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Abstract We present Dash, an extension to the Alloy language to model dy-
namic behaviour using the labelled control state hierarchy of Statecharts. From
Statecharts, Dash borrows the concepts to specify hierarchy, concurrency, and
communication for describing behaviour in a compositional manner. From Al-
loy, Dash uses the expressiveness of relational logic and set theory to abstractly
and declaratively describe structures, data, and operations. We justify our se-
mantic design decisions for Dash, which carefully mix the usual semantic un-
derstanding of control state hierarchy with the declarative perspective. We de-
scribe and implement the semantics of a Dash model by translating it to Alloy,
taking advantage of Alloy language features. We evaluate our Dash translation
and perform model checking analysis, enabled by our translation, in the Alloy
Analyzer using several case studies. Dash provides modellers with a language
that seamlessly combines the semantics of control-modelling paradigms with
Alloy’s existing strengths in modelling data and operations abstractly.
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1 Introduction

The goal of model-driven engineering (MDE) [43] is to reduce the complexity
of software-based systems through the use of models that are more abstract
than descriptions in design and code. Analysis engines applied to the models
provide feedback on a model’s correctness prior to downstream development.
Alloy [23, 22] is a popular modelling language with a simple, yet powerful,
syntax of relational logic with quantifiers and transitive closure; and auto-
mated tool support, which searches for instances and counterexamples within
a finite scope. Alloy has been used in many applications (e.g., program verifi-
cation [41], network protocols [55], security [25], train control [48]) and has a
strong user community 1.

Although Alloy is often used for the exploration and analysis of struc-
tures in software designs, it can also be used to model dynamic behaviour
abstractly. Uninterpreted sets and uninterpreted or semi-interpreted relations
are supported, and changes to these relations over time are described declar-
atively to form a transition system. Temporal logic model checking queries
of these transition systems can be specified and evaluated in the Alloy Ana-
lyzer using bounded model checking [4, 10], linear temporal logic (LTL) model
checking [28] or transitive-closure-based model checking [16].

However, the Alloy language in versions prior to version 6 did not include
any explicit language constructs for modelling dynamic behaviour [23]. Two
existing extensions of Alloy for modelling the flow of time and change are
Electrum [28] (which has now been included in Alloy 6) and DynAlloy [17].
Electrum adds the declaration of time-varying values to Alloy, and LTL as
operators to describe system behaviour. DynAlloy extends Alloy with actions
that can be composed sequentially, non-deterministically, or iteratively to rep-
resent system changes arranged in a manner similar to an imperative program.
Missing is an extension to Alloy that allows modellers to describe dynamic be-
haviour with labelled, hierarchical, concurrent states, which originated with
Statecharts [21] and were made popular by UML Statemachines [50].

We present a new extension to Alloy, called Dash, which provides Statecharts-
like language abstractions to model dynamic behaviour. Dash extends Alloy
with transition declarations, a useful construct to represent change. A tran-
sition permits a modeller to describe when, and what change happens in a
model. To describe when a transition occurs, Dash provides the hierarchical
and concurrent control states of Statecharts and the guards of transitions.
To describe what changes, Dash provides transition actions and destination
control states. The guards and actions of transitions are described abstractly
in Alloy, which fits nicely with declarative modelling. Labelled control states
allow modellers to name a point in the model’s execution with transitions
exiting or entering that state. Hierarchy provides a means of concisely group-
ing behaviours (all states within a state share some common behaviours) and

1 The community organizes spaces to discuss the future of Alloy, help modellers and
developers of the language, and has a dedicated research track in an international conference
(see http://alloytools.org/community.html).

http://alloytools.org/community.html
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expressing priority. Concurrent states provide modularity by allowing the de-
scription of behaviours that are (mostly) independent. A Dash model is a
declarative description of a transition system at the level of first-order logic
and set theory. Our work is aimed at Statecharts or UML modellers who seek a
way to describe behaviour more abstractly. Modellers who use Alloy to model
dynamic systems will also benefit from the abstractions that Dash provides to
model complex control-oriented behaviour.

Extending our previous proposal for Dash syntax [46], this paper describes
Dash syntax in full (Section 3), and adds the following novel contributions:

– a definition of the semantics of Dash, which seamlessly integrate hierarchi-
cal control constructs with declarative modelling (Section 4),

– a method (and tool) for translating Dash models to Alloy (Section 5),
– case studies that show the modelling capabilities of Dash across the spec-

trum of data- and control-oriented systems, and that verification of Dash
models is feasible (Section 6).

In Section 4, we describe the semantic choices for Dash. We address the
meaning of concurrency, events, and the frame problem, creating the usual big
steps and small steps of Statecharts. The challenge in choosing these semantics
is to merge the usual declarative perspective of allowed underspecification
(i.e., if not explicitly constrained, non-deterministic change is allowed) with
the operational perspective of Statecharts of explicit specification (i.e., if not
constrained, implicitly no change is allowed). Guided by our semantic choices,
we describe a translation from Dash to Alloy so that no new tools are required
for analysis (Section 5). The challenge in developing this translation is to match
our semantic choices for Dash without creating extra state space. We describe
how we exploit Alloy language features to model the control state hierarchy of
Dash. Our translator is implemented using Xtext [53] and is available on-line
at the Dash website2, so anyone can try writing a Dash model and use the
publicly available Alloy Analyzer to check properties of their models.

We evaluate Dash by comparing examples of Dash models of dynamic
systems with either hand-crafted Alloy models or the equivalent Alloy models
resulting from our translation (Section 6). Our case studies include a large
model from an avionics software development project. To evaluate the analysis
enabled by our translator, we model checked several properties of the models.
Our cases studies show that Dash can model systems across the data-oriented
to control-oriented spectrum concisely; that useful results can be achieved by
model checking Dash models in Alloy; and that the counterexamples produced
by Alloy can be understood in terms of the Dash model. The case studies are
available on-line at the Dash website.

With the creation of Dash, we enable the modelling and automatic anal-
ysis of models constructed using common and useful constructs from both
declarative languages and control-oriented languages.

2 http://dash.uwaterloo.ca:8080/
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2 Background

2.1 Alloy

Alloy is a popular modelling language based on first-order logic and set theory.
Using a finite model finder called Kodkod [49], given finite sizes (scopes) for
each set, the Alloy Analyzer automatically searches for instances (values for
the sets and relations) that satisfy a model’s constraints. In an Alloy model, a
set is described using a signature and elements of a signature are called atoms.
Relations between this set and another set are specified as fields within the
signature:

1 abstract sig A {} // a set called A

2 sig C, D {} // a set called C and a set called D

3 sig B extends A { // a subset of A called B

4 R1: C, // a relation from B to C

5 R2: C -> lone D // a relation from B to C to D

6 }

Alloy uses keywords such as no (empty), lone (at most one element), one

(exactly one element), some (one or more elements), and set (any number of
elements, including zero) to constrain the multiplicity of relations and expres-
sions. If no multiplicity is declared the default one applies. An Alloy signature
that extends another signature is a subset and is called a subsignature. All
the immediate subsignatures of a signature are disjoint3. A signature can be
declared as abstract meaning that the set can only contain atoms that are in
the subsignatures. Constraints in Alloy are described in facts such as:

1 fact {

2 // at least one c for every b in R1

3 all b: B | some c in b.R1

4 }

The expression b.R1 conveniently looks like the R1 field of B’s record/class,
but is actually using the join operator (.) to take the range of the pairs in R1

that have b as their first element4. The association of relations directly with
signatures gives the Alloy language an object-oriented flavour, although there
is no means of relating behavioural changes with the signature. Alloy provides
common set operations on relations and functions (such as join, union, etc.),
and goes beyond first-order logic by including the transitive closure operator
(which can be computed for a finite set):

1 C + D // union of C and D

2 C - D // difference of C and D

3 C & D // intersection of C and D

4 ^R1 // transitive closure of R1

Alloy facts can be decomposed into predicates and functions that take
arguments. The Alloy Analyzer produces a visual representation of a satisfying
instance when one can be found.

3 Non-mutually disjoint subsets can also be modelled.
4 Technically, Alloy has no scalars, so b is a singleton subset of B.
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Modelling a transition system in Alloy is accomplished by creating a set of
states and constraining a binary relation over these states to be the transition
relation. The transition relation can be iterated to do bounded model checking
(BMC) [4, 10]. Via Electrum (which is now part of the Alloy Analyzer as of
version 6), dynamic models can be translated to nuXmv [28]. For the evaluation
of model checking properties of Dash models, we use transitive-closure-based
model checking (TCMC) [16], in which the meaning of all temporal operators
in Computation Tree Logic with fairness constraints (CTLFC) [8] are described
in terms of Alloy’s transitive closure operator.

2.2 Statecharts

Statecharts [21] is a graphical formalism for modelling the transition systems
of reactive (meaning interactive with their environment), non-terminating sys-
tems, with control-oriented behaviour. Control states have labels and are rep-
resented as nodes in a graph, and transitions are represented as arrows enter-
ing or leaving a state. Figure 1 is the Statecharts representation of a two bit
counter (the two bit counter example is described in more detail in Section 3).
Statecharts introduces three useful abstractions as constructs for modelling.

– A control state represents an equivalence class of executions with the
same possible future behaviours in the system. Control states with no de-
composition are called basic states. For example, in Figure 1 the states
Off and On inside the state Bit1 are both basic states5.

– An OR-state is a control state that is a parent of one or more other states.
For a modeller, this abstraction allows them to group concepts together
with related behaviours. The hierarchy is also a means of expressing priority
as the transitions exiting states higher in the hierarchy have priority over
transitions exiting child states.

– An AND-state is a control state that is a parent to a group of states that
together operate independently from sister states to their parent state6.
AND-states (also called concurrent states/components) can communicate
with each other but can take transitions independently. For example, in
Figure 1, Bit1 and Bit2 are concurrent states that operate independently,
but they communicate through the event tk1, which is generated when
transition t2 is taken and triggers transition t3. Two transitions are or-
thogonal if they are contained in different concurrent components.

In Statecharts, default states define the states the system is in upon initial-
ization. Default states are represented by a transition to a state from a black
dot. In Figure 1, the default states are Bit1_Off and Bit2_Off.

5 In the rest of this article, we concatenate the names of states in the hierarchy to refer
to a particular state. For example, to refer to the state On inside the state Bit1 we use
Bit1_On .
6 Our terminology is slightly non-standard: in Statecharts variants, there is often a parent

AND-state with OR-state components that execute concurrently. In Dash, we have elimi-
nated the need for the parent state and label components that run concurrently with each
other as concurrent states.
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Fig. 1: Statecharts representation of a two bit counter.

Statecharts are a very popular modelling notation with many variations
in its semantics [13, 2]. Because of the concurrent states, the semantics are
described in terms of big and small steps. A big step consists of multiple small
steps (individual transitions) that are the combined reaction of the model to
an environmental input (taking a transition in one concurrent component can
trigger transitions in another concurrent component). A version of Statecharts
has been incorporated in UML statemachines [50]. Modellers find the labelling
and hierarchy of states to be very useful abstractions to decompose the control-
oriented behaviour of a system.

3 Dash

Dash extends Alloy with features for creating behavioural models. The fun-
damental constructs in Dash are the description of a state hierarchy, a set of
transitions, and the initial constraints. In the next few paragraphs, we describe
these constructs in Dash. Some additional syntactic constructs that facilitate
the concise description of behavioural models in Dash are briefly described at
the end of this section.

We explain Dash syntax and its features using two running examples. Each
example highlights different features of Dash. The first example is the game
musical chairs (adapted from [35]) and we use it to help in the presentation
of state hierarchy, snapshot variables, events, and transitions. Musical chairs
is a classical children’s game where players dance to music around a set of
chairs, eliminating players and chairs in each round until there is only one
player sitting on a chair at the end of the game. Figure 2 shows part of a
Dash model for the game musical chairs. On line 2 a concurrent state called
Game is created, which is the root state of the hierarchy. A Dash model may
have multiple root states, but all root states must be declared as concurrent
components. Concurrent components are described with the conc keyword.
Nested within Game there are control states Start (the default state on line
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1 sig Chair , Player {}

2 conc state Game {

3 players: set Player // snapshot variables

4 chairs: set Chair

5 occupied: Chair set -> set Player

6 env event MusicStarts {} // events

7 env event MusicStops {}

8 init { // initial constraints

9 #players > 1

10 #players = (# chairs).plus [1]

11 occupied = none -> none // empty relation

12 }

13 default state Start {...} // default state

14 state Walking {

15 trans Sit { // transition

16 on MusicStops // event trigger

17 goto Sitting // dest state

18 do { // action

19 occupied ’ in chairs -> players

20 chairs ’ = chairs

21 players ’ = players

22 // occupied is a total function

23 all c : chairs ’ | one c.(occupied ’)

24 // occupied is an injective function

25 all p : Chair .(occupied ’) | one occupied ’.p

26 }

27 }

28 }

29 state Sitting {...}

30 }

Fig. 2: Dash model for musical chairs.

13), Walking (line 14), and Sitting (line 29), which represent the phases of
the game. States can be arbitrarily nested in the state hierarchy.

The second running example, described in Dash in Figure 3 and a State-
charts representation in Figure 1, is a two bit counter (adapted from [13]) that
we use to describe features such as concurrency, namespaces, and events. In
the bit counter example, the concurrent control states Bit1 and Bit2 repre-
sent the least and most significant bits of the counter, respectively. Clock ticks
are modelled using the environmental event Tk0 and every time this event is
received the internal count of Bit1 is incremented. After an even number of
ticks, Bit1 sends the event Tk1 and then Bit2 increments its internal count.
Finally, after four ticks Bit2 sends the event Done to signal the end of the
counting process. An environmental event represents input that is generated
by the environment and can trigger transitions. Variables can also be declared
as environmental, which means the model does not control their values and
their values can change non-deterministically at the end of a big step. An
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event or variable is declared to be environmental using the keyword env7. An
internal event is generated by the model and an internal variable is controlled
by the model.

1 conc state Counter {

2 env event Tk0 {}

3 conc state Bit1 { // concurrent state declaration

4 event Tk1 {} // local event

5 default state Bit1_Off {}

6 state Bit1_On {}

7 trans T1 {

8 from Bit1_Off

9 on Tk0

10 goto Bit1_On

11 }

12 trans T2 {

13 from Bit1_On

14 on Tk0

15 goto Bit1_Off

16 send Tk1

17 }

18 }

19 conc state Bit2 {

20 event Done {}

21 default state Bit2_Off {}

22 state Bit2_On {}

23 trans T3 {

24 from Bit2_Off

25 on Bit1/Tk1 // element qualified name

26 goto Bit2_On

27 }

28 trans T4 {

29 from Bit2_On

30 on Bit1/Tk1

31 goto Bit2_Off

32 send Done

33 }

34 }

35 }

Fig. 3: Dash model of a two-bit counter.

A snapshot is a mapping from variables to values, that changes as the
model takes transitions (steps). A variable of a snapshot can consist of any
type of value representable in Alloy. Chair and Player are uninterpreted sets
introduced in Figure 2, line 1. Declarations within a state are variables that
are part of the snapshot (i.e., they can change value during the execution of
a model). In musical chairs, the set of active players, active chairs, and the
relationship between chairs and players (i.e., who is sitting where) are the

7 Our translator raises an error if a model tries to constrain the next value of an environ-
mental variable or generate an environmental event.
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snapshot variables (lines 3–5). The events of the music starting and stopping
are declared on lines 6 and 7; these are declared to be environmental. Initial
constraints on the variables are shown on lines 8–12 of the musical chairs model
(Figure 2) and are described in pure Alloy syntax. These constraints ensure
that when the game starts there is more than one player, there is one less chair
than players and no one is sitting down.

Transitions are described within a trans block following the template:

1 trans <label > {

2 from <src_state >

3 on <trigger_event >

4 when <guard_condition in Alloy >

5 goto <dest_state >

6 do <action in Alloy >

7 send <generated_event >

8 }

These keywords are chosen to match the way a transition is described in En-
glish. An example transition is on lines 15-27 of the musical chairs model in
Figure 2. Each component of a transition is optional and understood within
its context. Transition Sit omits the from part of the transition and its source
state is understood to be Walking. The action of the transition (do) is any
formula in Alloy. Following the common Z style [47], unprimed variables are
the current values of snapshot elements and primed variables are the variable
values in the next snapshot8. For example, the formula on line 23 of Figure 2,
means that every chair must have someone sitting on it in the next snapshot.
There is no need to state all the possible combinations of which player could
sit on which chair. This is an example of the conciseness and abstraction of
declarative modelling, in contrast to typical control-oriented languages where
the action is limited to being a sequence of assignments. The guard condi-
tion (when) is any formula in Alloy but may only refer to unprimed snapshot
variables. We refer to the source state, guard condition, and the event trigger
together as the pre-condition of a transition; and the action, generated event,
and destination state as the post-condition.

Figure 3 shows how the nesting of control states in Dash matches the State-
charts hierarchy of Figure 1 with Bit1 and Bit2 being concurrent components.
State blocks define namespaces in Dash. A reference to a variable from another
state must be prefixed by its home state as on lines 25 and 30 in Figure 3.
While the semantics use global communication (as in most Statecharts lan-
guages), supporting namespaces means that duplicate names are not an issue
and modellers are aware of locality. A transition can generate an event using
the keyword send as on line 32.

Many times it is useful to describe invariants9 about a snapshot of the
system as part of the behavioural specification. In Dash, we can describe these

8 In the latest release of Alloy, which incorporates Electrum, prime has a special meaning,
thus we would have to change our use of prime. For example, instead of s’ we would rewrite
it to s_next to be compatible with the newest version of Alloy.

9 We mean invariants that are part of the model’s behaviour not properties to check of
the model.
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constraints within an invariant block, and they hold whenever the state that
contains the invariant declaration is active. For example, in the musical chairs
game an invariant of the Walking state that there are no occupied chairs while
the players are walking could be declared as:

1 state Walking {

2 invariant NoOccupiedChair {

3 no occupied

4 }

5 }

Dash offers some syntactic sugar to ease the description of the behaviour
of a system. These syntactic constructs are meant to help in code reuse, sys-
tematic organisation, and facilitate the decomposition of a model based on
different factors. A set of transitions can be described in a single statement
using transition comprehension. For example,

1 trans to_error {

2 from * on error goto ErrorState

3 }

describes a set of transitions, one from every child state of the state that con-
tains the transition comprehension declaration, that each go to the ErrorState

on an error event. Using addons, part of the definition of a transition can
be described in a different part of the model, similar to aspect-oriented mod-
elling [12]. These addons are layered together to get the full description of a
transition. For example:

1 addon (do incErrorCounter) to (from * to ErrorState)

adds the action incErrorCounter to every transition whose destination is the
ErrorState. Another feature is transition templates, which capture sim-
ilarities in transitions to avoid duplication in a model. A template is a pa-
rameterized definition of a transition that can be instantiated. Also, after
recognizing the role that control states play in factoring snapshots into groups
that have the same possible future behaviours, we realized that transitions
can also be factored by events and conditions. There are models where
control states are not a natural way to describe the behaviour and for these
models labelled states can be omitted (except for the root state) and events
and conditions can be used to structure the set of transitions. In these cases,
the transitions are described within an event or condition block. These fac-
toring blocks can be nested within each other any number of times to represent
complex behaviours. Factoring offers a mechanism to systematically organise
the transitions in a model and accommodates different modelling paradigms
(e.g., event-based modelling).

4 Semantic Decisions

Choosing a semantics for Dash must combine the meaning of the Alloy for-
mulas used in the guards and actions of transitions with a semantics for Stat-
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Table 1: Semantics Decisions for Dash.

Semantic option Choice in Dash
Concurrency Single

Big step maximality Take one
Event lifeline Present in remainder of big step

Variable lifeline Immediate change in small step
Priority Source state outer hierarchical

echarts that has understandable properties for users. In choosing our seman-
tics, we seamlessly integrate the declarative perspective for data operations,
which allows underspecification, with the operational perspective of State-
charts, which prescribes exact specification and has concurrency.

There are different semantic definitions for languages within the State-
charts family each with its own characteristics [2, 13, 29, 36]. Because of con-
currency, semantics for hierarchical control states are usually given in terms
of a big step, which is a representation of how a system takes multiple tran-
sitions in reaction to environmental input. A big step consists of one or more
small steps, each of which can be one or more transitions. A big step con-
tinues until the model is stable, i.e., no more transitions are enabled. At a
stable snapshot, more environmental input (events and changes to variables)
is needed to enable transitions. A transition is enabled if the system is in its
source state, its trigger event is in the set of current events and its guard con-
dition is satisfied. Transitions in multiple concurrent states may respond to
the same environmental input (i.e., occur in the same big or small step), thus
the semantics of Dash must address the question of which transitions can be
taken together.

We rely on the semantic framework of Esmaeilsabzali et al. [13], which
describes a space of semantic aspects and options for this family of languages,
to guide our semantic decisions for Dash. Our choices for each of the semantic
options are described in Table 1, and are based on two reasons:

R1: As a declarative model, a transition action can describe a “large” change
(i.e., a sequence of operations in an action is rarely needed); and

R2: Users from both the declarative and control-oriented modelling approaches
should find the semantic choices for Dash intuitive.

The semantic aspect Concurrency determines how many transitions can
be taken in a small step. The option Single for this aspect means that only
one transition can be taken in a small step to ensure transition atomicity. This
choice is because of reason R2 since race conditions, which can occur when
two transitions modify the same variable, can make a model inconsistent, and
are difficult to debug.

The big step maximality aspect specifies the termination criteria for a
sequence of small steps, i.e., when a system is stable. One concurrent com-
ponent can generate events that cause transitions to be enabled in another
concurrent component, which are taken later in a big step. We choose the op-
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tion Take One, meaning that at most one transition per concurrent state can
be taken in a big step (i.e., all transitions in a big step must be orthogonal
to each other). For reason R2, this choice provides a guarantee of termination
of big steps. In the bit counter example (Figure 1), without the Take One se-
mantic choice, when the environment generates the event tk0 the model could
engage in the following non terminating big-step {t1 , t2 , t1, t2, t1, t2,

...}. However, the Take One semantic choice forces the model to take either
t1 or t2 but not both in a single big step. Because of reason R1, taking at
most one transition in each concurrent state in a big step is unlikely to be a
limitation.

For the event lifeline aspect, we choose the option Present in Remainder
of big step where a generated event can trigger transitions in the small steps
after its generation. For reason R2, we want the small steps to be causal,
meaning an event is generated before it triggers another transition within the
big step.

For the variable lifeline, we choose to make the effects of the actions of
a transition immediately available in the next small step to enable transitions,
permitting a cascading flow of variable changes. Because of Take One for big
step maximality, this choice for variable lifeline cannot cause a non-terminating
big step where two transitions keep enabling each other (reason R2).

For priority, we prioritize the transitions based on the hierarchy of the
source states. Transitions leaving a parent state have priority over those leaving
a child state. This local choice is easier to understand than priority based on
the lowest parent that includes both the source and destination state (reason
R2).

Finally, we have to address the frame problem [31] where there is a mis-
match between the usual semantics of declarative and control-oriented lan-
guages. In declarative languages, if a variable is not constrained in an action,
it can change non-deterministically. In control-oriented languages (where ac-
tions are typically a sequence of assignments), an unchanged variable retains
its value from the previous snapshot. We choose a middle ground between these
two perspectives favouring conciseness of description. In Dash, a variable de-
clared as env is allowed to change when the system is stable, but otherwise
it retains its value. For a non-environmental variable, if its primed version is
mentioned in the action of a transition, we assume the action constrains it;
if its primed version is not mentioned in the action then we require that the
variable retains its value from the previous snapshot. If the user does not like
this default semantic choice, it can be overridden by toggling an option in our
translator, thus allowing variables not mentioned in the transition’s action to
change non-deterministically in a transition.

Based on Esmaeilsabzali et al. [13], the set of semantic values we choose for
Dash results in the semantics of Dash being cancelling, non-deterministic, and
priority consistent. The semantics of Dash are cancelling because it is possible
for a transition to be enabled during a big step and then become disabled by
the effects of other transitions taken during the same big step. For example,
the trigger condition of a transition t may evaluate to true at the beginning
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of a big step, but after one or more small steps are taken, the cumulative
effects of the actions of the taken transitions may make the guard condition
of t false, disabling the transition. The non-determinism in the semantics of
Dash means that if the same environmental input is given to two big steps
of a model that have the same starting snapshot, the ending snapshots may
be different, even if both big steps execute the same set of small steps and no
transition is cancelled. The difference arises because of the order of execution of
the small steps affects the cumulative effects of the actions of the transitions
taken. Finally, the semantics of Dash are priority consistent, meaning that
transitions that have higher priority are always taken before other transitions
with lower priority. We believe these properties make Dash models easy to
understand for users.

5 Translating Dash to Alloy

We use the semantic decisions of the previous section to define a translation
of a Dash model to an Alloy model for formal analysis. Because Dash uses the
Alloy language for describing transition guards and actions, a Dash modeller
is expected to have knowledge of the Alloy language and Analyzer. Our goals
are: 1) to utilize features of the Alloy language as much as possible to produce
a concise representation of a Dash model’s behaviour; 2) to avoid introducing
extra state space in the translation; and 3) to create a mapping that will
make it as easy as possible for a user to understand counterexamples from
Alloy in terms of the original Dash model (which is evaluated in Section 6).
In general, it is easier to map control states into a first-order language than it
is to map first-order constructs into a mostly propositional language (see [16]
for a comparison of modelling in Alloy vs NuSMV [7]) therefore we choose to
map Dash to Alloy rather than map Dash to a model checking language such
as SMV [32]. Our translator is fully automatic and implemented in Xtext [53],
which provides robust editing tools.

Dash snapshots are translated into Alloy as a set of snapshots with relations
that link each snapshot to its variable values. The snapshot10 for the musical
chairs model (Figure 2) is:

1 sig Snapshot {

2 Game_players : set Player ,

3 Game_chairs : set Chair ,

4 Game_occupied : Chair set -> set Player ,

5 conf: set StateLabel , // active control states

6 events: set EventLabel , // events

7 taken: set TransitionLabel , // transitions taken

8 stable: one Bool // indicates big step boundaries

9 }

10 The actual translated model differs slightly because an Alloy module is used that con-
tains reusable definitions, and we perform some optimizations when generating the Alloy
code (described at the end of this section).
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In addition to relations for the model’s variables, a snapshot also includes
values for the set of control states called its configuration (conf), the set of
events (events), a history variable of the transitions that have been taken in
a big step (taken), and a boolean flag to indicate whether a snapshot is stable
(stable). The set of taken transitions is needed to determine which transitions
can be take in the rest of the big step (see later explanation).

We utilize Alloy’s subtyping to define the control state hierarchy. The Alloy
representation of the control state hierarchy of the bit counter model (Figure 3)
is:

1 abstract sig StateLabel {} // base type of all control states

2 abstract sig Counter extends StateLabel {}

3 abstract sig Bit1 , Bit2 extends Counter {}

4 one sig Bit1_Off , Bit1_On extends Bit1 {}

5 one sig Bit2_Off , Bit2_On extends Bit2 {}

An abstract signature StateLabel is the base type for all control states. The
relation conf contains elements of type StateLabel to determine the control
states of the snapshot. On line 2, the control state Counter is declared to
extend StateLabel. All non-basic control states are declared as abstract. The
concurrent components Bit1 and Bit2 are declared as abstract subsignatures
of Counter. Concrete (i.e., non-abstract) signatures are used for basic control
states. The keyword one means that a signature is a singleton set, meaning
it contains only one atom and this atom is distinct from the atoms in other
singleton signatures. These subsignatures directly match the meaning of the
control state hierarchy. For example, if the system is in state Bit1_Off, it is
also in state Bit1 because of the subtype hierarchy. Thus, we can check if
a state is in the current snapshot without searching through its ancestors or
descendants resulting in a very succinct method of encoding the control state
hierarchy in Alloy.

Events that are declared environmental (i.e., using the env Dash keyword)
are made subsignatures of an EnvironmentEvent signature. All other events
are declared as part of an InternalEvent signature. The event declarations
for the bit counter model are:

1 // base type of all events

2 abstract sig EventLabel {}

3 // base type of all env events

4 abstract sig EnvironmentEvent extends EventLabel {}

5 // base type of all internal events

6 abstract sig InternalEvent extends EventLabel {}

7 one sig Tk0 extends EnvironmentEvent {}

8 one sig Tk1 , Done extends InternalEvent {}

The identifiers of transitions are modelled as signatures. They all extend
the base signature TransitionLabel, as in the following fragment of the bit
counter model:

1 abstract sig TransitionLabel {}

2 one sig T1, T2, T3, T4 extends TransitionLabel {}

The initial generic constraint on snapshots is that the system is in its
default states, no transitions have been taken, and there are no internal events
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(which is checked by taking the intersection (&) of the events of the snapshot
and the set of internal events). Environmental events can be present in the
initial snapshot in order to enable transitions. Additional initial constraints
defined by a user are added to the model. For example, the initial constraint
for the musical chairs model is:

1 pred init[s: Snapshot] {

2 s.conf = { Game_Start }

3 no s.taken

4 no s.events & InternalEvent

5 // model specific constraints

6 #s.Game_players > 1

7 #s.Game_players = (#s.Game_chairs).plus [1]

8 s.Game_occupied = none -> none

9 }

s0
stable

s1
¬stable

s2
¬stable

s3 ¬stable
envev of s0
gen ev({t1, . . . , tn−1})
envvar of s0
intvar of s0
+actions({t1, . . . , tn−1})
{t1, . . . , tn−1}

s4 stable

new envev
gen ev({t1, . . . , tn})
new envvar
intvar of s0
+actions({t1, . . . , tn})
{t1, . . . , tn}

s5 ¬stable
envev of s4
gen ev({k1})
envvar of s4
intvar of s4
+actions({k1})
{k1}

t1 . . .
tn−1 tn k1

big step

Fig. 4: Snapshots in a big step.

The semantics of a Dash model is a next snapshot relation containing
pairs that are the possible small steps of a system. A modeller can check
temporal properties at the big step boundaries by checking the property only
when the system is stable. Some representations of Statecharts semantics use
a reset step (not involving a transition being taken) between the end of one
big step and the beginning of the next big step to clear the outputs generated
in a big step, and to prepare the system for the next environmental input
(e.g., [27, 36]). Having a reset step in SMV has little penalty in the performance
of model checking, however, in Alloy it increases the snapshot space with the
extra reset snapshots, which significantly degrades the performance of model
checking. Thus, in our translation of Dash models to Alloy, we avoid having a
reset step through careful declarative specification of the semantics of a small
step. Figure 4 shows a sequence of snapshots that are representative of the next
step relation defined by a Dash model. The nodes represent snapshots, and
details on the information contained in the relations11 linked to the snapshot
is given in tabular form. An arrow connecting two snapshots represent a small
step. Each small step takes one transition (due to the choice of Single for
concurrency). Snapshots that are stable are characterised by having:

11 Environmental and internal events/variables are stored in the same relation, but sepa-
rated for clarity in the diagram.



16 Jose Serna et al.

– an unconstrained set of environmental events (envev in Figure 4) that can
trigger transitions in the next big step;

– internal events that were generated (gen ev in Figure 4) by all the transi-
tions in the last big step;

– unconstrained environmental variables values (envvar in Figure 4) that
can trigger transitions in the next big step;

– internal variable values (intvar in Figure 4) that have the accumulated
effects of all actions (actions in Figure 4 where + is used informally) of
the transitions taken so far; and

– the set of transitions taken in the last big step.

The values of environmental events and variables do not change during the
small steps of a big step. However, these values are allowed to change non-
deterministically in stable snapshots (“new” in Figure 4). We do not show
the changes in the conf, which include exiting the source control states of the
taken transition and entering its destination states.

Next, we describe how the small step relation for a Dash model is defined
in Alloy as the disjunction of predicates that describe each transition of the
model. For example, the small step relation for musical chairs is:

1 pred small_step[s, s’: Snapshot] {

2 // naming convention:

3 // RootState_EnclosingState_TransitionName

4 Game_Start_Walk[s, s’] or

5 Game_Start_DeclareWinner[s, s’] or

6 Game_Walking_Sit[s, s’] or

7 Game_Sitting_EliminateLoser[s, s’]

8 }

Only one of these transition predicates will be true in a small step because
each predicate contains a semantic constraint to enforce the Single semantic
option. We outline the definition of a transition predicate abstractly in the
following paragraphs.

For each transition, a predicate with the same name of the transition is
created that combines the pre, post, and extra semantics predicates for the
transition. For example, the predicate t1 combines the pre, post, and semantics
predicates for transition t1, meaning that for t1 to be taken, its pre-condition
(pre_t1), post-condition (post_t1), and semantics predicates (semantics_t1)
must hold12:

1 pred t1[s, s’: Snapshot] {

2 pre_t1[s]

3 post_t1[s, s’]

4 semantics_t1[s, s’]

5 }

The predicate for the pre-condition of a transition t1 is evaluated relative
to the current snapshot, s:

12 These constraints are in addition to any other constraint declared elsewhere in the
model. In Dash and in Alloy, it is possible to write conflicting constraints either implicitly
(e.g., in the declaration of multiplicity of relations), or explicitly (e.g., using a fact) that
make the model unsatisfiable.
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1 pred pre_t1[s: Snapshot] {

2 src_state_t1 in s.conf

3 guard_cond_t1[s]

4 s.stable = True => {

5 // beginning of a big step

6 // transition can be triggered only by env events

7 trig_events_t1 in (s.events & EnvironmentEvent)

8 } else {

9 // intermediate snapshot

10 // transition can be triggered by any type of event

11 trig_events_t1 in s.events

12 }

13 }

This precondition is true if the source state of t1 is in the snapshot’s configu-
ration (line 2) and the guard of t1 evaluates to true for the snapshot’s variable
values (line 3). The evaluation of the presence of t1’s trigger event (lines 4–
12) depends on if the snapshot is at the beginning of a big step or not (i.e.,
stable or not). When the snapshot is stable, t1’s trigger event must be one of
the new events from the environment (line 7); otherwise its event must be in
the snapshot’s set of events (line 11), which include the environmental events
generated at the beginning of the big step and the internal events generated
so far in this big step. Similarly, in the first step of a big step, the guard
(guard_cond_t1) is evaluated with respect to potentially new environmental
variable values because these are already in the snapshot.

The predicate for the post-condition of the transition t1 is evaluated relative
to the current snapshot, s, and the next snapshot, s′:

1 pred post_t1[s, s’: Snapshot] {

2 s’.conf = s.conf - exit_src_state_t1 + enter_dest_state_t1

3 action_t1[s, s’]

4 testIfNextStable[s, s’, t1, gen_events_t1] =>

5 s’. stable = True

6 s.stable = True => {

7 // big step = one small step

8 // only internal events are the ones generated by t1

9 // allow env events to change

10 s’. events & InternalEvent = gen_events_t1

11 } else {

12 // last small step of the big step

13 // add t1 ’s gen events to the internal events

14 // allow env events to change

15 s’. events & InternalEvent =

16 gen_events_t1 + (InternalEvent & s.events)

17 }

18 } else {

19 s’. stable = False

20 env_vars_unchanged_t1[s, s’]

21 s.stable = True => {

22 // first small step of the big step

23 // only internal events are those generated by t1

24 s’. events & InternalEvent = gen_events_t1

25 // env events stay the same

26 s’. events & EnvironmentalEvent =

27 s.events & EnvironmentalEvent
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28 } else {

29 // intermediate small step

30 // add t1 ’s gen event to the events

31 // env events don ’t change

32 s’. events = s.events + gen_events_t1

33 }

34 }

35 }

The postcondition is true if the configuration changes between s and s′ to
exit the source states of t1 and enter the destination states of t1 (line 2). On
line 3, the variable values for the internal values are updated according to the
actions of the transition enforcing our semantic choice for Variable lifeline
of Immediate change in small step. Within this constraint, internal variables
whose primed versions are not mentioned in the action are required to retain
their values from the previous snapshot (in keeping with the chosen seman-
tics for the frame problem). Next, we have four cases depending on whether
s is stable and whether s′ will be stable. We have documented these cases
in comments on lines 4–34. The constraints on s’. events enforce the choice
of Present in reminder of big step for event lifeline. On line 20, environ-
mental variables are constrained to keep their previous values when the next
snapshot is not stable; otherwise, they are allowed to change. The predicate
testIfNextStable determines whether any transitions will be enabled in s′ if
t1 is taken and we discuss it after the explanation of the semantics predicate.

The semantics predicate for t1 is true if t1 is orthogonal to all transitions
in the set of transitions already taken in this big step, enforcing the choice
of Take one for big-step maximality. Two transitions are orthogonal, if
they are contained in different concurrent components. For example, in the
bit counter transition T1 is orthogonal to transitions T3 and T4. This predicate
may also include priority-related constraints when necessary. If two transitions
have source states related in the hierarchy (e.g., one transition’s source is an
ancestor or descendant of the other’s), then we include the negation of the
pre-condition of the higher priority transition in this semantics predicate to
enforce the choice of Source state outer hierarchical for the priority semantic
aspect. Additionally, if the snapshot s is stable, then this is the first step of
a big step and only t1 should be included in the set of transitions; otherwise,
t1 is added to the set of transitions taken. Keeping the history of transitions
taken ensures that only one transition is taken in a step (enforcing the Single
semantic choice for concurrency). The semantics predicate is as follows:

1 pred semantics_t1[s, s’: Snapshot] {

2 (s.stable = True) => {

3 s’.taken = t1 // SINGLE semantics

4 } else {

5 s’.taken = s.taken + t1 // SINGLE semantics

6 orthogonal_t1[s.taken] // TAKE ONE semantics

7 }

8 !pre_t2[s] // higher priority transitions are not enabled

9 !pre_t3[s]

10 ...

11 }
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The predicate testIfNextStable is true if the next snapshot is stable
after taking this transition so it relies on enabledAfterStep predicates for
each transition. It is defined as:

1 pred testIfNextStable[s, s’, t, genEvents] {

2 not enabledAfterStep_t1[s, s’, t, genEvents] and

3 not enabledAfterStep_t2[s, s’, t, genEvents] and ...

4 }

5

6 pred enabledAfterStep_t1[s, s’, t, genEvents] {

7 src_state_t1 in s’.conf

8 guard_condition_t1[s’]

9 (s.stable = True) => {

10 // only transition taken in big step so far is t

11 // so as long as t1 is orthogonal to t

12 orthogonal_t1[t]

13 // and t1 can be triggered by environmental events of the

14 // big step or by any events generated by t

15 trig_events_t1 in

16 {(s.events & EnvironmentalEvents) + genEvents}

17 } else {

18 // as long as t1 is orthogonal to t + s.taken

19 orthogonal_t1[t + s.taken]

20 // t1 can be triggered by any events present in the big

21 // step or any events generated by t

22 trig_events_t1 in (s.events + genEvents)

23 }

24 }

The constraints on lines 7 to 8 are similar to the constraints of the pre-
conditions for t1, however, here they depend on the s′ to simulate the effects of
executing t1. The constraints on lines 9 to 23 test whether taking t will make
it possible to take t1 in the next step.

Through the use of Alloy’s subtyping to represent the control state hier-
archy and careful decomposition of the predicates, we avoid introducing any
unnecessary atoms, steps, and snapshots in capturing the semantics of Dash
in Alloy. Alloy’s declarative nature makes it possible to place constraints on
the source and destination snapshots of a small step together.

Our translation is optimised to exclude parts of the configuration and def-
initions when they are unnecessary. If a model does not declare any event to
trigger transitions, the events relation is removed from the snapshot signature
definition. If a model does not have concurrency, every snapshot is stable,
making every small step equivalent to a big step. This case greatly simplifies
the constraints of the post-conditions of transitions, and the predicates to de-
termine if a next snapshot is stable are no longer needed. Additionally, the
stable flag is removed from the snapshot signature. These simplifications are
automatically performed based on static analysis of a model.



20 Jose Serna et al.

6 Case Studies

We use several case studies13 across the control-oriented and data-oriented
spectrum to demonstrate our translation of Dash to Alloy and the model
checking analysis of Dash models. Figure 5 places our case studies on a spec-
trum from data-oriented to control-oriented, and Table 2 summarises some
of the characteristics of the models. Data-oriented models have few control
states and a flat state hierarchy but richer operations on data. Control-oriented
models have many control states and a deep state hierarchy. Most modelling
languages are geared towards one or the other type of models. We investigate
models spanning the data-oriented to control-oriented spectrum because Dash
provides modellers with the ability to use both the abstract data modelling
features of Alloy and the control-oriented structuring of Statecharts in one
model. Our most significant case study is a partial model of the mode logic of
the NASA Flight Guidance System (FGS) [9]. We model its flight mode
logic subsystem without the event processing.
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Fig. 5: Model spectrum.

Evaluating Dash Models and their Translations. We show the sizes
of the Dash models and their translation to Alloy in Table 3 with respect to
source lines of code (SLOC) (skipping comments, blank lines and statements
of properties). Dash models are considerably more concise compared to their
equivalent translation in Alloy. For example, the Java Thread Lifecycle model
in Dash has roughly one fifth of the SLOC of the generated Alloy model. One
of the major causes of the difference in terms of SLOC between Dash and
Alloy is concurrency. The models that use concurrency (NASA FGS, Traffic
Light and Bit Counter) are far more concise in Dash than in Alloy, which is
explained by the constraints needed in the Alloy models to handle the seman-
tics of big steps. We had access to a few hand-crafted Alloy models (prepared
prior to this work). Some of these are slightly smaller than our Dash models,
and these are all smaller than our generated Alloy models, however, the Dash
translation has to cover the generality of all the variations of control state

13 The case studies are available as sample models at http://dash.uwaterloo.ca:8080/.
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Table 2: Characteristics of case studies. Conc: concurrent components, D:
depth of state hierarchy, E: # events, T: # transitions.

Model
Control States

E T Other characteristics
Total Basic Conc D

Farmer puzzle 1 1 0 1 0 2 -

EHealth 1 1 0 1 0 6

Environmental

variables, state

invariants.

Musical chairs 5 4 0 1 2 4 -

Elevator 1 1 0 1 0 7

Environmental

variables, named

actions.

NASA FGS 63 33 16 6 2 43

Many variables (53

in/out), named

conditions, state

invariants.

Snapshot UI 8 5 0 3 7 7 -

Traffic light 9 6 2 3 2 6 -

Java Thread

Lifecycle

9 8 0 1 19 19

Transition

comprehension,

transition templates

Bit counter 7 4 2 3 3 4 Generated events

Table 3: SLOC comparison of Dash and Alloy. The citation indicates the source
of the original Alloy models.

Model Hand-crafted Alloy Dash Generated Alloy

Farmer puzzle 27 [44] 41 100

Ehealth - 70 209

Musical Chairs 116 [15] 51 160

Elevator - 114 257

NASA FGS - 723 5246

Snapshot UI 32 [51] 49 205

Traffic Light - 44 431

Java Thread Lifecycle - 120 577

Bit Counter - 37 349

hierarchy and the big steps that concurrency creates. Given the popularity of
UML statemachines and this modelling paradigm, we think Dash provides a
natural transition for these modellers into abstract formal representations of
data operations. Dash enhances Alloy with the ability to model transition sys-
tems that include control state hierarchy and events. Thus, providing structure
to Alloy behavioural models. Dash can be used to model systems all across
the spectrum, ranging from data-intensive models to highly hierarchical and
control-oriented models.

Evaluating Model Checking Performance of Dash Models. To
demonstrate the feasibility of model checking models written in Dash, we use
a constrained version of transitive-closure-based model checking (TCMC) to
check CTL properties on the Alloy models resulting from our translation, al-
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Table 4: Model checking performance of case studies.The average time of three
runs is reported in milliseconds. SS is the significant scope. A cross (✕) means
the scope is not appropriate for the model. Entries are properties that fail.

Model Property
Snapshot Scope

SS 7 8 9 11
Farmer
puzzle

No quantum objects
2

13.3 23.7 33.3 49.3
Solve puzzlea 4.3 9.0 11.0 13.7

EHealth Operation 6 12.0 6.3 6.0 7.3

Musical
Chairs

Always more players than chairs

8,11b

✕ 3.7 ✕ 17.3
Alice wins the game ✕ 3.7 ✕ 9.0
Players sit during the game ✕ 2.0 ✕ 6.0
Game eventually finishes ✕ 2.7 ✕ 12.7

Elevator
Called floor eventually reached

7
246.7 614.3 2423.7 35572.0

Always one current floor 12.3 38.7 57.7 121.3
Eventual maintenance 26.0 68.3 213.0 733.7

NASA
FGS

At most one lateral mode activec

9

✕ ✕ 1691.3 9797.3
At least one lateral mode active ✕ ✕ 11745.3 26326.0
AP engaged implies modes On ✕ ✕ 183037.7 21197871.0
Onside FD on implies modes Ond ✕ ✕ 6581.3 12940.7
Offside FD on implies modes On ✕ ✕ 17503.7 28923.7
AP engaged turns FD On ✕ ✕ 23033.7 65708.3
ROLL Selected iff ROLL active ✕ ✕ 616.0 2003.7

Snapshot
UI

Answers through students
8

2.7 7.7 13.3 42.3
Logs out and logins back 2.3 3.0 4.7 6.7

Traffic
Light

Both lights not green 7 6.0 6.3 ✕ ✕

Bit
Counter

Model is responsive
7

4.7 5.0 ✕ ✕
Final bit status 4.7 6.7 ✕ ✕

a Property fails because the minimum number of moves to solve the puzzle is 8.
b We checked two variations of the model, one with 2 chairs, and one with 3 chairs. Conclusion of the
game can be reached in a model with 8 and 11 snapshots, respectively.
c Property fails because we did not constrain the event processing.
d Property fails because there is no fixed order of execution.

though any model checking method in Alloy can be used for checking properties
of Dash models. TCMC supports checking loops and infinite paths (although
the path goes through a finite set of states because Alloy only checks finite
models). By supporting infinite paths, we can check liveness properties. TCMC
returns entire models as counterexamples. Since we want to view only coun-
terexample paths, we add a path constraint to TCMC to require that from
every snapshot there is at most one successor snapshot (similar to [26]), and
require that the last snapshot of a trace must be stable (to produce complete
big steps). Since it is usually not possible for Alloy to analyze the complete
reachable state space of a model, we use a method called significance ax-
ioms [16] to determine scopes for the models in which either every transition
or every control state is reachable (called the significant scope). Our model
checking results for some of the models are summarised in Table 4. The anal-
ysis was executed running Alloy 5.1.0 on an Intel(R) Xeon(R) CPU E3-1240
v5 @ 3.50GHz x 8 machine running Linux version 4.4.0-137-generic with up
to 64GB of user-space memory. An ✕ entry in the table means that either
the scope was below the significant scope for the model or the scope of the
snapshot set does not result in paths consisting of complete big steps. If the
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user selects a scope for which the model constraints cannot hold, then Alloy
fails to produce an instance so it is important to ensure that the model itself
has instances at a scope prior to checking properties. In a Dash model, the
observable points are at the big step boundaries, so the CTL properties are
written to only check the points when the snapshot is stable. For example,
a property that would be typically written as AG(p ⇒ EX q) is written as
AG(stable ∧ p ⇒ EX(¬stable EU(stable ∧ q))).

While the Alloy Analyzer cannot check the entire reachable state space,
these analysis times show that it is possible to get useful model checking results
for Dash models in a reasonable amount of time. Properties are valid or fail
while investigating a model that has an instance of every transition or every
control state is potentially reachable.

Evaluating and Understanding Counterexamples. Through careful
design of the structure of the snapshots signature in Alloy and by taking advan-
tage of the Alloy Analyzer’s support for themes, we facilitate the interpretation
of model checking results in terms of the original Dash models. In our transla-
tion, the snapshot signature acts as a package for a model’s variables and some
context information. We have configured a theme for the Analyzer that dis-
plays snapshot atoms as rectangles, and other signature elements as attributes.
The only relation displayed as an arc is small_step, which relates snapshots
and highlights the steps. Figure 6 shows an instance of the bit counter. The
representation clearly shows the transitions taken during a step, and the value
of variables in each snapshot, which facilitates the understanding of a model.

7 Related Work

Languages that Combine Abstract Data and Control. TCOZ [30] is
a language that combines Object-Z to describe data and its operations with
Timed CSP for the formalization of real time constraints, concurrency, and
synchronization. Although the language does not directly support analysis and
verification of models, some transformations have been developed to reuse ex-
isting tools (e.g., [11] where a specification is projected into Timed Automata).
Circus [52] is another integrated language that combines Z and CSP, and on-
going work is being done on the development of a model checker [33], [19].
Similarly, CSP-CASL [42] blends CSP with CASL, a language that allows mod-
ular and hierarchical specifications. The aforementioned languages use process
algebras to describe control-oriented behaviour. The semantics of a process
algebra can usually be described in a compositional manner. On the other
hand, Dash is based on Statecharts (widely known and used in UML statema-
chines [50]). The use of Statecharts in Dash presents different challenges for
stating its semantics because global communication allows a transition in one
state to enable or disable a transition in another state, so it is difficult to
state its semantics in a compositional manner and instead global context is
needed within the snapshot. The semantics of Dash use the notion of big and
small steps, which allow the system to react to environmental input in a con-
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Fig. 6: Visualisation of a Dash model instance.

current and causal manner, demarcating specific observable moments (i.e.,
stable snapshots). CASL-Charts [39] integrates Statecharts with the algebraic
specification language CASL. Data operations are axiomatized and transition
triggers are in CASL, but transition actions are still a sequence of assignments
or event triggers as in Statecharts (rather than declarative constraints). Its se-
mantics are defined as a combination of the languages rather than a mapping
to CASL. In OZS [20], Statecharts are combined with Object-Z. The actions of
a transition are described using a Z schema and the semantics of the language
are given by a mapping to Object-Z. In Dash, Statecharts is novelly coupled
with Alloy, a popular language for the specification of complex structural sys-
tems, in a seamless manner: Dash extends the Alloy language so both pre- and
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post-conditions of transitions are described in Alloy. Via our semantics and
translator, we have demonstrated how the Alloy Analyzer can be used for the
verification of temporal properties of Dash models.

Alloy and its Extensions. Chang and Jackson [6] describe a transla-
tion from Alloy to SMV for model checking, but no new modelling constructs
are introduced. Electrum [28] is a language that extends Alloy with temporal
operators. Expressions are described using the Alloy language and linear tem-
poral logic (LTL) operators. Primed variables denote the value of a snapshot
element in the next state. Electrum uses LTL to describe both the model and
the properties to check in model checking. To describe the meaning of Dash
models in Electrum would require all the Alloy specification provided in our
translation. The small_step relation we create would be used with the “al-
ways” temporal operator in Electrum to create the model. Then, the Electrum
features that model check LTL properties could be used on our Dash models.
In summary, Dash is non-overlapping and compatible with Electrum.

DynAlloy [17, 18, 40] extends Alloy with imperative-programming-like con-
structs (atomic actions composed using sequential composition, iteration, and
non-deterministic choice). In DynAlloy, the properties to prove are integrated
into the model description as pre/post conditions14 as in the Floyd-Hoare
approach to partial program correctness. The elements of the snapshot are de-
termined implicitly in that they are passed to actions as parameters. DynAlloy
does not have labelled control states. The state hierarchy of Dash models would
have to be flattened and encoded as changes to variables in DynAlloy. The com-
plications of big-steps, small-steps, and events would also have to be explicitly
encoded in DynAlloy. Thus the abstractions of hierarchical control states for
model decomposition that Dash provides for writing transition systems would
be lost. The goals of Dash and DynAlloy are distinct. DynAlloy is aimed at
describing abstract models of program behaviour integrated with properties
to be proven using proof techniques based on partial program correctness.
Dash provides the abstractions of Statecharts for describing control-oriented
behaviour of abstract transition systems and the properties to be proven are
described separately from the model as is common in typical model checking.

Statecharts Family. The Statecharts family of languages usually have a
fixed condition and action language that does not allow for declarative spec-
ification of user-declared datatypes and operations. OCL [37] is a formal lan-
guage for expressing invariants, pre- and post- conditions, which can be added
onto parts of a UML model (described in a context). In contrast, Dash permits
the use of Alloy formulas directly in transition conditions and actions, and has
a fully formal semantics.

Declarative Modelling Languages. Declarative behavioural modelling
languages (such as Z [47], VDM [24], B [1], ASMs [5], TLA+ [54], SAL [3][34])
describe basic transition systems through the use of unprimed and primed
snapshot variables. Control state and hierarchy can be encoded in variables

14 The pre/post conditions of transitions in Dash and Statecharts constrain the model’s
behaviours.
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(e.g., [45]). However, none of these languages explicitly support the represen-
tation of control state hierarchy.

8 Conclusion

We have described the syntax and semantics of Dash, a novel behavioural
modelling language that allows a modeller to use the common control-oriented
modelling paradigm of hierarchical and concurrent control states together with
declarative descriptions of data and its operations in Alloy. The hierarchy and
concurrency of control states can express sequencing, priority, and concurrency
of transitions, providing structure to Alloy models of transition systems. Using
our semantics, we translate Dash to Alloy for analysis taking advantage of
features of the Alloy language. Our key insight in creating the semantics of
Dash is to match the semantics of Statecharts for the control-oriented changes
of a model and match the declarative perspective for the data-oriented changes
of that model. Through case studies, we have evaluated our translation and
model checking of Dash models in the Alloy Analyzer. The conclusion from
our case studies is that via our translation it is possible to check interesting
properties of models that combine data and control abstractions in Dash. In
future work, we plan to investigate how to optimize the translation and model
checking analysis in order to examine models of larger scope.
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