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Abstract

Java cryptographic APIs facilitate building secure applications, but not all developers
have strong cryptographic knowledge to use these APIs correctly. Several studies have
shown that misuses of those cryptographic APIs may cause significant security vulnerabil-
ities, compromising the integrity of applications and exposing sensitive data. Hence, it is
an important problem to design methodologies and techniques, which can guide developers
in building secure applications with minimum effort, and that are accessible to non-experts
in cryptography.

In this thesis, we present a methodology that reasons about the correct usage of Java
cryptographic APIs with types, specifically targeting to cryptographic applications. Our
type system combines aliasing control and the abstraction of object states into typestates,
allowing users to express a set of user-defined disciplines on the use of cryptographic APIs
and invariants on variable usage. More specifically, we employ the typestate automaton to
depict typestates within our type system, and we control aliases by applying the principle
of uniqueness to sensitive data.

We mainly focus on the usage of initialization vectors. An initialization vector is a
binary vector used as the input to initialize the state for the encryption of a plaintext block
sequence. Randomization and uniqueness are crucial to an initialization vector. Failing
to maintain a unique initialization vector for encryption can compromise confidentiality.
Encrypting the same plaintext with the same initialization vector always yields the same
ciphertext, thereby simplifying the attacker’s task of guessing the cipher pattern.

To address this problem practically, we implement our approach as a pluggable type
system on top of the EISOP Checker Framework. To minimize the cryptographic expertise
required by application developers looking to incorporate secure computing concepts into
their software, our approach allows cryptographic experts to plug in the protocols into the
system. In this setting, developers merely need to provide minimal annotations on sensitive
data—requiring little cryptographic knowledge.

We also evaluated our work by performing experiments over one benchmark and 7 real-
world Java projects from Github. We found that 6 out 7 projects have security issues. In
summary, we found 12 misuses in initialization vectors.
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Chapter 1

Introduction

Java Cryptography Architecture (JCA) [67] is a cryptographic framework provided by the
standard Java platform. It offers cryptographic application programming interfaces (APIs)
to build secure applications. The design of those cryptographic APIs intends to abstract
away the implementation details, so that developers without cryptographic expertise can
build cryptographic applications with the security guarantees provided by the APIs. How-
ever, several studies showed that developers may misuse cryptographic APIs due to the de-
ficiency in understanding of security API usage [4, 57, 72], complex API designs [4, 63, 72],
the lack of cybersecurity training [57, 72], and insecure/misleading suggestions in Stack
Overflow [5, 57, 72]. Misuses of cryptographic APIs may lead to runtime exceptions or
introduce significant security vulnerabilities, e.g., exposed secret keys and passwords, pre-
dictable random numbers, use of insecure cryptographic APIs and vulnerable certificate
verification [29, 30, 34, 57, 72, 73].

Taking the building of an Android app as an example, the Android Keystore system [1]
allows users to store sensitive data (e.g., keys and passwords) in the secure hardware
(e.g., Trusted Execution Environment (TEE), Secure Element (SE)) of the Android device
to make it more difficult to extract from the device. In this scenario, users can store
and retrieve sensitive information by invoking cryptographic operations encapsulated by
those APIs. Misusing those cryptographic APIs, e.g., invoking cryptographic methods in
the wrong order, may still leak the sensitive data [76]. Thus, the problem of developing
cryptographic applications in realistic scenarios with promising security guarantees needs
to be solved.

To address the problem, recently, there have been continuous efforts in detecting cryp-
tographic misuse in Java, e.g., statically detection tools (CryptoLint [29], CRYSL [52],
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FixDroid [64], MalloDroi [30], CryptoGuard [72]) and dynamic code screening tools (SMV-
Hunter [78], and AndroSSL [33]). However, we note that these approaches leave remaining
challenges that weaken the promising security guarantees provided by the APIs.

Challenge 1: Lack of Security Guarantees. Static program analysis [29] examines
and detects vulnerability without executing the code. Existing approaches can detect the
misuse of common flaws and provide assistance to developers with writing and maintaining
secure code. Those approaches can only mitigate the problem, but there are no soundness
guarantees. Dynamic program analysis requires one to execute a program and spend
(usually) manual efforts to trigger and detect specific misuse symptoms at runtime. Thus,
they may be limited in their coverage and are not scalable.

Challenge 2: Lack of Usability. Verification-based tools, e.g., the Microsoft Crypto
Verification Kit [14] and Murφ [58], perform verification on models written in a verification
language. To apply those approach to verify software written in industrial programming
language, like Java, those approaches require a compilation pipeline that translates source
and target languages back and forth. In addition, they require heavyweight annotations
written by experts in formal methods.

Challenge 3: Lack of Modularity. Java is widely used in building cryptographic
applications and systems, and is an object-oriented (OO) programming language. Thus,
Java applications are generally extensible. Without a modular methodology, the security
guarantees that a type-checked (verified) program provides may be weakened once it is
extended. However, OO techniques make modular reasoning difficult, due to non-localized
features such as subtyping, inheritance and dynamic dispatch, references (or pointers),
callbacks, and globally accessible (static) fields and methods.

Challenge 4: Lack of Detection of Reused Initialization Vectors (IV). The ex-
isting detection tools we mentioned, which are capable of identifying specific vulnerabilities
such as constant nonce and improper cipher mode, fall short when it comes to identifying
the reuse of initialization vectors—especially those stored in fields. However, the initial-
ization vectors should be used at most once [2]. Any violation of this rule can result in
identical ciphertext for the same plaintext, thus leading to potential security vulnerabilities,
as pointed out in [76].

With the goal of designing a methodology and type system for modular reasoning about
cryptographic applications with lightweight annotation overhead, we present a type system
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that supports typestate-style reasoning and controls aliasing through uniqueness. Types-
tate, as a refinement of the concept of type [80], can express a set of user-defined disciplines
on the uses of cryptographic APIs and invariants on variables, and can facilitate developers’
exploration into the space of secure application and validate the correct uses with limited
effort. Generally, sound typestate verification requires precise information about aliasing.
Globally controlling aliasing may be over-restricted, e.g., disallowing common program-
ming patterns. Thus, our approach combines aliasing control and abstractions of object
states into a typestate system. It only restricts aliasing on local variables that refer to
cryptographic objects, which involve secure-critical operations that require a strict order
on method calls. Based on our empirical study in Chapter 5, our approach fits well with
the abstractions that cryptographic APIs provide.

To minimize the cryptographic expertise required by application developers looking to
incorporate secure computing concepts into their software, our framework allows crypto-
graphic experts to plug in the protocols into the system.

In summary, this thesis makes the following contributions:

• We design a modular verification methodology that requires lightweight annotations
and disentangles the constraints of programming models from the cryptographic APIs
usage specifications. Following our approach, developers can write secure applications
by following the protocols provided by cryptographic experts.

• We formalize a typestate system that combines the aliasing information and program
states abstraction into typestate automaton (Chapter 3). It allows users to write se-
cure programs with flexible programming patterns without weakening the promising
security guarantees.

• We implemented the system in the EISOP Checker Framework [3] which is an evo-
lution of the Checker Framework [24, 69] as an extension (Chapter 4). The imple-
mentation enriches the type refinement algorithm with typestate automaton.

• We performed case studies on 7 practical projects and each project is actively main-
tained. We also found 12 vulnerabilities of initialization vectors and filed issues to
some of those projects (Chapter 5).

The rest of our thesis is structured as follows. Chapter 2 provides essential background
information to enhance understanding of our work. Chapter 3 introduces our formal type
system. Chapter 4 explains key concepts integral to our implementation. In Chapter 5,
we present case studies and evaluations of our approach. Chapter 6 discusses the related
work, followed by Chapter 7, where we offer conclusions and outline future work.
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Chapter 2

Background

This chapter provides background information to facilitate a better understanding of our
work. Section 2.1 presents the Java Cryptographic API and discusses the potential chal-
lenges that developers might encounter when building secure applications. Section 2.2
introduces the EISOP Checker Framework, forming the basis of our implementation. Sec-
tion 2.3 discusses the issues of aliasing and techniques for controlling aliasing. Section 2.4
explores verification based on typestates. The last two sections highlight the key techniques
employed in our work.

2.1 Java Cryptographic API Standard

Java security libraries (JCA and JSSE) provide a set of APIs for building secure applica-
tions, e.g.,including cryptography, public key infrastructure, authentication, secure com-
munication, and access control [67]. In our work, we focus on the classes of SecureRandom
which is used to generate random criteria and IvParameterSpec which can specify the ini-
tialization vector (IV). The subsequent content discusses the standards and the scenarios
where misuse might occur.

2.1.1 Initialization Vector (IV) and Class IvParameterSpec

In cryptography, an IV acts as input to a cryptographic primitive being used to provide
the initial state. An IV is used to add entropy to ciphertexts of encryption. Thus, it must
have enough randomness and be properly generated. In Java Cryptographic applications,
a byte array often serves as the IV to create an IvParameterSpec object.
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To make sure an IV is unpredictable and unique, the following lists the recommended
way to use an IV:

1. An IV should be initialized from an object of SecureRandom (Section 2.1.2).

2. Once an IV is initialized, its elements should not be modified or copied.

3. An IV can be used to initialize at most one IvParameterSpec object.

Thus, we propose the following scenarios to enforce correct use of IvParameterSpec.

1. An object of IvParameterSpec can be used for encryption at most once.

2. An object of IvParameterSpec may be used for encryption and decryption. Therefore,
the precondition of the constructor is true, which implies the parameter iv could be
tracked or untracked.

3. Before encryption, the type of an object is tracked. After encryption, the type of an
object is untracked, which prevents the same object being used for another encryption.

4. SecureRandom.nextBytes() must be invoked on the byte array before encryption.

5. Tracked objects should not be aliased.

Listing 2.1 shows the improper usage which violates the recommended standards.
Specifically, in line 6, the initialized IV is aliased and the same array is passed into the
IvParamSpec again.

Listing 2.1: The improper usage of IvParameterSpec.

1 byte [] bytesIV = new [16];
2 SecureRandom secureRandom = new SecureRandom();
3 secureRandom.nextBytes(bytesIV);
4 IvParameterSpec ivSpec = new IvParameterSpec(bytesIV);
5 byte [] newBytesIv;
6 newBytesIv = bytesIV;
7 IvParameterSpec ivSpec2 = new IvParameterSpec(newBytesIv);

2.1.2 Class SecureRandom

This class provides a cryptographically strong random number generator (RNG). Se-
cureRandom must yield random output which is hard to predict. Therefore, any seed
material passed to a SecureRandom object must be unpredictable. In our scenario, we
must use a unpredictable seed generated by SecureRandom.nextBytes() to initialize the
initialization vector.
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2.2 The EISOP Checker Framework

The EISOP Checker Framework [3] is an evolution of the Checker Framework [24, 69]. The
EISOP Checker Framework is a pluggable types system, which supports adding pluggable
type systems to the Java language in a backward-compatible way. In general, existing
built-in static type systems are already able to detect and prevent errors before we run
the programs. Unfortunately, the standard type system cannot detect and prevent enough
errors in practice. For example, NullPointerException frequently appears in practice and
is challenging to eliminate entirely by the existing built-in type system. As a result,
programmers often debug their code manually, even though they can do this automatically.

The EISOP Checker Framework enriches the standard type system by allowing both
type system designers and developers to define their new type qualifiers, type hierarchies,
type rules, etc. Thus, they can build and run their type systems as a plugin to the standard
Java compiler without extra efforts and interruptions to the existing components.

Furthermore, the EISOP Checker Framework is expressive, which is a key factor in its
real-world application. The EISOP Checker Framework is easy to learn; for example, users
such as developers do not need to deeply understand the concepts of the type system, they
just need to annotate their program properly.

To implement a user-defined type system using the EISOP Checker Framework, we
typically need the following steps.

• Defining Type Qualifiers and Type Hierarchy. Type qualifiers can represent types in
the type system. In the EISOP Checker Framework, type qualifiers can be written
in Java annotations and the syntax of type qualifiers is simple: the type annotations
should be put before the basic type, for example, @Nullable Object o.

• Designing a Control Flow Graph Algorithm. The EISOP Checker Framework al-
ready enforces the basic control flow graph algorithms, and users can define their
algorithms based on these. By overriding the transfer function, users can apply their
own algorithms.

• Writing type rules. Once the type qualifiers and type hierarchy have been defined,
users can then write their type rules. As mentioned above, the EISOP Checker
Framework also involves the basic type rules for the users, e.g., subtyping rule. Thus,
users only need to write their specific rules.

It is worth mentioning that the EISOP Checker Framework has a relatively light way
to implement typestates by introducing pre- and post-conditions. Figure 4.1 shows how to
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closedstart open

error

open()

close()

read(), write()

close(), read() open()

Figure 2.1: The automaton of a file object in Java.

define post-conditions in the EISOP Checker Framework. We will discuss how to represent
typestate automaton later in Section 4.3.

2.3 Aliasing

Aliasing has been the key technical challenge in Java program verification. It allows dif-
ferent variable names to refer to the same resource. To make static verification sound, the
verifier must be aware of the alias relationship by which the program changes the object’s
state of interest. Modern verification techniques either rely on advanced verification logics
(e.g., separation logic [66, 75] and region logic [8, 9, 10]), whose semantics provide for the
modification of memory locations, or expressive type systems to control aliasing (see Sec-
tion 6.1 for detailed discussion). Applying those approaches to solve our problem requires
experts with a deep understanding of the verification methodology and significant human
efforts.

2.4 Typestates

In computer programming, typestates can be defined as specific behaviors that expressions
are allowed to perform. For example, in Java, we can perform read operations on a File
object only if this object is in the “open” state. Conversely, we cannot perform read and
write operations on a “closed” file. In essence, type states indicate which operations, such
as methods, can be called on the objects.
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The concept of type states has been formally defined by [80, 47], where the typestate
can be represented as a finite type state automaton A = (Σ, S, s0, δ, e). Σ represents the
operations that can be performed on this type; S is a set of all the type states of this type,
and s0 is the initial state. δ determines the state transitions. Lastly, e represents the error
states or non-accepting states.

Figure 2.1 shows how typestates work by providing a brief example. In this example,
the operations include “read()”, “write()”, “open()” and “closed()”, and the state set S
consists of closed, open, and error. Any invalid operation will lead to an error state.

Implementing type states in a type system can be challenging: developers usually need
an additional protocol file that specifies all states and related transitioning operations. In
our work, we introduce a new approach to implementing type states in the type system
by leveraging the pre/post-conditions feature of the EISOP Checker Framework. We will
discuss this implementation later in Section 4.3.
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Chapter 3

Uniqueness and Typestate System

This section provides a detailed explanation of our typestate system and presents the formal
type rules. Section 3.1 offers an informal introduction to our design by our examples;
Section 3.2 introduces our type qualifiers and type hierarchy; Section 3.3 provides an
overview of the typestate automaton for our case. Section 3.4 presents a formalization of
our type system, including the syntax and type rules.

3.1 Informal Introduction

To make sure the security guarantees provided by Java cryptographic APIs are not weak-
ened via incorrect usage, a developer must obey the rules for properly calling an object’s
method, e.g., calling them in an allowed order, obeying the preconditions on the methods’
argument, and data being used properly, for instance, used at most once.

Taking the IV as an example, as explained in Section 2.1.1, an IV needs to be initialized
from an object of SecureRandom, cannot be modified before being used to initialize an
IvParameterSpec object, and can not be used for this purpose anymore. This protocol
is illustrated in Figure 3.1 as a simple abstract state machine combined with aliasing
information.

3.1.1 Tracking Uniqueness with Type Qualifiers

As discussed in Section 2.3, it is challenging to enforce such a protocol without controlling
aliasing. We introduce a type qualifier @Unique to indicate that there is only one variable
that can refer to its referent. For example, in the following code snippet, variable bytesIV
is annotated as @Unique at its declaring site.

9



freshstart initialized

error

used
nextBytes

IvParameterSpec

IvParameterSpec

IvParameterSpec

Figure 3.1: IvParameterSpec initialization protocol specified by state machine.

1 byte @Unique [] bytesIV = new [16];
2 SecureRandom secureRandom = new SecureRandom();
3 secureRandom.nextBytes(bytesIV);
4 IvParameterSpec ivSpec = new IvParameterSpec(bytesIV); //: ok

This uniqueness property is enforced up until it is used (line 4), and is automatically
inferred based on the protocol (documented in a separate file (see Section 4.3)).

Assignment. An assignment will disable the use of bytesIV as shown in the followings:
1 byte @Unique [] bytesIV = new [16];
2 SecureRandom secureRandom = new SecureRandom();
3 secureRandom.nextBytes(bytesIV);
4 byte [] bytesIV2 = bytesIV;
5 IvParameterSpec ivSpec = new IvParameterSpec(bytesIV); //: wrong
6 IvParameterSpec ivSpec = new IvParameterSpec(bytesIV2); //: ok

Here, the type inference assigns the unique qualifier to byteIV2. Now bytesIV cannot be
used for the initialization (at line 5). One can use bytesIV2 for initialization (at line 6).

Functional Abstraction. Methods are annotated with pre- and post-conditions. At the
caller site, the type system checks the actual parameter against the pre-condition, assumes
the type annotation in the post-condition after the method call. If a unique variable is
mentioned in the pre-condition, and is used (e.g., via assignment) in the function body,
then the client cannot use it anymore.
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@Top

@Shared({”b”})@Shared({”a”}) @Shared({”c”})

@Unique({})

@Unique({”b”})@Unique({”a”}) @Unique({”c”})

@Bottom

Figure 3.2: Type hierarchy.

To check the method body, we assume the type of formal parameters, and check the
method body. At the end of the method body, we check the type of variables against its
post-condition.

3.2 Type Qualifiers and Type Hierarchy

We have four type qualifiers: @Unique {}, @Shared {}, @Top and @Bottom, which repre-
sent our uniqueness property, denoted by the symbol ρ, in the subsequent Section 3.4.1.
Moreover, we associate our type qualifiers with curly braces {} to hold related typestates.

Figure 3.2 depicts our type hierarchy. @Top and @Bottom are straightforward in the
hierarchy. @Shared is the super type of @Unique, indicating variables associated with this
type can be used repeatedly. Moreover, a @Shared type can hold all typestates, enabling
the recording of all states a variable undergoes. Therefore, regardless of what typestate
the @Unique holds, @Shared always remains its supertype. @Unique qualifiers with different
typestates, e.g., “a”, “b” and “c” do not have relationships with each other. This is because
we aim to constrain the typestate transfer in between the uniques, i.e., the typestate can
be only changed by the operations in the defined automaton, rather than by assignments.

In our implementation, our default type qualifier is @Top, which is @Shared{} in our
implementation, we will discuss it in Section 4.2.
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3.3 Program Verification via Typestate

Formally, typestate can be represented as a finite type state automaton A = (Γ, S, S0, δ,
e). In our work, we perform the typestate verification on the initizalization vectors, i.e.,
initialization vectors have their typestates at certain points and the typestate will change
according to the invocation of the methods called on them. Γ denotes the operations in
the automaton. In this paper, some methods which are called on the security nonce are
operations, e.g., the SecureRandom.nextbytes and IvParameterSpec. The set of typestate S
can be defined by users, as well as the initial state S0. δ determines the state transitions,
i.e., from a pre-state to a post-state. When an initialization with the invalid state is being
called on a specific operation, the automaton will reach an error state e. In our work, we
prevent the misuses of initialization vectors by verifying the automaton does not enter an
error state, otherwise a type error will be reported.

Figure 3.1 illustrates the typestate automaton in our work. The set of states S consists
of “{}”, “initialized” and “used”. When an byte array for an initialization vector is created,
an initial state “{}” is attached to it automatically. To generate the initialization vector,
this array must be randomized by calling the RNG method SecureRandom.nextByte() on
it, and its state will be initialized afterwards. Once the array is passed in IvParameterSpec
to generate the IV, the associated state becomes used, indicating this variable cannot be
used again. Any byte array without the state initialized will lead to the error state when
calling IvParameterSpec on it.

3.4 Formalization

This section presents our formal type system. Section 3.4.1 introduces the syntax of our
type system. To streamline the presentation, Section 3.4.2 introduces several auxiliary
functions. Section 3.4.3 shows the well-formed definitions. Section 3.4.4 presents the type
rules for our expressions and statements respectively.

3.4.1 Syntax

The syntax of a program is defined in Figure 3.3. We assume all variable names are
globally unique. The notation x means zero or more occurrences of x, and the notation [x]
means that x is optional. We use P to denote a program; C and D to denote a class and
its superclass, K to denote a constructor; F denotes field declarations and f denotes field
name respectively. The uppercase M denotes the method declaration while lowercase m is
a method’s name. The notations x and y range over variable names; e means expressions;

12



P ::= ClassDecl

ClassDecl ::= class C extends D{ F K M }
F ::= f : QT ;

K ::= C (g : ATg; f : ATf ) : ret : QTC : { super(g); this.f := f ; ret := this }
M ::= def m(this : ATc, x : ATx) : ret : QTr : {S}
e ::= x | c | x.f | e1 ⊕ e2
S ::= skip | x := y | x := y.f | x.f := y | x := x1.m(x2)

| var x : QT := e in S | var x : QT := new ρ C(y) in S | if e then S1 then S2

| while e do S | S1; S2

T ::= Int | C
ρ ::= unique TS | shared TSa | ⊤ | ⊥

TS ::= TSu | TSa
c ∈ Z

QT ::= Int | ρ C
AT ::= Int | ρ → ρ′ C
TSu ::= unique typestate identifier
TSa ::= accumulation typestate identifier
⊕ ::= + | −
Γ ::= ∅ | Γ, x : QT | Γ, x.f : QT

Φ ::= ∅ | Φ, p : TSpre
(C,m)−−−→ TSpst

Figure 3.3: Abstract syntax.

S ranges over statements; T ranges over pre-types; ρ combines aliasing information with
typestate; c ranges over constants; QT denotes qualified types. AT ranges over arrow
type; TS ranges over typestates. We use Γ to denote a type environment and Φ to denote
a typestate table.

A program P consists of a sequence of class declarations. A class declaration has an
identifier C, a super class identifier D, a sequence of field declarations F , a single constructor
K and a sequence of method declarations M . A field declaration is a field identifier f
associated with its qualified type QT . A constructor declaration K shows how to initialize
an object of class C. It takes g and f with their qualified types as its parameters, and has
a return type for ret. In the body of the constructor,the superclass constructor is called to
initialize the fields declared in the superclass, followed by the assignments initializing its
own fields, and finally this variable is assigned to the return variable ret.

A method declaration M consists of its identifier m, its parameters, its return type,
and its body. The parameters include its receiver this and the formal method parameters
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x with their types, and the method body contains a set of statements S.

The syntax of the expression e and statement S are straightforward. The expression e
contains a variable and a constant, field access and binary operations which are denoted
by the symbol ⊕. The statement S consists of skip, assignment, field read, field update,
method invocation, local variable block, object initialization, if and while statements, and
sequential statements.

Our pre-types T are integers and the class names. Our type system tracks qualified
types QT that annotates a class name with a qualifier ρ to track aliasing (i.e., unique and
shared) and an object’s state, TS. Our qualifier ρ also includes ⊤ and ⊥, which were
discussed in Section 3.2. Our typestate TS is either TSu or TSa, indicating the general
typestate and accumulation typestate respectively. An arrow type, AT, is used to annotate
constructor and method declarations, and is in the form of (ρ → ρ′ C). It can express
objects state changes from ρ in the pre-state to ρ′ in the post-state. It serves as an
abbreviation of ρ C → ρ′ C.

A type environment Γ maps from variables or field read expressions to their qualified
types. The typestate table Φ specifies the protocls that are expressed via typestates tran-
sitions for object constructor and methods. We write Φ(C,m,TSpre) = TSpst to mean
retrieving the typestate in the post-state from the typestate table Φ for a given class C
and a method m.

For convenience, we use the notation ⊥ to represent the uniqueness type associated
with the class type C, denoted as ⊥ C.

3.4.2 Auxiliary Functions

To streamline the presentation, Figure 3.4 defines several auxiliary functions.

tslookup gets the typestate from ρ C if ρ is unique TS or shared TS. The field
type lookup fieldtype returns the fields with their types of a class C. methodtype
lookup returns the parameter types and the return type for a given method m in a class
C. constructortype returns the parameters types and the return type of a constructor
of a class C. Note we use the symbol ·∪ to denote the disjoint operation in its premises.

In addition, for the sake of convenience, we also have some straightforward auxiliary
functions.

The notation QTr[PT(QTr) 7→ PT(QTz)] substitutes the pre-type of a qualified type
with a pre-type, e.g., (ρ C)[C 7→ PT(ρ′ D)] = ρ D.
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(typestate lookup)

ρ = unique TS ∨ shared TS

TSLookup(ρ C) = TS

(field type lookup)

class C extends D { K F M }
fieldType(C) = f : QT

(methodtype lookup )

class C extends D { K F M } def m(this : ATc, x : ATx) : ret : QTr : {S} ∈ M

methodType(m, C) = (ATc, ATx) → QTr

(constructortype lookup)

class C extends D { K F M }
K ::= C (g : ATg; f : ATf ) : ret : QTC : { super(g); this.f := f ; ret := this}

p : ATp ::= g : ATg ·∪ f : ATf

constructorType(C) = p : ATp → QTc

dom(Int) = Int
domTS(ρ → ρ′ C) = TSpre

dom(ρ → ρ′ C) = ρ C
codom(Int) = Int

codom(ρ → ρ′ C) = ρ′ C
codomTS(ρ → ρ′ C) = TSpst

PT : (AT +QT ) → T
PT(Int) = Int
PT(ρ C) = C

PT(ρ → ρ′ C) = C
TS(ρ C) = TS

Figure 3.4: Auxiliary functions extracted from a given class table.

3.4.3 Well-formedness Definitions

The notation ⊢wf is a judgment for well-formed definitions. We assume there is a class
table extracted from program P .

The class C is well-formed if it is in the class table. QT is well-formed if it is Int. If
QT is ρ C, it is well-formed if the class type C is well-formed, and its associated typestate
TS is in the typestate table Φ.

(wf-c)

C ∈ Class Table

⊢wf C

(wf-qt-ρC)

QT = ρ C ⊢wf C TSLookup(ρ C) = TS TS ∈ Φ

⊢wf QT

(wf-qt-int)

QT = Int

⊢wf QT

The type environment Γ is well-formed if it can map the variables in it to their types
QT and QT is well-formed, and if a field x.f is in Γ, its receiver x is also in Γ and has the

15



type ρ C, and the field belongs to the fields of C.

(wf-Γ )

x ∈ Γ ⇒ Γ(x) = QT∧ ⊢wf QT x.f ∈ Γ ⇒ x ∈ Γ ∧ Γ(x) = ρ C ∧ f ∈ fieldType(C)

⊢wf Γ

The field declaration is well-formed if the filed f is in the fields of its class C and has
the well-formed type QT where QT is TSa shared.

(wf-f)

f ∈ fieldType(C) ∧ fieldType(C)(f) = QT ∧QT = TSa shared ⊢wf QT

C ⊢wf f : shared TSa;

Rule wf-class shows that a class declaration is well-formed if its constructor K, field
declarations F and method declarations M are well-formed. The constructor K is well-
formed if the domain of the parameters ATp and return type are not ⊥. Other constraints
are similar to Featherweight Java [43].

(wf-class)

K ::= C (g : ATg; f : ATf ) : ret : QTC : { super(g); this.f := f ; ret := this }
constructorType(C) = p : ATp → QTC

this : C, ret : QTc, p : dom(ATp) ⊢ { super(g); this.f := f ; ret := this } ⊣ Γ′

dom(ATp) ̸= ⊥ QTC ̸= ⊥ Γ′ ⊢ p : codom(ATp)

Γ′ ⊢ ret : QTC constructorType(D) = g : ATD → QTD dom(ATg) <: dom(ATD)

F = f : QTf C ⊢wf f : QTf dom(ATf ) <: QTf C ⊢wf M

⊢wf class C extends D { K F M }

Rule wf-m indicates that a method declaration is well-formed if the domain and
codomain of its receiver type are not ⊥, and the domain of the parameters’ types ATx

and the return type QTr are not ⊥ as well. Other constrains are similar to Featherweight
Java [43]. Moreover, the declared post-typestates of the receiver type and parameter types
should match the states defined in the typestate table Φ.
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Γ ⊢ e : ρ T

(t-c)

Γ ⊢ c : Int

(t-var-c)

Γ(x) = ρ C ρ ̸= ⊥
Γ ⊢ x : ρ C

(t-var-int)

Γ(x) = Int

Γ ⊢ x : Int

(t-f-1)

Γ ̸⊢ x.f Γ ⊢ x : ρx Cx (f : shared TSf C) ∈ fieldType(Cx)

Γ ⊢ x.f : shared TSf C

(t-f-2)

Γ ⊢ x : ρx Cx Γ(x.f) = shared TSf C

Γ ⊢ x.f : shared TSf C

(t-op)

Γ ⊢ e1 : Int Γ ⊢ e2 : Int

Γ ⊢ e1 ⊕ e2 : Int

Figure 3.5: Type rules for expressions.

(wf-m)

this : dom(ATc), ret : QTr, x : dom(ATx) ⊢ S ⊣ Γ′

PT (ATc) = C dom(ATc) ̸= ⊥ codom(ATc) ̸= ⊥ dom(ATx) ̸= ⊥
QTr ̸= ⊥ Γ′ ⊢ this : codom(ATc) Γ′ ⊢ x : codom(ATx) Γ′ ⊢ QTr

class C extends D { K F M } methodType(D,m) = (ATD, ATDx) → QTDr

ATDx = ATx QTDr = QTr codomTS(ATc, ATx) = Φ(C,m, domTS(ATc, ATx))

C ⊢wf def m(this : ATc, x : ATx) : ret : QTr : {S}

3.4.4 Static Typing

Figure 3.5 shows our type rules of expressions. Note all expression rules are under the type
environment Γ. A constant c only has the type Int. The type of a variable x is either Int
or ρ C if x has the type ρ C in Γ and ρ is not ⊥. A field x.f always has type shared TSf C
if it is already in Γ, or its receiver x is in Γ and we can retrive its type from the class table
indexed by the static type of x. Finally, an Int expression e1 operating with another Int
expression e2 produces the Int type as well.

Figure 3.6 and Figure 3.7 illustrate the type rules of our statements. Γ ⊢ S ⊣ Γ′ means
the type environment Γ becomes Γ′ after the execution of the statement S.

The rules t-skip, t-deref-shared, t-while, t-seq and t-var-s are standard and
straightforward, thus, we omit the definitions of them here.
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Γ ⊢ S ⊣ Γ′

(t-skip)

Γ ⊢ skip ⊣ Γ

(t-assign-shared)

Γ ⊢ x : ρx Cx Γ ⊢ y : shared TSy Cy ⊢ Cy <: Cx

Γ ⊢ x := y ⊣ (Γ− x.∗)[x 7→ shared TSy Cx] + +[x.∗ 7→ Γ(y.∗)]

( t-assign-u)

Γ ⊢ x : ρx Cx Γ ⊢ y : unique TSy Cy ⊢ Cy <: Cx

Γ ⊢ x := y ⊣ (((Γ− x.∗)[x : unique TSy Cx] + +[x.∗ 7→ Γ(y.∗)])− y.∗)[y : ⊥]

(t-deref-shared)

Γ ⊢ x : ρx Cx Γ ⊢ y.f : shared TSf Cf ⊢ Cf <: Cx

Γ ⊢ x := y.f ⊣ (Γ− x.∗)[x : shared TSf Cx]

(t-upd-shared)

Γ ⊢ x.f : shared TSf Cf Γ(x) = shared Γ ⊢ y : shared TSy Cy ⊢ Cy <: Cf

Γ ⊢ x.f := y ⊣ Γ[x.f : shared TSy Cf ]

(t-upd-u)

Γ ⊢ x.f : shared TSf Cf Γ(x) = shared Γ ⊢ y : unique TSy Cy ⊢ Cy <: Cf

Γ ⊢ x.f := y ⊣ (Γ[x.f 7→ shared TSy Cf ]− y.∗)[y : ⊥]

Figure 3.6: Type rules for statements (part 1).

There are two rules for assignments: t-assign-shared and t-assign-u. Rule t-
assign-shared is used when the qualifier of right-hand-side is shared. It assigns the
right-hand side y to the left-hand-side x, where the pre-type of y is a subtype of x. After
the assignment, x becomes shared TSy. Rule t-assign-u is used when the qualifier of right-
hand-side is unique. In the case of the rhs y has type unique TSy Cy, y’s type becomes ⊥
after the assignment, and its original type and state will be transferred to the left-hand-side.

The rules for field update (t-upd-shared and t-upd-u) are similar to those for as-
signments. Their rhs y transfers its typestate TSy to the lhs x.y if the class type Cy is
a subtype of Cx. Similar to rule t-assign-u, rule t-upd-u deprives the use of y with
qualifier ⊥, as the data referred by y loses its uniqueness property.

Rule t-meth specifies state transitions of arguments, which is similar to linear logic
(see discussion in Section 4.3). In the pre-state, the typestates of arguments y can not be
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Γ ⊢ S ⊣ Γ′

(t-meth)

Γ ⊢ z : QTz Γ ⊢ x : QTx Γ ⊢ y : QTy

methodType(Cx,m) = (ATc, ATp) → QTr ⊢ QTy <: dom(ATp) ⊢ QTr <: QTz

Γ′ = (Γ− z.∗)[x : codom(ATc)][y : codom(ATp)][z : QTr[PT(QTr) 7→ PT(QTz)]

Y = {yi ∈ y | Γ′(yi) = ⊥} Γ′′ = Γ′ −
⋃
yi∈Y

yi.∗

Γ ⊢ z := x.m(y) ⊣ Γ′′

(t-if)

Γ ⊢ e : Int Γ ⊢ S1 ⊣ Γ1 Γ1 ⊢ S2 ⊣ Γ2

Γ ⊢ if e then S1else S2 ⊣ Γ1 ▷◁ Γ2

(t-while)

Γ ⊢ e : Int Γ ⊢ S ⊣ Γ′

Γ ⊢ while e do S ⊣ Γ′

(t-seq)

Γ ⊢ S1 ⊣ Γ1 Γ1 ⊢ S2 ⊣ Γ′

Γ ⊢ S1 S2 ⊣ Γ′

(t-var-s)

Γ ⊢ e : QTe QTe <: QTx Γ, x : QTe ⊢ S ⊣ Γ′

Γ ⊢ var x : QTx := e in S ⊣ Γ′ − x− x.∗

(t-new)

Γ ⊢ y : QTy constructorType(C) = p : ATp → QTc ⊢ QTc <: ρ C

⊢ ρ C <: QTx ⊢ dom(QTy) <: dom(ATp) Γ′ = Γ[y : codom(ATp)][x 7→ ρ Cx]

Cx = PT (QTx) Y = {yi ∈ y | Γ′(yi) = ⊥} Γ′′ = Γ′ −
⋃
yi∈Y

yi.∗ Γ′′ ⊢ S ⊣ Γ′′′

Γ ⊢ var x : QTx := new ρ C(y) in S ⊣ Γ′′′ − x. ∗ −x

Figure 3.7: Type rules for statements (part 2).

⊥ indicating they are allowed to access the data. This is enforced as an invariant in our
system, i.e., t-var-c. The type rule retrieves the method’s type ((ATc, ATp) → QTr) with
respect to the static type QTx of its receiver x in the class table via the auxiliary function
methodType. Then we type-check the arguments y’s type against the method’s declared
type dom(ATp). In the post-state, we assume the typestates of arguments against the

method’s declared type, i.e., Γ is updated with y : codom(ATp). Similarly to the receiver’s
typestate, as we treat the receiver as an explicit parameter. The lhs’s typestate is updated
with respect to the method’s return type’s typestate, i.e., given a return value’s typestate
QTr, we substitute the pre-type of a qualified (ρ C)[C 7→ PT(ρ′ D)] = ρ D, which is defined
by the notation QTr[PT(QTr) 7→ PT(QTz)]. Finally, an argument will be removed from the
environment if it is ⊥ after the invocation. In this way, the invariant of our type system is
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maintained.

The resulting typing environment, Γ, of an if-statement is defined by the operator ▷◁
on the two branch’s typing environments, Γ1 and Γ2, written as Γ1 ▷◁ Γ2. The domain of Γ
is the intersection of the domains of Γ1 and Γ2 because we do not consider local variables
declared in either branch. For each element, x, in Γ, x’s type is the least upper bound
of Γ1(x) and Γ2(x) if both of their types are not ⊥, otherwise, it is their greatest upper
bound. The ▷◁ operator is formally defined as below:

Γ1 ▷◁ Γ2 =



(Γ1(x) ⊔ Γ2(x)), (Γ1 − x) ▷◁ (Γ2 − x) if Γ1(x) ̸= ⊥ ∧ Γ2(x) ̸= ⊥
(Γ1(x) ⊓ Γ2(x)), (Γ1 − x) ▷◁ (Γ2 − x) if Γ1(x) = ⊥ ∨ Γ2(x) = ⊥
(Γ1 − x) ▷◁ Γ2 x ∈ Γ1 ∧ x ̸∈ Γ2

Γ1 ▷◁ (Γ2 − x) x ∈ Γ2 ∧ x ̸∈ Γ1

∅ Γ1 = ∅ ∧ Γ2 = ∅

where Γ(x) means that variable x is defined in Γ.

Rule t-new illustrates how to initialize an object. In pre-state, the arguments y have
type QTy and QTy cannot be ⊥. We retrieve the constructor type as p : ATp → QTc

denoting the parameters p with the return type QTc. Then we type-check the arguments
y’s types, the receiver type x’s type and the new object declaration type ρ C against the
constructor declared type.

In the post-state, the arguments y’s type are updated to codom(AT ) and the receiver
x’s type becomes ρ Cx, where Cx is extracted from QTx. Similar to the rule of t-meth,
an argument will be removed from the environment if it is ⊥ after the initialization.
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Chapter 4

Implementation

This section details the implementation of our work.1 As a stand-alone pluggable type
system built on top of the EISOP Checker Framework, our implementation comprises 697
lines of code spread across five classes. We introduce the type refinement in Section 4.1,
the default type in Section 4.2 and typestates in Section 4.3.

4.1 Type Refinement

In our checker, we adapted the type rules to align with our specific requirements, leveraging
the inherent flexibility of the EISOP Checker Framework. To accommodate our type rules,
we made two significant changes in our implementation, specifically concerning assignments
and if-conditions. In EISOP Checker Framework, only the type of left-hand side (lhs) of
an assignment will be updated, and the least-upper-bound (lub) is always used for the
variables the if-conditions. Our checker introduces some adjustments. According to our
type rules (see Section 3.4.4), the right-hand side (rhs)’s type will become ⊥ if it is initially
unique, and both the least upper bound and greatest lower bound are applicable to the
if-statement, depending on the types of the variables.

4.2 Default Type Annotation

We designated ⊤, i.e., shared({}), as our default type qualifier because other types, i.e.,
unique and ⊥ are overly sensitive. unique limits a variable to be used at most once, and
variables with type ⊥ are inaccessible.

1The code is available on https://github.com/vehiloco/linear-checker.
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1 c l a s s SecureRandom {
2 @EnsureUnique(
3 value = "#1",
4 states = {"initialized"})
5 void nextBytes(byte @Unique({}) [] bytes);
6 }
7

8 pub l i c c l a s s IvParameterSpec {
9 @EnsureUnique(

10 value = "#1",
11 states = {"used"})
12 pub l i c IvParameterSpec(byte @Unique({"initialized"}) [] iv);
13 }

Figure 4.1: Typestate automaton in the EISOP Checker Framework.

Therefore, setting such default type can significantly reduce the manual effort required
for program annotation, as we only need to annotate the sensitive data, like initialization
vectors.

4.3 Typestates

4.3.1 Typestate Automaton

We employed the post-condition feature of the EISOP Checker Framework to represent
the typestate automaton. Figure 4.1 shows an implementation example. The annotation
@EnsureUnique denotes the post-condition upon method invocation or constructor initial-
ization. In our example, we set a post-condition on the method SecureRandom.nextBytes
and the constructor IvParameterSpec. In the post-condition block value = ”#1” indicates
that the post-condition applies to the first parameter and states = (”initialized”) repre-
sents the post-state of this parameter as “initialized” after the invocation. Lastly, the
annotations before the declarations of parameters show the valid pre-states.

Such an implementation can well represent the typestate automaton A = (Σ, S, s0, δ, e)
well. All the methods with post-condition specifications compose Σ; the set of states
S includes all the states specified by the states keyword in @EnsureUnique block. In our
example, we have two explicit states, initialized and used, and an implicit initial typestate
s0 {}; δ is represented by the post-condition specification @EnsureUnique. Finally, if the
passed argument violates the specification, the state transitions into an error state e,
resulting in a type error.
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1 ---
2 states:
3 - "initialized"
4 - "used"
5 operations:
6 IvParameterSpec(byte[]):
7 package: "javax.crypto.spec.IvParameterSpec"
8 position: "#1"
9 res: "void"

10 before: "initialized"
11 after: "used"
12 nextBytes(byte[]):
13 package: "java.security.SecureRandom"
14 position: "#1"
15 res: "void"
16 before: ""
17 after: "initialized"

Figure 4.2: Typestates validation in the EISOP Checker Framework.

4.3.2 Typestate Validation

To verify the validity of all states during type checking, we introduced a yaml file storing the
correct automaton information which can be defined by the users. Each time we conduct
the type-checking, we utilize this stored information to prevent any invalid typestate and
method usage, such as typo errors.

Figure 4.2 shows the constrain file we integrated. In this file, we define all valid states
and operations. When an operation is invoked, we first validate the signature, i.e., we
ensure the signature precisely matches what we stored in the yaml. Then, we check all the
states are valid by going through the states in the yaml file. Finally, we verify whether
the transaction is valid by examining whether the pre- and post-states correspond to the
before and after in the file.
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Chapter 5

Case Study

This chapter shows our experiments and evaluations of our implementation. In Sec-
tion 5.1, we evaluate the benchmark named CryptoAPI-Bench. Our experiments on real-
world projects are detailed in Section 5.2. Finally, Section 5.3 discusses the false positives
found during our experiments.

Our experiments were performed on some test cases generated by CryptoAPI-Bench [6],
as well as some practical projects on Github.

We divided our evaluation into two parts, i.e., performing experiments on some artifi-
cial benchmark test cases generated by CryptoAPI-Bench [6] and type-checking projects
on Github in the real world. CryptoAPI-Bench summarized 16 different kinds of threat
models, and we mainly focused on the cases of misuse of IvparameterSpec. Running those
cases ensured that our implementation was satisfying on some simple and basic usages.
On the other hand, to make our evaluation more convincing, we ran our experiments on
some projects on Github and obtained some more sophisticated findings. Table 5.2 shows 7
projects chosen for our experiment. All projects were actively maintained (the last merged
commit was in 6 months) and widely used (more than 1,000 stars). In summary, we found
12 vulnerabilities of initialization vectors over 7 projects with only 5 manual annotations.

To reduce the manual effort for annotating source code, we carried out our experiment
over two distinct rounds. In the first round we type-checked source code without manual
annotations. From the output of the first step, we annotated the source files at necessary
places, e.g., annotated @Unique on the IV parameters for the sake of encryption, and ran
the second round.

Based on the results of our evaluation, we categorized the misuse of IV into two groups:
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Test Cases Number True Positives False Positives False Negatives

Basic Case 2 2 0 0

Two-Interproc. 1 1 0 0

Three-Interproc. 1 2 0 0

Field Sensitive 1 1 0 0

Combined Case 1 1 0 0

Path Sensitive 1 0 1 0

Misc 2 2 0 0

Multiple Class 1 1 0 0

Total 10 9 1 0

Table 5.1: Benchmark test cases.

1. Using Predictable IVs

Some projects use constant values or values generated by Pseudo Random Number
Generator (PRNG) for IVs in the decryption mode. However, IVs should be unpre-
dictable. Using a predictable IV may lead to a risk of exposure of the pattern of the
ciphertext to attackers.

2. Re-using IVs

Similar to using the predictable IVs, reusing the IVs also compromises the confiden-
tiality of the encryption as same IVs always produce same ciphertext with the same
plaintext and secret keys. However, this case can be tricky in the coding level as
some projects store the IV in the fields when initializing an object and use this iv
to encrypt messages. Although some of IVs are unpredictable, they are still being
reused or have the risks of being reused since it is hard to limit a field for being used
more than once.

As shown in table 5.2, 9 out of the 9 insecure uses belonged to Group 1, and only three
to Group 2, representing a 75%-25% distribution in favor of Group 1.

In the rest of this chapter, we discuss our findings in Section 5.1 and Section 5.2
respectively.

5.1 Findings in CRYPTOAPI-BENCH

To ensure the accuracy of our implementation, we first evaluated our implementation by
type-checking the test cases in CryptoAPI-Bench [6]. To minimize duplication of efforts, we
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selected the test cases related to initialization vectors. Table 5.1 illustrates our evaluation of
the initialization vector-related test cases chosen from CRYPTOAPI-BENCH. In summary,
we conducted our type-checking of 10 test cases distributing in different types, e.g., basic
case, interprocedure, field sensitive, etc., and all true positives were successfully identified.
However, one false positive was encountered in a path-sensitive case due to our data flow
analysis lacking a path-sensitive mechanism.

5.2 Findings in Real-World Projects

Table 5.2 provides a comprehensive summary of our investigation into insecure usage of
Initialization Vectors (IVs) across seven real-world projects. Among these projects, we
identified 12 instances of insecure IV usage. We annotated a total of five instances manu-
ally. lx-music-mobile and Apache pdfbox were the only two projects which required manual
annotations, with two and one, respectively. The other projects did not require any manual
annotations. Despite these findings, it’s essential to note that there were nine false posi-
tives. These inaccuracies were distributed across all projects. Further discussion regarding
the false positives and potential solutions will be provided inSection 5.3.

5.2.1 Using Predictable IVs

We found that 4 projects used predictable IVs. In the following content of this subsection,
we discuss one representative example from the project OpenPDF.

Listing 5.1 illustrates the incorrect use of IV from the project OpenPDF. A predictable
IV is generated in line 7 for encryption purpose. In line 7, an IV is initialized with a
new empty array, and is passed into a function to initialize the cipher in CBC mode.
Consequently, every time this method is invoked, a predictable IV is generated for the
sake of encryption, simplifying the task for an attacker aiming to discern the encryption
pattern.

Listing 5.1: An example of using a predictable IV.

1 void computeUAndUeAlg8(byte[] userPassword) throws
GeneralSecurityException {

2 f i n a l Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
3 byte[] userSalts = IVGenerator.getIV(16);
4 userKey = new byte[48];
5 cipher.init(Cipher.ENCRYPT_MODE,
6 new SecretKeySpec(hashAlg2B, "AES"),
7 new IvParameterSpec(new byte[16]));
8 ueKey = cipher.update(key, 0, keySize);
9 }
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5.2.2 Reused IVs

Listing 5.2 provides the code snippet from WxJava, where an encrypt method is imple-
mented in CBC mode for outgoing messages. However, an aesKey is used to generate the
IV as illustrated in line 17, leading to every message being encrypted with an identical IV.

Listing 5.2: An example of a reused IV.

1 pub l i c String encrypt(String randomStr, String plainText) {
2 ByteGroup byteCollector = new ByteGroup();
3 byte[] randomStringBytes = randomStr.getBytes(CHARSET);
4 byte[] plainTextBytes = plainText.getBytes(CHARSET);
5 byte[] bytesOfSizeInNetworkOrder = number2BytesInNetworkOrder(

plainTextBytes.length);
6 byte[] appIdBytes = t h i s.appidOrCorpid.getBytes(CHARSET);
7

8 //...
9 byte[] padBytes = PKCS7Encoder.encode(byteCollector.size());

10 byteCollector.addBytes(padBytes);
11

12 byte[] unencrypted = byteCollector.toBytes();
13

14 t ry {
15 Cipher cipher = Cipher.getInstance("AES/CBC/NoPadding");
16 SecretKeySpec keySpec = new SecretKeySpec( t h i s.aesKey, "AES");
17 IvParameterSpec iv = new IvParameterSpec( t h i s.aesKey, 0, 16);
18 cipher.init(Cipher.ENCRYPT_MODE, keySpec, iv);
19

20 byte[] encrypted = cipher.doFinal(unencrypted);
21

22 re turn BASE64.encodeToString(encrypted);
23 } catch (Exception e) {
24 throw new WxRuntimeException(e);
25 }
26 }

5.3 False Positives

We have 9 false positives in our evaluation. Listing 5.3 shows the common false positive
which was found in all projects in table 5.2.

Listing 5.3: A false positive.

1 cipher.init(encryptMode ? Cipher.ENCRYPT_MODE : Cipher.
DECRYPT_MODE, key, new IvParameterSpec(iv));
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Project LOC Annotations Unsafe Usage G1 G2 False Positives

OpenPDF 76,668 0 4 4 0 3
WxJava 129,738 0 1 0 1 1
im-server 88,284 0 1 0 1 1

lx-music-mobile 2,488 2 1 1 0 1
eladmin 12,125 0 2 1 1 0

Apache pdfbox 169,485 2 3 3 0 1
Apache commons-compress 73,719 1 0 0 0 2

Total 552,507 5 12 9 3 9

Table 5.2: Our evaluation on practical projects from Github.

This line of code initializes a cipher according to the cipher mode. In the decryption
mode, the iv is not required as unique anymore as we need to use the same IV which is
used for the encryption to decrypt the message. Unfortunately, currently we do not have
the mechanism to distinguish them as we only focus on the invocation of IvParameterSpec,
i.e., an error will be reported once a used IV is passed into the cipher builder thought
it is for the decryption purpose. To address this issue, we recommend that instead of
initializing IvParameterSpec in the decryption methods, store the IV to some places
after the encryption, and use this IV for decryption. Such solution can prevent calling
IvParameterSpec in a decryption body.

Another kind of false positive is illustrated in listing 5.4. In this piece of code, the
constructor takes an array for iv as its parameter and stores it into the fields, subsequently
uses this array to initialize the IV parameter. Such behavior is harmless because the IV is
only used once for encryption later. However, in our type system, the rhs iv becomes ⊥
after the assignment in line 3 and an error is reported in line 10. To align this with our
type system, we suggest initializing the IV before storing it in the field.
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Listing 5.4: Another false positive.

1 pub l i c AES256Options( f i n a l char[] password, f i n a l byte[] salt,
f i n a l byte[] iv, f i n a l i n t numCyclesPower) {

2 t h i s.salt = salt;
3 t h i s.iv = iv;
4 t h i s.numCyclesPower = numCyclesPower;
5 f i n a l byte[] aesKeyBytes = AES256SHA256Decoder.sha256Password(

password, numCyclesPower, salt);
6 f i n a l SecretKey aesKey = newSecretKeySpec(aesKeyBytes);
7

8 t ry {
9 cipher = Cipher.getInstance(TRANSFORMATION);

10 cipher.init(Cipher.ENCRYPT_MODE, aesKey, new
IvParameterSpec(iv));

11 } catch ( f i n a l GeneralSecurityException
generalSecurityException) {

12 throw new IllegalStateException(
13 "Encryption error (do you have the JCE Unlimited

Strength Jurisdiction Policy Files installed?)",
14 generalSecurityException
15 );
16 }
17 }
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Chapter 6

Related Work

Our system owes much to the rich history of related language designs. In particular,
it is inspired from two important lines of research: aliasing control (Section 6.1) and
typestate systems (Section 6.2). We also broadly discuss other approaches in detecting
vulnerabilities, i.e., static and dynamic analysis (Section 6.3) and verification techniques
(Section 6.4).

6.1 Aliasing Control

Aliasing has been the central challenge in tracking the state of resources, e.g., files, sockets
and dynamic allocated objects. It allows different variable names to refer to the same
resource. Several systems have extended conventional type systems to tackle this problem.
Linear types [82] are based on the linear logic [35, 36], and ensures values of a linear
type must be used exactly once (cannot be duplicated or removed). Its linearity provides
powerful reasoning capabilities and safety guarantees, such as safe in-place updates of
memory locations, and correct use of external resources. Linear type systems can be used
to track aliasing by prohibiting the aliasing of linear resources entirely, which may seem
overly restricted. All practical linear type systems (e.g., Linear Haskell [13]) provide both
linear and nonlinear types. Our system uses the unique qualifier to disallow aliasing. Unlike
linear types, we don’t demand exact use-once discipline, which is similar to affine types [81]
that ensures every variable is used at most once, and uniqueness types [12, 21, 22] that
ensure there is no more than one reference pointing to the resource.

Ownership type systems [65, 19] provide a mechanism to control aliasing and the access
to objects. They impose a notion of encapsulation by preventing objects from being ac-
cessed outside their enclosing encapsulation boundaries, e.g., ownership-as-dominator [65]
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that dictates accessing references from different contexts has to go through owners [25].
More flexible models do not restrict aliasing, but dictate that modification of objects has
to pass through the object’s owner, i.e., ownership-as-modifiers [27, 28] More recently, the
Rust programming language [48, 44] adopts a strong ownership-based type system that
globally enforces a mutable reference is unique, and a read-only reference may be shared.
Ownership systems fail to enforce the principle of use-once, which is our desired outcome.

Haller and Odersky’s work [38] can enforce the property of separate uniqueness for con-
cerned variables and fields using capabilities and borrowing. While adapting their system
is possible, we choose to use a lightweight system by only tracking uniqueness for local
variables that involve secure sensitive data computations. The idea of disabling further
use via the ⊥ qualifier is inspired by the kill effects in reachability types [11]. It only limits
the constraints of programming patterns up to a certain programming point, e.g., byteIV
does not have to be unique once it has been used for the initialization IvParameterSpec.

Lanzinger et al.’s work [53] translates the type uses, which the EISOP checker frame-
work cannot verify for correctness, into proof obligations within the Key verification tool [7],
effectively reducing the false positive of a type system. Adapting this work to reduce the
false positives in our type system is an interesting future work.

6.2 Typestate Systems

Typestate [80] allows one to track the set of permitted operations on an object in a given
context. In general, sound typestate verification relies heavily on precise aliasing informa-
tion [32]. All the existing type systems are not ready for checking Java Cryptographic API
usage.

Behavioral types [42] and Mungo [50] do not allow aliasing on objects with typestates.
They not only lack support for common program patterns, e.g., collections with iterators,
but also do not have the ability to disable certain future uses. Fugue [23] verifies precise
state transitions of NotAliased objects, and requires that a MayBeAliased object’s types-
tate is an invariant. Our system can also perform a special case of typestate analysis when
an object is shared, which is inspired by accumulation analysis [47, 46, 45].

More flexible systems control the modification of objects, instead of aliasing. [15] uses
access permissions that combine typestates and object aliasing information for typestates
checking. Their work uses permissions to control the modification of objects. For example,
a unique read/write permission can coexist with an arbitrary number of read-only permis-
sions to the same object. One can have unique permission when an object is created. The
system is suitable for verifying general Java libraries, but does not have a mechanism to
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enforce uniqueness like ours. Their methods specifications are based on linear logic, where
arguments’ access permissions are consumed at the call site. Our type system is designed
to control the use (including read and write) of data, which is desired to guarantee the
correct usage of certain Cryptographic APIs.

JATYC [59] allows one to specify and verify objects’ protocols through typestates,
based on the EISOP Checker Framework. The system controls the modification of objects
via assertion language incorporating fractional permissions[16, 17], which ensures only one
reference can be used to write into a memory location. It uses Z3 to solve the constraints
generated from assertions.

6.3 Vulnerability Detection Tools

Efforts to detect cryptographic APIs have been made, including static analysis (e.g., Cryp-
toGuard [72], CrySL [52], FixDroid [64], CryptoLint [29], Mallodroid [30]) and dynamic
analysis (e.g., SMV-Hunter [78] and AndroSSL [33]). However, they cannot satisfy devel-
opers’ expectations [85].

Static Analysis. CrytoGuard [72] applies inter-procedural data flow analysis with heuris-
tics (to reduce false positives). CryptoLint [29] disassembles a raw Android binary and
uses static program slicing to identify flows between cryptographic keys, initialization vec-
tors, and similar cryptographic material and cryptographic operations. Mallodroid [30])
performs static analysis on decompiled Android apps to detect vulnerability against Man-
in-the-Middle (MITM) attacks due to SSL misuses (e.g., invalid SSL certificates and no-
default trust managers). FixDroid [64] leverages the static analysis techniques supported
by the IntelliJ IDEA to detect obvious security mistakes, e.g., correct use of host names.
Those approaches are not modular and lack soundness guarantees.

CrySL [52] performs static analysis on the specifications written in the CrySL specifi-
cation language. With its specification language, cryptography experts can define CrySL
rule set for the Java Cryptography Architecture, e.g., permitted method call orders, which
serves a similar goal to our typestate transition rules (see Section 4.3). CrySL translates
those specifications into a static analysis to find bugs; our system verifies an implementa-
tion satisfying the specification, which has potential soundness guarantees.

In summary, existing static approaches detect the existence of APIs misues in an ap-
plication, but do not verify that no vulnerability exists.

Dynamic Analysis. AndroSSL [33] is a dynamic testing platform for detecting and an-
alyzing MITM attacks. The approach requires one to manually pre-order the sequence of
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actions involved in initiating a secure connection and replays them in AndroSSL experi-
ments. SMV-Hunter [78] is a system to detect MITM vulnerability for SSL through the
combination of static and dynamic analysis. Its static analysis can detect if the app over-
rides the X509TrustManager or HostNameVerifier interfaces, which may introduce vulner-
abilities. Its dynamic analysis is guided by the information extracted from static analysis,
and performs automatic UI exploration while attempting MITM attacks.

Those approaches can be used to detect vulnerabilities for existing apps where their
source code may not be available. Our system provides guidance to developers to build
secure applications.

6.4 Static Verification Systems

Progress has been made in automated verification of security protocols. They require a
compilation pipeline that performs translation on a target language and a verification lan-
guage. For example, Bhargava et al.’s work [14] verifies cryptographic implementations for
TLS based on an existing tool chain that compiles F♯ code to process models in an applied
pi-calculus and the state-of-the-art verifier ProVerif that analyzes models automatically.
Protzenko et al.’s work [71] verifies cryptographic Web applications against specifications
written in the verification-oriented programming language F∗.

Mitchell et al.’s work [58] verifies Needham-Schroeder protocol using the Murϕ veri-
fication system, where one has to code the model against the specification in the Murϕ
language.

None of these tools uses an industrial-level programming language (e.g., Java, C♯, and
Scala), and can be used by developers who do not have expertise in formal methods.

The Crypto Checker [84] statically detects the use of forbidden Java unsafe crypto-
graphic algorithms and providers. It is also implemented as a plug-in of The EISOP
Checker Framework [69], which is complementary to our work.
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Chapter 7

Conclusions

We present a lightweight type system that combines aliasing control and typestate rea-
soning. It can specify and verify protocols for the correct usage of Java cryptographic
APIs, so that the promising security guarantees are not weakened. We also implement it
as a pluggable type system based on the EISOP Checker Framework to detect the misuse
of initialization vectors in Java Cryptographic APIs. Compared with existing techniques,
our approach has limited annotation overhead and can provide stronger security guaran-
tees. Our type system is modular and is accessible to developers with little cryptographic
expertise to build extensible secure applications.

We performed empirical case studies on benchmarks generated by CRYPTOAPI-BENCH
[6] and open-source projects on Github. In summary, our experiment reaches the precision
of 90% over the related test cases in CRYPTOAPI-BENCH, and we performed type-checking
on 7 projects, finding 12 vulnerabilities.

Based on our empirical experiments, we are confident that our system is sound. In the
future, we plan to seek a theoretical foundation for our system by formalizing it in the
Coq theorem prover and proving the type soundness. In addition, we plan to improve the
precision of our system by adapting a path-sensitive type-checker algorithm, so that false
positives can be reduced. Also, employing advanced type inference algorithms (e.g., [83, 41,
40, 26]) to reduce manual annotations presents an interesting direction for future research.
Finally, we are going to extend the system to verify the usage of more cryptographic APIs.
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[63] Sarah Nadi, Stefan Krüger, Mira Mezini, and Eric Bodden. ”jumping through hoops”:
Why do java developers struggle with cryptography apis? In Software Engineering,
volume P-267 of LNI, page 57. GI, 2017.

[64] Duc Cuong Nguyen, Dominik Wermke, Yasemin Acar, Michael Backes, Charles Weir,
and Sascha Fahl. A stitch in time: Supporting android developers in writingsecure
code. In CCS, pages 1065–1077. ACM, 2017.

40



[65] James Noble, Jan Vitek, and John Potter. Flexible alias protection. In ECOOP,
volume 1445 of Lecture Notes in Computer Science, pages 158–185. Springer, 1998.

[66] Peter O’Hearn, John Reynolds, and Hongseok Yang. Local reasoning about programs
that alter data structures. In Proceedings of CSL’01, volume 2142, pages 1–19, Berlin,
2001.

[67] Oracle. Java Cryptography Architecture (JCA) Reference Guide. https://
docs.oracle.com/en/java/javase/20/security/java-cryptography-
architecture-jca-reference-guide.html.

[68] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jeff H. Perkins, and Michael D.
Ernst. Practical pluggable types for java. ISSTA ’08, page 201–212, New York, NY,
USA, 2008. Association for Computing Machinery.

[69] Matthew M. Papi, Mahmood Ali, Telmo Luis Correa Jr., Jeff H. Perkins, and
Michael D. Ernst. Practical pluggable types for java. In ISSTA, pages 201–212.
ACM, 2008.

[70] Benjamin C. Pierce. Advanced Topics in Types and Programming Languages. The
MIT Press, 2004.

[71] Jonathan Protzenko, Benjamin Beurdouche, Denis Merigoux, and Karthikeyan Bhar-
gavan. Formally verified cryptographic web applications in webassembly. In IEEE
Symposium on Security and Privacy, pages 1256–1274. IEEE, 2019.

[72] Sazzadur Rahaman, Ya Xiao, Sharmin Afrose, Fahad Shaon, Ke Tian, Miles Frantz,
Murat Kantarcioglu, and Danfeng (Daphne) Yao. Cryptoguard: High precision de-
tection of cryptographic vulnerabilities in massive-sized java projects. In CCS, pages
2455–2472. ACM, 2019.

[73] Sazzadur Rahaman and Danfeng Yao. Program analysis of cryptographic implemen-
tations for security. In SecDev, pages 61–68. IEEE Computer Society, 2017.

[74] Venkatesh-Prasad Ranganath and Joydeep Mitra. Are free android app security anal-
ysis tools effective in detecting known vulnerabilities? Empir. Softw. Eng., 25(1):178–
219, 2020.

[75] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of the Seventeenth Annual IEEE Symposium on Logic in Computer
Science, pages 55–74, Los Alamitos, California, 2002. IEEE Computer Society Press.

41

https://docs.oracle.com/en/java/javase/20/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/20/security/java-cryptography-architecture-jca-reference-guide.html
https://docs.oracle.com/en/java/javase/20/security/java-cryptography-architecture-jca-reference-guide.html


[76] Alon Shakevsky, Eyal Ronen, and Avishai Wool. Trust dies in darkness: Shedding
light on samsung’s trustzone keymaster design. Cryptology ePrint Archive, Paper
2022/208, 2022. https://eprint.iacr.org/2022/208.

[77] Sjaak Smetsers, Erik Barendsen, Marko C. J. D. van Eekelen, and Marinus J. Plas-
meijer. Guaranteeing safe destructive updates through a type system with uniqueness
information for graphs. In Dagstuhl Seminar on Graph Transformations in Computer
Science, volume 776 of Lecture Notes in Computer Science, pages 358–379. Springer,
1993.

[78] David Sounthiraraj, Justin Sahs, Garret Greenwood, Zhiqiang Lin, and Latifur Khan.
Smv-hunter: Large scale, automated detection of SSL/TLS man-in-the-middle vul-
nerabilities in android apps. In NDSS. The Internet Society, 2014.

[79] Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and Eran Yahav.
Alias analysis for object-oriented programs. In Aliasing in Object-Oriented Program-
ming, volume 7850 of Lecture Notes in Computer Science, pages 196–232. Springer,
2013.

[80] Robert E. Strom and Shaula Yemini. Typestate: A programming language concept
for enhancing software reliability. IEEE Trans. Software Eng., 12(1):157–171, 1986.

[81] Jesse A. Tov and Riccardo Pucella. Practical affine types. In POPL, pages 447–458.
ACM, 2011.

[82] Philip Wadler. Linear types can change the world! In Programming Concepts and
Methods, page 561. North-Holland, 1990.

[83] Tongtong Xiang, Jeff Y. Luo, and Werner Dietl. Precise inference of expressive units
of measurement types. Proc. ACM Program. Lang., 4(OOPSLA):142:1–142:28, 2020.

[84] Weitian Xing, Yuanhui Cheng, and Werner Dietl. Ensuring correct cryptographic
algorithm and provider usage at compile time. FTfJP 2021, New York, NY, USA,
2021. Association for Computing Machinery.

[85] Ying Zhang, Md Mahir Asef Kabir, Ya Xiao, Danfeng Yao, and Na Meng. Automatic
detection of java cryptographic API misuses: Are we there yet? IEEE Trans. Software
Eng., 49(1):288–303, 2023.

42

https://eprint.iacr.org/2022/208

	Author's Declaration
	Abstract
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Introduction
	Background
	Java Cryptographic API Standard
	Initialization Vector (IV) and Class IvParameterSpec
	Class SecureRandom

	The EISOP Checker Framework
	Aliasing
	Typestates

	Uniqueness and Typestate System
	Informal Introduction
	Tracking Uniqueness with Type Qualifiers

	Type Qualifiers and Type Hierarchy
	Program Verification via Typestate
	Formalization
	Syntax
	Auxiliary Functions
	Well-formedness Definitions
	Static Typing


	Implementation
	Type Refinement
	Default Type Annotation
	Typestates
	Typestate Automaton
	Typestate Validation


	Case Study
	Findings in CRYPTOAPI-BENCH
	Findings in Real-World Projects
	Using Predictable IVs
	Reused IVs

	False Positives

	Related Work
	Aliasing Control
	Typestate Systems
	Vulnerability Detection Tools
	Static Verification Systems

	Conclusions
	References

