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Abstract

We present a conceptual inversion of probability matching called “probability anti-
matching.” Where probability matching describes a decision strategy of stimulus pursuit,
probability antimatching describes an analogous decision strategy of stimulus avoidance.
We present three behavioural studies where participants played a computer game of hide-
and-seek. Participants played hide-and-seek against a simulated computer opponent that
selected rooms for hiding/seeking according to a given probability distribution. Seeking
trials replicate traditional probability matching. Hiding trials demonstrate probability an-
timatching. In Study 1, we formally present our methodology of expressing participant
seeking and hiding behaviour as a linear combination of Euclidean vectors. Participant
seeking strategies, s⃗, are well-represented by a linear combination of the optimal maximiz-
ing strategy, x⃗, and the probability matching strategy, m⃗. Participant hiding strategies, h⃗,
are equally well-represented by a linear combination of the optimal minimizing strategy, n⃗,
and the probability antimatching strategy, a⃗. We define a⃗ as a vector reflection of m⃗ over
the uniform distribution vector, u⃗. This operation is denoted a⃗ = reflu⃗(m⃗) = 2u⃗− m⃗. In
Study 2, we replicate the findings of Study 1 using data collected online. In Study 3, we
demonstrate that our conceptualization of probability antimatching extends to probability
distributions that have non-unique optimal hiding/seeking strategies and distributions that
have invalid reflections (that result in negative probability values). Across our three stud-
ies, we find that hiding/seeking strategies are influenced by the number of rooms presented
during hide-and-seek, corresponding to the dimensionality of the underlying probability
distributions. However, the direction of this effect fails to replicate across our studies.
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Chapter 1

Introduction

Probability matching is a phenomenon found in repeated choice experiments where par-
ticipants predict events proportionately to the probability of each event occurring, rather
than optimize by strictly selecting the most likely event. For example, consider two lights
L and R. Each light appears on a given trial with probability P(L) and P(R), respectively.
An individual predicting whether a light will appear on their left or right will tend to
predict the most probable light, say L, P(L) of the time [36]. Under such conditions, the
optimal strategy to maximize correct prediction is one where light L is predicted 100% of
the time, P(guess L) = 1:

P(correct)= P(guess L) * P(L) + P(guess R) * P(R) = 1 * 0.7 + 0 * 0.3 = 0.7

rather than P(L) of the time, P(guess L) = P(L):

P(correct)= 0.7 * 0.7 + 0.3 * 0.3 = 0.58

If the underlying probabilities are known, why do people employ a matching strategy
rather than a strategy the maximizes correct choices? The answer to this question is un-
clear. The leading perspective attributes probability matching to cognitive biases and the
use heuristics [37, 28, 15, 10]. For example, [10] argues it may be that probability match-
ing is a consequence of the well-documented human misperception of randomness, and our
tendency to search for patterns. If a series of events occurred in a known deterministic
pattern, the optimal strategy would be to follow that pattern, resulting in a ‘matching’
behaviour in the aggregate. If some underlying pattern could be found, it would no longer
be optimal to maximize. The only way to have a perfect or near-perfect strategy, would
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be to use a strategy that looks like probability matching in aggregate. While associations
between pattern searching and probability matching behaviours are documented [10, 35],
it is not clear why pattern searching should cause probability matching or vice versa [21].

In predator/prey environmental contexts involving a group of agents, probability match-
ing is consistent with the strategy for optimal access to food [36]. Consider a group of ducks
on a pond. If a researcher throws bread into one side of the pond at double the frequency
as the other side, one would expect 2/3 of the ducks to congregate on the higher frequency
side, and 1/3 on the other. This behaviour is optimal in that it establishes a Nash equi-
librium, as each singular duck will be unable to increase its food-to-competition ratio once
such a frequency matched distribution is established [36]. Aside from a few aggressive
ducks skewing the availability of food, this optimal matching behaviour in ducks has been
observed [14]. To preserve this evolutionarily stable strategy [36], each new duck entering
the pond should elect to feed at each side L or R, with probability P(L) and P(R), respec-
tively. Of course, if a duck were the only duck in the pond, the optimal strategy would be
to strictly maximize, a scenario closer to traditional probability matching experiments.

In real-world scenarios with richer information availability and social consequences,
probability matching is less-obviously non-optimal. Consider the socially-embedded prob-
ability matching scenario presented in [35]: you are watching a football game with your
friends, and join them in a guessing game: will the home team execute a running play or
passing play the next time they have the ball? Despite never watching a football game
before, you identify that the home team executes a passing play 70% of the time, and a
running play 30% of the time. This scenario is presented in [35] as a example of where
probability matching may occur, but its embedded social context provides an interesting
thought-experiment for where and why probability matching may occur. This is a game
with the same theoretical payoffs as the binary light experiments of traditional probability
matching work. That is, the optimal strategy is to always guess “passing play” to ensure
you are correct 70% of the time. But this is only optimal if you are unable to infer pat-
terns in the home team’s propensity to select a passing play. Perhaps, despite being a naive
football observer, you believe the team never runs more than 3 consecutive passing plays.
You may have also noticed contextual clues, such that running plays are much more likely
when the home team is close to the opposing end-zone, or when players place themselves
in particular arrangements.

The availability of contextual clues and the added likelihood the sequential events
are not truly random in social contexts could motivate a search for patterns in order to
implement a near-perfect strategy. Regarding the missing causal link between pattern
searching and probability matching [21, 20], it may be that searching for patterns and
optimizing your sequential choices in the meanwhile (by maximizing) is just too difficult.
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The easier approach may be to “buy-in” with the current hypothesis you are testing and
behave as though your current beliefs are true. Individuals who do not have access to
sequential trial outcomes probability match similarly to those who do, which has been
argued as evidence that there is no causal link between pattern searching and probability
matching [20]. However, it has also been shown that people hold beliefs (priors) about a
forthcoming sequence of events [5]. It may be that despite never having the opportunity
to update their priors in a sequential learning condition, the priors participants hold about
what patterns may exist still inform their estimates. As such, a search for patterns may
still cause probability matching, since the case where probability matching occurs even
when estimations are made aggregate [20] can be interpreted as a prior of the potential
sequential patterns that has been initialized but not updated.

The ambiguous utility of probability matching aside, this behaviour indicates that the
participant has learned the underlying probabilities of the task [36]. This internal rep-
resentation of statistical information can be considered a mental model [34, 9, 16, 8, 5].
Probability matching is therefore a behavioural measure of a mental model. To our knowl-
edge, probability matching has only been studied in the pursuit of a stimulus. How would
probability matching appear in the inverted case, what we call probability antimatching,
where the goal is to avoid presented stimuli? In many applied settings, people need to
behave in a way that is adversarial to some environmental process. Similar to the pursuit
case, the adversary to avoid may follow a certain probability distribution that an indi-
vidual can represent as a mental model. Consequently, an individual should behave in a
way that is maximally dissimilar to the established model of the adversary. The optimal
strategy is unambiguous: always select the least likely outcome according to your model of
the adversary. However, this optimal avoidance behaviour cannot be assumed, as evident
by traditional probability matching.

Hypothesizing about probability antimatching is constrained by the lack of a formally
defined “opposite” probability distribution. “Oppositeness” can be considered a special
case of “similarity”. If object Q is the opposite of P, then Q is minimally similar and
maximally informative to P. The “maximally informative” feature is required to ensure
the opposite of an opposite is the original. While there are many existing candidates to
express similarity between probability distributions [23, 1, 31] it is unclear which most
plausibly represents human cognition and reasoning patterns, and how a notion of “oppo-
sites” may be mathematically defined under these frameworks. In this work, we utilize a
Euclidean vector framework to represent probability distributions. These representative
Euclidean vectors can be reflected across the uniform vector/distribution to produce a
candidate opposite distribution. This approach affords intuitive geometric interpretation
and visualizations, while also providing a direct mapping between psychological constructs
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and neural models, where geometric representations of various behavioural, cognitive and
neural activity models are already established [12, 11, 7, 22].

The children’s game of hide-and-seek is an intuitive way to simultaneously explore
matching and antimatching. In a simple hide-and-seek game with two players, the ‘hider’
hides in a set of possible hiding spots while the ‘seeker’ attempts to find the hider. The
seeker wins by matching the hider’s decision, while the hider wins by doing the opposite
[3, 2]. In this set of studies, we had participants play against a simulated child, who
always hides and searches a set of locations according to a given probability distribution.
The participant, made aware of this distribution, searches (chases) the child (stimuli)
as the seeker, emulating traditional probability matching, and hides from (avoids) the
child (stimuli) as the hider, providing a basis to test probability antimatching. Since the
child hides and seeks according to the same distribution, this allows investigation of the
asymmetries between chasing and avoiding scenarios of probability matching with respect
to the exact same distribution within each participant.

Here we present three hide-and-seek studies. Seeking data demonstrates the known
phenomenon of probability matching. Hiding data affords us the first known exploration
of probability antimatching. In Study 1, we outline an effective methodology to represent
participant strategies as linear combination of Euclidean vectors. Using this methodology,
we demonstrate participant seeking behaviour is a combination of the optimal maximizing
strategy and probability matching, consistent with past work. We also demonstrate that
hiding behaviour is a combination of the optimal minimizing strategy (only selecting the
least likely outcome) and probability antimatching, defined by our proposed vector reflec-
tion. We also find that participant strategy mixes when hiding are more optimal than
when seeking, but that this is only true when playing hide-and-seek in a five-room virtual
house, not a two-room house. In Study 2, we replicate Study 1 for online data collection
finding that seeking is still well defined by maximizing and matching, while hiding is de-
fined by minimizing and antimatching. However, unlike Study 1, we find no differences in
hide/seek strategy mix optimality across room-number conditions. In Study 3, we present
new distributions that again demonstrate our expected hide/seek strategy mixes. We also
generalize our vector reflection hypothesis to account for reflections that produce vectors
with negative entries. By exploring two candidate projection methods, we discuss how our
geometric model of probability antimatching can account for opposite probability distri-
butions that cannot be expressed behaviorally. Finally, we again find that participants are
more optimal when hiding than with seeking, but that this difference decreases from three
to five to seven room conditions.
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Chapter 2

Study 1: Original Hide-and-Seek

2.1 Methods

2.1.1 Task Environment

Stimuli

We developed a computerized version of the children’s game “hide-and-seek”. Each partic-
ipant played a set of hide-and-seek games, against one simulated opponent each game. We
introduced each opponent as a predictable agent, that selects hiding locations according
to an assigned probability distribution. Each opponent hides according to the same prob-
ability distribution to which it seeks. This distribution is made known to each participant.

We presented stimuli on a computer monitor in our lab. Our user interface consisted
of a cartoon scene of a house with either two or five rooms, presented on the computer
monitor. The house was of a ‘dollhouse style’ where each room is visible to the participant.
We presented a percentage within each room. Each percentage represented the probability
that the opponent will hide/seek in that room. Room probabilities always summed to
100%. We also presented four room selection counters. Each tracker was a miniature
version of the displayed house, where each room held a numerical value indicating the
number of times each room was selected by the participant/opponent to hide/seek (Figure
2.1). Each opponent and their corresponding room selection distribution was drawn from
Table 2.1. When a distribution was assigned to a given game, the values of said distribuition
were assigned randomly to each of the rooms.
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Procedure

We seated participants approximately 40cm away from the screen such that the experi-
mental background encompassed 30 degrees of visual angle. The experiment began with
a practice gameplay consisting of three seeks followed by three hides against Toby, one of
four simulated opponents the participants faced. As in standard hide-and-seek games, each
participant was instructed to find each opponent while seeking, and avoid each opponent
while hiding.

As the seeker, the participant was notified that the child was hidden in one of the rooms
via a dialogue box on the screen reading “Look for [child]!” where [child] is the name of
the current opponent. Using the mouse, the participant selected a room to search with a
click. Each room would turn light grey when clicked. If the child was in the selected room,
a notification of success was presented as “You found [child]!” and the child was revealed
within the room. Otherwise, a notification of failure was presented as “You didn’t find
[child]!”. In such failed attempts the child was still revealed. As the hider, the dialogue
box read “Hide from [child]!” The participant selected a room to hide using the mouse. If
found by the child, the icon would be revealed in the selected room and the message “[child]
found you!” was presented. If not found by the child, the child icon was still revealed,
and the message “[child] didn’t find you!” was presented. The dynamics of seeking and
hiding were otherwise identical. A single hide or seek by the participant is a ‘trial.’ The
child’s hiding and seeking locations were drawn from the distribution displayed over the
rooms, and were independent between trials. A series of 10 trials constitutes a ‘round.’ A
round where the participant seeks the child is called a seeking round. A round where the
participant hides from the child is called a hiding round.

The experiment alternated between seeking and hiding rounds, always beginning with
seeking. A set of 10 seeking rounds and 10 hiding rounds against a particular child consti-
tutes a ‘game.’ Each participant played a total of three games, one against each of Sally,
Kala, and Bo, resulting in 100 seeking trials and 100 hiding trials against each of the three
children. To prevent frustration and boredom from interfering with performance in any
later games, the last game was always played against Bo, who always had one room with
P(hide) = P(seek) = 100%. The first and seconds games were randomly selected as either
Sally then Kala, or Kala then Sally. Following the three games, the participants answered
demographic questions of gender, age, term of study, and academic program, along with
their perceived competence in logical reasoning relative to other students in that program.
The experiment was programmed in Python using the Psychopy module [30].
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Figure 2.1: Participant view of screen in the five-room condition after selecting the bot-
tom left room in a seek trial. Selected room turns grey, child is revealed, notification is
presented, and counters are updated.

2.1.2 Participants

We recruited University of Waterloo students (N=50, 38 females) to participate in exchange
for course credit. All participants gave informed consent and the study was cleared by a
University of Waterloo Research Ethics Board (REB 41316). Participants were assigned to
either the five-room or two-room condition. The first 17 participants were assigned to the
five-room condition, as that protocol was created first. Every fourth participant thereafter
was assigned to the five-room condition, and the rest to the two-room condition. The
experiment took approximately 25 minutes to complete.

2.1.3 Data Analysis

The principal aim of this analysis is to quantitatively represent the strategies used by
participants. Discussions of probability matching are typically framed as non-optimal, and
contrasted with the optimal alternative strategy of maximizing. It is therefore reasonable to
construct a model of stimulus pursuit behaviour (seeking) on the basis of some combination
of probability matching and maximizing strategies. More generally, this can be expressed
as:

participant strategy = optimal strategy + non-optimal strategy
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Opponent name (order) 2 Room 5 Room

Toby (Practice)

1 2
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Sally (1st or 2nd)

1 2
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Kala (1st or 2nd)

1 2
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Bo (3rd)

1 2
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Table 2.1: Opponents faced by participants in each condition. Each distribution is pre-
sented here in decreasing room probabilities, though probabilities were randomly assigned
to rooms during the experiment.
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The purpose of this generalization is to also account for stimulus avoidance behaviour
(hiding). When hiding, the optimal strategy is to minimize by always picking the least
likely room. The non-optimal hiding strategy, however, is less clear. Unlike probability
matching in the seeking case, there is no previous literature to describe what the analogous
strategy may be for the hiding case. Nonetheless, we posit the combination of optimal
and non-optimal hiding strategies should explain hiding behaviour just as well as the
combination of optimal and non-optimal seeking strategies explain seeking strategies. The
next section describes the mechanics of how we construct such a model, and the motivation
for selecting a suitable non-optimal strategy, analogous to probability matching, to be used
to describe hiding behaviour.

Histogram Vectors

Representing our data as Euclidean vectors allows for convenient geometric intuition and
algebraic manipulations. Furthermore, we can take advantages of the known regularities
within our data to simplify analysis. For example, any histogram representing a discrete
probability distribution must contain values between 0 and 1 that sum to 1. Consider
any histogram that could apply to the two-room hide-and-seek game (Figure 2.2). These
histograms can be expressed as vectors in 2D space, and only exist in the positive quadrant
on the diagonal line from (0,1) to (1,0). Any vector out of this region would have elements
that do not sum to 1, or have negative values.
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0

0.2

0.4

0.6

0.8

1
u⃗

1 2
0

0.2

0.4

0.6

0.8

1
p⃗

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u⃗ (uniform)

p⃗

Figure 2.2: Any histogram with two bins has a unique representative 2D histogram vector.
This vector must exist on the line from (0,1) to (1,0) since the sum of all histogram values
must equal 1.

This representation holds in higher dimensions as well. That is, histograms from the
five-room condition can be represented as vectors in 5D, similarly existing on the diagonal
plane connecting the points (1,0,0,0,0), (0,1,0,0,0), . . . , (0,0,0,0,1). For convenience, we
will mainly refer to the 2D case when describing the analysis. All properties of the 2D case
apply also in higher dimensional cases, unless otherwise noted. Expressing participant seek
strategy = maximizing strategy + matching strategy algebraically, we have s⃗ = αx⃗ + βm⃗,
where s⃗ is the recorded participant room click frequencies when seeking, x⃗ is the strategy
where only the most likely room is selected (maximizing), and m⃗ is the strategy where
rooms are selected identically to the opponent strategy (probability matching). Therefore,
the participant seek strategy can be expressed as a linear combination of a maximizing
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strategy and matching strategy. If the participant is purely maximizing, then s⃗ = x⃗,
implying α = 1 and β = 0. If the participant is purely matching, then p⃗ = m⃗, implying
α = 0 and β = 1. Otherwise, α and β are some values between 0 and 1. We constrain
these values between 0 and 1 because one cannot conceivably use less than 0% or more
than 100% of a particular strategy. For example, consider the case where m⃗ = (0.70, 0.30),
and, necessarily, x⃗ = (1, 0). If we observe s⃗ = (0.85, 0.15), we can express s⃗ as 1

2
m⃗ +

1
2
x⃗ = (0.85, 0.15). Therefore, we can express p⃗ as the pair of values (α, β) = (1

2
, 1
2
). This

relationship with respect to α and β can be plotted for visual interpretation (Figure 2.3).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s⃗ = 1
2
x⃗+ 1

2
m⃗1

2
m⃗

room 1

ro
om

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(α, β) = (1
2
, 1
2
).

α

β

Figure 2.3: s⃗ = (0.85, 0.15) of the form s⃗ = αx⃗+ βm⃗ where m⃗ = (0.7, 0.3) and x⃗ = (1, 0),
can be represented as a point in the strategy space as (α, β) = (1

2
, 1
2
). Each dimension of

the strategy space represents the amount of a particular strategy used by a participant (α
for maximizing, β for matching. Each can hold a value between 0 and 1, inclusive.

Effectively, this is a change of variables from a ‘room space’ where dimensions are the
room probabilities, to a ‘strategy space’ where dimensions are α and β, indicating the mix
of strategy used. In this study, the room space is 2D in the two-room condition, and 5D
in the five-room condition. Since the same mechanisms apply to the 5D interpretation, all
participant data, regardless of condition, can be reduced to a 2D strategy space. However,
it is possible that no combination of two strategy vectors alone will be able to create a
particular s⃗. It may be that s⃗ lies outside of the region formed by every possible combina-
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tion of x⃗ and m⃗, such that α and β are between 0 and 1. In such cases of imperfect fits, a
third vector, representing error, denoted ϵ⃗ is required to fully describe participant seeking
behaviour (Figure 2.4).

s⃗

ϵ⃗

span{x⃗, m⃗}

Figure 2.4: In higher dimensional spaces s⃗ (black) may not exist on the plane created by
x⃗ and m⃗ (blue region). An error vector ϵ (red) can be added to return to the plane. The
length of this error vector can be used to express the goodness of the model.

We thus revise our description of participant seeking behaviour as follows: participant
seek strategy = maximizing strategy + matching strategy - error. Algebraically, s⃗ = αx⃗ +
βm⃗ − ϵ⃗. This error is visible in strategy space plots as well. Error is minimized when
α+β = 1, which implies participant strategies are explained exclusively by x⃗ and m⃗. This
occurs on the diagonal line from (1,0) to (0,1) in the strategy space (Figure 2.5). As α+β
approaches 1, error reduces, implying a better model fit. Error will be reported as residual
sums of squares in the results section. This is equivalent to the sum of the squared elements
of each error vector.
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Figure 2.5: Error (red regions) is minimized for strategies on the line α + β = 1, when
⃗epsilon = 0⃗. Many points on or near this line imply a good model fit. Many points in high

error regions imply a poor fit.

We aim to express participant hiding behaviour in the same form as seeking. As such,
optimal and non-optimal hiding strategies must be defined. The former is self-evident;
when hiding, the optimal strategy is to always select the room with lowest probability
of being found. The latter is not as clear. Utilizing a geometric argument, we propose a
possible non-optimal hiding strategy that is symmetric to the non-optimal seeking strategy
of probability matching already established by the literature. We propose a non-optimal
hiding strategy that is literally symmetric to probability matching across the uniform
distribution. Any 2D histogram vector forms an angle between itself and the uniform
histogram vector. There is a unique vector across the uniform vector, opposite from the
original, that forms this same angle (Figure 2.6).
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q⃗ = reflu⃗(p⃗)

Figure 2.6: All histogram vectors form an angle with the uniform vector. The reflected
vector forms that same angle with the uniform. Above, (0.7, 0.3) reflects to (0.3, 0.7)
which appears visually opposite

This histogram reflection over the uniform, denoted reflu⃗(p⃗) for any histogram p⃗, is
computationally inexpensive, provides a geometric interpretation of ‘opposite’, and in our
opinion, results in a visually opposite histogram. However, this method does not always
produce a viable reflection. In higher dimensional spaces, the reflected vector lies within
the plane formed by the original vector and the uniform, but may require negative elements
in order for the reflected histogram to have the same angle to the uniform as the original
to the uniform. No such degenerate cases were used in this Study, with the exception of
the distribution with 100% probability mass assigned to one room. This distribution was
not used to calculate opposite fits.

Based on the arguments above, we choose the histogram vector reflection of the op-
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ponent distribution to act as the non-optimal strategy component for participant hid-
ing behaviour. We denote this strategy probability antimatching. Therefore, partici-
pant hide strategy = minimizing strategy + antimatching strategy – error. Algebraically,
h⃗ = γn⃗+ δa⃗ − ζ⃗, where h⃗ is the recorded participant room click requencies when hiding,
n⃗ is the strategy where only the least likely room is selected (minimzing), a⃗ is the strat-
egy where rooms are selecting exactly according to the vector reflection of the opponent
strategy (probability antimatching), and ζ⃗ is the error in representation. As with seeking,
we can convert data from the room space to the strategy space (in terms of γ and δ) for
analysis.

Error in each proposed model, ϵ⃗ for seeking and ζ⃗ for hiding, not only indicate the
goodness of each model, but also assist in identifying whether the vector reflection is
the appropriate antimatching strategy in hiding to complement the established matching
strategy in seeking. That is, if in aggregate, ϵ⃗ and ζ⃗ are sufficiently close in magnitude,
we gain confidence that a combination of minimizing and antimatching is just as good at
explaining hiding behaviour as a combination of maximizing and matching is at describing
seeking behaviour. The above models were constructed using the Stark-Parker algorithm
for bounded-variable least squares via the ‘bvls’ package in R [27].

To ensure that our selected methods are not ‘unreasonably forgiving’ in fitting data
into any given model, we perform sensitivity analyses. This constitutes attempting to
describe participant hiding behaviour using two random vectors instead of using the optimal
minimizing and non-optimal antimatching vectors. Algebraically, we test whether h⃗ =
γn⃗ + δa⃗ − ζ⃗ explains the data any better than h⃗ = γrr⃗1 + δrr⃗2 − ζ⃗r, where r⃗1 and r⃗2
are ‘random histograms’. Since we require r⃗1 and r⃗2 to be valid histogram vectors, their
elements must each sum to 1, where each element is between 0 and 1, inclusive. This added
constraint means we cannot use a vector of random numbers, as each element cannot be
completely independent of the others. Deriving random vector for the two-room data is
fairly straightforward. For a random vector r⃗ = (r1, r2), let r1 be a random number between
0 and 1, and r2 = 1–r1. For the five-room data, we generalize further. For random vector
r⃗ = (r1, r2, r3, r4, r5), let r1 be a random number between 0 and 1, r2 be a random number
between 0 and (1–r1), r3 be a random number between 0 and (1–r1–2), r4 be a random
number between 0 and (1–r1–r2–r3), and r5 = 1–r1–r2–r3–r5. In both the 2D and 5D case,
the order of the elements is then shuffled. The stochastic nature of this analysis leaves
results vulnerable to noise, where the random histograms may be abnormally similar or
dissimilar to the n⃗ or a⃗ of the original model. To account for this, we repeat this analysis
1000 times and report a summary of this data.
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Variable Definition

Seeking variables
s⃗ Recorded participant seek strategy
x⃗ Optimal maximizing strategy
m⃗ Probability matching strategy
α Amount of x⃗ needed to best describe s⃗
β Amount of m⃗ needed to best describe s⃗
ϵ⃗ Error in representing s⃗ with x⃗ and m⃗

Seeking variables

h⃗ Recorded participant hide strategy
n⃗ Optimal minimizing strategy
a⃗ Probability anti-matching strategy := reflu⃗(m⃗)

γ Amount of n⃗ needed to best describe h⃗

δ Amount of a⃗ needed to best describe h⃗

ζ⃗ Error in representing s⃗ with x⃗ and m⃗

Note: Vectors and parameters with the subscript r are randomly generated for sensitivity
analyses. u⃗ denotes the uniform distribution.

Table 2.2: Definition of variables

2.2 Results and Discussion

2.2.1 Seeking Sally (Two-Room)

The seeking rounds against Sally in the two-room condition most closely resemble tradi-
tional studies of binary choice probability matching. A plot of all participant seek fre-
quencies overlaid with Sally’s hide frequencies reveals a spectrum of strict maximizers,
strict matchers, and some mixing of the two (Figure 2.7). Converting and plotting each
participant into the strategy space of α and β, refines our interpretation (Figure 2.8). Par-
ticipants employing a mixed strategy appear to be using a mix specifically of maximizing
and matching, as all participants lie on or essentially on the line α+ β = 1 implying there
is negligible error in this fit (Mean RSS = 0.0019034).
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Figure 2.7: Participant seeks (blue) and Sally’s hides (grey) sorted by increasing values of
β. Histogram bins sorted by decreasing values of Sally’s distribution. Blue participant seek
bars at 100% indicate perfect maximizing (see top left). Participant seek bars perfectly
overlapping Sally’s hides indicate perfect matching (see bottom right)
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Figure 2.8: Strategy space of participant seeks against Sally. Bars along margin count
participants using particular value of α or β. Perfect minimizers use α = 1 and β = 0 (top
left). Perfect matchers use α = 0 and β = 1 (bottom right). Participant strategies existing
on or near line α + β = 1 implies near perfect model fit.
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2.2.2 Hiding from Sally (Two-Room)

Hiding rounds against Sally provide stimulus avoidance data most analogous to stimulus
pursuit in traditional binary choice probability matching. Plots of participant hide fre-
quencies over Sally’s seek frequencies reveal a pattern similar to that of the seeking data
(Figure 2.9). Some participants behave optimally, minimizing by only hiding in Sally’s
least searched rooms. Others appear to employ some ‘opposite’ strategy to Sally’s, hiding
in Sally’s most searched room as frequently as Sally searches the least searched room. Upon
viewing this data in the strategy space, we can see the participants used a mix specifically
of an optimal minimizing strategy and a non-optimal antimatching strategy, defined here
as a 2D histogram reflection (Figure 2.10). All participants were on or near the line γ + δ
= 1, implying negligible error (Mean RSS = 0.0009379).
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Figure 2.9: Participant hides (blue) and Sally’s hides (grey) sorted by increasing values
of δ (use of antimatching strategy). Histogram bins sorted by decreasing values of Sally’s
distribution. Blue participant hide bars at 100% indicate perfect minimizing (top left).
Participant hide bars at 1 – Sally’s seek bars indicate antimatching (bottom right)
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Figure 2.10: Strategy space of participant hides against Sally. Bars along margin count
participants using particular value of γ or δ. Perfect minimizers use γ = 1 and δ = 0 (top
left). Perfect antimatchers use γ = 0 and δ = 1 (bottom right). Participant strategies
existing on or near line γ + δ = 1 implies near perfect model fit.
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2.2.3 Comparing Hiding and Seeking (Two-Room)

Comparing strategy spaces of hiding and seeking behaviours reveal similar mixes of optimal
and non-optimal strategies (Figures 2.8 and 2.10). In aggregate, maximizing + matching
describes seeking similarly as minimizing + antimatching describes hiding.

In general, participants did not become more or less optimal in their strategy choice
when hiding instead of seeking against Sally. A large portion had an identical strategy mix
between hiding and seeking, and of those who didn’t, no discernible pattern was found to
indicate that people generally become more or less optimal when hiding (Figure 2.11). A
boxplot of the same data is consistent with this conclusion (Figure 2.12).
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Figure 2.11: Each participant’s strategy mix for seeking (α, β) hiding (γ, δ) are plotted
together, ordered by increasing values of strategy change. Arrow points from seek strategy
to hide strategy. Most participants have little change. Those who do, change in a non-
predictable direction
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Figure 2.12: Most individual participants use a similar strategy mix between hiding and
seeking. Some change strategies between hiding and seeking exist, though in an unpre-
dictable direction and average out in aggregate. The result is a roughly equivalent use of
the optimal strategy in hiding and seeking.
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2.2.4 Sensitivity Analysis (Two-Room)

Performing a sensitivity analysis on our model of participant hiding by replacing the min-
imizing and antimatching strategy vectors with two random histogram vectors indicates
(1) that h⃗ = γn⃗+ δa⃗–ζ⃗ is a suitable model, and (2) that using the bounded-variable least
squares method to present and analyze data is not unreasonably forgiving to any arbitrary
model it is given. The plot presenting the strategy space for participant hides against Sally
is repeated four times using random strategy vectors instead of the minimizing (n⃗) and
antimatching (⃗a) strategies of our model (Figure 2.13). All four random strategy spaces
presented fail to explain participant behaviour effectively, resulting in few strategies lying
on or near the line γr + δr = 1 and inflated Mean RSS values ranging between 0.2345
and 0.5594. Repeating this procedure 1000 times and plotting Mean RSS draws the same
conclusion: h⃗ = γn⃗+ δa⃗–ζ⃗ is a more reliable model than h⃗ = γrr⃗1+ δrr⃗2–ζ⃗r (Figure 2.14).
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Figure 2.13: Plotting participant hides against sally in a strategy space using two random
strategy vectors instead of minimizing and antimatching strategies results in a poor model
fit. Many points are in region of high error, reflected in high Mean RSS values. Figure
contains four instances of this plot, each with two new randomly generated strategy vectors.
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Figure 2.14: Fitting participant data to a strategy space of two random strategy vectors
1000 times. Figure shows histogram of resulting error. Our proposed model dramatically
outperforms the 1000 tested here. This implies that our model is of meaningful accuracy,
and our methods used are not biased to result in low error for any arbitrary model it is
given.
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2.2.5 Seeking Sally (Five-Room)

The seeking rounds against Sally in five-rooms are an attempt to generalize from the
traditional binary choice stimulus pursuit form of probability matching. A plot of all
participant seek frequencies overlaid with Sally’s hide frequencies reveals a spectrum of
nearly strict maximizers, nearly strict matchers, though many are using a strategy mix of
predominantly matching (Figure 2.15). Converting and plotting each participant into the
strategy space of α and β, refines our interpretation. Participants appear to be using a mix
of maximizing and matching but strongly favour matching (Figure 2.16). All participants
lie in close proximity to the line α + β = 1 resulting in minimal error (Mean RSS =
0.0101012). This error in the five-room case is larger than in the two-room, though some
increase in error can be expected as data increases in dimension and it becomes more
difficult to express in a two-dimensional strategy space since participants have more degrees
of freedom for how they can construct strategies.
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Figure 2.15: Participant seeks (blue) and Sally’s hides (grey) sorted by increasing values of
β. Histogram bins sorted by decreasing values of Sally’s distribution. All participants use
a mix of almost only maximizing and matching, though most tend toward a mix containing
more matching than maximizing.
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Figure 2.16: Strategy space of participant seeks against Sally. Bars along margin count
participants using particular value of α or β, and indicate that most participants use a
strategy with a low maximizing component (α) and high matching component (β).

2.2.6 Hiding from Sally (Five-Room)

The hiding rounds against Sally in the five-room condition combines the novel concept
of probability antimatching in a more complicated environment. This added complexity
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provides the means to generalize the conclusions drawn from the two-room antimatching
data. Plots of participant hide frequencies over Sally’s seek frequencies reveal a pattern
similar to hides of the two-room condition, where participants range from perfect mini-
mizing to perfect antimatching (Figure 2.17). Viewing this data in strategy space reveals
that participants are indeed using strategies made mostly of minimizing and antimatching
(Figure 2.18). As with five-room seeking data, participant strategies did not lie exactly on
the line γ + δ = 1, though this is expected with higher dimensional data. Error was still
relatively low (Mean RSS = 0.0171683).
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Figure 2.17: Participant hides (blue) and Sally’s hides (grey) sorted by increasing values
of δ (use of antimatching strategy). Histogram bins sorted by decreasing values of Sally’s
distribution. All participants use a mix of almost only minimizing and antimatching.

32



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Antimatching( δ )

M
in

im
iz

in
g(

 γ
 )

Hiding from Sally Strategy
(5 room)

Figure 2.18: Strategy space of participant hides against Sally. Bars along margin count
participants using particular value of γ or δ. Participants used a varied mix of minimizing
and antimatching strategies. Model still shows relatively low error as strategies are clus-
tered around the line γ + δ = 1.
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2.2.7 Comparing Hiding and Seeking (Five-Room)

The two-room data showed little difference in strategy mix between hiding and seeking.
That is, strategy space plots expressing seeking behaviour as maximizing + matching
looked nearly identical to plots expressing hiding behaviour as minimizing + antimatching.
This is not the case for the five-room data (Figures 2.16 and 2.18). Here, we see a trend
towards the non-optimal strategy during seeking, and a trend to the optimal strategy
during hiding.

In general, participants became more optimal in their strategy choice when hiding,
rather than seeking, against Sally. Like the two-room condition, a portion of the partici-
pants had a nearly identical strategy mix between hiding and seeking. Unlike the two-room
condition, those who did not use identical strategies between hiding and seeking were al-
most always dramatically more optimal when hiding (Figure 2.19). A boxplot of the same
data reveals the same trends, with average use of the optimal strategy notably higher in
the hiding compared to the seeking condition (Figure 2.20).
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Figure 2.19: Each participant’s strategy mix for seeking (α, β) hiding (γ, δ) are plotted
together, ordered by increasing values of strategy change. Arrow points from seek strategy
to hide strategy. Of those participants who change strategy, they change towards a more
optimal mix.
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Figure 2.20: Most individual participants change strategies between hiding and seeking,
any many change to a more optimal strategy mix when hiding.

2.2.8 Sensitivity Analysis (Five-Room)

While there are differences between hiding and seeking in the five-room condition that
were not found in the two-room, we do not believe this to be evidence against the proposed
model. We claim only that maximizing + matching should account for participant seeking
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strategy, and minimizing + antimatching should account for participant hiding strategy.
This is generalized to optimal + non-optimal. If, in aggregate, participants use a different
mix of optimal and non-optimal strategies depending on the context (pursuit vs avoidance),
it does not necessarily mean that the model is accounting for more or less of the participant
strategy. This should be decided by analysing RSS error relative to other models. Thus,
we perform a second sensitivity analysis, this time on the five-room hiding data. The plot
presenting the strategy space for participant hides against Sally is repeated four times using
random strategy vectors instead of the minimizing (n⃗) and antimatching (⃗a) strategies
of our model (Figure 2.21). All four random strategy spaces presented fail to explain
participant behaviour effectively, resulting in few strategies lying on or near the line γr +
δr = 1 and inflated Mean RSS values ranging between 0.292 and 0.419. Repeating this
procedure 1000 times and plotting Mean RSS draws the same conclusion: h⃗ = γn⃗ + δa⃗–ζ⃗
is a more reliable model than h = γrr⃗1 + δrr⃗2–ζ⃗r (Figure 2.22).
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Figure 2.21: Plotting participant hides against sally in a strategy space using two random
strategy vectors instead of minimizing and antimatching strategies results in a poor model
fit. Many points are in region of high error, reflected in high Mean RSS values. Figure
contains four instances of this plot, each with two new randomly generated strategy vectors.
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Figure 2.22: Fitting participant data to a strategy space of two random strategy vectors
1000 times. Figure shows histogram of resulting error. Our proposed model dramatically
outperforms the 1000 tested here. This implies that our model is of meaningful accuracy,
and our methods used are not biased to result in low any for any arbitrary model it is
given.
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2.2.9 Comparing Two-Room to Five-Room

In our analysis, we are essentially mapping n-dimensional data (where n is the number of
rooms) to a two-dimensional strategy space. Therefore, we would expect to see participant
strategy mixes well represented by the two-dimensional linear combination of maximiz-
ing/matching or minimizing/antimatching strategies when we are already working with
two-dimensional data. This is not guaranteed to be true, however, since we constrain our
strategy coefficients (α, β, γ, δ) to be between 0 and 1. This is demonstrated by the poor
representation of participant strategies when using a random distributions in our two-room
sensitivity analysis.

We observe in both the two-room and five-room data that representational accuracy dif-
fers between maximizing/minimizing vs matching/antimatching strategies. In both seeking
and hiding, the optimal strategy is easy to implement behaviorally – select the most/least
likely room exclusively. In contrast, matching/antimatching strategies require a more nu-
anced behavioural pattern where participants need to ensure their rooms selections follow
in close proportion to the distribution they wish to produce in aggregate. We should expect
this to result in greater error (distance from α+ β = 1 or γ + δ = 1) when a strategy mix
is predominately of the more complicated matching/antimatching strategy. This explains
why, in general, participant strategies are less tightly clustered in the bottom right corners
of our plots compared the top left corners.

We observe differences in the relationship between hiding and seeking strategy optimal-
ity depending on the room condition. Specifically, participants used approximately a 50/50
optimal/non-optimal strategy mix in the two-room condition for both hiding and seeking.
In the five-room condition, participants used approximately a 25/75 optimal/non-optimal
strategy mix when seeking, but a 50/50 optimal/non-optimal strategy mix when hiding.
In addition, all strategy means lie close to the line α + β = γ + δ = 1 implying our model
appropriately accounts for participant hiding and seeking behaviour in both two-room and
five-room conditions (Figure 2.23).

This can also be interpreted in terms of a correlation. Participant use of an optimal
strategy is simultaneously negatively correlated to participant use of a non-optimal strat-
egy. Thus, results of all participant hiding and seeking behaviour, across both conditions
can be accurately represented with boxplots of participant use of optimal strategy (Figures
2.12 and 2.20).

40



0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Non−optimal( β or δ )

O
pt

im
al

( α
 o

r γ
 )

Trial Type Hide Strategy Seek Strategy

2 Room strategy

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Non−optimal( β or δ )

O
pt

im
al

( α
 o

r γ
 )

Trial Type Hide Strategy Seek Strategy

5 Room strategy

Figure 2.23: Mean strategy change from seek to hide split by room count (2-room on
left panel, 5-room on right panel). In five-room condition, participants used a less optimal
strategy when seeking than they used when hiding. This difference was not seen in the two-
room condition, where participants used the same mix 50/50 mix of optimal/non-optimal
strategy when hiding as they did with seeking. In addition, all strategy means lie close
to the line α + β = γ + δ = 1 implying our model appropriately accounts for participant
hiding and seeking behaviour in both two-room and five-room conditions.

Representational Complexity Hypothesis

What accounts for the difference in strategy mix found in the five-room condition, but
not the two-room condition? Consider the representational complexity of a two-room
vs a five-room hide-and-seek task. In general, visualization becomes harder in higher
dimensions: a cube is easier to imagine than a tesseract (4D-cube), and a tesseract easier
than a penteract (5D-cube). Perhaps individuals have a bias to probability antimatch
when hiding, analogous to matching when seeking. But when this strategy becomes too
difficult to compute in higher dimensions, perhaps people resort to minimizing; a strategy
that, while easier, also happens to be optimal. We denote this as the representational
complexity hypothesis. This can be tested by measuring how improvement from seeking
to hiding is influenced by the dimensionality of the given problem. We explore this in
Study 3. Two-dimensional space is the simplest space to compute a histogram vector
reflection, where any histogram has a valid reflection (by swapping bin values), so the cost

41



of computing an opposite should be essentially none, and would only increase with added
dimensions. Except, perhaps, until the problem becomes so complicated that people would
internally simplify it to a lower dimension. Consider a house of 1000 rooms. Participants
would likely consider groups of adjacent rooms rather than each individual room on each
trial.

2.2.10 Special case opponent strategies

While Sally was of primary theoretical interest in this study, we also recorded participant
play against the uniform distribution, (Kala) and a maximally predictable distribution,
where one room has 100% weight (Bo). As expected with our model, the uniform distri-
bution acts an equilibrium, where there is no reason to deviate from this strategy when
hiding or seeking against an opponent. Most participants appear to be following this pat-
tern (Figure 2.24). Recall, any other strategy is equally as viable given the opponent is
static in strategy use. Any participants who use anything other than a uniform strategy
are at no disadvantage.

The distribution represented by the character Bo, where one room has probability 100%
and the rest have 0%, is the one distribution used in this experiment that did not have
valid histogram vector reflection in the five-room condition. Similar to the uniform case,
any strategy exclusively over the equally 0% rooms are theoretically equivalent. Regard-
less, Bo acted as a useful assurance that participant understood the experimental protocol,
by always selecting the 100% room when seeking, and never selecting it when hiding.
Participants appear to have followed this pattern (Figure 2.25). Aside from a few poten-
tially errant clicks, participants never selected a room that is guaranteed to be strictly
worse than picking an optimal room, implying all participants understood and followed
the experimental protocol.
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Figure 2.24: All participant rounds against Kala. Seek data in left column, hide in right
column. Two-room on top row, five-room on bottom row. Most participants use an
approximately uniform strategy as expected, though any other strategy has a theoretically
equivalent payoff for the participant
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Figure 2.25: All participant rounds against Bo. Seek data in left column, hide in right
column. Two-room on top row, five-room on bottom row. Participants behaved optimally
aside from a few apparently erroneous clicks, ensuring the experiment was understood.
Hiding behaviour in the five-room condition was least consistent, and is also the only
dataset incompatible with our vector reflection model.
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2.2.11 Demographics

If it were the case that individuals have a natural propensity to probability antimatch
until it becomes too difficult, how would an increase in mathematical ability impact this
tendency? Would someone with more mathematical reasoning experience be better able to
compute opposite probability distributions, and thus be more likely to continue antimatch-
ing in higher dimensional problems? Or would they instead be better able to recognize
the optimal strategy is to purely maximize or minimize? Though our sample size is likely
too small to provide more than speculation, it may be that students who study math are
better at recognizing the optimal choice of maximizing when seeking, although this benefit
is mitigated when hiding, since everyone else who does not recognize the optimal strategy
defaults to it (Figure 2.26). This is perhaps because conforming to the antimatching bias
becomes too difficult.

Following the hide-and-seek gameplay, participants answered a short survey that asked
which faculty and program they were enrolled in. Students from the faculty of Mathematics
potentially utilized a more optimal seeking strategy against Sally. Though across all hiding
rounds against Sally, mathematics students no longer stand out. It is most likely that there
are too few participants for this result to be robust with n = 9, 21, 2, 8, 10 for Applied
Health Sciences, Arts, Engineering, Mathematics, and Science, respectively.
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Figure 2.26: Mathematics students appear to use a more optimal strategy when seeking,
though this difference is not apparent in hiding.
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Chapter 3

Study 2: Online Replication

3.1 Methods

3.1.1 Task Environment

The COVID-19 pandemic prevented further data collection using the in-lab PsychoPy
implementation from Study 1. We instead approximated Study 1 using JsPsych [4]. This
JavaSpript implementation allowed for online data collection. This study had identical
stimuli and procedures as Study 1, with the exception of slight visual differences in the
dollhouse and background artwork (Figure 3.1). Since we had no control over the device
participants used to complete the task, we had participants click a button with their cursor
to advance to the next trial rather than hit the space bar as in Study 1. Both methologies
achieve the the same goal of preventing participants from keeping the cursor over a single
room and automatically repeating the same room selection. Finally, we also did not enforce
the participants’ device screens to encompass a specific visual angle. Stimuli and procedures
are otherwise identical to Study 1.
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Figure 3.1: Participant view of screen in the five-room condition. Materials differ slightly
from Study 1. There are slight differences in background artwork, and participants are
required to click the ‘continue’ button instead of the space bar to move to the next trial.
Procedure is otherwise identical to Study 1.

3.1.2 Participants

We recruited University of Waterloo students (N=54, 44 females) to participate in exchange
for course credit. Participants were assigned randomly to the five-room or two-room con-
dition. The experiment took approximately 21 minutes to complete.

3.1.3 Data Analysis

Data analysis of this Study is identical to that of Study 1. This includes investigation of
participant strategy mix against Sally for both seeking and hiding in both two- and five-
room conditions, a sensitivity analysis of the vector reflection model, and the relationship
between academic major and strategy mix.
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3.2 Results and Discussion

3.2.1 Seeking Sally (Two-Room)

As in Study 1, a plot of all participant seek frequencies overlaid with Sally’s hide frequencies
reveals a spectrum of strict maximizers, strict matchers, and some mixing of the two (Figure
3.2). Converting and plotting each participant into the strategy space of α and β, refines
our interpretation (Figure 3.3). Participants employing a mixed strategy appear to be using
a mix specifically of maximizing and matching, as all participants lie on or essentially on
the line α + β = 1 implying there is negligible error in this fit (Mean RSS = 0.0009453).
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Figure 3.2: Participant seeks (blue) and Sally’s hides (grey) sorted by increasing values of
β. Histogram bins sorted by decreasing values of Sally’s distribution. Blue participant seek
bars at 100% indicate perfect maximizing (see top left). Participant seek bars perfectly
overlapping Sally’s hides indicate perfect matching (see bottom right)
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Figure 3.3: Strategy space of participant seeks against Sally. Bars along margin count
participants using particular value of α or β. Perfect maximizers use α = 1 and β = 0
(top left). Perfect matchers use α = 0 and β = 1 (bottom right). Participant strategies
existing on or near line α + β = 1 implies near perfect model fit.
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3.2.2 Hiding Sally (Two-Room)

Plots of participant hide frequencies over Sally’s seek frequencies reveal a pattern similar
to that of Study 1, and the seeking data from this Study (Figure 3.4). Some participants
behave optimally, minimizing by only hiding in Sally’s least searched rooms. Others appear
to employ some ‘opposite’ strategy to Sally’s, hiding in Sally’s most searched room as
frequently as Sally searches the least searched room. Upon viewing this data in the strategy
space, we can see the participants used a mix specifically of an optimal minimizing strategy
and a non-optimal antimatching strategy, defined here as a 2D histogram reflection (Figure
3.5). All participants were on or near the line γ + δ = 1, implying negligible error (Mean
RSS = 0.0068193).
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Figure 3.4: Participant hides (blue) and Sally’s hides (grey) sorted by increasing values
of d (use of antimatching strategy). Histogram bins sorted by decreasing values of Sally’s
distribution. Blue participant hide bars at 100% indicate perfect minimizing (top left).
Participant hide bars at 1 – Sally’s seek bars indicate antimatching (bottom right)
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Figure 3.5: Strategy space of participant hides against Sally. Bars along margin count
participants using particular value of γ or δ. Perfect minimizers use γ = 1 and δ = 0 (top
left). Perfect antimatchers use γ = 0 and δ = 1 (bottom right). Participant strategies
existing on or near line γ + δ = 1 implies near perfect model fit.
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3.2.3 Comparing Hiding and Seeking (Two-Room)

Comparing strategy spaces of hiding and seeking behaviours reveal similarities to the seek-
ing strategy space (Figures 3.3 and 3.5). This suggests that, in aggregate, maximizing +
matching describes seeking similarly as minimizing + antimatching describes hiding. This
pattern is consistent with those found in Study 1.

As in Study 1, participants did not become more or less optimal in their strategy choice
when hiding instead of seeking against Sally in the two-room condition. A large portion
had an identical strategy mix between hiding and seeking, and of those who didn’t, no
discernible pattern was found to indicate that people generally become more or less optimal
when hiding (Figure 3.6). A boxplot of the same data is consistent with this conclusion
(Figure 3.7).
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Figure 3.7: Most individual participants use a similar strategy mix between hiding and
seeking. Some change strategies between hiding and seeking exist, though in an unpre-
dictable direction and average out in aggregate. The result is a roughly equivalent use of
the optimal strategy in hiding and seeking.

57



3.2.4 Sensitivity Analysis (Two-Room)

Performing a sensitivity analysis on our model of participant hiding by replacing the min-
imizing and antimatching strategy vectors with two random histogram vectors indicates
(1) that h⃗ = γn⃗+ δa⃗–ζ⃗ is a suitable model, and (2) that using the bvls methods to present
and analyze data is not unreasonably forgiving to any arbitrary model it is given. The
plot presenting the strategy space for participant hides against Sally is repeated four times
using random strategy vectors instead of the minimizing (n⃗) and antimatching (⃗a) strate-
gies of our model (Figure 3.8). All four random strategy spaces presented fail to explain
participant behaviour effectively, resulting in few strategies lying on or near the line γr +
δr = 1 and inflated Mean RSS values ranging between 0.00134 and 0.04726. Repeating this
procedure 1000 times and plotting Mean RSS draws the same conclusion: h⃗ = γn⃗ + δa⃗–ζ⃗
is a more reliable model than h⃗ = γrr⃗1+ δrr⃗2–ζ⃗r (Figure 3.9). This test may be redundant
given the high degree of similarity between the findings of Studies 1 and 2, and the large
sample size used in the sensitivity analyses. However, it’s inclusion serves as a sanity check
demonstrating the stability of our findings across repeated analyses on new data.
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Figure 3.8: Plotting participant hides against sally in a strategy space using two random
strategy vectors instead of minimizing and antimatching strategies results in a poor model
fit. Many points are in region of high error, reflected in high Mean RSS values. Figure
contains four instances of this plot, each with two new randomly generated strategy vectors.
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Figure 3.9: Fitting participant data to a strategy space of two random strategy vectors
1000 times. Figure shows histogram of resulting error. Our proposed model dramatically
outperforms the 1000 tested here. This implies that our model is of meaningful accuracy,
and our methods used are not biased to result in low any for any arbitrary model it is
given.
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3.2.5 Seeking Sally (Five-Room)

A plot of all participant seek frequencies overlaid with Sally’s hide frequencies reveals a
spectrum of nearly strict maximizers, nearly strict matchers, though many are using a
strategy mix of predominantly matching (Figure 3.10). This is consistent with Study 1.
Converting and plotting each participant into the strategy space of α and β, refines our
interpretation (Figure 3.11). Participants appear to be using a mix of maximizing and
matching but strongly favour matching. All participants lie in close proximity to the line
α+β = 1 resulting in minimal error (Mean RSS = 0.0089585). This error in the five-room
case is larger than in the two-room, though some increase in error can be expected as data
increases in dimension.
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Figure 3.10: Participant seeks (blue) and Sally’s hides (grey) sorted by increasing values of
β. Histogram bins sorted by decreasing values of Sally’s distribution. All participants use
a mix of almost only maximizing and matching, though most tend toward a mix containing
more matching than maximizing.
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Figure 3.11: Strategy space of participant seeks against Sally. Bars along margin count
participants using particular value of α or β, and indicate that most participants use a
strategy with a low maximizing component (α) and high matching component (β).

3.2.6 Hiding from Sally (Five-Room)

Plots of participant hide frequencies over Sally’s seek frequencies reveal a pattern similar
to hides of the two-room condition, where participants range from perfect minimizing to
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perfect antimatching (Figure 3.12). Viewing this data in strategy space reveals that par-
ticipants are indeed using strategies made mostly of minimizing and antimatching (Figure
3.13). As with five-room seeking data, participant strategies did not lie exactly on the line
γ + δ = 1, though this is expected with higher dimensional data. Error was still relatively
low (Mean RSS = 0.0399392). In contrast to Study 1, this dataset includes at least five
participants who use a strategy not near γ + δ = 1. These participants appear to be using
a strategy suitable for seeking – a combination of maximizing and matching. It could be
that in the online environment, some participants were less focused on the task than would
be if in the lab. This may result in some participants missing the indicators that they were
to hide, rather than seek, on some trials.
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Figure 3.12: Participant hides (blue) and Sally’s hides (grey) sorted by increasing values
of δ (use of antimatching strategy). Histogram bins sorted by decreasing values of Sally’s
distribution. All participants use a mix of almost only minimizing and antimatching.
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Figure 3.13: Strategy space of participant hides against Sally. Bars along margin count
participants using particular value of γ or δ. Participants used a varied mix of minimizing
and mismatching strategies. Model still shows relatively low error as strategies are clustered
around the line γ + δ = 1.
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3.2.7 Comparing Hiding and Seeking (Five-Room)

Both seeking and hiding data cluster around the theoretical strategy mix line (Figures 3.11
and 3.13). However, this Study shows more noise in the hiding data than seen in Study 1.
Also, while the five-room condition of Study 1 showed a marked shift to a more optimal
when hiding (compared to seeking), this difference is less pronounced in Study 2. This
diminished effect appears to be driven by the use of a more optimal seeking strategy in
Study 2 compared to Study 1 (Figures 3.14 and 3.15). It could be that a distracted online
participant, free from the social conformity pressures of a research lab, puts less effort
into the task. This would result in a optimal heuristic effect, where instead of carefully
probability matching when seeking, the simpler (but optimal) strategy of maximizing is
used instead. The strategy mix of hiding may already be at a ceiling, which is why the
online hiding data is similar to in-person, but the online seeking data approaches that of
hiding. Finally, an online environment also introduces a potential compliance issue, where
some participants appeared to have used a seeking strategy in the hiding trials.
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Figure 3.14: Each participant’s strategy mix for seeking (α, β) hiding (γ, δ) are plotted
together, ordered by increasing values of strategy change. Arrow points from seek strategy
to hide strategy.
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Figure 3.15: Most individual participants change strategies between hiding and seeking,
any many change to a more optimal strategy mix when hiding, though this difference is
less pronounced compared to Study 1.

3.2.8 Sensitivity Analysis (Five-Room)

We again repeat the sensitivity analysis, this time for the five-room data. The plot pre-
senting the strategy space for participant hides against Sally is repeated four times using
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random strategy vectors instead of the minimizing (n⃗) and antimatching (⃗a) strategies of
our model (Figure 3.16). All four random strategy spaces presented fail to explain partic-
ipant behaviour effectively, resulting in few strategies lying on or near the line γr + δr = 1
and inflated Mean RSS values ranging between 0.1756 and 0.3868. Repeating this proce-
dure 1000 times and plotting Mean RSS draws the same conclusion: q⃗ = γn⃗ + δs⃗–ζ⃗ is a
more reliable model than q = γrr⃗1 + δrr⃗2–ζ⃗r (Figure 3.17).
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Figure 3.16: Plotting participant hides against sally in a strategy space using two random
strategy vectors instead of minimizing and antimatching strategies results in a poor model
fit. Many points are in region of high error, reflected in high Mean RSS values. Figure
contains four instances of this plot, each with two new randomly generated strategy vectors.
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Figure 3.17: Fitting participant data to a strategy space of two random strategy vectors
1000 times. Figure shows histogram of resulting error. Our proposed model dramatically
outperforms the 1000 tested here. This implies that our model is of meaningful accuracy,
and our methods used are not biased to result in low any for any arbitrary model it is
given.

72



3.2.9 Comparing Two-Room to Five-Room

Unlike in Study 1, we do not see a notable difference in the strategy mix between the
two-room and the five-room conditions. This appears to be largely driven by the fact
that participants in Study 2 did not utilize the non-optimal seeking strategy (probability
matching) as much as participants in Study 1. However, the lack of probability matching
was replaced with maximizing, so we still observe that participant strategies lie close to the
line α + β = γ + δ = 1 implying our model appropriately accounts for participant hiding
and seeking behaviour in both two-room and five-room conditions (Figures 3.7, 3.15, and
3.18). Again, the line α+ β = γ + δ = 1 represents a strategy mix of exclusively matching
and maximizing for seeking, and exclusively antimatching and minimizing for hiding.
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Figure 3.18: All strategy means lie close to the line α+ β = γ + δ = 1 implying our model
appropriately accounts for participant hiding and seeking behaviour in both two-room and
five-room conditions. But we do not see a strategy shift between hiding and seeking in the
five-room condition as extreme as seen in Study 1.

3.2.10 Special case opponent strategies

Participant behaviour against Kala (uniform) and Bo (100%) follow closely to that of Study
1. While all strategies against a uniform distribution are equivalent, participants mostly
produce a nearly uniform distribution, while hiding and seeking (Figure 3.19). Note that
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the reflection of the uniform is the uniform, thus the vector reflection hypothesis appears
to still function in this ambiguous case.

Participant seeking against the 100% distribution utilizes the unique reasonable strat-
egy – only picking the 100% room. With respect to hiding, participants again show a mix
between exploiting a particular 0% room, and distributing hides across all of the 0% rooms
(Figure 3.20). Note that no unambiguous reflection of the 100% distribution exists, mak-
ing this heterogeneous strategy choice when hiding against this distribution particularly
notable.

74



1uc46v

8zy7j8

gqnbhz

psc6vf

vldfvg

203zk9

ad91n1

h17ae2

q1c43z

yh99ly

39yc0z

bumfha

lryxfp

t31j09

yok8dx

5j3ps0

fm4bdo

o1lbev

ucue7u

yvz0fb

610bt5

fyshzl

ouvpg2

udjlqo

z916qu

6sp2nh

g2aajp

p80a99

ukcfne

0
50

0
50

0
50

0
50

0
50

F
re

qe
un

cy

Kala Hides Participant Seeks

Participant Seeking Kala

1uc46v

8zy7j8

gqnbhz

psc6vf

vldfvg

203zk9

ad91n1

h17ae2

q1c43z

yh99ly

39yc0z

bumfha

lryxfp

t31j09

yok8dx

5j3ps0

fm4bdo

o1lbev

ucue7u

yvz0fb

610bt5

fyshzl

ouvpg2

udjlqo

z916qu

6sp2nh

g2aajp

p80a99

ukcfne

0
50

0
50

0
50

0
50

0
50

F
re

qu
en

cy

Kala Seeks Participant Hides

Participant Hiding from Kala

06zxpd

81gsa5

efwa3e

qblhs5

vxodxh

09ru7t

dmel5v

j3l0ky

qydebo

w3gu7r

47j1e1

dwexfk

jxy4a6

s3scj9

yxvpvu

4lon9v

dy6gla

n9v382

umg6qn

z6lma0

4z9ghs

dz38lx

pzhvzg

vgj6hp

zq2j9g

0
50

100

0
50

100

0
50

100

0
50

100

0
50

100

F
re

qe
un

cy

Kala Hides Participant Seeks

Participant Seeking Kala

06zxpd

81gsa5

efwa3e

qblhs5

vxodxh

09ru7t

dmel5v

j3l0ky

qydebo

w3gu7r

47j1e1

dwexfk

jxy4a6

s3scj9

yxvpvu

4lon9v

dy6gla

n9v382

umg6qn

z6lma0

4z9ghs

dz38lx

pzhvzg

vgj6hp

zq2j9g

0
50

100

0
50

100

0
50

100

0
50

100

0
50

100

F
re

qu
en

cy

Kala Seeks Participant Hides

Participant Hiding from Kala

Figure 3.19: All participant rounds against Kala. Seek data in left column, hide in right
column. Two-room on top row, five-room on bottomrow. Most participants use an ap-
proximately uniform strategy as expected, though any other strategy has a theoretically
equivalent payoff for the participant
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Figure 3.20: All participant rounds against Bo. Seek data in left column, hide in right
column. Two-room on top row, five-room on bottom row. Participants behaved optimally
aside from a few apparently erroneous clicks, ensuring the experiment was understood.
Hiding behaviour in the five-room condition was least consistent, and is also the only
dataset incompatible with our vector reflection model.
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3.2.11 Demographics

0.00

0.25

0.50

0.75

1.00

Engineering Math Health Science Arts
Participant Faculty

M
ax

im
iz

in
g 

S
tr

at
eg

y

Seeking Sally

0.00

0.25

0.50

0.75

1.00

Engineering Math Health Science Arts
Participant Faculty

M
in

im
iz

in
g 

S
tr

at
eg

y

Hiding from Sally

Figure 3.21: Optimal strategy use by academic faculty of student. Rankings do not follow
that of Study 1.

Unlike in Study 1, we observe a less surprising trend where participants from more math-
oriented faculties utilize the theoretically optimal strategy of maximizing when seeking
and minimizing for hiding (Figure 3.21). This is evidence that math experience increases a
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participant’s ability to recognize the optimal minimizing strategy, more than it facilitates
the use of the cognitively challenging non-optimal antimatching distribution.
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Chapter 4

Study 3: More Hide-and-Seek
Distributions

In Studies 1 and 2, we demonstrate the efficacy of vector reflections in defining probability
antimatching. In this study, we further test our notion of probability antimatching by
testing participants with more probability distributions. These include distributions that
produce negative probability entries when reflected as a vector across the uniform, and
distributions that have infinitly many optimal maximizing or minimizing strategies. In
addition, we also set dimensionality (the number of rooms) as a within-participant variable
for this study. By having each participant face opponent hide-and-seek distributions from
multiple dimensions, we can more easily test the representational complexity hypothesis.

4.1 Methods

4.1.1 Task Environment

Stimuli

Visual stimuli are idential to that of Study 2, except with a new set of probability distri-
butions and the addition of another opponent character (Table 4.1).
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Procedure

Participants played a short practice round consisting of three seeking trials followed by
three hiding trials, identical to previous studies. Following the practice round, participants
completed a total of four hide-and-seek games, where each game is structured identically
to games in Studies 1 and 2. That is, each game consists of 100 seeking trials and 100
hiding trials.

The distribution faced in practice rounds was always (30, 30, 20, 10, 10). The distribu-
tion each participant faced in the first game was randomly selected from one of three sets:
3-, 5-, or 7-room distributions. The second game distribution was randomly selected from
the remaining two sets that did not contain the distribution selected for the first game.
The third distribution was randomly selected from the remaining set. The fourth game
was randomly selected from a set that only contains distributions with probability mass
all in one room (i.e. an entry of 100% and n-1 entries of 0%’s). For all games (including
practice), one of the five characters were assigned to be identity of the opponent. Each
opponent identity was used for exactly one game.

The nature of this procedure is efficiently described with mathematical notation. The
symbol ∈R denotes ‘randomly selected from’. A backslash in set notation denotes exclusion.
For example, {A,B,C,D}\{A,C} = {B,D}.

Let

D3 =


5025
25

 ,

4242
16

 ,

8010
10

 ,

D5 =




35
30
15
15
5

 ,


35
25
25
10
5

 ,


45
35
10
5
5


 ,
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D7 =





25
25
20
14
10
4
2


,



26
24
18
15
9
4
4


,



50
18
12
8
5
5
2




, and

D′ =



1000
0

 ,


100
0
0
0
0

 ,



100
0
0
0
0
0
0




.

• Each participant plays 4 games: G1, G2, G3, G4

• Each game Gi has one opponent that follows a particular hide-and-seek distribution,
g⃗i

• For any game Gi with distribution g⃗i, each element of g⃗i is randomly assigned to each
room of the house presented on the screen

• g⃗1 ∈R Dn, where n ∈R {3, 5, 7}

• g⃗2 ∈R Dm, where m ∈R {3, 5, 7}\{n}

• g⃗3 ∈R Dk, where k ∈R {3, 5, 7}\{n,m}

• g⃗4 ∈R D′

4.1.2 Participants

177 (134 female) participants completed the online hide and seek task. Each participants
had hide and seek distributions assigned to them identically and independently, as de-
scribed above. The Study took approximately 32 minutes to complete.
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Bo Jill Kala Sally Toby

Table 4.1: Study 3 opponent identities are randomly assigned to each game without re-
placement.

4.1.3 Data Analysis

As in the previous Studies, all participants who play a game with a given distribution
are collapsed together, ignoring the context in which that distribution is presented. This
includes room probability assignments, order of distribution presentation, and opponent
identity.

Accounting for infinite optimal strategies

Recall, participant strategy = optimal strategy + non-optimal strategy. For seeking, that is
participant seeking strategy = maximizing strategy + matching strategy. For hiding, that
is participant hiding strategy = minimizing strategy + antimatching strategy. In previous
Studies, the optimal strategies were unique (i.e. picking exclusively the maximum prob-
ability room when seeking, and exclusively the minimum probability room when hiding).
In this experiment, a subset of the distributions have more than one optimal strategy.
This occurs for seeking when the maximum probability room is not unique (a tie for the
maximum probability room), and for hiding where the minimum probability room is not
unique (a tie for the minimum probability room).

Interestingly, if there is no unique optimal strategy, then there are infinite optimal
strategies. With more than one room tied for maximum (minimum) value, these rooms can
be considered equivalent. Therefore any distribution of seeks (hides) across the maximum
(minimum) probability rooms will result in an equivalently optimal strategy. Note, there
are only a theoretically infinite number of optimal strategies. Since participants only
complete 100 trials for seeking/hiding for each distribution, there are actually finitely
many for any discrete dataset. Our analysis will also account for the infinite theoretical
case, making this analysis generalizable for future work.
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For any distribution that has a non-unique maximum or minimum room, the maxi-
mizing and minimizing strategies are generalized from the vectors x⃗ and n⃗, respectively,
to the sets of vectors X and N , respectively. The number of vectors in X is deter-
mined by the number of the rooms that share the maximum probability value. Anal-
ogously, the number of vectors in N is determined by the number of rooms that share
the minimum probability value. Both X and N contain only standard unit vectors, de-
noted e⃗i, where the i’th element is 1 and all other elements are 0. The set X contains
vectors e⃗i, where i is selected from the room numbers that have the maximum proba-
bility value. For example, if m⃗ = (0.42, 0.42, 0.16), then X = {(1, 0, 0), (0, 1, 0)}. If
m⃗ = (0.26, 0.24, 0.18, 0.15, 0.09, 0.04, 0.04), then N = {(0, 0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 0, 1)}.

As in previous experiments, we apply a the Stark-Parker algorithm for bounded-variable
least squares via the ‘bvls’ package in R [27]. In this case, when analyzing seeking data, we
include all vectors in X along with m⃗, to determine the strategy mix α and β. We define
α as

∑
αi, where αi is the coefficient for each e⃗i in X that results from the bvls algorithm.

We do this because the use of any mix of maximizing strategy, represented by vectors in X,
is equivalent and can thus be combined into one value. We perform an analogous analysis
for hiding data using N .

Testing invalid reflections

A distribution x⃗ is said to have an invalid distribution if and only if refl(x⃗) = y⃗, where
y⃗ contains elements that are less than zero. Three of our tested distributions have invalid
distributions:

• (80,10,10) reflects to (-13.3,56.6,56.6)

• (45,35,10,5,5) reflects to (-5,5,30,35,35)

• (50,18,12,8,5,5,2) reflects to (-21.4, 10.6, 16.6, 20.6, 23.6, 23.6, 26.6)

By the nature of our task, participants are required to present their hiding strategy
behaviorally via room selection frequencies. Therefore, an antimatching strategy (a reflec-
tion of the seek distribution of their opponent) cannot be expressed behaviorally, because
the antimatching component of our strategy mix contains negative values, and negative
rooms selections are not possible.

All frequency-based representations of probability must be represented as a vector
within the probability simplex. In addition to expressing participant hiding behaviour
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with the invalid reflections that contain negative entries, we also consider two projection
methods that compute a vector that is close to the original vector reflection, but still exists
within the probability simplex. We can then represent participant hiding behaviour as a
linear combination of the optimal minimizing strategy, and this “closest possible” anti-
matching strategy. This allows us to explore possible consistencies across individuals and
potentially generalize what it means to use an antimatching strategy against a strategy
that has no physically observable opposite.

Shift back to the uniform Shifting invalid reflections back to the simplex in the direc-
tion of the uniform distribution is computationally simple. Consider a q⃗ = refl(p⃗) where
at least one element of q⃗ is strictly less than 0. Let qmin be the minimum valued element
of q⃗. Then, let v⃗ = (qmin, ..., qmin). We now know that q⃗ − v⃗ will have a minium entry of
exactly 0. After normalizing q⃗− v⃗ such that it sums to 1, we now have a valid probability
histogram vector that is along the same trajectory between, p⃗, q⃗, and the uniform distri-
bution (Figure 4.1). Note that this method of returning to the simplex may not result in
q⃗ − v⃗ being the closest possible point on the simplex to q⃗.
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Figure 4.1: Two different viewpoints of the probability simplex in 3-dimensional space.
Here, the reflection of p⃗, denoted q⃗, lies outside of the probability simplex. Subtracting a
uniform vector containing most negative element of q⃗, denoted v⃗, returns q⃗ to the simplex
along the original trajectory of the reflection of p⃗ over u⃗.

Project to the closest point on the simplex Our second projection methods con-
siders a simple idea: if q⃗ = refl(p⃗) is outside of the simplex, then find the point on the
simplex that is closest to q⃗ (Figure 4.2). Mathematically, this is a Euclidean projection
onto the simplex requiring a optimization problem to find some vector w⃗ that minimizes
w⃗ − q⃗ such that w⃗ is within the probability simplex. A solution to this problem can be
found in [6]. By the nature of this proof, we considered participant strategy mixes us-
ing this simplex projection method for the cases where q⃗ exists outside of the probability
simplex. We adopted an implementation of this projection method from [29].
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Figure 4.2: Two different viewpoints of the probability simplex in 3-dimensional space.
Here, the reflection of p⃗, denoted q⃗, lies outside of the probability simplex. Performing the
Euclidean projection onto the simplex produces the shortest possible vector v⃗ to return
to closest vector in the simplex to q⃗, w⃗. Unlike the uniform shift method, this does not
always shift q⃗ back along the original reflection trajectory from p⃗.

Testing representational complexity

To test the representational complexity hypothesis, we compare the optimality of hiding
vs seeking strategy mixes across room-number conditions. If hiding strategies become
more optimal than seeking strategies as dimensionality increases, this would support the
idea that participants use a more optimal hiding strategy because it is easier to compute
than antimatching. If hiding strategies become less optimal than seeking strategies as
dimensionality increases, this would support the idea that participants hold priors that
failed hides are worse than failed seeks, but the stakes of each room selection is lesser when
there are more rooms (chance of being found is lower).
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4.2 Results and Discussion

4.2.1 Matching and antimatching behaviours are observed and
infinite optimal strategies are adequately represented

The strategy plots of this Study (Figures 4.3, 4.4, and 4.5) resemble those from Studies
1 and 2. That is, individual participant strategy points cluster around the diagonal line
α + β = 1 for seeking, and γ + δ = 1 for hiding. Proximity to this theoretically expected
line is nearly error-free in the 3-dimensional conditions, much like in the 2-dimensional
conditions observed in previous studies. Recall, this is because fewer hide-and-seek rooms
translates to fewer degrees of freedom, represented by a lower dimensional strategy space.
Our 2-dimensional model of behaviour (optimal + non-optimal) more easily spans the
entire strategy space when the strategy space itself is lower-dimensional, resulting in lower
representational error. Representational error increases at a diminishing rate as participant
degrees of freedom increase, since participant strategy mixes are similarly clustered around
the diagonal in both the 5- and 7-dimensional cases. This implies that our model captures
genuine features of participant behaviour, and is not artificially assisted by low dimensional
data.

The possibility of infinitely many optimal strategies is accounted for by our methodology
of using optimal strategy spans. This occurs in cases where the maximum probability
room is not unique for seeking, and when the minimum probability room is not unique for
hiding. These cases are denoted with a green cross (+) in Figures 4.3, 4.4, and 4.5, and
are indistinguishable from strategy mixes where only one unique optimal strategy exists.

Some histogram vectors produce negative values when reflected. This renders these
reflections “invalid” because there is no meaningful interpretation of a probability distri-
bution with negative probability mass, let alone any way for participant behaviour to ever
manifest negative room selections, at least in our protocol. Therefore, representing partici-
pant hiding behaviour as a linear combination of the optimal minimizing strategy, and, in
this particular case, an antimatching strategy that has no behavioral manifestation, should
result in a poor strategy mix representation. This is exactly what we observe in our data.
These cases are denoted with a red asterisk in Figures 4.3, 4.4, and 4.5.
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Figure 4.3: Strategy plots for seek (left) and hide (right) distributions from the set D3.
Strategy mixes calculated with infinite optimal strategies are denoted with a green cross
(+). Strategy mixes that are computed with a distribution that has an invalid reflection
are denoted with a red asterisk (*).
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Figure 4.4: Strategy plots for seek (left) and hide (right) distributions from the set D5.
Strategy mixes calculated with infinite optimal strategies are denoted with a green cross
(+). Strategy mixes that are computed with a distribution that has an invalid reflection
are denoted with a red asterisk (*).
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Figure 4.5: Strategy plots for seek (left) and hide (right) distributions from the set D7.
Strategy mixes calculated with infinite optimal strategies are denoted with a green cross
(+). Strategy mixes that are computed with a distribution that has an invalid reflection
are denoted with a red asterisk (*).
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4.2.2 Participant hiding strategies follow a projection back to
the simplex when reflections are invalid

Figures 4.6, 4.7, and 4.8 show the hiding strategy mixes for the invalid reflection case in
3-, 5-, and 7-room conditions, respectively. For each figure, the leftmost panel shows the
strategy mix calculated with the unadjusted invalid reflection that contains negative values.
Recall, a distribution with negative entries cannot produce a hiding strategy in terms
of relative room selection frequencies, because participants cannot make negative room
selections. As such, we expect, and observe here, that hiding strategy is not well represented
as a linear combination of the optimal minimizing strategy, and our antimatching strategy
that has no behavioural manifestation. The exception to this is the 3-room case, where
most participants use a strictly maximizing strategy, and the antimatching component is
not needed to represent hiding strategy.

Each middle panel shows hiding strategy mixes where the invalid reflections are pro-
jected back to the simplex via the uniform shift method. Each rightmost panel shows
hiding strategy mixes where the invalid reflections are projected back to the simplex via
the closest point method. In all three conditions, the results of each pair of shifts are very
similar to each other. It is likely that any reasonable method to project an invalid reflection
back to simplex will result in very similar distributions. Future mathematical work can
explore which methods may differ the most, and which particular reflections may result in
the largest discrepancy between projection methods.

In the 3-room condition, each projection method happens to produce the same adjusted
reflection (0, 50, 50), resulting in an uninformative strategy plot 4.6. This is because the
shortest path back to the simplex (via the Euclidean projection) lies along the original
trajectory from the uniform (via the uniform shift). Moreover, the adjusted reflection (0,
50, 50) is also one of the infinity many optimal seeking strategy of hiding any arbitrary
mix of rooms, so long as you only hide in the lowest probability rooms. Therefore, in this
particular case, the antimatching strategy is also an optimal minimizing strategy. This
explains why our adjusted hiding strategy plots only differ from the original by representing
some exclusive minimizers as exclusive antimatchers. As such, hiding strategy is not better
represented when using adjusted reflections, compared to without. From our analysis it
is unclear how the bounded values least squares algorithm assigns either γ = 1 or δ = 1
when n⃗ and a⃗ are identical.

In the 5-room condition, both projection methods induce small improvements to rep-
resentational error compared to using the invalid reflection. This is visually apparent in
Figure 4.7, as each projection method pulls participant strategy mixes closer to the line
γ + δ = 1.
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In the 7-room condition, we observe considerable representational accuracy induced
by both projection methods (Figure 4.8). Where participant strategy mixes drift from
γ + δ = 1 as δ approaches 1 when computing strategy mix using the invalid reflection,
this does not occur if we define the antimatching strategy as the projection of the invalid
reflection back to the simplex. This implies that when a reflection does not exist within
the simplex, participants instead use a distribution that is near this invalid reflection. It
is unclear why the projection back to the simplex induces better representational accuracy
in the 7-room case than the 5-room case. It may be some idiosyncratic feature of the
particular distributions tested, random variation in participant performance, or some the-
oretically interesting feature that differs between the probability simplex in 5-dimensions
vs 7-dimensions.

While we may not be able to tell which method is better here, each projection method
comes paired with distinct theoretical implications. For the uniform shift method, any in-
ternal representations of probability distributions need not require that the invalid vector
reflection (of negative entries) ever exist. That is, the adjusted reflection may be computed
geometrically by reflecting p⃗ over u⃗, but only following that trajectory until the boundary
of the simplex is met. This would imply humans only represent what exists within the
probability simplex in order to compute opposite probability distributions. Algorithmi-
cally: to find q⃗, the opposite of a given distribution p⃗, move p⃗ towards and beyond u⃗ until
you double the distance from p⃗ to u⃗ or you hit the boundary of probability space, whichever
occurs first.

Alternatively, the Euclidean simplex projection requires that the invalid q⃗ be explicitly
represented, as q⃗ is required to find a point in the simplex w⃗ that minimizes the distance
between q⃗ and w⃗. This would imply that humans can represent a broader interpretation
of probabilities that are not constrained by non-negativity and a sum of 1. Under this
hypothesis, probability could be represented as any other geometric/visuospatial problems
are, and finding the closest point on the simplex is only a means to behaviorally express
this representation in a task that is constrained by the formal definition of probability.
Algorithmically: to find q⃗, the opposite of a given distribution p⃗, move p⃗ towards and
beyond u⃗ until you double the distance from p⃗ to u⃗. Express the belief w⃗, which is the
closest “true” probability distribution to q⃗.

The benefit of our analysis here is that future researchers can propose new methods
to account for invalid reflections. The effectiveness of alternative models can be directly
compared to each other by examining the quantitative differences between strategy vector
coefficients, and model error.
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Figure 4.6: Applying original (left), unishift (centre), and closest simplex point (right)
methods for accounting for invalid reflections in the 2D case.
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Figure 4.7: Applying original (left), unishift (center), and closest simplex point (right)
methods for accounting for invalid reflections in the 5D case.
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Figure 4.8: Applying original (left), unishift (center), and closest simplex point (right)
methods for accounting for invalid reflections in the 7D case.

4.2.3 Hiding strategies are more optimal than seeking strategies,
but less so in higher dimensions

Figure 4.9 compares participant use of the optimal strategy between hiding and seeking
trials in the 3-, 5-, and 7-room conditions. In general, participants use an optimal strategy
when hiding more than they do while seeking. However, this effect diminishes as room-
count increases. This is mostly driven by a reduced use of the optimal hiding strategy as
room-count increases. This finding is the opposite of what we expected following Study
1. Recall, initial findings found that participants were equally optimal in hiding and
seeking in 2-room condition, but more optimal when hiding in the 5-room condition. We
hypothesized that this was due to representational complexity, such that n-dimensional
geometry is harder to represent than m-dimensional geometry where n > m. This would
result in participants being disincentivized to compute the vector reflection required to
utilize an antimatching strategy, and instead default to an ‘easier’ strategy that also turned
out to be optimal in our task.

Under the representational complexity hypothesis, we would expect participants to bias
more strongly to the optimal strategy in higher room (dimension) conditions. Moreover,
this Study used a within-participant design for room condition. Under the representational
complexity hypothesis, we would expect each individual participant to use strictly more of
the optimal strategy when hiding in n-rooms, compared to m-rooms, where n > m. Given
Figure 4.10, this is clearly not the case.

Future work is required to determine the relationship between optimal strategy use
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and dimensionality. It may be that representational complexity does not scale with di-
mensionality. While it is more difficult to imagine a tesseract than a cube, it is reasonable
to concede that explicit geometric visualization is not the cognitive mechanism required
to evade a stimulus that follows a particular pattern. It may be that with more room
numbers, the perceived stakes of a failed hide are lessened, as the chance of being found
in any particular room also decreases. Participants might therefore be less concerned
with utilizing an optimal strategy. The finding that optimality asymmetry is negatively
related to dimensionality is more consistant with an assumed-payoff hypothesis, where
hiding strategies are generally more optimal than seeking strategies because participants
hold prior beliefs that a failed hide is worse than a failed seek. Perhaps with more room
options, the perceived importance of each individual trial is lessened because the overall
probability of being found is lesser, thus reducing motivation to select an optimal strategy.
This hypothesis can be tested in future studies by manipulating payoffs of successful/failed
hide/seeks via gamified points, money, or additional course credit.

It’s possible that each dimension has a strategy mix “signature”. That is, can we
identify the number of rooms from a given dataset only by inspecting the relationship
between hide strategy mixes and seek strategy mixes? If geometric representations are
in fact driving this cognition, then other geometric properties in addition to increasing
dimensionality could be relevant. For example, we only tested odd-numbers of rooms in
this study. The Euler characteristic (relating the number of vertices, edges, faces, etc.) for
a simplex is 2 in odd dimensions, and 0 in even dimensions. It may be that participant
strategy use will vary according the geometry that represents the task environment.
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Figure 4.9: Participants may use a more optimal strategy mix when hiding than when
seeking in the three room condition. The difference between hiding and seeking optimality
is not observed as strongly in the five or seven room condition.
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Figure 4.10: Participant use of the optimal hiding strategy does not increase as dimension-
ality increases. This evidence counters the representational complexity hypothesis, which
states that participants will antimatch less (and optimize more) becasue computing the
opposite probability distrubutions becomes difficult in higher dimensions.
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Chapter 5

General Discussion

The aim of this work is to establish an analogous strategy space for stimiulus avoidance
as exists for stimulus pursuit. Through our three hide-and-seek studies, we have found
that participants use a mixture of the optimal maximizing strategy and the non-optimal
matching strategy when seeking. When hiding, participants use a mixture of the opti-
mial minimizing strategy, and the non-optimal antimatching strategy. The antimatching
strategy when evading a stimulus generated from a probability distribution, expressed as
a Euclidean vector p⃗, is defined as a reflection of p⃗ over the uniform distribution u⃗, such
that reflu⃗(p⃗) = 2u⃗− p⃗.

In Study 1, we first established the efficacy of the hide-and-seek task in measuring
pursuit and avoidance strategy against a fixed probability distribution in an in-lab en-
vironment. Both between-subject conditions of 2-room and 5-room games found that
participants use a nearly exclusive mix of maximizing and matching when seeking, and
minimizing and antimatching when hiding. We also found that participants were more
likely to use the optimal minimizing strategy when hiding, than the optimal maximizing
strategy when seeking. However, this was only the case in the 5-room condition. The
interaction between optimal-strategy-use-asymmetry and number of rooms motivated our
hypothesis that participants have a natural propensity to use an antimatching matching
strategy in the same sense as probability matching. However, with more rooms to con-
sider, the difficulty of computing the antimatching strategy (via a vector reflecton) scales
as dimensionality of the problem increases. This added cognitive demand may induce a
shortcut – only hiding the single least likely room – a strategy that also happens to be
optimal in the i.i.d. nature of our task.

Study 2 attempted to reproduce Study 1 using an online procedure. In this sample, we
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did not find differences between strategy use across hide/seek trials, or across room-number
conditions. More importantly however, we found similar results to Study 1 with respect to
strategy mixes. That is, we again found that participant hiding behaviour is just as well
explained as mixture of minimizing and antimatching, as seeking behaviour is explained
as a mixture of maximizing and matching.

In Study 3, we adopted a within-subjects design such that every participant faced at
least one 3-room, 5-room, and 7-room condition. Some participants also faced distribu-
tions that had invalid reflections, allowing us to expand our mathematical definition of
probability antimatching. Again, we found a near exclusive mix of maximizing and match-
ing when seeking, and a near exclusive mix of minimizing and antimatching when hiding.
We also found that when hiding against distributions with invalid reflections, participants’
antimatching strategy may be selected as a valid distribution on the probability simplex
that is “close” to the original invalid reflection. However, it is unclear how this “close”
alternative is selected/produced as both of our candidate methodologies produced similar
results. Like Study 1, and unlike Study 2, we found that participants utilize a more op-
timal strategy mix when hiding than when seeking. However, this difference reduces as
room-number increases. Importantly, the results of these three studies indicate support for
our primary interest – that probability antimatching defines hiding strategy analogously
to how probability matching defines seeking strategy.

It is important to emphasize that our vector reflection model of probability antimatch-
ing is not a model of individual participant behaviour. That is, a histogram vector reflec-
tion does not act as a direct mapping from a participant’s individual seeking strategy to
their individual hiding strategy. Rather, our work demonstrates that participant seeking
(stimulus pursuit) strategy is adequately defined as a mix of two strategies: traditional
probability matching, and optimal maximizing. Moreover, we demonstrate that partici-
pant hiding behaviour is also adequately defined by a mix of two strategies: probability
antimatching, which we define as probability histogram vector reflection, and the optimal
minimizing strategy. We emphasize here that we have been able to articulate human stim-
ulus avoidance strategies with just two dimensions (antimatching and minimizing) despite
there existing no unambiguous mathematical definition an opposite probability distribu-
tion.

Across our three studies, we observe a pattern of findings where participants use a more
optimal strategy when hiding than they do when seeking. The strength of this finding,
and the manner in which it is affected by the number of room choices (dimensionality)
is unclear. There exists an evolutionary basis to support this finding: a failed hide often
carries greater consequence (eaten by a predator) than a failed seek (being hungry). This
might induce a default payoff matrix that skews to value the outcomes of hide success over
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seek success. Future work can explore this idea further by modifying our hide-and-seek task
to accommodate different payoffs, via arbitrary in-task points, monetary, or course credit.
It may be that a certain distribution of payoffs would result in a persistent optimality
asymmetry between hiding and seeking. Interesting implications may follow from this
result if future work is able to better understand this relationship. Many problems of daily
life can be presented in a pursuit/avoidance dichotomy. It may be that simply framing a
problem as something to hide from, rather than something to pursue, will make people act
more optimally. For example, would people make better financial decisions if the problem
were framed as an avoidance of losses/costs (including opportunity cost) rather than a
pursuit of gains [33, 25, 18]?

Our work presents a testable hypothesis for strategy utilization that accounts for both
stimulus pursuit and stimulus evasion, therefore creating a meaningful extension to current
probability matching literature. The formal geometric terms used to represent participant
strategy mixes allows for richer analysis and quantitative theoretical development. For
example, if another researcher proposes an alternative definition of antimatching, we can
again represent participant strategy mix as a linear combination of Euclidean vectors and
compare model fit via the magnitudes of strategy coefficients (α, β, γ, δ), and error vectors

(⃗ϵ, ζ⃗).

Theory expressed in mathematics promotes unifying theories between behaviour and
the brain. Geometry has a long history in representing neural activity, cognition, and
behaviour in general [12, 11, 7, 22]. The ability to express behaviour using our model,
and brain activity in the same mathematical language allows for richer exploration of how
the brain works. For example, consider a artificial neural network (ANN). This network
can be trained to perform the same hide-and-seek task presented here. With both human
and ANN behavioral output expressed mathematically, both can be compared directly
to the task representations of the ANN’s internal layers, which is already often analyzed
geometrically as vectors. Various versions of this network could be built to emulate the
structure of different candidate brain areas that drive phenonomenon of interest. For
probability matching/antimatching, these may include the right dorsolateral prefrontal
cortex, and left frontal and prefrontal areas, [26, 38]. The candidate model that best
approximates human behavioural output, and perhaps, human brain activity recordings,
may provide evidence to the neural underpinnings of the phenonomenon of interest.

With this work, we are not advocating that people are literally and explicitly computing
vector reflections to determine their hiding strategies. Claiming this would imply that
people are performing non-trivial algebra in their heads in order to complete our task.
The benefit of a model with geometric interpretations is that it can be explained and
conceptualized without algebra. It may be difficult to ask an individual to calculate square
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roots and evaluate trigonometric functions, but it is easier to imagine a point in space
then imagine a new point that is double the distance away from you in the direction
of the original point. This is similar to how catching a thrown ball is fundamentally
different than solving a physics problem about a thrown ball. Our model with a built-
in geometric interpretation, holds a “feasibility advantage” over other models such that
the cognitive mechanisms required to emulate its output may already exist and be used
for other visual-spatial capacities. Consider the analogy of Bayesian cognition. That
is, the claim that people are “Bayesian” is infeasible as a literal claim since we cannot
assume that people calculate the computationally difficult integrals in their head required
by Bayes’ rule, despite often presenting behavioral patterns that loosely emulate Bayesian
models [17]. It may be that some other mechanism is the driving force of this emulating
behaviour. Claiming people to be Bayesian is equivalent to claiming that people literally
“use” vector reflections. While the geometric nature of vector representations provides
some degree of feasibility over and above literal Bayesian cognition, we still stress that
our model is effective in describing behaviour. Cognitive and neural extensions are left for
future work.
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Appendix A

Mathematics of Vector Reflections

What is an opposite probability distribution? This question motivated the development
of the mathematical theory this thesis is built upon. In this Appendix, we will formally
define Histogram Vectors, Vector Reflections, and the relevant properties of both.

There is no mathematical definition for an “inverse” or “opposite” probability distri-
bution. Given a histogram, we can derive a “reflected” histogram using vector projections.

Definition A.0.1. Histogram Vector
A vector v⃗ ∈ Rn where each element vi, for 1 ≤ i ≤ n, represents the value of bin i of a
histogram with n bins, is called a histogram vector.

Remark. Each element of a histogram vector must have a value greater than or equal to 0.

Example 1

The vector v⃗ =


v1
v2
v3
v4
v5

 =


10
10
20
35
25

 ∈ R5 represents the following histogram:
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Remark. A histogram vector with all elements of equal value represents a uniform distri-
bution.

Now that we can represent histograms as vectors with certain properties, we are able
to use established tools and operations from linear algebra as fact.

Definition A.0.2. Vector Reflection
For vectors u⃗ and v⃗ ∈ Rn, the vector w⃗ where

w⃗ = proju⃗v⃗ − perpu⃗v⃗

= proju⃗v⃗ − (v⃗ − proju⃗v⃗)

= 2proju⃗v⃗ − v⃗

= 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗

is called the reflection of v⃗ over u⃗.

Remark. For vectors u⃗ and v⃗ ∈ Rn, proju⃗v⃗ + perpu⃗v⃗ = v⃗. By subtracting perpu⃗v⃗, from
proju⃗v⃗, we get a vector w⃗ that has the “opposite” non-u⃗ component vector to v⃗. The
equivalent expression of 2proju⃗v⃗− v⃗ is derived from a simple algebraic manipulation of the
definition of perpu⃗v⃗ (see above).
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Example 2

What is the reflection of v⃗ =

[
1
5

]
over u⃗ =

[
4
4

]
?

Solution: By Definition 1.2, the reflection of v⃗ =

[
1
5

]
over u⃗ =

[
4
4

]
is

x1

x2

u⃗

v⃗

w⃗

proju⃗v⃗

perpu⃗v⃗

−perpu⃗v⃗

2proju⃗v⃗

−v⃗

w⃗ = 2proju⃗v⃗ − v⃗

= 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗

= 2

[
1
5

]
·
[
4
4

]
[
4
4

]
·
[
4
4

] [
4
4

]
−

[
1
5

]

= 2
24

32

[
4
4

]
−

[
1
5

]
=

[
6
6

]
−

[
1
5

]
=

[
5
1

]
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Comparing v⃗ to w⃗ from Example 2, we find that they appear to be ”opposites” of sorts.
In fact, we can show v⃗ and w⃗ are truly “reflections” of each other, with the angle from v⃗
to u⃗, equivalent to the angle from u⃗ to w⃗.

Theorem A.0.3. If v⃗, u⃗ and w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗ − v⃗ ∈ Rn, with θ1 and θ2 the angle between v⃗

and u⃗, and u⃗ and w⃗, respectively, then θ1 = θ2.

Proof.

∥w⃗∥2 = w⃗ · w⃗ = (2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗) · (2 v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗) (A.1)

= 2
v⃗ · u⃗
u⃗ · u⃗

u⃗ · (2 v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗)− v⃗ · (2 v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗) (A.2)

= 4
(v⃗ · u⃗)2

u⃗ · u⃗
− 2

(v⃗ · u⃗)2

u⃗ · u⃗
− 2

(v⃗ · u⃗)2

u⃗ · u⃗
+ v⃗ · v⃗ (A.3)

= v⃗ · v⃗ (A.4)

= ∥v⃗∥2 (A.5)

∴ ∥w⃗∥ = ∥v⃗∥ (Since vector lengths are non-negative) (A.6)

Similarly:

w⃗ · u⃗ = (2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗) · u⃗ (A.7)

= 2v⃗ · u⃗− v⃗ · u⃗ (A.8)

= v⃗ · u⃗ (A.9)

∴ w⃗ · u⃗ = v⃗ · u⃗ (A.10)
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By the geometric definition of dot products:

v⃗ · u⃗ = ∥v⃗∥∥u⃗∥ cos (θ1) and w⃗ · u⃗ = ∥w⃗∥∥u⃗∥ cos (θ2) (A.11)

∴ θ1 = arccos
( v⃗ · u⃗
∥v⃗∥∥u⃗∥

)
and θ2 = arccos

( w⃗ · u⃗
∥w⃗∥∥u⃗∥

)
(A.12)

θ1 = arccos
( v⃗ · u⃗
∥v⃗∥∥u⃗∥

)
(A.13)

= arccos
( w⃗ · u⃗
∥v⃗∥∥u⃗∥

)
(By 10) (A.14)

= arccos
( w⃗ · u⃗
∥w⃗∥∥u⃗∥

)
(By 6) (A.15)

= θ2 (By 12) (A.16)

∴ θ1 = θ2 (A.17)
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Given these established properties of vector reflections, we may be able to reflect a
histogram vector over the uniform to find an “opposite” histogram.

A.1 Reflecting Histogram Vectors

Proposition A.1.1. For any histogram vector v⃗ and the uniform histogram vector u⃗ =a...
a

 ∈ Rn, w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ is the histogram vector representing the ”opposite” histogram

represented by v⃗.

Example 3

Consider the histogram vector v⃗ =


10
10
20
35
25

 ∈ R5 from Example 1. By Proposition 2.1,

the opposite histogram vector w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗ − v⃗ =


30
30
20
5
15

, which represents the following

histogram:
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Remark. As long as the uniform vector u⃗ has all n elements of equal value, by the properties
of vector projection, the particular value of the elements within u⃗ will not change the result
of w⃗.
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We also notice that the sum of all the bin values of the original histogram is equal to
the sum of all the bin values of the opposite histogram. In fact, this is true in the general
case.

Theorem A.1.2. For any vector v⃗, uniform histogram vector u⃗ =

a...
a

, and reflected

vector w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ ∈ Rn,
n∑

i=1

vi =
n∑

i=1

wi.

Proof.

By the algebraic definition of dot product:
n∑

i=1

wi = w⃗ · 1⃗ (A.1)

= (2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗) · 1⃗ (A.2)

= (2
v⃗ · u⃗
u⃗ · u⃗

)u⃗ · 1⃗− v⃗ · 1⃗ (A.3)

=
(
2

n∑
i=1

a(vi)

n∑
i=1

a2

) n∑
i=1

a−
n∑

i=1

vi (A.4)

= 2

a
n∑

i=1

vi

na2
na−

n∑
i=1

vi (A.5)

= 2
n∑

i=1

vi −
n∑

i=1

vi (A.6)

=
n∑

i=1

vi (A.7)

This result is very important in the context of histogram vectors. We know that the
sum of all bins of the original histogram is equal to the sum of all bins of the opposite
histogram.
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A.2 When Things Go Wrong

Unfortunately, not all histogram vector reflections work out so nicely. Consider the follow-
ing example:

Example 4

Let v⃗ =


5
20
50
10
15

 and u⃗ =


20
20
20
20
20

. Therefore, w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ =


35
20
−10
30
25

.
Note that while the sum of all elements of w⃗ is still equal to the sum of all elements

of v⃗, we have a negative element in w⃗ (w3 = −10). This result disproves Proposition 2.1,
since w⃗ contains a negative element and thus is not a valid histogram vector (by Definition
1.1).

As it turns out, there is a condition that each element vi of a histogram vector v⃗ must

satisfy so that the reflected vector w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗−v⃗ is also a valid histogram vector. However,

we must first uncover the structure of each element wi of w⃗ in terms of the corresponding
element vi of v⃗.
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w⃗ =

w1
...
wn

 = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ (A.1)

= 2

v1...
vn

 ·

a...
a


a...
a

 ·

a...
a


a...
a

−

v1...
vn

 (A.2)

= 2
a(v1 + ...+ vn)

na2

a...
a

−

v1...
vn

 (A.3)

= 2
(v1 + ...+ vn)

na

a...
a

−

v1...
vn

 (A.4)

=


2

n
(v1 + ...+ vn)

...
2

n
(v1 + ...+ vn)

−

v1...
vn

 (A.5)

=


2

n
(v1 + ...+ vn)− v1

...
2

n
(v1 + ...+ vn)− vn

 (A.6)

∴ wi =
2

n
(v1 + ...+ vn)− vi for 1 ≤ i ≤ n (A.7)

Theorem A.2.1. If vectors v⃗ =

v1...
vn

, u⃗ =

a...
a

, and w⃗ =

w1
...
wn

 ∈ Rn, such that w⃗ =

2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗, then wi ≥ 0 if and only if v1+, . . . ,vi−1+ vi+1+ . . .+vn ≥ (
n

2
− 1)vi, for every

vi where 1 ≤ i ≤ n.
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Proof.

Assume wi ≥ 0 (1 ≤ i ≤ n)

(A.1)

⇐⇒ 2

n
(v1 + ...+ vn)− vi ≥ 0 (A.2)

⇐⇒ 2

n
v1 + ...+

2− n

n
vi + ...+

2

n
vn ≥ 0 (A.3)

⇐⇒ 2

n
v1 + ...+

2

n
vi−1 +

2

n
vi+1 + ...+

2

n
vn ≥ n− 2

n
vi (A.4)

⇐⇒ 1

n
v1 + ...+

1

n
vi−1 +

1

n
vi+1 + ...+

1

n
vn ≥

(n
2
− 1

)
n

vi (A.5)

⇐⇒ v1 + ...+ vi−1 + vi+1 + ...+ vn ≥
(n
2
− 1

)
vi (Since n ≥ 0) (A.6)

By replacing all ≥ with =, we immediately get the following result:

Corollary A.2.1.1. If vectors v⃗ =

v1...
vn

, u⃗ =

a...
a

, and w⃗ =

w1
...
wn

 ∈ Rn, such that w⃗

= 2
v⃗ · u⃗
u⃗ · u⃗

u⃗ − v⃗, then wi = 0 if and only if v1+, . . . ,vi−1 + vi+1+ . . .+vn = (
n

2
− 1)vi, for

every vi where 1 ≤ i ≤ n.

Example 5

Consider the vector v⃗


10
10
20
35
25

 ∈ R5 from Example 1 and 3. We know v⃗ had a valid opposite

histogram, therefore by Theorem 3.1, it must satisfy
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v1 + ...+ vi−1 + vi+1 + ...+ v5 ≥
(5
2
− 1

)
vi for 1 ≤ i ≤ 5.

i = 1 v2 + v3 + v4 + v5 ≥
(5
2
− 1

)
v1

10 + 20 + 35 + 25 ≥
(3
2

)
10

90 ≥ 15 ✓

i = 2 v1 + v3 + v4 + v5 ≥
(5
2
− 1

)
v2

10 + 20 + 35 + 25 ≥
(3
2

)
10

90 ≥ 15 ✓

i = 3 v1 + v2 + v4 + v5 ≥
(5
2
− 1

)
v3

10 + 10 + 35 + 25 ≥
(3
2

)
20

80 ≥ 30 ✓

i = 4 v1 + v2 + v3 + v5 ≥
(5
2
− 1

)
v4

10 + 10 + 20 + 25 ≥
(3
2

)
35

65 ≥ 52.5 ✓

i = 5 v1 + v2 + v3 + v4 ≥
(5
2
− 1

)
v5

10 + 10 + 20 + 35 ≥
(3
2

)
25

75 ≥ 37.5 ✓

Example 6

Consider the vector v⃗ =


5
20
50
10
15

 from Example 4. We know v⃗ did not have a valid opposite

histogram w⃗, since w3 = −10. Therefore, by Theorem 3.1, v3 did not satisfy the condition.
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We can verify this is the case:

i = 3 v1 + v2 + v4 + v5 ≥
(5
2
− 1

)
v3

5 + 20 + 10 + 15 ≥
(3
2

)
50

50 ≱ 75

A.3 Adjusting Reflections

In the previous section, we discovered that not all reflected histogram vectors create valid
opposite histogram vectors because the resulting vector may contain a negative element.
However, we also discovered the conditions that must be satisfied by the original vector in
order to create a successful reflection. In this section, we will explore a possible adjustment
algorithm to make any reflected histogram vector a valid opposite histogram vector.

Lemma A.3.1. For any vector w⃗ =

w1
...
wn

 and c⃗ =

−min(w1, ..., wn)
...

−min(w1, ..., wn)

 ∈ Rn,

x⃗ = w⃗ + c⃗ is a histogram vector (xi ≥ 0 for 1 ≤ i ≤ n).
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Proof.

Consider w⃗ =



w1
...

wm−1

wm

wm+1
...
wn


where wm = min(w1, ..., wn). (A.1)

∴ x⃗ =



w1
...

wm−1

wm

wm+1
...
wn


+



−min(w1, ..., wn)
...

−min(w1, ..., wn)
−min(w1, ..., wn)
−min(w1, ..., wn)

...
−min(w1, ..., wn)


(A.2)

=



w1
...

wm−1

wm

wm+1
...
wn


+



−wm
...

−wm

−wm

−wm
...

−wm


(A.3)

=



w1 − wm
...

wm−1 − wm

0
wm+1 − wm

...
wn − wm


(A.4)

∴ x⃗ is a valid histogram vector since wm is the minimum value and thus wi − wm ≥ 0 for
1 ≤ i ≤ n.

Lemma 4.1 allows us to subtract the value of the “maximally negative” element from
all elements in a vector, creating a new vector with no negative values. In the context of
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histogram vectors, if a reflected histogram vector is not valid (has negative element(s)), we
can add the most negative value to all elements to create a valid histogram vector.

Definition A.3.2. For any histogram vector v⃗ =

v1...
vn

, uniform histogram vector u⃗, and

w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ ∈ Rn, we define c⃗ =

−min(w1, ..., wn)
...

−min(w1, ..., wn)

 ∈ Rn as the “Correction Vector”

of w⃗ and x⃗ = w⃗ + c⃗ as the “Corrected Histogram Vector” of w⃗.

However, by correcting an invalid histogram vector reflection by using c⃗ to create x⃗, we
lose many of the nice properties we established earlier.

Example 7

Consider v⃗ =


5
20
50
10
15

, u⃗ =


20
20
20
20
20

, and w⃗ = 2
v⃗ · u⃗
u⃗ · u⃗

u⃗− v⃗ =


35
20
−10
30
25

 from Example 4. According

to Lemma 4.1, c⃗ =

−min(w1, ..., wn)
...

−min(w1, ..., wn)

 =


10
10
10
10
10

, and x⃗ = w⃗+ c⃗ =


35
20
−10
30
25

+


10
10
10
10
10

 =


45
30
0
40
35

.
Since we are now working with v⃗ and x⃗, rather than v⃗ and w⃗, Theorems 1.3 and 2.2 no
longer apply. In this example, we find:

n∑
i=1

xi = 150 ̸= 100 =
n∑

i=1

vi

Remark. We can see that in the general case,
n∑

i=1

xi =
( n∑

i=1

wi

)
−n×min(w1, ..., wn) since c⃗ subtracts min(w1, ..., wn) from all n elements

of w⃗ to create x⃗.
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Similarly, we can also see the angle between v⃗ and u⃗ (θ1) is not equal to the angle
between u⃗ and x⃗ (θ2):

θ1 = arccos
( v⃗ · u⃗
∥v⃗∥∥u⃗∥

)
θ2 = arccos

( u⃗ · x⃗
∥u⃗∥∥x⃗∥

)
θ1 = arccos

( 2000√
3250×

√
2000

)
θ2 = arccos

( 3000√
2000×

√
5750

)
θ1 ≈ 0.67 θ2 ≈ 0.49

∴ θ1 ̸= θ2

Remark. It is important to note that while our corrected vector x⃗ may no longer share the
same propeties as v⃗, since our correction vector c⃗ contains all the same elements, it is a
scalar multiple of the uniform vector u⃗. Therefore, like w⃗, x⃗ can be written as a linear
combination of v⃗ and u⃗ and ∈ Span{v⃗, u⃗}.

A.4 Conclusion

We have seen how histograms can be represented as vectors called histogram vectors.
Reflecting a histogram vector across a uniform histogram vector gives us an “opposite”
histogram. These vectors and their reflections have similar properties, such as equal sum
of all elements (Theorem 1.3), and equal angle from the uniform (Theorem 2.2). However,
in some cases (see Theorem 3.1), our reflected vector contains a negative value and thus
is not a valid histogram. This can be corrected by subtracting the “maximally negative”
component from each element of the reflected vector. However, this method no longer
ensures the original vector will have the same properties as its corrected opposite.
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