
On the Data Quality of Remotely
Sensed Forest Maps

by

Shadi Ghasemitaheri

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Shadi Ghasemitaheri 2023



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Accurate forest monitoring data are essential for understanding and conserving forest
ecosystems. However, the remoteness of forests and the scarcity of ground truth make
it hard to identify data quality issues. We present two state-of-the-art forest monitoring
datasets, Annual Forest Change (AFC) and GEDI, and highlight their data quality prob-
lems. We then introduce a novel method that leverages GEDI to identify data quality
issues in AFC. We show that our approach can identify subsets with three times more
errors than a random sample, thus, prioritizing expert resources in validating AFC and
allowing for more accurate deforestation detection.
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Chapter 1

Introduction

Data-intensive models are only as good as their training data. As a result, the past two
decades have seen a great deal of research and industry effort toward monitoring and im-
proving data quality. Solutions exist for deduplication, missing data imputation, and iden-
tifying and repairing incorrect data (e.g., using integrity constraints such as Conditional
Functional Dependencies and Denial Constraints as rules that define data correctness) [35].
However, as data-intensive systems gain traction in new application areas, new data quality
problems arise, complicating the task of identifying incorrect data.

We present a novel approach to finding data errors in one new and critical applica-
tion area: forest monitoring. Forests have a significant impact on the Earth’s climate and
biodiversity [48, 26, 79], but they have been severely damaged by deforestation and cli-
mate change [68]. To create effective conservation policies, it is crucial to accurately map
forest change (e.g., deforestation or degradation) on a global scale. Forest change maps
help scientists understand the impacts of deforestation [29, 82] and are used in preparing
government policies and reports [12].

Satellite remote sensing or satellite Earth Observation (EO) has made global forest
monitoring possible by enabling reliable, consistent, and long-term data collection. EO
technologies can be categorized into two types: passive and active remote sensing. Passive
sensors detect the naturally reflected or emitted energy, while active sensors emit signals
and measure the return energy from the surface. Optical (passive), LiDAR, and Radar
(active) are the three main EO technologies for forest monitoring.

Optical sensors capture different wavelengths of light (e.g., Red, Green, Blue, and Near
Infrared) reflected or emitted by the Earth’s surface [81] (Figure 1.1). Different vegetation
covers (e.g., forests and pastures) are identified based on how they absorb or reflect light
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[32]. On the other hand, LiDAR is an active remote sensing technology that emits light
pulses and measures the reflected energy [19]. It enables studying the 3D features of
the forest, such as height and density and can penetrate the forest canopy and provide
information about the layers underneath. Radar, particularly Synthetic Aperture Radar
(SAR) [66], emits radio waves and processes the return energy to determine properties such
as surface roughness and texture (Figure 1.3).

Optical satellite images are available at a wide range of resolutions from low (over 30
meters) to medium (30 meters) and very high (0.3 meters) resolution. Landsat is one of the
most notable satellite EO projects that has been collecting data since 1972 [81]. Landsat
images are widely used in monitoring global land cover and land use [9, 63], agriculture
[38], forestry [28, 16], and water resources [50]. Landsat has been a primary resource in
EO over the past decades, primarily due to its long-term availability, accessibility, global
coverage, and reliable calibration [81].

Many forest change maps are created from Landsat images [75, 28, 16], leading to new
data quality problems related to sensor limitations, image obstruction due to cloud cover
and other weather conditions (Figure 1.1), and medium image resolution. Additionally,
these images lack forest height information, which is useful in detecting deforestation [28].
Evaluating the accuracy of these maps is also a complex and costly task due to the limited
availability of ground truth data, as collecting forest condition data through field visits is
expensive and does not scale. As a result, there is no simple way of identifying errors in
forest change maps.

It is worth noting that SAR is also used for deforestation detection [58, 57]. SAR offers
certain benefits, such as penetrating clouds and collecting data in all weather conditions
[57]. However, SAR images can be challenging to interpret, and various types of Radar
noise may introduce additional uncertainties [15]. In this thesis, we focus on a state-of-the
art forest change map derived from optical images.

The Annual Forest Change (AFC) dataset (Figure 1.2a) is a widely-used forest change
dataset that shows annual changes in tropical moist forests (TMFs) from 1990 to 2022
[75]. AFC classifies different land cover types (e.g., forests, savannahs, and water bodies)
and possible changes in forests (e.g., degradation and deforestation). AFC is reported to
underestimate forest disturbance by 11.8%, equivalent to over 38 million hectares of land
[75]. This number is estimated using random sampling [75]. A more efficient method of
identifying errors in AFC would help scientists improve classification accuracy and uncover
undetected deforestation.

To identify errors in AFC, we use GEDI [19], a recent spaceborne LiDAR dataset that
provides information about the 3D structure of forests (e.g., forest height and vegetation
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Figure 1.1: An optical satellite image. Landsat L9, January 2022. The left part of the
image shows an example of missing data due to cloud cover and shadow.

(a) An illustration of the Annual Forest Change
(AFC) map, December 2021.

(b) Available GEDI observations (red dots) in
the same area. Background is a satellite image
from Planet [49], October 2021.

Figure 1.2: The AFC map and a satellite image from the same location.
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Figure 1.3: A SAR image, Sentinel-1 [66], March 2021.

density) missing from optical images. GEDI helps researchers study and understand the
structure of forests, which is essential for monitoring forest health [4], biodiversity [43, 67],
and carbon storage [39]. Unlike optical images, GEDI data are spatially discrete obser-
vations of the Earth’s surface (Figure 1.2b). While some approaches aim to extrapolate
GEDI measurements for wall-to-wall spatial coverage [53, 17, 10], our method is solely
based on the GEDI observations without using additional EO datasets. Discrepancies
between GEDI measurements and AFC were first discovered by Holcomb et al. [30].

We identify non-forested areas, either deforested or non-forest vegetation, that are
incorrectly labeled as tropical forests in AFC. Identifying the former reveals undetected
deforestation, while the latter corrects the current knowledge of the ecosystems in unreach-
able areas. Despite GEDI’s limited spatial and historical coverage, we show that GEDI’s
estimates of canopy height (the height of the top of the forest) can identify parts of the
forest change map that are three times more likely to contain errors than a random sample.
Our approach can be used to prioritize resources for validating a forest change map and
assist in more accurate detection of deforestation.

In summary, our contributions are as follows:

• We describe data quality issues associated with the two datasets: AFC [75], and
GEDI [19].

• We propose and evaluate a method that leverages GEDI data to identify potential
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errors in AFC.

The remainder of this thesis is organized as follows: We present an overview of AFC
and its unique data quality issues (Chapter 2), followed by a discussion on GEDI and
its associated challenges (Chapter 3). We then introduce our method and evaluate its
effectiveness (Chapter 4, 5). Finally, we review related work in Chapter 6 and conclude in
Chapter 7.
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Chapter 2

Annual Forest Change Data

In this chapter, we introduce a state-of-the-art forest change dataset. We then explain how
this dataset was created and point out its data quality issues. Finally, we describe why it
is difficult to identify data quality issues in this dataset. Later (Chapter 4), we propose a
method that targets this challenging task.

2.1 Introduction

The Annual Forest Change (AFC) dataset (Figure 2.1a) tracks annual changes in trop-
ical moist forests (TMFs) from 1990 to 2022 [75]. It segments different land categories,
such as TMFs, water bodies, and grasslands, as well as identifying changes in land cover,
such as degradation and deforestation. Forest change datasets are crucial to studying and
monitoring forests. These datasets help researchers and policymakers identify deforesta-
tion in different forest covers. This information helps in understanding the dynamics of
forest ecosystems, global carbon sequestration [29, 82] and government policy making and
reporting [12].

AFC maps the annual boundaries and status of TMFs. An AFC map is a 2D grid of
pixels, each corresponding to a 30 m × 30 m (0.09 ha) area on the Earth’s surface at the
equator. AFC classifies each pixel into one of six categories, including Undisturbed TMF,
Degraded TMF, Deforested land, TMF Regrowth, Water, and Other Land Covers. TMFs
are evergreen or semi-evergreen forest, including mangroves. Other land covers include
savannah, deciduous forest, agriculture, evergreen shrubland, non-vegetated cover, and
afforestation. Table 2.1 provides a detailed definition of each AFC class.
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Table 2.1: Definitions of AFC labels [8].

Value Label Description

1
Undisturbed
Tropical Moist

Forest

A closed evergreen or semi-evergreen forest that is
undisturbed, showing no signs of deforestation or
degradation in valid Landsat observations until the
year of analysis. This class includes tropical moist

forests (e.g., tropical broadleaf forests), mangroves, and
bamboo forests.

2
Degraded

Tropical Moist
Forest

A tropical moist forest (undisturbed or regrowing) that
has experienced temporary disturbances for a

maximum of 900 consecutive days. Degradation has
various causes, including selective logging, fires,

hurricane, and drought.

3 Deforested Land

The permanent conversion of a tropical moist forest
into non-forested land. Permanent conversion is

deforestation observed for over 900 days, with no sign
of regrowth. This class includes conversion to water,

tree plantation, or other land covers.

4
Tropical Moist
Forest Regrowth

A previously deforested tropical moist forest that is
regrowing. Forest regrowth is the presence of moist

forest cover for at least three years.

5
Permanent and
Seasonal Water

Permanent and seasonal water.

6
Other Land

Covers

An area that is not considered a tropical moist forest.
This class includes deciduous forest, non-forest covers
(e.g., savannah, agriculture, evergreen shrubland),

non-vegetated cover (e.g., mining), and afforestation.
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(a) An illustration of the Annual Forest Change
(AFC) map, December 2021.

(b) A Satellite image. Landsat L9, January
2022. The bottom right corner of the image
shows an example of missing data due to cloud
coverage.

Figure 2.1: The AFC map and a satellite image from the same location.

AFC maps are derived from optical satellite imagery of the Landsat program [81, 80]
(Figure 2.1b). The Landsat mission uses a series of satellites that capture images of the
Earth’s surface from space. These satellites are designed to study and monitor changes in
the Earth’s land cover. Landsat images are taken by special cameras or sensors onboard the
satellites that capture different wavelengths of light, including visible light (Red, Green,
and Blue), Near Infrared, and other wavelengths. Different land covers are recognized by
how they reflect or emit light [32]. Landsat has been one of the primary data sources in
global forest monitoring since 1972.

Nine Landsat satellites (L1-L9) have been launched during the 50 years of the Landsat
mission, three of which are active today. Since 1982, Landsat satellites have been capturing
images of the Earth’s surface from 705 kilometers above at 30 meters resolution, revisiting
each location every 16 days. Landsat achieves an 8-day revisit time during most of its
mission by having two active satellites in orbit [80].

The AFC dataset is based on per-pixel classifications of Landsat images. Each pixel is
classified using expert rules as either potential moist forest, potential non-forest, or invalid
(cloud, shadows, noise). Each pixel is then assigned a final class based on the changes in
valid observations over time. For instance, a deforested pixel appears as a potential moist
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forest at first and then changes to a potential non-forest later. AFC is reported to be
91.4% accurate but underestimates forest disturbance by 11.8% [75]. This corresponds to
over 38 million hectares of land [75], which is a significant area.

2.2 Data Quality Challenges

Forest maps, including AFC, face several common challenges. Many of these challenges
originate from the data source, Landsat. Therefore, datasets created from Landsat images
can suffer from similar limitations.

• Missing Data: There could be gaps in satellite observations for several reasons,
including cloud cover, cloud shadow, and other atmospheric conditions (Figure 2.1b),
failures in sensors or other instruments (Figure 2.3) [71], and intentional pauses or
stops in data collection. The most significant data loss in the history of Landsat
occurred on May 31, 2003, when a technical failure caused a permanent 22% data
gap in the Landsat 7 images (Figure 2.3c).

• Noisy Data: Satellite imagery is prone to sensor noise, miscalibration, and atmo-
spheric noise, which affects the quality of forest maps. Although some noise can
be corrected, the correction process can degrade the overall image quality [69]. In
Landsat images, data noise can appear as repeating noise patterns or inaccuracies
in specific areas (Figure 2.4). Sensor saturation is an example of noise, where bright
light exceeds the 8-bit value capacity of the sensor and is clipped to 255 [73]. Sensor
oversaturation is a related issue, which occurs when an object is significantly brighter
than the sensor can handle, causing temporary sensor malfunction (Figure 2.4b).

• Spatial and Temporal Resolution: The resolution of a forest map is determined
by the resolution of the source data, which can impact the accuracy and level of
detail provided by the map. For instance, AFC cannot tell the precise location of
disruptions or changes smaller than 0.09 hectares. A 30-meter resolution is known
as medium resolution [81].

• Spectral Mixing: Satellite images often have mixed pixels containing different
land cover types (e.g., half forest and half deforested) [62]. These mixed pixels can
introduce uncertainty in land cover classification. This issue occurs frequently in
complex vegetation covers or at the boundaries between different land cover types.
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Figure 2.2: Spectral confusion [3]. The cocoa agroforest looks identical to a forest in
optical satellite imagery. Areas with green and red outlines are forest and cocoa agroforest,
respectively.

• Spectral Confusion: This occurs when different types of land cover have similar
appearance when viewed from space. For instance, Figure 2.2 shows how a cocoa
agroforest looks similar to a forest in optical satellite imagery [3].

• Lack of 3D Information: Optical satellite images lack 3D information such as
forest height, limiting their ability to distinguish between some land cover types.
For example, height information can accurately distinguish forests from shrublands.
Additionally, optical images capture the upper layer of the forest (the canopy) and
may not reveal degradation in the lower layers that have not affected the canopy [23].

• Limited Ground Truth: Collecting data by visiting a forest ranges from expensive
to impossible (for remote and inaccessible locations). As a result, experts rely on
remote sensing data to create a reference dataset. Additionally, global maps cover
billions of hectares of land, and gathering ground truth for every pixel is impossible.
Therefore, only a limited number of forest map pixels are validated.
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(a) Dropped Scans, Landsat 7. [71]. An entire scan line is lost due to temporary instrument or
transmission issues.

(b) Sun Glint, Landsat 5 [71]. Sunlight reflects off the body of the satellite and causes data loss
in transmission. This is an anomaly in Landsat 5 that causes periodic and predictable data loss
due to sunlight interference.

Figure 2.3: Instances of missing data due to instrument, sensor, or transmission failures.
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(c) Scan Line Corrector (SLC) Failure, Landsat 7 [74]. When capturing images, the SLC com-
pensates for the forward movement of the satellite. Without the SLC, the sensor scans have a
zig-zag pattern instead of full coverage. Since May 31, 2003, this failure has resulted in a 22%
data gap in Landsat 7 observations.

(d) Solid State Recorder (SSR) bad block issue, Landsat 9 [72]. Data is lost due to memory
blocks issues. 187 frames are lost in the center of the left figure, and over 2,000 frames are lost
in the upper part of the right figure.

Figure 2.3: Instances of missing data due to instrument, sensor, or transmission failures.
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(a) Coherent noise, Landsat 7 [69, 70]. This noise appears as a repeating pattern, most visible
over uniform dark regions. A coherent noise storm [70] (right) is a sign of a sudden electrical
change, possibly due to a serious failure. The bottom frames are also misaligned.

Figure 2.4: Instances of noisy images due to instrument or sensor failures.
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(b) Sensor Oversaturation, Landsat 9 [73]. Oversaturation happens when the sensors view an
object much brighter than the sensor can tolerate, causing a temporary malfunction in the sensor.
Oversaturation is common over reflective surfaces (top left image), fires and active volcanoes (top
right image), and bright clouds (bottom image).

Figure 2.4: Instances of noisy images due to instrument or sensor failures.
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Figure 2.5: AFC maps can be downloaded in several 10◦ × 10◦ tiles [7].

Identifying errors in the AFC map is not trivial, as no data or forest map can claim to
be 100% accurate. A random sample of the dataset contains only around 10% errors [75].
A more efficient method of identifying errors would help scientists improve classification
accuracy. In Chapter 4, we introduce a method that directs experts’ attention toward a
subset of samples that are more likely to contain errors. To achieve this goal, we use a new
forest height dataset, described in Chapter 3, with its own unique data quality issues and
challenges.

2.3 Data Acccess

AFC maps are publicly available on the European Commission Joint Research Center
website1. Each map can be downloaded as several 10◦ × 10◦ tiles stored in GeoTIFF format
(Figure 2.5). A GeoTIFF image is a matrix where each cell (each pixel) has a geolocation
tag. These files can be opened with Python packages such as Rasterio. Additionally, AFC
maps are available on the Google Earth Engine2, a cloud platform that hosts petabytes of
Earth Observation data and offers computation power to run geospatial analysis [27].

1https://forobs.jrc.ec.europa.eu/TMF/
2https://earthengine.google.com
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Chapter 3

Vegetation Height Data

In this chapter, we introduce GEDI, a new data source for forest monitoring, and provide
an overview of its data products. We then discuss GEDI’s data quality challenges and lim-
itations and explore its potential for identifying data quality issues in AFC. Furthermore,
we discuss various quality metrics available with GEDI products that can be used to filter
noisy data to some extent.

3.1 Introduction

Global Ecosystem Dynamics Investigation (GEDI) is a LiDAR (Light Detection and Rang-
ing) instrument that collects data about Earth’s forests from space [19]. LiDAR emits laser
beams and measures the time it takes for the light to return to the sensor. GEDI LiDAR
is designed to penetrate the forest cover, allowing scientists to study the 3D structure of
forests. This information helps researchers study the structure of forests, which is essen-
tial for monitoring forest health [4], biodiversity [43, 67], and carbon storage [39]. GEDI
operated on the International Space Station (ISS) from April 2019 to March 2023. Figure
3.1 illustrates a GEDI return waveform.

GEDI has three lasers, one of which is split into two beams, emitting four beams in
total. Each of these four beams is shifted every other shot to create eight tracks on the
ground. These tracks are separated by 600 meters, with shots 60 meters apart along the
tracks [19]. Figure 3.2 illustrates this pattern. A GEDI shot correspond to a fragment of
the Earth’s surface with a 25 m diameter called a “footprint” (Figure 3.1).
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Figure 3.1: GEDI return waveform [19, 25]. The waveform (left) captures the reflected
energy at different elevations from the 25 meters diameter footprint (right).

Figure 3.2: GEDI beam pattern [19, 24]. GEDI has three lasers that shoot four beams and
create eight tracks on the ground.
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3.2 Data Products

Raw GEDI waveforms are processed into higher-level data products that describe the 3D
features of forests. GEDI data products include footprint and gridded data. These products
are assigned different levels that show the amount of processing on the data:

Level 1: LiDAR waveforms available at footprint level.

Level 2A: Measurements of ground elevation and relative height (RH) [20]. RH is the
height above ground at which a certain quantile of cumulative energy was returned (Figure
3.1), and the RH95 (95% quantile) has been shown to estimate canopy height (height of
the top of the forest) [53].

Level 2B: Measurements of the distribution and density of vegetation from top of the
canopy to the ground. These measurements include Canopy Cover Fraction (proportion of
the ground covered by the canopy projection) and Plant Area Index (total area of canopy
elements including leaf, branch, and trunk in the unit ground area) [65].

Level 3A: Level 2 data as 1 km × 1 km grids.

Level 4: Footprint and gridded above-ground biomass density (AGBD). AGBD is
the amount of biomass (organic matter) in the above-ground portion of a forest per unit
of area. GEDI is optimized to estimate AGBD accurately [18, 22], which is essential for
analyzing the amount of carbon stored in forests [39, 40].

Table 3.1 gives an overview of GEDI products in various levels.

Table 3.1: A summary of GEDI data products.

Level Description Resolution

L1A Raw Waveform 25 m diameter

L1B Geolocated Waveform 25 m diameter

L2A Elevation and Height Metrics 25 m diameter

L2B Canopy Cover and Vertical Profile Metrics 25 m diameter

L3 Gridded Level 2 Metrics 1 km grid

L4A Footprint Above Ground Biomass 25 m diameter

L4B Gridded Above Ground Biomas 1 km grid
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GEDI was calibrated and validated using a ground truth dataset in which the evergreen
broadleaf forests of South America were well represented [19]. Studies show that GEDI
can accurately estimate ground elevation, RH95, and RH100 with RMSE of 1.38 m, 2.08
m, and 2.62 m, respectively [78]. Therefore, RH95 is a better estimate for canopy height
than RH100 [53].

3.3 Data Quality Challenges

Similar to other data collected from space, GEDI data has the following data quality issues:

• Noisy Data: As a laser-based technology, GEDI is sensitive to atmospheric con-
ditions, including cloud cover and moisture. Sensor noise and miscalibration also
contribute to errors in the data.

• Spatial and Temporal Resolution: GEDI footprints cover a limited portion of the
Earth (around 4% in 2 years of operation [19]), and the gridded data has a relatively
coarse resolution of 1 km. Additionally, operating from 2019 to 2023, GEDI does not
offer extensive historical information. Finally, there are no guaranteed revisits of the
same location, making it difficult to monitor for changes.

• Geolocation Error: Slight geolocation uncertainties (0 m mean, 10 m standard
deviation) exist in the reported coordinates. This uncertainty can significantly affect
RH metrics in mixed canopies and forest edges [59].

• Terrain: Sloped or complex terrain introduces additional errors in the GEDI data
[1, 60, 47]. Such characteristics impact GEDI’s ability to detect ground returns and
estimate canopy height accurately.

GEDI’s spatiotemporal limitations prevent scientists from creating high-resolution for-
est change maps based solely on GEDI data. Nevertheless, GEDI can help address the lack
of 3D information, spectral confusion, and limited ground truth problems in AFC. GEDI
offers 3D information for remote unreachable forests. Therefore, GEDI data (like canopy
height) can help distinguish forest covers that may look the same in optical satellite im-
agery. While the spatial limitations of GEDI prevent us from evaluating the entire AFC
dataset, we present a novel method to identify data quality issues in AFC more efficiently
than random sampling while accounting for geolocation error and noise in GEDI data
(Chapter 4).
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3.4 Quality Filtering

GEDI data products include several quality metrics that can be used to filter noisy data:

• Beam Sensitivity: GEDI measurements are most trusted when the beam pene-
trates the canopy and accurately detects the ground. However, the strength of GEDI
return signals depends on atmospheric conditions, impacting their ability to pene-
trate canopies. Beam sensitivity is a metric to identify waveforms where an accurate
ground level is not detected. Beams with low sensitivity cannot penetrate dense vege-
tation. For high-quality data, it is recommended to use shots with sensitivity greater
than 0.98 in tropical evergreen broadleaf forets and greater than 0.95 elsewhere.

• Degrade Flag: This is a metric to exclude shots with potential geolocation errors.
A non-zero value indicates that the shot was taken during a degraded period when one
or more of the star trackers (instruments to determine the orientation of a satellite)
were not functioning properly.

• Quality Flag: A general quality flag that indicates when multiple quality conditions
are met. Each level of GEDI products has its specific flag. However, this flag alone
does not mark all data quality issues. For example, GEDI Level 2B measurements
may still have negative values even after filtering. To address this issue, we can filter
abnormal values when working with higher-level GEDI products.

• Additional Quality Filters: Additional filters can be applied to the data depend-
ing on the specific use case. For instance, when studying forest structure, we can
ensure that the shots are taken during the leaf-on period. We can also exclude shots
that fall within seasonal or permanent water bodies.

We use highly-filtered GEDI shots from Burns et al. [6]. However, there may be residual
noise and geolocation errors and noise within the data. Therefore, we propose a method
in Chapter 4 to find data quality issues in AFC.

3.5 Data Extraction

GEDI data can be downloaded for free from the Land Processes Distributed Active Archive
Center (DAAC) or the Oak Ridge National Laboratories DAAC. Located onboard the
International Space Station (ISS), GEDI collects data within a latitude range of 51.6◦ S
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(a) (b)

Figure 3.3: GEDI tracks. (a) Visualization of a single GEDI orbit [21]. (b) The simulated
pattern of GEDI tracks from multiple orbits in a small region near the equator [19, 24].

to 51.6◦ N, leaving the same track as the ISS in each orbit (Figure 3.3). The data from each
orbit is divided into four granules. The GEDI Finder Service [61] can be used to find all
granules overlapping the study area, including those with a limited number of shots within
the area. After downloading, the data needs to be extracted from the compressed format
and ingested into a spatial dataset such as PostGIS [13], which is the spatial extension of
Postgres. Creating a spatial index allows for the parallel loading of all the available GEDI
shots in a region. GEDI products are also available on Google Earth Engine.
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Chapter 4

Finding Potential Errors in AFC

Forests commonly consist of tall green trees: the formal definition of a forest requires
canopies to be at least 5 m tall [51]. Therefore, areas with shorter canopies are more likely
to be instances of deforestation or other land covers such as shrublands. In this chapter,
we propose a method to find potential errors in AFC where a non-forest cover is labeled
as undisturbed TMF. We then discuss the parameters and their associated tradeoffs. In
Chapter 5, we apply this method to find potential errors in the AFC map of 2021 and
evaluate the results.

4.1 Approach

We define areas with an undisturbed label and short canopy height as conflicts or outliers.
We suggest that these conflicts can be more effective in identifying errors in the AFC
dataset than randomly selected samples. Note that these conflicts represent potential errors
that could arise from noise in either the GEDI or AFC data. Thus, several challenges need
to be addressed:

• Integrating the two datasets, the AFC map and GEDI footprint data, while account-
ing for geolocation errors.

• Accounting for the noise in the GEDI data and finding samples that are more trusted.

• Prioritizing some outliers when dealing with thousands of conflicts, as manually ex-
amining all of them is too time-consuming.
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Figure 4.1: An illustration of dataflow. (a) Data Fusion. The grid is the AFC map, and the
circles are GEDI shots. The nearest 3 × 3 windows is highlighted for each shot. (b) Finding
Outliers. Samples with RH95 < h are selected. (c) Clustering Outliers. Nearby outliers
are clustered. (d) Filtering Clusters. Smaller clusters are filtered to increase reliability.

We propose a four-step process to utilize GEDI canopy heights (RH95) to identify
forests labeled as undisturbed but having conflicting (short) canopy heights. Figure 4.1
shows the dataflow.

4.1.1 Step 1: Data Fusion.

We identify the nine nearest AFC pixels to each GEDI shot. These pixels form a 3 × 3
window on the AFC map, with the center pixel containing the GEDI shot center (Figure
4.1). We only consider GEDI shots within homogeneous windows. This accounts for
potential geolocation errors in the GEDI shot: even if the shot has some geolocation error,
it still falls within an area classified as undisturbed TMF in AFC.

4.1.2 Step 2: Finding Outliers.

We select GEDI shots with RH95 < h, where h is a tuneable parameter. These shots are
undisturbed TMFs with an abnormally short canopy. The parameter h can be selected
based on expert knowledge or the RH95 distribution. Note that these anomalies are found
in the left tail of the RH95 distribution.
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4.1.3 Step 3: Clustering Outliers.

We merge nearby outliers into clusters using hierarchical clustering for two reasons:

• Reducing data noise. Several nearby conflicting observations are more trusted than
a single outlier.

• Conflicts occurring close together can belong to the same area and cover type, cor-
responding to spatially correlated errors [52]. For instance, two consecutive GEDI
shots are only 60 m apart, and both may be from a grassland misclassified in AFC.
Using clustering, we avoid reporting these points separately.

Hierarchical clustering, also known as agglomerative clustering, is a bottom-up ap-
proach where each data point initially represents a separate cluster. The algorithm merges
the two nearest clusters in each step, creating a new one. This process continues until
a stopping criterion is met (e.g., all the data points are in one cluster, all distances are
greater than the threshold, number of clusters reaches the limit).

We use Hierarchical clustering with a distance threshold since it does not require a
predefined number of clusters. This approach has two parameters: linkage and distance
threshold. Linkage determines how the distance between two clusters is calculated; e.g.,
single-linkage uses the minimum distance between clusters. The distance threshold deter-
mines if clusters should be combined, merging only those closer than the threshold.

4.1.4 Step 4: Filtering Clusters.

Clusters with few conflicts are less likely to represent areas with AFC errors than ones
with many conflicts. Hence, we prioritize clusters larger than a certain threshold, c. Ad-
ditionally, clusters containing GEDI shots from multiple satellite orbits are more reliable
and less susceptible to systematic errors. This is because consecutive shots within a single
orbit could all be incorrect due to atmospheric conditions or sensor issues. However, there
are few clusters with this redundancy due to GEDI coverage limitations.

4.2 Parameters

There are three parameters in this method: height threshold (h), clustering distance (d),
and minimum cluster size (c). Each parameter directly impacts the tradeoff between
precision and recall:
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• Height Threshold (h): A lower threshold reduces the number of outliers, which
can reduce false positives but may affect recall.

• Clustering Distance Threshold (d): A lower threshold leads to smaller clusters,
and several small nearby clusters may represent the same error. A higher distance
threshold can merge unrelated clusters or create clusters of multiple noisy samples.

• Minimum Cluster Size (c): Although small clusters are more likely to be false
positives, choosing a large c affects the recall of small-scale errors.

It is essential to tune these parameters with respect to each other. For example, a
higher clustering distance forms larger clusters and may require increasing the minimum
cluster size accordingly. In the next chapter, we evaluate the results for one set of carefully
selected parameters.
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Chapter 5

Evaluation

In this chapter, we evaluate our approach and present the results of two evaluation strate-
gies. We first justify our selection of the study region and parameters. We then introduce
two sources for acquiring ground truth data. Finally, we present the results, followed by a
discussion about potential errors in the AFC map.

5.1 Overview

We used our method to find data quality issues in the 2021 AFC map of the Brazilian
Amazon region. We used RH95 from quality-filtered GEDI shots collected during the
second half of 2021. In this section, we describe two evaluation methods. The first uses
a highly-validated forest cover map as ground truth, while the second is based on visual
interpretation of high-resolution satellite images.

5.1.1 Study Region

We focus on the Brazilian Amazon rainforest, which plays a vital role in global climate
stability, and is home to various unique plant and animal species, many of which are found
nowhere else on Earth. Additionally, the availability of numerous forest maps and freely
accessible satellite data makes the Brazilian Amazon an ideal region for our studies.
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Figure 5.1: Distribution of undisturbed TMF height in the second half of 2021.

5.1.2 Parameters

As mentioned in Chapter 4, parameters must be selected with respect to each other, to
maintain a balance between precision and recall. Based on empirical fine-tuning, we se-
lected h = 3.44 meters to mark 0.3% of the GEDI shots in undisturbed TMFs as outliers
(Figure 5.1). A lower threshold (e.g., 2 meters) eliminated some evident AFC errors,
whereas a higher threshold (e.g., 4 meters) included many shots that were ambiguous as
to whether they were AFC errors. We apply single-linkage hierarchical clustering with a
distance of d = 700 meters to group outliers that are from the same GEDI orbit. We also
filter clusters with fewer than 9 shots (c = 8).

5.1.3 MapBiomas Evaluation

MapBiomas [63, 55] is an annual dataset of Brazil’s land cover maps from 1985 to 2021 at a
30-metre resolution. It uses a hierarchical classification system with four levels to categorize
land covers. At Level 1, land covers are classified into six categories: forest, non-forest,
farming, non-vegetated, water, and not observed. Level 2 expands Level 1 classes into
22 subcategories [41, 42]. MapBiomas is created from Landsat images, primarily using a
Random Forest classifier, and it is validated annually on over 75,000 samples. Level 1 and
2 classification error is estimated to be 7.5% and 9.3%, respectively [41].

In this analysis, if an outlier shot is labeled as undisturbed TMF in the AFC map but
classified as non-forest in MapBiomas, then we consider MapBiomas to be correct, meaning
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that the outlier is an error in the AFC map. We report two validation metrics: (1) the
percentage of outliers with non-forest Mapbiomas labels and (2) the percentage of clusters
with at least one such outlier.

5.1.4 Visual Interpretation

After finding outlier clusters, we randomly select one GEDI shot per cluster. Then, we
determine if this represents an AFC error by analyzing the 3 × 3 surrounding AFC pixels in
a cloud-free image. We use higher-resolution satellite images with approximately 4 meters
per pixel resolution from the Planet NICFI data program [49, 46]. Specifically, we used
the last cloud-free Planet images of 2021. Each cluster is assigned one of three validation
labels: Ambiguous (if no cloud-free observations are available or if it is unclear whether the
area is an AFC error), AFC Error, or False Positive (if the pixels are correctly classified
in AFC). Analyzing 3 × 3 windows of the map is similar to AFC’s validation method [75].

5.2 Results and Discussion

We identified 23,306 conflicts (i.e., marked undisturbed forest in AFC with RH95 < 3.44
m) in Step 2. After filtering clusters in Step 4, 5,740 samples remain, of which 1.88%
are labeled non-forest in MapBiomas. This gives 240 clusters, 12.08% of which have at
least one outlier with a non-forest MapBiomas label. Since manual evaluation is time-
consuming, we evaluate 100 random clusters out of the 240 clusters using Planet images.
Out of the 100 clusters, 33 were found to be AFC errors, 63 were Ambiguous, and 4 were
False Positives (see Figure 5.2-5.4 for examples). Assuming that all Ambiguous cases are
False Positives, the precision of our method is at least 33%, which is almost three times
greater than the precision of random sampling reported by [75].

Visual interpretation revealed cases where both AFC and MapBiomas were inaccurate.
This can be because of the MapBiomas limitations due to the lack of 3D information
in Landsat images. While MapBiomas has the advantage of evaluating every pixel in
the AFC, GEDI, despite its limited coverage, uncovers errors that MapBiomas may not
detect. Additionally, there are some vegetation types that should be classified as non-forest
covers in AFC but are considered forests in MapBiomas. For instance, MapBiomas assigns
wooded savannah and tropical evergreens to the same class, while AFC refers to the former
as other land covers. Therefore, per-pixel evaluation cannot identify AFC errors in wooded
savannahs, but using canopy height can.
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It is illuminative to study where AFC made errors. We found many outlier clusters in
the Brazilian Amazon’s northwest region, with a vegetation cover known as campinarana
that can be difficult to distinguish in satellite images [14, 56]. This region is remote and
challenging to access, making it difficult to obtain field data. Different types of campinarana
are forest, wood, shrub, and grass [14, 34]. Forest campinarana appears as islands within
open areas. Wood campinarana is a non-forest type with sparse trees and a canopy height
of up to 4 meters, while shrub campinarana is shorter and does not exceed 2 meters in
height [34]. Therefore, using GEDI canopy height helps distinguish forested and non-
forested campinaranas as canopy height in the non-forest classes does not exceed 4 meters
[34].

Some False Positives were located near shores and water that could potentially be
covered by mangroves (Figure 5.4b). Mangroves have a distinct structure that differs from
evergreen or semi-evergreen forests. However, all three types are categorized as TMFs in
AFC. Excluding such areas from the analysis could improve precision.

We also attempted to identify undisturbed TMFs misclassified as deforested land by
filtering deforested samples with RH95 > 20 m. However, we were unsuccessful for several
reasons. First, this approach does not reflect the complex nature of forests. Seeing a
few square meters of trees does not indicate the presence of a forest. Second, the lack of
historical height data prevents us from analyzing changes to distinguish primary forests
from replacing tree plantations. Furthermore, RH95 is prone to obstacle noise, such as
from a flock of birds. We examined some clusters of this kind and visualized their raw GEDI
waveform (Figure 5.6 and 5.7). Waveforms with exceptionally tall RH95 (e.g., RH95 > 40
m) seem to be affected by noise in the return waveform and the ground return (Figure 5.6).
However, the waveforms with lower RH95 (e.g., RH95 ≈ 20 m) do not seem noisy (Figure
5.7). Other GEDI data quality issues, such as geolocation errors, could have caused such
observations.
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(a) The color difference, texture difference, and geometric shape suggest that this area is not an
undisturbed TMF.

(b) The brown colors and texture difference suggests that this area is not an undisturbed TMF.

Figure 5.2: AFC Error examples. The images on the left are higher-resolution Planet
imagery. Images on the right visualize the AFC map in the same location.
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(c) Small-scale transitions between forest and non-forest cover seem to be missing from the AFC
map.

(d) Although some deforestation was identified, the colour and texture difference suggests inac-
curacies in the AFC map.

Figure 5.2: AFC Error examples. The images on the left are higher-resolution Planet
imagery. Images on the right visualize the AFC map in the same location.
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(a) The area seems to be flooded, which makes it difficult to determine the cover type.

(b) The available context is insufficient to determine whether this sample is an error.

Figure 5.3: Ambiguous examples. The images on the left are higher-resolution Planet
imagery. Images on the right visualize the AFC map in the same location.
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(a) This sample appears to belong to a highly dense forest cover.

(b) This area could potentially be covered by mangroves, which are classified as TMFs.

Figure 5.4: False Positive examples. The images on the left are higher-resolution Planet
imagery. Images on the right visualize the AFC map in the same location.
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Figure 5.5: The distinction between forested campinaranas and open vegetation appears
to be inaccurate in this area. The image on the left is higher-resolution Planet imagery.
The image on the right visualizes the AFC map in the same location.
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(a) The AFC label is correct. The image on the left is higher-resolution Planet imagery. The
image on the right visualizes the AFC map in the same location.

(b) Raw GEDI waveforms of three consecutive shots (red shots) in the area with high RH95. All
shots are from the same track, and the waveforms appear to be noisy.

Figure 5.6: A group of GEDI shots with high RH95 estimates in a deforested area.
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(a) The AFC label is correct. The image on the left is higher-resolution Planet imagery. The
image on the right visualizes the AFC map in the same location.

(b) Raw GEDI waveforms of three consecutive shots (red shots) in the area with high RH95. All
shots are from the same track; however, it is not clear what has caused this error.

Figure 5.7: A group of GEDI shots with high RH95 estimates in a deforested area.

36



Chapter 6

Related Work

In this chapter, we discuss the related work in two parts. We first review previous studies
on evaluating forest maps and explain how their findings are consistent with ours. We
then review several case studies on using GEDI for forest monitoring and deforestation
detection.

6.1 Forest Map Evaluation

In this study, we used canopy height to find data quality issues in a forest change map.
A recent study explored the use of canopy height to distinguish forested and unforested
tropical wetlands [76]. They used a global canopy height map with a 30 m resolution,
created by combining GEDI RH metrics and Landsat images [53]. In contrast, our approach
relies solely on raw GEDI height measurements.

In addition to creating a forest change map that estimates the year of forest loss,
Hansen et al. [28] studied the relationship between loss year and canopy height using an
older spaceborne LiDAR dataset. They observed that samples from undisturbed forests,
on average, had greater canopy height than disturbed forests. This finding is consistent
with our work.

Assessing the pixel-level agreement of two forest change maps is another way to find
errors. However, this can be challenging due to variations in the map legends and differences
in resolution. Moreover, two maps based on Landsat optical images can be subject to the
same data quality problems. Cohen et al. compared seven forest change maps [5, 37, 77,
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31, 36, 83, 33] at pixel level, revealing a low level of agreement [11]. On the other hand,
GEDI allows us to leverage 3D information that does not exist in Landsat.

The first step to comparing two forest maps at the pixel level is creating a joint leg-
end. Nevel et al. [45] compared two land cover maps, MapBiomas (collections 2 and 3)
[54] and TerraClass [2], by reclassifying the labels to create a joint legend. This process
involved identifying equivalent classes and merging some of them, such as merging dif-
ferent pasture types from TerraClass to align with MapBiomas. While the results of the
per-pixel evaluation indicated a good level of agreement between them, the differences in
the legends caused some uncertainties. For example, TerraClass categorized any area after
deforestation as secondary vegetation, whereas MapBiomas (collection 3) did not have a
separate class for this type. Per-pixel evaluation between AFC and MapBiomas would
cause similar uncertainties. For instance, MapBiomas classifies wooded savannah as forest
formation, whereas AFC classifies it as other land covers. Therefore, per-pixel evaluation
cannot identify AFC errors in wooded savannahs, but using canopy height can.

6.2 GEDI Case Studies

In this section, we summarize some of the recent studies that used GEDI measurements
for forest monitoring.

6.2.1 Tree Species Richness

Marselis et al. explored the relationship between canopy structure and tree species richness
(number of unique species in an area) in undisturbed forests [43]. They used several
GEDI Level 2 measurements to represent canopy structure, including RH98, the total
Plant Area Index (PAI) along the vertical axis, the total PAI in 10-meter increments from
0 to 50 meters (0-10 m, 10-20 m, . . . , 40-50 m), the total PAI above 50 meters, and
the ground elevation. The results indicated that GEDI measurements could explain tree
diversity species; however, this does not offer an advantage over environmental variables
(e.g., average temperature, geographic region) in undisturbed forests.

6.2.2 Forest Regrowth Rate

Milenković et al. studied the regrowth rate in the Amazon rainforest using GEDI canopy
height measurements [44]. Since there is no GEDI data from before 2019, they classified

38



the land by forest age to investigate the distribution of forest height across age groups.
They also used a ground truth dataset to demonstrate that the RH98 metric overestimates
shorter heights and underestimates taller heights. To address this issue, they developed a
linear model to correct these errors. The results showed that forest height grows with a
median of 20.17 meters over 33 years.

6.2.3 Impacts of Insect Infestation

Insect infestation causes deforestation and degradation. Certain insects initially cause
defoliation in the lower layers of the forest before affecting the top canopy. Therefore, in
the early stages of infestation, the forest would look undisturbed from satellite images;
however, GEDI measurements could reveal disruptions at lower layers. Boucher et al.
studied the impact of an insect infestation on northeastern US forests [4]. The infestation
started in 2012, and the fields were revisited in 2016 to calculate the mortality rate (the
number of dead trees divided by the total number of trees). Since no GEDI data is
available for that period, they used airborne LiDAR (collected by aircraft) to simulate
GEDI waveforms. The study found notable changes in the mid-canopy region (40-70%
height) with slight canopy growth in the upper layers.

6.2.4 Characteristics of Old Forests

Spracklen et al. [64] examined the structural differences between old-growth forests (forests
without major disturbance) and other forest types (including younger forests and managed
forests) using GEDI Level 2 metrics. Although the study focused on forests in the Ukrainian
Mountains characterized by slopes and dense canopy cover, the authors effectively employed
GEDI metrics to classify the two forest types with over 70% accuracy using a Random
Forest Classifier. The analysis found that old-growth forests are more complex, with layered
canopies and more vegetation at the shrub layer.

6.2.5 Effects of Understory Fire

Detecting and assessing forest fires, including their severity, extent, and impacts, is crucial
to forest monitoring. However, studying fires that occur underneath the forest canopy
(known as the understory layer) is challenging, and the lack of 3D information in optical
satellite images, such as Landsat, is one of the reasons. East et al. studied whether GEDI
RH measurements could bridge this gap [23]. They use airborne LiDAR data to simulate
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GEDI waveforms for 2013 and study two sites that burned in 2005 and 2008. They showed
that the burned areas had lower RH than the unburned areas; however, in some cases,
the difference is 2 to 3 meters. Thus, considering the geolocation error and RMSE of the
actual GEDI data, it might not detect these effects. Other GEDI measures, such as PAI
and biomass, are yet to be studied for this purpose.
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Chapter 7

Conclusions

We described AFC and GEDI, two important forest monitoring datasets, and their data
quality challenges. Although GEDI alone cannot be used to create a forest change map,
it provides 3D information about forests missing from optical satellite imagery. We pro-
posed a novel approach to find data quality issues in AFC using GEDI data, specifically,
areas marked as TMF in the AFC map but with low RH95. Our findings show that this
information can be used to create more accurate forest change maps.

We implemented our method to find potential data quality errors in the Brazilian
Amazon’s AFC map of 2021 and evaluated the results in two ways. Firstly, we used Map-
Biomas, a highly-validated land cover classification dataset, as ground truth. Secondly, we
conducted visual interpretation of high-resolution Planet images. Our visual interpretation
revealed instances where both MapBiomas and AFC were inaccurate. This could be be-
cause both maps are derived from Landsat images and are subject to similar data quality
issues. Therefore, GEDI metrics could also be used to improve MapBiomas classifications.

The visual evaluation process was limited by the interpretation of a single evaluator,
and future studies could benefit from using a voting technique and involving experts.
Furthermore, there were many cases where it was ambiguous whether the land was covered
with a forest. Using very high resolution images such as commercial Maxar1 images at 0.3
meters resolution would eliminate such uncertainties.

An immediate next step is to apply the same method to other remote tropical regions
such as the TMFs of Africa and Asia. Furthermore, GEDI data products provide additional
measurements, such as various RH metrics, Canopy Cover Fraction (CCF), and Plant Area

1https://www.maxar.com
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Index (PAI). Exploring these metrics in future work can reveal other data quality errors
in existing datasets. Additionally, our method could be used to identify errors in other
land cover classification maps by finding inconsistencies between GEDI data and the target
class. For instance, we can apply this method to find errors in other 30-meter resolution
forest change maps.

Another direction for future work is to build an interactive platform for finding potential
errors in a forest change map using the GEDI RH95 metric. Data fusion is the only
time-consuming step of the algorithm, and the subsequent three steps can be executed
fast (Figure 4.1). Therefore, after precomputing this step and storing the results in a
spatial database, we could deploy a platform that allows researchers to select an area,
configure model parameters, and explore potential data quality issues. A ready-to-use
data exploration platform could be helpful in the process of creating and validating forest
maps.
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Bayol, Alexei Lyapustin, Sylvie Gourlet-Fleury, and Raphaël Pélissier. Spatial vali-
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