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Abstract

Environmental concerns have motivated a gradual transformation of power systems in
recent years, mainly focused on replacing fossil fuel-based energy sources with Renewable
Energy Sources (RESs) such as solar and wind energy. However, due to their variable
nature, the large-scale integration of RESs poses several technical challenges for the safe
and efficient operation of evolving power systems. The adoption of microgrids (MGs) has
increased as a viable option to effectively integrate RESs into existing grids and reduce the
dependency on conventional, centralized power stations, as well as enhancing the electrical
supply resiliency. Furthermore, MGs can provide sustainable energy to remote areas in
which a connection to the main power grid is not possible. In this context, the Energy
Management System (EMS) of the MG, which is responsible for determining its optimal
operation, is an important part of MG control. However, the variability of electricity
demand and RESs within an MG complicates the adequate dispatch of the MG resources
to maintain supply-demand balance. Hence, uncertainties inherent to an MG must be
taken into account, which is one of the main topics of this thesis.

The coordinated operation of multiple MGs as a multi-microgrid (MMG) system has
recently attracted attention due to the potential benefits that originate from a coordinated
operation, as opposed to the individual and independent operation of each MG. The col-
lective operation enables the possibility of power exchanges among MGs and the main
grid, which can mitigate the unpredictability of RESs, as well as reduce the operational
costs by taking advantage of the heterogeneity of load and generation profiles in each MG.
Furthermore, differences in generation costs and grid buying/selling prices can incentivize
power exchanges and ensure the maximum utilization of RESs. Therefore, it is important
to design EMSs that adequately consider the collective operation of a set of MGs while
taking uncertainties into account, which is the primary focus of this thesis.

In the first part of this thesis, a centralized MMG EMS model is proposed, which is
formulated as a cost minimization problem that considers the operation of all MGs and
their interactions among each other and the main grid as a single system. The model
includes detailed operational constraints of thermal generation units and Energy Storage
Systems (ESSs), as well as power capacity limits at the Point of Common Coupling (PCC)
of each MG. A decomposition procedure based on Lagrangian relaxation is then applied,
with the goal of separating the complete problem into subproblems corresponding to each
MG, which can be solved independently with minimal information exchange through a
subgradient-based distributed optimization algorithm. Demand and solar irradiance data
from a realistic Active Distribution Network (ADN) in São Paulo, Brazil, are then used
to design a system to test and validate the proposed models. The simulation results show
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that the distributed algorithm converges to the optimal or a near-optimal solution of the
centralized model, making the proposed approach a viable alternative for the implemen-
tation of a distributed MMG EMS. Furthermore, the advantages of an MMG system are
demonstrated by showing that the operational costs of the system are significantly reduced
when MGs are able to exchange power among each other and with the main grid, compared
to their costs in individual operation.

In the second part of this thesis, the proposed centralized MMG EMS model is reformu-
lated using an Affine Arithmetic (AA) optimization framework to consider uncertainties
associated with electricity demand and renewable generation. First, the uncertainties are
characterized by their affine forms, which are then used to redefine the variables, objective
function, and constraints of the original model in the AA domain. Then, the linearization
procedure of the absolute values introduced by the AA operators is explained in detail. The
proposed AA model is validated through comparisons with the deterministic and Monte
Carlo Simulation (MCS) solutions. The test system used in the aforementioned MMG
distributed dispatch approach is utilized to show that the AA model is robust under a
range of possible realizations of the uncertain parameters, and can be solved with lower
computational burden and in shorter execution times with respect to an MCS approach,
while considering the same range of uncertainties, which is one the main advantages of the
proposed AA model. Furthermore, it is demonstrated that the affine forms of the solution
variables can be used to find a dispatch for different realizations of demand and renewable
generation, with no need to repeatedly solve the optimization problem.
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Chapter 1

Introduction

This chapter presents the motivation behind this research, followed by a comprehensive
literature review and a discussion on existing models and approaches for achieving optimal
and reliable operations of Multi-Microgrid (MMG) systems. Finally, the research objectives
and the outline of the thesis content are presented.

1.1 Motivation

In recent years, environmental concerns have motivated an ongoing global effort to reduce
greenhouse gas emissions. To keep in line with the Paris Agreement of 2015, which aims at
limiting the global temperature increase, significant carbon intensity reduction programs
in all sectors of the economy are required. This calls for unparalleled work on several areas
relevant to this research, such as the development of renewable energy technologies, and
the transformation of existing power grids to accommodate such technologies [1].

The gradual transformation of power systems is focused on replacing traditional fossil
fuel-based energy sources such as coal and natural gas, with Renewable Energy Sources
(RESs) such as wind and solar energy. Furthermore, the integration of these RESs as a
large number of Distributed Energy Resources (DERs) that supply renewable energy in
a reliable and localized manner will also help to reduce the dependency on conventional
power plants [2]. However, the large-scale integration of DERs into existing power systems
poses several technical challenges that must be addressed to fully leverage the potential of
RESs.
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In the aforementioned context, the adoption of Microgrids (MGs) is an appealing ap-
proach to effectively harness RESs by enabling high penetration of DERs, as well as re-
structuring the existing conventional power grids to enhance their efficiency and reliability
[3]. MGs are also of special interest due to their capability of providing sustainable energy
to areas in which a connection to the main power grid is not possible or has been unexpect-
edly interrupted [4]. An MG is a cluster of DERs and loads operated in coordination to
reliably supply electricity, capable of operating either in isolated or grid-connected modes,
connected through the Point of Common Coupling (PCC) to the main power grid at the
distribution level, thus enhancing the system resiliency and reducing power transmission
utilization and losses [5, 6]. These features enable the possibility to schedule energy ex-
changes between the MG and the main grid that would be mutually beneficial, as well as
addressing operational issues locally within the MG [7].

For example, hurricanes Irma and Maria severely damaged the centralized power grid
of Puerto Rico in 2017, compromising 25% of the transmission towers and 40% of the
island’s substations, which led to the longest blackout in U.S. history. The majority of
the population had to rely on diesel generators, which were expensive, polluting, and
insufficient to satisfy the energy demand [8]. As reconstruction of the power grid began,
the goal was to design a more resilient system that would heavily rely on MGs to integrate
RESs and Energy Storage Systems (ESSs) [9]. The reliability of MGs in Puerto Rico
was put to the test more recently, when a 6.4-magnitude earthquake struck in January of
2020. One of the main power plants was severely affected, disrupting 25% of the island’s
energy supply; however, ten schools which received energy from isolated MGs were able
to continue operating normally, demonstrating the potential for enhancing the power grid
resiliency [10].

There are, however, challenges associated with MG-based power grids. Thus, the vari-
ability of electricity demand and renewable energy sources within an MG results in un-
predictable load and generation profiles, complicating the adequate dispatch of the MG
resources and presenting stability and reliability problems [11]. To guarantee the reliable
and economic operation of an MG, appropriate strategies and methods for its control must
be implemented. In an MG, the optimal operation is determined by the Energy Manage-
ment System (EMS), which solves optimization problems such as the Unit Commitment
(UC) or Economic Dispatch (EC) problems. These traditionally deterministic problems
must be reformulated to consider the uncertainties inherent to an MG, which is one of the
main focuses of this thesis.

The coordinated operation of multiple MGs connected to form an MMG system has
recently attracted significant attention due to the potential performance improvement of
the overall system and the mutual benefits for all participating MGs, when compared
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to their independent operation [12]. An MMG system can be described as a high-level
structure, formed at the distribution system voltage level through the clustering of single
interconnected MGs, which are geographically close to each other and can function as a
single aggregated island from the main grid’s perspective [13, 14, 15]. Through a coordi-
nated operation with the main distribution grid, an MMG system enables optimal power
exchanges that mitigate the undesirable effects of intermittent renewable energy sources,
while benefiting from the heterogeneity of load and generation profiles in each MG [16].
Furthermore, differences in buying and selling prices can incentivize power exchanges that
will ensure the maximum utilization of RESs and reduce the total operating costs [17].
With the growing integration of DER in distribution systems, the need and advantages of
properly coordinating the collective operation of MGs are becoming apparent [18], and is
thus the primary overall focus of this thesis.

In general, the existing literature related to MMG systems falls into the categories of
system planning, voltage and frequency control, communication in power sharing, service
restoration, stability enhancement, and optimal energy management. The presented re-
search focuses on the last category, where most of the literature relates to coordination
mechanisms, modeling of the EMS as centralized or distributed optimization problems,
and the implementation of solution techniques for such problems [19].

The distinction between centralized, decentralized, and distributed control is partic-
ularly relevant in the area of MMG systems. While a centralized EMS model is math-
ematically easier to formulate and solve, and may result in the lowest operational cost
for the MMG system, it has two main disadvantages: (1) the whole system is reliant on
a centralized entity or controller, which severely compromises its reliability in the case of
contingencies, and (2) the centralized controller requires complete knowledge of the genera-
tion costs, load profiles, and relevant parameters of DERs within each MG, which may pose
privacy concerns if the MGs are operated by different utilities [20]. These issues are ad-
dressed by implementing decentralized or distributed approaches, which are characterized
by local controllers in each MG that preserve their privacy [21].

Based on the aforementioned discussion, this research focuses on the development of a
centralized, decomposable, and realistic EMS model for the optimal and coordinated op-
eration of MMGs, and the subsequent implementation of a distributed solution algorithm.
Thereafter, given the challenges encountered with the implementation and solution of the
distributed MMG EMS problem, uncertainties associated with load and renewable gen-
eration are introduced in the centralized model only, through an Affine Arithmetic (AA)
approach, to obtain a detailed MMG EMS model that is robust for a range of uncertainties
and is significantly less computationally intensive than Monte Carlo Simulation (MCS).
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1.2 Literature Review

A comprehensive literature review on MMG systems is presented in this section, with
the goal of establishing the context for and justifying the development of this research,
describing the state-of-the-art of related work and identifying relevant gaps or limitations
addressed in this thesis. The focus will be on the EMS of MMGs, distributed optimization
techniques applied to such systems, and different methods for considering uncertainties in
centralized models.

1.2.1 Multi-Microgrid Centralized EMS

In [22], the authors present a model for the optimal operation of interconnected MGs with
a centralized control structure. An evolutionary computation algorithm is applied to de-
termine the optimal power exchanges, considering reliability indices for each MG. Results
show that the reliability indices of the system improve, when comparing the interconnected
and isolated operation of MGs. However, the proposed model requires the proper charac-
terization of Probability Distribution Functions (pdfs) to account for uncertainties in load
and renewable generation.

An optimal EMS for a cooperative MMG community is proposed in [23], which min-
imizes the operating costs of all MGs. A sequential coordinated procedure is proposed
to distribute the computational burden of finding the optimal power exchange scheduling,
carried out by a central controller. Results show that through power trading among each
other, MGs can avoid unnecessary costs from external trading with the main grid, by ad-
justing their local generation. Nevertheless, the proposed model does not take uncertainties
into account, and it lacks a detailed representation of the MG components.

A Model Predictive Control (MPC)-based global centralized control for a network of
MGs is presented in [24], where the goal is to maximize the overall profit resulting from
power exchanges among MGs and the main grid. Simulation results demonstrate that the
cooperative operation has significant advantages for each participating MG, especially in
terms of the total energy required from the main grid and the utilization of RESs. In [25],
a general framework for reliability assessment of MMG systems is proposed, to investigate
the impact of coordinated outage management strategies. A centralized control scheme
is introduced for the operation of MMGs during outage events, which minimizes load
curtailments based on an MPC approach. Results show that the proposed model improves
the outage duration indices of the whole system. However, these MPC-based strategies
rely on accurate forecasts of load and renewable generation.
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1.2.2 Distributed Approaches

Due to the inherent characteristics of MMG systems, there are several benefits in imple-
menting a distributed EMS model or solution approach. Since the concept of MMGs is
relatively new, the application of distributed optimization techniques is currently a highly
active research field.

In [26], the authors present a hierarchical power scheduling approach to manage the
power trading and energy storage in a system consisting of a main grid supplying 400 users,
and four cooperative MGs supplying 100 users each. A convex optimization problem is
decomposed into a two-tier formulation; the first tier is related to the power distribution
in the main grid, while the second tier is related to the cooperative power scheduling in
the MGs. Results show that MGs may choose to import power from other MGs with
lower transmission costs, instead of importing from the more expensive main grid. This is
beneficial for the main grid as well, in which reductions of 43% peak generation and 13%
overall generation are achieved. A drawback of this approach is that uncertainties associ-
ated with demand and renewable generation variability are considered through statistical
distributions, which results in a method that is not as robust as other techniques such as
Robust Optimization (RO) and AA.

A distributed MPC scheme for the coordinated stochastic energy management of MMGs
is presented in [27]. Uncertainties associated with renewable generation and loads are han-
dled though probabilistic forecasts. The proposed scheme is tested on a system composed
of ten MGs, interconnected to the main distribution network. A two-layer EMS is imple-
mented, with an upper layer that maintains the supply-demand balance in the distribution
network, minimizing its operation cost and finding the optimal energy exchange with the
transmission network, and a lower layer that coordinates the MGs to maintain their in-
dividual supply-demand balance, minimize their operation cost, and achieve the optimal
energy exchange set by the upper layer controller. Results show that the total operation
cost is reduced, with an enhanced trade-off between performance and computational fea-
sibility, when compared to a non-cooperative operation. While the proposed approach
coordinates multiple MGs adequately, it relies on probabilistic forecasts of load and renew-
able generation to find an optimal solution.

A decentralized control for MMGs is implemented in [28], where each MG is modeled
as an inventory system, locally producing electricity from wind or solar sources. The costs
of energy storage and power exchange among MG are minimized, while the storage levels
in each MG are kept around a reference value through the power sharing among MGs.
The proposed model has interesting features that make it useful to investigate the design
of an MMG controller, such as scalability and robustness to changes in network topology;
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however, uncertainties in load and renewable generation are not considered.

A distributed optimization framework for energy trading between MGs is presented in
[29], which implements a subgradient-based algorithm that requires minimal information
exchange, thus preserving the privacy of each MG. However, the proposed model does not
take into account the power capacity limits at the PCC of each MG. In [30], the authors
present a mechanism to incentivize energy trading among MGs, based on Nash bargaining
theory. The bargaining problem is decomposed into two sequential problems, one for social
cost minimization and one for trading benefit sharing, and a distributed solution using an
Alternating Direction Method of Multipliers (ADMM) algorithm is implemented. Results
show that the operational costs of all MGs that participate in energy trading are reduced;
however, the PCC limits are also neglected.

In [31], a distributed and robust EMS for networked hybrid ac/dc MGs is proposed,
which coordinates the energy sharing through the dc network, minimizing the power trans-
mission losses. A distributed algorithm that preserves the privacy of each MG is imple-
mented, also based on the ADMM principle, which is applicable to this model because
MGs only need to update their energy exchange schedule with the dc network, and not
other MGs. Thus, in the formulation, there are no terms representing power exchanges
among MGs, which would couple the constraints of all MGs and result in a non-separable
problem structure that is incompatible with ADMM algorithms.

A distributed energy management framework formulated as a bi-level quadratic opti-
mization problem is developed in [32]. The upper level corresponds to the distribution
system, and the lower level to each individual MG; the two levels are linked through the
clearing price determined in the upper level optimization. Simulation results show that
the operational cost of the distribution system significantly decreases, when compared with
fixed pricing schemes. However, the coordination depends entirely on the clearing price
set by the upper level problem, instead of being determined locally by the corresponding
MGs in the lower level problems. In [33], the authors propose a three-stage distributed
algorithm that coordinates the operation of MGs, using an MPC approach. The first stage
performs local optimizations for each MG, followed by a coordination stage controlled by
an aggregator, and a final stage that redistributes power deviations from the aggregator’s
energy profile. Simulation results show that the cooperative operation reduces the amount
of energy exchanged with the main grid. A similar technique is proposed in [34], where a
distributed MPC-based dispatch process is implemented, with an upper level optimizing
the energy exchanges between the distribution network and the MGs, and a lower level
guaranteeing the economic supply and demand balance. Results show that the coordinated
operation benefits both the distribution network and MGs. However, these approaches have
the drawbacks of MPC-based optimization techniques discussed in the next section.
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A two-layer system that enables peer-to-peer electricity sharing is proposed in [35],
where the first layer corresponds to a multi-agent electricity trading mechanism, and the
second layer consists of a blockchain-based mechanism to securely settle the transactions
agreed upon in the first layer. Results show that the proposed approach efficiently promotes
energy sharing and enhances the overall energy efficiency of the distribution network. In
[36], a peer-to-peer trading mechanism that uses locational marginal prices to compute
network usage charges is presented, with a decentralized configuration that takes into
account the preferences of each individual peer. An iterative price-adjusting process is
implemented, which matches the seller and buyer prices for all energy trades. Results
show that a peer-centric configuration reduces network usage charges. However, these
abstract trading mechanisms disregard some practical considerations of MMG systems,
such as PCC capacity limits and a detailed representation of MG components.

A nested day-ahead scheduling model for networked MGs is proposed in [37], in which
MGs are nested based on load priority. The layered structure enhances the system re-
siliency, while keeping operational costs close to a centralized approach. However, this
nested configuration significantly increases the complexity of the problem, which might
limit its use in practical systems.

A decentralized framework based on an ADMM algorithm that coordinates power ex-
changes between the distribution system and MMG is presented in [38]. Each entity is
modeled as a two-stage RO problem to account for uncertainties in renewable generation
and demand, assuming that only one MG is connected to the distribution system; hence,
the necessary information exchange only involves the distribution system and a single MG,
which makes it possible to apply the ADMM algorithm. Similar approaches, with dif-
ferent models and modified versions of ADMM algorithms are presented in [39] and [40].
However, representing power exchanges between MGs not considered in the formulation,
impedes the application of the proposed ADMM approach, due to the model constraints
being strongly coupled.

1.2.3 Uncertainty Modeling

Different approaches to deal with uncertainties in the MG scheduling problem have been
proposed in the literature. In [41], the authors propose a deterministic Mixed-Integer
Linear Programming (MILP) formulation of the energy management problem, with the
addition of reserve constraints to compensate for forecast errors in demand and renewable
generation. An MG dispatch model with frequency-aware constraints which ensure the
MG’s capability to ride through unplanned islanding events is presented in [42]. Instead of
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specifying the primary reserve requirements as fixed amounts, the proposed dispatch deter-
mines the reserve requirements by explicitly simulating under-frequency or over-frequency
dynamics caused by potential islanding events. Since these approaches are based on the
inclusion of reserve constraints, they do not take uncertainties into account directly, and
the obtained solutions may be infeasible for certain scenarios, depending on the forecast
accuracy.

Methods based on MPC and Receding Horizon Control (RHC) have been proposed
in the literature to mitigate the impact of forecast errors in the optimal MG operation.
The authors in [43] present a centralized EMS for isolated microgrids based on MPC and
RHC. A two-stage approach is implemented to reduce the computation time; the first
stage corresponds to the UC problem, and the second stage is a three-phase Optimal
Power Flow (OPF) problem. A coordination strategy based on an online moving horizon
optimization approach is proposed in [44], which seems effective in terms of technical
performance and computation time, when applied to isolated power systems. Forecast
errors are considered indirectly in these methods, but the uncertainty is not explicitly
included in the problem formulation, which requires defining a reserve constraint as well.
The amount of reserves is usually overestimated to avoid load curtailment; hence, a better
representation of uncertainties is necessary to guarantee the reliable operation of an MG,
since the supply-demand balance is critical due to its modular nature.

Classical approaches to handle uncertainties in MG scheduling problems include Stochas-
tic Programming (SP) and MCS. In SP, uncertainties are represented by a set of scenarios,
which are generated from pdfs, and multi-stage optimization problems are usually for-
mulated to enable adjustments to the first-stage decisions in latter stages, based on the
realizations of the uncertain parameters [45]. In MCS, the optimization problem is solved
repeatedly, each time with different input data obtained through random sampling from a
known distribution of the uncertain parameters, and a statistical analysis is then performed
on the results. The precision of the expected values of the variables and their distribution
shape improve as the number of simulation trials increases [46]. The main drawbacks of
these approaches are the need to identify a pdf of the uncertain parameters, which re-
quires a considerable amount of historical data, and the high computational burden of the
repeated simulations.

In [47], a two-stage energy exchange scheduling strategy for an MMG system is pre-
sented, which considers electric vehicles as storage devices. Simulation results show that
the two-stage scheduling strategy reduces the electricity cost and avoids frequent transi-
tions between battery charging/discharging states. A limitation of this approach is the
method used to represent the stochastic nature of wind generation and the state of electric
vehicles. Thus, MCS is used to create a large number of scenarios from statistical distri-
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butions; the number of scenarios is then reduced to avoid excessive computation times. In
this process, possible critical scenarios may be discarded, compromising the reliability of
the system under certain realizations of the uncertain quantities.

Stochastic formulations of the MG EMS problem are based on representing uncertainties
by a set of scenarios, which are generated from pdfs of the random parameters. For
example, in [45], the authors formulate a cost minimization problem that also reduces
the power losses in an MG, while considering the intermittent nature of renewable energy
sources. A two-stage formulation is adopted, with the first stage finding the optimal
decisions for day-ahead energy transactions, which remain constant in the second stage,
considering the variations in wind and solar generation. In [48], a two-stage stochastic
formulation that minimizes the expected operational cost is implemented. Scenarios of
renewable generation and day-ahead energy and reserve scheduling are created based on
pdfs of the forecast errors, and results show that the stochastic model allowed lower reserve
requirements, when compared with a conventional deterministic method. A two-stage SP
planning model for the implementation of MMGs in Active Distribution Networks (ADNs)
is presented in [49], which aims to benefit from interactions among MGs while considering
uncertainties associated with electricity demand and renewable generation. The proposed
model includes long-term purchase decisions and short-term operational constraints, and
simulation results show that the SP model is less conservative than a deterministic model
with reserve constraints, for a system of four MGs in an ADN located in São Paulo, Brazil.
The main disadvantage of SP approaches is the need to identify accurate pdfs of the
uncertain parameters, which requires a considerable amount of historic data. Furthermore,
feasibility cannot be guaranteed for all the possible realizations of the uncertain parameters,
since certain scenarios may be neglected due to scenario reduction techniques commonly
applied to reduce the computation time.

To circumvent the disadvantages of SP and MCS, alternative methods such as RO and
AA have been proposed, in which uncertainties are represented by predefined intervals,
according to the expected variability of the random parameters, usually determined from
historical data. The obtained solutions are robust for the considered range of uncertainty,
while avoiding the need for finding accurate pdfs or to perform repeated calculations. When
considering uncertainties in the MG EMS through RO, the goal is to minimize the worst-
case scenario, thus ensuring that the MG can operate adequately for any realization of
the uncertain parameters [50]. For instance, an RO approach for finding the optimal MG
scheduling considering wind generation uncertainty is presented in [51]. The proposed RO
approach yields lower operational costs than a deterministic model with predicted wind
generation, as well as a stochastic model, for both isolated and grid-connected modes of
operation. In [52], uncertainties associated with real-time market price signals, renewable

9



energy sources, and forecasted load values are handled using an RO method. Results show
that the effect of the buying price uncertainty is more prominent than the effect of the
selling price uncertainty. In [53], an EMS for isolated MGs based on RO is presented,
which combines the solution of a UC problem in the first stage, with a detailed OPF in
the second stage. The main drawback of RO formulations is that they produce highly
conservative solutions for the uncertainty interval considered, which are more expensive
than the solutions obtained with other range analysis techniques.

The combination of different approaches has also been explored in the literature. For
example, in [54], the authors present a stochastic-predictive EMS for isolated MGs which
considers uncertainties through a two-stage decision process, combining the stochastic UC
solution of the first stage with an RHC OPF solution in the second stage. A stochastic
MPC approach is proposed in [55], where forecasting uncertainties are represented by a set
of typical scenarios obtained from MCS. In this case, a stochastic mixed-integer quadratic
programming model is developed, which minimizes the MG operational cost and reduces
the required spinning reserve. Results show that the proposed model performs better than
a deterministic MPC model, as well as deterministic and stochastic day-ahead approaches.
The main disadvantage of these methods is the need for statistical assumptions to generate
a set of scenarios to account for uncertainties.

More recently, self-validated computation techniques have been proposed for dealing
with uncertainties in power systems [56]. In a self-validated computation, the numerical
algorithm keeps track of the accuracy of the computed quantities, as part of the computa-
tion process itself [57, 58]. The most simple self-validated computation model is Interval
Arithmetic (IA), in which an unknown quantity is represented by an interval. Mathemat-
ical operations can be performed using these intervals, in such a way that the computed
interval contains the actual value of the corresponding quantity. However, IA may not be
suitable for certain applications because it can produce solution intervals which are much
wider than the range of the computed quantity or function, especially in the case of chained
or iterative computations, since the overestimation effect in each step will accumulate [59].

AA is a different self-validated computation model that has been proposed to overcome
the overestimation effect of IA [60]. An AA framework for computing reliable solution in-
tervals for the OPF problem considering uncertainties is presented in [61], where relational
and minimization operators in AA form are defined to provide better approximations of the
solution bounds, when compared to other AA methods that approximate the minimization
operator through domain contraction techniques. Using the defined operators, equality
and inequality constraints can be included in the AA formulation. Results show that the
proposed model estimates accurate boundaries for the state variables, while drastically
reducing the computation time when compared to other approaches, especially MCS.
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In [62], an AA-based OPF formulation for MGs with uncertain load and renewable gen-
eration is presented. The state and control variables are expressed in affine form, resulting
in an interval-based model with upper and lower bounds for each variable. The proposed
model yields intervals that can be used to estimate the necessary reserves that the MG
should maintain to ensure that the demand is satisfied under the range of uncertainties
considered. In [63], an AA-based EMS for isolated MG is presented, which can produce
appropriate dispatch solutions by computing the noise symbols of the affine forms obtained
from the AA UC solution, based on the actual realizations of demand, renewable gener-
ation, and available reserves. Simulation results demonstrate that the proposed method
achieves cost-effective solutions, compared to a deterministic model, as well as MPC and
SP techniques. Furthermore, the AA model avoids the repeated simulations required in
the MPC method, and the statistical characterization of uncertainties required in SP. The
objective function of the AA UC problem is a weighted expression of the central value and
the affine radius associated with the uncertainties, so that the resulting AA MILP problem
can be properly solved, which allows controlling the degree of robustness of the obtained
solution.

The authors in [64] formulate RO and AA optimization problems, minimizing the main-
tenance and operation costs of an MG, in a 24-hour time frame, and compare the results
with a traditional deterministic model. It is shown that the RO approach yields the most
expensive solution, since it considers the worst-case scenario of the MG operation; however,
the budget of uncertainty can be changed to control the conservatism of the results. The
resulting AA forms of the variables provide valuable information about the impact that
each source of uncertainty has in each variable, which can be useful to perform sensitivity
analyses. A scheduling model for an MMG system using AA to account for load and renew-
able generation uncertainty is presented in [65], and simulation results show that the AA
model provides less conservative solutions than its IA counterpart; however, the proposed
EMS model does not consider detailed generator constraints, and the power limits at the
PCCs are not taken into account.

1.2.4 Discussion

Based on the preceding literature review, it is clear that the study and development of
adequate EMS models and solution techniques for the optimal operation of MMGs systems
is currently a prominent research area, as these systems allow an efficient and reliable
large-scale integration of DERs. In this context, the existing research mainly focuses on
the development of distributed optimization models or algorithms which are generally too
abstract and mathematically complex to be viable alternatives for implementation in real
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systems. Furthermore, unrealistic assumptions are usually made, particularly regarding
the interconnection of MGs to the distribution system, and the practical characteristics of
the MG components. Therefore, the MMG EMS model and distributed solution approach
presented in this thesis address such issues.

Regarding the consideration of uncertainties in MG scheduling problems, existing mod-
els are usually based on SP and MPC, which have the drawback of requiring an adequate
identification of pdfs of the uncertain parameters, and accurate load and renewable gen-
eration forecasts. To carry out such statistical characterization, a considerable amount of
historical data is needed, which may be difficult to obtain for MMG systems since they
are not yet commonplace in existing distribution grids. This lack of data may lead to
inadequate pdfs, potentially yielding significant errors. To address these limitations, tech-
niques based on range arithmetic, such as RO, IA, and AA have been proposed in the
literature. However, since RO and IA models generally produce exceedingly conservative
solution intervals, AA techniques have been proposed to address this shortcoming.

Finally, most of the existing works that take uncertainties into account are focused on
the operation of a single MG, either in isolated or grid-connected modes, as opposed to
the more complex case of MMGs. Only a few works discuss uncertainty issues in MMG
models, usually with the caveats of impractical assumptions as previously highlighted,
utilizing inefficient SP or MPC approaches. Furthermore, even fewer works report MMG
EMS models using range arithmetic techniques for dealing with uncertainties, and none of
these consider PCC capacity limits and detailed representations of the MG components.
Hence, the uncertainties associated with demand and renewable generation present in the
MMG EMS model proposed in this thesis have been formulated using an AA approach.

1.3 Research Objectives

Based on the preceding literature review and discussion on MMG EMS models, solution
approaches, and uncertainty representation, the main objectives of this thesis are the fol-
lowing:

• Develop a centralized and decomposable EMS model for the optimal and coordinated
operation of MMGs, which considers detailed representations of thermal generation
units, renewable generation, and ESS units within each MG, including realistic op-
erational constraints that account for power flow limits at the PCC of each MG,
considering all power exchanges among the set of MGs and the ADN, which are
ignored in the majority of MMG EMS models in the existing technical literature.
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• Based on the developed EMS model, implement a distributed solution approach for
the optimal scheduling of all participating MGs, which requires minimal information
exchange and enables local optimization in each MG, while preserving their privacy
and coordinating their cooperative operation.

• Formulate the proposed centralized MMG EMS model in the AA domain, to account
for uncertainties in demand and renewable generation, using linearization techniques
to overcome the nonlinear components introduced by the AA formulation. The dis-
patch procedure to determine the optimal power generation, energy storage and
power exchanges from the AA solution is demonstrated for specific realizations of
the uncertain parameters.

• Test and validate the proposed models using electricity demand and renewable gen-
eration data from a realistic ADN in São Paulo, Brazil, demonstrating the benefits
of the collective operation of MMGs, the distributed solution approach, and the AA
modeling approach for dealing with uncertainties.

1.4 Thesis Outline

The rest of this thesis is organized as follows: Chapter 2 presents a review of the con-
cepts, topics, and theoretical background relevant to the development of this work. Thus,
descriptions of MG and MMG systems are presented, focusing on their components, the
EMS modeling, and the interconnection topologies. An overview of centralized and dis-
tributed optimization techniques is also presented, followed by the AA framework used to
reformulate the deterministic MMG EMS problem to account for uncertainties.

Chapter 3 presents the deterministic, centralized, and decomposable MMG EMS model
which includes detailed representations of thermal generation units, renewable generation,
and ESS units within each MG, as well as constraints that account for power flow limits at
the PCCs. The distributed solution approach is then described and implemented, followed
by the analysis and discussion of simulation results for a realistic MMG test system.

Chapter 4 presents the detailed formulation of the centralized MMG EMS model in
the AA domain, including the linearization of nonlinear terms associated with the absolute
value operators introduced by the AA formulation. Simulation results in a realistic MMG
system are analyzed and discussed, and the procedure to determine the optimal dispatch
of the MMG system from the obtained AA solution is described.

Finally, Chapter 5 summarizes the thesis content, presenting the main conclusions and
contributions of this research, and outlining the scope of possible future work.
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Chapter 2

Background Review

This chapter provides an overview of relevant background topics and concepts used in the
development of this thesis. First, a general description of individual MGs is presented,
discussing their operation modes, common components, and control structure. Then, the
concept of MMGs is reviewed, describing the existing topologies and the use of centralized
and distributed approaches for ensuring their optimal operation, including the application
of decomposition techniques for solving centralized optimization problems in a distributed
fashion. Finally, the concept of AA within an optimization framework to account for
uncertainties in the MMG EMS model is introduced.

2.1 Microgrids

As it was previously mentioned, an MG is a cluster of loads, DERs, and ESSs operated in
coordination to reliably supply electricity, connected to the distribution grid at the PCC
[5]. MGs must be able to operate in either grid-connected mode or stand-alone modes (also
known as islanded or isolated mode). In grid-connected mode, power can be transmitted
from the MG to the main grid and vice versa, depending on the power balance and other
operating conditions. In stand-alone mode, the MG is isolated from the main distribution
grid and power exchanges are not possible; thus, the total power generated by the MG must
be in balance with the local demand at any time. Furthermore, an MG must be capable
of executing a seamless transition between the two operating modes. This capability of
operating in either mode is one of the key features that makes MGs appealing to evolving
electricity distribution networks, since they can provide support to the main grid when
needed, engage in mutually beneficial power exchanges, or disconnect when needed, thus
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lessening the burden on the main grid and ensuring the reliable energy supply to local
loads.

Figure 2.1 shows a high-level view of the structure of a generic MG, indicating the en-
ergy and information flow within the MG, and its connection to the distribution network.
The specific components found within the MG vary for each MG depending on its charac-
teristics, such as the locally available resources, the topology of the system, the geographic
features of the installation site, or whether grid-connected and/or stand-alone operation
modes should be prioritized. Sources such as Photovoltaic (PV) arrays and wind turbines
require converter interfaces. Non-critical loads can be simply connected or disconnected
with a conventional circuit breaker, or also interfaced with a power electronics converter
that would allow a more flexible control, although these interfaces may increase the levels
of undesired harmonics [66].

DERs are classified as dispatchable or non-dispatchable units, depending on their con-
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trollability. Fossil fuel generators, such as diesel generators, are an example of dispatchable
units, whose power output can be controlled at any given time. On the other hand, DERs
based on renewable energy sources have intermittent power output which cannot be con-
trolled, and thus are usually operated at their maximum power output capacity at all times.
However, a non-dispatchable unit combined with an ESS and an appropriate controller can
operate as a dispatchable unit. The goal envisioned for future MGs is a complete departure
from fossil fuel generation, and this challenging task can be accomplished with the proper
coordination of charging and discharging of ESSs and demand response programs [67].

MGs usually have a hierarchical control structure divided in three levels: primary,
secondary, and tertiary control [5]. Primary control refers to the control of the MG com-
ponents, with the fastest response to local events (in the order of seconds or milliseconds),
while ensuring adequate voltage and frequency levels, exclusively based on local measure-
ments. Secondary control is associated with the MG EMS, which finds the optimal UC
and dispatch of the available resources to ensure the reliable and economic operation of
the MG, with a slower time frame than primary control (in the order of minutes). Longer
term voltage and frequency deviations are restored in this level by determining the set
points for the primary control. Tertiary control manages the power flow between the MG
and the main grid at the PCC, providing signals to the secondary control to ensure the
optimal operation of the joint system, in a time frame of several minutes. In the case of
MMGs, the tertiary control is also responsible for the coordinated operation of all MGs
and their interactions with the host grid [43, 68, 69]. Table 2.1 presents a summary of the
control levels in an MG, and their associated functions. It is important to note that this
classification varies slightly in the existing literature; in particular, functions related to the
EMS and the coordination of power exchanges can be considered as secondary or tertiary
control [70, 71].

To ensure the adequate operation of an MG, the control functions previously discussed
can be implemented using centralized, decentralized, and distributed approaches. The fo-
cus in practice has been mainly on centralized structures, since this is the prevailing control
architecture in conventional power grids. In a centralized approach, there is a central con-
troller that monitors and controls all DERs and local loads; all calculations and decisions
are made by the central controller, making the system vulnerable to single-point failures
[5, 72]. In a decentralized approach, the MG control is physically distributed over a decen-
tralized infrastructure, i.e., individual components are controlled by multiple local agents
coordinated by the EMS. One advantage of the decentralized architecture is its scalability
and reliability; new components can be added to the MG without disrupting its operation
or updating the control algorithm, and the distributed structure makes the system immune
to single-point failures. A distributed approach is similar to the decentralized structure,
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Table 2.1: MG control levels and functions [5, 21].

Control Level Timescale Functions

Primary Milliseconds, seconds • Voltage and frequency control.
• Active and reactive power sharing control.
• Islanding detection.

Secondary Seconds, minutes • EMS.
• Voltage and frequency deviation compensation.
• Transition of grid-connected/isolated modes.
• Demand side management.

Tertiary Minutes, hours, days • Coordination of grid/MGs power flow.
• Coordination of clusters of MGs.
• Ancillary services.

but it enables the coordination and cooperation of individual components [73, 74]. These
control architectures will be further discussed in the following section, in the context of
MMG systems.

The implementation and successful operation of single MGs is widespread nowadays,
with numerous examples around the world of MGs designed to enhance the operation of
different types of facilities, such as campus and community MGs, commercial or industrial
MGs, and remote or emergency MGs. For example, the installation of an 8.1 MW MG was
completed in October 2022, at the Chula Vista Elementary School District, located in the
San Diego metropolitan area of California, United States. The system consists of 18,050
solar panels, complemented by battery storage, supplying energy for 28,000 students across
50 schools. The project is expected to save around $70 million over the next 25 years [75].
An MG at the Siemens corporate headquarters in Vienna, Austria, was officially completed
in November 2020. The MG has PV arrays with a total capacity of 312 kW, and 500 kWh
of battery storage, and is expected to provide flexibility services to Austria’s transmission
network, while generating additional income [76]. Another example is a dc MG installed
at the Mbogo Valley Tea Factory, in the northwest of Nairobi, Kenya. The system includes
PV arrays with a combined capacity of 403 kW, and 544 kWh of battery storage. The MG
supports the factory’s continuous operation when the connection to the main power grid
is unstable or interrupted, which was a recurring issue due to the its remote location [77].
These examples showcase the capability of MGs to enhance the operational efficiency of
diverse facilities, thus creating market opportunities for their continued development.
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2.2 Multi-Microgrid Systems

As DERs continue to proliferate in electricity distribution networks, the interest in the
implementation of MGs has increased as well, and the logical progression to further enhance
their operation is the formation of MG clusters. As it was previously mentioned, the novel
concept of MMG corresponds to a high-level structure, formed at the medium voltage
level through the interconnection of MGs at their PCC. The MGs can be created by
sectionalizing the existing distribution network, or by installing new DERs and ESSs to
supply local loads, for example in areas not connected to the distribution networks such
as remote communities.

MMGs can be also categorized according to the type of power they operate with,
namely, ac MMGs, dc MMGs, and hybrid ac/dc MMGs. AC MMGs are the most com-
monly studied since they can be integrated more easily into existing distribution networks.
However, the control of a dc MMGs is simpler than that of its ac counterpart, since reactive
power management is not necessary, and there is no need to regulate the frequency. Ad-
equate power converters are needed to interface dc MMGs with conventional distribution
networks. Hybrid ac/dc MMGs can combine the advantages of both types, achieving a
higher flexibility [78, 79].

The objective function of the MMG EMS optimization problem usually minimizes op-
erational costs or maximizes the profits from power transactions, customer satisfaction, or
utilization of renewable energy sources [19]. The operating costs can be minimized through
the maximum utilization of available renewable generation, buying power at low prices and
selling power at high prices, and taking advantage of the heterogeneity of load and gener-
ation profiles in each MG. These objectives are complementary and closely-related; hence,
a common approach is to formulate a multi-objective problem that optimizes a combina-
tion of such objectives. The constraints considered largely depend on how the model is
formulated. Thus, power and energy balance constraints are ubiquitous, but operating
constraints of the MG components vary greatly, depending on the type of generation con-
sidered [80]. In this context, it is crucial to properly take into account the power transfer
capacity limits through the PCC when considering power exchanges among MGs and the
ADN, which has been ignored in most of the published research.

2.2.1 Topologies

As mentioned before, all MGs in an MMG system should be able to exchange energy among
each other and with the main power grid, under the supervision of the distribution network
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Figure 2.2: MMG system with radial topology.

operator. They should also be capable of operating in grid-connected or stand-alone modes.
Based on these features, there are three common topologies of MMGs reported in the
literature, as discussed next.

Radial Topology

In this configuration, each MG is connected directly to the main grid, forming a conven-
tional radial topology in which the energy exchanges take place between each MG and the
main grid through the distribution bus, as shown in Figure 2.2. Within individual MGs,
there is information flow between each component and the MG EMS, whose objective is
to optimally control all local resources. The distribution network operator requires infor-
mation exchange with the main grid and all MGs since it is responsible for coordinating
their operation [81, 82].

If an MG is unable to satisfy its demand, or has a surplus of renewable generation, the
required energy exchange can only be made through the main grid, i.e., no energy exchanges
directly among MGs are possible. Taking into account their geographical location and the
physical connection of MGs to a distribution system, the radial topology is the most
realistic configuration, from a practical implementation perspective.
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Daisy Chain Topology

In this topology, energy and information can be exchanged bidirectionally between adjacent
MGs and between each MG and the main grid, as shown in Figure 2.3. The structure within
each MG is the same as the one described in the radial topology. Such configuration causes
a strong coupling of the energy schedules of all MGs, which requires additional network
constraints. Furthermore, the EMS must be able to operate adequately using only non-
critical information of the neighboring MGs, in order to preserve the users’ privacy [26, 23].

Mesh Topology

In this configuration, all MGs are interconnected to each other and to the main grid
directly, exchanging both energy and information, as shown in Figure 2.4, which is im-
practical. The mesh topology is commonly studied in the literature, for example in [24]
and [83]. The formulation of this configuration allows a more straightforward implemen-
tation of distributed optimization algorithms [29], and therefore it has gained popularity
in theoretical applications. However, such topologies are not existent nor expected to be
implemented in practice.
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2.2.2 MMG EMS Architecture

The control structure for the EMS of single MGs, which was previously discussed, is also
applicable to MMG systems. In some references, a nested hierarchical architecture is pro-
posed, with MGs organized in multiple layers, requiring sequential information exchanges
from bottom to top layers [84, 85]. However, such configuration is not realistic for practi-
cal MMG implementations. Thus, the review presented next only focuses on centralized,
decentralized, and distributed approaches.

As the name implies, in the centralized EMS, the dispatchable units and controllable
loads of all MGs are managed by a central controller, which is responsible for the interac-
tions among MGs, the participation in market bidding, the transition between operating
modes, and stability control functions [86]. The centralized MMG EMS optimizes the
objective functions of all MGs, as a single lumped system. Such structure requires high
computation power of the central controller, as the optimization problem increases in size
with the addition of DERs. Although the coordination is simplified due to a single con-
troller, this approach requires sharing sensitive information such as generation costs or
load profiles with the central controller, which individual MGs may be unwilling to pro-
vide. Furthermore, the entire system depends on the adequate operation of the centralized
controller, compromising the reliability in case of failure [23, 87]. For these reasons, a
centralized EMS is not the best option for MMG systems.
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In a fully decentralized EMS, each MG acts as an autonomous entity with a local
controller, operating based on local information only, with no knowledge or awareness of
the operation status of the other MGs. However, in this configuration, every MG seeks to
optimize its own operation independently, which may lead to competition and negatively
impact the overall system performance [88]. In the case of MMG systems with MGs owned
by different entities, such configuration might be suitable.

Distributed approaches have been proposed to overcome the disadvantages of central-
ized and decentralized structures. While a distributed approach is more complex to im-
plement, it resolves the aforementioned issues, as it does not depend on a centralized
controller, it requires minimal information exchange among MGs to coordinate the power
exchanges, and a global optimal state is achieved through the coordinated operation. Fur-
thermore, in a distributed EMS, the addition of DERs in an MG only requires updating
local parameters in the optimization problem of that MG, as opposed to updating a global
centralized model, which may be problematic as the penetration level of DERs increases
[89]. A drawback of a distributed control approach is the dependency on a communication
network to coordinate the interactions among MGs, and the required infrastructure to en-
able frequent power transactions [88]. Table 2.2 shows a summary of the advantages and
disadvantages of each one of the MMG EMS control structures.

Unlike the case of single MGs, which have already been widely adopted, real-world
implementations of MMG systems are much more hard to find, mainly due to the increased
complexity associated with such projects. A proper location is required, where multiple
MGs are sufficiently close to interact with one another, and the owners or stakeholders of
these MGs must be willing to heavily invest in the development of the project. A notable
example is a project being developed in Chicago, United States, where the Bronzeville
Community MG will be linked to the Illinois Institute of Technology MG. The Bronzeville
MG consists of PV arrays with a total capacity of 750 kW, and 2 MWh of battery storage.
It is adjacent to the Institute’s MG, which has 12 MW of DERs, including dispatchable
units such as gas turbines, and non-dispatchable units such as PV arrays and wind turbines.
With the joint operation, it is expected that during an outage, both MGs are capable of
isolating from the main grid, and share power with each other if necessary. This is an
ongoing project that is attracting significant attention, and should be followed closely as
a model for the implementation of MMGs in other locations [91, 92].
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Table 2.2: Characteristics of MMG EMS structures [88, 90].

EMS Structure Advantage Disadvantage

Centralized • Simpler implementation and coor-
dination.

• Reduced operation cost.
• Efficient use of MG components.

• High computation burden.
• Vulnerable to single-point failures.
• Complete dependence on a central

controller.
• Limited flexibility to system mod-

ifications.

Decentralized • Robust against single-point fail-
ures.

• Privacy protection.
• Strong plug-and-play functionality.
• Reduced computational burden for

local controllers.

• More complex implementation and
coordination.

• Higher operation cost.
• Unawareness of system-level re-

sources.
• High energy exchanges between

MGs and main grid.

Distributed • Privacy protection.
• High plug-and-play functionality.
• Relatively low operation cost.
• Reduced computational burden for

central/local controllers.

• Disclosing of partial information
required.

• Coordinated operation still relies
on a central controller.

• High dependence on communica-
tion network.

2.3 Distributed Optimization

The development of communication technologies has resulted in the emergence of net-
worked systems, in which interconnected subsystems cooperate to achieve a global ob-
jective which is beneficial for all subsystems. An MMG is a perfect example of such a
system, with an inherent distributed structure that can be advantageously exploited. Sev-
eral solution methods and algorithms based on distributed optimization techniques have
been reported in the literature to solve such problems, such as approaches based on game
theory, hierarchical decision-making, ADMM algorithms, consensus algorithms, heuristics,
and dual decomposition, among others [89, 30].

It is important to note that a distributed optimization approach can only be applied
if the problem in question has a decomposable structure, or can be mathematically trans-
formed to attain such structure, i.e., if it can somehow be formulated to be solved by
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blocks. For example, in the MMG EMS problem, a block would be each MG, and the goal
is to decompose the complete problem into subproblems corresponding to each MG. These
subproblems can then be solved locally, and by sharing minimal information, the optimal
solution for all MGs can be obtained through an iterative algorithm. Depending on the type
and structure of the optimization problem, the approach to implement a distributed solu-
tion algorithm changes. Thus, Linear Programming (LP), Nonlinear Programming (NLP),
MILP, and Mixed-Integer Non-Linear Programming (MINLP) problems would be handled
differently, while also considering whether their structure presents complicating variables
or complicating constraints, i.e., variables or constraints which prevent a straightforward
decomposition. Methods such as Benders decomposition and Dantzig-Wolfe decomposition
(or some variation) are applied accordingly to each type of problem [93, 94]. A detailed
description of these methods is beyond the scope of this thesis; however, it is important to
mention them to provide some context.

The decomposition technique used in this research is known as dual decomposition
(sometimes also referred to as Lagrangian relaxation). This technique has its basis on
the dual ascent method, and is closely related to the method of multipliers and ADMM
algorithms [95]. However, due to the coupled characteristic of the proposed MMG EMS
model, the augmented Lagrangian is not separable across the partitioning of variables by
MG, preventing decomposition using the ADMM approach. Thus, a generic description of
dual decomposition, as presented in [96], is provided next, which supports the explanation
of the decomposition procedure for the proposed MMG EMS model in Chapter 3.

The dual decomposition method has been widely applied to various optimization prob-
lems that benefit from a distributed solution [97]. Thus, consider the following optimization
model:

min
x

I∑
i=1

fi(x) (2.1a)

s.t. gi(x) ≤ ai ∀ i (2.1b)

I∑
i=1

hi(x) ≤ b (2.1c)

where the objective function fi(x) is a convex, quadratic, and separable function with
respect to variables x; gi(x) is a separable function across variables x, representing a set
of inequality constraints of the problem; hi(x) is a function corresponding to another set
of constraints of the problem, but it is not separable across variables x; and ai and b
are the corresponding right-hand side values of the inequality constraints. Based on these
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properties, constraints (2.1b) are separable (one constraint for each i), but constraint (2.1c)
is a complicating constraint, as it is not separable and prevents the decomposition of the
problem among each i. In order to relax the complicating constraints, a dual decomposition
procedure is applied by dualizing (2.1c), as follows [95]:

max
λ

{
min
x

I∑
i=1

fi(x) + λ

[
b−

I∑
i=1

hi(x)

]
(2.2a)

s.t. gi(x) ≤ ai ∀i
}

(2.2b)

This problem is not decomposable yet, due to the Lagrange multiplier (or dual variable) λ
in the objective function. To solve this issue, the problem is relaxed by fixing λ to a constant
value λ, i.e., turning it into a parameter, with the relaxed problem being decomposable
into the following i subproblems:

min
xi

fi(xi)− λhi(xi) (2.3a)

s.t. gi(xi) ≤ ai (2.3b)

In dual decomposition, the maximization over λ is carried out through the iterative
solution of the obtained subproblems, updating the fixed dual variable in each iteration
with an appropriate technique, such as the subgradient or cutting plane methods [93].
While cutting plane methods may converge faster for certain problems, they have a signifi-
cantly higher computational burden. The subgradient method is the most straightforward
approach, based on the following update step:

λk+1 = λk + αksk (2.4)

where α is the step size, s is the subgradient of (2.3), and k is the iteration counter. The step
size can be chosen according to different rules, as described in [98]. For a constant step size,
the subgradient algorithm is guaranteed to converge within some range of the optimal value
in a finite number of steps, depending on the step size. The iterative procedure starts by
initializing the dual variable at some fixed value, solving each subproblem independently
with the dual variable as parameter, and updating the dual variable with the obtained
solutions using (2.4). The process is then repeated by solving the subproblems with the
updated dual variables, until convergence is reached.

The subgradient algorithm is very sensitive to the chosen step size α because it pro-
gresses to the optimum in an oscillating fashion, which makes it very difficult to select
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an adequate stopping criterion. Thus, the algorithm is typically stopped after a prespec-
ified number of iterations. Variable step sizes may improve the convergence rate of the
algorithm, depending on the specific problem. Furthermore, to reach convergence, the
objective function must be convex with respect to the coupling variables of the problem
[97, 93].

2.4 Affine Arithmetic

AA is a range analysis method suitable for handling multiple uncertainty sources, such as
imprecise data, modeling errors, round-off errors, or truncation errors. It automatically
keeps track of rounding or truncation errors for each computed quantity, as well as the
correlations between those quantities [59]. In AA, a quantity x subject to uncertainty is
represented by an affine form x̂, which is a first-degree polynomial, as follows:

x̂ = x0 + x1ε1 + · · ·+ xpεp = x0 +

p∑
h=1

xhεh (2.5)

The coefficient x0 is called the central value of the affine form, which represents the value
that x is most likely to take. Coefficients xh are called partial deviations, and define the
magnitude of the corresponding uncertainty component. The symbolic real variables εh
are called noise symbols, and have unknown values within the range [-1,1]. The number of
noise symbols p depends on the uncertainties affecting variable x, and could be shared with
other affine forms. Each noise symbol represents an independent component of the total
uncertainty of quantity x, and the corresponding xh coefficients set the magnitude of that
component. A key feature of the AA model is that the same noise symbol may contribute
to the uncertainty of two or more quantities, indicating partial dependency between them.

According to the fundamental Invariance Theorem of AA, for every AA operation there
is a single assignment of values from the [-1,1] interval into each of the noise symbols that
makes the value of every affine form equal to the true value of the corresponding variable
[59]. Thus, the actual value of quantity x is guaranteed to lie in the interval given by:

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)] (2.6)

rad(x̂) =

p∑
i=1

|xi| (2.7)

Note that [x̂] is the smallest interval that contains all possible values of x. This conversion
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discards any correlation between computed quantities present in their affine forms. The
quantity rad(x̂) is called the total deviation or radius of the affine form x̂, around its center
value x0.

2.4.1 AA Operations

The first step to perform AA computations is to extend elementary operations and func-
tions to the affine domain; then, these affine operations can be combined to compute
arbitrarily complex functions. For example, without loss of generality, consider a generic
function of two variables, f(x, y). If the function is linear, the corresponding affine function
can be obtained by expanding and rearranging the original noise symbols εh ∀ h ∈ (1, · · · , p)
of the affine forms of the variables x̂ and ŷ. For instance, given any real numbers a, b, and
c, the operation g = ax+ by + c carried out in the affine domain is:

ĝ = ax̂+ bŷ + c = (ax0 + by0 + c) + (ax1 + by1) ε1 + · · ·+ (axp + byp) εp (2.8)

Except for round-off errors, the affine form ĝ captures all the information about quanti-
ties x, y, and g that can be deduced from the given affine forms. However, if f(x, y) is
a nonlinear function, the corresponding affine extension cannot be expressed exactly as
an affine combination of the original noise symbols; in this case, an affine function that
approximates the original function must be identified, and an additional term to account
for the approximation error is introduced. For instance, the product of two variables in
affine form is given by:

x̂ŷ = x0y0 +

p∑
h=1

(x0yh + y0xh) εh +

p∑
h=1

xhεh

p∑
h=1

yhεh (2.9)

The last term on the right-hand side of (2.9) is nonlinear, and it represents the approxi-
mation error. Rewriting this term as zp+1εp+1, the product becomes:

x̂ · ŷ = x0y0 +

p∑
h=1

(x0yh + y0xh) εh + zp+1εp+1 (2.10)

where

|zp+1| ≥
∣∣∣∣∣

p∑
h=1

xhεh

p∑
h=1

yhεh

∣∣∣∣∣ (2.11)
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is an upper bound for the approximation error. The most simple and conservative affine
approximation can be computed as:

zp+1 =

p∑
h=1

|xh|
p∑

h=1

|yh| (2.12)

The new noise symbol εp+1 is introduced by the non-affine operation, hence describing
an endogenous uncertainty, as opposed to the noise symbols ε1, · · · , εp, which describe
exogenous uncertainties. This approximation of the product of affine forms is straightfor-
ward, but there is a loss of information because the noise symbol εp+1 is assumed to be
completely independent from the original noise symbols, which is not true. More accurate
approximations may be used, such as the Chebyshev approximation, at the cost of higher
computational burden [58].

2.4.2 AA Optimization

Based on the previous description of affine extensions, a deterministic optimization prob-
lem can be reformulated to account for data uncertainties, according to the theoretical
framework introduced in [61]. The goal is to solve the following constrained optimization
problem in the presence of data uncertainties represented as affine forms:

min
ẑ

f̂(ẑ)

s.t. ĝj(ẑ) = 0 ∀ j ∈ (1, · · · , n)
ĥk(ẑ) < 0 ∀ k ∈ (1, · · · ,m)

(2.13)

where ẑ is the vector of unknown affine forms of the state variables, which includes depen-
dent and control variables; f̂ is the continuous and differentiable affine objective function;
and ĝj(ẑ) and ĥk(ẑ) are continuous and differentiable affine functions that represent the
j-th equality and k-th inequality constraints, respectively.

To solve (2.13), the minimization and comparison operators must be extended into
the affine domain, as proposed in [61]. These operators are fundamental for the affine
formulation of the EMS problem described in Chapter 4, and thus their definitions are
presented next.
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Similarity Operator

Two affine forms defined as x̂ = x0 +
∑p+pna

h=1 xhεh and ŷ = y0 +
∑p+pna

h=1 yhεh are similar

with an approximation degree Lx,y, i.e., x̂
A≃ ŷ, if and only if:

{xh = yh, ∀ h ∈ (0, · · · , p)} ∧
{
Lx,y =

p+pna∑
h=p+1

(|xh|+ |yh|)
}

(2.14)

The noise symbols εp+1, · · · , εp+pna describe the endogenous uncertainties, which are gen-
erated by the approximation of pna non-affine functions such as multiplications and other
nonlinear operations; the partial deviations xp+1, · · · , xp+pna are the upper bounds of the
corresponding approximation errors. This operator is useful when the radius of the uncer-
tain variables is the only available information.

Inequality Operator

Given two affine forms defined as x̂ = x0+
∑px

h=1 xhε
x
h and ŷ = y0+

∑py

h=1 yhε
y
h, then x̂

A
< ŷ,

if and only if:

x0 +

px∑
h=1

|xh| < y0 −
py∑
h=1

|yh| (2.15)

This definition simply states that the upper bound of x̂, i.e., the maximum value that the
uncertain variable x can take, is less than the lower bound of ŷ, i.e., the minimum value
that the uncertain variable y can take.

Minimization Operator

Given a differentiable, nonlinear function f and the affine form x̂ = x0 +
∑p

h=1 xhεh, the
AA-based minimization problem

min
x̂

f̂(x̂) = f0(x̂) +

p∑
h=1

fh(x̂)εh +

p+pna∑
h=p+1

fh(x̂)εh (2.16)
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is equivalent to the deterministic multi-objective programming problem

min
x0, x1, · · · , xp

{
f0(x0, x1, · · · , xp),

p+pna∑
h=1

|fh(x0, x1, · · · , xp)|
}

(2.17)

The minimization of the affine central value f0(x0, x1, · · · , xp) seeks the optimal solution
without considering the uncertainties represented by the noise symbols, while the min-
imization of the affine radius

∑p+pna

h=1 |fh(x0, x1, · · · , xp)| seeks the most robust solution
with the lowest tolerance to data uncertainty.

Using these operators, the solution of problem (2.13) is obtained by solving the following
deterministic multi-objective constrained optimization problem:

min
ẑ

{
f0(ẑ),

p+pna∑
h=1

|fh(ẑ)|
}

s.t. ĝj(ẑ)
A≃ 0 ∀ j ∈ (1, · · · , n)

ĥk(ẑ)
A
< 0 ∀ k ∈ (1, · · · ,m)

(2.18)

2.5 Summary

This chapter presented a review of the main background topics relevant to the development
of this thesis. A description of single MGs was provided, discussing their common compo-
nents and control levels. Then, the concept of MMG systems was introduced, describing
their main features, topologies, and EMS architectures. A brief description of distributed
optimization and dual decomposition was presented next. Finally, the core elements, con-
cepts, and operators of the AA optimization framework for considering uncertainties were
defined.
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Chapter 3

A Centralized and Distributed EMS
for Multi-Microgrid Systems

This chapter presents a distributed optimization approach for the solution of the MMG
EMS problem. First, the centralized EMS model is formulated as a cost minimization
problem that considers the operation of all MGs and their interactions among each other
and the main grid as a single, centralized system. Then, a decomposition procedure is
described, which transforms the central problem into subproblems that can be solved sep-
arately by each MG. A distributed optimization algorithm is then presented, which finds
the optimal or near-optimal solution of the entire system through the iterative solution of
the MG subproblems, while preserving the privacy of each MG. Finally, case studies are
presented and discussed, testing and validating the proposed MMG EMS models.

3.1 Centralized EMS

In this section, the formulation of the UC problem for MMGs is described in detail. A
single-node model of the MG is considered, in which all the nonlinear power flow constraints
are replaced by a single supply-demand balance equation, because in MGs, feeders can be
neglected without significantly affecting the EMS results, while improving computational
performance [99]. The UC problem is a mathematical optimization problem whose solution
yields the optimal operation of the system in a defined period, according to a specific target,
such as minimizing operational costs or maximizing generation revenue, while satisfying a
set of system constraints.
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Figure 3.1: Overview of an MMG system.

The MMG system considered in this work is comprised of m MGs connected to the
ADN, as shown in Figure 3.1. It is assumed that each MG can exchange power with the
ADN and with all other MGs. The power exchanges between MGs take place through the
main grid and their corresponding PCCs, as per the most realistic MMG radial topology.
Each MG has a local controller which is responsible for the management of local resources,
while the central controller coordinates the interactions between individual MGs and the
ADN. The optimization period is defined by the set of hours T , with each hour represented
by the index t. In this system, it is important to consider the capacity limits of the
connection of each MG; furthermore, information exchange is necessary to coordinate the
power exchanges among MGs. The focus of the proposed model is the application of a
distributed optimization technique; therefore, for the sake of simplicity, the distribution
and communication networks are not explicitly considered.

Each MG has a set of thermal generators Gm, such as diesel units, with each generator
represented by index g, as well as a set of ESS units Sm, with units represented by the
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index s. The conventional quadratic cost function of thermal generators is assumed, as
follows:

C(Pm,g,t) = am,gP
2
m,g,t + bm,gPm,g,t + cm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (3.1)

where am,g, bm,g and cm,g are the quadratic, linear, and constant coefficients of the cost
function of generator g in MG m, respectively, Pm,g,t is the power output of the generator
at time t, and vm,g,t is a binary variable indicating the status of the generator, equal to 1
when the generator is up, and 0 otherwise.

Based on (3.1), the objective function, which minimizes the operational cost for the
whole MMG system, can be formulated as follows:

min
∑
t∈T

∑
m∈M

[ ∑
g∈Gm

(
C(Pm,g,t)∆t+ CSD

m,gSDm,g,t + CSU
m,gSUm,g,t

)
+
(
ρgsmP gs

m,t − ρgbmP
gb
m,t

)
∆t

] (3.2)

where Cm,g,t is the cost function given by (3.1); ∆t is the duration of each period in the op-
timization time span, which allows considering shorter periods by taking fractional values;
CSD

m,g and CSU
m,g are the shutdown and startup costs of generator g in MG m, respectively;

and SDm,g,t and SUm,g,t are the shutdown and startup decisions for each generator at
time t, respectively, equal to 1 if the unit is scheduled for shutdown or startup, and 0 oth-
erwise. The selling and buying prices of the main grid to and from each MG are denoted
by ρgsm and ρgbm, respectively, and the power sold and bought by the main grid to and from
each MG are represented by P gs

m and P gb
m , respectively. The first term in the objective

function corresponds to the operational cost of the MG, and the second term corresponds
to the cost or profit resulting from power exchanges with the main grid. The minimization
is done over all MGs, which makes it a centralized formulation. It is assumed here that
there is no cost for the use of ESSs; however, such costs can be readily added to (3.2) to
reflect ESS degradation (e.g. [79]).

The supply-demand balance constraint ensures that the total generation in each MG is
equal to its total demand at all hours, taking into account the power exchanges between
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MGs and the main grid, and can be formulated as follows:∑
g∈Gm

Pm,g,t + P r
m,t +

∑
s∈Sm

(P dch
m,s,t − P ch

m,s,t) +
∑

n∈M\m

P e
n,m,t + P gs

m,t = Dm,t

+
∑

n∈M\m

P e
m,n,t + P gb

m,t ∀ m ∈M, t ∈ T
(3.3)

where P r
m,t is the renewable generation power in MG m at time t, and P dch

m,s,t and P ch
m,s,t

are the discharging and charging powers of ESS unit s in MG m at time t, respectively.
P e
n,m,t is the power exchange from MG n to MG m at time t, where n ∈ M\m, i.e., the

index n denotes each MG in the set M different than MG m, to account for all possible
combinations of power exchanges between MGs. Dm,t is the power demand in MG m at
time t.

The following constraints impose the minimum and maximum power output of thermal
units:

vm,g,tPm,g ≤ Pm,g,t ≤ Pm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (3.4)

where Pm,g and Pm,g are the minimum and maximum power outputs, respectively. The
product of each limit and the binary variable ensures that the generated power is zero when
the unit is down. Ramping limits of thermal units are also considered and represented by:

Pm,g,t − Pm,g,t+1 ≤ RDm,g∆t+ SDm,g,t+1Pm,g ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T (3.5)

Pm,g,t+1 − Pm,g,t ≤ RUm,g∆t+ SUm,g,t+1Pm,g ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T (3.6)

where RDm,g and RUm,g are the ramp down and ramp up limits of generator g in MG
m, respectively. The first term on the right-hand side in (3.5) and (3.6) ensures that the
change in power from period t to period t+1 does not exceed the maximum ramp value, if
the unit status does not change in period t+ 1. In the ramp down constraints, the second
term on the right-hand side ensures that Pm,g,t can reach zero if the unit is shutdown in
period t+1. Similarly, in the ramp up constraints, the second term on the right-hand side
ensures that Pm,g,t can change from zero to the required value if the unit is started up in
period t+ 1.

The following constraints coordinate the shutdown and startup decisions with the gen-
erator status variables, as well as ensuring that each unit is not shut down and started up
at the same period:

SUm,g,t − SDm,g,t = vm,g,t − vm,g,t−1 ∀ m ∈M, g ∈ Gm, t, t− 1 ∈ T (3.7)
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SUm,g,t + SDm,g,t ≤ 1 ∀ m ∈M, g ∈ Gm, t ∈ T (3.8)

The minimum downtime requirements of thermal units are imposed by the following
constraints [100]:

LD
m,g∑
t=1

vm,g,t = 0 ∀ m ∈M, g ∈ Gm, LD
m,g ≥ 1 (3.9)

t+DTm,g−1∑
t′=t

(1− vm,g,t′) ≥ DTm,gSDm,g,t ∀ m ∈M, g ∈ Gm,

t = (LD
m,g + 1), · · · , (T −DTm,g + 1)

(3.10)

T∑
t′=t

(1− vm,g,t′ − SDm,g,t) ≥ 0 ∀ m ∈M, g ∈ Gm, t = (T −DTm,g + 2), · · · , T (3.11)

where LD
m,g = min{T , (DTm,g −DT 0

m,g)(1− v0m,g)} is the number of periods that generator

g in MG m must be down after considering its downtime before solving the problem; T is
the number of periods in the optimization time span; DTm,g is the minimum downtime of
generator g in MG m; DT 0

m,g is the number of periods that the generator has been down
prior to the first period of the optimization time span; and v0m,g is the initial commitment
status, equal to 1 if the unit is up, and 0 otherwise. Constraint (3.9) ensures that the
unit satisfies its minimum downtime at the beginning of the optimization time span, and
is only included when LD

m,g ≥ 1, i.e., when the unit is initially down and the number of
periods it has been down prior to the first period is less than its minimum down time
requirement. Constraint (3.10) enforces the downtime requirement for all subsequent sets
of consecutive periods of size DTm,g that come after period LD

m,g, and is only included if

(LD
m,g + 1) < (T − DTm,g + 1) and DTm,g > 1. Constraint (3.11) enforces the minimum

downtime for the last (DTm,g − 1) periods, i.e., if the unit is shutdown at one of these
periods, it will remain down until the last period of the entire time span. Similarly, the
following set of constraints guarantee that the minimum uptime requirements of thermal
generators are fulfilled [100]:

LU
m,g∑
t=1

(1− vm,g,t) = 0 ∀ m ∈M, g ∈ Gm, LU
m,g ≥ 1 (3.12)
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t+UTm,g−1∑
t′=t

vm,g,t′ ≥ UTm,gSUm,g,t ∀ m ∈M, g ∈ Gm,

t = (LU
m,g + 1), · · · , (T − UTm,g + 1)

(3.13)

T∑
t′=t

(vm,g,t′ − SUm,g,t) ≥ 0 ∀ m ∈M, g ∈ Gm, t = (T − UTm,g + 2), · · · , T (3.14)

where LU
m,g = min{T , (UTm,g − UT 0

m,g)v
0
m,g} is the number of periods that generator g in

MG m must be up after considering its uptime before solving the problem; UTm,g is the
minimum uptime of generator g in MGm; UT 0

m,g is the number of periods that the generator
has been up prior to the first period of the optimization time span. Constraint (3.12)
ensures that the unit satisfies its minimum uptime at the beginning of the optimization
time span, and is only included when LU

m,g ≥ 1, i.e., when the unit is initially up and the
number of periods it has been up prior to the first period is less than its minimum uptime
requirement. Constraint (3.13) enforces the uptime requirement for all subsequent sets
of consecutive periods of size UTm,g that come after period LU

m,g, and is only included if

(LU
m,g + 1) < (T − UTm,g + 1) and UTm,g > 1. Constraint (3.14) enforces the minimum

uptime for the last (UTm,g−1) periods, i.e., if the unit is started up in one of these periods,
it will remain up until the last period of the entire time span.

The following expressions impose the energy balance, status coordination, and operat-
ing limits of the ESS units:

SoCm,s,t+1 − SoCm,s,t = [P ch
m,s,tη

ch
m,s − P dch

m,s,t/η
dch
m,s]∆t ∀ m ∈M, s ∈ Sm,

t, t+ 1 ∈ T
(3.15)

SoCm,s ≤ SoCm,s,t ≤ SoCm,s ∀ m ∈M, s ∈ Sm, t ∈ T (3.16)

P ch
m,sz

ch
m,s,t ≤ P ch

m,s,t ≤ P ch
m,sz

ch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (3.17)

P dch
m,sz

dch
m,s,t ≤ P dch

m,s,t ≤ P dch
m,sz

dch
m,s,t∀ m ∈M, s ∈ Sm, t ∈ T (3.18)

zchm,s,t + zdchm,s,t ≤ 1 ∀ m ∈M, s ∈ Sm, t ∈ T (3.19)

where SoCm,s,t is the State of Charge (SoC) of ESS unit s in MG m at time t, with
SoCm,s and SoCm,s representing its minimum and maximum limits, respectively; ηchm,s and

ηdchm,s are the charging and discharging efficiencies, respectively; P dch
m,s and P dch

m,s are

the minimum and maximum discharging power limits, respectively; P ch
m,s and P ch

m,s are
the minimum and maximum charging power limits, respectively; and zchm,s,t and zdchm,s,t are
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binary variables representing the charging and discharging status, respectively, equal to 1 if
the unit is charging/discharging, and 0 otherwise. Constraint (3.15) guarantees the energy
balance for ESS units at all periods; constraint (3.16) enforces the minimum and maximum
SoC limits; constraints (3.17) and (3.18) set the minimum and maximum boundaries for
charging and discharging power, respectively; and constraint (3.19) ensures that the ESS
units are never charging and discharging simultaneously.

The limits of power transfer capacity through the PCC of each MG, as shown in Fig-
ure 3.1, are enforced by the following constraints:∑

n∈M\m

P e
m,n,t + P gb

m,t ≤ P PCC
m ∀ m ∈M, t ∈ T (3.20)

∑
n∈M\m

P e
n,m,t + P gs

m,t ≤ P PCC
m ∀ m ∈M, t ∈ T (3.21)

P e
m,n,tP

e
n,m,t = 0 ∀ m ∈M, n ∈M\m, t ∈ T (3.22)

where P PCC
m is the maximum power transfer capacity through the PCC of MG m. Con-

straint (3.20) ensures that the power outflow from MG m to the other n MGs and to the
main grid is within the required limits, and (3.21) ensures that the power inflow from all
n MGs and the main grid to MG m is within the required limits. Simultaneous power
exchanges in opposite directions between MGs are prevented by (3.22), which is a nonlin-
ear expression that can be linearized through methods such as McCormick envelopes [101].
Finally, the following constraints define the model’s binary and nonnegative variables:

vm,g,t, SDm,g,t, SUm,g,t, zchm,s,t, zdchm,s,t ∈ {0, 1} ∀ m ∈M, g ∈ Gm,

s ∈ Sm, t ∈ T
(3.23)

P e
m,n,t, P gs

m,t, P gb
m,t ≥ 0 ∀ m ∈M, n ∈M\m, t ∈ T (3.24)

3.2 Distributed EMS

Once the proposed centralized MMG EMS model has been described, the goal is to ob-
tain a distributed model from the centralized model, which can be solved with minimum
information exchange through a central entity. The first step is applying a decomposition
approach to separate the complete problem into subproblems that can be solved locally
by each MG. To keep notation compact in the following explanation of the decomposition
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procedure, all operational constraints associated with thermal generators and ESS units
within a single MG are represented as follows:

{Pm,g,t, SDm,g,t, SUm,g,t, vm,g,t} ∈ ΩG
m,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (3.25)

{SoCm,s,t, P ch
m,s,t, P dch

m,s,t, zchm,s,t, zdchm,s,t} ∈ ΩS
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (3.26)

where ΩG
m,g,t is the feasible region for thermal generators, defined by constraints (3.4)–

(3.14), and ΩS
m,s,t is the feasible region for ESS units, defined by constraints (3.15)–(3.19).

This representation is introduced because these constraints only deal with internal variables
in each MG, and thus require no modifications for applying the decomposition procedure.

According to [95], to apply a distributed optimization algorithm, the objective function
of the problem must be convex with respect to the coupling variables, which, in this case, are
the variables representing power exchanges among MGs. However, the objective function
(3.2) is not convex with respect to the P e variables, causing convergence issues when
solving the dual problem with the iterative procedure described in Section 2.3. Therefore,
a power transfer cost function is added in the objective function to resolve this issue. This
new term, which is assumed quadratic to fulfill the convexity requirement, represents the
cost of power transfer for the use of the distribution network, which should be paid to the
distribution network operator, and may be defined as follows to guarantee convexity and
convergence, instead of a typical nonconvex linear function:

γ(P e
n,m) = β(P e

n,m)
2 (3.27)

where β is a scalar chosen as small as possible to reduce the impact of this term in the
objective function value, considering that the cost of power transfer is low. The range
of adequate values for β to ensure convexity of the objective function depends on the
parameters of the optimization problem, and can be determined through trial and error.
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With this modification, the centralized EMS model can be rewritten as:

min
∑
t∈T

∑
m∈M

[ ∑
g∈Gm

(
C(Pm,g,t)∆t+ CSD

m,gSDm,g,t + CSU
m,gSUm,g,t

)
+
(
ρgsmP gs

m,t − ρgbmP
gb
m,t

)
∆t+

∑
n∈M\m

γ(P e
n,m,t)∆t

]
(3.28a)

s.t.
∑
g∈Gm

Pm,g,t + P r
m,t +

∑
s∈Sm

(P dch
m,s,t − P ch

m,s,t) +
∑

n∈M\m

P e
n,m,t + P gs

m,t

= Dm,t +
∑

n∈M\m

P e
m,n,t + P gb

m,t ∀ m ∈M, t ∈ T (3.28b)

{Pm,g,t, SDm,g,t, SUm,g,t, vm,g,t} ∈ ΩG
m,g,t

∀ m ∈M, g ∈ Gm, t ∈ T (3.28c)

{SoCm,s,t, P ch
m,s,t, P dch

m,s,t, zchm,s,t, zdchm,s,t} ∈ ΩS
m,s,t

∀ m ∈M, s ∈ Sm, t ∈ T (3.28d)∑
n∈M\m

P e
m,n,t + P gb

m,t ≤ P PCC
m ∀ m ∈M, t ∈ T (3.28e)

∑
n∈M\m

P e
n,m,t + P gs

m,t ≤ P PCC
m ∀ m ∈M, t ∈ T (3.28f)

vm,g,t, SDm,g,t, SUm,g,t, zchm,s,t, zdchm,s,t ∈ {0, 1}
∀ m ∈M, g ∈ Gm, s ∈ Sm, t ∈ T (3.28g)

P e
m,n,t, P gs

m,t, P gb
m,t ≥ 0 ∀ m ∈M, n ∈M\m, t ∈ T (3.28h)

Notice that the bilinear constraint (3.22) is no longer needed in the model because the
added power transfer cost function in the objective function has the effect of preventing
simultaneous power exchanges in opposite directions between MGs. This key observation
allows decomposing the problem by MGs, as (3.22) is a complicating constraint that couples
all MGs.

The problem is still not decomposable, due to the power exchange variables P e
m,n present

in (3.28b) and (3.28e). Thus, to decompose the problem, an auxiliary variable σ is intro-
duced, to represent the total power sold by MG m to all other MGs at time t, defined as
follows:

σm,t =
∑

n∈M\m

P e
m,n,t ∀ m ∈M, t ∈ T (3.29)
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Then, the centralized problem (3.28) is modified by adding (3.29) to its set of constraints,
and substituting the auxiliary variable in (3.28b) and (3.28e), which results in the following
constraints: ∑

g∈Gm

Pm,g,t + P r
m,t +

∑
s∈Sm

(P dch
m,s,t − P ch

m,s,t) +
∑

n∈M\m

P e
n,m,t + P gs

m,t

= Dm,t + σm,t + P gb
m,t ∀ m ∈M, t ∈ T

(3.30)

σm,t + P gb
m,t ≤ P PCC

m ∀ m ∈M, t ∈ T (3.31)

With these modifications, (3.29) is now the only complicating constraint, and therefore a
decomposition method such as the dual decomposition method described in Chapter 2 can
be applied. Thus, after dualizing (3.29) and replacing (3.28b) and (3.28e) with (3.30) and
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(3.31), respectively, the Lagrangian dual problem of (3.28) can be expressed as follows:

max
λm

{
min

∑
t∈T

∑
m∈M

[ ∑
g∈Gm

(
C(Pm,g,t)∆t+ CSD

m,gSDm,g,t + CSU
m,gSUm,g,t

)
+
(
ρgsmP gs

m,t − ρgbmP
gb
m,t

)
∆t+

∑
n∈M\m

γ(P e
n,m,t)∆t (3.32a)

+ λm,t

( ∑
n∈M\m

P e
m,n,t − σm,t

)]
(3.32b)

s.t.
∑
g∈Gm

Pm,g,t + P r
m,t +

∑
s∈Sm

(P dch
m,s,t − P ch

m,s,t) +
∑

n∈M\m

P e
n,m,t + P gs

m,t

= Dm,t + σm,t + P gb
m,t ∀ m ∈M, t ∈ T (3.32c)

{Pm,g,t, SDm,g,t, SUm,g,t, vm,g,t} ∈ ΩG
m,g,t

∀ m ∈M, g ∈ Gm, t ∈ T (3.32d)

{SoCm,s,t, P ch
m,s,t, P dch

m,s,t, zchm,s,t, zdchm,s,t} ∈ ΩS
m,s,t

∀ m ∈M, s ∈ Sm, t ∈ T (3.32e)

σm,t + P gb
m,t ≤ P PCC

m ∀ m ∈M, t ∈ T (3.32f)∑
n∈M\m

P e
n,m,t + P gs

m,t ≤ P PCC
m ∀ m ∈M, t ∈ T (3.32g)

vm,g,t, SDm,g,t, SUm,g,t, zchm,s,t, zdchm,s,t ∈ {0, 1}
∀ m ∈M, g ∈ Gm, s ∈ Sm, t ∈ T (3.32h)

P e
m,n,t, P gs

m,t, P gb
m,t, σm,t ≥ 0 ∀ m ∈M, n ∈M\m, t ∈ T

}
(3.32i)

The internal minimization problem in (3.32) now has a separable structure, and can thus be
decomposed into subproblems corresponding to each MG. To carry out the decomposition,
the power exchange variables Pn,m,t and σm,t are allocated to the subproblem of MG m,
while variables Pm,n,t belong to the subproblems of the other n MGs. This means that
MG m will optimize its operation in terms of the individual power received from each one
of the other n MGs, the total power it sends to all other MGs, and the rest of its local
variables. To clarify this allocation procedure of power exchange variables, Table 3.1 shows
which variables belong to each subproblem, in the case of a three-MG system.

Based on the previous procedure, the complicating constraint, which was moved to
the objective function with its corresponding Lagrange multiplier, can now be separated,
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Table 3.1: Allocation of power exchange variables for decomposition.

Subproblem Allocated Power Exchange Variables

MG1 P e
2,1,t, P

e
3,1,t, σ1,t

MG2 P e
1,2,t, P

e
3,2,t, σ2,t

MG3 P e
1,3,t, P

e
2,3,t, σ3,t

resulting in the following subproblem for MG m:

min
∑
t∈T

[ ∑
g∈Gm

(
C(Pm,g,t)∆t+ CSD

m,gSDm,g,t + CSU
m,gSUm,g,t

)
+
(
ρgsmP gs

m,t − ρgbmP
gb
m,t

)
∆t

+
∑

n∈M\m

γ(P e
n,m,t)∆t+

∑
n∈M\m

λn,tP
e
n,m,t − λm,tσm,t

]
(3.33a)

s.t.
∑
g∈Gm

Pm,g,t + P r
m,t +

∑
s∈Sm

(P dch
m,s,t − P ch

m,s,t) +
∑

n∈M\m

P e
n,m,t + P gs

m,t

= Dm,t + σm,t + P gb
m,t ∀ t ∈ T : λm,t (3.33b)

{Pm,g,t, SDm,g,t, SUm,g,t, vm,g,t} ∈ ΩG
m,g,t ∀ g ∈ Gm, t ∈ T (3.33c)

{SoCm,s,t, P ch
m,s,t, P dch

m,s,t, zchm,s,t, zdchm,s,t} ∈ ΩS
m,s,t ∀ s ∈ Sm, t ∈ T (3.33d)

σm,t + P gb
m,t ≤ P PCC

m ∀ t ∈ T (3.33e)∑
n∈M\m

P e
n,m,t + P gs

m,t ≤ P PCC
m ∀ t ∈ T (3.33f)

vm,g,t, SDm,g,t, SUm,g,t, zchm,s,t, zdchm,s,t ∈ {0, 1}
∀ g ∈ Gm, s ∈ Sm, t ∈ T (3.33g)

P e
n,m,t, P gs

m,t, P gb
m,t, σm,t ≥ 0 ∀ n ∈M\m, t ∈ T (3.33h)

Note that (3.33) is now a local problem that can be solved by each MG m indepen-
dently. Furthermore, the dual variable λm,t of the supply-demand balance constraint can
be interpreted as the power selling price among MGs.

To solve the dual problem defined in (3.32), i.e., to carry out the maximization over
the multipliers, the subgradient method [98] is used, which is implemented through the
iterative procedure described in Algorithm 1. The first step is choosing initial values for
the selling prices λm,t, which can be determined from existing and/or expected exchange
prices. Then, these prices must be shared among MGs, which are needed by each MG
for solving its own local optimization problem. Once a solution is found, MGs share the
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Algorithm 1 Solution of the Dual Problem

1: Initialize selling prices λm,t

2: repeat
3: MGs share λm,t with each other
4: MGs solve (3.33) independently
5: MGs share P e

n,m,t at the current λm,t

6: MGs update their selling prices:

λm,t ← λm,t + α

( ∑
n∈M\m

P e
m,n,t − σm,t

)
(3.34)

7: until Convergence criterion is satisfied

power they are willing to buy from each other (P e
n,m,t), at the current selling price. With

this information, each MG can update its own selling price locally. The updated prices
are shared again, and the process is repeated until a convergence criterion is satisfied. The
multiplier update step performed in (3.34) corresponds to the basic subgradient method,
and a constant step size α was chosen, which yielded better results than different rules
of variable step sizes. As discussed in Section 2.3, the subgradient algorithm is sensitive
to the chosen step size α, complicating the selection of an appropriate stopping criterion.
Thus, the algorithm is typically stopped after a prespecified number of iterations, and an
appropriate step size can be determined through trial and error, since it depends on the
problem parameters, which was the approach taken in this work.

3.3 Results and Discussion

In this section, results of the proposed centralized and distributed EMS models are pre-
sented, focusing on comparisons of the power dispatches for thermal units, ESSs, and power
exchanges, with the goal of demonstrating the application of the distributed approach. To
test the proposed models, a system comprised of three connected MGs was analyzed. Each
MG has different demand and renewable generation profiles, considering a 24-hour opti-
mization period. Only PV generation is considered in the model, but other RESs such
as wind turbines can be readily included. Furthermore, each MG contains a set of three
thermal units with distinct generation cost functions and operating limits, and a set of two
ESS units.
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(a) Demand profiles.
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(b) PV generation profiles.

Figure 3.2: Demand and PV generation profiles of all MGs.

3.3.1 Test System

The electricity demand and PV generation profiles of each MG were obtained from mea-
sured data in an ADN located in the state of São Paulo, Brazil, where the medium voltage
grid was clustered to identify potential independent MGs [49]. The demand profiles are
obtained directly from the available measurements of active power, with no data processing
needed. However, in the case of renewable generation, which in this case is solely from PV
panels, the available data corresponds to irradiance values, which are used to obtain the
required profiles according to the following expression:

P r
m,t = Y PV

m fPV
m

(
GT

m

GT,STC
m

)
(3.35)

where Y PV
m is the power output of the PV array in MG m under standard test conditions,

assumed to be 24 kW for each MG, based on the characteristics of the system; fPV
m is the

PV panel derating factor, assumed to be equal to 1; GT
m is the solar radiation incident on

the PV array, i.e., the available measurements; GT,STC
m is the incident radiation at standard

test conditions, also assumed to be equal to 1 [102]. The resulting profiles are shown in
Figure 3.2. All the other parameters in the model are presented in Tables 3.2–3.4, which
were adapted from various references, such as [31, 32, 103], and adjusted to be adequate
for the available demand and renewable generation profiles. Note that, for simplicity, the
grid’s power selling and buying prices are assumed constant at all time periods; however,
variable time rates can be readily incorporated into the formulation.
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Table 3.2: Parameters of thermal units [31, 32, 103].

MG1 MG2 MG3
Parameter G1 G2 G3 G1 G2 G3 G1 G2 G3

a
[
$/kW2h

]
0.0002 0.0003 0.0002 0.0005 0.0007 0.0005 0.0003 0.0006 0.0004

b [$/kWh] 0.2440 0.2876 0.2881 0.3042 0.4525 0.3554 0.2537 0.2913 0.4301
c [$/h] 10.5 25.5 15.0 27.3 45.4 25.3 30.0 23.4 35.7

P [kW] 80 110 90 150 210 150 110 120 140
P [kW] 10 15 10 25 30 25 15 15 30
RD [kW/h] 70 95 80 125 180 125 95 105 110
RU [kW/h] 70 95 80 125 180 125 95 105 110
CSD [$] 2.00 2.75 2.25 3.75 5.25 3.75 2.75 3.00 3.50
CSU [$] 12.0 16.5 13.5 22.5 31.5 22.5 16.5 18.0 21.0
DT [h] 1 2 1 1 2 1 1 2 1
UT [h] 1 1 1 1 1 1 1 1 1
DT 0 [h] 0 0 0 0 0 0 0 0 0
UT 0 [h] 1 1 1 1 1 1 1 1 1
v0 1 1 1 1 1 1 1 1 1

Table 3.3: Parameters of ESS units.

MG1 MG2 MG3
Parameter ESS1 ESS2 ESS1 ESS2 ESS1 ESS2
ηc 0.9 0.9 0.9 0.9 0.9 0.9
ηd 0.9 0.9 0.9 0.9 0.9 0.9

P ch [kW] 50.0 70.0 30.0 60.0 85.0 55.0
P ch [kW] 0.0 0.0 0.0 0.0 0.0 0.0

P dch [kW] 50.0 70.0 30.0 60.0 85.0 55.0
P dch [kW] 0.0 0.0 0.0 0.0 0.0 0.0
SoC [kWh] 50.0 70.0 30.0 60.0 85.0 55.0
SoC [kWh] 0.0 0.0 0.0 0.0 0.0 0.0

Table 3.4: Parameters related to MG and grid interactions, with prices reflecting electricity
prices in the state of São Paulo, Brazil [104].

Parameter MG1 MG2 MG3
ρgs [$/kWh] 0.221 0.221 0.221
ρgb [$/kWh] 0.05 0.05 0.05
PPCC [kW] 100 200 100
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The solution of the centralized EMS model is used as reference to validate the pro-
posed distributed approach. All simulations were performed on a server with dual Intel
Xeon Silver 4214 processors with a base speed of 2.20 GHz, and implemented using the
Pyomo optimization modeling language. The Gurobi 10.0.1 solver was used for solving the
presented models [105].

3.3.2 Base Case

The base case corresponds to the data presented in Tables 3.2–3.4. In order to have a
fair comparison between the centralized and distributed approaches, results of the original
centralized problem, the modified centralized problem (3.28), which includes the power
transfer cost function, and the iterative procedure for solving the decomposed subproblems
(3.33) are analyzed next.

An update step α for the subgradient method of 0.0025 and a scaling factor β for
the power transfer cost function of 0.1 were chosen through trial and error, with the
goal of making the power transfer cost as small as possible, while retaining the convexity
properties required by the distributed algorithm. The objective function values and costs
corresponding to thermal unit generation and power transfer among MGs for the base case
are presented in Table 3.5. For this particular case, there are no power exchanges among
MGs in the optimal solutions; therefore, the objective function values of the centralized,
modified centralized, and distributed problems are equal. These matching cost values
indicate that the distributed algorithm is successfully converging to the optimal solution
of the centralized problem. While the solutions will not be identical for all variables at
all periods, due to the iterative nature of the distributed algorithm, the overall objective
function value is similar, which demonstrates that the optimal solution is found, even if
there are differences in some of the solution variables.

For example, Figure 3.3 shows a comparison of the power dispatch of thermal units
in all MGs, obtained from the centralized and distributed models. As can be seen, the
resulting profiles are practically identical. On the other hand, the power dispatch profiles

Table 3.5: Base Case costs.

Centralized
Modified

Centralized
Distributed

Objective function [$] 6,703.3 6,703.3 6,703.3
Generator’s cost function [$] 4,901.7 4,901.7 4,901.7
Transfer cost function [$] – 0.00 0.00
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of ESS units, obtained as the difference of discharging and charging powers and shown
in Figure 3.4, present differences between the centralized and distributed models. In this
figure, negative values indicate that the unit is being charged, consuming power, while
positive values indicate a discharge, providing power. While they follow a similar pattern,
variations can be seen at different hours, which can be the case for similar optimal objective
function values. The reason for these differences is that there is no cost associated with
the usage or degradation of ESS units in the objective function, and thus the specific time
of charge/discharge will not directly affect the objective function value.

Figure 3.5 shows the power exchanges between MGs and the main grid, from the central-
ized and distributed models. Once again, the resulting profiles for all MGs are practically
identical, for the power sold by the main grid, while the power bought by the main grid is
zero at all times, in both models. This indicates that, in this case, it is more beneficial for
MGs to only buy power from the main grid, rather than sell, due to their own generation
cost functions and load and PV generation profiles.

Figure 3.6 shows the behavior of the dual objective function value and duality gap
through the iterations of the distributed algorithm. A fixed number of iterations was
chosen here to show the convergence of the subgradient algorithm; however, as can be
observed, the dual objective function value and duality gap converge in fewer iterations,
and the algorithm could be stopped considering a convergence criterion such as the percent
change in the dual objective function value from one iteration to the next, which in this case
would require less iterations. Figure 3.6b shows the duality gap (the difference between
the objective function values of the centralized and distributed models) which converges
to zero, as expected.

The iterative algorithm is relatively fast, considering the complexity of the model, which
has a significant number of binary variables. It requires approximately 7 min to complete
500 iterations, which is reasonable since the scheduling period is assumed here to be hourly
and expected to be repeated in practice every 5-15 min based on an MPC approach to deal
with forecasting inaccuracies [99]. The time may be reduced if, as mentioned before, a
different convergence criterion is considered. The selling prices could also be initialized at
different values, if a previous solution is known, which would improve the convergence rate
of the algorithm. However, since these values may not always be available, it is important
to verify the convergence of the algorithm with arbitrary initial values.
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(a) MG1 centralized.
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(b) MG1 distributed.
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(c) MG2 centralized.
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(d) MG2 distributed.
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(e) MG3 centralized.
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(f) MG3 distributed.

Figure 3.3: Power dispatch of thermal units for the Base Case from centralized and dis-
tributed models.

48



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [h]

0

10

20

30

40

50

60

70

P
ow

er
[k

W
]

ESS1 ESS2

(a) MG1 centralized.
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(b) MG1 distributed.
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(c) MG2 centralized.
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(d) MG2 distributed.
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(e) MG3 centralized.
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(f) MG3, distributed.

Figure 3.4: Power dispatch of ESS units for the Base Case from centralized and distributed
models.
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(a) Power sold by the main grid to MGs, cen-
tralized.
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(b) Power sold by the main grid to MGs, dis-
tributed.
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(c) Power bought by the main grid from MGs,
centralized.
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(d) Power bought by the main grid from MGs,
distributed.

Figure 3.5: Power exchanges between MGs and main grid for the Base Case from centralized
and distributed models.
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(a) Dual objective function value.
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(b) Duality gap.

Figure 3.6: Iterations of the distributed algorithm for the Base Case.

3.3.3 Stressed Case

Once the distributed model has been validated against its centralized counterpart, a dif-
ferent case study is presented, in which the parameters are modified to put stress on one
of the MGs, i.e., create conditions that will force it to buy power from the other MGs and
the main grid to meet its local demand. Thus, the following modifications to the data were
made: the demand profile of MG2 was scaled up by a factor of 1.5, and its PV generation
profile was scaled down by a factor of 0.9. Then, the maximum generation limits of ther-
mal units in MG2 were decreased to limit its local capacity, which would not be able to
supply the MG load. To compensate this capacity reduction, the limits of thermal units in
MG1 and MG3 were increased. Furthermore, the linear cost coefficients of thermal units
in MG2 were also increased, to make its local generation more expensive. The grid selling
prices were drastically increased, from 0.221 $/kWh to 50 $/kWh, to incentivize exchanges
among MGs instead. Finally, the PCC limits of all MGs must be increased, to ensure that
the stressed MG2 can receive the required power from the others, and that the others can
send that power as well. If the PCC limits are not increased accordingly, there would be
a bottleneck that would render the problem infeasible as the demand of MG2 would not
be fully supplied, even if the total generation of the system is sufficient to meet its total
demand. Thus, for this case, the PCC limits of all MGs were increased by a factor of 3.

Figure 3.7 shows the power dispatch of thermal units, for the centralized and distributed
solutions. The resulting profiles reflect the conditions of the Stressed Case as expected:
since MG2 has an increased demand, and the grid selling price is too high, MG2 must
increase its local generation, despite having higher generation costs than in the Base Case
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Table 3.6: Stressed Case costs.

Centralized
Modified

Centralized
Distributed

Objective function [$] 12,400.2 23,160.4 23,511.8
Total generators’ cost [$] 12,400.2 19,424.6 20,106.6
Total transfer cost [$] - 3,735.8 3,405.2

(notice how G2 in MG2 was off throughout the entire optimization period in the Base
Case, but in the Stressed Case it is on for most of the hours). Furthermore, generation in
MG1 and MG3 also increases to allow MG2 to supply its local demand. The centralized
and distributed solutions present similar profiles with slight differences for MG2 and MG3,
and more significant differences for MG1, which can be expected from the distributed
algorithm.

The power exchanges among MGs, obtained from the centralized and distributed models
are shown in Figure 3.8. As can be seen, MG1 and MG3 are now sending power to MG2,
while MG2 uses all its local generation, as expected from the problem conditions. Figure 3.9
shows the charging/discharging power of ESS units, which support the operation of all
MGs. For example, at hour 18, when the demand in MG2 is at its highest, both of its ESS
units are discharging power, contributing to the MG’s power balance.

Figure 3.10 shows the power exchanges between MGs and the main grid, from the
centralized and distributed models. In this case, the grid selling price was set very high so
that the cost of buying from the main grid is higher than the generation cost of thermal
units, which results in no power exchanges with the main grid. If the grid selling price was
lower, all MGs would import as much power as possible from the grid at all times. This
condition was enforced in this case only to ensure power exchanges among the MGs, when
power from expensive thermal units is the main source of energy in the MG. With a high
enough penetration of RESs, this artificial restriction on power bought from the main grid
would not be necessary, since there is no cost associated with renewable generation, and
the power exchanged would originate from the excess renewable energy in each MG.

The objective function values and costs corresponding to the thermal generation and
power transfer functions are presented in Table 3.6. As expected, the power transfer cost
is now higher because MG2 is receiving a significant amount of power from the other MGs;
this cost could be regarded as the tradeoff for attaining a decomposable problem suitable
for solution with the distributed algorithm. Table 3.7 shows the operating costs and the
revenues resulting from power exchanges in each MG, for the distributed model. In this
case, there is no power being bought by the main grid from the MGs; therefore, the revenue
originates solely from the power exchanges among MGs. These results are consistent with
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(a) MG1 centralized.
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(b) MG1 distributed.
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(c) MG2 centralized.
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(d) MG2 distributed.
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(e) MG3 centralized.
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(f) MG3 distributed.

Figure 3.7: Power dispatch of thermal units for the Stressed Case from centralized and
distributed models.
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(a) MG1 centralized.
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(b) MG1 distributed.
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(c) MG2 centralized.
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(d) MG2 distributed.
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(e) MG3 centralized.
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(f) MG3 distributed.

Figure 3.8: Power exchanges between MGs for the Stressed Case from centralized and
distributed models.
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(a) MG1 centralized.
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(b) MG1 distributed.
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(c) MG2 centralized.
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(d) MG2 distributed.
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(e) MG3 centralized.
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(f) MG3 distributed.

Figure 3.9: Power dispatch of ESS units for the Stressed Case from centralized and dis-
tributed models.
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(a) Power sold by the main grid to MGs, cen-
tralized.
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(b) Power sold by the main grid to MGs, dis-
tributed.
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(c) Power bought by the main grid from MGs,
centralized.
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(d) Power bought by the main grid from MGs,
distributed.

Figure 3.10: Power exchanges between MGs and main grid for the Stressed Case from
centralized and distributed models.
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Table 3.7: Operating costs and revenues from power exchanges in the distributed model,
Stressed Case.

Operating Cost [$] Selling Revenue [$] Total Cost [$]
MG1 3,400.5 1,120.9 2,279.6
MG2 16,752.0 -2,126.5 18,878.5
MG3 3,359.3 1,005.6 2,353.7
Total 23,511.8 0.0 23,511.8

the profiles shown in Figure 3.8, which indicate that MG1 is selling power to MG2 and
MG3, charging $1,001.6 and $119.3, respectively; MG2 is buying from MG1 and MG3,
paying $1,001.6 and $1,124.9, respectively; and MG3 is buying from MG1 and selling to
MG2, paying and charging $119.3 and $1,124.9, respectively. The total costs in Table 3.7,
which result from subtracting the selling revenue from the operating cost, show how MG1
and MG3 benefit from supporting the operation of MG2.

3.3.4 Individual and Cooperative Operation

A final experiment was carried out to compare the costs of MGs operating on their own,
with no power exchanges, against the cost when there are power exchanges. Data from
the Stressed Case was used for this comparison, and to create the individual operation
condition, the PCC limits of all MGs were set to zero. Furthermore, to ensure feasibility
under this scenario, the maximum generation capacity of thermal units in each MG was
increased, especially for MG2, which has the most critical conditions.

The results are presented in Table 3.8, where the first column shows the operation costs
of each MG and the total cost for the complete system, when operating individually, and
the second column shows the operation costs when power exchanges are enabled. The third
column shows the revenue of each MG from power sold to the other MGs in the cooperative
operation mode, and the fourth column shows the total cooperative operating cost, i.e.,
the cost in the second column minus the revenue in the third column. Note that in this
case, MG1 and MG3 must increase their operating cost when power exchanges are enabled
because they need to support MG2, which had a very high cost due to its increased demand
and expensive local generation. As a consequence of the exchanges, the total cost of the
system decreased from $22,498.5 to $18,625.4 (by around 17%). This was not beneficial
for MG1 and MG3 individually, in terms of their operating cost; however, there is a cost
associated with the power transfer received by MG2 from the other MGs, and this payment
from MG2 can be redistributed among the supplying MGs according to the amount of
power provided, which results in the selling revenue shown in the third column in Table 3.8.
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Table 3.8: Operating costs of MGs in individual and cooperative mode.

Individual [$] Cooperative [$] Selling Revenue [$] Cooperative Total [$]
MG1 1,112.6 1,696.9 1,191.6 505.3
MG2 19,048.3 14,067.9 -2,100.7 16,168.6
MG3 2,337.6 2,860.6 909.1 1,951.5
Total 22,498.5 18,625.4 0.0 18,625.4

Considering this revenue, the total operating cost of each MG in cooperative mode, shown
in the fourth column, is reduced with respect to the corresponding individual operation
cost shown in the first column, which indicates that all MGs benefit from supporting
the operation of MG2, which incentivizes their participation in the cooperative operation.
The overall degree of improvement will depend on the generation costs of each MG, their
demand, the costs of buying and selling electricity from and to the main grid, and the PCC
limits.

3.4 Summary

This chapter presented a centralized model for the optimal operation of an MMG system
that considers power exchanges among a set of MGs and the main grid, including detailed
constraints for thermal generation units and ESS units within each MG. It was assumed
that the interaction among MGs occurs through the main grid, and therefore the MGs PCC
could limit the amount of power exchange. Simulation results show that the centralized
model yields the optimal dispatch of the MMG resources for the considered cases.

The centralized model was then decomposed using Lagrangian relaxation and solved
through an iterative distributed procedure based on a subgradient method to find the
solution of the corresponding dual problem. The distributed algorithm only requires the
exchange of minimal information to coordinate the operation of the complete system,
keeping the local parameters and demand profiles of each MG private.

Demand, solar irradiance, and price data from a realistic ADN in São Paulo, Brazil, was
used to design a test system for the proposed models. Results showed that the distributed
algorithm converges to the optimal or near-optimal solution in a reasonable execution
time, considering the time frame of the EMS problem, making the proposed model a viable
alternative for the implementation of a distributed EMS in an MMG system. Furthermore,
it was demonstrated that the operation costs of the MMG system significantly reduces when
MGs engage in power exchanges, as opposed to their individual operation.
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Chapter 4

An Affine Arithmetic-Based EMS for
Multi-Microgrid Systems

This chapter presents an AA-based MMG EMS model to consider uncertainties associated
with demand and renewable generation variability, based on the centralized EMS model
proposed in Chapter 3. An AA approach was chosen in favor of SP and MCS because the
solutions of an AA model are robust for a range of variations of the uncertain parameters
while avoiding the need for finding accurate pdfs or performing repeated simulations, thus
reducing the computational burden. Note that SP or RO models were not considered for
comparison, as AA has been shown to be superior to these techniques in [63] and [64],
respectively.

First, the uncertainties are characterized by their affine forms, which are used to redefine
the variables, objective function, and constraints of the original EMS model in the AA
domain. The linearization procedure of absolute values introduced by AA operators is
described in detail, followed by a brief explanation of the MCS carried out for comparison
purposes. Finally, simulation results on the same sample system used in Chapter 3 are
performed to test and validate the proposed AA-based MMG EMS model, and an example
of a dispatch procedure to determine the optimal solution for a specific realization of
uncertain parameters from the AA model is presented.

4.1 AA-Based MMG EMS Model

Based on the AA principles and operators introduced in Section 2.4, the parameters, vari-
ables, objective function, and constraints of the centralized EMS model are formulated in
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affine form in the following subsections.

4.1.1 Characterization of Uncertainty in AA

The AA formulation first requires characterizing the uncertain parameters in affine form.
Thus, the uncertainties associated with variations in power demand and renewable gener-
ation can be respectively represented in the AA domain as follows:

D̂m,t = D0,m,t +

pD∑
h=1

Dh,m,tε
D
h,m,t ∀ m ∈M, t ∈ T (4.1)

P̂ r
m,t = P r

0,m,t +

pr∑
h=1

P r
h,m,tε

r
h,m,t ∀ m ∈M, t ∈ T (4.2)

where D0,m,t and P r
0,m,t are the central values of the affine forms of demand and renewable

generation in MG m at hour t, respectively; Dh,m,t and P r
h,m,t are the h-th partial devia-

tions of the corresponding affine forms at hour t; and εDh,m,t and εrh,m,t are the h-th noise
symbols associated with demand and renewable generation variations in MG m at hour t,
respectively. Parameters pD and pr are the number of noise symbols in the affine forms
of the demand and renewable generation, respectively. It is realistically assumed that the
sources of uncertainty are independent, and thus a single and distinct noise symbol for
each parameter is used. It is also assumed for simplicity that there is only one renewable
generation lumped source per MG, which is a reasonable and practical assumption given
the relatively small geographical area covered by each MG, and the fact that renewable
generation in MGs in urban ADNs primarily consists of solar PV generators, as this is
where MMG systems are most likely to develop. However, the model can be readily modi-
fied to consider multiple and independent renewable generation sources, which would make
the problem unnecessarily more complex in practice. Hence, the affine parameters defined
by (4.1) and (4.2) become:

D̂m,t = D0,m,t +D1,m,tε
D
m,t ∀ m ∈M, t ∈ T (4.3)

P̂ r
m,t = P r

0,m,t + P r
1,m,tε

r
m,t ∀ m ∈M, t ∈ T (4.4)
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4.1.2 Affine Variables

Once the uncertain parameters have been expressed in their affine form, all the continuous
variables in the centralized EMS model defined by (3.2)–(3.24) are formulated to include
terms corresponding to each one of the noise symbols appearing in the parameters, as
follows:

P̂m,g,t = P0,m,g,t + P1,m,g,tε
D
m,t + P2,m,g,tε

r
m,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.5)

P̂ gs
m,t = P gs

0,m,t + P gs
1,m,tε

D
m,t + P gs

2,m,tε
r
m,t ∀ m ∈M, t ∈ T (4.6)

P̂ gb
m,t = P gb

0,m,t + P gb
1,m,tε

D
m,t + P gb

2,m,tε
r
m,t ∀ m ∈M, t ∈ T (4.7)

P̂ e
m,n,t = P e

0,m,n,t + P e
1,m,n,tε

D
m,t + P e

2,m,n,tε
r
m,t ∀ m ∈M, n ∈M\m, t ∈ T (4.8)

ŜoCm,s,t = SoC0,m,s,t + SoC1,m,s,tε
D
m,t + SoC2,m,s,tε

r
m,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.9)

P̂ ch
m,s,t = P ch

0,m,s,t + P ch
1,m,s,tε

D
m,t + P ch

2,m,s,tε
r
m,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.10)

P̂ dch
m,s,t = P dch

0,m,s,t + P dch
1,m,s,tε

D
m,t + P dch

2,m,s,tε
r
m,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.11)

where P̂m,g,t is the affine form of the power output of thermal units; P̂ gs
m,t and P̂ gb

m,t are
the affine forms of the power sold and bought by the main grid to and from each MG,
respectively; P̂ e

m,n,t is the affine form of the power exchanges among MGs; and ŜoCm,s,t,

P̂ ch
m,s,t, and P̂ dch

m,s,t are the affine forms of the SoC, charging power, and discharging
power of ESS units. In all variables, the first term is the central value, the second term is
the partial deviation due to demand uncertainty, and the third term is the partial deviation
due to renewable generation uncertainties.

4.1.3 Affine Objective Function

The conventional quadratic cost function of thermal generators (3.1) used in the determin-
istic model is replaced here with the following linear cost function:

C(P̂m,g,t) = bm,gP̂m,g,t + cm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.12)

where bm,g and cm,g are the linear and constant coefficients of the cost function, P̂m,g,t is the
power output of the generator in affine form, and vm,g,t is the binary variable representing
its operation status. The quadratic cost coefficient of diesel units is usually very small,
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relative to the linear and constant coefficients, and can be neglected without significantly
affecting the results [106]; thus, this linear cost function is used to simplify the formulation
of the AA optimization problem proposed here.

According to the definition of the AA minimization operator in [61], the AA MMG
EMS problem can be formulated as a multi-objective optimization problem that minimizes
the affine central value and the affine radius. To solve this problem, a possible approach
is to decompose the problem in two subsequent stages: The first stage finds the optimal
central values, assuming a “nominal state” of the system in which the uncertainties are
not considered; and the second stage finds the optimal values of the partial deviations,
corresponding to a “perturbed state” of the system in which uncertainties are taken into
account [61]. However, the binary variables and intertemporal constraints present in the
MMG EMS problem do not allow such decomposition, because the solution of one stage
may be infeasible for the other; hence, the objective function is instead formulated as a
weighted function of both the center values and the affine radius [63], as follows:

min
∑
t∈T

∑
m∈M

{
w

[ ∑
g∈Gm

[
(bm,gP0,m,g,t + cm,gvm,g,t)∆t+ CSD

m,gSDm,g,t + CSU
m,gSUm,g,t

]
+

( ∑
n∈M\m

βP e
0,n,m,t + ρgsmP gs

0,m,t − ρgbmP
gb
0,m,t

)
∆t

]

+ (1− w)

[( ∑
g∈Gm

bm,g(|P1,m,g,t|+ |P2,m,g,t|) +
∑

n∈M\m

β(|P e
1,n,m,t|+ |P e

2,n,m,t|)

+ ρgsm(|P gs
1,m,t|+ |P gs

2,m,t|)− ρgbm(|P gb
1,m,t|+ |P gb

2,m,t|)
)
∆t

]}
(4.13)

where w is a weighting factor that can be chosen in the range [0,1] according to the desired
conservativeness of the solution with respect to uncertainties. For example, a weighting
factor closer to 1 leads to cost-effective solutions that are sensitive to uncertainties, i.e., the
AA objective function approximates the deterministic model more closely, while a value
close to 0 leads to solutions that are more expensive but less sensitive to uncertainties, i.e.,
larger solution intervals.

The first term in square brackets in (4.13) is the operating cost associated with the
affine central values, which includes the dispatch cost of thermal generators, the shutdown
and startup costs, the power transfer cost, and the cost or revenue resulting from power
exchanges with the main grid. Note that a linear power transfer cost function was assumed
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here, to prevent the appearance of products of noise symbols. The second term in square
brackets corresponds to the affine radius of objective function, which comprises the costs
of the partial deviations of thermal units dispatch, power transfer, and power exchanges
with the main grid. Note that no term related to shutdown and startup costs appears in
the affine radius term, since these are not defined by continuous variables.

4.1.4 Affine Generator UC Constraints

Expanding the affine forms of the UC constraints of the centralized EMS model introduced
in Chapter 3, and collecting terms corresponding to the central values and partial deviations
of variables and parameters, produces the constraints presented next.

Power Balance

The supply-demand balance constraint (3.3) is formulated in the AA domain by applying
the AA similarity operator defined in Section 2.4. Thus, based on (2.14) and (4.5)–(4.11),
(3.3) is transformed as follows:∑

g∈Gm

P0,m,g,t + P r
0,m,t +

∑
s∈Sm

(P dch
0,m,s,t − P ch

0,m,s,t) +
∑

n∈M\m

P e
0,n,m,t + P gs

0,m,t

= D0,m,t +
∑

n∈M\m

P e
0,m,n,t + P gb

0,m,t ∀ m ∈M, t ∈ T
(4.14)

∑
g∈Gm

P1,m,g,t +
∑
s∈Sm

(P dch
1,m,s,t − P ch

1,m,s,t) +
∑

n∈M\m

P e
1,n,m,t + P gs

1,m,t

= D1,m,t +
∑

n∈M\m

P e
1,m,n,t + P gb

1,m,t ∀ m ∈M, t ∈ T
(4.15)

∑
g∈Gm

P2,m,g,t + P r
1,m,t +

∑
s∈Sm

(P dch
2,m,s,t − P ch

2,m,s,t) +
∑

n∈M\m

P e
2,n,m,t + P gs

2,m,t

=
∑

n∈M\m

P e
2,m,n,t + P gb

2,m,t ∀ m ∈M, t ∈ T
(4.16)

Note that the single power balance constraint (3.3) in the deterministic problem has been
replaced here by the following three constraints: (4.14) for the central values, (4.15) for
the partial deviations associated with the demand uncertainty, and (4.16) for the partial
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deviations associated with the renewable generation uncertainty. In general, the number of
sources of uncertainty will determine the number of additional equality constraints required
to enforce the supply-demand balance in the AA formulation.

Generator Limits

According to the AA inequality operator (2.15), the generation limit constraints (3.4) are

reformulated based on the minimum and maximum values that the affine forms P̂m,g,t can
reach, as follows:

P0,m,g,t − |P1,m,g,t| − |P2,m,g,t| ≥ Pm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.17)

P0,m,g,t + |P1,m,g,t|+ |P2,m,g,t| ≤ Pm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.18)

Similarly, the ramping constraints (3.5) and (3.6) in AA form can be reformulated as:

P0,m,g,t + |P1,m,g,t|+ |P2,m,g,t| ≤ P0,m,g,t+1 +RDm,g∆t+ SDm,g,t+1Pm,g

− |P1,m,g,t+1| − |P2,m,g,t+1| ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T
(4.19)

P0,m,g,t+1 + |P1,m,g,t+1|+ |P2,m,g,t+1| ≤ P0,m,g,t +RUm,g∆t+ SUm,g,t+1Pm,g

− |P1,m,g,t| − |P2,m,g,t| ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T
(4.20)

Constraints (3.7)–(3.14), which correspond to the status coordination and minimum
uptime/downtime of thermal units, only involve binary variables and are thus unaffected
by the formulation of continuous variables as affine forms. Hence, these constraints do not
need modifications to be included in the AA model.

4.1.5 Affine ESS Constraints

Energy Balance

Constraints (3.15), which are intertemporal equality constraints, are strictly equal in their
AA form only if the noise symbols at time t are equal to the same noise symbols at time
t+ 1, which is not likely to be the case for realizations of the uncertain parameters; thus,
these types of constraints are approximated in the AA domain by equalizing the central
values and affine radius, based on the similarity operator (2.14) defined in Section 2.4, as
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follows:

SoC0,m,s,t+1 = SoC0,m,s,t + [P ch
0,m,s,tη

ch
m,s − P dch

0,m,s,t/η
dch
m,s]∆t

∀ m ∈M, s ∈ Sm, t, t+ 1 ∈ T
(4.21)

|SoC1,m,s,t+1|+ |SoC2,m,s,t+1| = |SoC1,m,s,t|+ |SoC2,m,s,t|+
[
(|P ch

1,m,s,t|+ |P ch
2,m,s,t|)ηchm,s

−(|P dch
1,m,s,t|+ |P dch

2,m,s,t|)/ηdchm,s

]
∆t ∀ m ∈M, s ∈ Sm, t, t+ 1 ∈ T

(4.22)

This will not guarantee equality between the affine forms for all possible values of the
noise symbols, since the affine radius defined by all partial deviations is being equalized,
rather than the individual partial deviations. However, this will ensure that the operating
limits are enforced for any noise symbol value at all times, even in the extreme cases
corresponding to -1 and 1 values.

ESS Limits

The operational limits of ESS units, defined by (3.16)–(3.18), are formulated in the AA
domain according to the minimum and maximum values that the affine forms can take, as
follows:

SoC0,m,s,t − |SoC1,m,s,t| − |SoC2,m,s,t| ≥ SoCm,s ∀ m ∈M, s ∈ Sm, t ∈ T (4.23)

SoC0,m,s,t + |SoC1,m,s,t|+ |SoC2,m,s,t| ≤ SoCm,s ∀ m ∈M, s ∈ Sm, t ∈ T (4.24)

P ch
0,m,s,t − |P ch

1,m,s,t| − |P ch
2,m,s,t| ≥ P ch

m,sz
ch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.25)

P ch
0,m,s,t + |P ch

1,m,s,t|+ |P ch
2,m,s,t| ≤ P ch

m,sz
ch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.26)

P dch
0,m,s,t − |P dch

1,m,s,t| − |P dch
2,m,s,t| ≥ P dch

m,sz
dch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.27)

P dch
0,m,s,t + |P dch

1,m,s,t|+ |P dch
2,m,s,t| ≤ P dch

m,sz
dch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.28)

Constraint (3.19) can be included without modifications in the AA model since it only
involves binary variables.

4.1.6 Affine Power Exchange Constraints

Based on the minimum and maximum values that the affine forms of the power exchange
variables can take, the PCC limit constraints (3.20) and (3.21) can be reformulated as
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follows:∑
n∈M\m

(P e
0,m,n,t+ |P e

1,m,n,t|+ |P e
2,m,n,t|)+P gb

0,m,t+ |P gb
1,m,t|+ |P gb

2,m,t| ≤ P PCC
m ∀ m ∈M, t ∈ T

(4.29)∑
n∈M\m

(P e
0,n,m,t+ |P e

1,n,m,t|+ |P e
2,n,m,t|)+P gs

0,m,t+ |P gs
1,m,t|+ |P gs

2,m,t| ≤ P PCC
m ∀ m ∈M, t ∈ T

(4.30)

To include (3.22) in the AA model, which is a nonlinear constraint preventing simul-
taneous power exchanges between two MGs, it is assumed that the product of two noise
symbols in the expansion of the affine operation is equal to 1, which is a conservative
approximation of the non-affine operation that provides more protection against internal
sources of error and allows a more straightforward implementation. This results in the
following expression:

2∑
h=0

P e
h,n,m,t(P

e
0,m,n,t + P e

1,m,n,t + P e
2,m,n,t) = 0 ∀ m ∈M, n ∈M\m, t ∈ T (4.31)

4.1.7 Affine Nonnegativity Constraints

Finally, the nonnegativity constraints (3.24) are reformulated to ensure that the minimum
value that the affine forms can take is greater than zero, as follows:

P e
0,m,n,t − |P e

1,m,n,t| − |P e
2,m,n,t| ≥ 0 ∀ m ∈M, n ∈M\m, t ∈ T (4.32)

P gb
0,m,t − |P gb

1,m,t| − |P gb
2,m,t| ≥ 0 ∀ m ∈M, t ∈ T (4.33)

P gs
0,m,t − |P gs

1,m,t| − |P gs
2,m,t| ≥ 0 ∀ m ∈M, t ∈ T (4.34)

4.1.8 Linearization of Absolute Values

In order to solve the AA-based MMG EMS model with existing optimization solvers,
the absolute value functions introduced by the AA operators must be linearized. The
linearization procedure involves the inclusion of auxiliary variables and constraints for
each absolute value appearing in the objective function and constraints of the problem
[107], as described next.
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Linearization of Objective Function

To remove the absolute values associated with the thermal units generation cost in (4.13),
the term: ∑

g∈Gm

bm,g(|P1,m,g,t|+ |P2,m,g,t|)∆t (4.35)

is replaced with: ∑
g∈Gm

bm,g(P
′
1,m,g,t + P ′

2,m,g,t)∆t (4.36)

where P ′
1,m,g,t and P ′

2,m,g,t are auxiliary variables that will take on the absolute value of the
corresponding variable. Furthermore, the following constraints must be added:

±P1,m,g,t ≤ P ′
1,m,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.37)

±P2,m,g,t ≤ P ′
2,m,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.38)

The ± notation means that two constraints are being considered, one where the variable
has a positive sign, and one where the variable has a negative sign. Thus, (4.37) and (4.38)
represent two new sets of constraints each. This procedure has the desired effect of making
the auxiliary variables equal to the absolute values of the original variables because the
terms are being minimized and have positive coefficients, making the auxiliary variables
as small as possible in the optimal solution. The two sets of constraints ensure that the
original variables will not be greater than the minimized auxiliary variables, regardless of
their sign (one set of constraints will be redundant, depending on the actual sign of the
variable).

The term corresponding to the grid selling power has the same structure as the thermal
unit generation cost (variables with positive coefficients being minimized). Thus, a similar
logic applies, replacing the term:

ρgsm(|P gs
1,m,t|+ |P gs

2,m,t|) (4.39)

with:
ρgsm(P gs′

1,m,t + P gs′

2,m,t) (4.40)

and adding the following constraints:

±P gs
1,m,t ≤ P gs′

1,m,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.41)

±P gs
2,m,t ≤ P gs′

2,m,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.42)
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where P gs′

1,m,t and P gs′

2,m,t are the auxiliary variables that represent the corresponding absolute
values.

The term associated with the power transfer cost function also consists of variables
with positive coefficients being minimized. Thus, applying a similar logic, the term:∑

n∈M\m

β(|P e
1,n,m,t|+ |P e

2,n,m,t|) (4.43)

is replaced with: ∑
n∈M\m

β(P e′

1,n,m,t + P e′

2,n,m,t) (4.44)

and the following constraints are added:

±P e
1,m,t ≤ P e′

1,m,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.45)

±P e
2,m,t ≤ P e′

2,m,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.46)

where P e′
1,m,t and P e′

2,m,t are the auxiliary variables that represent the corresponding absolute
values.

The term corresponding to the grid buying power has a different structure, with min-
imization of variables with a negative coefficient, where the absolute value will tend to
be as large as possible in the optimal solution. In this case, the following constraints are
required:

P gb
1,m,t +M bxD

m,t ≥ P gb′

1,m,t ∀ m ∈M, t ∈ T (4.47)

−P gb
1,m,t +M b(1− xD

m,t) ≥ P gb′

1,m,t ∀ m ∈M, t ∈ T (4.48)

±P gb
1,m,t ≤ P gb′

1,m,t ∀ m ∈M, t ∈ T (4.49)

P gb
2,m,t +M bxr

m,t ≥ P gb′

2,m,t ∀ m ∈M, t ∈ T (4.50)

−P gb
2,m,t +M b(1− xr

m,t) ≥ P gb′

2,m,t ∀ m ∈M, t ∈ T (4.51)

±P gb
2,m,t ≤ P gb′

2,m,t ∀ m ∈M, t ∈ T (4.52)

whereM b is a very large number which ensures that a constraint is always satisfied, and xD
m,t

and xr
m,t are binary variables that control which auxiliary constraint is active, in conjunction

with M b. The combined effect of these constraints makes the auxiliary variables equal to
the absolute values of the original variables.

68



Linearization of Constraints

To remove the absolute values in the thermal unit generation limit constraints, (4.17) and
(4.18) are replaced with:

±P1,m,g,t ± P2,m,g,t ≤ P0,m,g,t − Pm,gvm,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.53)

±P1,m,g,t ± P2,m,g,t ≤ Pm,gvm,g,t − P0,m,g,t ∀ m ∈M, g ∈ Gm, t ∈ T (4.54)

Considering all possible sign combinations, (4.53) and (4.54) introduce four sets of con-
straints each. Only one set of constraints will be active, depending on the actual signs of
the variables; the others will be redundant, but they are needed to account for all possible
sign combinations of the variables with absolute value. It is assumed that the right-hand
side of the inequalities are nonnegative, which is the case in this problem since the intervals
for these variables should not have negative values. Following the same logic, the ramping
constraints (4.19) and (4.20) are replaced with:

±P1,m,g,t ± P2,m,g,t ± P1,m,g,t+1 ± P2,m,g,t+1 ≤ RDm,g∆t+ SDm,g,t+1Pm,g

+P0,m,g,t+1 − P0,m,g,t ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T
(4.55)

±P1,m,g,t+1 ± P2,m,g,t+1 ± P1,m,g,t ± P2,m,g,t ≤ RUm,g∆t+ SUm,g,t+1Pm,g

+P0,m,g,t − P0,m,g,t+1 ∀ m ∈M, g ∈ Gm, t, t+ 1 ∈ T
(4.56)

Constraints (4.22)–(4.28), associated with the operation of ESS units, are replaced with
the following set of constraints:

±SoC1,m,s,t+1 ± SoC2,m,s,t+1 = ±SoC1,m,s,t ± SoC2,m,s,t +
[
(±P ch

1,m,s,t ± P ch
2,m,s,t)η

ch
m,s

−(±P dch
1,m,s,t ± P dch

2,m,s,t)/η
dch
m,s

]
∆t ∀ m ∈M, s ∈ Sm, t, t+ 1 ∈ T

(4.57)

±SoC1,m,s,t ± SoC2,m,s,t ≤ SoC0,m,s,t − SoCm,s ∀ m ∈M, s ∈ Sm, t ∈ T (4.58)

±SoC1,m,s,t ± SoC2,m,s,t ≤ SoCm,s − SoC0,m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.59)

±P ch
1,m,s,t ± P ch

2,m,s,t ≤ P ch
0,m,s,t − P ch

m,sz
ch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.60)

±P ch
1,m,s,t ± P ch

2,m,s,t ≤ P ch
m,sz

ch
m,s,t − P ch

0,m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.61)

±P dch
1,m,s,t ± P dch

2,m,s,t ≤ P dch
0,m,s,t − P dch

m,sz
dch
m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.62)

±P dch
1,m,s,t ± P dch

2,m,s,t ≤ P dch
m,sz

dch
m,s,t − P dch

0,m,s,t ∀ m ∈M, s ∈ Sm, t ∈ T (4.63)
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The PCC constraints (4.29) and (4.30) are substituted by the following expressions:∑
n∈M\m

(±P e
1,m,n,t ± P e

2,m,n,t)± P gb
1,m,t ± P gb

2,m,t ≤ P PCC
m −

∑
n∈M\m

P e
0,m,n,t − P gb

0,m,t

∀ m ∈M, t ∈ T

(4.64)

∑
n∈M\m

(±P e
1,n,m,t ± P e

2,n,m,t)± P gs
1,m,t ± P gs

2,m,t ≤ P PCC
m −

∑
n∈M\m

P e
0,n,m,t − P gs

0,m,t

∀ m ∈M, t ∈ T

(4.65)

Finally, constraints (4.32)–(4.34), which ensure that the AA forms of the power ex-
change variables can only take nonnegative values, are substituted by the following con-
straints:

±P e
1,m,n,t ± P e

2,m,n,t ≤ P e
0,m,n,t ∀ m ∈M, n ∈M\m, t ∈ T (4.66)

±P gb
1,m,t ± P gb

2,m,t ≤ P gb
0,m,t ∀ m ∈M, t ∈ T (4.67)

±P gs
1,m,t ± P gs

2,m,t ≤ P gs
0,m,t ∀ m ∈M, t ∈ T (4.68)

As can be seen, the process of linearizing the absolute values introduced by the AA for-
mulation significantly increases the number of variables and constraints of the problem, in
proportion to the number MGs and sources of uncertainty considered.

4.2 Results and Discussion

To test the proposed AA model, the same test system described in Section 3.3 was used,
comprised of three MGs, each one with distinct demand and renewable generation profiles,
containing a set of three thermal units and a set of two ESS units, considering a 24-hour
optimization period. For this system, if two sources of uncertainty are considered per MG,
the number of constraints is 40,464; if an additional source of uncertainty is considered, the
number of constraints significantly increases to 708,016, due to the linearization of absolute
values. The AA model was implemented using the open-source modeling package Pyomo,
and solved using the Gurobi 10.0.1 solver, running in a server with dual Intel Xeon Silver
4214 processors with a base speed of 2.20 GHz.
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4.2.1 Comparative Analysis

MCS Results

To validate the proposed AA model, comparisons of the deterministic solution, MCS, and
the AA solution intervals are presented next, assuming the data corresponding to the
Base Case presented in Section 3.3. To carry out the MCS, upper and lower bounds
for the uncertain parameters are first defined, considering ±10% for demand, and ±25%
for renewable PV generation, which are typical variation ranges for these parameters, as
follows:

Dlb
m,t = Dm,t − 0.1Dm,t (4.69)

Dub
m,t = Dm,t + 0.1Dm,t (4.70)

P r,lb
m,t = P r

m,t − 0.25P r
m,t (4.71)

P r,ub
m,t = P r

m,t + 0.25P r
m,t (4.72)

Then, a set of random profiles within the defined bounds are created, assuming a uniform
distribution of the uncertain parameters. Figure 4.1 shows the random profiles for each
MG for a total of 1,000 generated profiles, which were found to be enough for convergence
of the objective function and all variables through trial and error. Thus, Figure 4.2 shows
the convergence of the power dispatch of thermal generation and ESS units in each MG,
for a single hour of the optimization period, after 1,000 simulations. In this case, the
power dispatches of all thermal units in all MGs stabilize relatively quickly, with very
slight variations after 200 simulations; however, the power dispatch of ESS units require
more simulations to reach convergence.

Figure 4.3 shows the distribution of a few variables of the MCS, for a single hour of
the optimization period. These histograms show the relative frequency of power dispatch
solutions for certain generators in each MG; the relative frequency is the number of solutions
whose value fall within the interval defined by each bin in the histogram, divided by the
total number of solutions. Thus, a relative frequency of 1.0 means that the variable had a
value within the interval defined by the corresponding bin in all the optimal solutions found
in the MCS. The least probable solutions are the ones with the lowest relative frequency
values. For example, the histogram of the power dispatch solutions for thermal unit G1 in
MG1 at hour 20 (Figure 4.3a) shows that all solutions in the MCS yield a value of 80 kW,
which is corroborated by the corresponding trace in Figure 4.2a. Such strong dominance
of a single solution indicates that the variable must take this value in the optimal solution
of the EMS problem, regardless of the realization of the uncertain parameters within the
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(a) Demand profiles for MG1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [h]

0

5

10

15

20

25

P
ow

er
[k

W
]

(b) PV generation profiles for MG1.
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(c) Demand profiles for MG2.
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(d) PV generation profiles for MG2.
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(e) Demand profiles for MG3.
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(f) PV generation profiles for MG3.

Figure 4.1: Random demand and PV generation profiles for MCS.
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(a) Power dispatch of thermal units in MG1.
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(b) Power dispatch of ESS units in MG1.
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(c) Power dispatch of thermal units in MG2.
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(d) Power dispatch of ESS units in MG2.
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(e) Power dispatch of thermal units in MG3.
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(f) Power dispatch of ESS units in MG3.

Figure 4.2: Convergence of power dispatch variables at hour 20 in MCS.
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(b) Distribution of solutions for MG1-G3.
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(c) Distribution of solutions for MG2-G3.
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(d) Distribution of solutions for MG3-G2.

Figure 4.3: Distributions of power dispatch solutions at hour 20 in MCS.

defined bounds. On the other hand, the histogram of the power dispatch solutions for
thermal unit G3 in MG1 at hour 20 (Figure 4.3b) shows a broader distribution of optimal
values, indicating that the optimal dispatch varies according to the different demand and
PV generation profiles.

To compare the output of MCS with the proposed AA model, intervals for each variable
are obtained from the analysis of all solutions. A possible approach is to simply take the
minimum and maximum values for each variable, which would result in the widest solution
intervals. However, due to the binary variables and intertemporal constraints of the EMS
problem, the combination of the extreme values of some variables at one hour with the
extreme values at previous or subsequent hours may result in solution profiles that are
infeasible in the original deterministic problem. Another approach involves the compu-
tation of confidence intervals from the obtained solutions, based on the mean, standard
deviation, and number of samples; however, this method assumes that the solutions follow
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(a) Original distribution for MG2-G3.
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(b) Reduced distribution for MG2-G3.

Figure 4.4: Distributions of power dispatch solutions at hour 19 in MCS.

a normal distribution, which is not the case for all variables, as can be seen in Figure 4.3.
Thus, to overcome the need for assuming inaccurate solution distributions, and to obtain
more significant solution intervals than those associated with the minimum and maximum
values of each variable, a selection procedure based on the relative frequency of the solution
distributions is implemented and described next.

First, a minimum relative frequency threshold is defined for each variable, based on a
percentage of its highest interval, to ensure that the chosen minimum value is adequate
for each variable. Then, the intervals with relative frequency lower than this threshold
are discarded, which results in narrower and more significant intervals that do not rely
on the assumption of normal distributions. For example, Figure 4.4a shows the original
histogram of solutions for G3 in MG2 at hour 19, and Figure 4.4b shows the resulting
interval after applying the described procedure, considering a percent value of 0.1 for the
minimum relative frequency. Since the maximum relative frequency of this variable was
approximately 0.16, all solutions with a relative frequency lower than 0.1 × 0.16 = 0.016
are discarded to produce the final interval, which is a reduced version of the original
distribution. By removing the least probable solutions, the obtained intervals are a more
significant representation of feasible solutions obtained from the MCS output.

AA Results

For the AA model, the partial deviations of all uncertain parameters must be specified. In
this case, to match the input of MCS, the same upper and lower bounds are considered,
i.e., the values of the partial deviations of the affine forms in (4.3) and (4.4) produce an
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(a) Demand input intervals for MG1.
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(b) PV generation input intervals for MG1.

Figure 4.5: Input intervals of uncertain parameters for AA model and MCS.

identical interval to the one defined by the upper and lower bounds of the random profiles
used in MCS, defined by (4.69)–(4.72). For example, Figure 4.5 shows the original demand
and PV generation profiles in MG1, with the corresponding input intervals used in the
AA model and MCS, which overlap as intended. Similar profile intervals for each MG
are generated. A weighting factor of w = 0.9 in (4.13) was chosen because it yields an
objective function value close to the one obtained in the MCS solution, which also considers
parameter uncertainties.

A comparison of the deterministic, MCS, and AA solutions is shown in Figure 4.6 for
the power dispatches of thermal units G1 and G3 in each MG (profiles for units G2 are
not shown because their power dispatch was zero at most hours in this case). Note that
at certain hours there is no MCS interval, such as in the initial hours for unit G1 in MG2,
shown in Figure 4.6c, which means that, for the random profiles considered, the optimal
dispatch of that unit should follow the deterministic solution at those hours, regardless
of the variations in the uncertain parameters. In all the dispatch profiles in Figure 4.6,
it can be seen that the AA intervals do not always envelop the MCS intervals, nor the
deterministic solution. This may seem counterintuitive, since the AA solution is robust for
the full range of uncertainties considered, and is thus expected to be the most conservative
and hence envelop both the deterministic and MCS solutions. However, in the MMG EMS
model, the power generation and power exchanges of all MGs are coupled through the
power balance constraints, and when the AA interval does not envelop the deterministic
solution, that mismatch is compensated by the interval of another variable that results
in a lower cost while satisfying the constraints of the problem. Furthermore, due to the
formulation of the AA problem, which minimizes the magnitudes of the partial deviations,
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the resulting intervals are as narrow as possible, while still ensuring the feasibility of the
problem for any realization of the uncertain parameters. On the other hand, the MCS
intervals are wider because they cover a range of solutions for each individual variable,
while the AA solution gives the narrowest interval for all variables. A solution within the
AA interval of a single variable may not be within the solution boundaries of MCS, due to
the flexibility of the AA model to find the optimal solution contributing to minimizing the
cost function. Based on this analysis, the resulting patterns of all variables are consistent
with the AA formulation, which validates the proposed AA model.

Figure 4.7 shows the comparison of power dispatches of ESS units obtained from the
deterministic, MCS and AA models, which are computed as the difference between dis-
charging and charging powers at each hour. Thus, positive values indicate that the ESS
unit is discharging, and negative values indicate that the ESS unit is charging. In this
case, the optimal values of the partial deviations of both charging and discharging powers
for all ESS units are zero at all hours because this results in the lowest operational cost
according to the AA model, which produces the single-line “intervals” shown. This means
that the optimal dispatch of ESS units in the AA model will be the same for any specific
realization of the uncertain parameters within the input range considered.

The solution comparison for power exchanges between MGs and the main grid are
shown in Figure 4.8. Similarly as before, the AA intervals follow a pattern that resembles
the deterministic and MCS solutions, without enveloping the other solutions at all hours.
This is a consequence of the coupling of power exchanges in the model, as previously
explained. The power sold by the main grid to MG1 (Figure 4.8a) presents AA intervals
with varying widths throughout the optimization period, which indicates that in these
hours the power sold can take a range of values in the optimal solution, depending on the
specific realization of uncertainties. Furthermore, the deterministic, MCS and AA models
all indicate that no power should be bought by the main grid from MGs in the optimal
solution, regardless of the variability in demand and PV generation.

To further clarify the validation of the solution intervals of the AA model, Figure 4.9
shows a comparison for MG1 of the demand profile with its corresponding input uncer-
tainty range, and the solution intervals considering the total generation obtained from MCS
and the AA model. Note that by taking into account the AA intervals for the aggregated
generation in the MG, the total demand and its uncertainty interval are satisfied, thus
demonstrating that the AA solution is in fact robust for any realization of the uncertain
parameters when the whole system operation is considered. On the other hand, the MCS
interval is wider than the AA interval at certain hours, which can be the case depending
on the distribution of the solutions. A broader distribution of the MCS solutions results in
larger intervals for the generation variables, which produces the wider aggregated interval

77



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [h]

0

10

20

30

40

50

60

70

80

P
ow

er
[k

W
]

Deterministic MCS Interval AA Interval

(a) MG1-G1.
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(b) MG1-G3.
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(c) MG2-G1.
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(d) MG2-G3.
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(e) MG3-G1.
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(f) MG3-G3.

Figure 4.6: Comparison of deterministic, MCS, and AA power dispatches for thermal units.
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(a) MG1-ESS1.
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(b) MG1-ESS2.
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(c) MG2-ESS1.
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(d) MG2-ESS2.
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(e) MG3-ESS1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Time [h]

−10

0

10

20

30

40

50

P
ow

er
[k

W
]

Deterministic MCS Interval AA Interval

(f) MG3-ESS2.

Figure 4.7: Comparison of deterministic, MCS, and AA power dispatches for ESS units.
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(a) Power sold by the main grid to MG1.
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(b) Power bought by the main grid from MG1.
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(c) Power sold by the main grid to MG2.
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(d) Power bought by the main grid from MG2.
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(e) Power sold by the main grid to MG3.
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(f) Power bought by the main grid from MG3.

Figure 4.8: Comparison of deterministic, MCS, and AA solutions for power exchanges with
the main grid.
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Figure 4.9: Comparison of demand and total generation intervals in MG1.

observed in Figure 4.9; the distribution of solutions is entirely determined by the problem
parameters. This comparison further demonstrates that the AA model may yield a nar-
rower solution interval because it is minimizing the magnitudes of the partial deviations,
while still being robust under the range of uncertainties considered.

The execution time of the AA model for this case was approximately 3 min, while
the execution time of the MCS was approximately 19 min; this significant reduction in
computation time is a major advantage of the proposed AA model, which considers the
same range of uncertainties. The objective function values of the deterministic, MCS, and
AA models are $6,470.1, $6,536.6, and $4,897.5, respectively; in this case, the value of the
AA multi-objective function (4.13) is lower due to the weighting factor of the central and
affine radius terms.

4.2.2 Dispatch from the AA Solution

To demonstrate the utility of the proposed AA model, a dispatch procedure can be imple-
mented to convert the resulting affine forms to particular solutions for specific realizations
of the uncertain parameters. This involves assigning values in the [-1, 1] interval to each
noise symbol corresponding to the actual realization of the uncertainty when known, and
substituting in the affine forms for finding a specific dispatch solution. To exemplify this,
the noise symbols assignment can be made as follows:

εDm,t =
Dm,t −D0,m,t

D1,m,t

∀ m ∈M, t ∈ t (4.73)
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εrm,t =
P r
m,t − P r

0,m,t

P r
1,m,t

∀ m ∈M, t ∈ t (4.74)

whereDm,t and P r
m,t are the realizations of the uncertain demand and renewable generation,

D0,m,t and P r
0,m,t are the central values, and D1,m,t and P r

1,m,t are the corresponding partial
deviations. Thus, assuming that a profile deviates from the deterministic hourly profiles,
(4.73) and (4.74) can be used to compute all noise symbols associated with the two sources
of uncertainty. For example, the affine form of the power output of generator G1 in MG1
at hour 11 is P̂1,1,11 = 16.10+0.79εD1,11−5.31εr1,11. Note that this particular variable is more
sensitive to renewable generation uncertainty than demand uncertainty, since the partial
deviation corresponding to renewable generation has the largest absolute value. Similar
affine forms of all the continuous variables in the problem are available from the optimal
solution of the AA problem. Hence, substituting the values of noise symbols found from
(4.73) and (4.74) for each uncertain parameter, in all affine variables, yields a particular
dispatch solution.

To demonstrate this procedure, a realization of the uncertain parameters is chosen
arbitrarily, assuming a deviation of +5% in demand and -5% in PV generation, for all MGs.
Figure 4.10 shows the resulting power dispatches after applying the described dispatch
procedure, as well as the corresponding deterministic and MCS solutions, for thermal
units G1 and G3 in each MG. In some generators, the AA dispatch closely follows the
deterministic and MCS solutions, as shown in Figure 4.10c. On the other hand, the other
generators present significantly different dispatch profiles, which can be expected from the
AA model, since the resulting profiles come from an optimal solution which is robust for
a range of the uncertain parameters, resulting in an objective function value of $5,508.6.
Therefore, note that the affine forms obtained from the solution of the AA model can be
used to find the optimal dispatch for specific realizations of the parameters within the
range of uncertainty considered, with no need for solving the problem again for different
realizations, and with lower computational burden with respect to the MCS. Furthermore,
the resulting affine forms provide valuable information regarding the sensitivity of variables
to each source of uncertainty.

4.3 Summary

In this chapter, the centralized MMG EMS model was formulated as an AA-based optimiza-
tion problem to consider uncertainties associated with electricity demand and renewable
energy generation within each MG. Then, a detailed description of the procedure to lin-
earize the absolute values introduced by the AA operators was presented. The proposed
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(a) MG1-G1.
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(b) MG1-G3.
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(c) MG2-G1.
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(d) MG2-G3.
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(e) MG3-G1.
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(f) MG3-G3.

Figure 4.10: AA power dispatch of thermal units for specific realizations of uncertain
parameters.
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AA model was compared with the deterministic and MCS solutions, and results showed
that the AA model is capable of satisfying the range of uncertainty considered, and can be
solved with relatively low computational burden and short execution time. Furthermore,
an advantage of this approach is that the same affine forms can be used to find a dispatch
for different realizations of the uncertain parameters, with no need to repeatedly solve the
optimization problem.
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Chapter 5

Conclusion

This chapter provides a summary of the models, solution methods, and results discussed
in this thesis, highlighting the main conclusions and key takeaways from the presented
research. Finally, the main contributions of the work described in the thesis and potential
future research ideas are outlined.

5.1 Summary and Conclusions

The adoption of MGs enables the high penetration of DERs in existing electricity distri-
bution networks, enhancing the reliability and efficiency of conventional power systems.
More recently, the coordinated operation of multiple MGs has gained attention due to the
associated economic and technical benefits. Thus, there is a need for developing adequate
EMS models for MMGs, which can leverage the distributed nature of such systems while
considering uncertainties in load and renewable generation in an efficient manner. In this
context, a distributed EMS model and a centralized EMS model that considers uncertain-
ties for the optimal coordinated operation of MMG systems were proposed in this thesis,
considering detailed operational constraints of thermal generators and ESSs within each
MG, as well as power exchanges among MGs and the main grid, and the corresponding
power limits at the PCC.

In the first part of the thesis, the centralized MMG EMS model is formulated as an
optimization problem that minimizes the operational cost of the overall system, over a
24-hour period. The model includes operational constraints of thermal generators such
as power output limits, ramping limits, and minimum up and down time requirements,
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as well as operational constraints of ESS units such as energy balance, SoC, and charg-
ing/discharging power limits. A system-wide supply-demand balance constraint ensures
that the demand is satisfied in each MG at all times, considering power exchanges among
MGs and the main grid. Furthermore, the PCC constraints restrict the total power out-
flow/inflow in each MG. The model was formulated to make it decomposable and thus
suitable for the application of a distributed algorithm for its solution. Hence, the model
was decomposed into a set of subproblems corresponding to each MG using Lagrangian
relaxation, and solved using a distributed optimization approach based on the subgradient
method. The distributed algorithm requires minimal information to coordinate the MGs
operation, thus preserving the privacy of their local parameters and demand profiles. The
model was tested using demand and solar irradiance data from a realistic ADN in São
Paulo, Brazil, and results showed that the distributed algorithm converges to the optimal
or near-optimal solution of the centralized model in a practical computational time, con-
sidering the time frame of the EMS problem, thus making the proposed model a viable
alternative for the implementation of a distributed EMS in an MMG system. Finally, a
comparison between individual and cooperative operation demonstrated that the opera-
tional cost of the MMG system significantly decreases when power exchanges are possible,
as expected. For example, in the test system presented, the total operating cost decreased
by around 17% as a consequence of the power exchanges.

In the second part of the thesis, the formulation of the centralized MMG EMS model
in the AA domain was presented, to account for uncertainties associated with demand and
renewable generation variability. The uncertain parameters were defined in affine form,
considering independent and distinct noise symbols for each source of uncertainty. Then,
all continuous variables in the model were redefined to include terms corresponding to each
noise symbol of the uncertain parameters, and the objective function and constraints were
reformulated according to previously defined AA operators and optimization framework.
The linearization procedure of absolute values introduced by the AA formulation in the ob-
jective function and constraints was then described in detail; this procedure was necessary
to be able to solve the model with existing optimization solvers. To validate the proposed
AA-based MMG EMS model, comparisons with the deterministic solution and MCS were
presented. To compare the output of the MCS with the AA model, intervals were gener-
ated from the distribution of the repeated solutions for each variable, applying a selection
procedure that discarded the least likely solutions and did not rely on the assumption of
normal distributions of the output variables. The proposed model was tested using the
same data of the realistic ADN in São Paulo, Brazil, used in Chapter 3, with the results
showing that the AA intervals for individual variables did not always envelope the MCS
intervals, nor the deterministic solution. This occurs because the power generation and
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exchanges of all MGs are coupled through the power balance constraints in the MMG EMS
model, so that when the AA interval of one variable does not envelop the deterministic
solution, the mismatch is compensated by the interval of another related variable. The
optimal solution obtained from the AA model is robust under the same range of possible
realizations of the uncertain parameters as an MCS approach, and can be solved with
significantly lower computational burden. Finally, to demonstrate the practicality of the
proposed AA model, a dispatch procedure to convert the resulting affine forms to particular
solutions for specific realizations of the uncertain parameters was demonstrated.

The following are the main conclusions drawn from the development of this thesis:

• The implementation of MMGs enables optimal power exchanges that improve the
overall operation of the system by enhancing its reliability and reducing its operation
cost, thus mitigating the undesirable effects of high penetration of RESs.

• The inclusion of constraints that enforce power flow limits at the PCC of each MG
significantly increases the complexity of the MMG EMS problem, particularly with
regards to the applicability of distributed optimization algorithms.

• Alternative methods to update the multipliers in the subgradient method, such as
the cutting plane method, were found to be less computationally efficient than the
constant update step size. This is a consequence of the complexity of the problem,
as each iteration requires the solution of an optimization problem with additional
constraints.

• The proposed distributed optimization approach for solving the MMG EMS prob-
lem preserves the privacy of each MG by requiring minimal information to find the
optimal solution. However, it should be noted that the multiplier update step still
requires the collection of solutions of all MGs, which may be performed by the Dis-
tribution Network Operator (DNO).

• The distributed optimization approach reduces the complexity of the optimization
problem solved by each MG, which facilitates the inclusion of new DERs without
the need of updating a larger centralized model. However, the iterative distributed
coordination algorithm also introduces a higher degree of mathematical complexity
with respect to the centralized model, which should be taken into account when
implementing an MMG EMS.

• The AA solution intervals were found to be less conservative than the MCS intervals.
This is a consequence of the coupling of supply-demand balance constraints through
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the power exchange variables, as well as the minimization of the affine radius in the
objective function, which results in narrower AA intervals than those obtained with
MCS that satisfy all constraints for the chosen uncertainty input ranges.

• The linearization of absolute values introduced by the AA formulation significantly
increases the number of constraints in the optimization problem. While current op-
timization solvers can handle such constraints efficiently for relatively small systems,
scaling the proposed AA model to consider a large number of MGs or several more
sources of uncertainty may result in computational times that would be impractical
when considering the operational time frame of the EMS.

• The solution intervals obtained from the AA model can be used to determine the
optimal dispatch of MG resources and power exchanges for the range of uncertainty
considered in the input parameters, without the need for repeated simulations.

• An AA-based approach for solving the MMG EMS problem presents key advantages
over MCS approaches, mainly avoiding the need for statistical characterizations, and
reducing the computational burden associated with repeated simulations, while con-
sidering the same range of uncertainties.

5.2 Contributions

The contributions of this thesis can be summarized as follows:

• A centralized and decomposable model for the optimal and coordinated operation of
MMG systems was proposed, which enables power exchanges among individual MGs
and the ADN, while realistically considering the power flow limits at the PCC of each
MG. Furthermore, the proposed model includes detailed operational constraints of
thermal generation units and ESSs.

• Based on the proposed centralized EMS model, a distributed solution method was
implemented by applying a decomposition technique to the complete problem and
implementing an iterative solution algorithm for the individual MG subproblems,
which requires minimal information exchange, thus preserving the privacy of each
MG. It was shown that the proposed distributed model converges to the centralized
solution.
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• The centralized MMG EMS model was formulated in the AA domain to account for
uncertainties in electricity demand and renewable generation, including a detailed
description of the procedure for linearizing absolute values to be able to solve the
problem with existing optimization solvers.

• The proposed models were tested and validated with electricity demand and renew-
able generation data from an existing ADN in São Paulo, Brazil, showing that the
proposed AA model provides solution intervals that are robust for the range of un-
certainties considered, requiring significantly less computation time than an MCS
approach. Furthermore, the dispatch procedure to determine the optimal power
generation, energy storage, and power exchanges from the AA solution, for specific
realizations of the uncertain parameters, was demonstrated.

• The benefits of the cooperative operation of MGs were confirmed with the proposed
models, which are mainly reflected in significant operating cost reductions for the
overall MMG system.

The results of a simplified version of the distributed model described in Chapter 3
were submitted for publication and presented at the 11th Bulk Power Systems Dynamics
and Control Symposium (IREP 2022) [108], and an article describing the extended model
proposed in the thesis is being prepared for submission to a relevant journal. The proposed
AA-based model and simulation results presented in Chapter 4 have been accepted for
publication in the IEEE Transactions on Smart Grid journal [109].

5.3 Future Work

Based on the work presented in this thesis, the following issues could be addressed in the
future:

• Enhance the proposed centralized MMG EMS model by considering nodal active and
reactive power balance constraints in the optimization problem, as opposed to the
single-bus model assumed in this work. As it was found throughout the development
of this research, the distributed algorithm and the AA-based approach make the solu-
tion of the MMG EMS problem significantly complex. Therefore, the implementation
of a more detailed model is a challenging and interesting research opportunity.

• Implement the execution of the proposed model for smaller intervals within the 1-
hour periods assumed in the presented UC model, to better account for forecasting
errors.
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• Consider additional components in the individual MG EMS model. For example, a
cost associated with the use of ESSs to represent their degradation, or a demand
response scheme that would further enhance the flexibility of the model.

• Improve the distributed algorithm to achieve better convergence rates and reduced
computation times. Modified decomposition techniques and subgradient methods
may be explored in this case.

• Compare the performance of the AA-based MMG EMS with SP and RO models to
further demonstrate its advantages.

• Apply the distributed solution algorithm to an MMG EMS model that considers
uncertainties. Based on the experience with the proposed models, its implementation
and solution with existing optimization solvers would be a significantly difficult task.
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[61] A. Vaccaro and C. A. Cañizares, “An affine arithmetic-based framework for uncertain
power flow and optimal power flow studies,” IEEE Transactions on Power Systems,
vol. 32, no. 1, pp. 274–288, January 2017.
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