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Abstract

The integration of quantitative tools in biology and medicine has led to many ground-
breaking advances in recent history, with many more promising discoveries on the horizon.
Conventional mathematical models, particularly differential equation-based models, have
had great success in various biological applications, including modelling bacterial growth,
disease propagation, and tumour spread. However, these approaches can be somewhat
limited due to their reliance on known parameter values, initial conditions, and boundary
conditions, which can dull their applicability. Furthermore, their forms are directly tied to
mechanistic phenomena, making these models highly explainable, but also requiring a com-
prehensive understanding of the underlying dynamics before modelling the system. On the
other hand, machine learning models typically require less prior knowledge of the system
but require a significant amount of data for training. Although machine learning models
can be more flexible, they tend to be black boxes, making them difficult to interpret.

Hybrid models, which combine conventional and machine learning approaches, have
the potential to achieve the best of both worlds. These models can provide explainable
outcomes while relying on minimal assumptions or data. An example of this is physics-
informed neural networks, a novel deep learning approach that incorporates information
from partial differential equations into the optimization of a neural network. This hybrid
approach offers significant potential in various contexts where differential equation models
are known, but data is scarce or challenging to work with. Precision oncology is one such
field.

This thesis employs hybrid conventional/machine learning models to address problems
in cancer medicine, specifically aiming to advance personalized medicine approaches. It
contains three projects. In the first, a hybrid approach is used to make patient-specific
characterizations of brain tumours using medical imaging data. In the second project, a
hybrid approach is employed to create subject-specific projections of drug-carrying cancer
nanoparticle accumulation and intratumoral interstitial fluid pressure. In the final project,
a hybrid approach is utilized to optimize radiation therapy scheduling for tumours with
heterogeneous cell populations and cancer stem cells.

Overall, this thesis showcases several examples of how quantitative tools, particularly
those involving both conventional and machine learning approaches, can be employed to
tackle challenges in oncology. It further supports the notion that the continued integra-
tion of quantitative tools in medicine is a key strategy in addressing problems and open
questions in healthcare.
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Chapter 1

Introduction

In the 20th century, the introduction of quantitative methods revolutionized physics, en-
abling remarkable scientific progress. Today, the application of these quantitative tools has
expanded, with increasing complexity and utilization in diverse fields. Notably, the last
few decades have witnessed rapid progress in biology and medicine, largely attributable to
the integration of quantitative methods, including groundbreaking technologies like medi-
cal imaging and genomics. Integrating quantitative tools with life sciences has opened up
new avenues for understanding basic biological processes and solving biological problems,
leading to valuable insights with the potential to transform medicine and improve global
health outcomes.

This increase of quantitative tools in medicine has paved the way for new insights and
breakthroughs in cancer research. Cancer remains one of the most pressing global health
challenges of our time, affecting millions of people worldwide [107]. Despite the tremendous
strides made in cancer research, understanding and treating the disease remains a daunting
challenge. Every patient is unique, and the dynamic nature of tumours, which evolve over
time and space, makes predicting cancer progression and developing an effective treatment
plan even more complex. Medical imaging, which is often used to guide treatment decisions,
can be both expensive and difficult to interpret accurately. In addition, cancer cells are
adept at evolving to bypass even our best therapies, leading to relapse and treatment
failure. All of these factors make it challenging to develop personalized treatment plans
that are tailored to the unique traits and circumstances of a given patient, and underscore
the critical need for innovative approaches that can account for the complex and dynamic
nature of cancer. However, advances in mathematics and computation and their continued
integration into modern cancer research has provided a suite of powerful tools for cancer
researchers. Mathematical models, data analysis, and computational simulations allow for
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uncovering the complex relationships underlying cancer data, enabling a new way to tackle
many of the traditional challenges that have plagued scientific progression.

1.1 What is Cancer?

Cancer is not one single disease, but a category of diseases characterized by common traits,
particularly the over-proliferation and spread of abnormal cells within the body. These cells
can form tumours, invade surrounding tissue, and metastasize to other parts of the body
through the bloodstream or lymphatic system. There are many different types of cancer,
each with its own unique characteristics and treatment options. Despite this variability, a
set of key traits, originally identified by Hanahan and Weinberg, known as the “hallmarks
of cancer” [40] commonly occur throughout all types. These are:

1. Sustaining Proliferative Signalling: Cancer cells can divide, and signal other
cells to divide, even when they shouldn’t

2. Evading Growth Suppressors: Cancer cells can ignore signals from other cells to
stop dividing

3. Activating Invasion and Metastasis: Cancer cells can relocate from their original
position in the body, sometimes creating new tumours where they end up

4. Enabling Replicative Immortality: Cancer cells can divide indefinitely, unlike
normal cells which have a limited number of divisions

5. Inducing Angiogenesis: Cancer cells can stimulate the growth of new blood vessels
to supply them with nutrients and oxygen to help them grow

6. Resisting Cell Death: Cancer cells can resist the types of cell death which would
normally eliminate abnormal or damaged cells

7. Avoiding Immune Destruction: Cancer cells can evade detection by the immune
system and avoid destruction by immune cells

8. Tumour-Promoting Inflammation: Cancer cells can contribute to chronic in-
flammation which can promote the growth and survival of cancer cells

9. Genome Instability and Mutation: Cancer cells can mutate faster than normal
cells and can accumulate genetic mutations that alter their behavior and contribute
to cancer development

2



10. Deregulating Cellular Energetics: Cancer cells can alter their metabolism to
obtain energy in different ways than normal cells, allowing them to survive and grow
even in challenging conditions

These hallmarks of cancer are the result of complex interactions between the tumour cells
and their microenvironment, and understanding them is crucial for the development of
effective cancer treatments.

1.1.1 The Tumour Microenvironment

A wealth of research works has made it clear that tumours are not simply collections of
abnormal, aggressive cells, but that the conditions surrounding a tumour are arguably
equally as important as the traits of the cells themselves [40]. The Tumour Microenvi-
ronment (TME) is comprised of the components surrounding a tumour, both cellular and
noncellular, including blood vessels, immune cells, and the Extracellular Matrix (ECM).
The TME plays a critical role in cancer progression and response to therapy, as it can
create a variety of pressures and stresses that influence tumour behavior. For example,
the TME can be hypoxic (low in oxygen), which can promote genetic instability and alter
cellular metabolism [84]. Additionally, high levels of interstitial fluid pressures are often
observed in the TME, contributing to a wide range of pro-cancer behaviours and treatment
resistance [78, 110, 111]. Investigations of the high fluid pressures in the TME is the focus
of Chapter 4 of this thesis. Importantly, these factors in the TME can vary temporally
and spatially within the tumour, giving it a degree of heterogeneity. Understanding the
TME, tumour heterogeneity, and their roles in cancer progression is therefore crucial for
the development of effective cancer treatments.

1.1.2 Cancer Stem Cells

A crucial source of intratumoral heterogeneity comes from the presence of different cell
types within a tumour that have distinct characteristics. Until recently, cellular hetero-
geneity within a tumour was explained by the clonal evolution model [86]. According to
this model, cellular heterogeneity arises within the tumour due to the accumulation of
successive mutations which confer an advantageous adaptation in the TME. Furthermore,
these mutations are often accelerated by further genomic instability, allowing for increased
mutation rates and a higher likelihood of further mutations. However, the Cancer Stem
Cell (CSC) model has emerged in recent years as a fuller explanation of intratumoral het-
erogeneity [127]. In this model, CSCs are a subpopulation of cells within tumours that
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drive their growth, having the ability to both self-renew and differentiate into different cell
types. CSCs have been shown to be resistant to conventional cancer therapies and are
thought to play a key role in tumour progression, recurrence, and metastasis [127]. This
is in part due to their ability to regenerate a tumour even after treatment has eliminated
most of the bulk tumour cells. CSCs have been identified in a variety of cancers, and
understanding the role of CSCs in tumorigenesis and their interaction with the TME is
crucial for the development of effective cancer therapies. Modelling the role of CSCs in
resistance to radiotherapy is the focus of Chapter 6 of this thesis.

1.2 Medical Imaging

Medical imaging has become an indispensable tool in modern cancer medicine, providing
clinicians with a window into the internal workings of the body and enabling the detection,
diagnosis, and monitoring of cancer. With its ability to capture images of the body at
various levels of resolution, from the macroscopic to the molecular, medical imaging has
transformed the way we approach cancer, allowing us to visualize the disease in real-
time and at various stages of progression. As such, it is a key component of many cancer
treatment plans, from initial diagnosis to monitoring the efficacy of therapies. Additionally,
medical imaging provides a wealth of data that can be used as input to quantitative models.
Given its importance in cancer medicine, medical imaging will play a crucial role in the
research outlined in this thesis, as we seek to develop novel approaches to analyzing and
interpreting complex imaging data to better understand cancer and improve treatment
outcomes. In particular, Magnetic Resonance Imaging (MRI) and its subtypes, specifically
Diffusion Weighted Imaging (DWI), are extensively used throughout Chapter 3 to examine
brain tumours. Additionally, Chapter 4 employs Computed Tomography (CT) imaging of
mice to evaluate liposome accumulation and Interstitial Fluid Pressure (IFP).

1.3 Cancer Therapies

Cancer therapies have advanced significantly from the crude surgeries and highly toxic
compounds employed throughout history. Today, modern cancer treatment has four main
pillars: surgery, radiation therapy, chemotherapy, and immunotherapy. Surgery, which
involves the physical removal of tumours, is often used for localized cancers that have
not yet spread to other parts of the body. Radiation therapy utilizes electromagnetic
radiation to kill cancer cells and shrink tumours. It is commonly applied to tumours that
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are difficult to remove surgically or following surgery in attempt to kill non-resected cells
and prevent recurrence. Chemotherapy uses drugs to kill cancer cells and is commonly
used for cancers that have spread beyond the primary tumour site. And the youngest
pillar is immunotherapy, which involves the use of drugs or other substances to stimulate
the own immune system of the patient to attack cancer cells. Immunotherapy is often
used for cancers that have not responded to other treatments or have a high probability
of responding to immunotherapy. Together, these four pillars form the basis of modern
cancer treatment and are often used in combination to provide the best possible outcomes.

In this thesis, two types of cancer therapies are the focus: radiation therapy and
nanoparticle therapy. Nanoparticle therapy involves the use of tiny particles, typically
smaller than 100 nanometers in size, to selectively target cancer cells. These nanoparti-
cles (or equivalently, drug-carrying liposomes) can be engineered to deliver drugs or other
therapeutic agents directly to the tumour site, minimizing damage to healthy tissues. In
addition, some nanoparticles can be designed to respond to specific stimuli, such as changes
in pH or temperature, which can enhance their tumour-targeting properties. Nanoparticle
therapy is a rapidly growing field and has shown promise in preclinical studies [133]. Some
of my previous research projects (not included in this thesis) have focused on cancer nanoth-
erapies. In one project, I examined the combination of Hypoxia-Activated Prodrugs (HAP)
and Anti-Angiogenic Agents (AA) administered through cancer nanoparticles, showing a
theoretical advantage over separate administration [75]. In another project, I contributed
to a review article on the use of in silico methods to advance the clinical translation of
cancer nanomedicine [81]. The work presented in Chapter 4 involves the use of cancer
drug-carrying liposomes. Chapter 5 focuses on the other primary therapy in this thesis,
optimizing the application of radiation therapy to heterogeneous tumour populations.

1.4 Mathematical Oncology

Mathematical oncology has emerged as a rapidly growing subfield within cancer research,
integrating the power of quantitative tools and modelling approaches to tackle the com-
plexities of cancer. This field has blossomed in recent years with the increase in data
from medical imaging, advanced biomarking, and genetic sequencing providing a wealth
of information to fuel mathematical models and simulations. Moreover, the greater accep-
tance of these quantitative tools by biologists and clinicians has led to a more fruitful and
collaborative approach to cancer research, with interdisciplinary teams working together
to uncover new insights into the disease. It has become an increasing focus for applied
mathematicians, and many pharmaceutical and biotechnology companies has even begun
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hiring modelling teams to supplement their in-house research. Mathematical oncology pro-
vides a powerful framework for the interpretation of complex data and the development of
personalized treatment plans that can account for the dynamic nature of cancer. As this
field continues to grow and evolve, it holds great promise for improving cancer outcomes
and advancing our understanding of this complex disease.

1.4.1 Personalized Oncology

Medical science is often challenged by the unique nature of each individual patient, which
makes predicting treatment effects extremely difficult. Consequently, researchers and clini-
cians often rely on probabilities and design treatments for the average patient. Personalized
medicine, sometimes referred to as precision medicine, is an emerging field that aims to
leverage the individual traits of patients to guide decisions on the prevention, diagnosis,
and treatment of diseases. By taking additional patient-specific information into account,
such as a patient genetic profile, environmental factors, or specific data obtained through
imaging or biopsy, personalized medicine can improve patient outcomes by identifying the
most effective therapies and preventive measures for each individual.

Personalized oncology, a subfield of personalized medicine, focuses on tailoring can-
cer treatments and prevention strategies based on unique patient tumour biology, genetic
makeup, and other relevant factors. This approach enables clinicians to select the most
effective treatments for each individual, potentially reducing side effects and improving
overall survival rates. Well known examples are the development of cancer vaccines and
immunotherapies designed to harness the immune system to fight cancer. For example, in
breast cancers where the HER2 protein is overexpressed, the monoclonal antibody therapy
Herceptin (Trastuzumab) has proven effective; however, it does not work as well in cases
where the protein is not overexpressed [46]. Personalized oncology seeks to identify such
patient-specific traits and incorporate them into treatment plans. This idea is the goal of
much current research, and is slowly making its way into mainstream scientific thinking
(see 1 for example).

Quantitative analysis plays a crucial role in advancing personalized oncology, and the
central goal of this thesis is to demonstrate how mathematical and computational tools can
be leveraged to identify patient-specific traits and utilize them in cancer medicine. With
the power of personalized oncology, researchers and clinicians are paving the way for more
precise and effective cancer treatments, ultimately improving patient care and outcomes.

1https://www.youtube.com/watch?v=9nmsSo2QbIs
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1.5 Summary of Thesis

This thesis focuses on mathematical oncology and presents the findings of three research
projects, each of which have been published in or submitted to scientific journals. As
published works have already been subject to significant scrutiny through the peer review
process, they have been, in general, minimally altered from their published or submitted
forms. Alterations to them have been primarily for the purposes of adding relevant back-
ground information and increasing the clarity and flow of the full thesis. Though this does
entail some redundancy in the explanation of the methods, it is worth keeping their original
explanations to ensure proper context for the results of each project.

Chapter 2 provides an overview of the key quantitative methods used throughout the
thesis, including differential equation modelling, numerical simulations of mathematical
models, machine learning, artificial neural networks, and Physics-Informed Neural Net-
works (PINN). In the subsequent chapters, these methods are employed to tackle problems
in cancer research.

Chapter 3 details an algorithm for characterizing brain tumours in a patient-specific
manner, utilizing MRI, DWI, and PINNs. This work, entitled Deep Learning Character-
ization of Brain Tumours with Diffusion Weighted Imaging was published in the Journal
of Theoretical Biology in 2022 [73].

Chapter 4 presents a novel method for predicting the accumulation of drug-carrying
liposomes in tumour tissue and estimating IFP in a patient-specific manner, leveraging
the power of mathematical modelling and PINNs. This work, entitled Prediction of In-
tratumoral Fluid Pressures and Liposome Accumulation Using Deep Neural Networks is
currently in submission to Scientific Reports.

Chapter 5 introduces a new approach to optimizing radiation therapy in heterogeneous
cell populations with CSCs, using mathematical modelling and machine learning to develop
personalized treatment plans. This work was published in the Journal of Mathematical Bi-
ology in 2022 and was entitled Temporal optimization of radiation therapy to heterogeneous
tumour populations and cancer stem cells.

Finally, Chapter 6 summarizes the key findings of this thesis and offers conclusions and
future directions for research in this field.
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Chapter 2

Quantitative Methods

2.1 Introduction

Quantitative methods, or in more sophisticated terms, in silico methods, offer a means to
address problems in biology and medicine that would otherwise be intractable. Beyond ad-
dressing existing challenges, these methods can also lead to novel insights and approaches
that can be subsequently validated through experimentation. Many (most, frankly) math-
ematical models used in practice however are simply too complex to be solved analytically
by hand. As a result, researchers must employ computational and statistical techniques
to solve these models and extract meaningful conclusions. This is especially true in the
context of cancer, where the inherently dynamic and complex nature of tumours makes
them exceedingly difficult to investigate. However, this complexity provides an ideal con-
text for quantitative methods to demonstrate their effectiveness. This chapter provides
an overview of the mathematical and computational methods used in the various projects
within this thesis.

2.2 Mathematical Modelling

As a general term, a mathematical model simply refers to any quantitative, abstract rep-
resentation of a system. Models in cancer medicine range in sophistication, from simple
probabilistic models - how likely is a patient to still be alive 5 years following a diagnosis
of acute myeloid leukemia? - to extremely complex spatiotemporal models - given imag-
ing of a brain tumour, what will be the voxel-by-voxel tumour cellularity one week later?
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Variability in modelling extends beyond just their complexity though: every model has its
own strengths and weaknesses, capabilities and use cases, assumptions and omissions. No
mathematical model is perfect, and indeed, no grand unifying theory for cancer modelling
exists, but the selective application of mathematical modelling in medicine, when used for
the right purpose, can have tremendous benefits. They can allow for the ability to estimate
quantities that are difficult, costly, or ethically challenging to measure directly, provide a
structural framework for analysis or inference, aid in building a deeper understanding of the
mechanisms underlying complex medical phenomena, increase convenience and automation
in the standard clinical pipeline, and produce novel, testable hypotheses which could be
later confirmed by experimentation or clinical trials. Naturally, mathematical modelling is
a key concept in this thesis.

2.2.1 Differential Equations

Differential equations serve as fundamental tools in mathematical modelling, and all projects
described in this thesis employ them. The core principle behind differential equations is
that the quantities of interest can be expressed as continuous functions of continuous vari-
ables, and that mathematical relationships can be established between these functions
and their rates of change. Importantly, differential equations inherently assume that the
quantities of interest are deterministic, meaning that the evolution of the system under
investigation is reproducible and will produce the same outcome each time. In physics,
most quantities of interest (e.g., position, velocity, acceleration, mass, momentum, force)
are continuous, deterministic variables, exhibiting values that exist within a continuous
range without unattainable intermediate values and without randomness in their temporal
evolution. Many fundamental laws of physics, which establish relationships between these
quantities, are predicated on these assumptions, such as Newton’s second law, which can
be succinctly expressed as a differential equation. In many applications in biology however,
these assumptions can become somewhat tenuous.

The classical deterministic model of radiation-induced cell killing, known as the Linear
Quadratic (LQ) model, exemplifies this issue. The LQ model is given by the equation:

S(D) = e−αD−βD2

(2.1)

where S represents the proportion of surviving cells, D denotes the radiation dose applied
to the cells, and α and β are tissue-specific radiobiological parameters. This model is
widely used to model radiative cell killing [18, 49]. Although the LQ model is generally
accurate in practice, it exhibits limitations in certain cases. For instance, according to this
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equation, the proportion of surviving cells never reaches zero for any applied dose, implying
that tumour regrowth is inevitable, which in reality, it is not. And furthermore, for small
tumours consisting of only a few cells, one would expect a high likelihood that radiation
would eradicate every cell in such a population. Zaider and Minerbo [135] reformulated this
question using stochastic modelling (a birth-death process) rather than differential equation
modelling and demonstrated that the classical understanding falters in cases where the cell
population is small, though remains a reasonable approximation when the population is
sufficiently large.

A similar limitation of differential equation modelling arises in the context of mutant
fixation probabilities, which refers to the probability that a single mutant will become fixed
in a population of a fixed size—in other words, that all individuals in the population will
eventually be descendants of this mutant. In a differential equation model, the probability
of mutant fixation would be either 0 or 1 depending on the mutant’s fitness relative to
the rest of the population. Though in reality of course, there is a nonzero chance that the
mutant dies before having a chance to divide. Differential equation modelling is intrinsi-
cally ill-suited for tackling such problems. The key factor that renders differential equation
modelling untenable in these scenarios is that the quantities of interest are discrete, not
continuous. For instance, populations are discrete quantities (i.e., it is not possible to have
2.5 individuals), and thus, the quantities of interest do not adhere to continuous functions,
leading to the breakdown of differential equation models. However, when the quantities
of interest are sufficiently large (e.g., in a tumour with approximately 109 cells), approx-
imating the population as a continuous function becomes more reasonable. In essence, a
differential equation models the mean of the process, which is typically adequate for con-
tinuous or large enough discrete quantities, though it may become problematic for small
discrete quantities.

Differential equations are broadly classified into two main categories: Ordinary Differ-
ential Equations (ODE) and Partial Differential Equations (PDE). ODEs model quantities
as functions of a single independent variable which, in the context of medical modelling,
is typically time. Throughout history, many ODE models have played crucial roles in the
field of medicine. A prominent class of ODE models that has garnered significant attention
in recent years, particularly due to the COVID-19 pandemic, is the Susceptible-Infected-
Recovered (SIR) models, which are utilized to simulate the spread of infectious diseases
through populations. Let S(t), I(t), and R(t) represent the number of susceptible, infected,
and recovered individuals, respectively, as functions of time. The most basic form of an
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SIR model can be represented by the following system of equations:

dS

dt
= −k1S (2.2)

dI

dt
= k1S − k2I (2.3)

dR

dt
= k2I (2.4)

where k1 and k2 are parameters that depend on the characteristics of the virus and the
population under study. When solving such a model, there is typically assumed to be
a single infected individual in an otherwise susceptible population, and hence, the initial
conditions of S(0) = N − 1, I(0) = 1, R(0) = 0 are selected for the total population N .
The solution to this system of equations yields three time-dependent functions describing
the sizes of the three compartments within the total population, with an example solution
depicted in Figure 2.1. Models like this were instrumental in projecting the spread of
COVID-19 and played a key role in informing public health strategies. Moreover, the SIR
model is highly adaptable, with various studies incorporating additional factors such as
vaccination, re-susceptibility, and preventive measures like social distancing. Notably, I
contributed to a study early in the pandemic that employed an extended SIR model to
investigate these very elements [29].

A cancer-specific application of ODEs is in modelling the proliferation of cancer cells.
Two of the most widely used models for simulating cancer cell proliferation are the expo-
nential growth model and the logistic growth model, represented by Equations (2.5) and
(2.6), respectively:

dN

dt
= rN (Exponential Growth) (2.5)

dN

dt
= rN

(
1− N

K

)
(Logistic Growth) (2.6)

In these equations, r is the proliferation rate, K is the carrying capacity, and N(t) is
the population of cancer cells at time t. These models allow for the projection of cancer
cell populations over time. Note the key difference between these models: the exponential
growth model is characterized by unbounded growth - with a doubling time of t1/2 = ln(2)/r
- whereas the logistic growth model features bounded growth - with an upper bound defined
by the carrying capacity K. Unlike the SIR model, both of these models are easily solved
by hand, as they are simple separable equations: a solution is given for initial condition
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Figure 2.1: An example solution of the basic SIR ODE model using equations (2.2)-(2.4).
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N(0) = N0 in equations (2.7) and (2.8) below.

N(t) = N0e
rt (Exponential Growth) (2.7)

N(t) =
N0e

rt

1− N0

K
(1− ert)

(Logistic Growth) (2.8)

These growth models are used extensively in chapters 3 and 5.

In contrast to ODEs, PDEs are differential equations involving functions of multiple
variables. PDEs are often used to model quantities that depend on both time and space,
with up to three spatial dimensions considered. We can derive a PDE from the logistic
growth model given in equation (2.6) by introducing a term of the form D∇2N (where
∇2 denotes the Laplacian operator), resulting in the reaction-diffusion equation or Fisher
equation, as follows:

∂N

∂t
= D∇2N + rN

(
1− N

K

)
(2.9)

In this equation, N(x⃗, t) represents the cell density at position x⃗ and time t, with x⃗ =
(x, y, z) if the equation is in three dimensions. This equation was originally applied to
model the spatiotemporal progression of brain tumours by James D. Murray [82, 83] and
when used in this context, is referred to as the Proliferation-Invasion (PI) model. Most
ODE models are relatively straightforward to solve, either analytically or computationally;
PDE models however, often present significant challenges in solving. While analytical tech-
niques can be useful, they are limited to cases with sufficiently simple equations, domains,
and boundary conditions (namely, those with symmetry). In most cases, especially those
encountered in practical medical applications, PDE models can be solved only through
numerical, computational techniques.

2.2.2 Finite Element Methods and FEniCS Project

There are several different methods for numerically solving PDEs. The most sophisticated
of these is a powerful approach called the Finite Element Method (FEM). The fundamental
idea behind FEM is to discretize the spatial domain of interest into smaller, non-overlapping
subdomains called ‘elements.’ These elements are typically geometrically simple shapes,
such as intervals (1D), triangles (2D), or tetrahedra (3D) that collectively form a mesh
over the entire spatial domain. The solution to the PDE is approximated within each
element using basis functions, which are simple functions defined locally on each element.
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Typically, the basis functions are chosen to be constants, linear functions, or quadratic
functions. The main hallmark of FEM is the ability to solve PDEs on complicated meshes
that other solution methods would have tremendous difficulty handling.

FEM is based on the variational formulation (or weak formulation) of PDEs. This for-
mulation represents a generalization of the original PDE, which might not be as intuitive
from an analytical perspective, but it facilitates numerical computations. The weak formu-
lation extends the solution space to include functions that may not necessarily satisfy the
original PDE pointwise, thereby enhancing its computational tractability. As an illustra-
tive example, let us convert the Poisson equation into its variational form. In differential
form, the Poisson equation is given by

−∇2u(x⃗) = f(x⃗) , x⃗ ∈ Ω (2.10)

where Ω is the spatial domain over which we solve the equation, and f(x⃗) is a known
function. For generality, let’s consider the case that the boundary conditions involve both
a Dirichlet and Neumann component; that is:

u = 0 , x⃗ ∈ Γ (Dirichlet) (2.11)

∂u

∂n
= 0 , x⃗ ∈ ∂Ω− Γ (Neumann) (2.12)

where Γ ∈ ∂Ω and the partial derivative with respect to n denotes the rate in the change
in the direction of an outward normal vector to the domain boundary. We now define a
function, v(x⃗) which is in the function space V = {v ∈ H1(Ω), v|Γ = 0}. In this definition,
H1(Ω) is the Sobolev Space on Ω defined byH1(Ω) = {v ∈ L2(Ω),∇v ∈ L2(Ω)d} and L2(Ω)
is the space of all square-integrable functions on Ω. We refer to the function v(x⃗) ∈ V as
the test function.

To derive the variational form of the Poison equation, we multiply the differential form
(equation (2.10)) by the test function, v(x⃗):

−v∇2u(x⃗) = vf(x⃗). (2.13)

Next, the PDE is integrated over the domain of interest, Ω:

−
∫
Ω

v∇2u(x⃗) dx⃗ =

∫
Ω

vf(x⃗) dx⃗ (2.14)

and integration by parts is performed on the 2nd derivative term as follows:

−
∫
Ω

v∇2u(x⃗) dx⃗ =

∫
Ω

∇u · ∇v dx⃗−
∮
∂Ω

v
∂u

∂n
ds. (2.15)
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Now notice that the 2nd term of the integration by parts expansion is equal to zero since
on the boundary, v(x⃗) = 0 on Γ or ∂u

∂n
= 0 on ∂Ω − Γ. Hence, we can then write the full

variational form of the Poisson equation as∫
Ω

∇u · ∇v dx⃗ =

∫
Ω

vf(x⃗) dx⃗ (2.16)

and the formulation of the problem is to find the function u(x⃗) ∈ V such that the integral
equation (2.16) is satisfied ∀ v ∈ V . This variational form ensures that the solution satisfies
the PDE in an average or integrated sense over the entire domain, rather than pointwise.

For many PDEs, including the ones focused on in this thesis, the dependent variables
involve both space and time. Take, for example, the PI model explained above. Since our
final variational formulation (2.16) involves integration over the spatial domain of interest,
how is the temporal variable incorporated into this setup? The trick is to discretize our
temporal domain into subintervals, then to solve the purely spatial variational formulation
at each time step. For simplicity, consider the backward Euler time discretization of the
PI model:

Ni −Ni−1

∆t
= D∇2Ni + rNi

(
1− Ni

K

)
(2.17)

where Ni represents the solution at the current time step and Ni−1 represents the solution
at the previous time step. Rearranging, and following the same procedure as above to
derive the variational form, we arrive at

0 =

∫
Ω

vNi − vNi−1 + (∆t)D∇u · ∇v − (∆t)rvNi

(
1− Ni

K

)
dx⃗ (2.18)

This variational form can be solved iteratively, using the solution at the previous time step
to inform the subsequent step. And furthermore, this same procedure can be performed for
any chosen time discretization scheme. For the FEM applications presented in this thesis,
all time discretizations are either backward Euler or Crank-Nicolson.

The basis functions used to approximate the solution are expressed as linear combina-
tions of nodal values at specific points, called ”nodes,” within each element. The objective
is to determine the values of these nodal coefficients that lead to the best approximation
of the true solution, subject to boundary conditions. This results in a system of linear
algebraic equations, which can be assembled and solved for the entire mesh to obtain the
numerical solution. This process can be summarized by the following steps:

1. Discretize the domain into finite elements and create a mesh
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2. Choose basis functions and express the approximate solution in terms of these basis
functions

3. Formulate the weak form of the PDE by multiplying by a test function and integrating
over the domain

4. Assemble the system of algebraic equations based on the weak form

5. Solve the system of equations to obtain the nodal coefficients of the solution

6. Use the nodal coefficients to reconstruct the approximate solution over the entire
domain

This process, particularly the meshing of the domain into elements, can be quite com-
plicated, especially for nonstandard domains. For this reason, software packages which
automate this process have been developed which streamline and simplify the setup of
FEM. One such package is the FEniCS Project, an open-source software platform for the
numerical solution of PDEs using the FEM. With FEniCS, complicated meshes can be
generated by combining simple geometries and complicated systems of equations can be
implemented by simply converting them to their variational forms and inputting the re-
sults. In figure 2.2, a comparison of the 1D PI model solved using a finite difference scheme
and with a FEM implemented in FEniCS is shown. Notice the simplicity in the FEniCS
code. More details on the FEniCS project and FEM in general can be found in [4, 63, 104]

2.3 Machine Learning

Differential equations are considered mechanistic models in that they are based on specific
mechanisms founded on fundamental laws of physics or biology and produce deterministic
outcomes. Each term in the equations can be associated with a specific process or cause;
for instance, the terms of the PI model (equation (3.1)) correspond to the processes of
cellular diffusion and proliferation. However, in many situations we wish to examine, the
underlying processes may not be clearly defined or may not lend themselves to closed-form
mathematical representation. Or furthermore, the effect or form of these processes may
be the very thing we are trying to discover (as is the case in emerging techniques such
as symbolic regression [50]). In such cases, mechanistic modelling may be insufficient and
alternative methods are necessary.

Statistical or data-driven models, on the other hand, are derived not from first prin-
ciples, but rather from observed data. They aim to identify patterns, correlations, and
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Figure 2.2: A comparison of an implementation of the Fisher equation (equation (3.1) in
one spatial dimension, solved with a manually coded finite difference method (left) vs. a
finite element method implemented using FEniCS (right).
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relationships within data without necessarily specifying fundamental dynamics. The pa-
rameters and forms of statistical models may similarly lack physical or biological interpre-
tations. The primary focus of these models is simply to achieve high predictive accuracy
irrespective of mechanisms of action, making them particularly useful in scenarios where
these underlying mechanisms are complex or poorly understood. This category of models
is commonly referred to as machine learning.

The are two general categories of machine learning: classification and regression. The
key distinction between them lies in whether the output is discrete or continuous. In clas-
sification problems, inputs are transformed into discrete outputs; in regression problems,
inputs are transformed into continuous outputs. The primary focus of this thesis is on re-
gression problems, particularly function inference problems, in which data is used to tune
a statistical model that approximates a given function. Linear regression is a simple exam-
ple of a statistical regression model, wherein known data informs the slope and y-intercept
of a linear equation. The resulting equation can be used for extrapolation, predicting an
outcome y for a new input x.

The main goal of statistical regression models is to generate a numerical mapping be-
tween inputs and outputs based on a set of data, which can then be generalized and applied
to future data on which the model was not trained. A key challenge therefore is to ensure
that the model resulting from our training process truly uncovers the underlying relation-
ships such that it is capable of extrapolation, and is not simply applicable exclusively to
the input-output pairs on which it was trained. For instance, in theory, if we were to vali-
date a statistical model on the same set of data on which that model was trained, then we
should achieve 100% accuracy in our predictions, provided that the statistical model itself
is capable of mimicking the complexity of the underlying function (i.e. a linear function
will never achieve 100% accuracy on quadratically-distributed data). In such situations,
the model is essentially just memorizing input-output pairs, rather than learning the true
relationship between inputs and outputs more generally. Of course, this is obviously an
undesirable quality of a statistical model, though it is not an uncommon one. In these
cases where a model does not generalize well to new data, the model is considered to be
‘overfit.’ Many strategies have been employed to address this issue, the most common
being to split the available data into training and testing sets. The machine learning
model is then trained on the training sets, and evaluated on the testing set. In theory,
this allows for an estimation of the true accuracy of the model, since it is evaluated on
data that it has not yet seen. In many cases, the data allotted for training is further split
into subcategories of training data and validation data. Then, the accuracy of the model
is continuously evaluated on the validation set throughout training to identify when the
model is beginning to overfit, and end training early. Validation datasets are also useful
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for tuning model hyperparameters. Techniques such as randomizing input order, ensemble
learning, cross-validation, and regularization are also employed to enhance generalization
and accuracy when applying the model to new data.

Bias-Variance Trade-off

Another fundamental concept in the design of machine learning models is the bias-variance
tradeoff, which describes the tradeoff between two sources of error that contribute to the
overall prediction error of a model: bias and variance. Bias refers to the systematic error
introduced by approximating a real-world problem with a simplified model. A model with
high bias makes assumptions that do not accurately capture the underlying data distribu-
tion, leading to systematic underfitting and a reduced ability to generalize. Variance, on
the other hand, measures the sensitivity of model predictions to changes in the training
data. A model with high variance is overly sensitive to noise in the training data and tends
to overfit, resulting in high variability in predictions for new data.

A crucial goal in designing a machine learning model then, is to achieve a balance
between bias and variance to minimize the total prediction error. A model that is too simple
may exhibit high bias and low variance, producing consistent but inaccurate predictions.
Consider my dog (a yellow labrador named Owen) for example, whose favourite trick is to
spin around in a circle at the input command of ‘twirl.’ However, as the canine brain is
arguably a heavily biased model relative to what humans would like them achieve, often,
his response to any of my input commands is simply to twirl around - especially frustrating
when the intended command of ‘leave it’ results in him twirling around with my shoe in his
mouth. Adorable, yet incorrect. Conversely, a model that is too complex may exhibit low
bias and high variance, producing accurate predictions on the training data but performing
poorly on unseen data. The bias-variance tradeoff reflects the inherent tension between
the need for flexibility to capture complex patterns (low bias) and the need for stability to
avoid overfitting (low variance).

Model selection and hyperparameter tuning are crucial processes in managing the bias-
variance tradeoff. Techniques such as regularization, cross-validation, and ensemble learn-
ing can also help mitigate the tradeoff by reducing variance while preserving model expres-
siveness. Ultimately, finding the optimal balance between bias and variance is essential for
building robust and accurate predictive models.
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2.3.1 Artificial Neural Networks

In this thesis, the primary machine learning models employed are Artificial Neural Networks
(ANN), a powerful technique inspired by the structure and function of the human brain.
The human brain consists of neurons that accept a set of signals and output a combination
signal. The first attempt to emulate this artificially was the perceptron, which accepted a
vector of 0-1 signals and outputted a 0-1 signal from them. The perceptron included a set
of weights, w1, ..., wn, and a bias, b, which transformed the input signals into an output
signal using the following formula:

P (x⃗) = H

(
b+

N∑
i=1

wixi

)
(2.19)

where H(v) is the Heaviside function defined by

H(v) =

{
0, v ≤ 0

1, v > 0
(2.20)

In this context, the Heaviside function serves as what is called an activation function.
Researchers began constructing networks of these perceptrons with layers that sequentially
fed into each other. Eventually, the discontinuous output signals of the neural network were
replaced with continuous outputs by substituting the Heaviside function, which produces
a discontinuous signal, with various continuous functions. Several activation functions are
popular in modern literature, including sigmoid functions such as φ(v) =

(
1

1+e−v

)
, the

hyperbolic tangent function φ(v) = tanh (v) and more recently, the rectified linear unit
(ReLU) function given by

φ(v) =

{
0, v ≤ 0

v, v > 0
(2.21)

With this generalization from discontinuous to continuous outputs, the concept of a per-
ceptron was generalized to the neuron. The output of a neuron, given an input signal x⃗,
is then computed by

y(x⃗) = φ

(
b+

N∑
i=1

wixi

)
(2.22)

where φ(v) is the chosen activation function and N is the total number of input signals
feeding into the neuron. See figure 2.3 for a comparison of common activation functions.
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Figure 2.3: A comparison of common activation functions used in ANNs.

In typical modern applications, neural networks comprise not just a single neuron, but
numerous layers of neurons with each layer containing multiple neurons. For these mul-
tilayered ANNs, the first layer is called the input layer and the final layer is called the
output layer. The layers between the input and output layers are typically referred to as
the hidden layers since their actions and outputs are not typically observed.

Given an input-output pair, denoted (x⃗, y⃗), a neural network accepts the input x⃗ and
computes a prediction for the output, ŷ. When training a neural network, the goal is to
minimize the error between the known data, y⃗, and the prediction of the network, ŷ. In
order to calculate these network predictions, a process called forward propagation is used.
We can write the output of layer l of the network as

y⃗(l) = φ
(
v⃗(l)
)

(2.23)

where

v⃗(l) = b(l) +W (l)y⃗(l−1) (2.24)
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In this formula, φ is the chosen activation function, which can vary between layers in
general, but for simplicity here, we will assume that the same activation function is used
throughout the network. W (l) is the matrix of weights connecting layer l to layer l + 1,
where the ij entry corresponds to the weight connecting the ith neuron in layer l to the jth
neuron in layer l + 1. Similarly, b(l) is the added bias in layer l. Furthermore, the zeroth
layer is simply the input to the network, y(0) = x⃗ and the output of the final layer of the
network (with a depth L) is simply the output of the network, ŷ = y⃗(L).

Using this output signal of the full network, the error can be calculated between the
predicted and true outputs using a loss function, which we denote as e(ŷ). Different choices
can be made for this loss function, but the most common one for regression problems is
the Mean-Squared Error (MSE) loss function, given by

e =
1

I

∑
i

(yi − ŷi)2 (2.25)

where the sum is computed over the width of the output layer, and I is the length of the
output vector. This loss can be used to update the weights and biases of the network
through the process of backpropagation. Specifically, let us denote the current values of
the weights and biases at layer l as W

(l)
n and b

(l)
n , and the updated values of these after

backpropagation by W
(l)
n+1 and b

(l)
n+1. Then

W
(l)
n+1 = W (l)

n − η
∂e

∂W
(l)
n

(2.26)

b
(l)
n+1 = b(l)n − η

∂e

∂b
(l)
n

(2.27)

where η is a hyperparameter called the learning rate which controls the size of the gradient
descent steps performed. The difficulty with this updating formula of course, is in efficient
computation of the gradients. To do this, the chain rule is applied to compute the gradients
recursively, beginning with the output layer and ending with the input layer. Let δ(l) denote
the local gradient at layer l. For the output layer (layer L), we can directly compute this
using the partial derivatives of the loss function with respect to the output of the neurons:

δ(L) =
∂e

∂y⃗(L)
⊙ φ′ (v⃗(L)) (2.28)

where ⊙ denotes element-wise multiplication, and φ′ is the derivative of the activation
function. For the hidden layers, the error terms can be computed recursively using the
error terms of the subsequent layer:

δ(l) =
(
W (l)

)T
δ(l+1) ⊙ φ′ (v⃗(l)) (2.29)

22



With these local gradients for each layer, the full gradient of the loss function with respect
to the weights and biases can be computed as follows:

∂e

∂W
(l)
n

= δ(l) ·
(
y⃗(l−1)

)T
(2.30)

∂e

∂b
(l)
n

= δ(l) (2.31)

Once the error terms for all layers have been computed, the gradients can be used to update
the weights and biases of the network according to equations (2.26)-(2.27). Importantly,
within this training procedure, it is most useful to think of the loss function as a function
not of the network outputs, but rather as a function of the weights and biases. The
process of forward propagation and backpropagation is iteratively performed for each input-
output pair in the training dataset, typically for multiple epochs until a predefined stopping
criterion is satisfied.

The optimization procedure described above is known as gradient descent, which is a
common optimizer used in regression problems. In practice, a variant of gradient descent
called Stochastic Gradient Descent (SGD) is more frequently employed. In SGD, rather
than training using the entire dataset at each iteration, a random subset of the data, called
a mini-batch, is used for training. This variation of the gradient descent method often
leads to faster convergence and better generalization due to the inherent noise introduced
by selecting random subsets of the data. Another variant of gradient descent is Adam
(Adaptive Moment Estimation), which is used in this thesis. Adam optimization is similar
to SGD but differs in that it does not use a single global learning rate; instead, it maintains
separate learning rates for each parameter and adaptively adjusts them throughout training
based on the first and second moments of the gradients. This adaptive approach typically
results in faster convergence than standard SGD.

Another optimization algorithm used in this thesis is the Limited-Memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) optimizer. L-BFGS is a quasi-Newton method that
approximates the second-order Hessian matrix using a limited amount of computer mem-
ory. Unlike gradient-based optimizers such as SGD and Adam, L-BFGS relies on curvature
information to find the optimal solution more efficiently. It maintains a low-rank approxi-
mation of the inverse Hessian matrix, which is updated iteratively using a history of past
gradients and parameter updates. This low-memory approach allows L-BFGS to be suit-
able for large-scale optimization problems where the exact computation or storage of the
Hessian matrix is computationally prohibitive. L-BFGS often exhibits faster convergence
and better performance on certain types of problems, particularly those with smooth and
continuous objective functions, compared to first-order gradient-based methods.
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Regularization of Artificial Neural Networks

A crucial concept in machine learning is regularization, which is used to prevent overfit-
ting and improve the generalization of models to unseen data. For ANNs, the standard
approach is to incorporate a term into the loss function which penalizes large weights,
discouraging the model from relying too heavily on any single feature. In artificial neural
networks, common regularization techniques include L1 and L2 regularization, which add
the sum of absolute or squared weights, respectively, to the loss function. Another popu-
lar regularization method is dropout, which involves randomly dropping neurons from the
network during training, forcing the model to learn redundant representations and rely on
a more diverse set of features. These regularization strategies ultimately improve the ro-
bustness and predictive performance of the neural network on previously unseen data. One
can also think of regularization as a method for increasing the bias of a model (as in the
bias-variance trade-off). The primary ANN technique used in this thesis (physics-informed
neural networks, explained below) is based upon a particular method of regularization
which allows the model to be highly generalizable to unknown data.

2.3.2 Physics-Informed Neural Networks

Incorporating prior knowledge into the optimization process can significantly enhance the
performance and robustness of machine learning models. Consider a scenario withN known
data points, where the objective is to identify the underlying relationship between these
points and extrapolate to new data. In the absence of any additional information, perfect
accuracy could be achieved on the N training points by using an N -degree polynomial.
However, in most cases, this choice will not represent the optimal model selection. For
instance, when an additional data point is added to the training set (making it N + 1
data points), an (N + 1)-degree polynomial is unlikely to become the new optimal model.
Fortunately, in many scientific applications, we possess more information than just the
raw data points, and this information can be leveraged to improve model robustness. In
this example with N data points, if it was also known that the underlying dynamics were
linear, the model could be simplified, reducing the number of parameters to fit from N to 2.
Imposing such system information into the model reduces its variance, thereby improving
its extrapolation capabilities for future data.

Integrating known linear underlying dynamics into a model is relatively straightforward.
However, some problems may involve prior knowledge that is less easily incorporated.
For instance, in cancer modelling, system information is often captured in the form of
a PDE or perhaps even a system of PDEs. The PI model (equation (3.1)) is a classic
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example of this. Models such as this are considerably more complex, posing challenges
when integrating them into machine learning models. Moreover, the data itself might be
difficult to align with the desired outcome. In particular, much medical data comes from
medical imaging, which is typically collected at discrete time points, while continuous-time
predictions are often desired. PINNs provide a method for incorporating complex prior
knowledge, specifically PDEs, into a machine learning model, resulting in more robust and
accurate representations of the underlying system dynamics. PINNs were first introduced
in a series of works and patent by Raissi et al [96, 97, 98].

An essential advantage of incorporating existing knowledge into optimizations is the
increased interpretability of models that are typically considered black boxes. There have
been numerous calls for enhancing the interpretability of machine learning models, and
integrating prior knowledge in this way is a promising approach to achieving this goal.
Additionally, the incorporation of a governing mathematical model into the optimization
of the machine learning model allows for it to be trained using significantly less data. This
is particularly relevant in the context of medicine, where data scarcity is a common issue.
Furthermore, for applications in personalized medicine, data is even more scarce since a
sufficient amount of patient-specific data is required to draw relevant conclusions.

Given that standard neural network models are typically trained solely using data, one
might ask whether, given a sufficient amount of data, a data-only neural network approach
could yield comparable performance to PINNs. However, the amount of data necessary
to achieve comparable results is extremely large, and often disqualifying in the context
of medical applications to do so. Similarly, training solely using the PDE is also not a
viable option since without specifying initial and boundary conditions (which are often
unknown or extremely complex is this context), the PDE cannot be directly solved. It
is only through hybrid methods like PINNs, which combine both data and the governing
model, that accurate predictions can be achieved using limited data. In continuous PINNs,
the importance of the data vs. the PDE model can be separated and individually weighted
during training, though in discrete PINNs, this is not possible.

The goal of a PINN is to train a deep ANN to mimic a function with potentially
multidimensional input and output from a small number of data points. This may initially
seem naive and infeasible, since in situations where the amount of data is small enough,
there may not even be guaranteed convergence of the training algorithm. However, with
the incorporation of additional information in the form of a PDE model, it is possible to
achieve this objective.

Consider that N measured input-output pairs from a target function n(x⃗, t) are ran-
domly selected from the input domain. We can train a neural network to approximate
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n(x⃗, t) by minimizing the MSE between the known outputs at the N points and the pre-
dictions of the network at those N points. We set up a neural network that accepts the
inputs x⃗ and t and outputs the value of the solution function, n (x⃗, t). Let us denote this
network as the function

F : (x⃗, t) → n (2.32)

The error between the network predictions and the true known data points can then be
quantified using

MSEn =
1

N

N∑
i=1

[F (x⃗i, ti)− ni]
2. (2.33)

The goal now is to include the governing PDE model in the deep learning optimization.
Consider that the PDE is of the general form

0 = f(n; x⃗, t) (2.34)

where n (x⃗, t) is the desired solution of the problem, x⃗ and t are the spatial and temporal in-
put variables respectively, and the function f(·, ·) is a function of the input variables and the
solution function itself, which can involve nonlinear and differential operators. This setup
can accommodate many common model types in physical and biological modelling, in-
cluding conservation laws, diffusion processes, advection-reaction-diffusion equations, and
kinetic equations. We can then evaluate how well our function approximation network
satisfies the PDE using the formula

MSEf =
1

N

N∑
i=1

f (F (x⃗i, ti); x⃗i, ti)
2 . (2.35)

By adding both of these two MSE losses in a joint loss function, we create a loss that
incorporates information from both the known data and the PDE:

MSE = MSEn +MSEf (2.36)

If we were training only with the data points, the loss function would include only the
first term. By adding the second term, which quantifies the satisfaction of the PDE,
we regularize the deep learning model by constraining the solution space to those that
sufficiently satisfy the PDE model.

Through several examples in the original papers outlining PINNs [96, 97], it is demon-
strated that this formulation of the loss function results in the network converging more
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accurately and more efficiently than using the data alone. This is expected, as altering the
loss function in this manner incorporates more information from which the neural network
can learn. We will showcase this by applying a PINN model to a simple example. Con-
sider the problem of solving the heat equation in one spatial dimension with given initial
condition and boundary conditions:

∂T

∂t
= α∇2T, x ∈ [0, 1], t ∈ [0, 1] (2.37)

T (x, 0) = 0 (2.38)

T (0, t) = 1, n(1, t) = 0 (2.39)

This model setup could be used to model a metal bar which starts at temperature T = 0
and is heated on its left side with an element of temperature T = 1, for example. This
equation can be solved using a finite difference numerical scheme. In solving, we divide
the input domain into 200 spatial steps and 100 time steps, employing a backward Euler
time discretization scheme. The thermal diffusivity parameter is set to a value of α = 0.5.
The solution can be observed at the top of Figure 2.4.

Using 200 data points (input-output pairs) randomly selected from the full solution of
the heat equation problem above (which represents only 1% of the total data), we set up
a PINN that accepts x and t as input, and outputs the value of the temperature T at
position x and time t. The network structure consists of 8 hidden layers, each with 20
neurons. Activation functions are chosen to be tanh throughout the entire network except
for the output layer, which simply outputs the raw value. Input data is normalized to
the interval [-1, 1] before training, and output data is normalized to the interval [0, 1].
We add a custom loss function to the network, which implements equation (2.36). The
network is trained using these data points with an Adam optimizer over 10,000 iterations.
The ANN is implemented using the TensorFlow framework. An example result from this
optimization can be seen in Figure 2.4, where the known and predicted solutions of the
temperature are compared. The MSE between the exact and predicted full solution (at
all inputs, not just the training points) is 7.91e-4. It is worth noting how remarkable this
result is - extremely high accuracy can be achieved in a function approximation network
while training on just 1% of the available data. Often, the cost or difficulties associated
with acquiring enough data to train a deep learning model for many real-world purposes
makes doing so impossible. But here, we show that by incorporating a governing PDE
model into the optimization, convergence and high accuracy in the prediction of a solution
can be achieved with what would normally be considered a prohibitively small amount of
data.

It is also worth noting that the machine learning model was able to make these pre-
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Figure 2.4: Top: The solution of the heat equation initial/boundary value problem in
equations (2.37)-(2.39) solved using a finite difference method with backward Euler time-
stepping on a Nx = 200, Nt = 100 grid. Bottom: the solution of the problem as predicted
by the PINN model after training on just 200 input-output pairs from the exact solution.

28



dictions while being ignorant of the initial and boundary conditions of the problem. In
theory, we could have specified these in our optimization by further adding terms to insist
that our predicted solution adhered to these conditions. However, the network is capable
of producing accurate estimates without these being specified. The reason why this is
possible is that information from the initial and boundary conditions is contained within
the data points themselves. In other words, the network infers the initial and boundary
conditions from the data without them needing to be specified explicitly. This is an impor-
tant benefit because in many applications in medicine, the initial and boundary conditions
are unknown or too complicated to reasonably implement. Take the example of a growing
tumour (which is the subject of Chapter 3). The initial condition of a growing tumour is
presumably a single cancerous cell, but when and where that initial cancer cell emerged is
impossible to know. Furthermore, boundary conditions on tumour cells as they proliferate
will depend on the anatomy surrounding the tumour location, which can be extremely
difficult to model. Hence, PINNs bypassing explicit specification of these conditions is a
significant advantage.

In the example presented in Figure 2.4, 1% of the known data is used to train the
network and achieve remarkably accurate solutions. However, it is interesting to explore
the number of data points necessary for training in this context. To investigate this, we
conduct the same experiment on the heat equation as described above, but with a varying
number of known data points. This is accomplished by choosing a random number of
data points up to 10% of the known data (2000 input-output pairs), training the network,
comparing the full predicted solution to the full exact solution, and calculating the error.
We perform this process for 100 different data set sizes and showcase the results in Figure
2.5. Though clearly randomness is apparent in these results, notice how the error in the
network predictions decreases as more data is used to train the model. However, observe
that relatively high accuracy is still attained even when small amounts of data are used
for training. In the case with the least data, using just 21 points to train the model results
in a MSE of 0.0009, which is remarkably accurate given the amount of data. A similar
analysis was performed on a different PDE problem in [96, 97] which arrived at similar
results.

PINNs are Robust to Measurement Noise

The original PINN papers also demonstrate that these networks are remarkably robust to
noise in the system. We showcase this robustness in our example as well. After selecting
our training data points (200 for each of the runs in this example), we introduce random
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Figure 2.5: Error in network predictions as a function of the amount of training data pro-
vided with the line of best fit. The x-axis gives the percentage of the full spatiotemporal
domain that is used for training, which had a total of 200,000 points (meaning 10% cor-
responds to 2000 input-output pairs). The y-axis gives the MSE between the predicted
and known temperature over the entire spatiotemporal domain. Notice that relatively high
accuracy is still achieved even when an extremely small amount of data is used for training.
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noise into each data point measurement using the following formula:

ynoisy = yexact(1 + Noise ∗ (2ϵ− 1)) (2.40)

where Noise is the maximum possible noise that can be applied to each output, ϵ is a
random number in the interval [0,1], and yexact is the data output free from noise. In other
words, each output is multiplied by a random number in the interval [1-Noise, 1+Noise].
This process allows us to observe how the network predictions vary with different degrees of
noise added to the system. This is an important consideration, as real-world observations
often come with associated measurement noise, especially in the case of medical data.

We examine the network performance in the presence of noise in the same way as we
did above for varying amounts of known data. Specifically, we choose a series of values
for Noise, run the PINN, and assess the error in the predictions. The results can be
seen in Figure 2.6. As expected, the error rises with increased noise; however, it is again
noteworthy that the increase is slight, and that high accuracy is still achieved even at high
noise levels.

PINNs can Estimate PDE Model Parameters and Fields

In this thesis, we focus on applications to personalized medicine. Ideally, we would like
to develop a PDE model that is specific to each patient. However, a key challenge in
creating an equation for a particular patient is that the parameters appearing in that PDE
model may depend on characteristics specific to that patient; in other words, the PDE
model parameters may be patient-specific. In the context of training PINNs, since the loss
function depends upon the PDE to calculate the loss based on the network predictions, if
the parameters in the PDE model are unknown, then the loss cannot be calculated.

A key benefit of PINNs, however, is that unknown parameters do not prevent the
application of the deep learning model. This is because the unknown parameters can be
estimated during the process of network optimization. This is done in the same way as the
network weights themselves are optimized. In the TensorFlow framework, the PDE model
parameters are defined as trainable parameters, and their values are updated iteratively
throughout training. Once the model has converged, the values of these parameters will
have also converged. Examples of this are shown in the original papers outlining PINNs
[96, 97] where the authors demonstrate that a parameter appearing in Burgers equation
can be accurately estimated using this method.

We showcase this here by again applying the model to the problem outlined in equations
(2.37)-(2.39), except we now assume that the value of the thermal diffusivity, α, is unknown.
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Figure 2.6: Error in network predictions as a function of the level of artificial noise added to
the training data with line of best fit. The x-axis gives the percentage noise applied to the
data in training, as calculated using equation (2.40). The y-axis gives the MSE between
the predicted and known temperature over the entire spatiotemporal domain. Notice that
relatively high accuracy is still achieved even when high error is added to the data.
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Figure 2.7: Error in the estimation of the thermal diffusivity parameter α for different
amounts of known data (left) and different amounts of noise (right) with lines of best fit.

In Figure 2.7 below, we show the error in the estimation of α for different amounts of
known data and different amounts of noise. Again observe that the error decreases with
increased data and increases with increased noise, as expected, though the predictions
remain remarkable robust throughout.

Oftentimes, however, PDE models involve more than just unknown parameters. They
can also include entire unknown fields appearing in the equations. This is addressed in a
slightly different way than it is for parameters. Each field appearing in the PDE model
is made an output of the PINN, like the solution itself. Then throughout training, the
relationship between the input parameters and these other fields is approximated by min-
imizing the loss involving the PDE. In the original papers outlining PINNs, the authors
showcase this by applying PINNs to the two-dimensional Navier-Stokes equations. They
demonstrate that the pressure appearing in those equations can be estimated to an ex-
tremely high degree of accuracy by applying a PINN to the problem. This approach can
be applied to other scenarios as well, such as deriving intratumoral pressure after the
administration of drug-carrying liposomes, which is the subject of Chapter 4.

PINNs with Discrete Data

An additional important capability of PINNs is that they can operate on both continuous
data (occurring over a continuous time range) and discrete data (occurring only at initial
and final times). Consider that rather than knowing N randomly selected input-output
pairs from the entire domain, we instead know the full spatial solution at two separate
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times, n(x⃗, t1) and n(x⃗, t2). This is of particular importance to this thesis since the primary
data used originates from medical imaging, which falls into the discrete data category.
When dealing with discrete data, the core idea of PINNs remains the same, though the
math and network setup need to be augmented slightly. First, the PDE must be discretized
using a Runge-Kutta time stepping algorithm with q stages (where q is chosen to be the
number of intermediate points at which the solution is predicted). We can write this
Runge-Kutta scheme as

ki(x⃗) = n1(x⃗) + ∆t

q∑
j=1

aijg (kj(x⃗), t1 + cj∆t) (2.41)

n2(x⃗) = n1(x⃗) + ∆t

q∑
j=1

bjg (kj(x⃗), t1 + cj∆t) (2.42)

where ki is the ith Runge-Kutta stage (i ∈ [0, q]), aij, bi, and ci are the Runge-Kutta
scheme parameters (commonly expressed in a Butcher Tableau), ∆t = t2 − t1 is the time
between the initial and final times, and g is the right hand side of the PDE rewritten
as ∂n

∂t
= g(n; x⃗, t). Note that each ki(x⃗) is a prediction of n(x⃗, t) at an intermediate

time between t1 and t2 corresponding to the Runge-Kutta parameter ci. When typically
using a Runge-Kutta scheme, an implicit matrix equation is solved for all q of the ki(x⃗)
profiles, which can then be used to calculate the n2(x⃗) from n1(x⃗). This process would be
performed iteratively over many time steps to estimate the solution at later times. In this
case, however, both n1(x⃗) and n2(x⃗) are known, but the function g(·, ·) cannot be computed
since boundary conditions, parameters, and/or fields appearing in the right hand side may
be unknown. Instead, this numerical scheme can be inverted to write the known initial
and final solutions as

n1(x⃗) = ki − h

q∑
j=1

aijg(kj, t0 + hcj) , n2(x⃗) = ki − h

q∑
j=1

(bj − aij)g(kj, t0 + hcj)

(2.43)

The PINN is now set up to receive x⃗ as input and output the Runge-Kutta stages k1, k2, ..., kq.
Evaluating the prediction of the initial and final data snapshots using these stages and the
Runge-Kutta scheme, the loss function for the discrete case can be written as

MSE = MSE0 +MSE1 (2.44)

where

MSE0 =
1

N

N∑
i=1

(n1 − n1,pred)
2 , MSE1 =

1

N

N∑
i=1

(n2 − n2,pred)
2. (2.45)
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In the above, N is the number of data points at each of the two times, n1 and n2 are the
known solutions at the initial and final times, and n1,pred and n2,pred are the solutions at
the initial and final times predicted by the neural network. Note that this loss function still
incorporates information from both the known data and the PDE like in the continuous
case; however, these two sources of information can no longer be separated term-by-term
as they were before.

Similar experiments can be performed in this discrete case as in the continuous case,
showcasing its insensitivity to noise (and some are performed in [96, 97]). Unknown pa-
rameters and fields in the PDE can also be incorporated in the same way, either defining
unknown PDE model parameters as trainable parameters or adding the unknown fields as
an additional outputs of the network.
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Chapter 3

Deep Learning Characterization of
Brain Tumours with Diffusion
Weighted Imaging

This chapter contains the first project of this thesis which was published in the Journal
of Theoretical Biology in 2022 [73]. The data used in the study was obtained from Unity
Health Toronto, and ethics approval was obtained for the study from Unity Health Toronto
and the University of Waterloo. The author list on the publication is below.

Cameron Meaney1, Sunit Das2,3, Errol Colak3,4, Mohammad Kohandel1

1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
2Division of Neurosurgery, St. Michael’s Hospital, Toronto, Canada
3Faculty of Medicine, University of Toronto, Toronto, Canada
4Department of Medical Imaging, St. Michael’s Hospital, Toronto, Canada

3.1 Introduction

The most prevalent form of malignant brain tumour among adults is Glioblastoma Multi-
forme (GBM). Modern treatments for GBMs involve a combination of surgery, chemother-
apy, and radiotherapy, yet despite the most aggressive therapies, mean survival after diag-
nosis is only 15 months [6, 56, 113]. GBMs are commonly distinguished from other brain
tumours by their dense necrotic core and surrounding shell of peritumoral edema, both of
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which pose challenges for effective therapy [87, 132]. In spite of continuous advancements
in our understanding of the biology of GBMs and in the imaging techniques used to observe
them, their full extent is often inaccurately assessed by state of the art imaging: many stud-
ies have noted that their growth and invasion tend to be underestimated [65, 87, 132]. As
treatments are typically designed based on this knowledge, there is potential for therapies
to be misapplied, possibly contributing to recurrence or treatment resistance. Methods
and technologies for more accurately assessing GBM growth and invasion are sought by
clinicians and researchers, with the hope of using this knowledge to make more accurate
growth predictions and design more effective treatments, especially in a patient-specific
manner.

Much of the information available when examining GBMs comes from medical imaging,
specifically multi sequence MRI [65, 126]. Qualitative conclusions can be drawn from MRIs
which can be used by clinicians to inform recommendations for observation and treatment.
The explosion of big data in recent years however, has also allowed for analysis of medical
imaging data quantitatively, which has proven tremendously fruitful. Unfortunately, the
barrier to entry in quantitative analysis of medical imaging is high, requiring substantial
mathematical and computational tools. Accordingly, mathematical modelling and machine
learning have become crucial tools with the capability to make quantitative analysis of
imaging data accessible enough for clinical use.

Many works have used mathematical models to predict the extent, future growth, and
response to treatment of GBMs [3, 35, 41, 43, 44, 55, 60, 72, 76, 82, 83, 119]. In particular,
the most common model used to simulate GBM progression is the PI model. The PI
model is a relatively simple model which describes GBM progression being governed by
two distinct processes: diffusion and proliferation. Each of these processes is characterised
by a model parameter dictating the importance of that process to the overall progression.
With estimates of these two parameters, along with an initial map of cellularity, the PI
model can be used to predict tumour progression and response to treatment. However,
making accurate estimates of these two parameters is quite challenging. Given the amount
of data that standard numerical tools require, the costs, difficulties, and potential risks
associated with obtaining the necessary imaging data are often disqualifying. Researchers
must then resort to techniques capable of making predictions based on smaller data sets
which, while possible, often introduces a new set of challenges and inaccuracies.

The first published technique that attempted to estimate patient-specific parameters
based on imaging data was developed by Swanson et al. in a paper [118] and subsequent
patent [117]. Their method used summary measurements taken from imaging combined
with several mathematical assumptions on the governing model, which led to a set of
equations which could be solved to yield estimates for the model parameters. For many
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years, this method served as the only one for estimating tumour progression parameters
in a patient-specific manner. A key advantage of this method is that it is mathematically
simple, requiring no more than a few measurements and basic algebra to derive estimates.
However, this simplicity arises from the fact that the data available from tumour imaging
is used only in summary measurements (such as radius) while more granular measure-
ments (such as voxelwise signal) are unused. Other recent works have attempted to create
more sophisticated methods to accomplish patient-specific brain tumour characterization,
though they each tackle slightly different problems and utilize a range of different tech-
niques. Konukoglu et al. [55], for example, estimated both the diffusivity and proliferation
parameters of the PI model for brain tumour growth using a time series of multimodal
MRIs. Interestingly, their method did not rely on estimated tumour cellularities as ours
does (explained below), but rather, relied on tumour delineation on imaging formulated
using Eikonal equations. Schuefele et al. [103] similarly attempt to estimate the parame-
ters of the PI model, but use only one patient MRI, generating a pre-image using an atlas
of healthy scans. From the observed image and the generated image, they were able to use
a modified Picard iteration algorithm to estimate the patient parameters. Theoretically,
one important advantage of this method is that it relies on only one MRI, rather than
two or more, as most longitudinal studies do. However, their method also requires a large
existing imaging dataset before making predictions on a particular patient - an important
disadvantage, given that data can often be scarce depending on the specific application of
interest. Subramanian et al. [114] take a similar approach, utilizing a single brain image
and generating a second using brain atlases. In their work, the PI model is extended to
a multi-equation system including the effect of advection as well as brain tissue elasticity.
They were able to derive estimates for parameters governing diffusion, proliferation, and
mass-effect for both synthetically generated tumours as well as a patient dataset. Gooya et
al. [37] also estimated the parameters in a reaction-diffusion-advection model with brain
tissue elasticity, though their predictions came simultaneous with a segmentation and reg-
istration process. Tunc et al. [123] compared parameter estimates for different models of
brain tumour growth including simple reaction-diffusion, reaction-diffusion-advection, and
reaction-diffusion-mass-effect, and did so using a covariance matrix evolution method. In
another variation of the standard PI model, Meghdadi et al. [76] estimate the parameters
of a reaction-diffusion-convection model using multiparameteric MRIs with particle swarm
optimization and genetic algorithms. Pati et al. [89] utilize multiparametric MRI to esti-
mate diffusivity, a mass effect parameter, and the number of days since tumour inception.
Interestingly, their method simply used labelled images from The Cancer Imaging Archive
(TCIA) and is largely independent of the choice of model. Finally, Hormuth et al. [44] take
a similar approach to the one we outline in this work by using multiparametric MRI to
match parameter values using solutions of a reaction-diffusion model. Like us, they utilize
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DWI to estimate tumour cellularity, which they use as input to PDE solvers. Parameters
are then matched to the patient case through comparing to solutions of the PI model.

All of the above works have advantages and disadvantages, and examine related prob-
lems which vary in slight, though crucial ways, making direct comparisons challenging;
so, no method has emerged as a consensus favourite for addressing the general question.
Ideally, a tumour progression parameter estimation algorithm would have several advan-
tageous characteristics. First, it should be able to make accurate estimations based on
minimal information, as data relating to a particular patient and their tumour can be hard
to come by, leaving researchers and clinicians relying on general data or existing databases.
Second, the estimates produced by the algorithm should be insensitive to error, an asset in
this setting as standardization across image acquisition protocols - to ensure appropriate
comparisons between images obtained at different facilities and with different machine op-
erators - is still not common [22, 26, 30, 45, 79]. Third, the presence of various alterations
of the PI model being used in the literature suggests that the algorithm should be easily
generalized to include other model forms. And lastly, the algorithm should be capable of
easily incorporating advances in imaging, registration, and segmentation, as advances in
these fields have proven to be frequent and significant of late.

In this paper, we develop a specialized deep learning model capable of characterizing
brain tumours which has the desired properties discussed above. Our method uses multi
sequence MRI at two time points and produces estimates of the PI model parameters along
with a full prediction of the tumour progression between the two imaging times. Involved
in our pipeline are several important steps including segmentation, conversion to tumour
cellularity, and network training; each of which are described in the methods section below.
We explain in detail the two distinct scenarios in which we apply our model: synthetic
sensitivity and patient data. The outcomes of the tumour segmentations, conversions to
cellularity, and model application to both the synthetic and patient data cases are detailed
in the Results section. In the conclusion, the work is summarized, limitations are discussed,
and directions for future research are noted.

3.2 Methods

This paper outlines a deep learning model capable of producing accurate, patient-specific
estimates of the PI model parameters and simultaneously giving a full forecasting of the
intermediate GBM progression curve. As known data, the neural network requires the
voxel-by-voxel tumour cellularity throughout the relevant brain volume at each of the two
imaging times. The following sections detail the key steps and ideas involved in deriving
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these cellularity profiles from MRI data, including data the PI model, data acquisition,
image segmentation, and conversion to cell density. We also explain our deep learning
model and detail the two cases in which we apply it: synthetic sensitivity and patient
data. Our procedure pipeline can be seen in the top part of figure 3.1.

3.2.1 Proliferation Invasion Model

The mathematical model most commonly used to describe the progression of GBMs is a
PDE called the proliferation-invasion model which has been used and discussed in many
previous works [3, 35, 41, 72, 76, 82, 83, 119]. The PI model has the form

∂n

∂t
= D∇2n+ rn

(
1− n

nmax

)
(3.1)

where n = n(x⃗, t) represents the tumour cell density at position x⃗ and time t. The key
characterizing parameters of the PI model are D and r, which represent the tumour cell
diffusivity and proliferation rate respectively. With estimates of these two parameters, the
PI model can be solved and the tumour fully characterised. Also present in the model is
the cell carrying capacity nmax, which quantifies the maximum biologically feasible tumour
cellularity at a location. Typically, the value of nmax is straightforward to estimate as it
is simply assumed to be the maximum observed cell density. Furthermore, when using
the PI model in our pipeline, we work with a nondimensionalised form of the equation
which considers only the ratio n

nmax
. For this reason, we artificially set nmax = 1 for all

calculations without loss of generality. We chose the PI model for our study because it is
relatively simple, well understood, and widely used in the literature.

3.2.2 Data Acquisition

The imaging data used in our study was collected as part of previous studies and was
obtained for use in this work through a data sharing agreement between the University of
Waterloo and Unity Health Toronto. Research ethics board approval was obtained from
both the University of Waterloo and Unity Health Toronto and all ethics guidelines were
followed in the study. The dataset consists of MRI data stored in DICOM format for five
patients, each of whom was diagnosed with GBM. For each patient, MRI was performed in
two instances with the T1, T1-GAD, T2, T2-FLAIR, and DWI sequences collected, giving
10 sequences per patient, each of which is 3D and voxelized. As explained below, the first
four of these sequences are used exclusively in a segmentation algorithm to separate the
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Figure 3.1: Top: Pipeline for our parameter estimation model. Following data acquisition,
the T1, T1-GAD, T2, and T2-FLAIR images are used for segmenting the tumour voxel-
by-voxel. The segmentation results are used to convert the ADC to a map of tumour
cellularity. The resulting tumour cellularities at the two imaging times are the known data
required to train our deep learning model to derive PI model parameter estimates and
intermediate progression curves. Bottom: Schematic of our deep learning model. The
voxelized spatial coordinates are used as input to four dense layers, each of size 50. The
output of these layers is used to predict the q intermediate Runge-Kutta stages which are
then used to predict the initial and final cellularity profiles. These predicted profiles are
compared with the cellularity profiles derived from imaging to generate a loss which is
backpropogated through the network to update the weights and model parameters.
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tumour tissue from normal, healthy brain tissue. The DWI however, is used exclusively
to derive a map of the tumour cellularity. Importantly, what is actually required for this
derivation of cellularity is the map of Apparent Diffusion Coefficient (ADC) which is often
obtained explicitly but can also be derived from a DWI and the T2 (null, b = 0) image
[128]. In this study, the ADC was precalculated from the DWI and given to us directly. A
summary of our dataset can be seen in table 3.1.

As our study aims to characterize the natural progression of the tumour, a requirement
for our data was that no anticancer treatment was performed between the imaging times
for each patient. This requirement severely limits the amount of data suitable for inclusion
in our study, since treatment for GBM is usually initiated shortly after detection. This
limitation is further discussed in the conclusion. Since the only required data for our study
are the images and time between them; the dataset was de-identified with respect to all
patient identifiers.

Patient ID Days Between Imaging Diagnosis
001 121 GBM grade IV
002 26 GBM grade IV
003 51 GBM grade IV
004 111 GBM grade IV
005 76 Anaplastic astrocytoma, progressed to GBM grade IV

Table 3.1: Summary of the patient data used in this study.

3.2.3 Image Segmentation

Brain tumour segmentation from imaging is a well-studied problem in the literature - even
a cursory search will return myriad results with countless segmentation approaches to con-
sider [37, 38, 48, 66, 136]. In this work, we rely on the Federated Tumor Segmentation
(FeTS) initiative software which is an open source toolkit which utilizes machine learning
techniques to perform tumour boundary detection [88, 105, 106] (https://www.fets.ai/).
It is developed and maintained by the Centre for Biomedical Image Computing and Ana-
lytics at the University of Pennsylvania. The software utilizes a fusion of numerous deep
learning models to complete its segmentation. More specifically, the FeTS segmentation
algorithm uses T1, T1-GAD, T2, and T2-FLAIR sequences and classifies each voxel into
one of four tissue categories: peritumoral edema, enhancing proliferative, necrotic, or non-
tumoral. As is explained below, this classification into four tissue types rather than the
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simple binary classification of tumoral vs. non-tumoral enables a more sophisticated con-
version to cellularity.

Our original DICOM images were first converted to NIfTI files as required by FeTS.
Then for each time and patient respectively, the T1, T2, T2-FLAIR, and DWI images were
rigidly co-registered to the T1-GAD image using the Greedy diffeomorphic registration
algorithm [90]. As part of this co-registration process, the 3D voxel size on all images was
standardized to (1mm, 1mm, 1mm). Skull stripping of the images, if necessary, is also
required as part of the FeTS segmentation algorithm. Note that in our dataset, patient
004’s images were given to us pre skull stripped, and therefore this step was skipped from
the segmentation algorithm for patient 004. The results of the segmentation algorithm
applied to our patient dataset are given in section 3.1 below.

3.2.4 Calculation of Tumour Cell Density

The known data required to train our deep learning model for a patient is the tumour
cellularity profile at two instances and the time between them. Accordingly, deriving the
tumour cellularity profile from imaging is an important step in our method. Several works
in the literature exist which explore methods of obtaining tumour cell density from imaging,
the most common method relying on the ADC image. In particular, a correlation between
ADC and tumour cell density has been identified, specifically that

Low ADC Signal −→ Restricted Fluid Motion −→ High Cellularity.

The biological logic behind this line of thinking is that the largest barrier to the Brownian
motion of water molecules present in brain tissue is cell membranes, and that an increase
in cellularity prevents the free diffusion of water molecules which is observed on an ADC
image. Furthermore, this thinking is supported by more than simply a biological rationale,
with many experimental works reporting strong correlation between ADC and tumour
cellularity, particularly in gliomas [27, 34, 39, 64, 115, 124, 134]. Most convincingly, Surov
et al. [116] provided a meta-analysis of the correlations between ADC and cellularity for
various types of tumours, noting that gliomas exhibited one of the highest correlations over
many cancer types. However, it is worth noting that despite the literature supporting its
validity, this correlation is not perfect, specifically being shown to lose accuracy in certain
b-value ranges of the original DWI image used to derive the ADC [130]. Nevertheless,
this correlation has led to the development of a mathematical expression relating the local
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ADC and tumour cellularity, which is given by

n(x⃗)

nmax

=
ADCwater − ADC(x⃗)

ADCwater − ADCmin

(3.2)

where ADCwater is the ADC in free water, ADCmin is the minimum ADC observed in the
tumour, and nmax is the tumour cell carrying capacity also found in the PI model (equation
(3.1)). Note that ADCmin is the minimum of the ADC values observed in the region
identified as tumour by the segmentation algorithm, and therefore that ADCmin changes
from patient to patient. This expression assumes a simple negative linear relationship
between ADC and cellularity with the maximum cellularity coinciding with the minimum
observed ADC and the minimum cellularity coinciding with the maximum observed ADC:
that of water. Many previous mathematical works have used this relationship to derive
tumour cell density profiles [8, 9, 77, 121].

While this relationship has the benefits of being simple and experimentally validated,
in certain situations, it can lead to tumour cellularity profiles that are not biologically
reasonable. Specifically, in a recent review of diffusion imaging of brain tumours, Maier
et al. [65] noted that ADC values in brain tumour tissue occasionally clearly exceed ADC
values of normal gray and white matter, and furthermore that ADC values tend to be
highest in the centre of the tumour and decrease toward the tumour boundary. Indeed,
this was observed in some of the patient images obtained for this study (see figure 3.2).
In such cases, using the above conversion relationship between ADC and cellularity would
therefore result in cellularity profiles with higher densities at the tumour boundary and
lower densities at the tumour core - the opposite of what is typically observed for GBM.
Maier et al. explain that this apparent contradiction between ADC and cellularity is due
to the presence of tissue necrosis which causes degradation of cell membranes, reducing
the restricted diffusion of water molecules, and hence increasing the observed ADC [65].
Importantly however, these necrotic cells in high ADC regions are still meaningful for
tracking the tumour progression and need to be counted in the conversion even if these
cells are not proliferating. The PI model accounts for these non-proliferating cells by
using a logistic growth term which attenuates the proliferation rate as cellularity increases.
Another potential issue is that due to the sharp nature of tumour segmentation maps, the
cell density profile resulting from this conversion will have a sharp drop-off at the tumour
boundary. Again, this is not the biology of GBMs, which tend to invade local tissues with
a smaller number of cells than is present in the tumour core. Furthermore, both of these
drawbacks lead to results that are opposite of the results typical of the PI model, which
produces profiles with a dense core and decreasing cellularity toward the tumour boundary.

However, the additional knowledge obtained from using FeTS for segmentation allows
for the creation of a more sophisticated conversion relationship. Specifically, consider a
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voxelwise conversion function as follows.

n(x⃗)

nmax

=


0, if x⃗ ∈ healthy voxels
ADCmax−ADC(x⃗)
ADCmax−ADCmin

, if x⃗ ∈ enhancing proliferative or peritumoral edema voxels

1, if x⃗ ∈ necrotic voxels

(3.3)

In this relationship, the additional knowledge from classes of tissue identified by FeTS is
leveraged to ensure that the resulting cellularity profiles agree with GBM biology and the
PI model. It is assumed that in necrotic tissue, the cells have ceased proliferating and
have therefore reached their carrying capacity, nmax (normalized to 1 here). In prolifera-
tive or edematous voxels, the established relationship is used, and in healthy tissues the
cellularity is assumed to be zero. While this form alleviates the problem of low cellularity
in the tumour core, it does not address the sharp discontinuities occurring at the boundary
between tissue types. To address this, a mean filter with kernel size 3x3x3 (correspond-
ing to a 3mm cube) is applied to the resulting cellularity array using the scipy function
ndimage.convolve to achieve the desired smoothness around the tumour boundaries. We
stress that this step is numerically, not biologically, motivated and is necessary to reduce
numerical errors related to solving the PDE. It is also worth noting that applying a mean
filter in this way slightly enlarges the tumour volume (by 2 voxels, in this case). Though
this new conversion model is not perfect, it is able to remove many of the problems with the
existing conversion by incorporating information from a more sophisticated segmentation
algorithm.

3.2.5 Deep Learning Parameter Estimation

Neural networks can be used for function inference; in other words, to copy the action of
a target function on given inputs. If given N input-output pairs from a target function,
n(x⃗, t), a neural network can be trained to approximate the function by minimizing the
mean squared error between the expected and predicted value of that function. In this
case, the function we use a neural network to approximate is the tumour cell density as a
function of space and time. Since this function is quite complicated and the data we use
to approximate it is scarce and noisy, the data points alone are not enough to accurately
infer the function. Luckily though, we have more information available to us than simply
the data points; specifically, we assume that the tumour cell density obeys the PI model
and can use this information to supplement the training of our function inference network.

Our method for incorporating the PI model into our neural network optimization is
motivated by the concept of physics-informed neural networks (PINNs) developed in a

45



series of papers and a patent by Raissi et al. [96, 97, 98]. The key idea of PINNs is to
improve function inference networks by augmenting the loss function used in training to
include a quantification of the satisfaction of the governing PDE model by the network
predictions. Through several examples in the original papers explaining PINNs, it is shown
that this formulation results in the network converging more accurately and more efficiently
than by using the data alone. This is not surprising, since by altering the loss function in
this way, more information has been added from which the neural network can learn. Of
particular importance, it is also shown that the optimization remains remarkably robust
when noise is incorporated into the known data. In our case, we augment the loss function
in such a way that the network is penalized when the PI model is not well satisfied. To
do this, the PI model is discretized using a Runge-Kutta time stepping algorithm with q
stages. Then, the Runge-Kutta scheme is rearranged with the initial and final solutions as
functions of the q stages,

ñ0 = ki −∆t

q∑
j=1

aijg(kj, t0 + cj∆t) , ñ1 = ki +∆t

q∑
j=1

(bj − aij)g(kj, t0 + cj∆t) (3.4)

where ki is the ith Runge-Kutta stage (i ∈ [1, q]), aij, bi, and ci are the Runge-Kutta
scheme parameters selected using a Gaussian quadrature rule, ∆t is the time between the
initial and final cellularity snapshots, and g is the right hand side of the PI model (equation
(3.1)) rewritten as ∂n

∂t
= g(n; x⃗, t). In this formulation of the Runge-Kutta scheme, each

intermediate stage, ki, can be used to produce an estimate of the initial and final cell
density profiles, ñ0 and ñ1. Hence the q estimates for the initial and final cellularities can
be compared to the known cell densities obtained through imaging, n0 and n1, as explained
above and fed to the loss function as a quantification of the satisfaction of the PDE.

Inputted to the network are the spatial coordinates of the voxels x⃗, and outputted are
the Runge-Kutta stages k1, k2, ..., kq which are used to quantify the satisfaction of the PDE.
Evaluating the prediction of the initial and final data snapshots using these stages and the
Runge-Kutta scheme, the loss function can be written as:

MSE = MSE0 +MSE1 (3.5)

where

MSE0 =
1

N

N∑
i=1

(n0 − ñ0)
2 , MSE1 =

1

N

N∑
i=1

(n1 − ñ1)
2. (3.6)

In the above, N is the total number of voxels in each image, n0 and n1 are the known
solutions at the initial and final times, and ñ0 and ñ1 are the solutions at the initial and
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final times predicted by the neural network. In other words, the loss function is the sum
of the mean squared errors at the initial and final cellularity snapshots over all of the
voxels in the image. As the network is trained, MSE approaches zero and the network
weights converge to the values which best mimic the action of the cell density function.
Note that the intermediate Runge-Kutta stages (ki) are estimates of the cellularity profile
between the two known images at times determined by the cj Runge-Kutta parameters,
hence giving estimates of the intermediate cellularity along the way. A visual inspection
of these profiles allows for a check of network overfitting, which was done for each case in
our work. The network input has a size equal to the spatial dimension of the cellularity
and output equal to the total number of voxels. This structure was the same as was used
in [97].

The key capability of this style of network optimization is that parameters appearing
in the PDE can be estimated during the training of the network. In the same way that the
network optimizes the value of its weights, it can iteratively optimize the PDE parameters
to find the values which best fit the data. This allows the network optimization to act as
not only a method for solving the PI model, but also as a parameter estimation technique.
To do this, a final custom layer is added to the network which calculates the loss using
the PDE and unknown parameters which can be backpropogated through to update these
unknown parameters. Another important capability of the model is to make predictions
without the need to specify boundary conditions acting on model (3.1). As explained
in [96, 97, 98], the boundary conditions are assumed to be applied to the system which
generated the data and are therefore incorporated into the network training through the
data itself, rather than through explicit specification. This means that the network is able
to infer the impact of the boundary conditions and take this into account when making
predictions.

3.2.6 Sensitivity Analysis on Synthetic Tumours

To showcase the model capabilities and assess the places where the error is most likely
to be high, we first apply our deep learning model to a set of synthetically generated
tumours. Each synthetic tumour is a computationally generated tumour cellularity profile
for which the full cellularity progression and PI model parameter values are known. In
particular, we perform analysis on the model by applying it to a series of tumours generated
using random selections of parameters, all originating from a Gaussian initial condition.
Additionally, although the model operates in three spatial dimensions when applied to
the patient data (as described above), here we perform the synthetic tests in one spatial
dimension rather than three. This decision was made simply to reduce the computational
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expense in performing the analysis: our testing indicated that each three-dimensional
case requires roughly 20 times the computational run time as the one-dimensional case.
Importantly, this reduction in spatial dimension affects the code only in the encoding of
equation (3.1) (partial derivatives only need to be calculated in one dimension instead
of three), and in the number of outputs of the neural network (which effectively reduces
by the cube root of the number of voxels in each dimension). It would have also been
possible to treat the 3D tumour as a 1D mathematical problem through the assumption
of spherical symmetry, with the tumour radius, r, acting as the lone spatial parameter.
This would preserve the 3D nature of the problem while saving significant computational
expense. We did not do this however, because switching between coordinate systems when
interfacing the FEM and PINN codes is quite cumbersome. The deep learning model is
easily adaptable to different dimensions of the spatial input. In the development of the
code, isolated 3D cases were also tested, with results similar to those in the 1D case.

In order to generate tumour cellularity profiles, the nondimensionalized PI model was
solved with zero-flux boundary conditions using the FEniCS Project finite element PDE
solving software [4, 63]. This solving was performed on a spatial interval of length 1
nondimensional unit with 100 spatial points, and over a time interval of 10 nondimensional
days. To obtain a fully dimensional solution, random values for D and r were selected and
used to scale the spatial axis and total time. These values were randomly selected within the
ranges D ∈ [0, 0.1] (mm2/day) and r ∈ [0, 1.0] (1/day), which were intentionally selected
to exceed the ranges in [41], who investigated the ranges typical for patient GBMs. To
dimensionalize these tests, the results simply must be scaled by the appropriate scaling
factors. Specifically, the number of days between images can be found by multiplying
the nondimensional time by (1/r) and the tumour size can be found by multiplying the
nondimensional length by

√
D/r. For example, if the initial and final snapshots have

a nondimensional time between them of t̃ = 5, then a proliferation rate of r = 0.1 per
day would correspond to the images being taken 50 days apart. In other words, the
identification of dimensional parameters using the model is equivalent to the identification
of nondimensional parameters with appropriate scaling. After dimensionalizing, 2 random
time steps are selected (from the 500 time steps in the full solution) to be the initial and
final images given to the parameter estimation network. Additionally, in the original papers
describing PINNs [96, 97, 98], random noise was added to the known data in testing to
display the model’s robustness. To assess this robustness in our model, we perform similar
tests by adding noise to the generated solutions of the PI model and analyzing our model
accuracy. To do this, a random maximum noise, ϵmax, is selected from the interval [0, 0.05].
Then, each voxel in the initial and final cellularity profiles is multiplied by a random value
in the interval [1− ϵ, 1+ ϵ] where ϵ ∈ [−ϵmax, ϵmax]. In other words, up to 5% random noise
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is added to each voxel of the known data individually. As the PI model is numerically
solved with known parameter values, the predicted values can be compared to the exact
values and the prediction error quantified. Examining this error over a range of times
between images and data noises can give an idea of when the network is more likely to
have an error in its predictions. This was done for 2500 synthetically-generated tumours.

3.2.7 Implementation of Application to Patient Data

Using data obtained from patient imaging, as described in sections 2.2-2.4, the deep learn-
ing model can be used to estimate parameters for patients’ tumours. This is done for the
five patients outlined in section 2.2. For each patient, the 3D grid of spatial inputs and cell
density outputs were flattened into 1D arrays. The initial and final cellularity profiles are
used to estimate the values of D and r specific to that tumour. To calculate these, each
patient’s images are given to the deep learning model 10 times to generate 5 estimates for
D and r. A bootstrapping algorithm is then used to derive the parameter estimate and
95% confidence interval for each patient’s parameters. To do this, 1000 sets of size 10 are
generated by randomly sampling with replacement from the original 10 network approx-
imations. The estimate for each parameter is then calculated by taking the mean of the
means of each set, and the 95% confidence interval is calculated by finding the minimum
width around the mean such that 95% of samples are contained within that interval.

3.2.8 Neural Network Implementation

For all examples and simulations in this paper, the neural network was implemented in
python using TensorFlow 2.3.1. The number of intermediate Runge-Kutta stages was al-
ways chosen to be q = 100. The network structure in all cases consisted of 4 fully connected
layers, with 50 nodes per layer, and all nodes utilized the built-in hyperbolic tangent activa-
tion function, and Adam optimizer. The Adam optimizer is an extension of the stochastic
gradient descent algorithm, more details on which can be found in [53]. Network inputs
and outputs were normalized to the interval [-1,1] prior to training, which requires rewrit-
ing the PDE in the loss function layer using the new scaled variables. Network structure
and relevant training hyperparameters were either taken to be the default, as optimized
by Raissi et al. [96, 97, 98] or were chosen heuristically based on testing the convergence
and run time. The code was run on an AMD EPYC 7542 2.9 GHz CPU and an NVIDIA
Tesla A100 GPU. In the 1D synthetic case, the network was trained for 10000 iterations
and assumed a constant learning rate of η = 0.001. Each synthetic tumour required ap-
proximately 30-45 seconds of run time. In the synthetic case, the underlying data used
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to train the network matched the PDE exactly (with some added noise) and hence it was
amenable to training. In the patient data case however, the PDE model is a far rougher
approximation of the data resulting from our conversion method, so the training algorithm
takes far longer to converge than was required in the synthetic case. For each patient, the
optimization was run for 1.5 million Adam iterations, which was chosen based on a visual
inspection of the graph of the loss functions. The learning rate was chosen to begin at
η = 0.01 and decay by 2% every 5000 iterations. This meant that in the final iteration,
the learning rate was η = 2.3e − 05. Each tumour requiring approximately 5-10 hours of
run time, depending on its size.

3.3 Results

3.3.1 Image Segmentation and Data Preprocessing Results

Brain tumour segmentation was performed on our 5 patient dataset using FeTS, which
categorized each voxel in the brain tumour image into one of four tissue types: peritumoral
edema, enhancing proliferative, necrotic, or non-tumoral. Total final tumour volume for
each of the five patients (from 001 to 005) are 89.1cm3, 12.1cm3, 30.1cm3, 67.8cm3, 53.7cm3

and the proportion of the tumour volumes segmented into each of the 4 tissue types can
be seen in table 3.2. Representative cross sections of this conversion can be seen in figure
3.2, and figure 3.3 contains an additional figure with axial, sagittal, and coronal cross
sections of the tumour. These segmentations are used to calculate the cellularity profiles
using the procedure outlined above; figure 3.4 shows representative cross sections of these
cellularities for each patient. Of note, it is interesting that patients 001 and 005 have
image segmentation results which found no proliferative region within the tumour - only
necrotic and edematous regions were present. Other segmentation algorithms may give
slightly different results for these tissues, and it is important to note that replacing the
segmentation method used in our code is simple. More discussion on this is provided in
the conclusion section.

3.3.2 Sensitivity Analysis on Synthetic Tumours

The results of the sensitivity analysis performed on synthetically generated tumours can be
seen in figure 3.5. In these plots, the average percent error in the prediction of the values
of the two parameters is shown as a function of ∆t and ϵmax. As can be seen, parameters
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Figure 3.2: Representative cross sections of segmentation results for our patient dataset.
Segmentations were performed by the FeTS software which uses the T1, T1-GAD, T2, and
T2-FLAIR images to classify the image voxel-by-voxel into the tissue categories peritumoral
edema, enhancing proliferative, necrotic, or non-tumoral. The first and third columns show
the ADC at the initial and final image times respectively. The second and fourth columns
show the ADC with the segmentation results superimposed at the initial and final image
times respectively.
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Patient ID Necrotic Proportion Proliferative Proportion Edema Proportion
Initial Final Initial Final Initial Final

001 0.61 0.67 0.00 0.01 0.39 0.33
002 0.11 0.05 0.11 0.19 0.77 0.76
003 0.13 0.02 0.03 0.41 0.83 0.57
004 0.14 0.14 0.07 0.07 0.79 0.79
005 0.19 0.20 0.00 0.00 0.81 0.80

Table 3.2: Proportions of each patient’s initial and final tumour segmented into the tissue
types: peritumoral edema, enhancing proliferative, necrotic, or non-tumoral.

Figure 3.3: Segmentation results of the three spatial axes for the initial and final time
images of each patient. Segmentations were performed by the FeTS software which uses
the T1, T1-GAD, T2, and T2-FLAIR images to classify the image voxel-by-voxel into the
tissue categories peritumoral edema, enhancing proliferative, necrotic, or non-tumoral.

are able to be estimated with reasonably high accuracy in most cases, with 89.7% of runs
having an error of less than 5% in both parameters and only 1.1% having an error higher
than 10% for both parameters. Our model shows the highest error in its predictions in
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Figure 3.4: Representative cross sections of cellularity conversion from ADC and tumour
segmentations for our patient dataset. Conversions were performed using equation (3.3).
The first and third columns show the ADC at the initial and final image times respectively.
The second and fourth columns show the ADC with the calculated cellularity superimposed
at the initial and final image times respectively. The scale maximum is the tumour cellu-
larity normalized by nmax.
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cases where the time between the images is small: less than 1 nondimensional day (or
1/r dimensional days). In these cases, and particularly when noise is also high, higher
errors are present in the predictions of the two parameters, especially for the diffusivity D.
The reasoning for the higher error in these cases is that when ∆t is small, the difference
between the cellularity profiles at the initial and final times is also small. Therefore, the
small absolute differences in cellularities resulting from image noise lead to high relative
differences between the images, which can lead to larger differences in the predictions of
the parameters. Similarly, the model is able to produce highly accurate approximations of
the parameters even in cases when noise is high as long as the time between the images
is not small. Importantly, this analysis suggests that the cases which are most likely to
contain an error in the predictions of the parameters are the ones whose initial and final
cellularity profiles are very similar. Intuitively, it is more challenging to extract precise
parameter estimates from cellularity profiles that show little progression between them
than from ones which show noticeable progression.

An important advantage of our model is that it trains on one patient’s data alone and
requires no other data or existing imaging database in order to make predictions. This does
however mean that there is no meaningful split of our data into training and testing sets
as is done in many machine learning applications. This means that it is difficult to assess
our model’s performance prior to application since, by its nature, all relevant data must
be incorporated into the training. It is for this reason that we chose to apply the model to
synthetic tumours since it allows for an analysis of the parameter approximations in cases
where the true values are known. Specifically, it sheds light on cases where we should have
higher or lower confidence in model predictions, which can inform the interpretation of the
model results when applied to patient data.

3.3.3 Application to Patient Data

The parameter estimates made by our deep learning model on our patient dataset can be
seen in table 3.3. For each patient, the parameter estimate and 95% confidence interval are
given for both the diffusivity, D, and proliferation rate, r. Also shown are the average of
the final loss values over all of the bootstrap samples. Observe that the range of predicted
proliferation rates over the 10 patient set is large, ranging over approximately 7 orders
of magnitude. Furthermore, notice how these estimates coincide with the imaging and
cellularity profiles seen in figure 3.4. For example, there is a large amount of visible growth
during the 51 days between images for patient 003, leading the model to predict a high
proliferation rate. In contrast, the difference between the cellularity profiles for patient
004 appears small and the time between these images is 111 days, leading the model to
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Figure 3.5: Percent errors for the application of the deep learning model on synthetic
tumours for D (left) and r (right). Maximum noise is selected by uniformly sampling
over the interval [0, 0.05] and nondimensional time between images is uniformly sampled
in [0, 10] nondimensional days. Results are averaged into 10 equal width bins along each
axis and averaged.
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converge to a small value of r. For the most part, our parameter estimates listed in table
3.3 fall in the lower range of other estimates found in the literature [41, 60, 101, 102, 122].
This is most likely because of the bias in data inclusion in our work, since patients who
had multiple images without treatment between them were likely those whose tumours
were growing slowly enough that they did not require immediate treatment. It could
also be due to the difference between considering different growth models, for example,
exponential vs. logistic growth in equation (3.1). Some previously cited works consider
an exponential growth model, which may result in a different prediction for proliferation
rates, especially for larger tumours. Indeed, the five patients considered in our study may
fall into this category. In figure 3.6, representative cross sections of the initial and final
cellularity profiles as well as profiles at a middle time (the middle Runge-Kutta ki) are
shown.

After obtaining the patient-specific estimates for the PI model parameters, they can be
used to predict future tumour progression. To do this, the final cellularity profile for each
patient, as derived from imaging, is used as an initial condition to simulate the solution
of the PI model with the estimated parameter values. Like for the synthetic tumour case,
solving the PI model is done using the FEniCS project solver [4, 63]. The results of this
tumour progression prediction can also be seen in figure 3.6.

Patient ID Estimated D (mm2/day) Estimated r (1/day) Average Loss
001 7.55e−4± 1.54e−4 2.25e−2± 7.95e−4 1.32e−3
002 2.60e−2± 3.53e−3 9.27e−3± 5.99e−4 4.99e−4
003 1.18e−2± 1.36e−3 7.14e−2± 6.46e−3 4.40e−4
004 1.38e−9± 3.22e−11 1.11e−3± 4.22e−6 1.40e−4
005 9.25e−4± 4.52e−5 5.87e−3± 1.76e−4 5.35e−4

Table 3.3: The mean and 95% confidence interval estimates for the PI model parameters
for each of the patient data cases as predicted by our deep learning model using 10 runs
of the model and 1000 bootstrap samples. The final column of the table is the average
terminal loss after training the 10 bootstrap samples for each patient, shown to indicate
the goodness of fit.

3.4 Conclusion

In this work, we develop a pipeline that utilizes a deep learning model to make patient-
specific estimates of the parameters of the well-known PI model for brain tumour progres-
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Figure 3.6: The results of the deep learning optimization model applied to the five patients
in our dataset. The cross sections shown are representative slices of the 3D tumours. The
cellularity is superimposed on the ADC at four times (from left to right): the initial imaging
time, halfway between the two imaging times, the final imaging time, and 90 days after
the final imaging time. The initial and final time images are converted from ADC data,
while the intermediate time in estimated using the neural network, and the future time
cellularity is calculated using the PI model. The scale maximum is the tumour cellularity
normalized by nmax.
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sion and use these estimates to make personalized estimations of tumour growth parame-
ters. The pipeline relies on knowledge of five MRI sequences, including T1, T1-GAD, T2,
T2-FLAIR, and DWI - the first four of which are used in image segmentation and the final
of which is used to derive a map of tumour cellularity. The personalized parameter esti-
mates produced by our model can be used in predictions of tumour growth and treatment
response all while relying on minimal data, which is obtained during standard tumour
imaging. This clearly has both theoretical and clinical utility. One particular advantage
of this method is that it requires data only from the patient about whom predictions are
being made. This sidesteps the major hurdle of requiring a large existing dataset which
commonly plagues the application of machine learning models to problems in medicine.

While our method was capable of deriving reasonable predictions, there are several
parts of our work that could be improved. First, no segmentation algorithm is perfect,
and improvements to segmentation performance would directly lead to more accurate deep
learning predictions. One may question whether our choice of segmentation algorithm
is optimal, or whether the accuracy of the tumour segmentation results obtained herein
are sufficient. Luckily, including different segmentation algorithms into our pipeline is a
simple process - meaning that as benchmark performance of brain tumour segmentation
algorithms continues to improve, these gains can be seamlessly incorporated into our op-
timization. Additionally, we should also stress that brain tumour segmentation is not the
focus of this paper, nor do we claim that our work contributes to state-of-the-art brain
tumour segmentation. For this reason, we do not investigate other brain tumour segmen-
tation algorithms. Our choice of FeTS as segmentation algorithm has the advantage of
classifying tissue into one of several categories, which allows for a more detailed conversion
to cell density. Since our conversion method is able to utilize the voxel-by-voxel tissue
classification, we believe that the resulting cellularity profiles are likely more realistic than
the standard method. However, more in depth studies in the literature leading to more
accurate rules for cellularity derivation would be of tremendous use to improving the ac-
curacy of our work, and clearly there is room in the literature for more investigation here.
Furthermore, changes in this regard could similarly be seamlessly incorporated into our
work. Additionally, our conversion method does not account for the presence of tumour
cells beyond the identified tumour boundary despite the critical importance of these cells
when considering tumour recurrence. Identifying and quantifying these cells which extend
beyond this boundary is obviously a crucial clinical goal and challenge, and future methods
capable of obtaining this information from imaging can easily be added into our pipeline
by altering the conversion formula (3.3) to include them. The largest source of error in
our model however is likely due to differences in MRI machine calibration and operator
protocols. As has been noted elsewhere [22, 26, 30, 45, 79], standardization across image
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acquisition protocols is clearly necessary in order to advance AI in medicine. When con-
sidering any of the above potential sources of error however, it is important to recall that
our deep learning optimization is very robust with respect to noise within the data (as is
explored in depth in [97, 96, 98]). Given this, even with changes to any of these parts
of our procedure, changes to the parameter estimates are likely to be small. This lack of
sensitivity to data noise is a key advantage of our method.

Though the PI model is a well-established tool for modelling the progression of brain tu-
mours, other more sophisticated models could provide benefits. Specifically, the PI model is
a one-population model where all cells are considered to diffuse, proliferate, and otherwise
act identically. It does not take into account other factors such as tumour necrosis, vas-
cularization, pressures, or advection. Additionally, note that the choice of setting necrotic
voxels to a normalized cellularity of 1 may be somewhat misleading as cells in necrotic tis-
sues are not expected to proliferate and diffuse as they would be considered to by equation
(3.1), representing a limitation. For example, this setup would theoretically allow for cells
in necrotic voxels (and therefore saturated voxels) to diffuse into non-saturated voxels and
continue proliferating. This is particularly problematic given the infinite diffusion speed
imposed by Laplacian operators in reaction-diffusion systems. Though clearly this effect is
small in our application. However, it is important to note that this is not a limitation of
this assumption, but again a limitation of the PI model and one-population cell models in
general. Our deep learning model could easily be applied to a different model equation (or
equations) to estimate the parameters appearing in that model. Switching the PDE model
used in the neural network requires only augmenting the loss function which quantifies the
agreement of the data to the PDE. Additionally, works using the PI model [82, 83, 118]
often consider a spatially-dependent diffusivity,

D(x⃗) =

{
DG, in gray matter

DW , in white matter

where differences between gray and white matter are considered. This could also be incor-
porated into our model by obtaining a map classifying brain voxels into gray and white
matter, then adding a third parameter for the deep learning model to optimize. This idea
could be further generalized to include DTI-derived diffusion tensor fields or spatially-
dependent proliferation rates. There is also the possibility of pretraining the deep learning
model on a larger set of patients prior to patient-specific training. As currently, this method
requires a new network to be trained from scratch for each patient, pretraining could greatly
reduce the computational expense and potentially lead to more accurate predictions. This
would however negate one key advantage of our method, being that our algorithm relies
solely on the patient of interest’s images and requires no additional data. The most notable
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shortcoming of our work though, is that we are unable to compare the growth predictions
that result from our deep learning model to a third image time to assess their reasonability.
The reason we are unable to do this is simply a lack of data availability due to the specifics
of our model setup. In particular, a patient’s data was only admissible to this work if
it contained all five relevant MRI sequences (T1, T1-GAD, T2, T2-FLAIR, DWI/ADC )
at two times with no anticancer treatment administered between them. Typically, it is
standard in clinical procedure to perform one set of imaging for diagnostic purposes and
then a second set for treatment guidance, and often only one set of imaging is performed
to serve both purposes simultaneously. This means that finding cases where three sets of
imaging were performed without treatment between them is challenging, and is the reason
why our work does not contain any. However, this restriction could be bypassed if the
requirement of no treatment could be ignored. This could be possible by adding the effect
of treatment into the PI model. For example, the PI model could be augmented to include
the effect of treatment by adding terms to the right hand side of equation (3.1) as has
been done in many other works [70, 71, 95, 100, 101]. This would allow for the analysis
of patients who have treatment between their images as well as the potential to make
patient-specific estimates of mathematical parameters related to treatment such as the ra-
diobiological parameters in the linear-quadratic model. Finally, recent works [69, 131] have
noted differences in gliomas based on patient sex and have called for the inclusion of this
information in the analysis. For our work, it would be interesting to observe the differences
in parameter predictions for male and female patients, though this would require a much
larger dataset than we have used in order to be meaningful. This will be considered in
future studies.

We hope that this work serves as an example of the benefits of deep learning applied to
the analysis of medical imaging. Techniques such as this can act in addition to the standard
clinical workflow, providing clinicians with evidence-based predictions which incorporate
patient data that can be used to aid in disease management.
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Chapter 4

Prediction of Intratumoral Fluid
Pressures and Liposome
Accumulation Using Deep Neural
Networks

This chapter contains the second project of this thesis which is currently in submission to
Scientific Reports. The data was obtained from previous studies on which Shawn Stapleton
was the first author. The author list on the submitted manuscript is below.

Cameron Meaney1, Shawn Stapleton2,3, Mohammad Kohandel1

1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
2MD Anderson Cancer Center, Houston, Texas, USA
3Department of Radiology, University of Washington, Seattle, Washington, USA

4.1 Introduction

A key obstacle in the efficacy of anticancer chemotherapeutics is the chaotic, inefficient vas-
culature which commonly plagues solid tumours [78]. This irregular tumour vasculature
causes decreased nutrient delivery, increased hypoxia, impaired drainage, and notably, high
interstitial fluid pressure (IFP) [21]. High IFP in tumours has been associated with cancer
progression and resistance to both chemo- and radio-therapy [78]. Accordingly, the level of
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IFP present in tumour tissues is a relevant clinical factor for forecasting tumour progres-
sion and designing optimal treatments. Unfortunately, measuring the level of IFP in vivo
directly is challenging, relying on invasive procedures which would make it disqualifying in
a clinical setting. Motivation therefore exists for the development of noninvasive methods
capable of predicting high IFP, especially quantitatively, in a patient-specific manner.

Fortunately, recent advancements in medical imaging and liposome technology have
provided an avenue to accomplish this. Specifically, a phenomenon termed the Enhanced
Permeability and Retention (EPR)) effect - similarly caused by the aforementioned irreg-
ular tumour vasculature - results in a selective accumulation of liposomes within tumour
tissue over healthy tissue [32, 91]. While this preferential accumulation hasn’t yet been
leveraged into a significant increase in drug efficacy over standard of care, the phenomenon
is well-documented and able to be observed through imaging [28, 32, 42]. This imaged
accumulation can then be combined with sophisticated quantitative methods to derive
estimates for intratumoral IFP.

An established mathematical model which has been used in many studies ([13, 14, 12,
15, 62, 109, 110, 111, 120], for example) quantitatively links interstitial liposome accumu-
lation to intratumoral IFP. Given the IFP, in addition to the tissue- and liposome-specific
model parameters, a map of liposome accumulation could be predicted pre-administration
by solving the mathematical model. However, given that IFP is difficult to accurately
measure in vivo, it is more useful to consider the inverse of this problem: namely, given
the intratumoral accumulation of liposomes post-administration, it should be theoretically
possible to derive the underlying IFP which resulted in that spatial distribution of liposome
accumulation. Using standard mathematical techniques, this inverse problem is quite chal-
lenging to solve. However, a novel deep learning technique called physics-informed neural
networks (PINNs) is well-suited to handle problems of this nature. PINNs are a type of
neural network which incorporates data from a mathematical model into network opti-
mization [96, 97]. In this case, data from liposome accumulation imaging can be used in
combination with the established mathematical model to estimate the IFP in that tissue.
Spatially varying predictions of IFP for an individual patient could then theoretically be
used in predicting disease progression, optimizing disease therapy, or evaluating treatment
response.

Estimation of IFP using noninvasive methodologies has been the aim of several previous
studies. Bhandari et al conducted a series of investigations that leveraged MRI data from
brain tumours. In their initial study [15], they employed PDEs to solve for pressure
distributions directly, utilizing parameter values for normal and tumour tissues from the
literature. These pressure distributions were then used to predict the transport of cancer
drug-carrying liposomes, deploying equations similar to those applied in this study. In a
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subsequent study [12], Bhandari et al incorporated variable factors into their modelling,
such as heterogeneous vasculature, theoretically enabling patient-specific estimations of
IFP. In another work from the same group [14], the authors extended their approach
by solving for pressure using PDEs, and using the derived pressure values to predict the
transport of various cancer chemotherapeutics. This was done by selecting tissue-specific
parameters for normal and tumour tissues, substituting values for drug-specific parameters
specific for each chemotherapeutic agent, and solving the equations to obtain concentration
maps. Further advancements were made in [13], where dynamic contrast-enhanced imaging
was utilized to estimate patient-specific parameter values, enabling predictions of IFP and
drug distribution for individual patients. Soltani et al [109] introduced the concept of
angiogenesis into the model and, similar to previous studies, and solved for pressure using
PDEs with fixed parameter values. Liu et al. [62] also applied MRI data to predict IFP
by extracting key tumour measurements and using them to derive parameter values that
informed the PDE for pressure. In a larger study, Swinburne et al. [120] employed the PDE
model for pressure and transport, applying it to a large dataset of 41 brain tumour patients.
The study generated voxel-by-voxel estimates of pressure as well as mean pressure values for
each tumour. Importantly however, each of these works solved the forward problem, first
selecting or estimating parameter values, then solving for pressure and subsequently drug
distribution. None of them solved the inverse problem, beginning with drug distribution
and using it to derive pressure, as we do here, which could lead to more specific and
accurate IFP predictions.

In this paper, we develop a specialized deep learning model, based on the concept of
PINNs, which is capable of predicting the distribution of intratumoral pressure in vivo
from liposome accumulation data derived from imaging. In order to make predictions, our
model requires the spatial map of liposome accumulation within the tumour at some time
post-administration as well as estimates of the parameters present in the mathematical
model, which could be estimated in a patient-specific manner or taken from the literature
as done in the previous studies mentioned above. We apply our method to an animal
dataset from a previously published liposome accumulation study [110]. In the materials
and methods section below, we explain the data acquisition and preprocessing, as well as
describe the key concepts and steps in our method including the PDE model and deep
learning model used to make predictions of pressure. In the results section, we show the
IFP predictions made by our model on the animal dataset and compare to the measured
IFP to assess our model accuracy. We also conduct a sensitivity analysis on our model
by applying it to a series of synthetically generated tumours and liposome accumulation
maps. In the conclusion, we summarize the paper and discuss limitations and directions
for future research.
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Figure 4.1: Diagram illustrating the workflow of our deep learning model. Following
acquisition of CT imaging of segmented xenograft mouse tumours, the data is first cropped
and converted to voxelwise liposome concentration at the final imaging time point. Then,
our deep learning algorithm uses this data to predict the IFP and liposome accumulation
curve. For our dataset, the predictions for liposome accumulation can be compared to
additional measured liposome accumulation datapoints obtained through imaging, and the
prediction for IFP can be compared to measured IFP using a wick-in-needle measurement.
On the bottom, a visual representation of our deep learning model is shown. The spatial
coordinates of each voxel are input to the network which consists of 4 dense layers each
with 50 nodes, followed by a final dense layer on q + 1 nodes. The outputs of this final
layer are the predictions of intermediate liposome concentration at each time and pressure
at the inputted voxel. These values are passed to the PDE model to compute the initial
and final measured liposome accumulation maps derived from imaging, which are used to
compute the loss and update the network.
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4.2 Materials and Methods

4.2.1 Mathematical Model

The key concept of PINNs, which we employ in the design of our deep learning model, is
to incorporate information from a governing mathematical model into the training of the
neural network through the loss function. In our work, we rely on a PDE model to relate
liposome transport and IFP within tumour tissue, which is given by equation (4.1). This
PDE has been used to model the transport of nanoparticles in tumour tissue in several
previous works ([12, 13, 14, 15, 62, 109, 110, 111, 120], for example), many of which provide
a detailed derivation of the equation itself.

∂Ci(x⃗, t)

∂t
=

LpS

V
(Pv − Pi(x⃗)) (1− σ)Cp(t) +∇ · (fKCi(x⃗, t)∇Pi(x⃗))− kdCi (4.1)

In this model, Ci(x⃗, t) and Cp(t) are the concentrations of liposomes in the interstitium and
plasma respectively. Note that the interstitial concentration is allowed to vary throughout
the tumour both spatially and temporally, whereas the plasma concentration is assumed
to vary only temporally. In other words, the plasma concentration of liposomes is assumed
to be equal in each voxel in the tumour image, and only change its concentration over
time. In healthy tissues, pressures are tightly regulated to ensure homeostasis, though
in tumours, these pressures can become unregulated. The first term of the right hand
side of equation (4.1) describes fluid flow from the plasma into the interstitium, which
is governed primarily by the difference between the IFP, Pi(x⃗), and the microvascular
pressure, Pv, which is assumed to be constant in space and time. This fluid motion is also
dictated by the vascular hydraulic conductivity, Lp, the vessel surface area per unit tissue

volume, S/V , and the reflection coefficient, σ. Since LpS

V
always appears as a grouping, we

consider it as a single parameter throughout our work and refer to it as the vessel escape
rate. Within the interstitial space, nanoparticles undergo both a convective and diffusive
process. The second term on the right hand side of equation (4.1) describes the convection
of nanoparticles from areas of high IFP to areas of low IFP. This process also depends on
two parameters: the retardation coefficient, f , and the interstitial hydraulic conductivity,
K. While in the interstitium, nanotherapeutics also undergo elimination, either through
natural degredation, fluid phase uptake, or cellular update. We term this grouped effect the
elimination rate, and denote it kd. In the above, ∇ is the gradient operator which operates
in as many spatial dimensions as the problem contains. Additionally, note that LpS

V
, σ, f ,

K, and kd are all allowed to vary spatially throughout the domain of interest. In particular,
it is often assumed that each parameter takes on two values: one within tumour tissue and
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one within healthy tissue. See table 4.1 below for a summary of the parameters appearing in
the PDE model. Note that some studies which use this PDE model for liposome transport
also assume liposome diffusion in the interstitium, which is incorporated into the model
by adding a term of the form D∇2Ci where D is the liposome diffusivity. In our case,
since the study from which our data comes did not include diffusivity, we omit it when
operating on the mouse data as well. We have included the diffusivity in the sensitivity
analysis section below however, for completeness, because many other studies do include
it, and since it is a simple addition.

Symbol Name Units Tissue- vs. Particle- Specific
LpS

V
Vessel Escape Rate 1/mmHg*s Particle

Pv Microvascular Fluid Pressure mmHg Tissue
σ Reflection Coefficient 1 Tissue
K Interstitial Hydraulic Conductivity cm2/mmHg*s Particle
f Retardation Coefficient 1 Tissue
kd Elimination Rate 1/s Tissue
D Diffusivity cm2/s Particle

Table 4.1: Summary of parameters included in the PDE model (4.1), which has been used
in many previous studies. Note that the diffusivity is not included in our model when
operating on our mouse dataset since the work this data originates from [110], and to
which we compare our predictions to, did not include it. The diffusivity has been included
in the sensitivity analysis however because it is included in many other studies.

4.2.2 Deep Learning Model for Estimation of Interstitial Fluid
Pressure

From a purely mathematical perspective, given the function Ci(x⃗, t), it is theoretically
possible to derive the underlying IFP, Pi(x⃗), using the liposome transport PDE model
(equation (4.1)). Doing so however, is no simple task since the IFP can vary spatially
throughout the volume of the tumour. From a practical perspective, it is even more chal-
lenging since data on Ci(x⃗, t) is obtained via imaging, meaning that continuous measure-
ments are not known, but rather, data is typically only available at a number of discrete
times; in this case, two of them. The problem of pressure identification is then to find the
best fit approximation of Pi(x⃗) such that equation (4.1) is satisfied and Ci(x⃗, t1) = u1(x⃗)
and Ci(x⃗, t2) = u2(x⃗), where t1 < t2 and the profiles u1(x⃗) and u2(x⃗) are the known lipo-
some accumulation maps obtained through imaging. This can be mathematically framed
as a function inference problem in which we seek to minimize the error in the known data
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points as well as satisfy the governing PDE. Hence, it is well-suited for the application of
PINNs.

Consider the time discretization of the liposome transport model according to an im-
plicit Runge-Kutta scheme with q stages over the interval [t1, t2]. We denote the Butcher
tableau parameters anm, bn, and cn, and write the intermediate Runge-Kutta stages as
kn(x⃗) where n ∈ [1, q]. Note that each kn(x⃗) is a prediction of Ci(x⃗, t) at an intermediate
time between t1 and t2 corresponding to the Runge-Kutta parameter cn. We can write this
numerical scheme as

kn(x⃗) = u1(x⃗) + ∆t

q∑
m=1

anmg (km(x⃗), t1 + cm∆t) (4.2)

u2(x⃗) = u1(x⃗) + ∆t

q∑
m=1

bmg (km(x⃗), t1 + cm∆t) (4.3)

where u1(x⃗) and u2(x⃗) are the measured liposome accumulation maps at t1 and t2 re-
spectively, ∆t = t2 − t1, and g(·, ·) is the right hand side of equation (4.1) written as
∂Ci

∂t
= g(Ci, t). When typically using a Runge-Kutta scheme, an implicit matrix equation

is solved for all q of the kn(x⃗) profiles, which can then be used to calculate the u2(x⃗) from
u1(x⃗). This process would be performed iteratively over many time steps to estimate the
solution at later times. In this case however, both u1(x⃗) and u2(x⃗) are known, but the
function g(·, ·) cannot be computed since the IFP, Pi(x⃗), is unknown. Instead, we can
invert this numerical scheme to write the known initial and final liposome accumulation
maps as

u1(x⃗) = kn(x⃗)−∆t

q∑
m=1

anmg (km(x⃗), t1 + cm∆t) (4.4)

u2(x⃗) = kn(x⃗) + ∆t

q∑
m=1

(bm − anm)g (km(x⃗), t1 + cm∆t) . (4.5)

This formulation of the Runge-Kutta scheme allows the known data (liposome accumula-
tion snapshots) and the governing model (equation (4.1)) to be included in the loss function
of our network training, as explained below.

We create a neural network which takes the spatial position of a voxel x⃗ as input, and
outputs the liposome accumulation in that voxel at each intermediate time in the Runge-
Kutta scheme, (k1(x⃗), ...kq(x⃗)) (hence, 3 inputs and q outputs). These q intermediate stages
can then be used to compute estimations for the initial and final liposome accumulation
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snapshots, Ci(x⃗, t1) and Ci(x⃗, t2), using equations (4.4) and (4.5) which can be compared to
the known liposome accumulation maps derived from imaging, u1(x⃗) and u2(x⃗). We choose
a mean squared error metric to quantify the differences, and hence, the loss function used
in network training is written as

MSE =
1

N

∑
x⃗

[Ci(x⃗, t1)− u1(x⃗)]
2 + [Ci(x⃗, t2)− u2(x⃗)]

2 (4.6)

where N is the total number of voxels in the liposome accumulation image and the sum is
computed over all voxels in the image.

While the above formulation allows the inclusion of all of the available information
into the optimization, it does not address the problem of unknown pressure. Fortunately,
a key capability of this style of network optimization is that quantities appearing in the
PDE model can be estimated during the training of the network. In the same way that
the network optimizes the values of its weights, it can iteratively optimize the parameters
or functions appearing in the model to find which values best fit the known data. In the
original papers outlining PINNs, Raissi et al [96, 97] showed how PINNs could accurately
estimate the values of unknown parameters in Burgers’ equation and identify pressure
fields appearing in the Navier-Stokes equations. More recently, we used this technique in
combination with brain tumour segmentation algorithms to characterize human glioblas-
toma multiforme by estimating patient-specific parameters appearing in a common model
of brain tumour progression [73]. To make these estimations, a final custom layer is added
to the neural network which calculates the loss using the PDE and unknown IFP. This
custom loss layer can be backpropogated through to update the values of the unknown
pressure in each voxel. In other words, this layer implements the PDE and loss function
(equation (4.6)) by including an array for IFP, each voxel of which is an independent, train-
able parameter which is optimized to the data and PDE throughout the network training.
As the network trains, u1(x⃗) and u2(x⃗) converge to Ci(x⃗, t1) and Ci(x⃗, t2), and Pi(x⃗) should
converge to the true pressure underlying the system.

One important note is that boundary conditions are not needed to train the network
using the data and PDE. As explained in [96, 97], the boundary conditions are assumed
to be present in the system which generated the data, and therefore, information on the
boundary conditions is assumed to be present in the data itself. Therefore, there is no
need to directly specify them in the optimization. It would be possible to add further
terms to the loss function to quantify the satisfaction of particular boundary conditions to
the network predictions - in much the same way that this is done for the PDE - but this
would be challenging since defining the boundary on which these boundary conditions act
is nontrivial in the context of complicated tumour geometries. Additionally, the boundary
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conditions that would typically be applied to the liposome transport model are continuity
conditions at the tumour boundary and a zero-at-infinity condition, both of which are not
straightforward additions to this form of discretized model.

4.2.3 Mouse Data Collection and Preprocessing

The mouse liposome accumulation maps used in this study were obtained as part of a
previous investigation conducted by Stapleton et al [110]. In that study, 15 female SCID
mice were injected with the MDA-231 human breast adenocarcinoma tumour cell line and
allowed to grow until reaching a volume of 140 mm3. A liposome-based CT contrast agent
was then prepared and administered to all mice considered in the study. Liposome accu-
mulation CT imaging was performed at various time points using a micro-CT system. To
ensure consistency, a laser positioning system was used to place the mice in approximately
the same orientation for successive scans, and manual rigid registration was performed
after imaging. The tumour volume and descending aorta were then manually contoured
on each CT data set.

A second set of mice were also used to measure intratumoral IFP. As the wick-in-
needle pressure measurement method can disrupt the transport of liposomes, a separate
set of mice was required in order to measure IFP. The intratumoral IFP was calculated
by taking 3 or 4 measurements of IFP and finding the mean values. Importantly, the mice
that were imaged and used to measure liposome accumulation were a different set of mice
that were used for measuring IFP.

For each mouse, the average signal in the aorta volume was used to calculate the
plasma concentration after scaling with a species-specific factor (50.1 HU/mgI·cm3) and
hematocrit factor (0.5 unitless), as described in [111]. The resulting plasma concentration
at each imaging time was used to fit a continuous plasma concentration function of the
form Cp(t) = ae−bt, which was then used in equation (4.1). Calculating the interstitial
concentration of liposomes is not as simple as scaling the CT signal. Specifically, each
tissue voxel contains a vascular compartment with concentration Cp and volume fraction
ϵp, a cellular compartment with concentration Cc and volume fraction ϵc, and an interstitial
compartment with concentration Ci and volume fraction ϵi. The total concentration can
then be written as

Ctotal = ϵpCp + ϵcCc + ϵiCi (4.7)

Based on the low fraction of endocytic cells observed experimentally by Stapleton et al [110],
we assume that the cellular concentration of liposome was negligible, and therefore that
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Cc ≈ 0. This assumption was similarly made by Stapleton et al [111] in their modelling.
In addition, at early times, close to 100% of the injected liposomes remain in the plasma
compartment, allowing us to make the assumption that Ci ≈ 0. Using the measured
value of Cp from the aorta and the average voxel tissue concentration at an early time (10
minutes in this case), the interstitial volume fraction can be calculated. At future times,
the interstitial concentration of liposomes can be solved for by using the same equation,
but by measuring the full tumour concentration Ctotal and the plasma concentration using
the aorta signal Cp, and by using the previously calculated value for the interstitial volume
fraction ϵi. This approach yields a voxel-by-voxel interstitial concentration of liposomes
derived directly from CT imaging. Herein, we assume the values of ϵi = 0.30 and ϵp = 0.03
as calculated by Stapleton et al [110].

After conversion to concentration, the tumour contour was used to crop the image to
the tumour area with a small buffer and remove liposome signal outside of the tumour
area. While it is not a perfect assumption since liposomes are expected to move slightly
outside of the tumour area, we are focused on the magnitude and shape of the pressure
profile inside the tumour, and thus ignore liposomes outside of its volume. Figure 4.2 shows
representative cross sections of the resulting conversions for each mouse.

4.2.4 Neural Network Implementation

All simulations were implemented in python using TensorFlow 2.3.1. The number of inter-
mediate Runge-Kutta stages was always chosen to be q = 100. The network structure in
all cases consisted of 4 fully connected layers with 50 nodes per layer, and all nodes utilized
the built-in hyperbolic tangent activation function. The training uses a combination of an
Adam optimizer [52] (an extension of the stochastic gradient descent algorithm) and an
L-BFGS optimizer [61]. The PDE and data were nondimensionalized using the variable

scaling factors of t̃ = t ∗ (PvµT ), x̃ = x ∗
(√

µT

ηT

)
, and P̃ = P/Pv. Additionally, prior to

training, the network inputs were normalized to the interval [-1,1] and the network outputs
were normalized to the interval [0,1]. Note that scaling the inputs and outputs in this way
requires a transformation of the PDE to the space of these new variables. Choices for
network structure and training, unless otherwise noted, were chosen based on the results
of Raissi et al. [96, 97] who published the original works outlinng PINNs. All code was
run on an AMD EPYC 7542 2.9 GHz CPU and an NVIDIA Tesla A100 GPU. In the
synthetic cases, each sample was optimized first over 30,000 Adam iterations, then the
optimizer was switched to L-BFGS, and the training resumed until convergence (defined
using a tolerance of 1.0e-8) or a maximum of 10,000 L-BFGS iterations was reached. In
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Figure 4.2: Final time spatial liposome accumulation maps for each of the 15 mice consid-
ered in our study. Raw CT signal in HU is converted to liposome accumulation using the
above preprocessing procedure. Colour bar values are in units of mgI/cm3. Though the
full tumour concentration image is in 3D, a representative vertical slice approximately half
way through the tumour core is shown here. These distributions are used as known data
for the deep learning model and are compared to the network predictions to calculate the
loss value during training.
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the animal data cases, the dual optimizer was again used, however training took place over
300,000 Adam iterations and a maximum of 30,000 L-BFGS iterations. Each synthetic
case required approximately 10 minutes of run time, whereas each animal case required
anywhere from 2-12 hours of run time, depending on its size. The drastic difference in
training time between the synthetic and animal data cases is a result of the adherence of
the data to the underlying PDE model. Specifically, in the synthetic case, the underlying
data used to train the network matches the PDE closely (since the PDE was used to gener-
ate the data), and hence the PDE model is not an additional imposed assumption, making
it amenable to training. Whereas in the case of the mouse data, the PDE model is a far
rougher approximation of the experimental data, since it was generated in vivo (which
in reality does not perfectly adhere to the PDE), meaning that the PDE is an additional
imposed assumption, making it less amenable to training and take far longer to converge.
This, in addition to the difference in total voxels due to the spatial dimension, results in
significantly larger run times for the mouse data case compared to the synthetic data case.

4.3 Results

4.3.1 Predictions on Mouse Tumours

Using liposome accumulation maps derived from the imaging data of Stapleton et al [110],
we implemented our deep learning model to perform voxel-by-voxel estimations of both
liposome accumulation and IFP for each of the 15 mice included in our study. The model
uses the final liposome accumulation map from imaging as known data and generates
estimations of the temporal progression of liposome concentration as well as the spatial
distribution of IFP within the tumour, both voxel-by-voxel. We consider the initial imag-
ing to take place immediately prior to liposome administration, and therefore assume that
the initial image is identically of zero magnitude. The parameters incorporated in equa-
tion (4.1) were assumed to correspond to the estimates provided in the original study by
Stapleton et al [110], which are detailed in Table 4.2.

In the study conducted by Stapleton et al [110], each mouse was imaged at multiple
time points. Using these time series data, we computed the corresponding liposome con-
centration maps for each time point. The neural network then utilized the final time point
of each of these datasets to generate voxel-by-voxel prediction of liposome concentration
at all times and IFP. Figure 4.3 presents a comparison of the measured and predicted lipo-
some accumulations for each mouse, achieved in our predictions by calculating the mean
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Parameter Units Value(
LPS
V

)
N

1/mmHg·s 2.52e-6(
LPS
V

)
T

1/mmHg·s 2.6e-6
σN 1 1.0
σT 1 0.2
fN 1 1.0
fT 1 0.5
KN cm2/mmHg·s 8.53e-8
KT cm2/mmHg·s 4.13e-8
Pv mmHg 25
kdN 1/s 1.65e-6
kdT 1/s 5.10e-6

Table 4.2: Parameter values used for the mouse simulations in our study. All parameter
values were taken from Stapleton et al [110]. Note that each parameter other than Pv is
given by a step function, with one value in the normal tissue and another value in the
tumour tissue. The subscript N denotes the value in the normal region and the subscript
T denotes to the value in the tumour region.

voxel concentration within the tumour region. Note that the mice were not all imaged at
the same number of time points.

Observe that for most of the mice considered in our study, the prediction of our deep
learning model showed agreement with the observed results obtained through imaging.
Some cases however, did not show good agreement. For example, the liposome accumu-
lation comparison for mouse 13 shows a predicted peak concentration much higher than
the observed peak concentration. Several factors could account for this discrepancy. First,
since the network only uses data from a single time in order to make predictions, the time
chosen to be used as known data can impact the results. In mouse 1 for example, the
predicted liposome accumulation peak is higher than the observed peak; however, looking
at the data points themselves, it is reasonable to question whether the final data point is an
outlier as it appears out of step with the rest of the data. If a different time point had been
selected to be used as known data, perhaps the error between the measured and predicted
accumulation would have been less. Of course in practice, it would not be standard to
conduct imaging at numerous times in this way, so one would not know whether an imaged
time represented an outlier. Such is the nature of working with scarce, noisy data. Below,
we compare our predictions for liposome accumulation and IFP generated using imaging
from different times.
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Another potential source of error comes from the selection parameters used in equation
(4.1). In these simulations, the parameter values used are those in table 4.2. In reality
however, it would be reasonable to assume - and indeed, has been observed - that the
tissue-specific parameters in the model can vary subject to subject. Changing the values
of these parameters would impact the resulting predicted liposome accumulation curve and
the prediction for IFP. Of course, obtaining estimates for the values of these parameters
on a subject-by-subject basis is challenging, especially if pressure is also unknown. More
discussion on this is provided in the conclusion section below.

In addition to the spatiotemporal accumulation of liposomes, our network also predicts
the voxel-by-voxel IFP. Figure 4.4 shows a representative cross section of the intratumoral
pressure for each of the mice in our study. Stapleton et al [110] performed wick-in-needle
pressure experiments to measure intratumoral IFP in 15 mice, though importantly, these
15 mice were a different 15 mice than were administered liposomes and imaged. This is
because the wick-in-needle measurement method disrupts the liposome transport process,
and therefore wouldn’t produce an accurate match of pressure and liposome distribution.
However, the mice used for pressure measurements were otherwise identical to those used
for imaging, so we can compare the sets of pressure measurements. In figure 4.5, a com-
parison of the measured and predicted average intratumoral IFP for the mice is shown.
Each dot represents an individual mouse, and the dotted line represents the average of each
case. Note that the interstitial pressure, Pi must be lower than the microvascular pressure,
Pv = 25 mmHg, and therefore Pv is the upper bound of the average intratumoral IFP.
For the measured average IFP values, the minimum, maximum, and mean values were 7.8
mmHg, 24.18 mmHg, and 17.84 mmHg whereas for the predicted IFP average IFP values,
they were 12.57 mmHg, 22.22 mmHg, and 19.77 mmHg.

While comparing pressure predictions mouse-to-mouse would be preferable, our dataset
simply does not allow it. We therefore resort to comparing the distributions of measured
and predicted pressure. Visually, and based on their minima, maxima, and means, the
predictions are relatively similar. The most notable discrepancies are in the predicted
mean pressure being higher and range of pressures being narrower. Likely, the discrepancy
is a function of two factors. First, a sample size of 15 is relatively small, and therefore
randomness may be enough to explain the differences. Additionally however, in Stapleton
et al, the mean intratumoral pressure was calculated by performing 3 or 4 wick-in-needle
measurements in the tumour volume, then calculating their mean, whereas here, the mean
IFP was obtained by calculating the mean over every tumoral voxel. The averaging of
a smaller number of measurements used to calculate the observed mean in [110] could
add additional error to the result, and given the small size of the tumour, may result in
measurements made closer to the tumour boundary or slightly outside the tumour region,
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Figure 4.3: Comparison of the measured (red points) and predicted (black line) accumula-
tion of liposomes in the tumour region for each of the 15 mice included in our study. Mean
tumoral voxel concentration is calculated by taking the average concentration of all voxels
in the labelled tumour volume at each time step.
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where the pressure tends to be lower. Furthermore, in [110], it is noted that the pressure
measurements themselves can cause a decrease in the tumour IFP, suggesting that perhaps
multiple measurements could bias toward a slightly smaller result.

4.3.2 Predictions Using Different Time Points

One key question is how the time of the chosen liposome accumulation image affects the
predictions of the network. In other words, how long after injection of liposomes is required
in order to derive an accurate estimation of IFP? Specifically, our algorithm is reliant on the
final time image, though in our dataset, we have imaging at several times for each mouse,
meaning that we could choose any of them to be used as known data in our network
optimization. In this section, we do just this, assuming our final image to be each of those
available from our dataset and comparing the network predictions. In each case, we derive
the IFP and the liposome accumulation up to that time point, then use the PINN to project
the concentration forward to the final available time, using the derived pressure to do so.
This procedure allows us to analyze the discrepancies in predicted liposome accumulation
and IFP when employing different time points as the basis for predictions. Due to the
significant computational runtime associated with this process, we restricted our analysis
to mouse 01 as a representative illustration. Figure 4.6 presents the results of this analysis.

On the left side of Figure 4.6, the predicted liposome accumulation curves based on
the different chosen imaging time as known data is shown. Each of the curves passes
through exactly two data points, the first (at time and concentration 0) and the point whose
corresponding distribution is used as the final image. Several aspects should be noted here.
First, note that the prediction resulting from using the first imaging time (10 minutes post
injection) has been omitted from the graph since it’s height is significantly higher than the
others, making the graph difficult to interpret for the remaining curves. Next, notice that
the qualitative behaviour of the curve remains constant irrespective of the imaging time
used; specifically, the time at which the maximal average concentration is reached remains
constant. Additionally, as noted previously, notice that the final measured time point in
the measured accumulation appears to be somewhat of an outlier compared to the general
trend, which results in a predicted accumulation curve that does not align well with the rest
of the data. In contrast, utilizing one of the intermediate time points as known data yields
a curve that more closely matches the remaining data points. Quantitatively, the error
between the measured and predicted accumulation is shown in Table 4.3. Based on these
residuals, the optimal time to image in this case is 72 hours post injection. Though any
time between 11 and 120 hours appear to give reasonable fits to the remaining datapoints.
Furthermore, the poor fit of the 144 and 164 hour predictions compared to the other
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Figure 4.4: Spatial distributions of intratumoral IFP for each of the 15 mice considered in
our study. Colour bar values are in units of mmHg - note that Pv = 25 mmHg is an upper
bound for IFP (Pi. Though the full tumour pressure image is in 3D, a representative vertical
slice approximately half way through the tumour core is shown here. These distributions
are used in equation 4.1 to calculate the loss value during training.
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Figure 4.5: Comparison of the measured (red points) and predicted (black points) in-
tratumoral IFP. Measured IFP was obtained in [110] who took an average over 3 or 4
wick-in-needle pressure measurements in the tumour volume. Predicted IFP was obtained
by taking the mean over all voxels in the tumour region. Horizontal dotted lines are placed
at the mean of each case. For the measured average IFP values, the minimum, maximum,
and mean values were 7.8 mmHg, 24.18 mmHg, and 17.84 mmHg whereas for the predicted
IFP average IFP values, they were 12.57 mmHg, 22.22 mmHg, and 19.77 mmHg.
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datapoints suggests that these data points are outliers, matching our previous intuition.
In practical scenarios, it is uncommon to conduct imaging at multiple time points like this,
rendering it challenging to discern whether a given time point is likely to be an outlier.
This challenge underscores the inherent complexity of working with noisy data, which may
be difficult or costly to acquire.

Imaging Time (hours) Prediction MSE
0.17 3024.31
11 2.85
12 3.11
24 3.30
48 2.91
72 2.77
98 3.82
120 3.18
144 8.18
164 12.01

Table 4.3: Quantification of the error between the measured and predicted total accumu-
lation from using different imaging times as known data. MSE is calculated by finding the
sum of the squared errors between each measured accumulation and the predicted accu-
mulation at that time.

On the right side of Figure 4.6, the prediction of average intratumoral IFP is shown.
Importantly, the predictions are relatively stable with respect to the final imaging time.
Excluding the initial measurement time of 10 minutes, all predicted IFP values fall within
the range of [21.20 mmHg, 23.43 mmHg], which is easily explained by the choice of imaging
time as known data. Based on this observation, we suggest that a single image, obtained
one day post-administration, could suffice to generate reasonable predictions for both the
complete liposome accumulation curve and the intratumoral IFP.

4.3.3 Sensitivity Analysis on Synthetic Tumours

In addition to the application of the model on liposome accumulation maps derived from
mouse experiments, we also apply the model to a series of synthetically generated liposome
accumulation maps. By synthetically generated, we mean that the liposome accumulation
maps are derived computationally through solving of the liposome transport model directly.
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Figure 4.6: Differences in deep learning model predictions based on which final time point is
used as input. Left: the different mean liposome concentrations throughout the tumour.
The red points are the measured accumulations calculated from imaging and the black
lines are the predictions of the network. Each line goes through exactly two known points
(the point marked with an ’x’ at time and concentration zero, and the dot with matching
colour to the line). Note that the prediction using the first time point (at 10 minutes)
is omitted from the graph as it has a high maximum which makes the rest of the graph
difficult to interpret. Right: the mean intratumoral IFP as a function of the time point
used for predictions (with colour matched to the colour on the left). Notice that, with the
exception of the first time point at 10 minutes, the mean intratumoral pressure remains
relatively steady while changing the known data.
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In particular, an IFP profile, initial condition, tumour geometry, and set of parameters can
be selected and used to solve equation (4.1) directly; then, the pressure identification deep
learning model can be applied to the result. This serves two purposes. First, since the
underlying IFP is known, we can compare the network predictions to the true pressure to
assess the error, allowing us to showcase the model capabilities. Second, through generat-
ing many of these profiles using various PDE parameter values, we can assess areas where
we expect the network to perform well and poorly. Though the mouse experiments above
are performed in three spatial dimensions, we choose to perform the following sensitivity
analysis in just one spatial dimension. This choice is made purely to reduce the compu-
tational expense involved: each increase in the spatial dimension of the problem increases
the computation run time by a factor of the number of voxels in the dimension, which typ-
ically needs to be in the range of approximately 30 in order to obtain meaningful results.
Importantly, this reduction in spatial dimension affects the code only in the encoding of
equation (4.1) (partial derivatives only need to be calculated in one spatial dimension)
and in the amount of data on which the network trains. All other parts of the network,
including its architecture and training, are unchanged based on the spatial dimension of
the problem. It would have also been possible to generate 3D synthetic data and treat it
as a 1D mathematical problem through the assumption of spherical symmetry, with the
radius, r, acting as the lone spatial parameter. This would preserve the 3D nature of
the problem while saving significant computational expense. We did not do this however,
because switching between coordinate systems when interfacing the FEM and PINN codes
is quite cumbersome.

To perform this sensitivity analysis, we assume a baseline of parameter values as given
in table 4.4. Then, using these parameters, the IFP is obtained from the PDE

∇2Pi(x) = −α(x)2(Pe(x)− Pi(x)) (4.8)

which was originally derived by Baxter and Jain [11]. This equation is solved over an
interval of length 10cm, equally partitioned into 200 units. The solving is accomplished
with a finite element method with a zero-at-infinity boundary condition. To implement
this computationally, a zero Dirichlet boundary condition is used and the computational
domain is extended farther than necessary, which adds extra computational expense to
the code solving, but is a better approximation of the infinite boundary condition. In the
above equation, α(x) is given by

α(x) =


√

1
KT

(
LpS

V

)
T
, if x ∈ tumour√

1
KN

(
LpS

V

)
N
, if x /∈ tumour

(4.9)
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where the individual parameters are given in table 4.4. Similarly, we can write

Pe(x) =

{
Pv, if x ∈ tumour

0, if x /∈ tumour
(4.10)

with Pv also given in table 4.4. In the above, we define the tumour area as an interval of
diameter 2cm in the centre of the computational domain. Using this pressure, equation
(4.1) is solved over the same spatial domain using a finite element method in space and a
Crank-Nicolson time stepping algorithm. The solution is obtained over the time interval of
[0, 200] hours using 150 equidistant time points. A zero flux boundary condition is applied
to the PDE at the edges of the computational domain. This yields the function Ci(x, t),
from which the initial and final times can be selected as Ci(x, t1) and Ci(x, t2) and used as
data for training of our deep learning model.

Parameter Units Baseline Value Min Value Max Value
D cm2/s 7.5e-7 0 7.5e-6
fT 1 0.5 0.4 0.6
KT cm2/mmHg*s 4.13e-9 1.0e-9 1.0e-6(
LPS
V

)
T

1/mmHg*s 2.6e-6 1.0e-7 1.0e-4
Noise 1 0.025 0 0.05
Pv mmHg 25 5 50
σT 1 0.19 0 0.5
kd 1/s 5.1e-6 1.0e-7 1.0e-5

Table 4.4: Parameter values used in the sensitivity analysis.

The deep learning model is used to predict pressure for the base parameter set as well
as the base parameter set with one parameter altered to be the minimum or maximum
of a reasonable range. The baseline values are chosen to be the same as those estimated
by Stapleton et al [110] as explained above (apart from the noise, which is obviously not
added to the mouse data), and the ranges are chosen to be purposefully broad to span a
large subset of the parameter space. Note that we have included D as a parameter here
even though we did not include it when making predictions on our mouse dataset. We
include it here since many works which examine this or similar equations have included
diffusion, and it is a simple addition. For each of these cases, the deep learning model is
used with the synthetically generated liposome accumulation maps to derive an estimation
for Pi, which can be compared to the Pi obtained from solving equation (4.8). This error
can then be quantified. In summary, the procedure for our sensitivity analysis is:
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1. Select parameters by taking the baseline parameter set, and possibly altering one
parameter

2. Solve equation (4.8) with the chosen parameters to obtain the IFP, Pi(x).

3. Use the chosen parameters and calculated Pi to solve equation (4.1) and obtain the
liposome accumulation over time, Ci(x, t).

4. Use the initial and final time distributions of Ci(x, t) as known data in the deep
learning model to estimate the best fit approximation of Pi(x).

5. Compare the calculated and predicted Pi(x) and report the relative mean squared
error between the profiles.

For each parameter set, the deep learning network is run 5 times, and a bootstrapping
algorithm with 1000 bootstrap samples is used to obtain the mean and 95% confidence
interval estimate for the IFP prediction error. These can be seen in figure 4.7. Note that
the model is able to approximate the error to within 3% error in all cases other than the
maximum noise case. The highest error in the prediction of IFP (of about 6.5%) occurs in
this high noise case, which is unsurprising since adding noise to the voxelwise concentration
is expected to lead to errors in the model predictions. Similarly, the lowest error occurs
when the noise is minimal. Of the remaining parameters, the predictions appear to be most
sensitive to LpS

V
and Pv, with larger values leading to larger errors for both. A relatively

large error is also observed in the minimum kd case.

Note that the sensitivity analysis above considers onyl a local sensitivity analysis; in
other words, scenarios where only one variable is altered at a time. However, it is important
to acknowledge that the model may have lower accuracy in other regions of the parameter
space that require simultaneous alterations of multiple parameters, which is only able to
be observed through a global sensitivity analysis. Due to the large number of variables
involved in the model and the associated computational costs, conducting a comprehen-
sive exploration of the entire parameter space poses a significant challenge. Ideally, a grid
search across the complete parameter space could be performed by discretizing each pa-
rameter range into subintervals and systematically selecting parameters from within each
subinterval. This would enable the observation of areas with high and low prediction errors,
providing a more comprehensive understanding of potential sources of prediction inaccu-
racies. Nevertheless, the computational burden associated with exploring the entirety of
the parameter space renders this approach infeasible.

83



Figure 4.7: Average relative mean squared error in the prediction of IFP (Pi) for synthetic
tumours generated using particular parameter sets. The columns denote either the set of
baseline parameters in table 4.4 or the set of baseline parameters with one of them made
either the maximum or minimum of a chosen range, also given in table 4.4. The height
of each bar represents the average error over the 1000 bootstrap samples and the error
bounds represent the 95% confidence intervals.
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4.4 Conclusion

In this work, we have developed a deep learning model for predicting intratumoral li-
posome accumulation and intratumoral IFP. The model utilizes the spatial distribution
of liposome concentration throughout a tumour volume as input, which can be obtained
through imaging. This approach has the potential to enable personalized predictions of
the spatiotemporal distribution of cancer nanoparticles or other chemotherapeutic agents
for individual patients. Additionally, IFP is a critical measure for tumours, with impli-
cations for disease progression and treatment response, knowledge of which could provide
valuable information to clinicians. Conceptually, patients could receive an injectable dye,
undergo imaging, and have the resulting data used in our model to predict key tumour
characteristics. We applied our model to data derived from mouse xenograft tumour imag-
ing and synthetically generated tumours. The inclusion of synthetic cases demonstrates
the high accuracy of our model and robustness to measurement noise. Furthermore, the
agreement between our model’s predictions and measured liposome accumulation in mouse
experiments reinforces confidence in the model accuracy.

Our model offers several key advantages. Firstly, it requires minimal input data to make
predictions, specifically a single image from a single patient. This contrasts with many ma-
chine learning models that require extensive image databases. Accordingly however, this
necessitates the limitation of needing to retrain the model for each patient individually,
which may incur significant computational costs. Another advantage is the model’s capa-
bility to handle measurement noise, a crucial attribute given the inherent errors present
in medical imaging data. We demonstrated this by applying the model to synthetic tu-
mours with added noise and observing that a 5% noise added voxelwise to our known
data resulted in an average error in the prediction of pressure of only approximately 6.5%.
Similar results have been reported in previous studies using PINNs [73, 96, 97]. The voxel-
by-voxel prediction capability also allows for spatial predictions of drug distribution and
improved understanding of individual tumours. Though it is important to acknowledge
that this application to synthetic tumours constitutes a local sensitivity analysis rather
than a comprehensive global sensitivity analysis since we have not investigated scenarios
where multiple parameters are simultaneously perturbed from their baseline values. Con-
ducting a thorough exploration of the entire parameter space is computationally expensive,
but its inclusion could provide valuable insights and a more comprehensive understanding
of the model behavior.

Despite these advantages, there are areas for improvement. Direct comparisons of
predicted to measured IFP is not possible in our work, as pressure measurements using a
wick-and-needle technique can affect liposome transport itself, compromising the accuracy

85



of liposome accumulation data for network training. Theoretically, liposome imaging could
precede pressure measurements or additional interventions, but the nature of our data did
not support this. Instead, the data in our study used two separate sets of mice, by which
we can compare the two groups to see the differences in IFPs, but are unable to compare
for particular mice. Additionally, our model does not account for liposomes outside the
tumour volume, which are expected to be present in reality. Though since we are primarily
interested in intratumoral IFP, we don’t expect the small amount of particles outside the
tumour volume to have a large effect on the derivation of intratumoral IFP.

Our largest limitation to clinical translation however, is the difficulty of measuring the
parameters of the liposome transport model (equation 4.1). Ideally, we would like to esti-
mate both the parameter values and IFP simultaneously. While PINNs can theoretically
achieve this, the challenge lies in uniquely identifying these values given available informa-
tion. In particular, in equation 4.1, LpS

V
and (Pv − Pi) are multiplied together, allowing

only their product to be uniquely identified. Accordingly, we are forced to either fix the
parameter values and derive the IFP, or fix the IFP and derive the parameter values. In
our study, we chose to fix the parameter values using the estimates made by Stapleton et
al [110], and derive the IFP. This data offered an opportunity since the parameters were
estimated for the specific set of mice and contained measurements of intratumoral IFP
to which we could compare our predictions. In the absence of these parameter estimates,
representative values from the literature could be used, or a range of parameter values
could be sampled and used in the optimization.

Alternatively, there may be a path toward in estimating both the parameter values and
pressure simultaneously; however, more information than we considered would need to be
included in order to do this. For example, the optimization method could use all of the
imaging time points together in order to make a prediction, rather than just an initial and
final image. Though inherent difficulties exist in this too. First, in practice a series of
images is unlikely to be performed, so this method would not scale well. And second, using
many images would require that these images were accurately coregistered together, which
is theoretically possible in cases where sophisticated registration algorithms exist (like in
the context of brain tumours), though is very challenging in situations where they do not.
Another potential avenue to estimate both the parameters and pressure simultaneously is
through the incorporation of additional mathematics into the optimization. Specifically,
consider the idea that the PDE for pressure, equation (4.8), is included in the optimization.
Then, the deep learning model could produce estimates for the unknown parameters of
interest, use these values to predict IFP using equation (4.8), then use the parameters
and IFP to calculate the loss. This idea has potential downsides as well however. For
one, doing so requires that an additional PDE is solved at each optimization iteration,
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adding a significant amount of computational expense. Furthermore, this optimization is
conceptually different since the network would no longer be predicting the pressure directly,
but rather, predicting the parameters, then using them to derive the pressure. Since the
parameters are assumed to be constant within the volume of the tumour, this would force
the network to lose some of the voxel-by-voxel specificity in predictions of intratumoral
IFP.

Similarly, our model also relies on the assumption of a spatially-uniform plasma con-
centration throughout the tumour volume, which aligns with the approach employed by
Stapleton et al. [110] in their analysis. Essentially, this assumption implies that varia-
tions in the imaged distribution of liposomes within the tumour can be solely attributed
to underlying spatial variations in IFP, rather than the plasma concentration per voxel.
In reality however, both the IFP and plasma concentration per voxel are expected to vary
throughout the tumour volume, and therefore impact the resulting spatially-varying ac-
cumulation. This is especially true considering that both high IFP and impaired plasma
concentration are effects of an underlying dysfunctional tumour vasculature. More ac-
curately, we expect the plasma concentration of liposomes to be approximately uniform
throughout the vessels, but for the vessel density itself to vary throughout the tumour.
Similar to the challenge posed by unknown parameter values described above, without ad-
ditional data or mathematical assumptions, it is necessary to fix one variable to uniquely
predict the other. Given the experimental data available to us, we have opted to fix the
plasma concentration and predict the pressure.

Though in theory, it is possible to separate the effects of IFP and plasma concentration
for a given subject. However, accomplishing this would require either 1) obtaining more
data or 2) incorporating additional mathematical assumptions. For more data, if vessel
perfusion imaging were available alongside liposome accumulation imaging for our subjects,
it could be used to derive a spatial distribution of plasma concentration. This information
could then be incorporated into our model, allowing for the decoupling of the effects of IFP
and plasma concentration. Other types of data could also allow for a similar separation of
these effects. For instance, if liposome accumulation data were available for multiple dyes
within the same subject, it could be possible to mathematically decouple the two fields.
The different transport parameters (such as hydraulic conductivity or diffusivity) associated
with each dye could be utilized to mathematically separate the effects of these processes.
Similarly, the application of antiangiogenic agents before liposome administration could
allow for the observation of changes in liposome accumulation under different tumour
vasculatures induced by the antiangiogenics, thus similarly enabling the separation of IFP
and vasculature effects. For incorporating more mathematics, a different set of model
equations could be assumed, coupling both the IFP and the plasma concentration to an
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underlying vascular density. Then, in theory, the PINN could be used to predict this
underlying vasculature and the IFP and plasma concentration could be derived from it.
However, preliminary tests have shown that this process incurs substantial computational
expense, making it infeasible at present. Nonetheless, it represents a potential path forward
for simultaneous prediction, provided computational challenges are overcome.

In summary, this exploratory study presents a novel machine learning approach to pre-
dict liposome accumulation and IFP from imaging data, advancing personalized medicine.
We hope this work showcases the potential benefits of deep learning in oncology and medi-
cal imaging, offering clinicians a powerful tool for forecasting tumour progression, designing
effective treatments, and predicting treatment efficacy.
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Chapter 5

Temporal Optimization of Radiation
Therapy to Heterogeneous Tumour
Populations and Cancer Stem Cells

This chapter contains the third project of this thesis which was published in the Journal
of Mathematical Biology in 2022 [74]. The author list on the publication is below.

Cameron Meaney1, Mohammad Kohandel1 Arian Novruzi2

1Department of Applied Mathematics, University of Waterloo, Waterloo, Canada
2Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada

5.1 Introduction

As one of the pillars of modern cancer treatment, radiation therapy has been the subject of
countless research works. Despite its origins in cancer medicine tracing back to over a cen-
tury ago, many questions and challenges still remain. Of particular interest in recent years,
improving our ability to accurately predict the efficacy of a particular course of radiation
prior to treatment remains an important clinical goal. In theory, if the efficacy of a given
treatment prescription can be predicted prior to administration, then many treatments
can be considered and the optimal selected. Furthermore, if patient-specific knowledge can
be incorporated into these predictions, then patient-specific optimization of radiation be-
comes a reality. Typically, researchers rely on mathematical and computational models to
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evaluate such predictions, and many promising advancements have been made. In practice
however, this has proven far easier said than done, since patient-specific measurements are
often difficult and costly to obtain and can come with significant uncertainty. Further-
more, the sheer number of physical and biological factors at play in predicting treatment
outcomes makes accurate mathematical predictions challenging.

Many previous works have examined different ways to optimize radiation therapy in-
cluding temporally [1, 5, 16, 31, 33, 59, 129], spatially [2, 51, 72, 112], and patient schedul-
ing [25]. Generally, these studies perform mathematical optimizations, occurring in four
steps: first, select metrics; second, determine constraints; third, write governing model
of treatment response; and fourth, perform mathematical optimization. When discussing
radiation, several different metrics can be considered. The most common is to maximize
cell kill, but others such as maximizing Tumour Control Probability (TCP), minimizing
administered dose, and minimizing tissue complication probability are also commonly con-
sidered. Some studies consider multiple metrics, typically by forming a combined metric
with weight coefficients. Constraints for the mathematical problem are chosen based on
the physical and biological limitations of the situation. In some cases, this means limiting
the total administered dose to a prescribed amount over the course of a day or a full treat-
ment period. In other cases, constraints include timing considerations such as prohibiting
radiation given on weekends. Models of treatment response typically involve ODEs or
PDEs and use established models of radiation effect such as the LQ model. These models
determine the effect of a chosen candidate treatment with respect to the chosen metric.
Once the metric, constraints, and model have been fixed, a mathematical optimization can
be performed where an optimal is selected from the many candidate treatments.

In this paper, we consider the problem of finding the temporal distribution of radi-
ation dose which minimizes the total remaining number of cells at the end of treatment
under a set of clinically-relevant constraints. Several previous works have examined similar
questions. In Wein et al [129], the authors considered a spatially-varying population of ho-
mogeneous tumour cells and used dynamic reprogrammming to find the radiation schedule
that optimizes the TCP under constraints to the Biologically Effective Dose (BED). They
found that allowing the fractional dose amount to change over the course of treatment
allowed for a higher TCP than the clinically-standard constant dose rate. Altman et al
[5] obtained a similar result, showing that when maximizing cell kill over a homogeneous
population of tumour cells subject to constrained total dose, the optimal distribution of
radiation was again when the dose rate was allowed to vary throughout treatment. In
Kim et al [51], the authors considered maximizing the BED while constraining the dose
for nearby Organs at Risk (OAR)s. They argued that due to recent technological advance-
ments allowing more precise localization of radiation dose on a tumour core, treatment
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optimizations can focus primarily on maximizing anticancer effect. Even when including
spatial effects in their optimization, the authors found that varying the dose per fraction
could lead to an improvement over uniform schedules. Some analytical results were derived
in Mizuta et al [80] related to optimal temporal dose distributions where cell kill was to
be optimized and BED to an OAR minimized. They provided a theorem stating that in
cases without tumour repolulation, if the OAR is sufficiently sensitive, then the optimal
dose distribution is uniform over the treatment length, but if the OAR is not sufficiently
sensitive, then the optimal distribution is to focus the allowable radiation into the least
number of fractions possible. Bortfeld et al [16] built off of the work of Mizuta et al by
including the effect of tumour repopulation. They similarly showed that in cases where
the OAR is less sensitive, the optimal distribution was to focus radiation into the smallest
number of fractions possible. Through their analysis, they were further able to conclude
that for tumours with faster growth rates, the optimal distribution of radiation tended to
be spread over a shorter time.

Despite the important differences between the above works with respect their particular
problem formulation, they all arrive at similar conclusions. Specifically, that a nonuniform
fractional dose distribution can outperform the clinically-standard uniform distribution,
and that the optimal case tends to involve focusing allowable dose over shorter periods
of time at higher dose rates. Clearly, such results are of tremendous clinical importance.
However, the applicability of these works is somewhat lessened by the omission of a key
feature of tumours: cellular heterogeneity. Each of the above works considers homogeneous
tumours in which all cells proliferate, invade, and respond to treatment in the same way.
In reality, tumours are heterogeneous and contain many different types of cells which can
act in different ways. Of particular importance, CSCs are a type of tumour cell capable of
self-renewal and differentiation. They are thought to represent a small subpopulation of the
full tumour, yet nevertheless be the primary drivers of tumour growth and repopulation.
Countless recent studies have noted their importance in understanding cancer progression
and treatment ([7, 10], for example). Studies have also noted experimental techniques
which could be used to identify stem-like subpopulations, relying typically on protein
biomarkers [85]. Despite the imperfect natures of these biomarker methods, differences
between biomarker positive and biomarker negative cells can be observed. With respect to
radiation therapy, studies have examined the difference in response to radiation by CSCs
and non-CSCs [57, 92] (or biomarker +/− cells), finding that CSCs are commonly less
sensitive to radiotherapy than their non-CSC counterparts. Furthermore, they observe
that post-radiation tumours tend to have become less heterogeneous as sensitive cells are
removed by radiation and all that remains are the resistant stem cells. Such observations
suggest that considering a heterogeneous tumour population may be a crucial feature in
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developing accurate models of radiation optimization. Indeed, many recent works have
done just this.

Leder et al [59] considered a mathematical model with two distinct cell types: a ra-
dioresistant CSC-like cell and a radiosensitive non-CSC-like cell. Using a two compartment
mathematical model along with a Monte Carlo optimization method, they found that math-
ematically optimized radiation schedules led to a longer survival time and greater reduction
in tumour volume than the standard schedule in glioblastoma-bearing mice. Notably, their
optimal schedule no longer had the qualitative behaviour observed in the one cell type
cases described above. In fact, the hypofractionated (less fractions at higher dose rates)
case performed the worst out of the four tested. In Forouzannia et al [31], the authors
also considered a two cell type model and included plasticity rates between their CSC and
non-CSC compartments. They considered five different schedules of radiation, and sought
to find which schedules led to the minimum remaining cells and to find the resulting frac-
tion of CSCs with respect to the full tumour population. Their results were similar to
[59] in that neither the standard of care nor hypofractionation was optimal. In contrast
however, Galochkina et al [33] also considered a two cell type model but arrived at the
opposite result of [31] and [59]. They found that the uniform distribution of dose was typ-
ically optimal, and that cases with different optima generally only provided insignificant
benefits. However, in [33]’s two cell model, the only difference between the cell types was
their replenishment rates - importantly, they were assumed to be affected by radiotherapy
in the same way. Given the differing conclusions of these models, it would be reasonable
to suspect that a key force in determining the qualitative nature of an optimal radiation
schedule is the difference in radiation responses between the cell types as opposed to differ-
ences in repopulation or plasticity rates. In this work, we set out to answer this question
and determine which situations lead to qualitatively different optimal radiation schedules.

We begin the methods section by detailing the two cell type model that we use to
determine the effect of radiation therapy. We then explain our optimization problem,
including choice of metric and solution constraints. We provide some important analytical
analysis of our model and its possible solutions, specifically proving that solutions to our
model is typically ’bang-bang’ in nature. Finally, we explain the projected gradient descent
optimization technique that we employ to find the optimal solution. In the results section,
we provide some example solutions of the optimization problem and distinguish between the
two different qualitative categories into which solutions fall. We then provide analysis using
tree classifiers of the key parameters which determine the behaviour of results, connect this
analysis to previous literature, and discuss the clinical relevance. In the conclusion, the
work is summarized, and directions for future research are noted.
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5.2 Methods

5.2.1 Model

In this work, we consider a tumour consisting of two distinct populations of cells, denoted
by n1 and n2. We use a system of two ODEs, shown in equations (5.1) and (5.2) and in
Figure 5.1, to govern the time evolution of the cell populations.

dn1

dt
= r1n1

(
1− n1 + n2

nmax

)
− n1f1(t)− (γ1n1 − γ2n2), (5.1)

dn2

dt
= r2n2

(
1− n1 + n2

nmax

)
− n2f2(t) + (γ1n1 − γ2n2). (5.2)

Throughout this paper it is understood that this system is equipped with initial conditions
at t = 0, so n1(0) and n2(0) are known.

Each cell type is assumed to proliferate according to a combined logistic growth law
which is shown in the first term of each equation. The parameter nmax is the cell carrying
capacity: the maximum number of cells that the tumour can sustain. As the total number
of cells, n1+n2, approaches nmax, the rate of increase of the cell population decreases. The
proliferation rate parameters r1 and r2 differentiate the rates of growth between the cell
types, with higher values corresponding to faster growth. When the total cell population is
low compared to nmax, r1 and r2 are equivalent to exponential growth rates. The final term
in each equation describes the plasticity between the cell types: cells of type 1 turning into
cells of type 2 and the converse. Interestingly, recent works have show the bidirectional
nature of plasticity between CSCs and non-CSCs [19, 68, 125]. For this reason, we include
bidirectional plasticity in our model with respective plasticity rates of γ1 (type 1 to type
2) and γ2 (type 2 to type 1). The middle term of each equation describes the effect of
radiotherapy on the cells, which is assumed to be governed by the well-known LQ model
and is included in the functions f1(t) and f2(t) in its differential form. In our model, we
assume that radiation is applied in a finite number of fractions and denote this number as
N . We denote the time midpoint of fraction number i as τi, its length by 2ωi, and it dose
rate (in Gy/day) by ai. With this formulation, we can write the functions f1(t) and f2(t)
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as shown in equations (5.3) and (5.4).

f1(t) =
N∑
i=1

(
α1ai + 2β1a

2
i (t− τi + ωi)

)
φ

(
t− τi
ωi

)
, (5.3)

f2(t) =
N∑
i=1

(
α2ai + 2β2a

2
i (t− τi + ωi)

)
φ

(
t− τi
ωi

)
. (5.4)

Note that φ
(

t−τi
ωi

)
is a rectangular window function centred at time τi with width 2ωi

given by

φ

(
t− τi
ωi

)
=

{
1, if |t− τi| < ωi,

0, otherwise.

This defines the dose rate as an on-again-off-again function: ai when radiation is being
applied and zero when it’s not. Also note the different values of the radiobiological param-
eters αk and βk for the different cell types. Higher values of these parameters mean that
the cell type has a higher sensitivity to radiation.

A radiation treatment schedule is therefore fully characterized by the three N-dimensional
vectors a = (a1, . . . , aN) (fraction dose rates), τ = (τ1, . . . , τN) (fraction time midpoints),
and ω = (ω1, . . . , ωN) (fraction half lengths). In this work, we are primarily interested in
optimizing the distribution of dose over a treatment period, so we make two key assump-
tions on candidate radiation schedules. First, we assume that the length of each fraction
is the same, meaning ωi = ωj, ∀ i, j. Second, we assume that the fraction midpoints are
fixed in time, once per day at the same time each day, meaning τi+1 = τi + 1 day, ∀ i.
Note that this does not mean that radiation is administered every day: if ai = 0, then no
radiation will be given on day i. We seek to find the distribution of dose over the possible
times, determined by the selection of a alone, that leads to the maximum cell kill. For any
choice of a, the model can be solved to yield a population vs. time plot for each cell type
and the total, incorporating the effect of radiation.

As one might expect, without constraints on the applied radiation, the optimal cell kill
would result from simply increasing the dose rate of each fraction to its maximal level. But
of course, in clinical practice, there are various constraints that prevent this from being a
reasonable solution. In our optimization, we consider two constraints on our fractional dose
rate schedule: total dose and maximal dose. We first insist that the total dose administered
over all fractions is less than or equal to the total allowable amount, and for maximal dose,
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Figure 5.1: Schematic of the two cell type compartmental ODE model in equations (5.1)
and (5.2). Each cell type is assumed to proliferate according to a logistic growth law with
proliferation rate ri. The plasticity rates between the cells types are given by γi. Cells are
killed by radiation through the functions fi which depend on the radiobiological parameters
αk and βk.

95



we simply impose an upper bound on the dose rate given over each fraction, which read as

N∑
i=1

2aiω =:
N∑
i=1

Di ≤ Dtot, (5.5)

0 ≤ 2aiω =: Di ≤ Dmax, ∀i = 1, . . . , N. (5.6)

Clinically, the constraint (5.5) is applied to prevent the patient from receiving dangerous
levels of radiation beyond what is necessary for treatment. We expect the inequality in
(5.5) to be saturated in the optimal case. The clinical rationale for (5.6) is because of
the different response times of healthy and cancerous tissues. As healthy tissues generally
have a higher capacity to repair DNA damage, dose fractionation can limit the damage
to healthy tissues while still incurring high damage to diseased tissues. Without this
constraint, the model would be free to converge to a single hit of radiation at a dangerously
high dose rate, removing the fractionation altogether. Here, we will exclusively consider
cases where NDmax > Dtot, meaning that applying the maximal dose per fraction will
result in surpassing the limit in total dose as these are the clinically relevant cases and the
ones which produce interesting mathematical results. In cases where NDmax ≤ Dtot, the
optimal result is trivially to apply Dmax at every fraction.

We therefore seek to answer the following question. For a tumour consisting of two
distinct subpopulations of cancer cells and a fractionated dose schedule constrained by
total dose and maximal dose, what choice of radiation dose rates, a, result in the minimal
population of total cells remaining after treatment. In our analysis, we generalize to min-
imizing a weighted sum of cells, e = p1n1(T ) + p2n2(T ) for the end of treatment time, T .
Mathematically, we seek to find

a∗ = argmin {e(a), a ∈ A} , (5.7)

where A is the vector space of fractional dose rates a = (a1, ..., aN) ∈ RN (ai ≥ 0 ∀i)
satisfying (5.5) and (5.6).

5.2.2 Bang-Bang Structure of the Optimal Radiation Treatment

It is known, see for example [20], that the optimal distribution of resources in population
models is of bang-bang type, i.e. the most favorable distribution of resources for a species to
survive is when the resources are distributed spatially with patches of maximal or minimal
values. If we consider our variable a as similar to the growth rate variable m in [20], our
result represents a time extension of the bang-bang type result of the optimal solution.
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In this section, we will show that modulo a subset where the gradient is constant, the
solution to (5.7) is of bang-bang type, i.e. the components of optimal radiation a∗ =
(a∗1, . . . , a

∗
N) are of three types: i) they are maximal equal to Dmax, ii) they are minimal

equal to 0, or iii) they are such that derivative of the energy e on the direction of those
components is constant. In our numerical experiments, we always found that the optimal
solution a∗ is purely of bang-bang type, i.e. the set of components of a∗ where the energy
is constant is empty.

Note that the solution of (5.1)-(5.2) is understood in the following sense. We say
(n1, n2) solves (5.1)-(5.2) if n1, n2 ∈ C0([0, T ]) ∩W 1,∞(0, T ) and

n1(t) =n1(0) +

∫ t

0

(
r1n1

(
1− n1 + n2

nmax

)
− n1f1(t)− (γ1n1 − γ2n2)

)
dt, (5.8)

n2(t) =n2(0) +

∫ t

0

(
r2n2

(
1− n1 + n2

nmax

)
− n2f2(t) + (γ1n1 − γ2n2)

)
dt, t ∈ (0, T ).

(5.9)

We start with an a priori estimate for the solution (n1, n2) of (5.1)-(5.2).

Proposition 5.2.1. Let F (t, n1, n2) = (F1(t, n1, n2), F2(t, n1, n2)) with

F1(t, n1, n2) = r1n1

(
1− n1 + n2

nmax

)
− n1f1(t)− (γ1n1 − γ2n2), (5.10)

F2(t, n1, n2) = r2n2

(
1− n1 + n2

nmax

)
− n2f2(t) + (γ1n1 − γ2n2). (5.11)

Assume (5.1)-(5.2) has a solution (n1, n2) ∈ W 1,∞((0, T );R2). If n1(0) ≥ 0, n2(0) ≥ 0
then

0 ≤ n1 ≤ min

{
1,max

{
1− γ1,

γ2
r1

}}
nmax := n1,max, (5.12)

0 ≤ n2 ≤ min

{
1,max

{
1− γ2,

γ1
r2

}}
nmax := n2,max, (5.13)

0 ≤ n1 + n2 ≤ nmax. (5.14)

Proof. Note that F1(t, 0, n2) ≥ 0, F2(t, n1, 0) ≥ 0 for all n1 ≥ 0, n2 ≥ 0. Based on, for
example, [93, Lemma 1.1], non negativity of the initial conditions implies n1 ≥ 0, n2 ≥ 0
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at all times given the non-negativity of the initial conditions. Furthermore,

F1(t, n1, n2) ≤ r1

(
1− γ1 −

n1

nmax

)
n1 + n2

(
γ2 − r1

n1

nmax

)
≤ 0, ∀ n1 ≥ max

{
1− γ1,

γ2
r1

}
nmax,

F2(t, n1, n2) ≤ r2

(
1− γ2 −

n2

nmax

)
n2 + n1

(
γ1 − r2

n2

nmax

)
≤ 0, ∀ n2 ≥ max

{
1− γ2,

γ1
r2

}
nmax.

This implies n1 ≤ max
{
1− γ1,

γ2
r1

}
nmax, n2 ≤ max

{
1− γ2,

γ1
r2

}
nmax. Finally, we have

(n1 + n2)
′ = (r1n1 + r2n2)

(
1− n1 + n2

nmax

)
− (f1n1 + f2n2).

Considering the right hand side of the previous equation as a function of n1 + n2, we see
that it is negative as soon as n1 + n2 = nmax, which implies n1 + n2 ≤ nmax, whence in
particular n1 ≤ nmax and n2 ≤ nmax. □

Theorem 5.2.2. For every a ∈ RN the problem (5.1)-(5.2) has a unique solution (n1, n2) ∈
W 1,∞(R;R2), where in general W 1,∞((α, β);R2) is the Sobolev space of continuous func-
tions in [α, β] having almost everywhere bounded derivatives in (α, β).

Proof. As f1 and f2 are discontinuous and bounded, the right space to look for the solution
(n1, n2) is W

1,∞ rather than commonly used space C1.

Note that F is a Carathéodory function and from [23, Theorem 1.1, Chapter 2], there
exists a local in time absolutely continuous solution in a certain interval (−α0, α0). Taking
into account the form of F , which is C∞ in (n1, n2) and L∞ in t, it implies that the local
solution is in W 1,∞((−α0, α0);R2). As the solution remains bounded, see Proposition 5.2.1,
it extends to W 1,∞(R;R2).

For the uniqueness we note that for every two solutions n = (n1, n2), ñ = (ñ1, ñ2) the
function F satisfies |F (t, n1, n2) − F (t, ñ1, ñ1)| ≤ C(|n1 − ñ1| + |n2 − ñ2|), because n and
ñ are bounded. Then the uniqueness follows from Gronwall inequality.

□
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Proposition 5.2.3. The maps N1 : a ∈ RN 7→ N1(a) ∈ W 1,∞(0, T ), with N1(a) = n1(·; a),
and N2 : a ∈ RN 7→ N2(a) ∈ W 1,∞(0, T ), with N2(a) = n2(·; a), are C∞ from RN into
W 1,∞(0, T ). Their first derivatives wrt ai, denoted by ∂ain

′
1 and ∂ain

′
2 respectively, satisfy

∂ain
′
1 =

(
r1

(
1− 2n1 + n2

nmax

)
− f1 − γ1

)
∂ain1 +

(
γ2 − r1

n1

nmax

)
∂ain2 − n1∂aif1

=: G1(t; ∂ain1, ∂ain2), (5.15)

∂ain1(0) = 0, (5.16)

∂ain
′
2 =

(
γ1 − r2

n2

nmax

)
∂ain1 +

(
r2

(
1− n1 + 2n2

nmax

)
− f2 − γ2

)
∂ain2 − n2∂aif2

=: G2(t; ∂ain1, ∂ain2), (5.17)

∂ain2(0) = 0. (5.18)

where the prime notation refers to differentiation with respect to time. As a consequence,
n1(T ; a), n2(T ; a) and e(a) are C∞ with respect to a and

∂aie(a) = p1∂ain1(T ; a) + p2∂ain2(T ; a). (5.19)

Proof. First we show that n1 and n2 are C∞ with respect to a in W 1,∞(0, T ). This
can be done easily by using implicit function theorem as follows. Let H = (H1, H2) :
RN × W 1,∞((0, T );R2) 7→ W 1,∞((0, T ),R2) be given as follows: for a ∈ RN and v =
(v1, v2) ∈ W 1,∞((0, T );R2) we define

H1(a, v)(t) =v1(t)− n1(0)−
∫ t

0

(
r1v1

(
1− v1 + v2

nmax

)
− v1f1(s; a)− (γ1v1 − γ2v2)

)
ds,

(5.20)

H2(a, v)(t) =v2(t)− n2(0)−
∫ t

0

(
r2v2

(
1− v1 + v2

nmax

)
− v2f2(s; a) + (γ1v1 − γ2v2)

)
ds, t ∈ (0, T ).

(5.21)

Now let a0 ∈ RN be fixed. We have H(a0, n(·; a0)) = 0 and H is C∞ wrt (a, v1, v2). The
derivative of H wrt to v at (a0;n(·; a0)) in direction w is given by

∂vH1(a
0, v;w)(t) =w1(t)−

∫ t

0

([
r1

(
1− 2v1 + v2

nmax

)
− f1(t)− γ1

]
w1 +

[
γ2 − r1

v1
nmax

]
w2

)
dt,

∂vH2(a
0, v;w)(t) =w2(t)−

∫ t

0

([
γ1 − r2

v2
nmax

]
w1 +

[
r2

(
1− v1 + 2v2

nmax

)
− f2(t)− γ2

]
w2

)
dt.
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Like for the existence of (n1, n2) in Theorem 5.2.2, it is easy to show that ∂vH(a0;n(·; a0))
defines an isomorphism from W 1,∞((0, T );R2) to itself. The implicit function theorem
implies the existence of a C∞ map z = (z1, z2) from an open neighbourhood A0 ⊂ RN

of a0 into W 1,∞((0, T );R2) such that H(a, z(·; a)) = 0 for all a in A0. The uniqueness of
solution for problem (5.1)-(5.2) implies Ni(a) = ni(·; a) = zi(·; a), i = 1, 2, which proves
the C∞ differentiability of ni(·; a).

The C∞ differentiability wrt a of n in W 1,∞((0, T );R2) and the continuous embedding
of W 1,∞((0, T );R2) in C0([0, T ];R2) imply also the C∞ differentiability wrt a of n(T ; a)
and so of e(a). Finally, the formulas (5.15)-(5.18) and (5.19) are proved easily from direct
calculus. □

Theorem 5.2.4. The minimization problem (5.7) has a solution a∗ ∈ A.

Proof. We note first that (5.5) and (5.6) imply that A is a compact set. Indeed, clearly
A is bounded. As the inequalities in (5.5) and (5.6) are not strict, we get that every limit
point a∗ of A satisfies (5.5) and (5.6), so a∗ ∈ A.

Now let (ak), ak ∈ A, be a minimization sequence of (5.7). As A is bounded, necessarily
(ak) is a bounded sequence in RN and then from the compactness of A there exists a
subsequence of (ak), still denoted (ak), converging to a certain a∗ ∈ A.

From Proposition 5.2.1, with (ak) instead of a, we have that (nk
i ), i = 1, 2, where nk

i =
ni(t; a

k), are bounded in W 1,∞(0, T ). From classical Sobolev embeddings, we have that
W 1,∞(0, T ) is compactly embedded in C0([0, T ]), and therefore there exists a subsequence
of (nk

i )k, i = 1, 2, still denoted (nk
i ), converging to n∗

i in C0([0, T ]).

As a result we get a sequence (ak) in A converging to a∗ ∈ A, and the corresponding
solutions nk

i , i = 1, 2, to (5.8)-(5.9) converging in C0([0, T ]) to a certain function n∗
i ∈

C0([0, T ]), i = 1, 2

It implies that n∗
i = ni(t; a

∗), i = 1, 2, because by replacing ak, nk
i , i = 1, 2, in (5.8)-

(5.9) and passing in limit shows that n∗
i , i = 1, 2, solve (5.8)-(5.9) with a = a∗, which from

the uniqueness of the solution to (5.8)-(5.9) implies n∗
i = ni(t; a

∗), i = 1, 2. As e(a) is
continuous wrt a it follows that a∗ solves (5.7). □

Lemma 5.2.5. Let a∗ = (a∗1, .., a
∗
N) be a solution of (5.7). For all i = 1, . . . , N and all

t ∈ [0, T ] we have ∂ain1(t; a
∗) ≤ 0 and ∂ain2(t; a

∗) ≤ 0, and therefore ∂aie(a
∗) ≤ 0.

Proof. Note that as n1 and n2 are differentiable in W 1,∞(0, T ) implies that they are
differentiable in C0([0, T ]). Using the boundedness of n1 and n2, see Proposition 5.2.1, we
get

G1(t; 0, y) ≤ 0, ∀y ≤ 0, G2(t, x, 0) ≤ 0, ∀x ≤ 0,
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which in combination with (5.15)-(5.18) implies ∂ain1(t; a
∗) ≤ 0 and ∂ain2(t; a

∗) ≤ 0, and
therefore ∂aie(a

∗) ≤ 0, which proves the lemma. □

Remark 5.2.6. This lemma suggests that the solution a∗ should be on the boundary of A.
The following theorem shows that indeed a∗ ∈ ∂A and typically a∗ is of bang-bang type.

Theorem 5.2.7. Assume m :=
Dtot

Dmax

∈ N. Let a∗ = [a∗1, . . . , a
∗
N ] be a solution of (5.7)

and
∂ai1e(a

∗) ≤ · · · ≤ ∂aime(a
∗) ≤ ∂aim+1

e(a∗) ≤ · · · ≤ ∂aiN e(a
∗) ≤ 0

be an increasing ordering of components of (∂aie(a
∗)). We have

i) If ∂aime(a
∗) < ∂aim+1

e(a∗) then the solution a∗ is of bang-bang type. More precisely

a∗i1 = · · · = a∗im =
Dmax

2ω
, a∗im+1

= · · · = a∗iN e(a
∗) = 0.

ii) Otherwise

∂ai1e(a
∗) ≤ · · · ≤ ∂ak−1

e(a∗) < ∂ake(a
∗) = · · · = ∂aiℓe(a

∗) < ∂aiℓ+1
e(a∗) ≤ · · · ≤ ∂aiN e(a

∗)

for certain k, ℓ integers such that 1 ≤ k ≤ m < ℓ ≤ N , and

a∗1 = · · · = a∗k−1 =
Dmax

2ω
, ∂ake(a

∗) = · · · = ∂aℓe(a
∗), a∗ℓ+1 = · · · = a∗N = 0.

Proof. We note that from Lemma 5.2.5, ∂aie(a
∗) < 0 for all 1 ≤ i ≤ m in the case i) and

∂aie(a
∗) < 0 for all 1 ≤ i ≤ ℓ in the case ii).

Let us first prove i). We assume that the claim does not hold. Then necessarily there
exists: i.1) an integer i with 1 ≤ i ≤ m and a∗i <

Dmax

2ω
, or i.2) an integer j with m < j ≤ N

such that a∗j > 0.

In the case i.1), if all a∗j = 0, m < j ≤ N , we consider z = (0, . . . , 0, 1, 0, . . . , 0), where
1 is on ithe place and a = a∗ + hz, h > 0 small. Then a ∈ A and

e(a∗ + hz)− e(a∗) ≈ h∂aie(a
∗) < 0,

which is a contradiction and proves that this case cannot happen. Otherwise, if a∗j > 0 for
any integer j, m < j ≤ N , we consider z = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0), where 1 is on
ithe place and −1 in jth place. Then a = a∗ + hz ∈ A for h > 0 small and

e(a∗ + hz)− e(a∗) ≈ h(∂aie(a
∗)− ∂aje(a

∗)) < 0,
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which is again a contradiction and shows that this case does not happens.

In the case i.2), from the constraint (5.5) necessarily there exists an integer i, 1 ≤ i ≤ m
with a∗i <

Dmax

2ω
. Then we consider z = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0), where 1 is on ithe

place and −1 in jth place and conclude as in the case i.2) above.

For the proof of ii), if k = 1 and ℓ = N , there is nothing to prove - the vector (∂aie(a
∗))

is constant. The cases k > 1 or ℓ < N are proved similarly as i) above. Indeed, if we
assume that the claim does not hold then there exits: ii.1) an integer i, 1 ≤ i ≤ k, with
a∗i <

Dmax

2ω
, or ii.2) an integer j, ℓ+ 1 ≤ j ≤ N , with a∗j > 0.

In the case ii.1), resp. ii.2), we proceed as in i.1), resp. i.2), above and conclude that
this case cannot happen. □

Remark 5.2.8. Proposition 5.2.3 shows that e is a C∞ function and therefore a∗ is a
critical point of e only if ∂aie(a

∗) = 0 for all i. Theorem 5.2.7 shows that a∗ is a critical
point of a only if case ii) of Theorem 5.2.7 occurs with k = 1 and l = N . In all our
numerical experiments we have found optimal solution a∗ only of the type i) of Theorem
5.2.7. We conjecture that the case ii) of Theorem 5.2.7 does not happen and therefore a∗

is not a critical point of e.

5.2.3 Numerical optimization

To solve (5.7), we can use a gradient descent method. Note that our minimization problem
is constrained and the set A is convex. However, we cannot prove nor disprove whether
the objective function e(a) is convex (we suspect that it is not). We therefore address the
issue of convergence by utilizing the multiple start strategy. Many initial conditions are
used to begin the algorithm, and it is verified that each of these converges to the same
optimal value. To satisfy the constraints for a, the constrained optimization problem (5.7)
is solved with the projected gradient descent method (see [47]) as given by Algorithm 1.
We note that ak+1 of the problem (5.22) below could also be solved by using a quadratic
programming algorithm,

min
{
(a− αk+1)t · (a− αk+1), a ∈ A

}
.

Computing (5.19) requires one solution of (5.8)-(5.9) for n1 and n2, and the solution of
(5.15)-(5.18) for ∂ain1 and ∂ain2 for all i = 1, . . . , N . In terms of computational cost this
is equivalent to N +1 solutions of (5.8)-(5.9) at each step of the gradient descent. We can
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Algorithm 1: Gradient descent method
Input:

ϵ > 0 — tolerance
δ > 0 — step size (sufficiently small and possibly dependent on iteration

number);
a0 ∈ RN

+ — initial guess
Output:

ak — approximation to the solution a∗ of problem (5.7)

1: choose ϵ > 0 small
2: set k = 0 and choose ak = (aki ); set (∂aie(a

k)) = (0)
3: repeat
4: update the parameters

bk+1
i = aki − δ∂aie(a

k), i = 1, . . . , N,

with δ > 0 a small ”learning” parameter
5: satisfy the constraints by projecting bk+1 in A and set ak+1 to its projection:

ak+1 = argmin

{
1

2
|a− bk+1∥2, a ∈ A

}
(5.22)

6: set k = k + 1
7: compute n1(t; a

k), n2(t; a
k) solution of (5.1)-(5.2)

8: compute ∂ain1(T ; a
k), ∂ain

k
2(T ; a

k) by solving (5.15)-(5.18), and ∂aie(a
k) by using

(5.19), for i = 1, . . . , N
9: until |(∂aie(ak))| < ϵ
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reduce this computational cost by using appropriate adjoint functions as follows. This will
reduce the computation cost per iteration to one solution of (5.8)-(5.9) for n1 and n2, and
one solution of (5.23)-(5.26) for h1 and h2, see (5.27) (the computing cost of ∂aifj is zero
because it is computed explicitly). In terms of computational cost this is equivalent to two
solutions of (5.8)-(5.9) per iteration.

Proposition 5.2.9. Let a ∈ RN . Then the system of ODEs

h′
1 = −

[
r1

(
1− 2n1 + n2

nmax

)
− f1 − γ1

]
h1 −

[
γ1 − r2

n2

nmax

]
h2, (5.23)

h′
2 = −

[
γ2 − r1

n1

nmax

]
h1 −

[
r2

(
1− n1 + 2n2

nmax

)
− f2 − γ1

]
h2, (5.24)

h1(T ) = p1, (5.25)

h2(T ) = p2, (5.26)

has a unique solution (h1, h2) ∈ W 1,∞(((0, T );R2). Furthermore,

∂aie(a) = −
∫ T

0

(n1h1∂aif1 + n2h2∂aif2)dt. (5.27)

Proof. By changing the variable s = T − s, s ∈ (0, T ) and setting gi(s) = hi(T − s),
i = 1, 2, we find that (g1, g2) solves a system of (linear) ODEs similar to (5.23)-(5.26) but
with initial conditions at s = 0. Then we prove the existence and solution of (g1, g2), and
so of (h1, h2), by proceeding as in Theorem 5.2.2 for (g1, g2) instead of (n1, n2).

Now we prove formula (5.27). Note that ∂ain1 and ∂ain2 solve (5.15)-(5.18). Then

∂aie(a) = p1∂ain1(a;T ) + p2∂ain2(T ; a)

= h1(T )∂ain1(a;T ) + h2(T )∂ain2(T ; a)

=

∫ T

0

(h1∂ain1 + h2p2∂ain2)
′dt

=

∫ T

0

(u1,ih
′
1 + u2,ih

′
2) + (u′

1,ih1 + u′
2,ih2))dt, (5.28)

where for simplicity we wrote u1,i = ∂ain1, u2,i = ∂ain2. Using (5.15)-(5.18) we can evaluate
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u′
1,ih1 + u′

2,ih2 as follows

u′
1,ih1 + u′

2,ih2 =

(
r1

(
1− 2n1 + n2

nmax

)
− f1 − γ1

)
u1,ih1 +

(
γ2 − r1

n1

nmax

)
u2,ih1

− n1h1∂aif1

+

(
r2

(
1− n1 + 2n2

nmax

)
− f2 − γ2

)
u2,ih2 +

(
γ1 − r2

n2

nmax

)
u1,ih2

− n2h2∂aif2)

=

([
r1

(
1− 2n1 + n2

nmax

)
− f1 − γ1

]
h1 +

[
γ1 − r2

n2

nmax

]
h2

)
u1,i

+

([
γ2 − r1

n1

nmax

]
h1 +

[
r2

(
1− n1 + 2n2

nmax

)
− f2 − γ1

]
h2

)
u2,i

− (n1h1∂aif1 + n2h2∂aif2)

= −(u1,ih
′
1 + u2,ih

′
2)− (n1h1∂aif1 + n2h2∂aif2),

which in combination with (5.28) proves (5.27). □

Based on (5.27) we amend the Algorithm 1 as follows:

Algorithm 2: Gradient descent method amended
Input:

the same as in Algorithm 1
Output:

the same as in Algorithm 1

1: steps 1-2 the same as in Algorithm 1
2: repeat
3: steps 1-7 the same as in Algorithm 1
4: step 8 replaced by: compute h1, h2 by using (5.23)-(5.26) and ∂aie(a

k) by using
(5.27), for i = 1, . . . , N

5: until |(∂aie(ak))| < ϵ

This optimization procedure is implemented in python. To solve the system of ODEs,
the lsoda method is used, and to compute the projected gradient, the solve ls function
from qpsolvers is used.
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5.3 Results

As the set of variables to consider is large, we make several assumptions on the radiation
schedule before attempting optimization. We choose N = 30, Dmax = 3Gy, and Dtot =
60Gy and consider the end of the treatment period to be the end of the 31st day. This
choice is easily changeable, but fixing it allows us to perform analysis. Since NDmax > Dtot,
the optimal solution cannot simply be to apply maximum radiation at every fraction.
Additionally, since a nondimensionalization of cell number would eliminate the parameter
nmax, we set nmax = 1 for convenience - the results of the model are independent of the
choice of nmax. Additionally, tumour cells typically have a known value for their ratio
of radiobiological parameters, the α/β ratio. This ratio is frequently cited as being in
the range 3-10 Gy, and fixing it allows us to greatly speed up numerical calculations.
Furthermore, the effects of this ratio have been extensively studied in other works, and
our primary purpose is to investigate the effect of radiation altogether, rather than the
effect of each part of the LQ model. For these reasons, we fix α/β = 3 for all simulations.
We also assume that prior to radiation, the nondimensionalized cell fraction has reached
its steady state. This steady state is easily obtained from the governing ODEs by setting
the derivatives and the terms with f1, f2 to zero and solving for the cell numbers as
n1(0) = 1/(1 + γ1/γ2) and n2(0) = 1/(1 + γ2/γ1), which we use as our initial condition.
Using the optimization procedure outlined above, the optimal distribution of radiation
can be identified for any given parameter set which consists of the eight parameters found
in equations (5.1), (5.2), (5.3), and (5.4) (not including nmax). In order to complete the
optimization, we must also specify the metric function weight coefficients, p1 and p2.

When using the optimization procedure on various parameter sets, a dominant qualita-
tive behaviour quickly emerges; specifically, that the optimal radiation schedule is when the
final 20 days receive the maximum allowable radiation and the first 10 days receive none.
We refer to this case as the ‘trivial’ result since it is both the least interesting and most
common among reasonable parameter sets. Intuitively, the reason for this result is that
since we compute the metric at the end of treatment, the optimization tends to find that
focusing radiation at the end of treatment does not allow time for regrowth. Importantly
though, since the tumour cell population begins at its steady-state value in our optimiza-
tion, the clinical interpretation of the trivial result is not that treatment onset should be
delayed, but rather simply that the radiation should be focused over the smallest amount of
time possible. More discussion on this point is included in the conclusion. Many parameter
sets however do not fall into this pattern and show more varied optimal dose distributions.
We refer to cases which do not optimize to the trivial result as ‘nontrivial’ results. For
example, consider the optimization results shown in Figure 5.2. In this figure, we seek to
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minimize the total cell number and therefore choose p1 = p2 = 1. We generate the param-
eter set of r1 = 0.4, r2 = 0, α1 = 0.2, β1 = α1/3, α2 = 0.0005, β2 = α2/3, γ1 = 0.1, γ2 = 0.1
and use our procedure to find the radiation distribution that minimizes our metric. Notice
that the optimal distribution of radiation is to apply the maximal amount of radiation on
all days other than days 3, 4, 6, 9, 10, 13, 16, 20, 24, and 27. In fact, this schedule results
in an approximate 22% decrease in final cell number compared to the clinical case and an
approximate 40% decrease in final cell number compared to the trivial case.

Cases such as the one displayed in Figure 5.2 are the outliers however, with the trivial
distribution being the optimal for most parameter sets. This then begs the question of
which parameter sets result in nontrivial optima and what are the key parameters which
determine such behaviour. Answering these questions using analytical methods is quite
challenging due to the number of variables included in the model and the complexity of
the optimization process. We therefore result to numerical and data analysis techniques to
understand the relationship between the parameters and the optimal radiation distribution.

5.3.1 Minimization of total cells

We seek to identify the relationship between the model parameters and the optimal radia-
tion schedule for the case that the clinical goal is to kill the maximal number of cells. For
this, we set p1 = p2 = 1 for our optimization and attempt to identify the subset of the
parameter space which produces nontrivial optimization results.

We begin by generating an input-output data set where each sample consists of the
values for the six free parameters along with a label of trivial or nontrivial for its optimiza-
tion result. To create this dataset, we select clinically-reasonable ranges for each of the
parameters and sample values from within those ranges. The ranges used for sampling from
the parameter space are shown in Table 5.1. Note that for the proliferation and plasticity
rates, parameters are uniformly sampled, whereas for the radiobiological parameters, they
are sampled on a logarithmic scale. As a full optimization typically takes several minutes
to find the optimum, in order to generate a large enough dataset for analysis, we slightly
alter the optimization. Since we are only interested in labelling the sample as trivial or
nontrivial, we do not need to complete the full optimization process. Instead, we can label
the sample by setting our initial optimization guess as the trivial result, performing a single
optimization iteration, and determining whether or not the new optimal guess has changed:
if it has, then the trivial case must not be the optimal solution and there must therefore be
a nontrivial result. This method allows for the generation of a much larger dataset than
would otherwise be possible given computational limitations. With this method, a data
set of 19,338 labelled parameter samples are generated and used for analysis
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Figure 5.2: A comparison of model results with different radiation schedules. Cell type
1 is shown in green, cell type 2 in red, and total cells in blue. The schedule derived
using the optimization procedure is plotted with the full line, the trivial case with the
dashed line, and the clinical standard case with the dotted line. The parameters used for
this case are: r1 = 0.4 (1/day), r2 = 0 (1/day), α1 = 0.2 (1/Gy), β1 = α1/3 (1/Gy), α2 =
0.0005 (1/Gy), β2 = α2/3 (1/Gy), γ1 = 0.1 (1/day), γ2 = 0.1 (1/day). Notice that the
optimal case results in an approximate 22% decrease in final cell number compared to the
clinical case and an approximate 40% decrease in final cell number compared to the trivial
case.
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Parameter Symbol Range Min
(Unit)

Range Max
(Unit)

Sample
Type

Cell Proliferation Rate ri 0.3466 (1/day) 0.0347 (1/day) Uniform
Linear LQ Parameter αi e−10 (1/Gy) 1 (1/Gy) Logarithmic
Cell Plasticity Rate γi 0 (1/day) 0.3 (1/day) Uniform

Table 5.1: Parameter sampling ranges and method for the minimization of total cells case.

To identify which parameters are the most important in determining the optimization
result, we create a 2D histogram matrix as can be seen in Figure 5.3. In the upper triangular
portion of this figure, a 2D histogram of each pair of model parameters is plotted with blue
representing trivial results and orange representing nontrivial results. As can be clearly
seen from these histograms, a separation between the optimization result is most apparent
when considering the effect of radiation through the parameters α1 and α2 (plotted in
this Figure on a log scale). Interestingly, the α1 vs. α2 histogram shows that nontrivial
results are grouped along the axes, where one of the values is relatively large and the other
relatively small. This motivates the idea that a key determining factor in the result is the
ratio of the radiation effect parameters between the cell types. In the bottom part of Figure
5.3, the 2D histogram of the logarithm of the larger αi is plotted against the logarithm of
the larger αi/αj. A clear separation between the results is observed in this plot, showing
that the most important factor is the difference in radiation effect between the cell types.
To further illustrate this, a tree classifier (Figure 5.4) was created and trained using only
α1 and the ratio α1/α2. Limited to only this knowledge and a maximum decision depth of
three, the tree classifier was able to obtain 88.6% accuracy. The tree classifier was created
using the DecisionTreeClassifier() function from sklearn

In light of these results, it is worth noting that the situation where two distinct popula-
tions of cells have differing levels of radiation response is precisely what has been observed
in previous studies examining CSC subpopulations. Specifically, [57] and [92] both ob-
served that CSCs exhibit less sensitivity to radiotherapy than non-CSCs. Furthermore,
revisiting the disagreement between the results of Leder et al [59] and Forouzannia et al
[31] compared with Galochkina et al [33], we can more concretely evaluate our hypothesis
that the reason for the disagreement was due to the different assumptions about the effect
of radiation on the cell types. We find that in cases where the effect of radiation is constant
between the cell types, the optimal schedule of radiation is trivial. With the increasing
ability of researchers to identify CSC subpopulations within tumours, results such as these
are clearly of importance for treatment planning.
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Figure 5.3: A 2D histogram matrix of each pair of model parameters for the case of
minimization of total cells. Areas that are more solid blue represent cases where the
optimal result was the trivial case and areas of more solid orange represent cases where
the optimal result was nontrivial. Note that the parameters α1 and α2 are plotted on a
base 10 log scale. Observe the clear separation in cases involving α1 and α2 and the lack
of separation in cases that don’t. In the bottom portion of the figure, a 2D histogram with
the same colour scheme is included for the maximum αi vs. the maximum αi/αj, with
both axes on a base 10 log scale. Notice the clear separation between the optimization
cases based on the ratio of the radiation effect parameters. The parameters r1, r2, γ1, and
γ2 are in units of (1/day) while α1 and α2 are in units of (1/Gy).
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Figure 5.4: A tree classifier for the minimization of total cells case. The tree uses only α1

and the ratio α1/α2 to make predictions and is limited to a maximum decision depth of
three. Even with these limitations, the tree is nonetheless able to obtain 88.6% accuracy,
showing that the qualitative nature of the optimization result is largely determined by the
radiation effect parameters.
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5.3.2 Minimization of cancer stem cells

Given the importance of CSCs to the progression of cancer, it has been proposed that
treatments should prioritize the elimination of CSCs rather than the minimization of total
cells. Accordingly, we consider the case where p1 = 0 and p2 = 1 to see the different
strategies that evolve when seeking to minimize the size of a specific subpopulation. To
do so, we designate n2 as the CSCs and n1 as the non-CSCs and restrict our parameter
generation to align with this distinction. Specifically, given the results of the previous
case, we generate samples where 0.1 ≤ α1 ≤ 1 and 20 < α1/α2 < 100 and create another
histogram matrix. The results of this are shown in Figure 5.5 for a set of 17853 samples. In
this figure, notice that there is a clear separation between the trivial and nontrivial cases
on the plot of r2 vs. γ2. Importantly, the case of a tumour subpopulation which exhibits
radioresistance, a small growth rate, but a high replenishment rate of normal cancer cells is
precisely the behaviour expected of CSCs. These results buttress our qualitative conclusion
from the last section that non-uniform radiation schedules can be preferable in cases where
there is a known CSC population.

5.4 Conclusion

In this paper, we added a crucial element to the classic problem of temporal optimization
of radiation – cellular heterogeneity. We created a differential equation model and an
optimization procedure to identify which distribution of radiation dose resulted in the
maximal cell kill for a given set of parameters governing a tumour’s growth and response
to treatment. We found that most simulated sets of governing parameters resulted in the
optimal distribution being when the allowable dose was focused as much as possible at
the end of treatment, a case which we termed the trivial result. Clinically however, this
result does not suggest that the start of treatment should be delayed since, of course, the
choice of treatment end time is somewhat arbitrary. Instead, the trivial result shows that
optimal cell kill is achieved when radiation is grouped over the smallest amount of time
possible. Since the tumour population begins at its steady-state value, the trivial result
would actually suggest front-loading the radiation, rather than back-loading it. But some
parameter sets exhibited nontrivial results where the available dose was spread across the
treatment time. Of note, we showed that the optimal distribution is typically bang-bang,
with each day’s radiation either being the maximum allowable or zero. We find that the
main factor in determining whether the optimal radiation dose will be nontrivial is the
difference in the effect of radiation between the cell types. We specifically showed that
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Figure 5.5: A 2D histogram matrix of each pair of model parameters for the case of
minimization of CSCs. Areas that are more solid blue represent cases where the optimal
result was the trivial case and areas of more solid orange represent cases where the optimal
result was nontrivial. Note that the parameters α1 and α2 are plotted on a base 10 log
scale. Observe that for minimization of CSCs with a restricted parameter space, the
clearest separation is now seen in the plot of r2 vs. γ2. The parameters r1, r2, γ1, and γ2
are in units of (1/day) while α1 and α2 are in units of (1/Gy).
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knowledge of the linear LQ parameters for the cell types alone was enough to predict the
behaviour with over 88% accuracy.

There are several parts of our work that could be further generalized and limitations
of our model which provide opportunities for future research directions. The assumptions
made in creating our model can easily be changed: one could consider a Gompertzian
growth, or a nonlinear plasticity, for example. The radiation schedule could also be gen-
eralized to include fractions of different lengths and start times. Continuous dose profiles
could also be worked into the optimization which may be more appropriate in cases such
as when the method of administration is brachytherapy. The assumptions made on our
choices of parameters could also be changed or expanded. Importantly, in our model, the
tumour was always assumed to be saturated prior to beginning treatment. However, di-
agnosing tumours before they reach this state is obviously a crucial clinical goal, making
the case of non-saturated initial conditions important to consider. Due to this assumption,
our model is biased to focusing radiation at the end of the schedule to prevent cells from
simply regrowing. Based on our computational algorithm however, different initial condi-
tions are challenging to include in our analysis. If extensions to our work could include
varying initial conditions and oberve how this alters the predictions, it would be a valuable
addition. Different α/β ratios are not included in this study since we are mainly interested
in overall radiation effect, though it could be included to provide more general results or
fixed to a value for a particular patient for more specific recommendations. These results
could also be taken further, and one could attempt to find the precise relationship between
the parameters and the qualitative behaviour beyond just the difference in radiation effect,
though this would likely require a more efficient optimization procedure or significantly
more computing power. Furthermore, actually predicting which days would receive radi-
ation rather than just the qualitative behaviour would be interesting, though again, this
would certainly require more data or computing power.

In modern clinical practice, determining the precise number and spatial distribution of
CSCs within the tumour of a particular subject presents a considerable challenge. Conse-
quently, it is reasonable to question the potential clinical utility of modelling approaches
like the one presented here. Current clinical methods do not provide a means to accurately
assess the proportion of CSCs within a tumour, nor their spatial distribution. However,
there are biomarkers available that can be used to label cells with stem-like characteris-
tics (such as CD44+/CD24- in breast cancer), which can be identified through single-cell
imaging techniques like flow cytometry. Additionally, cells obtained from biopsies can be
cultured in a laboratory or implanted in a mouse model to observe the proportion that
form colonies, indicating stem-like properties. Nevertheless, performing these techniques
for a specific patient prior to treatment is not a straightforward process. However, even
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with the existing techniques, it is possible to make predictions regarding the proportion
of stem-like cells within a tumour, given its type and other factors. Since our model is
based on ODEs, we only require proportional information to initiate predictions. Although
this information may not be readily available for a particular patient prior to treatment,
it could enable predictions about the proportion of stem-like cells within a tumour.

Our results shed important light on the question of how differences in tumour subpop-
ulations can lead to changes in optimal treatment protocol. This is particularly relevant
when discussing CSCs, which are known to exist in tumours and display radioresistance
compared to non-CSCs. We hope that this work acts as support for the idea that under-
standing the full tumour biology is important for designing effective treatments and the
idea that mathematical tools can play a vital role in identifying cases where treatments
can be improved. We hope that the results presented here can be used as hypotheses for
clinical and experimental researchers to test our findings. Clearly, the recommendations
which could arise from our results are of importance to clinical practice.
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Chapter 6

Conclusion and Future Directions

This thesis focused on the complementary use of conventional and machine learning mod-
elling to advance personalized oncology. The increasing importance of incorporating quan-
titative analysis in biology and medicine, alongside the growing availability of data, creates
ample opportunities for these methods to make significant contributions. Researchers and
pharmaceutical companies have made it a key part of modern research, and even regula-
tory agencies have started to accept results from quantitative analysis more readily. For
example, the FDA has increasingly considered mathematical modelling in its drug approval
process [24].

The three projects in this thesis each utilized a combination of conventional and machine
learning models to address a problem in oncology. Two of these specifically used PINNs,
a novel deep learning technique with tremendous potential for further application in this
context.

In Chapter 3, PINNs were combined with the PI model and applied to characterize brain
tumours in a patient-specific manner. Accurately estimating tumour cell diffusivity and
proliferation rates can be challenging to do for a particular tumour, forcing researchers and
clinicians to rely on averages or crude approximation techniques. To address this issue, we
developed a deep learning model capable of accurately estimating these key parameters and
predicting tumour progression. Our method used two sets of multi-sequence MRI data and
relied on a preprocessing pipeline that included brain tumour segmentation and conversion
to tumour cellularity. By applying our model to synthetic tumours and a clinical dataset
of five GBM patients, we demonstrated the potential for estimating tumour parameters
and predicting tumour progression in a patient-specific way. This work laid the foundation
for further research aimed at aiding physicians in personalized diagnoses and treatments.
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In Chapter 4, we estimated tumour IFP using CT imaging of drug-carrying lipo-
somes. We developed a model capable of predicting voxel-by-voxel liposome accumu-
lation and IFP in tumours using an approach based on an established PDE model of
liposome transport and PINNs. We validated our model using data from animal experi-
ments and computationally-generated tumours, demonstrating its potential for predicting
intratumoral pressure maps that could be used for enhanced precision in forecasting tu-
mour progression and designing treatments. This work further contributes to the idea of
quantitative methods providing an opportunity for patient selection prior to treatment.

In Chapter 5, we focused on external beam radiation therapy, a crucial component
of modern cancer treatments. Previous mathematical studies of radiation effect primar-
ily assume intratumoral homogeneity, overlooking the potentially important heterogeneous
nature of tumours and the presence of various subpopulations, such as CSCs, which exhibit
higher radioresistance compared to non-CSCs. In this work, we generalized the problem of
temporal optimization of dose distribution in radiation therapy to a two-cell-type model,
accounting for tumour heterogeneity. We developed a mathematical model and a numeri-
cal optimization algorithm to find the optimal dose distribution for maximum cell kill. By
creating a dataset of optimization solutions, we used machine learning tools to understand
the relationships between model parameters and the qualitative behavior of optimization
results. Our findings suggest key factors in predicting optimal radiation distribution which
can guide treatment strategies in cases where clinicians have knowledge of tumour hetero-
geneity and CSC abundance, ultimately leading to more effective cancer therapies.

There are many problems to which the methods I have developed within this thesis
can be applied. For instance, in some of my previous works, I designed mathematical
models to analyze HAPs, a class of bioreductive compound that becomes activated in the
presence of tumour hypoxia. Though these drugs have strong theoretical and preclinical
experimental backing, they have struggled in clinical trials, with few success stories making
it to the clinic. This discrepancy between theory and reality has largely been attributed to
improper patient selection. Namely, not all tumours are hypoxic, and HAPs are unlikely
to provide significant benefit to those patients who do not have tumour sufficient hypoxia.
Methods similar to those used in Chapters 3 and 4 could be used to identify these patients.
For example, if imaging could be done to observe a biomarker mathematically related to
tumour hypoxia, then PINNs could derive key tissue traits and tissue oxygen distributions,
which could be incorporated into patient selection or even treatment design.

Another potential avenue for further work is in the design of cancer nanoparticles. Based
on the work in Chapter 4, we demonstrated that given an imaged distribution of injected
dye into a tumour, the underlying IFP could be predicted. Then, this information could
be used with the specific parameters for a cancer nanoparticle to predict drug distribution
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and treatment efficacy. Consider however, the inverse problem: given a desired drug
pharmacokinetic profile within a tumour (or pharmacodynamic effect on the tumour), find
the nanoparticle-specific parameters which achieve this. PINNs could be used in a similar
way to attempt to do this. We have already begun working on this project with promising
initial results.

Additionally, consider High Intensity Focused Ultrasound (HIFU) therapy, in which
high temperatures are used to kill cancer cells. HIFU therapy is a non-invasive technique
that can target specific regions within a tumour, minimizing damage to surrounding healthy
tissue. We could use PINNs to find the temperature profile and the correct parameters
or methods necessary to achieve this profile and anticancer effect. By doing so, it may be
possible to further optimize HIFU therapy, leading to more effective and precise cancer
treatments with fewer side effects for patients.

Overall, this thesis aims to showcase examples of how mathematical modelling and
machine learning can be used in combination to address problems in oncology. As is
widely accepted within these fields, the integration of quantitative analysis in cancer is
the future, and the next great leaps forward will stem from further interdisciplinary work.
Therefore, this work is well poised to have an impact in the years ahead.
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