the latter provides an 

accurate representation of the distribution. Correctly classifying the presence/absence of SARS-CoV-2 

in the clinical swab dataset samples demonstrates a high degree of separability, even in deeply 

subsampled conditions. This suggests that the entire sample FASTQ file may not be necessary for 

correct classification of SARS-CoV-2 in this dataset, where 0.1% of the original sample size was 

sufficient for good performance. As internet upload speeds greatly vary depending on factors such as 

location, access and cost, decreasing the size of these datasets could greatly decrease analysis 

turnaround times.  



 

 50 

5.2.2 Next Steps for AlignDx Genomics Workflows 

The base pipeline used as the foundation of the genomic workflows presented in this thesis, alongside 

the target audience reports, make up the analysis and subsequent dissemination protocols for genomic 

AlignDx surveillance efforts. Using the Nextflow workflow system as the foundation for the various 

genomic workflows presented in Chapter 3 provides several advantages. As a mature workflow 

management system amongst its competitors, it provides readability, compactness, portability and 

provenance as core features [90]. These features are crucial in making workflow prototyping easy, 

which is integral in UCD. As this pipeline can function outside of the AlignDx system, adjustments can 

be made as required by the end user. From a workflow construction perspective, software can be 

developed, tested and pipelines can be validated independent of AlignDx with Nextflow. This 

modularity also means that the Lookout workflow can be open-sourced, and entirely community driven. 

The implementation of the base pipeline using Nextflow also demonstrates that any valid Nextflow/nf-

core pipeline can be easily integrated into the platform. Consider that the nf-core community hosts a 

growing repository of 35 curated, open-source bioinformatic pipelines, each with a development team, 

publication, and release cycle, adhering to community guidelines [61]. Some of the available pipeline 

at the time of writing within the surveillance domain include variant calling, antimicrobial resistance, 

and dual host-pathogen analysis pipelines, amongst others [91]. While the scope of the Lookout 

workflow is pathogen identification via taxonomic profiling, these pipelines are some of the analyses 

that could replace or enhance it.  

Using Kraken2 and Bracken within the Lookout workflow to taxonomically profile input data 

provides rapid classification, with good accuracy. Assessing the capabilities of classifiers is a complex 

process on its own, thus several studies have benchmarked these tools. Ye and colleagues benchmarked 

20 classifiers, and found that Kraken2 performed consistently with the top classifiers and alongside 

Bracken, provided good accuracy in abundance profiling [92]. In viral pathogen detection, Kraken2 

and other classifiers have shown comparable sensitivity and specificity to PCR based approaches [93]. 

This plays well with the Pathogen Panels DB, which focuses on virus taxonomy to simplify the 

complexities of taxonomic profiling in metagenomic datasets. One major impediment to pathogen 

detection from metagenomic data via Kraken 2 is that the reference k-mer database may not contain 

“truly” unique sequences. As explored by Doster et al., accurately identifying biologically relevant 

results is incumbent on the uniqueness of k-mers in the reference database [94]. This could be remedied 

by a larger database, although this will in turn increase resource requirements and turnaround times for 
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workflow execution. As this workflow is easily modified, alternative species profiling tools could be 

explored, such as marker gene approaches like mOTUs2 [95], or ML approaches like DeepMicrobes 

[96]. 

The metagenomic approach to pathogen surveillance provided by the AlignDx genomic workflows 

demonstrates the potential of sequencing for public health applications. Unlike traditional PCR based 

workflows, metagenomics can take an untargeted approach to detection. This is reflected in the 

surveillance workflow analysis of the wastewater dataset discussed above, where no targeted pathogens 

were suspected leading to surveillance with those samples. Metagenomics is also advantaged in its 

sensitivity, capability of detecting novel pathogens and co-infections, the depth of information it 

provides and the potential to shorten turnaround times [97]. While these make metagenomics an 

effective approach, there are certainly many limitations as well. In terms of viral metagenomics, as 

explored through the Lookout/surveillance workflow, detection sensitivity is a critical issue that can 

lead to false positives [97]. Furthermore, the high mutation rates common amongst viruses poses 

complications with taxonomic classification [97].  Addressing this becomes an issue of generating 

contextual data that aids in identifying biologically significant results [98]. In terms of implementation 

in the Lookout workflow, this could mean intaking this data as an input, or even generating it based on 

certain parameters. Additionally, steps such as quality filtering, or the removal of host reads may help, 

at the cost of computational resources and analysis speed [98]. Optimizing a bioinformatic pipeline for 

genomic based surveillance is a highly tailored endeavor, thus several studies have proposed 

methodology suited for these tasks. Buffet-Bataillon et al., proposed a quality-optimized process using 

Kraken and Bracken, improved by optimizing abundance thresholds, external controls and finally, a 

comprehensive classification reference database [99]. Overall, there are avenues for improvement with 

the AlignDx genomic workflows, improving surveillance prospects. 
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5.3 LFA Workflows 

5.3.1 LFA test automation in AlignDx  

Unlike the cost prohibitive nature and technical expertise required for genomic-based surveillance, 

the AlignDx VisuFlow workflow provides a POC LFA approach. LFA technologies are readily 

accessible by both healthcare workers and everyday individuals, at low cost with little expertise 

required for usage.  By automating this process, VisuFlow demonstrates the utility of a POC approach 

to surveillance. 

Effectively replicating the observation capabilities of the human eye through camera technology for 

LFA test automation requires testing with image quality variation. The VisuFlow training dataset 

presented in Chapter 4 tackles this using multiple LFA tests, under controlled lighting and dilution 

conditions. In a systematic review of COVID-19 LFA kits, test sensitivity was found to greatly vary 

depending on the manufacturer [100]. Capturing images from a variety of LFA kits is thus essential for 

modeling manufacturer differences. LFA technologies typically employ color, fluorescent or 

alternative labels, and the detection methods differ based on these labels [30]. Image processing of 

color based LFA tests kits, as used within the training dataset, is influenced by lighting conditions 

[101]. With varying light conditions, the optical signal retrieved by the capturing camera may differ 

significantly, which can lead to performance issues. This optical signal was also masked using serial 

dilution conditions, creating a greater diversity of images in the test dataset. Additionally, these 

dilutions, and ultimately capturing tests in ideal and sub-optimal conditions mock operator 

performance. Via the performance analysis, the VisuFlow workflow was found to accurately classify 

LFA tests based on manually generated labels. This was expected, as the classification discriminator of 

a line detection algorithm is relatively simple. As mentioned before, although accuracy helps generalize 

a model’s performance, it is insufficient as a metric for binary classification, as done by VisuFlow. 

Multiple performance metrics were therefore calculated across temperature (lighting), dilution and 

block size parameters, where the model was found to be highly sensitive and specific in detection. 

Consistent performance across these three variables, and optimal and sub-optimal capturing conditions 

underlines its capabilities.  
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5.3.2 Next Steps for VisuFlow 

While the training dataset does address variability in lighting conditions, the reproducibility of the 

LFA results using camera technology is impacted by numerous factors. These include  differences in 

camera specifications, algorithm, and finally operating variations [102]. Standardizing capturing 

technology for LFA reading is difficult without a dedicated device and would likely increase 

manufacturing and buying costs. Park et al., proposed a general strategy to stabilize the target optical 

signal with a custom algorithm using a reference card with alignment marks, color standards and a QR 

code for spatial coordinate determination [102]. VisuFlow could incorporate a similar system by 

adjusting for a reference card, if available. However, the utility of a smartphone reader for a POC 

technology is in its convenience, therefore a software solution is preferable. In a study by Mendels et 

al., it was found that using convolutional neural network (CNN) model to classify 11 SARS-CoV-2 

LFA tests provided 99.3% precision compared to eye [103]. Similarly, Turbé et al., demonstrated that 

CNN models had high sensitivity and specificity compared to interpretation by differently experienced 

health care workers [36]. Comprehensive artificial intelligence models, like CNNS may be suitable 

alternatives to the OpenCV ML algorithms used in the VisuFlow workflow.  

A highlight of the VisuFlow workflow is its flexibility to both singular and mass image analysis. 

With singular image analysis, the benefit is to an everyday individual self-testing, providing an 

automated step to detection. As a standalone workflow, this is trivial, but when done for mass image 

analysis, with the archiving capabilities and mobile-first features of the AlignDx platform, this 

enhances the capabilities of LFA based surveillance. Consider the 2021 study by Lamb et al., which 

tested the performance of COVID-19 LFA kits on hospital workers, where results were submitted 

through an online portal, facilitating earlier detection of infection [104]. With some adjustments to 

allow data intake from multiple users, VisuFlow could be employed similarly. Furthermore, contact 

tracing could be examined via contextual metadata, which could aid in early response to disease spread. 

Analyte quantification is another facet of LFA surveillance that could be explored using the VisuFlow 

workflow, especially in mass surveillance scenarios. ML models have similarly been successful in this 

domain, where in color based LFA kits, quantification is calculated proportional to color intensity 

[105]. VisuFlow could also facilitate the analysis of multiplex LFA kits, such as those detecting 

multiple antigens. Alongside analyte quantification, these advanced LFA kits could be used to generate 

a comprehensive report summarizing the signal strength of each analyte. 
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Appendix A – Supplementary Data 

Metric Calculations: 

Hyp = Hyperparameter 

TP = True Positive 

FP = False Positive 

TN = True Negative 

FN = False Negative 

  

Accuracy (ACC) = 
(TP + TN)

(TP + TN + FP + FN)
 

True Positive Rate (TPR) OR Sensitivity = 
TP

TP + FN
 

False Positive Rate (FPR) OR Fall-Out = 
FP

FP + TN
 

True Negative Rate (TNR) OR Specificity = 
TN

TN + FP
 

Positive Predictive Value (PPV) OR Precision= 
TP

TP + FP
 

False Negative Rate (FNR) = 
FN

TP + FN
 

Negative Predictive Value(NPV) = 
TN

TN + FN
 

False Discovery Rate (FDR) = 
FP

TP + FP
 

F1  = 2 * 
Precision * Sensitivity

Precision + Sensitivity
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Figure A.1 - Cluster map of the top 100 represented species post-human-filtering.   Samples are 

ordered as follows: 1-16 (Negative), 17-32 (Outpatient), 33-48 (non-ICU), 49-66 (ICU). 
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Figure A.2 - Determination of True Positive Rate (TPR), False Positive Rate (FPR), and F1 

statistic under variable block sizes with and without BD Veritor.  TPR (A), FPR (C) and F1 (E) 

statistics were calculated for all five lateral flow assays under a range of block sizes to reveal the relative 

effectiveness of the algorithm on detecting true positives and true negatives. The BD Veritor test 

performed poorly for all statistics and was removed from a second round of analyses performed (B, D, 

and F). For both analyses (with or without the BD Veritor data included), the block size of 201 (red 

boxes – E and F) produced the greatest F1 statistic value and was used in subsequent analyses. 
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Table A.1 - SARS-CoV-2 100% sampling performance metrics.  Thresholds were generated based on 

Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.00001 0.82 1.00 0.25 0.81 1.00 0.75 0.00 0.19 50 12 0 4 

0.00002 0.88 1.00 0.50 0.86 1.00 0.50 0.00 0.14 50 8 0 8 

0.00003 0.89 1.00 0.56 0.88 1.00 0.44 0.00 0.12 50 7 0 9 

0.00004 0.91 1.00 0.63 0.89 1.00 0.38 0.00 0.11 50 6 0 10 

0.00005 0.92 1.00 0.69 0.91 1.00 0.31 0.00 0.09 50 5 0 11 

0.00007 0.94 1.00 0.75 0.93 1.00 0.25 0.00 0.07 50 4 0 12 

0.00011 0.95 1.00 0.81 0.94 1.00 0.19 0.00 0.06 50 3 0 13 

0.00022 0.94 0.98 0.81 0.94 0.93 0.19 0.02 0.06 49 3 1 13 

0.00041 0.95 0.98 0.88 0.96 0.93 0.13 0.02 0.04 49 2 1 14 

0.00044 0.97 0.98 0.94 0.98 0.94 0.06 0.02 0.02 49 1 1 15 

0.00047 0.95 0.96 0.94 0.98 0.88 0.06 0.04 0.02 48 1 2 15 

0.00056 0.97 0.96 1.00 1.00 0.89 0.00 0.04 0.00 48 0 2 16 

0.00097 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 47 0 3 16 

0.00124 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 46 0 4 16 

0.00325 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 45 0 5 16 

0.00333 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00358 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00369 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.00393 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00745 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.00763 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01515 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.01996 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.03026 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03069 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.05662 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06142 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.06469 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07608 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.0889 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.11984 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.12344 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.12946 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.12984 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.14051 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 
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0.15734 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.17765 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.36115 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.36996 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.37412 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.38499 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.38679 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.40892 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.4298 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.45204 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.46285 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.51992 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.54689 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.59298 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.61561 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.63223 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.66594 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.67502 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.68086 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.71742 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.79497 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.86445 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.93554 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.93734 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.2 - SARS-CoV-2 10% sampling performance metrics.  Thresholds were generated based on 

Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

2.00E-05 0.92 1.00 0.69 0.91 1.00 0.31 0.00 0.09 50 5 0 11 

4.00E-05 0.94 1.00 0.75 0.93 1.00 0.25 0.00 0.07 50 4 0 12 

0.0001 0.95 1.00 0.81 0.94 1.00 0.19 0.00 0.06 50 3 0 13 

0.00023 0.94 0.98 0.81 0.94 0.93 0.19 0.02 0.06 49 3 1 13 

0.00043 0.95 0.98 0.88 0.96 0.93 0.13 0.02 0.04 49 2 1 14 

0.00045 0.94 0.96 0.88 0.96 0.88 0.13 0.04 0.04 48 2 2 14 

0.00055 0.95 0.96 0.94 0.98 0.88 0.06 0.04 0.02 48 1 2 15 

0.00096 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 47 0 3 16 

0.00121 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 46 0 4 16 

0.00328 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 45 0 5 16 

0.00363 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00374 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00375 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.0038 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00752 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.00814 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01546 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.02154 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.03042 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03149 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.05744 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06256 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.06436 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07618 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.08956 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.12473 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.12684 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.13198 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.13387 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.14339 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.15866 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.17903 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.36953 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.37292 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.38116 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 
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0.39211 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.40649 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.41328 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.43336 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.46657 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.47476 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.52362 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.56686 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.59722 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.62015 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.64221 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.67611 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.6845 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.68585 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.72171 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.79715 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.86747 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.93715 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.94141 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.3 - SARS-CoV-2 1% sampling performance metrics.  Thresholds were generated based on 

Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.00056 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 47 0 3 16 

0.00117 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 46 0 4 16 

0.00323 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 45 0 5 16 

0.00336 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00357 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00378 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.00482 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00787 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.0085 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01707 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.02398 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.03098 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03374 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.06126 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06508 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.06795 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07625 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.09257 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.12807 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.12902 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.13328 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.14542 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.14613 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.15775 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.18284 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.37812 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.38008 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.38431 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.39936 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.42168 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.43995 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.44249 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.48022 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.52567 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.53122 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 
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0.60019 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.6027 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.62558 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.65347 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.69107 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.69334 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.69844 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.72537 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.80108 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.86992 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.94195 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.94935 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.4 - SARS-CoV-2 0.1% sampling performance metrics.  Thresholds were generated based on 

Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.0008 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00098 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00207 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.00467 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00934 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.01082 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01299 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.02526 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.03088 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03412 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.0651 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06533 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.07274 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.08441 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.09054 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.1256 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.13316 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.14758 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.16086 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.17061 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.1847 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.18482 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.39372 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.40655 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.40987 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.41106 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.43021 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.47674 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.49465 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.5367 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.55014 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.61286 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.64019 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.64493 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.67221 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 
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0.71417 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.71768 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.71885 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.72868 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.77497 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.8073 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.87598 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.95751 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.96454 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.5 - SARS-CoV-2 0.01% sampling performance metrics.  Thresholds were generated based on 

Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.06955 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.07018 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07336 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.08556 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.11852 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.18243 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.2 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.20548 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.22656 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.2381 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.3871 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.41573 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.46541 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.48903 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.52607 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.56329 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.6378 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.65805 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.67516 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.68834 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.74479 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.76098 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.76943 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.82154 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.83217 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.84422 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.85903 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.93402 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

1 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 
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Table A.6  - SARS-CoV-2 10 million read sampling performance metrics.  Thresholds were generated 

based on Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: 

True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False 

Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False 

Positive, FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

2.00E-05 0.92 1.00 0.69 0.91 1.00 0.31 0.00 0.09 50 5 0 11 

9.00E-05 0.94 1.00 0.75 0.93 1.00 0.25 0.00 0.07 50 4 0 12 

0.00012 0.95 1.00 0.81 0.94 1.00 0.19 0.00 0.06 50 3 0 13 

0.00019 0.94 0.98 0.81 0.94 0.93 0.19 0.02 0.06 49 3 1 13 

0.00044 0.95 0.98 0.88 0.96 0.93 0.13 0.02 0.04 49 2 1 14 

0.00045 0.97 0.98 0.94 0.98 0.94 0.06 0.02 0.02 49 1 1 15 

0.00047 0.95 0.96 0.94 0.98 0.88 0.06 0.04 0.02 48 1 2 15 

0.00055 0.97 0.96 1.00 1.00 0.89 0.00 0.04 0.00 48 0 2 16 

0.00079 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 47 0 3 16 

0.00124 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 46 0 4 16 

0.00335 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 45 0 5 16 

0.00338 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00358 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00381 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.00415 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00735 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.00767 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01565 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.02082 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.03029 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03148 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.05779 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06136 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.06462 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07629 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.08976 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.12318 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.12687 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.13118 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.13411 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.14239 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.15815 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.17817 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.36823 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.37197 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 
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0.37853 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.39184 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.39801 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.41439 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.43217 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.46444 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.46792 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.52266 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.56261 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.59642 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.6205 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.64139 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.6722 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.68258 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.68566 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.72237 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.79635 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.86612 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.93728 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.9402 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.7 - SARS-CoV-2 1 million read sampling performance metrics.  Thresholds were generated 

based on Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: 

True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False 

Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False 

Positive, FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

  0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.00049 0.98 0.98 1.00 1.00 0.94 0.00 0.02 0.00 49 0 1 16 

0.00052 0.97 0.96 1.00 1.00 0.89 0.00 0.04 0.00 48 0 2 16 

0.00112 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 47 0 3 16 

0.00128 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 46 0 4 16 

0.00312 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 45 0 5 16 

0.00347 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00371 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00375 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.00408 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00785 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.00807 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01506 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.0222 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.0311 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03321 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.05961 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06392 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.06598 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.0751 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.09212 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.1253 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.12856 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.13398 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.13637 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.14443 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.15992 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.18227 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.37528 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.37654 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.38703 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.40051 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.41911 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.42179 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.44053 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.4735 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 
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0.52389 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.52525 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.5972 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.60366 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.62605 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.65565 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.68563 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.69195 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.69487 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.72677 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.80043 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.86926 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.9396 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.94601 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.8 - SARS-CoV-2 100 thousand read sampling performance metrics. Thresholds were generated 

based on Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: 

True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False 

Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False 

Positive, FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.0006 0.91 0.88 1.00 1.00 0.73 0.00 0.12 0.00 44 0 6 16 

0.00107 0.89 0.86 1.00 1.00 0.70 0.00 0.14 0.00 43 0 7 16 

0.00256 0.88 0.84 1.00 1.00 0.67 0.00 0.16 0.00 42 0 8 16 

0.0044 0.86 0.82 1.00 1.00 0.64 0.00 0.18 0.00 41 0 9 16 

0.00697 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 40 0 10 16 

0.00866 0.83 0.78 1.00 1.00 0.59 0.00 0.22 0.00 39 0 11 16 

0.01398 0.82 0.76 1.00 1.00 0.57 0.00 0.24 0.00 38 0 12 16 

0.02802 0.80 0.74 1.00 1.00 0.55 0.00 0.26 0.00 37 0 13 16 

0.02907 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03082 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.06097 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06491 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.07233 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.07446 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.09905 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.13878 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.1403 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.14133 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.14924 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.16017 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.16823 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.18477 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.38531 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.38902 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.39598 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.41573 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.42431 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.45641 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.48716 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.5086 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.53505 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.58333 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.60939 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.63861 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.67296 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 
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0.70936 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.71229 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.71583 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.72024 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.74534 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.80741 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

0.87093 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 

0.94724 0.27 0.04 1.00 1.00 0.25 0.00 0.96 0.00 2 0 48 16 

0.9536 0.26 0.02 1.00 1.00 0.25 0.00 0.98 0.00 1 0 49 16 
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Table A.9 - SARS-CoV-2 10 thousand read sampling performance metrics. Thresholds were generated 

based on Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: 

True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False 

Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False 

Positive, FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.02364 0.79 0.72 1.00 1.00 0.53 0.00 0.28 0.00 36 0 14 16 

0.03129 0.77 0.70 1.00 1.00 0.52 0.00 0.30 0.00 35 0 15 16 

0.05666 0.76 0.68 1.00 1.00 0.50 0.00 0.32 0.00 34 0 16 16 

0.06891 0.74 0.66 1.00 1.00 0.48 0.00 0.34 0.00 33 0 17 16 

0.09524 0.73 0.64 1.00 1.00 0.47 0.00 0.36 0.00 32 0 18 16 

0.1405 0.71 0.62 1.00 1.00 0.46 0.00 0.38 0.00 31 0 19 16 

0.1435 0.70 0.60 1.00 1.00 0.44 0.00 0.40 0.00 30 0 20 16 

0.18437 0.68 0.58 1.00 1.00 0.43 0.00 0.42 0.00 29 0 21 16 

0.18519 0.67 0.56 1.00 1.00 0.42 0.00 0.44 0.00 28 0 22 16 

0.188 0.65 0.54 1.00 1.00 0.41 0.00 0.46 0.00 27 0 23 16 

0.2013 0.64 0.52 1.00 1.00 0.40 0.00 0.48 0.00 26 0 24 16 

0.22807 0.62 0.50 1.00 1.00 0.39 0.00 0.50 0.00 25 0 25 16 

0.23256 0.61 0.48 1.00 1.00 0.38 0.00 0.52 0.00 24 0 26 16 

0.37037 0.59 0.46 1.00 1.00 0.37 0.00 0.54 0.00 23 0 27 16 

0.46724 0.58 0.44 1.00 1.00 0.36 0.00 0.56 0.00 22 0 28 16 

0.47706 0.56 0.42 1.00 1.00 0.36 0.00 0.58 0.00 21 0 29 16 

0.48889 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.5 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.54634 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

0.56632 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 

0.59364 0.48 0.32 1.00 1.00 0.32 0.00 0.68 0.00 16 0 34 16 

0.64535 0.47 0.30 1.00 1.00 0.31 0.00 0.70 0.00 15 0 35 16 

0.69223 0.45 0.28 1.00 1.00 0.31 0.00 0.72 0.00 14 0 36 16 

0.70455 0.44 0.26 1.00 1.00 0.30 0.00 0.74 0.00 13 0 37 16 

0.75 0.42 0.24 1.00 1.00 0.30 0.00 0.76 0.00 12 0 38 16 

0.75556 0.41 0.22 1.00 1.00 0.29 0.00 0.78 0.00 11 0 39 16 

0.75728 0.39 0.20 1.00 1.00 0.29 0.00 0.80 0.00 10 0 40 16 

0.77477 0.38 0.18 1.00 1.00 0.28 0.00 0.82 0.00 9 0 41 16 

0.82097 0.36 0.16 1.00 1.00 0.28 0.00 0.84 0.00 8 0 42 16 

0.82168 0.35 0.14 1.00 1.00 0.27 0.00 0.86 0.00 7 0 43 16 

0.85934 0.33 0.12 1.00 1.00 0.27 0.00 0.88 0.00 6 0 44 16 

0.92902 0.32 0.10 1.00 1.00 0.26 0.00 0.90 0.00 5 0 45 16 

0.9665 0.30 0.08 1.00 1.00 0.26 0.00 0.92 0.00 4 0 46 16 

1 0.29 0.06 1.00 1.00 0.25 0.00 0.94 0.00 3 0 47 16 
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Table A.10 - SARS-CoV-2 1 thousand read sampling performance metrics. Thresholds were generated 

based on Bracken relative abundance measurements. ACC: Accuracy, TPR: True Positive Rate, TNR: 

True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False 

Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False 

Positive, FN: False Negative, TN: True Negative. 

Threshold ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

0 0.76 1.00 0.00 0.76 0.00 1.00 0.00 0.24 50 16 0 0 

0.375 0.55 0.40 1.00 1.00 0.35 0.00 0.60 0.00 20 0 30 16 

0.5 0.53 0.38 1.00 1.00 0.34 0.00 0.62 0.00 19 0 31 16 

0.66055 0.52 0.36 1.00 1.00 0.33 0.00 0.64 0.00 18 0 32 16 

1 0.50 0.34 1.00 1.00 0.33 0.00 0.66 0.00 17 0 33 16 
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Table A.11 - ICON DS Dry performance metrics for block size.  Rows for hyperparameters with 

duplicate metrics to those preceding them (already represented in the below data table) were dropped 

(N=130 -> N=42). Hyperparameters with duplicate values were : [51, 55, 57, 83, 95, 97, 103, 105, 113, 

115, 125, 129, 135, 137, 139, 141, 143, 145, 149, 153, 155, 157, 159, 161, 163, 169, 171, 173, 175, 

177, 179, 181, 187, 189, 191, 193, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 

223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 261, 

263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299] . Hyp: 

Hyperparameter, ACC: Accuracy, TPR: True Positive Rate, TNR: True Negative Rate, PPV: Positive 

Predictive Value, NPV: Negative Predictive Value, FPR: False Positive Rate, FNR: False Negative 

Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, FN: False Negative, TN: True 

Negative.  

Hyp F1 AC

C 

TP

R 

TN

R 

PP

V 

NP

V 

FP

R 

FN

R 

FD

R 

TP FP FN TN 

41 0.66 0.61 0.51 0.92 0.95 0.38 0.08 0.49 0.05 73 4 71 44 

43 0.65 0.61 0.49 0.96 0.97 0.39 0.04 0.51 0.03 71 2 73 46 

45 0.65 0.61 0.48 1.00 1.00 0.39 0.00 0.52 0.00 69 0 75 48 

47 0.67 0.63 0.50 1.00 1.00 0.40 0.00 0.50 0.00 72 0 72 48 

49 0.66 0.62 0.49 1.00 1.00 0.40 0.00 0.51 0.00 71 0 73 48 

53 0.65 0.61 0.49 1.00 1.00 0.39 0.00 0.51 0.00 70 0 74 48 

59 0.68 0.64 0.52 1.00 1.00 0.41 0.00 0.48 0.00 75 0 69 48 

61 0.71 0.66 0.55 1.00 1.00 0.42 0.00 0.45 0.00 79 0 65 48 

63 0.70 0.66 0.54 1.00 1.00 0.42 0.00 0.46 0.00 78 0 66 48 

65 0.73 0.68 0.57 1.00 1.00 0.44 0.00 0.43 0.00 82 0 62 48 

67 0.73 0.68 0.58 1.00 1.00 0.44 0.00 0.42 0.00 83 0 61 48 

69 0.75 0.70 0.60 1.00 1.00 0.46 0.00 0.40 0.00 87 0 57 48 

71 0.78 0.73 0.65 1.00 1.00 0.48 0.00 0.35 0.00 93 0 51 48 

73 0.79 0.74 0.65 1.00 1.00 0.49 0.00 0.35 0.00 94 0 50 48 

75 0.82 0.78 0.70 1.00 1.00 0.53 0.00 0.30 0.00 101 0 43 48 

77 0.85 0.80 0.74 1.00 1.00 0.56 0.00 0.26 0.00 106 0 38 48 

79 0.86 0.81 0.75 1.00 1.00 0.57 0.00 0.25 0.00 108 0 36 48 

81 0.87 0.83 0.77 1.00 1.00 0.59 0.00 0.23 0.00 111 0 33 48 

85 0.87 0.82 0.76 1.00 1.00 0.59 0.00 0.24 0.00 110 0 34 48 

87 0.88 0.84 0.79 1.00 1.00 0.62 0.00 0.21 0.00 114 0 30 48 

89 0.88 0.84 0.78 1.00 1.00 0.61 0.00 0.22 0.00 113 0 31 48 

91 0.89 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 115 0 29 48 
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93 0.89 0.85 0.81 1.00 1.00 0.63 0.00 0.19 0.00 116 0 28 48 

99 0.90 0.86 0.81 1.00 1.00 0.64 0.00 0.19 0.00 117 0 27 48 

101 0.90 0.86 0.82 1.00 1.00 0.65 0.00 0.18 0.00 118 0 26 48 

107 0.90 0.87 0.83 1.00 1.00 0.66 0.00 0.17 0.00 119 0 25 48 

109 0.91 0.88 0.83 1.00 1.00 0.67 0.00 0.17 0.00 120 0 24 48 

111 0.92 0.89 0.85 1.00 1.00 0.69 0.00 0.15 0.00 122 0 22 48 

117 0.93 0.90 0.86 1.00 1.00 0.71 0.00 0.14 0.00 124 0 20 48 

119 0.93 0.90 0.87 1.00 1.00 0.72 0.00 0.13 0.00 125 0 19 48 

121 0.93 0.91 0.88 1.00 1.00 0.73 0.00 0.13 0.00 126 0 18 48 

123 0.94 0.91 0.88 1.00 1.00 0.74 0.00 0.12 0.00 127 0 17 48 

127 0.94 0.92 0.89 1.00 1.00 0.75 0.00 0.11 0.00 128 0 16 48 

131 0.95 0.93 0.91 1.00 1.00 0.79 0.00 0.09 0.00 131 0 13 48 

133 0.96 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 132 0 12 48 

147 0.96 0.94 0.92 1.00 1.00 0.81 0.00 0.08 0.00 133 0 11 48 

151 0.96 0.95 0.93 1.00 1.00 0.83 0.00 0.07 0.00 134 0 10 48 

165 0.97 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 135 0 9 48 

167 0.97 0.96 0.94 1.00 1.00 0.86 0.00 0.06 0.00 136 0 8 48 

183 0.98 0.96 0.95 1.00 1.00 0.87 0.00 0.05 0.00 137 0 7 48 

185 0.98 0.97 0.96 1.00 1.00 0.89 0.00 0.04 0.00 138 0 6 48 

195 0.98 0.97 0.97 1.00 1.00 0.91 0.00 0.03 0.00 139 0 5 48 
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Table A.12 - ICON DS Wet performance metrics for block size. Rows for hyperparameters with 

duplicate metrics to those preceding them (already represented in the below data table) were dropped 

(N=130 -> N=58).  Hyperparameters with duplicate values were : [75, 97, 101, 103, 105, 119, 123, 125, 

127, 129, 131, 137, 139, 145, 147, 149, 151, 153, 155, 157, 159, 161, 165, 171, 175, 177, 183, 185, 

187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 223, 225, 227, 

231, 233, 235, 237, 243, 245, 251, 253, 255, 257, 259, 261, 263, 265, 267, 271, 277, 281, 283, 285, 

287, 291, 297, 299]. Hyp: Hyperparameter, ACC: Accuracy, TPR: True Positive Rate, TNR: True 

Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive 

Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, 

FN: False Negative, TN: True Negative. 

Hyp F1 ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

41 0.75 0.72 0.67 0.82 0.86 0.60 0.18 0.33 0.14 80 13 40 59 

43 0.74 0.71 0.64 0.83 0.87 0.58 0.17 0.36 0.13 77 12 43 60 

45 0.73 0.71 0.63 0.86 0.88 0.58 0.14 0.38 0.12 75 10 45 62 

47 0.73 0.72 0.61 0.92 0.92 0.58 0.08 0.39 0.08 73 6 47 66 

49 0.75 0.73 0.63 0.92 0.93 0.59 0.08 0.38 0.07 75 6 45 66 

51 0.74 0.73 0.61 0.94 0.95 0.59 0.06 0.39 0.05 73 4 47 68 

53 0.75 0.74 0.61 0.97 0.97 0.60 0.03 0.39 0.03 73 2 47 70 

55 0.75 0.74 0.60 0.99 0.99 0.60 0.01 0.40 0.01 72 1 48 71 

57 0.74 0.74 0.59 0.99 0.99 0.59 0.01 0.41 0.01 71 1 49 71 

59 0.68 0.70 0.53 0.99 0.98 0.55 0.01 0.48 0.02 63 1 57 71 

61 0.72 0.72 0.56 1.00 1.00 0.58 0.00 0.44 0.00 67 0 53 72 

63 0.72 0.73 0.57 1.00 1.00 0.58 0.00 0.43 0.00 68 0 52 72 

65 0.74 0.74 0.58 1.00 1.00 0.59 0.00 0.42 0.00 70 0 50 72 

67 0.78 0.78 0.64 1.00 1.00 0.63 0.00 0.36 0.00 77 0 43 72 

69 0.77 0.77 0.63 1.00 1.00 0.62 0.00 0.38 0.00 75 0 45 72 

71 0.80 0.79 0.67 1.00 1.00 0.64 0.00 0.33 0.00 80 0 40 72 

73 0.81 0.80 0.68 1.00 1.00 0.65 0.00 0.32 0.00 82 0 38 72 

77 0.81 0.80 0.68 1.00 1.00 0.65 0.00 0.33 0.00 81 0 39 72 

79 0.82 0.81 0.70 1.00 1.00 0.67 0.00 0.30 0.00 84 0 36 72 

81 0.83 0.82 0.71 1.00 1.00 0.67 0.00 0.29 0.00 85 0 35 72 

83 0.84 0.83 0.73 1.00 1.00 0.69 0.00 0.28 0.00 87 0 33 72 

85 0.85 0.84 0.74 1.00 1.00 0.70 0.00 0.26 0.00 89 0 31 72 

87 0.86 0.84 0.75 1.00 1.00 0.71 0.00 0.25 0.00 90 0 30 72 

89 0.88 0.87 0.79 1.00 1.00 0.74 0.00 0.21 0.00 95 0 25 72 
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91 0.90 0.89 0.82 1.00 1.00 0.77 0.00 0.18 0.00 98 0 22 72 

93 0.89 0.88 0.81 1.00 1.00 0.76 0.00 0.19 0.00 97 0 23 72 

95 0.92 0.91 0.85 1.00 1.00 0.80 0.00 0.15 0.00 102 0 18 72 

99 0.93 0.92 0.88 1.00 1.00 0.83 0.00 0.13 0.00 105 0 15 72 

107 0.94 0.93 0.88 1.00 1.00 0.84 0.00 0.12 0.00 106 0 14 72 

109 0.94 0.93 0.89 1.00 1.00 0.85 0.00 0.11 0.00 107 0 13 72 

111 0.95 0.94 0.91 1.00 1.00 0.87 0.00 0.09 0.00 109 0 11 72 

113 0.96 0.95 0.93 1.00 1.00 0.89 0.00 0.08 0.00 111 0 9 72 

115 0.97 0.96 0.93 1.00 1.00 0.90 0.00 0.07 0.00 112 0 8 72 

117 0.97 0.96 0.94 1.00 1.00 0.91 0.00 0.06 0.00 113 0 7 72 

121 0.98 0.97 0.96 1.00 1.00 0.94 0.00 0.04 0.00 115 0 5 72 

133 0.97 0.97 0.96 0.99 0.99 0.93 0.01 0.04 0.01 115 1 5 71 

135 0.98 0.97 0.97 0.99 0.99 0.95 0.01 0.03 0.01 116 1 4 71 

141 0.97 0.97 0.97 0.97 0.98 0.95 0.03 0.03 0.02 116 2 4 70 

143 0.98 0.97 0.98 0.97 0.98 0.96 0.03 0.03 0.02 117 2 3 70 

163 0.98 0.97 0.98 0.96 0.98 0.96 0.04 0.03 0.03 117 3 3 69 

167 0.98 0.98 0.99 0.96 0.98 0.99 0.04 0.01 0.02 119 3 1 69 

169 0.99 0.98 1.00 0.96 0.98 1.00 0.04 0.00 0.02 120 3 0 69 

173 0.98 0.98 1.00 0.94 0.97 1.00 0.06 0.00 0.03 120 4 0 68 

179 0.98 0.97 0.99 0.94 0.97 0.99 0.06 0.01 0.03 119 4 1 68 

181 0.98 0.97 0.98 0.94 0.97 0.97 0.06 0.02 0.03 118 4 2 68 

221 0.98 0.97 0.99 0.93 0.96 0.99 0.07 0.01 0.04 119 5 1 67 

229 0.97 0.96 0.99 0.92 0.95 0.99 0.08 0.01 0.05 119 6 1 66 

239 0.97 0.96 0.98 0.92 0.95 0.97 0.08 0.02 0.05 118 6 2 66 

241 0.96 0.95 0.98 0.90 0.94 0.97 0.10 0.02 0.06 118 7 2 65 

247 0.96 0.95 0.98 0.89 0.94 0.97 0.11 0.02 0.06 118 8 2 64 

249 0.96 0.94 0.98 0.88 0.93 0.97 0.13 0.02 0.07 118 9 2 63 

269 0.95 0.94 0.98 0.86 0.92 0.97 0.14 0.02 0.08 118 10 2 62 

273 0.95 0.93 0.98 0.85 0.91 0.97 0.15 0.02 0.09 118 11 2 61 

275 0.94 0.93 0.98 0.83 0.91 0.97 0.17 0.02 0.09 118 12 2 60 

279 0.94 0.92 0.98 0.83 0.91 0.95 0.17 0.03 0.09 117 12 3 60 

289 0.94 0.92 0.98 0.82 0.90 0.95 0.18 0.03 0.10 117 13 3 59 

293 0.93 0.91 0.98 0.81 0.89 0.95 0.19 0.03 0.11 117 14 3 58 

295 0.93 0.91 0.98 0.79 0.89 0.95 0.21 0.03 0.11 117 15 3 57 
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Table A.13 - QUIDEL Dry performance metrics for block size.  Rows for hyperparameters with 

duplicate metrics to those preceding them (already represented in the below data table) were dropped 

(N=130 -> N=32). Hyperparameters with duplicate values were : [71, 75, 77, 79, 81, 83, 85, 87, 89, 

91, 99, 101, 103, 105, 107, 109, 119, 121, 123, 125, 127, 129, 131, 135, 137, 139, 141, 143, 145, 147, 

149, 153, 157, 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 195, 197, 199, 

201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 229, 231, 233, 235, 237, 239, 241, 

243, 245, 247, 249, 251, 255, 257, 259, 261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 

285, 287, 289, 291, 293, 295, 297, 299]. Hyp: Hyperparameter, ACC: Accuracy, TPR: True Positive 

Rate, TNR: True Negative Rate, PPV: Positive Predictive Value, NPV: Negative Predictive Value, 

FPR: False Positive Rate, FNR: False Negative Rate, FDR: False Discovery Rate, TP: True Positive, 

FP: False Positive, FN: False Negative, TN: True Negative. 

Hyp F1 ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

41 0.79 0.70 0.65 1.00 1.00 0.29 0.00 0.35 0.00 110 0 58 24 

43 0.82 0.73 0.70 1.00 1.00 0.32 0.00 0.30 0.00 117 0 51 24 

45 0.83 0.74 0.71 1.00 1.00 0.33 0.00 0.29 0.00 119 0 49 24 

47 0.83 0.75 0.71 1.00 1.00 0.33 0.00 0.29 0.00 120 0 48 24 

49 0.84 0.76 0.72 1.00 1.00 0.34 0.00 0.28 0.00 121 0 47 24 

51 0.85 0.77 0.73 1.00 1.00 0.35 0.00 0.27 0.00 123 0 45 24 

53 0.86 0.78 0.75 1.00 1.00 0.36 0.00 0.25 0.00 126 0 42 24 

55 0.87 0.80 0.77 1.00 1.00 0.39 0.00 0.23 0.00 130 0 38 24 

57 0.88 0.81 0.78 1.00 1.00 0.39 0.00 0.22 0.00 131 0 37 24 

59 0.89 0.82 0.80 1.00 1.00 0.41 0.00 0.20 0.00 134 0 34 24 

61 0.89 0.83 0.81 1.00 1.00 0.43 0.00 0.19 0.00 136 0 32 24 

63 0.90 0.84 0.82 1.00 1.00 0.44 0.00 0.18 0.00 138 0 30 24 

65 0.91 0.86 0.84 1.00 1.00 0.47 0.00 0.16 0.00 141 0 27 24 

67 0.92 0.86 0.85 1.00 1.00 0.48 0.00 0.15 0.00 142 0 26 24 

69 0.92 0.87 0.85 1.00 1.00 0.49 0.00 0.15 0.00 143 0 25 24 

73 0.92 0.88 0.86 1.00 1.00 0.50 0.00 0.14 0.00 144 0 24 24 

93 0.93 0.88 0.86 1.00 1.00 0.51 0.00 0.14 0.00 145 0 23 24 

95 0.93 0.89 0.87 1.00 1.00 0.52 0.00 0.13 0.00 146 0 22 24 

97 0.93 0.89 0.88 1.00 1.00 0.53 0.00 0.13 0.00 147 0 21 24 

111 0.94 0.90 0.88 1.00 1.00 0.55 0.00 0.12 0.00 148 0 20 24 

113 0.94 0.91 0.89 1.00 1.00 0.57 0.00 0.11 0.00 150 0 18 24 

115 0.95 0.92 0.90 1.00 1.00 0.60 0.00 0.10 0.00 152 0 16 24 

117 0.95 0.91 0.90 1.00 1.00 0.59 0.00 0.10 0.00 151 0 17 24 

133 0.95 0.92 0.91 1.00 1.00 0.62 0.00 0.09 0.00 153 0 15 24 
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151 0.96 0.93 0.92 1.00 1.00 0.63 0.00 0.08 0.00 154 0 14 24 

155 0.96 0.94 0.93 1.00 1.00 0.67 0.00 0.07 0.00 156 0 12 24 

159 0.97 0.94 0.93 1.00 1.00 0.69 0.00 0.07 0.00 157 0 11 24 

161 0.97 0.95 0.94 1.00 1.00 0.71 0.00 0.06 0.00 158 0 10 24 

163 0.97 0.95 0.95 1.00 1.00 0.73 0.00 0.05 0.00 159 0 9 24 

193 0.98 0.96 0.95 1.00 1.00 0.75 0.00 0.05 0.00 160 0 8 24 

227 0.96 0.93 0.92 1.00 1.00 0.65 0.00 0.08 0.00 155 0 13 24 

253 0.94 0.90 0.89 1.00 1.00 0.56 0.00 0.11 0.00 149 0 19 24 
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Table A.14 - QUIDEL Wet performance metrics for block size.  Rows for hyperparameters with 

duplicate metrics to those preceding them (already represented in the below data table) were dropped 

(N=130 -> N=41). Hyperparameters with duplicate values were : [57, 67, 91, 93, 95, 97, 99, 103, 105, 

109, 121, 123, 125, 129, 131, 133, 135, 147, 149, 151, 155, 157, 1 59, 163, 165, 167, 169, 177, 179, 

181, 183, 185, 187, 189, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 

221, 223, 225, 227, 229, 231, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 255, 257, 259, 

261, 263, 265, 267, 269, 271, 273, 275, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299]. 

Hyp: Hyperparameter, ACC: Accuracy, TPR: True Positive Rate, TNR: True Negative Rate, PPV: 

Positive Predictive Value, NPV: Negative Predictive Value, FPR: False Positive Rate, FNR: False 

Negative Rate, FDR: False Discovery Rate, TP: True Positive, FP: False Positive, FN: False 

Negative, TN: True Negative. 

Hyp F1 ACC TPR TNR PPV NPV FPR FNR FDR TP FP FN TN 

41 0.65 0.61 0.49 1.00 1.00 0.39 0.00 0.51 0.00 70 0 74 48 

43 0.67 0.63 0.51 1.00 1.00 0.40 0.00 0.49 0.00 73 0 71 48 

45 0.68 0.64 0.52 1.00 1.00 0.41 0.00 0.48 0.00 75 0 69 48 

47 0.71 0.66 0.55 1.00 1.00 0.42 0.00 0.45 0.00 79 0 65 48 

49 0.73 0.68 0.57 1.00 1.00 0.44 0.00 0.43 0.00 82 0 62 48 

51 0.74 0.69 0.59 1.00 1.00 0.45 0.00 0.41 0.00 85 0 59 48 

53 0.76 0.71 0.62 1.00 1.00 0.47 0.00 0.38 0.00 89 0 55 48 

55 0.77 0.72 0.63 1.00 1.00 0.48 0.00 0.37 0.00 91 0 53 48 

59 0.78 0.73 0.64 1.00 1.00 0.48 0.00 0.36 0.00 92 0 52 48 

61 0.79 0.74 0.65 1.00 1.00 0.49 0.00 0.35 0.00 94 0 50 48 

63 0.79 0.74 0.66 1.00 1.00 0.49 0.00 0.34 0.00 95 0 49 48 

65 0.81 0.76 0.68 1.00 1.00 0.51 0.00 0.32 0.00 98 0 46 48 

69 0.82 0.77 0.69 1.00 1.00 0.52 0.00 0.31 0.00 100 0 44 48 

71 0.83 0.78 0.71 1.00 1.00 0.53 0.00 0.29 0.00 102 0 42 48 

73 0.84 0.80 0.73 1.00 1.00 0.55 0.00 0.27 0.00 105 0 39 48 

75 0.86 0.81 0.75 1.00 1.00 0.57 0.00 0.25 0.00 108 0 36 48 

77 0.86 0.82 0.76 1.00 1.00 0.58 0.00 0.24 0.00 109 0 35 48 

79 0.87 0.82 0.76 1.00 1.00 0.59 0.00 0.24 0.00 110 0 34 48 

81 0.87 0.83 0.77 1.00 1.00 0.59 0.00 0.23 0.00 111 0 33 48 

83 0.89 0.85 0.80 1.00 1.00 0.62 0.00 0.20 0.00 115 0 29 48 

85 0.89 0.85 0.81 1.00 1.00 0.63 0.00 0.19 0.00 116 0 28 48 

87 0.90 0.86 0.82 1.00 1.00 0.65 0.00 0.18 0.00 118 0 26 48 

89 0.90 0.87 0.83 1.00 1.00 0.66 0.00 0.17 0.00 119 0 25 48 

101 0.91 0.88 0.83 1.00 1.00 0.67 0.00 0.17 0.00 120 0 24 48 

107 0.91 0.88 0.84 1.00 1.00 0.68 0.00 0.16 0.00 121 0 23 48 

111 0.92 0.89 0.85 1.00 1.00 0.69 0.00 0.15 0.00 122 0 22 48 

113 0.92 0.89 0.85 1.00 1.00 0.70 0.00 0.15 0.00 123 0 21 48 

115 0.93 0.90 0.87 1.00 1.00 0.72 0.00 0.13 0.00 125 0 19 48 
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117 0.93 0.91 0.88 1.00 1.00 0.73 0.00 0.13 0.00 126 0 18 48 

119 0.94 0.91 0.88 1.00 1.00 0.74 0.00 0.12 0.00 127 0 17 48 

127 0.94 0.92 0.89 1.00 1.00 0.75 0.00 0.11 0.00 128 0 16 48 

137 0.95 0.92 0.90 1.00 1.00 0.76 0.00 0.10 0.00 129 0 15 48 

139 0.95 0.93 0.90 1.00 1.00 0.77 0.00 0.10 0.00 130 0 14 48 

141 0.95 0.93 0.91 1.00 1.00 0.79 0.00 0.09 0.00 131 0 13 48 

143 0.96 0.94 0.92 1.00 1.00 0.80 0.00 0.08 0.00 132 0 12 48 

145 0.96 0.94 0.92 1.00 1.00 0.81 0.00 0.08 0.00 133 0 11 48 

153 0.96 0.95 0.93 1.00 1.00 0.83 0.00 0.07 0.00 134 0 10 48 

161 0.97 0.95 0.94 1.00 1.00 0.84 0.00 0.06 0.00 135 0 9 48 

171 0.97 0.96 0.94 1.00 1.00 0.86 0.00 0.06 0.00 136 0 8 48 

173 0.98 0.96 0.95 1.00 1.00 0.87 0.00 0.05 0.00 137 0 7 48 

175 0.98 0.97 0.96 1.00 1.00 0.89 0.00 0.04 0.00 138 0 6 48 

 

 


