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Abstract

In this thesis, we investigate bosonic fields in the strong-field and highly dynamical
regime of general relativity focussing specifically on the black hole superradiance process
of scalar and vector fields, as well as on the nonlinear dynamics of isolated and binary scalar
boson stars. In the first part of this thesis, we lay the foundation to use boson stars as
a particularly simple model to explore the dynamical behavior of inspiraling and merging
ultra compact and black hole mimicking objects. To that end, we construct self-consistent
initial data describing isolated and binary star configurations and subsequently utilizing
numerical evolutions of the full Einstein-Klein-Gordon system of equations to explore this
dynamical behavior. We investigate the linear stability properties of families of rotating
stars in scalar theories with various types of self-interactions. Using numerical evolutions,
we find that a linear instability present in rotating boson star solutions within linear scalar
theories is quenched by nonlinear scalar interactions in a subset of stars. Furthermore,
utilizing the conformal thin-sandwich formalism, we numerically construct generic binary
boson star initial data satisfying the constraints of the Einstein equations. We adapt ex-
isting and introduce new methods, to initial data quality, as well as reduce residual orbital
eccentricity. With these methods, we were able to generate self-consistent inspiral-merger-
ringdown gravitational waveforms of eccentricity-reduced binary boson stars, for the first
time. Lastly, scalar self-interactions may delay the merger time of identical inspiraling
binary star configurations, or drive the system to an entirely different end state. In par-
ticular, we show explicitly that rotating boson stars can form during the merger of two
non-spinning stars. In the second part of this thesis, we focus on how well-motivated ultra-
light scalar and vector bosons, extending the Standard Model of particle physics, can be
probed through the observable signatures of the black hole superradiance process. Energy
and angular momentum are extracted from a black hole via this mechanism, are deposited
in an oscillating bosonic cloud, and finally dissipated through gravitational wave emis-
sion from the system. Here, we introduce the gravitational waveform model, SuperRad,
modeling the cloud’s oscillation frequency, growth and decay timescales, as well as the
amplitude and phase evolution of the emitted gravitational radiation, for both scalar and
vector boson clouds. This model combines state of the art analytical results with numer-
ical computations to provide the most accurate predictions across the relevant parameter
space. Moreover, we investigate the impact of a non-vanishing kinetic mixing between
an ultralight vector boson forming a superradiant cloud and the Standard Model photon.
Such mixing robustly results in the formation of a highly turbulent pair plasma within
the bosonic cloud. We characterize the associated electromagnetic signatures and devise
strategies to observe such signatures through multi-messenger observation campaigns.
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2.1 Examples of the nonlinear self-interactions, specified by V (|Φ|), considered
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tential has a non-trivial vacuum state, the KKLS self-interaction has a
metastable state, the axionic potential is periodic, and finally, the repul-
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solitonic BS family has coupling σ = 0.05, the axionic family has coupling
f = 0.005, the BSs in the KKLS model have κ = 0.1, the family of BSs
with repulsive self-interactions have coupling λ/µ2 = 5 × 102, while the
mini BS family is given for reference. From left to right, the three plots
show the total mass M in units of µ−1, the dimensionless spin J/M2, and
the compactness M/R of each of these families of BSs as a function of the
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99% of the U(1)-charge density CQ (dashed), as discussed in Sec. 2.2.2.
Based on the turning point argument described in the text, BSs past the
maximum of the total mass are expected to be unstable. Notice that in the
non-relativistic limit, i.e., when ω/µ→ 1, the behavior of all families of BSs
with non-trivial self-interactions reduce to that of mini BSs [197, 122]. The
individual data points indicate BSs that we evolve and where we find no
sign of an instability (see Sec. 2.3.2). Note that, although not evident in the
plot, the axionic family reaches a global maximum of µM at ω/µ ≈ 0.187. 13
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2.3 The evolution of the global maxima gm = max |∂tgtt| (red dashed) and Φm =
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99 (dotted circle)
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2.5 The imaginary (top) and real (bottom) components of the frequency of the
m̃ = 2 unstable mode as a function of the BS frequency ω/µ for three
families of solutions shown in Figure 2.2. The axionic model has coupling
f = 5 × 10−2, the solitonic potential has σ = 0.05, and the KKLS self-
interactions are characterized by κ = 0.1. All three families are sequences of
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2.6 The top and bottom panel on the left show the complex frequency of the
unstable modes of a family of repulsive potential BSs with fixed ω/µ = 0.897,
but varying coupling constant λ. In all but one case, the unstable mode has
the azimuthal number m̃ = 2; for λ/µ2 = 110, the m̃ = 1 mode is the
(most) unstable. The dashed curve is a linear interpolation based on the
two m̃ = 2 cases with largest λ/µ2 (ignoring the m̃ = 1 case). The top and
bottom panel on the right show the corresponding complex frequencies of the
unstable modes of the family of mini BSs. We fit both a generic quadratic
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(gray dash-dotted), which is fixed to ω̃R,I |ω=µ = 0, to the data. Finally,
we indicate the upper bounds on the growth rate of the case considered in
Table 2.1 by down-arrows. . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Series of snapshots (increasing in time from left to right) showing the evo-
lution of |Φ|2 in four different scenarios where a BS undergoes a NAI. These
are representative of the possible end states of all the unstable m = 1 BSs
studied here. From top to bottom: a) Evolution of an m = 1 mini BS with
ω/µ = 0.8 that collapses to a binary BH (the regions inside the apparent
horizons are indicated in black). b) Snapshots of an ω/µ = 0.95 m = 1 mini
BS resulting in a non-rotating BS with non-negligible linear momentum. c)
The NAI of an m = 1 rotating BS, in the repulsive model with λ/µ2 = 110,
and ω/µ = 0.897 (corresponding to the m̃ = 1 case in Figure 2.6), yielding
a non-rotating BS with large linear momentum. d) Finally, the evolution
of an m = 1 axionic BS with ω/µ = 0.425 where the NAI results in the
fragmentation of the star into two equal-mass non-rotating BSs. . . . . . . 26

2.8 Analogous to Figure 2.7, here we present the dynamics of three m = 2 BSs
undergoing a NAI (their properties can be found in Table 2.2). From top
to bottom: a) The evolution of a rotating BS, in the KKLS model with
κ = 0.1, and ω/µ = 0.6, results in four non-rotating equal mass BSs that
are flung out from the center of mass. b) The fragmentation of a solitonic
BS with σ = 0.05 and ω/µ = 0.4 into a large, oscillating, approximately
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at relativistic velocities. c) Finally, the NAI of an axionic BS with f = 0.1
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single non-rotating BS with significant linear momentum. . . . . . . . . . . 27
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2.9 We plot the normalized difference Xc
i = (RK

i − Rcor)/R
K
i , i ∈ {99, 95},

between the co-rotation point Rcor and the two radii RK
99 and RK

95 for the
families of BSs considered in Figure 2.6. The left panel shows the repulsive
potential cases, and the right shows the mini BS cases. The quantity RK

95

is defined, analogously to how RK
99 is in Sec. 2.2.2, as the circular radius

r = RK
95, where 95% of the energy resides in r < RK

95. In the right panel, the
solid and dashed lines are quadratic fits to the Xc

99 and Xc
95 data points. . 29

2.10 Top panel: The ratio ωsph/ωrot of the boson frequency in m = 1 BSs with
charge Q to the frequency of m = 0 BSs with charge Q/2 in several scalar
models. The ratios pass through unity at ωcA/µ = 0.34, ωcS/µ = 0.45 and
ωcK/µ = 0.58 for the axionic, solitonic and KKLS models, respectively. For
comparison, we indicate the critical frequencies, in Eq. (2.15), by dashed
vertical lines. Bottom left: The orbital energy EO, defined in Eq. (2.19), of
a m = 0 binary BS system with constituent charge Q/2 emerging from a
single m = 1 BS with charge Q. (Legend from top panel also applies here.)
Bottom right: Half the scalar charge Q/2 for m = 1 mini BSs (solid line),
compared with the full charge Q of m = 0 mini BSs (dashed line), as a
function of their respective frequencies. . . . . . . . . . . . . . . . . . . . 30

3.1 The properties of the constraint satisfying binary BS initial data as a func-
tion of coordinate separation D0 of the stars. Here, M is the ADM mass,
J the angular momentum (defined with respect to the axisymmetric Killing
field), and Q the initial charge of the binary configurations with proper-
ties summarized in Table 3.1. These are compared with the corresponding
quantities at infinite separation of the binary (e.g., M0 = M1 + M2). The
amplitude of the spurious oscillations in the stars emerging during the evo-
lution of these binary initial data is defined in (3.28). Dotted lines indicate
the ∝ 1/D0 fall-off matched to the point with the largest separations. . . . 47
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3.2 We show the temporal evolution of the normalized maximum on each time
slice φm = max |Φ|/max |Φ|t=0 and amplitude of the perturbations ∆φm,
defined in (3.28), for selected binary BS configurations. In all cases shown
here, the exponent γ, defined in (3.29), is set to γ = 2. (left top) The
behavior of the maximum φm during the evolution of the binary B4 (see
Table 3.1) with initial coordinate separation D0 = 20M0, constructed with
f(A) = f̂(A) = 1 (labeled “superposition”) contrasted with the case, where
σ(A)/D0 = 0.52 and σ̂(A) = 0 (labeled “modified sup.”). (left bottom) The
amplitude ∆φm of the spurious oscillations as functions of the lengthscale σ̂.
Cases indicated with “(g)” correspond to only metric attenuation, σ̂(A) = 0
and σ̂ = σ(A), while for those labeled “(g+s)” both the metric and scalar
degrees of freedom are attenuated σ̂ = σ̂(A) = σ(A). The binary B2 has
initial coordinate separation D0 = 40M0. (top right) The behavior of the
maximum φm during the evolution of the binary B3 (see Table 3.1) with
initial coordinate separation D0 = 12M0 (constructed with f(A) = f̂(A) = 1)
and rescaling the conformal kinetic energy in (3.30) with p = 0 as well as
p = −4. (bottom right) We show the amplitude ∆φm of spurious oscillations
emerging during the evolution of binaries B1,3 with initial coordinate sepa-
rations D0 = 40M0 and D0 = 12M0, respectively. For the latter, we were
unable to construct binary BS initial data with p < −4. . . . . . . . . . . . 50

3.3 The GW amplitude (top) and phase (bottom) emitted by the (aligned-spin)
binary B3 with initial separation D0 = 12M0. The two curves correspond
to the evolution of initial data constructed using p = 0 or p = −4 in (3.30).
Specifically, the GW phase φGW is the complex phase of the Newman-
Penrose scalar Ψ4, whereas the GW amplitude is the magnitude of the
projection of Ψ4 onto the (`,m) = (2, 2) mode of s = −2 spin-weighted
spherical harmonics on a coordinate sphere at radius r = 100M0. Note, the
binary orbits are eccentric with eccentricity e ≈ 0.1, resulting in modula-
tions with period ≈ 250M0 as is most striking in the top panel (eccentricity
reduction is discussed separately in Sec. 3.3.3). . . . . . . . . . . . . . . . . 51

3.4 (top panel) The initial radial velocity component vr and orbital angular
frequency Ω0 of the binary BS initial data corresponding to B3 and B5 (see
Table 3.1), throughout the eccentricity reduction procedure, starting from
iteration step 0. Here, Ω∞ = (D3

0/M0)1/2. (bottom panel) The associated
eccentricity, defined in (3.36), as a function of iteration step Ne. We only
perform a single iteration step for the B3 binary with misaligned spins (this
case is discussed further in Sec. 3.4.3). . . . . . . . . . . . . . . . . . . . . 56
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3.5 The remnant properties of a m1 = m2 = 1 spinning binary BS head-on
collision (with frequencies ω1 and ω2) in the σ = 0.05 solitonic scalar model
(2.2), assuming the remnant is a m = 1 rotating BS and using the remnant
map of Ref. [340] (i.e., assuming U(1)-charge conservation to predict the
remnants properties for each given binary configuration). The dimension-
less angular momentum Jrem/M

2
rem and the associated remnant compactness

Crem are shown as contours. The mass ratio M is defined in (3.37). We re-
strict to the ω2 > ω1 portion without loss of generality, and indicate the
regions with Qrem > Qmax, where Qmax is the maximum charge of the m = 1
family of BSs, in black. Finally, we classify the merger remnants into black
holes (“BH”) and m = 1 rotating BSs (“BS”), and mark the binary that
gave rise to the respective remnant with dots. [Notice, the central (left)
“BS” corresponds to binary B1 (B6), see Table 3.1.] . . . . . . . . . . . . . 59

3.6 We show scalar field quantities on axial slices for the head-on collision of
binary B6 with initial phase-offset of α = π. The z-axis is the spin-axis and
z = 0 corresponds to the center of mass of the system. (left) Surfaces of
constant scalar field magnitude at various times during the head-on collision.
(right) The solution after it has relaxed at late times (t/M0 = 856). The
black contour line indicates the surfaces of constant scalar field magnitude,
while the color indicates the phase ψ of the scalar field. This end state
resembles the parity-odd stationary double-BS solutions found in Refs. [221,
164]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
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3.7 Trajectories and GWs from a quasi-circular binary BS mergers: an equal-
mass, non-spinning binary labelled B5 (The binary properties are summa-
rized in Table 3.1.) We show the BS trajectory in the orbital plane [defined
according to (3.31)] throughout the evolution up to the point of contact
(left panel), the binary coordinate separation d as a function of time (center
panel), and the emitted (`,m) = (2, 2) s = −2-weighted spherical harmonic

component of the GW strain h
(2,2)
+ (right panel). In the left and center pan-

els, we indicate the initial time (round markers) and the time of contact
(square markers). The dimensionless spins, χ, of the binary constituents
can be found in the bottom right corners of the left panel. The legends in
the center panels indicate the eccentricity reduction step Ne and the rescal-
ing exponent p used in (3.30). After eccentricity reduction, e ≈ 4 × 10−3

initially. In the center panel, we also show the time derivative of the sepa-
ration d in the inset. Notice, the GW strain (right panel) contains residual
high-frequency contamination as discussed in Sec. 3.3.2; this contamination
is shown in detail in Appendix B.2. At the point of contact of the two stars,
the GW frequency is roughly ωcM0 ≈ 0.1. For the post-merger phase, we
estimate the dominant frequency and exponential decay timescale of h

(2,2)
+

to be ωpostM0 ≈ 0.23 and τpost/M0 ≈ 3× 102, respectively. . . . . . . . . . 61

3.8 Same as in Figure 3.7 for binary B3. In the left and center panels, we
also indicate the time t/M0 = 1475 (x-marker) and show the subsequent in-
plane star trajectories in the inset in the bottom left panel up to the point of
contact, which is discussed in the main text. For comparison, in the center
panel, we also show two cases with different values of p before eccentricity
reduction (Ne = 0). After eccentricity reduction, the eccentricity is e ≈ 1.8×
10−3. At the point of contact of the two stars, the GW frequency is roughly
ωcM0 ≈ 0.1 also for B3. There is a slight drift of the center of mass that is
barely noticeable in bottom left panel corresponding to vxcom ≈ −1.2× 10−4

(all other components are . 10−5; see Appendix B.3 for a discussion). . . . 63
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3.9 The inspiral and merger of the precessing binary configuration B3 (see Table
3.1) with initial coordinate separation D0 = 12M0 and initial spin-directions
(defined in the main text) so the spin-vectors point away from the initial
boost direction with a 45◦-angle to the initial orbital plane. We show snap-
shots with surfaces of constant scalar field magnitude (3D rendering; top
row) and the gravitational waveform extracted at r/M0 = 100 (bottom row).
In the top row, the orientation of the axes (which is the same for all panels)
is shown in the leftmost panel. The first four panels show the binary during
the inspiral at roughly the same orbital phase after NO orbits, while in the
last two panels, the merger dynamics is presented roughly at coalescence
time t/M0 = 1300 and once the resulting non-spinning binary increase its
coordinate separation t/M0 > 1350. For this binary, the eccentricity and
center-of-mass drift was reduced in a single iteration step to e = 0.013 and
vcom ≈ 9× 10−5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.1 We show schematically an axial slice through a rotating BS at a fixed time.
The scalar field magnitude |Φ| (red/yellow color) vanishes along the central
vortex line, attains a maximum value some distance from the vortex line,
and drops off exponentially towards large distances ∼ e−kr, with some k > 0.
Surfaces of constant scalar field magnitude are indicated as gray dashed lines.
Integrating the gradient of the scalar phase Arg(Φ) = ψ along the path γ
around the vortex in the azimuthal direction ϕ gives the vortex index q of
the rotating BS, as defined in (4.2). . . . . . . . . . . . . . . . . . . . . . . 69
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4.2 We show four snapshots of the equatorial plane during the merger of a non-
spinning binary BS with frequencies ω1/µ = 0.9 and ω2/µ = 0.86, with
no initial phase-offset α = 0, total ADM mass M0, an initial coordinate
separation D = 20M0, and in the repulsive scalar model (2.5) with λ/µ2 =
103. The compactness of the higher and lower frequency star is C = 0.08
and C = 0.12, respectively. The total angular momentum points into the
page, and the orbit has Newtonian eccentricity e = 0.13. The final BH
parameters are shown in Figure 4.3. (top row) We show the magnitude of
the scalar field |Φ|, normalized by the maximum magnitude of the scalar
field in the initial time-slice |Φ|t=0

max. (bottom row) We show the complex
phase ψ ∈ (−π, π) at the corresponding times in the equatorial plane. At
t/M0 = 0, we indicate the locations of the q = 1 vortices by red circles,
while we indicate the surface of φ1 ∼ φ2 defined below (4.9) with a black
dashed line. Notice, the white lines in the first panel of the bottom row are
interpolation artifacts and correspond to ψ = ±π. . . . . . . . . . . . . . . 75

4.3 (top panel) We show the (`,m) = (2, 2) mode of the s = −2- weighted spheri-
cal harmonic components of the Weyl Newman-Penrose scalar Ψ4 (extracted
at coordinate radius r = 100M0) emitted during the binary BS inspiral of
the case with initial phase-offset α = 0 shown in Figure 4.2 and discussed
in the main text. We compare this to the GWs from the same binary in-
spiral with initial phase-offset α = π. (bottom panel) The mass MBH (solid)
and dimensionless spin parameter aBH (dashed) measured from the apparent
horizons of the remnant BHs formed in the inspiral of the top panel. We
evolve the α = π case for only roughly 900M0. . . . . . . . . . . . . . . . . 78

4.4 The GWs (extracted at a coordinate radius r/M0 = 100) during the inspiral
(left) and merger (right) of the binary BS described in the main text. The
different cases correspond to identical initial binary systems, except with
different values of the phase offset α in the range 0 to π. Specifically, we
show the (`,m) = (2, 2) s = −2-weighted spherical harmonic component
of the Newman-Penrose scalar Ψ4 as a function of retarded time t − r.
The differences between the various α-cases are due to the enhancement
of nonlinear scalar effects during each close encounter of the binary and
towards merger, as the separation between the stars shrinks. Notice the
different scale used on the left and the right. After merger, the waveforms
are terminated around the time when the system collapses to a BH, which
is indicated by a vertical dashed line. We show the GWs after gravitational
collapse of the α = 0 and π cases in Figure 4.5. . . . . . . . . . . . . . . . 80

xxii



4.5 (top panels) We show the GWs emitted around the time of BH formation by
the binary BS systems discussed in the main text and shown in Figure 4.4,
for initial phase offsets α = 0 and π. Notice the difference in scale compared
with Figure 4.4. (bottom panels) The mass MBH and spin parameter aBH of
the remnant BHs formed as functions of coordinate time t (corresponding
to the retarded time t− r in the top panels). . . . . . . . . . . . . . . . . . 83

4.6 Five snapshots of the equatorial plane of the spinning binary BS inspiral
discussed in Sec. 4.2.4. (top row) We show the magnitude of the scalar
field in the equatorial plane, normalized by the initial maximum of the
magnitude |Φ|t=0

max. (bottom row) We present the corresponding scalar phase
ψ ∈ (−π, π). We indicate the location of all relevant q = −1 vortices by red
circles, and all relevant q = 1 vortices by blue circles. (All vortex indices
are measured with respect to the total angular momentum). The arrows
indicate the direction of rotation of the inspiraling binary and the binary
endstate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.7 We plot the properties (dimensionless angular momentum Jrot/M
2
rot, fre-

quency ωrot, and compactness Crot = Mrot/Rrot) of a m = 1 rotating rem-
nant star, assuming the remnant map (4.10), as a function of the initial
non-spinning BS frequencies ω1 and ω2 (contour lines). In addition, we
show the normalized mass difference M = (M1 + M2 −Mrot)/(M1 + M2)
across the binary star parameter space (contour plot). Notice, the plot is
symmetric under the interchange ω1 ↔ ω2, and we only consider the regime
where Q1 + Q2 < Qmax

rot . (left) The binary parameter space in the repulsive
scalar model with λ/µ2 = 103, (middle) the solitonic self-interactions with
σ = 0.05, and (right) in the massive vector model without self-interactions.
We explicitly restrict to only the radially stable Newtonian branches in the
left and right panels, and the radially stable relativistic branch in the middle
panel. In the middle, the dashed gray line indicates where M = 0. Notice,
for a σ = 0.1 solitonic scalar theory, no region with M > 0 exists. The
non-axisymmetric linear instability found in Ref. [323] is likely absent in the
right panel; however, it is present in the middle for all ωrot/µ > 0.5, and
may be present in the left panel for some solutions with ωrot/µ < 0.9, as
shown in Ref. [339]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
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4.8 We illustrate the dynamics leading to the formation of m = 1 rotating BS
remnants from the merger of two non-spinning BSs. (top row) Here, we
focus on the binary star in the repulsive scalar model described in Table
4.2. We show the magnitude of the scalar field normalized by the maximum
magnitude |Φ|/|Φ|max in the equatorial plane at four different times during
merger. (middle row) We plot the product of the scalar phase ψ and the
maximum normalized scalar field magnitude ψ|Φ|/|Φ|max in the equatorial
plane at four different times during the merger. Here, we show the binary in
the solitonic scalar theory with properties given in Table 4.2. (bottom row)
The evolution of odd-m components of the azimuthal decomposition (4.16)
of both binary mergers (the repulsive binary on the left, and the solitonic
binary on the right). Notice, in the case of the solitonic binary, we show in
Appendix C.3 that the m = 3 and 5 modes are dominated by truncation
error at late times and converge to zero. The even–m modes are negligible
throughout the evolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.9 We classify the remnants of the mergers of a non-spinning binary BS into
rotating DBS and rotating BS solutions as a function of the total (initial
orbital) angular momentum J0. The angular momentum is normalized by
the U(1)-charge of the binary Q0. . . . . . . . . . . . . . . . . . . . . . . 96

4.10 (top) We show the normalized magnitude of the scalar field |Φ|/|Φ|t=0
max in the

equatorial plane at four different times during the evolution of the binary
BS merger with parameters given in Table 4.2, but with initial phase-offset
α/π = 3/4. (bottom) We classify the remnant solution of binary BSs with
different values of the initial phase α into spherical or rotating (m = 1) BSs.
We consider α/π ∈ {1, 63/64, 31/32, 15/16, 7/8, 3/4, 1/2, 0}. . . . . . . . . . 98

4.11 As a function of the compactness Csph of two identical non-rotating stars in
various models and couplings, we compare the dimensionless angular mo-
mentum of the corresponding m = 1 rotating BS and PS solution obtained
using the remnant map (4.10). In particular, we compare three families of
stars in the solitonic scalar model of coupling strength σ with the family of
PSs, scalar BSs in the repulsive scalar model (labelled with its coupling λ),
and the Newtonian quasi-circular angular momentum at the point of contact
Jc, derived in the main text. We focus only on the solution branches below
the maximum mass. Notice, however, that not all the solitonic cases that
are plotted lie in the stable part of the m = 1 rotating BS parameter space. 100
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4.12 We plot the mass ratio q̃ = Mrot/Msph (white contour lines) and charge ratio
ζ̃ = Qrot/Qsph (color) across the parameter space of a (superposed) binary
BS consisting of a non-spinning star with frequency ωsph and an m = 1
rotating star with frequency ωrot in the σ = 0.05 solitonic scalar model. The
dashed white line indicates where ωsph = ωrot. The mergers of binaries with
parameters indicated by the black (white) points result in a single rotating
(non-rotating) BS remnant. . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.1 (left) We show the visible magnetic field strength B2 (normalized by its max-
imum) in the equatorial plane of the central BH of mass M , dimensionless
spin a∗ = 0.86, and a dark photon mass µ = 0.3/(GM). The dark photon of
the superradiance cloud forces the pair plasma into a circular motion result-
ing in magnetic field line twisting, which is released through magnetic field
line reconnection, resulting in a turbulent plasma state (shown here) and
efficient energy dissipation into the plasma, driving the luminous electro-
magnetic emissions from the system. (right) Kinetically mixed dark photon
parameter space of interest in this chapter. The solid (dashed) black lines
are contours of constant electromagnetic luminosity emitted from the super-
radiance cloud around a BH of mass 10 (100) M� and initial spin a∗ = 0.9.
The region above the blue contour is relevant for electromagnetic follow-
ups of compact binary mergers, discussed in Sec. 5.7.1 (the shaded band on
top of the contour is due to uncertainties on the merger rate). The area
within the green contour is of interest for continuous gravitational waves
searches targeted on anomalous pulsars, as described in Sec. 5.7.2. The gray
shaded region is excluded by existing measurements of the CMB spectrum
by COBE/FIRAS [154, 91]. . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.2 We plot representative sets of field lines of the electric (left) and magnetic
fields (right) of the superradiant cloud around the central BH in Kerr-Schild
coordinates (see App. D.1 for details). The m = 1 cloud is characterized by
α = 0.3, while the BH has a corresponding spin of a∗ = 0.86 (further details
can be found in Table D.1). The BH spin-axis points in the z-direction.
Color indicates the field strength along each field line, normalized by the
respective maximum field strength. On the right, we also plot the magnetic
field strength inside the equatorial plane of the BH. . . . . . . . . . . . . . 115
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5.3 Schematic depiction of the evolution of a kinetically-mixed dark photon
superradiance cloud. Starting from a spinning BH (left), a vector superra-
diance cloud forms on a timescale τSR (center-left).The visible electric field
sourced by the cloud accelerates environmental charged particles, leading to
cascade production of electrons and positrons on a timescale τplasma; note
that τSR � τplasma and the cascade production occurs and completes before
the superradiance instability completes (center-right). The cloud finally de-
cays by GW emission on a timescale τGW, and by transferring energy to the
plasma, which loses energy through electromagnetic emission on a timescale
τEM(right). See text for further details. . . . . . . . . . . . . . . . . . . . . 117

5.4 (left) Smallest values of the kinetic mixing parameter ε that allows for ef-
ficient e± pair production in the superradiance cloud as a function of dark
photon mass µ, for BH masses of 10M� (blue) and 100M� (orange), with
initial BH spin of a∗ = 0.9. The rate for photon stimulated Schwinger pair
production, given in Eq. (5.25), is required to be greater than the size of
the cloud, αµ, when the cloud has fully grown. Smaller dark electric fields
at small µ, require larger ε to initiate the cascade. The sharp cutoff cor-
responds to the highest dark photon mass that satisfies the superradiance
condition for the fastest growing level. (right) Ratio of the time needed to
populate the plasma over the superradiance e-folding time as a function of
the kinetic mixing parameter ε and the gravitational coupling α for a BH
mass of 10 M� and initial BH spin of a∗ = 0.9 (the ratio is independent of
M and only mildly dependent on a∗). An estimate of the ratio is given in
Eq. (5.27), while in the plot τplasma is evaluated using the electric field value
at the time that the cascade pair production is initiated. In the dark gray
shaded region, the electric field is always too small to produce e±. When
the cascade is efficient, the plasma is filled within a small fraction of one
superradiance e-folding time (τSR grows steeply at small α). In both pan-
els, the light gray shaded region is excluded by measurements of the CMB
spectrum by COBE/FIRAS [154, 91] . . . . . . . . . . . . . . . . . . . . . 126
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5.5 We show the visible electric field geometry, Ei, and magnitude as a func-
tion of the plasma conductivity σ in the equatorial plane of the BH. The
superradiance cloud’s phase is the same in each panel. Color (red/blue)
correspond to the magnitude of the component along the spin axis, i.e., in
the z-direction, normalized by the maximal magnitude of that component
at the given conductivity. Field lines are projections of the electric field onto
the equatorial plane, while the color of the field lines (yellow/green) indi-
cates the magnitude of the visible electric field normalized by the maximal
magnitude at σ = 0. The BH and cloud parameters are as in Figure 5.2,
i.e., α = 0.3 and a∗ = 0.86. With increasing conductivity, the electric field
magnitude decreases compared with the vacuum limit, and Ez/E ∼ O(1)
for σ/µ = 20. The field geometry undergoes a phase-shift of π/2 between
vacuum and large conductivity limits. . . . . . . . . . . . . . . . . . . . . . 134

5.6 Magnetic field lines Bi and magnitudes in a coordinate slice spanned by
the BH spin (pointing in the z-direction), and an arbitrarily chosen super-
radiance cloud phase. The six panels show the field configurations in the
same slice for successively larger conductivities σ. The background colors
(red/blue) indicate the magnitude of the component perpendicular to the
slice Bϕ in the ϕ-direction around the BH normalized by the magnitude of
the visible magnetic field. The colors of the field lines (yellow/green) indicate
the magnitude of the visible magnetic field along the field lines normalized
by the maximal magnitude in the vacuum case Bσ=0

max . The BH and cloud
parameters in all panels are as in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86.
The magnitude of the magnetic field, while exponentially decaying in the
vacuum limit, is roughly uniform at large conductivities σ/µ = 20. The
small-scale features are discussed in detail in Sec. 5.5.3 . . . . . . . . . . . 136

5.7 (top row) The ratio between visible magnetic and electric field strengths,
B2 and E2, respectively, as function of conductivity σ in the same slices as
in Figure 5.6 (i.e., spanned by the BH spin-axis in the z-direction and an
arbitrary superradiant phase). Contour lines indicate, where B2/E2 = 1.
(bottom row) The magnitude of the visible electric field component in the di-
rection of the visible magnetic field, |EiBi|, normalized by both magnitudes.
The slices of the top and bottom rows are identical. The BH and cloud pa-
rameters in all panels are as in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86.
For σ/µ . 1, the electric field is dominant everywhere and the violations
of |EiBi| = 0 is strong, while for σ/µ & 1, the magnetic field begins to
dominate in some regimes and |EiBi| = 0 is violated only in isolated regions. 137
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5.8 (left) We plot the maximal ratio of visible magnetic to electric field magni-
tudes maxB2/E2, and the maximal magnetic and electric field magnitudes,
B2

max and E2
max, normalized by their maximal vacuum values, as a function

of plasma conductivity σ/µ ∈ {0.001, 0.01, 0.1, 1, 2, 5, 10, 20}. (middle) The
fractional coordinate volume VB2>E2 of magnetically dominated regions in-
side a coordinate sphere of radius 4/(αµ) around the central BH as function
of conductivity. (right) We show the behavior of the volume integral of
|EiBi| over a coordinate sphere of radius 10rc, IEB, as a function of conduc-
tivity, normatlized to its vacuum value Iσ=0

EB . As above, we consider here a
BH-cloud system with α = 0.3 and spin a∗ = 0.86 in all panels. . . . . . . . 138

5.9 We plot the visible magnetic field strength B2 in the equatorial plane of
the system in the vacuum limit, σ = 0, as well as at moderate to high
plasma conductivities, i.e., σ/µ & 1. The BH and cloud parameters are as
in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86. The superradiance cloud phase
is identical in each of the panels. The color is normalized by the maximal
visible magnetic field strength at each conductivity. The white dashed line
indicates the critical coordinate radius r∗ = 80µGM/σ, discussed in the
main text. The region ρ̂ < r∗ is dominated by superradiant driving, while
the regions with ρ̂ > r∗ are characterized by an interplay of advective and
diffusive regions. The flat spacetime light cylinder for this system is roughly
RLC = GM/α ≈ 3.33GM . Notice, the resolution of our numerical methods
decreases with increasing coordinate distances |x| and |y|, resulting in, for
instance, a suppression of small-scale features in the σ/µ > 2 cases for
|x|, |y| > 50GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.10 We plot a selection of visible magnetic field lines of the superradiance cloud-
plasma system with conductivity σ/µ = 20, α = 0.3, and a∗ = 0.86. In
panels (a), (b) and (c) we also plot the visible magnetic field strength within
the equatorial plane, while in panel (d) we show the visible magnetic field
strength in the plane spanned by the BH spin and an arbitrary superra-
diance cloud phase. We discuss this plot in detail in the main text. The
main macroscopic scales involved are the BH-scale, set by the mass M , the
superradiance cloud’s oscillation timescale 1/µ ≈ 3.33GM , and the cloud’s
Bohr radius rc ≈ 11.1GM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
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5.11 (left) We plot the total visible, time-averaged, Poynting flux PEM, defined in
(5.45), through a coordinate sphere at radius ρ̂ around the BH, for various
conductivities σ. Solid lines are positive (locally outgoing) fluxes, whereas
dotted lines are negative (locally ingoing) fluxes. The interior of the BH and
the ergosphere (ES) in the equatorial plane are indicated by shaded regions;
the smallest radius value indicates the flux through the event horizon ĖBH.
(right) We plot the total energy dissipation rate due to Ohmic losses Ldiss,
defined in (5.47), everywhere outside a coordinate radius ρ̂ for various con-
ductivities. In both panels, we focus on an α = 0.3 cloud with a BH of spin
a∗ = 0.86, and Bohr radius of the superradiance cloud of rc = 1/(µα); notice,√

2(µ2 − ω2)→ αµ for α� 1. Note, our simulations assume a conductivity
constant everywhere in space. At intermediate conductivities, σ ∼ µ, the
Poynting flux is efficiently absorbed by the effective plasma, while towards
large conductivity, the electromagnetic modes propagate freely. The energy
injection into the plasma Ldiss follows the profile of the cloud for all but the
highest conductivities considered here. . . . . . . . . . . . . . . . . . . . . 151
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5.12 We show the energy dissipation rate, integrated over the entire cloud Ldiss,
and the total (time-averaged) Poynting flux PEM extracted at ρ̂ = 10rc =
10/(µα). (left) Focusing on α = 0.3 and a∗ = 0.86, we plot the quantities
obtained from our resistive force-free simulations, black circles representing
Lnum.

diss , and black squares representing P num.
EM , as functions of conductivity.

The orange and blue bands, labelled Lfits
diss and P fits

EM, respectively, are a series
of fits of the form a1 + a2(µ/σ)p to the simulation results with the three
largest conductivities. The fits are motivated by the discussion in the main
text that the energy dissipation remains finite at infinite conductivities. The
bands are bounded by the most optimistic and pessimistic fits to the data.
The black dotted and dashed lines show the force-free estimates for the
emitted Poynting flux and total dissipation, labelled P ff

EM and Lff
diss, valid

formally at σ →∞ (how these are obtained is discussed in the main text).
Lastly, we show the analytical approximations (5.52), labelled as Lana.

diss , for
comparison. (right) We also show Lnum.

diss and P num.
EM from the simulations,

but now fixing σ/µ = 20 and varying α, assuming ω = ΩBH. The two fits
in (5.54) to the numerical data Lnum.

diss (dash-dotted line) and P num.
EM (sparse-

dashed line) are labelled as P fit
EM and Lfit

diss (and use the ansatz a1α
3 + a2α

4

and a1α
1 + a2α

2, respectively). The orange and blue bands, labelled Lextrap.
diss

and P extrap.
EM , are the σ/µ → ∞ extrapolations of the corresponding bands

in the plot on the left (there for α = 0.3) applied to the two fits P fit
EM and

Lfit
diss. Lastly, the analytic estimate (5.52) is indicated as Lana.

diss . A discussion
of both plots can be found in the main text. . . . . . . . . . . . . . . . . . 152

5.13 We plot the dissipation density ρdiss (defined in (5.48)) normalized by the
maximal density ρmax

diss = max ρdiss, the ratio of visible electromagnetic fields
B2/E2, the violations of the force-free condition EiB

i = 0 normalized by the
magnitude of the visible electric and magnetic fields, and the magntiude of
the plasma velocity vd = |vd| in the equatorial plane of the central BH. All
panels correspond to the same coordinate time and a BH of spin a∗ = 0.86,
cloud with α = 0.3, and plasma conductivity of σ/µ = 20. We indicate
where B2/E2 = 1 by a contour line. Regions of small plasma velocities, i.e.,
large magnetic diffusion, are also sites of large EiB

i 6= 0 and locally enhanced
energy injection density ρdiss. This implies that magnetic reconnection sites
are locations of enhanced energy injection into the plasma. . . . . . . . . . 156

xxx



5.14 We show the visible magnetic field lines (in dark/yellow, color indicating the
visible magnetic field strength normalized by the global maximum B/Bmax)
and electric field lines (in white), as well as the local dissipation density
ρdiss (all colors) in two different contexts. Both panels show a close-up of
the plasma roughly 15GM away from the central BH of spin a∗ = 0.86, as
well as α = 0.3 and σ/µ = 20. In (a), the dissipation density is shown as
semi-transparent isosurfaces. The BH is located towards the bottom of the
plot. In (b), the dissipation density is plotted on a semi-transparent plane
spanned by the z and y directions. Here the BH is located towards the top
left of the plot. The numbers in both panels indicate regions of large energy
injection into the plasma. The arrows show the divergence of magnetic field
lines away from the reconnection site. A detailed discussion can be found in
the main text. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.15 Here we consider a system with a BH of spin a∗ = 0.86, a superradiant
cloud with α = 0.3, and a plasma conductivity of σ/µ = 20. (left) We show

the time dependence of the total visible Poynting flux entering the BH
˙̂EEH

and the outward flux P̂EM through spheres of coordinate radii of 6rc and
10rc. Hats indicates the rescaling P̂ = P (G/ε2)(M/Mc). Time is normal-
ized by the period of the superradiance cloud Tα = 2π/ω. (right) We show
a snapshot of the visible Poynting flux per solid-angle (centered on the BH)
through a coordinate sphere at 6rc, normalized by the maximum value. Due
to the differential rotation of the turbulent plasma, this pattern only rotates
slowly along the azimuthal direction, i.e., with period T � Tα. At a coordi-
nate radii of 10rc, the periodic modulation of the amplitude of the Poynting
flux is mostly gone, indicating that the dissipation in the interior region is
periodic. The small-scale features in the angular distribution dPEM/dΩ is a
result of the formation of current sheets and turbulence in the plasma. . . 160
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5.16 (top row) We show the dissipation density ρdiss in the plane spanned by
the BH spin and a fixed direction in the equatorial plane at three instances
during a single superradiance cloud period. Here we focus on a BH with spin
a∗ = 0.86, α = 0.3, and plasma conductivity σ/µ = 20. The arrows indicate
the direction of the motion of the features, and are discussed in detail in
the main text. (bottom) We plot the maximum of the dissipation density
max ρdiss as a function to time (normalized by the cloud’s period Tα = 2π/ω)
for different values of α ∈ {0.1, 0.2, 0.3, 0.4} (and associated saturated BH
spins satisfying ω = ΩBH, see Tab. D.1). In the bottom panel, we also
indicate the times of the snapshots in the top panels by their corresponding
number labels. Over the course of a single period of the superradiance cloud,
the plasma undergoes periodic motion along the BH’s spin axis (as indicated
by the arrows in 1. and 3. in the top row), leading to peaks in the local
dissipation density, when the plasma from below and above the BH collide
in the equatorial plane (corresponding to snapshot 2.). . . . . . . . . . . . 162

5.17 (left) Lifetime of the superradiance cloud as a function of the kinetic mixing
parameter ε and the gravitational coupling α for a BH with an initial mass
of 10 M� and spin of a∗ = 0.9. At large α, the cloud decays through
GW emission, and the lifetime is independent of ε. When α is too small,
the power emitted in electromagnetic radiation overcomes the GW power
and the cloud depletes faster for larger ε (see Eq. 5.62). In both regimes,
the lifetime is proportional to the BH mass, τ ∝ M , so the transition is
independent of the value chosen. The initial BH spin determines the largest
value of α that satisfies the superradiance condition, but otherwise has a
mildly effect on the lifetime of the cloud. In the dark gray shaded region
τSR > τEM, while the light shading corresponds to parameters excluded by
measurements of the CMB spectrum by COBE/FIRAS [154, 91]. (right)
Time evolution of the superradiance cloud’s electromagnetic luminosity (see
Eq. 5.61) for two different values of ε, for M = 10 M� and a∗ = 0.9 (the
luminosity is independent of M and only mildly dependent on a∗, while
the decay time will increase for heavier BHs). After the spinning BH is
formed, the energy emitted in radiation quickly grows exponentially with
the superradiance cloud, and later slowly decreases due to the cloud mass
decay through GW emission. . . . . . . . . . . . . . . . . . . . . . . . . . . 169
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5.18 Range of dark photon kinetic mixing parameter ε and mass µ producing a
visible signal for electromagnetic follow-up observations of LVK compact bi-
nary merger events with a BH remnant. As an example, we choose the three
best target events: GW170814 (blue), GW190814 (yellow), GW200202 154313
(red) (measured parameters are given in Table 5.1). The thin solid lines show
the regions where a signal could exist, which are bounded from below by
the requirement that the visible electric field is large enough to produce the
plasma (see Sec. 5.4 and Eq. (5.26)), to the left by the requirement that
the cloud grows within 10 years (see Eq. (5.60)), and to the right by the
superradiant condition for the fastest-growing bound state (see Sec. 5.2).
The reach is further limited on the right by the signal duration falling below
a minimum observational time. The gray shaded region is excluded by mea-
surements of the CMB spectrum by COBE/FIRAS [154, 91]. (left) Current
prospects for an X-ray [87] (solid) and radio transient [134] (dashed) search.
(right) Future prospects for an X-ray search (solid) and a radio search for a
pulsating source (dashed). See the text for more details. The cyan contour
corresponds to one merger event per year visible in the X-ray, with shaded
band indicating the error due to the uncertainty in the BH merger rate. . . 171

xxxiii



5.19 (left) We show the projected gravitational wave strain of observed pulsating
sources whose luminosity could be powered by the kinetically mixed dark
photon superradiance cloud. The potential candidates are selected from the
ATNF pulsar catalogue [249], as described in Sec. 5.7.2, and are frequency
doublets (dark red), frequency triplets (light red), and pulsars with positive
measured frequency derivative (blue). The filled (empty) triangles corre-
spond to the largest possible strain that a source in a frequency multiplet
could produce if the cloud were created 103 (106) yr ago. The strain could
take any value below that upper bound (thin solid lines) down to a mini-
mum strain outside of the range shown here. The blue down-pointing and
up-pointing triangles denote the range of strains allowed assuming that the
spin-up is due to gravitational wave emissions from the cloud. The 95% C.L.
upper limits on the signal strain amplitude from Refs. [17] and [13] are shown
in dark and light gray shading, respectively. The solid gray line corresponds
to the expected sensitivity of a targeted search with LIGO Livingston de-
rived in [18]. (right) Range of kinetic mixing parameters allowed for each
pulsar, with frequency doublets (dark red), frequency triplets (light red),
and pulsars with positive measured frequency derivative (blue). For the fre-
quency multiplets, filled (empty) down-pointing triangles correspond to the
largest ε that allows the cloud to decay through GW emission for at least
103 (106) yr. For the sources that are spinning up, down-pointing triangles
give the largest ε that allows the cloud to decay through GW emission up
to their current age (which is fixed by ḟobs). For all the sources, up-pointing
triangles denote the smallest mixing parameter that allows for plasma pair
production in the cloud (see Sec. 5.4 and Eq. (5.26)). . . . . . . . . . . . . 176

6.1 The GW strain h and frequency fGW as a function of time for a BH withM =
62 M� and a∗ = 0.67 at a distance of 410 Mpc subject to the superradiant
instability of a boson with mass 3.6× 10−13 eV. The top set of panels shows
the scalar boson case, while the bottom set shows the vector case. Note the
difference in timescales shown, since in the scalar (vector) case the cloud
grows on timescales of ∼ 5 years (9 hours) and decays through GW radiation
on timescales of ∼ 9000 years (1 day). Time is measured since the BH was
formed, assuming the cloud started as a single boson. . . . . . . . . . . . 184
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6.2 The parameter space of the superradiant mV = 1 vector mode. It is made up
of relativistic regime Dint, where SuperRad employs interpolation functions
based on the numerical data (labelled ND) to determine a given quantity
q(α, a∗) and a lower α region Dfit, where numerical calibration is necessary
to augment the expressions valid in the Newtonian limit α → 0 (indicated
by a red line). For illustration purposes, we show only 402 of the 3202 data
points used in SuperRad. The gray dashed line marks the saturation point
of the superradiance instability, i.e., ωR = ΩH(a∗). In this case, the red data
points are used for calibration in Dfit. . . . . . . . . . . . . . . . . . . . . . 188

6.3 The relative differenceDR, between the prediction for ωR provided by SuperRad,
and purely analytical non-relativistic estimates given in (6.8) together with
(E.4) and (E.11). Dotted lines indicate the Dint region in SuperRad. We
focus on a few representative cases. . . . . . . . . . . . . . . . . . . . . . . 190

6.4 The relative differenceDR between the prediction for ωI provided by SuperRad,
and purely analytical non-relativistic estimates given in (6.12) together with
(E.6) and (E.14). Dashed lines indicate the Dint region in SuperRad. We
show the same representative cases as in Figure 6.3. . . . . . . . . . . . . 192

6.5 The additional accumulated GW phase ∆φGW due to the increase in fre-
quency as the boson cloud mass decreases [defined in (6.22)] for scalar (blue
curves) and vector (orange curves) bosons. This phase is calculated begin-
ning from when the cloud mass is maximum for a duration of τGW (solid
curves) and for one year (when τGW > 1 yr; dotted curves). We assume a
BH with M = 50 M� and a∗ = 0.99. . . . . . . . . . . . . . . . . . . . . . 196

6.6 A comparison of different approximations of the frequency shift due to the
boson cloud’s self-gravity for a scalar field with mS = 1. We compare
the non-relativistic (see Sec. 6.4.1) and quasi-relativistic (see Sec. 6.4.2)
approximations to the (leading order in Mc part) fully relativistic (labelled
“relativistic”) relative frequency shift. In particular, we show, for fixed α,
(∂ω/∂Mc)(Mc = 0) ≈ ∆ω/Mc, where the equality is exact for the non-
relativistic and quasi-relativistic approximations. . . . . . . . . . . . . . . 197

6.7 We show the mass-rescaled GW power P̃GW, defined in (6.29), emitted by
the scalar and vector clouds with azimuthal number mσ = 1 and 2 at the
saturation point, ωR = mσΩH , comparing the Schwarzschild “Schw.” and
the flat approximations to SuperRad (colored lines), and time-domain es-
timates obtained in [141, 142]. Dash-dotted colored lines indicate where
SuperRad uses interpolation of numerical results over fits of the type (6.34). 202
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6.8 We show the magnitudes of the GW modes h`m, defined in (6.25), which
are sourced by mσ = 1 and 2 scalar and vector boson clouds at saturation
(ωR = mσΩH) as functions of α. Notice that ` ≥ 2mσ. . . . . . . . . . . . . 203

6.9 An example evolution of the boson cloud mass as a function of time for
scalars (s = 0) and vectors (s = 1) with α = 0.15 and a∗ = 0.7. The plot
compares the evolution determined by evolving the full equations (6.35)
(solid lines, labelled “full”), to an approximation that matches together
constant exponential growth to GW-dominated decay (dotted and dashed
lines, labelled “matched”). Time is normalized by the gravitational dissipa-
tion timescale in either case, and the offset adjusted so that the maximum
value of Mc occurs at zero for the full evolution cases, and the matching
value of Mc is obtained for the corresponding matched evolution cases. The
inset shows a zoom in of the end of the exponential growth phase for the
scalar case (in particular the full evolution). . . . . . . . . . . . . . . . . . 204

6.10 We show the SNR (contour lines and color) of GWs from vector superradiant
clouds around a fiducial BH of initial remnant source frame mass of Mi

and spin a∗,i = 0.8 as a function of luminosity distance dL and redshift z,
assuming a standard ΛCDM cosmology and α = 0.2. For comparison, we
also consider an initial spin of a∗,i = 0.7 showing the ρSNR = 10 contour
(dashed black line), assuming α = 0.15. . . . . . . . . . . . . . . . . . . . . 206

A.1 Time evolution of Φm (top panel), defined in Eq. (2.13), at the three different
resolutions specified in the text. We also show the integrated norm of the
generalized harmonic constraint violation IN :=

∫
Σt
d3σ|Hµ−�xµ| (bottom

panel). Both quantities converge to zero at the expected fourth order. The
origin of the perturbations of Φm at early times is discussed in the text.
The units for IN are arbitrary since here our purpose is just to demonstrate
convergence. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

B.1 Convergence study of the numerical evolution of the axisymmetric binary B1

with properties summarized in Table 3.1 (and initial coordinate separation
D = 10M0), at three different numerical resolutions, where h is the grid spac-
ing of the lowest resolution. The top panel shows φm = max |Φ|/max |Φ|t=0,
the normalized maximum of the scalar field magnitude, while the lower
panels show two different measures of the constraint violation, max C and
IC (defined in the text). The constraint violation is converging to zero at
roughly third and fourth order in the middle and bottom panels, respectively. 251
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B.2 The convergence with behavior of the two norms, max C and IC (defined in
the main text), of the constraint violation of the binary initial data asso-
ciated with B5 (see Table 3.1) with increasing resolution N , the number of
grid points in each linear dimension, compared with the lowest resolution
considered Nmin. Both norms exhibit (as expected) roughly fourth-order
accurate convergence towards zero. . . . . . . . . . . . . . . . . . . . . . . 252

B.3 We show the (`,m) = (2, 2) spin-weighted spherical harmonic components
of the Newman-Penrose scalar Ψ4 extracted on a coordinate sphere of radius
100M0. The top panel corresponds to the Ne = 5 and p = −4 binary B5

shown in the top row of Fig. 3.7 and Fig. 3.8, while the bottom panel shows
the Ne = 3 and p = −4 binary B3 shown in the bottom row of Fig. 3.7
and Fig. 3.8. This shows the high-frequency contamination of the gravita-
tional waveform from the binaries at early times due to residual spurious
oscillations and unbound scalar matter in and around the constituents of
the binaries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

C.1 We show the scalar field magnitude |Φ| (normalized by the maximum in the
initial time-slice) in a few snapshots of the equatorial slice of the binary
BS simulations discussed in Figure 4.9. We label each sequence of time-
slices by the initial angular momentum J0 in units of initial charge Q0. In
the top and bottom rows, the binary merges into a rotating DBS solution
(i.e. two non-rotating BSs separated by scalar interactions, as discussed
in Sec. 4.2.1). Compared with the top row, the binary in the bottom row
rotates at high angular velocities around the center of mass at late times,
i.e., t/M0 > 300. The case shown in the middle two rows merge to form
a remnant with q = 1 vortex at the center of mass at late times. Notice,
we find that the J0/Q0 = 0.75 case relaxes to a rotating BS at late times
t/M0 > 300. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
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C.2 Here we consider the convergence behavior of the binary BS in the σ = 0.05
solitonic scalar model, with properties summarized in Table 4.2, with de-
creasing grid spacing. The quantities C and IC (defined in the text) are a
positive definite measure of the constraint violation, which we track through-
out the simulation. The rapid variation of the constraints is driven by gauge
dynamics at early times. The maximum of the constraint violation C occurs
during the merger of the binary at around t/M0 ≈ 75. The binary merges
earlier with increasing resolution, and only the medium and high resolu-
tions capture small-scale features present in the remnant after merger. The
quantity max C converges to zero roughly at third order, as expected, since
it is primarily set by the third-order accurate time interpolations on the
mesh refinement boundaries. On the other hand, the integrated quantity
IC converges at the expected forth order, as it is largely insensitive to the
lower-order time interpolations. . . . . . . . . . . . . . . . . . . . . . . . . 259

C.3 We consider the convergence behavior of the global maximum of |Φ|, the
total U(1)-charge Q, and the azimuthal mode C5 of the scalar field for the
binary BS shown in Figure C.2. The total charge Q is calculated in a coor-
dinate sphere of radius 100M0 around the center of mass of the system. We
normalize Q by Q∞, the sum of the BSs’ isolated charges Q∞ = Q1 + Q2.
As the initial separation between the two stars increases, the total charge
approaches the superposed charge: Q → Q∞. Lastly, we also show the
convergence behavior of the C5 mode [defined in (4.16)] during the binary
evolution. The m = 5 perturbations remaining after the merger (and the
formation of an m = 1 rotating remnant) at around t/M0 ≈ 75 are converg-
ing towards zero with increasing resolution at roughly the expected fourth
order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

C.4 We consider the convergence behavior of the α = π/2 case of Sec. 4.2.3 with
decreasing grid spacing ∆x. The quantities C and IC are defined in the text.
The low resolution evolution is based on a different mesh-refinement layout
(as discussed in the text,) and, hence, exhibits slightly different convergence
behavior. At early times, the convergence orders of these quantities are the
same as those discussed in the caption of Figure C.2. . . . . . . . . . . . . 262
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C.5 The evolution of the scalar field modes Cm (dotted and solid lines corre-
sponding to m = 1 and 2, respectively) defined in (4.16) for the binary BS
merger specified in Table 4.2 with phase variation α/π = 63/64. The merger
occurs roughly at t/M0 ≈ 75, after which the even-m modes promptly be-
gin to grow exponentially in the evolution with the lowest resolution (the
m = 0 mode is representative of all even-m modes). This apparent instabil-
ity is an artifact of low numerical resolution, and disappears with increasing
resolution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

C.6 We show the scalar phase in two equatorial slices of the m = 2 rotating BS
of frequency ω/µ = 0.4 in the σ = 0.05 solitonic scalar model undergoing
the NAI (first discussed in Ref. [339]). The left panel shows the scalar
phase at t/M0 = 0, while the right panel shows the scalar phase during the
nonlinear saturation of the NAI. The black lines indicate arbitrarily chosen
level surfaces of the scalar field magnitude within the equatorial plane. . . 264

C.7 (top) We show the normalized scalar field magnitude |Φ|/|Φ|t=0
max in four

equatorial slices at different times during the evolution of an isolated m =
1 rotating BS of mass M0 in the repulsive model with λ/µ2 = 102 and
frequency ω/µ = 0.9. The star was shown to be unstable to the NAI in
Ref. [339]. Red circles indicate the coordinate location of the vortex at early
times in all snapshots. (bottom) The evolution of some of the spherical
harmonic modes C`

m, defined in (C.10), corresponding to the same star as
in the top panel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

C.8 We show the normalized mass differenceM = (M∗−Mrot)/M∗ between the
mass Mrot of an isolated m = 1 spinning star of frequency ωrot and a non-
rotating star of mass M∗ in the same models, when assuming the remnant
map described in Sec. 4.2.4. We do this for the solitonic and repulsive scalar
models, with couplings σ and λ, respectively. Therefore, for each ωrot shown,
M indicates the energy gained by transitioning the m = 1 rotating star to
a non-rotating star of the same charge. We show only the branches below
the maximum mass of the families of solutions. . . . . . . . . . . . . . . . . 267

D.1 The norm LDd(τ) of the residual of the massive vector wave equation, defined
in (D.6), as a function of the number of grid points Np considered with
respect to the base resolution NB. The default resolution used for each of
the configurations given in table D.1 and presented throughout the main
text is Np/NB = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

xxxix



D.2 (right and top left) We present the convergence of the norm (D.6) of the
Gauss constraint DiB

i within domains Ds (solid lines) and Dd (dashed lines)
for the α = 0.3 system at three different conductivities σ. The former is
the entire domain outside the outer horizon with r > 1/µ (i.e., neglecting
the near-horizon behavior), whereas the latter is the entire domain outside
the BH r > r+. Np/NB is defined as in Figure D.1, and we set ε = 10−6.
(bottom left) We plot the Poynting fluxes across the ergosurface, PES, the
event horizon, ĖBH, as well as the flux PEM coordinate radii r = 8rc and
r = 10rc in the α = 0.3 cloud with Iµ = 0 and ε = 10−6. . . . . . . . . . . . 276

D.3 We show the visible electric and magnetic fields, charge density, and the ratio
of electromagnetic field magnitudes obtained from a force-free simulation
using the current (D.13), with prescription (D.11) for a superradiance cloud
system with α = 0.3 and a BH spin of a∗ = 0.86. In the case of the visible
electric field, the field line color code is the same as in Figure 5.5. . . . . . 279

D.4 We show the rescaled energy emission rates, P̂ = P (G/ε2)(M/Mc), of the
Poynting flux PEM (extracted at r = 10rc), the Joule heating Ldiss, and
IEB =

∫
d3√γ|EiBi|, as functions of conductivity σ/µ for model (C) with a

superradiance cloud of α = 0.3 on a Minkowski background with magnetic
guide field Bz = 3 × 104B′max. The corresponding Poynting fluxes in the
vacuum P vac.

EM and force-free limits P ff
EM are indicated for reference. . . . . 283

D.5 The charge distribution ρq for various small to large conductivities in the
equatorial plane (bottom row) and in a plane spanned by the BH spin and
an arbitrary superradiance cloud phase (top row). The slices at varying
conductivities correspond to the same superradiance cloud phase. We focus
on a α = 0.3 and a∗ = 0.86 BH-cloud system. . . . . . . . . . . . . . . . . 285

D.6 We show the charge separation Iρ [defined in (D.19)] as a function of con-
ductivity in units of IE′ [defined in (D.20)], as well as the global maxi-
mum max[IµI

µ] of the electromagnetic 4-current (5.37) and global mini-
mum −min[IµI

µ] (recall, we are using the − + ++ signature). We focus
on a α = 0.3 and a∗ = 0.86 BH-cloud system and consider conductivities
σ/µ ∈ {0.01, 0.1, 1, 2, 5, 10, 20}. . . . . . . . . . . . . . . . . . . . . . . . . . 286
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D.7 (top and middle row) We show the energy dissipation density ρdiss, defined
in (5.48), as a function of conductivity in a slice spanned by the BH spin and
an arbitrary superradiance cloud phase (top row), as well as in the equatorial
plane of the BH (middle row). The color scale is normalized by the global
maximum dissipation density at each conductivity. All slices correspond to
the same superradiance cloud phase. White contour lines indicate where the
density goes through zero. We focus on a α = 0.3 and a∗ = 0.86 BH-cloud
system. (bottom row) We show the ratio of visible electromagnetic fields,
B2/E2, in a plane spanned by the BH spin and an arbitrary superradiance
cloud phase for various small and moderate conductivies. The σ/µ > 1
regime is shown in Figure 5.7. We compare the plasma cases to the vacuum
case, i.e., σ/µ = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

D.8 (left and middle) The total (time-averaged) electromagnetic power emitted
or injected into the plasma as a function of coordinate radius ρ̂ in terms
of the cloud’s Bohr radius rc for various plasma conductivities σ/µ. The
flux obtained in the force-free context is labelled as σ/µ = ∞. Here, we
focus on the α = 0.3 case with a BH spin of a∗ = 0.86, and indicate the BH
horizon and ergosurface by shaded regions labelled BH and ES, respectively.
(left) We show the total time-averaged visible Poynting flux PEM, defined in
(5.45), through spheres at radii ρ̂ starting from the horizon and extending to
large distances [here solid (dashed) lines indicate locally radially outwards
(inwards) going fluxes]. (middle) We show the total dissipation power Ldiss,
defined in (5.47), integrated from ρ̂→∞ to ρ̂. Recall that our simulations
assume spatially constant plasma conductivity σ. (right) Here, we show the
total time-averaged Poynting flux PEM for all values of α, keeping σ/µ = 20
fixed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

E.1 The relative numerical error NR, defined in (E.8), of the real and imaginary
parts of the frequency of the scalar m = 1 and m = 2 superradiant states
around a BH of spin a∗ = 0.985. . . . . . . . . . . . . . . . . . . . . . . . . 297

E.2 The relative numerical error NR of the real and imaginary parts of the
frequency of the vector m = 1 and m = 2 superradiant states around a BH
of spin a∗ = 0.985. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
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E.3 We show a set of representative frequencies ωR of a mσ = 1 and 2 scalar
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Chapter 1

Introduction

In an era of increasingly frequent and confident detections of gravitational wave events from
compact binary mergers as well as precision electromagnetic observations—revolutionizing
the way we observe the universe—now is an exciting time to leverage these observations
and probe fundamental physics using astrophysical compact objects. These systems allow
us to investigate and potentially detect deviations from the expected based on our currently
accepted models of matter—the Standard Model of particle physics—and gravity—General
Relativity. In this work, we focus on two classes of astrophysical objects, which enable, on
the one hand, searches for new ultralight particles extending the Standard Model and, on
the other hand, tests of the black hole paradigm.

1.1 The black hole paradigm

Gravitational wave and electromagnetic observations from isolated and binary ultra com-
pact objects agree with the black hole hypothesis to a remarkable degree [6, 9, 12, 163,
165, 25]. This paradigm explains physics around these compact objects across several
orders of magnitude in their masses MCO, from compact binary mergers and X-ray bi-
naries, at small scales with MCO ∼ O(10)M�, to active galactic nuclei, at large scales
with MCO . O(1010)M�. However, while these observations require ultra compact central
engines, the defining feature of black holes—the event horizon—remains largely untested.
Confronting the black hole hypothesis with observations requires an understanding of vi-
able alternatives, i.e., ultra compact and black hole mimicking objects. These objects
lack horizons, but exhibit general relativistic features like stable light rings, isolated er-
goregions, and super-extremal spins, generally not present in black hole spacetimes within
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General Relativity. A large class of these objects has been conceived within contexts rang-
ing from bottom-up extensions to the Standard Model to top-down expectations based on
low-energy limits of theories of quantum gravity [97] (further details with specific examples
can be found in Sec. 2.1). The gravitational phenomenology associated with these objects
opens a window into questions about models of quantum gravity and beyond the Standard
Model physics from which they emerge.

To illustrate the impact of these features, we consider several examples and discuss
their phenomenological implications. The unstable light rings of black holes and ultra
compact objects, for instance, are responsible for the universal prompt ringdown when
perturbed [94]. In contrast to black holes spacetimes, however, the absence of the perfectly
absorbative horizon within black hole mimicking objects implies a partial reflection of
massless perturbations propagating inwards; this results in modifications of the universal
ringdown at sufficiently late times and imprinting signatures of the internal structure on the
emitted gravitational wave radiation. Hence, the non-universal contribution is a smoking
gun signature of black hole mimickers hidden in the gravitational wave signal, enabling
us to probe the internal or near-horizon structures of astrophysical compact objects and
distinguish a black hole from an ultra compact object. Furthermore, a linear instability
associated with the presence of an ergoregion—the ergoregion instability—emerges as an
exponentially growing accumulation of negative energy inside the ergoregion balanced by
a positive energy flux at infinity [160, 264]. Spacetimes with ergoregions disconnected
from any present horizons, i.e., including black hole mimicking objects, are suseptible
to this exponential growth. The nonlinear development of this instability may result in
smoking gun signatures through gravitational wave emissions (see, e.g., Ref. [48]). Finally,
super-spinning ultra compact objects, i.e., those with dimensionless spin exceeding the
Kerr-bound, exhibit deviations from the inspiral dynamics of binary black holes. These
spin-interactions, which are enhanced towards the merger of a binary, imprinted in the
emitted gravitational waveform, can be extracted from the gravitational wave data, and
may be associated with black hole mimickers due to the Kerr-bound of spinning black holes
in General Relativity.

Therefore, studying ultra compact and black hole mimicking objects in the strong-field
and highly dynamical regime could fundamentally impact our understanding of classical
and quantum gravity. Despite this discovery potential, even rough descriptions of the
strong-field dynamical regime of these objects is lacking, limiting black hole tests that
could be undertaken with current and future gravitational wave detectors such as LIGO,
Virgo, KAGRA and LISA.

In recent years, boson stars have emerged as a particularly simple model of ultra com-
pact spacetimes. These spacetimes are regular and asymptotically flat without horizons
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sourced by a particular self-gravitating complex scalar field configuration. Interestingly,
classes of these stars have been shown to harbor ergoregions, stable light rings, and super-
extremal spins, while exhibiting high compaction [73, 220, 221]. Furthermore, compared
with other models of ultra compact objects [97], boson stars have well-defined evolution
equations associated with them—the Einstein-Klein-Gordon system of equations. There-
fore, established evolution techniques from numerical relativity are readily applied to these
objects, enabling the study of the nonlinear dynamics in the context of isolated and binary
systems (see, Ref. [241] for a review). Hence, these objects are ideal candidates to explore
the dynamics of black hole mimickers in the nonlinear regime. Despite this potential, the
ability of boson stars to serve as proxies for a large class of ultra compact objects in the
nonlinear regime hinges on their stability properties accross the relevant parts of parameter
space, the correct, self-consistent, and accurate construction of binary boson star initial
data, and their dynamical evolution during the inspiral, merger and ringdown. The study
of these aspects is subject of the first part of this thesis.

1.2 Beyond the Standard Model physics

The Standard Model of particle physics is the most precise scientific theory, describing
matter and its interactions to unprecedentedly high precision. Despite this remarkable
success, the model is incomplete in various regards ranging from un-explained fine-tuning
to questions about the fundamental nature of dark matter and even dark energy and quan-
tum gravity. As a response, a series of minimal extensions beyond the Standard Model
have been constructed to solve one or multiple of these problems. Of particular interest are
new bosonic particles of masses . 10−10 eV, as these are able to address several outstand-
ing questions simultaneously. For instance, pseudo-scalar axion-like particles can solve the
strong CP-problem [292], while also making up a significant fraction of the observed dark
matter [23], whereas new ultralight vector bosons routinely emerge from low-energy expan-
sions of models of quantum gravity [172]. Though substantial investment is being made in
terrestrial experimental searches for these new particles, current astronomical observations
have the potential to be much more sensitive probes.

Gravitational and electromagnetic signatures of the so-called black hole superradiance
process are a uniquely efficient probe of ultralight particles that are weakly-coupled to
ordinary matter (see, Ref. [80] for a review). The power of this mechanism as a probe of
beyond the Standard Model physics lies in requiring only a minimal coupling to gravity.
Hence, even without any coupling to the Standard Model, the resulting gravitational sig-
natures are potentially observable. A scalar or vector ultralight bosonic field efficiently
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extracts rotational energy from a spinning black hole through the superradiance process,
forming a macroscopic oscillating condensate in the vicinity of the black hole. Especially,
gravitational wave detectors, X-ray and gamma-ray telescopes, and radio efforts, possess
large untapped discovery potential for finding evidence for the existence of well-motived
extensions to the Standard Model inaccessible to other current observational techniques.

This potential can be leveraged, provided accurate predictions for the properties and
types of signatures expected exist. Much development was devoted to determining the
relevant dynamics, timescales, and frequencies for both minimally coupled massive scalar
and vector particles; however, a gap between these results and the utilization of the latter
in the context of observation campaigns emerged. Furthermore, embedding these scalar or
vector degrees of freedom in the Standard Model, an extended dark sector, or low-energy
limits of quantum gravity models, results in additional interactions that may impact the
gravitational superradiance mechanism, and hence, the constraints obtained for minimially
coupled models. In the second part of this thesis, we develop the gravitational waveform
model SuperRad that aims to bridge the gab between theory and experiment, and study
the impact of the lowest-order coupling of the ultralight vector boson to the Standard
Model photon and the emerging phenomenology.

1.3 Summary and outline of the thesis

In the first part of this thesis, we focus on utilizing boson stars as proxies to study the
linear and nonlinear dynamics of ultra compact and black hole mimicking objects. In par-
ticular, in Chapter 2 we investigate the stability properties of rotating scalar boson stars
utilizing nonlinear numerical evolutions of the Einstein-Klein-Gordon system of equations,
with focus on those solutions in models with several different types of nonlinear interac-
tions. We show that a linear non-axisymmetric instability found in stars in models without
self-interactions persists across the entire parameter space for these stars, with diverging
timescale in the non-relativistic limit. Therefore, boson stars that are sufficiently non-
relativistic, where the leading order mass term dominates, will be unstable, independent of
the nonlinear scalar self-interactions. However, we do find classes of rotating bosons stars,
where adding nonlinear interactions to the scalar potential quenches the non-axisymmetric
instability. In Chapter 3, we place these stable rotatings boson stars, as well as non-spinning
stars, in binary configurations. To that end, we utilize the conformal thin-sandwich for-
malism to construct constraint satisfying initial data for equal and un-equal mass binaries
with and without spins in precessing and aligned confirgurations. Furthermore, spurious
oscillations are suppressed by means of adapting existing and developing new methods
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to modify the binary’s free data and standard approaches to reduce residual orbital ec-
centricity are successfully applied to selected binaries; with these approaches, we reach
residual eccentricities at the ∼ 10−3 level. As a result, we produce the first quasi-circular
fully self-consistent inspiral-merger-ringdown gravitational waveforms from non-spinning
and super-spinning binary boson stars. Finally, we comment on means to equilibriate the
scalar matter making up the stars directly analogous to quasi-equilibrium methods devel-
oped for binary neutron star initial data. Finally, in Chapter 4 we study the impact of
self-interactions of the scalar matter making up these stars in the context of binary boson
star inspirals and mergers by performing a series of nonlinear evolutions of the correspond-
ing Einstein-Klein-Gordon equations. Particular focus lies on the pivotal role the scalar
phase and vortex structure plays during the late inspiral, merger, and ringdown. We find
scalar interactions may substantially impact the inspiral gravitational wave amplitude and
phase, as well as the length of a hypermassive phase potentially occuring shortly after
merger. In addition, we develop a mapping that predicts the remnant type and properties
of any given binary boson star merger approximately. Utilizing the predictions of this
mapping, we use numerical evolutions to explicitly demonstrate, for the first time, that
rotating boson stars can form as remnants from the merger of two spherical boson stars.
We analyze this new formation mechanism, discuss its robustness, and comment on the
implications for rotating vector boson stars.

In the second part of this thesis, we study the black hole superradiance phenomenon
as means to detect or rule out viable extensions to the Standard Model of particle physics.
In Chapter 5, we investigate the electrodynamics and observational implications of cou-
pling a superradiant ultralight massive vector boson through the kinetic mixing to the
Standard Model photon. This mixing results in a contribution of the vector boson cloud’s
fields to the visible electromagnetic fields coupling to the standard electromagnetic current.
Hence, charged particles entering the cloud experience strong acceleration and initiate a
pair production phase saturating in the formation of a pair plasma in the superradiant
cloud around the black hole. We study the dynamics, emission mechanisms, and elec-
tromagnetic power output using resistive magnetohydrodynamics methods applicable in
highly magnetized plasmas. We find that magnetic reconnection sites in the bulk of the
cloud are locations of efficient dissipation and electromagnetic emissions with total lumi-
nosity as high as 1043 erg/s for observationally-allowed parts of the coupling parameter
space. Due to large ambient visible magnetic fields, the emission is expected to contain
a large X-ray component with mild evidence of periodicity of the emission. We close
by discussing detection strategies utilizing both gravitational wave and electromagnetic
observations. Furthermore, in Chapter 6 we develop the gravitational waveform model
SuperRad, which models the dynamics, oscillation frequency, quasi-monochromatic signal
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emitted by both superradiant scalar and vector boson clouds. The model is valid across the
relevant parameter space as it consistently combines state of the art analytic and numerical
results. Particular focus lies on determining the accuracy of these methods for predicting
the frequency evolution of the gravitational wave signal utilizing fully general-relativistic
methods. As a first test-case, we estimate the prospects of conducting follow-up gravi-
tational wave searches for ultralight vector clouds around supermassive black hole binary
merger remnants using LISA. We find that vector masses in the range from 1× 10−16 eV
to 6× 10−16 eV can, in principle, be probed using follow-up gravitational wave searches.

Throughout the first part of this thesis, we use units with G = c = 1 and the (−+ ++)
metric signature. However, neither units nor variable definitions carry over to the second
part of this work. In the second part, we use units as indicated individually in each
chapter.
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Part I

Boson stars
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Chapter 2

Stability of rotating scalar boson
stars with nonlinear interactions

Executive summary: We study the stability of rotating scalar boson stars, comparing
those made from a simple massive complex scalar (referred to as mini boson stars), to those
with several different types of nonlinear interactions. To that end, we numerically evolve
the nonlinear Einstein-Klein-Gordon equations in 3D, beginning with stationary boson star
solutions. We show that the linear, non-axisymmetric instability found in mini boson stars
with azimuthal number m = 1 persists across the entire parameter space for these stars,
though the timescale diverges in the Newtonian limit. Therefore, any boson star with m
= 1 that is sufficiently far into the non-relativistic regime, where the leading order mass
term dominates, will be unstable, independent of the nonlinear scalar self-interactions.
However, we do find regions of m = 1 boson star parameter space where adding nonlinear
interactions to the scalar potential quenches the non-axisymmetric instability, both on the
non-relativistic, and the relativistic branches of solutions. We also consider select boson
stars with m = 2, finding instability in all cases. For the cases exhibiting instability, we
follow the nonlinear development, finding a range of dynamics including fragmentation
into multiple unbound non-rotating stars, and formation of binary black holes. Finally, we
comment on the relationship between stability and criteria based on the rotating boson
star’s frequency in relation to that of a spherical boson star or the existence of a co-
rotation point. The boson stars that we find not to exhibit instability when evolved for
many dynamical times include rapidly rotating cases where the compactness is comparable
to that of a black hole or neutron star.
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2.1 Introduction

As outlined in Chapter 1, beside black holes (BHs) and neutron stars, a large class of
exotic compact objects (ECOs) has been conceived [97]. The compactness of ordinary fluid
stars, like neutron stars, is restricted by the Buchdahl limit [84] for spherically symmetric
configurations, and more stringently by the requirement that the sound speed be less than
the speed of light. However, these objects could capture and accrete dark matter from their
environment, forming a composite object [170, 173, 191, 190, 236, 130], which could exceed
these compactness limitations. Various models of ordinary matter also predict the existence
of anisotropic stars with compactness levels arbitrarily close to those of BHs [75, 235, 196].
String theory inspired solutions, called fuzzballs, emerge as averages over microstates,
generating horizonless, but highly compact, BH-like models [121, 57, 267, 45, 58]. There
is speculation that quantum effects of a collapsing horizonless spacetime could halt the
complete classical collapse to a BH and yield a highly compact configuration just outside
the BH-limit [368, 104, 60, 41]. Furthermore, ultralight scalar or vector particles arise in
compactifications of string theory, solutions to the strong CP-problem [183, 179], as well as
as ultralight and fuzzy dark matter [201, 205, 237, 316, 47, 29]. If such particles exist in the
universe, stationary boson stars (BSs) [215, 320, 333, 269, 307, 126, 241, 167] can be formed
through a gravitational cooling mechanisms out of a diffuse distribution of bosonic matter
[333, 323]. Lastly, there is an extended class of other ECOs like gravastars, wormholes,
or firewalls [97]. The common feature of all these approaches is a certain “closeness,”
measured by the compactness and related features, to classical BHs.

Accurate predictions of the properties of BH mimickers, especially of their dynamics in
the nonlinear regime in the case of mergers, is needed to confirm or disfavor the existence
of BHs using GW or electromagnetic observations [217, 64, 46, 335, 246, 374]. However,
for many ECO models, determining their nonlinear evolution is challenging or ill-posed,
due to their vastly different physical and mathematical origins. BSs, on the other hand,
obeying standard energy conditions (as long as their potential is non-negative), evolve
according to well behaved wave-like equations, and can be treated numerically using the
same techniques as the Einstein equations. Thus they provide a simple and tractable
setting to explore dynamical properties of ECOs and BH mimickers [185, 241]. Stationary
rotating BSs can have compactnesses approaching that of BHs, and therefore, capture the
main gravitational features of a large set of ECOs. BSs can exhibit an innermost stable
circular orbit, and unstable and stable photon orbits while being horizonless and regular
everywhere. Therefore, these solutions provide an ideal test bed to study the nonlinear
dynamics of a class of ultracompact objects.

However, while there is an extensive literature constructing stationary BS solutions in
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general relativity, the number of studies that have looked at the dynamics or stability of
these objects is more limited, in particular for BSs with angular momentum (see Ref. [241]
for a recent review.) Recently, there has been increasing interest in studying the nonlinear
dynamics of scalar and vector BSs in various scenarios (e.g. Refs. [280, 281, 107, 285,
188, 131, 277, 326] and see Ref. [241]). And in the past few years, several studies have
presented evidence that rotating scalar BSs might be inherently unstable. In Refs. [285, 67],
the inspiral and merger of binary scalar BSs settled, above a certain critical BH-threshold,
into a non-rotating scalar BSs in the final state, shedding all angular momentum in the
process. Similar results were found for the collapse of rotating clouds of scalar field [129].
Furthermore, Ref. [323] considered a number of rotating scalar BSs made of massive bosons
without interactions, and found them all to be subject to a non-axisymmetric instability
(NAI), rendering them little use, e.g., for studying the dynamics of a merger.

However, in this chapter, we show that this problem can be cured by considering nonlin-
ear interactions for the scalar field, and present evidence for the stability of a large class of
rotating BSs both in the relativistic (high compactness) and in the non-relativistic (dilute)
regime. In particular, we show that when considering parameterized families of BSs for
several different choices of the scalar field potential, the growth rate for the NAI approaches
zero at certain critical values (e.g., of the frequency of the BS). Nonlinearly evolving select
cases beyond these critical values for many dynamical times, we find no evidence for insta-
bility. (Though our methods do not allow us to rule out some instability operating on even
longer timescales.) Hence, such rotating scalar BS solutions are promising candidates for
studying the dynamics of isolated and binary ECOs in a nonlinear scenario, and comparing
to BHs.

In Sec. 2.2, we outline the scalar field models we consider, describe the numerical
techniques we use to construct rotating BS solutions in these models, and review the
linear stability results in the literature. Following this, we present our numerical results
in Sec. 2.3. We first identify the form and nature of the NAI in the linear regime, then
measure the growth rates of the NAI for a set of BSs and potentials, and present select
isolated rotating BSs that show no sign of instability. We also analyze the final state of the
instability, and discuss various physical explanations for the onset of instability. Finally,
we conclude in Sec. 2.4. Additional details on the numerical methods and error estimates
from convergence studies are given in the appendices.
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Figure 2.1: Examples of the nonlinear self-interactions, specified by V (|Φ|), considered
here. We emphasize the characteristic features of each: The solitonic potential has a
non-trivial vacuum state, the KKLS self-interaction has a metastable state, the axionic
potential is periodic, and finally, the repulsive potential has a positive first correction to
the mass term.

2.2 Stationary Scalar Boson stars

2.2.1 Models considered

In this chapter, we consider rotating scalar BSs in minimally coupled massive complex
scalar models, comparing stars where the scalar potential only has a mass term (referred
to as mini BSs) to stars where the potential has additional higher order terms, correspond-
ing to non-trivial scalar self-interactions. The latter are motivated by axion-like particles,
effective field theory descriptions of light scalar degrees of freedom, or simply by the find-
ing that such models can produce highly compact BSs. As such, we consider a complex
scalar field Φ, minimally coupled to the Einstein-Hilbert action, exhibiting a global U(1)
symmetry:

S =

∫
d4x
√−g

[
R

16π
− gαβ∇(αΦ̄∇β)Φ− V (|Φ|)

]
. (2.1)

Here R is the curvature scalar, the overbar denotes complex conjugation, and the potential
V (|Φ|) contains both the mass term and nonlinear self-interactions of the complex scalar
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field. All such self-interactions considered here (see also Figure 2.1) reduce to the mass
term1, V (|Φ|)→ µ2|Φ|2, in a small-coupling limit.

Solitonic potential: This potential is characterized by a single additional coupling pa-
rameter σ, such that [159]

V (|Φ|) = µ2|Φ|2
(

1− 2|Φ|2
σ2

)2

, (2.2)

reduces to the mass-term if σ → ∞. As indicated in Figure 2.1, this potential has a
negative first correction in the expansion in |Φ|, and features a non-trivial vacuum state
at |Φ| = σ/

√
2. With these self-interactions, localized scalar field configurations (i.e., non-

topological solitons) exist even in the absence of gravity [159], and spherically symmetric
BSs of this type are sufficiently compact to support stable trapped null geodesics [285].

KKLS potential: The potential [220, 221],

V (|Φ|) = µ2|Φ|2
[
1− 16π

1.1κ
|Φ|2 +

64π2

1.1κ2
|Φ|4

]
, (2.3)

is parameterized by κ (see also Ref. [222]). It also exhibits a negative first correction
beyond the mass-term, and a local minimum at a non-zero value of |Φ| (see also Figure
2.1). The KKLS potential simplifies to the mass term if κ → ∞ [220]. After rescaling
|Φ| → (κ/(8π))1/2|Φ|, BSs in this model reduce to non-gravitating non-topological Q-balls
[111] in the κ = 0 limit.

Axionic potential: Inspired by ultralight particles predicted, for instance, by string
theory compactifications, or to solve the QCD CP-problem, we consider a generic axion-
like potential of the form

V (|Φ|) = µ2f 2
{

1− cos[
√

2|Φ|2f−1]
}
. (2.4)

This periodic potential is parameterized by the coupling f , reduces to the mass term if
f →∞, and has a negative first correction, when expanded in small |Φ|.

Repulsive potential: While all the above scalar self-interactions have attractive (i.e.,
negative) first corrections to the mass term, we also study the effects of a non-trivial
repulsive first correction of the form

V (|Φ|) = µ2|Φ|2 + λ|Φ|4, (2.5)

1The scalar mass mΦ and the mass parameter µ are related by µ = mΦ/~

12



0.00 0.25 0.50 0.75 1.00

ω/µ

10−1

100

101

µ
M

Repulsive

Mini

KKLS

Solitonic

Axionic

0.00 0.25 0.50 0.75 1.00

ω/µ

100

101

J
M
−

2
0.00 0.25 0.50 0.75 1.00

ω/µ

0.0

0.1

0.2

0.3

0.4

M
/R

Figure 2.2: We present the main properties of five families of m = 1 rotating BSs in the
above scalar models, for choices of coupling focused on in this work. The solitonic BS
family has coupling σ = 0.05, the axionic family has coupling f = 0.005, the BSs in the
KKLS model have κ = 0.1, the family of BSs with repulsive self-interactions have coupling
λ/µ2 = 5 × 102, while the mini BS family is given for reference. From left to right, the
three plots show the total mass M in units of µ−1, the dimensionless spin J/M2, and the
compactness M/R of each of these families of BSs as a function of the boson’s frequency
ω/µ. For determining the radius of the BSs in the last plot, we use either the surface
containing 99% of the mass CK (solid), or 99% of the U(1)-charge density CQ (dashed),
as discussed in Sec. 2.2.2. Based on the turning point argument described in the text, BSs
past the maximum of the total mass are expected to be unstable. Notice that in the non-
relativistic limit, i.e., when ω/µ → 1, the behavior of all families of BSs with non-trivial
self-interactions reduce to that of mini BSs [197, 122]. The individual data points indicate
BSs that we evolve and where we find no sign of an instability (see Sec. 2.3.2). Note that,
although not evident in the plot, the axionic family reaches a global maximum of µM at
ω/µ ≈ 0.187.

with λ > 0. In the following, we also briefly comment on the properties of BSs in a scalar
model with a Liouville potential [328, 106],

V (|Φ|) = µ2α2[e|Φ|
2/α2 − 1], (2.6)

which has the same form as Eq. (2.5) when expanded to quadratic order in |Φ|2.
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2.2.2 Stationary solutions and classical observables

We consider BS solutions where the spacetime is regular, stationary, axisymmetric, and
asymptotically flat. In Lewis-Papapetrou coordinates, the metric takes the general form

ds2 = −fdt2 + lf−1
{
g(dr2 + r2dθ2)

+r2 sin2 θ
(
dϕ− Ωr−1dt

)2 }
.

(2.7)

Here all metric functions {f, l, g,Ω} depend only on (r, θ), in accordance with our assump-
tions. The complex scalar field is assumed to have the form Φ = eiωt+imϕφ(r, θ), with
φ ∈ R. This time and azimuthal dependency ensures that the scalar field stress-energy
tensor is stationary and axisymmetric (maintaining the symmetry of the metric). In addi-
tion to the above five physical fields, we introduce two auxiliary fields ρ(r, θ) and ωs(r, θ),
following Ref. [220], which aid in imposing certain conditions on the BSs (see appendix A.1
for details). With this ansatz, in conjunction with regularity conditions at the origin and
asymptotic flatness conditions at infinity, the coupled system of Einstein-complex-Klein-
Gordon equations

Gµν = 8πTµν , ∇α∇αΦ + Φ∂|Φ|2V (|Φ|) = 0 (2.8)

[together with Eq. (A.3)] reduce to an elliptic boundary value problem. Given a sufficiently
accurate initial seed for a Newton-Raphson type relaxation scheme, the parameter space
is explored by marching along the respective parameters. We give more details on how we
numerically solve these equations to construct BS solutions in Appendix A.1.

In asymptotically flat, stationary spacetimes, the Komar mass integrated over a sphere
at spatial infinity, and the ADM mass of a spatial slice Σt coincide. Both can be written
as

M =

∫

D

drdθdϕ
√−g(2T tt − Tαα), (2.9)

where the integral is over the Lewis-Papapetrou spatial coordinate domain D. The ax-
isymmetry and regularity of Eq. (2.7) ensures that the total angular momentum of the
spacetime is due to the scalar field through

J = −
∫

D

drdθdϕ
√−gT tϕ. (2.10)

Finally, the global U(1) symmetry of the complex scalar theory gives rise to a conserved
U(1)-Noether charge Q that measures the particle number (i.e., the occupation number of
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the Bose-Einstein condensate2). The associated Noether current is

jµ = −i(Φ̄∂µΦ− Φ∂µΦ̄), ∇µj
µ = 0. (2.11)

Following immediately from noticing that T tϕ = mjt (in terms of the Noether current
Eq. (2.11)), the angular momentum of the system is “quantized” into integer increments of
the scalar charge, J = mQ, dictated by the azimuthal number m. Of course, this relation
is a purely classical constraint, but hints towards the quantum interpretation of the system
as a coherent condensate of a set of bosons.

At sufficiently large radial coordinate, the scalar BS solution exhibits an exponential
tail, φ ∼ exp(−βr), for some β > 0, making any notion of a radius for the star ambiguous.
In the non-rotating case, the radius of a BS is typically defined by the areal radius, R99, at
which 99% of the BS’s Komar mass Eq. (2.9) is contained within a coordinate 2-sphere of
radius R99. For rotating BSs, we introduce two distinct notions of size: (i) We define the
RK

99 as the circular radius3 r̃, for which M(r̃) = 0.99M(r̃ →∞), and (ii) we define RQ
99 as

the circular radius, for which Q(r̃) = 0.99Q(r̃ →∞). Note that, while M contains both the
scalar and the gravitational binding energy, Q measures only the scalar rest mass. Based
on this notion of size, the compactness of a rotating BS is given either by CK = M/RK

99

or CQ = M/RQ
99. For comparison, for a non-rotating BH CK

BH = 1/2, while for a typical
neutron star CK

NS ∼ 0.1. For any given BS, the difference between CQ and CK is indicative
of the ambiguity in defining its radius.

In Figure 2.2, we present these observables for several sets of families of solutions. The
Newtonian limit is approached as the gravitational binding energy, of order M/R, is small.
In that limit, the bosons’ frequency ω approaches µ, the marginally bound value, since
ω/µ− 1 ∼M/R.

2.2.3 Stability arguments

The stability of non-rotating BSs has been investigated by means of (i) analyzing the tem-
poral dependence of individual modes or more general linear perturbations [234, 168, 169],
(ii) applying catastrophe theory or thermodynamic stability to families of BS solutions
[230, 355, 222, 346, 327], and (iii) evolving the Einstein-Klein-Gordon system of equations
numerically to study the nonlinear stability of BSs [332, 44, 186, 365, 241]. The consensus
of these methods is that spherically symmetric BSs switch their radial stability properties

2When quantizing the complex scalar field theory, the charge Q counts the (anti)-particles of a given
state, making the relation manifest.

3The radius r̃ for which the proper length of a circle C in the equatorial plane is C = 2πr̃.
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whenever the BS’s mass reaches an extremum as a function of the central scalar field value
φ(0): dM/dφ(0) = 0. As such, non-rotating BSs have at least one stable branch reaching
from the non-relativistic (i.e., dilute) limit, to the first maximum of M . Depending on the
potential, non-rotating BSs can have a number of stable branches, analogous to the white
dwarf and neutron star branches of fluid stars.

However, the stability analysis of rotating BSs is considerably more complex4. Even
at the linear level, there is not expected to be a clean decoupling of the scalar and the
gravitational modes, making a linear stability analysis difficult. Based on turning point
arguments in Ref. [222] (see also Ref. [112] for a brief analysis of the stability of excited BSs
with the KKLS potential), the stability of rotating BSs should switch, analogous to non-
rotating BSs, at the extrema of M(ω). In Figure 2.2, we present the total mass, angular
momentum, and compactness of five different potentials and families of m = 1 fundamental
BSs. Applying the arguments above to these families of BSs, we see that mini BSs and those
in the repulsive scalar model Eq. (2.5) exhibit a single (potentially) stable branch reaching
from the non-relativistic limit, ω/µ . 1, to the frequency where M (or equivalently Q)
reaches the global maximum, while all solutions past that maximum are unstable. Similarly,
the family of BSs in the axionic, solitonic, and KKLS scalar models exhibit two distinct
potentially stable branches. Since all these potentials reduce to the mass term in the
non-relativistic limit, it is not surprising that BSs with these self-interactions are stable in
the non-relativistic limit based on the turning point arguments. However, these BSs have
another potentially stable branch in the relativistic (high-compactness) regime, between
the first local minimum of M and its global maximum, where ∂M/∂ω < 0.

However, as seen, for instance, in Refs. [346, 327], turning points are only a sufficient
condition for the existence of a thermodynamic instability, not a necessary condition. In
fact, a thermodynamic instability could appear without the presence of a turning point. On
top of this, thermodynamically unstable systems are not necessarily dynamically unstable:
While there exists a preferred solution, there may not be a path through the solutions
space that is dynamically achievable. Given these arguments, and the fact that some BSs
are dynamically unstable in a regime not indicated by turning point arguments [323], a
more detailed analysis of the dynamical nonlinear stability is necessary.

4Here we will not consider BSs with ergoregions, which would be subject to the ergoregion instabil-
ity [160].
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2.3 Results

In contrast to the stability analysis outlined in the last section, in Ref. [323], it was
discovered that m = 1 scalar mini BSs are subject to a NAI in a regime where they are
expected to be stable based on turning point arguments. In those cases, the evolution of the
perturbed stationary scalar BSs revealed exponentially growing non-axisymmetric modes
whose nonlinear evolution ultimately lead to the gravitational collapse of the BS to a BH. In
the following, expanding on the work presented in Ref. [323] (see also Ref. [129] for the same
instability present in dilute bosonic clouds), we study the nonlinear dynamical behavior of
a large class of m = 1 (and some m = 2) mini BSs and BSs in the models presented in 2.2.1.
To that end, we numerically evolve the Einstein-Klein-Gordon equations, Eq. (2.8), in 3D
from stationary BS initial data that is perturbed only by numerical truncation error (see
Appendix A.2 for details of the numerical evolution). In many cases, we find a similar NAI
and determine its growth rate as a function of the BS parameters. However, we identify
two distinct regions of the parameter space, where the NAI growth rate approaches zero.
Past this point, rotating scalar BSs appear to be stable under nonlinear evolution. This
is true for parts of the relativistic branch, identified in Sec. 2.2.3, as well as portions of
the non-relativistic branch. Furthermore, we show that the instability growth rate for BSs
in any scalar model, approaches zero (both in units of the BS mass and BS radius) in
the dilute/Newtonian limit, where the nonlinear interactions can be neglected, and all BSs
reduce to mini BSs.

In Sec. 2.3.1, we illustrate the linear characteristics of the NAI and explain how we
extract the identifying features. In Sec. 2.3.2, we present the growth rates and other
results on the unstable linear modes for a number of types of rotating BSs across the
parameter space of the BSs’ frequency and couplings, as well as explicitly demonstrate the
stable evolution of a few example cases. In Sec. 2.3.3, we describe the ultimate fate of the
unstable BSs, and finally, in Sec. 2.3.4, we examine several criteria for characterizing the
onset of the NAI in BSs.

2.3.1 Characterization of the linear non-axisymmetric instability

In the linear regime, the NAI manifests as an exponentially growing, non-axisymmetric
perturbation to both the scalar field and metric. We study this by evolving stationary
BSs solutions in time, letting numerical truncation error seed the instability at a small
amplitude that grows by several orders of magnitude before becoming nonlinear. This
allows us to characterize the NAI during this extended linear phase.
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Figure 2.3: The evolution of the global maxima gm = max |∂tgtt| (red dashed) and Φm =
max |∂t|Φ|2| (blue) [see Eq. (2.13)] for an axionic m = 1 BS with f = 5 × 10−2 and
ω/µ = 0.425. The NAI is evident as a linear instability beginning around t/M ≈ 1.75×103,
and enters the nonlinear regime at roughly t/M ≈ 2.75 × 103. The perturbations present
at early times originate from lower order interpolations at the mesh refinement boundaries
(see Appendix A.2 for details).

We will be interested in monitoring perturbations to quantities that are stationary in
the background BS solution, which has an axisymmetric and stationary spacetime. For
example, linear perturbations to the magnitude squared of the BS complex scalar field ΦBS

can be written as

|Φ|2 − |ΦBS|2 = e−iω̃teim̃ϕδΦ(r, θ), (2.12)

where ω̃ = ω̃R + iω̃I captures both the harmonic time dependence, ω̃R > 0, and possible
(un)stable dynamical behavior with ω̃I < 0 (> 0), while m̃ is the azimuthal mode number.
In the time domain setting, we are assuming5 that a single perturbative mode (the most
unstable) dominates the dynamics during the linear instability phase. We characterize
the NAI by its azimuthal mode number, complex frequency, as well as the radial and
polar dependency encoded in δΦ(r, θ). We can extract the growth rates ω̃I by fitting an
exponential to the global maxima

Φm := max
x∈Σt
|∂t|Φ|2| and gm := max

x∈Σt
|∂tgtt| (2.13)

of a given time slice Σt, which quantify the divergence from a stationary solution. In Figure
2.3, we depict the typical dynamical behavior of Φm and gm for an m = 1 scalar BS in the
linear regime.

5We confirm explicitly that the ϕ-dependence of the linear perturbation has large support over only a
single azimuthal mode m̃.
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Figure 2.4: The radial dependence of the unstable mode from a typical case, in particular
the axionic BS considered in Figure 2.3. We show ∆|Φ|2 [defined in Eq. (2.14)] in the
equatorial plane (parameterized by the Cartesian coordinates x and y), where we recall that
|Φ(t = 0)|2 is axisymmetric. This quantity is extracted at tNAI = 2.5×103M which, as can
be seen from Figure 2.3, is solidly in the linear instability regime. The depicted structure
rotates about the center of the equatorial plane at an angular frequency ω̃RM = 2.44×10−2,
while its magnitude grows exponentially with ω̃IM = 6.4 × 10−3. For reference, we also
add the radii RK

99 (dotted circle) and RQ
99 (dashed circle) defined in Sec. 2.2.2.

Furthermore, in Figure 2.4, we present an example of the difference in magnitude of
the scalar field, ∆|Φ|2, during the linear phase (at t = tNAI) of the NAI, compared to the
initial data (at t = 0), in the equatorial plane of the BS:

∆|Φ|2 := |Φ(t = 0)|2 − |Φ(t = tNAI)|2 (2.14)

From this, we can extract the azimuthal mode number m̃, the radial dependence, and the
harmonic part of the frequency ω̃R. The last-named is extracted by finding the radius
Rm where the perturbation is largest, maxx∈Σt ∆|Φ|2 = ∆|Φ(r = Rm, θ = π/2)|2; we then
fit cos(m̃ϕ + φ(t)) to ∆|Φ(Rm, θ = π/2, ϕ)|2 as a function of time during the exponential
growth phase of the mode. The essentially constant time derivative of the phase φ̇ gives
ω̃R for the unstable mode. As can be seen in Figure 2.4, the azimuthal mode number m̃ is
evident from ∆|Φ|2, and shows large support only over a single mode m̃. These modes could
equivalently be extracted from perturbations to the energy density, or other projections
of the stress-energy tensor, due to the global U(1) symmetry. In the following section,
we present the characteristics of the NAI extracted in this way from our time-domain
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Figure 2.5: The imaginary (top) and real (bottom) components of the frequency of the
m̃ = 2 unstable mode as a function of the BS frequency ω/µ for three families of solutions
shown in Figure 2.2. The axionic model has coupling f = 5× 10−2, the solitonic potential
has σ = 0.05, and the KKLS self-interactions are characterized by κ = 0.1. All three
families are sequences of m = 1 rotating BSs. The dashed curves are linear interpolations
considering only the two points with smallest ω/µ in each respective case. We also indicate
the upper bounds on the growth rate of the cases considered in Table 2.1 by down-arrows.

evolutions for several different families of rotating BSs.

2.3.2 Results: Instability growth rates

In the following, we focus on finding the complex frequency ω̃ for the unstable modes of
the NAI. For all the families of BSs presented in Figure 2.2, we investigate how ω̃I changes
with the BS frequency or coupling. For self-interactions with an attractive first correction,
we focus on the second potentially stable branch (based on turning point arguments, as
discussed in Sec. 2.2.3), while for mini BSs and those in models with repulsive potentials,
we focus on the only branch that is connected to the non-relativistic limit. In this limit,
which corresponds to ω → µ, the scalar field amplitude becomes small, and only the lowest-
order term in the potential, i.e. the mass term, will be important. Ultimately, we identify
critical points ωc/µ and λc/µ2 where ω̃I tends toward zero, i.e. the NAI shuts off.

In Figure 2.5, we show the real and imaginary frequency of the unstable mode for
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axionic, solitonic, and KKLS scalar rotating BSs with m = 1, as a function of the BS’s
frequency ω/µ < 0.875, for fixed coupling constants. All the cases shown exhibit an m̃ = 2
NAI with a positive ω̃I in the frequency ranges with ω/µ larger than the critical values:

ωcA/µ = 0.392, ωcS/µ = 0.493, ωcK/µ = 0.490. (2.15)

Here the subscripts stand for axionic, solitonic, and KKLS, respectively. From Figure 2.2,
we see that all the BSs shown in Figure 2.5 are on the second branch that is nominally
stable based on turning point arguments. Approaching these critical values from above,
we find that the instability rate ω̃I tends toward zero. Though it becomes more and more
computationally expensive to measure longer and longer instability timescales, ω̃I appears
to be approaching zero roughly linearly in ω. This suggests that below this critical value,
ω < ωc (and above the global maximum of the BS’s mass), there is a range of BS solutions
in the relativistic regime of the nonlinear interactions models we consider, that are free of
the NAI. Again, consulting Figure 2.2, we see that such solutions have large compactness.

We also study the stability of m = 1 BSs with the repulsive nonlinear scalar interactions
given by Eq. (2.5). We fix the BS frequency to ω/µ = 0.897 and vary the coupling constant
λ. In the no-coupling limit, i.e., for λ = 0, the ω/µ = 0.897 mini BS exhibits a m̃ = 2 NAI
with growth rate Mω̃I = 1.8 × 10−2. As shown in Figure 2.6, as λ increases, the m̃ = 2
NAI growth rate decreases (almost linearly), until it approaches zero at

λc/µ2 = 133.2. (2.16)

Note, however, that there exists a small interval of λ/µ2, for which the NAI is dominated
by a m̃ = 1 mode [which we ignore for the purposes of determining Eq. (2.16)]. This
result seems to indicate that the NAI is turned off for λ/µ2 > 133.2, suggesting that BSs
residing in this portion of the parameter space are stable. Finally, in contrast to the trend
in growth rates of the relativistic branch, the real part of the perturbation’s frequency
ω̃RM decreases together with ω̃IM to zero at λc/µ2, on this non-relativistic branch. When
comparing the importance of the mass term µ2|Φ|2 to the repulsive potential λ|Φ|4 we
see that the self-interactions dominate, i.e., λ|Φ|2/µ2 > 1 (around the maximum of the
magnitude of the scalar field inside the star), for ω/µ = 0.897 repulsive BSs with couplings
λ/µ2 ≥ 100. This difference grows, with increasing coupling, allowing for the possibility of
scalar BSs where the effect of the mass term is small in comparison to the quartic term,
except at the outer and inner edges of the star.

In Figure 2.6, we also show the NAI growth rates of mini BSs in the regime between
the global maximum of µM and the non-relativistic limit. The growth rates and harmonic
frequencies ω̃R both decrease approaching ω = µ. Fitting a generic quadratic ansatz to
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Figure 2.6: The top and bottom panel on the left show the complex frequency of the
unstable modes of a family of repulsive potential BSs with fixed ω/µ = 0.897, but varying
coupling constant λ. In all but one case, the unstable mode has the azimuthal number
m̃ = 2; for λ/µ2 = 110, the m̃ = 1 mode is the (most) unstable. The dashed curve is a
linear interpolation based on the two m̃ = 2 cases with largest λ/µ2 (ignoring the m̃ = 1
case). The top and bottom panel on the right show the corresponding complex frequencies
of the unstable modes of the family of mini BSs. We fit both a generic quadratic ansatz
with three degrees of freedom (red dashed) and a quadratic ansatz (gray dash-dotted),
which is fixed to ω̃R,I |ω=µ = 0, to the data. Finally, we indicate the upper bounds on the
growth rate of the case considered in Table 2.1 by down-arrows.

the ω̃IM and ω̃RM data, we find the respective critical boson frequencies where these two
quantities would go through zero:

ωcI,m/µ = 0.991, ωcR,m/µ = 0.990. (2.17)

We perform a resolution study on the mini BS with ω/µ = 0.97 (see Appendix A.2 for
details) to determine the numerical uncertainty of our results, and hence, understand the
stability of BSs with ω ≈ µ. The relative numerical uncertainty for the ω̃R,IM estimates is
≈ 3%. Comparing this with the extrapolated critical frequencies Eq. (2.17), implies that
our results are consistent with ω̃I and ω̃R both reaching zero at ω = µ. The second fit
presented in Figure 2.6, fixed to obey ω̃I = 0 as ω → µ, is consistent with the free fit to
within the numerical uncertainty. These results suggest that the timescales of the NAI
grow at least as τ̃ /M ∼ (1 − ω/µ)−1 approaching the non-relativistic limit. Note also,
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V (|Φ|) Coupl. ω/µ J/M2 CK CQ Tmax/M

Axionic f = 0.005 0.303 3.59 0.061 0.049 11.1× 103

Solitonic σ = 0.05 0.303 1.36 0.169 0.140 7.1× 103

KKLS κ = 0.1 0.382 0.91 0.333 0.290 3.7× 103

Repulsive λ/µ2 = 500 0.897 0.64 0.077 0.078 13.5× 103

Table 2.1: We study the dynamical evolution of a set of m = 1 BSs, one for each set of
scalar self-interactions that is expected to be stable based on the results obtain in Figure
2.5 and Figure 2.6. We evolve these cases up to Tmax/M and find no sign of an instability
arising.

when normalizing the frequencies by the BS radii, ω̃R,IR
K,Q
99 , these quantities still tend to

zero in the dilute limit (see Sec. 2.3.4 for a detailed discussion of this). We point out that
these results are consistent with Ref. [129]; there a diffuse scalar cloud was evolved to form
a rotating BS and then undergo the NAI. They find (notice a factor of two difference in
the definition of the |Φ|4-term), a decrease of the instability timescales for larger λ, which
is to be expected based on our results, because (a) the non-relativistic limit is unstable
independent of the scalar self-interactions, and (b) the repulsive potential becomes more
important the lower ω/µ. Therefore, the larger ω/µ, the larger the critical coupling λc/µ2.
In fact, one could conjecture: limω→µ λc →∞.

To further test all these results, we pick one BS solution for each potential out of the
regime conjectured to be free of the NAI (based on the trends in Figure 2.5 and Figure
2.6) and evolve it for many dynamical times. To that end, we evolve the cases summarized
in Table 2.1 up to times Tmax, while monitoring Φm [defined in Eq. (2.13)] over time. In
Sec. 2.3.1, we illustrated that tracking Φm captures the exponential growth during the
linear phase of the NAI. While the truncation error introduces perturbations, these slowly
decay away, and—in contrast to Figure 2.3—there is no sign of exponential growth for
the cases presented in Table 2.1. From this we conclude that any instability develops on
significantly longer timescales than the unstable cases with ω > ωc and λ > λc found
above. Based on these simulations, we place upper bounds on the growth rates of possible
instabilities arising in those BSs. To that end, we use the unstable cases presented in
Figure 2.5, and extrapolate the exponential growth backwards in time to t = 0 to estimate
the initial amplitude at which truncation error seeds the unstable mode. Assuming that
this amplitude is similar in the stars considered in Table 2.1, we extract approximate
upper bounds on the possible growth rates for an instability not to be evident during the
simulated time. We include these in Figure 2.5 and Figure 2.6.

Finally, we use nonlinear evolutions to explore the stability of individual m = 2 rotating
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V (|Φ|) Coupl. m ω/µ CK m̃ Mω̃I

KKLS κ = 0.1 2 0.6 0.26 4 7.4× 10−2

Axionic f = 0.1 2 0.9 0.08 2 1.1× 10−2

Solitonic σ = 0.05 2 0.4 0.14 2 5.3× 10−2

Solitonic σ = 0.05 2 0.9 0.03 4 8.5× 10−2

Solitonic σ = 0.1 1 0.8 0.08 2 1.3× 10−1

Solitonic σ = 0.1 1 0.4 0.28 – < 5.4× 10−3

Axionic f = 0.01 1 0.8 0.03 2 4.5× 10−2

Axionic f = 0.01 1 0.3 0.19 – < 5.3× 10−3

Liouville α = 0.1 1 0.9 0.07 2 1.0× 10−2

Liouville α = 0.05 1 0.9 0.07 – < 2.8× 10−3

Table 2.2: Properties of several additional rotating BSs are considered and their dynamical
behavior studied. m̃ refers to the azimuthal number of the dominant (i.e., most unstable)
non-axisymmetric mode. However, as pointed out in the text, for m = 2 BSs, the NAI is
composed of several competing modes simultaneously. We estimate upper bounds on the
growth rates for the cases, where no sign of an instability can be found. We describe in
the text how these upper bounds are obtained.

BSs in different scalar models, as well as m = 1 BSs in various models with different
couplings from the ones shown in Figure 2.5. The properties of the resulting evolutions are
summarized in Table 2.2. In our small set of m = 2 BSs, we did not find a solution that
does not develop a NAI. Note that, as will be discussed in the next section, the NAI for
the m = 2 BSs has non-negligible support over several azimuthal modes. Therefore, the m̃
values for m = 2 BSs in Table 2.2 should be understood as rough estimates.

The result for m = 1 BSs shown in Table 2.2 solidify the conclusions drawn above.
We show that even when changing the coupling constants in scalar models considered
in Figure 2.5, there is an unstable (high frequency) regime, but also a seemingly stable
(low frequency) regime, both in the solitonic and the axionic model. This shows that the
coupling parameters chosen in Figure 2.5 are not special. In addition to this, we also study
the stability of BSs in scalar models with a Liouville potential [328] [defined in Eq. (2.6)],
a non-perturbative extension of the repulsive self-interactions. Analogous to the family of
BSs in the repulsive model, studied in Figure 2.6, we fix the BS frequency to ω/µ = 0.9
and vary the coupling α. As seen from Table 2.2, there is a low-coupling range, for which
an m̃ = 2 NAI is present, but also a large coupling regime, where the NAI is quenched, and
no sign of an instability can be found. Therefore, the addition of a |Φ|4 term in the scalar
potential, is sufficient to stabilize rotating BS in a portion of the parameter space, and a
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potential that has additional higher order terms does not affect this qualitative behavior.

2.3.3 Results: Endstate of the NAI

In the previous section, we identified two distinct regimes, the relativistic and non-relativistic
branch, where the NAI is quenched and the stars appear stable when evolved nonlinearly.
In what follows, we explore the end state of the instability of m = 1 and m = 2 BSs both
in the relativistic regime and the non-relativistic regime.

In Ref. [323], it was found that a m = 1 mini BS with ω/µ = 0.83 was subject to
a m̃ = 2 NAI that lead to the formation of a BH. We study this family of mini BSs in
more detail, following the growth and end state of the instability for the cases shown in
Figure 2.6 with ω/µ ∈ {0.80, 0.86, 0.90, 0.95}. These stars undergo a m̃ = 2 NAI, form two
approximately non-rotating BSs that orbit around each other, and collapse to a binary BH
(for ω/µ ∈ {0.80, 0.86}; see panel a) in Figure 2.7), or merge into a single non-rotating BS
that then collapses to an isolated BH (for ω/µ = 0.90).

In the case of ω/µ = 0.80 mini BSs, the individual BSs collapse to BHs with negligible
spin, and subsequently merge into a single BH ≈ 60M later. Additionally, we find that
mini BSs with ω/µ = 0.95 undergo an m̃ = 2 NAI and settle to a (highly perturbed)
non-rotating BS (that does not collapse further), through the emission of scalar and gravi-
tational waves, with non-zero linear momentum (see panel b) in Figure 2.7). This suggests
that the contributions from the m̃ = 1 unstable mode is non-negligible in this case. Sim-
ilarly, repulsive self-interactions Eq. (2.5) with sufficiently large coupling can prevent the
BSs from collapsing to BHs. Instead, the m = 1 BSs in the repulsive model, considered in
Figure 2.6, undergoing the m̃ = 2 NAI, collapse to BHs for couplings up to λ/µ2 = 50. For
λ/µ2 ≥ 100, however, we find that the m̃ = 2 NAI eventually results in an approximately
spherically symmetric BS, while the instability is quenched at Eq. (2.16). In Figure 2.7,
we also depict the nonlinear evolution of a BS undergoing a m̃ = 1 NAI.

This results in a highly perturbed, approximately non-rotating BS, with significant lin-
ear momentum, radiating both scalar and gravitational waves outwards. We can conclude
that, the closer the BS is to the critical frequency/coupling, the less it seems to be prone
to forming a BH. Therefore, we can also conclude that the end state of the NAI for m = 1
BSs on the branch directly connected to the non-relativistic limit depends both on the
nonlinear scalar self-interactions, as well as the BS frequency. In contrast to this, we find a
consistent outcome for the final fate of m = 1 BSs undergoing the NAI on the relativistic
branch. All BSs presented in Figure 2.5 have the same final state, independent of the
potential or their frequency: after the m̃ = 2 NAI, two approximately non-rotating BSs
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a)

b)

c)

d)

t/M = 0 t/M = 341 t/M = 382 t/M = 410

t/M = 0 t/M = 3056 t/M = 8324 t/M = 9806

t/M = 0 t/M = 1142 t/M = 2000 t/M = 3631

t/M = 0 t/M = 2681 t/M = 2806 t/M = 2931

Figure 2.7: Series of snapshots (increasing in time from left to right) showing the evolution
of |Φ|2 in four different scenarios where a BS undergoes a NAI. These are representative of
the possible end states of all the unstable m = 1 BSs studied here. From top to bottom: a)
Evolution of an m = 1 mini BS with ω/µ = 0.8 that collapses to a binary BH (the regions
inside the apparent horizons are indicated in black). b) Snapshots of an ω/µ = 0.95 m = 1
mini BS resulting in a non-rotating BS with non-negligible linear momentum. c) The NAI
of an m = 1 rotating BS, in the repulsive model with λ/µ2 = 110, and ω/µ = 0.897
(corresponding to the m̃ = 1 case in Figure 2.6), yielding a non-rotating BS with large
linear momentum. d) Finally, the evolution of an m = 1 axionic BS with ω/µ = 0.425
where the NAI results in the fragmentation of the star into two equal-mass non-rotating
BSs.

are formed that are flung out into opposite directions at relativistic speeds. This behavior
is illustrated in panel d) of Figure 2.7.
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a)

b)

c)

t/M = 0 t/M = 100 t/M = 137 t/M = 254

t/M = 0 t/M = 389 t/M = 431 t/M = 545

t/M = 0 t/M = 1551 t/M = 1653 t/M = 1859

Figure 2.8: Analogous to Figure 2.7, here we present the dynamics of three m = 2 BSs
undergoing a NAI (their properties can be found in Table 2.2). From top to bottom: a)
The evolution of a rotating BS, in the KKLS model with κ = 0.1, and ω/µ = 0.6, results
in four non-rotating equal mass BSs that are flung out from the center of mass. b) The
fragmentation of a solitonic BS with σ = 0.05 and ω/µ = 0.4 into a large, oscillating,
approximately spherically symmetric BS at the center, and two non-rotating BSs flung out
at relativistic velocities. c) Finally, the NAI of an axionic BS with f = 0.1 and ω/µ = 0.9,
undergoing a complex fragmentation process resulting in a single non-rotating BS with
significant linear momentum.

We can conclude that the end state of the NAI in m = 1 BSs is clearly differentiated
in the two branches. The first non-relativistic branch exhibits quasi stable bound non-
stationary states after fragmentation of the original BS that either settle into a BH or to
a single non-rotating BS. The second, relativistic branch consistently results in two non-
rotating BSs that are flung out after fragmentation, independent of the frequency or the
character of the nonlinear scalar self-interactions.

In Figure 2.8, we show the evolution of m = 2 BSs undergoing a NAI. The dynamics of
the NAI in these stars is more complex, as more unstable non-axisymmetric modes are of
non-negligible size. While the linear phase is still mostly dominated by a single azimuthal
mode m̃ (see also Table 2.2), the nonlinear evolution of these m = 2 BSs is substantially

27



different from their m = 1 counterparts.

2.3.4 Results: Physical origin of the NAI

In this section, we investigate the possible physical mechanisms leading to stable regions
in the BS parameter space. We focus on the case of m = 1 BSs and distinguish between
stars on the relativistic branch and the non-relativistic branch, as the NAI of each has
fundamentally different properties.

First, let us consider the non-relativistic branch, i.e., mini BSs and stars in the repulsive
scalar model with frequencies between the non-relativistic limit ω/µ = 1 and the global
maximum of the BS’s mass. Since the solitonic, axionic, and KKLS scalar models reduce to
the mass term in the Newtonian limit (for those cases, the non-relativistic branch extends
from ω/µ = 1 to the local maximum of the BS’s mass), the following also applies to that
part of the BS parameter space in those models. From the previous section, we recall
that the NAI timescales of mini BSs tend to infinity in the Newtonian limit, while BSs
in the repulsive scalar model with fixed frequency ω/µ = 0.897 turn stable for coupling
parameters with λ > λc = 133.2µ2. In Ref. [129], it was suggested that the presence of
a co-rotation point (the radius at which angular velocity of the matter and the pattern
speed of the unstable modes are equal) inside the star, is driving the NAI. There it was
conjectured that, if the co-rotation point is outside the star (or it does not exist at all), then
the star is stable, while if such a point exists within the star’s radius, the star is unstable.
Here we find this conjecture to hold for BSs on the non-relativistic branch. (Though not
for the relativistic branch, as we shall discuss below.) The angular velocity Ω̃ is defined in
terms of the energy density ρ and angular momentum density Jµ, with respect to slices of
constant time with unit normal nµ and projector γµν = gµν + nµnν :

Ω̃ = Jϕ/ρ, with Ji = γµi n
νTµν , ρ = nµnνTµν . (2.18)

(Note that we are only measuring this quantity with respect to our stationary and ax-
isymmetric solutions.) We define the co-rotation radius to be the radius r = Rcor in the
equatorial plane of a rotating BS where Ω̃(Rcor) = ω̃R/m̃.

In Figure 2.9, we show that Rcor approaches the radius of mini BSs, as well as BSs in
the repulsive scalar model, as those families approach the critical frequency ωc and critical
coupling λc, respectively. This holds for either definition of the radius of the BS. In the
repulsive scalar model, this is not surprising, since we already saw in Sec. 2.3.2 that the
real part of the unstable mode’s frequency (and therefore, the pattern speed ω̃R/m̃), tends
to zero at λc. While the radius remains finite passing through λc, the decreasing pattern
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Figure 2.9: We plot the normalized difference Xc
i = (RK

i −Rcor)/R
K
i , i ∈ {99, 95}, between

the co-rotation point Rcor and the two radii RK
99 and RK

95 for the families of BSs considered
in Figure 2.6. The left panel shows the repulsive potential cases, and the right shows the
mini BS cases. The quantity RK

95 is defined, analogously to how RK
99 is in Sec. 2.2.2, as the

circular radius r = RK
95, where 95% of the energy resides in r < RK

95. In the right panel,
the solid and dashed lines are quadratic fits to the Xc

99 and Xc
95 data points.

speed is pushing Rcor → ∞, as λ → λc. In the mini BS case, however, this is not the
case. In the Newtonian limit, ω/µ → 1, the radius of the BS diverges RK

99 → ∞, while
simultaneously, ω̃R → 0. Therefore, there are two competing effects determining, whether
RK

99 < Rcor or RK
99 > Rcor. Despite this, the co-rotation point approaches the radius of

the BS from inside the star, while the NAI growth rate decreases, as can be deduced from
Figure 2.9. On top of this, we explicitly checked that limω→µ(ω̃R,IR

K
99) = 0. This suggests

that the presence of the co-rotation radius inside the star (independent of the notion of
radius) is related to the instability of BSs on the non-relativistic branch. Lastly, this also
seem to indicate that there is no finite regime with stable mini BSs in the Newtonian limit
between the values in Eq. (2.17) and ω/µ = 1.

Let us now discuss the relativistic branch, i.e., axionic, solitonic, and KKLS BSs with
frequencies between the local and the global maximum of M (see Figure 2.2): 0.3 . ω/µ .
0.9. Recall from the discussion in Sec. 2.3.3 that these families of BSs undergo a m̃ = 2 NAI
that results in two equal-mass non-rotating BSs being flung out from the center of mass,
for initial BS frequencies ωc < ω . 0.9µ. Fundamentally, the system posses three distinct
conserved quantities: the ADM mass M , the angular momentum J about the symmetry
axis, and the U(1)-charge Q. Given that the total number of bosons is conserved, we
neglect scalar radiation and assume that the final state of the instability of a m = 1 BS
with charge Qrot is a binary m = 0 BS of total charge 2Qsph = Qrot. From the difference
in the initial BS mass, and that of the putative binary, we can calculate the normalized
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Figure 2.10: Top panel: The ratio ωsph/ωrot of the boson frequency in m = 1 BSs with
charge Q to the frequency of m = 0 BSs with charge Q/2 in several scalar models. The
ratios pass through unity at ωcA/µ = 0.34, ωcS/µ = 0.45 and ωcK/µ = 0.58 for the axionic,
solitonic and KKLS models, respectively. For comparison, we indicate the critical frequen-
cies, in Eq. (2.15), by dashed vertical lines. Bottom left: The orbital energy EO, defined
in Eq. (2.19), of a m = 0 binary BS system with constituent charge Q/2 emerging from a
single m = 1 BS with charge Q. (Legend from top panel also applies here.) Bottom right:
Half the scalar charge Q/2 for m = 1 mini BSs (solid line), compared with the full charge
Q of m = 0 mini BSs (dashed line), as a function of their respective frequencies.

orbital energy

EO = (Mrot − 2Msph)/Mrot, (2.19)

as well as the frequency ωsph of BSs in the binary, as a function of initial boson frequency
ωrot. We show this in Figure 2.10. Based on the values shown there, the NAI fragments
should be significantly unbound: EO = 0.1 corresponds to a velocity of ≈ 0.4c at infinity.
All the unstable solutions on the relativistic branch that we find occur in the regime where
EO > 0, which is consistent with the fact that the instability gives rise to two fragments
which appear unbound. However, there is some part of the parameter space where EO > 0,
but we do not find the NAI.

The critical frequencies in Eq. (2.15), where the NAI instability approaches zero, seem
to roughly align with those, where ωsph = ωrot (see Figure 2.10). Due to the fragmentation,
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and ignoring radiation, the bosons can fall into lower frequency/energy states within the
stars (since there ωsph < ωrot), while for the regime where ωsph > ωrot, the bosons would
have to climb up into higher frequency states, if the rotating BSs were to fragment into two
non-rotating BSs. Hence, one can conjecture that the points, where ωsph = ωrot, indicate
the switching of the stability properties. However, there is a discrepancy between the crit-
ical frequencies where ωsph = ωrot in Figure 2.10, and those derived from the exponentially
growing modes in Eq. (2.15) (even when including the numerical uncertainty), indicating
that this criterion based on the relative frequency of the rotating and non-rotating equi-
librium BS solutions is at most approximate. Furthermore, this approximate argument
cannot be applied in the same way to the non-relativistic branch. Recall from Sec. 2.3.3
that the NAI in the case of mini BSs yields two orbiting pieces that either collapse to
BHs or form a single non-rotating BS. Assuming these two orbiting scalar field distribu-
tions are roughly stationary isolated spherically symmetric BSs, i.e., applying the above
argument, and consulting Figure 2.10 (bottom right), we notice two features. One is that
ωrot < ωsph for most of the parameter space, at least when comparing the turning-point
stable branches. This may be related to the fact that the BS fragments collapse in some
cases, which would be consistent with them being unstable spherical stars. The second
feature to note is that for m = 1 stars with ωrot/µ > 0.846, there exists no corresponding
non-rotating counterparts with half the U(1)-charge. Again, this may be related to the
fact that for large enough ωrot, the instability gives rise to a single BH or non-rotating BS.
Additionally, we observe no significant qualitative change in the dynamics of the systems
when moving across the point where both curves cross.

Finally, we note that the co-rotation argument discussed above in the context of non-
relativistic BSs does not apply to the relativistic branch. This is because the real part
of the unstable mode’s frequency remain non-zero on the entire relativistic branch (see
Figure 2.5), and hence the co-rotation point remains well inside the star for all unstable
BSs. Even when extrapolating ω̃RM deeper into the relativistic regime, the co-rotation
point seems to only exit the star at the global maximum of the BS’s mass.

2.4 Discussion and Conclusion

In this chapter, we study the stability of m = 1 and 2 BSs in various massive complex scalar
models minimally coupled to gravity. We do this by numerically evolving the Einstein-
Klein-Gordon system of equations, starting from stationary BS initial data. We consider
a number of different types of scalar interactions, and explore the parameter space of BS
solutions. We find that all m = 1 mini BSs are unstable to an exponentially-growing,
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non-axisymmetric mode with azimuthal number m̃ = 2, but that the growth rate scales as
ω̃I ∝ (1 − ω/µ) when ω → µ (see Figure 2.6). Since all nonlinear scalar self-interactions
reduce to the mass term for sufficiently small field values, this holds also for all m = 1 scalar
BS that reside sufficiently deep in the Newtonian limit. This may have some relevance for
rotating distributions of dark matter in models where they are composed of ultralight
bosons.

We find that adding a nonlinear scalar potential can quench the instability in a number
of cases, in the sense that the growth rate approaches zero as the BS frequency decreases to-
wards a critical value (see Figure 2.5 and Figure 2.6). Studying the conjecture in Ref. [129],
we relate the stability of the stars on the non-relativistic branch to the presence of the co-
rotation point inside the star, and show that, when the BSs become stable, the co-rotation
point moves outside of the star (independent of the notion of radius; see Figure 2.9). The
stability of solutions on the relativistic branch seems unrelated to the co-rotation, though
approximately related to the BS frequency; the final state of the instability is always an
equal-mass binary BS of non-rotating constituents, and we find around where the rotating
stars become stable, there is a transition from this final state having lower frequency to
having higher frequency (see Figure 2.10 for the details). It would be interesting for future
work to see if this argument could be sharpened. In Refs. [323, 129], it was argued that the
stability of BSs is related to the morphology of surfaces of constant scalar energy. Stars
with toroidal morphology were claimed to be unstable, while those with spherical surfaces
of constant energy, stable. Here we find m = 1 scalar BSs that have toroidal morphology,
but do not appear to be subject to this instability. Though we do not explore the param-
eter space of m = 2 BSs as thoroughly as the m = 1 case, we find all the examples we
consider to be linearly unstable.

We choose several examples of m = 1 BSs with nonlinear interactions that are past the
point where the NAI growth rate approaches zero, and evolve them for many dynamical
times (in some cases > 104M) and find no sign of a growing perturbation. These include
cases with high compactness, rapid rotation, and—in the case of the KKLS BS in Table
2.1—unstable and stable photon orbits, which can be used for future studies of mergers,
and compared to the mergers of black holes and neutron stars. Of course, our methods
can not definitely rule out instabilities of any kind, in particular instabilities that arise on
longer timescales than considered here. For example, in Ref. [216], it was conjectured that
stable photon orbits may give rise to nonlinear instability, based on the slow timescales
associated with the decay of linear perturbations. If such a nonlinear instability were to
exist, it would likely operate on much longer timescales than the NAI, and so may not be
evident here.

Another future direction is to see whether rotating scalar BSs could be formed dynam-
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ically, through a non-spinning binary BS merger, or through the collapse of a rotating
scalar cloud. The parameter space identified here could be used to choose favorable initial
conditions that may dynamically give rise to a stable rotating BS. It would also be inter-
esting to investigate scenarios where unstable rotating BS solutions may form, for example
from the migration of a stable star to a unstable part of the parameter space, or through
rapid collapse. In such cases, the nonlinear development of the instability will give rise to
distinct gravitational wave signatures. For example, here we find cases where the NAI of a
rotating BS gives rise to a binary BH which will subsequently merge, similar to the binary
BH formation found to arise in the collapse of supermassive stars [309].
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Chapter 3

Generic initial data for binary boson
stars

Executive summary: Binary boson stars can be used to model the nonlinear dynamics
and gravitational wave signals of merging ultracompact, but horizonless, objects. However,
doing so requires initial data satisfying the Hamiltonian and momentum constraints of
the Einstein equations, something that has not yet been addressed. In this chapter, we
construct constraint-satisfying initial data for a variety of binary boson star configurations.
We do this using the conformal thin-sandwich formulation of the constraint equations,
together with a specific choice for the matter terms appropriate for scalar fields. The
free data is chosen based upon a superposition of isolated boson star solutions, but with
several modifications designed to suppress the spurious oscillations in the stars that such an
approach can lead to. We show that the standard approach to reducing orbital eccentricity
can be applied to construct quasi-circular binary boson star initial data, reducing the
eccentricity of selected binaries to the ∼ 10−3 level. Using these methods, we construct
initial data for quasi-circular binaries with different mass-ratios and spins, including a
configuration where the spin is misaligned with the orbital angular momentum, and where
the dimensionless spins of the boson stars exceeds the Kerr bound. We evolve these to
produce the first such inspiral-merger-ringdown gravitational waveforms for constraint-
satisfying binary boson stars. Finally, we comment on how equilibrium equations for the
scalar matter could be used to improve the construction of binary initial data, analogous
to the approach used for quasi-equilibrium binary neutron stars.
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3.1 Introduction

The common practice in the literature, when constructing binary BS initial data, has
been so far to simply superpose two boosted star solutions. More recently, in Refs. [189,
153], a modified superposition trick was utilized to reduce (but not eliminate) violations
of the Hamiltonian and momentum constraints. While simple, superposed initial data
leads to large constraint violations even at moderate separations, effectively excluding,
for example, the quasi-circular binaries relevant to current GW observations of inspiral-
merger-ringdown.

In this chapter, we develop and implement methods for constructing constraint-satisfying
binary scalar BS initial data for a wide variety of configurations. (We also used these
methods recently in Ref. [340].) We solve the constraint equations in the conformal thin-
sandwich (CTS) formalism [373], using free data based on superposing stationary BS so-
lutions, similar to what was done in Ref. [147] for black hole and fluid stars. However,
considering scalar matter introduces several new complications which we address here, in-
cluding the choice of which matter degrees of freedom to fix, as well as how to minimize
spurious oscillations which may be induced in the BSs. Our approach is very flexible, and
we use it to construct binary BSs with different mass-ratios, spin magnitudes, and spin
orientations. We evolve several such binaries, including several cases where the BSs are
super-spinning (i.e., have dimensionless spins exceed the Kerr bound of unity), through
inspiral and merger. We do this both for physical interest, as well as to demonstrate that
we can construct quasi-circular binaries by adapting eccentricity reduction techniques.

The remainder of this chapter is organized as follows. We briefly review the relevant
physics of isolated stationary BSs in Sec. 2.2, and proceed in Sec. 3.2.1 to introduce our pro-
cedure to self-consistently solve the elliptic constraint equations in the CTS formalism [373]
numerically, given an initial guess for the binary, utilizing the elliptic solver introduced in
Ref. [147]. To that end, we identify the most suitable parameterization of the matter con-
tent of BSs in Sec. 3.2.2. We comment on possible equilibrium conditions for the scalar
matter of these stars in Sec. 3.2.3, though we do not implement such an approach in this
study. In Sec. 3.3.2, we analyze the quality of the constructed initial data and devise meth-
ods to reduce spurious oscillations in each star, as well as in the resulting gravitational
radiation, and lastly, in Sec. 3.3.3, we test eccentricity reduction schemes in the context
of binary BS inspirals and comment on their possible limitations. We consider binary
configurations in two different scalar potentials, with equal and unequal masses, as well as
non-spinning and spinning constituent stars with aligned and misaligned spins. Finally, in
Sec. 3.4, we analyze the dynamics of selected eccentricity-reduced binary configurations,
and present inspiral-merger-ringdown gravitational waveforms. We give details on the nu-
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merical evolution scheme and present convergence results in Appendix B.1, and provide
some further details on spurious high frequency components to the GWs and correcting
for center-of-mass motion of the BS binaries in Appendices B.2 and B.3, respectively.

3.2 Methodology

3.2.1 Conformal thin-sandwich formulation

Moving now to the formalism used to construct constraint satisfying binary BS initial
data, we introduce the CTS formulation of the Hamiltonian and momentum constraints
of the Einstein equations. To that end, the spacetime is foliated into a series of spacelike
hypersurfaces Σt, parameterized by the coordinate time t, with future-pointing unit-normal
to the hypersurface nµ. The tangent of lines of constant spatial coordinates is then

tµ = αnµ + βµ, (3.1)

with lapse function α and shift vector βµ, with nµβ
µ = 0. Furthermore, let γµν = gµν+nµnν

be the projector onto the hypersurface Σt, such that γij is the spatial metric induced on
Σt. Lastly, the extrinsic curvature of Σt,

Kij = −1

2
Lnγij, (3.2)

is defined by means of the Lie derivative Ln along the hypersurface normal. In this 3+1
language, the Hamiltonian and momentum constraints, i.e., the projections of the Einstein
equations along the hypersurface normal, are

(3)R +K2 +KijK
ij = 16πE,

DjK
ij −DiK = 8πpi,

(3.3)

with trace K = γijKij, Ricci scalar (3)R and derivative Di defined with respect to the
induced metric γij, and finally, the energy density E = nµnνT

µν and momentum density
pi = −γiµnνT µν of the matter content of the space in the Eulerian frame.

The CTS formulation [373] of the Hamiltonian and momentum constraints (3.3) relies
on relating the constraint satisfying metric components γij to a freely specifiable conformal
metric γ̃ij as

γij = Ψ4γ̃ij, (3.4)
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with conformal factor Ψ. Furthermore, the traceless part of the extrinsic curvature Aij is
conformally decomposed as Aij = Ψ−10Âij with

Âij =
1

2α̃

[
(L̃β)ij + ∂tγ̃

ij
]
, (3.5)

in terms of the conformal Killing form (L̃β)ij = D̃iβj + D̃jβi−2γ̃ijD̃kβ
k/3. The conformal

lapse and the time-derivative of the conformal metric are α̃ = Ψ−6α and ∂tγ̃
ij = Ψ4(∂tγ

ij−
γijγkl∂tγ

kl/3), respectively. Utilizing this decomposition, the metric constraints (3.3) are
cast into the CTS equations

D̃iD̃
iΨ− R̃

8
Ψ +

ÂijÂ
ij

8
Ψ−7 − K2

12
Ψ5 =− 2πΨ5E,

D̃jÂ
ij − 2

3
Ψ6D̃iK = 8πΨ10pi.

(3.6)

The geometric free data (i.e., those metric variables that need to be specified) are comprised
of the metric γ̃ij and its coordinate time derivative ∂tγ̃

ij, as well as the trace K of the
extrinsic curvature and the lapse function α̃. This formulation is supplemented by a choice
of energy and momentum densities, E and pi, of the complex scalar matter, as well as the
corresponding scalar free data. This will be discussed in detail in the next section.

To specify the metric free data, we proceed as follows. First, we solve for stationary
isolated BSs in Lewis-Papapetrou coordinates, as outlined in Sec. 2.2. These solutions are
subsequently transformed to Cartesian coordinates1 and boosted using initial coordinate
velocities vi(A), where A ∈ {1, 2} labels each star in the binary, and placed at coordinate

positions zi(A). Therefore, for each star we obtain the set of variables γ
(A)
ij , ∂tγ

(A)
ij , α(A),

and βi(A) (for both stars in Cartesian-type coordinates). For all binary configurations

presented in this chapter, zi(A) and vi(A) are chosen such that the initial center-of-mass
location coincides with the origin of the numerical grid, and the initial linear momentum
of the center of mass vanishes (at the Newtonian level); limitations of this approach are
discussed in Appendix B.3. These two solutions are then superposed as

γsup
ij = ηij + f(2)

[
γ

(1)
ij − ηij

]
+ f(1)

[
γ

(2)
ij − ηij

]
,

∂tγ
sup
ij = f(2)∂tγ

(1)
ij + f(1)∂tγ

(2)
ij ,

αsup = 1 + f(2)

[
α(1) − 1

]
+ f(1)

[
α(2) − 1

]
,

βisup = f(2)β
i
(1) + f(1)β

i
(2),

(3.7)

1We transform from Lewis-Papapetrou to Cartesian coordinates by applying the usual flat relations
between spherical and Cartesian coordinates.
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where ηij = δij is the flat 3-metric, and f(A) is an attenuation function, which we introduce
here for convenience and discuss in detail in Sec. 3.3.2. For now, we simply point out that
the choice f(A) ≡ 1 corresponds to a plain superposition of the isolated stars. As discussed
in Ref. [147], the metric free data is then obtained from

γ̃ij = γsup
ij ,

∂tγ̃
ij =− γ̃ikγ̃jl

(
∂tγ

sup
kl −

1

3
γ̃klγ̃

mn∂tγ
sup
mn

)
,

α̃ = αsup,

K =
1

2α̃

[
2∂iβ

i
sup + γ̃ij∂tγ̃

ij + γ̃ijβksup∂kγ̃ij
]
.

(3.8)

The CTS equations admit solutions provided appropriate boundary conditions are spec-
ified. In the context of binary BSs, i.e., asymptotically flat spacetimes, we require that

lim
|x|→∞

Ψ = 1, lim
|x|→∞

βi = βisup|∞, (3.9)

where βisup|∞ is the shift of the free data at large distances. With these boundary condi-
tions, we solve the CTS equations numerically using a multigrid scheme with fixed mesh
refinement (further details can be found in Ref. [147]). In the context of axisymmetry,
we employ a generalized Cartoon method that provides derivatives about the axis of sym-
metry by means of a the axisymmetric Killing field, allowing also for harmonic azimuthal
dependencies in the scalar sector.

3.2.2 Binary boson star sources

So far, we have left the precise parameterization of the scalar matter sourcing the spacetime,
E and pi, unspecified. In principle, various choices of energy and momentum densities mea-
sured by an Eulerian observer, are possible for time-dependent complex scalar field matter.
However, we find the precise choice to be crucial to achieve convergence of our numerical
implementation. Therefore, in the following we outline possible matter source parameteri-
zations, and especially, highlight the method we found to robustly yield consistent binary
BS initial data in any considered context.

We begin by introducing the necessary projections of the nonlinear complex scalar
energy-momentum tensor with respect to the foliation introduced in the previous section.
The latter is readily obtained from (2.1) in covariant form:

Tµν = 2∂(µΦ̄∂ν)Φ− gµν
[
gαβ∂(αΦ̄∂β)Φ + V (|Φ|)

]
. (3.10)
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For convenience, we define the conjugate momentum of the complex field with respect to
a spatial slice as

η := LnΦ = nα∂αΦ =
1

α
(∂tΦ− βiDiΦ). (3.11)

With this, the scalar energy-momentum tensor can be written in the Eulerian frame as

E = nαnβT
αβ = ηη̄ +DiΦDiΦ̄ + V (|Φ|)

pi =− γiαnβTαβ = −ηDiΦ̄− η̄DiΦ

Sij = γiαγ
j
βT

αβ = 2D(iΦDj)Φ̄

+ γij
[
ηη̄ −DkΦD

kΦ̄− V (|Φ|)
]
.

(3.12)

Starting from these expressions, we discuss possible approaches to parameterize the scalar
matter, as well as the associated choices of scalar free data accompanying the metric free
data (3.8). To that end, and before presenting the source parameterization that we found
to work for any type of binary BS configuration, it is instructive to consider two other
approaches that, while natural, exhibit fundamental issues.

Fixed energy and momentum densities

In the context of binary neutron star initial data, it is natural to choose the conformal
Eulerian energy Ẽ and momentum densities p̃i as free data for the CTS system of equations
(3.6). The corresponding physical momentum density pi is typically chosen to be pi =
Ψ−10p̃i. One choice for the conformal scaling of the energy is E = Ψ−8Ẽ, which is motivated
by uniqueness arguments and the preservation of the dominant energy condition (i.e., if
the free data satisfies Ẽ ≥

√
γ̃ij p̃ip̃j so does the constraint satisfying initial data). In the

case of fluid stars, the initial physical pressure P and density ρ are recovered by means
of an algebraic relation between E, pi, P , and ρ derived from the expression for the fluid
energy-momentum tensor combined with the fluid equation of state. This provides a means
to reconstruct the constraint satisfying fluid variable initial conditions directly from the
free data and constrained data.

A complex scalar field, on the other hand, has kinetic and gradient energy, in addition
to potential energy. The energy therefore depends on spatial gradients DiΦ and time-
derivatives ∂tΦ of the scalar field, as can be seen in (3.12). Therefore, unlike in the binary
neutron star scenario, the relation between the physical energy and momentum densities,
and the matter field Φ, is not purely algebraic, but rather of differential form. This renders

39



the reconstruction of the scalar field initial data Φ and Φ̇ (or equivalently Φ and η) from
the constraint satisfying energy and momentum densities non-trivial.

Irrespective of these shortcomings, we test this choice of matter source variables with
a set of single isolated non-spinning and spinning BSs. The metric free data is constructed
following the discussion in Sec. 3.2.1 (setting γ

(2)
ij = 0 etc.), while the scalar sources Ẽ and

p̃i are determined from (3.12). The CTS equations are then numerically solved iteratively
as outlined above. We succeeded in recovering isolated, boosted, non-spinning and spinning
BSs utilizing this approach, i.e., the elliptic CTS solver removed truncation error of the
isolated solution to the precision allowed by the resolution of the discretization of the CTS
equations. This shows that, within our numerical setup, solutions to isolated stars are in
fact local attractors in the space of solutions using this scalar matter parameterization.

Fixed scalar initial data

In order to circumvent the issue discussed in the previous section, i.e., instead of fixing
the energy and momentum densities directly, one could provide the scalar field initial data
itself—Φ and Φ̇—as free data to the CTS equations. This makes the reconstruction of the
scalar field trivial, ensuring that the metric and scalar initial data consistently solve the
Hamiltonian and momentum constraints. To that end, we rewrite (3.12) in terms of the
scalar fields Φ and Φ̇, leading to

E =
Ψ−12

α̃2
|Φ̇− βi∂iΦ|2 + Ψ−4D̃iΦ̄D̃iΦ + V (|Φ|),

pi =− Ψ−10

α̃2

(
(Φ̇− βi∂iΦ)D̃iΦ̄ + ( ˙̄Φ− βi∂iΦ̄)D̃iΦ

) (3.13)

in terms of the conformal variables. The different scaling of the kinetic, gradient, and
potential energies with conformal factor Ψ, as well as the dependencies on the shift vector
βi indicate that this approaches differs from providing E and pi as free data by more than
a simple Ψ-rescaling.

We tested the above choice of sources within our numerical setup, similarly to our tests
of the formulation presented in Sec. 3.2.2. We found robust convergence of the numerical
schemes in the case of isolated boosted non-spinning BSs. However, we were unable to
recover an isolated stationary rotating BS solution using (3.13) in the CTS equations.
Despite the CTS equation residuals converging to zero at the expected order before the first
iteration, the solution of the elliptic solver moves away from the true solution exponentially
quickly with each iteration. This indicates that rotating BSs are not attractors in the space
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of solutions when using (3.13) and our numerical framework, or suggests a break-down
in the uniqueness of this solution for the given free and boundary data. Note, tests of
uniqueness based on the maximum principle (see, e.g., Ref. [175]) are not applicable in
this case, since the momentum constraint is not trivially satisfied by stationary rotating
BS solutions2.

Fixed scalar kinetic energy

We turn now to the choice of scalar matter free data that we found to robustly lead to
constraint satisfying binary BS metric and scalar field initial data. Similar choices of free
data were considered recently in cosmological contexts in Refs. [38, 115]. Here, instead of
setting the scalar initial data {Φ, Φ̇} as free data for the CTS equations, we replace Φ̇ by
the scalar field’s conformal conjugate momentum η̃ = Ψ6η as free data. With this, and
in terms of the above conformal decomposition, the energy and momentum densities turn
into

E = Ψ−12η̃ ¯̃η + Ψ−4D̃iΦD̃iΦ̄ + V (|Φ|),
pi = −Ψ−10(η̃D̃iΦ̄ + ¯̃ηD̃iΦ).

(3.14)

The scalar data satisfying the constraint equations can then be recovered via the algebraic
relation

Φ̇ = α̃η̃ + βi∂iΦ, (3.15)

where β is the solution to the vector CTS equation provided the free data {Φ, η̃}; notice
αη = α̃η̃. For completeness, we include here also the expressions (3.14) in terms of ΦR =
(Φ + Φ̄)/2, and ΦI = (Φ − Φ̄)/(2i), as these are the variables used in our numerical
implementation of the elliptic CTS solver, as well as the hyperbolic evolution scheme:

E =
[
Ψ−12η̃2

R + Ψ−4D̃iΦRD̃
iΦR + (R↔ I)

]

+ V (Φ2
R + Φ2

I),

pi =− 2Ψ−10
[
η̃RD̃

iΦR + (R↔ I)
]
.

(3.16)

2Even if the maximum principle could be applied in this case, perturbations ε away from a solution
Ψ0 to the Hamiltonian constraint follow to linear order the equation D̃iD̃

iε = Γε, with Γ = R̃/2 −
14πΨ−8

0 α̃−2|Φ̇− βi∂iΦ|2 + . . . , where we ignored all positive-definite terms. Hence, non-vanishing kinetic
energy and momentum densities pi, present even in isolated rotating BSs, may result in violations of the
maximum principle, i.e., in Γ < 0.
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We found this matter source parameterization to robustly recover any kind of single BS
solution in those tests outlined in Sec. 3.2.2. Given this parameterization passes these
tests, we are now able to move to binary BS. To that end, we construct the scalar free
data in a similar fashion to the superposed metric free data presented in (3.7). First,
the scalar fields Φ(A) of each star are boosted with the same boost as the metric, then
the conjugate momenta η̃(A) are determined3, and finally, the variables are superposed to
obtain the scalar free data as follows:

Φsup = f̂(2)Φ
(1) + f̂(1)Φ

(2),

η̃sup = f̂(2)η̃
(1) + f̂(1)η̃

(2).
(3.17)

Here f̂(A) are attenuation functions (directly analogous to f(A), defined in Sec. 3.2.1), which

we discuss in detail below and simply note here that f̂(A) = 1 corresponds to a simple
superposition of the two star’s scalar field variables. Notice, while the constraint equations
are invariant under a global phase shift Φ → Φeiα, the source functions (3.14) are not
invariant under the phase of a single constituent of a binary, e.g., Φ(1) → Φ(1)eiα.

3.2.3 Scalar matter equilibrium

We focused so far on finding a scalar matter parameterization that robustly yields con-
straint satisfying binary BS initial data. Since no assumptions on the stars’ trajectories,
spin orientations, or mass-ratio were built into the formalism, this approach is very flex-
ible. However, as we show in Sec. 3.3, the simple construction of the free data described
above results in stars with large internal oscillations and ejected scalar matter. In the case
of binary neutron stars, various methods have been introduced to alleviate these issues
by explicitly equilibriating the fluid and metric degrees of freedom [71, 337, 358]. These
approaches are based on assuming the existence of a helical Killing field `µ, which provides
a notion of equilibrium not just for the metric, i.e., L`gµν = 0, but also for the matter
variables. In the case of binary neutron stars, combining the conservation of rest mass
density, the conservation of the fluid’s energy-momentum, and matter equilibrium with
respect to `µ, results in an elliptic equation for the equilibriated initial velocity of the fluid.
In the following, we apply these arguments qualitatively to the case of scalar field matter
and outline approaches to equilibriating the scalar matter. However, as we are not test-
ing these formalisms here explicitly, this is to be understood as a first step guiding more
thorough future analyses.

3Recall, the scalar field has a non-trivial time-dependence [see also (4.1)], so that we first boost the
vector ∂µΦ, and then determine its conjugate momentum in the boosted frame.
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To that end, we assume the existence of a helical Killing field `µ, such that `µ = αnµ +
Ṽ µ. In the asymptotically inertial frame, the spatial velocity takes the form Ṽ µ = βµ+Ω̃mµ,
where mµ is spacelike generating the azimuthal direction and Ω̃ is the orbital period of the
helical field `µ. On the other hand, in the co-rotating frame, the Killing field `µ → tµ,
such that Ṽ µ → βµ (for a discussion on the subtleties associated with this choice, see, e.g.,
Ref. [176]). From the perspective of the observer associated with nµ, the Noether-current,
decomposes as

jµ = ρnµ + Jµ, (3.18)

ρ =− nµjµ = i(Φ̄η − Φη̄), (3.19)

with local boson number density ρ, and spatial current

Jµ = −i(Φ̄DµΦ− ΦDµΦ̄). (3.20)

In direct analogy to the rest mass conservation equation for fluids, the global U(1) sym-
metry of the scalar theory implies the boson number conservation [see (2.11)]. With this
above decomposition of the current, the conservation law (2.11) reduces to

Lnρ = ρK − 1

α
Di(αJ

i). (3.21)

Correspondingly, the evolution equation for the scalar field—the Klein-Gordon equation—
is readily obtained from (2.1):

[
∇µ∇µ − ∂|Φ|2V (|Φ|)

]
Φ = 0. (3.22)

Using the foliation defined by nµ, the Klein-Gordon equation takes the form

Lnη =
1

α
Di(αD

iΦ) +Kη − Φ∂|Φ|2V (|Φ|), (3.23)

and similarly for the conjugate equation. To proceed, a series of equilibrium conditions,
utilizing the helical Killing vector, must be imposed on the matter variables.

Contrary to the matter variables relevant for fluid stars, the scalar matter making up
BSs is not time-independent. To understand possible equilibrium conditions, recall that
the scalar field ansatz (4.1), with η ∼ i(ω−mΩ/r)Φ, contains a harmonic time-dependence
of the scalar variables due to the linear time-dependence of the scalar phase. Therefore,
here we explore how the ansatz underlying the isolated BS solution, i.e.,

L`Φ = iω̃Φ, (3.24)
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may generalize to a binary system. To that end, we specialize to the co-rotating frame for
the remainder of this section. This implies that L`α = 0 and L`βµ = 0, which together
with (3.24) imply that L`η = iω̃η. With these, the Klein-Gordon equation (3.23) reduces
to the complex equation

−βiDiη + iω̃η − αKη = Di(αD
iΦ)− αΦ∂|Φ|2V (|Φ|), (3.25)

where η = (iω̃Φ− βiDiΦ)/α in the co-rotation frame. This second-order elliptic equation
for Φ is directly analogous to the scalar equation obtained from plugging the metric and
scalar field ansatz of an isolated stationary BS [given in (2.7) and (4.1), respectively] into
the Klein-Gordon equation (3.22). Binary BS boundary conditions are lim|x|→∞Φ = 0.

In this approach, the frequency ω̃ must be chosen. Even in the equal-frequency regime,
we expect the binary’s frequency ω̃ to differ from the isolated star’s frequency ω1 = ω2 6= ω̃
due to the increase in binding energy; hence, the naive expectation is that ω̃ < ω1. The
frequency ω̃ could be iteratively adjusted to achieve a desired property for the binary
initial data (e.g. a value for the mass or scalar charge), or a new binary BS solution may
be found at fixed ω̃ (analogous to the case of an isolated BS). For unequal-mass binaries,
the binary’s frequency is spatially dependent since ω1 6= ω2. A simple choice is to construct
a differentiable ω̃ transitioning from a fraction of ω1 around the first star to the same (or
different) fraction of ω2 around the second star4.

The previous ansatz, based on assumption (3.24), requires specifying the binary fre-
quency ω̃. An alternative is to specify some profile for the scalar field (or conjugate
momentum) and then assume only the equilibrium conditions5 L`|η|2 = L`ρ = 0 [which
are implied by (3.24)]. Assuming these equilibrium conditions, the two equations (3.21)
and (3.23) reduce to

Di

[
α(Φ̄DiΦ− ΦDiΦ̄)

]
= −(V iDi + αK)(Φ̄η − Φη̄), (3.26)

as well as

η̄Di(αD
iΦ) + ηDi(αD

iΦ̄)

= −(V iDi + 2αK)|η|2 + α(η̄Φ + ηΦ̄)∂|Φ|2V (|Φ|), (3.27)

4Instead of making an ad-hoc choice for ω̃, the total charge of the binary may be kept fixed following
the approach introduced in Ref. [220] for isolated BSs. While this approach is convenient for isolated solu-
tions with spatially constant frequency, a generalization to unequal-frequency binary BSs with a spatially
dependent frequency may be challenging.

5Notice, these approaches are manifestly slice-dependent. Due to the scalar time-dependence, the
covariant equilibrium assumptions are L`[Φ̄Φ] = 0, and L`[Φ̄∂µΦ] = 0. This, in general, implies L`ρ 6= 0
in the co-rotating frame.

44



respectively. Notice, both equations are real. In the parameterization of Sec. 3.2.2, it is
natural to interpret these equations as elliptic equations for either η, η̄ or Φ, Φ̄ (keeping
the respective other fixed). Here, no choice of the binary’s frequency is required, since the
ω̃-dependence in (3.25) is canceled when adding (3.25) and its complex conjugate to arrive
at (3.27). Instead, the implicit assumption is that the free data provides a sufficiently
accurate profile for either the conjugate momenta or scalar field to equilibriate the binary
by adjusting the other using (3.26) and (3.27). In principle, either approach could be
applied to constructing spinning binary BS initial data, assuming one starts with free data
that is sufficiently close to the desired solution.

Ultimately, only the direct implementation of these approaches may test their applica-
bility in reducing spurious perturbations and equilibriating the matter in binary configu-
rations, which we leave to future work.

3.3 Quality of binary initial data

With the formalism in place to compute constraint satisfying binary initial data, we now
assess the quality of the constructed data for some specific examples. Note, we are not
equilibriating the scalar matter using the ansatz discussed in the previous section. To
that end, we compare the physical properties of the free data with those of the constraint-
satisfying initial data in Sec. 3.3.1. We proceed in Sec. 3.3.2 by addressing the spurious
excitation of oscillation modes insides the BSs of the initial data, which shows up in the
emitted GW signal, by using two prescriptions to systematically remove such artifacts.
Finally, in Sec. 3.3.3, we utilize the standard procedure for reducing orbital eccentricity
and discuss its limitations in the context of binary BSs.

3.3.1 Superposed free data

To assess the quality of the constructed initial data, we consider a series of binary BS
configurations. For now, the focus is entirely on configurations obtained with f(A) =

f̂(A) = 1, i.e., the case of superposed free data, as defined in Secs. 3.2.1 and 3.2.2. The
main properties of the considered configurations are summarized in Table 3.1. For binaries
B1,2,3, we analyze the impact of solving the constraint equations on the physical properties
of the resulting binary BS initial data as a function of coordinate separation. To that end,
in the top panels of Fig. 3.1, we compare the ADM masses M , charges Q, and angular
momenta J of the constraint-satisfying data to the corresponding quantities of the binary
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at infinite separation labeled M0 = M1 + M2 and Q0 = Q1 + Q2. The physical properties
of the initial data differ from the superposed configuration at infinite separation by up
to ∼ 10%; these differences roughly scale as ∼ 1/D0 with the coordinate separation D0

of the binary. Furthermore, in the bottom left panel of Fig. 3.1, we show how much the
conformal factor Ψ differs from unity. Generally, this difference is at most a few percent
for reasonable separations: max |Ψ− 1| . 0.02.

Since the scalar matter is not equilibriated, solving the constraint equations (3.3) in
this form with superposed free data leads to spurious oscillations in the constituents of
the binary. In the case of binary neutron stars, these artifacts are identified by monitoring
the central density of the stars during the subsequent evolution of the initial data. Here,
we proceed analogously by tracking the global maximum of the magnitude of the scalar
field max |Φ| throughout the first few oscillation periods T0 of excited modes in the stars.
Specifically, we focus on those oscillation modes of the normalized maximum on each time

Label Coupling m ω/µ Ci Si/M
2
i Setup α

B1 σ = 0.05 1 0.4 0.12 2.0 Axi. 0
B2 λ/µ2 = 103 0 0.9 0.08 0 Axi. 0
B3 σ = 0.05 1 0.3, 0.35 0.17, 0.14 1.37, 1.70 3D π

3

B4 λ/µ2 = 103 0 0.86, 0.9 0.12, 0.08 0 3D 0
B5 σ = 0.05 0 0.25 0.13 0 3D π

2

B6 σ = 0.05 1 0.3 0.17 1.37 Axi. −

Table 3.1: The properties of the isolated constituents of the binaries used throughout
the remainder of this chapter. The configurations with coupling λ are solutions in the
repulsive scalar model (2.5), while those with coupling σ are stars in the scalar theory
with the solitonic potential (2.2). Here, ω is the star’s frequency, m is the azimuthal
index, Ci is the compactness, and Si and Mi are its individual spin angular momentum
and mass, respectively. Binaries B1,2,5,6 consist of identical stars, whereas B3,4 are made
of two stars with different frequencies (and hence, masses, spins, etc.). The mass-ratio
of the last mentioned binaries are q = 1.43 and q = 1.13, respectively. We also consider
non-zero initial complex scalar phase offsets α (as defined at the end of Sec. 3.2.2) between
the two stars. In the axisymmetric setup, the stars are boosted by the Newtonian free-
fall velocity at the given coordinate separation, whereas in the 3D context, the stars are
initialized with quasi-circular orbital frequency and spins aligned with the orbital angular
momentum; note, however, we also consider a binary with the parameters of B3 with
misaligned spins in detail in Sec. 3.4.3.
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Figure 3.1: The properties of the constraint satisfying binary BS initial data as a function of
coordinate separation D0 of the stars. Here, M is the ADM mass, J the angular momentum
(defined with respect to the axisymmetric Killing field), and Q the initial charge of the
binary configurations with properties summarized in Table 3.1. These are compared with
the corresponding quantities at infinite separation of the binary (e.g., M0 = M1 +M2). The
amplitude of the spurious oscillations in the stars emerging during the evolution of these
binary initial data is defined in (3.28). Dotted lines indicate the ∝ 1/D0 fall-off matched
to the point with the largest separations.

slice φm(t) = max |Φ|t/max |Φ|t=0 and quantify the amplitude of these perturbations with

∆φm =
maxt∈[t0,t0+T0] φm(t)

mint∈[t0,t0+T0] φm(t)
− 1. (3.28)

In the case of binaries in the repulsive scalar model, measuring ∆φm with t0 = 0 suffices,
while for binary configurations in the solitonic scalar theory, we typically extract ∆φm
with t0 > 5T0 (once the binary settles into the dominant oscillation mode). We find the
maximum of the gauge-dependent U(1)-charge density to track these oscillations equally
well. In the bottom right panel of Fig. 3.1, we show ∆φm for different binary configurations
and initial separations. The amplitude of these oscillations increases with decreasing initial
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binary separation. At large separations, ∆φm → 0, indicating that the construction of
the initial data (without assuming matter equilibrium) excites these oscillation modes.
Notably, the magnitude of ∆φm is much smaller in the case of binaries in the solitonic
scalar model, compared with the repulsive scalar model. In the following section, we
analyze spurious oscillations of this kind in more detail, and propose and test methods to
help mitigate these effects.

3.3.2 Spurious Oscillations

We have seen that the naive choice for the metric and scalar free data, i.e., the superposed
free data, leads to potentially significant spurious oscillations in the individual stars in the
subsequent evolution of the initial data. To address this issue, it is instructive to consider
possible physical mechanisms unique to scalar BSs causing these artifacts. The fundamen-
tal feature rendering the fluid star and the BS cases distinct is that the microphysical scales
of the latter are macroscopic, leading to wave-like phenomena on scales of the star itself.
Specifically, the BS can be thought of as composed of a collection of bosons with Compton
wavelength λ ∼ 1/µ satisfying M/λ ∼ CR/λ ∼ O(1), since C ∼ O(0.1) in the relativistic
regimes relevant for this chapter. Therefore, there may be distinct processes active in the
context of binary BSs affecting the quality of the initial data.

Self-gravitating solitonic solutions such as BSs consist of a single coherent gravitation-
ally bound state of bosons with energy6 ω < µ. The marginally bound scenario, ω = µ,
separates the bound states from unbound and asymptotically free states with energies
ω > µ. Stationary isolated BSs are solutions with bosons of energy ω precisely in equi-
librium with the gravitational field. However, perturbations introduced by superposing
two stationary BSs and solving the Hamiltonian and momentum constraints based on such
non-equilibriated free data disrupts this balance. Perturbations may elevate some frac-
tion of the bound bosons of energy ω to (i) completely free states (dispersing away from
the binary), (ii) states that are gravitationally bound to the binary (as opposed to one
of the constituents); analogous to a wave dark matter halo with solitonic core (see, e.g.,
Ref. [204]), or (iii) states gravitationally bound to a single star, but with energy ω that is
not at equilibrium with the gravitational sector. All these processes are, in principle, able
to excite oscillation modes inside the star, as well as contaminate the GW signal at early
times in a numerical evolution. Note, non-linear scalar self-interactions may also disturb
equilibrium configurations. However, since since we mainly focus on high compact stars
with ω � µ, these effects are suppressed (see, e.g., Ref. [340]).

6Note, here and in the following, we use boson “energy” and “frequency” interchangeably, implicitly
setting ~ = 1.
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With these possible sources in mind, in the following we explore several prescriptions for
reducing spurious oscillations in binary BSs. We first outline methods commonly used in
the context of binary black hole and neutron star initial data and discuss their effectiveness
in the BS context, before introducing and validating several methods specific to BSs.

Modified superposition

We begin by returning to the largest spurious oscillations in the bottom right panel of
Fig. 3.1, i.e., those in the head-on collisions of non-rotating stars in the repulsive scalar
model. As we demonstrate below, some of these spurious oscillation artifacts can be re-
moved by choices of the attenuation functions f(A) and f̂(A), introduced in Secs. 3.2.1
and 3.2.2, respectively. In the case of binary black hole or neutron star initial data, it is
common practice to remove the metric variables of one star at the location of the other
(analogous to approaches introduced in Refs. [251, 250, 72]), achieved by non-trivial at-
tenuation functions f(A). This can reduce the effect of the superposition on the individual
stars. In order to remove the metric and scalar free data due to one of the stars at the
coordinate location of the other, we choose

f(1)(x) = 1− exp

[
−|x− z(2)|γ

σγ(1)

]
, (3.29)

and the corresponding (1)↔ (2), as well as scalar attenuation functions f̂(A) with associated
length scales σ̂(A). Here, z(2) is the initial coordinate position of the second star (as defined
in Sec. 3.2.1), whereas the length scales σ(A) and σ̂(A) set the size of the attenuation region
around each of the constituents of the binary. We consider γ = 2 and 4.

We find this approach to be effective in reducing spurious oscillations, as measured
by ∆φm, only for BS solutions in the repulsive scalar model (2.5). In fact, applying this
approach to stars in the solitonic models worsens the artificial oscillations, requiring a
different prescription to handle the latter, as described in detail in the next section. In the
left panels of Fig. 3.2, we show the time-dependence of the maximum of the scalar field
magnitude, as well as the dependence of the amplitude of the spurious oscillations on the
lengthscales associated with the attenuation function introduced in Eq. (3.29). As can be
seen from the figure, increasing the attenuation length scales (at fixed separation), decreases
the amplitude ∆φm. Around σ(A)/D0 ≈ 0.5, the spurious oscillations are minimal, and
increase in amplitude for σ(A)/D0 & 0.5. Therefore, we find that in all cases considered,
tuning the length scales relevant in (3.29) results in binary BS initial data with significantly
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Figure 3.2: We show the temporal evolution of the normalized maximum on each time slice
φm = max |Φ|/max |Φ|t=0 and amplitude of the perturbations ∆φm, defined in (3.28), for
selected binary BS configurations. In all cases shown here, the exponent γ, defined in (3.29),
is set to γ = 2. (left top) The behavior of the maximum φm during the evolution of the
binary B4 (see Table 3.1) with initial coordinate separation D0 = 20M0, constructed with
f(A) = f̂(A) = 1 (labeled “superposition”) contrasted with the case, where σ(A)/D0 = 0.52
and σ̂(A) = 0 (labeled “modified sup.”). (left bottom) The amplitude ∆φm of the spurious
oscillations as functions of the lengthscale σ̂. Cases indicated with “(g)” correspond to
only metric attenuation, σ̂(A) = 0 and σ̂ = σ(A), while for those labeled “(g+s)” both the
metric and scalar degrees of freedom are attenuated σ̂ = σ̂(A) = σ(A). The binary B2 has
initial coordinate separation D0 = 40M0. (top right) The behavior of the maximum φm
during the evolution of the binary B3 (see Table 3.1) with initial coordinate separation
D0 = 12M0 (constructed with f(A) = f̂(A) = 1) and rescaling the conformal kinetic energy
in (3.30) with p = 0 as well as p = −4. (bottom right) We show the amplitude ∆φm of
spurious oscillations emerging during the evolution of binaries B1,3 with initial coordinate
separations D0 = 40M0 and D0 = 12M0, respectively. For the latter, we were unable to
construct binary BS initial data with p < −4.

reduced spurious oscillations. Finally, considering γ = 4 (as opposed to γ = 2) results in
no qualitative difference to the behavior shown in left panels of Fig. 3.2.

Besides improving the binary BS initial data by removing spurious oscillations, this
modified superposition approach turns out to be necessary in the case of highly compact
binary inspirals at moderate separations within the repulsive scalar model (2.5). Specif-
ically, we focus on a binary BS with ω1 = ω2 = 0.86µ, at initial coordinate separation

50



0

1

∣ ∣ ∣r
M

0
Ψ

(2
,2

)
4

∣ ∣ ∣×
10

3

p = 0

p = −4

0 250 500 750 1000 1250
(t− r)/M0

0

10

20

φ
G

W
/(

2π
)

Figure 3.3: The GW amplitude (top) and phase (bottom) emitted by the (aligned-spin)
binary B3 with initial separation D0 = 12M0. The two curves correspond to the evolution
of initial data constructed using p = 0 or p = −4 in (3.30). Specifically, the GW phase φGW

is the complex phase of the Newman-Penrose scalar Ψ4, whereas the GW amplitude is the
magnitude of the projection of Ψ4 onto the (`,m) = (2, 2) mode of s = −2 spin-weighted
spherical harmonics on a coordinate sphere at radius r = 100M0. Note, the binary orbits
are eccentric with eccentricity e ≈ 0.1, resulting in modulations with period ≈ 250M0 as is
most striking in the top panel (eccentricity reduction is discussed separately in Sec. 3.3.3).

D0/M0 = 20 and quasi-circular boost velocities. For this, we find that superposed free
data, i.e., with f(A) = f̂(A) = 1, results in premature collapse of each individual star to
a black hole after ≈ 50M0. In contrast, with σ(A) = D0/2, the individual stars remain
stable throughout the inspiral of length ∼ O(103)M0 up to the point of contact. On the
other hand, in Ref. [340], we found the simple choice f(A) = f̂(A) = 1 to be sufficient to
successfully evolve the binary with ω1 = ω2 = 0.9µ in the same family of solutions; hence,
the attenuation is necessary for more relativistic BS solutions. Note, similar premature
collapse was observed in Ref. [187].

Conformally rescaled kinetic energy

As alluded to above, we find attenuating the metric and scalar free data to only be beneficial
in binary BSs in the repulsive scalar theory. For the solitonic case, we return to the notion
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of energy levels determined by the frequency ω of the scalar bound state. In the context
of the scalar variables, this frequency is set by Φ̇, which enters the kinetic energy ∼ |η|2
according to (3.11). For instance, for isolated BSs Φ̇ = iωΦ, and similarly η ∼ (ω−mΩ/r)Φ
(in the coordinates introduced in Sec. 2.2). To reduce the impact of the superposition on
the BSs, as discussed in Sec. 3.3.2, we modify the kinetic energy of the scalar field7. The
kinetic energy combines changes in the frequencies of the individual stars with changes in
the local linear and angular momentum due to the orbital motion and the star’s intrinsic
spin. As such, increasing or decreasing the kinetic energy locally self-consistently within
the CTS setup may help address spurious oscillations. To incorporate this in our initial
data construction scheme discussed in Sec. 3.2.2, we rescale the physical conjugate moment
η by an additional power p of the conformal factor:

η = Ψ−6−pη̃. (3.30)

In the right panel of Fig. 3.2, we illustrate the impact of the choice (3.30) for different p
on the spurious oscillations in the individual stars of two types of binaries in the solitonic
scalar model (in all binary BSs in the repulsive scalar model, we set p = 0). In the axisym-
metric binary labelled B1, we find that the amplitude of the spurious oscillations can be
minimized by adjusting the exponent p. In this case, a rescaling (3.30) with −4 < p < −3
minimizes the spurious oscillations measured by ∆φm. These oscillations can be addressed
also in the case of the inspiraling binary B3; however, our numerical implementation ro-
bustly relaxes into a solution to the constraint equations only for p ≥ −4. The oscillation
amplitude is still decreasing with decreasing p for p = −4, and this leaves a residual oscil-
lation amplitude roughly a factor of 5 smaller compared with the p = 0 initial data. While
the spurious oscillation amplitude of all binaries in the solitonic scalar model considered is
small, i.e., |∆φm| ∼ 10−3, there is a correlation between reducing these small artifacts and
removing a high-frequency contamination from the emitted gravitational waveform.

In Fig. 3.3, we show the GW amplitude and phase extracted from the binary evolution
of B3 constructed using (3.30) with p = 0. We contrast this with the signal extracted from
the same binary, but with initial data constructed using p = −4. Similar to the ampli-
tude of the spurious oscillations described above, the high-frequency and large amplitude
contamination of GWs at early times changes with the exponent p. As the period of the
high-frequency contamination matches the period of the spurious oscillations in Fig. 3.2, we
identify the latter as a source of the GW contamination. Therefore, the adjustment of the
kinetic energy by the conformal rescaling (3.30) aids in reducing GW contamination. How-
ever, as for the spurious oscillations, the trend of the magnitude of this contamination with

7Note, in principle, one could modify Φ̇ iteratively, even when working with the parameterization of
Sec. 3.2.2.
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decreasing exponents p < 0 suggests that if initial data with p < −4 could be constructed,
the contamination would be further inhibited. In this case, we find that the amplitude of
the contamination is reduced by roughly a factor of 2 compared with the canonical choice
p = 0. Additionally, the evolution of the GW phase shown in Fig. 3.3 indicates that in the
p = 0 case the amplitude is dominated by the high-frequency contamination, while in the
p = −4 case, the phase evolution is determined primarily by the binary orbit, as opposed
to spurious oscillations. Finally, the choice (3.30) with p < 0, i.e., adjusted kinetic energy
of the binary system, results in a shorter time-to-merger at fixed orbital parameters.

3.3.3 Eccentricity reduction

The flexibility of our approach to constructing the initial data allows us to, in principle, find
constraint satisfying binary BS data resulting in any orbital configuration. Of particular
interest in the case of compact binary inspirals are low-eccentricity orbits. Hence, in a last
step to improve the quality of our binary BS initial data, we turn to applying common
techniques to reduce the eccentricity of compact binary initial data to the binary BSs
constructed here. To that end, we first define a notion of the BS coordinate location
valid throughout the evolution, we then briefly review the eccentricity reduction methods
introduced in Refs. [295, 76, 266], and finally, we apply these methods to selected spinning
and non-spinning binary BSs.

To define the coordinate positions of the two BSs during a binary evolution, we employ
a two-step procedure: first, a rough estimate of the star’s position restricted to the initial
equatorial plane is obtained by finding the coordinate locations of the local maxima of |Φ|
for spherically symmetric stars, and local minima in the case of rotating BSs associated
with each star (i.e., the intersection of the star’s vortex lines and the equatorial plane). In
a second step, the center of scalar field magnitude within a coordinate sphere BA centered
on the previously determined locations of extrema enclosing star A,

zi(A)(t) =

∫

BA

d3x|Φ(t,x)|xi, (3.31)

is used as the coordinate position at the given coordinate time t8. The coordinate separation
d(t) of the binary is then simply d(t) = |z(1)(t)−z(2)(t)|. Note, the first step is sufficient for
stars in the repulsive scalar potential (2.5), as the locations of the extrema are less prone to
contamination by spurious oscillations within the stars. In the case of BSs in the solitonic

8Note, in the initial timeslice zi(A)(0) agrees with the coordinate positions zi(A) defined in Sec. 3.2.1 to
a large degree; hence, we neglect any potential difference between the two in the following.
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models, however, we find the second step to be crucial particularly for non-spinning stars,
as |Φ| is roughly constant inside each star. In the remainder of this chapter, we use (3.31)
to define the BS position.

The general procedure to reduce eccentricity, following Ref. [295], is to begin with a
set of binary initial data, evolve these for a sufficiently long time to be able to confidently
fit for the binary’s orbital parameters, and then compute a correction to the initial radial
velocity and orbital frequency to construct new initial data with lower eccentricity. This
process is repeated until the desired eccentricity is reached. Specifically, we fit for the
binary BS coordinate separation d(t) using

d̂(t) = A−1 + A0t+
A1

2
t2 +

B

ω
sin(ωt+ ϕ), (3.32)

and correspondingly for the binary’s radial velocity using the fit

v̂r(t) = A0 + A1t+B cos(ωt+ ϕ). (3.33)

Based on this parameterization, the initial orbital frequency Ω0 and initial radial velocity
vr are corrected by [295]

Ω0 → Ω0 +
Bω sin(ϕ)

2Ω0d0

,

vr → vr −B cos(ϕ),

(3.34)

at each eccentricity iteration step, where d0 = A−1
9. Working entirely in flat space, in

order to translate these orbital parameters to the initial coordinate positions zi(1), z
i
(2)

and velocities vi(1), v
i
(2) of the binary constituents, as defined in Sec. 3.2.1, we utilize the

Newtonian center-of-mass expressions

zi(1) = ri
M2

M0

, zi(2) = −riM1

M0

. (3.35)

Here, ri is the binary separation with vi = ṙi, and the corresponding velocities vi(1) and

vi(2) are given by the time derivatives of the above expressions. We decompose the center

of mass velocity vi into radial vr and tangential vt components as vi = vrn
i + vtλ

i, where
ni = ri/r and λi = ṅi. The initial tangential component of the center-of-mass velocity is
set by the initial orbital velocity as well as initial coordinate separation d0 using vt = Ω0d0.

9Note, in general d0 6= D0, as we show below explicitly.
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The constituents velocities are then reconstructed from vi utilizing the time derivative of
the expressions (3.35). In this context, the orbital eccentricity is defined to be

e =
B

ωd0

. (3.36)

The formulas (3.34) are based only on Newtonian gravity, with radiation reaction and
other general relativistic corrections assumed to be absorbed into the linear and quadratic
time dependence in (3.32); we note that BSs will also have scalar interactions that become
important during the late inspiral [340], particularly for stars with small compactness and
ω ≈ µ, which may introduce extra complications in performing eccentricity in this way at
small separations.

Applying this machinery to binary BSs, we find that spurious oscillations of the stars
and non-equilibriated scalar matter result in high-frequency oscillations of the coordinate
separation d(t), limiting the eccentricity reduction. Below eccentricities of e ∼ 10−2, the
fit v̂r(t) is too uncertain to confidently extract estimates for the subsequent iteration step.
Instead, in these cases, we resort to using (3.32) to determine the corrections (3.34). For
e . 10−3, the amplitude of the modulation of d due to residual eccentricity reaches the
amplitude of the oscillations in d introduced by these spurious oscillations. Therefore, even
the fit d̂(t) to the coordinate separation d becomes uncertain, and we terminate eccentricity
reduction at e & 10−3. Furthermore, it is, of course, crucial to minimize oscillations of the
stars using the methods discussed in Sec. 3.3.2, i.e., find the exponent p of (3.30) and
length scales {σ(A), σ̂(A)} in (3.29), before attempting to reduce the eccentricity. Especially
the choice of (3.30) alters the matter’s kinetic energy and linear momentum, and hence,
the orbital frequency and radial velocities.

In Fig. 3.4, we show the orbital parameters throughout the iterative reduction of the
orbital eccentricity for two example binaries. In the case of the spinning and unequal-
mass binary B3, the eccentricity decreases exponentially with the iteration step Ne down
to e ∼ 10−3, where the fitting approach of (3.32) becomes unreliable. In the case of the
non-spinning and equal-mass binary B5, however, the eccentricity decreases only slowly
with each iteration step. Consulting the top panel of Fig. 3.4, the first iteration step for B5

resulted in a positive radial velocity. While vr is a coordinate quantity, and hence, carries
limited physical meaning, in binary black hole and neutron star initial data constructions,
this is found to consistently satisfy vr < 0. Both may be due to fitting to the d(t) time series
before all spurious perturbations of the initial data have decayed away sufficiently (e.g.,
fits of the Ne = 1 iteration contained only roughly 3/2 orbits), beyond which we cannot
isolate a cause of the slow convergence of e for B5. Finally, in the case of the precessing
B3 (details can be found in Sec. 3.4.3), we perform only a single iteration step and find
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Figure 3.4: (top panel) The initial radial velocity component vr and orbital angular fre-
quency Ω0 of the binary BS initial data corresponding to B3 and B5 (see Table 3.1),
throughout the eccentricity reduction procedure, starting from iteration step 0. Here,
Ω∞ = (D3

0/M0)1/2. (bottom panel) The associated eccentricity, defined in (3.36), as a func-
tion of iteration step Ne. We only perform a single iteration step for the B3 binary with
misaligned spins (this case is discussed further in Sec. 3.4.3).

similar convergence behavior as for the aligned-spin binary B3. Note, in precessing cases
the spin-interactions (particularly for super-spinning compact objects as considered in B3)
induce physical oscillations of the binary separation beyond residual eccentricity (see, e.g.,
Ref. [86]), which we, however, have not observed here. Lastly, in Appendix B.3, we discuss
the linear motion of the center of mass away from the center of the numerical grid, and
how to iteratively reduce this artifact, while simultaneously reducing eccentricity.
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3.4 Binary evolutions

In this section, we illustrate our method for constructing binary BS initial data in the
context of head-on collisions and quasi-circular inspirals, including a precessing system. In
the case of head-on collisions, we demonstrate explicitly that equal-mass rotating binary
BSs exhibit solitonic behavior (resembling the dynamics found in Ref. [281]), bouncing off
each other when colliding along their spin axes, if the phase offset between the stars is
precisely π. Furthermore, we consider two eccentricity-reduced, quasi-circular inspiraling
binary BSs: one non-spinning equal-mass binary, and one super-spinning unequal-mass
configuration. We analyze their inspiral dynamics, show that non-trivial scalar interac-
tions result in strong deviations from the dynamics of binary black holes or neutron stars
(analogous to what was found in Ref. [340]), and characterize the GW strain. Finally, we
consider a super-spinning, precessing binary BS inspiral at moderately low eccentricity,
analyze the merger dynamics, and show the resulting gravitational waveform.

3.4.1 Head-on collisions

In this section, we explore the merger dynamics of two rotating BSs during a head-on col-
lision along their respective spin axes, focusing on the σ = 0.05 solitonic scalar model (2.2)
and binaries composed of m = 1 rotating BSs. It is important to note that, in this setting,
we evolve the binary BSs using a generalized Cartoon method, which explicitly assumes
the scalar fields azimuthal dependence follows Φ ∼ eimϕ, in addition to an axisymmetric
metric (see Appendix B.1 for details). As a result, any modes violating this condition will
not appear in the evolution. In particular, this implies (i) any non-axisymmetric instability
of the form found in Ref. [323] is suppressed, and (ii) the vortex structure of the solution
on the symmetry axis is conserved throughout the evolution.

We begin by considering the predictions of the remnant map introduced in Ref. [340]
for these head-on collisions. We do not repeat the details of the construction of the rem-
nant map here (which are found in Ref. [340]), and simply summarize the key features in
the context of the head-on collision of two m = 1 BSs. This map assumes U(1)-charge
conservation (Qrem = Q1 + Q2) during the merger of two BSs to predict the qualitative
and quantitative features of the merger remnant. In order to use the remnant map, one
must provide a plausible candidate family of remnants. Due to our evolution methods, any
binary composed of two m = 1 stars results in a remnant with m = 1 vortex along the
symmetry axis. Therefore, it is natural to consider that the remnant of the two rotating
BSs is another rotating BS of the same vortex index (unless the combined charge of the

57



binary surpasses the maximum charge of the family of m = 1 BSs in this scalar model,
in which case the remnant is likely a black hole). In our axisymmetric setup, any known
linear instability of the rotating BSs in the σ = 0.05 solitonic scalar model is suppressed,
implying that this condition allows the merger remnant to be a m = 1 BS. Hence, we can
map all properties of any given m = 1 binary BS, parameterized by their frequencies ω1

and ω2, into the properties of the resulting m = 1 BS assuming charge conservation. In
particular, in order to consider the kinematics of the merger—and whether this favors the
formation of a m = 1 BS remnant—we define the relative mass difference [340]

M =
M1 +M2 −Mrem

M1 +M2

. (3.37)

Here, M1 and M2 are the masses of the individual stars, while Mrem is the mass of the
rotating BS with charge Qrot = Q1 + Q2 obtained form the remnant map. If a binary
configuration has M > 0, then the formation of that m = 1 BS remnant of mass Mrem

is energetically favorable. In Fig. 3.5, we show the relative mass difference M across the
relevant binary BS parameter space. For all binary configurations shown, it is indeed
energetically favorable to form a m = 1 rotating BS remnant after merger. Hence, the
remnant map predicts the merger remnant to be a m = 1 rotating BS remnant. Note, if
the initial phase offset α between the stars is exactly α = π, then the remnant is not a
(parity-even) m = 1 rotating BS, but rather a double rotating m = 1 star (i.e., a single,
parity-odd rotating star), as we discuss in detail below.

To test this prediction, we perform a series of numerical evolutions of binary BSs in
the axisymmetric setting described above. The initial data is constructed as discussed in
the previous sections, where for simplicity, the conformal rescaling power in (3.30) is set
to p = 0, and no modification of the form give in (3.29) is applied. The initial velocities
are chosen based on the Newtonian free-fall velocity from rest at infinity, and the binary
separation is chosen to be D0 = 10M0 initially. Finally, here the phase offset α (defined at
the end of Sec. 3.2.2) between the phases of the rotating stars is set to vanish, α = 0. (We
consider scenarios varying the value of α below.) For each of the evolutions, we classify
the remnants as either BSs (m = 1 rotating BSs) or spinning black holes. In Fig. 3.5,
we show the binary configurations we numerically evolve, and indicate the remnant type.
First, in the case of equal-mass binaries, i.e., those with ω1 = ω2, the remnant is consistent
with the prediction of the remnant map, except for the case with ω1 = ω2 = 0.2µ. In this
case, and all other cases indicated as “BH” in Fig. 3.5, the merger product collapses to
a black hole during the nonlinear merger process. The fact that the threshold for black
hole formation is slightly lower than predicted by the remnant map is likely due to the
extra compression and kinetic energy due to the collision. This explicitly demonstrates
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Figure 3.5: The remnant properties of a m1 = m2 = 1 spinning binary BS head-on collision
(with frequencies ω1 and ω2) in the σ = 0.05 solitonic scalar model (2.2), assuming the
remnant is a m = 1 rotating BS and using the remnant map of Ref. [340] (i.e., assuming
U(1)-charge conservation to predict the remnants properties for each given binary config-
uration). The dimensionless angular momentum Jrem/M

2
rem and the associated remnant

compactness Crem are shown as contours. The mass ratio M is defined in (3.37). We
restrict to the ω2 > ω1 portion without loss of generality, and indicate the regions with
Qrem > Qmax, where Qmax is the maximum charge of the m = 1 family of BSs, in black.
Finally, we classify the merger remnants into black holes (“BH”) and m = 1 rotating BSs
(“BS”), and mark the binary that gave rise to the respective remnant with dots. [Notice,
the central (left) “BS” corresponds to binary B1 (B6), see Table 3.1.]

that the final remnant of the head-on collision of two rotating BSs along their mutual
vortex line results in another rotating BS of the same vortex number (or a black hole if the
individual stars are sufficiently compact). In Ref. [274], a similar analysis was performed in
the Newtonian limit dropping all symmetry assumptions. Since they find that the central
vortex line persists throughout the merger, their results are consistent with our findings
here, and suggest that the latter generalize to 3D if linear instabilities are absent in both
the merging BSs and the remnant BS.

Let us now return to considering head-on collisions of two m = 1 rotating binary BS
configurations while varying the initial phase offset α. We perform a series of evolutions of
the binary configuration B6 (with initial separation of D = 10M0 and Newtonian free-fall
velocities, as before), with initial phase offsets of α/π ∈ {1/4, 1/2, 3/4, 8/9, 1}. Notice,
the α = 0 case was found to result in a rotating m = 1 BS as indicated in Fig. 3.5. In
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resembles the parity-odd stationary double-BS solutions found in Refs. [221, 164].

Fig. 3.6, we show snapshots of the head-on collision of the binary with maximal phase
offset, i.e., α = π. As evident there, contrary to the expectation from the α = 0 scenario,
the two stars bounce off each other upon contact. After several bounces, the system settles
into a state of two spatially separated scalar distributions with a persistent phase offset
of π, as shown in the right panel of Fig. 3.6. The end state of this merger is plausibly
a stationary solution analogous to those found in Refs. [221, 164]. These are parity-odd
solutions resembling two rotating BSs, where gravitational attraction is balanced by scalar
interactions. Physically, this solitonic behavior resembles the dynamics during the head-on
collision of two non-spinning BSs with phase offset α = π reported in Ref. [281] (and
associated stationary solutions of Ref. [375]).

Moving to the cases with α/π 6= 1, we find that the remnant of the corresponding
head-on collision is always a single m = 1 rotating BS at late times. In the case of
α/π = 8/9, the system performs a single bounce upon collision, but then merges to a
perturbed rotating BS. This demonstrates that, similar to the head-on collision scenario of
two non-spinning stars, only the α = π configuration exhibits a final state different from a
m = 1 rotating BS. This, of course, limits the validity of the remnant map to those cases
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Figure 3.7: Trajectories and GWs from a quasi-circular binary BS mergers: an equal-mass,
non-spinning binary labelled B5 (The binary properties are summarized in Table 3.1.) We
show the BS trajectory in the orbital plane [defined according to (3.31)] throughout the
evolution up to the point of contact (left panel), the binary coordinate separation d as a
function of time (center panel), and the emitted (`,m) = (2, 2) s = −2-weighted spherical

harmonic component of the GW strain h
(2,2)
+ (right panel). In the left and center panels,

we indicate the initial time (round markers) and the time of contact (square markers). The
dimensionless spins, χ, of the binary constituents can be found in the bottom right corners
of the left panel. The legends in the center panels indicate the eccentricity reduction step
Ne and the rescaling exponent p used in (3.30). After eccentricity reduction, e ≈ 4× 10−3

initially. In the center panel, we also show the time derivative of the separation d in the
inset. Notice, the GW strain (right panel) contains residual high-frequency contamination
as discussed in Sec. 3.3.2; this contamination is shown in detail in Appendix B.2. At the
point of contact of the two stars, the GW frequency is roughly ωcM0 ≈ 0.1. For the
post-merger phase, we estimate the dominant frequency and exponential decay timescale
of h

(2,2)
+ to be ωpostM0 ≈ 0.23 and τpost/M0 ≈ 3× 102, respectively.

with α/π 6= 1; however, as this is an edge case (similar to two non-spinning stars with
phase-offset of α = π), the impact on the applicability of the remnant map even in these
head-on scenarios is minimal.

3.4.2 Quasi-circular binaries

We return now to the eccentricity-reduced binary configurations discussed in Sec. 3.3.3,
and provide further details on their orbital evolution as well as GW emission. In particular,
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we consider the equal-mass, non-spinning binary B5, and the aligned-spin super-spinning
binary B3 of mass-ratio q = 1.43 with details provided in Table 3.1. In both cases, we focus
mainly on the last eccentricity-reduction iteration step shown in Fig. 3.4 (i.e., Ne = 5
and Ne = 3 for the non-spinning and spinning binaries, respectively) with eccentricity
e = 4 × 10−3 in the case of B5 and e = 1.8 × 10−3 in case of the non-precessing binary
B3. In Fig. 3.7 and Fig. 3.8, we show the orbital trajectories, binary separations and radial
velocities, as well as the emitted GW strain for both configurations.

First, let us focus on the eccentricity reduced binary B5 (see Fig. 3.7). After initial
gauge dynamics (we utilize damped harmonic gauge and the generalized harmonic formu-
lation, see Appendix B.1 for details), the binary settles into a state with roughly 17% large
coordinate separation of d/M0 ≈ 14. As can be seen from the center panel of Fig. 3.7,
the time derivative ḋ of the coordinate separation exhibits large, high-frequency features
throughout the inspiral. These are likely a result of the residual low-amplitude perturba-
tions of each star; the relative amplitude of the oscillations in this case is at the ∆φm ∼ 10−3

level. Clearly, further eccentricity reduction cannot rely on a fit to ḋ, but even a fit to d
proves to be challenging at these eccentricities. Nonetheless, the inspiral dynamics follows
a quasi-circular trajectory up to the point of contact, at a coordinate separation of roughly
twice the star’s radii: d ≈ 2R. As the compactness of each star is C = 0.13, we expect
qualitative similarities to the inspiral of a binary neutron star. After the point of contact at
t/M0 = 855, the two non-spinning stars merge into another non-spinning star. As shown
in detail in Ref. [340], the binary B5 favors the formation of a m = 1 rotating remnant
BS on purely energetic grounds. However, it lacks sufficient total angular momentum,
and with a phase offset of α/π = 1/2, is not expected to form a rotating BS remnant,
but instead a non-rotating star, with the residual angular momentum shed in the form of
scalar and gravitational radiation. Hence, after merger, the system rings down towards a
single, non-spinning BS. This is reflected in the GW strain (right panel of Fig. 3.7), which
exhibits a near exponential decay in the post-merger phase with a rough decay timescale
of τpost/M0 = 3× 102 and a dominant ringdown frequency of ωpostM0 = 0.23. It should be
noted that, though not obvious from the figure, the GW strain shown in Fig. 3.7 and Figure
3.8 does contain some residual high-frequency GW contamination of the kind discussed in
detail in Sec. 3.3.2. This is made more apparent in Appendix B.2.

We now turn to the inspiral of the binary B3 shown in Fig. 3.8, which exhibits several
new features fundamentally different from either binary black hole or neutrons star coales-
cences. After the initial gauge dynamics, the system has a coordinate separation of roughly
d/M0 ≈ 14. Before t/M0 = 1475 (indicated in the figure with an x-marker), the binary
exhibits a smooth inspiral with decreasing separation. In the center panel of Fig. 3.8, we
compare the coordinate distance as functions of time to those cases with no eccentricity
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Figure 3.8: Same as in Figure 3.7 for binary B3. In the left and center panels, we also
indicate the time t/M0 = 1475 (x-marker) and show the subsequent in-plane star trajecto-
ries in the inset in the bottom left panel up to the point of contact, which is discussed in
the main text. For comparison, in the center panel, we also show two cases with different
values of p before eccentricity reduction (Ne = 0). After eccentricity reduction, the eccen-
tricity is e ≈ 1.8 × 10−3. At the point of contact of the two stars, the GW frequency is
roughly ωcM0 ≈ 0.1 also for B3. There is a slight drift of the center of mass that is barely
noticeable in bottom left panel corresponding to vxcom ≈ −1.2×10−4 (all other components
are . 10−5; see Appendix B.3 for a discussion).

reduction and no conformal kinetic energy rescaling power p. Between the Ne = 0 cases,
the binary with p = −4 conformally scaling for the scalar kinetic energy merges before the
otherwise identical binary with p = 0. After several iterations of eccentricity reduction
(Ne = 3), the merger occurs later. However, for t/M0 & 1475, the coordinate separation
d exhibits oscillations, which culminate in the two stars moving away from each other,
temporarily increasing the coordinate separation by approximately ∼ 10% to d/M0 > 10.
After this sudden repulsion, the stars begin to merge at t/M0 = 1700 (indicated by a
square marker in Fig. 3.8). In the inset of the left panel in Fig. 3.8, we show the in-plane
trajectories of both stars from t/M0 = 1475 to merger. Qualitatively, the sudden repulsion
of the two stars results in a sudden increase of orbital eccentricity for the last 3/2 orbits
before merger (e.g., the orbital trajectories self-intersect). This repulsive behavior is likely
due to strong scalar interactions between the two stars in the late stages of the inspiral.
This behavior was first observed in Ref. [340] during the late inspiral and merger of two
BSs in a scalar theory with repulsive scalar self-interactions. Despite the terminology, sys-
tems may exhibit repulsive behavior in both attractive and repulsive scalar models (see
e.g. Ref. [281]). These scalar interactions are exponentially suppressed by the separation of
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the binary BS and, hence, only become active in the late stages of the inspiral, depending
on the constituent stars’ compactnesses and frequencies. In contrast to the less relativis-
tic binaries considered in Ref. [340], the constituents of binary B3 are highly compact,
with scalar densities that rapidly decay away from the individual stars. As a result, the
scalar interactions increase in importance over the gravitational interaction only roughly
two orbits before the point of contact. At this stage, however, the strength of the scalar
interactions surpasses that of the gravity, likely resulting in the rapid increase of the coor-
dinate separation shown in the center and left panels of Fig. 3.8. This is a feature absent
in mergers of compact binaries composed of black holes and neutron stars, and may serve
as a smoking gun signature to distinguish BS binaries from such cases.

To understand the nonlinear merger dynamics of binary B3, recall that the initial phase
offset of this binary is α/π = 1/3 and that ω1 6= ω2 (see Table 3.1). This latter renders the
vortex structure of the binary time-dependent even at the linear level. Hence, a precise
prediction and understanding of the merger outcome using the remnant map of Ref. [340]
is challenging. However, the latter can still be utilized to qualitatively analyze the merger
process. Due to the time-dependent scalar phase, there is no fixed vortex at the center of
mass. Thus, the vortex structure does not prevent the formation of a single BS, and hence,
the final remnant may be a combination of non-spinning stars including possibly only a
single spherically symmetric BS. Both transitions, two m = 1 rotating BSs merging to two
m = 0 BSs of the same charge, or a single m = 0 of the same charge, are energetically
favorable (i.e., the corresponding quantity analogous to (3.37) satisfies M > 0 in the
relevant part of the parameter space). However, since the spins of the inspiraling super-
spinning BSs are aligned with the orbital angular momentum, the system contains large
amounts of angular momentum. While it is plausible that a single non-spinning BS may
shed this angular momentum sufficiently rapidly during the nonlinear merger (based on
findings of e.g., Ref. [285]), we find that the final remnant is instead a binary of non-
spinning stars, which are flung out away from the center of mass at high velocities (with
the residual angular momentum likely being converted into orbital angular momentum as
the stars come into contact). The binary separation continues to increase up until we
terminate the evolution, at which point the separation increased to roughly d/M0 ≈ 40.
The breakup of the spinning binary at the point of contact occurs at the locations of the
vortices of each spinning star. As such, the nonlinear merger process of B3 is qualitatively
similar to what in shown in Fig. 6 of Ref. [340].
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Figure 3.9: The inspiral and merger of the precessing binary configuration B3 (see Table
3.1) with initial coordinate separation D0 = 12M0 and initial spin-directions (defined in the
main text) so the spin-vectors point away from the initial boost direction with a 45◦-angle to
the initial orbital plane. We show snapshots with surfaces of constant scalar field magnitude
(3D rendering; top row) and the gravitational waveform extracted at r/M0 = 100 (bottom
row). In the top row, the orientation of the axes (which is the same for all panels) is
shown in the leftmost panel. The first four panels show the binary during the inspiral at
roughly the same orbital phase after NO orbits, while in the last two panels, the merger
dynamics is presented roughly at coalescence time t/M0 = 1300 and once the resulting
non-spinning binary increase its coordinate separation t/M0 > 1350. For this binary, the
eccentricity and center-of-mass drift was reduced in a single iteration step to e = 0.013
and vcom ≈ 9× 10−5.

3.4.3 Precessing binary

Finally, we turn to the precessing binary configuration B3 (see Table 3.1) mentioned
throughout this chapter, and analyze its nonlinear dynamics in detail. The initial data
for binary B3 is solved using an initial coordinate separation D0 = 12M0 and a conformal
rescaling exponent p = −4. The spin of each star is chosen to make a 45◦-angle with the
plane containing the initial positions and velocities of the BSs, such that the component
parallel to this plane is in the opposite direction to the initial tangential velocity. Recall,
the dimensionless spins of both individual stars are above the Kerr-bound Si/M

2
i > 1.

As indicated in Fig. 3.4, we perform a single eccentricity and center-of mass velocity re-
duction step, resulting in an eccentricity of e = 0.013 and linear center of mass drift of
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vcom ≈ 9× 10−5 (with |vzcom| ≈ 7× 10−5).

In Fig. 3.9, we show snapshots of the evolution of these binary BS initial data, as well as
the gravitational waveform. Focusing first on the inspiral, recall that the spin of a rotating
BS points along the vortex line through the center of the star, i.e., perpendicular to the
torus formed by surfaces of constant scalar field magnitude. As can be seen from the top
panel, the binary exhibits rapid precession of the star’s spin vectors throughout the early
inspiral. In fact, as the individual stars are super-spinning, the strength of the spin-orbit
and spin-spin interactions surpasses that of any binary black hole during the inspiral. As
the eccentricity is relatively large compared to the other quasi-circular cases, the initial
separation is relatively close, and there is residual high-frequency GW contamination of
the type discussed in Sec. 3.3.2, the typical modulation of the GW amplitude due to
precession cannot be seen in the extracted gravitational waveform. The merger of this
binary is qualitatively similar to the aligned-spin case discussed in Sec. 3.4.2: the two
rotating BSs collide to form two non-spinning, highly perturbed BSs, which move outward
from the center of mass. This is shown in the last two panels of the top row of Fig. 3.9.
The coordinate separation surpasses d/M0 > 40 before we terminate the evolution, and is
not clear whether this new binary is gravitationally bound.

3.5 Conclusion

In this chapter, we tackled the problem of robustly constructing binary BS initial data
satisfying the Hamiltonian and momentum constraints of the Einstein equations utilizing
the CTS formulation. We analyzed and tested various approaches to specifying the scalar
free data entering these equations based on superposing isolated boosted BS solutions.
Among these approaches, we found considering the complex scalar field and its confor-
mally rescaled kinetic energy as free data to robustly lead to constraint satisfying initial
data that could be readily evolved without further reconstruction procedures. Beyond a
simple superposition of BS solutions, we also reduce the spurious oscillations induced by
non-equilibrium initial data using several methods. As suggested in previous studies, we
attenuate the superposed free data of one compact object in the vicinity of the second com-
pact object. In addition, here we introduce a new approach where we change the relation
between the initial scalar kinetic energy and the conformally scaled version of this quantity
which is specified as free data. This reduces the scalar kinetic energy, and hence, results
in less perturbed scalar matter. Finally, we successfully reduce the orbital eccentricity of
various mass ratio binary BSs down to the e ∼ 10−3 level.

Our procedure for constructing binary BS is highly generic, and thus, is ideally suited
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to exploring a vast space of possible binary configurations. Here we test it for head-on and
quasi-circular inspiral cases, including different mass-ratios, spin magnitudes, and spin
orientations.

Ideally, instead of basing the scalar field configuration on superposed BS solutions, one
would solve additional equations imposing a quasi-equilibrium of the scalar matter with
respect to an approximate helical Killing field, analogous to approaches to construction of
equilibriated binary neutron star initial data. In this chapter, we briefly discuss several
ways in which one might approach this problem, and some of the complications that may
arise, in particular if one wishes to tackle generic spinning binaries as considered here.
However, we leave an implementation and testing of such an approach to future work.

While we were able to efficiently reduce spurious oscillations of the BSs in the bi-
nary, particularly for star solutions in the scalar theory with repulsive self-interactions,
the residual perturbations limit the eccentricity reduction and contaminate the extracted
gravitational waveform. In the cases we consider with eccentricities ∼ 10−3, we find further
reduction of this quantity to be challenging as the spurious oscillations in each star induce
high-frequency oscillations of the coordinate separation with comparable or larger ampli-
tude as the eccentricity. Additionally, even small-amplitude perturbations in the scalar
field making up BSs in scalar theories with solitonic potential induce large-amplitude high-
frequency contamination in the gravitational radiation at early times during the numerical
evolutions of the initial data. Both artifacts may be suppressed by solving the CTS con-
straint equations together with quasi-equilibrium scalar matter equations.

With the methods to construct binary BS initial data presented in this chapter, accu-
rate waveforms of low-eccentricity non-spinning and (super-)spinning binary BSs can be
obtained. Until the late inspiral, the binary evolution is largely model-independent, i.e.,
the inspiral-dynamics is driven by gravitational effects such as spin-interactions, rather
than any mechanism specific to the scalar matter making up the stars. The resulting
waveforms could be used in to validate and tune inspiral waveform models that would
allow for binary parameters outside the ranges allowed by black holes and neutron stars
(e.g., Ref. [231]). Likewise, current tests to distinguish binary black holes and neutron stars
from exotic alternatives based on their GW signals [15] could be validated with accurate
binary BS inspiral-merger-ringdown waveforms relying on the initial data constructed in
this chapter. Another interesting avenue for future work is to study the impact of rela-
tivistic features such as stable light rings and ergoregions of exotic compact objects on the
inspiral gravitational waveform using highly compact BSs.
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Chapter 4

Binary boson stars: Merger
dynamics and formation of rotating
remnant stars

Executive summary: Scalar boson stars have attracted attention as simple models for
exploring the nonlinear dynamics of a large class of ultra compact and black hole mimicking
objects. Here, we study the impact of interactions in the scalar matter making up these
stars. In particular, we show the pivotal role the scalar phase and vortex structure play
during the late inspiral, merger, and post-merger oscillations of a binary boson star, as
well as their impact on the properties of the merger remnant. To that end, we construct
constraint satisfying binary boson star initial data and numerically evolve the nonlinear
set of Einstein-Klein-Gordon equations. We demonstrate that the scalar interactions can
significantly affect the inspiral gravitational wave amplitude and phase, and the length
of a potential hypermassive phase shortly after merger. If a black hole is formed after
merger, we find its spin angular momentum to be consistent with similar binary black
hole and binary neutron star merger remnants. Furthermore, we formulate a mapping
that approximately predicts the remnant properties of any given binary boson star merger.
Guided by this mapping, we use numerical evolutions to explicitly demonstrate, for the first
time, that rotating boson stars can form as remnants from the merger of two non-spinning
boson stars. We characterize this new formation mechanism and discuss its robustness.
Finally, we comment on the implications for rotating Proca stars.
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Figure 4.1: We show schematically an axial slice through a rotating BS at a fixed time. The
scalar field magnitude |Φ| (red/yellow color) vanishes along the central vortex line, attains
a maximum value some distance from the vortex line, and drops off exponentially towards
large distances ∼ e−kr, with some k > 0. Surfaces of constant scalar field magnitude are
indicated as gray dashed lines. Integrating the gradient of the scalar phase Arg(Φ) = ψ
along the path γ around the vortex in the azimuthal direction ϕ gives the vortex index q
of the rotating BS, as defined in (4.2).

4.1 Introduction

As we noted in Chapter 2 and demonstrated explicitly in Chapter 3, the existence, stability,
and formation of spherically symmetric stars from isolated or binary solutions is well-
studied, the role of angular momentum in these systems is still poorly understood. It was
noticed early on that spherical stars cannot rotate perturbatively [224] (i.e., they are not
continuously connected to their non-rotating counterparts; notable exceptions exist in the
Newtonian limit [223]). Later it was found that rotating BS [and their vector counterparts
called Proca stars (PSs)] solutions with quantized angular momentum exist [220, 221, 77].
However, only stars in scalar models with self-interactions are perturbatively stable against
a non-axisymmetric instability [323, 129, 339, 133]. Lastly, despite numerous efforts to form
rotating BSs dynamically [285, 65, 66, 67, 117], even in those models with rotating stars
without known instabilities [339], no rotating BSs has been formed from the merger of
two non-spinning stars. If BSs mergers cannot form a (non-BH) rotating remnant, that
would seem to place a serious impediment on their ability to mimic BHs without invoking
horizons.

As we have seen in Chapter 2, BSs are stationary, non-topological solutions of a com-
plex massive scalar field Φ with a global U(1) symmetry minimally coupled to gravity (the
generalization of Q-ball solutions to include self-gravity [158, 111]). The tendency of a
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localized wave solution to disperse is balanced by gravitational attraction, while the grav-
itational decay of BSs (dissipation through gravitational radiation) is precluded by their
conserved U(1)-charge Q, counting the number of bosons in the system. Generally, the
scalar field of an isolated BS takes the form

Φ = φei(ωt−mϕ), (4.1)

with magnitude φ, frequency ω, integer azimuthal index m, time coordinate t, and az-
imuthal coordinate ϕ (notice, this differs from the ansatz presented in sec. 2.2.2 by m →
−m). For spherical solutions, the scalar field magnitude is maximum at the origin, and
exponentially decays towards spatial infinity. Their rotating counterparts with non-zero
angular momentum J = mQ, on the other hand, exhibit vanishing scalar field magnitude at
their centers and are classified by the index |m| ≥ 1, leading to toroidal surfaces of constant
scalar field magnitude. Therefore, rotating BSs can also be understood as vortices with
gravitationally bound scalar matter. This is shown schematically in Figure 4.1. Within a
spacelike slice of a spacetime with scalar field Φ = φeiψ, we define a vortex to be the line L
through the hypersurface such that the integral of the gradient of the scalar phase ψ along
the oriented loop γ in a sufficiently small neighborhood around L is a non-zero integer q,

1

2π

∮

γ

d`iD
iψ = q, (4.2)

called the vortex index. Here, Di is the covariant derivative in the hypersurface. Since for
non-spinning BSs the phase ψ is constant in space, i.e., Diψ = 0, applying this definition
gives q = 0. In the case of isolated rotating BSs, the gradient Diψ is non-trivial. In fact,
the vortex line is the line of vanishing |Φ| through the center of mass of these solutions
(as shown in Figure 4.1). The vortex index q is exactly the azimuthal index m of the star,
|q| = m. Hence, in the context of these rotating BS solutions, the connection between
angular momentum and the vortex index is manifest. Lastly, reversing the orientation of
γ implies q → −q.

The appearance and role of vortices in various contexts have been the subject of ex-
tensive study for decades. In particular, quantized vortices are generic features in Bose-
Einstein condensates [362], superfluids [228, 367, 330], wave-like dark matter [379, 344,
211, 313], or cosmic strings [218]; all of which are described by scalar models similar (or
identical) to the scalar theories with BS solutions considered here. In these contexts,
vortices appear dynamically, for instance, as the result of symmetry breaking phase transi-
tions [218, 386, 125], or the introduction of angular momentum into the system [313, 362].
Therefore, from vortex lattices in trapped superfluids to cosmic string networks and spin-
ning dark matter halos, vortices are important in a wide variety of phenomena. Here, we
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show that vortices, their relation to angular momentum, and the evolution of the phase
of the scalar field are also crucial ingredients in understanding and predicting the merger
dynamics of binary BSs.

In this chapter, we numerically evolve the nonlinear Einstein-Klein-Gordon system of
equations in 3D to study the role of the scalar field during the late inspiral, merger, and
ringdown of spinning and non-spinning binary BSs in different nonlinear scalar models
with a global U(1) symmetry. As the scalar interactions are exponentially enhanced with
decreasing binary separation, we find that the scalar phase plays a crucial role during the
later inspiral and merger of binary BSs. We illustrate some cases where the nature of
the endstate of a binary merger is determined by the relative phase of the stars at early
times. Secondly, we provide a mapping that approximately predicts the outcome of any
given binary (or multi) BS and PS merger. Utilizing this mapping to guide the choice of
parameters, we show, for the first time, using numerical evolutions, cases where rotating
BSs form dynamically from a non-spinning binary BS merger. We provide a set of necessary
conditions for the formation of these rotating BS and PS remnants and identify the regions
in parameter space where this formation channel is expected to be active.

The remainder of this chapter is organized as follows. In Sec. 4.2, we briefly review the
role of scalar interactions in the dynamics of binary Q-balls, then proceed to apply these
results to binary BS inspirals, first qualitatively, and then systematically, in the case of
a non-spinning binary inspiral, and finally construct a mapping to approximately predict
the remnant properties of any given binary BS inspiral. In Sec. 4.3, we begin by listing
the necessary conditions for the formation of a rotating remnant BS from the merger of
a non-spinning binary, explicitly demonstrate the formation of a rotating BS remnant by
numerically evolving a suitable system, discuss the robustness and other characteristics of
this formation channel, and study the remnant resulting from the merger of a spinning BS
with a non-spinning BS. In Sec. 4.4, we further discuss our findings and conclude. Finally,
in the appendices, we revisit a non-axisymmetric instability present in rotating BSs in light
of our findings, and provide further details on our numerical setup.

4.2 Merger dynamics

During the merger of two BSs in a nonlinear scalar model, scalar interactions play an
important role along with gravitational interactions. Due to the exponential fall-off of the
scalar field amplitude at large distances from an isolated star, the scalar forces are also
exponentially suppressed for a binary at large separations. Conversely, the scalar field
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interaction is exponentially enhanced during the later inspiral and merger of two BSs, and
is crucial to understanding the merger dynamics.

In Sec. 4.2.1, we briefly review known results for Q-balls and BSs, and conjecture how
these results can be translated to the inspiral and merger dynamics of binary BSs. We
apply this intuition to the inspiral of a representative binary BS in Sec. 4.2.2, and study the
scalar interaction dependence on the scalar phase systematically in the context of a binary
BS inspiral in Sec. 4.2.3. Lastly, in Sec. 4.2.4, we conjecture a mapping that identifies the
remnant of any multi BS encounter and illustrate its utility in the context of an inspiraling
spinning binary BS. (We also comment on the implications for PSs.)

4.2.1 Scalar interactions

On a flat background, a Q-ball can be decomposed, as in (4.1), into a spatial profile φ and
a phase ωt −mϕ → ψ. In the case of an isolated, non-spinning (i.e., m = 0) Q-ball, the
spatial profile peaks at the center of the solution and decays exponentially as φ ∼ e−kr

at large distances r from the center, while the complex phase exhibits a harmonic time
dependence ψ = ωt, together with the arbitrary constant phase-shift ψ → ψ + α, under
which the model is symmetric. A binary Q-ball with separation |x1 − x2| = D � 1/ki,
with i = 1 and 2, is approximately given by the scalar field profile

Φ ∼ eiω1tφ1(x1) + ei(ω2t+α)φ2(x2). (4.3)

The scalar self-interactions lead to momentum exchange—a scalar force—between the two
solitons [39, 51, 74]. This force ultimately originates from the internal non-stationarity of
the complex phase of the scalar field. For the binary defined in (4.3), the scalar force has
a dependence given by [39, 74]

F̃ ∼ cos[(ω1 − ω2)t+ α]e−D(k1+k2), (4.4)

for 1/D � k1, k2. The magnitude of F̃ is exponentially suppressed by the distance D
between the solitons, while the sign of F̃ is determined by the phase evolution of the binary.
This spatial dependence and importance of the complex phase is applicable also in the BS
case, as we see below. In the limit of equal frequency, ω1 = ω2, the temporal dependence
vanishes, and the sign of F̃ is determined solely by the phase-offset α. In the general case
of ω1 6= ω2, a breathing motion appears in response to the harmonically oscillating force
applied on each Q-ball [39], independent of the constant offset α. Therefore, the complex
phase dynamics determine the sign of the effective force applied, while the magnitude is
exponentially suppressed by the distance between the solitons.
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The dynamics of the complex phases ψ1 and ψ2 is non-trivial in the presence of nonlinear
scalar interactions [51]. Integrating out the spatial degrees of freedom, assuming a large
separation, and identical solitons, the evolution follows ψ̈1+ψ̈2 = 0 and ψ̈1−ψ̈2 ∼ ε2 sin(ψ1−
ψ2), with the overlap ε ∼ e−D(k1+k2). For the special case of ψ1 = ψ2 + nπ, with n ∈ Z,
the evolution trivializes, i.e., ψ̇1, ψ̇2 = const., and the soliton’s phase-evolution is set by a
single frequency. However, in general, an initial phase-offset α = (ψ1 − ψ2)|t=0 ∈ (0, π),
implies ψ̈1, ψ̈2 6= 0. Therefore, the phases start evolving towards ψ̇1 > ψ̇2, i.e., towards
a state of different frequencies. The frequency evolution implies a change in charge of
the two solitons, since the frequency uniquely parameterizes the family of Q-ball solutions
of (in general) different charge. Hence, a non-trivial complex phase evolution ensues due
to nonlinear scalar interactions, implying charge transfer between the two Q-balls, and
altering the nature of the force (4.4).

Furthermore, in the presence of gravity (i.e., in the case of BSs), no nonlinear scalar
potential is required for non-trivial interactions to occur. In Ref. [281], an effective repulsion
was observed in the collision of two mini BSs (stars in linear scalar models) when comparing
the case when the complex scalar field is anti-symmetric under star interchange, i.e., in
(4.3), if α = π, φ1 = φ2, and ω1 = ω2, then Φ↔ −Φ when x1 ↔ x2, to the symmetric case.
Related to this, static spacetimes corresponding to BSs with two (or more) peaks have been
constructed in the linear scalar model, which can be thought of as corresponding to two
non-spinning BSs kept in equilibrium by the same relative phase difference [375, 194, 118].
In the following, we will refer to this equilibrium state as the dipolar BS (DBS) solution.

Lastly, angular momentum, present in rotating Q-balls, spinning BS solutions, or in
inspiraling binary BSs, plays an important role in the evolution of the phase, since an-
gular momentum and the appearance of vortices in a massive complex scalar theory are
tightly connected. To illustrate this, we restrict to a flat spacetime, where we can use the
symmetries of the background to define local notions of angular momentum. We define
the angular momentum density ρA with respect to the Killing field ηA associated with the
rotational symmetry in the A-th direction as ρA = T0jη

j
A, in Cartesian coordinates. From

the U(1) complex scalar stress-energy tensor, we know that T0i = −2φ̇∂iφ−2ψ̇φ2∂iψ, when
decomposing Φ = φeiψ. Therefore, the vorticity in the A-th direction, which we define as
νA := ηjA∂jψ, is related to the associated angular momentum density by

ρA ∼ φ2νA∂tψ, (4.5)

where we dropped the ψ-independent term. In the case of rotating Q-balls, with field
profile ψ = ωt − mϕ, we find that the vorticity in all directions, excluding the spin-
direction, vanishes. The latter is simply given by ρspin = −2ωφ2νspin = 2mωφ2. In the case
of the rotating BS, the expression is modified only by curvature corrections. This makes
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the connection between vorticity and angular momentum manifest, as the total angular
momentum in the rotating Q-ball (and BS) solution is quantized by the vortex index m,
as J = mQ. Note, a vortex in the U(1) nonlinear scalar models considered here does not,
by itself, contain energy. Hence, vortices can be created and destroyed spontaneously, as
long as angular momentum is conserved. This is in stark contrast to, for instance, cosmic
strings in global U(1)-Higgs or Higgs-Abelian models, where the string itself is a non-zero
energy solution that is topologically protected.

Ultimately, the evolution of the complex phase of the scalar field determines the type
of self-interaction-induced momentum and charge transfer between two Q-balls, as well
as the angular momentum present in the solution, while these effects are exponentially
suppressed by the distance between the solitons.

4.2.2 Scalar interactions in a binary BS inspiral

Let us translate the findings discussed in the previous section from the flat spacetime case,
to the self-gravitating BS case in the context of a binary inspiral. For most of the early
inspiral of a binary BS, the scalar interactions are exponentially suppressed, and hence,
sub-dominant to the gravitational interactions. At this stage of the inspiral, the scalar
phase of each star grows linearly according to the star’s stationary frequency. In the late
inspiral, i.e., when D ∼ 1/ki, scalar interactions increase in importance, and the phases of
each star start to differ from the stationary prediction, i.e., ψ̈1,2 6= 0. At this stage, linear
predictions for the evolution of the scalar phase break down, and nonlinear simulations
are necessary. Many of the effects present in Q-balls cannot be easily quantified in the
context of dynamical gravity due to a lack of background symmetries and well-defined
local quantities. Therefore, in the following we attempt to provide intuition for the scalar
interaction-driven physical processes active during the later inspiral and merger of binary
BS, and leave a more rigorous and systematic study to the later sections.

In order to understand the phase evolution within a binary BS during the late inspiral,
it is instructive to begin by studying the phase of a single, boosted, non-spinning BS with
field profile

Φ = φ(x)ei(ωt+α) (4.6)

in the stationary frame. With the primed coordinates (t′,x′) denoting a boosted frame,
defined by the boost vector βi, the complex phase of the boosted BS in the t′ = 0 slice is

ψ(x′) = ωβix′i + α mod 2π. (4.7)
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Figure 4.2: We show four snapshots of the equatorial plane during the merger of a non-
spinning binary BS with frequencies ω1/µ = 0.9 and ω2/µ = 0.86, with no initial phase-
offset α = 0, total ADM mass M0, an initial coordinate separation D = 20M0, and in the
repulsive scalar model (2.5) with λ/µ2 = 103. The compactness of the higher and lower
frequency star is C = 0.08 and C = 0.12, respectively. The total angular momentum
points into the page, and the orbit has Newtonian eccentricity e = 0.13. The final BH
parameters are shown in Figure 4.3. (top row) We show the magnitude of the scalar field
|Φ|, normalized by the maximum magnitude of the scalar field in the initial time-slice
|Φ|t=0

max. (bottom row) We show the complex phase ψ ∈ (−π, π) at the corresponding times
in the equatorial plane. At t/M0 = 0, we indicate the locations of the q = 1 vortices by red
circles, while we indicate the surface of φ1 ∼ φ2 defined below (4.9) with a black dashed
line. Notice, the white lines in the first panel of the bottom row are interpolation artifacts
and correspond to ψ = ±π.
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Therefore, due to the mixing of temporal and spatial degrees of freedom in the Lorentz
boost, the complex phase of the scalar field is a monotonic function of space in the boosted
frame, with slope determined by the star’s frequency ω1. We now move to the case of an
inspiraling binary BS. The construction of binary BS initial data satisfying the Hamiltonian
and momentum constraints is outlined in Chapter 3, with further details in Chapter 3.
Here, we simply note that the binary’s scalar field is a superposition of two isolated stars,
boosted with velocity v1, v2 along βj1, β

j
2. Explicitly, the constraint-solving scalar field

profile in the initial time-slice in the center of mass frame is

ΦBBS = φ1e
i(ω1βi1x

′
i) + φ2e

i(ω2βi2x
′
i+α). (4.8)

Therefore, in the center of mass frame, the spatial dependence of the complex phase ψBBS

of ΦBBS is

ψBBS ≈
{
ω1β

i
1x
′
i, φ1 � φ2,

ω2β
i
2x
′
i + α, φ2 � φ1.

(4.9)

In the regions with φ1 ∼ φ2, an infinite set of |q| = 1 vortices appear. In fact, if the scalar
field initial data of the binary BS is constructed by superposing the individual star’s fields,
then these vortices cannot be removed, unless all angular momentum is removed from
the system (e.g., in a head-on collision). We find that a subset of these vortices becomes
dynamically important in the binary evolutions discussed in the remainder of this chapter.

To illustrate this, and the subsequent evolution, we consider a non-spinning binary BS
in the repulsive scalar model (2.5) with coupling λ/µ2 = 103. The stars of the binary are

1The magnitude φ is simply Lorentz contracted in the boost direction.

Frequency C x0/M0 vx J0/M
2
0 α e

ω1/µ = 0.90 0.08 −10.69 0.12
0.9 0 0.13

ω2/µ = 0.86 0.12 9.31 −0.10

Table 4.1: The properties of the non-spinning binary BS initial data discussed in the
main text. The two stars have frequencies ω1,2, with initial phase offset α, are positioned
at coordinate locations x0 and y0/M0 = 0, have boost velocities vx and vy = 0 (with
Newtonian eccentricity e), compactness C, and mass-ratio q̃ = 1.13. Here M0 is the ADM
mass, and J0 is the similarly defined global angular momentum, the latter given by eq.
(7.63) of Ref. [175]. Note, this definition of angular momentum, albeit commonly used, is
not free from gauge-dependency (for further details, see Ref. [175]).
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prepared with frequencies ω1/µ = 0.9 and ω2/µ = 0.86 and initial phase-offset α = 0. The
initial coordinate separation is D = 20M0, with binary ADM mass M0 (see Table 4.1 for
details on the parameters of the initial data). In the language of the previous section, this
choice enables phase evolution and breathing behavior. We comment on the former below,
while the latter is likely a small effect on timescales larger than the orbital timescales of
this binary. In Figure 4.2, we show the magnitude φBBS and phase ψBBS of the equatorial
plane of the binary BS at four different times throughout the evolution. We focus first on
the initial time-slice. The less compact of the two stars, i.e., the star with smaller central
scalar field magnitude, is the star with smaller charge and larger frequency, ω1/µ = 0.9.
The complex phase of this binary, shown in the bottom row of Figure 4.2, illustrates the
structure discussed above. The phase is a monotonically increasing function of space in the
boost direction on either side of the black dashed line, indicating where φ1 ∼ φ2. The slope
of the phase is different on either side of φ1 ∼ φ2 in the equatorial plane, since ω1 6= ω2.
The surface of φ1 ∼ φ2 is a 2-dimensional surface in the spatial hypersurface separating
regions of φ2 > φ1 from those with φ2 < φ1. Lastly, in the equatorial plane, along the line
of φ1 ∼ φ2 there is a set of q = 1 vortices indicated with red circles.

The chosen boost parameters do not lead to a quasi-circular inspiral, but rather to
an orbit with non-zero eccentricity. Therefore, the stars go through an initial orbital
phase, during which their (coordinate) distance increases over time. During this time, the
scalar interactions are exponentially suppressed, and the dynamics are largely dominated
by gravitational interactions of the stars. Throughout this phase, the complex phase of
each star increases approximately linearly, and independently, in time. After passing the
apoapsis, the coordinate distance between the stars decreases, leading to enhanced scalar
interactions. The closest approach is achieved around t/M0 = 350. During the periapsis
passage, there is significant overlap between the two scalar field profiles. The evolution of ψ
is no longer approximately linear in time. The enhanced scalar interaction, in conjunction
with the presence of the vortices in ψ between the two stars, leads to the transfer of these
vortices onto both of the BSs. In the second snapshot of Figure 4.2, the vortices can be seen
just after the closest approach. After the periapsis, the vortices orbit around each individual
star in the same direction as the overall orbital motion. Qualitatively, the orbiting vortices
indicate angular momentum transfer from the orbit to the spin angular momentum that
can be assigned to each star. While stationary BSs cannot rotate perturbatively [224],
time-dependent solutions may. During the second close encounter, the scalar interactions
dominate the dynamics. The star with the larger frequency transfers large amounts of
scalar charge onto its heavier companion. This process is shown in the third snapshot of
Figure 4.2. As the heavier star accretes scalar matter, its charge and central scalar field
magnitude increase. Ultimately, the lighter (and less compact) star is completely tidally

77



0 200 400 600 800 1000
(t− r)/M0

0.000

0.002

R
e(
rM

0
Ψ

22 4
) α = 0

α = π

0 200 400 600 800 1000
t/M0

0.6

0.8

1.0
MBH/M0

aBH/MBH

Figure 4.3: (top panel) We show the (`,m) = (2, 2) mode of the s = −2- weighted spherical
harmonic components of the Weyl Newman-Penrose scalar Ψ4 (extracted at coordinate
radius r = 100M0) emitted during the binary BS inspiral of the case with initial phase-
offset α = 0 shown in Figure 4.2 and discussed in the main text. We compare this to
the GWs from the same binary inspiral with initial phase-offset α = π. (bottom panel)
The mass MBH (solid) and dimensionless spin parameter aBH (dashed) measured from the
apparent horizons of the remnant BHs formed in the inspiral of the top panel. We evolve
the α = π case for only roughly 900M0.

disrupted and accretes rapidly onto the heaver companion. The mass of this companion
increases beyond the maximum mass the star can stably support, and it collapses into a
BH. This situation is shown in the fourth panel of Figure 4.2. The remnant BH moves
through the surrounding residual scalar matter, continuing to accrete it.

The gravitational radiation, as well as the final BH parameters, are shown in Figure
4.3. There, we also compare to an evolution of the same binary BS initial data, except
with initial phase-offset of α = π. This case has two important features that distinguish
it from the α = 0 case: (i) The α = π case collapses to a BH roughly 200M0 earlier than
the α = 0 case, and (ii) the gravitational waveforms differ in amplitude from t = 200M0

to t = 500M0. The high-frequency features in the waveform shown in the top panel of
Figure 4.3 originate from time-dependent features on scales smaller than the sizes of the
stars. Comparing the orbital period of the vortices around the center of each star with
the frequency of the small scale features in the emitted GWs, we can identify the orbiting
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vortices as the source of the high-frequency GWs. The differing amplitudes indicate that
the vortices in the α = π case are surrounded by larger |Φ| values. Consulting (4.5), this
implies also a locally enhanced angular momentum density. This is consistent with finding
(i). Larger angular momentum transfer from the orbit to the spin implies earlier merger
times, and hence, a more rapid transfer of charge to the heavy star and subsequent BH
formation. The final BH parameters are, however, roughly independent of the initial phase
offset. In fact, the spin angular momentum of the remnant BH is comparable to that
formed by the merger of a binary neutron star or binary BH. Hence, beside the residual
scalar matter, the remnant BH retains little memory of the type of binary it was made
from.

A few remarks are in order. Many of the statements above are purely qualitative in
nature, and are mainly made to provide intuition. In particular, the transfer of orbital to
spin angular momentum deserves a more rigorous analysis (e.g., using techniques developed
in Refs. [109, 116]). The evolution of the scalar phase during the second encounter is
nonlinear, making it challenging to gain intuition from applying linear methods discussed
in the previous section. In the following section, we return to the dependence of the GWs
on the initial phase and a more systematic analysis of the phase evolution. Furthermore,
the use of vortices as a tool to understand the nonlinear phase evolution and to predict
the remnant is the subject of Secs. 4.2.4 and 4.3.

4.2.3 Gravitational wave imprints

In the previous two sections, we first reviewed the importance of the scalar phase evolution
for the nonlinear dynamics of scalar solitons in the absence of gravity, and then qualitatively
applied some of these concepts to the case of an inspiraling non-spinning binary BS. In
this section, we investigate the role of the scalar phase in the inspiral and merger of a
non-spinning binary BS and the emitted GWs more systematically. The variation of the
scalar phase in binary BS mergers has been studied only in the case of head-on collisions
in Refs. [232, 281, 280, 96, 153] (see Ref. [324] for a study in the PS case). Here, we
consider the impact of the scalar interactions on the inspiral of a binary BS and connect
our observations directly to the physical intuition provided in Sec. 4.2.1, for the first time.
We find several significant differences between the head-on collisions studied in [232, 281,
280, 96, 153] and the inspirals considered here: (i) the effect of the scalar interactions
accumulate secularly throughout the inspiral, eventually resulting in strong de-phasing
and modulations of the emitted GW amplitudes; (ii) vortices appear due to the orbital
angular momentum and drive dominant high-frequency features in the emitted GWs at
late times during the merger; and (iii) the time to collapse to a BH post-merger depends
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Figure 4.4: The GWs (extracted at a coordinate radius r/M0 = 100) during the inspiral
(left) and merger (right) of the binary BS described in the main text. The different cases
correspond to identical initial binary systems, except with different values of the phase
offset α in the range 0 to π. Specifically, we show the (`,m) = (2, 2) s = −2-weighted
spherical harmonic component of the Newman-Penrose scalar Ψ4 as a function of retarded
time t − r. The differences between the various α-cases are due to the enhancement of
nonlinear scalar effects during each close encounter of the binary and towards merger, as
the separation between the stars shrinks. Notice the different scale used on the left and
the right. After merger, the waveforms are terminated around the time when the system
collapses to a BH, which is indicated by a vertical dashed line. We show the GWs after
gravitational collapse of the α = 0 and π cases in Figure 4.5.

sensitively on the scalar interactions, while the remnant’s properties are mostly insensitive
to the scalar interactions driving the proceeding dynamics.

In order to illustrate the role of the scalar phase and vortex structure during the inspiral,
merger, and ringdown, we consider a non-spinning binary BS in the repulsive scalar model
given by (2.5) with λ/µ2 = 103, and focus on an equal frequency case with ω1 = ω2 = 0.9µ.
With a compactness of C = 0.08 for each star, the impact of the scalar interactions
is enhanced compared with a system consisting of highly compact constituent BSs (and
ω � µ), since at fixed separation of the stars’ center of mass, the overlap of the two
stars’ scalar fields is larger. The constraint satisfying initial data is constructed using the
methods outlined in Chapter 3. In the initial time slice, the binary system has ADM
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mass M0, the stars’ coordinate positions are at x0/M0 = ±10 and y0/M0 = 0 (hence,
initial coordinate separation D = 20M0), and the initial coordinate velocities are vx = 0
and vy = ∓0.12 (with these parameters the Newtonian eccentricity is e = 0.15). These
initial velocities were chosen to result in an eccentric orbit, with multiple periapses before
final merger. This allows us to observe the effects of repeatedly enhanced and suppressed
scalar self-interactions on the GWs. In order to study the impact of the scalar field phase
on the inspiral, we vary the initial phase-offset α between the BSs considering the values
α ∈ {0, π/8, π/4, π/2, 3π/4, π}. Note that in this strong-coupling regime of the repulsive
scalar model, stable rotating m = 1 BSs were demonstrated to exist in Ref. [339] (and
in Newtonian gravity in Ref. [133]). However, we choose binary BS parameters that are
expected to result in the formation of a rotating BH since the sum of the charges of the
constituent stars is larger than the maximum charge of both the m = 0 and m = 1 families
of solutions, and indeed we find collapse postmerger.

In Figure 4.4, we show the GWs emitted during the inspiral of this binary BS for each
initial phase offset α. Focusing first on the α = 0 case, the non-negligible eccentricity
in the binary is reflected in the gravitational waveform as periodic peaks around (t −
r)/M0 ≈ 250, 750, 1300, 1800, 2300, and 2750, corresponding to the close encounters of
the stars. In between these close encounters, the GW signal is characterized by a high-
frequency component emerging from spurious oscillation modes excited in the individual
stars due to the way the initial data is constructed. (Though we do not do so here,
these spurious oscillations can be alleviated by modifying the superposition of the two
isolated boosted stars and utilizing a different scaling for the conformal kinetic energy
of the scalar field, as shown in Chapter 3.) Though the cases with different values of
α initially have essentially indistinguishable orbits and GWs, following the first encounter
around (t−r)/M0 ≈ 250, the differences in the GW amplitude |Ψ22

4 | grow 2 (see also the two
insets). During the periods of large separation between the stars, the scalar phase of each
star evolves approximately linearly in time. However, scalar interactions are exponentially
enhanced during each close encounter, and become more significant as the orbital period
and periapse distance shrink due to GW emission during the course of the merger. Since
the nonlinear interactions depend on, and affect the scalar phase of the star, as discussed
in Sec. 4.2.1, they secularly affect the evolution and GWs of the binary BS system.

These differences in Figure 4.4 are primarily differences in the GW amplitude. However,

2All cases considered here were obtained with identical numerical setups both to construct the initial
data and to evolve it, suggesting that the relative differences in the GWs of the evolutions shown in Figure
4.4 are driven by scalar interactions, rather than being due solely to numerical truncation error. However,
as discussed in Appendix C.3, the estimated truncation error in the GW amplitude is comparable to the
difference between the cases with different values of α.
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as can already be seen there, at late times, there is also a non-negligible de-phasing between
the waveforms. This can be clearly seen in Figure 4.4, where we show the GWs emitted
during the late inspiral and merger of the binary systems. Though the exact point of
contact for the two stars is not well-defined, As the stars begin to merge, the GW amplitude
increases significantly—by up to an order of magnitude—as can be seen comparing the left
and right panels of Figure 4.4 (note the difference in scales). While the exact point of
contact for the two stars is not well-defined, one can loosely determine the merger time by
this sudden increase in amplitude. It is clear from the right panel of Figure 4.4 that this
time depends strongly on the initial phase offset α. For instance, the α = 0 case merges
around (t − r)/M0 ≈ 3750, while the binary with initial phase offset α = π merges at
(t − r)/M0 ≈ 4150. After the merger, the system enters into a transient state consisting
of a dynamical remnant star that is temporarily prevented from collapsing due to excess
energy and/or angular momentum, analogous to what may happen post-merger in a binary
neutron star. A series of scalar vortices (some of which still present from the initial data)
rapidly orbit around the center of mass of the remnant indicating large perturbative angular
momentum of the hypermassive BS. 3 These vortices are small scale features orbiting on the
scale of the original constituent stars, which lead to high-frequency GW emission (similar
to what we described in Sec. 4.2.2). This is reflected in the sudden increase in the GW
frequency after the merger of the stars, as shown in Figure 4.4, which matches the orbital
frequency of the vortices around the center of mass of the hypermassive BS. The length
of this hypermassive state depends on the initial phase-offset, and hence, on the nonlinear
scalar dynamics. For instance, the hypermassive phase in the α = π/4 case only lasts
t/M0 ≈ 150, while for the α = π case, it lasts t/M0 ≈ 600. The latter is longer lived,
since the symmetry gives rise to a vortex at the center of mass throughout the evolution,
which acts to delay the gravitational collapse of the hypermassive remnant. However,
in all the cases with different values of α, we find eventual collapse to a BH, at times
indicated by the vertical dashed lines in Figure 4.4. We cannot identify a clear trend in
the dependence of the collapse time on initial scalar phase offset α. This may be explained
by the fact that the intrinsic BS inverse frequency ω−1

1,2 ≈ 1.4M0 is much shorter than the
time to merger Tm ∼ O(103M0), so that the repeated scalar interactions, operating on
timescales ∼ 1/ω, accumulate differences nonlinearly throughout the inspiral of length Tm,
leading to a significantly different states entering the hypermassive phase and subsequent
gravitational collapse. Hence, any consistent α-trend present at early times appears lost
in the accumulated nonlinear shift.

3In analogy with the neutron star case (see, e.g., Ref. [54]), here we use hypermassive to refer to an
object with total mass above the maximum stable m = 1 rotating BS within the same scalar model. We
use hypermassive BS to refer to the merger remnants even when these are highly perturbed, and far from
equilibrium solutions.
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Figure 4.5: (top panels) We show the GWs emitted around the time of BH formation by
the binary BS systems discussed in the main text and shown in Figure 4.4, for initial phase
offsets α = 0 and π. Notice the difference in scale compared with Figure 4.4. (bottom
panels) The mass MBH and spin parameter aBH of the remnant BHs formed as functions
of coordinate time t (corresponding to the retarded time t− r in the top panels).

In Figure 4.5, we show the GWs through the collapse of the hypermassive BS state
to the final remnant BH in the case of α = 0 and α = π. As pointed out above, the
time of collapse is significantly different due to the accumulated nonlinear scalar (and
gravitational) interactions. However, the GWs radiated during the collapse to a BH are
qualitatively similar. The amplitude rapidly increases by a factor of a few and then decays.
This sudden increase in amplitude is likely driven by the vortices in the hypermassive
remnant being forced onto tighter orbits with higher orbital frequency just before horizon
appearance. The subsequent ringdown differs somewhat from a spinning BH in vacuum
due to the residual scalar matter (of mass ∼ 0.1MBH) orbiting the BH. As can be seen in
the insets in the top panel of Figure 4.5, this has the effect of washing out the exponential
decay of the GW amplitude. The mass and dimensionless spin parameters of the remnant
BH are only slightly smaller, in the α = 0 case compared to the α = π case. Therefore,
despite the quantitatively different inspiral and merger dynamics, depending sensitively
on the initial scalar phase configuration of the stars, the remnant BHs show only little
memory of the initial BS binary from which they emerged. In fact, the dimensionless
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spin of the remnant BHs are roughly aBH/MBH ≈ 0.7, which is consistent with the quasi-
circular merger of a non-spinning equal-mass binary BH, and the lower range of the values
of aBH/MBH ≈ 0.7–0.8 found for prompt collapse following a binary neutron star merger
(see, e.g., Ref. [59, 99]).

In summary, we find that, during the late inspiral of a binary BS, scalar interactions,
which depend on the scalar phase offset between the stars, have a significant, cumulative
effect, resulting in modulations of the amplitude and de-phasing of the GWs, and affect-
ing the merger time by hundreds of light crossing times of the system. The two stars
merge into a hypermassive BS remnant that is characterized by a series of vortices orbiting
rapidly around its center of mass, resulting in emitted high frequency GWs. Lastly, the
hypermassive remnant collapses to a remnant BH with mass and spin which, despite the
large difference in the inspiral dynamics, we find to be largely insensitive to the nonlinear
scalar dynamics prior to collapse.

Here, we considered the special case of an equal frequency binary BS. Therefore, the
scalar interactions in the initial binary BS are completely characterized by the scalar phase
offset α between the stars. In a more complex scenario with ω1 6= ω2, the different linear
evolutions of both stars’ phases would lead to oscillations in the nature of the scalar
interactions at characteristic frequencies ω1±ω2. The oscillatory nature of the interaction
accumulates nonlinearly during the later inspiral, with the phase offset it leads to at the
point of contact depending on the length of the inspiral. The value of this phase offset
just before merger will likely have a strong effect on the qualitative behavior of the system
after merger (when nonlinear interactions drive the dynamics), as it does in the scenario
studied here. In fact, in Refs. [324, 153], it was noted that in the case of head-on collisions,
the GW emission is predictably dependent on the phase-offset at early times and the point
of contact. Our results, however, suggest that in the case of a BS inspiral, the nonlinear
interactions prior to merger, which accumulate secularly, render a reliable prediction of the
phase-offset at the point of contact challenging.

4.2.4 Remnant map

In the previous section, we demonstrated the complex dependence of the scalar and grav-
itational dynamics during the merger process on the binary BS parameters, in particular
the scalar phase of the BSs. In order to provide a more straightforward understanding
of these systems, here we outline and motive a small set of criteria, and an associated
mapping, in order to guide predicting the outcome of a given merger of a binary BS, i.e.,
to determine whether a spinning BS, non-spinning BS, or a BH will be formed.
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Details of the remnant map

Recall, within a given scalar (or vector) model, there exists a set of one-parameter families
of BS (or PS) solutions Bm indexed by the azimuthal index m (excluding “excited” states
with a higher number of radial nodes). A representative B ∈ Bm (note, this is different
from the notation in Chapter 3) of the one-parameter family of star solutions (for fixed m)
is identified, in general, by its mass M , charge Q, frequency ω, and angular momentum J
(J = 0 for spherical stars). Crucially however, if one restricts to the stable branches of a
family of solutions, a particular BS (or PS) solution is uniquely identified by the charge
alone B(Q).

During a binary BS (or PS) merger, energy and angular momentum will come both
from the constituent stars, as well as from the orbit, and some fraction of these quantities
will be carried away both by gravitational and scalar radiation. The total boson number
(i.e., the U(1)-charge of the system), on the other hand, will only be affected by scalar
radiation. We expect this to be subdominant to gravitational radiation since the scalar
field is massive, and higher energy processes are required to elevate a bound boson into
an asymptotically free state. Therefore we will make the approximation that the scalar
charge is conserved during the merger here, but return to the implications of scalar particle
loss below. Hence, a core assumption of the mapping from the binary’s constituent BSs
(formally, B1 ∈ Bm1 and B2 ∈ Bm2) with charges Q1,2 into the remnant solution Br of
charge Qr is charge conservation Q1 +Q2 = Qr.

Combining the assumption of charge conservation, as well as restricting to the stable
branches of the one-parameter families of solutions Bm1,2 , enables us to introduce RF ,
which maps all properties of the merging binary BS (or PS), i.e., properties of (B1,B2) into
those of the remnant Br, formally written as

RF (B1,B2) = Br. (4.10)

Since B1,2 are uniquely identified by any pair of the constituents properties (e.g., the
frequencies ω1,2), the map RF can take various explicit forms. For example, the explicit
map of the frequencies of the inspiraling binary (ω1, ω2) into the frequency of the remnant
ωr is Rω

F (ω1, ω2) = Q−1
r [Q1(ω1) +Q2(ω2)] = ωr, using charge conservation and the inverse

Q−1
r of Qr(ωr) for a chosen family of solutions.

So far, we have not specified into which family of stationary solutions Br ∈ F the
remnant map RF maps (this freedom is indicated by the subscript of RF ). In principle, F
could be any set of stationary solutions allowed in the scalar (or vector) theory at hand,
i.e., (2.1) and (C.1), that satisfies the charge conservation assumption; for instance, a non-
rotating BS, a DBS solution, a spinning BSs, etc. However, many of these possibilities can

85



be rejected using a series of conditions which the remnant has to approximately satisfy.
Of course, it is possible that are no suitable remnant star solutions for a given binary. For
example, the total charge of the binary may be above the maximum charge of any remnant
non-vacuum family, Q1 + Q2 > Qmax

r , in which case one may expect a BH to form. As
we show below, the combination of these conditions and the remnant map (4.10) can be
used to understand the outcome of even complex merger scenarios. In the following, we
introduce the conditions first, and then return to a practical application of the formal map
(4.10).

The first set of conditions, we call the kinematic conditions. The masses and angular
momentum of the constituents of the binary, as well as the remaining orbital angular
momentum at merger Jorb, should satisfy

1. M1 +M2 &Mr,

2. J1 + J2 + Jorb. & Jr,
(4.11)

at the point of contact of the stars. Here, Mr and Jr are the remnant solution’s total mass
and angular momentum. This condition holds only for aligned-spin scenarios and here we
are neglecting the correction from the orbital energy as being small.

Secondly, the stability condition, states that the remnant stationary solution must be
free of any linear or nonlinear instability:

3. Br is stable. (4.12)

Lastly, the vortex condition concerns the scalar phase dynamics. We conjecture that
the vortex number mr of the final remnant of the binary merger is given by the vortex
number of a closed loop Γ enclosing the center of mass at the point of contact of the stars
as well as all significant vortex lines of the merging binary:

4. mr =
1

2π

∮

Γ

d`iD
iψ. (4.13)

By significant vortex lines, we mean to exclude, for example, those that may arise as
perturbations to the constituent BSs during the inspiral (as in Fig. 4.2), though we will
return to this below. Here, Γ is negatively oriented with respect to the total angular
momentum4 JµADM. These conditions are approximate, and we explicitly show below the
degree to which they must be satisfied in example mergers.

4Note, paired with the choice of J → −J and m → −m (or Q → −Q), the negative orientation of Γ
with respect to the total angular momentum of the remnant is a convention.
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The procedure to determine the family of stationary solutions F and identify the rem-
nant Br is as follows: (i) Construct RF for a plausible family of remnants F , (ii) reject
this mapping if it violates one of the four conditions listed above, and (iii) begin at step (i)
with a different plausible family. Therefore, the map (4.10) is used to eliminate possibilities
until the correct remnant remains. A priori, considering all plausible families F appears
to be a daunting task. However, in practice, we find that only focusing on the families
of non-spinning and m = 1 rotating isolated stars (within the considered model) suffices,
with the vortex condition (4.13) efficiently discriminating between the two. For example,
a DBS solution can be approximated by the sum of two non-spinning stars, particularly in
the Newtonian limit (see Ref. [118]).

In Ref. [65], a similar set of criteria was considered (in particular conditions 1.–3.).
However, crucially, here we add the vortex condition (4.13), and point out its vital role
in the binary merger process below. Furthermore, while the “point of contact” is an ill-
defined notion in the case of BSs (and PSs), the more relativistic the stars become, the
easier it becomes to identify the point of contact. Similarly, the vortex condition should
be regarded somewhat approximately, as we will show using examples of un-equal mass
mergers of a rotating and a non-rotating BS. In the special case of a head-on collision (i.e.,
with exactly vanishing angular momentum), no vortex exists. Lastly, this map may be
extended to PSs as well by the addition of another condition, which governs the relative
direction of the vector fields of a given PS binary. We return to applying this remnant
map to PS in Sec. 4.3.1, but leave a more detailed analysis to future work.

Applying the remnant map

We now illustrate the importance and utility of the above considerations with an example,
in particular, of a binary BS where a single remnant is not formed at merger. We consider
a spinning binary BS inspiral of identical m1 = m2 = 1 BSs with ω1 = ω2 = 0.4µ in the
solitonic scalar model with σ = 0.05 [see (2.2)], of compactness C = 0.12, at an initial
coordinate distance of D = 10M0 and initial phase-offset of α = 0. The orbit of the binary
is set up such that |Jorb.| < |J1 + J2|, with Jorb. anti-aligned with J1 and J2. Lastly, we
note that, if the spinning binary BS initial data is prepared with a vanishing phase-offset
initially, the symmetry of the binary fixes the location of a q = −1 vortex at the center of
mass of the system throughout the inspiral. Notice that each individual spinning star has
vortex number m1,2 = 1 (with respect to the total angular momentum).

We can now employ the remnant map (4.10), and consider possible outcomes of this
inspiral. First, because of the vortex condition (4.13) with mr = q + m1 + m2 = 1, no
single non-spinning star can be formed, as that would require mr = 0. Secondly, the total
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Figure 4.6: Five snapshots of the equatorial plane of the spinning binary BS inspiral
discussed in Sec. 4.2.4. (top row) We show the magnitude of the scalar field in the equatorial
plane, normalized by the initial maximum of the magnitude |Φ|t=0

max. (bottom row) We
present the corresponding scalar phase ψ ∈ (−π, π). We indicate the location of all relevant
q = −1 vortices by red circles, and all relevant q = 1 vortices by blue circles. (All vortex
indices are measured with respect to the total angular momentum). The arrows indicate
the direction of rotation of the inspiraling binary and the binary endstate.

angular momentum of the inspiraling system, Jtotal = J1 + J2 + Jorb., is smaller than the
angular momentum of a remnant spinning BS in the |mr| = 1 family of solutions, as can be
check explicitly using (4.10). Therefore, using the remnant map with (4.13) and conditions
(4.11), we can already rule out that the remnant Br is a single non-spinning BS or a mr ≥ 1
rotating BS [ |mr| > 1 would violate both the vortex condition and, likely, the stability
condition (4.12)]. Hence, if the merger does not result in a BH, the only option is that the
remnant consists of at least two stars. The reflection symmetry of the system with respect
to the center of mass (due to the choice of identical stars with vanishing phase-offset in
the initial data) suggests that the remnant is made up of an integer number of identical
stars. Furthermore, as we show in Appendix C.5, a single isolated non-spinning BS is
energetically favorable to a m = 1 spinning BS of the same charge. Therefore, two non-
spinning remnant BSs are energetically favored over two spinning BSs. Finally, due to the
mr = 1 vortex of the remnant, the scalar phases of each non-spinning stars will be exactly
out of phase with respect to each other. This implies they will be “bouncing” off each other
due to the effective repulsion associated with this phase difference reviewed in Sec. 4.2.1,
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analogous to the state found in [375, 281]. Lastly, the two stars (in a configuration similar
to the DBS solution) will move around the common center of mass (and the mr = 1 vortex)
now with orbital angular momentum Jtotal, i.e., they orbit in the opposite direction to the
inspiraling orbit. Hence, using (4.10) we obtain a final state for the system that satisfies all
of the above conditions. Therefore, using the remnant map (4.10) and the four conditions
listed above, we were able to qualitatively predict large portions of the nonlinear dynamics
of the binary system as well as the final remnant and its properties. Of course, we cannot
rule out that the final state is composed of more than two stars, which, however, could be
addressed in principle by considering, whether four stars as the remnant Br is favored over
two stars.

We confirm this picture by numerically evolving this spinning binary BS system, as
shown in Figure 4.6. Before entering the regime of strong scalar interactions, i.e., for times
t/M0 < 500, the phases of each spinning star oscillate around the respective central vortex
(marked in blue) roughly at the star’s internal frequency. Notably, a q = −1 vortex is
present at the center of mass by construction of the binary initial data (marked in red).
From t/M0 ≈ 550 to t/M0 ≈ 650, the two stars interact nonlinearly, both gravitationally
and through the scalar self-interaction. During this interaction, the two m1,2 = 1 vortices
of the two spinning stars merge with the q = −1 vortex of the orbital angular momentum
at the center of mass to form a single mr = q + m1 + m2 = 1 remnant vortex fixed
at the center of mass. Furthermore, the nonlinear interaction of the two spinning stars
result in the formation of two (approximately) non-spinning BSs. This addition of vortex
numbers can equivalently be understood using angular momentum conservation discussed
in Sec. 4.2.1: The spin angular momenta of the two merging stars add to the oppositely
oriented orbital angular momentum during the merger. The remnant stars are void of
spin-angular momentum, such that the remaining vortex mr must aligned with the total
(and now only orbital) angular momentum. Finally, the mr = 1 vortex at the center of
mass remains and dictates that the two remnant stars are precisely out of phase. The
latter can be seen in the last three snapshots of Figure 4.6. The outcome of the merger
is a DBS solution [375, 281], however, with non-zero orbital angular momentum (implying
the presence of the central mr = 1 vortex). Hence, we find that this DBS state orbits
around the central vortex with the remaining angular momentum (the arrows in Figure
4.6 indicating the sense of rotation about the center of mass). It is plausible that the final
stationary state is a DBS solution with vanishing angular momentum (i.e., the system
radiates the appropriate amount of energy and angular momentum to migrate towards a
stationary DBS solution).

This explicitly demonstrates both the utility of the remnant map together with the
kinematic, stability, and vortex conditions in predicting the outcome of highly nonlinear
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mergers, as well as the important role the scalar interactions, in particular, the scalar phase
evolution and vortex structures, play during the merger of binary BSs.

4.3 Formation of rotating boson stars

Finding a scenario where a rotating BS forms dynamically from the merger of two non-
rotating stars has been an open problem. In the past, numerous attempts and configura-
tions were considered to form a rotating BS remnant from a binary inspiral, most notably
in Refs. [285, 65] (see also Refs. [280, 67, 325]). Here, we argue, that all of these attempts
violate one or several of the conditions needed to form rotating BSs outlined in the previ-
ous section. In particular, we point out that the scalar phase and vortex structure play a
pivotal role in forming a persistent rotating BS remnant.

To show this explicitly, we proceed by applying the remnant map and set of conditions
from the previous section to this formation scenario in Sec. 4.3.1, and demonstrate by
numerical evolutions in Sec. 4.3.2 that some appropriately chosen initial data satisfying
these conditions do in fact lead to a rotating remnant. Hence, for the first time, we
find rotating BS remnants that form dynamically from the merger of two non-spinning
BSs. We then study the robustness of this formation mechanism to variations in angular
momentum and scalar phase in Sec. 4.3.3, discuss the implications of these conditions on the
characteristics of this new formation channel in Sec. 4.3.4, and finally, in Sec. 4.3.5 analyze
the merger remnant of a binary where one BS is spinning and the other is non-spinning,
showing that whether it is rotating or non-rotating depends on the binary’s mass-ratio.

4.3.1 Formation criteria & parameter space

We begin by considering how the remnant map (4.10) relates two non-spinning BS solution
to a m = 1 rotating BS solution, and in what range the kinematic and stability conditions,
defined in (4.11) and (4.12) (discussed in Sec. 4.2.4), respectively, will be satisfied. We
return to a discussion of the vortex condition below. To that end, we consider three
different families of non-rotating stars: (i) a repulsive family of BSs with λ/µ2 = 103, (ii)
a solitonic set of BSs with coupling σ = 0.05, and (iii) a family of non-rotating PSs (without
vector self-interactions). For each of these families of solutions, a corresponding family of
m = 1 rotating stars exists. We label the frequencies of the constituents of the initial
non-spinning binary by ω1 and ω2 and choose, without loss of generality, that ω2 ≥ ω1.
For each combination of stationary stars (ω1, ω2) we use the charge conservation mapping

90



0.94 0.96 0.98

ω2/µ

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

ω
1
/µ

0.850
0.900

0.500

0.600

0.800

0.100

0.050

Crot

Jrot/M
2
rot

ωrot/µ

0.2 0.4 0.6 0.8

ω2/µ

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.200

0.400

0.500

0.600

1.000

1.500

2.500

0.350

0.200

0.080

0.975 0.980 0.985 0.990

ω2/µ

0.93

0.94

0.95

0.96

0.97

0.98

0.99
0.700

0.800

1.000

1.200

0.200
0.150

0.075

−0.1

−0.05

0

0.05

0.1

M

Figure 4.7: We plot the properties (dimensionless angular momentum Jrot/M
2
rot, frequency

ωrot, and compactness Crot = Mrot/Rrot) of a m = 1 rotating remnant star, assuming
the remnant map (4.10), as a function of the initial non-spinning BS frequencies ω1 and
ω2 (contour lines). In addition, we show the normalized mass difference M = (M1 +
M2 − Mrot)/(M1 + M2) across the binary star parameter space (contour plot). Notice,
the plot is symmetric under the interchange ω1 ↔ ω2, and we only consider the regime
where Q1 + Q2 < Qmax

rot . (left) The binary parameter space in the repulsive scalar model
with λ/µ2 = 103, (middle) the solitonic self-interactions with σ = 0.05, and (right) in the
massive vector model without self-interactions. We explicitly restrict to only the radially
stable Newtonian branches in the left and right panels, and the radially stable relativistic
branch in the middle panel. In the middle, the dashed gray line indicates where M =
0. Notice, for a σ = 0.1 solitonic scalar theory, no region with M > 0 exists. The
non-axisymmetric linear instability found in Ref. [323] is likely absent in the right panel;
however, it is present in the middle for all ωrot/µ > 0.5, and may be present in the left
panel for some solutions with ωrot/µ < 0.9, as shown in Ref. [339].

(4.10) combined with the one-to-one charge-frequency relation, Qr(ωr) → Qm=1(ωrot) for
corresponding m = 1 family of rotating BSs (and PSs) in each of the three considered
models to map all properties of the two stars in the initial binary system into the properties
of a single potential m = 1 rotating remnant star.

In Figure 4.7, we show the results of the above constructed mapping for all three
theories. Using this, we are able to apply the kinematic conditions to isolate the parts of
the initial non-spinning binary parameter space that are suitable for the formation of a
rotating remnant BS. First, we consider condition 1. in (4.11) (the kinematic condition).
In order for the formation of a rotating remnant to be energetically favorable from a non-
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spinning binary, we must require

M =
M1 +M2 −Mrot

M1 +M2

> 0. (4.14)

Here M1, M2, and Mrot are the ADM masses of the stationary isolated non-spinning stars
and the rotating star, respectively. From Figure 4.7, we can deduce that for models (i) and
(iii), the entire initial binary parameter space favors the formation of a rotating remnant on
energetic grounds alone, while only the highly relativistic regime of the binary parameter
space of model (ii) hasM > 0. This narrows down the possible initial binary configurations
that might lead to the formation of a rotating remnant. Furthermore, for the formation,
we must require that the orbit of the inspiral contains sufficient angular momentum, i.e.,
condition 2. in (4.11) dictates that

|Jorb.| > |Jrot|. (4.15)

This restricts the binary orbit to a subset of all possible inspirals. In fact, as we discuss
below in Sec. 4.3.3, it is not necessary for (4.15) to be strictly satisfied, and furthermore
there is also an upper bound on Jorb. for the successful formation of a rotating remnant
star, which we determine empirically below for an example inspiral.

According to the stability condition (4.12), the remnant rotating BS (or PS) must be a
linearly (and non-linearly) stable solution. Despite the recent progress in understanding the
stability properties of these rotating solutions, this is a subtle point, and we simply state
that so far, no linear or nonlinear instability is known to exist in the parts of the rotating BS
and PS parameter space we are interested in (see Figure 4.7 for an indication where known
instabilities may be active). Finally, the last condition—the vortex condition—defined in
(4.13), dictates that at the point of contact of the non-spinning binary, there must exist a
|q| = 1 vortex in the phase in the vicinity of the center of mass of the system. This will
be determined by the relative phases of the binary constituents. With these restrictions in
hand, we are now able to explicitly determine whether a rotating remnant star is formed
dynamically, when all the above conditions are met, in the next section.

4.3.2 Formation dynamics

Consulting the remnant map shown in Figure 4.7, we begin by constructing non-spinning
binary BS initial data that satisfies the conditions of the previous section. Here, we focus
exclusively on the repulsive and solitonic scalar models, with λ/µ2 = 103 and σ = 0.05,
respectively, and return to a discussion of the vector case below. In order to ensure that the
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Figure 4.8: We illustrate the dynamics leading to the formation of m = 1 rotating BS
remnants from the merger of two non-spinning BSs. (top row) Here, we focus on the
binary star in the repulsive scalar model described in Table 4.2. We show the magnitude
of the scalar field normalized by the maximum magnitude |Φ|/|Φ|max in the equatorial
plane at four different times during merger. (middle row) We plot the product of the
scalar phase ψ and the maximum normalized scalar field magnitude ψ|Φ|/|Φ|max in the
equatorial plane at four different times during the merger. Here, we show the binary in
the solitonic scalar theory with properties given in Table 4.2. (bottom row) The evolution
of odd-m components of the azimuthal decomposition (4.16) of both binary mergers (the
repulsive binary on the left, and the solitonic binary on the right). Notice, in the case of
the solitonic binary, we show in Appendix C.3 that the m = 3 and 5 modes are dominated
by truncation error at late times and converge to zero. The even–m modes are negligible
throughout the evolution.
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vortex condition (4.13) is satisfied at the point of contact, we restrict to a binary made up of
identical stars, i.e., ω1 = ω2 = ωsph, but with opposite initial phase, α = π. The remaining
characteristics of the initial data are summarized in Table 4.2. The frequency of the non-
spinning stars are chosen to satisfy the kinematic and stability conditions. Specifically,
comparing the properties presented in Table 4.2 with Figure 4.7, it is evident that these
binaries satisfy M > 0, and hence condition (4.14), and are in regions of the rotating
BS parameter space without any known instabilities. The initial positions and velocities
are set up in order to force the binary on a highly elliptical orbit and merge during the
first encounter. The boost velocities are chosen to achieve sufficient angular momentum
to form the rotating remnant star predicted by the remnant map: Jrot/M

2
rot = 0.56 and

Jrot/M
2
rot = 0.95 for the stars in the repulsive and the solitonic scalar models, respectively.

This ensures that condition (4.15) is satisfied at the point of contact. Finally, the center
of mass of these binaries exhibits a q = 1 vortex throughout the evolution (measured
with respect to the orbital angular momentum), by virtue of ω1 = ω2 and initial phase-
offset α = π, hence, satisfying the vortex condition (4.13). The details of the numerical
construction of the constraint satisfying initial data are given in Appendix C.3.

In Figure 4.8, we show a few snapshots from the numerical evolution of the two sets
of binary BSs constructed above, as well as the time evolution of the azimuthal mode
decomposition of the real part, ΦR = Re(Φ), of the scalar field around the center of mass,
and along the angular momentum direction

Cm =

∫
d3xΦRe

imϕ. (4.16)

In the early stages of the evolution, t/M0 < 80 and t/M0 < 150, for the solitonic and
repulsive cases, respectively, the phases of each stars evolve approximately linearly in time.

Model ωsph/µ J0/Q0 x0/M0 y0/M0 vx vy α

repulsive 0.95 2.12 ±15 ±10 ∓0.06 ±0.02 π
solitonic 0.25 1.16 ±20 ±3 ∓0.3 0 π

Table 4.2: The properties of non-spinning binary BS initial data leading to the formation of
a rotating BS remnant. The two stars are identical, i.e., ω1 = ω2 = ωsph, with initial phase
offset α, are positioned at coordinate locations x0 and y0 (upper signs refer to the first
star), and have boost velocities vx and vy. The initial orbital angular momentum is J0, the
ADM mass is M0, and Q0 refers to the initial U(1)-charge of the binary. The couplings are
λ/µ2 = 103 and σ = 0.05 for the repulsive and solitonic scalar models, and the compactness
of these stars is C = 0.037 and C = 0.13 in each of the models, respectively.
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At the point of contact, the scalar and gravitational interactions are highly nonlinear.
During this merger phase, the scalar matter attaches to the vortex line at the center of
mass, and the system rings down to a state characterized by a single m = 1 mode in the
scalar field—a rotating BS remnant. All other modes decay away over time. From the
harmonic time-dependence of Re(C1), we obtain the late-time rotating remnant frequency
of ωrotM0 = 0.78 in the solitonic case. This is well approximated by the remnant map
shown in Figure 4.7, which predicts ωrot = 0.75/M0 = 0.22µ, with the difference being
attributable to the (Richardson-extrapolated) charge loss of ∆Q/Q0 = 0.04 occurring
during merger, as shown explicitly in Appendix C.3.

This explicitly demonstrates that, indeed, rotating BSs can be formed from the merger
of two non-spinning BSs, given the conditions in Sec. 4.3.1 are met. In particular, in the
following section, we show explicitly that (at least approximately) satisfying the vortex
condition is crucial for successfully forming the rotating remnant. In the case of the
formation of rotating PSs (instead of BSs), the vector phase may play a similarly important
role. However, these solutions also possess an intrinsic preferred direction (due to the vector
field), and hence, the merger dynamics might not only be governed by the vector phase,
but also the vector direction.

4.3.3 Robustness of formation mechanism

Having demonstrated the dynamics leading to the formation of rotating BSs from the
merger of two non-rotating stars in several cases, we now analyze the robustness of this
formation channel to variations in both the total angular momentum and the phase offset
of the binary. To that end, we focus on the binary BS in the solitonic scalar model we
found to form a rotating BS remnant in the previous section, and vary its initial angular
momentum and phase offset, while keeping all other parameters, in particular, the U(1)-
charge, fixed. We show that there exists a set of binary BS initial data with non-zero
measure that form a rotating BS remnant, demonstrating the robustness of the formation
mechanism.

Variation of angular momentum

To quantify the robustness of the formation channel to variations in the binary angular
momentum, we perform a series of simulations of the solitonic binary BS specified in Table
4.2 with varying initial boosts |vx| ∈ {0.1, 0.25, 0.3, 0.35, 0.45}. This changes the initial
angular momentum J0 away from the value of the binary specified in Table 4.2. We evolve
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Figure 4.9: We classify the remnants of the mergers of a non-spinning binary BS into
rotating DBS and rotating BS solutions as a function of the total (initial orbital) angular
momentum J0. The angular momentum is normalized by the U(1)-charge of the binary
Q0.

these sets of initial data through merger (see Appendix C.2 for snapshots of the evolution).
In Figure 4.9, the remnant of the merger is classified as either a rotating DBS solution
(consisting of two orbiting, non-spinning stars, as described in Secs. 4.2.1 and 4.2.4), or a
m = 1 rotating BS solution. While both remnant classes posses a |q| = 1 vortex at the
center of mass, the scalar field magnitude morphology is distinct; rotating BS solutions
are stationary and exhibit toroidal surfaces of constant scalar field magnitude, in contrast
to rotating DBS solutions, which exhibit two disconnected surfaces of constant scalar field
magnitude5. Notice also, the rotating DBS remnant is not a stationary solution, as it
continues to radiate energy and angular momentum. Consulting Figure 4.9, a variation
of the initial angular momentum of up to ∆J0/Q0 ≈ ±50% still leads to the prompt
formation of a rotating BS remnant6. However, if |∆J0|/Q0 is above some critical threshold
(shown in Figure 4.9), then the system settles temporarily into a rotating DBS solution
with long orbital period if ∆J0 < 0, and short orbital period if ∆J0 > 0. If both the
initial angular momentum J0 and total charge Q0 of the binary system were conserved
through merger, then only the initial data satisfying J0 = Q0 could form a m = 1 rotating
remnant. However, due to scalar and gravitational radiation, both angular momentum
and U(1)-charge may be carried away from the system resulting in the formation of a
rotating BS remnant for initial data with a range of initial angular momenta. For instance,

5A more robust method to identify the remnants as rotating BSs (opposed to rotating DBSs) is to, for
instance, explicitly check the consistency of Jrem = mQrem of the remnant solution at late times (satisfied
only by rotating BSs).

6Note, the initial angular momentum J0 is determined using the gauge-dependent “ADM” angular
momentum of the initial data.
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based on the scalar field morphology, we find the binary configuration with J0/Q0 ≈ 0.75
(shown in Figure 4.9) to settle into rotating BS after merger (see also Figure C.1). This
highly perturbed remnant plausibly continues to emit residual energy and U(1)-charge,
approaching J/Q ≈ 1 at late times. Furthermore, the rotating DBS remnant with J0/Q0 .
0.5 may settle into a non-rotating DBS solution as suggested in Sec. 4.2.4, while the
spinning DBS remnant with J0/Q0 & 1.5 could plausibly settle into either a non-rotating
DBS solution or a rotating BS as the system radiates angular momentum. Ultimately, the
formation mechanism is robust against variations of binary orbital angular momentum to
the degree shown in Figure 4.9.

Variations of scalar phase

Thus far, we have tested the robustness of the formation of a rotating BS from merger
by varying the initial angular momentum of the binary BS’s orbit, while keeping the
initial scalar phase-offset between both stars fixed, i.e., α = π. In this section, we fix
J0/Q0 = 1.16 and instead vary the initial phase-offset between the two solitonic stars
α. Hence, we considering binary mergers in the solitonic scalar model with parameters
given in Table 4.2, but with different initial phases α/π ∈ [0, 63/64]. We demonstrated in
Sec. 4.3.2 that the α/π = 1 case results in the formation of a m = 1 rotating BS remnant.
The α = 0 binary promptly leads to the formation of a non-rotating BS remnant, shedding
all its orbital angular momentum. Hence, there exists a critical value, 0 < αcrit < π, for
which the remnant is marginally either a non-spinning or a rotating BS remnant.

In the bottom panel of Figure 4.10, we classify the remnants of the merger of the
sequence of these binary BSs with varying initial phase into spherical and rotating BSs.
We find all binaries with α/π ≥ 7/8 form a m = 1 rotating remnant at late times, while
all binaries with α/π ≤ 3/4 result in a non-rotating BS remnant7. We find all remnant
rotating stars persist, without further sign of instability, for the remainder of the evolutions
of length t & 1000M0.8 Therefore, the formation scenario discussed in Sec. 4.3.1 does not
require the phase offset of the merging binary to be fine-tuned, and is robust up to a phase
variation of |∆α|/π ≈ 0.12 around α/π = 1. In the top panel of Figure 4.10, we show a few
snapshots of the evolution of the binary with α/π = 3/4. In the first panel, the vortex is

7As another illustration of this type of behavior, we also considered the binary BS in the repulsive
scalar model characterized in Table 4.2, with initial phase-offset α/π = 7/8; this binary tends towards a
non-rotating BS remnant at late times after merger.

8We note that at lower numerical resolutions, the rotating remnant formed when α/π ≥ 7/8 appears to
have a growing perturbation that eventually ejects the central vortex from the star. However, this behavior
disappears at sufficiently high resolutions. Details can be found in Appendix C.4.
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Figure 4.10: (top) We show the normalized magnitude of the scalar field |Φ|/|Φ|t=0
max in the

equatorial plane at four different times during the evolution of the binary BS merger with
parameters given in Table 4.2, but with initial phase-offset α/π = 3/4. (bottom) We classify
the remnant solution of binary BSs with different values of the initial phase α into spherical
or rotating (m = 1) BSs. We consider α/π ∈ {1, 63/64, 31/32, 15/16, 7/8, 3/4, 1/2, 0}.

located to the right of the center of mass during the initial contact of the stars. The vortex
then traverses the merging object in the second panel and is ejected in the third panel. The
final state (fourth panel) is a perturbed non-rotating BS. This behavior is representative
of all cases with 1/2 ≤ α/π ≤ 3/4. In the α = 0 limit, any vortex present due to the
non-vanishing orbital angular momentum stays outside the remnant star altogether.

4.3.4 Formation channel

In the previous sections, we demonstrated that rotating BSs can be formed from the merger
of two non-spinning stars without fine tuning of the binary parameters for several examples.
In this section, we consider more generally for what systems the approximate conditions for
the formation of a rotating BS remnant listed in Sec. 4.3.1 are satisfied, and its implications
for different formation channels for rotating BSs. We focus exclusively on binary mergers,
and do not discuss, for example, formation of a rotating star from the collapse of coherent
rotating cloud (as in, e.g., Ref. [323]).

First, from Figure 4.7, it is clear that the energy condition (4.14) is not restrictive for the
repulsive scalar model and PSs (since M > 0 across the parameter space). However, this
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condition does restrict the solitonic scalar theory to a small M1/M2 ∼ O(1) region in the
highly relativistic part of the stable branch of the families of stars. Therefore, while in the
former two models, the formation of a rotating star is possible in the entire parameter space,
including the Newtonian limit, the situation is more complex in the solitonic scalar model.
There, a spherical star would first have to be formed in the relativistic part of the family of
BSs (i.e., in the region of parameter space in Figure 4.7 whereM > 0). If a star is formed
on the Newtonian branch of the non-spinning solutions within the solitonic scalar model,
then it can move towards the relativistic branch by gaining mass (e.g., through a sequence
of binary BS mergers), which generically leads to a more compact, i.e., more relativistic,
remnant. Once these stars have migrated to the relativistic branch, the formation of a
rotating BS remnant is possible from a relativistic binary with mass-ratio close to unity.

Secondly, the stability condition (4.12) is the most restrictive, as all known |m| > 1
rotating BSs are linearly unstable [323, 339, 133], allowing only the formation of m = 1
rotating BS remnants in scalar models with self-interactions (i.e., in the limit of vanishing
scalar self-interactions, all m = 1 BSs are likely linearly unstable). Furthermore, in the
case of attractive scalar self-interactions (i.e., the solitonic scalar model), even the m = 1
BSs are linearly unstable in the Newtonian limit [133] and unstable to the ergoregion
instability in the relativistic limit [160, 264], implying that in the solitonic model only
those non-spinning stars in the relativistic part of the parameter space may form rotating
BS remnants without ergoregions during merger. In the case of the repulsive scalar model
(with sufficiently strong self-interactions), all m = 1 rotating BSs below the maximum
mass of the family of solutions are linearly stable [339, 133]. The m = 1 rotating PSs
were shown to be linearly stable using numerical simulations in [323], suggesting that also
rotating PSs may be formed across a large part of the parameter space. The m = 1 rotating
solutions in the repulsive scalar models and the massive vector theory exhibit ergoregions
only near the maximum mass and in the strong coupling limit, only marginally affecting
the parameter space in which the formation of a rotating remnant is possible.

Lastly, the angular momentum condition (4.15), restricts the types of orbits that could
lead to a rotating remnant BS. In the following, we focus entirely on the equal mass limit
of the inspiral binary for simplicity. In the Newtonian limit, a compact binary, com-
posed of two point masses Msph on circular orbits with separation d and orbital frequency
Ω =

√
2Msph/d3, possesses orbital angular Jorb = νΩd2 with reduced mass ν = Msph/2.

Furthermore, if each compact object has a radius Rsph and compactness Csph = Msph/Rsph,
then the angular momentum of the binary, at the point of contact of the two objects, is
Jc = M2

sph/
√
Csph. For a typical non-spinning neutron star, Csph = 0.125, the dimension-

less orbital angular momentum at contact is Jc/(2Msph)2 = 0.7, which is roughly consistent
with non-linear simulations [59, 99]. In Figure 4.11, we compare this quasi-circular orbit
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Figure 4.11: As a function of the compactness Csph of two identical non-rotating stars in
various models and couplings, we compare the dimensionless angular momentum of the
corresponding m = 1 rotating BS and PS solution obtained using the remnant map (4.10).
In particular, we compare three families of stars in the solitonic scalar model of coupling
strength σ with the family of PSs, scalar BSs in the repulsive scalar model (labelled with its
coupling λ), and the Newtonian quasi-circular angular momentum at the point of contact
Jc, derived in the main text. We focus only on the solution branches below the maximum
mass. Notice, however, that not all the solitonic cases that are plotted lie in the stable
part of the m = 1 rotating BS parameter space.
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estimate Jc to the spin angular momenta of four families of m = 1 BSs and the family of
m = 1 PSs as a function of the compactness of the equal mass non-spinning binary they
emerge from using the remnant map (4.10). From Figure 4.11, it is clear that the rotating
non-relativistic stars (those in the repulsive scalar model and the PSs) require far less an-
gular momentum than a quasi-circular orbit would provide, while on the other hand, the
rotating relativistic stars (those in the scalar theory with solitonic potential) require far
more angular momentum than a quasi-circular orbit could provide. While our estimate is
purely Newtonian, and compares only the dimensionless spin at the point of contact (i.e.,
neglects radiation emitted during the merger process), it provides a rough estimate for the
parameter space, where rotating BSs may form through quasi-circular inspirals. Therefore,
from Figure 4.11 we conclude that in the solitonic and repulsive scalar models, as well as
in the case of PSs, a quasi-circular orbit is unlikely to lead to the formation of a rotating
remnant BS, with exceptions only in isolated and small parts of the parameter space.

Due to the non-relativistic nature of this estimate, there may be highly relativistic
rotating solitonic BSs that could be formed through quasi-circular orbits, or the possibility
that scalar interactions between diffuse repulsive stars radiate sufficient angular momentum
during the late inspiral and merger leading to a rotating BS remnant. For instance, the
binary inspiral in the repulsive scalar model shown to result in a rotating remnant BS
in Sec. 4.3.2 possessed an oversupply of angular momentum, i.e., J0/Q0 = 2.12, and yet
formed a (highly perturbed) m = 1 rotating BS remnant. This may similarly hold for
merging PSs. However, it appears that the types of orbits that may robustly lead to the
formation of a rotating remnant are relativistic, highly eccentric encounters of non-spinning
relativistic stars in the solitonic scalar model, while only those stars with non-relativistic
velocities and mild impact parameters may merge into rotating remnant PSs and BSs in
the repulsive scalar model.

4.3.5 Merger of mixed spinning-non-spinning BS binaries

To further understand the formation of a rotating BS remnant from the merger of two
isolated BSs, we now turn to mergers of binaries consisting of a non-spinning and a m = 1
spinning star. In this scenario, one can use the mass-ratio q̃ = Mrot/Msph, or equivalently
the charge-ratio ζ̃ = Qrot/Qsph, to classify the system as an equal mass-ratio, q̃ ∼ 1, or
extreme mass-ratio, q̃ � 1 and q̃ � 1, system. The types of BSs we consider here are
perturbatively stable against known instabilities. Hence, in the q̃, ζ̃ →∞ limit, we expect
the non-rotating star to be a small perturbation to the spinning star, and thus for the
remnant to be spinning (i.e., the only relevant vortex line is that of the spinning star).
Conversely, in the q̃, ζ̃ → 0 limit, the remnant will be a non-spinning BS (hence, the vortex
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Figure 4.12: We plot the mass ratio q̃ = Mrot/Msph (white contour lines) and charge ratio
ζ̃ = Qrot/Qsph (color) across the parameter space of a (superposed) binary BS consisting
of a non-spinning star with frequency ωsph and an m = 1 rotating star with frequency ωrot

in the σ = 0.05 solitonic scalar model. The dashed white line indicates where ωsph = ωrot.
The mergers of binaries with parameters indicated by the black (white) points result in a
single rotating (non-rotating) BS remnant.

line of the spinning star is perturbative and neglected in the vortex condition (4.13)).
This is entirely consistent with the expectation based on the remnant map introduced in
Sec. 4.2.4. In the intermediate regime, where q̃, ζ̃ ∼ 1, the importance of the vortex from
the spinning BS in ambiguous, and therefore, and the application of the remnant map is

ωrot/µ ωsph/µ q̃ = Mrot/Msph ζ̃ = Qrot/Qsph

0.20 0.535 22 63
0.30 0.40 3.9 4.6
0.35 0.33 1.5 0.95
0.40 0.25 0.51 0.30
0.471 0.175 0.15 0.06

Table 4.3: The constituent BS frequencies, mass ratios, and charge ratios of the mixed
spinning-non-spinning binary BS initial data discussed in the main text. The two stars
have frequencies ωrot and ωsph, (purely tangential) boost velocities vrot = 0.85Msphvt/M0

and vsph = −0.85Mrotvt/M0 with vt =
√
M0/D0, and coordinate separation D0 = 10M0,

in units of the ADM mass.
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less clear. Instead of assuming the accuracy of the remnant map, here we simply perform
a series of non-linear simulations of binary BSs in the solitonic scalar model with coupling
σ = 0.05, covering the range of mass-ratios from q̃ = 22 to q̃ = 0.15. We summarize the
properties of the constructed initial data in Table 4.3.

In Figure 4.12, we show the parameter space of such binary BSs consisting of one
rotating and one non-rotating constituent together with the merger product of the binaries
characterized in Table 4.3. By construction, the binaries merge after roughly one orbit in
all cases considered. During the merger of the three cases with smallest mass-ratio, the
vortex of the lighter spinning star is ejected from the system at the point of contact or
shortly after. The merger dynamics become more violent with increasing initial mass-ratio,
up to q̃ ∼ 1. The endstate in all three cases is a single, non-rotating star, while in the
q̃ = 1.5 case, a small scalar clump is ejected from the system similar to what was found in
Ref. [65]. The two cases with largest mass- and charge-ratios merge into a single rotating
BS remnant, identified by the q = 1 vortex at the center of the remnant star. The remnant
star of the q̃ = 22 binary persists for t & 600M0 without sign of instability, while the
rotating remnant of the q̃ = 3.9 remains non-perturbatively rotating for t ≈ 700M0. In
the latter case, after this time in our simulation the central vortex is ejected in the same
way as occurred at lower resolutions for the spinning remnant formed from the merger
of non-spinning BSs described in Sec. 4.3.3 (see Appendix C.4 for details). Hence, we
speculate that this is an artifact of the low resolution used to study this binary, and that
at sufficiently high resolution simulations the star will remain stable after merger. However,
we have not explicitly checked this for this case. In conclusion, we find that in the merger
of a non-spinning and a rotating BS, the remnant is non-rotating roughly when the mass
(or charge) ratio q̃ < 1, and rotating when q̃ > 1.

4.4 Discussion and Conclusion

In this chapter, we have studied the inspiral and merger dynamics of a large class of
scalar binary BS systems in representative repulsive and attractive scalar potentials. To
that end, we constructed constraint satisfying binary BS initial data using the conformal
thin-sandwich approach and numerically evolved these data using the coupled Einstein-
Klein-Gordon equations. We reviewed important results on the non-gravitational inter-
actions between two Q-balls, and identified the impact of such interactions on the GW
phenomenology of an inspiraling binary BS. We pointed out the pivotal role the scalar
phase and vortex structure plays during the inspiral and merger process of a binary BS. In
particular, in the cases we study we find that (i) the scalar interactions secularly accumu-
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late throughout the late inspiral and drive strong de-phasing and amplitude modulations of
the gravitational radiation, (ii) during the merger of a binary BS the GW signal is strongly
affected by vortex dynamics, and that (iii) the nonlinear scalar interactions induce a pro-
longed hypermassive BS phase, and can delay the collapse to a BH by several hundred light
crossing times of the remnant, though do not strongly affect the final BH’s mass and spin.
These findings demonstrate that, to have a consistent description of the late inspiral for
such models that accurately predicts the emitted GWs, scalar interactions must be taken
into account. Analogous to axion mediated forces in the inspiral of a binary neutron star
considered in Refs. [200, 202, 382], the de-phasing and amplitude modulations from scalar
interactions may enter at lower orders in a perturbative post-Newtonian expansion of the
binary dynamics compared to tidal Love number effects, and hence, be a strong handle to
efficiently distinguish binary BS mergers from binary neutron star ones. Additionally, our
results suggest that predicting the GWs emitted during the nonlinear merger process (and
of a potential hypermassive BS remnant) for a large class of binary constituents requires a
substantial suite of nonlinear numerical evolutions, since the GW phenomenology is likely
richer than even in the case of binary neutron stars, due to the star’s internal scalar phase
degree of freedom characterizing the merger. Lastly, if the final remnant of the merger is
a BH, than the ringdown GW signal may be indistinguishable from that of a binary BH
merger remnant (or a binary neutron star merger resulting in BH formation) in all but the
least compact cases. If the constituent stars of the binary are less compact than typical
neutron stars, then we show that accreting residual matter surrounding the remnant BH
may alter the ringdown signal sufficiently to distinguish it from the typical exponential
BH ringdown GW signals. On the other hand, if the remnant is a BS (spinning or non-
rotating), then the ringdown signal is likely an efficient means of distinguishing the types
of binaries, particularly if the total mass of the system is M0 & O(10)M� (positioning the
ringdown GW signal in the most sensitive band of ground-based GW detectors).

Furthermore, in this chapter, we have constructed a remnant map, augmented by several
conditions, which approximately predicts the remnant star that results from a binary BS
merger. We illustrated the utility of this mapping to qualitatively predict the outcome of
the nonlinear dynamics of merging BSs using a particularly peculiar spinning binary BS
inspiral. This inspiral results in the formation of a rotating dipolar BS solution (see, e.g.,
Refs. [281, 375]), as predicted by the remnant map. We also briefly commented on the
implications of the remnant map on PS dynamics. We emphasize the central role of the
scalar phase and vortex structure during the merger of binary BSs. In other areas of physics,
vortices also play an important role, leading to phenomenology such as vortex reconnection
and vortex lattices [228, 367, 330, 362]. These, and similar processes, may also arise in
the context of BSs and are an interesting direction for the future. While the predictions
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of the remnant map are most accurate for equal frequency stars, we find it to be a decent
approximation even in more complex scenarios. However, in a few merger examples, we
explicitly show the limitations of the remnant map. In particular, the classification of a
vortex line as “significant” within the vortex condition is ambiguous. For instance, in the
inspiral of a light spinning star and a heavy non-rotating star, the vortex line of the former
must be classified as insignificant compared with the heavy companion in order for the
vortex condition to be consistent with the formation of non-rotating remnant. However,
as the relevant mass of the spinning star is increased, it is unclear, a priori, at exactly
what mass ratio the vortex becomes significant to the remnant, and therefore there is no
firm prediction for the exact threshold in the comparable mass regime where a rotating
remnant will be formed. In this chapter, we primarily focused on the special case of a
binary inspiral resulting in a single remnant star. However, this map could be extended to
include more than two stars taking part in the merger and more than one remnant star.

Moreover, in this chapter we find, for the first time, examples where the merger of non-
rotating stars results in the formation of a rotating BS. We achieve this by utilizing the
remnant map paired with, in particular, the vortex condition, which is a crucial ingredient
in understanding the formation of rotating BSs in mergers. We investigated the robustness
of this new formation mechanism to changes in the binary’s orbital angular momentum
and initial scalar phase-offset, finding that variations of up to a factor of two of the orbital
angular momentum and up to 12% of the initial phase-offset still result in the formation
of a rotating remnant star. Hence, a large set of binary configurations may form rotating
remnant stars, rather than non-spinning BSs or BHs. Furthermore, we find that quasi-
circular orbits may inhibit the formation of rotating remnant BSs, since these orbits have
either too little angular momentum (in the case of the solitonic scalar potential), or too
much angular momentum (in the case of PSs and for stars in the repulsive scalar model
considered). However, our results suggest that there may be limited regions of parameter
space where a quasi-circular orbit leads to the formation of a rotating remnant star. Finally,
regarding the merger remnant of a binary made up of a spinning and a non-spinning
star, the mass-ratio (or charge-ratio) is a decent classifier of the remnant product: if
the non-spinning star is heavier, than the remnant is a non-rotating star, while if the
spinning star dominates the mass-ratio, then the remnant will be a rotating BS. We also
briefly comment on the implications of the formation mechanism on PS dynamics and the
formation of rotating PSs after a binary inspiral. Previous attempts at forming a rotating
BS or PS remnant from the merger of two non-spinning stars have been unsuccessful, as
they violated one or several of the conditions found here. The mergers of binary BSs
considered in Refs. [280, 285, 67, 65] violated the vortex condition or stability condition,
while the orbital PS mergers considered in Ref. [325] violated, at the least, the kinematic

105



and vortex conditions. Lastly, if an astrophysical population of these stars existed, then
a subset of the binary inspirals may form rotating BS remnants, provided the scalar self-
interactions allow it. In fact, using our results, one could quantify how many rotating
boson star may be formed given the characteristics of a population of non-spinning binary
stars. This formation mechanism could be used to study the inspiral, merger, and ringdown
dynamics of BH mimicking ultra compact objects self-consistently in a nonlinear setting.
In some cases, these rotating BS remnants are highly relativistic, exhibiting stable light
rings and ergoregions. The impact of these features on the emitted gravitational waveform
may be studied within these scenarios and extrapolated to a larger set of ultra compact
objects.
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Part II

Black hole superradiance
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Chapter 5

Dark photon superradiance:
Electrodynamics and multimessenger
signals

Executive summary: We study the electrodynamics of a kinetically mixed dark photon
cloud that forms through superradiance around a spinning black hole, and design strate-
gies to search for the resulting multi-messenger signals. A dark photon superradiance cloud
sources a rotating dark electromagnetic field which, through kinetic mixing, induces a ro-
tating visible electromagnetic field. Standard model charged particles entering this field
initiate a transient phase of particle production that populates a plasma inside the cloud
and leads to a system which shares qualitative features with a pulsar magnetosphere. We
study the electrodynamics of the dark photon cloud with resistive magnetohydrodynamics
methods applicable to highly magnetized plasma, adapting techniques from simulations
of pulsar magnetospheres. We identify turbulent magnetic field reconnection as the main
source of dissipation and electromagnetic emission, and compute the peak luminosity from
clouds around solar-mass black holes to be as large as 1043 erg/s for observationally-allowed
dark photon parameter space. The emission is expected to have a significant X-ray com-
ponent and to potentially be periodic, with period set by the dark photon mass. The lumi-
nosity is comparable to the brightest X-ray sources in the Universe, allowing for searches
at distances of up to hundreds of Mpc with existing telescopes. We discuss observational
strategies, including targeted electromagnetic follow-ups of solar-mass black hole mergers
and targeted continuous gravitational wave searches of anomalous pulsars.
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5.1 Introduction

As already briefly outlined in Chapter 1, ultralight fields arise in abundance in Beyond
the Standard Model (SM) theories of particle physics. The most well-known and well-
motivated such particle is the QCD axion [369, 372], proposed to solve the discrepancy
between the observed and predicted magnitude of the neutron electric dipole moment
arising from CP violation in the strong sector of the SM [292]. Beyond the QCD axion,
light bosonic fields have been found to be ubiquitous in string theory [34, 351, 20, 172],
and provide excellent candidates for the dark matter particle or a dark matter mediator
[305, 10, 132, 178, 271, 31, 152, 23, 30], making this class of particles one of the most
exciting candidates for new physics.

Black hole (BH) superradiance [380, 261, 348, 128, 56, 80] is a unique mechanism that
enables searches for weakly interacting ultralight bosons [34, 35] that relies only on the
boson’s gravitational interaction. If a new light boson with Compton wavelength of order
the BH horizon size exists in the theory—whether or not there is an initial abundance of
the particle in the environment—the BH will spin down and source macroscopic, coherent,
gravitationally-bound states of ultralight bosons [34, 35, 80]. These bosonic “clouds” carry
up to several percent of the BH’s initial mass, and have an energy density comparable to
that of neutron star matter for stellar mass BHs [35, 145, 142]. The resulting large energy
density of the cloud has time-dependent components, rotating around the BH axis at a
frequency fixed by the particle mass, resulting in coherent, monochromatic gravitational
wave (GW) radiation that depletes the cloud over parametrically longer times [35, 377, 33,
171].

The signatures of GW emission and BH spindown have been proposed to constrain and
search for ultra-light bosons [35, 318, 289, 288, 377, 78, 33, 79, 80, 32, 141, 82, 81, 50,
142, 53, 338, 83, 384]. Bosons in the 10−13 − 10−11 eV range can lead to up to thousands
of GW signals originating from our Galaxy alone [33, 32, 82, 81]. Blind continuous wave
searches for monochromatic GW from scalar boson clouds [17, 19, 286, 120, 127, 384],
as well as stochastic searches for an excess of GW power from spin-0 [364] and spin-1
[363] boson clouds around yet undiscovered BHs have been carried out with LIGO-Virgo-
KAGRA (LVK) [5, 21, 36] data. These searches have produced some constraints; however,
a robust underlying BH natal spin distribution is needed to conclusively exclude particle
parameter space. Another search strategy is to follow up BHs with a measured mass and
spin, which are newly born from binary BH mergers [32]; then the expected signals can be
precisely computed, and a conclusive search performed. Directed searches for continuous
GWs from a potential scalar boson cloud around Cygnus X-1 have also been carried out
[350]. Currently, the sensitivity of GW searches is not sufficient to see follow-up signals from
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spin-0 bosons around binary BH remnants [206], but they are promising for spin-1 bosons
in upcoming observation runs, and especially in next-generation observatories [102, 342].

BH spin measurements have set constraints on ultralight bosons using measurements of
BH properties from X-ray binaries [33, 93, 49, 256], as well as measurements of binary BH
constituents using LVK observations [93, 272, 273]. The latter have produced constraints
on spin-0 bosons of a factor of ∼ 2 in mass [272, 273], and we expect slightly stronger con-
straints for spin-1 bosons, although such an analysis has not been carried out for the full
data set. The X-ray binary measurements depend on BH accretion disk modeling, which
may introduce additional systematics [239, 203]. In addition, while the gravitational inter-
action of the BH superradiance cloud and the accretion disk does not significantly affect
the constraints [33], non-gravitational interactions of the cloud can perturb the disk dy-
namics, invalidating the constraints on the dark photon mass from BH spin measurements
for the parameters considered in this chapter.

While the gravitational aspects of superradiance have been studied extensively, making
contact with particle physics models of ultralight spin-0 or spin-1 particles can dramatically
change this picture. For spin-0 axions, the relevant interaction at the next-order after the
mass term is a quartic coupling (see e.g. [35, 376, 378, 182, 162]). This results in energy
exchange between levels in the cloud [182, 49, 278], slowing down the spin extraction and
resulting in lower-frequency gravitational waves from transitions and axion wave emission
[49]. More complicated dark sectors can result in production of new dark states [50, 162,
252, 143, 144, 90]. Beyond interactions within the dark sector itself, interactions with SM
particles can lead to additional energy loss channels [334], although for axion-like particles
these are subdominant to the dynamics of self-interactions [49].

In this chapter, we focus on studying the effects of the lowest-order interactions one can
write down for spin-1 dark photons: kinetic mixing with the SM photon [276, 199]. In the
presence of such a mixing, the huge energy density of the cloud picks up a visible electro-
magnetic field component that interacts directly with electrons, leading to cascade produc-
tion of charged particles and to the formation of a plasma. To study the plasma dynamics,
we analyze an isolated, relativistic superradiance dark photon cloud, and compute the evo-
lution of the visible electric and magnetic fields using a resistive-magnetohydrodynamic
description, valid in the limit of a strongly magnetized, tenuous plasma, that we adapt
from simulations of pulsar magnetospheres. See Fig. 5.1 for an example visualization of
the resulting magnetic field strength around a rotating BH.

Our simulations show that the resulting system is a luminous multimessenger source:
a BH system which emits an enormous electromagnetic flux, up to several orders of mag-
nitude brighter than pulsars and magnetars. This radiation is generated by turbulent
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Figure 5.1: (left) We show the visible magnetic field strength B2 (normalized by its maxi-
mum) in the equatorial plane of the central BH of mass M , dimensionless spin a∗ = 0.86,
and a dark photon mass µ = 0.3/(GM). The dark photon of the superradiance cloud forces
the pair plasma into a circular motion resulting in magnetic field line twisting, which is
released through magnetic field line reconnection, resulting in a turbulent plasma state
(shown here) and efficient energy dissipation into the plasma, driving the luminous elec-
tromagnetic emissions from the system. (right) Kinetically mixed dark photon parameter
space of interest in this chapter. The solid (dashed) black lines are contours of constant
electromagnetic luminosity emitted from the superradiance cloud around a BH of mass
10 (100) M� and initial spin a∗ = 0.9. The region above the blue contour is relevant for
electromagnetic follow-ups of compact binary mergers, discussed in Sec. 5.7.1 (the shaded
band on top of the contour is due to uncertainties on the merger rate). The area within the
green contour is of interest for continuous gravitational waves searches targeted on anoma-
lous pulsars, as described in Sec. 5.7.2. The gray shaded region is excluded by existing
measurements of the CMB spectrum by COBE/FIRAS [154, 91].

field and plasma dynamics in the superradiance cloud, and is expected to have a large
high-energy component. We find partial evidence for an intrinsic periodicity set by the
mass of the dark photon particle, giving rise to a novel object that we call a “new pul-
sar.” In Fig. 5.1, we show the parameter space of dark photon particles and the expected
peak luminosity for illustrative BHs as a function of dark photon mass and kinetic mixing
parameter.

Our results motivate a variety of novel astrophysical searches to discover these systems.
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These include electromagnetic follow-ups of BH mergers that result in rotating BHs, most
promising in the X-ray and radio bands. Another target is gravitational wave follow-
ups of pulsars with coincident frequencies or positive frequency drifts, which could be
superradiance cloud signals lasting thousands of years or more; see Fig. 5.1. In much
of the parameter space, we find that the evolution of the cloud is still dominated by
its gravitational dynamics, making the overall evolution free of electromagnetic modeling
uncertainties. At small dark photon masses and large kinetic mixings, the electromagnetic
emission has a larger power than the GWs, where we also have an exceptionally bright
sources.

Some aspects of dark photon superradiance with a non-zero kinetic mixing have been
explored in [92], and superradiance of the SM photon itself has been treated in [288, 70,
88, 89]. Ours is the first work to consistently take into account the dynamics of the SM
plasma that is automatically generated by the kinetically-mixed cloud. The interactions
with the plasma completely alter the behavior of the visible electromagnetic fields in the
vicinity of the BH and the resulting signatures.

This chapter is organized as follows; in Sec. 5.2, we review gravitational spin-1 super-
radiance. In Sec. 5.3, we provide an executive summary of the dynamics of kinetically
mixed superradiance, which we explore in detail in the subsequent sections. In Sec. 5.4, we
describe the processes by which an isolated dark photon cloud generates its own plasma
density. In Sec. 5.5, we study the dynamics of the coupled system of electromagnetic
fields and charged currents. In Sec. 5.6, we describe the key electromagnetic emission
mechanisms, including electromagnetic radiation and power dissipation in the plasma due
to turbulent dynamics. In Sec. 5.7, we summarize the observational signatures and pro-
pose several detection strategies for this new class of astrophysical object, concluding and
outlining future directions in Sec. 5.8.

This work spans the areas of particle physics, strong field electrodynamics, gravity,
and astrophysical systems, thus introducing much notation, some non-standard; we collect
definitions in App. D.7. We describe details of the numerical simulations of the superra-
diance cloud and electromagnetic fields and currents in App. D.1 and D.2, respectively.
We present the resistive current prescription in App. D.3, the small conductivity regime
in App. D.4, and aspects of the dark photon basis in App. D.5. We use the mostly-plus
metric signature (−,+,+,+) and natural units, with ~ = c = 1 and non-reduced Planck
mass Mpl = 1/

√
G.
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5.2 Black hole superradiance for vector fields

We begin by reviewing the BH superradiance of a massive vector (spin-1) boson that
interacts predominantly through gravity. The kinetic and mass terms for this dark photon
A′µ are given by

L′ = −1

4
F ′µνF

′µν − 1

2
µ2A′µA′µ. (5.1)

We assume that the dark photon mass µ arises from the Stueckelberg mechanism [4] so
in what follows, we do not discuss any dynamics that could originate from a Higgs sector
[143, 144].

The superradiant instability is a purely gravitational process that can lead to the pro-
duction of an exponentially large number of massive bosons around spinning BHs by ex-
tracting the BH’s energy and angular momentum. The bosons occupy hydrogenic clouds
characterized by a gravitational fine-structure constant α ≡ rgµ = GMµ, a principal
quantum number n, and total, orbital, and magnetic angular momentum numbers j, l,
and m. The total and orbital angular momentum can differ due to the boson’s intrinsic
spin: j ∈ {l − 1, l, l + 1}. Amongst the different cloud levels, the fastest-growing one for
vector bosons is the (j, n, l,m) = (1, 1, 0, 1) mode. Given its dynamical dominance, we
focus for brevity exclusively on the study of this level. This will be sufficient for exploring
the features that we wish to highlight in this work. The boson’s energy in this level at
leading-order in the gravitational coupling is given by

ω ' µ

(
1− α2

2

)
. (5.2)

After the birth of the source BH, the number of dark photons in the cloud grows
exponentially at a leading-α rate that, for our dynamically dominant mode, is set by

ΓSR ≡ τ−1
SR ' 4α7(ΩBH − ω) ' 4a∗α

6µ, (5.3)

where a∗ is the BH’s dimensionless spin and ΩBH its angular velocity

ΩBH =
1

2

(
a∗

1 +
√

1− a2
∗

)
r−1
g . (5.4)

In the last equality of (5.3), we approximated ΩBH � ω and took large-spin BHs (1−a2
∗)�

1. If, on the other hand, the BH’s spin is small so that its angular velocity falls below the
boson’s energy

ΩBH ≤ ω, (5.5)
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then (j, n, l,m) = (1, 1, 0, 1) superradiance does not occur. Equation (5.5) implies a maxi-
mum possible value for the fine-structure constant (saturated for maximally spinning BHs)

α . 1/2. (5.6)

The above condition, together with the strong suppression of the superradiant rate at small
α [see (5.3)] indicate that superradiance is most effective for gravitational couplings of order
α ∼ 10−1 or, equivalently, boson masses µ ∼ 0.1/rg, which for stellar BHs corresponds to
µ ∼ 10−12 eV.

The growth of the cloud stops when sufficient spin has been extracted so that the
condition Eq. (5.5) is saturated. The number of dark photons in the cloud can reach 1077

or more for a 10 solar mass BH, with the cloud mass

Mc ' 10−2

(
∆a∗
0.1

)(
α

0.1

)
M, (5.7)

for α� 1, where ∆a∗ is the difference between the initial BH spin and the final spin which
saturates the superradiance condition. The cloud mass reaches up to 10% of the mass of
the BH for large α and high initial BH spin [145]. The vector field profile around the BH,
on the other hand, is given at leading order in the fine-structure constant by

A′0 =

√
Mc√

πµ2r
5/2
c

e−r/rc sin θ sin(ωt− φ),

A′ = −
√
Mc√

πµr
3/2
c

e−r/rc{cosωt, sinωt, 0}, (5.8)

where rc = rg/α
2 is the cloud’s characteristic Bohr radius and we have taken the BH spin

direction to lie along the z-axis. From Eq. (5.8), we see that the dark electric and magnetic
fields E′ ≡ −∇A′0− ∂tA′ and B′ ≡ ∇×A′ are in a proportion |B′|/|E′| ∼ α, so the cloud
is electrically dominated. At leading order in α, the electric field corresponding to the
potential Eq. (5.8) is unidirectional and equatorially oriented, and rotates on this plane at
a frequency ω ' µ, while the magnetic field lines form concentric tori around the BH with
a common axis perpendicular to the electric field direction and passing through the BH.
Both fields decay exponentially away from the BH. We show these features in Fig. 5.2,
where we present exact (in the test field limit) solutions for both the electric and magnetic
fields, obtained by numerically solving the vector’s equations of motion in the BH’s Kerr
metric. We refer the reader to Sec. 5.5 and App. D.1 for details on the simulations. We
note that, close to the BH, the exact field solutions differ from the ones obtained from
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|E′|/|E′|max

10−4 10−3 10−2 10−1 100

|B′|/|B′|max

Figure 5.2: We plot representative sets of field lines of the electric (left) and magnetic
fields (right) of the superradiant cloud around the central BH in Kerr-Schild coordinates
(see App. D.1 for details). The m = 1 cloud is characterized by α = 0.3, while the BH
has a corresponding spin of a∗ = 0.86 (further details can be found in Table D.1). The
BH spin-axis points in the z-direction. Color indicates the field strength along each field
line, normalized by the respective maximum field strength. On the right, we also plot the
magnetic field strength inside the equatorial plane of the BH.

the approximations (5.8) due to corrections that arise at higher-order in the gravitational
coupling.

Following its formation, the cloud decays via GW emission, which is the main observable
signature of superradiance clouds composed of massive bosons that interact with the SM
solely by gravitation. The GW emission power is given by

PGW ' 17
α10

G

(
Mc(t)

M

)2

(5.9)

in the α� 1 limit [50, 338]. The quadratic dependence of the emission power on the cloud
mass leads to a power-law decay of the cloud set by

Mc(t) =
Mc(t0)

1 + (t− t0)/τGW

, (5.10)
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where τGW is the gravitational-wave decay timescale, which is given by

τGW '
GM

17α11∆a∗
∼ 30 days

(
0.1

∆a∗

)(
0.1

α

)11(
M

10M�

)
. (5.11)

5.3 Kinetically-mixed superradiance clouds: an overview

So far, we have discussed a theory where vector bosons lack non-gravitational interactions.
Going beyond this minimal setup, dark photons may interact with the SM at the renormal-
izable level via kinetic mixing with the SM U(1) gauge boson. In an effective theory below
the electroweak scale, this interaction mixes the dark and SM photons via a Lagrangian
term L ⊃ εF ′µνF

µν/2, where ε is a parameter that quantifies the mixing [276, 199]. This
term can be equivalently written as a mass-mixing term by performing the field redefinition,
A′µ → A′µ + εAµ ≡ A′µ, which results in the Lagrangian

L = − 1

4
FµνF

µν − 1

4
F ′µνF

′µν

− µ2

2
A′µA

′µ − εµ2A′µA
µ + IµA

µ,

(5.12)

where Iµ is the four-dimensional spacetime current. This choice of fields is referred to as
the interaction basis; other choices of basis are discussed in App. D.5. Due to the mass
mixing, the dark photon field acts as a source current for the visible fields and vice-versa,
as can be seen either from the equations of motion

∇αF
αβ = −Iβ + εµ2A′β, (5.13)

∇αF
′αβ = µ2A′β + εµ2Aβ, (5.14)

at leading order in the kinetic mixing parameter, or from the energy-momentum conserva-
tion relations, which manifestly show exchange of energy between the vector fields

∇αT
αβ = − F βγ(Iγ − εµ2A′γ),

∇αT
′αβ = εµ2F ′βγAγ .

(5.15)

In the context of superradiance, the kinetic mixing term allows for the superradiance
cloud to source electromagnetic fields1. Our objective in this chapter is to study the

1The induced coupling to SM electrons also results in a higher-dimensional self-interaction term for
the dark photons of the Euler-Heisbenberg Lagrangian. Approximately extrapolating the results of self-
interacting scalars [49], we estimate that the induced quartic coupling would start to affect the growth
of the cloud for ε & O(1), a value far greater than relevant for the dynamics discussed here, and that is
already excluded.
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Figure 5.3: Schematic depiction of the evolution of a kinetically-mixed dark photon su-
perradiance cloud. Starting from a spinning BH (left), a vector superradiance cloud forms
on a timescale τSR (center-left).The visible electric field sourced by the cloud accelerates
environmental charged particles, leading to cascade production of electrons and positrons
on a timescale τplasma; note that τSR � τplasma and the cascade production occurs and
completes before the superradiance instability completes (center-right). The cloud finally
decays by GW emission on a timescale τGW, and by transferring energy to the plasma,
which loses energy through electromagnetic emission on a timescale τEM(right). See text
for further details.

corresponding electrodynamics, and we numerically solve Maxwell’s equations with a su-
perradiant source term in curved spacetime. This task is technically complex, but most of
our results can be understood in simple physical terms, so to guide the reader through the
discussion presented in the following sections, we will begin here by providing a simplified
overview of our findings.

The evolution of a kinetically-mixed dark-photon superradiance cloud can be separated
into several stages that are schematically depicted in Fig. 5.3. Starting with a spinning
BH (leftmost panel), these stages correspond to the initial growth of the cloud (center-left
panel), creation of a conducting plasma via particle acceleration and pair-creation due to
the visible electric field induced by the cloud (center-right panel), and the establishment
of an electromagnetic field and plasma configuration, which decays as the plasma radiates
electromagnetically and the cloud emits GWs (rightmost panel). The initial growth of
the cloud was reviewed in Sec. 5.2 for non-interacting dark photons. From Eq. (5.14), we
see that the inclusion of kinetic mixing affects the dynamics of the superradiance cloud at
order ε, which in turn leads to effects at order ε2 in the visible fields via Eq. (5.13). Here,
we will limit ourselves to computing the visible fields at leading (linear) order in ε, so in
what follows we ignore the effects of kinetic mixing on the growth of the superradiance
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cloud. Thus, the evolution of the cloud is governed purely by the gravitational dynamics
as in the previous section (with a growth timescale τSR given by Eq. (5.3)), and we may
move on to the description of the creation of the plasma by the cloud-induced electric field.
See also the text below Eq. (5.27) for a discussion of the negligible sub-leading corrections
to the dark photon mass.

As discussed in Sec. 5.2, the cloud is dominated by an equatorially-oriented dark elec-
tric field, with a direction that rotates in the equatorial plane at frequency µ/(2π) ∼
102 Hz (µ/10−12 eV). Due to kinetic mixing, the superradiance fields act as a source term
in the visible field equations of motion, Eq. (5.13), and induce a visible electric field that
is equal to the dark electric field times the mixing parameter. As the cloud grows through
superradiance, the visible field grows concurrently. A fully-formed cloud would, in the
absence of charged particles, have a visible electric field of magnitude

|εE′| ' ε
√

∆a∗ α5/2µ√
G

' 2 · 1013 V/m
√

∆a∗

(
ε

10−7

)(
α

0.1

)5/2(
µ

10−12 eV

)
(5.16)

at distances of order the Bohr radius from the BH (rc ∼ 1/αµ). These large fields, however,
cannot be achieved due to plasma screening.

Before the cloud reaches its full size, and when visible fields are still only a fraction
of the value (5.16), environmental charged particles are accelerated to ultra-relativistic
velocities. As illustrated in the middle-right panel in Fig. 5.3, the rotation of the electric
field with the cloud curves the charged particle trajectories, which then emit synchrotron
photons. These photons, in turn, interact non-perturbatively with the background electric
field and produce additional electrons and positrons. The charge acceleration and pair
production processes repeat in a cascade, until a conducting plasma is created. This
mechanism is reminiscent of cascade production of electron-positron pairs in the strong
magnetic field around supermassive BHs described by Blandford-Znajek [69], with the
important difference that our system is electrically instead of magnetically dominated. An
extended discussion of the plasma creation will be presented in Sec. 5.4. The effects of the
plasma on the dark photon interactions with the visible fields are discussed in App. D.5.

Once the plasma is created, the electrodynamics can be studied by encoding the mi-
croscopic particle physics in an effective conductivity σ, which allows for the computation
of spatial plasma currents from the electromagnetic fields using Ohm’s law,

J = σ(E + v ×B), (5.17)
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where v is the plasma fluid velocity. This Ohmic prescription, which will be studied in
detail in Sec. 5.5, is commonly used in magnetohydrodynamics [150], and has been proposed
to treat dissipative currents in pulsars [227, 180, 181, 238, 282]. Pulsar magnetospheres
are highly conducting, σ/ω � 1 (where ω is the plasma angular frequency), so that in the
bulk of the magnetosphere electromagnetic fields are shorted out and combine to cancel
the Lorentz forces entering Eq. (5.17), resulting in a so-called “force-free” system that is
mostly dissipationless [171, 68, 257]. Dissipative effects, however, do arise on specific two-
dimensional planes called current sheets of thickness ∼ 1/σ, which may be modelled using
Eq. (5.17).

Our kinetically-mixed superradiance cloud shares many similarities with pulsars, and
due to screening is also expected to have force-free regions. In fact, from numerical simu-
lations presented in Sec. 5.5, we will see that if the plasma is highly conducting, σ/µ� 1,
plasma currents effectively redistribute charge to screen the rotating electric field induced
by superradiance εE′. This leads to charge being separated into a dipole-like distribution,
with a characteristic density that at the cloud radius is approximately given by,

ρ ' ε∇ · E′ ' ±ε
√

∆a∗α7/2µ2

√
G

(5.18)

' ±5 · 107cm−3
√

∆a∗

(
ε

10−7

)(
α

0.1

)7/2(
µ

10−12 eV

)2

,

where the plus and the minus signs correspond to opposite ends of the dipole-like pattern.
A crude, non-relativistic estimate indicates that the large magnitude of the charge den-
sity is consistent with large conductivities: for a non-relativistic collisionless plasma the
conductivity is σ ' ρ/µme, which, using Eq. (5.18), gives σ/µ ∼ 1012, where me is the
electron mass.

Despite the utility of the pulsar analogy, the resemblance with our system is limited.
First, in the absence of a plasma, the kinetically mixed superradiance cloud is electrically,
instead of magnetically, dominated. Second, while in a pulsar the magnetic field is dipolar
and decays away from the neutron star, in Sec. 5.5 we will show that in our system the
resulting visible fields remain strong well outside of the light-cylinder rLC ≡ 1/µ (the
radius out to which the plasma can corotate with the BH), up to the Bohr radius r &
1/µα � rLC. This means that in the bulk of our system, charges cannot move fast
enough to perfectly screen the rotating source field. Electric dominance and imperfect
screening suggest that in our cloud a steady-state force-free solution does not exist, unlike in
pulsars where dissipative effects are confined to the current sheets. Instead, our numerical
simulations, presented in Sec. 5.5, show a dynamical interplay between resistive and force-
free regions where electric fields have been mostly screened.
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Up to now, we have only discussed the electric field dynamics. Complementary insight
into the electrodynamics can be gained by studying instead the magnetic fields induced by
the plasma currents. The magnetic dynamics can be analyzed by combining Ohm’s law
Eq. (5.17), Faraday’s, and Ampere’s law (derived from Eq. (5.13)) to obtain the magnetic
induction equation

∂tB =
εµ2B′

σ
+

1

σ
∇2B +∇× (v ×B), (5.19)

where the first term on the right hand side accounts for the background superradiant
magnetic field. The induction equation is used to study magnetic fields in a wide variety
of astrophysical plasmas, where the electric displacement currents are smaller than plasma
currents and can be neglected, an assumption that our simulations show to be valid. The
three terms on the right-hand side of the induction equation describe different characteristic
regions of the system. Closest to the BH, the superradiant driving field is large, and the first
term on the right-hand side dominates the morphology of the magnetic fields. Away from
the neighborhood of the BH, the magnetic field is non-trivially related to the superradiant
driving fields, and the two remaining terms become dynamically relevant in a proportion
set by a magnetic Reynolds number Rm = σ|v|`, where 1/` characterizes the magnetic field
gradients. In zones where Rm � 1, the last term on the right-hand side of Eq. (5.19), which
represents pure field advection, is largest. The simulations presented in Sec. 5.5 show that
large regions in the bulk of the plasma are dominated by advection, and are characterized
by magnetic flux conservation, tight-coupling of the plasma and the magnetic fields, mostly
screened electric fields, and some emission of electromagnetic radiation due to the time-
dependent plasma charge and current densities.

Our simulations also show time-dependent regions, especially outside of the light-
cylinder, where the plasma cannot corotate with the driving fields as advection would
impose. This leads to differential rotation within the plasma and to the twisting and
shearing of magnetic field lines, as well as to regions where the second (diffusive) term in
Eq. (5.19) dominates due to large field gradients and/or small plasma velocities that result
in Rm � 1. In these regions, we find that the interplay of advection and diffusion drives
turbulent effects, such as breaking and reconnection of field lines, schematically shown in
the rightmost panel of Fig. 5.3. Unscreened electric fields along the direction of plasma
currents, expected from the simple kinematic arguments outlined above, are found at these
sites. These electric fields lead to significant Ohmic dissipation J · E, which in our sim-
ulation represent conversion of electromagnetic field energy into particle acceleration and
radiation.

Our simulations thus show that dissipation is associated with magnetic field reconnec-
tion and unscreened electric fields, as in the pulsar current sheets. In contrast to the pulsar
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system, however, in the kinetically mixed superradiance cloud the resistive effects are real-
ized in dynamically evolving regions throughout the bulk of the plasma. As a consequence,
while in pulsars most of the power emitted is due to the time-dependent nature of the
currents in the force-free bulk, we find that in our system the comparative preponderance
of dissipative effects leads to an emission power that is dominated by Ohmic losses.

Importantly, the simulations presented in Sec. 5.6.2 suggest that while increasing the
conductivity reduces the size of the dissipative regions, it also increases their number, i.e.
larger conductivities lead to “fragmentation” of the dissipative regions without changing
their volumetric fraction. As a result, we find that the dissipative power tends to a σ-
independent value (at large σ), allowing us to provide a prediction for the emitted power
that is set entirely by the dark-photon model parameters and the BH mass. The power
emitted by our system typically exceeds the emission power of pulsars by several orders
of magnitude, and for clouds around stellar BHs can be as large as L ' 1043 erg/s (an
exact expression can be found in Eqns. (5.54) or (5.61)). We ascribe this difference to the
rapid falloff of the dipolar magnetic field of the pulsar away from the neutron star, the
large volume of the superradiance cloud when compared with the pulsar’s emission regions
Vcloud/Vlightcylinder ∼ 1/α3, and to our system’s dissipative features. Given the periodic ro-
tation of the cloud, it is possible that the emitted power will have a pulsating component,
and our simulations indeed show some limited evidence that supports this hypothesis (see
Sec. 5.6.4). From our simulations we cannot compute the spectral decomposition of the
emitted power; however, we can speculate based on results of kinetic treatments of tur-
bulent plasmas (analogous to pulsar current sheet simulations) that charged particles will
be highly boosted by the large electric fields resulting in a large component of high-energy
radiation in the form of X- and gamma-rays [371, 383, 100, 101]; for further discussion see
Sec. 5.6.5.

In the final stage of our system’s evolution the cloud decays predominantly by gravitational-
wave emission, accompanied by the novel electromagnetic emission outlined here, as de-
picted in the rightmost panel of Fig. 5.3. These emission channels lead to concrete obser-
vational signatures that we describe in Sec. 5.7, such as performing EM follow-up obser-
vations of compact binary mergers, searching for a population of same-frequency and/or
positive-frequency drift pulsars, and targeting such anomalous pulsars with GW follow-up
searches.

With this short summary in hand, we now move on to provide an in-depth discussion of
the plasma and field dynamics at each stage of their evolution, starting with the production
of the plasma.
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5.4 Plasma production

In this section we describe the production of the conducting plasma within the superra-
diance cloud and determine the values of the mixing parameter ε for which a plasma is
plausibly created. We identify two main processes that are crucial for the formation of
the plasma, synchrotron radiation emitted by environmental electrons that are accelerated
by the superradiance cloud, and subsequent photon-assisted Schwinger pair production in
the background electric field. Here we estimate the rates of these two processes and show
that they can effectively create the conducting plasma even for kinetic mixing parame-
ters that are several orders of magnitude below current experimental bounds and of the
region of interest for the observational prospects discussed later in this chapter. Several
other mechanisms can produce charged particles in background fields and additionally con-
tribute to the formation of the plasma, but for brevity we do not discuss them here (for a
comprehensive list we refer the reader to [258]).

5.4.1 Synchrotron radiation

Any stray charged particle entering the kinetically mixed superradiance cloud will ex-
perience strong electromagnetic forces. Since the cloud’s magnetic field is subdominant,
|B′| ∼ α|E′| < |E′|, we simply consider the motion of e± accelerated by the electric field
(equivalently we can perform a boost into a frame with vanishing magnetic field and electric
field amplitude reduced by a factor of 1− α ' 1). Inside a fully grown cloud (at distance
r such that rg � r . 1/αµ) the electric field has approximately constant amplitude given
by Eq. (5.16) and rotates with angular velocity ω ' µ. The electrons/positrons are then
approximately linearly accelerated over a time scale of 1/µ, reaching a maximum boost
factor of

γe '
eε|E′|
meµ

' eεα5/2
√

∆a∗
Mpl

me

' 1012
( ε

10−7

)( α

0.1

)5/2
(

∆a∗
0.1

)1/2

, (5.20)

where in the first line we made use of Eq. (5.16). As the electric field rotates, the elec-
tron/positrons trajectories bend with approximate radius of curvature rc ' γeme/(eε|E′|) '
1/µ. During this circular motion the charged particles radiate synchrotron photons, pre-
dominantly at frequency ωsyn = γ3

e/rc ' γ3
eµ. We can estimate the rate for synchrotron
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emission at this frequency as Psyn/ωsyn, which gives

Γsyn '
2

3

e2γe
rc
' 2

3

e3ε|E′|
me

' 2

3
e3ε α5/2

√
∆a∗µ

MPl

me

, (5.21)

where again, in the last equality we used (5.16). In order for the plasma to be phenomeno-
logically relevant it must be created before the cloud is depleted by gravitational wave
emission, on a timescale given by Eq. (5.11). To ensure that this occurs, we impose the
sufficient requirement that the synchrotron and photon-assisted pair production rates (dis-
cussed in the next section) occur before any particle can escape the cloud, i.e., that the
synchrotron and pair-production timescales are shorter than the light-crossing time of the
cloud, 1/αµ, which is much smaller than the GW decay time (5.11). For the synchrotron
emission rate of Eq. (5.21), this leads to the requirement

ε >
1

e3 α5/2
√

∆a∗

me

MPl

' 10−18

(
0.1

α

)5/2(
0.1

∆a∗

)1/2

(5.22)

As evident from Eq. (5.20), the above requirement also ensures that the accelerated elec-
trons are highly relativistic (γe � 1).

5.4.2 Photon assisted Schwinger pair production

A static electric field can decay to electron-positron pairs through quantum tunneling, a
process known as Schwinger pair production. The probability of scalar e± pair creation
was first computed in Schwinger’s seminal work [331], from vacuum decay in an external,
slowly varying electric field E. The rate per unit volume V is given by

Γe±

V
=

(e|E|)2

4π3

∞∑

n

1

n2
exp

(
−πm

2
e

e|E|n
)
, (5.23)

and is exponentially suppressed for electric fields below the critical value m2
e/e ' 1018 V/m.

Even the large electric field generated by the dark photon superradiance cloud, given in
Eq. (5.16), falls short by a few orders of magnitude, making Schwinger pair production
unlikely in our setup. However, pair creation can be greatly enhanced in the presence of
highly energetic photons [329], such as the synchrotron photons described in the previous
section. Photon assisted Schwinger pair production is similar to magnetic pair produc-
tion [151] invoked in Blandford-Znajek processes [69], where radiation with energy above
the threshold 2me can produces electron-positron pairs by scattering off of strong magnetic
field.
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Photon-assisted Schwinger pair creation can be viewed as a semiclassical tunneling
process and the production rate has been computed with methods similar to the one used
for metastable vacuum decay in Ref. [110]. The exponential factor in the rate is given
by e−SB , where SB is the Euclidean action evaluated on the bounce solution (the classical
trajectory that extremizes the action). In our case [262, 139]

SB = −γθ +

(
2m2

e

eε|E′| +
eε|E′|
2m2

e

γ2
θ

)
arctan

2m2
e

eε|E′|γθ
, (5.24)

where γθ = sin θ meωγ/(eε|E′|), ωγ is the photon frequency, and θ is the angle between
the direction of the photon and the background electric field. As the synchrotron photons
travel in the cloud, they will encounter electric fields that are almost perpendicular to their
direction of propagation within a time scale of 1/µ, when the production rate is maximized.
As a result, for a simple estimate of the rate we can take sin θ ' 1.

There are two limiting cases of Eq. (5.24) depending on the photon frequency. If ωγ �
2me, SB ' πm2

e/(eε|E′|), which reduces to the standard Schwinger result of Eq. (5.23).
Therefore if the photon energy is below the pair production threshold, the electric field
still needs to be super-critical for the process not to be exponentially suppressed. On the
other hand, if ωγ � 2me, as is the case for most of the synchrotron photons described in
the previous section, SB ' 2m3

e/(eε|E′|ωγ). The additional, potentially very small, factor
of 2me/ωγ significantly enhances the probability of pair production. The full expression of
the rate (including the prefactor of the exponential term) is given in Ref. [139] and is larger
for photons with polarization perpendicular to the electric field. For the highly energetic
synchrotron photons with perpendicular polarization, we have

Γγe± =
αEM

2π

eε|E′|
me

exp

(
− 2m2

e

eε|E′|
2me

ωsyn

)

=
αEM

2π

eε|E′|
me

exp

[
− 4m6

eµ
2

(eε|E′|)4

]
. (5.25)

For cascade production to occur in our system the term in the exponential must reach
a magnitude of order unity when the cloud has reached its full size (or before) so that the
exponential suppression of pair-production is lifted. This translates into a minimum value
for the mixing parameter ε & m

3/2
e µ1/2/e|E′|. More precisely, in what follows we impose

that the pair-production rate for a fully grown cloud is faster than the light crossing
time of the cloud 1/αµ, so that the synchrotron photons split into e± before escaping the
superradiance cloud, ensuring a cascade production of the plasma, which translates into a
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minimal mixing parameter

ε�
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αEMγe
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e
√

2µ
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≈
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αEMγe
2πα

)−1/4 1

eα5/2
√
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√
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µ
(5.26)
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µ

)1/2( log αEMγe
2πα

20

)−1/4

,

where in the logarithmic term we made use of (5.20), and in going to the second line we
used Eq. (5.16). Notice that the above requirement also guarantees that ωsyn � 2me. For
kinetic mixing parameters saturating the lower bound in Eq. (5.26), plasma production
will be triggered when the cloud has reached a close-to maximal size, while for mixing
parameters above this lower bound the plasma will be created before the cloud has fully
grown. We show the smallest values of kinetic mixing parameters that allow for cascade
pair creation in the superradiance cloud as a function of dark photon mass in the left panel
of Fig. 5.4.

5.4.3 Dynamics leading to a quasi-steady state

The plasma begins to be populated once the pair-production cascade initiates, which as
noted previously happens when the superradiance cloud has grown to a size such that the
pair-production rate becomes of the order of the cloud’s Bohr radius, i.e. Γγe± ' αµ. For
this to occur and up to a logarithmic correction, the superradiant field must reach a critical
value eε|E′crit| '

√
2m

3/2
e µ1/2. The superradiant field grows to E′crit in a few superradiance

times τSR ' 1/4α6a∗µ. After that, the plasma is created by cascade production on the
much shorter light-crossing timescale, over which the superradiant field and the cascade
production rates are approximately fixed to E′ ' E′crit and Γγe± ' αµ respectively2.

During cascade production, the charge density grows exponentially as ne = n0
e exp

(
2Γγe±t

)
,

where ne = n−e +n+
e is the total number density of electrons and positrons. Pair production

stops when the charged plasma effectively screens the critical electric field due to charge
separation, which happens when the electron number density reaches nfe ' ε∇ · E′crit/e '√

2α(meµ)3/2/e2. Assuming that when the cascade begins we start from one single electron

2For simplicity, throughout Secs. 5.4.1 and 5.4.2, we use the superradiant field value at saturation,
Eq. (5.16), instead of the critical field, E′crit. The latter will be as large as the saturation field only for the
smallest values of ε allowed, given numerically in Eqs. (5.22) and (5.26).
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Figure 5.4: (left) Smallest values of the kinetic mixing parameter ε that allows for efficient
e± pair production in the superradiance cloud as a function of dark photon mass µ, for BH
masses of 10M� (blue) and 100M� (orange), with initial BH spin of a∗ = 0.9. The rate for
photon stimulated Schwinger pair production, given in Eq. (5.25), is required to be greater
than the size of the cloud, αµ, when the cloud has fully grown. Smaller dark electric fields
at small µ, require larger ε to initiate the cascade. The sharp cutoff corresponds to the
highest dark photon mass that satisfies the superradiance condition for the fastest growing
level. (right) Ratio of the time needed to populate the plasma over the superradiance e-
folding time as a function of the kinetic mixing parameter ε and the gravitational coupling
α for a BH mass of 10 M� and initial BH spin of a∗ = 0.9 (the ratio is independent of M
and only mildly dependent on a∗). An estimate of the ratio is given in Eq. (5.27), while in
the plot τplasma is evaluated using the electric field value at the time that the cascade pair
production is initiated. In the dark gray shaded region, the electric field is always too small
to produce e±. When the cascade is efficient, the plasma is filled within a small fraction of
one superradiance e-folding time (τSR grows steeply at small α). In both panels, the light
gray shaded region is excluded by measurements of the CMB spectrum by COBE/FIRAS
[154, 91]

in the cloud, n0
e ' (αµ)3, the plasma grows nfe/n

0
e e-folds before the cascade stops, so that
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the plasma formation time can be estimated as

τplasma '
1

2Γγe±
ln

(
nfe
n0
e

)
' 1

2αµ
ln

m
3/2
e

e2α2µ3/2
.

The plasma production time is thus parametrically shorter than the superradiance timescale
by a factor

τplasma

τSR

' 2a∗α
5 ln

m
3/2
e

e2α2µ3/2
(5.27)

In the right panel of Fig. 5.4 we show the above ratio of timescales for the values of ε and
α that satisfy the plasma pair production requirement from Eq. 5.26.

As the dark photon cloud continues to grow and the electric field increases, more charged
particles will be created and the plasma will rearrange itself in the screening configuration,
until E′ has reached its maximum value Eq. (5.16) after ≈ 180 τSR, at which point the
charge density achieves its maximal value Eq. (5.18). The numerical simulation presented
in the next sections will show how charge separation in the cloud and electric screening are
indeed good approximations. Note that the formation of the plasma induces a plasma mass
for the SM photon (ωp = e

√
ne/me), but does not significantly affect the dark photon mass.

In fact, in the limit µ→ 0, a massless mode must remain in the theory even in the presence
of the plasma, which indicates that the leading contribution to the dark photon mass is
simply µ, up to ε2 corrections. The plasma frequency does not affect the mixing between
the dark and visible photons either, nor the propagation of visible fields in the plasma,
the reason being that in our system the energy density in the visible electromagnetic fields
greatly exceeds the energy density in the charged e± plasma (by a factor

√
me/µ), so the

tenuous plasma cannot impede the propagation of the comparatively larger EM fields. This
is different from the case in [138], where the EM fields are a small perturbation on top of a
comparatively dense charged plasma. A more detailed discussion of plasma effects on the
dark photon is presented in App. D.5. Note also that the total mass of the plasma,

Mplasma ≈
meρ

e(αµ)3
' εα1/2(∆a∗)

1/2meMpl

µ

'10−29M�
( ε

10−7

)( α

0.1

)1/2
(

∆a∗
0.1

)1/2(
10−12 eV

µ

)
(5.28)

is much smaller than the mass of the cloud, Mc = α2∆a∗M2
pl/µ, leaving the gravitational

potential unaltered. We can then safely assume that the growth and dynamics of the
superradiance cloud is not affected by the presence of the standard model plasma.
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In the left panel of Fig. 5.4, we show the range of ε and µ where fast cascade pro-
duction occurs and the plasma is populated, Γγe± > αµ. Much slower processes can also
populate this plasma in the parameter spaces where the fast cascade production is inactive.
Assuming, for example, Bondi accretion and O(1) sound speeds cs, it takes roughly

τacc =
Mplasma

ṀBondi

≈ εα−3/2(∆a∗)
1/2 c

3
sMplµ

πnM

'10 years
( ε

10−7

)( α

0.1

)−3/2
(

∆a∗
0.1

)1/2 ( µ

10−12 eV

)(1/cm3

nM

)(cs
1

)3

(5.29)

to populate enough charged particles inside the superradiance cloud, where nM is the
matter number density in the interstellar medium. Such a time scale suggests that for
parameters where the cascade production is active, accretion from interstellar medium can
be safely ignored during dark photon superradiance and plasma generation. On the other
hand, in the parameter space where the cascade production is inactive, such processes can
be fast enough to populate a plasma inside the superradiance cloud around isolated BHs
inside our galaxy, which are most likely more than thousands if not millions of years old.

Finally, it is worth pointing out that the transient process of cascade particle production
discussed in this section only produces a small and unobservable amount of emission. The
transient effects discussed in [92], for example, occur when |E|2 ∼ m3

eµ, which amounts to a
total energy of 1032(10−12 eV/µ)2(0.1/α)3 ergs (independent of ε). As we will demonstrate
in section 5.6.2, this is about 20 orders of magnitude smaller than the total electromag-
netically dissipated power from the superradiance cloud. Similarly, photon superradiance
[288, 95, 70, 88, 89] will saturate long before the field strengths and energy densities in the
photon superradiance cloud reaches sizes relevant for observation.

5.5 Field configurations

We have shown that a pair production cascade ensues on short timescales, once the superra-
diance dark photon cloud surpasses a critical electric field strength during the exponential
growth of the cloud. The generated charges form a highly conducting plasma that is sub-
ject to the electromagnetic fields of the dark photon cloud. In this section, we study the
macroscopic state this plasma equilibrates into. To that end, we consider, numerically,
the superradiance cloud of a kinetically mixed dark photon on a fixed Kerr spacetime of
mass M and dimensionless spin parameter a∗. As outlined throughout secs. 5.3 and 5.4,
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it is crucial to work with an Ohm’s law that accounts for the energy dissipation into the
plasma inside the cloud. Building on the analytical discussions in the previous section, we
first examine the structure of the visible electromagnetic fields of the cloud-plasma system
on large scales. On small scales, we demonstrate that, in the high conductivity limit, tur-
bulent dynamics emerges accompanied by efficient magnetic field line reconnection in the
bulk of the dark photon cloud. Throughout the section, we study the system considering
all relativistic effects of the background spacetime in the interaction basis.

We begin by introducing the plasma model in the context of a kinetically mixed massive
vector field with the SM photon in Sec. 5.5.1. We establish that within this model, a quasi-
stationary end state of the pair production cascade is reached and characterize its large
scale behavior in Sec. 5.5.2, and small-scale dynamics in Sec. 5.5.3. In Sec. 5.5.4, we briefly
summarize the main findings.

5.5.1 Plasma model

We study the kinetically mixed field equations (5.13) of the visible field Aµ in the interaction
basis (5.12). A strongly magnetized, highly-conducting pair plasma, is well-described by
the force-free limit of ideal magnetohydrodynamics (see, e.g., Ref. [155] for a review).
Specifically, force-free electrodynamics is applicable when (i) resistive effects are negligible,
(ii) the magnetic field strength is larger than the electric field’s, i.e., B2 > E2, and (iii)
the plasma mass density ρp and pressure Pp are much smaller than the electromagnetic
energy density, i.e., B2 � ρp, Pp (see e.g., [171, 68]). In force-free electrodynamics, one
can numerically evolve only the electromagnetic fields, without keeping track of the fluid
quantities, with the current being uniquely determined from the electromagnetic fields
by the requirement that the Lorentz force vanishes (see, e.g., Refs. [291, 226] for details
on the force-free limit). In essence, FαβI

α = 0 allows ∇βF
αβ = Iα to be rewritten as

Fαγ∇βF
αβ = 0. (More details, include the equations of force-free electrodynamics in terms

of electric and magnetic fields can be found in App. D.3.)

As discussed in the previous sections, the superradiant system considered here satisfies
condition (iii) [see (5.28)], but a priori violates conditions (i) and (ii). Exactly how
and why these violations persist, even at large conductivities is the subject of the following
subsections. However, one can already anticipate that in the limit of vanishing backreaction
of the pair plasma onto the visible electromagnetic fields, the magnetic dominance is lost by
virtue of the superradiant solution being electrically dominated: B2 = ε2B′2 < ε2E ′2 = E2.
Since electric dominance implies that there is no frame where the electric field, and hence
the acceleration on any charges, vanishes, it is furthermore not surprising that dissipative
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processes also become important. Therefore, in order to relax assumptions (i) and (ii), we
modify the force-free equations to explicitly allow for dissipation by introducing an Ohm’s
law with finite conductivity σ, while still requiring the current to be a function of the
electromagnetic fields. This is done in such a way that, under a certain set of assumptions,
the force free limit can be recovered as σ → ∞. Slightly abusing terminology, we shall
refer to this as resistive force-free electrodynamics. Several variations of this approach
have been applied to simulating pulsar magnetospheres [227, 180, 238, 290, 247], and in
particular the electrically dominated current sheet [238, 247], and here we generalize these
to the kinetically mixed case (see also App. D.3 for more details). In the following, we will
describe how we set up the coordinate system, the Maxwell equations, the fluid of charged
particles and the Ohm’s law in a fully relativistic simulation of the plasma of electrons and
positrons inside the superradiance cloud.

Space-time decomposition: We begin by discussing how the kinetically-mixed Maxwell’s
equations for the visible fields can be decomposed according to a given choice of time slicing
of a spacetime, which for this study will be given by the Cartesian Kerr-Schild coordinate
time t. Using the (future-pointing) unit normal to slices of constant time nµ, the visible
electric and magnetic fields defined with respect to this slicing are

Ei ≡ nνF
iν , Bi ≡ nν(∗F )iν =

1

2
nνε

iναβFαβ. (5.30)

where εαβγδ is the Levi-Civita tensor. These are the quantities that we evolve on the BH
spacetime. Projecting the kinetically mixed Maxwell equations (5.13) into components
orthogonal and parallel to the time slice, one obtains the evolution equations in terms of
three-dimensional spatial quantities. We give the explicit form of these equations that we
use to carry out the numerical evolution in App. D.2.

In order to evolve the electric and magnetic fields, we also need to specify the elec-
tromagnetic current. The four dimensional current Iµ can be decomposed into a spatial
component J i, and a component perpendicular to the slices of constant time

J i = I i − ρqni, ρq = −nµIµ, (5.31)

where ρq is the Eulerian frame (i.e., with respect to the slices of constant time) charge
density. We directly calculate the charge density from the divergence of the electric field,

ρq = DiE
i − εµ2nµA

′µ, (5.32)

using the Gauss’s law constraint equation obtained from projecting the kinetically mixed
Maxwell equations for the visible fields (5.13) onto the time slice. However, we still need
to specify the spatial part of the current J i.
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Ohm’s law: As discussed above, we introduce the effect of finite conductivity using a
simple Ohm’s law in the frame of the fluid (plasma)

jµ = σeµ, (5.33)

where jµ and and eµ are, respectively, the electromagnetic current and visible electric field
in the fluid frame. The latter is defined in terms of the fluid velocity uµ,

eµ ≡ uνF
µν , jµ ≡ Iµ + (uνIν)u

µ, (5.34)

in an analogous way to the Eulerian frame quantities. With this prescription, we are
neglecting anisotropic magnetic field effects. However, as the superradiance cloud system
is characterized by strong electric fields, this is the dominant contribution away from
the force-free limit. Note that the Ohm’s law (5.33) instantaneously relates currents and
electric fields, a prescription that is valid for low-inertia plasmas such as ours. In eq. (5.33),
the conductivity σ is a phenomenological parameter that allows for energy dissipation via
mechanisms that are set by the microphysics, which is left unspecified. While without a
microphysical description it is not possible to determine the value of the conductivity, we
expect that the conductivity of the pair plasma considered here is large when measured in
terms of the system’s natural length scale (the inverse dark-photon mass), i.e., σ/µ→∞
[see also a brief discussion below eq. (5.18)]. Note that in this limit, other charge transport
mechanism such as diffusion due to charge gradients can be safely neglected.

The resistive relation (5.33) allows us to compute the fluid-frame currents from the
visible electromagnetic fields. However, since we are not directly evolving the fluid, and in
particular its velocity, this is not sufficient to give the Eulerian current entering into the
evolution equations. In ideal magnetohydrodynamics (including the limiting case of force-
free), given the electromagnetic fields, one can reconstruct one component of the velocity,
referred to as the drift velocity

vid,ideal =
εijkEjBk

B2
, (5.35)

where here we use vi to refer to the Eulerian spatial velocity of the fluid vi = −ui/(nµuµ),
though not the component of the velocity parallel to the magnetic field. In our resistive
extension, following [181] (see also Ref. [227]), we use a drift velocity that is augmented
with an electric component to allow for electrically dominated regions to be treated self-
consistently,

vid =
εijkEjBk

B2 + E2
0

, E2
0 = B2

0 + E2 −B2,

B2
0 =

1

2

[
B2 − E2 +

√
(B2 − E2)2 + 4(EiBi)2

]
. (5.36)
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This ensures that the drift velocity is bounded by the speed of light, even in electrically
dominated regions, and is further reduced in regions with non-vanishing resistive effects,
i.e., EiB

i 6= 0. We note that, while the quantities above are written in terms of E and B
fields, B2 − E2 = FµνF

µν/2 and EiB
i = Fµν(∗F )µν/4 are spacetime scalars.

In general, the full fluid velocity cannot be determined from the electromagnetic fields
alone, without extra conditions. Here, following [238], we identify vi = vid, i.e., we set
the non-drift velocity component to zero in the BH frame defined by nµ. With the fluid
velocity specified, we can transform (5.33) into the Eulerian frame, giving

J i = ρqv
i
d + σE0

√
B2 + E2

0

B2
0 + E2

0

(
E0E

i +B0B
i

B2 + E2
0

)
. (5.37)

This is the kinetically mixed extension of the current considered in [238]. In App. D.3,
we further discuss the advantages and limitations of this choice of current, and contrast it
with other currents developed in the literature. Notice, however, this ansatz is merely a
prescription to extend the regime of validity of the force-free paradigm to resistive regions
(such as current sheets), which has physical meaning only in the high-conductivity limit,
where B2 > E2, EiB

i = 0, and σE0 < ∞, such that vid → vid,ideal. Hence, while different
choices of currents may result in different physics at moderate conductivity, for σ →∞ all
prescripts converge towards the well-defined force-free limit. Therefore, we primarily focus
on the trend towards this limit.

Numerical setup: The visible fields Ei and Bi are numerically evolved on a fixed Kerr
spacetime in Cartesian Kerr-Schild coordinates. The massive vector field solutions on this
background spacetime, which enter as source terms in the evolution equations, are con-
structed numerically (this is discussed in App. D.1). We restrict our attention to solutions
where the superradiant instability has been saturated, which occurs when the cloud oscil-
lation frequency is synchronized with the horizon frequency ωR = ΩBH. The computational
domain extends from the BH horizon to spatial infinity through the use of compactified
coordinates, and mesh refinement is used to concentrate resolution in the central region,
enabling us to resolve the BH-cloud system sufficiently up to r = 10rc. The conductivity σ
is set to be constant in space and time, as is serves merely as a proxy for the local resistivity
present in the cloud. In light of the lack of a microphysically motivated conductivity, and
the success of analogous choices in the case of the pulsar magnetosphere (see e.g., [238]),
this choice, while unphysical, is a first step towards a more complete analysis. We also
note that, any choice of spatially dependent conductivity that varies on a macroscopic
length scale likely results in similar qualitative and quantitative behavior of the system.
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This follows provided the system’s state is independent of conductivity for sufficiently high
values, because resistive features (magnetic reconnection, energy dissipation, etc.) are ac-
tive on scales below the macroscopic scales of the system. Finally, we evolve the system
of equations forward in time using a higher-order explicit Runge-Kutta algorithm. The
limitations of this choice in the context of stiff equations in the large conductivity limit,
as well as further details of the numerical methods, are discussed in App. D.2. We evolve
the system, starting from suitably chosen initial data, for a sufficiently long period of time
(∼ 200/µ or longer) such that it relaxes towards an approximate equilibrium, as measured
by the Poynting flux at large radii becoming nearly constant. Details are given in App. D.2.

5.5.2 Field solutions: Large scale behaviors

In the following, we demonstrate how in the quasi-steady state solution, the strong electric
field of the superradiance cloud is mostly screened by locally produced charges at large con-
ductivities, and the visible magnetic field begins to play an important role in the system.
As noted above, the physical value of the plasma conductivity σ will be set by a micro-
physical scale (due to scattering, synchrotron radiation, pair production and annihilation,
etc.) that we expect to be much smaller than the other physical length or time scales in
the system that we consider (e.g., 1/µ). However, due to numerical limitations, we only
consider values up to σ/µ = 20. Therefore, in order to make qualitative and quantitative
statements about the properties of the quasi-endstate, we proceed by discussing the behav-
ior of the system as a function of conductivity, focusing primarily on σ/µ ≥ 1 (though we
include the low-conductivity limit in App. D.4 for completeness), and extrapolate trends
towards σ →∞ if possible. This is the approach typically used to study resistive effects in
pulsar magnetospheres [238, 290, 247]; we discuss possible shortcomings of these methods
below.

We begin by considering the behavior of the visible electric field Ei of the quasi-
stationary endstate of the pair cascade as function of conductivity in Figure 5.5. In the
vacuum limit, σ/µ = 0, there is no electric field generated by a charged plasma, and the
depicted field lines are just an equatorial slice of the electric field Ei = εE ′i shown in Figure
5.2. For σ/µ ≥ 1, the main qualitative feature, as summarized in Sec. 5.3, is the buildup
of the dipolar screening charge density leading to a significant reduction of the visible elec-
tric field compared to the vacuum case. As the conductivity increases, this suppression of
E2 grows and the component of Ei along the BH spin-axis becomes more important, as
Ez/E ∼ O(1) in the σ/µ = 20 panel of Figure 5.5.

Another important qualitative feature we find is that the visible electric field exhibits
a global de-phasing of π/2 with respect to the dark electric field at large conductivities.
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Figure 5.5: We show the visible electric field geometry, Ei, and magnitude as a function
of the plasma conductivity σ in the equatorial plane of the BH. The superradiance cloud’s
phase is the same in each panel. Color (red/blue) correspond to the magnitude of the com-
ponent along the spin axis, i.e., in the z-direction, normalized by the maximal magnitude
of that component at the given conductivity. Field lines are projections of the electric field
onto the equatorial plane, while the color of the field lines (yellow/green) indicates the
magnitude of the visible electric field normalized by the maximal magnitude at σ = 0. The
BH and cloud parameters are as in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86. With increasing
conductivity, the electric field magnitude decreases compared with the vacuum limit, and
Ez/E ∼ O(1) for σ/µ = 20. The field geometry undergoes a phase-shift of π/2 between
vacuum and large conductivity limits.

This de-phasing can be understood analytically in the non-relativistic limit, α � 1. In
this limit, a spatial derivative, which is set by the inverse cloud size (∇ ∼ αµ), is much
smaller than the time derivative (∂t ∼ µ). For electric fields with similar or larger strengths
compared to the magnetic field, as indicated by our numerical simulations at small and
moderate conductivities (see Figure 5.7 below), the Maxwell equations in the interaction
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basis (D.8) reduce to

∂tE
i ≈ −σEi + εµ2A′i, (5.38)

where we assume the same Ohm’s law as before in (5.33). With the non-relativistic super-
radiant field solutions A′i in (5.8), we see that the visible electric field is driven towards the
inhomogeneous solution

E ∝



σ + iµ
µ− iσ

0


 e−iωt + c.c. (5.39)

over timescales of 1/σ. Hence, as conductivity increases towards σ ∼ µ, the visible electric
field direction rotates with respect to a fixed superradiance cloud phase, such that at large
conductivities, σ/µ� 1, the visible and superradiant electric fields exhibit a phase-offset of
π/2. Notice, however, at very large conductivity, this analytic approximation, in principle,
is no longer valid, as it neglects the magnetic field effects, which become important as the
electric field is screened, for σ/µ � 1. These effects induce the appearance of small scale
structures visible in the last panel of Figure 5.5. We will elaborate on the break down of
this approximation and the emergence of small scale features in more detail in Sec. 5.5.3.

As the conductivity grows, the electric field decreases in amplitude and the magnetic
field plays a more important role. The field line geometry and magnitude of the visible
magnetic fields are shown as a function of conductivity in Figure 5.6. At vanishing σ,
the solutions are identical to the vacuum solution, and the snapshot in Figure 5.6 simply
represents a slice of the geometry shown in Figure 5.2. The magnetic null line (i.e., where
Bi = 0) crosses this slice once on either side of the BH as they spiral away from the BH.
The field lines close around this null line, and the magnetic field strength is largest close
to the BH and decays exponentially towards spatial infinity. In the vacuum limit, the dark
photon field exhibits an exact helical symmetry about the BH spin-axis3. For σ = µ, the
magnetic field pattern still exhibits this helical symmetry approximately on the spatial
scales depicted in Figure 5.6. This symmetry is broken for σ/µ > 1. Therefore, the last
two snapshots of Figure 5.6, while representing the magnetic field geometry qualitatively,
are not indicative of the full three-dimensional field geometry. Qualitatively, at large
conductivities, the plasma turns into a highly conducting pair plasma attaching to the
visible magnetic field lines. This implies a differential rotation of the magnetic field lines

3The helical Killing field is kµ = ξµ − ΩBHϕ
µ in terms of the stationary and axisymmetric Killing

vectors. The superradiant field A′µ strictly retains this symmetry, at leading order in the kinetic mixing,
i.e. LkA

′
µ ∼ O(ε2).
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Figure 5.6: Magnetic field lines Bi and magnitudes in a coordinate slice spanned by the
BH spin (pointing in the z-direction), and an arbitrarily chosen superradiance cloud phase.
The six panels show the field configurations in the same slice for successively larger con-
ductivities σ. The background colors (red/blue) indicate the magnitude of the component
perpendicular to the slice Bϕ in the ϕ-direction around the BH normalized by the magni-
tude of the visible magnetic field. The colors of the field lines (yellow/green) indicate the
magnitude of the visible magnetic field along the field lines normalized by the maximal
magnitude in the vacuum case Bσ=0

max . The BH and cloud parameters in all panels are as
in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86. The magnitude of the magnetic field, while
exponentially decaying in the vacuum limit, is roughly uniform at large conductivities
σ/µ = 20. The small-scale features are discussed in detail in Sec. 5.5.3

at large and small distances from the BH, which breaks the helical geometry into a more
complex configuration presenting small-scale features, that are further discussed in the
next section. For both the electric and magnetic field, the presence of the plasma leads
to field strengths that are relatively uniform in magnitude within the Bohr radius (as can
be seen in the σ/µ = 20 panel of Figure 5.5). The small-scale features, crucial for the
high-conductivity dynamics of the system, are discussed in detail in the next section.
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Figure 5.7: (top row) The ratio between visible magnetic and electric field strengths, B2

and E2, respectively, as function of conductivity σ in the same slices as in Figure 5.6
(i.e., spanned by the BH spin-axis in the z-direction and an arbitrary superradiant phase).
Contour lines indicate, where B2/E2 = 1. (bottom row) The magnitude of the visible
electric field component in the direction of the visible magnetic field, |EiBi|, normalized
by both magnitudes. The slices of the top and bottom rows are identical. The BH and
cloud parameters in all panels are as in Figure 5.2, i.e., α = 0.3 and a∗ = 0.86. For σ/µ . 1,
the electric field is dominant everywhere and the violations of |EiBi| = 0 is strong, while
for σ/µ & 1, the magnetic field begins to dominate in some regimes and |EiBi| = 0 is
violated only in isolated regions.

In order to understand the degree to which our solutions approach a force-free solution
in the σ → ∞ limit, we consider how violations of the force-free conditions EiB

i = 0
and B2 > E2 (respectively, conditions (i) and (ii) discussed in the beginning of subsec-
tion 5.5.1), change with increasing conductivity. In Figure 5.7, we show, in representative
slices, pointwise measures of the violations of these conditions, while in Figure 5.8 we show
how volume integrated measures of these violations decrease with increasing conductivity.

Examining a volume integral of EiB
i as a function of conductivity, shown in rightmost

panel of Figure 5.8, we find that it begins to decrease like 1/σ for σ/µ ≥ 1. From the
bottom panels of Figure 5.7, we can see that, in contrast to low and moderate value of
σ/µ, at high conductivity, large values of EiB

i (relative to the magnitude of the fields)
occur only in isolated, smaller-scale regions.
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Figure 5.8: (left) We plot the maximal ratio of visible magnetic to electric field mag-
nitudes maxB2/E2, and the maximal magnetic and electric field magnitudes, B2

max and
E2

max, normalized by their maximal vacuum values, as a function of plasma conductivity
σ/µ ∈ {0.001, 0.01, 0.1, 1, 2, 5, 10, 20}. (middle) The fractional coordinate volume VB2>E2

of magnetically dominated regions inside a coordinate sphere of radius 4/(αµ) around the
central BH as function of conductivity. (right) We show the behavior of the volume inte-
gral of |EiBi| over a coordinate sphere of radius 10rc, IEB, as a function of conductivity,
normatlized to its vacuum value Iσ=0

EB . As above, we consider here a BH-cloud system with
α = 0.3 and spin a∗ = 0.86 in all panels.

We also find that the fraction of the volume that is magnetically dominated increases
with increasing conductivity, as shown in the middle panel of Figure 5.8, in particular,
for a coordinate sphere of radius 4/(αµ). For σ = 0, none of this volume is magnetically
dominated (as expected, since B′ ∼ αE ′, B = εB′, and E = εE ′), while for σ/µ = 20,
approximately one-third of the volume is. The spatial extent of these magnetically domi-
nated regions can be seen in the top panels of Figure 5.7. Similarly, as shown in the left
panel of Figure 5.8, the global maximum visible electric and magnetic field strengths are
comparable, while the value of maxB2/E2 increases to large values with large conductivi-
ties.

Näıvely, one might expect that in the infinite conductivity limit, the visible electric field
in the fluid frame is completely shorted out by large scale charge separation, leading to
eµ → 0, and hence a magnetically dominated solution everywhere (recalling that magnetic
dominance is equivalent to the existence of a frame where the electric field vanishes, i.e.,
B2/E2 > 1). The results above suggest that a force-free solution might exist for σ →∞, at
least in a significant fraction of the total volume taken up by the plasma and superradiance
cloud. However, given the slow increase in the magnetically dominated fraction of the
volume with increasing conductivity, it seems plausible that electrically dominated regions
with non-zero volume may persist as σ → ∞. Electric dominance implies an unscreened
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electric field in the fluid frame, allowing for strong particle acceleration, and the dissipation
of field energy. This is consistent with our force-free simulations (without a guide field),
which always evolve towards developing electrically dominated regions (see Figure D.3 in
App. D.3 for a discussion on these force-free simulations), and will be discussed further in
the following section. In the next section, we will also discuss how the violations of the
force-free conditions are connected to the turblent behavior the plasma.

5.5.3 Field solutions: Small scale turbulence

In the previous section, we found that a large-scale charge separation screens the super-
radiant electric field, lifting the importance of the visible electric field and leading to
magnetically dominated regions. In what follows, we focus on the magnetic field dynamics
in the large-conductivity regime. We show that, in this regime, the dark photon superra-
diance cloud-plasma system is characterized by turbulent plasma dynamics in the bulk of
the system. A trend towards small-scale features can already be seen in Figure 5.6, and
becomes more apparent in Figure 5.7 in the previous section. The turbulent regions emerge
not in isolated and clearly structured lower-dimensional regions, but rather across the bulk
of the cloud. This is in contrast to the pulsar magnetosphere, where, at least in the high
conductivity limit, small scale features and dissipation are expected to be contained mostly
in a two-dimensional current sheet.

In order to understand the turbulent behavior of the visible magnetic field dynamics at
moderate and large conductivities, it is instructive to consider the visible magnetic induc-
tion equation in the presence of a finite kinetic mixing with the massive vector field. For
simplicity, we focus on the flat spacetime limit only, noting that the following qualitative
arguments are unchanged on curved backgrounds. Furthermore, for clarity, we assume that
the fluid (i.e., the plasma) is mostly non-relativistic, and that at large σ, the plasma is
conduction (as opposed to advection) dominated, as explicitly shown in App. D.4. Finally,
we can neglect the displacement current ∂tE

i ∼ µEi, as it is suppressed compared to the
conduction term ∼ σEi, if σ � µ. All qualitative arguments outlined below translate
to the fully-relativistic case. Making these assumptions, the evolution equations of the
(kinetically mixed) Maxwell equations (D.8) together with the current (5.33) reduce to the
visible magnetic induction equation

∂tB
i =

εµ2B′i

σ
+

1

σ
∂j∂

jBi + εijkεklm∂jv
lBm, (5.40)

where B′i = εijk∂jA
′
k and vi is the fluid velocity that we identify with the drift velocity

vi = vid, such that viEi = 0. For later convenience, we define the Cartesian Kerr-Schild
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coordinate radius ρ̂ = (x2 + y2 + z2)1/2 (see App. D.2 for details). With a characteristic
length scale ` = 1/µ of the system, we are able to define an effective magnetic Reynolds
number, Rm = `vdσ = σvd/µ, of the effective plasma defined in (5.37)4. For Rm � 1, the
magnetic field dynamics is dominated by the third term in Eq. (5.40), which represents
field advection. In this regime the magnetic field dynamics is entirely determined by the
plasma, as both are strongly coupled (i.e., the magnetic field is comoving with the plasma).
For Rm � 1, the second term in the induction equation is most important, which accounts
for magnetic field diffusion. In this case the magnetic field decouples from the plasma
motion and relaxes to a diffusive state. The effects of the superradiant driving fields are
included explicitly in the first term of Eq. (5.40) and implicitly in the plasma velocity,
which depends on the driving electric fields, and in the visible magnetic field themselves,
which are sourced by electrically induced currents.

To illustrate the different domains of the magnetic field dynamics, in Figure 5.9 we show
the magnetic field magnitude inside the equatorial plane as a function of conductivity. In
the vacuum limit, σ/µ = 0, the magnetic field coincides with the superradiant magnetic
driving field shown in Figure 5.2. With increasing conductivity, i.e., σ/µ & 1, from Figure
5.9 we see that the regions where the morphology of the magnetic field resembles the
superradiant magnetic fields are confined to distances from the BH that are smaller than
a characteristic radius r∗, which we heuristically find to be

r∗ ≈ 80µGM/σ. (5.41)

Inside this critical radius, the superradiant driving field B′i is exponentially large, and the
first term of (5.40) dominates, compared with the terms it induces in the diffusion and
advection contributions5. Note also that at large conductivities an overall phase-offset of
π/2 between the superradiant and visible magnetic fields appears, similar to the behavior
of the electric field case (see Figure 5.5); at the level of the magnetic field, this phase-offset
emerges from the first term in the induction equation (5.40).

For radii larger than r∗ we see that the magnetic fields are non-trivially related to the
driving superradiant electric and magnetic fields. At large distances from the BH and on
scales of order 1/µ, the magnetic field strength increases with growing conductivity. On
smaller scales, on the other hand, and especially at large conductivities, we see that a series
of small scale features appear. These features, which arise on scales of order 1/σ, emerge

4One could instead chose ` = rc. However, the qualitative arguments are unaffected by the precise
choice of magnetic Reynolds number.

5Note, the superradiant components of the visible magnetic fields in the second and third term in the
induction equation (5.40), are α2 and α suppressed, respectively, to the leading contribution at intermediate
conductivities.
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from the interplay of the diffusion and advection components of the magnetic induction
equation. At large conductivities and due to the large plasma velocities, most regions
with ρ̂ > r∗ are advection dominated. As a result, the oscillating superradiant driving
fields source visible magnetic fields that couple strongly to the plasma, while conversely,
the plasma cannot back react onto the superradiant driving fields. Our results show that
for radii ρ̂ > r∗, and on spatial scales of the entire cloud (i.e., > 1/µ), the plasma is
unable to corotate with the driving fields; hence, differential rotation between plasma cells
at different radii occurs. This shear velocity results in twisting of the magnetic field lines
on scales of the cloud. The twist builds up magnetic energy that is dissipated through
turbulent magnetic reconnection in regions of large magnetic diffusion, i.e., Rm � 1 (as we
illustrate in detail below). Thus, the small scale features in Figure 5.9 are a result of this
turbulent reconnection. The radius r∗ may saturate at the light cylinder of the system for
σ → ∞ as inside it the plasma could rotate rigidly with the superradiant driving fields.
However, we do not find the light cylinder to be a location of special importance for the
largest conductivity that we considered: σ/µ = 20.

Another qualitative feature is the disappearance of the magnetic null line of the super-
radiant magnetic field for moderate conductivities, σ/µ > 5, outside the critical radius r∗,
as can be seen in Figure 5.9. Vanishing magnetic field strength implies vanishing plasma
bulk velocity, i.e., Rm ≈ 0, and equivalently the presence of strong magnetic diffusion.
Hence, we find that the magnetic null line is quickly filled by magnetic field lines diffusing
into the null line from surrounding areas with finite magnetic field strength. This process
efficiently removes the null line outside the critical radius r∗.

In addition to the large scale differential rotation about the BH, in advection dominated
regions (where the plasma and magnetic field are co-moving) we observe localized roughly
uniform oscillatory motion of the plasma within the equatorial plane (with oscillation
radius given by 1/µ), as well as periodic longitudinal motion of the plasma along the BH
spin-axis6. This periodic motion is likely driven by the large scale superradiant electric
field throughout the plasma, in conjunction with large scale charge separation of the pair
plasma for σ/µ & 1. Charges are accelerated along the large scale superradiant electric
field. However, the orbital frequency µ of the field’s direction forces the charges into a
circular trajectory with radius of 1/µ. This is reflected in the circular motion of features in
the magnetic field of scale 1/µ inside the equatorial plane. The circular motion of negative
and positive charges is exactly out of phase by π, resulting in out-of-phase oscillatory
motion of the plasma on either side of the BH due to the large scale charge dipole screening
the superradiant electric field. The longitudinal periodic motion along the spin axis is more

6Even in the force-free simulations, this periodic oscillatory motion of the magnetic field strength in
the equatorial plane can be observed.
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Figure 5.9: We plot the visible magnetic field strength B2 in the equatorial plane of the
system in the vacuum limit, σ = 0, as well as at moderate to high plasma conductivities,
i.e., σ/µ & 1. The BH and cloud parameters are as in Figure 5.2, i.e., α = 0.3 and
a∗ = 0.86. The superradiance cloud phase is identical in each of the panels. The color
is normalized by the maximal visible magnetic field strength at each conductivity. The
white dashed line indicates the critical coordinate radius r∗ = 80µGM/σ, discussed in the
main text. The region ρ̂ < r∗ is dominated by superradiant driving, while the regions
with ρ̂ > r∗ are characterized by an interplay of advective and diffusive regions. The flat
spacetime light cylinder for this system is roughly RLC = GM/α ≈ 3.33GM . Notice, the
resolution of our numerical methods decreases with increasing coordinate distances |x| and
|y|, resulting in, for instance, a suppression of small-scale features in the σ/µ > 2 cases for
|x|, |y| > 50GM .

complex, and likely a result of the electric field driving within the equatorial plane. We
will discuss the observational consequence of this motion of charge densities in Sec. 5.6.4.

Let us illustrate some of these observations explicitly in Figure 5.10. In panel (a), we
show the three-dimensional geometry of the visible magnetic field lines in the vicinity of the
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Figure 5.10: We plot a selection of visible magnetic field lines of the superradiance cloud-
plasma system with conductivity σ/µ = 20, α = 0.3, and a∗ = 0.86. In panels (a), (b)
and (c) we also plot the visible magnetic field strength within the equatorial plane, while
in panel (d) we show the visible magnetic field strength in the plane spanned by the BH
spin and an arbitrary superradiance cloud phase. We discuss this plot in detail in the
main text. The main macroscopic scales involved are the BH-scale, set by the mass M , the
superradiance cloud’s oscillation timescale 1/µ ≈ 3.33GM , and the cloud’s Bohr radius
rc ≈ 11.1GM .
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central BH. The field lines are mostly closed around the BH, and only occasionally thread
the event horizon. This confirms the discussion above, as these field lines are roughly inside
ρ̂ < r∗ ≈ 4GM for the choice of parameters in the figure, and hence, are approximately
set by the superradiant driving field (compare also to Figure 5.2).

The large-scale differential rotation and twisting of magnetic field lines on scales of the
entire cloud is shown in panel (b) of Figure 5.10. There, we focus on a few representative
field lines crossing the equatorial plane. Both above and below the equatorial plane, we find
that the azimuthal angular velocity of the magnetic field lines decreases with increasing
distance from the BH’s spin axis, leading to a lag of portions of the field lines far away
from the BH compared to those closer to the center. This lag causes twisting of the field
lines roughly around the spin-axis7 on scales of the superradiance cloud, which, ultimately,
results in the opening of the visible magnetic field lines at large distances.

In addition to this large scale feature, the field line geometry also exhibits features on
scales of roughly 1/µ, as can be seen in panel (c) of Figure 5.10 (notice, this scale compared
with the BH mass is 1/(µGM) ≈ 3.33). There we show two collections of field lines
exhibiting variations on spatial scales set by the superradiance oscillation frequency. These
arise likely as a result of the periodic motion of the plasma in the large scale superradiant
electric field, twisting the field lines on scales of 1/µ � rc as well. Both the twisting on
scales of the cloud, and small scales, 1/µ, builds up magnetic energy that is dissipated by
means of magnetic reconnection.

In panel (d) of Figure 5.10, we isolate one such reconnection sight, representative for
a class of reconnection processes active throughout the bulk of the cloud. We leave the
details to the discussion in Sec. 5.6.3, and just point out here that the visible magnetic
field lines entering the reconnection region along the white arrow, diverge away into two
distinct directions along the black arrows. This indicates that the connectivity of the
field lines is discontinuously changed at the location labelled as A. Another indication
of magnetic reconnection at location A in panel (d) of Figure 5.10, is the appearance of
four bundles of field lines from the region around A. In the highly conducting and highly
magnetized plasma limit, (at least one of) the dimensions of the reconnection regions
are expected to scale as 1/σ. Speculating about the σ → ∞ limit, we hypothesize that
these reconnection sites turn into one- or two-dimensional highly fragmented localized
filaments and current sheets, where potentially large amounts of electromagnetic energy
is injected into the plasma (as typically observed in turbulent highly magnetized plasmas,
e.g., [383, 113, 303]). We discuss the connection between significant energy dissipation into
the plasma and magnetic reconnection in Sec. 5.6.3 in detail.

7This is only roughly true, since the plasma motion is more complex as pointed out above.
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5.5.4 Summary of turbulent plasma scales

Before concluding this section, we provide a summary of the main features of the quasi-
equilibrium endstate of the pair production cascade. We begin with the largest scales first,
and work towards small scales:

• On spatial scales of the superradiance cloud, ∼ rc = 1/(µα), the superradiant electric
field is efficiently screened by a roughly dipolar charge distribution. A significant
fraction of the cloud’s volume is magnetically dominated at σ/µ = 20 with trend
towards larger fractional volumes for larger plasma conductivities. This increases
the importance of the magnetic field dynamics for the cloud-plasma system. For
sufficiently high conductivity, the magnetic field and the plasma become strongly
coupled except in isolated diffusion regions. Hence, at large distances from the central
BH’s spin axis, the plasma rotates around the BH with period much longer than the
superradiant cloud’s period, inducing differential rotation on the scale of the entire
cloud. The resulting shearing magnetic field lines reconnect inside the bulk of the
cloud.

• On spatial and temporal scales set by the Compton wavelength of the dark photon,
1/µ, a variety of features appear. The plasma orbits with the superradiance cloud in
circular motion with radius given by roughly 1/µ. This is likely due to the large scale
electric field set by the superradiance cloud. Hence, negative and positive components
of the local charge density orbit exactly out of phase due to the large charge dipole.
In the large conductivity regime, this circular motion implies circular motion of the
visible magnetic field due to the strong coupling in advection dominated regions.
Features of size 1/µ in the global visible magnetic field geometry appear due to the
built-up magnetic field twisting, which is released in magnetic field line reconnection
sites.

• Besides the two macroscopic scales discussed above, the conductivity σ sets the size
of non-ideal features, which are expected to be of microscopic size. We found that
at moderately large conductivities σ/µ = 20, these non-ideal regions begin to form
filaments inside the superradiance cloud’s plasma, setting the scale of the turbulent
behavior. Speculating, for very large conductivities, σ/µ� 20, the non-ideal regions
may fragment into a large number of current sheet-like structures filling the turbulent
plasma8. Below, in Sec. 5.6.2, we elaborate on this and identify these regions as sites
of enhanced energy dissipation.

8This is typically found in treatments of turbulent magnetized plasmas, e.g., [113, 383, 303].
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Therefore, the superradiance cloud-plasma system is characterized by differential rotation,
as well as periodic plasma motion with period given by the boson mass scale 1/µ, leading
the magnetic field lines to be twisted both on cloud size scales 1/(µα), and on scales set
by the dark photon mass 1/µ. This twisting is relaxed through magnetic reconnection in
the bulk of the superradiance cloud in features with size set by 1/σ. These processes likely
lead to strong electromagnetic transients with periodicity set by the dark photon mass
µ. Characterizing the power and periodicity of these transients is the subject of the next
section.

5.6 Electromagnetic emission

The pair production cascade within the superradiance cloud saturates in a turbulent,
differentially-rotating plasma surrounding the central BH with a partially screened electric
field and magnetic field line reconnection in the bulk. In highly-magnetized astrophysical
plasmas, particles are efficiently accelerated at reconnection sites, leading to high-energy
electromagnetic emission. Therefore, we expect strong electromagnetic signatures from the
superradiance cloud system.

In the following, we illustrate the radiation and dissipation channels in our setup in
Sec. 5.6.1, quantify the emitted electromagnetic luminosity in Sec. 5.6.2, identify the dom-
inant emission mechanism in Sec. 5.6.3, discuss the periodicity of the emission pattern in
Sec. 5.6.4, and comment on the possible emission spectra in Sec. 5.6.5.

5.6.1 Radiation and dissipation channels

The effective description of the pair plasma that we use, introduced in the previous sec-
tions, includes only the leading-order resistive correction to the force-free limit of ideal
magnetohydrodynamics. In the context of this formalism, any microphysical processes
(e.g. pair production, scattering, photon emission, or other QED effects) are averaged
over, or only roughly approximated by the macroscopic conductivity σ that characterizes
the local dissipation in the plasma, and not included from first principles9. However, our
approximation is sufficient to reliably estimate the total electromagnetic power output
of the system through the outgoing Poynting flux, as well as through dissipation due to
macroscopic spatial currents along the visible electric field. The Poynting flux is typically

9To some degree, this could be achieved within the context of kinetic theory and particle-in-cell simu-
lations. However, we leave exploring this avenue to future work.
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invoked, within the force-free paradigm to estimate the rotational energy extraction rates
of pulsars [171, 114, 227, 347, 321, 293, 98] (which have been confirmed within kinetic
theory in [101, 299, 298]). For typical pulsars, this macroscopic coherent energy flux is
expected to be emitted from the system in the form of lower-energy radio waves, as well
as dissipate in particle acceleration processes in current sheets resulting in X-rays and
gamma-rays. While in the pulsar magnetosphere, dissipation is mainly confined to roughly
two-dimensional current sheets, the superradiance cloud exhibits reconnection in the bulk,
enabling efficient energy transfer into high-energy emission. The dissipation of electromag-
netic energy can be interpreted as sourcing local particle acceleration, synchrotron and
curvature radiation, and plasma heating. Therefore, estimating the total emitted Poynting
flux and dissipative energy losses of the superradiant system is crucial to understand the
overall electromagnetic signatures. In the following, we briefly outline how these quantities
are computed in our setup.

Modified Poynting theorem: The conservation of energy in the interaction basis,
(5.15), can be used to identify the macroscopic sources and types of energy flows present
in the system. The background Kerr spacetime has an asymptotically-timelike Killing field
ξµ, endowing the system with a local energy conservation law. Therefore, we define the
total energy E of Aµ, with respect to ξµ, within the (coordinate) domain D as

E =

∫

D

d3x
√
γTαµnαξ

µ, (5.42)

with the volume form d3x
√
γ of a t =const. slice of Kerr spacetime (see App. D.2 for

details), and the energy-momentum tensor Tµν of the visible fields

Tµν = Fµ
λFλν −

1

4
gµνF

αβFαβ. (5.43)

Throughout this chapter, the domain D of consideration is the exterior of the BH up to
a coordinate sphere S2

ρ̂ at coordinate radius ρ̂ =
√
x2 + y2 + z2 in Kerr-Schild coordinates

(defined in App. D.2). In the following, we focus entirely on the visible electromagnetic
field. Intuitively, this visible field is a superposition of the massless (i.e., the SM photon)
and the massive vector fields. The former is propagating freely, and sourced only by the
plasma, while the latter is gravitationally bound to the BH, and non-radiative. Given
this, and the energy-momentum conservation (5.15), we can relate the change of the total
energy of the visible electromagnetic fields within D, ∂tE , to the energy fluxes across the
boundary of the domain, ∂D, as well as the work done on the plasma within D, by the
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modified Poynting theorem, written as

∂tE = −PEM − ĖBH − Ldiss + ĖA′ . (5.44)

The first two terms on the right-hand side correspond to the Poynting flux emitted towards
infinity, PEM, and the visible electromagnetic field flux across the event horizon of the BH,
ĖBH, respectively. The third term describes the energy loss of the visible fields to the pair
plasma through resistive processes, Ldiss. Lastly, the source of energy of the superradiant
system is the energy injection of the massive vector field ĖA′ . Notice, we assumed that
the energy of the visible electromagnetic fields is much larger than the energy contained
in the pair plasma, i.e., Tµν � T plasma

µν . Hence, any finite mass loss due to the accretion or
emission of fermions is not contained in the above analysis, which was shown to be a good
approximation in (5.28). In the following, we consider each component on the right hand
side of Eq. (5.44) and take the flat spacetime limit to connect to familiar expressions.

Poynting fluxes: The electromagnetic luminosity—the Poynting flux—through a coor-
dinate sphere at radius ρ̂, is

PEM = −
∮

S2
ρ̂

dΩµT
µ
νξ
ν flat

=

∮

S2
ρ̂

dΩ ρ̂ · (E ×B). (5.45)

Here, dΩµ is the oriented area element of S2
ρ̂ pointing outwards, ρ̂ the radial unit vector,

and dΩ the solid angle. Hence, positive PEM implies visible electromagnetic energy leaving
the domain D. Since the massive linear combination of Aµ and A′µ is gravitationally bound
to the BH and decays as ∼ exp(−r/rc), at large distances, the visible Poynting flux, PEM,
will receive a contribution only from the massless linear combination (corresponding to the
SM photon) for sufficiently large ρ̂. Analogously, the energy flux across the BH’s event
horizon is

ĖBH = −
∮

S2
BH

dΩµT
µ
νξ
ν , (5.46)

where S2
BH is the event horizon, and dΩµ the oriented area element pointing outwards.

Hence, negative ĖBH implies visible electromagnetic energy accreting onto the BH. This,
of course, vanishes in the α� 1 limit (i.e., in the flat spacetime limit). At the saturation
point, i.e., if ω = ΩBH, the massive field has vanishing flux across the horizon, such that
ĖBH contains only massless fluxes. We can therefore interpret (5.46) as a measure of the
amount of accretion, or energy extraction from the BH (e.g. the Blandford-Znajek process
[69]), triggered by the plasma and superradiance cloud.
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Dissipative energy losses: Besides these fluxes of energy across the boundary of the
domain, the resistive pair plasma is able to dissipate energy in the bulk of D. This macro-
scopic dissipation is captured by the dissipative losses10

Ldiss = −
∫

D

d3x
√−gFαβξαIβ

flat
=

∫

D

d3xE · J . (5.47)

Here g is the metric determinant of Kerr spacetime. In the flat spacetime limit, this
expression reduces to the Joule heating within D. For later convenience, we define the
local dissipation density

ρdiss = NFαβξαIβ, (5.48)

where N =
√
−g/γ is the lapse providing a macroscopic measure of the local rate at which

energy is lost to heating, particle acceleration, etc.

Energy transfer from superradiance cloud: The main energy source, driving the
radiation and dissipation, is the superradiance cloud, which extracted a non-negligible
amount of rotational energy from the BH. The rate of replenishment of E from the super-
radiance cloud A′µ is given by the last term in (5.44):

ĖA′ = −εµ2

∫

D

d3x
√−gFαβξαA

′
β

flat
= εµ2

∫

D

d3xE ·A′. (5.49)

This describes the energy transfer from superradiant to the visible fields.

Most important for our discussion in the following sections are the Poynting flux PEM and
the dissipation rate Ldiss. These determine the total electromagnetic power output of the
system, and provide insights into the characteristics of the emission, such as the primary
emission mechanism, the time-dependence, and the emission spectrum.

5.6.2 Power output

We find that the cloud-plasma system settles into a driven turbulent state with a large
electric dipole screening the superradiant electric field and bulk magnetic field reconnection.

10Again, due to the kinetic mixing, both the massive and massless linear combinations of Aµ and A′µ
dissipate energy.
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We demonstrate below that the dipole results in coherent electromagnetic Poynting flux,
while the magnetic reconnection is associated with strong energy dissipation from the
visible electromagnetic fields into the plasma. As we show in the following, due to the
turbulent nature of the dissipation in the bulk of the cloud, the dissipative losses dominate
over the Poynting flux from the system by orders of magnitude.

In the vacuum limit, i.e., for σ = 0, there is no dissipation and electromagnetic modes
propagate freely. However, both the dark and visible electromagnetic fields fall off expo-
nentially at large distances away from the BH, and there is no flux to infinity. At non-zero
conductivities of the medium, on the other hand, any Poynting flux is re-absorbed by the
plasma on scales set by the skin-depth of the effective fluid, which is a complex function of
propagating mode frequencies, conductivity, background electromagnetic field strengths,
and local Ohmic losses. As we show below, this leads the Poynting flux to go to zero in the
intermediate regime σ/µ ∼ O(1). In this regime, the energy dissipation is expected to be
largest, while any freely propagating electromagnetic modes are re-absorbed on the skin
depth length scales. In the limit where σ/µ � 1, the regime in which the cloud-plasma
system is expected to reside, the Poynting flux is expected to mostly decouple from the
plasma, except in locations of large dissipation into the plasma, and propagate freely.

To understand the high-conductivity regime, we compute the quantities PEM, Ldiss, and
ĖBH in our numerical simulations for α = 0.3 and various different conductivities σ/µ & 1
(note, in App. D.4, we discuss the small-σ regime for completeness). In Figure 5.11, we
present the visible Poynting flux and dissipative losses as functions of conductivity and
coordinate radius for the superradiant cloud-plasma system. We postpone a discussion on
time-dependence of the electromagnetic emission to Sec. 5.6.4, and focus here on quantities
time-averaged over one period of the superradiance cloud. As anticipated, the energy
dissipation into the plasma is largest for intermediate conductivities, σ ∼ µ. As a result,
the visible Poynting flux is efficiently re-absorbed by the fluid and decays exponentially
as it propagates away from the BH. The sinusoidal features of PEM for σ/µ . 1 are
discussed in detail in App. D.6. The local energy dissipation follows the radial profile
of the superradiant cloud ∼ exp(−

√
2(µ2 − ω2)ρ̂), driving the energy injection into the

plasma, at large distances from the BH. Moving towards larger conductivities, σ/µ > 1,
the weakening of the dissipative losses roughly follows a ∼ 1/σ scaling, however, with
important corrections at σ/µ & 5 discussed below. As can seen in the left panel of Figure
5.11, energy flows into the BH for σ/µ ≥ 1 (though the horizon is actually a source of
energy for lower conductivies, see App. D.4) at rate comparable to the total Poynting flux
to the wavezone. The radial re-absorption length scale of the electromagnetic flux increases
significantly with conductivity for σ/µ > 1, enabling efficient transfer of propagating modes
from the center of the superradiance cloud to the emission zone far away from the BH.
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Figure 5.11: (left) We plot the total visible, time-averaged, Poynting flux PEM, defined in
(5.45), through a coordinate sphere at radius ρ̂ around the BH, for various conductivities σ.
Solid lines are positive (locally outgoing) fluxes, whereas dotted lines are negative (locally
ingoing) fluxes. The interior of the BH and the ergosphere (ES) in the equatorial plane
are indicated by shaded regions; the smallest radius value indicates the flux through the
event horizon ĖBH. (right) We plot the total energy dissipation rate due to Ohmic losses
Ldiss, defined in (5.47), everywhere outside a coordinate radius ρ̂ for various conductivi-
ties. In both panels, we focus on an α = 0.3 cloud with a BH of spin a∗ = 0.86, and
Bohr radius of the superradiance cloud of rc = 1/(µα); notice,

√
2(µ2 − ω2) → αµ for

α � 1. Note, our simulations assume a conductivity constant everywhere in space. At
intermediate conductivities, σ ∼ µ, the Poynting flux is efficiently absorbed by the effective
plasma, while towards large conductivity, the electromagnetic modes propagate freely. The
energy injection into the plasma Ldiss follows the profile of the cloud for all but the highest
conductivities considered here.

Focusing on the outgoing Poynting fluxes at large distances, ρ̂ = 10rc, a trend emerges, from
small fluxes at intermediate conductivities to large power at large conductivity, saturating
at a conductivity-independent outgoing electromagnetic emission.

The conductivity of the pair plasma within the superradiance cloud is expected to be
set by a micro-physical scale far smaller than any macroscopic scale of the system, σ � µ.
Therefore, in the left panel of Figure 5.12, we consider the trends of total dissipation Ldiss

and Poynting flux at large radii PEM towards the large-σ limit. As pointed out above,
the coherent electromagnetic flux emitted from the system increases rapidly from σ ∼ µ
towards a non-zero value for σ � µ. The blue band in the left panel of Figure 5.12,
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Figure 5.12: We show the energy dissipation rate, integrated over the entire cloud Ldiss,
and the total (time-averaged) Poynting flux PEM extracted at ρ̂ = 10rc = 10/(µα). (left)
Focusing on α = 0.3 and a∗ = 0.86, we plot the quantities obtained from our resistive force-
free simulations, black circles representing Lnum.

diss , and black squares representing P num.
EM , as

functions of conductivity. The orange and blue bands, labelled Lfits
diss and P fits

EM, respectively,
are a series of fits of the form a1 +a2(µ/σ)p to the simulation results with the three largest
conductivities. The fits are motivated by the discussion in the main text that the energy
dissipation remains finite at infinite conductivities. The bands are bounded by the most
optimistic and pessimistic fits to the data. The black dotted and dashed lines show the
force-free estimates for the emitted Poynting flux and total dissipation, labelled P ff

EM and
Lff

diss, valid formally at σ → ∞ (how these are obtained is discussed in the main text).
Lastly, we show the analytical approximations (5.52), labelled as Lana.

diss , for comparison.
(right) We also show Lnum.

diss and P num.
EM from the simulations, but now fixing σ/µ = 20

and varying α, assuming ω = ΩBH. The two fits in (5.54) to the numerical data Lnum.
diss

(dash-dotted line) and P num.
EM (sparse-dashed line) are labelled as P fit

EM and Lfit
diss (and use

the ansatz a1α
3 +a2α

4 and a1α
1 +a2α

2, respectively). The orange and blue bands, labelled
Lextrap.

diss and P extrap.
EM , are the σ/µ → ∞ extrapolations of the corresponding bands in the

plot on the left (there for α = 0.3) applied to the two fits P fit
EM and Lfit

diss. Lastly, the
analytic estimate (5.52) is indicated as Lana.

diss . A discussion of both plots can be found in
the main text.

indicates possible fits with various σ-scalings of the trend, extrapolating to physically
relevant regimes, σ � µ. We discuss the behavior of PEM for σ/µ < 1 in App. D.6.
Turning to the dissipation of energy into the plasma, the behavior in the low to medium
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conductivity regime, σ/µ . 1, is as expected. The energy injection at the macroscopic level
increases as ∼ σ from the vacuum limit towards intermediate resistivity levels. Beyond the
peak dissipation power around σ ∼ µ, a decay following Ldiss ∝ 1/σ is predicted by simple
arguments of the bulk dissipation inside the cloud (outlined below). However, instead of
following this behavior, the energy dissipation rate deviates from this trend. In order to
extrapolate to large σ, we can therefore split the dissipation into two different components:

Ldiss = Lbulk
diss + Lturb

diss , (5.50)

heuristically representing the bulk and the turbulent dissipation, respectively. Based on
analytic estimates (discussed below) the bulk dissipation Lbulk

diss is expected to decrease as
∼ 1/σ towards small resistivity, while the turbulent dissipation component Lturb

diss will have a
non-zero value in the infinite conductivity limit. To capture this, in Figure 5.12, we fit the
results from the simulations with Ldiss ∼ a1 + a2(µ/σ)p, considering p ∈ [1, 0.025], finding
Ldiss = Lturb

diss ≈ 5 × 10−2(ε2/G)(Mc/M) for α = 0.3 and σ → ∞. The orange band in
Figure 5.12 represents the range of values for the conductivity dependence, and is bounded
by the most optimistic and pessimistic fits considered, to illustrate the uncertainty of this
extrapolation.

We compare these extrapolations with the results from force-free simulations, valid
formally at σ →∞, (see App. D.3 for details on the numerical implementation and setup;
in particular the current is given by (D.13)). In the force-free simulations, the continually
development of electrically dominated regions (where the evolution equations breakdown)
must be handled in an ad hoc manner, by reducing the magnitude of the electric field by
hand, which gives rise to an artificial type of dissipation in regions where current sheets
might develop in a more complete description of the plasma dynamics. Nevertheless, we
can determine the effective dissipation rate by assuming energy conservation (5.44), as is
common in the literature (e.g. [265]), and also compute the Poynting flux given by the
force-free simulations at large distances and across the BH horizon. Encouragingly, these
infinite conductivity results are in good agreement with the extrapolation of the resistive
plasma simulations towards large conductivity, shown as the orange bands in the left panel
of Figure 5.12. As we discuss in below, this turbulent dissipation component is associated
with magnetic reconnection and other small scale features of the solution, and hence, is
expected to remain finite even at very large bulk conductivities, σ → ∞. The Poynting
flux at large distances from the central BH in the force-free setting, shown in Figure 5.12,
is consistent with the large-σ extrapolations of PEM (i.e., is within the blue band in the
left panel of Figure 5.12).

The bulk dissipation is linked to the large-scale visible electric field induced by the
superradiance cloud, while the turbulent dissipation emerges from higher-order magnetic
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field corrections. The former can be understood analytically in the non-relativistic limit,
i.e., for α � 1, by means of the solutions derived in (5.39). Given this solution and
neglecting magnetic field effects, we can determine the electromagnetic current density of
the plasma to be

J = σE

= −e
−r/rc√Mcµα

3/2εσω2

2
√
π(σ2 + ω2)



σ + iω
−ω + iσ

0


 e−iωt + c.c.

(5.51)

In the non-relativistic limit, the spatial extend rc of the superradiance cloud is large com-
pared with the oscillation frequency 1/µ, implying local charge neutrality ρq = 0. Hence,
the spatial dependence of J i is a large scale modulation of the locally neutral plasma for
α � 1. Using the flat spacetime limit of (5.47), together with the above current density
and the visible electric field solution (5.39), the bulk dissipation rate of the cloud in the
α� 1 limit is

Lbulk
diss =

σαε2

µ(1 + (σ/µ)2)

Mc

GM
. (5.52)

As expected, this quantity goes to zero in both the insulating and highly conducting limits,
leading to free propagation of Poynting flux away from the system. From Figure 5.12, we
can see that this expression provides a good approximation for the total dissipation for
σ . 2µ for α = 0.3, while for higher conductivities, the turbulent contributions, i.e., the
magnetic field driven component, to J i are more important.

Most relevant for determining the potentially observable electromagnetic signatures of
superradiant systems are the σ → ∞ estimates for Ldiss and PEM as functions of α. In
the right panel of Figure 5.12, we show our results for Ldiss and PEM in simulations with
σ/µ = 20 as functions of α. Focusing on the numerical results first, it is evident from
the right panel of Figure 5.12 that the Poynting flux and the total dissipation power have
different scalings with α. The analytic estimate (5.52) for Lbulk

diss ∼ αMc/M suggests a
leading order α-scaling of Lnum.

diss ∼ αMc/M , which we find in Figure 5.12 to provide the
best fit to the data. For the Poynting flux, we find a leading-order scaling of PEM ∼ α3 to
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fit best. The two fits shown in the right panel of Figure 5.12, are11

Lfit
diss = ε2F (α)

Mc

GM
, (5.53)

P fit
EM = ε2G(α)

Mc

GM
, (5.54)

with

F (α) = 1.31× 10−1α− 1.88× 10−1α2,

G(α) = 6.86× 10−4α3 − 1.36× 10−3α4.
(5.55)

Determining whether these scalings are also valid in the σ →∞ limit requires simulations
with larger conductivities across a larger range of values for α. Hence, we estimate the
theoretical uncertainties of the fits (5.53) and (5.54), indicated as orange and blue bands
in the right panel of Figure 5.12, as follows. For α = 0.3 (i.e., the left panel of Figure 5.12),
we obtain a series of different σ → ∞ extrapolations for both the total dissipation and
the Poynting flux (blue and orange bands in the left panel of Figure 5.12). The spread of
these σ → ∞ extrapolating fits in the left panel of Figure 5.12, corresponds to the width
of the orange/blue bands at α = 0.3 in the right panel of Figure 5.12. We then use this
relative uncertainty of the large-σ extrapolation at α = 0.3 and apply it to the fits for total
dissipation and Poynting flux, i.e., (5.53) and (5.54), for all α, hence, obtaining the orange
and blue bands in the right panel of Figure 5.12. Therefore, the fit in (5.53) for Ldiss is likely
an over-estimate of the σ →∞ result (the lower bound of this extrapolation uncertainty is
given by Lfit

diss/4), while the fit in (5.54) for PEM, is likely under-estimating the true flux at
σ →∞. It is clear from Figure 5.12, that the turbulent dissipation power dominates over
the total Poynting flux across the entire parameter space of the m = 1 superradiant state.
Furthermore, the relatively flat α-scaling of the total power output is in stark contrast
to the dependence of the total emitted gravitational wave energy flux PGW ∝ α10M2

c /M
2

from the oscillating dark photon cloud in the α � 1 limit. Lastly, for comparison, the
superradiant instability growth rate of the m = 1 state scales as Γ ∼ a∗α6µ.

5.6.3 Dissipation mechanism

Given the importance of the turbulent dissipation power, even at large conductivity, we
next discuss the spatial dependence of the energy dissipation density ρdiss, defined in (5.48),

11Note, fits of the form Lfit
diss ∼ αp + α2p with p ∈ (0.7, 1) are plausible based on the numerical data

and result in louder signals for α < 0.1. Fits with p ∈ (1, 1.2) are equally plausible, however, are entirely
consistent with the large-σ extrapolation uncertainty of (5.53) down to α ∼ 10−4.
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Figure 5.13: We plot the dissipation density ρdiss (defined in (5.48)) normalized by the
maximal density ρmax

diss = max ρdiss, the ratio of visible electromagnetic fields B2/E2, the
violations of the force-free condition EiB

i = 0 normalized by the magnitude of the visible
electric and magnetic fields, and the magntiude of the plasma velocity vd = |vd| in the
equatorial plane of the central BH. All panels correspond to the same coordinate time and
a BH of spin a∗ = 0.86, cloud with α = 0.3, and plasma conductivity of σ/µ = 20. We
indicate where B2/E2 = 1 by a contour line. Regions of small plasma velocities, i.e., large
magnetic diffusion, are also sites of large EiB

i 6= 0 and locally enhanced energy injection
density ρdiss. This implies that magnetic reconnection sites are locations of enhanced energy
injection into the plasma.

and demonstrate that regions of high dissipation are associated with magnetic reconnec-
tion. This density captures the macroscopic energy injection of the electromagnetic fields
into the plasma, driving dissipative processes at the microscopic level. Recall, magnetic
reconnection sites are regions, where the connectivity of the otherwise frozen-in magnetic
field is changed, resulting in large spatial current along the visible electric fields dissipat-
ing energy. In the following, we focus on the α = 0.3, a∗ = 0.86 and σ/µ = 20 case,
while commenting on how these results extrapolate to the physically relevant limit of high
conductivity.

In the left panel of Figure 5.13, we show the local dissipation rate per volume ρdiss

[defined in (5.48)]. On large scales, this quantity follows the same exponential fall-off in
the radial direction as the superradiance cloud (at σ/µ = 20), while on smaller scales,
strong variation associated with turbulent features is apparent12. We focus on the latter

12These two spatial components are naturally associated with the bulk and turbulent dissipation powers
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since, as argued in the previous subsection, we expect these to persist (though develop
smaller scales) in the σ → ∞ limit. From Figure 5.13, it is clear that the regions of
local enhancement in the dissipation are associated with magnetic dominance (second
panel) combined with |EiBi| ∼ EB (third panel), or with electric dominance. From
Eq. (5.37), the plasma either allows for a significant component of the current parallel to
the electric field. Focusing on the insets showing the neighborhood of the BH, locations
of the locally enhanced dissipation density, in addition to having large |EiBi| and being
magnetically dominated, are also bordered by zones of low drift velocity vd (or equivalently,
small magnetic Reynolds number Rm; fourth panel), which are associated with efficient
magnetic reconnection. Farther away from the BH, large regions (at σ/µ = 20) are strongly
electrically dominated, and associated with enhanced dissipation and low drift velocity (in
contrast to the magnetically dominated regions which have vd ∼ 1), again indicating strong
magnetic diffusion and reconnection.

The magnetic field geometry within the plasma is set by the three different spatial
scales discussed in Sec. 5.5.4. The differential rotation on scales of the cloud induces a
shearing of the magnetic field lines on scales of the cloud rc around the spin-axis of the
BH, while the intermediate scale oscillations of the plasma (both in the equatorial plane
and longitudinally along the BH spin axis) drive twisting of the field lines on scales of 1/µ.
This combined macroscopic build-up of magnetic field twisting is released in magnetic
diffusion regions associated with currents along the visible electric fields of thickness 1/σ.
As discussed in more detail in Sec. 5.5.3, regions of small magnetic Reynolds number
Rm = σvd/µ are characterized by efficient magnetic diffusion. In these diffusive regions,
the connectivity of the magnetic field lines changes, i.e. reconnection occurs, which drives
enhanced dissipation and accounts for the dominant channel for the loss of electromagnetic
energy in the superradiance cloud-plasma system.

To illustrate this connection explicitly, we show two example magnetic reconnection
events in Figure 5.14. In panel (b) of Figure 5.14, magnetic field lines enter the reconnection
region (labelled “3.”) from the top along the white arrow (and from behind the semi-
transparent plane on which ρdiss is plotted). These same field lines exit the region in two
directions along the two black arrows (similarly for the lines entering from behind the
semi-transparent plane). The point where the field lines diverge is associated with the
magnetic field magnitude dropping to near zero (indicated by the color of the magnetic
field lines) and locally enhanced dissipation density ρdiss (indicated by the color in the
semi-transparent plane). This is characteristic of discontinuous reconnection, where the
magnetic field lines change connectivity discontinuously along a line or plane where the
magnetic field goes to zero. In two dimensions, X-point reconnection is the canoncial

Lbulk
diss and Lturb

diss , driven by electric and magnetic fields, respectively (as discussed in the previous section).
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Figure 5.14: We show the visible magnetic field lines (in dark/yellow, color indicating the
visible magnetic field strength normalized by the global maximum B/Bmax) and electric
field lines (in white), as well as the local dissipation density ρdiss (all colors) in two different
contexts. Both panels show a close-up of the plasma roughly 15GM away from the central
BH of spin a∗ = 0.86, as well as α = 0.3 and σ/µ = 20. In (a), the dissipation density is
shown as semi-transparent isosurfaces. The BH is located towards the bottom of the plot.
In (b), the dissipation density is plotted on a semi-transparent plane spanned by the z and
y directions. Here the BH is located towards the top left of the plot. The numbers in both
panels indicate regions of large energy injection into the plasma. The arrows show the
divergence of magnetic field lines away from the reconnection site. A detailed discussion
can be found in the main text.

example of discontinuous reconnection, and most prominent in current sheets of the pulsar
magnetosphere powering the high-energy component of the electromagnetic emissions. In
particular, the field line geometry shown in panel (b) of Figure 5.14 resembles spine-fan
type magnetic reconnection [240, 302].

We show a second example of reconnection in panel (a) of Figure 5.14, where we isolate
two sites of large magnetic field gradients. There, we show a set of visible magnetic field
lines that are strongly twisted as they connect two regions of locally enhanced ρdiss (labelled
as “1.” and “2.”), separated by a distance of ∼ 1/µ. Within each dissipation region, the
field lines are curved on smaller scales (plausibly set by 1/σ). The strong field gradients
in these regions, as well as the fact that the magnetic field magnitude does not go to zero,
make this example more consistent with continuous reconnection, where magnetic field
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lines pass through each other in a diffusion dominated region of small plasma velocity13

(see also Figure 5.13).

Therefore, we find that the visible magnetic field line connectivity changes discontinu-
ously (and we find evidence for continuous reconnection) at various places in the bulk of
the cloud. Both types are accompanied by enhanced energy injection into the plasma. The
reconnection is fundamentally driven by the fixed orbital frequency of the superradiant
magnetic field, suggesting that, for even larger conductivities, σ/µ � 20, the qualitative
picture is unchanged. We expect that, in this limit, though the size of the diffusion regions
may decrease as ∼ 1/σ down to micro-physical scales, the rate of energy dissipation, which
is driven by reconnection, remains roughly constant. Identifying the changing connectivity
of the magnetic field as the driver of dissipation allows us to make a connection with exist-
ing kinetic analyses to roughly estimate the particle and emission spectrum of the system,
which is the subject of Sec. 5.6.5.

5.6.4 Periodicity of emission

So far, we have discussed the total time-averaged Poynting flux and turbulent energy
injection into the plasma, ignoring the time-dependence of the emission. In the case of
a pulsar, the beamed radio emission, as well as the pulsed high-energy component of
the spectrum are characteristics that emerge from the oscillation of the magnetic dipole
field around the spin-axis of the star. Since even in the well-studied pulsar case, the
radio emission mechanism is a topic of debate, we ignore it in the following, returning
to a brief discussion of this low-frequency component in Sec. 5.6.5. The pulsed X-ray
component of the pulsar spectrum requires a large-scale, coherent magnetic field geometry
deep inside the light cylinder, along which charges are accelerated and radiate, or an
oscillating current sheet outside the light cylinder [43, 42, 101, 298, 212]. In the context of
the superradiant system considered here, we do not find such coherent and persistent field or
current sheet structures, at least at the conductivities we consider in this study. Instead,
we find the plasma surrounding the BH to be in a turbulent state without persistent
large-scale magnetic or electric fields. However, since this is driven periodically by the
superradiant fields at a frequency ω one may näıvely expect the electromagnetic emission
to still be periodic as well. Because modeling the light curve, as is done in the pulsar
case (see e.g., Refs. [42, 101]), is challenging for the superradiant system, we consider

13Continuous type reconnection typically occurs at quasi-separatrix layers with large, but bounded,
squashing degree [240, 302, 140]. We do not attempt to identify quasi-separatrix layers, instead resort to
identifying reconnection zones based on field diffusivity, magnetic field curvature and dissipation density.
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Figure 5.15: Here we consider a system with a BH of spin a∗ = 0.86, a superradiant
cloud with α = 0.3, and a plasma conductivity of σ/µ = 20. (left) We show the time

dependence of the total visible Poynting flux entering the BH
˙̂EEH and the outward flux

P̂EM through spheres of coordinate radii of 6rc and 10rc. Hats indicates the rescaling
P̂ = P (G/ε2)(M/Mc). Time is normalized by the period of the superradiance cloud
Tα = 2π/ω. (right) We show a snapshot of the visible Poynting flux per solid-angle
(centered on the BH) through a coordinate sphere at 6rc, normalized by the maximum
value. Due to the differential rotation of the turbulent plasma, this pattern only rotates
slowly along the azimuthal direction, i.e., with period T � Tα. At a coordinate radii
of 10rc, the periodic modulation of the amplitude of the Poynting flux is mostly gone,
indicating that the dissipation in the interior region is periodic. The small-scale features
in the angular distribution dPEM/dΩ is a result of the formation of current sheets and
turbulence in the plasma.

the time-dependence of the macroscopic Poynting flux at large distances, as well as the
energy dissipation density throughout the bulk of the cloud in order to understand the
temporal evolution of the electromagnetic emission. We find that the (sub-dominant)
Poynting flux shows signs of periodicity, and the dissipation density locally exhibits weak
evidence of periodicity. We close this section by discussing techniques which could improve
our understanding of the temporal and viewing angle dependence of the electromagnetic
emission.

We begin by discussing the time-dependence of the amplitude and angular distribution
of the total Poynting flux. In the left panel of Figure 5.15, we demonstrate that both
the total Poynting flux entering the BH, and the flux passing through a coordinate sphere
at distance 6rc from the central BH, vary periodically on timescales set by the cloud’s
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frequency14. The periodic absorption of electromagnetic energy by the BH is driven by
the longitudinal periodic plasma motion in the vicinity of the event horizon elaborated on
below. The plasma density is expected to roughly follow the profile of the superradiance
cloud (compare (5.18)), and thus the conductivity should decrease exponentially away from
the central BH. This, paired with the decreasing contribution of the periodic component
of PEM with increasing distance15 (as shown in Figure 5.15), suggest that the Poynting
flux periodically injects energy into the plasma ∼ O(rc) away from the BH. Hence, the
periodicity of the total emitted Poynting flux is suggestive of periodic electromagnetic
emission.

We now turn to the temporal variation of the energy injection density ρdiss into the
plasma. Generally, the dissipation density follows the motion of the plasma on scales of
1/µ and rc. Close to the BH, the most relevant periodic motion of the plasma is the
longitudinal motion (discussed in Sec. 5.5.3) along the spin-axis of the BH. In the first
panel of Figure 5.16, the dissipation density is peaked in pockets above and below the BH,
moving along the spin-axis towards the equatorial plane, as indicated by the arrows. This
corresponds to the time when the overall maximum of the dissipation density is at its lowest
value per period, as shown in the bottom plot in Figure 5.16. Subsequently, two regions
of enhanced dissipation density (and the associated plasma) collide within the equatorial
plane, as show in the middle panel of the top row, leading to locally and temporally large
amplitudes of the energy injection rate ρdiss. Finally, the regions of enhanced dissipation
density begin to move away from the equatorial plane along the spin-axis in the last panel
in the top row of Figure 5.16, and the associated maximum of the dissipation density
decreases. This process repeats on timescales of the cloud’s period. It is non-trivial to
translate this behavior directly into observable variations of the electromagnetic signature.
We may speculate, however, that this periodic enhancement of the dissipation density could
lead to a periodic flaring of the superradiance cloud (analogous to e.g., [265, 270, 314]).
It should be noted though, that the total integrated turbulent energy dissipation does not
show significant temporal modulations.

In summary, both the Poynting flux and the local dissipation rate exhibit weak evidence
of periodicity on timescales set by the dark photon mass 1/µ. Ultimately, our large-scale
macroscopic description of the system is insufficient to resolve and understand the micro-

14Notice, the visible Poynting flux at finite distances from the BH contains propagating massive dark
photon states that are bound to the BH. This component is exponentially suppressed at large distances.
Hence, we have made sure that the contribution to P 6rc

EM in Figure 5.15 from the massive states is negligible.
15Recall, the conductivity is spatially constant in our simulations. At ρ̂ = 10rc, the conductivity is

several orders of magnitude smaller compared with (5.18); hence, the physical relevance of the Poynting
flux at those large distances should be interpreted with caution.
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Figure 5.16: (top row) We show the dissipation density ρdiss in the plane spanned by the
BH spin and a fixed direction in the equatorial plane at three instances during a single
superradiance cloud period. Here we focus on a BH with spin a∗ = 0.86, α = 0.3, and
plasma conductivity σ/µ = 20. The arrows indicate the direction of the motion of the
features, and are discussed in detail in the main text. (bottom) We plot the maximum of
the dissipation density max ρdiss as a function to time (normalized by the cloud’s period
Tα = 2π/ω) for different values of α ∈ {0.1, 0.2, 0.3, 0.4} (and associated saturated BH
spins satisfying ω = ΩBH, see Tab. D.1). In the bottom panel, we also indicate the times of
the snapshots in the top panels by their corresponding number labels. Over the course of a
single period of the superradiance cloud, the plasma undergoes periodic motion along the
BH’s spin axis (as indicated by the arrows in 1. and 3. in the top row), leading to peaks
in the local dissipation density, when the plasma from below and above the BH collide in
the equatorial plane (corresponding to snapshot 2.).

scopic particle acceleration processes active in the turbulent plasma. As well, with our
current treatment, we are unable to determine how the local dissipation rate translates
into observing-angle-dependent radiation, though näıvely one expects this to be strongly
modulated by the oscillation of the superradiance cloud. This could be improved by con-
sider a small domain near the BH and using higher resolution to resolve higher values of
conductivity than considered in this study, e.g., using local resistive force-free techniques.
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This could determine whether coherent magnetic and electric field geometries remain in-
side the light cylinder, even at very large conductivities. These sufficiently large scale field
geometries may then be used to perform light curve modeling paralleling the advances
made in understanding high-energy pulsar light curves. Another avenue could be to utilize
particle-in-cell (PIC) simulations of the turbulent regions of the plasma. This would recover
the particle acceleration and non-thermal heating within the plasma, and could therefore
be utilized to understand the time- and angular-dependence of the X-ray/gamma-ray sky
map of the superradiant system.

5.6.5 Emission spectra

The plasma is characterized by differential rotation on scales of the entire cloud, superradi-
ant driving on scales of 1/µ, and turbulence down to microscopic scales accounted for in our
setup by the inverse conductivity 1/σ. Visible electromagnetic energy is dissipated into the
pair plasma by resistive processes. Likely this dissipation occurs primarily through particle
acceleration, with the subsequent synchrotron emission of highly boosted particles leading
to high energy photons that escape the system. Besides this non-thermal component at
the high-energy end of the emission spectrum, various coherent low-energy radio emission
processes may be active in regions of the superradiance cloud. In the following, we briefly
review existing kinetic theory results for the spectra of turbulent pair plasma and possible
low-frequency radio emission mechanisms that may be relevant to the emission spectrum
for the system considered here.

In the pulsar magnetosphere, resistive processes occur mainly in current sheets outside
the light cylinder. There, magnetic dominance is lost, and electromagnetic energy is effi-
ciently dissipated by accelerating and heating the plasma. In order to gain insight into the
microphysical processes in these accelerating regions, kinetic approaches based on numer-
ical PIC methods are typically utilized [275]. Within this framework, the distributions of
charged particles are evolved in time according to the Lorentz force of the local electro-
magnetic field, while back-reacting on the ambient fields through the charge and current
they source. Local simulations resolve microphysical scales such as the Lamour radius
rL = meγ/(eB) of an electron with mass me and boost factor γ = Ee/me in an ambient
magnetic field of strength B. Therefore, these methods are powerful tools to determine the
classical particle kinetic spectrum self-consistently from first principles. On the other hand,
radiative corrections to the particle motion, pair production, are neglected, or added in an
ad-hoc fashion, and the expensive nature of these simulations make it difficult to apply
in a global setting, while still achieving sufficient resolution to accurately approximating
the microphysics. Nonetheless, PIC methods have successfully recovered the global pulsar
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magnetosphere, the expected non-thermal particle spectrum, and have played a central
role in studies of the radio emission mechanism of pulsars [299, 101, 381].

In the case of magnetic reconnection, PIC approaches have found that the local electron
acceleration results in a particle distribution Ne(γ) with a high-energy, power-law tail below
a cutoff γc, of the form dNe/dγ ∝ γ−pe−γ/γc [371, 345, 184], for γ & 1 (see also Refs. [210,
370, 100, 101, 298]). The size of the resistive region ` sets the high-energy cutoff γc as
the boost factor where ` equals the Lamour radius. Most applicable to the superradiant
system at hand are studies focusing on three-dimensional turbulent pair plasmas [383,
113], determining the power-law to be roughly p = 2.8, for large plasma magnetizations.
We leave a detailed investigation of the kinetic spectrum in the context of a kinetically
mixed superradiance cloud to future work, and in the following make a crude estimate of
the high-energy component of the emission associated with this electron kinetic spectrum
based on the characteristic length scales and field strengths. The high-energy cutoff γc =
e`〈B2〉1/2/me is set by the average ambient magnetic field strength 〈B2〉1/2, defined by
〈B2〉 = 1/S2rc

∫
S2rc

dV B2, where S2rc is a coordinate volume of a sphere of radius 2rc
centered on the BH. From the resistive force-free simulations with σ/µ = 20, we extract
this root-mean-square magnetic energy for each value of α we consider. Fitting the α-
dependence by16 ∼ α5/2, the average magnetic field is

〈B2〉1/2 = 2.5× 108 Gauss
( ε

10−7

)(M�
M

)( α

0.1

)5/2

. (5.56)

With this, the cutoff electron and positron boost factor, with ` = 1/µ, is given by

γc ≈ 2.2× 107
( ε

10−7

)( α

0.1

)3/2

. (5.57)

The size of the resistive region could be set by smaller length scales than the 1/µ value
used above. However, for most the parameter space of interest, the effects of the radiation
reaction will become important for much lower boost factors than in (5.57). Synchrotron
backreaction becomes significant, when the radiation reaction timescale τR = Ee/P

sync
e ,

where P sync
e is the total single electron synchrotron power, is comparable to, or smaller

than, the Lamour timescale τL = 2πrL. Hence, this radiation reaction becomes important
for γ > γr = (3m2

e/(e
3〈B2〉1/2))1/2 with

γr = 3× 103

(
10−7

ε

)1/2(
M

M�

)1/2(
0.1

α

)5/4

. (5.58)

16Functions of the form ∼ α2 or ∼ α3 provide worse fits, but are plausible given the numerical and
theoretical uncertainty.
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Therefore, in the regime 1 . γ < min(γr, γc), the power-law electron and positron kinetic
spectrum results in a synchrotron photon spectral power-law P (ν) ∝ ν−s with spectral
index s = 0.9 [322] (assuming p = 2.8 [113]), making up the non-thermal tail of the high-
energy component of the emitted photon spectrum, while above this range the synchrotron
spectral index is modified. The synchrotron spectrum from a single electron or positron in
this non-thermal distribution with γ ≤ γr peaks at emission frequencies

νpeak = 12 keV
( γ

102

)2 ( ε

10−7

)(M�
M

)( α

0.1

)5/2

, (5.59)

where the value of γ is chosen inspired by simulations presented in [101] and a dedicated
PIC simulation will be helpful to determine the exact spectrum, and an electron with
kinetic energy of meγr radiates mostly at νr = 6.4 MeV.

In summary, in the superradiance cloud, the electromagnetic fields lose energy predom-
inantly through magnetic reconnection in a strong ambient magnetic field with strength on
the order of (5.56). We can expect that this efficiently accelerates electrons and positron
to large boost factors, γ ∼ O(103), as given by the minimum of the values in (5.57) and
(5.58), and that these high-energy particles then radiate synchrotron photons in the pro-
cess, with spectrum ranging from a few keV up to MeV [see (5.59)]. Therefore, it is likely
that there will be strong non-thermal high-energy component of the emission spectrum
from the kinetically mixed superradiance clouds.

We turning now to the low-frequency, i.e., radio, end of the spectrum, where the emis-
sion mechanisms are far less well-understood. Even in the well-studied pulsar case, this a
topic of debate. Low-frequency electromagnetic phenomena such as pulsar radio emissions
and fast-radio bursts are thought to be sourced through a shock induced synchrotron maser
emission mechanism in the pulsar wind, reconnection driven radio emission, or near field
processes [381]. In, for instance, Refs. [248, 297], plasmoids forming from the discontinuous
reconnection of the pulsar current sheet was demonstrated to result in the emission of fast
magnetosonic waves, plausibly escaping as radio emission to infinity. Therefore, the effi-
cient magnetic reconnection of the superradiant plasma, some of which occurs through the
discontinuous reconnection channel, suggests that the cloud is a source of continuous radio
flux as part of the total power output17. Furthermore, as discussed above in Sec. 5.6.4, the
plasma performs periodic longitudinal motion along the BH spin axis with frequency 1/µ,
resulting in collisions of regions with enhanced dissipation density within the equatorial
plane close to the central BH. If these collisions, at the microphysical level, manifest as

17We note that, near the BH, the plasma frequency is on the order of a GHz, but it is expected to
decrease exponentially away from the BH with the superradiance cloud density (see Sec. 5.4.3).
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colliding shock waves and trigger a synchrotron maser mechanism in the process (see, e.g.
Refs. [259, 301]), then one would expect periodically enhanced radio flux from these shocks.
Hence, the näıve expectation is that the plasma-filled superradiance cloud is a source of
continuous radio flux, together with periodic peaks in the radio power with pulse period
set by the dark photon mass 1/µ.

5.7 Multimessenger Signals

The system studied thus far motivates a novel target for multimessenger searches: a new
bright, possibly periodic, source with specific, unusual properties. In this section, we
summarize the relevant dynamics and observational signatures of the kinetically-mixed
dark photon superradiance cloud. The numerical simulations performed in this chapter
give us an estimate of the total electromagnetic power emitted, but do not directly provide
the spectrum of the emitted radiation, nor conclusively establish its periodicity.

Nevertheless, the unique properties of the system and the analogy with the well-studied
neutron star pulsars allow us to identify promising search strategies based on our system’s
combination of electromagnetic and GW emission. Given reasonable assumptions, out-
lined below, we expect current and planned telescopes and GW observatories to reveal
dark photons in the 10−14 − 10−11 eV mass range, with kinetic mixing below the current
cosmological bound ε . 3× 10−7.

The evolution of our new pulsar begins with the birth of a new, rotating, BH. Around
this BH, the superradiance instability populates a cloud of dark photons in O(100) super-
radiance times18,

tgrowth ∼ ln(Mc/µ)τSR ≈ 104 s

(
M

10 M�

)(
0.7

a∗

)(
0.1

α

)7

. (5.60)

The resulting large electromagnetic fields will, for large enough values of the kinetic mixing
parameter, ε & 10−10, build up a dense plasma of charged particles in the last few e-
folds before saturation (see Sec. 5.4). The rotation of the cloud and resulting turbulent
electromagnetic processes in the plasma lead to a large flux of electromagnetic emission
from the system, as described in Secs. 5.5 and 5.6.2. The energy output is dominated by the

18 The results in this section are obtained using the gravitational waveform model SuperRad [342] for
the superradiant vector cloud, with approximate expressions for the timescales, etc. given to guide the
reader.
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dissipative losses in the turbulent regions, which we infer from our numerical simulations
(see Eq. (5.53)) to be

LEM = ε2F (α)
Mc

GM
' ε2α

2∆a∗
G

' 4× 1041erg/s
( ε

10−7

)2 ( α

0.1

)2
(

∆a∗
0.1

)
, (5.61)

where F (α) = 0.13α− 0.19α2 is a polynomial fit to the simulations, and we used the mass
of the superradiance cloud at its maximum and the small α limit. The luminosity can be
up to five orders of magnitude brighter than the Crab pulsar’s bolometric luminosity [198],
and up to ten orders of magnitude brighter than the solar luminosity. In the following, we
will assume the luminosity to be given by Eq. (5.61) also for α < 0.1, below the smallest
simulated value.

The cloud slowly decays through emission of GWs and electromagnetic radiation on
a timescale generally dominated by the gravitational dissipation of the cloud, except at
small dark photon masses and large mixing, as shown in the left panel of Fig. 5.17. The
observable electromagnetic signal lasts for ∼ min {τGW, τEM},

τGW ≈ GM

17α11∆a∗
≈ 106 s

(
M

10M�
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0.1
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)11(
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,
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ε2F (α)
≈ 1011s
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)
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(5.62)

The decay is power-law in time when more energy is released in GWs than electromagnetic
radiation and exponential otherwise,

Mc(t)

Mc(t0)
=

{
[1 + (t− t0)/τGW]−1 τGW � τEM

e−(t−t0)/τEM ln 2 τGW � τEM.
(5.63)

At small α and large enough ε, the superradiance growth time τSR can become slower than
τEM, possibly preventing the cloud from reaching its full size. A detailed study of the cloud
saturation in this case is beyond the scope of this work and we always require τSR < τEM,
which applies to most of the open parameter space (see Fig. 5.17).

To summarize, the evolution of a kinetically mixed cloud is fully fixed by the dark pho-
ton mass µ, which sets the overall fundamental scale, and the dimensionless couplings ε and
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α. Over the lifetime of the cloud, the electromagnetic and GW signals grow exponentially—
at a rate fixed uniquely by the dark photon mass and α—until the cloud reaches its max-
imum size, and then decrease on longer timescales as the cloud disappears.19 If the GW
radiation dominates, there is a unique relation between the growth and decay timescales,
τSR and τGW. For α� 1 (for which the GW timescale is given by Eq. (5.11)) it takes the
approximate form

τSR ' 0.98 τ
7/11
GW r4/11

g

[
a∗

(
∆a∗
0.5

)7/11]
. (5.64)

We show the characteristic electromagnetic luminosities and their time evolution due to
GW emission in the right panel of Fig. 5.17.

Clearly, the observational prospects of this system depend heavily on the spectral shape
of the electromagnetic radiation; unfortunately, our simulations do not give us this infor-
mation. However, given the similarities of our system to pulsars, which have been observed
across electromagnetic bands in many systems, and have PIC simulations in agreement with
aspects of the observations, we can make educated guesses as to the expected emission in
different bands.

In analogy with neutron star pulsars, one dominant emission mechanism could be syn-
chrotron radiation. As discussed in Sec. 5.6.5, the boost factor of electrons and positrons
in the cloud peaks in the range γ ∼ O(10− 100), giving typical electron radiation frequen-
cies ranging from keV to a few MeV. Depending on the value of the kinetic mixing and
BH mass, most of the spectrum would fall within the range of X-ray telescopes, such as
Chandra [3] and Swift [87] of O(0.1− 10 keV) or Fermi-GBM (8 keV to 1 MeV) [37].

GW emission from the system is monochromatic with frequency fGW = ω/π, and
the electromagnetic emission is also expected to have periodicity on timescales of 1/ω
(Sec 5.6.4). Here, ω is the energy per dark photon, given by its rest mass with ∆ω/µ ≈
−α2/2 − O(α4) corrections due to the gravitational potential energy of the BH [53] and
∆ωc/µ ≈ −(5/8)α2Mc/M the gravitational self-energy of the cloud [342]. The combination
of the decrease of the BH mass as the cloud grows, and the decrease of the cloud mass as
it decays, result in a monotonically increasing frequency correction. In other words, the
cloud period decreases during the whole evolution of the cloud [342], in stark contrast with
conventional pulsars, for which the period increases in time. Thus, rotating BHs can host
an anomalously bright “pulsar” which spins up over time [33].

This new type of pulsar has several unique features and a peculiar evolution history.
While there are a variety of signatures that can be looked for, here we highlight two

19The electromagnetic signal is only present for large enough cloud sizes Mc and kinetic mixings ε which
are needed to generate the plasma, Sec. 5.4.
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Figure 5.17: (left) Lifetime of the superradiance cloud as a function of the kinetic mixing
parameter ε and the gravitational coupling α for a BH with an initial mass of 10 M� and
spin of a∗ = 0.9. At large α, the cloud decays through GW emission, and the lifetime is
independent of ε. When α is too small, the power emitted in electromagnetic radiation
overcomes the GW power and the cloud depletes faster for larger ε (see Eq. 5.62). In
both regimes, the lifetime is proportional to the BH mass, τ ∝ M , so the transition is
independent of the value chosen. The initial BH spin determines the largest value of α
that satisfies the superradiance condition, but otherwise has a mildly effect on the lifetime
of the cloud. In the dark gray shaded region τSR > τEM, while the light shading corresponds
to parameters excluded by measurements of the CMB spectrum by COBE/FIRAS [154,
91]. (right) Time evolution of the superradiance cloud’s electromagnetic luminosity (see
Eq. 5.61) for two different values of ε, for M = 10 M� and a∗ = 0.9 (the luminosity is
independent of M and only mildly dependent on a∗, while the decay time will increase for
heavier BHs). After the spinning BH is formed, the energy emitted in radiation quickly
grows exponentially with the superradiance cloud, and later slowly decreases due to the
cloud mass decay through GW emission.

distinct observational prospects: searching for the emergence of a bright electromagnetic
source from a known rotating BH remnant (with or without a periodic component), or
searching for continuous GWs emitted by anomalous pulsars. These two observational
strategies are best-suited to regimes of large and small α, respectively.
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Name Final BH mass [M�] Final BH spin Dist. [Mpc] ∆Ω [deg2]
GW170814 [9] 53.2 0.72 600 87
GW190814 [12] 25.7 0.28 230 19

GW200202 154313 [14] 16.76 0.69 410 170

Table 5.1: List of example compact binary merger events observed by LIGO-Virgo-KAGRA
that are promising candidates for a dark photon superradiance search through electromag-
netic follow up observations and corresponding central values of their parameters. See
Fig. 5.18 for the observational prospects.

Given the signal uncertainties, we propose discovery oriented searches rather than ex-
clusions. It is possible that the absence of a large number of ultraluminous X-ray sources
already places limits on dark photon parameter space; however, given uncertainties in natal
BH spin distributions, as well as in the emission spectrum of the dark photon cloud, such
a constraint would not be robust. Similarly, we can speculate that such kinetically mixed
superradiance clouds may account for some of the ultraluminous X-ray sources already
observed [352, 300].

5.7.1 Electromagnetic follow-ups of black hole mergers

Most of the compact binary mergers detected by the LVK observatories result in a BH rem-
nant with a mass between 10 to a 100 M� and high spin, due to the capture of a significant
component of the binary’s orbital angular momentum [85]. Electromagnetic follow-up ob-
servations of the mergers could reveal the existence of a dark photon superradiance cloud
around the BH remnant. We select three illustrative events from the LSC O1-3 catalogs
[9, 12, 14] and forecast the sensitivity of radio and X-ray searches in Fig. 5.18. The best
targets and their inferred parameters are listed in Table 5.1; they correspond to the clos-
est mergers with the best sky localization and one high mass and one low mass event,
to cover the widest range of dark photon masses. We also include the possible neutron
star–BH merger GW190814 [11], for which an electromagnetic counterpart was not found
in the radio [135, 134, 174], optical, and near-infrared [219, 123, 359, 22, 366], and X-ray
[279]. These null results could exclude new dark photon parameter space, provided a more
reliable prediction for the emission spectra from the superradiance system.

For our projections, we assume an O(1) of the superradiance cloud luminosity (5.61)
is emitted into X-rays and a O(10−4) fraction into radio frequencies, in analogy with the
spectrum of standard pulsars [214, 249]. For the follow-up to detect the EM emission,
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Figure 5.18: Range of dark photon kinetic mixing parameter ε and mass µ producing a visi-
ble signal for electromagnetic follow-up observations of LVK compact binary merger events
with a BH remnant. As an example, we choose the three best target events: GW170814
(blue), GW190814 (yellow), GW200202 154313 (red) (measured parameters are given in
Table 5.1). The thin solid lines show the regions where a signal could exist, which are
bounded from below by the requirement that the visible electric field is large enough to
produce the plasma (see Sec. 5.4 and Eq. (5.26)), to the left by the requirement that the
cloud grows within 10 years (see Eq. (5.60)), and to the right by the superradiant condi-
tion for the fastest-growing bound state (see Sec. 5.2). The reach is further limited on the
right by the signal duration falling below a minimum observational time. The gray shaded
region is excluded by measurements of the CMB spectrum by COBE/FIRAS [154, 91].
(left) Current prospects for an X-ray [87] (solid) and radio transient [134] (dashed) search.
(right) Future prospects for an X-ray search (solid) and a radio search for a pulsating source
(dashed). See the text for more details. The cyan contour corresponds to one merger event
per year visible in the X-ray, with shaded band indicating the error due to the uncertainty
in the BH merger rate.

the cloud needs to grow within a reasonable observational timescale; for concreteness we
impose the requirement tgrowth < 10 years (c.f. Eq. (5.60)), which translates into a large-α
requirement given by α & 0.036, 0.04, and 0.03 for our three selected candidates. The left
panel of Fig. 5.18 shows how current instruments could already measure a signal, taking
a radio flux sensitivity of 40 µJy at 944 MHz for an observation time of 10 h, achievable
by ASKAP searching for transient events [134], and an X-ray detection sensitivity of 2 ×
10−14 erg cm−2s−1 in 104 s, attainable by Swift-XRT [87] as it scans through the sky
(eROSITA has similar performance [304]). Better reach can be achieved with Chandra,
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which however requires prior angular localization. For instance, for sources with angular
localization from radio observations, Chandra could probe almost an order of magnitude
smaller X-ray fluxes [208].

The sky localization is expected to improve during O4 with the Advanced LIGO, Virgo,
and KAGRA network, with about 10% of the events localized within 5 deg2 [8], improving
the prospects of detecting an electromagnetic counterpart. In the right panel of Fig. 5.18,
we assume smaller positional errors that would allow a Chandra-like X-ray search sensitive
to 10−15 erg cm−2s−1 fluxes in 105 s. In the same panel we also indicate with a cyan contour
the region of parameter space above which more than one X-ray event per year from BH
mergers could be observed with the same X-ray sensitivity. To obtain this contour we
made use of the BH merger rate as a function of primary BH mass measured by LVK [16],
assuming a final BH spin of 0.7, and a final mass equal to twice the primary mass. The
shaded band around the cyan contour indicates the uncertainty in the merger rate.

The searches discussed so far in this subsection are aimed at a steady source that
shines for as long as the required observational time, without assuming any periodicity.
If we further assume partial or total periodicity in the electromagnetic emission power, a
search for a long lasting pulsating radio signal could be performed. We estimate that the
prospect of such a search with a sensitivity of 10 µJy at 1 GHz with 500 MHz bandwidth
for 15 minute observations daily over the lifetime of the cloud,20 which is comparable to
the performances of FAST [268] and slightly better than CHIME [105].

The superradiance cloud could also have higher energy emission, up to γ-rays. Tele-
scopes with nearly all sky coverage, such as Fermi-LAT [37], are well suited to perform
follow-up observations of compact binary coalescences (which have been done and are
planned during O4 [310]). Current flux sensitivities result in reach in kinetic mixing compa-
rable to current constraints, but a signal could be detected in the event of an exceptionally
close merger.

In the event of a positive detection of a new luminous source following a binary BH
merger, there are non-trivial cross checks that can be used to confirm the superradiance
origin of the signal. First, by measuring the peak luminosity of the different sources, the
luminosity’s unique dependence on the parameter α—Eq. (5.61)—can be verified. For
a dark photon with a given mass and kinetic mixing, the luminosity will only depend
on the BH mass and spin, which are measured in the merger. Secondly, the measured
light curve should be consistent with an exponential growth as dictated by superradiance,
and power-law decay, as expected from GW emission, with growth and decay timescales
satisfying the non-trivial relation Eq. (5.64). Thirdly, if a pulsating electromagnetic signal

20Private communications with Kendrick Smith.
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is observed, the measurement of the period, given by 2π/µ, can be used to extract the dark
photon mass and verify the signal growth and decay times dependence on the parameter
α—see Eqs. (5.60) and (5.62). Multiple sources will have the same period up to Doppler
shifts of O(10−3), and gravitational potential corrections of up to a few percent. Finally,
the superradiance system also emits continuous GWs with frequency ω/π, which could be
detected with a search targeted on the luminous source [32, 206, 102, 342]. The GW has the
same signal growth and decay times as the electromagnetic emission, which, together with
the period coincidence, constitute unmistakable signatures of dark photon superradiance.

The discovery of such an ultraluminous source depends crucially on our ability to lo-
calize the newly formed BH. In particular, for sources with short duration (large α), it
is important that the source is located hours before the merger to allow telescope ob-
servation coincident with the merger. Space-based, mid-band detectors can locate stellar
mass BH merger events similar to GW150914 to an angular area of ∼ 0.01 deg2 an hour
before the merger [177, 336]. Similar angular localization can be reached with the Laser
Interferometer Space Antenna (LISA) and similar space missions for intermediate mass
and supermassive BH mergers [119, 319]. These missions could significantly improve the
chances of finding the X-ray and radio signals from the dark photon superradiance cloud.

5.7.2 Gravitational follow-ups of anomalous pulsars

If the superradiance electromagnetic emission is periodic, old galactic BHs dressed with a
dark photon cloud could look like a neutron star pulsar, and be detected by ongoing surveys
of pulsating sources. Such “fake” pulsars appear to be rotating at a single frequency f set
by the dark photon mass, spin up over time, and emit continuous GWs with frequency
fGW = 2f . Their GW strain is up to several orders of magnitude larger than the neutron
star spin down limit and can be searched for with targeted continuous GW analyses.

We select two types of potential candidates in the ATNF pulsar catalogue [249, 1]. The
first type is a set of frequency multiplets, i.e. sources i with at least one other pulsar j
that satisfies |fi − fj|/fi < 10−3, which takes into account the spread in frequency due to
Doppler shifts of O(10−3). The second type is a source with ḟobs > 0 that is not known
to be in a binary system, to avoid spurious positive spin frequency derivatives due to the
source’s acceleration in a binary orbit.

Since all these pulsars are within our Galaxy, the BH formation event must have oc-
curred long enough ago so that it was not observed. We therefore impose τGW > 103 yr,
which translates into a maximum value for α . 0.03 − 0.05 for the selected sources. For
each system, the dark photon mass is fixed to be µ = 2πf (gravitational corrections to
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the dark photon energy are negligible in the small α limit). A lower bound on α is set by
the smallest possible BH mass, which we take to be 3 M�, resulting in α & 0.05 − 0.005
across the range of frequencies considered. We take the initial BH spin to be 0.5. A better
choice for the BH spin would be to sample it from the spin distribution of the Galactic BH
population; however, this is not well known.

We only consider sources with f > 50 Hz, since for a stellar mass BH, smaller frequencies
would correspond to a very small α, and correspondingly small signal. Above this threshold,
the ATNF catalogue contains 229 sources with measured f , distance, and with positive or
unknown ḟobs. Among these, there are 3 frequency triplets and 26 frequency doublets (19
of the doublets have a non-zero allowed range of α between the upper and lower bound),
statistically compatible with the number of accidental multiplets expected for a uniform
frequency distribution between 50 and 500 Hz. For each fake pulsar in a multiplet, the
emitted GW strain cannot be uniquely predicted, since the BH mass and age (that sets
the remaining superradiance cloud mass, and thus affects the GW emission power) are
unknown. In the left panel of Fig. 5.19, we show the maximum possible strain for the
allowed range of α values, for two example BH ages of 103 and 106 years. As pointed
out previously, we do not consider younger systems. These young systems are excluded
by all-sky searches for continuous GWs [17, 13], but strains below the current bounds are
possible for older systems, and within the reach of a targeted search [18].

With the same selection criteria as above, but without requiring frequency multiplets,
we find 20 sources with ḟobs > 0, with values between 4 × 10−17 Hz/s and 5 × 10−14

Hz/s. Only 16 of these sources have a non-zero range of α values between the upper and
lower bound. Interestingly, four of these sources (J0024-7204Z [157], B0021-72G [315, 157],
J1801-0857C [244, 287], and B0021-72M [315, 157]) also belong to a frequency doublet.
The frequencies of the four doublets are approximately 219.6, 247.5, 267.4, and 272.0
Hz. These candidates could be further strengthened (or disfavored) by performing spin
derivative measurements of the other component of each of the doublets, which at present
do not have ḟ measurements, and that are J0514-4002D [312], J1824-2452J [156], J0024-
7204ad [311], and J0125-2327 [263], respectively.

If the spin-up is due to the superradiance cloud decay through GW emission, we expect
an intrinsic spin frequency derivative [342]

ḟint '
5

8π
αµ2GPGW. (5.65)

The observed frequency derivative could differ from the intrinsic one due to additional
positive contributions from acceleration along the line of sight. Thus, one should interpret
the measured spin derivative ḟobs only as an upper limit on the intrinsic spin derivative.
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Here, however, our intention is to provide a first example of how spin derivative measure-
ments could be used to discover anomalous pulsars, so in what follows we simply neglect
accelerations along the line of sight and assume ḟobs ' ḟint. With this assumption, the
measured value of ḟobs fixes the power emitted in GWs PGW for any given α. Since the
power emitted decreases as the cloud’s mass decays, there is a minimum α that allows for
a spin up rate as large as the one observed when the cloud is as young as possible, i.e., at
least 1000 yr. This lower bound on α is stronger than the one described above from the
minimum BH mass for f . 270 Hz . Therefore, the observable strain is predicted to be
within a small range given by the small spread of α values allowed, as shown on the left
of Fig. 5.19 with the short segments bounded by the downward and upward pointing blue
triangles.

We find that most sources should have already been seen by all-sky searches for con-
tinuous waves, but one candidate pulsar with a frequency around 600 Hz remains uncon-
strained, which could be an interesting candidate for a targeted search. We note that if the
assumption ḟobs ' ḟint is correct, the four previously mentioned events that are frequency
multiplets and have ḟobs > 0 would be excluded, since their ḟobs > 0 measurement leads to
a strain prediction that is already ruled out by existing GW searches. These sources, how-
ever, could certainly be compatible with data if ḟint < ḟobs, due to the source accelerations
along the line of sight that we have neglected.

For each anomalous pulsar, the kinetic mixing parameter could lie within a range of
allowed values, which are shown in the right panel of Fig. 5.19. In the prediction of the
strain described above, we assumed that the cloud decays through GW emission, and
that the power emitted in electromagnetic radiation is subdominant at all times, giving
an upper bound on ε of around a few times 10−7 for a system that is 1000 years old (see
Fig. 5.17)—a different time evolution for the cloud is, in principle, allowed and would give a
different observable strain. The lower bound on ε shown in Fig. 5.19 comes from requiring
the superradiance cloud to pair produce the plasma, as described in Sec. 5.4. This bound,
however, can be relaxed since the BH was formed long ago, and charged particles could
be slowly accreted and build up the plasma over time (see Sec. 5.4.3). In this case, ε as
small as 10−12 could produce a pulsating source that is luminous enough to be observed at
galactic distances. Finally, we notice that a few of the pulsating sources used here have a
measured luminosity, which could be used to fix the value of ε if the emission spectra were
known (see Sec. 5.6.5). Taking the fraction of total luminosity that goes in the radio band
to be between 10−4 and 10−6 gives ε between approximately 10−12 and 10−11 [249, 214].
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Figure 5.19: (left) We show the projected gravitational wave strain of observed pulsating
sources whose luminosity could be powered by the kinetically mixed dark photon superra-
diance cloud. The potential candidates are selected from the ATNF pulsar catalogue [249],
as described in Sec. 5.7.2, and are frequency doublets (dark red), frequency triplets (light
red), and pulsars with positive measured frequency derivative (blue). The filled (empty)
triangles correspond to the largest possible strain that a source in a frequency multiplet
could produce if the cloud were created 103 (106) yr ago. The strain could take any value
below that upper bound (thin solid lines) down to a minimum strain outside of the range
shown here. The blue down-pointing and up-pointing triangles denote the range of strains
allowed assuming that the spin-up is due to gravitational wave emissions from the cloud.
The 95% C.L. upper limits on the signal strain amplitude from Refs. [17] and [13] are
shown in dark and light gray shading, respectively. The solid gray line corresponds to the
expected sensitivity of a targeted search with LIGO Livingston derived in [18]. (right)
Range of kinetic mixing parameters allowed for each pulsar, with frequency doublets (dark
red), frequency triplets (light red), and pulsars with positive measured frequency derivative
(blue). For the frequency multiplets, filled (empty) down-pointing triangles correspond to
the largest ε that allows the cloud to decay through GW emission for at least 103 (106)
yr. For the sources that are spinning up, down-pointing triangles give the largest ε that
allows the cloud to decay through GW emission up to their current age (which is fixed by
ḟobs). For all the sources, up-pointing triangles denote the smallest mixing parameter that
allows for plasma pair production in the cloud (see Sec. 5.4 and Eq. (5.26)).
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5.7.3 Concluding remarks

In the last two subsections, we discussed two detection strategies which take advantage
of the multimessenger signals from a dark photon superradiance cloud around a spinning
BH. In both cases, a combination of the electromagnetic and GW observations allow us to
perform highly non-trivial cross checks to uniquely identify our system and measure the
dark photon mass and kinetic mixing parameter. Our analysis can be strengthened by
dedicated numerical studies which

• extend our analysis to smaller gravitational coupling α and larger conductivity σ/µ,

• provide robust information about the electromagnetic emission spectrum,

• show robust evidence for or against periodicity in the electromagnetic emission in
different electromagnetic bands.

In addition to the signals mentioned above, our system may host a plethora of phe-
nomena, including ultraluminous X-ray sources (ULX) [352], as well as transient processes
such as fast radio bursts (FRB) [28, 294] and X-ray flares and giant flares [108]. Follow-up
GW observations of these events could identify their origin as a dark photon superradi-
ance cloud. With electromagnetic observations alone, more dedicated numerical studies
are needed to determine the similarities and differences in the spectral properties and tran-
sient dynamics between our system and a neutron star pulsar or magnetar [299], or other
astrophysical sources. If BH superradiance is discovered with continuous GW searches at
LVK and future GW observatories, follow-up electromagnetic observations can discover
the kinetically mixed phenomena presented in this chapter or put robust constraints on
the dark photon parameter space.

Finally, note that in this chapter we have exclusively focused on signals from stellar
BHs, but the computations and the results for the luminosity presented in Eq. (5.61) also
apply to the case of isolated supermassive BHs, which would be of relevance for follow-up
signatures of mergers detected by LISA.

5.8 Discussion and Conclusions

In this chapter, we performed a detailed analytical and numerical study of the dynamics
of a kinetically-mixed, dark photon superradiance cloud and the resulting multimessenger
signatures. If a dark photon with Compton wavelength on the order of the radius of a stellar
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mass black hole exists, isolated, rotating black holes turn into very bright electromagnetic
sources for kinetic mixings on the order of ε ∼ 10−10− 10−6. We summarize our approach,
discuss the unique dynamics and observational signatures of the system, and outline future
directions for investigation below.

A dark photon superradiance cloud is a dark electromagnetic field rotating at a fre-
quency fixed by the dark photon energy. Charged particles in the interstellar medium enter
the rotating cloud and, in the presence of a kinetic mixing, initiate a transient phase of
cascade particle production, resulting in a dense plasma. The stable rotation of the cloud,
large strength of the visible electromagnetic fields, and the appearance of the charged
plasma resemble pulsar magnetospheres. We use resistive electrodynamic methods that
interpolate between the vacuum and the force-free limit. Our methods are adapted from
those originally developed to model resistive effects in the pulsar magnetosphere, here
applied to a fixed Kerr spacetime and the kinetically mixed case.

Due to the system’s large conductivity, plasma currents redistribute charge in an ap-
proximately dipolar form on large scales in order to screen the coherent visible electromag-
netic field set up by the rotating superradiance cloud. We find that, due to the electric
dominance of the oscillating superradiance cloud, the charged plasma cannot completely
screen the electromagnetic field. Our numerical simulations of the field electrodynamics
indicate that the differential rotation between the background fields and the plasma leads
to the emergence of small-scale turbulence in the form of magnetic field reconnection and
unscreened electric fields (Sec. 5.5.3). We establish that the electromagnetic emission from
the system is dominated by such small-scale turbulent dissipation into the standard model
plasma, with a peak luminosity of up to 10 orders of magnitude larger than the solar lu-
minosity, as described in Sec. 5.6.2 (see Eqs. (5.54) and (5.61)). In addition, we find a
Poynting flux component to the emission. Though subdominant, ∼ 102−104 times smaller
than the local dissipation, this may also be significant for the observational signatures of
the system. These are the main results of this chapter.

Given the rotation of the superradiance cloud, we expect that at least a fraction of our
system’s emission is periodic (with period T ≈ 2π/µ), a property that would extend the
analogy with pulsars into the observational domain. Our simulations show some evidence
for such a periodicity, as discussed in Sec. 5.6.4, but cannot conclusively verify this ex-
pectation. By analogy with the results for pulsar magnetospheres and findings from PIC
simulations of turbulent plasmas, we expect that the emission spectrum contains a non-
thermal X-ray component for kinetic mixing parameters ε & 10−7, softer spectra for smaller
mixing parameters, and likely a radio component (see Sec. 5.6.5). Our simulations cannot
directly determine the spectrum of the emitted luminosity, so given the differences between
our system and pulsars, both in field profile morphology and strength, more investigations
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are essential to conclusively establish the spectral shape.

Based on the system’s large luminosity, characteristic time evolution, and expected pe-
riodicity, we propose several search strategies for dark photon superradiance clouds. The
first strategy relies on the extreme brightness of our system: electromagnetic follow-up
searches targeting binary BH mergers observed by the LVK Collaboration (Sec. 5.7.1).
Based on our expectations of the spectrum, the most promising reach is achieved by X-ray
and radio observations. In addition to the spatial and temporal correlation of a merger
and the resulting electromagnetic emission, one could discriminate between superradiance
clouds and standard astrophysical sources by requiring a fast exponential rise, and 1/t
power-law fall-off of the light curve, consistent with superradiant growth and subsequent
decay by GW emission. Given the measured remnant BH mass and spin from the gravi-
tational waveform, these timescales are fully determined by the dark photon mass; for the
parameters necessary to see these signals over cosmological distances, the electromagnetic
power is subdominant to the GW power and does not affect the time evolution. This
results in a non-trivial relation between the rise and decay times (see Eq. (5.64)), which if
experimentally confirmed, would provide a smoking gun signature of superradiance.

Further assuming periodicity, a variety of additional signatures can be explored. For
the proposed electromagnetic follow-ups, the periodicity alone could be used to measure
the dark photon mass µ, as the periodicity is set by the dark photon mass up to a few-
percent binding energy corrections from the BH potential. This would further strengthen
the evidence for the new physics hypothesis by requiring consistency between the period-
based measurement of µ and the light curve rise and decay times.

Another observational strategy targets known pulsars, either by selecting those with
positive frequency derivative, or by selecting those with the same measured period up to
O(10−3) due to Doppler shifts. Interestingly, by surveying existing pulsar catalogues we
find four candidate sources for which a partner with the same frequency exist, and that
have a positive frequency derivative measurement. Our computation of the GW power
with the measured “pulsar” period and spin-up rate suggest that many of these objects
would emit continuous gravitational wave with strain above the LVK threshold if their
origin is dark photon superradiance. Many potential sources could be excluded with blind
continuous wave searches while others could be further probed with targeted continuous
wave searches (section 5.7.2).

Apart from these multi-messenger signatures of correlated EM and GW emission, at
small α and large ε the dark photon cloud depletion is dominated by EM emission, leading
to persistent ultra-bright sources of X-rays. Observation of several periodic sources with
periods within a few percent of each other would be strong evidence for the origin of these
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objects being a dark photon superradiance cloud. The absence of these sources in the
Universe may already imply constraints on the dark photon parameter space assuming a
natal black hole mass and spin distribution; given the uncertainties in BH properties and
the EM signal spectral shape, we leave this study to future work.

We close with a discussion of future directions. In this chapter, we studied the case of
an isolated BH and a single new particle with a minimal interaction, the kinetically-mixed
dark photon. In the presence of a more complex dark sector, such as the existence of a dark
Higgs, the dynamics may be altered further. Recently, some of the authors showed that
in the higgsed dark photon scenario, vortex lines can form and deplete the cloud before it
reaches its maximum size [143, 144]. Further study is needed to understand how the vortex
production and evolution is affected by the presence of plasma (see, e.g., Refs. [24, 144]).

Furthermore, many BHs are not isolated: they are surrounded by an accretion disk,
leading to additional dynamics. While it is a negligible perturbation to the background dark
photon field, a dense accretion disk affects the visible electromagnetic field and resulting
electromagnetic dynamics and emission. BH systems affected by these dynamics include
accreting supermassive black holes, X-ray binaries, etc. Preliminary studies show that even
a small superradiance cloud (or a small ε ∼ 10−12 for a maximal cloud) affects the disk
properties, and would invalidate the ISCO-based spin measurements [239, 255, 308]; we
leave further details to a future publication [203].

This work sets the stage for the exploration of kinetically-mixed dark photon superra-
diance. We have established numerical simulation techniques to understand the electro-
dynamics of the cloud and its electromagnetic emission. The parameter space of possible
signatures is vast, from weak, long-lasting signals to bright, short signals, across the elec-
tromagnetic spectrum. We have detailed several possible observations, and a more wide-
ranging study of search strategies is warranted. Utilizing different simulation approaches
to better understand the electromagnetic emission spectrum would be invaluable to pin
down observables. Finally, given the similarities between our system and a magnetar, it
is conceivable that the dark photon superradiance cloud could host a wide range of astro-
physical phenomena, such as X-ray flares and fast radio bursts. Due to the differences in
the magnetic field structures, further investigations are clearly needed, and would be of
great interest.
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Chapter 6

SuperRad: Modeling the black hole
superradiance gravitational waveform

Executive summary: Gravitational signatures of black hole superradiance are a unique
probe of ultralight particles that are weakly-coupled to ordinary matter. The existence of
an ultralight boson would lead spinning black holes with size comparable to the Comp-
ton wavelength of the boson to become superradiantly unstable to forming an oscillating
cloud, spinning down the black hole, and radiating gravitational waves in the process.
However, maximizing the chance of observing such signals or, in their absence, placing
the strongest constraints on the existence of such particles, requires accurate theoretical
predictions. In this chapter, we introduce a new gravitational waveform model, SuperRad,
that models the dynamics, oscillation frequency, and gravitational wave signals of these
clouds by combining numerical results in the relativistic regime with fits calibrated to ana-
lytical estimates, covering the entire parameter space of ultralight scalar and vector clouds
with the lowest two azimuthal numbers (m = 1 and 2). We present new calculations of
the gravitational wave frequency evolution as the boson cloud dissipates, including using
fully general-relativistic methods to quantify the error in more approximate treatments.
Finally, as a first application, we assess the viability of conducting follow-up gravitational
wave searches for ultralight vector clouds around massive black hole binary merger rem-
nants. We show that LISA may be able to probe vector masses in the range from 1×10−16

eV to 6× 10−16 eV using follow-up gravitational wave searches.
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6.1 Introduction

In Chapter 5, we introduced the BH superradiance process, and how it can be used to search
for ultralight bosons extending the SM of particle physics. To leverage the observational
potential of ground- and space-based GW detectors, however, accurate predictions for the
involved spin-down timescales, as well as GW frequency and amplitudes are required. Much
effort has gone into determining these for scalar bosons [356, 385, 128, 136, 35, 377, 33, 32,
79, 378], vector bosons [318, 288, 289, 93, 50, 141, 142, 53, 338], and spin-2 fields [78, 83]
(see Ref. [79] for a review). Scalar bosons exhibit the longest spin-down timescales, as
well as weakest and longest GW signal after cloud formation. Vector bosons, on the other
hand, are amplified more efficiently, leading to faster cloud growth rates and stronger, but
hence shorter, GW emissions. In modified theories of gravity, massive spin-2 fields grow
the fastest around BHs.

To bridge the gap between these developments and their implementation in search
campaigns, we introduce SuperRad, an open source BH superradiance waveform model in-
corporating state-of-the-art theoretical predictions for BH spin-down and GW observables
across the entire relevant parameter space in a simple, ready-to-use python package1. A
primary goal is to provide a tool to efficiently and accurately interpret GW search results
of current and future ground- and space-based GW observatories. As part of this work,
we present new calculations of the frequency evolution of the boson cloud oscillations
and attendant GWs due to the changing mass of the boson cloud. We compare the ana-
lytic frequency evolution in the non-relativistic limit to both approximate quasi-relativistic
calculations, as well as fully general-relativistic ones, to determine their accuracy in the
relativistic regime.

As a first application, we use SuperRad to show that the Laser Interferometer Space
Antenna (LISA) should in principle be able to probe ultralight boson masses from 1×10−16

eV to 6 × 10−16 eV by performing follow-up searches for GWs from boson clouds arising
around the remnants of massive BH binary mergers. Such follow-up searches have been
previously discussed in the context of stellar mass BH mergers [166, 206, 102], and are
especially promising because the observation of the binary BH merger waveform gives
definitive information on the properties of the remnant BH, allowing one to place con-
straints in the absence of a signal without further assumptions. By contrast, other search
methods outlined above rely on further assumptions and are subject to various uncertain-
ties: electromagnetic spin measurements are contingent on astrophysical uncertainties and
may be invalidated by weak couplings of the ultralight boson to the SM [343], spin measure-

1Available at www.bitbucket.org/weast/superrad .
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ments of constitutents of inspiraling binary BHs have large statistical uncertainties, and
constraints based on blind continuous waves and stochastic gravitational wave background
searches rely on BH population assumptions.

We begin in Sec. 6.2 by providing a broad overview over the expected GW signals
from BH superradiance of scalar and vector clouds. In Sec. 6.3, we discuss in detail how
SuperRad determines the cloud’s oscillation frequency and the superradiance instability
timescales. Furthermore, we analyze the frequency shift due to the finite self-gravity of the
cloud around the BH in Sec. 6.4 using Newtonian, quasi-relativistic, and fully relativistic
approaches. The GW amplitude and waveform is discussed in Sec. 6.5. Following this,
we outline the linear evolution of the cloud as well as the accompanying GW signature in
Sec. 6.6, and close with the application of SuperRad to analyze the prospects of follow-up
searches with LISA in Sec. 6.7. We use G = c = 1 units throughout this chapter (note this
is different from our definitions in Chapter 5).

6.2 Overview and Example

We begin with an example to illustrate the expected GW signal from superradiant clouds,
and give an overview of the different effects that go into calculating it. We consider
parameters consistent with the remnant from a GW150914-like binary BH merger. In
particular, we consider a BH with mass M = 62 M� and dimensionless spin2 a∗ = 0.67 at
a distance of 410 Mpc [7] and determine the resulting GW signal if there were an ultralight
boson—scalar or vector—with mass ~µ = 3.6× 10−13 eV (hence α ≈ 0.17). For simplicity,
here we assume the angular momentum points in the direction of the observer—hence both
GW polarizations are equal—and ignore redshift effects. The GW strain and frequency
calculated with SuperRad for both the scalar boson case and the vector case are shown in
Fig. 6.1.

There are a number of different parts that go into these calculations. First, one deter-
mines the superradiant instability timescale by solving for the fastest growing mode of the
massive scalar or vector equations of motion on the BH spacetime as described in Sec. 6.3.
This gives the timescale over which the boson cloud mass, and hence the GW amplitude,
grows exponentially in time. From Fig. 6.1, it can be seen that the e-folding time of
the cloud mass (half the e-folding time of the field τI) is much slower for the scalar case
(τI/2 ∼ 10 days) compared to the vector case (τI/2 ∼ 3 minutes). Taking into account the
resulting decrease in the mass and spin of the BH as the boson cloud grows, as described in

2Defined by the ratio of angular momentum J to the mass square of the BH: a∗ = J/M2.

183



0

2

h

×10−28

0 2 4 6
t (years)

0.0000

0.0025

f G
W

(H
z)

+1.737×102

scalar

0.0

2.5h

×10−25

0 20 40 60 80
t (hours)

171.70

171.75

f G
W

(H
z)

vector

Figure 6.1: The GW strain h and frequency fGW as a function of time for a BH with
M = 62 M� and a∗ = 0.67 at a distance of 410 Mpc subject to the superradiant instability
of a boson with mass 3.6 × 10−13 eV. The top set of panels shows the scalar boson case,
while the bottom set shows the vector case. Note the difference in timescales shown, since
in the scalar (vector) case the cloud grows on timescales of ∼ 5 years (9 hours) and decays
through GW radiation on timescales of ∼ 9000 years (1 day). Time is measured since the
BH was formed, assuming the cloud started as a single boson.
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Sec. 6.6, the instability timescale becomes longer and longer as the horizon frequency of the
BH approaches the oscillation frequency of the cloud. As the instability saturates, and the
cloud mass reaches its maximum value, the dissipation of the cloud through gravitational
radiation becomes dominant, leading to a slow decrease in cloud mass. The rate at which
energy is lost through gravitational radiation PGW, as well as the two strain polarizations
h+ and h×, are calculated by solving for linearized metric perturbations on the BH space-
time, sourced by the oscillating cloud solution, as described in Sec. 6.5. As can be seen
in Fig. 6.1, in the scalar case the decay of GW amplitude is negligible on any reasonable
observing timescale, taking on the order of 104 years, while in the vector case, the cloud
mass and GW amplitude decrease on timescales of days.

The gravitational frequency shown in Fig. 6.1 exhibits an increase or “chirp” in fre-
quency, first as the BH loses mass and the cloud grows exponentially, and then more slowly
as the boson cloud dissipates. Calculating this frequency shift requires accounting for the
self-gravity of the boson cloud, which slightly red-shifts the oscillation frequency of the
cloud, and hence the gravitational waves (which have twice the frequency of the cloud
oscillations), as described in Sec. 6.4. Though the change in frequency is small, because
the GW signal persists for many cycles, this is still an important effect.

6.3 Cloud properties

In this section, we outline the superradiant cloud properties relevant for observational
signatures such as BH spin-down or GW emission. This includes a brief discussion of how
estimates for the superradiant instability timescale τI and the emitted GW frequency fGW

are obtained for different values of the BH mass, spin, and the gravitational fine structure
constant α. We defer the analysis of the dependency of the cloud frequency on cloud mass,
and the cloud dynamics to Secs. 6.4 and 6.6, respectively. SuperRad combines analytic and
numerical predictions, valid for α � 1 and α ∼ O(1), and utilizes numerically calibrated
higher-order expansions to interpolate between the two regimes.

In most of the following calculations, we assume a fixed Kerr BH spacetime gµν , and
consider scalar and vector bosonic fields, as well as linear metric (GW) perturbations on
this background. The exception to this is the calculation of the frequency shift due to
the self-gravity of the boson-cloud. We will discuss the validity of this assumption further
in Secs.6.5.2 and 6.4. Furthermore, we neglect field self-interactions and non-minimal
couplings to the SM throughout, which have been investigated in Refs. [376, 162, 49,
143, 144, 278]. Depending on the coupling strength, these can alter the superradiance
dynamics. However, here we assume that we are in the weak coupling limit, which reduces
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to the purely gravitational case. Therefore, the relevant field equations to solve in order
to obtain the desired observables are the scalar and vector massive wave equations on the
spacetime gµν , which are given by

(�g − µ2
S)Φ = 0, ∇µF

′µν = µ2
VA
′ν , (6.1)

where MS = ~µS and ~µV = ~µV are the scalar and vector boson masses, respectively.
Due to various symmetries of the Kerr spacetime, solutions to the field equations (6.1) can
be written in the form

A′µ,Φ ∼ e−i(ωt−mϕ), (6.2)

where we introduced the azimuthal mode number m and complex frequency ω. Here,
and in the following, we refer to the Boyer-Lindquist time, radius, polar and azimuthal
coordinate as t, r, θ, and ϕ. Without loss of generality, we assume the azimuthal index
to satisfy m ≥ 0 throughout. Lastly, we label all quantities defined both for scalar and
vector fields with σ ∈ {S, V }. The fields A′µ and Φ are susceptible to the superradiance
instability, if the superradiance condition

0 < ωR < mΩH , (6.3)

is satisfied, where ΩH is the horizon frequency of the BH. In the ansatz (6.2), the frequency
ω = ωR + iωI encodes both the oscillation frequency of the cloud, which is half of the
characteristic GW frequency fGW = 2ωR/(2π) (up to self-gravity corrections), and the
instability growth timescale τI = 1/ωI . For fixed mode number mσ, these observables (in
units of M) depend only on α and spin a∗, i.e., ω(α, a∗).

In what follows, we begin by outlining SuperRad’s coverage of the (α, a∗) parameter
space in Sec. 6.3.1, and then we illustrate how analytic and numerical results are used to
calibrate SuperRad in the intermediate regime in Secs. 6.3.2 and 6.3.3.

6.3.1 Parameter space

In Figure 6.2, we show the parameter space for the mV = 1 massive vector as an illustrative
example. For a given quantity q(α, a∗) ∈ {ωR, ωI , ∂tωR} (in units of M), we numerically
calculate its value in the relativistic regime, but for computational reasons, do not extend
our calculations deep into the small-α regime. We want to match on to analytic results
qN that are valid only in the Newtonian limit, when α � 1. We do this by dividing
the parameter space in (α, a∗) into two regions. In the relativistic regime, labelled Dint,
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we merely interpolate between the numerically computed points using the interpolation
polynomial IR(α, a∗). In the regime where α is smaller, labelled Dfit, we use a subset of the
numerical results in Dint (corresponding to the red points in Fig. 6.2) and fit the difference
between these results and the analytic ones in a way that is guaranteed to recover the
latter at sufficiently small α. That is, we let

q(α, a∗) =

{
qN(α, a∗) + g(α, a∗), (α, a∗) ∈ Dfit,

IR(α, a∗), (α, a∗) ∈ Dint.
(6.4)

where g is a fitting function chosen to give qN(α, a∗) + g(α, a∗)→ qN(α, a∗) as α→ 0. The
specific choices of Dfit and Dint depend on the field and azimuthal mode in question, and
are determined by the accuracy of the underlying methods (these are defined in App. E.3).
Note also that we are only interested in the part of the parameter space where ωR ≤ mσΩH ,
since outside this range the cloud will be exponentially decaying through absorption by
the BH.

In the relativistic part of the parameter spaceDint, a set of 3202 waveforms are generated
for the azimuthal modes mσ = 1 and 2, and for both the scalar and the vector case. The
grid of waveforms is uniformly spaced in the coordinates (y, a∗), with y ∈ [0, 1], defined by

y =
α− α0

α1 − α0

, (6.5)

where αmσ=1
0 = 0.05 and αmσ=2

0 = 0.25, while α1 is the solution to

βα1

[
1− α2

1

2n2
σ

]
= mσMΩH(a∗), (6.6)

with β = 0.9, and nσ is the cloud’s principle number defined below in (6.9). This choice of
α1 is made so as to guarantee that y = 1 lies outside the superradiant regime, and thus that
the saturated state ωR = mσΩH lies within the grid. The boundary y = 1 corresponds
to the large-α boundary of the numerical data in Figure 6.2, beyond the superradiant
saturation.

6.3.2 Oscillation frequencies

The real part of the superradiantly unstable field’s frequency determines the cloud’s oscil-
lation about the BH

A′µ,Φ ∼ cos(ωRt), (6.7)
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Figure 6.2: The parameter space of the superradiant mV = 1 vector mode. It is made
up of relativistic regime Dint, where SuperRad employs interpolation functions based on
the numerical data (labelled ND) to determine a given quantity q(α, a∗) and a lower α
region Dfit, where numerical calibration is necessary to augment the expressions valid in
the Newtonian limit α → 0 (indicated by a red line). For illustration purposes, we show
only 402 of the 3202 data points used in SuperRad. The gray dashed line marks the
saturation point of the superradiance instability, i.e., ωR = ΩH(a∗). In this case, the red
data points are used for calibration in Dfit.

and also sets the characteristic GW frequency fGW = ωR/π (up to self-gravity corrections).
Because of the BH’s gravitational potential, a bound massive particle has a frequency
ωR < µ. Expanding (6.1) to leading order in α yields a Schrödinger-type equation with
potential U ∼ α/r, at a radius r away from the BH. In this regime, the solutions are
simple hydrogen-like bound states for scalar and vector fields [128, 289]. The scalar states
are characterized by their angular momentum quantum number `S, as well as azimuthal
mode number −`S ≤ mS ≤ `S and radial node number n̂S ≥ 0, while the vector states are
identified by an analogous definition of radial node number n̂V ≥ 0, angular momentum
number `V and azimuthal index mV , in addition to the polarization state Ŝ ∈ {−1, 0, 1}.
With this, the oscillation frequencies of the scalar and vector clouds are, in the non-
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relativistic limit,

ωR = µ

(
1− α2

2n2
σ

+ Cσ[α]

)
, (6.8)

where Cσ[α] includes higher order corrections. In particular, we include terms of up to
O(α5), obtained by keeping sub-leading contributions in α when solving (6.1) [53], with
the full expressions for Cσ given in appendix E.2 [in particular (E.4) and (E.11)]. The state
label nσ, depends on the intrinsic spin of the field and is given by

nS = `S + 1 + n̂S, nV = mV + n̂V + Ŝ + 1. (6.9)

Notice, in the case of the scalar field, we follow the conventions of Ref. [53], while in the
vector case, we follow Ref. [137]. In the language of the previous section, the expressions
(6.8) are the Newtonian estimates qN(α, a∗).

We numerically estimate ωR using the methods discussed in appendix E.2, without
assuming an expansion in small α. These estimates are calculated for mσ ∈ {1, 2} for both
scalar and vector fields. Here, we simply summarize that our numerical methods are more
accurate and precise than the analytic estimates everywhere in Dint. The waveform model
provides accurate values for ωR in Dfit using a fit to the numerical results. We perform this
fit using the ansatz

ωR
µ
− 1 +

α2

2n2
σ

− Cσ[α] =
∑

q,p

αpâp,q(1− a2
∗)
q/2, (6.10)

with appropriately chosen ranges for p and q, to the numerical data in a subset of Dint (see
appendix E.3 for details). The right-hand side of (6.10) corresponds to g(α, a∗), defined in
the previous section. This ansatz explicitly assumes the analytic estimates in the α � 1
regime. Within SuperRad, we combine all three of these ingredients as described in (6.4)
to determine ωR in the parameter space. Therefore, we ensure that SuperRad provides the
most accurate and precise estimate for frequencies of a given superradiant bosonic field
around a fixed Kerr BH background across the entire parameter space. The correction of
these frequency estimates due to the self-gravity of the superradiant cloud is discussed in
Sec. 6.4.

In Figure 6.3, we compare the available analytic estimates, given in (6.8) [together with
(E.4) and (E.11)], with those provided by SuperRad. As expected, the relative difference
between the analytic estimates and SuperRad’s decay as ∼ α6 [the order of the leading-in-α
unknown coefficient in the expansion of (6.8)] in the Newtonian regime. For large spins a∗
and large α, i.e., in the relativistic regime, the analytic estimates have relative errors up
to DR(ωR) . 10−2. In comparison to the vector results, the analytic estimates for ωSR are
more accurate in the most relativistic regime.
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Figure 6.3: The relative difference DR, between the prediction for ωR provided by
SuperRad, and purely analytical non-relativistic estimates given in (6.8) together with
(E.4) and (E.11). Dotted lines indicate the Dint region in SuperRad. We focus on a few
representative cases.

6.3.3 Instability timescales

The imaginary part of the frequency ωI sets the superradiant instability timescale τI = 1/ωI
of the bosonic cloud,

A′µ,Φ ∼ eωI t. (6.11)

In the non-relativistic limit α→ 0, the cloud sits far away from the BH and the flux across
the horizon, and hence the instability growth rate, tends towards zero. For small, but
non-zero α, the rates scale with a characteristic power κ, i.e., ωIM ∼ ακ. This scaling
depends on the type of field (scalar or vector) and the mode considered. Furthermore,
at saturation, i.e., when ωR = mσΩH , the ultralight particles cease extracting rotational
energy from the BH, such that the growth rate vanishes. Combining these two limits, the
general behavior of the instability growth rates for both the scalar and the vector cases is

ωIM = ακ(ωR −mσΩH)2r+Gσ(a∗, α). (6.12)
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Here, Gσ(a∗, α) is a function of the BH spin, as well as α, and determines the leading order
and sub-dominant-in-α contributions to ωI . The scaling power κ, for scalar and vector
fields are [128, 288]

κS = 4mS + 5, κV = 4mV + 2Ŝ + 5, (6.13)

for the fastest growing configurations3, and depend on the azimuthal index mσ and the
vector polarization state Ŝ. The leading order contributions in the scalar case [128] and
the vector case [318, 289, 50, 53] to Gσ(a∗, α) that we use are given in Appendix E.2 [in
particular (E.6) and (E.14), respectively]. These are Newtonian estimates that we use
[qN(α, a∗) in the language of Sec. 6.3.1] for the imaginary frequency.

Similarly to the previous section, we utilize numerical techniques to obtain accurate
predictions for ωI in the relativistic regime Dint of the parameter space. The methods and
their accuracy are outlined in Appendix E.2. Here, we simply note again that the numer-
ical predictions are more accurate than the analytic Newtonian expressions everywhere in
Dint. Similar to the real part of the cloud’s frequency, the analytic results obtained in
the Newtonian limit are connected with the numerical estimates in the α ∼ 1 regime by
fitting4 the ansatz

ωIMα−κG−1
σ (a∗, α)

2r+(ωR −mσΩH)
− 1

=
∑

p,q

αp
[
b̂p,qa

q+1
∗ + ĉp,q(1− a2

∗)
q/2
]
,

(6.14)

with appropriately chosen ranges for p and q, to the numerical data obtained in Dint

(see Appendix E.3 for details). The right-hand-side of (6.14) serves as g(α, a∗) in the
construction (6.4) for ωI . Analogously to the oscillation frequency, with this construction
we ensure SuperRad provides the most accurate and precise estimates for the superradiance
growth rate ωI everywhere in the cloud’s parameter space.

In Figure 6.4, we illustrate the relative differences between the analytic estimates using
only (6.12) together with (E.6) and (E.14), and the estimates provided by SuperRad. In the
Newtonian regime, the relative difference approaches zero, while in the relativistic regime,
the relative error in the analytic estimates becomes DR(ωI) ∼ O(1) in both the scalar
and the vector cases. Hence, using non-relativistic analytic estimates in the relativistic
regime can lead to large systematic uncertainties in the instability rate. We indicate the

3Notice, in the relativistic regime, it is non-trivial to identify the most unstable mode.
4Notice a typo in eq. (A.2) of [338]; it is fixed by Cm → 2Cmr+.
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Figure 6.4: The relative difference DR between the prediction for ωI provided by SuperRad,
and purely analytical non-relativistic estimates given in (6.12) together with (E.6) and
(E.14). Dashed lines indicate theDint region in SuperRad. We show the same representative
cases as in Figure 6.3.

leading-in-α scaling of the difference for each mσ. An ∼ α1-scaling is expected in principle
for both mσ = 1 and mσ = 2, however, due to our choices of p and q in (6.14) (see also
Appendix E.3), the leading power is > 1 for α � 1 in the mσ = 2 case. For α & 0.1, the
scaling decreases to the expected ∼ α1.

6.4 Frequency shift

So far, we have considered calculations that assume the bosonic field can be treated as
a test field on a Kerr background. Even for cases where the boson cloud mass reaches
Mc ∼ 0.1M , treating the spacetime as Kerr, with quasi-adiabtically changing parameters,
gives a good approximation to the nonlinear treatment [145, 142]. However, in this section,
we address the effect of the self-gravity of the cloud, focusing in particular on how it causes
the characteristic increase in frequency of the cloud oscillation, and hence the frequency of
the emitted GW radiation. Though the cloud-mass induced shift in the frequency is small,
it will change as the cloud slowly dissipates through gravitational radiation, affecting how
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long the GW signal can be coherently integrated without taking this effect into account.
Quantitatively estimating the contribution to the frequency from the finite cloud mass

∆ω(Mc) = ω(Mc)− ω(Mc = 0) (6.15)

(which we will assume to be real) is the subject of this section. We employ a Newtonian
approach, recovering and extending known results in the literature. We then compare these
results in the scalar case to a fully nonlinear approach using synchronized complex fields
around BHs.

6.4.1 Newtonian approach

The Newtonian approach, utilized to estimate the cloud mass correction to the frequency
in Refs. [50, 206, 49], exploits the fact that in the non-relativistic limit, the energy density5

ρ is spread out over large scales away from the BH, minimizing curvature effects. In this
limit, the cloud itself sources a Newtonian gravitational potential Ψ, which follows the
Poisson equation:

∆flatΨ = 4πρ, Ψ(r) = −
∫
d3r′

ρ(r′)

|r− r′| . (6.16)

Here, the coordinates r can be identified with spatial slices of Kerr, where gauge ambiguities
disappear in the α � 1 limit. Furthermore, while one might choose d3r′ =

√
γd3x′, with

the determinant of the metric of a spatial slice of Kerr, a priori this is not more consistent
than simply setting γ → γflat, which is our choice. In this weak-field limit, the scalar wave
equation (6.1) is given by

(ω − µS)Φ(r) ≈
(
− ∇

2

2µS
− µSM

r
+ µSΨ

)
Φ(r) , (6.17)

with r = |r|. Taking the usual approximation that the shift in frequency at leading order
in α is given by evaluating the perturbed operator on the unperturbed eigenfunction, the
self-gravity of a cloud with mass Mc =

∫
d3rρ(r) contributes a shift in frequency of

∆ω
Mc

µ
≈
∫
d3rρΨ

= 2

∫
d3r

∫

|r′|<|r|
d3r′

ρ(r)ρ(r′)

|r− r′| = 2W. (6.18)

5In a spacetime, like Kerr, with asymptotically timelike Killing field ξµ and time-slice normal vector
nµ, the energy density is defined as ρ = nαξβT

αβ through the scalar or vector field’s energy-momentum
tensor Tαβ .
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We used the non-relativistic approximation that ρ ≈ µ2|φ|2, and in the last line introduced
the total potential energy W in the cloud. We note that this factor of 2 (from restricting
the inner integral) is missing from some references [50, 206], but included in Ref. [49]. An
equivalent derivation gives the same expression (6.18) in the vector case as well.

We can further simplify the frequency shift calculation by considering a low multipole
approximation. The denominator of (6.18) can be expanded in terms of spherical harmonics
Y`m(Ω), where (Ω) = (θ, ϕ) describes the angular dependence, as

1

|r− r′| =
∞∑

`=0

∑̀

m=−`

r′`

r`+1

4π

2`+ 1
Y`m(Ω)Ȳ`m(Ω′), (6.19)

assuming |r′| < |r|. If we keep only the monopolar, i.e., the ` = 0, component of the density,
which we can write in terms of the radial mass function mc(r) =

∫
dΩ′

∫ r
0
dr′r′2ρ(r′),

then (6.18) simplifies to

∆ω = − 2µ

Mc

∫
d3r

mc(|r|)ρ(r)

|r| . (6.20)

In general, there are non-vanishing higher order multipoles due to the non-trivial az-
imuthal and polar dependencies of the cloud’s energy densities that are neglected above.
However, for the mS = 1, the error in the calculation of W associated with making this
monopole approximation, as opposed to considering higher multipole corrections, is ≈ 2%
at leading order in α 6. In the mV = 1 case, all higher-order multipolar contributions are
sub-leading in α, since the Newtonian energy density is spherically symmetric. While the
cloud states with larger azimuthal number have strong polar dependencies, the corrections
from high-order multipoles is moderate. For the mV = 2 state, the quadrupolar contribu-
tion is ≈ 2% of the monopolar piece, at leading order in α. The frequency shift ∆ω is then
calculated for different modes of the non-relativistic solutions to (6.17) for scalar clouds,
and for corresponding non-relativistic vector cloud solutions. Expressions for ∆ω, valid for
any azimuthal index mσ, as well as a table listing the first few values, are given in (E.15)
and in Table E.1, respectively.

6.4.2 Quasi-relativistic

These analytic expressions (E.15) are accurate in the Newtonian limit, i.e., α � 1. Here,
we extend the validity to the α ∼ O(1) regime, with the caveat that a more accurate non-
linear treatment, discussed in the next section, is ultimately necessary. Within SuperRad,

6At leading order in α, only the quadrupole ` = 2 contributes non-trivially.
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we compute the frequency shift in the relativistic regime Dint in a quasi-relativistic ap-
proximation, as in Ref. [338]. We take the relativistic field configurations (derived in Ap-
pendix E.2) in Boyer-Lindquist coordinates and use them to compute the energy density
ρ, which we then use to compute the frequency shift ∆ω using the monopolar Newtonian
expression (6.20). This approach explicitly assumes a linear dependence of the frequency
shift on the cloud mass: ∆ω ∼Mc. Given these quasi-relativistic results in the relativistic
regime of the parameter space, we follow the approach taken in Secs. 6.3.2 and 6.3.3, to
calibrate a fit that assumes the analytic expressions (E.15) against the quasi-relativistic
results in Dint. The fit ansatz is

M2∆ω

−α3Mc

+ Fσ =
∑

p≥1

αpd̂σp , (6.21)

where Fσ contains the leading-in-α contribution, computed above and explicitly given in
Appendix E.4.

As a figure of merit for comparing how relevant this will be in GW observations of
boson clouds, we can calculate the extra accumulated phase shift due to the frequency
drift, using that ωGW = 2ωR,

∆φGW = 2

∫ tmax+τ

tmax

[ωR(t)− ωR(tmax)] dt, (6.22)

where tmax is the time the cloud mass is at its maximum. We show this for the scalar
and vector case in Fig. 6.5, taking the total time τ = min(τGW, 1yr) to be either the
characteristic time over which the GW signal decays τGW, or one year, when τGW > 1
yr (assuming a 50 M� BH). From the figure, we can see that ∆φGW � 1 across the
parameter space, except for the scalar case when α . 0.1. Thus, properly accounting for
this frequency shift is important to be able to coherently integrate the GW signal. The
diverging behavior of the τ = τGW curves in Fig. 6.5 at low α is due to the steeper α-scaling
of the GW timescales compared with the frequency shift’s scaling.

6.4.3 Comparison to fully relativistic approach

To gauge the error in the quasi-relativistic frequency shifts described above, we com-
pare them to numerically constructed, fully relativistic solutions. Following Herdeiro &
Radu [195], we construct stationary and axisymmetric spacetime solutions to the full
Einstein-Klein-Gordon field equations consisting of a massive complex scalar field cloud
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Figure 6.5: The additional accumulated GW phase ∆φGW due to the increase in frequency
as the boson cloud mass decreases [defined in (6.22)] for scalar (blue curves) and vector
(orange curves) bosons. This phase is calculated beginning from when the cloud mass is
maximum for a duration of τGW (solid curves) and for one year (when τGW > 1 yr; dotted
curves). We assume a BH with M = 50 M� and a∗ = 0.99.

with Φ ∼ eimSφ−iωRt around a BH, satisfying the synchronization condition ωR = mSΩH .
These can be thought of as oscillation (or, equivalently, azimuthal angle) averaged versions
of the scalar cloud solutions. By calculating how the frequency of the solution changes
with Mc at fixed M and α, we can obtain a fully-relativistic estimate for the frequency
shift ∆ω. The frequency shift is the part of the real frequency that is dependent on the
boson cloud mass, ω(Mc) = ω(Mc = 0) + ∆ω(Mc). For the values of cloud mass relevant
to superradiance, ∆ω is, to a good approximation linear in Mc, as expected from the non-
relativistic results above. Therefore, here we compute a numerical estimate of ∂ω/∂Mc at
Mc = 0 and fixed α (which is ≈ ∆ω/Mc, to within ∼ 1% for Mc < 0.04M). In Fig. 6.6,
we show how this compares, for mS = 1, to the non-relativistic and quasi-relativistic re-
sults for the frequency shift. From there it can be seen that the quasi-relativistic estimate
used by SuperRad is slightly more accurate than the non-relativistic expressions, but still
noticeably underestimates the frequency decrease, by ≈ 32%, for α = 0.4. For small α,
all three calculations give similar results, as expected. In particular, for α < 0.15, the
difference in the quasi- versus the fully relativistic calculation is < 7%.

We plan to include the fully relativistic frequency corrections in a future version of
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Figure 6.6: A comparison of different approximations of the frequency shift due to the
boson cloud’s self-gravity for a scalar field with mS = 1. We compare the non-relativistic
(see Sec. 6.4.1) and quasi-relativistic (see Sec. 6.4.2) approximations to the (leading order
in Mc part) fully relativistic (labelled “relativistic”) relative frequency shift. In particular,
we show, for fixed α, (∂ω/∂Mc)(Mc = 0) ≈ ∆ω/Mc, where the equality is exact for the
non-relativistic and quasi-relativistic approximations.

SuperRad, and we defer details on constructing the BH-complex boson cloud solutions, as
well as the massive vector case (where we expect comparable, if somewhat larger, relativistic
corrections) to upcoming work [253]. We note that with such relativistic solutions, there
is still theoretical error associated with taking a complex instead of real field (and hence
axisymmetric spacetime). However, we can estimate this by comparing ∆ω calculated
from (6.18) using the axisymmetric energy density calculated from the complex scalar field
solution, to the same quantity calculated from just taking the real part, scaled to give the
same energy Φ→

√
2Re[Φ]. We find the relative difference to be 5× 10−5, indicating the

theoretical error in the frequency shift should be < 0.01% for these relativistic results.

6.5 Gravitational waves

In the previous sections, we focused primarily on the conservative sector, neglecting GW
dissipation from the system. In what follows, we outline the computation of the GW
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strain from the oscillating boson cloud in the source frame. The general procedure is to
consider superradiant solutions to the field equations (6.1) as sources for the linearized
Einstein equations. These source linear metric perturbations around the BH, which then
propagate on an (approximately) fixed Kerr spacetime towards the observer. Analogous to
the approach outlined in Sec. 6.3, we use numerical calculations of the emitted GWs that
are valid in the relativistic regime, and combine those with input from analytic calculations
that are valid in the Newtonian regime, α � 1, to cover the entire parameter space. In
contrast, however, to the quantities calculated in Sec. 6.3, in several cases only the leading
order scaling of the GW power and strain with α is known, while the coefficient can be
fixed accurately only with numerical methods.

In the following, we begin by outlining the conventions used in the literature and in
SuperRad in Sec. 6.5.1. We then discuss the emitted GW energy flux and the polarization
waveform, as well as the GW modes in the source frame in Sec. 6.5.2.

6.5.1 Conventions

At a large distance r away from the source, the GWs in the source frame are captured by
the polarization waveform

h = h+ − ih× =
A
r
e−iφGW(t)ψ(θ)eimGWϕ. (6.23)

The GW frequency is just twice the cloud oscillation frequency, hence

φGW(t) = 2

∫
ωR(t)dt. (6.24)

As discussed in Sec. 6.4, the frequency will change over time as the cloud first grows
exponentially, and then decays through GW dissipation. The azimuthal dependence is fixed
exactly by that of the cloud in question: |mGW| = 2mσ, whereas the polar contribution ψ(θ)
is dominated by the `GW = mGW spin-(−2)-weighted spherical harmonic mode, except in
the relativistic regime of the parameter space. The overall amplitude A of the signal scales
with a leading power in the gravitational fine structure constant of the system: A ∼ αq.
This amplitude is approximately independent of BH spin and is proportional to the cloud’s
mass: A(t) ∝Mc(t).

We decompose the polarization waveform h into GW modes h`m with −2Y`m(θ, ϕ) =
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−2S`m(θ)eimϕ, the −2-weighted spherical harmonics7, leading to:

h`m =

∫

S2

dΩh−2Ȳ
`m(θ, ϕ). (6.25)

Here, and in the following, we drop the subscripts “GW” on the GW mode labels (`,m)
for brevity, and distinguish these from the corresponding cloud labels by referring to the
latter with (`σ,mσ). The polarization waveform can be reconstructed as

h+ =
1

r

∑

`≥m
|h`m|

[
−2S`m + (−1)`−2S`−m

]

× cos(φGW +mϕ+ φ̃`m),

h× = − 1

r

∑

`≥m
|h`m|

[
−2S`m − (−1)`−2S`−m

]

× sin(φGW +mϕ+ φ̃`m),

(6.26)

where we used h`,−m = (−1)`h̄`m, and defined φ̃`m as the complex phase-offsets between
different h`m. Finally, the total GW energy flux is

PGW =

∫
dΩ

r2(2ωR)2|h|2
16π

, (6.27)

and can be decomposed into the power emitted in each polar GW `-mode as

PGW = P `=m
GW + P `=m+1

GW + P `=m+2
GW + . . . . (6.28)

Due to the amplitude scaling A ∝Mc, it is convenient to factor out the dependence on the
cloud’s mass, and quote results only for the rescaled GW power:

P̃GW = PGWM
2/M2

c . (6.29)

6.5.2 Gravitational wave power and strain

There are two main avenues to determine the strain h in the context of BH superradiance.
On the one hand, there are frequency-domain approaches, solving a type of differential
eigenvalue problem that assumes a BH background with linear perturbations, while on the

7Normalized as
∫
d cos θ −2S̄`m(θ) −2S`m(θ) = 1.
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other hand, there are time-domain numerical methods, which solve the full nonlinear Ein-
stein equations. The former are readily extended across the entire relevant parameter space,
but do not capture nonlinear effects, while the latter make no approximations, but carry
relatively large numerical uncertainties, and are not easily extended to cover large parts of
the parameter space. In this chapter, we mainly leverage frequency-domain methods, and
validate these against time-domain estimates, where applicable. These frequency-domain
methods can be classified into the “flat” and the “Schwarzschild” approximations, as well
as what we call the “Teukolsky” approximation. The former two are analytic estimates,
valid only in the non-relativistic regime, α � 1, while the last named is a numerical ap-
proach, which is computationally efficient only when α is not too small. The details of
these approximations are given in Appendix E.5. Ultimately, as done above, SuperRad

combines the best of both worlds and provides the most accurate estimates across the
entire parameter space.

In the non-relativistic limit, the currently available results are of the form

P̃GW = Hαη. (6.30)

The respective α scalings for the GW power from scalar and vector superradiant clouds
are [35, 377, 79, 50]

ηS = 4mS + 10, ηV = 4mV + 6, (6.31)

while the numerical coefficient H depends on the type of approximation employed. We
quote all available results in Appendix E.5, and focus here solely on those associated with
mσ = 1 cloud states. The Schwarzschild approximation has been studied only in the
mσ = 1 case, resulting in [79, 50]

(HS)mS=1
Schw. =

484 + 9π2

23040
, (HV )mV =1

Schw. = 60. (6.32)

These overestimate the true emitted GW power, while the “flat” approximation [377, 50]

(HS)mS=1
flat =

1

640
, (HV )mV =1

flat =
32

5
, (6.33)

is expected to underestimate the total energy flux. From comparing the Schwarzschild
with the flat approximation, it is clear that the non-relativistic approximations have sys-
tematic uncertainties of roughly one order of magnitude. Hence, even for α� 1, numerical
techniques are required to reduce the uncertainty in the coefficient H.
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For this reason, and to extend the validity of the GW power and strain predictions of
SuperRad to the part of the parameter space with the loudest signals, we utilize frequency-
domain numerical techniques in the Teukolsky approximation. We outline the methods we
use in Appendix E.5. Here, we simply state that our numerical results are more accurate
than either of the analytic approximation techniques, even for moderately small α.

As evident from (6.30), the GW emission is independent of the BH spin a∗ in the
Newtonian regime, while in the relativistic regime, the GWs exhibit mild spin-dependence
[377, 338]. To simplify the parameter space, we restrict to clouds in the saturated state;
that is, we assume ωR = mσΩH

8, removing the spin-dependence from the parameter space.
As in the discussion in Sec. 6.3, there exists a relativistic regime, D̃int, in which accurate
numerical predictions can be obtained. For α� 1, the function

P̃GW = bαη + cαη+1 + . . . , (6.34)

is used to fit against the numerical results. In general, b 6= Hσ; that is, we fit even the
leading order coefficient from the numerically obtained Teukolsky estimates. However, we
check explicitly that (Hσ)flat < b < (Hσ)Schw. for both the scalar and vector mσ = 1 cloud
states in the α� 1 regime. SuperRad employs cubic-order interpolation in D̃int, and uses
fits of the type (6.34) for α ∈ D̃fit.

In Figure 6.7, we compare the various calculation of the the GW power to the pre-
dictions by SuperRad. In the Newtonian limit, SuperRad differs from (6.30) due to the
fit (6.34), allowing different leading-α coefficients. The underlying numerical results are
more accurate (see Appendix E.5 for details), allowing us to conclude that the estimates
provided by SuperRad, are more accurate than the Schwarzschild or flat approximations.
The analytic estimates for P̃GW are worse for mσ = 2; we use those results only to in-
form the leading-α scaling behavior. We also show time-domain results from evolving the
full nonlinear Einstein-Proca equations [141, 142] for a few points. These agree with the
Teukolsky calculations to within the numerical error of the simulations.

In Figure 6.8, we show the GW modes provided by SuperRad, as defined in (6.25), over
the entire parameter space, assuming the saturation condition. As expected from the non-
relativistic results, the quadrupolar contribution h22 dominates throughout most of the
parameter space, except in the most relativistic regime, where h32 increases in importance
(and equivalently for h44 and h54). This behavior implies a constant phase shift between
the two involved multipolar components. Hence, there is an α-range where |h22| ∼ |h32|
(and |h44| ∼ |h54|), which means that the phase difference φ̃22 (and φ̃44), defined in (6.26),
introduces a non-trivial phase-offset between the two involved polar modes.

8The validity of this last condition is discussed below in Sec. 6.6.
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Figure 6.7: We show the mass-rescaled GW power P̃GW, defined in (6.29), emitted by
the scalar and vector clouds with azimuthal number mσ = 1 and 2 at the saturation
point, ωR = mσΩH , comparing the Schwarzschild “Schw.” and the flat approximations to
SuperRad (colored lines), and time-domain estimates obtained in [141, 142]. Dash-dotted
colored lines indicate where SuperRad uses interpolation of numerical results over fits of
the type (6.34).

6.6 Growth and decay of boson cloud

In this section, we address how the superradiant instability and GW calculations can be
combined to calculate the evolution of the boson cloud, which determines the evolution of
the amplitude and frequency of the GW signal.

A boson cloud around a spinning BH evolves as the cloud extracts energy and angular
momentum from the BH through the superradiant instability. During this process, the
cloud also loses energy and angular momentum to gravitational radiation. In a quasi-
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Figure 6.8: We show the magnitudes of the GW modes h`m, defined in (6.25), which are
sourced by mσ = 1 and 2 scalar and vector boson clouds at saturation (ωR = mσΩH) as
functions of α. Notice that ` ≥ 2mσ.

adiabatic approximation, the evolution of this system is given by

Ṁc = 2ωIMc + PGW,

Ṁ = −2ωIMc,

J̇ = −2mσωI
ωR

Mc,

(6.35)

where ωR, ωI , and PGW are functions of the cloud mass and BH mass and spin. The evolu-
tion of the boson cloud can be roughly divided into two phases. In the first phase, the cloud
grows exponentially, with the mass going like Mc ∼ exp(2ωIt), with the growth eventually
saturating as the BH is spun down and ωI becomes small as mσΩH decreases towards
ωR. This is followed by the gradual dissipation of the boson cloud through gravitational
radiation. Since during this time −Ṁc ≈ PGW ∝M2

c ,

Mc(t) ≈
M̄c

1 + (t− tmax)/τGW

(6.36)

where the cloud mass reaches a maximum M̄c at t = tmax and τGW := M̄c/PGW.

In Figure 6.9, we plot an example of the evolution of the cloud mass for both scalar and
vector bosons. In both cases, τI � τGW, so that the exponential growth phase takes place
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Figure 6.9: An example evolution of the boson cloud mass as a function of time for
scalars (s = 0) and vectors (s = 1) with α = 0.15 and a∗ = 0.7. The plot compares the
evolution determined by evolving the full equations (6.35) (solid lines, labelled “full”), to an
approximation that matches together constant exponential growth to GW-dominated decay
(dotted and dashed lines, labelled “matched”). Time is normalized by the gravitational
dissipation timescale in either case, and the offset adjusted so that the maximum value of
Mc occurs at zero for the full evolution cases, and the matching value of Mc is obtained
for the corresponding matched evolution cases. The inset shows a zoom in of the end of
the exponential growth phase for the scalar case (in particular the full evolution).

on a much shorter time scale than GW dissipation. However, the ratio τI/τGW is markedly
smaller in the scalar case compared to the vector one. In addition to the full evolution
of the cloud as determined by (6.35), in Figure 6.9 we also plot a simple approximation
where the maximum cloud mass is determined by solving for the BH parameters where
ωR = mσΩH , and the evolution of Mc after the maximum is given solely by gravitational
radiation, and the evolution of Mc before the maximum is given by exponential growth
with a fixed value ωI given by the initial parameters.

The SuperRad waveform model implements options for both the full cloud evolution
and the matched approximation. While the latter approximation is less computationally
expensive, as can be seen in Figure 6.9, it slightly overestimates the maximum cloud mass
(by ≈ 0.04% and 0.8%, respectively, for the scalar and vector cases shown in the figure),
and underestimates the time for the cloud to reach its maximum. Thus, the more accurate
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full cloud evolution is appropriate for scenarios when the signal before the time when the
cloud reaches saturation makes a non-negligible contribution. However, as noted above, our
calculation of P̃GW assumes mσΩH = ωR, which is not strictly valid before the saturation of
the instability. Hence, there will be a discrepancy in the BH spin used for the computation
of the GW power. This discrepancy is negligible (i.e., below the numerical error of the
methods, discussed in Appendix E.5) for mσ = 2, and for mσ = 1 assuming a∗ < 0.9. It
should be noted that this affects the GW emission before saturation only, and also only
systems with initial spin a∗ & 0.9. In the vectormV = 1 case, the largest discrepancy occurs
for α ≈ 0.46 and extremal spins, where the relative error from assuming the saturation
condition in the mass-rescaled GW power P̃GW is ≈ 55% (see Fig. 7 in [338]). For the
scalar mS = 1 case this discrepancy is at most ≈ 24% around α ≈ 0.36.

6.7 LISA follow-up searches

The two main observational signatures of superradiant clouds, BH spin down and GW
emission, are sensitive to various systematic and statistical uncertainties. Spin measure-
ments have been used to exclude scalar and vector mass ranges. Most of these constraints,
however, rely on BH-spin estimates from electromagnetic observations with significant
systematic uncertainties. Spin measurements of BHs in inspiraling binaries using GWs
exhibit large statistical uncertainties and make assumptions about the proceeding history
of the binary. Constraints from the stochastic GW background, assuming a population
of BH-cloud systems, rely on assumptions regarding the BH mass and spin population, in
addition to position and distance uncertainties. Lastly, searches for GWs from existing
BHs observed in the electromagnetic channel make assumptions about the past history of
the observed BH, introducing large systematic uncertainties. Clearly all of these methods
rely on modeling or assumptions with potentially substantial systematic uncertainties.

One search strategy for GWs from superradiant clouds, however, evades these assump-
tions: BH merger follow-up searches. These searches target BH remnants of previously
detected compact binary coalescences. The key advantages are the knowledge of the com-
plete past history of the targeted BH, as well as measurements of sky-position, spin, mass,
and distance. Given these quantities, accurate predictions of the subsequent superradi-
ance instability and GW emission are possible, enabling a targeted search for the latter in
the days/weeks/years following the merger. This removes the assumptions affecting other
search strategies, reduces the uncertainties to those coming from the merger GW signal
measurement of the remnant, and those of the waveform model (discussed in the case of
SuperRad below), and enables one to put confident constraints on relevant parts of the

205



105

Mi/M�

102

103

104

105

d
L

[M
p

c]

10

50

200

1000

5000

20000

10−2

10−1

100

101

z

Figure 6.10: We show the SNR (contour lines and color) of GWs from vector superradiant
clouds around a fiducial BH of initial remnant source frame mass ofMi and spin a∗,i = 0.8 as
a function of luminosity distance dL and redshift z, assuming a standard ΛCDM cosmology
and α = 0.2. For comparison, we also consider an initial spin of a∗,i = 0.7 showing the
ρSNR = 10 contour (dashed black line), assuming α = 0.15.

ultralight boson parameter space, or potentially to make a confident discovery.

In the context of the current generation of ground-based GW detectors, follow-up
searches for GWs from scalar superradiant clouds are likely infeasible due to the small
strain amplitudes [206]. On the other hand, because of their faster growth rates and orders
of magnitude stronger signals, vector boson clouds are ideal candidates for these types of
searches [209]. At design sensitivity, the advanced LIGO [5], advanced Virgo [21], and KA-
GRA [36] observatories will in principle be sensitive to systems out to ∼ 1 Gpc at a typical
remnant BH spin of a∗ = 0.7 and masses of M ∼ 100M� [102, 209]. Undertaking follow-up
searches targeting BHs falling into this parameter range could target vector boson masses
roughly in the range of MV ∈ (1× 10−11, 1× 10−13) eV. In a similar fashion, LISA could
be sensitive to GWs from vector boson clouds with boson masses in the MV < 10−15 eV
regime, inaccessible by ground-based detectors.

In the following, we analyze the prospects of follow-up searches for GWs from vector
superradiant clouds around supermassive binary BH merger remnants with LISA. The
fundamental assumption of follow-up searches is that a new superradiant cloud forms
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around the remnant after merger. If either of the constituents already posses a superradiant
cloud, it is expected to be depleted before or during merger for nearly equal mass-ratio
(q ∼ 1) systems [52]. Even for q > 1, depending on α, clouds around the constituents
of the binary are efficiently removed before merger [52, 62, 353, 354]. LISA is expected
to see at least a handful of such mergers over the mission lifetime of four years [61, 260].
Therefore, to estimate the detection horizon, we assume a fiducial supermassive binary BH
merger remnant detection that occurs one year into the mission. After merger at redshift
z, residual ultralight vector densities around the remnant, or quantum fluctuations, trigger
the superradiance instability9 leading to the complete cloud formation, and hence the peak
of the GW signal, on timescales of at most tc ≈ τI(1 + z) log(Mc/MV )/2 in the detector
frame. Over most of the parameter space, these signals will last for longer than the
remaining three years of the LISA mission, leaving an observing time of Tobs = 3− tc years.
We determine the maximum detection horizon of GWs from vector superradiant clouds by
considering the optimal signal-to-noise ratio (SNR) ρSNR with the LISA sensitivity curve
(details can be found in Appendix E.1). Making these assumptions, we illustrate the
detection horizon of LISA for such events in Figure 6.10.

From Figure 6.10, we conclude that parts of the vector boson mass parameter space can
be probed with idealized follow-up GW searches from supermassive binary BH remnants.
Even for moderate initial spins of a∗,i = 0.7, GWs can be detected up to z . 0.8, while
for slightly more favorable initial spins of a∗,i = 0.8, the GW emission is observable out to
z . 8. The merger rate of massive BH binaries is expected to peak around M ∼ 106M�
for equal mass ratio systems, q . 1, and at z ≈ 2 [254, 192, 207]. For initial BH masses
Mi > 106 M�, the cloud formation timescales are larger than the mission duration, tc > 3
years, leading to a drop in SNR. At high redshifts, the sensitivity of LISA is primarily
limited by the short effective observation times in the detector frame. Larger BH masses
(lower boson masses) can be accessed only with larger initial spins, or significantly longer
mission durations. Vector boson masses roughly around MV ∈ (1 × 10−16, 6 × 10−16) eV
are within reach of these follow-up search strategies with LISA.

These prospects are subject to a few caveats. First, we determined the detection horizon
and sensitivity of LISA to GW from vector clouds around remnant supermassive BHs
using the optimal matched filter SNR. What fraction of this total available SNR could
be recovered from the data by a realistic search algorithm is an open question, even for
ground-based detectors [209]. Secondly, the merger rate of massive BH binaries has large
uncertainties. If the true merger rate were peaked at redshifts of z > 5, a realistic follow-up
search would require a very favorable initial BH spin a∗,i > 0.8 to access a meaningful part
of the vector boson parameter space directly, or an outlier event much closer.

9Notice, an equal-mass, non-spinning binary BH merger results in remnant BH with a∗ ≈ 0.7.

207



6.8 Discussion

We have introduced a new BH superradiance gravitational waveform model called SuperRad.
This provides the superradiance instability growth timescale τI , the cloud oscillation fre-
quency ωR, the GW frequency fGW(t) and strain h×/+ in the source frame as a function
of time, the GW power PGW, and the evolution of the boson cloud. The SuperRad model
makes use of all available analytic and numerical estimates for these observables, and cali-
brates analytic fits against the numerical data to extend the applicability across the entire
parameter space of the m = 1 and 2 scalar and vector superradiant clouds. The waveform
model SuperRad can be used to inform and interpret the results of GW searches for ultra-
light scalar and vector BH superradiance. This includes both blind and targeted searches
for resolved continuous wave signals, as well as searches for a stochastic GW background
from BH-boson cloud systems. It can also be used when interpreting BH spin measure-
ments using GW or electromagnetic observations. Importantly, SuperRad is accurate in
the relativistic regime where the observable signals will be the strongest.

As the ultralight boson cloud dissipates through gravitational radiation, there is a small
increase in the frequency of the GWs due to the changing self-gravity contribution of the
cloud. As illustrated above, even though this frequency drift is small, because of the large
number of GW cycles that make up a typical superradiance signal, not properly accounting
for it can lead to the signal model going out of phase in a fraction of the observing time.
Fully including this second-order effect within BH perturbation theory is challenging, and
the results in SuperRad for the frequency evolution of the GW signal use non-relativistic
approximations. By comparing these to fully-relativistic numerical calculations for the
scalar boson case, we found that the former underestimates the value of ḟGW by ∼ 30%
for the most relativistic (i.e. α ∼ O(1)) cases, though the differences are smaller for more
typical parameters. In future work, we plan to include the fully-relativistic results for the
cloud-mass contribution to the frequency for both scalar and vector bosons in SuperRad.
Though, given the stringent accuracy requirements imposed by the typical signal timescales
(see Fig. 6.5), it is likely that fully-coherent signal analysis techniques (e.g., match filtering)
will still not be feasible in much of the parameter space, better predictions for the GW
frequency evolution are nevertheless important in guiding the application of semi-coherent
techniques.

Furthermore, we investigated the viability of follow-up searches for GWs from ultralight
vector superradiant clouds with LISA targeting remnants of observed massive binary BH
mergers. We found that these searches are confident probes of the ultralight vector boson
parameter space around M ∈ (1 × 10−16, 6 × 10−16) eV. With current estimates of the
merger rate of massive BH binaries, LISA will be sensitive to GWs from vector boson
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clouds around remnants of these mergers out to redshift z . 8 at mass-ratio q . 1 and
remnant black hole masses of roughly M ∈ (6 × 104, 2 × 105)M�. Our basic analysis
leaves various questions unanswered. We assumed the total available signal-to-noise ratio
can be recovered by a realistic search algorithm, which is an overestimate even in the
case of ground-based detectors [209]. As well, a more detailed study folding in massive
black hole binary merger rates with superradiant cloud growth timescales and emitted GW
luminosities could provide an estimate for the expected number and mass ranges of merger
events where LISA would be sensitive to the GW signal from an ultralight vector boson.
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Chapter 7

Conclusion and outlook

In this thesis, we addressed multiple questions important for probing aspects of funda-
mental physics with current and future gravitational wave detectors and electromagnetic
observations. In this first part, we focused on understanding the stability of boson stars
and exploring their dynamics in the context of various binary configurations. Our work
explicitly demonstrates the viability of boson stars as linearly stable highly-compact test-
beds to investigate potential linear and non-linear instabilities associated with relativistic
features such as the Ergoregion [160] or stable light-rings [216]. These phenomena, com-
mon amongst black hole mimicking objects, may encode smoking gun signatures for the
existence of ultra compact objects in the emitted gravitational waves. Furthermore, as a
result of the linear stability of some highly-compact boson stars, another interesting avenue
forward is to study the merger and ringdown of ultra compact object mergers and their
gravitational wave emission. A large body of research has been devoted to the study of
the ringdown of black hole mimicking objects (see, e.g., Ref. [97]), while, to the best of
our knowledge, no self-consistent nonlinear evolution of a binary inspiral consisting of ultra
compact objects has been performed to date. This leaves questions about the impact of
nonlinear and finite-size effects and their imprint on the inspiral dynamics and resulting
gravitational waveform un-answered. Another intersting direction forward is to leverage
highly accurate binary boson star inspiral-merger-ringdown gravitational waveforms in or-
der to validate test of the black hole paradigm or tests of general relativity currently used
by the LIGO-Virgo-KAGRA collaboration. While binary boson stars are, of course, so-
lutions to general relativity, these tests may or may not be able to distinguish between
beyond-general relativity compact binary inspirals and highly-compact binary boson star
gravitational waveforms. To that end, a thorough analysis of equilibrium equations for
scalar matter making up the binary’s stars at the level of the initial data may aid to im-
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prove the quality and reduce the impact of spurious artifacts of binary boson star initial
data, and hence, produce cleaner waveforms.

In the second part, we studied the superradiance phenomenon of ultralight fields around
black holes to understand the impact of non-vanishing couplings to the Standard Model of
particle physics, and developed a waveform model for the emitted gravitational radiation
for the use in future observation campaigns of ground- and space-based gravitational wave
detectors. Utilizing this waveform model, we analyzed prospects of performing searches
for signals from vector boson clouds around known black holes adapting continuous wave
methods subject to current gravitational wave detection sensitivities in Ref. [209]. Follow-
up work could perform an actual search for gravitational waves following up previously
detected binary black hole mergers (both in previous and future gravitational wave ob-
serving runs), either making a detection in the process, or placing strong constraints on
a collection of ultralight vector boson models. In the context of vector boson clouds with
non-vanishing kinetic mixing with the Standard Model photon, searches outlined here could
be performed in order to access untapped regions of the dark photon parameter space. In
particular, following up binary black hole mergers with X- or γ-ray telescopes could prove
fruiteful in constraining the existence of the dark photon one to two orders of magnitude
below the current constraints in the relevant mass-range. Furthermore, an interesting di-
rection for future work is the study of these systems with accretion disks. Depending on the
parameter space, the superradiant cloud periodically perturbs the disk, potentially leading
to observable smoking gun signatures in the emitted electromagnetic spectrum. Active
galactic nuclei, in particular, are observable to large distances, rendering this a fruitful
avenue to probe complementary regimes of beyond the Standard Model physics associated
with a new ultralight vector boson of masses . 10−14 eV.
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Appendix A

Rotating boson star construction and
evolution

A.1 Numerical construction of stationary boson stars

Here we provide the details of the numerical methods employed in order to construct
stationary BS solutions. We assume an axisymmetric and stationary metric gµν , which
can be written in Lewis-Papapetrou coordinates as in Eq. (2.7), where all free functions
depend only on the r and θ coordinates. Additionally, we use a harmonic scalar field
ansatz Φ = eiωt+imϕφ (note, this differs from (4.1) by m → −m), where φ carries the r
and θ dependence, that is compatible with the metric ansatz. Plugging these expressions
into the Einstein-Klein-Gordon equations, Eq. (2.8), results in a set of five coupled partial
differential equations in r and θ. Imposing regularity at the origin, r = 0, and asymptotic
flatness at r →∞ provides the boundary conditions for the elliptic set of equations. See,
for instance, Ref. [220] for the explicit form of the equations and boundary conditions for
the metric ansatz Eq. (2.7) chosen here. Notice a typo in their Eq. (B1): The second to
last term should be −2l(∂rf)2. Additionally, we find our axisymmetric system of equations
to agree if, in the equation for f(r, θ) (i.e., Eq. (B6) in Ref. [220]):

−1

2
∂θf → −

1

2

∂θf∂θl

l
, (A.1)

−2r2κlU(φ) → −2r2κlgU(φ). (A.2)
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As mentioned in the main text, we introduce the auxiliary functions ωs and ρ. Following
the arguments in Ref. [220], these obey the equations

∆gωs = 0, ∆gρ = jt/ωs, (A.3)

where ∆g := gij∇i∇j is the Laplacian associated with the spacetime metric gµν , and jt

is proportional to the charge density defined by the Noether current associated with the
global U(1) symmetry. Here we have also promoted the scalar field’s frequency ω to the
scalar function ωs, which, however, is fixed to be constant by the Laplace equation (with
the appropriate boundary conditions given below). Introducing ωs and ρ in such a fashion
enables us to impose either the BS’s frequency ω, or the total U(1)-Noether charge Q, as
boundary conditions at spatial infinity (outlined below). This way, we are able to explore
the full parameter space, even, when the family of solutions develops two different branches
for a fixed frequency ω or charge Q.

We solve these equations using a relaxation method, which requires a sufficiently good
guess for the field configurations. In order to obtain such an initial guess, we begin by
exploiting the fact that Eq. (2.3) admits solitonic solutions even in the absence of gravity.
In the non-rotating limit, the above set of elliptic partial different equations reduces to
a single ordinary differential equation for φ(r). We compactify the radial coordinate to
r̄ ∈ (0, 1) with r̄ = r/(1 + r). Given the boundary conditions for φ, we use a shooting
method, starting at the origin, and integrating outwards to r̄ = 1, to generate the non-
gravitating scalar solitons (known as Q-balls) in the non-relativistic regime (i.e., where
ω/µ ≈ 1). We use these Q-ball solutions as the starting point for solving the equations
including gravity. In anticipation of the rotating case, we use a Newton-Raphson-type
relaxation code with fifth order finite differences to solve for these spherically symmetric
BSs. In order to be able to impose either the BS frequency ω/µ, or its U(1)-charge Q
at r → ∞, we introduce the two equations Eq. (A.3) into the relaxation scheme. The
boundary conditions for these auxiliary functions are

∂rρ|r=0 = 0, lim
r→∞

ρ = ρ∞, (A.4)

where ρ∞ is arbitrary (we set ρ∞ = 1). We can then impose the BS frequency ω as a
boundary condition given

lim
r→∞

ωs = ω, (A.5)

or the U(1)-charge by

lim
r→∞

8πr2ωs∂rρ = Q. (A.6)
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This follows directly from a volume integration of the ρ-equation in Eq. (A.3). Finally, in
both cases limr→0 ∂rωs = 0. Gravity can be incorporated slowly starting from the Q-ball
solutions in the non-relativistic limit by increasing κ from 0 incrementally. Depending on
the convergence properties of the individual solutions in the relaxation scheme, the step
size δκ must be adjusted. We find that δκ = 0.01 is typically sufficient.

Using these non-rotating BS solutions in the non-relativistic limit as a starting point,
the rest of the parameter space can be explored by marching iteratively in the ω/µ direction:
We start from a solution with ω = ω0, take a sufficiently small step ω1 = ω0 − δω (with
δω > 0) towards small frequencies, use the solution with ω0 as an initial guess, and then
relax using the above established relaxation scheme into the new solution imposing ω = ω1.
Due to the spiral feature of the solutions in the (ω,Q) plane, we can follow this approach
only up to a global minimum, ωmin, at which point no new solutions can be found at
ω < ωmin. At these turning points, we switch from imposing the frequency ω∞, to imposing
the corresponding BS U(1)-charge with Eq. (A.6). We then proceed by incrementally
decreasing (or increasing) the charge until we reach the next turning point, where we
switch back to imposing the frequency with Eq. (A.5), until the family of BS solutions is
generated across the parameter space. Spherically symmetric BSs with different potentials
can be generated using this family of KKLS BSs as an initial seed for the relaxation into
the BS solution with a different potential in the non-relativistic limit (for a given κ). We
find this works, even if the two potentials cannot be continuously deformed into each other,
as long as the coupling parameters are chosen such that the potentials are similar.

For rotating BSs, we proceed in much the same fashion. In this case, however, we cannot
obtain the initial rotating Q-balls using a shooting method, as the equation is no longer
an ordinary differential equation, but a partial differential equation in r and θ. We found
that generating analytic seeds based on the results of Ref. [220] for m > 0 rotating Q-balls
provided sufficiently good initial guesses to be able to relax into the correct rotating Q-
ball solutions in the non-relativistic regime. Once these solutions are generated, we follow
the same procedure as in the m = 0 case. We find that the necessary resolution varies
significantly with the properties of the BS considered. For less compact BSs, C < 0.2,
a resolution of Nr̄ × Nθ = 350 × 50 (or even lower resolution) was sufficient, while for
BSs with high compactness, resolutions up to 500 × 100 were necessary for a successful
relaxation. In general, we find a resolution of Nr̄×Nθ = 500× 200 is sufficient to generate
initial data that accurate enough so that the evolution errors are dominant, even for the
highest resolution simulations we consider.

247



0 50 100 150 200 250

10−7

10−5

10−3

M
Φ
m

h

4h/3

2h

0 50 100 150 200 250

t/M

10−10

10−9

10−8

I N

Figure A.1: Time evolution of Φm (top panel), defined in Eq. (2.13), at the three different
resolutions specified in the text. We also show the integrated norm of the generalized
harmonic constraint violation IN :=

∫
Σt
d3σ|Hµ − �xµ| (bottom panel). Both quantities

converge to zero at the expected fourth order. The origin of the perturbations of Φm at
early times is discussed in the text. The units for IN are arbitrary since here our purpose
is just to demonstrate convergence.

A.2 Numerical evolution of stationary boson stars

Once the stationary solutions are generated, we evolve the Einstein-Klein-Gordon equations
in the generalized harmonic formulation [306]. We utilize standard fourth order accurate
finite difference stencils and fourth order Runge-Kutta time integration, and use adaptive
mesh refinement (AMR). Our computational grid extends to spatial infinity, where we
apply boundary conditions that the metric is flat and the scalar field is zero, through the
use of compactified coordinates. More details can be found in Ref. [146]. We use a gauge
where we fix the source functions Ha to be equal to those calculated from the stationary
solution, and constant in time. For those mini BSs that collapse to binary (or single) BHs,
we utilize a damped harmonic gauge [242, 107]. We consider a range of cases where the
BS compactness varies significantly from ∼ 10−3 to ≈ 1/3. Therefore, we employ grid
hierarchies with between five and eight levels of mesh refinement (using a 2:1 refinement
ratio) centered on the BS.

We perform resolution studies, using three different resolutions, on m = 1 axionic and
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KKLS BSs with ω/µ = 0.6 (and M/RK
99 = 0.02) and ω/µ = 0.7 (and M/RK

99 = 0.14),
respectively, as well as a mini BS with ω/µ = 0.97, to check convergence and determine
the numerical accuracy of our results. In Figure A.1, we present the time evolution of
the magnitude of the scalar field, captured by Eq. (2.13), and the integrated norm of the
constraint violations of the KKLS BS case. For this case, the lowest resolution is 493

with six levels of mesh refinement and a spatial resolution of dx/M ≈ 0.26 on the lowest
level. The medium and high resolutions are, respectively, a factor of 4/3 and 2× larger
than the lowest resolution. Both quantities are converging to zero, consistent with the
fact that the instability is seeded only by truncation error. The resolution studies for the
other cases showed similar behavior. We note that there is transient perturbation to the
global maximum Φm that is briefly evident in the highest resolution of Fig. A.1 that is
not converging at the expected rate. This is due to the time interpolation on the AMR
boundaries, and in particular an inaccuracy in how the “past” time level used to perform
this interpolation at the initial time is set.

The medium resolution used in the resolution studies is equivalent to the resolution we
use for all the other cases studied here. We place the mesh refinement such that both radii
of the BS (defined in Sec. 2.2.2) reside inside the finest AMR level, and set the spatial
resolution to be roughly dx/RK

99 ≈ 0.04 or greater in all cases considered in the text.
For most cases, we fix the mesh refinement to be that of the initial time slice. In those
cases where the NAI yields binary BHs or binary BSs, however, we employ AMR set by
the truncation error estimates between different refinement levels to track the fragments.
Using Richardson extrapolation, we are able to determine the numerical accuracy of the
NAI growth rate and harmonic frequency estimates both on the relativistic and the non-
relativistic branch of BS solutions. Based on the respective resolution studies of the m = 1
KKLS, axionic, and mini BSs, we estimate the relative numerical error in ω̃I to typically
be 2.5% (3%) on the relativistic (non-relativistic) branch. The error in ω̃R is smaller; the
relative numerical error in this quantity is < 0.5% (3%) on the relativistic (non-relativistic)
branch.
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Appendix B

Binary boson star initial data quality

B.1 Numerical setup

In this appendix, we discuss the details of the numerical evolution of the binary BS ini-
tial data, which we perform using the same methods as in Refs. [339, 340]. We evolve
the Einstein-Klein-Gordon system of equations, derived from (2.1), using the generalized
harmonic formulation of the Einstein equations [306]. The spatial fourth-order accurate
discretization is achieved using finite-difference stencils over a compactified grid containing
spatial infinity. At these boundaries, we impose asymptotically flat boundary conditions
both on the metric and the scalar variables. In order to track the individual stars of a
given binary, we utilize adaptive mesh refinement of the Cartesian grid with a 2:1 refine-
ment ratio (see Ref. [146]). The time-stepping is achieved using a fourth-order accurate
Runge-Kutta integration. As briefly mentioned in Sec. 3.4.1, the axisymmetric evolutions
are performed using a generalized Cartoon method [26, 306], which explicitly assumes an
azimuthal Killing field kµ, such that Lkgµν = 0 and LkΦ = imΦ. Typically, we require
seven mesh refinement levels with grid spacing ∆x/M0 = 0.08 on the finest level when
evolving an inspiraling binary BSs; in the case of axisymmetric evolutions the grid spacing
on the finest level is typically ∆x/M0 = 0.01. For all evolutions considered here, the gauge
is specified by setting the source functions Hµ = �xµ according to the damped harmonic
gauge [242, 107].

We perform convergence tests in order to validate our numerical methods and quan-
tify the truncation error. Specifically, we measure the constraint violation given by C =
M0

∑
µ |(Hµ − �xµ)|/4 throughout the evolutions by computing max C, as well as the

integrated norm IC = M−2
0

∫
d3x
√
γC (in a coordinate sphere of radius 100M0). In the
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Figure B.1: Convergence study of the numerical evolution of the axisymmetric binary B1

with properties summarized in Table 3.1 (and initial coordinate separation D = 10M0), at
three different numerical resolutions, where h is the grid spacing of the lowest resolution.
The top panel shows φm = max |Φ|/max |Φ|t=0, the normalized maximum of the scalar field
magnitude, while the lower panels show two different measures of the constraint violation,
max C and IC (defined in the text). The constraint violation is converging to zero at
roughly third and fourth order in the middle and bottom panels, respectively.

generalized harmonic formulation, any violation of the Hamiltonian and momentum con-
straints on the initial time slice will lead C to evolve to a non-zero value (as does truncation
error). In Fig. B.1, we present the typical convergence behavior of IC and max C for an
axisymmetric binary BS evolution starting from constraint satisfying initial data using the
above numerical evolution setup. In Fig. B.2, we present a convergence study of the con-
straint violation of the binary initial data associated with B5 (see Table 3.1). In the case of
the axisymmetric settings, the maximum of the constraint violation max C is mainly set by
the third-order accurate time-interpolation performed on the mesh refinement boundaries,
and as a result, converges at roughly third order or better in Fig. B.1. In the three-
dimensional evolutions, max C is typically reached in the interior of the stars. Hence, in
those cases, we expect a roughly fourth-order convergence behavior (as seen in Fig. B.2).
In both settings, however, the integrated norm IC converges at approximately fourth order,
as it is less affected by the lower-order interpolation on the mesh refinement boundaries.
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Figure B.2: The convergence with behavior of the two norms, max C and IC (defined in
the main text), of the constraint violation of the binary initial data associated with B5 (see
Table 3.1) with increasing resolution N , the number of grid points in each linear dimension,
compared with the lowest resolution considered Nmin. Both norms exhibit (as expected)
roughly fourth-order accurate convergence towards zero.

B.2 GW contamination

In this appendix, we briefly return to the high-frequency contamination in the GW emission
from the binaries presented in Sec. 3.4.2. This contamination emerges from the residual
perturbations present in the eccentricity reduced binaries B3 and B5 constructed with
conformally rescaled kinetic energy using (3.30) with p = −4. In Fig. B.3, we present the
(`,m) = (2, 2) spherical harmonic component of the Newman-Penrose scalar Ψ4, which can
be compared to the corresponding GW strain shown in the right panels of Fig. 3.7 and
Fig. 3.8. Since Ψ4 is related to the strain by two time derivatives, it accentuates the high-
frequency component from the perturbed BSs. As shown in Sec. 3.3.2, this contamination
is reduced by means of the rescaling (3.30) of the conformal kinetic energy. However, with
the lowest exponent with which the elliptic solver was able to find a solution, p = −4, some
oscillations remain in the stars, and lead to the high frequency component to Ψ4 evident
at early times in Fig. B.3.
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Figure B.3: We show the (`,m) = (2, 2) spin-weighted spherical harmonic components of
the Newman-Penrose scalar Ψ4 extracted on a coordinate sphere of radius 100M0. The top
panel corresponds to the Ne = 5 and p = −4 binary B5 shown in the top row of Fig. 3.7
and Fig. 3.8, while the bottom panel shows the Ne = 3 and p = −4 binary B3 shown in
the bottom row of Fig. 3.7 and Fig. 3.8. This shows the high-frequency contamination
of the gravitational waveform from the binaries at early times due to residual spurious
oscillations and unbound scalar matter in and around the constituents of the binaries.

B.3 Center-of-mass motion

Within our approach, the initial linear momentum is set to zero using Newtonian expres-
sions for the initial boost velocities (as discussed in Sec. 3.3.3). We find this to be sufficient
for non-spinning binaries, i.e, the center-of-mass velocity throughout the evolution of the
initial data remains below vcom < 10−7. For highly-spinning quasi-circular binary initial
data, the center of mass of the system exhibits larger drifts with constant velocity away
from origin of the numerical grid. For the aligned-spin binary B3, the magnitude of the
in-orbital-plane coordinate velocity of the center of mass is vcom = 6 × 10−3 (the out-of-
plane component is < 10−10). Leading post-Newtonian corrections to the center-of-mass
and center-of-momentum velocities, used to initialize the binaries in this work, are roughly
an order of magnitude too small to account for vcom. This strong drift may be the result
of spurious gravitational and scalar radiation emitted during the first few light crossing
times of the binary, as well as the large spins of the super-spinning binary B3. We address
this by measuring the in-plane components vicom of the center-of-mass coordinate velocity
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and subtracting this from the initial binary velocities vi(A) of the free data as defined in
Sec. 3.2.1. This is done in tandem with the eccentricity reduction. Hence, the linear mo-
mentum of the binary can be iteratively reduced in this way. After two iteration steps, the
velocity is reduced by more than an order of magnitude to vcom = 1× 10−4 for the binary
B3 with aligned spins. In the case of the precessing binary B3, discussed in Sec. 3.4.3, the
center-of-mass motion in the direction of the orbital angular momentum dominates; this
we treat iteratively in precisely the same manner as the in-plane center-of-mass velocity.
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Appendix C

Proca star construction and binary
boson star evolution

C.1 Isolated Proca star solutions

The details of the construction of isolated scalar BSs are presented in Ref. [339]. Hence,
here we focus on our approach to constructing the PS solutions considered in this work.
PSs are, analogous to scalar BSs, solutions to a massive complex field—in this case a vector
field Aα of mass µ—minimally coupled to general relativity as [77]

S =

∫
d4x
√−g

[
R

16π
− 1

4
FαβF̄

αβ − 1

2
µ2AαĀ

α

]
. (C.1)

Here Fαβ = ∇αAβ −∇βAα is the field strength, while the overbar denotes complex conju-
gation. This theory is also invariant under a global U(1) transformation Aβ → Aβe

iθ. The
associated Noether current and Noether charge are

jµ =
i

2
(F̄ µ

αA
α − F µ

αĀ
α), Q = −

∫
d3x
√−gj0, (C.2)

respectively. The Lorenz relation, ∇αA
α = 0, is identically satisfied due to the anti-

symmetry in the field-strength, assuming µ 6= 0 (and no vector self-interactions). The
stress-energy associated with the action (C.1) is given by

Tµν = − Fα(µF̄ν)
α − 1

4
gµνF

αβF̄αβ

+ µ2Ā(µAν) −
1

2
µ2gµνAαĀ

α.
(C.3)
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With this, the Einstein equations, sourced by the vector matter, and the vector field
equations are given by

Gαβ = 8πTαβ, ∇αF
αβ = µ2Aβ, (C.4)

where Gαβ is the Einstein tensor. Rotating PSs are asymptotically flat, axisymmetric
solutions to the above system of equations. Hence, we make the ansatz

ds2 = −fdt2 + lf−1
{
j(dr2 + r2dθ2)

+ r2 sin2 θ(dϕ− Ωr−1dt)2
}
,

(C.5)

where f, l, j, and Ω are functions of r and θ. The corresponding ansatz for the vector
1-form is given by

A = eiωt(V dt+ iBdr) (C.6)

for spherically symmetric solutions, and

A = eiωteimϕ
(
iV dt+

H1

r
dr +H2dθ + i sin θH3dϕ

)
(C.7)

for rotating solutions. Here, in direct analogy to scalar BSs, this approach yields an
infinite set of families of solution indexed by their azimuthal mode m, and parameterized
by their frequency ω. The boundary conditions for the vector field are Aµ → 0 for r →∞.
However, in order to obtain non-trivial solutions to the field equations and these boundary
conditions, we promote the frequency to a field ω → ωs(r, θ) and introduce the second
auxiliary field ρ(r, θ), following Ref. [220], where this was applied in the scalar case (see
also Ref. [339]). Both fields follow �g = gµν∇µ∇ν of the spacetime gµν :

�gωs = 0, �gρ =
jt

ωs
. (C.8)

Through the boundary conditions ωs(r → ∞) → ω, where ω is the solution’s frequency,
we ensure that the solution is non-trivial. Integrating over the entire three-volume of a
time-slice, we see that ρ encodes the total U(1)-charge in its boundary data:

lim
r→∞

r2∂rρ(r, θ) = − Q

4πω
. (C.9)

Conversely, using (C.9), we can impose Q as a boundary condition, and solve for ωs.
Hence, within this formalism, either the solution’s frequency ω, or the solution’s charge Q
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can be imposed as a boundary condition. The list of boundary conditions for the metric
variables and auxiliary functions are given in Ref. [339], while the boundary conditions
of the vector components are listed in Ref. [77]. One subtlety arises for B(r) (in the
spherically symmetric case), which follows a first order differential equation. We promote
this equation trivially to a second order equation by B(r) → ∂rB̃(r), and then impose
the boundary condition limr→∞ B̃(r) = B̃∞ (the solution is independent of B̃∞), while
requiring ∂rB̃(r)|r=0 = 0.

To numerically solve the system of equations introduced above subject to the boundary
conditions, we follow the implementation for scalar BSs in Ref. [339]. We compactify the
radial coordinate r → r̄ = r/(1 + r), such that r̄ ∈ (0, 1), and restrict to the upper-half
plane, i.e., θ ∈ (0, π/2). We utilize fifth-order accurate finite differences both in the radial
and polar directions, and consider a uniformly spaced grid in the compactified coordinates
(r̄, θ). We utilize a Newton-Raphson-type relaxation procedure that iteratively approaches
the true solution given a sufficiently close initial guess. The initial guess is constructed
from plots given in Ref. [193]. Once a solution is found at ω1, we explore the parameter
space of each family m, by imposing the boundary conditions ω2 = ω1 +δω (or analogously
the vector charge), where δω is chosen sufficiently small such that the solution at ω1 is a
good enough initial guess to obtain the solution at ω2. For spherically symmetric stars, we
found that a resolution of Nr = 1000 was sufficient for all considered cases, while in the
rotating case we typically use Nr ×Nθ = 500× 100.

C.2 Angular momentum variation

In Figure C.1, we present snapshots of the evolution of the sequence of non-spinning binary
BSs of varying initial orbital angular momentum discussed in Sec. 4.3.3.

C.3 Numerical setup

Given initial data (see Chapter 3) for a scalar binary BS, we evolve the Einstein-Klein-
Gordon equations (following from the scalar action (2.1)) forward in time employing the
generalized harmonic formulation of the Einstein evolution equations [306] with methods
outlined in Appendix A.2. The compactness of the stars sets the number of levels re-
quired to resolve the stars sufficiently; for low-compactness solutions [typically stars in the
repulsive scalar model, (2.5)], we require five to six refinement levels, while for the high-
compactness solutions [usually those in the solitonic scalar model, (2.2)], we require six to
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Figure C.1: We show the scalar field magnitude |Φ| (normalized by the maximum in the
initial time-slice) in a few snapshots of the equatorial slice of the binary BS simulations
discussed in Figure 4.9. We label each sequence of time-slices by the initial angular mo-
mentum J0 in units of initial charge Q0. In the top and bottom rows, the binary merges
into a rotating DBS solution (i.e. two non-rotating BSs separated by scalar interactions,
as discussed in Sec. 4.2.1). Compared with the top row, the binary in the bottom row
rotates at high angular velocities around the center of mass at late times, i.e., t/M0 > 300.
The case shown in the middle two rows merge to form a remnant with q = 1 vortex at
the center of mass at late times. Notice, we find that the J0/Q0 = 0.75 case relaxes to a
rotating BS at late times t/M0 > 300. 258
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Figure C.2: Here we consider the convergence behavior of the binary BS in the σ =
0.05 solitonic scalar model, with properties summarized in Table 4.2, with decreasing grid
spacing. The quantities C and IC (defined in the text) are a positive definite measure of the
constraint violation, which we track throughout the simulation. The rapid variation of the
constraints is driven by gauge dynamics at early times. The maximum of the constraint
violation C occurs during the merger of the binary at around t/M0 ≈ 75. The binary merges
earlier with increasing resolution, and only the medium and high resolutions capture small-
scale features present in the remnant after merger. The quantity max C converges to zero
roughly at third order, as expected, since it is primarily set by the third-order accurate
time interpolations on the mesh refinement boundaries. On the other hand, the integrated
quantity IC converges at the expected forth order, as it is largely insensitive to the lower-
order time interpolations.

seven levels. In the cases with black hole formation, we add refinement levels dynamically
to resolve the gravitational collapse and apparent horizon (this requires seven to nine lev-
els). The resolution on the finest mesh refinement level for the binary evolutions presented
in Sec. 4.2.3 is ∆x/M0 = 0.15. The resolution for the solitonic cases shown in Sec. 4.3.2 is
∆x/M0 = 0.075 on the finest refinement level, while for the binaries in the repulsive model
it is ∆x/M0 = 0.2. Throughout, we use the standard damped harmonic gauge condition
to set the generalized harmonic source functions Hµ [107, 242].

We present resolution studies of two exemplary binary mergers. First, we focus on
the σ = 0.05 solitonic scalar model and the binary with parameters given in Table 4.2.
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We consider three resolutions, corresponding to ∆x, 3∆x/4, and ∆x/2, where the lowest
resolution corresponds to a grid spacing of ∆x/M0 ≈ 0.1 on the finest level, and the medium
resolution is the default resolution for all simulations discussed in Sec. 4.3. In order to
explicitly demonstrate that we are solving the Hamiltonian and momentum constraints,
we track the violations of the constraints, given by Cµ = Hµ − �xµ, in time. In Figure
C.2, we plot the evolution of the constraints at these different resolutions of the binary
with parameters given in Table 4.2. To track the constraint violations, we define C =∑

µ |(Cµ)2|/4, and consider the global maximum max C in each time-slice, as well as the

integrated norm IC =
∫
d3x
√
γC. In Figure C.3, we show the convergence behavior of

the total U(1)-charge of the system. Overall, the constraint violations converge to zero
at the expected forth order of our numerical methods. The violation of the conservation
of the U(1) charge Q, shown in Figure C.3, also converges towards zero. Likely, due to
the compactness (C = 0.13) of the BSs, rapid exponential decay of the scalar field outside
the stars, i.e., Φ ∼ exp(−

√
µ2 − ω2r), with ω/µ = 0.25, and the large initial separation

(of D = 40M0), the low and medium resolutions exhibit relatively large drifts in the total
conserved charge. Hence, the scalar field gradients on the surface of the stars, as well as
the spatial scales of perturbations, require relatively high resolution.

Secondly, we discuss the numerical convergence of one of the binaries considered in
Sec. 4.2.3. In particular, we focus on the α = π/2 case, and compare its convergence
behavior to that of the α = π binary evolution. In Figure C.4, we present the convergence
of the constraint violations with increasing resolution of the α = π/2 evolution. Again, this
demonstrates explicitly that we are solving the Hamiltonian and momentum constraints
consistently within the t = 0 slice. In the subsequent evolution up to t/M0 = 100, the
constraints converge at the expected orders. For numerical stability purposes, we have
to increase the size of the second coarsest mesh-refinement level in the lowest resolution
run, moving the outer boundary of this level from |xi|/M0 = 100 to |xi|/M0 ≈ 241. This
explains the disagreement between the ∆x and the 3∆x/4 as well as ∆x/2 resolutions in
Figure C.4, after t/M0 ≈ 100 (as at this time constraint violations propagating outward
reach the mesh-refinement boundary in the medium and high resolution runs, but not yet
in the low-resolution case). Furthermore, this different mesh-refinement layout in the low
resolution case alters the convergence behavior, such that this case mergers much earlier
compared with the medium and high resolution runs. However, we have checked explicitly
that the merger delay between the α = π/2 and α = π cases increases from low (of
∆t/M0 ≈ 43) to medium resolution evolutions (of ∆t/M0 ≈ 262). Hence, the dephasing,
delayed merger and black hole collapse discussed in Sec. 4.2.3 are physical, and we are likely
underestimating their impact on the GWs. Notice also, identical numerical setups were
used for all cases presented Sec. 4.2.3, both for the initial data construction and evolution.
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Figure C.3: We consider the convergence behavior of the global maximum of |Φ|, the total
U(1)-charge Q, and the azimuthal mode C5 of the scalar field for the binary BS shown
in Figure C.2. The total charge Q is calculated in a coordinate sphere of radius 100M0

around the center of mass of the system. We normalize Q by Q∞, the sum of the BSs’
isolated charges Q∞ = Q1 +Q2. As the initial separation between the two stars increases,
the total charge approaches the superposed charge: Q → Q∞. Lastly, we also show the
convergence behavior of the C5 mode [defined in (4.16)] during the binary evolution. The
m = 5 perturbations remaining after the merger (and the formation of an m = 1 rotating
remnant) at around t/M0 ≈ 75 are converging towards zero with increasing resolution at
roughly the expected fourth order.

Therefore, while absolute differences are not resolved, this is suggestive that the relative
difference in amplitude in the GW waveform between the α-cases are driven by the scalar
interactions, rather than numerical truncation error.

C.4 Vortex ejection as an artifact of numerical reso-

lution

We find that in our simulations of the rotating BS formed from the merger of two non-
rotating BS with a phase variation of 63/64 ≥ α/π ≥ 7/8 exhibit a growing perturbation
leading to vortex ejection at low resolutions, but that this behavior disappears at sufficiently
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Figure C.4: We consider the convergence behavior of the α = π/2 case of Sec. 4.2.3 with
decreasing grid spacing ∆x. The quantities C and IC are defined in the text. The low
resolution evolution is based on a different mesh-refinement layout (as discussed in the
text,) and, hence, exhibits slightly different convergence behavior. At early times, the
convergence orders of these quantities are the same as those discussed in the caption of
Figure C.2.

high resolution. In order to understand this behavior, it is instructive to consider an
azimuthal mode decomposition of the real part of the scalar field, ΦR = Re(Φ), defined in
(4.16). In Figure C.5, we show the scalar field modes Cm during the merger of the binary BS
specified in Table 4.2 with initial phase variation α/π = 63/64. During, and shortly after,
the merger around t/M0 = 75, the m = 1 mode is the most dominant mode representing
the formation of a m = 1 rotating BS, and indicating the formation of a q = 1 central
vortex. Additionally, the amplitude of the even-m modes right after merger is consistent
across resolutions. On the other hand, the even-m modes begin to grow exponentially
right after formation of the rotating remnant (the representative m = 0 mode is shown
in Figure C.5) in the evolution with lowest resolution. Furthermore, we find that with
increasing α, the amplitude of the even-m modes after merger decreases, but in all cases
the artificial instability appears at lowest resolution; in fact, even in the α = π case, where
the even-m modes are seeded at amplitudes consistent with floating point roundoff, we find
this behavior. In all cases considered, this growing perturbation at low resolution saturates
in the vortex ejection of the solution. However, we performed higher resolution evolutions
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Figure C.5: The evolution of the scalar field modes Cm (dotted and solid lines correspond-
ing to m = 1 and 2, respectively) defined in (4.16) for the binary BS merger specified in
Table 4.2 with phase variation α/π = 63/64. The merger occurs roughly at t/M0 ≈ 75,
after which the even-m modes promptly begin to grow exponentially in the evolution with
the lowest resolution (the m = 0 mode is representative of all even-m modes). This ap-
parent instability is an artifact of low numerical resolution, and disappears with increasing
resolution.

in the binaries with α/π ∈ {63/64, 31/32, 7/8} and explicitly checked that the unstable
behavior disappears. This is illustrated for α/π = 63/64 in Figure C.5.

C.5 Phase evolution of the non-axisymmetric insta-

bility

In this appendix, we briefly revisit the non-axisymmetric instability (referred to as NAI
in the following) discovered in [323], focusing on the importance of the scalar phase and
vortex structure in these solutions. To gain intuition, we re-analyze two unstable BSs with
m = 1 and 2, in the solitonic and repulsive scalar theories introduced in (2.2) and (2.5),
respectively, originally considered in Ref. [339], and discuss the instability in light of the
remnant map constructed in Sec. 4.2.4.

263



−10 0 10

−10

0

10

y
/M

0

−10 0 10

x/M0

−π

0

π

ψ

Figure C.6: We show the scalar phase in two equatorial slices of the m = 2 rotating BS
of frequency ω/µ = 0.4 in the σ = 0.05 solitonic scalar model undergoing the NAI (first
discussed in Ref. [339]). The left panel shows the scalar phase at t/M0 = 0, while the right
panel shows the scalar phase during the nonlinear saturation of the NAI. The black lines
indicate arbitrarily chosen level surfaces of the scalar field magnitude within the equatorial
plane.

C.5.1 Instability of a m = 2 boson star

We begin with the phase evolution during the development and saturation of the NAI of
a m = 2 rotating BS solution. Specifically, we evolve the m = 2 rotating BS of frequency
ω/µ = 0.4 in the σ = 0.05 solitonic scalar model in (2.2). The NAI of this stationary
solution exhibits characteristic growth timescales of τNAI/M0 ≈ 19, leading to the ejection
of two blobs of scalar matter in opposite directions, leaving behind a single non-spinning
remnant star at the center of mass (see panel b of Fig. 8 in Ref. [339] for snapshots of
the saturation of the NAI in this star). In Figure C.6, we show the scalar phase in the
equatorial slice at the start of the evolution, and during the non-linear saturation of the
NAI. Initially, the vortex at the center of the star is a q = 2 vortex (as expected for a
m = 2 star). However, during the non-linear saturation of the NAI shown on the right in
Figure C.6, this q = m = 2 vortex at the center of mass breaks up into two q = 1 vortices,
which are quickly ejected from the star, leaving only a non-spinning star at late times (not
shown in Figure C.6). This is reminiscent of, for instance, the break-up of a m = 2 string
in the Abelian-Higgs model (see, e.g., Ref. [360]).
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Figure C.7: (top) We show the normalized scalar field magnitude |Φ|/|Φ|t=0
max in four equa-

torial slices at different times during the evolution of an isolated m = 1 rotating BS of mass
M0 in the repulsive model with λ/µ2 = 102 and frequency ω/µ = 0.9. The star was shown
to be unstable to the NAI in Ref. [339]. Red circles indicate the coordinate location of
the vortex at early times in all snapshots. (bottom) The evolution of some of the spherical
harmonic modes C`

m, defined in (C.10), corresponding to the same star as in the top panel.

C.5.2 Instability of a m = 1 boson star

We turn now to the NAI active in a m = 1 rotating BS of frequency ω/µ = 0.9 in
the repulsive scalar model with coupling λ/µ2 = 102. In the top panel of Figure C.7,
we show four snapshots of the evolution throughout the development and saturation of
the NAI. At early times, the scalar field magnitude morphology is toroidal (first panel),
while at intermediate times (second and third panel), the scalar field magnitude exhibits
a quadrupolar pattern, which is broken up at late times (fourth panel) and eventually
becomes a monopolar (i.e., perturbed spherically symmetric) remnant BS. It is clear from
the top panel of Figure C.7 that the q = 1 vortex of the stationary BS solution remains at
the center of mass even during the first fragmentation (first and second panel) until the

265



second fragmentation phase, when this vortex is ejected from the system (last panel).

In order to understand this two-staged fragmentation process, we decompose the scalar
field ΦR = Re(Φ) into coordinate spherical-harmonic components C`

m as

C`
m =

∫

D

d3xΦRY
`
m(θ, ϕ), (C.10)

centered on the center of mass and aligned with the spin-axis of an isolated star. (Here,
the domain of integration D is the ball of coordinate radius r/M0 = 25). In the bottom
panel of Figure C.7, we show the evolution of some of the spherical harmonic components
during the development and saturation of the NAI. First, the (`,m) = (1, 1) component
dominates throughout the evolution, since this is a m = 1 (toroidal) BS. Secondly, the
even-m components are seeded roughly at the level of floating point roundoff at t = 0,
while the odd-m components (except for m = 1) have amplitudes set by the truncation
error (orders of magnitude larger than the floating point roundoff). While the even- and
odd-m components shown in the bottom panel of Figure C.7 all exhibit the same e-folding
growth rate, suggesting that they are all associated with the same unstable mode, the NAI
has a much larger overlap with the (`,m) = (3, 3) component than the other components.
During the first fragmentation phase around t/M0 ≈ 3500, the quadrupolar patter of |Φ|
can be understood by considering the bottom panel of Figure C.7. In this phase, the odd-
m components dominant in the initial non-linear phase. In particular, the (`,m) = (3, 3)
perturbation mixes with the (`,m) = (1, 1) background solution into a m̃ = 3± 1 mode of
|Φ|, corresponding precisely to the quadrupolar pattern observed in the top panel of Figure
C.7. During the second fragmentation around t/M0 ≈ 5000, the even-m components also
become significant and their presence results in the ejection of the central vortex and the
formation of the non-spinning, i.e., m = 0, BS remnant. The numerical convergence of this
instability was checked in Ref. [339].

From this, we conclude that the NAI is dominated by odd-m perturbations of ΦR and
does not significantly affect the scalar vortex, even as the unstable mode starts to become
large (and nonlinear). However, in the subsequent evolution in the nonlinear phase, even-m
perturbations continue to grow and eventually lead to the ejection of the central vortex.

C.5.3 The instability and the remnant map

For completeness, we briefly discuss the transition from a m = 1 rotating BS to a non-
spinning star of the same scalar model with the remnant map described in Sec. 4.2.4.
This transition (similar to the NAI and its non-linear saturation) corresponds to the decay
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Figure C.8: We show the normalized mass difference M = (M∗ −Mrot)/M∗ between the
mass Mrot of an isolated m = 1 spinning star of frequency ωrot and a non-rotating star of
mass M∗ in the same models, when assuming the remnant map described in Sec. 4.2.4. We
do this for the solitonic and repulsive scalar models, with couplings σ and λ, respectively.
Therefore, for each ωrot shown,M indicates the energy gained by transitioning the m = 1
rotating star to a non-rotating star of the same charge. We show only the branches below
the maximum mass of the families of solutions.

of a rotating solution to a non-rotating solution, which may be dynamically achieved by
means of an instability in the m = 1 star. In Figure C.8, show the energy gained by such
a transition assuming the remnant map, i.e., assuming no scalar radiation. Clearly, it is
energetically favorable to decay from a m = 1 rotating star to a non-rotating star. However,
whether this is a hint of a linear instability everywhere in the parameter space shown in
Figure C.8 is non-trivial. Furthermore, a dynamical transition requires the ejection of
all angular momentum from the system, which may break the assumption of local charge
conservation around the star. On the other hand, this demonstrates that the transition of
two identical m = 1 BSs into two identical non-spinning stars is also energetically favorable,
a scenario we explicitly found performing a nonlinear evolution in Sec. 4.2.4.
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Appendix D

Dark Photon Superradiance:
Framework and numerical setting

D.1 Construction of massive vector cloud

To construct the superradiantly unstable massive vector field modes on a fixed Kerr space-
time of mass M and dimensionless spin a∗, we follow Refs. [243, 161, 229], as well as
[137, 338]. Neglecting all non-linear effects both on the massive vector field A′µ, as well as
in the gravitational sector, we treat A′µ as a test field on a fixed Kerr background spacetime.
In this Ricci-flat geometry, the vector field satisfies the massive vector wave equation

gαβ∇α∇βA
′γ = µ2A′γ, (D.1)

with gαβ = gαβKerr and mass parameter µ. The Kerr family of BH spacetimes, a special
case of the Kerr-NUT-(A)dS class of spacetime, admits additional symmetries beyond
stationarity and axisymmetry generated by the timelike and axial Killing fields, ξ and η,
respectively. These “hidden” symmetries were utilized in Ref. [161] to construct an ansatz
for the field A′µ, satisfying the massive vector wave equation, that separates radial and
angular dependencies. The ansatz makes use of the Killing-Yano symplectic 2-form h,
whose tensor components satisfy ∇µhνγ = 2gµ[νξγ]. The vector field ansatz of frequency ω
and azimuthal index m reads [161]

A′µ = Bµν∇νZ, Z = R(r)S(θ)e−i(ωT−mϕ) (D.2)

in Boyer-Lindquist (BL) coordinates (T, r, θ, ϕ). The polarization tensor Bµν is implicitly
defined by Bαβ(gβγ + ihβγ) = δαγ utilizing the Killing-Yano 2-form. Due to the presence of
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ξ and η in the spacetime, the temporal and azimuthal dependencies are trivially satisfied.
The radial and polar dependencies are determined by solving a nonlinear ordinary differ-
ential eigenvalue problem with eigenfunctions R(r) and S(θ) and complex eigenvalues ω
and ν of the form, Drω,νR(r) = 0 and Dθω,νS(θ) = 0, where Dr,θ

ω,ν are second order ordinary
differential operators depending on r and θ only. Bound state solutions are obtained by
imposing ingoing radiation boundary conditions at the horizon, and asymptotically flat
boundary conditions at spatial infinity. For details on how the polar equation is solved,
see Ref. [137]. The radial solution is expanded around the outer horizon, r ≥ r+, with
r± = M ±

√
M2 − a2, in a Frobenius series of the form [137]

Rnear(r) = r̂iκ(1 + â1r̂ + â2r̂
2 + . . . ), (D.3)

with κ = 2mr+(ω −mΩBH)/(r+ − r−), coefficients âi, and r̂ = (r − r+)(r+ − r−)−1. The
coefficients âi can be solved for by plugging Rnear(r) into the radial equation Drω,νR(r) = 0.
The near-horizon solution (D.3) is then used to numerically integrate the radial second
order ordinary differential equation outwards from rs = r+ + ε towards large r � 10/(αµ),
with ε = 10−4M typically, in the spirit of the shooting method. Integration cannot start
at r = r+, as the BL coordinates are singular on the event horizon. For further details, see
Refs. [137, 338]. The superradiantly unstable vector cloud can then be reconstructed with
Eq. (D.2).

Our numerical setup, outlined in App. D.2, utilizes the Kerr spacetime in Cartesian
Kerr-Schild (KS) coordinates (t, x, y, z). Therefore, the relevant spacelike hypersurface is
the surface of constant KS coordinate time t, not BL time T ; these are two different slices
of the Kerr spacetime. Therefore, we transform the above constructed vector field A′µ from
BL coordinates to KS coordinates. The two gauges are related by

t = T +
M2 log r−r+

r−r−√
M2 − a2

+M log ∆,

x = sin θ(r cos φ̄− a sin φ̄),

y = sin θ(a cos φ̄+ r sin φ̄),

z = r cos θ,

(D.4)
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where ∆ = a2 − 2Mr + r2. The inverse of these relations is

T = t−
M2 log r−r+

r−r−√
M2 − a2

−M log ∆,

r = 2−1/2
[
− a2 + x2 + y2 + z2

+
√

4a2z2 + (a2 − x2 − y2 − z2)2
]1/2

,

φ = arctan

[
rx+ ay

−ax+ ry

]
−

a log r−r+
r−r−

2
√
M2 − a2

, x > 0

θ = arccos
z

r
,

(D.5)

where φ̄ = φ + (2
√
M2 − a2)−1a log[(r − r+)(r − r−)−1], valid outside the event horizon

r > r+. Using these coordinate transformations, we transform the massive vector field to
KS coordinates for r > r+ + ε. Subtleties arise for r < r+ + ε. However, it is necessary
for the successful evolution of the system of equations in the interaction basis that the
source term is defined (at the very least) everywhere outside the event horizon r ≥ r+, and
while all modes on the horizon are marginally trapped, the finite difference length scale
(potentially) allows for values at points inside the horizon to numerically affect points just
outside the horizon. Furthermore, the exponential blue-shift captured in the transformation
rules (D.4) and (D.5) of the type cos log(r − r+) for r > r+ leads to an exponential
amplification of any truncation error in the numerical solution of the radial and angular
equations Drω,νR(r) = 0 and Dθω,νS(θ) = 0. Hence, any power-like converging numerical
truncation error is exponentially enhanced for r → r+, and dominates the solution for
some rd with rd > r > r+. To address this subtlety, we employ a C4-transition function
ft(r) that matches the Frobenius solution Rnear(r), valid for r & r+ and the numerical
solution Rnum.(r), valid for r > r+ + ε, in the overlap region r+ + ε < r < r+ + 102ε:
Rmatched(r) = ftRnear(r) + (1 − ft)Rnum.(r). In addition to these manipulations at small
radii, we also need to address the exponential fall-off as r → ∞. Due to finite floating
point precision, the shooting method will inevitably switch from the exponentially decaying
solution into the exponentially diverging solution at some large r = rmax. Therefore, in
order to provide sensible estimates also for r > rmax (which is necessary since we are
working with a compactified setup that includes spacelike infinity, as outlined below in
App. D.2), we fit an exponential of the form ae−br for b > 0 to the solution Rnum.(r) in the
range r ∈ (0.9rmax, rmax). With this, we obtain a Rmatched(r) that is valid for r ∈ (r+,∞).

Finally, the 3+1 superradiant vector variables are projected with respect to the t=const.
spacelike hypersurface using the hypersurface normal nµ and the projector γαβ = δαβ +

270



nαnβ (further details can be found in App. D.2). In this framework, the vector field
decomposes into χφ ≡ −nµA′µ and χi ≡ γiµA

′µ, which are reconstructed from the matched
and extrapolated radial solution, in conjunction with the polar solution, the transformation
rules (D.5) and (D.4), and ansatz (D.2), everywhere in the t = const. spacelike hypersurface
with r > r+. Lastly, we find better convergence properties of the DiB

i = 0 constraint close
to the BH event horizon if a buffer region between the event horizon and the excision
surface in the BH interior is used. To that end, we utilize second order extrapolation of
all 3+1 variables along lines of constant θ, ϕ, t from r > r+ to r− < r < r+ to ensure well-
defined gradients at r+, we utilize zeroth order extrapolation from a distance of δ = 10−4M
away from the spin-axis to set the cloud values on the axis in KS coordinates, since the BL
coordinates also exhibit a coordinate singularities at the poles. The time-dependence of the
cloud in KS coordinates is then simply χφ, χi ∼ eiωt. In this work, we consider only those
superradiance clouds that arose from the fast growing modes, and subsequently saturated
the superradiance condition, i.e., satisfying ω = mΩBH. That is, we focus on m = 1, n̂ = 0,
and S = −1 clouds, in the language of [338] (corresponding to (j, n, l,m) = (1, 1, 0, 1),
introduced in Sec. 5.2). Properties of the clouds considered in this work are given in
Table D.1. These states are expected to be the endstate of the instability to a good
approximation [141, 145], and hence, exhibit vanishing growth rates.

We test our numerical implementation of the above described reconstruction of the
cloud in KS coordinates by considering the numerical truncation error τ of the massive
vector wave equation (D.1) in KS coordinates: τ =

∑
α |(�Kerr,KS−µ2)(χφnα+χα)|. Inside

the event horizon, the truncation error τ is divergent with decreasing grid spacing h, which
is likely due to inaccuracies in the extrapolation procedure described above. On the event
horizon, the truncation error shows marginal point-wise convergence τ |r=r+ ∼ O(h1/2) or
better. To quantify the convergence behavior outside the event horizon, in the coordinate

α ωM a∗
0.1 0.099485 0.382787
0.2 0.195543 0.678411
0.3 0.283390 0.857953
0.4 0.357498 0.946250

Table D.1: The properties of the four clouds used in the main text. We consider only the
m = 1, n̂ = 0 and S = −1 superradiant vector boson clouds in the language of Ref. [338]
[corresponding to (j, n, l,m) = (1, 1, 0, 1) used in Sec. 5.2] around spinning BHs of mass M
and dimensionless spin a∗. The saturation condition, ω = ΩBH, fixes the spin a∗ for each
α.
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Figure D.1: The norm LDd(τ) of the residual of the massive vector wave equation, defined
in (D.6), as a function of the number of grid points Np considered with respect to the base
resolution NB. The default resolution used for each of the configurations given in table D.1
and presented throughout the main text is Np/NB = 2.

domain D, we introduce the norm LD(f) of function f as

LD(f) ≡
∫

D

d3x
√
γ|f |, (D.6)

where d3x
√
γ = d3x

√
det γij is the volume form of the spacelike hypersurface. Here,

and in the following, the domain D = Dd is the coordinate shell defined by the radii
10rc > r > r+ (recall, rc = 1/(µα) is the cloud’s Bohr radius). The norm of the truncation
error converges approximately as LDd(τ) ∼ O(h2) for α ∈ {0.2, 0.3} and as LDd(τ) ∼ O(h1)
for α ∈ {0.1, 0.4}, see Figure D.1. We use second order accurate methods to compute the
residual τ . This convergence behavior can be explained by considering the shooting method
underlying the reconstructed solution. As discussed above, any remaining truncation error
close to the horizon is exponentially amplified, while at large radii, the shooting method in-
evitable switches from the exponentially decaying solution to the exponentially increasing
solution due to finite floating point accuracy (see also a discussion of this in [338]). While
our shooting method implementation makes use of higher-than double-precision floating
point arithmetic, the convergence is ultimately limited, especially for small α. Further,
the extrapolation of the cloud to the spin-axis in KS coordinates, and the exponential
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extrapolation at large radii, can further reduce the convergence rate, especially at large α.
Therefore, even slow convergence is a good sign of correct implementation of the superra-
diant source terms in our compactified KS evolution implemented discussed next.

D.2 Numerical evolution setup

Our calculations are carried out on a fixed rotating BH background of mass M and di-
mensionless spin a∗. We adopt the Kerr metric gαβ in Cartesian Kerr-Schild coordinates
(t, x, y, z), with line element

ds2 = − dt2 + dx2 + dy2 + dz2

+
2Mr3

r4 + a2M2z2

[
dt+

z

r
dz

+
r(xdx+ ydy)

r2 + a2M2
− aM(xdy − ydx)

r2 + a2M2

]2

,

(D.7)

where r satisfies (x2 + y2)/(r2 + a2) + z2/r2 = 1. However, we evolve the fields using
a 3 + 1 space–time decomposition, making using of several such geometric quantities.
This includes the unit normal to slices of constant time, which can be decomposed as
nµ = (1,−βi)/N , where N and βi are the lapse and shift vector, respectively. There is also
the spatial metric/projection operator γµν = nµnν + gµν , the extrinsic curvature tensor
Kij = −(Dtγij)/(2N), where Dt = ∂t − Lβ with Lβ the Lie derivative along the shift.
In a Minkowski spacetime in Cartesian coordinates these 3+1 variables would be N = 1,
βi = 0, γij = δij, and Kij = 0. For convenience, we also define also the covariant derivative
Di defined with respect to γij, as well as the trace of the extrinsic curvature K = Kijγ

ij.

The kinetically mixed Maxwell’s equations, presented in covariant from in (5.13), in
terms of the visible electric and magnetic fields are given by

DtE
i = NKEi + εijkDj(NBk)−NJ i +Nεµ2γiµA

′µ,

DtB
i = NKBi − εijkDj(NEk),

DiE
i = ρq + εµ2nµA

′µ,

DiB
i = 0,

(D.8)

where εijk = εijkαnα is the 3-dimensional Levi-Civita tensor. These evolution equations
(D.8) are discretized using fourth-order accurate spatial finite-difference stencils, in con-
junction with fourth-order Runge-Kutta integration in time [149, 148]. All simulations are
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performed on a 3D Cartesian grid that includes spatial infinity through the use of compact-
ified coordinates (details can be found in [306]). Sixth-order, Kreiss-Oliger-type numerical
dissipation is applied to the evolution variables for numerical stability. This further dis-
sipates shorter wavelength features at large distances beyond the compactification scale,
minimizing reflection off spatial infinity. We use between ten and seven mesh-refinement
levels centered on the BH, with refinement ratio 2 : 1, for α = 0.1 through α = 0.4,
respectively. We choose the finest level to have length roughly twice the diameter of the
BH in each linear dimension. The system is rescaled so that 20µ−1α−1 = 20rc is roughly
equal to the compactification scale (recall rc is the cloud’s Bohr radius). This allows us to
resolve both the scale set by the BH, as well as that set by the superradiance cloud, for
sufficiently long times as to ensure relaxation into a quasi-equilibrium state. For all cases,
we use a grid spacing of ∆x ≈ 0.03M on the finest mesh refinement level. Due to this
scaling, radiation extraction can be done up to a distance of r ≤ 10rc; beyond this distance,
high-frequency radiation modes are no longer sufficiently resolved in the wave extraction
zone due to the compactification of the domain. The Maxwell equations with an Ohm’s
law become stiff in the high conductivity limit (discussed further in App. D.3). Hence,
at conductivies of σ/µ > 2, we adjust the time-step ∆t to account for this behavior. For
α = 0.3, we decrease it gradually with increasing conductivity from ∆t/∆x = 0.5 down
to ∆t/∆x = 0.075 to achieve a robust numerical evolution. For α ∈ {0.1, 0.2, 0.4} and
σ/µ = 20, we scale ∆t, such that σ∆t remains as small, or smaller than, the value of σ∆t
for α = 0.3, everywhere in the relevant computational domain. The construction of the
superradiance cloud is described in detail in App. D.1. As we are neglecting backreaction
of the presence of the plasma and massless electromagnetic fields, the superradiance cloud
is not evolved numerically, rather it is a pre-prescribed function of time.

The set of equations (D.8) is comprised of the two constraints, the Gauss law for electric
and magnetic fields, and the Faraday equation and Ampere’s law as evolution equations.
Numerically, we damp possible violations of the constraint equations by means of two
constraint-damping fields Φ and Ψ [124, 284]. To that end, we perform the replacements
DtB

i → DtB
i −NDiΦ and DtE

i → DtE
i −NDiΨ at the level of the evolution equations

in (D.8). Furthermore, we promote the constraint equations to evolution equations for
these auxiliary fields, following Refs. [124, 284]:

DtΨ = −N(DiE
i − εµ2nµA

′µ − ρq)−NκΨ,

DtΦ = −NDiB
i −NκΦ.

(D.9)

This ensures that any numerical violation of the constraints DiE
i − εµ2nµA

′µ − ρq = 0
and DiB

i = 0 are damped exponentially over timescales 1/κ. For all (resistive) force-free
simulations, the constraint DiE

i − εµ2nµA
′µ − ρq = 0 is trivially satisfies since the charge
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density is defined to be ρq = DiE
i− εµ2nµA

′µ. Hence, unless we explicitly assume vacuum
(and in particular, set σ = 0), Ψ is identically zero. In all cases, the initial conditions for
these auxiliary fields is Φ = Ψ = 0. In addition, we perform ideal force-free simulations by
means of two ad-hoc field modifications applied at each grid point after an evolution step
[284, 283] (see Ref. [27] for a discussion):

Ei → Ej

(
δij −

BjB
i

B2

)
, (D.10)

Ei → Ei

{
1− θ̂(λ) + θ̂(λ)

B

E

}
, (D.11)

where λ = E2 − B2 and θ̂ is the Heaviside function. This prescription enforces the two
force-free conditions, EiB

i = 0 and B2 > E2, by explicitly rescaling the electric field
at each grid point. The rescaling is a form of ad-hoc numerical dissipation that is not
physically motivated and reproduces physical dissipation behavior only in special cases.
Therefore, as pointed out in the main text, the dissipation estimates provided by these
force-free evolution schemes should be interpreted with caution.

The evolution of the system proceeds as follows. We evolve the system towards its
equilibrium state in several steps. Initially, we set the fields to visible fields to zero Ei =
Bi = 0 and evolve until time t = ts assuming vacuum Iα = 0. With ts ≈ 5/µ, this
allows the system to equilibrate at roughly Ei = εE ′i and Bi = εB′i, which is purely
the superradiance cloud’s contribution to the visible fields. During this time, we utilize
both the electric and magnetic field’s Gauss constraint cleaning potentials Φ and Ψ. These
ensure that constraint violations in the magnetic field are kept small, as well as efficiently
remove constraint violations of the Ei = 0 initial data on timescales 1/κ � ts. At t = ts,
the resistive current (5.37) is discontinuously turned on, and the system is evolved until the
total Poynting flux at the largest radii where we extract it is relaxed to a quasi-constant
value. For α = 0.4, we found that this required the system to be evolved for ∼ 8tLC light
crossing times of the entire cloud, defined as tLC = 10rc, whereas for α = 0.1, we evolved
the system for ∼ 3tLC. During the evolution of the system, we monitor the behavior of
the Gauss constraint DiB

i = 0 throughout the entire domain. This provides a measure for
the rate of convergence of the numerical solution, and the self-consistency of the numerical
implementation.

To test the numerical implementation of the kinetically mixed force-free Maxwell equa-
tions, together with the reconstruction of the massive vector field modes, we begin by
considering the α = 0.3 vacuum case σ = 0. To that end, we consider (D.8) with Iµ = 0,
and perform a series of simulations with increasing resolution starting from vacuum initial
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Figure D.2: (right and top left) We present the convergence of the norm (D.6) of the Gauss
constraint DiB

i within domains Ds (solid lines) and Dd (dashed lines) for the α = 0.3
system at three different conductivities σ. The former is the entire domain outside the
outer horizon with r > 1/µ (i.e., neglecting the near-horizon behavior), whereas the latter
is the entire domain outside the BH r > r+. Np/NB is defined as in Figure D.1, and we set
ε = 10−6. (bottom left) We plot the Poynting fluxes across the ergosurface, PES, the event
horizon, ĖBH, as well as the flux PEM coordinate radii r = 8rc and r = 10rc in the α = 0.3
cloud with Iµ = 0 and ε = 10−6.

data: Bi = Ei = 0. To demonstrate the correct implementation of the equations, we mon-
itor the evolution of the constraints DiB

i = 0. In Figure D.2, we show the convergence of
this Gauss constraint with grid spacing h utilizing the norm defined in (D.6). As can be
seen there, roughly LDs(DiB

i) ∼ O(h3.5), whereas LDd(DiB
i) ∼ O(h2). Therefore, in the

bulk of the vector cloud, the convergence is roughly fourth order, as expected. Close to the
event horizon, convergence is slower. This may be attributed to the presence of the excision
surface close to the event horizon, as well as the lower convergence order of the massive
vector cloud residual τ just outside the horizon. The constraint DiE

i− εµ2nµA
′µ = 0 (not

shown here) is violated by the initial data, but quickly becomes dominated by converging
truncation error after a few periods of the cloud. This could be improved upon, by choos-
ing constraint satisfying initial data. However, the goal of this work is to investigate the
system with non-vanishing charge density, and at late times, the latter constraint is satis-
fied to floating point accuracy if Iµ 6= 0. Moving to cases with non-vanishing conductivity,
we show in Figure D.2 the convergence properties of α = 0.3 systems for σ/µ = 1 and
σ/µ = 20. The former exhibits the same convergence behavior as the vacuum case, whereas
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the latter follows roughly LDd(DiB
i) ∼ O(h0.6). This can be explained by considering the

scales of the features that need to be resolved. As we showed in the main text, the scale
of the features is roughly given by 1/σ, which translates into a length scale of ` ≈ 0.17M
for α = 0.3. On the finest level, the grid spacing, ∆x = 0.03GM , is sufficient to resolve
these features, while on coarser levels, numerical dissipation likely dampens these scales
efficiently. This damping is numerical, rather than physical, in nature, and does not obey
the Maxwell equations, and therefore, leads to a larger violation of the Gauss constraint
and worse convergence properties.

Apart from the convergence of the constraints, the vacuum quasi-stationary state, after
several tLC, should exhibit no energy flux across the event horizon, as it is, by construc-
tion, synchronized with the BH angular velocity. In practice, there are various sources of
numerical error that can spoil this property. The synchronization condition ω = ΩBH can
be achieved only up to finite precision, when solving for the superradiance cloud. Finite
resolution both in the evolution scheme, as well as in the cloud construction scheme, may
also leave room for the solution to develop a small, but finite, energy flux across the hori-
zon and towards spatial infinity. To quantify this, and to obtain a rough estimate for the
time at which the system is truly settled, tsettle, we monitor the energy fluxes across the
horizon, the BH ergosurface, and coordinate spheres of radius ρ̂ = 8rc, and ρ̂ = 10rc in
Figure D.2. In the continuum limit, with ω = ΩBH exactly, we expect all these fluxes to be
zero. Therefore, the flux evolution presented in Figure D.2 can be used to establish tsettle,
i.e., when the system has reduced the superradiance cloud’s emission powers to the degree
necessary.

We briefly comment on issues related to performing simulations of the superradiance
cloud system in the small-α limit. In the Newtonian limit, the massive vector wave equation
on a Kerr background is obtained by expanding in small α to leading order. All spin-
effects are subleading in this expansion, and the leading contribution is solely given by
the far-zone Newtonian potential of the BH ∼ GM/r. In this limit, the vector wave
equation reduces to a radial Schrödinger-type equation with solution (5.8). Within a
numerical time-domain evolution setup, the singular behavior of the Newtonian potential
at the location of the BH poses challenges. However, there are subtleties associated with
replacing the far-zone weak-field metric by Minkowski both in the interaction and mass
eigenbases ((5.12) and (D.21), respectively). Within the mass eigenbasis, the force-free
condition (or resistive generalization thereof) FαβIβ = 0, depends on the electric and
magnetic field components of (5.8). The non-relativistic field (5.8) and its electric and
magnetic field components are multivalued, i.e., discontinuous, at the origin, leading to a
breakdown in the validity of numerical schemes around the origin. Additionally, the usual
force-free current would require modification, as it requires the field (5.8) to satisfy the
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corresponding Maxwell equations on a weak-field background spacetime. As noted above,
a weak-field metric is numerically challenging to implement, such that the choice of a flat
background introduces inconsistencies when using the (resistive) force-free current. These
could be remedied, however, by including terms involving higher order derivatives of the
massive vector field (5.8) in the equations, but this would add further complications at the
origin. By contrast, the evolution equations in the interaction basis depend only on A′µ,
and not on its spatial derivatives; hence, the interaction basis evolution approach allows
one to evolve the system self-consistently on a flat background. On the other hand, this
choice is accompanied by subtleties associated with the photon-dark photon interaction
term in (5.12). The massless state can mix into the massive state as it radiates towards
infinity. In a weak-field metric, this mixing prevents the massive component of the visible
field Aµ from radiating to infinity, as it is bound to the central gravitational potential. In
the flat spacetime limit, leakage of the massive state into radiation emitted to infinity is
not prevented (an illustration of this behavior is presented in Figure D.4). Therefore, in
this context, any radiated Poynting flux is to be understood as an upper bound for the
total emitted power. All these subtleties are absent in the fully-relativistic calculations we
use as our main results, where the relativistic clouds constructed in App. D.1 is considered
on a Kerr BH background spacetime as described above.

D.3 Resistive force-free currents

In this appendix, we discuss different resistive generalizations of force-free electrodynamics
used in the literature to identify the approach most applicable in the kinetically-mixed
scenario at hand. In the main text, we demonstrated that the system is characterized by
turbulence and magnetic reconnection with efficient energy dissipation into the plasma. In
principle, there are two feasible approaches for capturing these effects: resistive magneto-
hydrodynamics and kinetic PIC methods. PIC methods, which capture the macro- and
micro-physics, are ideally suited to tackle the magnetosphere of the kinetically mixed super-
radiance cloud. However, as we are interested in the overall electromagnetic power-output
and large scale features of the system in three dimensions, PIC simulations are prohibitively
computationally expensive, especially on a curved background BH spacetime. Full resistive
magnetohydrodynamics, on the other hand, is notoriously difficult to apply to regimes in
which the plasma mass density is far below the energy density of the electromagnetic field,
which is the case for the superradiant system considered here. Hence, we choose to use a
resistive approach where the plasma dynamics is not directly tracked, and rely only on the
electromagnetic field’s evolution. A few approaches have been developed in the literature,
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Figure D.3: We show the visible electric and magnetic fields, charge density, and the ratio
of electromagnetic field magnitudes obtained from a force-free simulation using the current
(D.13), with prescription (D.11) for a superradiance cloud system with α = 0.3 and a BH
spin of a∗ = 0.86. In the case of the visible electric field, the field line color code is the
same as in Figure 5.5.

particularly to model the resistive regions of pulsar magnetospheres [227, 180, 238, 290, 213]
(see also Refs. [284, 282]). All are based on an electromagnetic current J i that aims to
capture the physics of a highly conducting plasma in strong electromagnetic fields, while
being specified solely in terms of the electromagnetic fields. Generally, this current can be
decomposed into a piece describing the drift velocity of the charges, vid, and a contribution
orthogonal to the drift velocity

Ja = ρqv
a
d + Ja⊥. (D.12)

In all (resistive) force-free approaches, the charge density is defined using the (kinetically-
mixed) electric Gauss law: ρq = DiE

i − εµ2nµA
′µ. In the following, we briefly review the

currents considered in the literature, apply these to kinetically-mixed superradiance clouds
in the non-relativistic limit, and compare our findings with the vacuum and force-free limits
in order to evaluate their applicability.

We begin with a discussion of the commonly invoked force-free paradigm, which assumes
vanishing Lorentz force F µνIν , as well as FµνF

µν > 0 and Fµν(∗F )µν = 0. In terms of
electric and magnetic fields, the last two conditions are, respectively, equivalent to magnetic
dominance B2 > E2 and EiB

i = 0. With these assumptions, the corresponding force-free
current is given by (the relativistic contributions in the form of the extrinsic curvature K
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and covariant derivative Di are defined in App. D.2)

vad =
εajkEjBk

B2
,

Ja⊥,FF =
Ba

B2

[
2KBiE

i − 2KijE
iBj +Biε

ijkDjBk

− EiεijkDjEk + εµ2Biγ
i
µA
′µ
]
.

(D.13)

The current is perpendicular to the electric field, and there is no dissipation of electro-
magnetic energy. Therefore, the force-free limit of ideal magnetohydrodynamics excludes
resistive processes or transfer of electromagnetic energy to the plasma (e.g., particle acceler-
ation, magnetic reconnection, plasma heating, etc.), which however, are active throughout
the superradiance cloud due to the electric dominance of the fields A′µ in vacuum. Notice,
the plasma drift velocity vad is entirely determined by the dynamics of the electromagnetic
fields. While the force-free approximation is, in principle, ideal, it can break down at cur-
rent sheets and places where magnetic dominance is lost. Numerically, this is handled with
numerical dissipation which is particularly large in turbulence driven regimes (due to the
cascade to short, unresolved wavelengths), as well as by (as noted in App. D.2) enforcing
the force-free conditions by rescaling the visible electric field, as shown in (D.11). We
perform a set of force-free simulations of the α = 0.3 and a∗ = 0.86 cloud-plasma system.
As the turbulent features reach scales much below the grid scale of our simulations, nu-
merical dissipation and the prescription (D.11) efficiently remove energy that was sourced
by the superradiance cloud. Therefore, it serves as an artificial source of dissipation, that
nonetheless agrees well with the σ →∞ extrapolations shown in Figure 5.12. Regardless,
results from these force-free simulations should be interpreted with caution and in light of
the un-physical dissipation mechanism. In Figure D.3, we show the force-free solution the
system attains at late times (with strong numerical dissipation in the bulk of the cloud). In
all cases, the magnetic Gauss constraint is non-convergent, while the time-averaged outgo-
ing Poynting flux and energy injection from the superradiance cloud are roughly consistent
across resolutions to within an O(1)-factor (the Poynting flux estimates is shown in Figure
5.12). For all the numerical resolutions we considered, features emerged on the grid scale,
suggesting the endstate of the pair production cascade is a bulk turbulent state. As can
be seen in Figure D.3, no large scale electric field and charge separation persists, while
Ez/E ∼ O(1). The numerical implementation, by construction, removes any violation of
B2 > E2 at each grid point after each timestep, such that the ratio B2/E2, shown in last
panel in Figure D.3, is strictly larger than unity. Similarly, the violations of EiB

i = 0 are
at the level of floating point error.

In the context of resistive magnetohydrodynamics, a macroscopic resistivity is intro-
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duced by means of a suitably chosen Ohm’s law with conductivity σ. In order to recover
the force-free approximation in the σ → ∞ limit and to maintain a form for the electro-
dynamics that does not require one to also keep track of the fluid dynamics, all resistive
force-free approaches assume the drift velocity vid of the charges is altered as [180] (see also
Ref. [227] for a similar approach)

vid =
εijkEjBk

B2 + E2
0

, E2
0 = B2

0 + E2 −B2,

B2
0 =

1

2

[
B2 − E2 +

√
(B2 − E2)2 + 4(EiBi)2

]
.

(D.14)

Thus, even for fields with E2 > B2, the drift velocity vid is bounded by the speed of light
due to the additional electric field contribution E2

0 in the denominator compared with
the force-free prescription (D.13). Non-vanishing EiB

i can only reduce the resulting drift
velocity further. This ensures that around current sheets within a strongly magnetized
plasma, the characteristic speeds remain physical. Three distinct methods to construct J i⊥
have been considered in the literature. In Ref. [181], the Ohm’s law was applied in the
frame of vanishing charge density, referred to as (A) in the following. In Ref. [238] (see also
Ref [245]), the Ohm’s law was applied in the minimal velocity (with respect to the “lab”
or simulation frame) fluid frame, labeled as (B) in what follows. Lastly, the approach of
Ref. [290] introduces resistive effects with a prescription driving EiB

i towards J iBi/σ over
some arbitrary timescale 1/κ, called approach (C) from here on. Beyond the drift velocity,
the three approaches (A), (B), and (C) differ.

Comparing the three currents, method (A) is manifestly covariant, but lacks a well-
defined vacuum limit, while both (B) and (C) exhibit J i → 0 as σ → 0. Since the
superradiant system is well-understood a priori only in the vacuum limit, we focus on
(B) and (C) in this discussion. Explicitly, the orthogonal component of the current (B)
constructed in Ref. [245, 238] reads

Ja⊥,(B) = σE0

√
B2 + E2

0

B2
0 + E2

0

E0E
a +B0B

a

B2 + E2
0

. (D.15)

The prescription, (C) modifies the force-free contribution as [290]

Ja⊥,(C) =
σ

(σ + κ)

(
Ja⊥,FF + κEiBi

Ba

B2

)
. (D.16)

Here, the driving timescale 1/κ can be understood by contracting the above current by
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Ba, using the Maxwell equations to arrive at

Dt(EiB
i) = −κN

(
Ei − 1

σ
J i
)
Bi, (D.17)

such that EiB
i is driven towards JiB

i/σ. Note, we assume the resulting system to be
hyperbolic (see e.g., Refs. [225, 296] for a discussion).

Physically, these currents describe the interaction of an effective plasma with the visible
electromagnetic fields, assuming E2, B2 � ρp, Pp, where ρp and Pp are the plasma’s mass
density and pressure. The σ → 0 limit corresponds to the vacuum limit. To understand
this, consider the charge conservation ∇µI

µ = 0. In the Eulerian frame, together with
(5.31), this leads to

Dtρq = NρqK −Di(NJ
i) = NρqK −Di(Nρqv

i
d) = 0. (D.18)

Hence, if the initial conditions satisfy ρq = 0, then the system does not acquire a non-trivial
charge distribution dynamically, i.e., in a medium with small conductivity charges cannot
separate. This implies that the resistive currents above reduce to Iµ = 0, assuming the
initial data is neutral. Therefore, the σ = 0 regime is the vacuum limit of the system.
Moving away from this limit to non-zero, but small conductivities, σ � µ, the effective
fluid coupling to the visible electromagnetic fields is an efficient insulator. The current Iµ

is timelike, and J i is advection dominated. Due to the residual conductivity, the charges in
the insulating fluid can move along the electric field with mobility ∼ σ/µ, i.e., the charge
mobility in the fluid frame is conductivity suppressed. However, since the system is advec-
tion dominated, no large charge gradients can build up, unless the fluid is compressible.
In our case, the fluid velocity in the Eulerian frame is Div

i
d 6= 0, resulting in potential

charge pile-up in regions of large vd-gradients and compressibility. At intermediate resis-
tivity, σ ∼ µ, the insulating fluid transitions to a moderately conducting plasma. Here,
the current Iµ is both locally spacelike and timelike in different places, and the system
has advection and conduction dominated regions. For σ � µ, the plasma turns into a
highly-conducting plasma with only residual resistivity. Here, the advection of the fluid is
a negligible contribution to the overall charge distribution. Large scale charge separation is
enabled by large conduction currents along the electromagnetic fields. In this regime, the
conductivity sets the diffusion length scale ` = 1/σ that governs residual resistive features
such as current sheets and tearing modes. Finally, assuming that in the σ →∞ limit, the
system becomes largely magnetically dominated and EiB

i → 0 while σE0 remains finite,
then all three currents reduce to the familiar and physically well-defined force-free limit.
This is discussed further in the context of the superradiance system in App. D.4.
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Figure D.4: We show the rescaled energy emission rates, P̂ = P (G/ε2)(M/Mc), of
the Poynting flux PEM (extracted at r = 10rc), the Joule heating Ldiss, and IEB =∫
d3√γ|EiBi|, as functions of conductivity σ/µ for model (C) with a superradiance cloud

of α = 0.3 on a Minkowski background with magnetic guide field Bz = 3× 104B′max. The
corresponding Poynting fluxes in the vacuum P vac.

EM and force-free limits P ff
EM are indicated

for reference.

In all cases, the conductivity σ is to be understood as a proxy for a class of dissipa-
tive processes and is chosen to be constant in space and time (primarily due to the lack
of a physically motivated prescription for the spatial dependence of conductivity in this
setup), as as typically done, for instance in [238, 247] (see [290] for a notable exception).
The advantage of current (C) is its numerical properties in the high-conductivity limit.
There, due to the prefactor σ/(σ + γ) multiplying the orthogonal component, the mag-
nitude of the source of the Maxwell equations remains small, ensuring that the evolution
equations do not become stiff. This ultimately allows us to evolve the system even at rela-
tively large conductivities with moderate resolution within an explicit forward integration
scheme. However, a drawback of approach (C) is that J i⊥,(C) diverges wherever B2 = 0. In
a magnetically dominated pulsar magnetosphere, this does not lead to problematic behav-
ior, while in the case of an electrically dominated superradiance cloud, this causes issues
at moderate and high conductivities, since within the equatorial plane, the magnetic field
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of the superradiance cloud smoothly transitions through zero. We tested explicitly, that
this magnetic null line causes the current (D.16) to diverge in the intermediate and high
conductivity regime, leading to non-convergent features orbiting in the equatorial plane
(particularly on mesh-refinement boundaries). As the resistive methods outlined above are
designed to remove non-converging behavior in, for instance, current sheets, and we require
convergence of our numerical implementation in order to validate our findings, approach
(C) is not well-suited to tackle the kinetically-mixed superradiance cloud without modifica-
tion. Therefore, we resort to approach (B) and current (D.15) to model resistive processes
and the electromagnetic field geometries throughout the superradiance cloud. This evolu-
tion method has a stiffness problem at large conductivities, as outlined in App. D.2, which
ultimately limits our ability to explore the σ/µ > 20 parameter space.

We briefly illustrate the shortcomings of performing simulations on Minkowski space-
time, and the extent to which current (C) can be used in the context of a magnetic guide
field removing magnetic null lines. To that end, we consider a α = 0.3 superradiance
cloud of the form (5.8) on a fixed Minkowski background. The constant magnetic guide
field is initialized at the beginning of the simulations as Bi

0 = (0, 0, Bz)
i (where ẑ is the

spin-direction of the cloud), with magnitude Bz = 3 × 104B′max � ε|E′|M . We test that
the following results are independent of the choice of Bz, as long as the guide field magni-
tude is larger than a threshold, Bz > Bt. Below this threshold, the electric field εE ′ starts
dominating around the origin of the cloud. With this construction, a series of simulations
is performed varying the conductivity from σ/µ = 10−3 to 103 within the context of the re-
sistive methods (C) introduced above. In addition, we also study the vacuum limit Ja = 0,
as well as the force-free limit on this flat background.

In Fig. D.4, we show the behavior of the total power output of the system as function
of bulk conductivity in the model (C) in (D.16). Let us compare these quantities to
those obtained on Kerr spacetime without a guide field and using model (B) [given by
Eq. (D.15)] shown in Figure 5.12 and Figure 5.8. The flat spacetime guide field setup
recovers the correct bulk dissipation component Ldiss = Lbulk

diss , both in amplitude and in
conductivity dependence, while the turbulent component Lturb

diss is absent. The latter is
due to the magnetic guide field removing any magnetically diffusive regions that might
form due to turbulence. The behavior of IEB in Figure D.4 is entirely analogous to the
corresponding quantity in Figure 5.8. Lastly, the outgoing Poynting flux in Figure D.4 is
constant across decades of conductivities, and agrees well with both the vacuum and the
force-free limits. This illustrates the leakage discussed above due to the lack of gravitational
confining potential in flat spacetime, filtering out the massive propagating states. This
demonstrates that, within the interaction basis, the flat space solution cannot be used
to estimate physical observables associated with the outgoing Poynting flux. Hence, we
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Figure D.5: The charge distribution ρq for various small to large conductivities in the
equatorial plane (bottom row) and in a plane spanned by the BH spin and an arbitrary
superradiance cloud phase (top row). The slices at varying conductivities correspond to
the same superradiance cloud phase. We focus on a α = 0.3 and a∗ = 0.86 BH-cloud
system.

cannot use model (C) without a guide field, as discussed above. However, using a guide field
also does not give the correct answer, as this artificially removes the turbulent dynamics
characterizing the high-conductivity limit of the system.

D.4 Charge distribution and small conductivity regime

In Figure D.5, we illustrate the spatial charge distribution ρq of the solution at low and
intermediate conductivities. At low conductivity, the largest charge separation occurs
along the spin-axis of the BH. This may be interpreted as follows: Charge separation is
suppressed at high resistivity, 1/σ � 1. However, any residual conductivity can separate
charges on scales ∼ σ/µ (assuming vanishing charge diffusion). Any separated charge
distribution advects with the drift velocity of the fluid. In the presence of sufficiently
large fluid velocity gradients (with finite fluid compressibility) large charge densities may
build up. In the superradiance cloud context, regions of high velocity gradients coincide
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Figure D.6: We show the charge separation Iρ [defined in (D.19)] as a function of conduc-
tivity in units of IE′ [defined in (D.20)], as well as the global maximum max[IµI

µ] of the
electromagnetic 4-current (5.37) and global minimum −min[IµI

µ] (recall, we are using the
− + ++ signature). We focus on a α = 0.3 and a∗ = 0.86 BH-cloud system and consider
conductivities σ/µ ∈ {0.01, 0.1, 1, 2, 5, 10, 20}.

with regions where the charge density is largest for σ/µ = 10−2. Once the charge density is
accumulated, and the fluid velocity varies on scales larger than the charge distribution scale,
the latter is frozen into the flow of the former and is carried away from the BH along the
spin axis. At moderate and large conductivity, σ/µ & 1, the resistivity is sufficiently small
as to enable large scale charge separation. While for σ/µ = 1, the charge density follows
roughly the superradiant electric field morphology (compare with (5.18)), for σ/µ = 20,
small scale features begin to appear, likely driven by the turbulent dynamics inside the
plasma.

Let us demonstrate explicitly that at large resistivity, the plasma cannot charge separate
across scales larger than the charge separation scale ∼ σ and that the superradiant electric
field is screened efficiently at large conductivity. To that end, we define the quantity

Iρ =

∫

D

d3x
√
γ|ρq|, (D.19)
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measuring the charge separation in a coordinate volume D extending out to ρ̂ = 10rc
within the slice Σt with volume form

√
γd3x. This is compared with the charge separation

required screen the superradiant electric field E ′i entirely [see also (5.18)]:

IE′ =

∫

D

d3x
√
γε|DiE

′i|. (D.20)

We show the behavior of Iρ as a function of conductivity, compared with IE′ , in the
right panel of Figure D.6 (recall, IE′ is conductivity independent). For σ/µ � 1, we
find that Iρ → 0, indicating that the system tends to the vacuum solution set by the
superradiance cloud. At intermediate conductivity, the charge separation scales roughly as
Iρ ∼ σ/µ. At large conductivity, Iρ ∼ IE′ , supporting the conclusion that, for σ/µ � 1,
the solution exhibits large scale charge separation that screens the field E ′i efficiently, even
in the turbulent regime. Furthermore, we also show the behavior of the norm IµI

µ of the
electromagnetic 4-current (5.37) in Figure D.6. As outlined in App. D.3, for σ � µ, the
current is fluid advection dominated, where a residual charge distribution is flowing with
the fluid on timelike trajectories. Conversely, for large conductivities the conduction part
of the current starts to dominate, the current becomes spacelike, and the solution begins
to asymptote towards a conductivity independent value of max[IµI

µ].

In Figure D.7, we show the spatial distribution of ρdiss at small and large σ/µ. For σ/µ <
10, the dissipation density roughly follows the shape of the superradiance cloud. This is
consistent with (5.48), since the visible electric field is dominated by the superradiance
electric field component E ′i for σ/µ � 1. Hence, any small dissipation density traces out
the superradiance cloud’s electric field E ′i; in the main text, this component is referred
to as Lbulk

diss . This is the relativistic result corresponding to the approximation (5.51). In
Figure D.7, for σ/µ = 10, the dissipation density deviates from the superradiance cloud’s
electric field; more precisely, the dissipation density is set by the superradiance cloud for
r < r∗, and set by the plasma dynamics for r > r∗, with r∗ defined in (5.41). Therefore,
the appearance of r∗ marks the breakdown of approximation (5.51), and the onset of the
reconnection driven regime, leading to the turbulent dissipation component Lturb

diss . The
latter dominates over the dissipation density component provided by the contribution of
the dark photon electric field to the visible electric fields in practically all regions outside
the BH, for σ/µ = 20, as can be seen in Figure D.7. The dissipation density develops
features on the scale 1/µ, set by the boson mass, and 1/σ, set by the conductivity. This
is consistent with the discussion in Sec. 5.5.3, where local magnetic field line twisting, on
scales of 1/µ and scales of the entire cloud, are relaxed by reconnection events, dissipating
energy through a locally enhanced ρdiss. For completeness, we show the ratio of visible
electromagnetic fields in Figure D.7 at low to moderate conductivities. This completes the
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Figure D.7: (top and middle row) We show the energy dissipation density ρdiss, defined in
(5.48), as a function of conductivity in a slice spanned by the BH spin and an arbitrary
superradiance cloud phase (top row), as well as in the equatorial plane of the BH (middle
row). The color scale is normalized by the global maximum dissipation density at each
conductivity. All slices correspond to the same superradiance cloud phase. White contour
lines indicate where the density goes through zero. We focus on a α = 0.3 and a∗ = 0.86
BH-cloud system. (bottom row) We show the ratio of visible electromagnetic fields, B2/E2,
in a plane spanned by the BH spin and an arbitrary superradiance cloud phase for various
small and moderate conductivies. The σ/µ > 1 regime is shown in Figure 5.7. We compare
the plasma cases to the vacuum case, i.e., σ/µ = 0.

low-conductivity regime of the behavior shown in Figure 5.9. As evident from Figure D.7,
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the field structure is affected at the O(1)-level only at intermediate conductivities, σ ∼ µ.
For σ/µ < 1, the two magnetic null lines inside the equatorial plane are unchanged. In the
case of σ/µ = 10−2, the charge distribution accumulating along the spin-axis of the BH,
leaves mild imprints on B2/E2.

D.5 Dark photon basis

A kinetic mixing between the SM photon and a dark massive photon enters as L = LSM +
LProca + εF ′µνF

µν/2 at low energies. Under the field redefinition Aµ → Aµ + εA′µ =: Aµ
this turns into the Lagrangian in the mass eigenbasis

Lmass = −1

4
FµνFµν −

1

4
F ′µνF ′µν

− µ2

2
A′µA′µ + Iµ(Aµ + εA′µ),

(D.21)

or, using A′µ → A′µ + εAµ =: A′µ into the interaction basis

Linter = −1

4
FµνF

µν − 1

4
F ′µνF

′µν

− µ2

2
A′µA

′µ − εµ2A′µA
µ + IµA

µ.

(D.22)

In both bases, the current Iµ is the current of the SM charged particles. These lead to the
field equations, in the mass eigenbasis,

∇αFαβ = − Iβ,
∇αF ′αβ = µ2A′β − εIβ,

(D.23)

and interaction basis

∇αF
αβ = − Iβ + εµ2A′β,

∇αF
′αβ = µ2A′β + εµ2Aβ,

(D.24)

when working to leading order in the kinetic mixing ε. The mixing of the SM and the
dark fields at the level of the electromagnetic current Iα is manifest in (D.21). Hence, both
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the SM fields and the dark fields can accelerate charged particles. This is reflected in the
energy-momentum conservation of (D.21):

∇αT αβ = −FβγIγ,
∇αT ′αβ = − εF ′βγIγ.

(D.25)

In the mass eigenbasis, no energy is transferred from the dark to the SM field, while both
transfer energy to and from charge particles. In the interaction basis, we have

∇αT
αβ = − F βγ(Iγ − εµ2A′γ),

∇αT
′αβ = εµ2F ′βγAγ,

(D.26)

where the energy transfer between fields is manifest.

Furthermore, at leading order in ε this implies the Lorenz condition on A′µ, as well as
the current conservation

∇µA′µ = 0, ∇µI
µ = 0. (D.27)

In the main text, in particular after Sec. 5.3, we work out all the dynamics in the
interaction basis, which is most convenient for the analysis since, inside the dense plasma,
Aµ has equations of motion which are potentially sensitive to the scale σ and ωp, both
of which are much larger than the dark photon mass µ. This manifests in the simulation
as short distance turbulent dynamics of the field Aµ, while the background A′µ has only
dynamics on length scales of order 1/µ. Therefore, inside this dense plasma, the interaction
basis of the plasma modes Aµ and the dark photon A′µ is also the mass basis. Clearly, the
interaction basis is more convenient for our simulations. In the following, we emphasize
some of the important physical intuition that is hidden in Eqs. (D.23), (D.24), (D.25)
and (D.26) and clarifying some points of confusion.

A first confusion comes from searching for static solutions by inspection. From Eqs. (D.23)
and (D.25), it seems apparent that there is a solution of Iµ = 0 while Eqs. (D.24) and (D.26)
would naively suggest that there is a solution of Iβ = εµ2A′β. Both of these two solutions
we have in fact discussed in the main text. The solution Iµ = 0 is the vacuum solution,
which corresponds to a dark photon cloud with zero charged plasma. Such a solution is,
however, unstable due to pair production instabilities described in Sec. 5.4. The solution of
Iβ = εµ2A′β in the interaction basis corresponds to the naive physical picture of a rotating
electric dipole, which is not viable due to the fact that the cloud is electrically dominated
(with size that is much larger than the light cylinder radius).
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A second confusion pertains to the common lore that in a dense plasma, the effect of
the dark photon is suppressed by the ratio of the dark photon mass and the plasma mass
of the photon, usually in the form of (µ/ωp)

2. However, this suppression assumes that the
dark photon field weakly perturbs a dense fluid of SM particles, which is not true in our
case. Rather, in the superradiance cloud, the dark photon cloud energy density scales as
|E′|2, the visible electric field energy density scales as ε2|E′|2, while the charged particle

energy density we obtain in the simulation is O(meµε|E′|). Given that ε|E′| ≈ m
3/2
e µ1/2

when pair production starts, the pair produced plasma carries energy density that is at
most O((µ/me)

1/2) of the energy density of the electromagnetic field. In this case, the
dark photon field is no longer a small perturbation and the SM plasma, as a result, is
very far from an equilibrium state at zero field. As a result, the intuition developed in
Refs. [138, 103] fails.

D.6 Flux discussion

In Sec. 5.6.2, we extrapolated the electromagnetic power through the Poynting flux PEM and
the energy dissipation Ldiss from our numerical data at moderate conductivities σ/µ ≤ 20
to very large conductivities σ → ∞. In Figure 5.11, we showed, however, only those
scenarios with conductivities resulting in qualitatively different behavior of the Poynt-
ing flux. Therefore, for completeness, we show the electromagnetic emission power for
all values of the conductivity considered in Figure D.8, as function of the radial coordi-
nate distance ρ̂ from the BH. The exponential decay and oscillatory behavior of PEM in
the low-conductivity regime reflects the exponential decay and oscillatory behavior of the
electromagnetic waves in a medium with low conductivity. These electromagnetic waves
are eigenstates of the Helmholtz equation in spherical coordinates, with eigenvalues of
±i
√
σµ+ iµ2. The eigenfunctions are spherical Hankel functions of the first kind, which

have a similar spatial dependence (this oscillatory behavior can be observed also in e.g.
B2 in the equatorial plane of the BH-cloud system for σ/µ < 1, which is not shown here).
Such exponential decay and oscillatory behavior is evident in Figure D.8 close to the BH
at low and intermediate conductivities. In this regime, low frequency oscillations on large
scales dominate, which gives rise to the same oscillatory features in PEM. Finally, in the
right panel of Figure D.8, we show the total time-averaged Poynting flux for σ/µ = 20 as a
function of coordinate distance from the BH for each of the values of α considered in this
work.
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Figure D.8: (left and middle) The total (time-averaged) electromagnetic power emitted
or injected into the plasma as a function of coordinate radius ρ̂ in terms of the cloud’s
Bohr radius rc for various plasma conductivities σ/µ. The flux obtained in the force-free
context is labelled as σ/µ = ∞. Here, we focus on the α = 0.3 case with a BH spin of
a∗ = 0.86, and indicate the BH horizon and ergosurface by shaded regions labelled BH
and ES, respectively. (left) We show the total time-averaged visible Poynting flux PEM,
defined in (5.45), through spheres at radii ρ̂ starting from the horizon and extending to
large distances [here solid (dashed) lines indicate locally radially outwards (inwards) going
fluxes]. (middle) We show the total dissipation power Ldiss, defined in (5.47), integrated
from ρ̂ → ∞ to ρ̂. Recall that our simulations assume spatially constant plasma conduc-
tivity σ. (right) Here, we show the total time-averaged Poynting flux PEM for all values of
α, keeping σ/µ = 20 fixed.

D.7 Notation

We list the variable definitions used throughout the text in Table D.2.
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Variable Description
ε Kinetic mixing
µ Massive vector field mass
rc Cloud’s Bohr radius
a∗ Black hole dimensionless spin

∆a∗ Loss of black hole dimensionless spin
M Black hole mass
rg Half black hole Schwarzschild radius
ω Superradiance cloud angular frequency
f Superradiance cloud frequency

ΩBH Black hole horizon frequency
Mc Superradiance cloud mass
α Gravitational fine structure constant

t, x, y, z Cartesian Kerr-Schild coordinates
σ Plasma conductivity
γe Electron/positron Lorentz factor
me Electron/positron mass
e Positron charge

τplasma Timescale to populate the e± plasma
ωp Plasma frequency
A′µ Dark vector potential (interaction basis)

E ′i,E′ Dark electric field (interaction basis)
B′i,B′ Dark magnetic field (interaction basis)
Aµ Visible vector potential (interaction basis)
Ei,E Visible electric field (interaction basis)
Bi,B Visible magnetic field (interaction basis)
Iµ Electromagnetic 4-current
J i Electromagnetic spatial current
ρq Charge density
vid Plasma drift velocity in Eulerian frame
fGW Gravitational wave frequency
PGW Gravitational wave luminosity
τGW Gravitational radiation timescale
τSR Superradiance instability timescale
PEM Visible Poynting flux
Ldiss Visible energy dissipation power
τEM Electromagnetic radiation timescale
ν Spectral frequency of electromagnetic emissions

Table D.2: List of the variables used most commonly throughout the main text, as well as
a brief description.
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Appendix E

Black hole superradiance field
solutions and gravitational radiation

E.1 LISA signal-to-noise ratio

For a given an initial BH spin and mass, as well as ultralight boson mass, SuperRad

provides predictions for the GW strain h+/×(t, R, θ, φ) at time t, (luminosity) distance r,
and angles (θ, ϕ) in the source frame. In the case of LISA, the detector response functions
X̃+/×(Θ,Φ, ψ, f) relate the GW strain in the source frame to the strain in the detector.
The latter depend on the source’s sky-position (Θ,Φ), polarization ψ, and frequency1 f .
Hence, the GW amplitude in the detector, h̃det.(f), in the frequency domain is given by

h̃det.(f) = X̃+h̃+(f) + X̃×h̃×(f), (E.1)

where h̃+/×(f) are the Fourier-transforms of h+/×(t, R, θ, ϕ). Let 〈. . . 〉 be the sky/polarization
average over Θ, Φ, and ψ, and let R(f) be the frequency-dependent transfer function de-
fined by the sky/polarization average of the detector response 〈h̃∗det.h̃det.〉 = R(f)[|h̃×(f)|2+
|h̃+(f)|2]. Then the SNR ρSNR is (see e.g., Refs. [317, 40])

ρ2
SNR

4
=

∫ ∞

0

df
〈h̃∗det.h̃det.〉
Sn(f)

=

∫ ∞

0

df
|h̃×(f)|2 + |h̃+(f)|2

Sh(f)
, (E.2)

where Sn(f) is the noise power spectral density of LISA, and Sh(f) = Sn(f)/R(f) is the
LISA sensitivity curve. For all estimates, we use the conservative six months confusion
noise projections.

1We neglect the motion of LISA and the source with respect to each other.
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Since SuperRad provides the time domain GW strain in the source frame, we add the
appropriate redshift factors and use fast-Fourier-transform algorithms to numerically trans-
form into the frequency domain. This is feasible for shorter signals considered in follow-up
searches. However, it becomes increasingly computationally expensive with longer signals
at smaller α.

E.2 Superradiant field solutions

In this appendix, we briefly summarize the numerical methods we use to obtain the scalar
and vector estimates for the oscillation frequencies ωR and instability growth rates ωI
discussed in Secs. 6.3.2 and 6.3.3, respectively. We also provide bounds on the precision of
our methods, and comment on the resulting uncertainties.

E.2.1 Scalar field

The real massive scalar wave equation (6.1) has been extensively studied in the context
of asymptotically flat BHs. On a Kerr background of mass M and spin parameter a, De-
tweiler [128] first derived expressions for the superradiance instability rates and oscillation
frequencies. These results were refined in various other works, e.g., Refs. [136, 377, 53].
In this subsection, ω, `, n, and m refer exclusively to the scalar mode numbers, hence, we
drop the subscripts used throughout the main text, for brevity.

Generally, due to the backgrounds symmetries, the most convenient scalar field ansatz
is of the form Φ = Re[Rs(r)Ss(θ)e

−i(ωt−mϕ)]. With this ansatz, the field equations separate
into a pair of polar and radial second-order ordinary differential equations. The polar
equation can be identified with the spheroidal harmonic equation of spin-weight s = 0
and spheriodicity c2 = −k2a2, with k2 = µ2

S − ω2; the solutions to this equation is the
set of spheroidal harmonics, sS̃`m(θ; c), of spin-weight s = 0. Hence, the polar solution
is simply the spheroidal harmonic Ss(θ) = 0S̃`m(θ; c) associated with the polar eigenvalue
A`m(c) that reduces to A`m(c→ 0) = `(`+ 1) in the Schwarzschild limit (see, for instance,
Ref. [63]). The radial equation turns out to be the source-free s = 0 radial Teukolsky
equation

d

dr

(
∆
dRs

dr

)

+

(
(r2 + a2)ω − am

∆
− λ`m − µ2

Sr
2

)
Rs = 0,

(E.3)
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where λ`m = A`m + a2ω2 − 2amω depends on the radial eigenvalue ω = ωR + iωI , and
∆ = r2 − 2Mr + a2.

The radial eigenvalue ω can be obtained, together with the radial solution Rs(r) satis-
fying ingoing boundary conditions at the horizon, and asymptotically flat boundary condi-
tions at spatial infinity. At leading order in α, the above radial equation reduces to a type
of Laguerre equation, yielding Hydrogen-like radial states, together with the associated
energy spectrum ω [136, 128]. Higher order corrections at the level of the radial and polar
equations are solved for in an order-by-order fashion perturbatively around α = 0. Solving
the eigenvalue problem in this way leads to the higher order corrections to the real part of
the superradiantly unstable scalar modes, defined in (6.8), [53]

CS[α] = − α4

8n4
+
fSn`α

4

n3
+
hS` a∗mα

5

n3
+O(α6), (E.4)

where

fSn` = − 6

2`+ 1
+

2

n
,

hS` =
16

2`(2`+ 1)(2`+ 2)
.

(E.5)

The corresponding instability growth rates, defined in (6.12), are [128]

GS(a∗, α) =
24`+1(n+ `)!

n2`+4(n− `− 1)!
kSn`g

S
m`

kSn` =

[
`!

(2`)!(2`+ 1)!

]2

,

gSm` =
∏̀

o=1

[
o2(1− a2

∗) + (a∗m− 2r+ωR)2
]
.

(E.6)

for the most unstable mode in the non-relativistic limit. The principle quantum number n
is defined in (6.9).

In this work, we compute the eigenvalue ω = ωR + iωI numerically in the relativistic
regime Dint where the analytic methods break down. The typical approach employed to
solve differential eigenvalue problems of this type goes back to Leaver [233], and was applied
to massive scalar fields in Kerr spacetime in Refs. [136, 377]. There, the radial solution is
assumed to be written in power series form as

R(r) = (r − r+)−iβ(r − r−)iβ+γ−1
∑

n≥0

an

(
r − r+

r − r−

)n
, (E.7)
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Figure E.1: The relative numerical error NR, defined in (E.8), of the real and imaginary
parts of the frequency of the scalar m = 1 and m = 2 superradiant states around a BH of
spin a∗ = 0.985.

with β = 2Mr+(ω − mΩH)/(r+ − r−) and γ = M(2ω2 − µ2
S)/k. Plugging this into the

radial equation (E.3), one obtains a recurrence relation between the coefficients an. This
relation is used to obtain a continued fraction constraint on the frequency ω for each
{`,m, a, µS}. This constraint is an implicit equation for the eigenvalues ωR and ωI , which
can be solved for numerically using a minimization algorithm over the complex ω-plane.
With the recurrence relation and ω, the radial solution is constructed using (E.7). Details
can be found in Refs. [136, 377]. In the non-relativistic limit, we found that a total number
of N ≥ 5000 terms in the series expansion is necessary for our desired accuracy, while
in the relativistic regime, a lower number, i.e., N ≤ 1000, is sufficient. We construct
the spheroidal harmonics 0S`m(θ; c) and associated eigenvalues A`m using qnm, a python
implementation of a Leaver-like continued fraction method developed in Ref. [349].

In order to estimate the numerical uncertainty of this method, we determine the fre-
quency ω in a range of α and fixed BH spin, using the above approach with successively
increasing N , up to the Nmax = 8000 used throughout the entire parameter space in
SuperRad. The numerical error is then estimated by

NR(ω) =
|ωNmax − ωNmax/2|

ωNmax

. (E.8)
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The results are shown in Figure E.1. We ensure that the minimization algorithm has
termination conditions at the floating point level. The real part of the frequency is obtained
to one part in ∼ 1014, whereas the imaginary part is determined less precisely. However,
even for α & 0.05, the latter is more precise or comparable to the theoretical uncertainty
of the analytic estimates in (6.8) together with (E.4). This establishes the numerical
uncertainties of the methods used to extend SuperRad into the relativistic regime. However,
it does not show the overall uncertainty of SuperRad in this regime due to interpolation
error, which is discussed in Appendix E.3.

E.2.2 Vector field

The massive vector wave equation (6.1) has been studied more recently in [289, 93, 137,
161]. The non-separability of the vector field equation was a fundamental problem until
a series of works by Lunin [243] and Frolov et al. [161]. There, an ansatz, referred to as
FKKS in the following, was constructed that separates the polar and radial parts of the
field equation (6.1), and hence, significantly simplifies the problem. We briefly summarize
this ansatz and quote analytic results for the oscillation frequency and instability growth
rates, ω = ωR + iωI , obtained with it. Similarly to the previous subsection, we drop the
subscripts of ω, `, n, and m, used in the main text, and use these exclusively for vector
modes and frequencies.

The FKKS ansatz exploits a hidden symmetries of Kerr spacetime gµν . This symmetry
is captured by a Killing-Yano 2-form k, with tensor components that satisfy ∇αkβγ =
2gα[βξγ]. Using this, the vector field ansatz takes the form

Aµ = Bµν∇νZ, Z = RV (r)SV (θ)e−i(ωt−mϕ), (E.9)

with polarization tensor Bµν(gνγ + iνkνγ) = δµγ and angular eigenvalue ν. Plugging this
ansatz into (6.1) yields ordinary differential equations for the radial and polar dependencies,
respectively. The angular equation is a deformed spheroidal harmonic equation for spin-
weight s = −1 that does not, a priori, possess known solutions. In the Schwarzschild
limit, a → 0, the solutions reduce the usual spherical harmonics SV (θ) = Y`m(θ), with a
relation between the polar eigenvalue Λ = `(`+ 1) and the separation constant ν → ν` (see
Ref. [137] for details). In this limit, the spatial components of the vector field are then
given by Aia→0 ∝ Y i

j,jm(θ) where Y i
j,jm(θ) are the vector spherical harmonics with j = `− Ŝ

(see Ref. [361]). When the BH spin is non-zero, there is a mixing of the polar mode number
`, such that, in general SV (θ) = Y|m|,m(θ) + b1Y|m|+1,m(θ) + . . . . The radial equation for
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RV (r) takes the form

Dν,ω,m,aRV (r) = 0, (E.10)

with a second order differential operator Dν,ω,m,a [161, 137]. In the a → 0 limit, and at
leading order in α, this equation reduces to a Schrödinger-type equation for RV (r) with
the eigenvalue spectrum (6.8) [50]. This FKKS ansatz was used in [53] to go beyond the
leading orders in both a and α. They found the sub-leading corrections to the spectra (6.8)
to be

CV [α] = − α4

8n4
+
fV
n`Ŝ
α4

n3
+
hV
`Ŝ
a∗mα5

n3
+O(α6), (E.11)

with

fV
n`Ŝ

= − 4(6`(`− Ŝ + 1)− 3Ŝ + 2)

(2`− Ŝ)(2`− Ŝ + 1)(2`− Ŝ + 2)
+

2

n
, (E.12)

hV
`Ŝ

=
16

(2`− Ŝ)(2`− Ŝ + 1)(2`− Ŝ + 2)
. (E.13)

The corresponding instability growth rates (6.12) are [49, 53]

GV (a∗, α) =
24`−2Ŝ+1(n+ `)!

n2`+4(n− `− 1)!
kV
`Ŝ
dV
`Ŝ
gV
`Ŝ

kV
`Ŝ

=

[
`!

(2`− Ŝ)!(2`− Ŝ + 1)!

]2

,

dV
`Ŝ

=

[
1 +

2(1 + Ŝ)(1− Ŝ)

2`− Ŝ

]2

,

gV
`Ŝ

=
`−Ŝ∏

o=1

[
o2(1− a2

∗) + (a∗m− 2r+ωR)2
]
.

(E.14)

for the most unstable mode in the non-relativistic limit, ` = m+ Ŝ and Ŝ = −1.

In this work, we obtain numerical data in the relativistic regime Dint by solving (E.10)
and the associated polar equation numerically following Refs. [137, 338]. To that end, the
angular equation is expanded in regular spherical harmonics 0S`m(θ; c = 0), while the radial
equation is integrated numerically outwards from the horizon to large distances. Therefore,
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Figure E.2: The relative numerical errorNR of the real and imaginary parts of the frequency
of the vector m = 1 and m = 2 superradiant states around a BH of spin a∗ = 0.985.

as long as a sufficient number of terms is considered in the polar sector, the numerical
uncertainties are dominated by the integration method used in the radial sector. We make
use of the BHPToolkit to construct spherical and spheroidal harmonics [2]. In order to
obtain estimates for the numerical uncertainty, we vary the step size of the radial numerical
integration. In Figure E.2, we show upper bounds on the relative numerical uncertainty
of the method described above to obtain the frequencies ω. As in the scalar case, the
numerical uncertainty of the underlying numerical methods is below the interpolation error
of SuperRad discussed in the next section.

E.3 Interpolation and Extrapolation Error of SuperRad

The uncertainties associated to the values of τI = 1/ωI and fGW = ωR/π provided by
SuperRad come from an interplay of interpolation errors, numerical errors, truncation
errors of analytic expressions, and the theoretical assumptions made. Furthermore, due
to the combination of methods involved, the overall uncertainty of SuperRad varies across
the parameter space. In this appendix, we provide justifications for accuracy claims made
in the main text, as well as establish upper bounds for uncertainties of the observables
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Figure E.3: We show a set of representative frequencies ωR of a mσ = 1 and 2 scalar
(top) and vector (bottom) mode (with `S = mS and Ŝ = −1, respectively), assuming a
BH spin of a∗ ∈ {0.605, 0.95}, obtained by SuperRad. We also plot the relative interpola-
tion/extrapolation error UR of these predictions (see the main text for discussion).

contained in SuperRad.

As we show below, we find the interpolation and extrapolation error to be the dominant
source of error for the waveform model, subdominant to the truncation error described in
the previous section, and shown in Figure E.1 and Figure E.2. As described in the main
text, and shown in Figure 6.2, in the relativistic regime labelled Dint, SuperRad uses linear
interpolation functions to interpolate based on a grid of 3202 data points. We quantify the
interpolation error by directly computing the value of ωR and ωI at intermediate value to
these data points using the methods outlined in the previous section, and compare them to
the interpolated value. Similarly, we can directly compute the values of ωR and ωI in the
non-relativistic regime Dfit, again using the accurate numerical methods from the previous
section, and compare them to their extrapolated values obtained using the fits.

In Figure E.3 and Figure E.4, we show the relative error in interpolating or extrapolating
ωR and ωI to a given point in SuperRad, compared to directly computing the value at that
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Figure E.4: We show a set of representative growth rates ωσI of a mσ = 1, 2 scalar (top) and
vector (bottom) mode (with `S = mS and Ŝ = −1, respectively), assuming a BH spin of a∗ ∈
{0.6, 0.95}, obtained by SuperRad. We also plot the relative interpolation/extrapolation
error UR of these predictions (see the main text for discussion).

point UR(x) = |x−xnum.|/xnum.. We show this for two fiducial spin values a∗ ∈ {0.605, 0.95}
across the α-parameter space from a region in Dfit to the entire Dint at that spin. The
uncertainty is relatively low in the relativistic regime Dint, spanning from αmσ=1 = 0.05
and αmσ=2 = 0.25 to maximal α. There, the relative uncertainty in the frequency ωR does
not exceed ∼ 10−5, while in the case of the growth rates ωI , it is bounded by ∼ 10−2.
In the extrapolated region Dfit, spanning from αmσ=1 = 0.05 and αmσ=2 = 0.25 towards
small α, the uncertainty UR(ωR) of the frequencies is well under control and decreases
in the Newtonian limit. The growth rates, on the other hand, show larger uncertainties
transitioning from Dint towards smaller α. The fitting procedure, in this case, is more
complex, which is reflected in the choices of p and q required for (6.14) (noted below) to
be below or comparable to the difference between the purely analytic expressions and the
numerical expressions obtained in parts of Dfit. The fit functions and the purely analytic
estimates for ωI have comparable accuracy for α . 0.05 and α . 0.25 for mσ = 1 and

302



mσ = 2, respectively. The uncertainties are, by construction, decreasing at sufficiently
small α, while there remains an intermediate regime around α ≈ 0.02 for mσ = 1 and
α ≈ 0.2 for mσ = 2, where the uncertainties first increase. This is a result of the lack
of accurate analytical or numerical modeling in this regime. Lastly, since all numerical
errors discussed in the previous appendices are below the uncertainties presented here, the
latter can be understood as the overall uncertainties of the waveform model. Furthermore,
comparing the uncertainties UR presented here to the relative differences in Figure 6.3
and Figure 6.4, we see that the latter is always smaller or comparable to the former. We
comment on the uncertainties in the GW emission in Appendix E.5. As can be seen in the
temporal evolution of the GW frequency emitted by an mS = 1 scalar cloud in Figure 6.1,
the quantities (frequencies, timescales, frequency drifts etc.) exhibit a small discontinuity
at the interface of Dfit and Dint. This is important only, when the system is evolved
adiabatically using (6.35), not when the saturation condition ωR = mσΩH is used to set
the GW amplitude.

For completeness, we list the different domains Dint used in SuperRad here. These
domains are all bounded by the superradiance saturation condition ωR = mσΩH(a∗) at
sufficiently large α, and by a∗ = 0.6 and a∗ = 0.995. At small α the regions Dint are
bounded by αmσ=1 = 0.05 and αmσ=2 = 0.25 for both the scalar and the vector clouds.
The fit functions for ωR in (6.10) contain the following terms: For mV = 1 and 2 and
mS = 1 and 2, we set q ∈ {0, 1, . . . , 3} and p ∈ {6, 7, 8}. In all four cases, we added the
term α5a∗(

√
1− a2

∗ − 1). The fit functions for ωI in (6.14) contain the following terms:
For mV = 1, we set p ∈ {1, 2, . . . , 10}, and q ∈ {0, 1}; for mV = 2 we set p ∈ {5, 6, . . . , 10}
and q ∈ {0, 1}; for mS = 1 we set p ∈ {1, 2, 3} and q ∈ {0, 1, . . . , 3}; for mS = 2 we alter
the fit function slightly with ĉp,q → δq,1ĉp and b̂p,q → α2b̂p,q/a∗ with p ∈ {12, . . . , 22} and
q ∈ {0, 1, . . . , 3}. These were fit against the numerical data in Dint with α < αbound, where
αmσ=1

bound = 0.25 and αmσ=2
bound = 0.6.

E.4 Frequency shift

In this appendix, we briefly discuss the leading-in-α contribution to the shift in frequency
due to the self-gravity of the cloud ∆ωσ = α3McFσ/M

2, where Fσ is defined in (6.21), as
described in Sec. 6.4. For the scalar and vector boson clouds, these are given by

FS = F̄ [mS],

FV = F̄ [mV − 1],
(E.15)
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where

F̄ [b] = −2(b+ 1)
√
πΓ(2(b+ 1))− Γ

(
2b+ 5

2

)

2(b+ 1)3
√
πΓ(2(b+ 1))

. (E.16)

In Table E.1, we present explicit values for mσ = 1, . . . , 5 for both the scalar and vector
cases. The frequency shift monotonically decreases with increasing mσ. The shift depends
(to leading order in α) only on the `σ mode number of the considered field, i.e., the Bohr
radius of these non-relativistic solutions, which determines Fσ, is dependent on the `σ mode
number only.

E.5 Gravitational waves

In this appendix, we outline the frequency-domain methods used in the literature and this
work to determine the GWs emitted from a superradiant cloud after the saturation of the
instability, i.e., assuming ωR = mσΩH(a∗). In the context of the Teukolsky formalism
for linear perturbations on a fixed Kerr spacetime gµν , finding the GW power and strain
reduces to finding the Weyl-Newman-Penrose scalar Ψ4 at large distances. To that end,
the field equations for linear metric perturbations on gµν are solved using a separation
ansatz similar to the one used in the previous sections. The polar equation is the defining
equation for spin-weighted spheroidal harmonics, while schematically the sourced radial
Teukolsky equation takes the form [357]

Da,M`mωR`mω(r) = T̂`mω(r), (E.17)

with sources T̂`mω. In this appendix, `,m, and ω refer exclusively to modes characterizing
the metric perturbations, not the states of the superradiant clouds. The second order radial

mV mS M2∆ωσ/(Mcα
3)

1 - −5/8
2 1 −93/512
3 2 −793/9216
4 3 −26333/524288
5 4 −43191/1310720
6 5 −1172755/50331648

Table E.1: We list the first few leading-in-α contributions to the frequency shift ∆ωσ =
α3McFσ/M

2 for the oscillation frequency of scalar and vector clouds.
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differential operator Da,M`mω, for a Kerr spacetime of mass M and spin parameter a, is of
Sturm-Liouville type and, hence, allows for the generic construction of a Green’s function
to solve the inhomogeneous problem (T̂`mω 6= 0) given the set of homogeneous solutions
RH
`mω satisfying purely ingoing and purely outgoing boundary conditions at the horizon,

r = r+, and infinity, r → ∞, respectively. At large distances r, the solution to the radial
Teukolsky equation is

R`mω(r →∞) =
r3eiωr∗

2iωB`mω

∫ ∞

r+

dr′
T̂`mωR

H
`mω

∆2

= Z∞`mr
3eiωr∗ .

(E.18)

Here, r∗ is the Tortoise coordinate of r, and we defined a set of variables Z∞`m containing
information about the source (see, e.g., Ref. [338], for details). With this in hand, the
GWs at infinity can be calculated as

Ψ4 =
1

r

∑

`,m

Z∞`m√
2π
eiω(r∗−t)−2S`m(θ; c = aω)eimϕ. (E.19)

Notice, the summation in (E.19) is over spheroidal `, rather than spherical ` as done in
Sec. 6.5.1. Here, we are using the normalization

∫
d cos θ|−2S`m(θ; c)|2 = 1. To recover the

spherical harmonic GW modes h`
′m′ , we rewrite the above, using

h = − 2Ψ4

(2ωR)2
, (E.20)

leading to

reiωth`
′m′ =

∑

`,m

−2Z∞`m√
2π(2ωR)2

C`′m′
`m =

−2Z̃∞`′m′√
2π(2ωR)2

, (E.21)

with

C`′m′
`m =

∫

S2

dΩ−2Ȳ`′m′(Ω)−2S`m(θ; c = aω)eimϕ. (E.22)

Note that when c = 0, C`′m′
`m = 2πδ`

′
` δ

m′
m . The total emitted gravitational energy flux is

PGW =
∑

`′,m′

|Z̃∞`′m′|2
8π2(2ωR)2

. (E.23)
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Therefore, determining the GWs emitted depends on finding homogeneous solutions to
the radial Teukolsky equation, as well as integrating these over the cloud sources T̂`mω.
The three distinct approximations mentioned in the main text—flat, Schwarzschild, and
Teukolsky—all emerge from (E.18) by dropping certain terms. In the flat approximation,
the spin is neglected, a = 0, and the source equations are expanded to leading order in α,
implyingM → 0. In this limit, both the homogeneous solutions and source functions can be
constructed and integrated over analytically. In the Schwarzschild approximation, one also
expands in α to leading order and assumes a = 0. However, one includes the gravitational
potential terms present in the Schwarzschild Green’s function, i.e., M 6= 0. For `′ = m′ = 2,
the flat ansatz generally underestimates the emitted GW flux, while the Schwarzschild
approximation overestimates the power. Solving the equation (E.17) numerically making
no assumptions about α or a (referred to as the Teukolsky approximation in the main
text) provides the most accurate predictions for PGW and h, and is expected to give values
intermediate to the flat and the Schwarzschild approximations. More details can be found
in, for instance, Refs. [81, 50].

For `′ = m′ > 2, i.e., mσ > 1, the GW energy flux has been computed analytically only
in the flat approximation. In the scalar case, the total GW power emitted from a cloud
with (nS,mS) and `S = mS, is given by [377]

PGW = CnSmSα
QS
M2

c

M2
, (E.24)

where QS = 4mS + 10 and

CnSmS =
16mS+1mS(2mS − 1)

n4mS+8
S (mS + 1)Γ(mS + 1)4

×Γ(2mS − 1)2Γ(mS + nS + 1)2

Γ(4mS + 3)Γ(nS −mS)2
.

(E.25)

In the vector case, for m′ > 1, the GW power emitted from a Ŝ = −1 superradiant state
in the α� 1 limit is [50]

PGW = KmV α
QV
M2

c

M2
, (E.26)

where QV = 4mV + 6, K2 = 1/126, K3 = 6× 10−6, K4 = 2× 10−9, and K5 = 4× 10−13.

The specifics of the methods we use to numerically solve (E.17) are discussed in detail
in Ref. [338] (we make use of the BHPToolkit [2]). It involves constructing the sources T̂`mω
from the numerical superradiant solutions to (6.1), and integrating (E.18) numerically. In
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Figure E.5: The relative numerical error NR of the total emitted GW energy flux PGW

from a vector cloud in the mV = 1 and mV = 2 superradiant states around a BH of spin
a = 0.985M in the relevant part of the parameter space.

Figure E.5, we present upper bounds on the numerical error of these methods across the
entire parameter space, assuming a mV = 1 and 2 vector cloud (analogous upper bounds
are expected for scalar clouds). The bounds are obtained from varying the resolution of
the underlying superradiant vector field solution together with the radial step size of the
numerical integration of (E.18). The relative difference between estimates of P̃GW with
two different resolutions decreases with increasing resolution. The upper bounds shown
in Figure E.5 are the relative difference between the default resolution used throughout,
and half that resolution. As for the GW power calculation, the GW strain h is calculated
from the solutions to (E.18), through (E.21). Since h ∼ √PGW, the values for NR(P̃GW)
can be interpreted as an estimate for the error NR(h×,+M/Mc) for the amplitudes of the
polarization waveform.

Lastly, the numerical data regimes D̃int (defined in Sec. 6.5.2) is bounded at large α
by the maximal α satisfying the superradiance saturation condition ωR = mσΩH at the
corresponding spin a∗. From below, it is bounded by αmS=1

low = 0.2 and αmS=2
low = 0.34, for

scalars and the two lowest azimuthal numbers, and αmV =1
low = 0.17 and αmV =2

low = 0.45, for
vectors with the two lowest azimuthal numbers.
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