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Abstract

Quantum-classical correspondence plays an important role in understanding
the emergence of classical chaos from underlying quantum mechanics. However,
the transition from quantum to classical is not straightforward. Here we study a
well-known closed-kicked spin system with a chaotic classical limit. The quantum
dynamics takes the form of stroboscopic unitary kicks acting on a single spin system.
By mapping it to a programmable quantum circuit, we show that NISQ devices can be a
potential testbed for simulating quantum chaos. The results suggest that entanglement
can be considered a signature of classical chaos even in the deep quantum regime.
Extending the work to arbitrary spins and focusing on special Hamiltonian parameters,
we then show that the system may acquire temporal periodicity. These temporal
periodicities do not depend on the initial state. Throughout such periodic evolutions, no
initial quantum state fully explores Hilbert space as either a state vector or phase space
as a quasi-probability distribution despite the classical limit being chaotic. Because these
state-independent temporal periodicities are present in all dimensions, their existence
represents a universal violation of the correspondence principle. We also consider the
stability of this periodic behavior as a function of the degree of chaos in the classical
model. Our study suggests that even in the semi-classical regime, there are specific
parameter values for which a quantum system never behaves classically or displays
signatures of chaos.

iv



Acknowledgements

First of all, I would like to thank my supervisor, Prof. Shohini Ghose for giving me
an opportunity to work in her group, for constant guidance and immense freedom to
explore fundamental physics. Thank you for your support, for sharing your experience,
and for teaching me to be critical and confident in my work. I would also like to thank
my co-supervisor, Prof. Robert Mann for supporting my master’s, all the discussions,
and, intuitive and insightful questions during group meetings. I am deeply grateful to
Prof. Alan Jamison for all the official and unofficial physics discussions. Thank you for
all the valuable suggestions. It was great working under your supervision as a teaching
assistant. I would also like to thank Prof. Eduardo Martin-Martinez for serving on my
committee advisory and initiating exciting discussions. I would also like to thank my
parents, my sisters, Ankita and Anshika, my brothers, Abhijit and Abir for all the love
and caring, and support in my life. My family is the biggest reason for me being here
and doing interesting science.

I would like to thank my friend and collaborator, Jack Davis and Sanchit Srivastava
for their long discussions, support, and patience with me for even simple and basic
things. It is great to have you both as friends. Thank you Pratyusha Chowdhury for
introducing me and giving my first unofficial course on quantum information. Thanks
to Tarun Agarwal, Pragati Shaw, Subhechchha Paul, Soham Chowdhury, Supratik
Ghanti, Lokesh Chandra, and Supriya Pande for all the support and motivations.
I would also like to thank all my friends at Waterloo, Arsalan Motamedi, Sayan
Gangopadhaya, Shlok Ashok Nahar, Mannar Naeem, Omar Hussein, Mohammad
Ayyash, Amolak Ratan Karla and other friends at IQC for all the scientific and
non-scientific discussions. Thanks to Yash Totani and Kishore Kanddasamy for making
life funny outside work. It was a great experience at IQC in last two years.

v



Dedication

This thesis is dedicated to my doctors, Dr. Arpita Bhattacharya, Dr. Gautam Gupta,
Dr. Amol Dongre, Dr. S.D. Banavali, Dr. Dhritabrata Das, to Tata Medical Centre
(Kolkata) and Tata Memorial Hospital (Mumbai) and to everyone working towards
saving lives of others.

vi



Table of Contents

Author’s Declaration ii

Statement of Contributions iii

Abstract iv

Acknowledgements v

Dedication vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Quantum-classical correspondence . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Classical chaos and its quantum signatures . . . . . . . . . . . . . . . . . . 4

1.2.1 Fidelity decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.2 Out-of-time-order correlators (OTOC’s) . . . . . . . . . . . . . . . . 5

1.2.3 Entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

vii



1.3 Quantum simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Background 10

2.1 Kicked Top model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Spin-coherent state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Husimi phase space distribution and OSCS . . . . . . . . . . . . . . . . . . 13

2.4 Measures of entanglement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Concurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.2 von-Neuman entanglement entropy . . . . . . . . . . . . . . . . . . 16

2.4.3 Geometric entanglement . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Quantum simulations of chaos in the deep quantum regime 18

3.1 Floquet operator in qubit space . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Implementation of unitaries with a quantum circuit on IBMQ . . . . . . . 22

3.3 Performance of quantum simulations . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 Errors in IBMQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.4 Periodicity of concurrence as function of chaos parameter and number of
kicks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Evolution of entanglement and signatures of chaos . . . . . . . . . . . . . . 34

3.5.1 Case A. Chaotic parameter (κ) = 3.0 . . . . . . . . . . . . . . . . . . 34

3.5.2 Case B. Chaotic parameter (κ) = 2.5 . . . . . . . . . . . . . . . . . . 35

3.6 Relationship between entanglement and delocalization . . . . . . . . . . . 37

3.6.1 Average concurrence contour plots for different values of κ . . . . 40

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



4 Quantum recurrence in the kicked top model 44

4.1 Periodicity in quantum correlations . . . . . . . . . . . . . . . . . . . . . . 47

4.2 Temporal periodicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2.1 Twist strength κ = jπ . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.2 Twist strength κ = 2jπ . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.3 Twist strength κ = 3jπ . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2.4 Twist strength κ = j π
2 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Landscape of periodicity . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.3 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5 Summary and outlook 78

5.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

References 82

ix



List of Figures

2.1 Classical evolution for κ = 2.5 and κ = 3.0 . . . . . . . . . . . . . . . . . . . 12

2.2 Husimi distribution for κ = 2.5. . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Fidelity plot with different parameter settings. . . . . . . . . . . . . . . . . 27

3.2 Errors in average fidelity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Errors in average fidelity as a function of κ. . . . . . . . . . . . . . . . . . . 29

3.4 Periodicity of concurrence in κ. . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.5 Concurrence plot as a function of κ and kicks. . . . . . . . . . . . . . . . . . 31

3.6 Concurrence plot as a function of ϕ and fixed θ . . . . . . . . . . . . . . . . 33

3.7 Average concurrence as function of θ and ϕ for κ = 3.0. . . . . . . . . . . . 36

3.8 Average concurrence as a function of θ and ϕ for κ = 2.5. . . . . . . . . . . 38

3.9 Reconstruction of classical phase space with average concurrence . . . . . 39

3.10 relationship between delocalisation and entanglement. . . . . . . . . . . . 40

3.11 Contour plot for average concurrence with different κ. . . . . . . . . . . . . 41

4.1 Evolution of state with j = 50 and κ = jπ. . . . . . . . . . . . . . . . . . . . 55

4.2 Evolution of state with j = 50.5 and κ = jπ. . . . . . . . . . . . . . . . . . . 57

4.3 Evolution of a state with κ = 2jπ . . . . . . . . . . . . . . . . . . . . . . . . 62

x



4.4 Minimum single-qubit entropy within the first 5000 kicks at κ = π j
2 as a

function of spin. Initial spin coherent state is centred at (θ, ϕ) = (2.25, 2.0). 67

4.5 Landscape of temporal periodicity. . . . . . . . . . . . . . . . . . . . . . . . 69

4.6 Average entanglement entropy with j = 25.5 and κ = π j + δ, calculated
on a grid of 70 x 140 initial spin coherent states. Each initial state
is time-averaged over 10 applications of U12

π j+δ to see the cumulative
effect of the error δ. Smax = {7 × 10−11, 2 × 10−3, 0.6097, 0.6868} is the
maximum time average entanglement entropy, for δ = {0.001, 0.1, 1, 3},
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7 Stability of temporal periodicity as function of perturbation in κ. . . . . . 71

4.8 comparison between time-averaged entanglement entropy for κ = 2.5
and κ = π. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

xi



List of Tables

3.1 Parameters for U3 and U1 corresponding to six Vi for the floquet unitary
with κ = π and p = π/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Periodicity value for different κ values and p=π
2 . Here (*) represents

results from numerical simulation and NE signifies the non-existence of
periodicity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

xii



Chapter 1

Introduction

“In the realm of chaos, where order dances with unpredictability, our quest to
understand the fundamental nature of the universe unveils the delicate interplay
between deterministic theory and the enigmatic dance of quantum uncertainty.”
– ChatGPT

Since the birth of quantum physics researchers have been contemplating the
question of quantum-classical transitions. The theory of chaos was completely
developed on the basis of classical physics. Quantum physics and classical chaos
marked two important discoveries of the twentieth century. The field of quantum
chaos was a natural extension of the existing chaos theory. It attempts to characterize
the emergence of chaotic dynamics, which is a purely classical phenomenon, from
an underlying quantum substrate[1, 2]. Central to this endeavor is the notion of a
quantum-classical correspondence, first introduced by Niels Bohr [3], which heuristically
states that quantum mechanical predictions should reproduce classical predictions
when the quantum numbers of the system are large enough or in certain suitable limits.
While quantum-classical correspondence has been extensively explored for regular
systems, limited research has been conducted in chaotic systems.

The central focus of this thesis is to explore the signatures of classical chaos in
quantum systems and inspect the correspondence principle in a periodically kicked
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spin system. A useful model studied in this field is the quantum kicked top (QKT) [4],
a quantum system that has a well-defined classical limit that displays chaotic behavior.
We use the tools developed in quantum information and quantum computation such as
entanglement and decomposition of unitaries. We approach this problem by asking the
following questions:

• Can we efficiently simulate a chaotic Hamiltonian on a quantum computer?
We answer this question by implementing a 2-qubit QKT on IBM quantum
computer and studying the overlap of quantum and classical dynamics in this
model. Previous experimental implementations suffer from the systematic loss in
fidelity on an increasing number of kicks or large value of the chaotic parameter
(κ), see [5, 6, 7]. The current approach is resistant to the errors caused due to large
number of kicks or higher values of chaoticity parameter (κ).

• Does Bohr’s quantum-classical correspondence always hold in the semi-classical
regime?
To investigate this question, we show a new way of breaking quantum-classical
correspondence, which is independent of system size (but finite) and initial
position on the classical phase space. Previous work on breaking of Bohr’s
correspondence principle in QKT is shown as a result of quantum numbers or
properties of the initial state in classical dynamics [8, 9].

In the remainder of the introduction, we will review the existing work in the field
of quantum-classical correspondence and quantum chaos before undertaking the main
study of this thesis. The results of this thesis will motivate the future experimental
implementation of chaotic and other such models more coherently and will shed a new
light on the relationship between classical and quantum physics.

1.1 Quantum-classical correspondence

Quantum physics has been proven successful in explaining many physical phenomena
where classical theory fails to do so, such as black-body radiation, atomic spectra,
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and many more [10]. It has been widely acknowledged that quantum physics as a
new theory should converge with classical physics which has proven its merits over
centuries, under certain suitable limits. However, in the case of chaotic systems, the
predictions made by quantum theory do not always match with those of classical
mechanics even in appropriate limits. Limited success has been achieved in explaining
this discrepancy.

A suitable starting point for this discussion is an old theorem, proposed by Ehrenfest
in 1927 [11]. The Ehrenfest correspondence theorem states that the expected evolution of
quantum observables should coincide with classical trajectories up until the Ehrenfest
break time (tEh), whenever the classical limit exits. In the limit of large quantum
numbers, it was initially thought that tEh is very large. However, it has been shown
that for chaotic systems, tEh is can be surprisingly small [12]. It is approximately equal
to 1

λ ln
(

Ao
h̄

)
, where λ is a Lyapunov exponent in classical dynamics further explained

in Sec. 1.2 and A0 is the characteristic action of the system. A simple manifestation of
the above theorem was shown by Zurek and Paz [13, 14] by taking the example of
Hyperion — a moon of Saturn — which is a weakly chaotic system. Using 1

λ ln
(

Ao
h̄

)
,

they calculated tEh for Hyperion to be along the order of 20 years. They argued that
the correspondence in the present case is restored due to its weak coupling to the
environment, which leads to decoherence.

Another line of discussion was proposed by Ford and his colleagues by studying
the Arnol’d cat, where the correspondence breaks down even in the classical limit
[15, 16, 17]. They considered the criterion of algorithmic complexity and concluded that
classical chaos cannot emerge from quantum theory in the macroscopic limit. The
details of the quantum-classical transitions and a better understanding of quantum
manifestations of classical chaos are of considerable interest for accurate and practical
descriptions of mesoscopic systems. This has led to another line of research of finding
quantum signatures of classical chaos which is discussed in the next section.
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1.2 Classical chaos and its quantum signatures

Classical dynamics is studied using Hamilton’s equations of motion on phase space
while quantum dynamics is described by the Schrödinger equation for states in
Hilbert space. The dynamics of the Hamiltonian system with n-degrees of freedom
are described on a 2n-dimensional phase space. Hamiltonian systems can be broadly
classified into two classes : integrable and non-integrable systems. A classical system
with n-degrees of freedom and n independent constants of motion is said to be
integrable and a system with less than n independent constants is classified as
non-integrable [18].

Classical chaos is a property of non-integrable systems and is characterized by
“extreme sensitivity to initial conditions”[19]. This feature is generally identified with
the exponential divergence in the average separation of points initially located close to
each other on phase space. The rate of separation is measured by positive Lyapunov
exponents. To understand the Lyapunov exponent let’s take two initial vectors, Xo and
Yo, in 2n- dimensional phase space, such that Yo = Xo + δ0, where initial separation
δo is extremely small. After time t, Xo and Yo evolve to Xt and Yt with δt being the
time-dependent separation between Xt and Yt. The classical Lyapunov exponent is
given by [19]

λ(Xo) = lim
t→∞

lim
ffio→0

1
t

ln
δt

δ0
. (1.1)

A strictly positive Lyapunov exponent is a signature of classical chaos.

Since there is no clear notion of “trajectories” in quantum theory, direct promotion
of the classical Lyapunov exponent to a quantum one is not feasible. This has led
researchers to explore different quantum properties in order to define the “quantum
Lyapunov exponent” and find signatures of chaos in quantum systems. In the next part
of this section, we discuss a few well-known potential signatures of chaos that have
been explored in the past.
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1.2.1 Fidelity decay

In the case of isolated and closed quantum systems, the evolution of quantum states is
governed by unitary operators. Unitary evolution preserves the overlap of two different
initial states over time. Therefore, quantum states cannot exhibit any divergence in their
overlap. However, Peres proposed that instead of two different initial states, one can see
the exponential divergence in overlap of same quantum states evolved with perturbed
and unperturbed Hamiltonians [20]. Peres used this criteria as a signature of chaos.
The overlap (F) of two states, one evolved with Hamiltonian Ho and the other with the
perturbed Hamiltonian, Hϵ = H0 + ϵV is

F(|ψ(t)⟩ , |ψϵ⟩) = | ⟨ψ(0)|U†(t)Uϵ(t) |ψ(0)⟩ | (1.2)

where Uϵ and U correspond to time evolution unitary operator for perturbed and
unperturbed Hamiltonian respectively. Shack et.al.[21] used the same concept and
studied the sensitivity to random perturbations in the quantum kicked top model. They
showed that if the initial state is centred in a chaotic region of the classical dynamics, it
explores the large portion of the Hilbert space on evolution with the random sequence of
perturbed and unperturbed Hamiltonian. On the contrary, if an initial state is centered
in regular regions, then it distributes itself on Hilbert space in a localized manner.
However, upon further investigation, it was shown that regular systems or systems
with mixed phase show a wide variety of behaviour for fidelity decay including faster
than exponential growth [22, 23]. Therefore, fidelity decay is not suitable as a universal
signature of classical chaos.

1.2.2 Out-of-time-order correlators (OTOC’s)

Out-of-time-order correlators were first used in the context of chaos in a thermal
quantum system to give a bound on the growth of chaos [24]. It was proposed as a
promising candidate for a quantum Lyapunov exponent as an analogous to classical
Lyapunov exponent [25]. The out-of-time-correlator is defined as [26]

C(t) = −⟨[W(t), V(0)]2⟩ (1.3)
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where W(t) and V(0) are two local hermitian operators in the Heisenberg picture.
Here, expectation ⟨·⟩ is taken over any quantum state ρ of interest. It has been shown
that until the Ehrenfest break time, C(t) grows exponentially as exp2λ̃t, where λ̃ may
be read off as a quantum Lyapunov exponent. Although λ̃ seems to be a proper
quantum Lyapunov exponent, it also has a positive value for classically non-chaotic
billiards [27]. It was later shown that instability in integrable quantum systems, such
as Lipkin-Meshov-Glick(LMG) model [28], is sufficient for exponential growth of C(t).
Thus, it is unclear whether OTOC’s can be used as a measure/signature of chaos.

1.2.3 Entanglement

Entanglement is a completely quantum phenomena. It does not have any classical
counterpart. A bipartite quantum state, ρAB is said to be entangled if it cannot be written
as

ρAB =
n

∑
i=1

piρ
A ⊗ ρB. (1.4)

where pi’s are non-negative real numbers and obey ∑n
i=1 pi = 1, ρA ∈ HA and ρB ∈ HB

(the Hilbert space corresponding to subsystem A and B respectively). There are different
measures of entanglement such as entanglement cost, entanglement of formation,
von-Neumann entropy, geometric entanglement, and distillable entanglement [29].
Some of these measures will be discussed in the background section of chapter 2. The
first study of the relationship between dynamical entanglement and classically chaotic
systems was done in [30]. It was followed by a series of numerical investigations of
the N-atom Jaynes-Cummings model coupled to a radiation field [31, 32]. All these
studies led to the broad conclusion that the rate of entanglement generation is higher for
states with initial centroid in a chaotic region than the initial states centered in regular
regions. The relationship between entanglement and classical dynamics has also been
studied in the quantum kicked top model, both theoretically [33, 34, 35, 36, 37, 38, 9] and
experimentally [7, 6, 39, 5]. A detailed discussion of these works is given in Chapter 3
and Chapter 4.
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1.3 Quantum simulation

While theories provide a conceptual understanding, experiments are necessary for
practical applications. Experiments not only verify the existing theory but also help
to explore the new physical phenomena. In 1982, Richard Feynman pointed out the
challenge of simulating quantum mechanics using classical systems [40]. He proposed
that in order to accurately simulate a quantum system we need a quantum computers.
This led towards a birth of the new field of quantum simulation. Quantum simulation
can be loosely defined as simulating quantum systems by quantum mechanical means
[41]. After more than a decade, in 1996 [42] it was shown that a quantum computer – an
ensemble of well defined qubits that can be initialized, measured and acted by universal
quantum gates, can act as a quantum simulator. However, a fault tolerant quantum
computer that can efficiently a simulate quantum system requires a large number of
qubits which is an experimental hindrance for current technologies [43, 44]. On the other
hand, noisy intermediate-scale quantum (NISQ) computers already exist [43, 44].

Digital quantum simulation is one such method of simulating quantum systems
using NISQ devices[43, 44]. Digital simulators decompose the unitaries corresponding
to specific quantum dynamics into a set of discrete quantum gates. The set of quantum
gates are implemented on quantum processor, a controlled quantum system. The
quantum processor is engineered in such a way that the set of quantum gates can
efficiently be implemented on it. Quantum simulation using super-conducting qubits
is an example of such a quantum processor [45]. In this thesis, we show that currently
available NISQ computers can be used for versatile quantum simulations of chaotic
systems. The programmability of this approach allows us to experimentally explore the
complete range of QKT chaoticity parameter regimes inaccessible to previous studies.
Our results demonstrate the advantages of using NISQ devices for studying chaotic
system over traditional experimental set-ups.
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1.4 Overview

The main aim of this thesis is to study the signatures of chaos in the deep-quantum
regime (small spin systems) and the transition of quantum to classical in a closed
kicked spin system. We first propose a gate-based method to efficiently simulate a
classically chaotic system and then undertake a study of quantum to classical transition
by invoking a correspondence principle.

In chapter 2, we review the quantum kicked top model. We present its classical
equations of motion and derived the unitary operator for one time period. We
discuss spin-coherent states - a quantum analogue of classical states. Then we discuss
the Husimi quasi-probability distribution function (or Q-function) and show how
maximum value of the Q-function relates to delocalization on the spherical phase space.
Finally, we discuss the different measures of entanglement used in our work such as
concurrence, von Neumann entanglement entropy, and geometric entanglement.

In chapter 3, we study a quantum simulation of the quantum kicked top for
j = 1 (2-qubits), the smallest possible system to study chaos. We first introduce
the multi-qubit representation of the quantum kicked top. The qubit representation
of the QKT can be considered as a symmetric multi-qubit system. We introduce a
classical-quantum hybrid approach for exploring the dynamics of the chaotic quantum
kicked top on a universal quantum computer. The number of gates in our simulation
does not increase with the number of kicks, thus making it possible to study the QKT
evolution for arbitrary number of kicks without fidelity loss. Using a publicly accessible
NISQ computer (IBMQ), we observe periodicities in the evolution of the 2-qubit QKT.
We then study the relationship between the entanglement and classical chaos and show
that entanglement can be used as a signature of chaos even in the deep quantum
regime. We demonstrate a connection between entanglement and delocalization in the
2-qubit QKT. We also reproduce the mixed-phase space of classical dynamics using time
averaged entanglement.

In chapter 4, we deal with the study of the Bohr’s correspondence principle for
arbitrary but finite spin value. We first prove the periodicity of quantum correlations
in QKT in κ, a chaoticity parameter in QKT. We then study the temporal periodicity in
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the evolution of arbitrary states for some special values of the system’s parameter. We
analytically prove the temporal periodicity for κ of the form mjπ, where m is an even
integer for both integer and half-integer spin. For the case of odd values of m, we show
the temporal periodicity with numerical simulations for the integer spin system. We
then analyse the stability of these special parameter values using von-Neuman entropy
and show that the evolutions of the states are relatively stable in time to perturbation
these κ values. We also discuss the absence of temporal periodicity for κ = jπ

2 and
half-integer spin.

In chapter 5 we summarize the results of this thesis and discuss future work.
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Chapter 2

Background

2.1 Kicked Top model

The quantum kicked top (QKT) is a finite-dimensional dynamical model used to study
quantum chaos, known for its compact phase space and parameterizable chaoticity
structure [4]. The time-dependent, periodically-driven system is governed by the
Hamiltonian

H = h̄
pJy

τ
+ h̄

κ J2
z

2j

∞

∑
n=−∞

δ(t − nτ), (2.1)

where {Jx, Jy, Jz} are the angular momentum operators: [Ji, Jj] = iϵijk Jk. It describes a
spin of size j precessing about the y-axis together with impulsive state-dependent twists
about the z-axis with magnitude characterized by the chaoticity parameter κ. Here we
are using a non-zero length, finite sized impulse that will converge to the delta kick as
δ → 0. The period between kicks is τ, and p is the amount of y-precession within one

10



period. The associated Floquet time evolution operator for one period is

U = e−
∫ iH

h̄ dt

= lim
δτ→0

U(τ, τ − δτ)U(τ − δτ, 0)

= lim
δτ→0

exp

(
−i
h̄

∫ τ

τ−δτ

(
h̄

p
τ

Jy + h̄
κ

2jδτ
J2
z

)
dt

)
exp

(
−i
h̄

∫ τ−δτ

0
(h̄

p
τ

Jy)dt

)

= lim
δτ→0

exp

(
− i

p
τ

Jyδτ − i
κ

2j
J2
z

)
exp

(
− i

p
τ

Jy(τ − δτ)

)

= exp

(
− i

κ

2j
J2
z

)
exp

(
− i

p
τ

Jy

)
(2.2)

For any given initial state |ψ(0)⟩, the consequent state after n kicks, |ψ(n)⟩ can be
obtained on applying U for n times.

The classical kicked top can be obtained by computing the Heisenberg equations for
the re-scaled angular momentum, Ji/j, where i ∈ {x, y, z} followed by the limit j → ∞
[4]. In the commonly considered case of (τ = 1, p = π/2), the classical map is

Xn+1 = Zn cos(κXn) + Yn sin(κXn),

Yn+1 = Yn cos(κXn)− Zn sin(κXn),

Zn+1 = −Xn. (2.3)

The dynamical variable (X, Y, Z) satisfies the constraints X2 + Y2 + Z2 = 1, i.e., they
are restricted to be on the unit sphere S2. Thus the variables can be parameterized into
azimuthal angle ϕ and polar angle θ as (X, Y, Z) =(sinθcosϕ, sinθsinϕ, cosθ).

As the chaoticity parameter κ is varied the classical dynamics ranges from
completely regular motion (κ ≤ 2.1) to a mixture of regular and chaotic motion (2.1
≤ κ ≤ 4.4) to fully chaotic motion (κ > 4.4) [8]. The classical stroboscopic map in polar
coordinates for a set of initial conditions with κ = 2.2 and κ = 3.0 is given in Fig.2.1a
and Fig.2.1b respectively.
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(a)

(b)

Figure 2.1: Stroboscopic map showing the classical time evolution over 150 kicks for (a).
κ = 2.5 and (b). κ = 3.0 for 289 initial points in phase space.
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2.2 Spin-coherent state

Spin coherent states (SCS)[46] are minimum uncertainty states in spin systems that
satisfy the uncertainty relation

∆Ji∆Jk =
h̄
2
|∆Jl|, (2.4)

where i, k and l are permutations of x, y and z. The uncertainty for these states is
distributed symmetrically over the two operators. Given any point (θ, ϕ) in the classical
phase space, we construct the corresponding SCS |j; θ, ϕ⟩

|j; θ, ϕ⟩ = exp
[
iθ(Jx sin ϕ − Jy cos ϕ)

]
|j, j⟩ . (2.5)

In the 2j-qubit space, we define our initial states as the SCSs

|j; θ, ϕ⟩ = |θ, ϕ⟩⊗2j , (2.6)

where |θ, ϕ⟩ are points on the Bloch sphere. For larger j values, the SCS becomes highly
localized around the point (θ, ϕ) in the phase space. Hence in the classical limit of j →
∞, the SCS approximates the classical angular momentum state located at (θ, ϕ) [4].

Spin-squeezed states, which have an asymmetric distribution of uncertainty, can
display entanglement in the corresponding multi-qubit representation[47]. Since we are
interested in studying entanglement that arises from the dynamics of the system, we
choose SCSs as our initial states, thus ensuring there is no initial entanglement between
the qubits.

2.3 Husimi phase space distribution and OSCS

To study quantum-classical correspondence in the quantum kicked top, its Husimi
distribution is often compared with the classical phase space distribution [8]. The
Husimi distribution has also been used as a visual aid to study dynamical tunneling
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in the same model [48, 38]. It is a positive valued quasi-probability distribution given
by

Q(θ, ϕ) =
2j + 1

4π
⟨θ, ϕ| ρ |θ, ϕ⟩ (2.7)

which is equal to 2j+1
4π | ⟨θ, ϕ|ψ⟩ |2 for pure states; the overlap of a pure angular

momentum state |ψ⟩ and spin coherent state |j; θ, ϕ⟩. We drop the normalization
constant of 2j+1

4π from this expression as j remains fixed. For a given state ρ, the
maxima of its Husimi distribution corresponds to the measure OSCS. Here OSCS is the
maximum overlap of the given angular momentum state (ρ) with any spin-coherent
state on the spherical phase space. In the case of multiple maximum values (but same
in magnitude), OSCS corresponds to one maximum value. For example, the Husumi
probability distribution of n−qubit |GHZ⟩ state has two peaks with 0.5 being its value.
Here OSCS will be 0.5 for n−qubit |GHZ⟩. If the state has OSCS value as 1, i.e., maximum
height of the Husumi probability distribution is unity, then the state is considered to be
localised at that (θ, ϕ). If the OSCS value is low then state is localised on the phase space.
The relation between OSCS and geometric entanglement has been discussed later the
section. The Husimi distributions for points (θ, ϕ) = (π

2 , 0) and (2.25, 1.0) for κ = 2.5
and various values of N are given in Fig. 2.2a, 2.2b. We see that the Husimi distribution
for (π

2 , 0) is more delocalized, which corresponds to a lower OSCS value in Fig. 3.10.
On the other hand, the Husimi distribution remains more localized, corresponding to a
higher OSCS value.

2.4 Measures of entanglement

Entanglement can be used as a signature of chaos. It has been suggested through many
studies that the rate of generation of entanglement is enhanced by the presence of
classical chaos. Here we will discuss the three different measures of entanglement,
the entanglement of formation (concurrence), von-Neuman entanglement entropy, and
geometric entanglement.
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(a)

(b)

Figure 2.2: Husimi distribution to visualize delocalization of two different initial states.
(a) (θ, ϕ) = (π

2 , 0) , (b) (θ, ϕ) = (2.25, 1.0) for κ = 2.5. Here we can see that (π
2 , 0) is

more delocalized.

15



2.4.1 Concurrence

Entanglement of formation is the most widely used measure of entanglement [49].
For a general state ρ, it is the minimum average von Neumann entropy over all
pure-state decomposition of ρ. While this minimum is, in general, challenging to
compute efficiently, for two qubits, the concurrence is more popular for quantifying
entanglement in two-qubit systems. It is efficient to compute and is a monotonically
increasing function of entanglement of formation. Concurrence is computed as follows
[50]. For a two-qubit density matrix ρ, first the spin flipped state ρ̃ = σy ⊗ σyρ∗σy ⊗ σy

(where σy is Pauli matrix and ρ∗ is complex conjugate of ρ in the standard basis) is
computed. Then concurrence is defined as

C = max(0,
√

λ1 −
√

λ2 −
√

λ3 −
√

λ4) (2.8)

where λi are eigenvalues of ρρ̃ such that λ4 ≤ λ3 ≤ λ2 ≤ λ1 and 0 ≤ C ≤ 1. It is 0 for
separable states and unity for the Bell states. The relationship between concurrence and
chaos has been investigated in previous works [51, 52].

2.4.2 von-Neuman entanglement entropy

Quantum kicked top with spin-j, has a multi-qubit representation in the symmetric
subspace of (2j + 1) dimensional Hilbert space. A qubit picture of a quantum kicked
top can always be represented as a bipartite system. A natural measure of entanglement
in bipartite pure states is the von-Neumann entropy of its reduced states [53], S. It
is well-defined for pure states. Since at any given time our system is in the pure
state, von-Neumann entanglement entropy is a good measure for entanglement in our
system. It is defined as

S = −Tr
(
ρsq log ρsq

)
= − ∑

i=1
λi log(λi) (2.9)

where λi(i=1,2) are eigenvalues of the single qubit density matrix ρsq. If the qubit is in
a pure state, then the single-qubit state is completely known and the entropy is zero.
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However, if the qubits are entangled with any other qubit(s), then ρsq is a statistical
mixture of states and the entropy is non-zero. It satisfies the equation 0 ≤ S ≤ log(2).

2.4.3 Geometric entanglement

The extent of entanglement in a pure quantum state can be characterized by its distance
to the nearest separable state [54]. This measure of entanglement is commonly known
as geometric entanglement, which was first introduced by Shinmoy in 1995 [55]. For a
symmetric state |ψ⟩, the geometric entanglement is given by [56]

EG(|ψ⟩) = 1 − G(ψ)2 (2.10)

where the quantity G(ψ) is the overlap of |ψ⟩ with the closest product state

G(ψ) = max
|ϕ⟩=|a⟩|b⟩|c⟩...

| ⟨ψ|ϕ⟩ |. (2.11)

Geometric entanglement can be also used to quantify delocalization for symmetric
states as discussed in previous section 2.3.
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Chapter 3

Quantum simulations of chaos in the
deep quantum regime

This chapter is based on Anand, Srivastava, Gangopadhaya and Ghose [39]

Classical chaos is characterized by exponential sensitivity to initial conditions
quantified by the Lyapunov exponent, which is a measure of the rate of divergence
of neighboring trajectories [57, 58, 59]. A corresponding quantum measure of chaos is
challenging to define due to the uncertainty principle and the linearity of quantum
evolution. The question of how classical chaos emerges from quantum dynamics
remains one of the open fundamental questions in quantum theory [2, 4, 13]. In
recent years, the question of quantum-classical correspondence in classically chaotic
systems has been explored in the context of quantum information processing. The
connection between fundamental quantum phenomena such as entanglement and
classical chaos has puzzled physicists for decades and has gained new relevance
for quantum computing applications. It has been shown that classical chaos can
affect the implementation of quantum computing algorithms [60, 61]. Chaos can also
affect the generation of dynamical entanglement, an important resource for quantum
computing[33, 62].

Efficient quantum simulations of chaotic models will be a progressive step
toward understanding this field. Large-scale, programmable quantum computers could
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offer exactly this type of possibility of mapping and simulating complex quantum
systems [63]. While such large-scale quantum computers do not yet exist, it is
worth exploring the potential for quantum simulations using currently available noisy
intermediate-scale quantum (NISQ) computers [44, 64]. One such potential area of
NISQ application is the topic of quantum chaos - the study of quantum systems that
exhibit chaos in some classical limit. On the experimental side, the quantum control and
precision needed to explore quantum chaotic dynamics over a wide range of parameters
and long-time scales remain quite challenging. So far, relatively few experiments in
limited parameter regimes and for short times have been performed [7, 5, 65, 66, 67].

To understand chaos in the quantum context, it is important to explore signatures of
classical chaos in the deep quantum regime, where the standard Bohr correspondence
principle cannot be invoked. A textbook model for studying quantum chaos is the
quantum kicked top (QKT) [4], which is a finite-dimensional spin system that displays
chaotic dynamics in the classical limit. The quantum kicked top has been extensively
studied theoretically [33, 34, 6, 36, 37, 35, 52, 68]. Different quantum correlations such
as entanglement, discord, and the Mallech Q measure [35, 37, 38] have also been
used to study signatures of chaos in quantum dynamics. Among these correlations,
quantum entanglement has shown promising results in studying signatures of chaos
in the quantum kicked top model (QKT). QKT has been well studied theoretically
in semi-classical regions where entanglement has been used to distinguish between
regular and chaotic regions of phase space [34, 9, 35, 2, 36, 69]. In recent theoretical
studies, the quantum kicked top consisting of just two qubits, belonging to the deep
quantum regime, has also been studied in detail [5, 35]. In the deep quantum regime,
periodicities and symmetries in the two- and three-qubit QKT model were theoretically
studied in [36, 35]. A few experimental studies of the QKT have also been performed
[5, 67, 7]. In [7], a 3-qubit model of the QKT was shown to exhibit ergodic dynamics, and
a resemblance between entanglement entropy and classical phase space dynamics was
noted. Temporal periodicity and symmetries of the 2-qubit QKT were explored using
NMR techniques in [5]. These experiments are limited in the number of kicks due to
the decoherence times of the physical qubits. Furthermore, in these implementations
the chaoticity parameter κ is determined by the strength and duration of interaction
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between the qubits, making it difficult to tune. To experimentally study the long-term
dynamics and dependence on κ rigorously, one needs to explore longer time scales and
a wider range of κ.

The QKT system can be described as a collection of indistinguishable qubits, which
makes it attractive to explore in the framework of quantum information processing and
NISQ devices. In this chapter, we show that mapping the QKT onto a programmable
quantum circuit in a quantum computer allows simulations of the QKT that overcome
previous experimental limitations. We construct and demonstrate an exact simulation
of the 2-qubit quantum kicked top using a universal set of quantum logic gates. Our
quantum circuit-based simulation is programmable and enables flexible initial state
preparation and evolution. Using IBM’s publicly accessible 5-qubit chip vigo, we can
prepare initial states and implement the dynamics of the QKT for an arbitrary number
of kicks and a wide range of κ. The number of gates required for this simulation is
independent of the number of kicks and the value of κ. Therefore, our model does not
suffer any systematic loss in fidelity with the increasing number of kicks or κ values.
Finally, full quantum state tomography enables us to explore signatures of chaos in
2-qubit entanglement.

The ability to vary κ and the number of kicks allows us to experimentally observe
the periodic nature of the dynamics with respect to κ as well as the kick number.
Additionally, the temporal periodicity of the QKT can be used to obtain highly
accurate time averages of relevant physical quantities. In particular, we explore the
time-averaged entanglement for different initial spin coherent states. We find that the
contour plot of the time average entanglement shows clear signatures of the classical
phase space structures of regular islands in a chaotic sea, even in a deep quantum
regime. We also show that the states initialized in chaotic regions of the phase space
show intermediate values of average concurrence, whereas the fixed points and the
period-4 orbit correspond to the minimum and maximum values respectively. This
behavior is related to the degree of delocalization of the states and thus demonstrates
a connection between delocalization and entanglement [69]. Our work shows that
current quantum computers are useful for flexibly exploring new experimental regimes
in quantum chaotic systems. Mapping the system onto a tunable quantum circuit
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lets us probe different aspects of the QKT dynamics without the need for building
sophisticated customized hardware or being constrained by fixed system parameters.
This method combines the ease of numerical simulation with the built-in quantum
evolution of a physical system.

The chapter is organized as follows. In section 3.1, we introduce the multi-qubit
representation of the quantum kicked top. In section 3.2, our circuit-based approach
and the mapping to the IBM vigo processor are described. In section 3.3, we discuss
the accuracy of the quantum simulations. In section 3.4, we show the periodicity in the
concurrence of a two-qubit QKT system. In section 3.5, we discuss entanglement as a
signature of chaos for two different κ values. In section 3.6, the experimental results of
the IBM vigo simulations are discussed. Finally, conclusions, outlook, and the scope of
application of our circuit-based approach are discussed in section 3.7

3.1 Floquet operator in qubit space

The QKT Hamiltonian commutes with the total angular momentum operator J2,
[H, J2] = 0. Hence, it can be considered as an N = 2j qubit system [69] confined to the
symmetric subspace of (C2)⊗N. The spin-j operators are written in terms of the single
qubit Pauli rotation operators as:

Jα =
1
2

2j

∑
i=1

σiα, α ∈ {x, y, z} (3.1)

where σiα denotes σα acting on the ith qubit. This allows us to rewrite the QKT
Hamiltonian in 2j-qubit space:

H = h̄
κ

8j

2j +
2j

∑
i,k=1
i ̸=k

σiz ⊗ σkz

 ∞

∑
n=−∞

δ(t − nτ) + h̄
p

2τ

2j

∑
i=1

σiy. (3.2)

In particular, the j = 1 QKT is described by the 2-qubit Hamiltonian
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H =
h̄k
4
(I + σz ⊗ σz)∑

n
δ(t − nτ) +

h̄p
2τ

(σy ⊗ I + I ⊗ σy) (3.3)

and the corresponding single-kick time evolution unitary is

U = exp
(
− i

κ

4
(I + σz ⊗ σz)

)
exp

(
− i

p
2
(σy ⊗ I + I ⊗ σy)

)
. (3.4)

3.2 Implementation of unitaries with a quantum circuit
on IBMQ

Any N-qubit unitary can be decomposed into 2N(2N − 1)/2 single-qubit gates with
controls. We follow the prescription in [70] to decompose our 2-qubit Floquet operator
as

U = U1 × U2 × U3 × U4 × U5 × U6, (3.5)

where Ui are either single-qubit unitaries or controlled unitaries of the form

Ui ≡ Vi

•
or Ui ≡ •

Vi

.

In the circuit above, the two wires represent the two qubits, the solid dot represents
the control qubit, and the box indicates the single qubit operation Vi on the target qubit.
The exact decomposition for a 2-qubit gate in this scheme is

U = • V5 • V3 •

V6 • V4 V2 V1 .

(3.6)
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Implementation of these gates on a quantum computer requires further
decomposition into rotations and CNOT gates. Given a 1-qubit unitary W∈ SU(2), a
controlled gate of the form (|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ W) can be decomposed as [71]

•

W

= • •

Rz(
β−α

2 ) Rz(− α+β
2 ) Ry(− θ

2) Ry(
θ
2) Rz(α)

(3.7)

where Rx, Ry and Rz describe rotations on the Bloch sphere and α, β and θ ( also known
as Euler angles) are such that

Rz(α)Ry(θ)Rz(β) = W. (3.8)

A general 1-qubit unitary V is of the form exp(iδ)×W where W ∈ SU(2). A 2-qubit gate
of the form (|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ V) can be written as

•
V

= • •
W Uδ

(3.9)

where Uδ = exp(−iδ) × I. This controlled phase gate can be further simplified by
moving the phase over to the other qubit:

(|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ Uδ) = (|0⟩ ⟨0| ⊗ I + exp(iδ) |1⟩ ⟨1| ⊗ I)

= (|0⟩ ⟨0|+ exp(iδ) |1⟩ ⟨1|)⊗ I

= Rz(δ)⊗ I. (3.10)

Here, we ignore a global phase factor of exp(iδ/2) in the final step. Finally, we are
left with

•

V

= • • Rz(δ)

Rz(
β−α

2 ) Rz(− α+β
2 ) Ry(− θ

2) Ry(
θ
2) Rz(α) .

(3.11)
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A similar analysis follows when the control and target qubits are exchanged. For
two-qubit unitaries of the type I ⊗ V and V ⊗ I, the phase factors appearing on V are
global and can be ignored. These gates have a similar decomposition as the one in Eq. 3.7
with the CNOT gates replaced by X gates. For example, a unitary of the form I ⊗ V can
be decomposed as

V

=

Rz(
β−α

2 ) X Rz(− α+β
2 ) Ry(− θ

2) X Ry(
θ
2) Rz(α) .

(3.12)

In this scheme, our 2-qubit Floquet operator can be constructed from 46 total gates,
with 8 two-qubit CNOT gates and 38 single-qubit rotations. Consecutive rotations have
been counted as separate single qubit gates. Depending on the universal gate set for
the particular quantum computer, the actual number of gates needed to simulate the
Floquet unitary may be reduced.

We implement our quantum circuits on the quantum hardware and simulator
back-end of the IBM Quantum Experience [45]. The interfacing with the quantum
hardware is done using Qiskit [72]. Qiskit allows us to implement 1-parameter and
3-parameter single-qubit unitary operators of the form

U3(θ, ϕ, λ) =

(
cos(θ/2) −eiλ sin(θ/2)

eiϕ sin(θ/2) eiλ+iϕ cos(θ/2)

)
(3.13)

U1(λ) =

(
1 0
0 eiλ

)
.

We decompose the gates in Eq.(3.6) into a combination of U1 and U3 gates. Gates of
the form V ⊗ I and I⊗V are implemented directly as U3 gates. For controlled gates, the
decomposition given in Eq.(3.9) is used where W∈ SU(2) is implemented as a U3 gate
and Uδ is implemented as U1(δ). Hence, we obtain the final circuit decomposition for
our 2-qubit Floquet operator on IBMQ:

24



U = • U1(δ6) W5 • U1(δ4) W3 • U1(δ2)

W6 • U1(δ5) W4 W2 W1

(3.14)
with Wi = U3(θi, ϕi, λi).

An example for the case of κ = π and p = π/2 is shown here. The corresponding
floquet unitary is decomposed into six single qubit gate and controlled-gate as per Eq.
(3.6).

V1 = 1√
2

(
i 1
−1 −i

)
V2 =

(
0 −1
1 0

)

V3 = 1√
2

(
1 1
−1 1

)
V4 =

(
0.688 + 0.288i −0.688i

−0.688i 0.688 − 0.288i

)

V5 =

(
i 0
0 −i

)
V6 =

(
0.688 − 0.288i −0.688i

−0.688i −0.688 − 0.288i

)

For IBM implementation, Vi’s are further decomposed into U3 and U1. Parameters
for different Vi’s for the present case is given below in Table 3.1.

Time evolution after multiple kicks is calculated by applying the Floquet unitary on
the initial state repeatedly. This could be achieved by applying the set of gates given
in Eq.(3.14) consecutively N times to simulate evolution by N time steps. However,
to mitigate the errors which may arise from the increasing number of gates, in our
approach, we decompose the effective N-step unitary UN using the same procedure
as mentioned above. This means that the state after any arbitrary number of steps
can be obtained by applying the same set of gates given in Eq.(3.14) with appropriate
parameters. The advantage of this approach is that the number of gates is fixed and
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Vi’s (θi, ϕi, λi, δi)
V1 (π/2, π/2, π/2,−π/2)
V2 (π,−π, π, 0)
V3 (π/2, 0, 0, 0)
V4 (1.5188, 1.8908, -1.2508, -0.3200)
V5 0, π/2, π/2,−π/2
V6 (1.5188, -3.4616, -0.3200, 0.3200)

Table 3.1: Parameters for U3 and U1 corresponding to six Vi for the floquet unitary with
κ = π and p = π/2

does not grow with the number of kicks. Similarly, time evolution for different values
of κ can be implemented by computing the relevant parameters for the set of gates
corresponding to the unitary UN(κ). This affords us more fine-grained and flexible
control over this parameter compared to other qubit-based realizations where the value
of κ is set by tuning the time duration of interactions between the physical qubits.

After applying the appropriate set of gates to the initial states, the final states
density matrix is constructed using state-tomography circuits built into Qiskit Ignis[73].
Physical quantities of interest can be calculated from this density matrix.

3.3 Performance of quantum simulations

Starting with various initial points for two different values of κ, we apply the quantum
circuit for implementing N kicks on IBM vigo. We reconstruct the resulting final state by
performing quantum state tomography and use the fidelity of the reconstructed state
as a measure of simulation accuracy. For the theoretically predicted state ρth and the
reconstructed state ρvigo, fidelity is given by F(ρvigo, ρth) = (tr(

√√
ρthρvigo

√
ρth))

2. We
observe that there is no systematic loss in fidelity with the number of kicks for different
initial states and values of κ (Fig.3.1). We compute the average fidelity over different κ

values in the range [0.5,6.5] and for different initial states as a function of time. As seen
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in Fig.3.2, the average fidelities remain around 0.87.

Figure 3.1: Fidelity of the tomographically reconstructed 2-qubit state for different initial
states and different κ values on IBM vigo. The inset plot shows the small variation in
fidelity results due to single qubit and C-NOT gates

Existing experimental implementations of QKT have reported either monotonically
decreasing fidelity or a significant drop in fidelity after some particular number of kicks
[7, 5]. In this chapter, the non-decreasing trend in fidelity for a higher number of kicks
can be attributed to the fixed number of gates for the arbitrary number of kicks. By
decomposing the unitary into elementary programmable quantum gates, we effectively
remove any constraints on the parameters of the physical system (QKT) that we can
implement. In the IBM-Q systems, the error varies only with the number of single qubit
physical rotations and CNOT gates [74] acting on each qubit. Since the number of gates
in the circuit remains constant irrespective of the value of κ, we observe that the fidelity
values do not depend on κ. Average fidelity plots for different initial states as a function
of κ are included in Fig. 3.3.
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Figure 3.2: Fidelity of the tomographically reconstructed 2-qubit state averaged over
initial states with (θ, ϕ) ∈ {(2.25, 0), (π/2, π/2), (π/2, 0)} and κ ∈ {0.5, 2.5, 4.5, 6.5} on
IBM vigo. The error bars indicate the standard deviation.

3.3.1 Errors in IBMQ

We have used IBM Q Experience processors - IBM vigo and IBM quito - to obtain
the experimental results presented in this paper. Both processors have 5 qubits and a
Quantum Volume (QV) of 16. These processors were chosen for their low single-qubit
and CNOT errors (error values available on the IBM Q experience website). The
error in the experimental values also depends on the specific qubits chosen for the
computation. For each processor, the computational qubits were chosen to minimize the
error. The sources of error can be both statistical fluctuations and systematic errors in
the hardware implementation [75]. Relaxation and decoherence of the qubits in a noisy
environment are major sources of systematic errors. The CNOT Gate, which involves
two-qubit operations is ten times as noisy as the single-qubit rotations. This is because
of higher errors introduced by unwanted qubit interactions during the implementation
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of multi-qubit operations. There are also read-out errors introduced by the final
quantum measurement process. These errors could be theoretically modeled and the
experimental data could be filtered to account for them. Quantum error-correcting
circuits could also be used to mitigate systematic errors. This could lead to better
agreement between theoretical and experimental values of the physical quantities like
concurrence. However, we do not investigate error mitigation in this work.

Figure 3.3: Average fidelity for 3 different initial conditions and 4 values of κ. We see
that irrespective of the initial points or value of the chaoticity parameter, the average
fidelity is within the expected range. We conclude that the initial states or chaoticity
parameter values do not affect the average fidelity.

Since IBMQ Experience devices are universal quantum computers, one can
implement any unitary transformation using quantum circuits which are composed
of basic quantum logic gates (single qubit rotations and the CNOT operation). The
2-qubit quantum kicked top circuit was composed in IBM’s Qiskit - a Python-based
programming language for the IBM Q Experience. Each circuit was run for 5000 shots
to obtain the measurement statistics. State tomography was performed using the tools
provided by Qiskit for the reconstruction of the density matrix. The reconstructed
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density matrix was used to calculate the relevant physical quantities such as fidelity
and concurrence.

3.4 Periodicity of concurrence as function of chaos
parameter and number of kicks

Figure 3.4: Average concurrence plotted against κ show a periodicity of 2π. The initial
state was an SCS with θ = 2.25 and ϕ = 2.0. The average was taken over 200 steps for the
simulated plot and over 50 steps on IBM-Vigo.

In this section, we study the periodic nature of concurrence in the quantum kicked
top model as a function of both kick strength κ and the number of kicks. We studied
this periodic behavior by doing quantum simulations on the IBMQ simulator and
reproducing it experimentally on IBM Quantum hardware by using the gate-based
approach described in section 3.2. Here, for initial states, we have considered spin
coherent states as described in chapter 2. The initial SCS’s can be written as a product
of a multi-qubit product state and thus exhibits zero entanglement ( concurrence ).

Initializing our qubits into spin coherent states, we calculate the average concurrence
between the qubits for 25 different values of κ ranging from 0 to 12. For a given value of
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(a) (b)

Figure 3.5: (a). A contour plot of concurrence over 50 kicks and different values of κ on
IBMQ-vigo. (b). A contour plot of concurrence over 200 kicks and different values of a
kappa on IBMQ simulator
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κ, the initial SCS was evolved using the circuit given by Eq.(3.14). The state was evolved
upto 200 kicks on the IBMQ simulator and for 50 kicks on IMBQ-Vigo to obtain the final
state as

∣∣θ f , ϕ f
〉
= Un |θo, ϕo⟩. The number of kicks on real hardware is taken to be less

than the simulator to reduce the computational time. For each kick, state tomography
is performed on the final state, and then concurrence is calculated using Eq.(2.8) on
the reconstructed density matrix. The average value of concurrence, i.e., average over
200 kicks on the simulator and 50 kicks on real hardware is plotted against chaotic
parameter κ in Fig.3.4.

A period of κ=2π was observed in both simulators as well as on real hardware.
The difference in the value is due to the presence of error in real quantum hardware.
To study the periodicity in kicks, a contour plot was made as shown in Fig.3.5a and
Fig.3.5b for evolution performed on IBMQ-Vigo and IBMQ simulator, respectively. A
period of 25 kicks can be seen in both plots.

To our knowledge, the periodicity of quantum correlations in the 2-qubit QKT model
has been explored experimentally in only one previous study by Krithika et.al. In 2018
[5], they only considered four different values κ and up to 8 kicks. Contrary to that, by
taking the gate-based approach, we have a much broader range of kicks and chaotic
parameter values. In 2018, Bhosale and Santhanam [36] had done a detailed study
on the periodic behavior of different quantum correlations such as quantum discord,
von-Neumann entropy, concurrence, 3-tangle, and Meyer and Wallach Q measure
analytically and by numerical simulations as a function of kick strength κ and several
qubits, j. They had shown that for a fixed value of j and a given initial state, the
quantum correlations are periodic in κ, with κ = 2jπ being its periodicity. In another
work by Ruebeck et al. [35], they had shown exact (quasi-)periodicity in entanglement
as a function of the number of kicks, and kick strength was shown. The results that
we obtained in our study are in strong agreement with the existing experimental and
theoretical results.
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(a)

(b)

(c)

Figure 3.6: (a).Average concurrence over 200 kicks over 40 divisions in ϕ for θ = 0.8 and
k=3.0 (b).ϕ for θ = π/2 and k=3.0 (c).ϕ for θ = 2.25 and k=3.0 on IBMQ simulator

33



3.5 Evolution of entanglement and signatures of chaos

In this section, we analyze the evolution of entanglement and its relationship to
mixed chaotic-regular classical phase space. The concurrence is taken as a measure of
entanglement for quantum kicked top with j=1. We consider two different values of
κ, κ=3.0, and κ=2.5. Different initial states are chosen from the phase space by taking
different values of (θ, ϕ) shown in Fig. 2.1a and Fig. 2.1b. These states are spin-coherent
states and have zero entanglement and minimum uncertainty value. Each state is
evolved for many kicks by using the quantum kicked top circuit model described in
3.3.

3.5.1 Case A. Chaotic parameter (κ) = 3.0

For κ=3.0, the classical phase space plot is shown in Fig. 2.1b. There are four different
regular islands present for this κ value. These regular islands are centered at (θ, ϕ)=(2.25,
-2.5),(2.25, 0.63),(0.8,-0.7),(0.8,2.5). To study the effect of these islands on average
concurrence, we fix the value of θ as 2.25 and 0.8 as the islands lie on these two lines
drawn on the phase space. By fixing the value of θ=0.8, we scan the classical phase space
by taking different values of ϕ along these lines. In the range of −π to π, we had taken
80 different values of ϕ. Each of these 80 initial points in phase space was evolved in
an IBMQ simulator using a QKT circuit, and average concurrence was calculated. The
average concurrence vs ϕ is shown in Fig. 3.6a. The same is repeated for θ = π/2 and
θ = 2.25 given in Fig. 3.6b and 3.6c respectively.

The minimum value of the average concurrence in Fig.3.6a and 3.6c corresponds to
the fixed points and Period-2 points in classical phase space dynamics. All four points
in the classical phase space mentioned earlier in this section have minimum average
concurrence. As we moved out of these points to chaotic seas through regular regions,
we saw a rapid rise in the average concurrence. To our surprise, these sudden rises in
average concurrence as we came out of islands to the chaotic sea were witnessed in all
four islands centered at different points in phase space. These observations led us to do
further investigation of these signatures in κ = 3.0.
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Instead of fixing θ to only two values, here we considered the range of θ. We took
9 different values of θ in the range of 0 to π. For each given θ, 17 different values of
ϕ were taken in the range of −π to π. Average concurrence was calculated for all 153
points after evolving for 200 kicks. Different curves corresponding to different values
of θ were plotted against ϕ as shown in Fig. 3.7a and Fig. 3.7b. The curves passing
through the islands i.e. θ=0.8(yellow) and θ=2.4 (red) show different curvature in the
region where we have the island in the classical phase plot, as shown in Fig. 3.7a and
Fig. 3.7b respectively.

An initial SCS centered on the regular island exhibits a slow increase in the average
concurrence and undergoes quasi-periodic dynamics, while an SCS in the chaotic
regime shows a faster initial increase in concurrence and a more irregular evolution.
This effect can be seen in the plot. This difference is due to the structure of the
classical phase plot. Here, islands on the classical phase space can be identified using a
concurrence plot. As we move out of the regular islands, the sudden increase in average
entanglement gives us a signature of chaos in quantum dynamics. In [33, 34, 6], the
detailed theoretical study showed entanglement as a signature of chaos in quantum
dynamics for large values of j or in the semi-classical region. It is interesting to note that
our entire work is done in the deep quantum regime, but we can still see entanglement
as a clear signature of chaos in QKT dynamics. In our simulated results, we also show
that for any given value of θ, the maximum value of average concurrence is obtained for
ϕ = mπ where m is an integer. This is because these initial points belong to the period
four orbits as discussed in [35] .

3.5.2 Case B. Chaotic parameter (κ) = 2.5

In the classical phase space for κ=2.5, the regular regions are not as localized as in κ =

3.0. The regular regions are spread out in phase space, and the regular and chaotic seas
are not well separated. Here, we take 9 divisions in θ in the range of 0 to π. This range of
θ covers all the four regular regions in phase space of classical dynamics for κ = 2.5 (Fig
2.1a). For a given value of θ, we further consider 17 different values of ϕ in the range
of −π to π. Each combination of (θ, ϕ) is taken as an initial spin coherent state and
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(a)

(b)

Figure 3.7: Average concurrence over 200 kicks and 17 divisions in ϕ for (a) θ = 0.0 to
1.6 and κ = 3.0 (b) for θ = 2.0 to π and κ = 3.0 on IBMQ simulator
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evolved quantum mechanically using a QKT circuit for 200 kicks. Average concurrence
is calculated for 17 different sets of initial points for fixed θ and plotted against ϕ. For
all 9 values of θ the results are illustrated in Fig 3.8a and Fig. 3.8b.

Here we do not see any irregular nature in the curve that passes through the islands,
unlike the previous case. This is because for κ = 2.5, the regular regions are not
completely isolated, and there is no sudden change in the classical dynamics as we move
out of the fixed points. However, the global minimum value for the average concurrence
(i.e minimum value for the green and blue curve in Fig 3.8a and Fig. 3.8b respectively)
corresponds to the center of the regular regions.

3.6 Relationship between entanglement and delocalization

The periodicity in concurrence, combined with the ability to implement a high number
of kicks, can be exploited to generate detailed average concurrence plots. By averaging
over multiple periods of concurrence in the number of kicks, we can reduce the error in
the value of average concurrence. This allows more detailed observations of signatures
of chaos in entanglement dynamics.

A contour plot of time-averaged concurrence as a function of θ and ϕ for κ = 2.5
reflects the structures of the stroboscopic classical map as shown in Fig.3.9. Furthermore,
our plots have enough resolution to observe that the chaotic regions of the classical
phase space show intermediate concurrence values. The four prominently visible
islands of low concurrence correspond to fixed points of the classical dynamics.
These islands are distinguishable on the hardware plot and the left-right symmetry is
maintained as shown in Fig.3.9c. Points (Jx/j, Jy/j, Jz/j) = (1, 0, 0), (0, 0,−1), (−1, 0, 0)
and (0, 0, 1), which constitute a period-4 orbit present in the classical dynamics of the
system, show the highest values of average concurrence [35, 37, 7, 5]. The contour plots
of average concurrence for various values of κ obtained on the IBMQ simulator are
included in Section 3.6.1.

We note the correspondence between the average concurrence and the degree of
delocalization of various initial states after evolution using the Floquet unitary. This
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(a)

(b)

Figure 3.8: Average concurrence over 200 kicks over 17 divisions in ϕ for (a) θ = 0.0 to
1.6 and κ = 2.5 (b) for θ = 2.0 to 3.6 and κ = 2.5 on IBMQ simulator
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(a) (b) (c)

Figure 3.9: Comparison between classical phase space and contour plot of average
concurrence. (a) Stroboscopic classical map, (b) average concurrence over 200 kicks on
IBMQ simulator and (c) average concurrence over 50 kicks on IBMQ vigo for 289 initial
points and κ = 2.5 .

degree of delocalization [69] can be quantified by calculating the maximum overlap
with respect to the set of minimum uncertainty spin coherent states.

OSCS(|ψ(t)⟩) = max
SCS

|⟨SCS | ψ(t)⟩|. (3.15)

Large values of OSCS correspond to more localized states, as they indicate high
overlap with spin coherent states. Delocalized states show low OSCS values. The values
of OSCS for two different initial states, one in the high concurrence region and one in the
low concurrence region, are plotted against the number of steps in Fig.3.10, and show
the connection between entanglement and delocalization. The corresponding Husimi
distributions for these points are shown in Section 2.3 (Fig.2.2).

This approach of quantifying delocalization is equivalent to the definition of
geometric entanglement given in [56] ( see section 2.4.3). Since all the spin coherent
states are separable, and every symmetric separable state of this Hilbert space is a spin
coherent state, for our case the quantity G(ψ) is exactly equal to the previously defined
OSCS(|ψ⟩). Hence, this definition implies that highly delocalized states have higher
geometric entanglement and more localized states have lower geometric entanglement.
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Figure 3.10: Evolution of OSCS values for two different initial states for 50 kicks on IBMQ
quito. The evolution of initial state leading to higher concurrence ((θ, ϕ) = (π/2, 0))
is more delocalized, i.e., has lower average OSCS than that corresponding to lower
concurrence ((θ, ϕ) = (2.25, 1)). The horizontal dotted lines represent the average OSCS

values for the two cases.

This behavior, in the case of the 2-qubit QKT, agrees with the trend in concurrence. This
observation of the connection between entanglement and delocalization in the deep
quantum regime confirms previous theoretical predictions [69, 76].

3.6.1 Average concurrence contour plots for different values of κ

Here, we show the correspondence between the classical phase space and the average
concurrence contour plots for different values of κ in the range 0 to π. For low values of
the chaoticity parameter (say, κ = 1), the classical phase space is dominated by regular
regions.

40



Figure 3.11: Classical phase space and the corresponding average concurrence contour
plots for κ = 1.0, 2.5, 3.0 and 3.10. The contour plots have been obtained by averaging
over 200 kicks on the simulator backend of IBMQ.

In this case, the corresponding contour plot of concurrence reflects this regular
structure of the phase space which is consistent with the behavior as mentioned in
the results in Section 3.6, i.e., the lowest average concurrence values correspond to the
fixed points, intermediate values to chaotic regions and highest values appear for the
points of period-4 orbits. For higher values of κ, the features in the quantum dynamics
become too localized to be exactly resolvable by the contour plots of 2-qubit average
concurrence. However, we note that the contour plots for κ = 3.0 still accurately reflect
the behavior of the phase space regions as stated in results in Section 3.6. We have
considered the range κ = (0, π) as for the 2-qubit case the concurrence behavior is
symmetric about k = π (Fig. 3.4) with 2π being the periodicity.

3.7 Summary

In this chapter, we have proposed a quantum circuit-based approach to simulate
and explore quantum chaos and demonstrated its advantages over existing methods.
The proposed method can be applied in general to any periodically driven
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finite-dimensional quantum system. In our study, IBM’s 5-qubit open-access quantum
chip (vigo) was used as the experimental platform to implement the proposed approach
for the 2-qubit quantum kicked top (QKT). The Hamiltonian of the QKT can be
exactly expressed in terms of qubits since it is a finite-dimensional quantum system.
Therefore, its evolution operator can be decomposed into quantum gates. Traditionally,
experimental studies of quantum chaos have applied the same set of operations n times
to explore time evolution. Here, we decomposed the unitary evolution operator for n
kicks, Un, into elementary quantum gates. This results in a fixed number of operations
implementing the QKT evolution for any number of kicks. This hybrid combination
of classical processing and quantum computing opens up the ability to perform
high-fidelity experimental studies of quantum chaos in new parameter regimes.
Previous experiments also showed that chaos affects the efficiency of experiments. The
fidelity drops rapidly if the initial state lies in classically chaotic regions, compared to
regular regions. However in our approach, it can been seen that location of the initial
state on classical phase space, i.e., chaotic or regular does not affect the implementation
of the gates. It can been seen from Fig. 3.2 that average fidelity remains almost same
for chaotic and regular initial points. This shows that our method of implementing the
chaotic Hamiltonian is insusceptible from the intrinsic chaos and noise in the system is
only due to the systems’ architecture.

Our results demonstrate the advantages of circuit-based NISQ devices for exploring
fundamental questions in quantum information and quantum chaos despite their noise
and scale limitations. Previous studies [60, 61] have noted that chaos could influence
the efficient and stable operation of quantum computers. In [77], it was shown that
chaos affects the balance between the disorder that maintains the stability of qubits and
nonlinear resonator couplings that are used to manipulate interactions. This plays an
integral role in future transmon device engineering. The gate-based circuit model of
QKT can be used as an efficient tool for studying these fundamentals questions in the
field of quantum information and quantum chaos where these effects are prominent.

Since the value of the chaoticity parameter, κ only determines the parameters of
unitary rotations in the quantum circuit, and since the single qubit rotation errors
are independent of the parameters, we were able to experimentally study chaotic
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dynamics over a wider range of κ and kick number than were previously accessible
to experimental studies. By taking advantage of the high fidelity obtained for both
a large number of kicks and arbitrary κ values, we experimentally demonstrated the
periodicity of entanglement with time and κ with high accuracy. We have shown that
average concurrence can be taken as a clear signature of chaos in quantum kicked-top
motion. It can be used to identify the regular or chaotic regions of the phase space. Our
studies also clearly showed the signature of chaos in the contour plot of average 2-qubit
concurrence despite being in the deep quantum regime. The time average concurrence
plot contains all the structure of the mixed-classical kicked-top phase space along with
different features with great accuracy. It confirms that there is a strong correspondence
between classical and quantum chaotic dynamics. Our studies of dynamics in the deep
quantum regime shed new light on the quantum-classical correspondence by showing
that clear signatures of classical chaos can be identified far away from the semi-classical
regime.

For higher values of j, the approach implemented in the present study to decompose
an arbitrary unitary into an elementary quantum gate will require exponentially more
classical operations. The number of gates also grows double exponentially as we
increase the number of qubits. This will increase the computational cost and introduce
more noise while realizing QKT using several qubits. However, many dynamical
properties like bifurcation, and period doubling can be studied more explicitly in
the QKT when we approach the semi-classical regime [8]. Therefore, it is essential to
develop an efficient decomposition of the unitaries to study these physical phenomena
in detail. Multiple symmetries in the QKT’s floquet operator might allow for a more
efficient decomposition technique. Our findings show that despite the noise and scale
constraints, circuit-based NISQ devices offer advantages for studying fundamental
issues in quantum information and quantum chaos.

We reported the first observation of the correspondence between average
entanglement and delocalization in the 2-qubit QKT. However, it should be noted
that as we go closer to κ = jπ, the quantum-classical correspondence vanishes. We
study this phenomenon in the next chapter in detail, showing the breaking of Bohr’s
correspondence principle for a finite spin and special κ values.

43



Chapter 4

Quantum recurrence in the kicked top
model

This chapter is based on ongoing project with Jack Davis and Shohini Ghose

The quantum-classical correspondence principle generally states that the dynamics
of a quantum mechanical system should reduce to some form of classical dynamics
in a given appropriate limit [1]. Concrete manifestations of this idea include
Bohr’s correspondence principle [78], Ehrenfest’s theorem [11], and the Liouville
correspondence [79, 80]. Such a transition, however, is not always straightforward. It
is in general a difficult problem to determine exactly how far along the classical limit a
system must be in order for the classical structure to emerge, if at all. Much effort has
been put into this question for systems that exhibit classical chaos, where oftentimes a
relatively large quantum number must be present to establish a faithful correspondence
[8, 81].

Bohr’s correspondence principle essentially states that a system constituting large
quantum numbers shows classical properties. A natural question that arises in this
context is whether this principle always holds for large quantum numbers? In this
chapter, our main results contribute to this discussion by describing several families
of quantum spin dynamics, each parameterized by the dimension, that do not behave
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like the analogous classical dynamics for any finite spin quantum number. We study
Bohr’s quantum-classical correspondence in the quantum kicked top model [4], which is
chaotic in the classical limit. It is a finite-size spin-j system of (2j + 1) dimensions. Since
it does not suffer from truncation errors, it is a standard model for studying chaos and
its quantum signatures. QKT is a periodically driven system, whose global phase space
dynamics transits from regular to fully chaotic as the kick strength varies. Previous
work on the muti-qubit representation of QKT [33, 34] has shown that classically chaotic
points on a phase space have a higher rate of entanglement generation than classically
regular points. There are few experimental [7, 39, 5, 67, 82] studies on the small values of
j that also show correspondence between classical and quantum phase space dynamics
and suggest that entanglement can be used as a signature of quantum chaos. The
quantum-classical correspondence becomes more and more distinct as we increase the
quantum number j, as the effective h̄ decreases.

The works of Lombardi and Matzkin [9] explicitly demonstrate that the evolution
of states with initial centroids within a classically regular region can generate
entanglement just as efficiently as those in classically chaotic regions . Using the
quantum kicked top model for j=10, they have questioned the correspondence principle
by showing that entanglement generation in this model depends on the nature
of individual points in classical phase space rather than global behavior. Another
observation mentioned in the paper is about the size of the system and how it relates to
the classical dynamics and semi-classical regime. In a paper by Kumari and Ghose [8],
the authors have analyzed classical periodic orbits and how the stability of these points
and bifurcations affect the correspondence principle, showing that Period − n points
break the correspondence principle at the onset of chaos. They have prescribed criteria
for calculating the quantum number for which one can invoke the correspondence
principle for the initial states localized on these periodic points. Furthermore, in a
work by Ruebeck et al., [35], j = 1 QKT was studied, and the author shows that the
correspondence principle cannot be invoked in this regime. Even though there was
a strong correlation between the classical dynamics and time-averaged entanglement
between two qubits, this correlation is not directly related to classical chaos. In another
work by Bhosle and Santhanam [36], they showed the temporal periodicity for j = 1,
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and κ equal to a rational multiple of π and conjectured that for j > 1, QKT only displays
periodic behavior in kick strength (κ).

In all the earlier works, the breaking of the correspondence principle was either
related to system size or properties of initial classical points. In our work, which is the
focus of this chapter, we show a different way through which Bohr’s correspondence
principle is violated. The breakdown of the quantum-classical correspondence is
observed in the system irrespective of its size or the centroid of the initial state on
the phase space. For specific values of the chaoticity parameter (κ) as a function
of j, the entire quantum dynamics gets repeated after a certain number of kicks.
This temporal periodicity is different for integer and half-integer systems, but it
is not large enough. Therefore, it prohibits the system from exploring all possible
dynamics contrary to the chaoticity parameter values. Our primary tool is the Pauli
group of quantum information and the symmetric multi-qubit realization of the SU(2)
representation that houses the kicked top. As a consequence of this temporal periodicity,
the quantum dynamics are entirely different for those parameters, which were not
observed primarily. Recent work [83] has proposed the so-called pseudo-classical
dynamical explanation of the dynamics when the chaoticity is slightly perturbed away
from the recurrence values, whereas here we focus on (a subset of) the exact values.
We also calculate the stability of the periodic points in the neighborhood of these
particular κ values and quantify it using von-Neumann entropy. We show that this
temporal periodicity is highly stable in the neighborhood of this κ value even for a
large number of kicks. We also provide analytic proofs for the periodicity of quantum
correlations for all values of j. Our results suggest that for specific values of κ, the system
never behaves classically, irrespective of its size. In addition to this observation being
an interesting advancement in probing the correspondence principle in the context
of chaotic systems, it also may be seen as a (partial) kicked-top manifestation of the
quantum resonance phenomenon found in the quantum kicked rotor – another important
and experimentally feasible model used in the field [84, 85, 86].

In the next section, we provide a short proof of the chaoticity periodicity. This is to
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both re-enforce previous studies and establish the information-theoretic framework for
the temporal studies. In section 4.2, we analytically prove the temporal periodicity for
different values of κ as an integer multiple of jπ and provide the numerical simulations
for the case of half-integer multiples of jπ. In section 4.3, we study the stability of these
special values using the von-Neuman entropy and showed that these special values are
highly stable to the perturbation for a large number of kicks. In section 4.4, we discuss
the outlook and summary of this work.

4.1 Periodicity in quantum correlations

Here is a brief section on the periodicity found in the chaoticity parameter κ. We
include it to reproduce previous results using the technique used in subsequent sections.
Consider the set of kicked top unitaries parameterized by κ, {Uκ}κ∈R. It is clear that a
shift in twist strength κ 7→ κ + 4π j leaves the unitary invariant: Uκ+4π j = Uκ. However,
from a correlations perspective in the symmetric multi-qubit picture, it was argued in
Ref. [36] that the entanglement generated between the virtual qubits is periodic in the
chaoticity parameter with period ∆κ = 2π j. That is to say,

Uκ+2π j
LO⇐⇒ Uκ, (4.1)

where LO refers to (symmetric) local operations over the global Hilbert space of the
qubits. Furthermore, the range of any associated entanglement monotone is equal to
the values it takes over evolutions parameterized only by the interval κ ∈ [0, π j]:

Uκ
LO⇐⇒ Uκ̃, κ̃ ∈ [0, π j]. (4.2)

Presented here is a simpler and more direct proof of these facts, valid for arbitrary
spin. As pointed out in [36], there is a recurrent relationship between unitaries separated
by an amount κ = 2π j:

Uκ+2π j = e−i (κ+2π j)
2j J2

z e−ipJy = e−iπ J2
z Uκ.
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The unitary e−iπ J2
z characterizes the difference between the actions of Uk and Uk+2π j on

the Hilbert space. We will show that this operator acts as a symmetric local unitary in
the qubit picture, and so does not modify any correlations between the qubits.

Before doing so, we would like to make a brief clarifying comment regarding the
unitarity of spin operations. When considering a spin-j system as a permutation-invariant
collection of n = 2j qubits, the natural mathematical structure underpinning this is the
tensor product representation of the qubit spin observables,

Ji :=
n

∑
k=1

σ
(k)
i
2

, σ
(k)
i = I ⊗ · · · ⊗ σi︸︷︷︸

k-th tensor factor

⊗ · · · ⊗ I. (4.3)

where σi are Pauli operators. The set of operators {Ji} as defined in Eq. (4.3) realize
the commutation relations of the su(2) algebra, [Ji, Jj] = iϵijk Jk, and form an irreducible
representation when restricted to the symmetric subspace [87]. The operators {Ji} are
still observables over the full Hilbert space (C2)⊗n with well-defined global unitaries
as their exponentiations. In this setting, the full multi-qubit Hilbert space is introduced
first, then a spin-j system is found to be a closed Clebsch-Gordan subspace thereof. If,
however, in the opposite direction, one were to begin with an abstract spin-j system { J̃i}
and isometrically embed it into a larger Hilbert space, then its action on the orthogonal
complement would be arbitrary. The extended/lifted operators in principle do not even
have to be globally Hermitian nor their exponentials unitary; as in [36], for example,
implicitly lifted e−iθ J̃z to a singular operator that annihilates the remaining 2n − (2j + 1)
dimensions. While this approach leads to the correct conclusions, here we avoid the
associated ambiguities by sticking to the perspective of Eq. (4.3) throughout.

With the above in mind, and denoting Zk := σ
(k)
z , consider the operator e−iπ J2

z in the
qubit picture:

e−iπ J2
z = exp

[
− i

π

4
(Z1 + · · ·+ ZN)

2
]

= exp
[
− i

π

4 ∑
k⃗

(
2
k⃗

)
Zk1

1 · · · ZkN
N

]
(4.4)

= ∏
k⃗

exp
[
− i

π

4

(
2
k⃗

)
Zk1

1 · · · ZkN
N

]
,
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where k⃗ = (k1, ..., kN) is a multi-index of positive integers that sums to 2, and (2
k⃗) is

a multinomial coefficient. Separate the multi-indices into those with a single ki = 2
and those that don’t; the former will happen n times, and the associated Pauli operator
squares to the identity:

e−iπ J2
z = exp

[
− i

π

4
I
]n

∏
k⃗ ̸=2

exp
[
− i

π

4

(
2
k⃗

)
Zk1

1 · · · ZkN
N

]
. (4.5)

The remaining indices each have exactly two different slots equal to 1 and so the
multinomial coefficient is always 2. The exponentials consequently reduce to

e−iπ J2
z = e−i nπ

4 ∏
k⃗ ̸=2

(
I⊗n cos

π

2
− iZk1

1 · · · Zkn
n sin

π

2

)
= e−i nπ

4 ∏
k⃗ ̸=2

(
−iZk1

1 · · · Zkn
n

)
. (4.6)

It is already clear from Eq. (4.6) that e−iπ J2
z is a local unitary for an arbitrary spin and so

does not affect any correlations between the qubits.

To find a more compact form of Eq. (4.6) and verify that it is furthermore a symmetric
local unitary, first factor out the (−i) by noting that the total number of indices k⃗ is given
by (2+N−1

N−1 ) = N2+N
2 and so the number of those without a 2 somewhere is N2−N

2 . In
the remaining product, the composite operator in each fixed tensor factor will consist
of exactly N − 1 Pauli Z operators and N2−N

2 − (N − 1) = 1
2(N − 2)(N − 1) identity

operators 1. Altogether this leads to

e−iπ J2
z = (−1)j2 ZN−1

1 · · · ZN−1
N , (4.7)

which is symmetric. This breaks into three cases of spin

e−iπ J2
z =


Z⊗N even integer

−Z⊗N odd integer

e−i π
4 I⊗N half-integer

. (4.8)

1This can be easily verified via an explicit expansion of, for example, (Z1 + Z2 + Z3 + Z4)
2. Also, note

the slight overworking of notation in this section coming from the composition of tensor products: for
example, Z1Z2 := Z1 ◦ Z2 = (σz ⊗ I) ◦ (I ⊗ σz) = σz ⊗ σz
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Appealing to the Hamiltonian symmetries, the work in [36] goes on to argue that the
set of evolutions parameterized by the interval κ ∈ [0, 2π j] contains a sort of reflection
symmetry about κ = jπ. In particular, that

Uκ
LO⇐⇒ Uκ̃, κ̃ ∈ [0, π j], (4.9)

with the important caveat that the state on which the left-hand side of (4.9) acts upon
is related to the state on which the right-hand acts upon via a collective spin-flip (θ 7→
π − θ). We do not reproduce this result here but mention it to emphasize that the value
κ = jπ is a significant one in the context of entanglement generation in the kicked top.

4.2 Temporal periodicity

In this section, we discuss the temporal periodicity of the kicked-top evolution. Unlike
the global periodicity discussed in [36, 35] for spin-1, here we explore how the chaoticity
parameter is related to unitary recurrence and its relationship to classical chaos.

The general expression for the twist unitary is

e−i κ
2j J2

z = e−i κ
8j N ∏

k⃗ ̸=2

(
I⊗N cos

κ

4j
− iZk1

1 · · · ZkN
N sin

κ

4j

)
, (4.10)

where Zk := σ
(k)
z . It reduces to

e−i π
2 J2

z = e−i π
8 N ∏

k⃗ ̸=2

1√
2

(
I⊗N − iZk1

1 · · · ZkN
n

)
(4.11)

This is a difficult expression to evaluate; therefore we want an alternative expression
of this operator in qubit space. The proof for temporal periodicity in this case is of two
parts. In the first part, we suggest an equivalent expression of the twist operator which
is linear in Jz and then we prove the relation between the two. In the second part of the
proof, we use this equivalent expression to show the temporal periodicity.
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4.2.1 Twist strength κ = jπ

The case of twist strength κ = π j yields a more interesting temporal periodicity that
also depends on the spin being an integer or half-integer.

Integer spin

For κ = jπ and integer value of j, we show that

e−i π
2 J2

z = e−i π
4

[
I⊗N + i(iσz)⊗N

√
2

]
(4.12)

by comparing the action of the two expressions on a computational basis.

Any N-qubit state with hamming weight k is written as

∣∣∣D(k)
N

〉
=

∣∣∣∣∣∣00 · · · 0︸ ︷︷ ︸
N−k

⊗ 1 · · · 11︸ ︷︷ ︸
k

〉
. (4.13)

With this in mind, let’s prove Eq. (4.12). Since any N-qubit state with the same hamming
weight is an eigenstate of Jz with the same eigenvalue, the action of Jz can be written as,

Jz

∣∣∣D(k)
N

〉
=

(N − 2k)
2

∣∣∣D(k)
N

〉
. (4.14)

J2
z

∣∣∣D(k)
N

〉
=

(N − 2k)2

4

∣∣∣D(k)
N

〉
. (4.15)

e−i π
2 J2

z

∣∣∣D(k)
N

〉
= e−i π

2
(N−2k)2

4

∣∣∣D(k)
N

〉
. (4.16)

Acting with right hand side of the Eq. (4.12) on the N-qubit (
∣∣∣D(k)

N

〉
) state gives,
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e−i π
4

[
I⊗N + i(iσz)⊗N

√
2

] ∣∣∣D(k)
N

〉
= e−i π

4

[
I⊗N + (i)N+1(σz)⊗N

√
2

] ∣∣∣D(k)
N

〉
= e−i π

4

[
1 + (i)N+1+2k

√
2

] ∣∣∣D(k)
N

〉
(4.17)

Now we will show that Eq. (4.16) and Eq. (4.17) are equivalent, which implies the
equation Eq. (4.12) holds,

e−i π
2
(N−2k)2

4 = e−i π
4

[
1 + (i)N+1+2k

√
2

]
(4.18)

Since N is even, set N = 2m, where m ∈ {1, 2, ..... N
2 }. Therefore the left-hand side of

Eq. (4.18) reduces to,

e−i π
2
(N−2k)2

4 = e−i π
2 (m−k)2

= e−i π
2 s2

(4.19)

where s ∈ {1, 2, .....m}. Here m and k can be odd or even. If k and m are both odd or
even then s is an even number and otherwise s is an odd number. Therefore we get two
solutions for the above case, i.e.,

e−i π
2
(N−2k)2

4 =

1 when s is even, i.e., (m − k) is even

−i when s is odd, i.e., (m − k) is odd
(4.20)

Now, the right-hand side of the Eq. (4.18) takes the form,

e−i π
4

[
1 + (i)N+1+2k

√
2

]
= e−i π

4

[
1 + (i)2(m+k)+1

√
2

]
(4.21)
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where m ∈ {1, 2, ..... N
2 }. Since (2(m + k) + 1) is always an odd number, we can split it

into two forms, (4l + 1), when both m and k are even or odd (i.e., (m − k) is even), and
(4l − 1) otherwise (i.e., (m − k) is odd) which results in,

(i)N+1+2k =

+i when 2(m + k) + 1 = 4l + 1

−i when 2(m + k) + 1 = 4l − 1
(4.22)

Therefore in this case we get two solutions as well which are of form

e−i π
4

[
1 + (i)N+1+2k

√
2

]
=

1 when 2(m + k) + 1) = 4l + 1, i.e., (m − k) is even

−i when 2(m + k) + 1) = 4l − 1, i.e., (m − k) is odd
(4.23)

Since the solutions of Eq. (4.20) and Eq. (4.23) are the same, the relation in Eq. (4.12)
is proved.

In the second part of the proof we now show that the Floquet operator shows
temporal periodicity. This can be done through repeated use of the Pauli group
commutation relations. For any two elements g and h of a group G, a commutation
relation is defined as

[g, h] := g−1h−1gh (4.24)

First, we define the rotation part of the Floquet operator as

e−ipJy = (I cos
p
2
− iσy sin

p
2
)⊗N (4.25)

for p = π
2 , the above expression reduces to

γ⊗N := e−i π
2 Jy = (I cos

π

4
− iσy sin

π

4
)⊗N. (4.26)
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Therefore the commutation relation between γ and σz is given as

[σz, γ] = σ−1
z γ−1σzγ

= iσy (4.27)

This implies
σzγ = −γσx (4.28)

Similarly,
σxγ = γσz (4.29)

We will use the above relations for our upcoming proofs. To show the temporal
periodicity, we will take the fourth power of the full unitary and compute its irreducible
form.

U4
π j =

[
e−i π

4
√

2

(
I⊗N + i(iσz)

⊗N
)(

I − iσy√
2

)⊗N
]4

=
e−iπ

4

[(
(I⊗N + i(iσz)

⊗N)γ⊗N
)]4

=
e−iπ

4

[
(I⊗N + i(iσz)

⊗N)

(
(I⊗N + i(iσx)

⊗N)γ⊗N
)3
]

γ⊗N

=
e−iπ

4

[
(I⊗N + i(iσz)

⊗N)(I⊗N + i(iσx)
⊗N)

(
(I⊗N + i(iσz)

⊗N)γ⊗N

)2]
(γ⊗N)2

=
e−iπ

4

[
(I⊗N + i(iσz)

⊗N)(I⊗N + i(iσx)
⊗N)(I⊗N + i(iσz)

⊗N)(I⊗N + i(iσx)
⊗N)

]
(γ⊗N)4

=
e−iπ

4

[
(I⊗N + i(iσx)

⊗N + i(iσz)
⊗N − (iσy)

⊗N)

]2

(−1). (∵ (γ⊗N)4 = −I)

=
−e−iπ

4

[
− 4(iσy)

⊗N)

]
.

=− (iσy)
⊗N (4.30)
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Therefore

U4
π j =

[
e−i π

4
√

2
(I⊗N + i(iσz)

⊗N)
1√
2
(I − iσy)

⊗N

]4

= −(iσy)
⊗N (4.31)

Using the above relation, we show that the Floquet operator exhibits the finite-time
periodicity

U8
π j = I ∀ integer j. (4.32)

Figure 4.1: The Husimi plot of the system with j = 50 and κ = jπ. Here it can be
seen that after every 8 kicks state returns to its initial state, thus showing the temporal
periodicity of 8 kicks. Initial state is centred at (θ, ϕ) = (2.25, 2.0).

The effect of the above relation, Eq. (4.55) can be seen on a spin-coherent state in
Fig. 4.1. We show the Husimi plot for j = 50 system with the initial state as θ = 2.25
and ϕ = 2.0. At this value of κ, after applying the rotation, the kick part of the unitary
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(Eq. 4.12), splits the state into two and creates the equal superposition of the two spin
coherent states. On applying the second rotation, the state gets rotated by π/2 along
the y-axis. Kicking it again with the non-linear part of the unitary splits the state again
and creates an equal superposition of four spin coherent states. Further action of the
unitary recombines the superposition of four to two spin coherent states. Moreover,
after the four kicks, the state again becomes a spin-coherent state but gets rotated by
π along the y-axis. On applying the unitary for another four times, the dynamics just
retrace the previous path on the phase space, and thus, after every eight kicks system
returns to its initial state. It should be noted that it is the combined effect of rotation
and kick part that we get U8 = 12j, and thus any initial spin coherent state centered
at |θ, ϕ⟩ will show similar behavior. It should also be noted that while the above is
the generic temporal periodicity, certain states related to the Hamiltonian symmetries
will experience a shorter orbit. In particular if we take the initial state as |+⟩y, i.e.
(θ, ϕ) = (π/2, π/2), then the rotation part of the unitary will be ineffective. The twist
(4.12) will create the superposition of |+⟩y and |−⟩y; it can be shown that the evolution
reduces to a period-4 orbit for even integer spins and a period-2 orbit for odd integer
spins. However, at the end of every eight kicks, any spin coherent state centered at any
point on the phase space returns to its original state.

Half-integer spin

In the case of half-integer spin and κ = jπ, the general twist operator( Eq. (4.10)),
happens to be equivalent to the following unitary in the qubit picture:

e−i π
2 J2

z =
e−i π

8
√

2

[
ei π

2 Jz + e−i π
2 Jz
]

(4.33)

=
e−i π

8
√

2

[(
I + iZ√

2

)⊗N
+

(
I − iZ)√

2

)⊗N
]

. (4.34)

In this case, as well, we show the equivalence relation by its action on N-qubit basis
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Figure 4.2: The Husimi plot of the system with j = 50.5 and κ = jπ. Here it can be
seen that after every 12 kicks state returns to its initial state, thus showing the temporal
periodicity of 12 kicks. Initial state is centred at (θ, ϕ) = (2.25, 2.0) .

states. Again the twist operator acts in the same way as Eq. (4.16). The right-hand side
on Eq. (4.33) acts in the following way

e−i π
8

1√
2

[
ei π

2 Jz + e−i π
2 Jz
] ∣∣∣D(k)

N

〉
= e−i π

8
1√
2

[
ei(N−2k)π

4 + e−i(N−2k)π
4

] ∣∣∣D(k)
N

〉
, (4.35)

Eq. (4.33) and Eq. (4.35) imply,

e−i π
2
(N−2k)2

4 = e−i π
8

1√
2

[
ei(N−2k)π

4 + e−i(N−2k)π
4

]
(4.36)

To prove the above relations, let’s first consider the left-hand side of Eq. (4.36). Since
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N is odd and 2k is even, (N − 2k) will always be odd and it will vary from −N to N.
Therefore, (N − 2k)2 will vary from 1 to N2. Define m such that

N − 2k := 2m + 1 (4.37)

where m ∈ {0, 1, 2, .., N−1
2 }. Therefore,

e−i π
2
(N−2k)2

4 = e−i π
2
(2m+1)2

4

= e−i π
8 e−i πm(m+1)

2 (4.38)

Here it can be seen that Eq. (4.38) takes a value e−i π
8 {1,−1,−1, 1} for m = {0, 1, 2, 3}

and it is the same for m mod 4.

Now consider the right-hand side of the Eq. (4.36). It can be written as

e−i π
8

1√
2

[
ei(N−2k)π

4 + e−i(N−2k)π
4

]
= e−i π

8
1√
2

[
2 cos((N − 2k)

π

4
)

]
(4.39)

where (N − 2k) ∈ {−N, N + 1, ...N}. Since cosine is an even function and (N − 2k) is
odd of the form (2m + 1), the argument of the cosine function only varies from 1 to N.

e−i π
8

1√
2

[
ei(N−2k)π

4 + e−i(N−2k)π
4

]
= e−i π

8
1√
2

[
2 cos((2m + 1)

π

4
)

]
(4.40)

Here also it can be seen that Eq. (4.40) takes a value {1,−1,−1, 1} for m = {0, 1, 2, 3}
and it is same for m mod 4. Therefore, the proof of Eq. (4.36) is complete.

To show the temporal periodicity of the full floquet operator, we will use the
expression of the twist operator given in Eq. (4.33) along with the rotation part of the
unitary given by Eq. (4.26) and we consider its sixth power
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U6
π j =

[
e−i π

8
1√
2

(
ei π

2 Jz + e−i π
2 Jz

)
γ⊗N

]6

(4.41)

We use a similar trick as in the integer-spin case of pulling the rotation part of U6 to the
end using group commutator relations. This leads us to

U6
π j =

e−i 3π
4

8

[(
ei π

2 Jy + e−i π
2 Jy

)(
ei π

2 Jz + e−i π
2 Jz

)]3

(γ⊗N)6

=
e−i 3π

4

8
A3(iσy)

⊗N. (4.42)

where A is composed of the terms inside the square brackets. Now we compute A2 and
we show that A3 reduces to I with some coefficient. In the next few steps we repeatedly
used the following relations,

e+i π
2 Jb e−iθ Ja e−i π

2 Jb = ϵabc e−iθ Jc where (a, b, c) ∈ (x, y, z) (4.43)

and (
e±i π

2 Ja e±i π
2 Jb

)3

= −I where (a, b) ∈ (x, y, z). (4.44)

Let’s write A2 as

A2 =

[
e+i π

2 Jy e+i π
2 Jz + e+i π

2 Jy e−i π
2 Jz + e−i π

2 Jy e+i π
2 Jz + e−i π

2 Jy e−i π
2 Jz

]2

.

using Eq. (4.43) and Eq. (4.44) in the above expression we get

A2 = (e−i π
2 Jy e−i π

2 Jz)2 + 2(e+i π
2 Jy e+i π

2 Jx) + 2(e+i π
2 Jx e+i π

2 Jz)

+ 2(e+i π
2 Jx e−i π

2 Jz) + (e+i π
2 Jy e−i π

2 Jz)2 + (e−i π
2 Jy e−i π

2 Jx)

+ 2(e−i π
2 Jx e−i π

2 Jz)2 + (e−i π
2 Jx e+i π

2 Jz) + (e−i π
2 Jy e+i π

2 Jz)2

+ (e−i π
2 Jy e+i π

2 Jx) + (e−i π
2 Jy e−i π

2 Jx)2 + (e−i π
2 Jy e−i π

2 Jz)2.

(4.45)
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Multiplying the above expression with A, we get,

A3 = 8 I. (4.46)

Using Eq. (4.41) and Eq. (4.46) we get

U6
π j = e−i 3π

4 (iσy)
⊗N. (4.47)

Finally,

U12
π j = e−i π

2 I. (4.48)

Similar to the case of an integer-spin, in the case of a half-integer we observe the
splitting of the initial spin-coherent state. After six kicks we see an effective rotation
along the y-axis by an angle π. Fig 4.2 shows the evolution of an initial state for j = 50.5.
The plot shows the splitting of the states taking place, and after every 12 kicks the states
recombine (instead of 8 kicks), as seen in the case of integer spin. States associated with
Hamiltonian symmetries again experience a reduced orbit length. For the initial state as
|+⟩y, i.e. (θ, ϕ) = (π/2, π/2), the evolution reduces to a period-3 orbit.

4.2.2 Twist strength κ = 2jπ

The Floquet operator in the case of κ = 2jπ is

U2π j = e−iπ J2
z e−ipJy , (4.49)

where e−iπ J2
z is a symmetric local unitary in the qubit picture. The consequence of this

on any temporal periodicity strongly depends on whether the spin is an integer or a
half-integer.
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Integer spin

In the case of integer spin the evolution squares to the identity regardless of the
y-rotation angle: U2

2π j = I⊗n. This can be seen by using the integer forms of Eq. (4.8).

As U2
2π j is a composition of symmetric local unitaries it suffices to consider a single

tensor factor:

[Z(I cos
p
2
− iY sin

p
2
)]2 = [Z cos

p
2
− X sin

p
2
]2 = I. (4.50)

See Fig. 4.3 for a visual interpretation through tracking the shared Bloch vector.
After the first y-rotation the twist effectively acts as a π-rotation about the z axis.
Consequently, the second y-rotation undoes the first and the final twist rotates back
to the starting point. Note that because each step in this process is a rigid rotation any
initial spin coherent state will remain so throughout, and no correlations are generated.

Half-integer spin

In the case of half-integer spin the twist becomes a scaled identity operator, leading to a
temporal periodicity up to the global phase of N kicks under the condition

I = e−ipNJy ⇒ N =
2π

p
. (4.51)

Thus only when p is a rational fraction of π does there exist a temporal periodicity.
Regardless however of the value of p, the evolution of a state is only via a set of rotations
along one axis.

It is interesting to see that in the half-integer case, the rotation angle p is critical for
determining the existence of a temporal periodicity while in the integer case, p has no
effect. In both cases, as expected due to the lack of entanglement, the evolutions are not
ergodic in the sense of exploring Hilbert space.
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Figure 4.3: Evolution of the Bloch vector associated to any reduced qubit state of full
state with even number of qubits for κ = 2jπ. After two kicks the state returns to
its initial point, showing a two-step temporal periodicity. The initial point is (θ, ϕ) =

(2.25, 2.0).

4.2.3 Twist strength κ = 3jπ

The case of twist strength κ = 3π j is easy to evaluate as it can be viewed as a
composition of the previous two cases. In this case, the twist operator takes the form

e−i κ
2j J2

z = e−i 3π
2 J2

z (4.52)

= e−iπ J2
z e−i π

2 J2
z

= Uκ=2π j Uκ=π j.

Here, Uκ=2π j and Uκ=π j refer to the twist part of the unitary for the corresponding κ

values. Similar to the case of κ = jπ, the integer and half-integer spin will behave
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differently in this case as well. However, the periodicity will be the same as that of
κ = jπ.

Integer spin

For the integer spin, the twist operator can be written as

e−i 3π
2 J2

z = Uκ=2π j Uκ=π j (4.53)

= (−1)j σ⊗n
z e−i π

4

[
I⊗N + i(iσz)⊗N

√
2

]
.

The full Floquet operator is given by

U3π j =

[
Uκ=2π j Uκ=π j

][
1√
2
(I − iσy)

⊗N
]

(4.54)

= (−1)j σ⊗n
z e−i π

4

[
I⊗N + i(iσz)⊗N

√
2

]
1√
2
(I − iσy)

⊗N

= (−1)j e−i π
4

[
σ⊗N

z + iN+1 I⊗N
√

2

]
γ⊗N.

Now, taking the fourth power of the Floquet operator and using the same technique of
group commutators relations, we get

U4
3π j = e−iπ (iσy)

⊗N

This gives us the periodicity for this case as

U8
3π j = I ∀ integer j. (4.55)
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Half-Integer spin

For the case of half-integer spin, we can write the Floquet operator as

U3π j = Uκ=2π j Uκ=π j (4.56)

=

[
e−i π

4 I⊗N
][

e−i π
8

√
2

[ (
I + iZ√

2

)⊗N
+

(
I − iZ)√

2

)⊗N ]]
γ⊗N

=
e−i 3π

8
√

2

[ (
I + iZ√

2

)⊗N
+

(
I − iZ)√

2

)⊗N ]
γ⊗N.

where the twist part is written using Eq. (4.8) and Eq. (4.33). Using similar techniques
as in the case of κ = jπ, we get the 12-th power of the full Floquet operator as

U12
3π j = e−i π

2 I. (4.57)

Therefore, for κ = 3jπ, the Floquet operator has the same periodicity as for κ = jπ
for both integer and half-integer spin.

4.2.4 Twist strength κ = jπ
2

Let us now investigate the case of κ = jπ
2 . Here the difference between integer and

half-integer spin is strongest, though the results are entirely numerical.

Integer spin

Using the Gaussian sum decomposition [83], for integer spin the twist operator e−i π
4 J2

z

splits into the superposition of rotations

1
2

[
e−i π

4 I + e−i π
2 Jz + ei 3π

4 e−iπ Jz + e−i 3π
2 Jz
]
. (4.58)
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In the qubit picture this becomes

e−i π
4 J2

z =
1
2

[
e−i π

4 I⊗n +

(
I − iZ√

2

)⊗n

ei 3π
4 (iZ)⊗n +

(
I + iZ√

2

)⊗n
] (4.59)

where we have used the fact that n is even to simplify. Numerical calculations suggest
a temporal periodicity with period 48,

U48
π j
2
= I ∀ integer j. (4.60)

This has been confirmed up to spin j = 500 where the Hilbert–Schmidt distance ∥U48
π j
2
−

I∥ remains zero within the working error tolerance of 10−10. And similar to the previous
κ = π j case (both integer and half-integer) here the Floquet operator raised to half
the periodicity (i.e. 24) also acts as an effective π-rotation about the y-axis up to some
global phase. Cat-like splitting and recombination cycles were furthermore observed
in the Husimi function tracking of a generic spin coherent state. Part of the difficulty
in showing this analytically comes from determining the twist operator in the qubit
picture as in Eqs. (4.12) and (4.33). Numerics also confirm a period-48 recurrence at
κ = π j

2 + 2π j = 5π j
2 .

We also note what appears to be two accidental temporal recurrences present in low
dimensions at this chaoticity value; for j = 1 and j = 3 the evolution repeats after only
16 kicks rather than 48. This observation is distinct from the continued theme of the
special states |±⟩y experiencing a reduced orbit of 24 for even values of j and 4 for odd
values of j which we numerically verified.

Half-integer spin

In the half-integer case we surprisingly find no temporal periodicity for κ = π j
2 . This

was numerically concluded by computing the entanglement entropy of any one of the
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reduced constituent qubits,

ρ =
1
2

(
1 − ⟨Sz⟩ ⟨S−⟩
⟨S+⟩ 1 + ⟨Sz⟩

)
, (4.61)

via the collective spin observables {Sz, S± = Sx ± iSy} where Si = Ji/j [?]. This
approach was used instead of Hilbert-Schmidt distance to avoid optimizing over the
angles φ that could have a priori appeared in a hypothetical periodicity of the form
Un = eiφ I.

All that is needed to conclude the lack of a global recurrence is the identification of
a spin coherent state that never returns to product form. We thus focus on our running
example of |θ, ϕ⟩ = |2.25, 2.0⟩. We found that up to spin j = 501

2 the single qubit
dynamical entropy never falls below 10−5 within the first 5000 kicks. In fact, the entropy
generally increased with dimension. Fig. 4.4 plots the smallest entanglement entropy
obtained by any of qubits throughout the first 5000 kicks. As can be seen, higher spins
experience a highly entangled orbit, remaining close to the upper bound of Smax = ln 2.

Further evidence supporting the lack of a recurrence can be found in the specific case
of spin j = 3

2 , the smallest possible kicked top applicable to this scenario. Recently, many
aspects of this low-dimensional system were solved exactly, including the single-qubit
linear entropy

S(lin)
ρ = 1 − Tr

[
ρ2
]

(4.62)

of various initial spin states as a function of twist strength and kick number n [37]. In
particular, the single-qubit linear entropy of the state Un

κ |+⟩y was found to be

S(lin)(n, κ) = 4χ2U2
n−1(χ)[1 − 2χ2U2

n−1(χ)], (4.63)

where

Un−1(χ) =
sin(nγ)

sin(γ)
(4.64)

are the Chebyshev polynomials with arguments related to the twist strength via

χ = cos(γ) =
1
2

sin
(κ

3

)
. (4.65)
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Figure 4.4: Minimum single-qubit entropy within the first 5000 kicks at κ = π j
2 as a

function of spin. Initial spin coherent state is centred at (θ, ϕ) = (2.25, 2.0).

Eq. (4.63) may be efficiently computed using symbolic programming and we found that
the linear entropy does not exactly vanish within the first million kicks.

Given that a recurrence is almost certainly not present in the j = 3/2 system at this
twist strength, it seems highly unlikely that a family of recurrences exist, one for each
half-integer j > 3/2. This argument has an added strength by focusing on the special
state |+⟩y, which, due to the Hamiltonian symmetry of the system, has a history of
experiencing a reduced recurrence time when a global periodicity exists.

The lack of periodicity at this κ value also shows that in general, not all twist
strengths commensurate to π yield an exact recurrence.

4.2.5 Landscape of periodicity

As mentioned in Sec. 4.1, the full Floquet operator remains invariant under the
transformation, κ → κ + 4jπ, i.e., Uκ = Uκ+4jπ. This results in identical dynamics for
any initial state on the transformation of 4jπ in κ values. So the dynamics are similar
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for κ = 0 and κ = 4jπ. Therefore we get a unique evolution of quantum states only up
to 4jπ. Table 4.1 summarizes our results. With these recurrences established, a natural
question to ask is if there are others. To this end, we have performed a numerical search
for such recurrences characterized by κ = π j r

s for all coprime 1 ≤ r, s ≤ 10, and have
found none. This was done by computing the ∥UN

κ=π j r
s
− I∥ for the different sets of r

ans s, with j = 15 and j = 15.5 upto 500 kicks. Numerical simulations suggests that
there are no other sets of r and s that shows the temporal periodicity, than what we
have found. This therefore places constraints on any additional values of κ that yield a
state-independent finite periodicity.

In the range (0, 4jπ), we have considered κ of the form mj π
2 . For all even values of

m, we have analytically calculated the periodicity in the previous section. For all the
odd values of m, our numerical simulations suggest that for the integer-spin system,
U48 = I. The periodicities of different κ values are given in Table 4.1 below. For a given
κ and j, if κ mod 4jπ is one of the values listed in the table, then the system will show
the periodicity. In Fig. 4.5 we have taken κ as integer and half-integer multiples of π

and different system sizes ranging from 1 to 100 spin values. The different colours show
different periodicities. Here, it can be seen that for a given value of κ, as we increase
system size, the transition from quantum to classical is not smooth. It should be noted
that the special κ for different values of j shown in Fig.4.5 are the ones we found in our
study. There may be other values for which the correspondence does not hold and thus
the hunt for other special parameters continues.

4.3 Stability analysis

In the previous section we showed that for certain values of the chaoticity parameter
κ, the quantum kicked top unitary acquires a temporal periodicity, and therefore does
not reflect the classical dynamics, chaotic or otherwise. Here we discuss the stability of
these special parameters via perturbations of the form κ̃ = κ + δ, where κ̃ is one of the
above special values and δ is some small deviation.
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Figure 4.5: Here we have taken integer and half-integer values of j and κ. We calculated
the set of j and κ for which we observe the anomalous periodicity.
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Figure 4.6: Average entanglement entropy with j = 25.5 and κ = π j + δ, calculated
on a grid of 70 x 140 initial spin coherent states. Each initial state is time-averaged
over 10 applications of U12

π j+δ to see the cumulative effect of the error δ. Smax = {7 ×
10−11, 2 × 10−3, 0.6097, 0.6868} is the maximum time average entanglement entropy, for
δ = {0.001, 0.1, 1, 3}, respectively.
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(a)

(b)

Figure 4.7: Mean value of time averaged Ssq over entire phase with 70 x 140 initial spin
coherent states with κ = jπ + δ and different system sizes. (a). j is integer. Each initial
state is time-averaged over 10 applications of U8

π j+δ. (b). j is half- integer. Each initial
state is time-averaged over 10 applications of U12

π j+δ.
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chaos parameter periodicity
Integer spin Half-integer spin

κ = 0 4 4

κ = jπ
2 48∗ NE*

κ = jπ 8 12

κ = 3jπ
2 48∗ NE*

κ = 2jπ 2 4

κ = 5jπ
2 48∗ NE*

κ = 3jπ 8 12

κ = 7jπ
2 48∗ NE*

κ = 4jπ 4 4

Table 4.1: Periodicity value for different κ values and p=π
2 . Here (*) represents results

from numerical simulation and NE signifies the non-existence of periodicity.

We vary δ from 0 to 3 and evolve the initial spin coherent state with UT(κ + δ), where
T is the temporal periodicity and κ = {2jπ, jπ, jπ/2}. Therefore UT(κ + 0) = 12j+1 with
different values of T for different j and κ value as mentioned in the previous section .
The perturbed Floquet unitary is written as

UT
κ,δ =

[
exp

(
− i

κ + δ

2j
J2
z

)
exp

(
− i

π

2
Jy

)]T

,

=

[
exp

(
−i

δ

2j
J2
z

)
· Uκ

]T (4.66)

where Uκ is given by Eq. (2.2) with κ = {2jπ, jπ, jπ/2}. To quantify the stability, we
used von-Neumann entropy (Ssq) of the reduced density matrix of a single qubit. Since
we are starting with a spin coherent state, Ssq = 0 initially. Applying UT

κ with δ = 0
gives the same state as an initial state. Therefore, there is no generation of entanglement
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in the system and Ssq remains 0. As we increase δ, Ssq becomes non-zero.

Fig 4.6 shows the average Ssq for j = 15.5, κ = jπ + δ with different δ values after the
action of UmT(κ + δ), where m ∈ (0, 10). We can see that for low values of δ, there is no
distribution to the plot as Ssq remains 0. After a certain value, correlations build up in
the system but are still very low. On further increasing δ, the system loses its temporal
periodicity and shows a high value of Ssq, indicating chaotic behavior. Extending this
analysis to different system sizes, we calculate the mean value of Ssq, over the entire
phase space for every δ. We repeat this for different system sizes j. As seen from Fig.4.7a
and Fig.4.7b, the value of δ where the system loses its temporal periodicity does not
depend on the system size. However, it is different for the integer and half-integer
values of j. For κ = jπ, an integer value of j, the system loses stability at δ = 0.01,
whereas for half-integer value of j, δ = 0.1 is the critical point. It is important to note
that with j as a half-integer, the system is one order more stable than for j as an integer
value. κ = jπ

2 is even more unstable for integer spin, with the critical δ being of order
10−3

This effect of δ can be understood in the following way. Chaos is generated in
the quantum kicked top model due to the non-linear part of the Hamiltonian, which
depends on twist operator exp

(
−i κ

2j J2
z

)
. The non-linear parts, which are one-axis

twisting, create the shearing of the state to create squeezed spin states. This changes
the quasi-probability distribution ( or Husimi distribution ) on the sphere [88]. Here, by
shearing, we mean that the state will be stretched and will become delocalized on the
sphere. The degree of shearing directly depends on the strength of κ. Since shearing is
impulsive, combined with rotation, it destroys the coherent structure of the state and
spreads it over the entire sphere. However, at these special values of κ, the non-linear
term is unable to create any shearing of the state. Instead, it splits the states and creates
a superposition of the split states, as shown in Fig.4.1 and Fig.4.2. As we introduced
the perturbation, δ, in the chaoticity parameter ( see Eq. (4.66)), the effect of the unitary
changes. Although Uδ=0 is not able to create shearing, exp

(
−i δ

2j J2
z

)
creates the shearing.

However, if δ is not strong enough, then we do not see any shearing as in the case of
δ < 0.1 for the half-integer value of j and δ < 0.01 for the integer value of j for a very
long time. Once δ is strong enough to create shearing and break the coherent structure
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of the state, the system becomes highly delocalized and spreads over the entire phase
space. It is surprising to note that for any values of j, the shearing caused by the δ part
of the unitary is the same. This is why the critical value of δ, where the system loses
stability, is independent of the system’s size.

4.4 Discussion

Previous studies regarding the correspondence between classical and quantum
dynamics have shown that a chaotic system shows signatures of classical properties
in large quantum number limits [4, 38, 34]. A classically chaotic initial state shows
exponential growth in quantum correlations, whereas for an initial state centered in
regular regions, the growth of quantum correlations is low [33, 67]. This helps to
study the chaos in quantum dynamics, whose classical limit is chaotic, and thus Bohr’s
correspondence was established. In deep quantum regimes, there are studies that show
some level of correspondence between the classical phase space and entanglement
phase space dynamics [5, 35, 39, 36, 7].

Nevertheless, the transition between classical and quantum dynamics is not plain
sailing. Many studies showed that Bohr’s correspondence principle breaks down due
to the finite size of the Hilbert space [13, 89]. In quantum kicked top, which has a
mixed phase space, for a specific parameter, it was shown before that classical instability
and initial points that are periodic, show the breakdown of this principle [8]. Bohr’s
correspondence was quantified in the vicinity of periodic orbits, and a set of criteria
was proposed for invoking the correspondence principle. In another work by Lombardi
et. al. [9], it was shown that initial states centered at regular points in classical phase
space could be entangled more efficiently, breaking the correspondence principle. This
suggests that entanglement generation in the kicked top depends on the specific details
of the classical dynamics rather than its global properties. In all these works, the
breaking of the correspondence principle was shown to be due to system size or the
properties of the initial points.

In this chapter, we have discussed a new way of breaking Bohr’s correspondence
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principle, which depends on the global parameters and is independent of the specific
details of classical phase space or quantum number (system size). We have shown that
at specific values of κ and p, the system attains temporal periodicity, prohibiting the
system from exploring the entire phase space even though classical dynamics at these
parameters are entirely chaotic. These temporal periodicities are a unique feature of
quantum dynamics and are in addition to the periodicity available due to classical
dynamics. The chaos in the quantum evolution of the quantum kicked top is generated
due to the non-linear part of the Hamiltonian, whose strength is given by κ, which is
also known as one-axis twisting. This creates a shearing of the spin coherent states at
the end of every kick. The shearing, along with the rotation, results in chaotic dynamics.
However at particular values of κ, the kick part of the unitary is unable to create the
shear. It either becomes a rotation, or it splits the state. Therefore, this behavior is the
same for all initial spin coherent states. This is contrary to classical dynamics, where
periodicity is a property of both parameters and the initial state.

The classical equations of motion are non-linear in nature. The properties of the
initial state determine the temporal periodicity along with the system parameters.
This can be seen in the kicked-top model. It has a mixed classical phase space where
certain regions have regular dynamics, and others have chaotic dynamics for the same
values of the parameters. On the other hand, in quantum evolution, being a linear
map, the periodicity in the unitary matrix is enough to ensure the repetition of states.
Therefore, these periodicities are independent of the initial states and are in addition
to the periodicity that arises in classical dynamics due to the effect of parameters and
regular orbits.

It should be noted that these present findings do not disprove earlier results about
the correspondence between the classical and quantum dynamics in the kicked top.
Quantum dynamics of the kicked top resemble classical dynamics in high j limit. Even
in the deep quantum regime, the time-averaged entanglement entropy plots show good
correspondence with classical phase space dynamics. In Fig. 4.8a, for κ = 2.5, we
have shown the time-averaged entanglement entropy of the reduced density matrix
of one qubit for j = 1. In the mixed classical phase space for κ = 2.5, regular
initial points correspond to low entanglement entropy, Period-4 points correspond to
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high entanglement entropy, and chaotic points correspond to an intermediate value of
entanglement entropy. But for κ = π and j = 1, this correspondence does not hold,
as shown in Fig. 4.8b. As discussed in the previous section, we recover the classical
behavior as we move away from these special values of κ. This is important to note since
while studying chaos in a quantum system, such as the kicked-top model, we should
be informed about the parameters where classical-quantum correspondence does not
hold.

Further work will explore the apparent lack of temporal periodicity in the case of
half-integer spin and kick strength in κ = jπ

2 .
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(a)

(b)

Figure 4.8: Time averaged Ssq over entire phase with 70 x 140 initial spin coherent states
for j = 1 and. (a). κ = 2.5 and (b). κ = π.
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Chapter 5

Summary and outlook

“An ordered life is a boring life.”

This thesis was aimed at the advancement of our understanding of chaos in a
quantum system and the quantum-classical correspondence. Quantum theory deals
with the linearity, mapping an input to output state, and lacks the important ingredients
of classical chaos theory, i.e. non-linearity. However, the existence of models such as
the quantum kicked top, which has a chaotic classical limit motivates us to seek the
quantum interpretation of chaos.

In our work, we proposed a novel gate-based approach to simulate the chaotic
Hamiltonian on currently available Noisy Intermediate Scale Quantum (NISQ) devices
chapter 2. We use IBM’s 5-qubit open-access quantum computers (Vigo) as the
experimental platform to implement the proposed approach for the 2-qubit quantum
kicked top [4]. We have constructed and demonstrated an exact simulation for the
2-qubit quantum kicked top using a universal set of quantum logic gates. Our quantum
circuit-based simulation is programmable and enables flexible initial state preparation
and evolution. We decomposed the unitary evolution operator (Un) for n kicks, instead
of applying the unitary for one time period repeatedly n times; see section 3.2. Therefore
there are no systematic errors as we increased the number of kicks. This helps to
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explore chaotic dynamics in the regime of an extended range of parameters which was
unfeasible to approach with known experiments. Given the high fidelity for a large
number of kicks and arbitrary κ values, we have shown the periodicity in quantum
correlations (concurrence) as a function of κ; see section 3.4. We have also established
a faithful relationship between time average entanglement and classical chaos, two
inherent properties of quantum and classical physics respectively as shown in section
3.6. In our study of the 2-qubit QKT, we observed that at κ = jπ, the quantum-classical
correspondence does not hold. This motivated us to explore the special values of κ in
detail in the next chapter.

In the second part of this thesis, chapter 4, first we proved the periodicity of quantum
correlations in the chaoticity parameter (κ). Then we analyzed the temporal periodicity
of the quantum kicked top for some special values of κ. We showed that for an arbitrary
but finite values of integer and half-integer spins for certain values of the parameters
(such as κ and p ), the entire evolution gets repeated after a certain number of kicks
(Un = τI, where τ is some global phase). This restricts the dynamics from exploring the
entire phase space and prevents it from showing any chaotic behavior. We proved the
exact periodicity for κ = jπ, κ = 2jπ, and κ = 3jπ, for both integer and half-integer spin
systems. For the case of integer spin and κ = mjπ

2 (where m is odd number ∈ {1,3,5,7}),
we gave numerical evidence for temporal periodicity. Our numerical simulations led us
to conjecture that for half-integer spin and κ = jπ

2 , temporal periodicity does not exist.

For these special values of the chaoticity parameter (κ), the non-linear part of the
unitary i.e., the twist part, splits into a sum of linear operators. Thus, instead of creating
a shear, it just splits the state into a superposition of spin coherent states. This prohibits
the state to enter chaotic dynamics and thus the quantum-classical correspondence
breaks down. This shows that even in the semi-classical regime, for certain values of
a parameter, the system never shows any classical behavior i.e., there are no classical
analogs of this temporal periodicity. This behavior is independent of the initial location
of the state on phase space or system size. There are periodicities in the classical system
as well, but those are proprieties of the parameters and initial points on the phase space.
It is important to note that classical periodicity still exists in the quantum domain,
but in addition, we also get this new periodicity that has no classical counterpart.
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We discuss the stability of these recurrences as the κ value is perturbed away and
find that some are more stable than others. In all cases however the transition back
to “normal” evolution appears to be there. This is confirmed via an analysis of the von
Neumann entropy. The stability analysis has an importance of its own. Using the current
experimental set-up, we cannot enter the semi-classical regime. In the deep quantum
regime, while performing an experiment to study the signatures of classical chaos, it
is important to be informed about these special values where correspondence does not
hold and one should avoid these special parameters. All together these results suggest
a highly intertwined relationship between the chaoticity periodicity structure and the
temporal periodicity structure. Nevertheless, it implies an interesting challenge to the
correspondence principle as these recurrences exist in all finite dimensions. Observing
these phenomena in a physical set-up requires separate experimental studies of its own.

The utmost goal of the field of “quantum chaos” is to develop a definition of chaos
in quantum systems [69, 90, 62]. To achieve this goal, we need to have an explicit
understanding of the transition from quantum to classical systems. This is essential
since any new complete theory should be able to reproduce the results of an existing
theory [3]. Therefore, any theory of quantum chaos should incorporate classical chaos
in some appropriate conditions. The work done in this thesis is focused on exploring
the above-mentioned relationship between the old and new theory i.e. classical and
quantum respectively. By efficiently implementing the 2-qubit QKT on a quantum
computer, we show that one can recover classical phase space dynamics through
the entanglement dynamics even in a deep quantum regime. However, whether this
correspondence between classical and quantum dynamics holds for all conditions is
investigated in the second half of the thesis.

The two main results of this thesis complement each other. One indicates
correspondence in a deep quantum regime while the other shows a breakdown of the
same even in a semi-classical regime for special parameters of the Hamiltonian. This
suggests that the quantum-classical transition is not simple. For a given parameter,
on increasing the quantum numbers j, the system shows a breakdown of Bohr’s
correspondence principle on multiple occasions before attaining the classical limit.
One natural question that arises from our study is since the quantum-classical
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correspondence does not hold for many parameter settings, should we abandon this
approach of studying chaos in quantum systems? This question can be answered in
the following ways: Even though the correspondence does not hold for all parameter
values, it does hold in many situations. Since we do not have any proper definition of
“quantum chaos”, we should continue with this approach of using classical chaos as a
reference. Once we develop a base definition of “quantum chaos”, we can proceed with
a different approach where we also study the system independent of its classical limit.

5.1 Future work

There are several ways work done in this thesis can be extended in the future.
The hybrid approach of classical processing and quantum computation enables us
to reach a new degree of experimental capability. One can develop an efficient way
of decomposing a unitary by using its symmetry and scaling it for a large number
of qubits. This will also help in studying different dynamical properties ( such as
bifurcation ), which are more prominent in the semi-classical regime [8]. If scalable, then
the current system can also be used for the bench-marking of quantum computers. One
such study to use chaos for bench marking of quantum computers is shown in [91]. This
method can also be used to generate a state with a variable degree of entanglement.

Another natural extension is to prove the non-periodicity for half-integer spin and
κ as odd multiples of jπ

2 . It is interesting to note that for j=3/2, the Hilbert space is
4-dimensional. Even in low-dimension space, numerical simulations suggest that the
dynamics is non-periodic. Another possible extension is to study the entire spectrum of
κ values and find a general expression for the different parameters where the dynamics
show temporal periodicity. Once these results are established, this method can be
applied to a different model where we can see the similar behavior.
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