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Abstract

The transverse flow-induced vibration (FIV) of an elastically supported cylinder-plate
assembly (viz., a rigid splitter-plate attached to the downstream side of a cylinder) is
investigated deeply and systematically in this thesis, using the numerical simulation based
on Computational Fluid Dynamics (CFD) and the mathematical wake-oscillator model.

To investigate the influence of splitter-plate length (LSP ), a circular cylinder-plate as-
sembly is numerically simulated in laminar flow, involving extensive spans of plate length
LSP/D = 0–4 (where D is the cylinder diameter) and reduced velocity Ur = 2–30. The
simulations demonstrate that LSP substantially affects nearly every aspect of the assem-
bly’s FIV. For structural vibration, the self-limited FIV is induced for LSP/D ≤ 0.5, while
a galloping-dominated FIV is triggered for LSP/D ≥ 0.75. For branching behavior, both
odd- and even-multiple synchronizations between the structure oscillation and vortex shed-
ding are supported in the assembly. In particular, two new branches (viz., initial galloping
branch and still branch) are identified for LSP/D ≥ 2.5. For nonlinear dynamical charac-
teristics, the beating phenomenon of FIV is closely related to some irregular vortices and
wake modes unique to the assembly based on the flow analysis.

To investigate the synergy effect of the aspect ratio of cylinder (AR) and plate length,
the transverse FIV of an elliptical cylinder-plate assembly is simulated under same con-
ditions, involving various combinations of AR (0.5, 0.67, 0.75, 1, 1.5 and 2) and LSP/D
(0.5, 0.75 and 2.5). The two geometrical factors lay different emphasis in influencing the
assembly’s FIV. AR determines whether a FIV can be induced on the assembly, with a
critical value occurring in the range 0.67 < ARcri < 0.75 at Re = 100. Once the FIV is
triggered (AR > ARcri), the fundamental vibration mode (limited or unlimited) depends
on LSP , and a change in AR only has a relatively limited impact on the vibration level.

To mathematically predict FIV, the coupled wake-oscillator models based on lift coeffi-
cient (CL) and wake angular displacement (θ) are improved from different aspects. Then,
a genetic algorithm (GA) optimized nonlinear grey-box estimation framework is proposed
to determine free parameters. Based on this, various model structures are discussed in
terms of the VIV of a circular cylinder and the galloping of a cylinder-plate assembly. The
results suggest that the optimal model has six free parameters with the first-order poly-
nomial expression for the prediction of VIV. While for the complex galloping occurred at
larger Ur, more high-order polynomial terms are necessary to predict the non-sinusoidal
oscillations, which leads to the optimal model with eight free parameters.

Overall, this thesis offers crucial new perspectives on the nature and physical mecha-
nisms behind the complex transverse FIV response of a cylinder-plate assembly.
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Chapter 1

Introduction

1.1 Background

Flow-induced vibration (FIV) of bluff body refers to the alternate motion of body due
to the aerodynamic force exerted by a moving fluid over the body surface. The flow
regime is significantly affected by this structural motion—in consequence, FIV is a classical
bidirectional flow–structure interaction (FSI) problem, which is linked to various fluid
dynamics phenomena (e.g., boundary-layer separation, vortex formation and shedding,
hydrodynamic loading on the structures) as well as structure vibrations. From this, flow-
induced vibration is a very complex physical phenomenon consisting of highly non-linear
dynamical characteristics. In real-world engineering, flow-induced vibrations occur widely
in various applications exposed to wind, tidal wave, or river flow, including but not limited
to bridges, transmission lines, marine cables, riser pipes, heat exchanger tubes, etc.

It should be noted that FIV is a general term encompassing various structure oscillations
stimulated by the flowing fluid, such as vortex-induced vibration (VIV), galloping, flutter,
buffeting, etc. Generally speaking, the inducing mechanisms and the response characteris-
tics of these FIV phenomena are distinctive. Needless to say, intensified scientific research
on the underlying mechanisms of FIV leads to improvements in our current understanding
of this important physical phenomenon. The FIV of bluff body can be investigated by var-
ious methods, including wind-tunnel or water-channel experiments, numerical simulations,
mathematical models and machine learning [177]. Furthermore, the complete analysis of
FIV phenomenon include not only the structure’s oscillatory motions (e.g., displacement,
frequency, phase angle) but also the complex flow dynamics around the structure (e.g.,
vortex shedding, wake evolution, boundary-layer separation and reattachment).
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Figure 1.1: Low-turbulence free surface water channel with (a) a single VIVACE converter
and (b) a four–cylinder VIVACE converter [19].

In terms of practical applications, the suppression of FIV in order to mitigate the fatigue
damage or even failure of structures and maintain structural integrity has been a primary
concern for a long time. However, in light of an emerging trend toward sustainability goals
for fluid energy generation in recent years, there is an increasing interest in the utilization
of FIV phenomena for fluid energy harvesting, especially as it relates to the development
of small-scale (portable) wind/water generators—indeed, the energy harnessed from an
oscillating body undergoing FIV can be effectively utilized and converted into usable forms
of energy, such as electricity, by certain piezoelectric or electromagnetic materials [90, 173,
89]. For example, Bernitsas et al. [19] first invented a new VIVACE (Vortex Induced
Vibration Aquatic Clean Energy) converter to extract the hydrokinetic energy from water
resources and convert it to electricity based on maximizing and exploiting the VIV of
single and/or multiple circular cylinders (see Fig. 1.1). This environmentally compatible
technology was estimated to produce energy with a density of 0.322 kW/m3 [19]. Similarly,
a Spanish technology start-up Vortex Bladeless is pioneering the use of bladeless wind
turbine as a new and revolutionary alternative to the regular bladed wind power. As
shown in Fig. 1.2, this cylindrical turbine is designed to oscillate within the wind range,
harnessing wind energy from the structural vibrations and generating electricity by some
energy conversion devices.

Furthermore, flow-induced vibration can occur on various bluff bodies, not just on
the canonical circular and square cylinders, but on the cylinder with attached or detached
passive turbulence control (PTC) devices (e.g., rod, splitter plate, roughness strip, fairing).
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Figure 1.2: (a) Bladeless wind turbine and (b) bladeless wind farm [163].

From the perspective of fluid energy harvesting, the PTC–cylinder or cylinder–appendage
system could be potentially superior to other plain shapes because it is able to trigger the
synergy of multiple forms of FIV, which generally means stronger vibrations.

1.2 Fundamentals of FIV Phenomenon

1.2.1 Classification

Flow-induced vibration can be classified into two general categories based on the generating
mechanisms: namely, resonance and instability [104]. The resonance-type oscillation is
essentially a kind of forced vibration, which is typically driven by external oscillatory
forces arising from multiple sources, such as vortex shedding behind the structure (VIV)
and vibrations in the incident flow (buffeting). When the fluctuation frequency of external
excitation is very close to the natural frequency of the structure, a resonance response may
occur resulting in a much larger amplitude in the oscillations. By comparison, if some
initial unsteady flow-induced forces are applied to the body to make it move first, the
moving system will induce a periodically hydrodynamic force on itself. The motion-induced
force and oscillating system mutually reinforce each other until a dynamic equilibrium is
reached—a phenomenon that is referred to as an instability-type oscillation. In other
words, the structure undergoing an instability response requires an initial small disturbance
to begin the motion and then this motion is gradually converted to significant periodic
oscillations autonomously—this is similar to a self-excited motion. The representative

3



Figure 1.3: Comparison of amplitude-velocity and frequency-velocity of FIV phenomenon:
(a) VIV; (b) instability like galloping and flutter; and, (c) wake galloping.

instabilities include galloping and flutter [128].

Figure 1.3 compares the oscillation characteristics of VIV, galloping, flutter, and buf-
feting (wake galloping) in terms of their amplitude and frequency responses. As shown, all
of these oscillatory phenomena have a threshold flow speed for onset. Only VIV exhibits a
lock-in of frequency and a limited maximum vibration displacement—the others occur in
an unlimited velocity range and are associated with a frequency lower than the structural
natural frequency.

1.2.2 Vortex-Induced Vibration

As a resonance-type response, the well-known vortex-induced vibration is generated by
unsteady aerodynamic forces exerted by the fluid on an immersed structure. When a
viscous flow passes over an elastically-supported rigid body, a boundary layer forms and
then separates from near the rear of the body. This action results in vortex shedding from
either side of the body producing a von Kármán vortex street in the wake. This alternate
vortex shedding from the back of the body causes an asymmetric pressure distribution on
body surface giving rise to the fluid forces responsible for VIV of the body [23].

“Lock-in” (or synchronization) occurs when the vortex-shedding frequency fvs is ap-
proximately equal to the structural natural frequency fn. This results in a resonant os-
cillation that is characterized by a larger but, nevertheless, limited vibration amplitude.
The “lock-in” phenomenon occurs for a certain range of incident wind speeds (cf. Fig. 1.3
(a)). From these considerations, VIV is an inherently self-governed, self-regulated, and self-
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limiting response which can occur in one- or multi-degree-of-freedom dynamical system. In
addition to the “lock-in”, VIV also exhibits various forms of stronger non-linear oscillatory
behavior. These include resonance delay (where the vibration amplitude reaches its maxi-
mum at a velocity greater than the resonance velocity UR), hysteresis (producing different
amplitude responses with increasing or decreasing flow speed), and a multi-valued response
(where a given fixed velocity can result in multiple values of the vibration amplitude) [161].

The dynamical characteristics of “lock-in” makes VIV an ideal choice for fluid en-
ergy harvesting. More specifically, a VIV-based energy converter exhibits a better power
performance and a higher energy efficiency when the incoming wind speed lies in the syn-
chronization range [173].

1.2.3 Buffeting

Buffeting is also a resonance-type response, but the resonance results from a fluctuating
incident flow rather than from a vortex-related instability as in the VIV phenomenon. As
an example, the fluctuations in the incident flow can arise from the natural atmospheric
turbulence as is commonly observed in long-span bridges [153] or from the oscillating
wake generated by structures upstream of a bluff body as in multi-body system—this
phenomenon is also referred to as wake galloping [128] (cf. Fig. 1.3 (c)). Investigations
undertaken with regard to bridge structures and aeronautics have shown that a buffet-
ing response may occur even at low wind speeds, accompanied by a smaller oscillation
amplitude and a wider frequency range than that obtained from VIV [128].

These characteristics suggest that buffeting can be utilized to harness fluid energy in a
multi-body design and the power performance from such a design is expected be strongly
dependent on the precise layout (arrangement) of the various oscillating bodies.

1.2.4 Galloping

As a representative instability response, a body subjected to galloping will first undergo
a very small oscillatory motion induced by an initial perturbation. These motions re-
sult subsequently in significant oscillations once a critical incident flow velocity is exceeded
(cf. Fig. 1.3 (b)). Galloping can occur in the transverse direction for an elastically-mounted
body or in torsion for an hinged body. Torsional galloping is a much more complex phe-
nomenon due to rotational motion and not as common as transverse galloping in the context
of actual engineering applications [88]. In consequence, only transverse galloping (referred
to as galloping hereafter) will be discussed in this thesis.
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After the onset of galloping, the vibration amplitude will increase monotonically with
the flow velocity and will not come to rest again even at very large velocity. This is the most
distinct difference between instability and resonance. Moreover, galloping is associated
with a much lower vibration frequency than that of vortex shedding. These characteristics
are what fundamentally distinguishes a galloping response from a VIV response.

In general, galloping is considered to have a greater energy potential in terms of energy
harvesting than VIV owing to its much larger vibration amplitudes and extended range
of wind speeds for which galloping occurs. It is noted that galloping occurs only for
cylinders with specific cross-sectional shapes (e.g., square, rectangular, triangular, etc.)
or for cylinder–appendage system (e.g., cylinder with a splitter-plate)—indeed, galloping
does not occur for flow past a circular cylinder. As a consequence, an energy converter
utilizing galloping will require a special geometrical design in order to allow the occurrence
of galloping or of the interaction of VIV and galloping.

1.2.5 Flutter

Flutter is also a typical unlimited and self-sustained fluid instability usually applicable to
dynamical systems involving two or more degrees of freedom. This phenomenon is closely
related to the coupling of resonant bending and torsion deformation of a body, and has
some common features with galloping.

1.3 Important Parameters to FIV

Flow-induced vibration itself is a multi-parameter problem and closely related to both fluid
characteristics and structural properties. Based on three dimensional primary variables,
namely, cylinder diameter D (inm), freestream velocity U (in m s−1) and fluid density ρ (in
kg m−3), some common non-dimensional quantities known to be important in predicting
FIV response of a spring-mounted cylinder can be obtained: the Reynolds number Re, the
reduced velocity Ur, the mass ratio m∗, the damping ratio ζ and the turbulence intensity
I [165]. Some important dimensional and non-dimensional parameters related to the FIV
phenomenon are introduced below.
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1.3.1 The Reynolds Number (Re)

As a similarity criterion number to reflect the viscosity effect of fluid, the Reynolds number
is defined as the ratio of inertial force (for turbulence generation) to viscous force (for
turbulence inhibition):

Re =
ρUD

µ
=

UD

ν
, (1.1)

where µ (in Pa · s) and ν (in m2 s−1) are fluid dynamic viscosity and fluid kinematic
viscosity, respectively; D is the characteristic length of the structure (equal to the diameter
in case of a circular cylinder in cross flow).

In general, for low Reynolds numbers the fluid behavior depends mostly on its viscosity
so the flow is steady, smooth or laminar; for high Reynolds numbers the fluid momentum
plays more important role to induce an unsteady, roiling and turbulent flow; for intermedi-
ate Reynolds numbers the flow can be transitional—partly laminar and partly turbulent.

As shown in Fig. 1.4, the flow around a stationary circular cylinder can be separated into
different regimes depending on the Reynolds numbers [127, 130]: (i) Re < 300, laminar-
dominated regime; (ii) 300 ≤ Re ≤ 3× 105, subcritical regime (with fully turbulent wake
flow); (iii) 3 × 105 ≤ Re ≤ 3.5 × 105, critical regime (with asymmetrical boundary layer
separation); (iv) 3.5 × 105 ≤ Re ≤ 1.5 × 106, supercritical regime (with fully turbulent
boundary layer separation, narrower wake and disorganized vortex shedding); (v) Re ≥
4× 106, transitional regime (with strong periodicity in the vortex shedding reestablished).
It can be seen that the Reynolds number significantly affects the wake topology and vortex
shedding process in the flow over a circular cylinder.

1.3.2 The Strouhal Number (St)

A dimensionless number, the Strouhal number St, is commonly used as a measure of the
vortex shedding frequency, which can be expressed as:

St =
fStD

U
, (1.2)

where fSt (in Hz) is the vortex shedding frequency for flow over a stationary body, also
called the Strouhal frequency. Moreover, if fn = fSt (viz., lock-in occurs), the resonance
velocity can be derived as UR ≡ fnD/St. Fig. 1.5 indicates that the Strouhal number of
a stationary circular cylinder is a function of Reynolds number but less of surface rough-
ness [85]. And the Strouhal number is about 0.2 over a large Reynolds number interval.
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Figure 1.4: Regimes of flow around a smooth, circular cylinder in steady current [127, 130].
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Figure 1.5: Strouhal number versus Reynolds number for circular cylinders [85].

1.3.3 Natural Frequency of Structure

The frequency at which an object tends to naturally vibrate with when disturbed is the
natural frequency of the object (represented by fn), which can be defined by the following
formula under ideal conditions (viz., without considering fluid damping):

fn =
1

2π

√
k

mosc

, (1.3)

where k (in N m−1) is the spring stiffness, mosc is the oscillating system mass. It can be
seen that fn only depends on the inherent properties of the object (e.g., shape, size, mass
and rigidity of material).

However, the fluid under real conditions is a source of damping, which causes energy
loss on the vibrating object and its natural frequency is correspondingly reduced. In this
case, an approximate and frequently used analytical solution of fn is expressed as:

fn =
1

2π

√
k

mosc +ma

=
1

2π

√
k

(m∗ + Ca)md

. (1.4)
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As shown, Eq. (1.4) accounts for the added mass of the fluid displaced by the object, viz.
ma = Camd where Ca is added mass coefficient (Ca = 1 for circular cylinder).

Above analysis shows that the fluid density has a major effect on the structural natural
frequency. For example, the natural frequency of object in vacuum or air (fn,air) can be
calculated using Eq. (1.3) because the low-density air (e.g., ρair = 1.225 kg/m3 at 15
◦C) slightly affects fn, while that in water (fn,water) should be calculated using Eq. (1.4)
because the added mass of high-density water (e.g., ρwater = 999.1 kg/m3 at 15 ◦C) can
be quite large, which greatly reduces fn. Moreover, various frequencies in flow-induced
vibration phenomenon are often normalized by the structural natural frequency, such as
the dimensionless oscillation frequency of structure fosc/fn.

1.3.4 Mass and Damping of Structure

Mass ratio (m∗)

The structural mass ratio is defined as the ratio of the mass of the oscillating system (mosc)
to the mass of the displaced fluid (md):

m∗ =
mosc

md

. (1.5)

For a circular cylinder with length L and diameter D, its mass ratio is m∗ = 4mosc

ρπD2L
. It is

obvious that the mass ratio can be very different if the solid body is immersed in different
fluids. For instance, the marine structures always have a quite low mass ratio of around 1
to 10 due to the high density of water. While the oscillating body in the air could have a
very high mass ratio of around order 100 due to the much lower density of air.

Damping ratio (ζ)

The structural damping ratio is defined as the ratio of the structural damping to the critical
damping:

ζ =
csys
ccri

=
csys

2
√
k(mosc +ma)

. (1.6)

As shown, the added mass is also taken into account in Eq. (1.6). And csys (in N s m−1)
here refers to the structural damping rather than fluid damping.
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Mass-damping parameters

In some FIV-related studies, the mass and damping of structure are also introduced as a
combined parameter, such as the Scruton number Sc = π2m∗ζ [131], the Skop-Griffin pa-
rameter SG = 2π3St2m∗ζ [54], and the mass-damping parameter α = (m∗+Ca)ζ proposed
by Khalak and Williamson [73].

1.3.5 The Reduced Velocity (Ur)

The reduced velocity represents the dimensionless freestream velocity in the streamwise
direction:

Ur =
U

fnD
. (1.7)

Comparing Eq. (1.2) with Eq. (1.7), it can be found that the reduced velocity is the
reciprocal of the Strouhal number if fn = fSt (viz., lock-in). That means Ur is related with
vortex shedding and can be applied to predict the occurrence of synchronization.
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Chapter 2

Literature Review

2.1 Vibration Response and Flow Analysis of FIV

2.1.1 VIV of a Circular Cylinder

Vortex-induced vibration is a main form of FIV phenomenon, which is a self-limited reso-
nance induced by vortex shedding and frequently occurs in the flow past a circular cylinder.
The early representative wind-tunnel experiments carried out by Feng [41] reported im-
portant vibration characteristics about the transverse VIV of a circular cylinder by wind
tunnel experiments. As shown in Fig. 2.1, the vibration amplitude, frequency and phase
angle between lift and displacement are plotted against the reduced velocity, at a high
mass ratio 247.7 and a low damping ratio 0.00103. For frequency response, the oscillation
frequency always varies around the natural frequency within the tested range of reduced
velocity, viz., fosc/fn ≈ 1 for 0.6 < U < 1.4. By contrast, the normalized vortex shedding
frequency fvs/fn is around 1 for 0.8 < U < 1.75, indicating the occurrence of lock-in in
this range, and follows the linear relation of St = 0.198 (representing the vortex shedding
of flow over a stationary circular cylinder) at other velocities. For amplitude response, the
transverse displacement first significantly increases to 0.55D within the lock-in range, and
then gradually restores to a static condition when out of lock-in. Meanwhile, the oscillation
hysteresis loop is observed in the amplitude response (clockwise) and in the phase angle
variation (counter-clockwise) at low damping level.

Feng’s work [41] indicates that the lock-in of frequency is an important nonlinear char-
acteristic of VIV, which leads to a large-amplitude resonance response. Many follow-up
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Figure 2.1: Vibration responses for VIV of a circular cylinder in air [41]. The dimensionless
mass ratio defined as n = ρD2L/(2mosc) = 0.00257 in Feng’s experiments is equivalent to
m∗ = 4mosc/(ρπD

2L) = 247.7 in this thesis. The damping ratio β = 0.00103 in Feng’s
experiments has the same definition as Eq. (1.6).
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experiments in water channel also observed similar phenomenon at low level mass and
damping [71, 72, 73, 52], which will be reviewed in detail in Section 2.2.1.

2.1.2 Influence of Cross-Sectional Shape on FIV

In addition to the external factors (viz., the structure and fluid properties) mentioned
above with reference to circular, square and rectangular cylinders, the essence factor like
the geometric shape of the structure also has a significant influence on its dynamic response.

Aspect ratio of elliptical cylinder

As a generalization of a circular cylinder, an elliptical cylinder can be geometrically de-
scribed by a particular quantity called the aspect ratio, which is defined as AR = b/a with
a and b being the dimensions of the elliptical cross-section in streamwise and transverse
directions, respectively. Therefore, the circular cylinder is simply an elliptical cylinder
with AR = 1. Compared to the VIV of a circular cylinder, the flow over a freely-vibrating
elliptical cylinder has received little attention and, as a result, is relatively unexplored in
the literature.

One study conducted by Yogeswaran et al. [108] used numerical simulations to inves-
tigate the streamwise and cross-flow VIV of a cylinder with various aspect ratios (0.7 ≤
AR ≤ 1.43) in the laminar-flow regime (60 ≤ Re ≤ 140). These investigators reported that
the classical initial branch (IB) and lower branch (LB) in the VIV of a circular cylinder can
be partitioned into a quasi-periodic (QP) and periodic (P) part for an elliptical cylinder—
more precisely, it was found that the aspect ratio determined the branching characteristics
of an elliptic cylinder. Yogeswaran et al. [108] also suggested that an increasing AR results
generally in larger peaks in the vibration amplitude, in a wider lock-in regime, and in a
more intense body oscillation.

Zhao et al. [192] experimentally investigated the VIV of an elliptical cylinder at moder-
ate values of the Reynolds numbers (960 ≤ Re ≤ 8, 050), which reported both similarities
and differences of the vibration response of an elliptical cylinder compared to that at
low-Re. For one thing, the dynamic response of an elliptical cylinder at low- to moderate-
Reynolds numbers was dominated by VIV, with a similar reduced velocity range for the
lock-in and a similar response as a function of the aspect ratio. However, increasing the
value of Re generally results in a larger vibration amplitude (about 50%), as well as alter-
ing the branching behavior. For example, an elliptical cylinder with AR = 0.67 displays
two separate lock-in regimes.

14



One common conclusion from above studies is that a “tall” elliptical cylinder (viz.,
the major axis of the cylinder is oriented perpendicular to the direction of the free-stream
velocity) invariably results in a larger amplitude of oscillation, while a “wide” elliptical
cylinder (viz., the major axis of the cylinder is oriented parallel to the stream-wise direction)
is prone to a weaker dynamic response. Zhao et al. [192] interpreted this as the result of a
reduced afterbody—structural part of a body downstream of the flow separation points—
for a “tall” elliptical cylinder in comparison with that for a “wide” cylinder.

The FIV of an elliptical cylinder includes not only a vortex-induced vibration in either
the transverse or streamwise directions (translational motion), but also a vortex-induced
rotation (VIR) if the body is free to rotate (rotational motion). Some studies have inves-
tigated the dynamic response of an elliptical cylinder undergoing both VIV and VIR. Zhu
et al. [203] found that a rotatable elliptical cylinder with AR = 0.5, possessing a moderate
torsional friction, experiences a transition from VIV to galloping. Wang et al. [171] used
numerical simulations to show that the interaction between VIV and VIR depends on the
aspect ratio of an elliptical cylinder, viz., the transverse oscillations were amplified under
rotation for AR = 1, but weaken for AR = 2 and 2.5. Furthermore, for an elliptical
cylinder with AR = 0.5, Shahzer et al. [137] reported that the rotational degree of freedom
amplifies the transverse vibrations, resulting in a 30% greater maximum in the amplitude
of vibration. Wan et al. [167] investigated the heat transfer and demonstrated the effective-
ness of a thermal control on the suppression of the transverse VIV of an elliptical cylinder
over a wide range of aspect ratio AR = 0.25–4.

The aspect ratio can also affect the flow field and energy transfer of a vibrating elliptical
cylinder. Chen et al. [27] described and characterized the wake modes behind an elliptic
cylinder with various aspect ratios undergoing VIV—this study included an investigation
of the energy transfer between the motion of the cylinder and the surrounding flow.

Side ratio of rectangular cylinder

A rectangular prism is a general form of a square cylinder, which has a specifically impor-
tant geometrical characteristic called the side ratio d/b, where d and b are respectively the
in-line and cross-flow side lengths of the prism [92]. The effect of side ratio on the FIV
of a rectangular prism has been investigated in a number of experimental and numerical
studies [188, 193, 40, 186].

Zhang et al. [188] investigated the FIV response of a low-mass-damping rectangular
cylinder with d/b = 1/6–2 in the Reynolds number range from 500–187,500 and reported
the negative effect of the side ratio on the vibration amplitude. More specifically, a strong

15



interference between VIV and galloping occurred for d/b = 1/6–1.5, while neither VIV
nor galloping was induced at the largest value of d/b = 2 investigated. Zhao et al. [193]
tested an elastically-mounted rectangular cylinder with a larger side ratio of d/b = 2–5
in a wind tunnel. All the cases studied exhibited a VIV-galloping response, manifesting
an unrestricted amplitude for d/b = 2–4, but limited amplitude response for b/d = 5.
The discrepancy in the results for d/b = 2 (no oscillation reported by Zhang et al. [188]
and a combined VIV-galloping reported by Zhao et al. [193]) may be due to the different
mass-damping and Reynolds number used in these investigations.

Main vertex angle of triangular cylinder

Through a series of systematic static wind-tunnel experiments, Alonso and colleagues [5,
4, 6, 7] demonstrated that the cross-sectional shape (main vertex angle β) and the angle of
attack β had a major impact on the transverse galloping instability of a triangular cylinder.
These researchers identified potential regions associated with galloping in the (α, β) plane.
Focusing on the effect of α, Seyed et al. [136] experimentally investigated the cross-flow
oscillation of an equilateral triangular cylinder with low mass-damping (viz., m∗ = 9.24
and ζ = 0.0057) placed in a water channel with α = 0◦–60◦ in the Reynolds number range
of Re = 490-–2700 and observed various response modes of this dynamical system. To be
specific, no oscillation was observed for α < 25◦, VIV-type oscillations with a very small
amplitude (< 0.1D) were reported for α = 25◦, a separate regime of VIV and galloping
was observed for α = 30◦–35◦, and a combined VIV-galloping starting around a reduced
velocity associated with the onset of VIV was revealed for α = 40◦–60◦. Wang et al. [172]
also reported similar phenomena in laminar flow simulations at Re = 100.

2.1.3 Flow Analysis of FIV

Except for the oscillatory motion of structure, the flow dynamics around the vibrating
body such as the shedding of the vortices alternately from one side to the other resulting
in a characteristic wake mode is an important part of the study of FIV phenomena.

The characteristic patterns associated with vortex shedding arising from FIV have been
studied by a number of researchers. In some seminal work, Williamson and Roshko [175]
characterized the pattern of vortex shedding in the wake of an oscillating circular cylinder
forced by a sine function. As shown in Fig. 2.2, the wake patterns is related with the
ratio of amplitude to diameter (vertical axis) and the ratio of excitation period to vortex
shedding period (horizontal axis), with prescribed amplitude and frequency of external
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Figure 2.2: Map of vortex modes near the fundamental lock-in region. The critical curve
marks the transition from one mode of vortex formation to another [175].

force. More precisely, these researchers studied the topological structure of vortices shed
during one oscillation cycle and introduced a taxonomy of vortex-shedding patterns (e.g.,
designations such as “S”, “P” and “C” for a single vortex, a pair of opposite-signed vortices
and an amalgamation of vortices, respectively). In this case, various wake patterns can be
defined by the combination of these small vortex structures.

The classical anti-symmetric “2S” wake mode illustrates that two vortices are alter-
nately shed from one side of the cylinder to the other to form the typical Kármán vortex
street, which is very common for the flow dynamics associated with the VIV of a circular
cylinder, but can be also present in some galloping regimes. For example, Wu et al. [179]
demonstrated that for a cylinder-plate assembly undergoing galloping the wake mode of
a 1:n (n = 3, 5, 7) synchronization galloping regime between the structural oscillation
and the vortex shedding was “n×(2S)”, viz., a “2S” wake mode repeated n times over one
oscillation cycle. Similar results have also been reported for the galloping of a square cylin-
der [198, 162]. In general, a more complex FIV response is associated with more irregular
vortex shapes and shedding mode. For example, Sen [132] studied a freely-vibrating square
cylinder and reported the presence of a so-called wake mode S1S2, which was related to
the beating oscillation.
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2.2 Branching Behavior of FIV

In addition to analyzing the vibration properties and flow information of FIV, another
essential characteristic that is closely correlated with the physical nature and mechanism
of the structural oscillation is the branching behavior of FIV.

2.2.1 Branching of VIV for a Circular Cylinder

As a canonical case, the VIV of a circular cylinder has been systematically investigated,
especially in terms of its branching behaviors. Feng [41] identified two branches in the VIV
response—the initial branch and lower branch that depend on the reduced velocity. These
investigations demonstrated that the transition between the two branches is hysteretic.

Khalak and Williamson [71, 72] studied experimentally the same phenomenon, but at
a low mass ratio of 2.4 in a water channel. They reported a new regime between the
initial and lower branches of the VIV response: namely, an upper branch (UB) that was
characterized by a large-amplitude response—the maximum vibration amplitude here was
found to be about D. A subsequent study by Khalak and Williamson [73] demonstrated
that these branches of VIV response were closely correlated with various vortex shedding
modes—the “2S” (two single counter-rotating vortices) mode in the initial branch and the
“2P” (two pairs of counter-rotating vortices) mode in the upper and lower branches. They
also reported the presence of a hysteretic transition between the initial and upper branches
and an intermittent switching between upper and lower branches.

Jauvtis and Williamson [67] conducted further experimental studies and reported the
existence of a new response branch referred to as the super-upper branch (SU) in the
two-degree-of-freedom (2DOF) system consisting of the streamwise and transverse VIV of
a circular cylinder with a low mass ratio of 2.6. This response corresponded to a large
oscillation amplitude of 1.5D and was associated with a “2T” (two triplets of vortices)
vortex-shedding mode. The super-upper branch assumed the position of upper branch
in the one-degree-of-freedom (1DOF) VIV, but its transition to the lower branch was
hysteretic in nature rather than intermittent. A comparison of various branches of VIV
response identified in above experimental studies is given in Fig. 2.3.

It can be seen that the branching behavior in the VIV of a circular cylinder depends
primarily on the mass-damping parameter and the degrees of freedom, which can be accom-
panied by an unique vortex-shedding mode. We note that the various branches identified
in the experimental investigations cited above correspond to a more detailed subdivision of
the entire VIV range, and is not simply confined to the more restrictive “lock-in” regime
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Figure 2.3: Branch identification of VIV responses from different experimental stud-
ies: 1DOF VIV at m∗ = 247.7 by Feng [41], 1DOF VIV at m∗ = 2.4 by Khalak and
Williamson [71, 72], and 2DOF VIV at m∗ = 2.6 by Jauvtis and Williamson [67].

within this range. According to Zhao et al. [195], the oscillations in the initial branch are
modulated, the large-amplitude oscillations in the upper branch appear to be unstable and
chaotic, and the oscillations in the lower branch (viz., the “lock-in” regime) are periodic
and stable. In addition to the experimental studies referenced previously, various numer-
ical studies have been conducted to investigate the VIV of a circular cylinder at different
Reynolds numbers, mass-damping parameters, and degrees of freedom. Most of these
numerical simulations agree well with the experimental investigations—albeit, these simu-
lations do not perfectly replicate the branching behavior observed in experiments (e.g., the
simulations may fail to capture the upper or super-upper branches). Li and Ishihara [81]
provided a comprehensive review of the numerical investigations of the branching for VIV
of a circular cylinder.

2.2.2 Branching of FIV for a Non-Circular Cylinder

As mentioned in Section 2.1, both VIV and galloping responses can be triggered on pris-
matic structures with non-circular cross-sections and a sufficient afterbody. Owing to that,
the associated branching behavior should be more complex and different than that of VIV
on a circular cylinder.
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A square cylinder

Zhao et al. [195] investigated the transverse FIV of an elastically-mounted square cylinder
with low mass ratio of 2.64 at three incidence flow angles (α = 0◦, 20◦, and 45◦) in a water
channel and analyzed the corresponding branching behavior in the amplitude response.
For α = 0◦, a classical galloping (viz., the maximum transverse displacement increases
approximately linearly with the reduced velocity once Ur exceeds a threshold value) was
observed and three odd-integer multiple synchronizations between the galloping frequency
and the vortex-shedding frequency (namely, 1:1, 1:3 and 1:5) were identified. For α = 45◦,
a VIV-dominated response was triggered, during which the body oscillation transitioned
from a periodic to a non-periodic motion—in this transition, the relationship with the
vortex shedding was gradually desynchronized. A switch of the wake mode from “2S” to
“2P” was thought to be related to this unique branching behavior. For α = 20◦, a modified
VIV response was observed, consisting of three branches: namely, (1) an initial branch,
similar to that in the VIV of a circular cylinder; (2) a 1:1 upper branch associated with
periodic oscillations; and, (3) a 1:2 higher branch bounded by two transition regimes to the
desynchronization regions. The results reported by Zhao et al. [195] demonstrate that the
branching behavior of a square cylinder experiencing FIV is complex and closely related
with the incident flow.

In a subsequent study, Zhao et al. [194] investigated the combined effects of the mass
ratio (m∗ = 2.64–15) and the incidence flow angle (α = 0◦, 20◦ and 45◦) on the branching
behavior of a square cylinder undergoing FIV. For α = 0◦ (integrated VIV-galloping), the
1:1 synchronization was reduced as the mass ratio increases from 2.64 to 5, and all the
synchronizations ceased to exist when m∗ ≥ 11.31. For α = 45◦ (VIV-dominated), the
mass ratio was found to have more of an influence on the desynchronization. For α = 20◦

(modified VIV), the higher branch was reduced when m∗ > 3.5.

Sen and Mittal [133, 134, 135] conducted a large number of laminar-flow simulations
(with Re = 50–250) to study the effect of mass ratio on the branching behavior of a
2DOF FIV of a square cylinder. These investigators reported a pure VIV response with
the initial and lower branches for m∗ = 1. However, for m∗ ≥ 5, the dynamic response
was characterized by three distinct branches: namely, (1) the VIV regime (with a narrower
range and a smaller maximum vibration amplitude than that for VIV of a circular cylinder)
at low speeds, including the initial and lower branches; (2) desynchronization or pre-
galloping; and, (3) secondary lock-in (viz., a galloping branch) at high speeds. It should
be noted that the detailed branching in the galloping regime was not explored in the
investigations conducted by Sen and Mittal [133, 134, 135].
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A rectangular cylinder

A representative study conducted by Zhao et al. [193] tested the effect of the side ra-
tio and mass ratios on the branching of FIV of a rectangular cylinder. As d/b ranging
from 2 to 4, the vibrating body exhibits an integrated VIV-galloping response, with three
branches: namely, (1) an initial branch, similar to that in the VIV of a circular cylinder;
(2) a VIV lock-in regime with highly-periodic oscillations; and, (3) a galloping regime with
non-periodic oscillations. Moreover, the lock-in regime became wider with increasing d/b.
For the highest value of d/b = 5, a desynchronization branch was identified, which tran-
sitioned to a bounded galloping regime. Zhang et al. [188] also identified both VIV and
galloping regimes for a rectangular cylinder with d/b = 1/6–2.0. More specifically, a strong
interference between VIV and galloping was reported for d/b = 1/6–1.5, while neither VIV
nor galloping was induced for d/b = 2.

Other shapes

In addition to a rectangular cylinder, the branching behavior of other non-circular cross-
sections susceptible to VIV and/or galloping has been investigated (albeit to a lesser ex-
tent). Water-channel experiments conducted by Zhang et al. [189] identified three response
branches (namely, a VIV branch, a transition branch and a galloping branch) in the FIV
of an equilateral triangular cylinder. In their numerical investigations of the transverse
FIV of a trapezoidal cylinder, Zhu et al. [201] reported the presence of VIV branch and
desynchronization branch at flow orientations of α = 0◦ and 90◦, while VIV and galloping
branches at a flow orientation of α = 180◦.

2.3 Nonlinear Analysis of FIV

Over the past few decades, there has been an increasing research interest in understand-
ing the fundamental physical phenomena underpinning FIV owing to its importance in
engineering and industrial applications. An elastically-mounted body undergoing FIV is
essentially a nonlinear dynamical system—indeed, a system which exhibits an extremely
rich spectrum of complex nonlinear behavior as it undergoes oscillations. For example, the
VIV of a circular cylinder can exhibit strongly nonlinear dynamical characteristics such as
frequency lock-in, hysteresis, multi-valued response, and resonance delay [161]. Further-
more, the beating phenomenon in the oscillations, the nature of the limit-cycle revealed in
the phase plane portrait, the phase shift between oscillatory motion of the body and the
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driving force responsible for this motion, and the vortex dynamics associated with the flow
past an elastically-mounted body display strongly nonlinear characteristics of FIV that are
important to understand [82].

2.3.1 Beating Phenomenon of FIV

In some cases, the time series of the vibration amplitude of an elastically-mounted body
has quasi-periodic waveform. Frequently, these waveforms exhibit a beating phenomenon
(also referred to as amplitude modulation) characterized by a time-varying maximum
amplitude—this is one of the characteristic nonlinear features of FIV phenomena.

Most of the available experimental and numerical investigations involving beating phe-
nomenon of vibrations concern the VIV of a circular cylinder. Singh and Mittal [143]
observed beating in the time series of displacement and fluid force (e.g., lift coefficient) of
a circular cylinder near the onset of VIV at a Reynolds number of Re = 100. Prasanth and
Mittal [124] reported similar beating phenomenon during the transition from the initial
branch to the lower branch of a VIV response of a circular cylinder at Re < 100. Mit-
tal [102] conducted three-dimensional numerical simulations of the flow past an elastically-
supported circular cylinder at Re = 1, 000—this researcher observed beating in both the
oscillations of the displacement and the lift coefficient in the initial branch. However,
beating only occurred in the lift coefficient oscillations in the lower branch owing to the
alternating of the vortex shedding from one side of the cylinder to the other in this branch.
In the moderate range of Reynolds numbers from 5,300 to 32,000, Xu and Zhu [184] repro-
duced using numerical simulations the beating observed in experiments of the hysteretic
loop between the initial branch and upper branch of a VIV response of a circular cylinder.
It can be seen that for VIV of circular cylinder, the beating phenomenon is observed to
occur primarily near the two boundaries of the lock-in span (viz., near the onset and end
velocity of VIV) for a wide range of Reynolds numbers.

Various researchers have analyzed the characteristics of the beating phenomenon and
the factors that are responsible for the beating from a number of different perspectives.
It is well-known that beat oscillations occur when two frequencies in the oscillations are
close to one another, producing a characteristic alternating constructive and destructive
interference pattern in the oscillations—the beat frequency is the absolute value of the
difference in these two closely-spaced frequencies. This simple concept has been used
by a number of investigators to interpret the beat phenomenon in the vibrations of an
elastically-supported body—for example, by Placzek et al. [122] for the VIV of a circular
cylinder at Re = 100 and by Modarres-Sadeghi et al. [103] for the VIV of a flexible riser.

22



The beating phenomenon can exhibit a rich frequency spectrum. Willden and Gra-
ham [174] reported a relationship between the amplitude-modulated behavior of VIV at
Re = 50–400 and the ratio of the vortex-shedding frequency to the structural natural
frequency (fSt/fn). Han et al. [59] also investigated the effect of this frequency ratio on
beating. Another important characteristic of the flow dynamics during beating is the
change in the vortex-shedding mode (through the process of mode competition). Khalak
and Williamson [73] experimentally observed the transformation of wake modes from “2S”
to “2P” in the transition between the lower and upper branches of the VIV response. In
contrast, Placzek et al. [122] reported only small modifications of the vortex patterns aris-
ing from beating in the VIV response. Leontini et al. [80] and Wang et al. [170] analyzed
the wake dynamics associated with various peaks in the beating and found ordered and
disordered wake modes corresponding to the lower and higher peaks in the beating. These
investigators concluded that it was the disordering of the wake modes that gave rise to
the periodic growth-decay observed in the initial branch of the VIV amplitude response.
Furthermore, it is known that the structural mass-damping affects beating. Al-Jamal and
Dalton [3] found that the beating was significantly suppressed with increasing structural
damping for a flow at Re = 8, 000.

In addition to the VIV of a circular cylinder, the beating phenomenon is also present
in other forms of FIV (e.g., galloping, integrated VIV-galloping) observed in elastically-
supported body such as a square cylinder [194], two side-by-side rigid [57] or flexible [185]
cylinders, and two tandem or staggered cylinders [55]. Recently, Zhao and Zhao [194]
provided a comprehensive discussion of the beating phenomenon as it concerns the effect
of rounded corners on a square (or, more generally, a rectangular) cylinder on the FIV
response at Re = 200. These researchers identified two types of beating in accordance to
the variation of the local frequency and related thiswake variation to the energy transfer,
phase shift and the wake mode.

2.3.2 Nonlinear Dynamical Features of FIV

The FIV of an elastically-mounted cylinder exhibits a number of interesting nonlinear dy-
namical characteristics in addition to the beating phenomenon. Li et al. [82] systematically
investigated the limit cycles and bifurcations in the oscillations of the displacement and lift
coefficient associated with the VIV of a circular cylinder at Re = 200 using phase portraits
and Poincaré sections—these geometrical representations were used to study the bifur-
cations in the periodic solutions (trajectories) of the dynamical system. Feng et al. [42]
conducted a similar analysis on the VIV of a three-dimensional flexible tube—these re-
searchers found no bifurcations occurred in the dynamical system for a turbulent flow.
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The chaotic nature of VIV has also been studied in the context of the dynamic response
of a flexible riser [103] and of the vortex-shedding modes of a rigid cylinder [196] using
phase-plane portraits. Konstantinidis et al. [74] studied the nonlinear phase dynamics in
various branches of the VIV amplitude response of a circular cylinder using the information
embedded in the instantaneous phase shift between the transverse displacement and the
transverse force.

Nonlinearity of FIV phenomena can be manifested in the flow dynamics around the
elastically-supported body. Xu et al. [182] performed an in-depth analysis of the nonlinear
vortex dynamics associated with the FIV of a flexible splitter-plate attached to a square
cylinder in laminar flow at Re = 322.6—the results of this analysis were important for
the design of structures in the ocean subject to fluid-structure interaction. It should be
noted that this analysis involved purely periodic (monochromatic) time variations of the
displacement and lift coefficient (which are characterized by a single frequency, so no
beating was involved). Sen [132] investigated the beating phenomenon associated with
vortex shedding at small values of the reduced velocity Ur (viz., at Ur = 4.2, 4.6, and
4.7) corresponding to the VIV regime in the amplitude response of an oscillating square
cylinder and reported new vortex shedding mode S1S2.

2.4 Wake-Oscillator Model of FIV

FIV is a bidirectional FSI problem, in which the structural oscillation is generally modelled
in terms of the motion displacement using a mass–spring–damper system, while the fluid
dynamics can be formulated in different ways. Depending on the modelling methodology for
the fluid, the mathematical models of FIV can be classified unambiguously into two main
classes: namely, a coupled wake-oscillator model and a single degree-of-freedom model, as
exhibited in Fig. 2.4.

The coupled wake-oscillator model involves the development of a fully non-linear wake
model (also referred to as wake oscillator) using either a Rayleigh-type [126] or a Van
der Pol-type [164] oscillator, which is then coupled to a structure equation through the
motion-related forcing term(s). As a consequence, the coupled wake-oscillator model that
describes the complex physics associated with FIV is composed of two ODEs that can be
solved numerically with given initial conditions and model parameters, in order to predict
important physical quantities of FIV.

In contrast to the more intuitive representation of the structural motion using the
readily interpretable concepts of displacement, velocity or acceleration, the wake oscillator
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Figure 2.4: Classification of mathematical modelling of FIV.

representing the fluid dynamics is more abstract in the sense that it is characterized by
state variable that is more difficult to interpret. The lift coefficient acting on the struc-
ture and the angular displacement of the near-wake lamina are two commonly used fluid
variables. The corresponding two categories of coupled wake-oscillator model for different
FIV responses are reviewed in this section.

2.4.1 CL-Based Wake Oscillator Model for VIV

All the available coupled wake-oscillator models that use a physical quantity related to
the aerodynamic force as the fluid variable is a derivative of the seminal ideas of Bishop
and Hassan [22]. These investigators were the first to advocate using a fluctuating lift
force acting on a circular cylinder to model the dynamic behavior of the near-wake region.
Following on from this effort, Hartlen and Currie [60] formulated a widely used Rayleigh-
type wake oscillator in terms of the fluctuating lift coefficient CL and coupled this model
with a damped linear system through the body velocity ẏ in order to predict the transverse
VIV of an elastically-mounted rigid circular cylinder.

A number of models (both variants and generalizations) have been formulated based
on the Hartlen–Currie model [60]. Skop and Griffin [144] and Griffin et al. [53] applied a
modified Van der Pol wake oscillator with concomitant model parameters describing struc-
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tural properties (such as mass and damping ratio) and showed that the model agreed very
well with experimental data. Landl [76] reformulated the Hartlen–Currie wake oscillator
using a Van der Pol oscillator and introduced a fifth-order non-linear damping term (viz.,
γCL

4ĊL where γ is a model parameter) in order to account the hysteresis effect of VIV. It
is noted that these model variants were developed to predict the VIV of a rigid cylinder.

Skop and Griffin [145] extended their earlier model [144] to predict the VIV arising from
a flexible circular cylinder (e.g., a slender cable). This was accomplished by expressing the
sectional vibration displacement and lift coefficient using a modal expansion (normal mode)
and formulating the governing equations for the various terms in this expansion. Following
on from this effort, Skop and Balasubramanian [147] introduced a so-called stall component
(viz., −2αẎ /ωvs where α is a model parameter) as part of the forcing term in the structure
equation. To this purpose, the transverse fluid force consists of two components: namely,
one component (modelled using a Van der Pol wake oscillator) used to cause the body to
move and another component (proportional to the negative structural velocity) used to
reduce the amplitude of the lift coefficient for large structural motion (viz., stall term).
This innovative modification of the lift force is significant because it confers on the model
the capability to predict the asymptotic VIV response in the vicinity of zero structural
damping—this has, up until then, never been realized. Skop and Luo [146] further refined
the stall term (viz., −2αẎ (ωvs/ωn)

k /ωvs) in order to ensure the accuracy of induced
asymptotic behavior.

One common characteristic for above models is that the wake variable is explicitly
expressed in terms of the instantaneous lift coefficient CL. Facchinetti et al. [39] first
introduced a generalized dimensionless wake variable q to characterize the oscillating wake.
Although in their case the action of fluid on the structure was still considered as a lift force
with q representing the reduced vortex lift coefficient (q ≡ 2CL/CL0), Facchinetti et al. [39]
demonstrated that q can be chosen to be other physical quantities that were capable of
describing the fluctuation characteristics of the near wake. Another contribution arising
from the model proposed by Facchinetti et al. [39] and inspired by the effort of Skop and
Balasubramanian [147] for a flexible body was the inclusion of the stall term (i.e., a fluid-
added damping term) in the structure equation using a drag coefficient CD—as a reminder
to the reader, this term was given by CDẎ /(4πStm∗). These investigators also examined
different forcing terms for the wake oscillator (displacement, velocity, and acceleration) and
found that the use of acceleration provided the best conformance with the experimental
data.

The model formulated by Facchinetti et al. [39] is so popular that many variants of
this model have been used in subsequent theoretical studies. For example, Ogink and
Metrikine [114] introduced an acceleration–velocity coupling term (Ã (ω) Ÿ + B̃ (ω) Ẏ )
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that was dependent on the oscillation frequency of the cylinder in order to provide good
predictions for both forced and free vibrations.

It should be noted that all the models described in this section are designed to predict
the transverse (1DOF) VIV of a circular cylinder. To be more realistic, some theoretical
studies focus on modelling both the in-line and cross-flow vibrations. A number of 2DOF
phenomenological models have been developed based on two motion equations for the x-
and y- directions in order to simulate the possible coupling between these oscillations [46,
51, 150, 14, 123].

2.4.2 θ-Based Wake Oscillator Model for VIV

Rather than representing the dynamic wake using the instantaneous lift coefficient, Birkhoff [21]
developed a linear wake oscillator based on the concept of wake rotation angle (θ) in order
to simulate the oscillation of near wake behind a stationary circular cylinder. As shown in
Fig. 2.5 (a), this wake oscillator defined a near-weak lamina of size 2l̄ in length and h in
width, which can be determined from experimental data (e.g., h = 1.33D, l̄ = 0.75D). It is
noteworthy that Birkhoff’s wake oscillator is derived from physically-based concepts, such
as the Kutta–Joukowsky lift theory and Newton’s second law of rotation. In this case, the
θ-based wake oscillator is more of a physical model than that directly incorporates a Van
der Pol-type oscillator.

Funakawa [45] slightly modified the Birkhoff’s wake oscillator in the following two
aspects: (i) the length of near-wake laminar was measured from the rear of cylinder rather
than from the cylinder center; (ii) the acting location of the restoring force coincided
with the center of gravity. With these modifications, the governing equation was changed
accordingly, as shown in Fig. 2.5 (b). Based on their experimental data, the size of near-
wake laminar was h = 1.25D and l̄ = 1.1D.

Tamura [156] basically followed the structure of Funakawa’s wake oscillator, but re-
placed some constant quantities with time-dependent ones, mainly referring to the angular
displacement θ(t) and wake length l(t). Furthermore, Tamura introduced a viscous force
into the governing equation by a negative damping term and derived the damping ratio
of the near-wake region with the assumption that the work done by the lift force and the
viscous force was equal, which was expressed as ζf = D

2
√
2π2

fm
l̄
. With these modifications,

the resulting wake oscillator was nonlinear and more complex, as shown in Fig. 2.5 (c).
The near-wake size (h = 1.25D, l̄ = 1.1D) and the Magnus parameter fm = 1.16 were
determined from the observations in stationary test of a circular cylinder.
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Figure 2.5: Schematic and governing equations of static wake oscillators for (a)–(c) circular
cylinder [21, 45, 156], (d) square cylinder [159] and (e) 3:2 rectangular cylinder [97].
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Above three wake oscillators are developed for a circular cylinder, while the definition of
near-weak region can be different if the cross-sectional shape changes. For example, Tamura
and Shimada [159] still applied the framework proposed by Funakawa [45] to develope a
wake oscillator for a square cylinder. As shown in Fig. 2.5 (d), the bluff body was contained
into the near-wake region, so the center of rotation (point O) was located at the front edge
of the square. The governing equation also had some slight changes accordingly. By
contrast, Mannini et al. [97] developed a wake oscillator for a 3:2 rectangular cylinder
based on the definition proposed by Birkhoff [21], for which the center of rotation was in
the rectangle center and the lift force acted a quarter wake length (l(t)/2) from the point
O. The schematic and governing equation were shown in Fig. 2.5 (e).

It should be noted that the wake oscillators reviewed above are used for stationary
cylinders. For a freely-oscillating cylinder, the static wake oscillator needs to be modified
in two aspects: (i) include external force on the right hand side; (ii) represent the angular
displacement (the third term on the left hand side) as a function of moving velocity. Then,
the modified wake oscillator can be combined with the structure motion equation to predict
the VIV response.

Using this methodology, Tamura and Matsui [157] developed a coupled wake-oscillator
model for predicting VIV of a circular cylinder. The driving force in the structure equation
was composed of the lift and drag forces. The forcing term of wake oscillator was a linear
function of the velocity and acceleration. An obvious advantage of this model is that all the
parameters have a clear physical interpretation and can be determined by observations and
measurements, while the CL-based model may include multiple non-physical parameters
(e.g., the Van der Pol constant ϵ) that can only be tuned from curve fitting of experimen-
tal data. The reason is that the wake oscillator in terms of θ is derived from series of
physically-based concepts (as described earlier) instead of assuming, a priori, the appli-
cability of a Van der Pol-type oscillator. Tamura and Amano [158] further extended the
two-dimensional (2D) Tamera–Matsui model [157] to a three-dimensional circular cylin-
der, which was accomplished by utilizing the modal expansion method for the sectional
vibration displacement of the cylinder and the angular displacement of the wake.

2.4.3 Quasi-Steady Model for Galloping

Unlike various mathematical models of VIV, the analytical modelling of galloping response
is generally based on the so-called quasi-steady hypothesis, which states that the instan-
taneous aeroelastic force exerted by the fluid on a vibrating structure is the same as that
on a stationary body at the same angle of attack. More precisely, the lateral aerodynamic
force inducing galloping is calculated using the QS theory.
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The well-known Glauert–den Hartog criterion [36] describes the necessary condition
for aerodynamically unstable behavior of a 1DOF oscillator based on the QS assumption,
which can also be used to evaluate the onset velocity of galloping by setting the mechanical
damping to be equal to the fluid dynamic damping, which reads:

Ug = − 4mζωn

ρD
(

dCL(α)
dα

+ CD(α)
)∣∣∣

α=0

. (2.1)

The rationale underlying this criterion is related to the boundary-layer separation and
reattachment phenomenon at a certain angle of attack [99, 6, 142].

Parkinson and Brooks [117] combined the aerodynamic force derived from QS theory
with a linear dynamical system to develop a theoretical model for a square cylinder experi-
encing the 1DOF galloping oscillation. The aerodynamic force coefficient in the transverse
direction (CQS

L ) was obtained from static test data of the lift and drag coefficients for
different angles of attack, which was fitted with a fifth-order polynomial function. This
polynomial approximation for CQS

L (α) was then incorporated as a forcing term in a linear
mass–spring–damper system. Subsequently, a more accurate seventh-order polynomial fit-
ting of CQS

L (α) was applied in order to reproduce the hysteresis effects observed in wind
tunnel experiments [118].

The motion equation in Parkinson–Brooks model [117] resembles the structure equa-
tion for VIV, in the sense of the forcing term is related to the aerodynamic force acting on
structure—the only difference is that the force coefficient used to model galloping involves
a polynomial approximation. This governing equation can be solved analytically using
various approximation methods when the mass ratio is small (e.g., in air m∗ is typically of
order 10−3). As an example, Parkinson and Brooks [117] used Krylov–Bogoliubov asymp-
totic method to solve this second-order ODE and found that the solution provided a good
agreement with some wind-tunnel measurements. Furthermore, the differential equation
can be solved numerically (using, for example, the fourth-order Runge–Kutta method).

The result provided by the QS model is highly dependent on the polynomial fitting
of CQS

L (α). Luo et al. [87] and Ng et al. [112] compared different high-order polynomials
and found the minimal polynomial order needs to be seven in order to capture the key
characteristics of CQS

L as a function of α and to predict certain features of the non-linear
dynamics of galloping, such as hysteresis. Using a ninth- or eleventh-order polynomial may
provide a better fit to the variation of CQS

L , but this does not change the characteristics of
governing equation, such as the number of positive real roots representing the stationary
oscillation amplitude of a bluff body, implying that the predicted galloping hysteresis would
be the same as that obtained from a seventh-order polynomial approximation. Barrero-Gil
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et al. [16] and Joly et al. [68] also incorporated the Reynolds number into the classical
QS galloping model by expressing the fitting coefficients as a function of Re in order to
investigate the occurrence of galloping and the hysteresis effect of a square cylinder in the
laminar flow regime.

From a physical and mathematical viewpoint, the underlying QS assumption is that
the transverse galloping force depends on the instantaneous position of the body, as well
as on the instantaneous relative velocity between the body and the fluid [121]—this is true
in certain circumstances, such as when the vortex shedding frequency is much larger than
the structural oscillation frequency (viz., fosc ≪ fvs), implying that the wake dynamics
is essentially uncoupled from the body motion so that the influence of vortex force on
the motion driving force is negligible. In addition, the applicable velocity range of the
QS model is determined by the condition UQS = U/(foscD) ≫ (U/D)(D/(StU)) = 1/St
where St often has an order of magnitude of 0.1, suggesting that the QS assumption can
be satisfied at large values of velocity [18, 113, 16, 121]. Even with these limitations,
the easy-to-use QS model still plays a fundamental role in the mathematical modelling of
galloping, especially when few experimental or numerical data is available.

The Glauert–den Hartog criterion and QS galloping models are limited to the 1DOF
translational galloping. There also exists some QS-based theoretical models for 2DOF
(vertical and torsional) galloping [37, 69, 88] or for 3DOF (vertical, lateral, and torsional)
galloping [62, 121].

2.4.4 Wake-Oscillator Model for FIV

Instead of undergoing only VIV or galloping, some engineering structures with aerody-
namically unstable cross-sectional shapes can experience both FIV phenomena. Parkinson
and Sullivan [119] and Parkinson and Wawzonek [120] conducted some wind tunnel ex-
periments involving square and rectangular towers, which demonstrated that the synergy
between VIV and galloping can provoke large-amplitude transverse vibrations that can-
not be predicted by VIV or galloping models reviewed above. As a consequence, it is of
practical importance to construct a simple and efficient mathematical model for both VIV
and galloping responses. Based on above discussions, the essential problem reduces to the
correct simulation of the unsteady aerodynamic force responsible for the specific dynamic
response—the most straightforward way to accomplish this is to simply superimpose the
aerodynamic VIV force and quasi-steady galloping force components.

For one thing, the QS galloping force can be incorporated into the CL-based wake
oscillator model. An early theoretical work following this methodology was proposed by
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Parkinson and Bouclin [116] who used the Hartlen–Currie lift oscillator [60] to calculate
the fluctuating lift force due to vortex shedding that induces VIV (CL) and the Parkinson–
Smith QS model [118] to represent the perturbational transverse force that triggers gal-
loping (CQS

L ). In this approach, the sum of both forces was incorporated as the forcing
term in the structure equation. Corless and Parkinson [32] basically applied the identi-
cal model structure, but added an acceleration coupling term in the right hand side of
wake equation. Following the same strategy, Han et al. [58] incorporated the QS galloping
force with a seventh-order polynomial approximation into another lift-type wake oscillator
model—Facchinetti et al.’s model [39]—to give a coupled mathematical model for VIV and
galloping of a square prism.

For another, the QS galloping force is possible to combine with the θ-based wake os-
cillator model. Tamura and Shimada [159] proposed a mathematical model for both VIV
and galloping for 2D and 3D rigid square cylinders, in which the unsteady vortex shed-
ding and galloping forces were simulated using the Tamura–Matsui VIV model [157] and
the Parkinson’s QS model [117, 118], respectively. Based on this basic model, Mannini et
al. [97] replaced Funakawa’s wake oscillator (see Fig. 2.5 (b)) with Birkchoff’s wake oscil-
lator (see Fig. 2.5 (a)) and used an improved tuning process of model parameters. A later
work [93] further incorporated the effect of turbulence into the modified model. Finally,
Chen et al. [26] proposed a more reasonable definition of the near-wake lamina for a rect-
angular cylinder—the modified wake oscillator was shown to provide better predictions of
the combined VIV-galloping instability.

The two types of models described above have been important mathematical tools
for the prediction of FIV phenomenon. In particular, Mannini et al. [96] compared the
CL-based model by Corless and Parkinson [32]) and the θ-based model by Tamura and
Shimada [159] for the prediction of FIV of a rectangular cylinder and evaluated the model
performance using their wind-tunnel test data. A key conclusion of this investigation
was that the Tamura–Shimada model [159] is more accurate than the Corless–Parkinson
model [32] in terms of their predictions of the correlation between the oscillation amplitude
and the wind speed over the range where galloping occurs.

2.5 FIV of Cylinder-Plate Assembly

In addition to a free-standing cylindrical structure (e.g., circular and square cylinders), a
cylinder with passive turbulence control device (e.g., rod, splitter-plate) can also experi-
ence FIV response. The former has been widely investigated in many experimental and
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numerical studies as reviewed above, while in contrast the research effort on the latter is
relatively few.

Recently, the investigations of FIV-based energy harvesting have shown that the con-
figuration of a rigid splitter-plate attached to a circular cylinder seems to be comparable
or even potentially superior to other shapes in terms of energy harvesting owing to the
synergy of VIV and galloping [63, 148, 64]. In fact, the dynamic response of a cylinder-
plate assembly depends on a number of factors—how the assembly is constrained (fixed or
movable), the assembly material (rigid or flexible), and the location of the plate relative
to that of the cylinder (attached or detached). Furthermore, various geometric character-
istics will influence the structural vibrations and flow dynamics of this structure [44, 43].
To fully understand the complex dynamics of cylinder-plate assembly, it is necessary to
briefly review this special dynamical system for various configurations.

2.5.1 Configuration of Cylinder-Plate Assembly

A stationary cylinder and splitter-plate

The most basic configuration is a rigid splitter-plate attached to a stationary cylinder, in
which the former functions as a wake stabilizer to divide the shear flow and eliminate the
vortex shedding—as a result, the system oscillations are inhibited at the source. Some
earlier studies demonstrated that introducing a splitter-plate can significantly result in a
narrower width of the near-wake flow, increase the base pressure, reduce the drag force up
to about 30–36% and alter the Strouhal number St of the stationary cylinder [9, 8, 75].
Moreover, the critical plate length above which the vortex shedding can be completely
suppressed to give a minimum drag force on the cylinder is dependent on the Reynolds
number [75].

If placing a splitter-plate in the near wake (completely detached from the cylinder),
the system vibration is also significantly suppressed owing to the weakening of the vortex
strength and the reduction of the fluid force [66, 2, 101]. The drag reduction and os-
cillations suppression in the cylinder-plate assembly are essentially unchanged, regardless
of the number and the location of the splitter plate(s) in the assembly (e.g., asymmetric
arrangement of the plates [115, 35], two downstream plates [35, 12], two plates with one
placed upstream and the other downstream [65]).

Another common configuration is that of a freely rotating cylinder-plate assembly which
mimics a practical real-world scenario involving a multi-directional free stream. More
specifically, rather than being aligned with the incident free stream, the splitter-plate in
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this case can rotate to an off-axis equilibrium position (symmetry-breaking bifurcation) in
order to give a drag force reduction and a suppression of the vortex shedding, as observed
in experimental studies [30, 12, 56] and numerical investigations [183, 86, 191, 200].

A freely-vibrating cylinder and splitter-plate

In practice, many engineering structures are free to oscillate (e.g., bridges, high-rise build-
ings, power lines, marine risers). An elastically-supported cylindrical structure can be used
to model this scenario with either a flexible (free to continuously deform along its length)
or a rigid splitter-plate attached to it.

Shukla et al. [141] experimentally showed that the periodic travelling-wave type defor-
mations can be induced on a flexible plate with a specific length, Reynolds number and
flexural rigidity. Lee et al. [78] numerically showed that the flexibility of a splitter-plate can
reduce the drag and lift forces acting on the cylinder, as well as promote oscillations in the
plate. Wu et al. [176] reported increased drag reduction and vortex suppression for both
a fixed and an elastically-mounted cylinder with a long flexible splitter-plate compared to
that of a rigid splitter-plate.

A number of researchers investigated the dynamic response of a rigid splitter-plate
attached to an elastically mounted cylinder and noted an interesting phenomenon: namely,
the occurrence of a galloping-type instability. Consequently, this configuration has the
potential to be one of the most promising candidates for a high-performance fluid energy
harvester. Some earlier studies demonstrated that a circular cylinder with a long splitter-
plate (viz., with a length of about 10D where D is the cylinder diameter) is susceptible to
galloping at a large flow velocity [106, 70], which might arise from a negative aerodynamic
damping associated with the rolling up of the shear layer and its subsequent reattachment
on the splitter plate.

2.5.2 Effect of Splitter-Plate Length

A few experimental and numerical studies [151, 154, 181] have demonstrated that an
elastically-mounted rigid assembly composed of a circular cylinder and a splitter-plate at-
tachment is prone to both VIV and galloping. And the splitter plate length is a key factor
in the determination of the response mode—VIV, galloping, and integrated or separated
VIV-galloping.

Nakamura et al. [105] replaced a circular cylinder with a rectangular prism of vari-
ous side ratios and demonstrated that any short bluff cylinder, whether sharp-edged or
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smooth, can exhibit galloping in the presence of a long splitter-plate. Stappenbelt [151]
systematically studied the influence of plate length LSP/D (from 0–4) on the nature of the
response of a freely-oscillating cylinder, by undertaking a number of still-water experiments
at high Reynolds numbers in the range from Re = 12, 600–84,000. The author classified
the dynamic instabilities into three categories: namely, (1) vibrations dominated by VIV
(for LSP/D = 0.34–0.5); (2) vibrations dominated by galloping (for LSP/D = 1–2.4); and,
(3) no vibrations (for LSP/D = 2.8–4). Recently, Sun et al. [154] performed laminar flow
simulations to investigate the dynamic behavior of a cylinder-plate assembly with plate
lengths ranging from 0 to 1.5D. With increasing plate length, these investigators observed
three distinct response modes: namely, (1) pure VIV for LSP/D = 0–0.5; (ii) coupled VIV-
galloping for LSP/D = 0.75; and, (3) separate VIV and galloping for LSP/D = 1–1.5D.
Sun et al. [154] further explained the transition from VIV to galloping as arising from the
competition between the lift forces on the plate (which promotes galloping) and cylinder
(which suppresses galloping).

In addition to plate length, Sahu et al. [129] numerically investigated the effect of
the mass ratio m∗ (2–1000) and the Reynolds number (92–150) on the dynamic response
of cylinder-plate assembly. Some variants of the rigidly-connected splitter plate can also
induce a galloping-type instability on an elastically mounted cylinder such as a detached
plate [84, 199] and a porous plate (solid and slotted) [11], but some appendages cannot,
such as a fairing or a C-shaped attachment [77].

Rather than focusing on the translational vibration of a cylinder-plate assembly, Zhang
et al. [191] investigated numerically the torsional vibration of an elastically mounted
circular-plate assembly in a laminar flow. These researchers reported the presence of an
amplified torsional VIV and a symmetry-breaking bifurcation at small and large values of
the reduced velocities, respectively. In a subsequent study, Zhang et al. [190] investigated a
three-degree-of-freedom (in-line, cross-flow, and torsional) coupled FIV of a cylinder-plate
assembly in which the vibration dynamics was found to be strongly dependent on the
torsional-to-vertical frequency ratios.

2.6 Motivations and Novelties

The key takeaway from above literature review is that the cylinder-plate assembly’s FIV
response has more theoretical and practical relevance due to three reasons: (i) the presence
of a splitter-plate can induce a richer spectrum of dynamic oscillation on the assembly
than that of a simple cylinder; (ii) the intricate interaction and synergy between VIV
and galloping make this geometry an excellent option for the innovative design of new

35



generations of unique energy harvesters with the goal of harnessing fluid energy (wind, tidal,
water) through structural oscillation and converting this oscillatory motion into electricity;
(iii) the transition between various vibration modes can be readily accomplished by simply
changing the splitter-plate length, which can be used effectively as a passive control strategy
for the utilization of cylinder-plate assembly as an energy harvester. However, it is evident
that there is currently a dearth of research concerning the FIV response of this special
dynamical system.

The drawbacks of predecessor’s research in this field can be summarized as follows.

1. Several (limited) previous studies about the FIV of cylinder-plate assembly have
focused on the influence of splitter-plate length on the assembly’s FIV. But there
has been no investigation on the combined effect of the aspect ratio of cylinder, the
splitter-plate length and the reduced velocity (over a large range of these factors) on
the assembly’s FIV.

2. The investigation of branching behavior for the galloping-dominated response is still
limited. To this contention, most of previous studies involving the branching analysis
only identify the various response modes (e.g., VIV, galloping, or integrated VIV-
galloping), and do not conduct further analysis and identification on the branching
behavior within the galloping regime. However, Zhao et al. [195, 194, 193] demon-
strated that the galloping regime is invariably associated with a wide reduced velocity
range and, as a result, can include complex branching characteristics. In addition,
there exists currently no research on the branching behavior of a cylinder-plate as-
sembly experiencing VIV and/or galloping. Also, the research concerning the flow
dynamics and vortex-shedding patterns associated with various branches of this struc-
ture is extremely limited at present.

3. Many of previous investigations concerning the nonlinear dynamics of the FIV re-
sponse only involved the canonical case of VIV for a circular cylinder [82, 42, 74, 182].
However, the generality of these results to other FIV forms of non-circular cylinder
or cylinder-appendage system is unknown—for example the beating phenomenon has
been reported for both circular and square cylinders, but there are important differ-
ences in the nonlinear behaviors of the two dynamical systems (e.g., changes in the
vibration characteristics and wake modes). Moreover, there is a paucity of analy-
sis concerning the nonlinear dynamical characteristics of a cylinder-plate assembly,
despite the fact that this assembly exhibits a much richer dynamical features with
respect to the FIV than that provided by the canonical cases.
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4. The existing wake-oscillator model for FIV phenomenon is limited to the VIV of
circular cylinder or the VIV-galloping of rectangular (square) cylinder. In addition,
these semi-empirical models can only be used in combination with the static test
data in order to determine the values of model parameters. No theoretical model is
available for the prediction of FIV response for a cylinder-plate assembly.

In consequence, there is certainly more that can be done in the investigation of the
intrinsic dynamical characteristics of the cylinder-plate assembly to address the deficiencies
(knowledge gaps) identified above. With this in mind, this thesis is constructed with the
following motivations.

1. Comprehensive numerical simulations of a cylinder-plate assembly’s FIV response
covering a large range of three important factors: aspect ratio of cylinder, splitter-
plate length and reduced velocity.

2. Detailed investigation of the full spectrum FIV phenomena associated with the
cylinder-plate assembly in terms of the structural vibration, branching behavior,
flow analysis and the nonlinear dynamical characteristics.

3. Prediction of the FIV for a cylinder-plate assembly using the mathematical wake-
oscillator model.

From the perspective of engineering application, the assembly is subjected to a three-
dimensional turbulent flow at high Reynolds numbers of around 103—104. However, the
3D numerical simulation at high–Re, especially in conjunction with a bidirectional FSI
problem such as FIV, is prohibitively computationally expensive. In consequence, all the
computations in the current work are conducted for a two-dimensional laminar flow with
a low Reynolds number of 100, in order to effectively acquire large number of numerical
results needed to conduct a systematic study.

The novelty of this thesis arises in the following aspects.

1. Identify the branching behavior of the FIV response of a circular cylinder-plate as-
sembly with plate length of LSP/D = 0–4, reveal the underlying physical mechanisms
by means of the flow analysis, and analyze the associated nonlinear dynamical char-
acteristics from multiple points of view.

2. Investigate the synergistic effect of two geometrical factors, viz., the aspect ratio of
cylinder and the splitter-plate length, on the cylinder-plate assembly’s FIV response
using numerical simulation.
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3. Propose a genetic algorithm optimized nonlinear grey-box estimation framework to
determine the free parameters of wake-oscillator models and apply to predict various
FIV responses.

2.7 Outline of Thesis

This thesis is organized as follows.

Chapter 3 describes the numerical simulations of the transverse FIV for an elasti-
cally mounted circular cylinder-plate assembly, over a board range of splitter-plate length
LSP/D = 0–4 and reduced velocity Ur = 2–30, at a low Reynolds number of Re = 100, a
fixed mass ratio of 10 and zero structural damping ratio. First, the establishment, inde-
pendence study and validation of the numerical model are introduced in Section 3.2. Then,
the simulation results are analyzed in terms of the vibration response (Section 3.3), the
branching behavior (Section 3.4) and the nonlinear dynamical characteristics (Section 3.5).

Chapter 4 describes the synergy effect of the aspect ratio of cylinder (AR = 0.5–2) and
the splitter-plate length (LSP/D = 0.5, 0.75 and 2.5) on the transverse FIV of an elliptical
cylinder-plate assembly under the same conditions. The assembly’s FIV responses can
occur either in a limited (Section 4.2) or an unlimited (Section 4.3) range of reduced
velocity, which are analyzed in terms of the vibration responses, the branching behaviors,
the dynamical characteristics in the synchronization and non-synchronization branches.
Moreover, the physical mechanisms underpinning some interesting response characteristics
of the assembly are interpreted in Section 4.4.

Chapter 5 describes the mathematical prediction of FIV response using the wake-
oscillator models. First, the existing wake-oscillator models are improved from multiple
aspects in Section 5.2. Based on that, a generic algorithm optimized grey-box estimation
framework is proposed to determine the free model parameters (see Section 5.3), which is
then verified with respect to the VIV of circular cylinder and galloping of cylinder-plate
assembly (see Section 5.4).

Chapter 6 gives important conclusions of this thesis.
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Chapter 3

FIV of Circular Cylinder-Plate
Assembly with Various Plate Lengths

3.1 Problem Description

The problem investigated in this chapter is the one-degree-of-freedom vibration of an
elastically-mounted cylinder-plate assembly that is free to move only in the cross-flow
direction (viz., along the y-axis). As shown in Fig. 3.1, a rigid splitter plate with a length
of LSP and a width of WSP = 0.06D is attached to the afterbody midpoint of a circular
cylinder with a diameter D and oriented in the streamwise direction (viz., along the x-
axis). The elastic spring supporting the cylinder is characterized by the spring stiffness k
and a mechanical damping coefficient c. The uniform velocity of free stream is U . In our
simulations, both U and D are assumed to be unity.

The flow past the cylinder-plate assembly is usually laminar at a low-Reynolds number,
consequently, the flow dynamics is governed by the two-dimensional unsteady incompress-
ible Navier-Stokes (NS) equations:

∂ui

∂xi

= 0 , (3.1)

∂ui

∂t
+ uj

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

, (3.2)

where the subscript i refers to the Cartesian component of a vector in the i-th direction with
i = 1, 2 for a two-dimensional problem; x1 ≡ x and x2 ≡ y are the Cartesian components
of the position vector in the streamwise and transverse directions, respectively; u1 ≡ u and
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Figure 3.1: Sketch of a splitter plate attached to an elastically-mounted circular cylinder
constrained to oscillate in the transverse (y-) direction.

u2 ≡ v are the components of the velocity vector in x- and y-directions, respectively; p, ρ
and ν are the pressure, fluid density, and fluid kinematic viscosity; and, t is time. In the
numerical simulations conducted herein, ρ = 1.225 kg m−3 and ν = 0.01 m2 s−1.

The transverse vibration of cylinder-plate assembly, driven by the unsteady hydrody-
namic fluid forces acting on it, can be modelled by a mass-spring-damper system, which
assumes the following form:

mÿ + cẏ + ky = Fy(t) , (3.3)

where y, ẏ and ÿ represent the displacement (in m), velocity (in m s−1) and acceleration
(in m s−2) of the moving body in the cross-flow direction, respectively; m is the total
oscillating mass per unit length (in kg m−1); c and k are structural damping coefficient per
unit length (in N s m−2) and spring stiffness per unit length (in N m−2), respectively; Fy(t)
denotes the fluctuating transverse force per unit length acting on the vibrating system (in
N m−1). Other non-dimensional quantities used here include: the dimensionless transverse
displacement Y ≡ y/D; the reduced velocity Ur ≡ U/(fnD); the damping ratio ζ ≡
c/(2

√
km); and, the mass ratio m∗. The instantaneous lift and drag coefficients are defined

as CL(t) ≡ 2Fy(t)/(ρU
2D) (i.e. transverse force coefficient) and CD(t) ≡ 2Fx(t)/(ρU

2D)
(i.e. streamwise force coefficient), respectively. Here, Fy and Fx are force components in
the cross-flow and in-line directions, respectively. The dimensionless time τ is defined as
τ ≡ tU/D—sinceD = 1 m and U = 1 m s−1, the dimensional time t has the same numerical
value as τ so, for simplicity, we will henceforth use t to refer to both the dimensional and
dimensionless time. Finally, the mass ratio is fixed at m∗ = 10 and the damping ratio is
ζ = 0 in the numerical simulations conducted herein, in order to gain the strongest system
dynamics.
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Figure 3.2: Sketch definition of computational domain and boundary conditions used in
the numerical simulations.

3.2 Numerical Methodology

3.2.1 Simulation Set-Up

As shown in Fig. 3.2, the elastically-mounted cylinder-plate assembly is located at the
origin of a rectangular Cartesian computational domain, the dimensions of which are Lu+
Ld (where Lu and Ld are the distance from cylinder center to inlet and outlet planes,
respectively) in the x-direction and W in the y-direction. The center of the cylinder (in
the equilibrium position) is equidistant (W/2) from the top and bottom boundaries of the
domain. Considering that large-amplitude transverse oscillations may occur, the size of
computational domain is chosen carefully to ensure that the four (artificial) boundaries of
the domain do not have an effect on the motion of structure. The choice of an optimal
computational domain size to satisfy this condition is described in Section 3.2.3.

Figure 3.2 also summarizes the boundary conditions used in our numerical simulations.
A Dirichlet boundary condition is applied for the two velocity components (u and v) at the
inlet plane and along the assembly surface as well as for fluid pressure (P ) at the outlet
plane. A Neumann boundary condition [77, 129, 154] is imposed for the fluid pressure at
the inlet plane and along the assembly surface and for velocity components at the outlet
plane. The specified boundary conditions and the corresponding mathematical expressions
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Table 3.1: Boundary conditions and their corresponding mathematical expressions.

Boundary Velocity Pressure

Inlet Uniform velocity (u = 1, v = 0)
Zero pressure gradient normal
to boundary (∂P/∂x = 0)

Outlet
Zero velocity gradients normal to

boundary (∂u/∂x = 0,
∂v/∂x = 0)

Zero average reference pressure
(P = 0)

Top/Bottom
(symmetry plane)

Zero velocity and zero velocity
gradient normal to boundary

(∂u/∂y = 0, v = 0)

Zero pressure gradient normal
to boundary (∂P/∂y = 0)

Cylinder/splitter-
plate walls

No-slip wall condition (u = 0,
v = 0)

Zero pressure gradient normal
to walls (∂P/∂n = 0)

of these boundary conditions are summarized in Table 3.1. Moreover, the initial velocity
and pressure fields in the computational domain are set to be zero.

In this study, the proprietary software package Ansys ICEM CFD is used to generate
a two-dimensional structured hexahedral grid to cover the entire computational domain—
this structured grid design is used to reduce the computational time and to obtain more
accurate results. As depicted in Fig. 3.3, the grid cells surrounding the cylinder and the
splitter plate are refined and the entire mesh covering the computational domain is of
high quality—more specifically, the quality of the mesh used in our numerical simulations
is between 0.95 to 1 as confirmed using the mesh check tool in the Ansys ICEM CFD
package.

3.2.2 Numerical Techniques

The numerical schemes used to discretize the various terms in the NS equations are as
follows: (1) temporal derivative term is discretized using a second-order accurate implicit
backward scheme; (2) spatial discretization of the convective term uses a second-order ac-
curate Gaussian linear upwind scheme; and, (3) the diffusion term is discretized using a
second-order accurate Gauss linear corrected scheme. After the discretization of the NS
equations, an iterative method is used to solve the linear algebraic equation system. To
this purpose, the smoothSolver with symGaussSeidel smoother and the geometric-algebraic
multi-grid (GAMG) with GaussSeidel smoother in OpenFOAM are used to solve the dis-
cretized systems of equations for velocity and pressure, respectively. The fluid dynamics
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Figure 3.3: Computational mesh used to discretize the computational domain. Mesh
partitioning of whole domain and local mesh refinement close to the surface of the bare
circular cylinder ((a), (c)) and the cylinder-plate assembly ((b), (d)).

is addressed using the transient pimpleFOAM solver which the PIMPLE algorithm—a hy-
brid between the steady SIMPLE (Semi-Implicit Method for Pressure-Linked Equations)
and transient PISO (Pressure Implicit with Splitting Operators)—is used to deal with the
pressure-velocity coupling of the continuity and momentum equations. The pimpleFOAM
solver allows a larger time step size to be used in the numerical simulations. In order to
ensure a stable and convergent calculation at every time step, the time step is adjusted
to control the maximum Courant-Friedrichs-Lewy (CFL) number which, for our numerical
simulations, is specified to have a value of 0.8 at each time step.

With respect to the structural motion, the implicit Newmark-β scheme (γ = 0.5, β =
0.25) is utilized to numerically solve the mass-spring-damper equation of motion (Eq. (3.3))
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to give the displacement, velocity and acceleration of the cylinder-plate assembly at each
time step.

Owing to the oscillatory motion of the cylinder-plate assembly, a dynamic meshing
methodology which can accommodate a changing geometry due to this motion is utilized
in our numerical simulations. To this purpose, the whole computational domain is di-
vided into three distinct regions through the definition of two parameters—innerDistance
and outerDistance—which (1) allows the moving mesh zone between the body surface and
innerDistance to move with the cylinder-plate assembly without any deformation; (2) de-
fines a mesh morphing zone between innerDistance and outerDistance, allowing the mesh
in this zone to be deformed and updated at each time step using a spherical linear inter-
polation scheme (SLERP); and, (3) specifies the static mesh zone beyond outerDistance.
The partitioning of computational domain into three regions through the specification of
innerDistance and outerDistance is displayed in Fig. 3.4. The existence of a directly-moving
mesh zone can effectively improve the simulation accuracy in the mesh region surrounding
the cylinder-plate assembly, and guarantee the computational stability of the numerical
solution, particularly when the structure undergoes a significant displacement [177].

In order to achieve a two-way FSI during the simulation, the original NS equations are
reformulated in the framework of the arbitrary Lagrangian Eulerian (ALE) methodology—
this involves the inclusion of the relative velocity between the fluid and mesh in the con-
vective term of momentum transport equation (Eq. (3.2)) to give

∂ui

∂t
+ (uj − uj,mesh)

∂ui

∂xj

= −1

ρ

∂p

∂xi

+ ν
∂2ui

∂xj∂xj

. (3.4)

Here, uj,mesh is j-th component of the grid velocity vector characterizing the moving mesh.

An explicit FSI algorithm is applied in our numerical simulations, for which the gov-
erning equations for the fluid and structure are solved successively at each time step. More
precisely, the numerical solution of the FSI problem uses the following three-step proce-
dure: namely, (1) solve the ALE-based NS equations (Eqs. (3.1) and (3.4)) to obtain the
flow field information, so that the fluid force acting on the structure can be calculated by
integrating the pressure and viscous friction on its surface; (2) substitute the computed
fluid force into the right-hand side of Eq. (3.3) as the forcing term and numerically solve
the resulting equation to obtain the displacement, velocity and acceleration of the vibrat-
ing structure; and, (3) update the mesh (both the directly-moving and morphing regions)
based on the state of motion determined in step (2).
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Figure 3.4: Partitioning of the computational domain into three regions by the specification
of two parameters (innerDistance and outerDistance) in the dynamic meshing methodology.

3.2.3 Independence Study

Domain independence study

The sensitivity of the numerical solution to the size of the computational domain is investi-
gated by varying the distance from the cylinder center to the outlet plane (Ld/D = 25, 45,
and 65) and the width of the domain (W/D = 30, 40, 50, and 60) for a fixed distance from
the cylinder center to the inlet plane (Lu/D = 15)—Lu is fixed owing to the fact that the
flow information “propagates” in the downstream direction so the impact of this dimension
is negligible on the numerical solution. To investigate the influence of the computational
domain size, we fixed the grid stretching ratio around the cylinder to a value of 1.06, the
number of mesh elements (cells) around the circumference of the cylinder to a value of
Nc = 160 and the total number NE of cell elements used to discretize the computational
domain to a value of about 20,000. Moreover, the time step used in domain tests is fixed
at ∆t = 0.01 s.

Table 3.2 summarizes the results of a sensitivity study on the computational domain
size. All the numerical simulations were conducted for a reduced velocity of Ur = 6. Do-
mains 1–3 embody the effect of the downstream domain dimension Ld on the numerical
solution and show the relative differences in the three quantities of interest as Ld/D in-
creases from 25 to 45 to 65 with the width W/D fixed at a value of 40. It can be seen
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Table 3.2: Dependence of numerical results on the size of the computational domain.
All the numerical simulations were conducted at fixed values of Lu/D = 15, Re = 150,
m∗ = 2.5465, ζ = 0, and Ur = 6.

Domain (Lx× Ly)/D2 Ymax CL,rms CD,mean

1 (15 + 25)× 40 0.50 0.03 1.73
2 (15 + 45)× 40 0.46 (8.08%) 0.02 (24.38%) 1.66 (4.16%)
3 (15 + 65)× 40 0.46 (0.15%) 0.02 (0.62%) 1.66 (0.05%)

4 (15 + 45)× 30 0.50 0.03 1.73
2 (15 + 45)× 40 0.46 (8.26%) 0.02 (22.24%) 1.66 (4.33%)
5 (15 + 45)× 50 0.46 (0.32%) 0.02 (1.25%) 1.66 (0%)
6 (15 + 45)× 60 0.47 (1.39%) 0.02 (0.52%) 1.66 (0.33%)

that the percent relative differences in the predicted values of the three quantities be-
tween domains 1 and 2 are significant. Moreover, the percent relative differences in the
predicted values of Ymax, CL,rms and CD,mean are only 0.15%, 0.62% and 0.05%, respec-
tively, between domains 2 and 3. In view of these results, Ld/D = 45 (or, equivalently,
Lx/D = 60 where Lx ≡ Lu + Ld) is chosen as the downstream dimension for the compu-
tational domain. Domains 4, 2, 5, and 6 embody the influence of the domain width W
on the numerical solution for a fixed value of the domain length Lx/D = 60. It is seen
that CL,rms shows the largest percent relative difference of 22.24% between W/D = 30
and 40, while Ymax and CD,mean exhibit smaller percent relative differences of 8.26% and
4.33%, respectively. Moreover, the relative percent differences in the quantities of interest
are small for W/D = 40 compared to those for W/D = 50—a percent relative difference of
1.25% is observed for CL,rms and generally negligible percent relative differences for Ymax

and CD,mean. Similarly, the percent relative differences are very small for W/D = 50 when
compared to those for W/D = 60. As a consequence, an appropriate domain width for
the numerical simulations is W/D = 40. In summary, a computational domain with a
length of Lx = 60D (viz., Lu = 15D and Ld = 45D) and a width Ly ≡ W = 40D provides
the best balance between computational effort and accuracy for the numerical simulations.
The corresponding blockage (ratio of cylinder diameter D to domain width W ) is 0.025.

Grid independence study

A grid sensitivity study has been conducted to ensure the numerical results are independent
of the grid resolution. To simulate the VIV of a circular cylinder, a non-uniform stretched
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Table 3.3: Dependence of numerical results on the grid resolution. All the numerical
simulations were conducted at fixed values of Re = 150, m∗ = 2.5465, ζ = 0, and Ur = 6.

Grid Nc Nr NE Ymax CL,rms CD,mean

1 80 48 7,815 0.52 0.03 1.77
2 120 56 12,217 0.50 (3.52%) 0.02 (9.20%) 1.73 (2.32%)
3 160 67 18,513 0.49 (1.97%) 0.02 (6.55%) 1.71 (1.14%)
4 200 76 25,201 0.49 (0.40%) 0.02 (0.86%) 1.71 (0.08%)

mesh composed of quadrilateral elements is used to tessellate in the entire computational
domain (see Figs. 3.3 (a) and (c)). The mesh is characterized by the number of nodal
points (Nc) along the circumference of the cylinder, the height of first grid layer away from
the cylinder surface (δ), and the number of nodes along the radial direction within the
dense mesh area surrounding cylinder (Nr). More specifically, Nr grid cells are distributed
along the length of the splitter plate and three grid cells are distributed evenly along the
width of the plate. Four different meshes ranging from coarse to dense are used in the
sensitivity study—for each mesh, δ is fixed at 0.01D in order to satisfy the criterion of
y+ ≡ yuτ/ν ≈ 1 (where y+ is the normal wall coordinate, y is the distance from the wall,
and uτ is the friction velocity). The grid resolution is varied by changing the values of Nc

in the range from 80 to 200 and of Nr in the range from 48 to 76—these variations change
the total number of cell elements (NE) in the mesh. In these numerical simulations, a
computational domain size of Lx/D × Ly/D = 60× 40 and a time step of ∆t = 0.01 s are
used.

Four different meshes (grids) and their influence on the numerical solution are exhibited
in Table 3.3. It can be seen that the percent relative differences in the predicted quantities
between grid 1 (coarse) and grid 2 (intermediate) are significant as are those between
grid 2 (intermediate) and grid 3 (fine). Moreover, the percent relative differences in the
three quantities between grid 3 (fine) and grid 4 (very fine) is small, with the largest percent
relative difference of 0.86% occurring for CL,rms. In order to balance computational effort
with accuracy, we will use grid 3 for the numerical simulations conducted in this paper.

Temporal convergence study

The sensitivity of numerical results on the dimensionless time step size has been inves-
tigated. These sensitivity tests were conducted on a fixed computational domain size
(domain 2) and grid resolution (grid 3) with the numerical solutions obtained using three
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Table 3.4: Dependence of numerical results on the time step size. All the numerical
simulations were conducted at fixed values of Re = 150, m∗ = 2.5465, ζ = 0, and Ur = 6.

Time step size (s) Ymax CL,rms CD,mean

0.02 0.51 0.03 1.76
0.01 0.49 (3.60%) 0.02 (19.39%) 1.71 (2.77%)
0.005 0.49 (0.27%) 0.02 (5.45%) 1.71 (0.16%)

different time step sizes: namely, ∆t = 0.02 s, 0.01 s, and 0.005 s. The results are summa-
rized in Table 3.4. A perusal of this table shows that significant percent relative differences
in the three quantities are observed between the results obtained for ∆t = 0.02 s and those
for ∆t = 0.01 s. More specifically, the percent relative difference for the predicted value of
CL,rms using ∆t = 0.02 s compared to that using ∆t = 0.01 s is 19.393%. In contrast, the
percent relative differences between results obtained for ∆t = 0.01 s and 0.005 s is much
smaller—again, the largest percent relative difference occurs for CL,rms but this difference
is only 5.45%. From these considerations, a time step of ∆t = 0.01 s is used in our nu-
merical simulations as this choice represents the best compromise between computational
efficiency and solution accuracy.

3.2.4 Model Validation

To validate the predictive accuracy of the numerical model used in this study, we will
simulate the transverse VIV of a circular cylinder and the transverse FIV of the cylinder-
plate assembly, and compare our predictions with some previous numerical results. Three
different simulation cases are used for this purpose, involving different Reynolds numbers,
and structural mass and damping ratios.

The numerical properties of first simulation case are the same as that in sensitivity
studies: namely, Re = 150, m∗ = 2.5465, and ζ = 0 for a range of reduced velocity
Ur = 2 − 9.5. The predictions of the dependence of three (dimensionless) quantities of
interest Ymax, CL,rms and CD,mean on the reduced velocity Ur is exhibited in Fig. 3.5.
These results are compared with the predictions obtained from some previous numerical
investigations [1, 24, 15, 197, 169]. A careful examination of the figure shows that the
normalized maximum transverse displacement and the lift and drag force coefficients are in
excellent conformance with previous numerical simulations. This implies that the numerical
model used in this study can accurately predict the VIV response of a circular cylinder in
terms of the onset of VIV, the lock-in range and the maximum amplitude of oscillation.
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Figure 3.5: Comparison of numerical results between this thesis and previous numerical
investigations (Ahn and Kallinderis [1], Borazjani and Sotiropoulos [24], Bao et al. [15],
Zhao [197], and Wang et al. [169]): (a) normalized maximum transverse displacement Ymax

as a function of Ur; (b) root-mean-square lift coefficient CL,rms as a function of Ur; and,
(c) mean drag coefficient CD,mean as a function of Ur. The current numerical simulations
are of the VIV response of a circular cylinder for Re = 150, m∗ = 2.5465, and ζ = 0. The
resolution of Ur used in the present simulations is 0.5.
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Figure 3.6: Comparison of numerical results between this thesis and previous numerical
investigations (Bourguet and Jacono [25], Dorogi and Baranyi [38]) for the normalized
maximum transverse displacement Ymax as a function of Ur. The current numerical simu-
lations are of the VIV response of a circular cylinder for Re = 100, m∗ = 10, and ζ = 0.
The resolution of Ur used in present simulations is 0.5.

The second case involves the numerical simulation of the VIV response of a circular
cylinder for Re = 100, m∗ = 10, and ζ = 0 for Ur = 3 − 9.5. The numerical param-
eters in this example correspond exactly to those used for the numerical simulations of
the cylinder-plate assembly conducted herein. Fig. 3.6 compares our predictions of the
normalized maximum transverse displacement as a function of Ur with results obtained
from some previous numerical studies [25, 38]. A good agreement is obtained between the
present simulations and these previous numerical results—albeit, our predictions of Ymax

are slightly larger than those obtained from previous numerical studies in the range of
reduced velocities Ur from about 4.5 to 8. The reason for this small difference is that the
mass ratio used in these previous numerical studies was m∗ = 12.73—this value of the
mass ratio is larger than that used in the current simulations where m∗ = 10.

Figure 3.7 compares the maximum transverse displacement of elastically-mounted cylinder-
plate assemblies with plate lengths of LSP/D = 0.25, 0.5, 0.75 and 1 with the corresponding
numerical results of Sun et al. [154] and Zhang et al. [190]. All the numerical simulations
shown here were conducted at Re = 100, m∗ = 10 and ζ = 0. A careful perusal of Fig. 3.7
shows that the present simulations are in excellent conformance with previous numerical
results for both short plate lengths associated with self-limiting oscillations at small values
of the reduced velocity (see Figs. 3.7 (a)–(b)) and for the longer plates associated with
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Figure 3.7: Comparison of numerical results between this thesis and previous numerical
investigations (Sun et al. [154], Zhang et al. [190]) for the normalized maximum transverse
displacement Ymax as a function of Ur. The current numerical simulations are of the FIV
response of a cylinder-plate assembly with various plate lengths LSP/D for Re = 100,
m∗ = 10, and ζ = 0.
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Figure 3.8: The normalized vibration amplitude plotted as a function of LSP and Ur.

non-limiting oscillations at the larger values of the reduced velocity (see Figs. 3.7 (c)–(d)).

3.3 Vibration Response

In this section, the combined effect of splitter-plate length LSP and reduced velocity Ur

on the FIV of cylinder-plate assembly is analyzed in terms of the vibration amplitude, the
oscillation frequency and the fluid forces acting on the moving system.

3.3.1 Vibration Characteristics

Figures 3.8–3.9 display the three-dimensional plots of the maximum transverse displace-
ment Ymax and the non-dimensional dominant transverse displacement oscillation frequency
f ∗
Y /fn, respectively, as a function of LSP and Ur. A careful examination of these plots re-
veals the dynamical characteristics of the nonlinear system that can be divided into three
regimes: namely, (1) in the regime where LSP/D = 0–0.5, the cylinder-plate assembly
undergoes a self-limiting vibration that occurs over a limited Ur range with the oscillation
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Figure 3.9: The dominant vibration frequency normalized by structural natural frequency
(f ∗

Y /fn) plotted as a function of LSP and Ur.

frequency locked near the structural natural frequency (which can be identified as a VIV-
type response); (2) in the regime where LSP/D = 0.75–3.5, the cylinder-plate assembly
undergoes a non-limited vibration with a monotonically increasing oscillation amplitude
with increasing Ur—this regime exhibits complex frequency characteristics and can be
identified as a galloping-type response; and, (3) in the regime where LSP/D = 4, there is
no obvious oscillation induced on cylinder-plate assembly, at least for values of Ur up to
30. Figs. 3.8–3.9 show clearly that the dynamical response of a cylinder-plate assembly
has a strong dependence on the splitter-plate length and the reduced velocity.

Although the three-dimensional plots exhibit qualitatively the relationship between the
plate length, reduced velocity, and maximum transverse displacement, a detailed and more
quantitative elucidation of the various controlling factors that influence the oscillatory
response of a cylinder-plate assembly requires two-dimensional plots. Consequently, in
order to obtain more details on the nature of the amplitude and frequency response for
a cylinder-plate assembly, Fig. 3.10 exhibits two-dimensional plots of Ymax and f ∗

Y /fn as
a function of Ur stratified by the value of LSP . The bare circular cylinder (without the
splitter plate, so LSP = 0) undergoes VIV with a lock-in range of Ur = 5–8.5 and a
maximum vibration amplitude of about Ymax/D ≈ 0.6 at Ur = 5. The non-dimensional
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Figure 3.10: Plots of (a) the normalized vibration amplitude (Ymax) and (b) the normalized
dominant vibration frequency (f ∗

Y /fn) as a function of the reduced velocity Ur stratified
in terms of the splitter-plate length LSP .
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dominant frequency of displacement oscillations f ∗
Y /fn increases with Ur before the onset

of VIV, attaining a value of unity when lock-in is achieved (implying that f ∗
Y is exactly

locked to fn). The non-dimensional dominant frequency increases linearly again when the
system transitions out of lock-in. The dynamic response of the bare circular cylinder is
significantly different than that of a splitter plate attached to the cylinder.

With the inclusion of a relatively short splitter-plate of length LSP/D = 0.25, the
pure VIV response is enhanced in the sense that it has a wider lock-in range (namely,
Ur = 4.5–12). The magnitude of the transverse displacement has a maximum value of
about 0.7D over an extended range of Ur, in contrast to the case of a bare cylinder where
Ymax decreases rapidly in magnitude with increasing Ur after achieving a peak value at
lock-in. Furthermore, with the inclusion of the short splitter-plate, f ∗

Y is approximately
equal to fn over the wider range of reduced velocities where lock-in occurs.

A cylinder-plate assembly with LSP/D = 0.5 undergoes a further reinforced vibration
over a much wider lock-in range of Ur = 5.5–20 (almost four times the VIV lock-in range
of a bare cylinder) with a larger amplitude of vibration. The frequency response exhibits
a similar pattern, but the dominant oscillation frequency f ∗

Y is locked on to a value that is
smaller than the natural frequency (more specifically, to 0.93fn). Consequently, a reason-
able guess is that the cylinder-plate assembly with LSP/D = 0.5 undergoes an integrated
VIV-galloping response.

For an even longer plate length of LSP/D = 0.75, the cylinder-plate assembly first
undergoes a weak oscillation with Ymax/D = 0.06 at Ur = 6 where f ∗

Y also exhibits a
small increase. The system manifests an onset of galloping at Ur = 7 with a nearly linear
increase in amplitude with increasing Ur—attaining an amplitude of 2D at Ur = 30. The
associated dominant frequency f ∗

Y /fn maintains a constant value of 0.84 over the range of
Ur where galloping occurs. Cylinder-plate assemblies with LSP/D = 1, 1.25 and 1.5 exhibit
very similar dynamical response characteristics as that with LSP/D = 0.75. However, the
onset of galloping occurs at larger values of Ur and the dominant frequency f ∗

Y /fn over the
range of Ur where galloping occurs is smaller for the longer plate lengths. For example, the
onset of galloping for LSP/D = 1, 1.25, and 1.5 occurs at Ur = 8, 9, and 10, respectively.
Furthermore, f ∗

Y /fn = 0.76, 0.7, and 0.65 in the range of Ur associated with galloping for
plate lengths of LSP/D = 1, 1.25, and 1.5, respectively. Therefore, with increasing LSP the
amplitude decreases (albeit slowly)—the only exception to this rule occurs at the larger Ur

(e.g., the amplitude for LSP/D = 1 crosses that for LSP/D = 0.75 at about Ur = 23–27).
Another interesting phenomenon is that the amplitude plots of LSP/D = 0.75, 1 and 1.25
exhibits a “kink” in the amplitude response (where the amplitude decreases abruptly) at
Ur = 15, 14 and 12.5 respectively. However, for LSP/D = 1.5, the expected “kink” morphs
instead into an interval where the amplitude is constant at Ur = 11–11.5.
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When the plate length is increased to LSP/D = 1.75, the small vibrations occurring at
small Ur become stronger with increasing Ur, attaining a maximum amplitude of 0.15D at
Ur = 4. The onset of galloping in this case does not occur until Ur = 10.5 and the dominant
vibration frequency in the galloping regime is reduced (to 0.57fn) as is the transverse
displacement Ymax compared to that for the shorter plate lengths. The cylinder-plate
assemblies for LSP/D = 2, 2.5, 3 and 3.5 exhibit similar dynamical response characteristics
as those for LSP/D = 1.75—however, the onset of galloping occurs at progressively larger
Ur (e.g., at Ur = 11, 12, 13 and 18, respectively) and the dominant oscillation frequency
in the galloping regime is progressively smaller (e.g., f ∗

Y /fn = 0.5, 0.43, 0.35 and 0.3,
respectively). In addition, the frequency response exhibits some noteworthy attributes:
namely, (1) for LSP/D = 3–3.5, the dominant oscillation frequency in the lower range of
Ur gradually increases to fn (but does not exceed this value), in contrast to the behavior for
shorter plate lengths (e.g., for LSP/D = 1–2.5) where the dominant oscillation frequency
can exceed fn (and, indeed can attain values up to about 1.5fn); and, (2) for LSP/D = 2.5–
3.5, there exist ranges of the reduced velocity where vibration ceases (e.g., Ur = 11–12,
9–11 and 9–13).

For the longest plate length LSP/D = 4 considered in this study, a small oscillation
occurs in the range Ur = 4–8. Moreover, no galloping is triggered, at least over the range
of Ur investigated in this study—although, it cannot be ruled out that galloping might not
occur at still larger values of Ur.

3.3.2 Fluid Force Characteristics

Figures 3.11–3.12 exhibit three-dimensional plots of CL,rms and of CD,mean, respectively, as
a function of LSP and Ur for a cylinder-plate assembly. A perusal of this figure suggests
that the lift force is strongly correlated with the onset of VIV and galloping—the lift force
is seen to increase significantly in the range of reduced velocities associated with VIV
or galloping. In contrast, the mean drag force embodied in CD,mean exhibits appreciable
variations only when the self-limiting VIV response occurs (e.g., for LSP/D = 0–0.25).

Figures 3.13 (a) and (b) display the fluid force coefficients CL,rms and CD,mean of the
cylinder-plate assembly, respectively, as a function of Ur stratified by the different values
of LSP . For the bare circular cylinder, the lift and drag coefficients first increase sharply at
the onset of VIV, reaching peak values of CL,rms = 1.38 and CD,mean = 2.3 at Ur = 5. After
VIV onset, CL,rms decreases rapidly to near zero during lock-in and thereafter increases
slightly again to a value of 0.2 and remains constant at this value when the system has
transitioned out of lock-in. Furthermore, CD,mean also undergoes a sudden decrease from
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Figure 3.11: Three-dimensional plot of (a) the root-mean-square lift coefficient CL,rms and
(b) the time-averaged (mean) drag coefficient CD,mean as a function of LSP and Ur.

a peak value of 2.35 to a value of 1.35 where it remains constant with increasing Ur—the
latter value for CD,mean is the same as that before lock-in.

If cylinder-plate assembly undergoes a galloping-type response, the lift coefficient ex-
hibits a completely different behavior. For LSP/D = 0.75–1.5, CL,rms first increases to a
small peak value (first peak) at Ur = 5.5 (which is associated with a very small oscillation)
and then decreases towards zero until the onset of galloping, at which point CL,rms increases
again to attain a large peak value (second peak) of about 1.2–1.4. This is followed by a
gradual decrease in the value of CL,rms within the galloping regime. On the other hand,
CD,mean only exhibits a very small increase in value at the onset of oscillatory motion and
remains at a constant value within the galloping regime. There are also variations in the
values of CL,rms and CD,mean at the location of “kinks” in the amplitude response.

For LSP/D = 1.75–3.5, the first peak of the lift coefficient attains a much higher value
of between 1.75–2.7. This is comparable to the fluid force responsible for the VIV of a
bare circular cylinder. However, the corresponding vibration at small values of Ur has a
maximum amplitude of 0.2D which is only one-third of the value associated with the VIV
response (cf. Fig. 3.13). Moreover, attaching a longer plate to the cylinder results in a
smaller second increase in the lift coefficient before the onset of galloping followed by a
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Figure 3.12: Three-dimensional plot of (a) the root-mean-square lift coefficient CL,rms and
(b) the time-averaged (mean) drag coefficient CD,mean as a function of LSP and Ur.

slow decrease of CL,rms within the galloping regime. In contrast, the variation CD,mean

as a function of Ur is much simpler—there is a rapid increase at the onset of the small
oscillatory motion and a gradual increase at the onset of galloping. Moreover, the drag
coefficient is constant within the galloping regime. Finally, this constant value of CD,mean

in the galloping regime is smaller for longer plate lengths.

A cylinder-plate assembly with LSP/D = 4 only exhibits very small vibrations at small
values of Ur. In this case, it is seen that both CL,rms and CD,mean first increase at Ur = 4–8
and then decrease again to zero at larger values of Ur.

3.3.3 Components of Transverse Force

For a cylinder-plate assembly moving together as a rigid body, the aerodynamic force
will act on both the circular cylinder and the splitter-plate—the latter cannot be ignored,
especially for a long plate. To determine the contribution of various force components
to the system oscillations, Fig. 3.14 displays the oscillation amplitude superimposed on
the fluid forces exerted on the cylinder and the plate. It should be noted that the drag
force is included only for the self-limiting VIV-type oscillations (which are present when
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Figure 3.13: Variation of aerodynamic fluid forces acting on a cylinder-plate assembly:
(a) the root-mean-square lift coefficient CL,rms and (b) the time-averaged (mean) drag
coefficient CD,mean as a function of the reduced velocity Ur and stratified with respect to
the plate length LSP .
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Figure 3.14: The maximum vibration amplitude Ymax, the root-mean-square lift force
coefficient and the mean drag force coefficient acting on the cylinder (CLc,rms, CDc,mean)
and splitter-plate (CLp,rms, CDp,mean) as a function of Ur for six plate lengths.
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LSP/D = 0–0.5)—the drag force has a negligible effect in the galloping regime.

For the cylinder-plate assembly undergoing a self-limiting oscillation (LSP/D = 0.25–
0.5), the transverse force acting on the cylinder is much larger than that acting on the
splitter-plate, although the former decreases while the latter increases with an increasing
LSP . As a consequence, the additional plate-force might play a leading role in inducing
stronger oscillations in the system over a wider range of Ur and in producing a larger
vibration amplitude over this range.

For LSP/D = 0.75–1.5, the cylinder-plate assembly undergoes a galloping-dominated
response. The lift force on the cylinder in the galloping regime is larger than that on the
splitter plate in general. The difference in the lift force between the cylinder and the plate
decreases with increasing plate length until LSP/D = 1.5 at which point the lift force on
the cylinder and plate are nearly equal in value. Before the onset of galloping, the lift force
on the cylinder is twice as large as that on the plate for small oscillations, but after that
the former decreases towards zero, eventually becoming smaller than the latter (e.g., this
occurs at Ur = 7–7.5, 7–8.5, and 7–9.5 for LSP/D = 1, 1.25, and 1.5, respectively).

For LSP/D ≥ 1.75, the situation is reversed: namely, the lift force on the plate is
generally larger than that on the cylinder for small oscillations and for galloping—this
response may be associated with some special flow patterns. The difference between these
two forces increases with increasing LSP . As discussed above, the magnitude of transverse
(lift) force with small oscillations is greatly increased relative to that for shorter plate
lengths. In the quasi-stationary regime before the onset of galloping, the variation of
the transverse force with Ur exhibits some interesting behavior. More specifically, for
LSP/D = 1.75, the lift force on the cylinder gradually decreases to zero, while the lift force
on the plate remains small (but, non-zero)—this occurs at Ur = 7–10.5 and 7.5–11 for plate
lengths of LSP/D = 1.75 and 2, respectively. In contrast, the lift force on the cylinder
and plate both are zero over this range of reduced velocities for longer plate lengths with
LSP/D = 2.5–4.

It appears that the lift force on the cylinder (CLc) has a greater effect on the resulting
dynamic response of the vibrating system, even though the value of this lift force is less
than that on the plate (CLp). This is supported by the fact that CLp increases sharply
at small values of Ur for LSP/D ≥ 1.75. However, this sharp increase does not appear
to induce a stronger secondary vibration—indeed, the lift force on the cylinder and the
oscillation amplitude remain unchanged. The effect of CLp appears to be closely related
to the wake flow dynamics behind a vibrating cylinder-plate assembly in the form of the
interaction between the splitter plate and the near-wake flow. Finally, when CLp is larger
than CLc for the longer plates, the amplitude response appears to increase linearly with Ur
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with less tendency for the existence of a “kink” (discontinuity in the slope) in this response.

3.4 Branching Behavior

3.4.1 Branching Identification

This section identifies various response branches for a cylinder-plate assembly undergoing
VIV and/or galloping. Thirteen plate lengths are simulated to facilitate the comparison
and discussion, which are categorized into five distinct groups according to their branching
characteristics: namely, Group I for LSP/D = 0–0.5, Group II for LSP/D = 0.75, Group
III for LSP/D = 1–1.5, Group IV for LSP/D = 1.75–2, and Group V for LSP/D = 2.5–4.

Group I: LSP/D = 0–0.5

It is widely known that a circular cylinder exhibits a VIV response only. The dynamics
of a cylinder-plate assembly with a very short splitter-plate of LSP/D = 0.25 is similar to
that of a circular cylinder. The only difference is that the VIV for this cylinder-plate
assembly occurs over a wider range of the reduced velocity. In marked contrast, the
cylinder-plate assembly with LSP/D = 0.5 exhibits a number of interesting and novel
dynamical characteristics involving an integrated VIV-galloping response.

Figure 3.15 displays the normalized displacement amplitude Ymax, the root-mean-square
lift coefficient CL,rms, the power spectral density (PSD) of the oscillation and the instanta-
neous lift force, as well as the branching behavior for the case of LSP/D = 0.5. The PSD
isopleths shown here are constructed using the methodology described by Zhao et al. [195].
More precisely, we obtain the fast Fourier transform of the time series of Y (displacement)
and CL (lift force) at each value of Ur, normalize the resulting power spectrum (squared
modulus of the Fourier transform) by the maximum power, and stack (composite) the
normalized power spectra together for all values of Ur.

As shown in Fig. 3.15 (a), three synchronization branches are identified within the
vibration range of Ur = 5–20. These include a wider resonance at Ur = 5.5–10, as well
as two narrower branches at Ur = 11–11.5 and Ur = 19–19.5—the onset of the latter two
branches is signalled by the presence of a “kink” in the amplitude response. Here, “kink”
refers to the bending or inflection (discontinuity in the slope) of the amplitude curve,
following the nomenclature introduced by Zhao et al. [195]. A more detailed discussion of
the “kink” in the amplitude response is given in Section 3.4.3. Within the first resonance,
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Figure 3.15: The branch identification of cylinder-plate assembly with LSP/D = 0.5. (a)
Dependence on Ur of Ymax and of the RMS lift coefficients (CL,rms, CLc,rms, CLp,rms).
Power spectral density isopleths of (b) Y , (c) CL, (d) CLc and (e) CLp plotted against the
associated normalized frequency and Ur. In (b)–(e), the diagonal and horizontal dashed
lines represent the Strouhal frequency (St = 0.148) and the unit normalized frequency,
respectively. The solid lines in (b) and (c) represent the phase differences between Y and
CL (square) and between CLc and CLp (diamond), respectively. The assembly undergoes an
integrated VIV-galloping, with three synchronizations identified: namely, 1:1 at Ur = 5.5–
10, 1:2 at Ur = 11–11.5, and 1:3 at Ur = 19–19.5. “Kinks” (identified by red boxes) in the
amplitude response signal the onset of synchronizations.

63



the PSD isopleths of the displacement and transverse force are seen to have a dominant
frequency close to fn (see Figs. 3.15 (b) and (c)). This suggests that VIV is induced in the
assembly, so the range of reduced velocity Ur = 5.5–10 can be identified as the “lock-in”
regime. However, in contrast to the VIV of a bare circular cylinder, this particular VIV
branch exhibits an increasing amplitude response and the emergence of a third-harmonic
in the CL-spectrum.

A more complex fluid force with a spectrum consisting of various harmonics up to
seventh-order that criss-cross one another is observed in Fig. 3.15 (c) for the range of Ur =
10.5–20. In contrast, the displacement spectrum still has a single frequency, suggesting
the occurrence of galloping. It should be noted that the system oscillation and transverse
force (viz., vortex shedding) over the latter two narrow branches are synchronized at f ∗

Y :
f ∗
CL

= 1 : n (where f ∗
Y and f ∗

CL
are the dominant frequencies in the PSD of Y and CL

respectively; n is an integer greater than 1). More specifically, f ∗
Y : f ∗

CL
= 1:2 and 1:3 for

Ur = 11–11.5 and Ur = 19–19.5, respectively. Note that this synchronization phenomenon
can be seen only in the colored regimes in Fig. 3.15 (a). The high-order synchronizations
observed here are in stark contrast to the lock-in regime where a 1:1 synchronization (viz.,
the dominant oscillation frequency is equal to the dominant transverse force frequency)
occurs because the VIV is directly induced by the vortex shedding. Above branching
analysis implies that an integrated VIV-galloping response is triggered on the cylinder-
plate assembly with LSP/D = 0.5. More specifically, a special VIV response (or, lock-in)
with a larger amplitude is triggered first at lower reduced velocity and then smoothly
transitions to a self-limiting galloping response at Ur ≈ 10.5.

To study the properties of synchronization, Fig. 3.16 exhibits various aspects of the
dynamical response of the cylinder-plate assembly with LSP/D = 0.5, including time
series, phase portraits, Lissajous figures and power spectra of the displacement and fluid
force at three different reduced velocities (viz., Ur = 6, 11.5, and 19) for the 1:1, 1:2, and
1:3 synchronizations. A careful examination of the figure shows the oscillations of Y (t) and
CL(t) in all three synchronizations are periodic, as evidenced by the time series and phase
portrait (which corresponds to a stable limit cycle associated with the closed trajectory of
a perfectly periodic system involving self-sustained oscillations). Nevertheless, it is evident
that the dynamics becomes more complex with increasing Ur—this is so can be seen by
comparing the sinusoidal time series and the elliptical shape of phase portraits (viz., Y ′–
Y and C ′

L–CL where the primed superscript denotes a time derivative) at Ur = 6 (see
Figs. 3.16 (ai) and (aii)) with the severely distorted time series and more complex phase
portraits of transverse force at Ur = 19 (see Figs. 3.16 (ci) and (cii)). The Lissajous figures
of the instantaneous transverse force coefficient CL versus the transverse displacement Y
(see third column of panels in Fig. 3.16) are inclined towards the first and third quadrants
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Figure 3.16: Dynamical characteristics of the cylinder-plate assembly with LSP/D = 0.5
at three reduced velocities Ur = 6, 11.5 and 19 in (a)–(c), corresponding to the three
synchronizations identified in Fig. 3.15. The dynamical characteristics are displayed in
terms of the time series of Y and CL (first column of panels), the phase portraits C ′

L–CL

(second column of panels), the Lissajous figures CL–Y (third column of panels), and the
power spectra of Y and CL (fourth column of panels). In all these plots, the results for Y
and CL are shown as the black and red curves, respectively.

of the plane, suggesting that CL and Y are in-phase in the synchronization branches—this
is supported also from a perusal of the time series of CL and Y .

It should be noted that the relationship between f ∗
Y and f ∗

CL
in the synchronization

branch can be determined using various methods. These include ascertaining the number
of closed loops in the (CL–Y ) Lissajous figure (e.g., two at Ur = 11.5 and three at Ur = 19)
or confirming the presence of higher harmonic components in the power spectrum of CL

(e.g., smaller red peaks in the CL-spectrum at Ur = 11.5 and 19). At Ur = 6, the dominant
frequency of CL is identical to that of Y . However, perhaps the most intuitive and accurate
approach is to simply observe the vortex-shedding mode in the wake field as in Fig. 3.17.
At Ur = 6, a clockwise (negative) vortex labelled “-SI” and a counter-clockwise (positive)
vortex labelled “SI” are alternately shed from the shear layers on the structure during one
oscillation cycle—these form the so-called “2S” wake mode and the classical Kármán vortex
street. At Ur = 11.5, four vortices (two clockwise (-SI ,-SII) and two counter-clockwise (SI
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Figure 3.17: Instantaneous vorticity fields in one oscillation cycle T of a cylinder-plate
assembly with LSP/D = 0.5 at three Ur = for three synchronizations: (a) Ur = 6 for 1:1;
(b) Ur = 11.5 for 1:2; and, (c) Ur = 19 for 1:3. The corresponding wake modes are “2S”,
“T+S” and “3×(2S)”, respectively.
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and SII)) are shed during one oscillation cycle, corresponding to the frequency ratio of 1:2.
However, the vortex shedding pattern here is obviously asymmetric as shown in Fig. 3.17
(b). In particular, vortices -SI and -SII are connected and shed together with SI , whereas
SII is shed separately. This pattern seems to be consistent with “T+S” (triplet and singlet)
mode. Finally, at Ur = 19, the alternating vortex shedding manifests itself again, with the
difference that the “2S” mode is repeated three times (viz., “3×(2S)” to give six vortices
in total)—which corresponds to the frequency ratio of 1:3 for this synchronization. Taken
together, the flow information provides further support for the assertion that the cylinder-
plate assembly with LSP/D = 0.5 undergoes an integrated VIV-galloping response.

Group II: LSP/D = 0.75

A freely-oscillating cylinder-plate assembly with LSP/D = 0.75 is a special dynamical
system, which corresponds to a boundary case—a assembly with a plate length less than
or greater than the critical value of 0.75D exhibits self-limited or unlimited oscillations,
respectively. As a result, the case of LSP/D = 0.75 is in a group by itself as it is associated
with the transition from two different oscillation modes.

The branching of the amplitude response and the PSD of the displacement and vari-
ous transverse force coefficients are shown in Fig. 3.18. For this assembly, three distinct
synchronization branches are identified in the galloping regime (Ur ≥ 6.5), each of whose
onset is signalled by the presence of a “kink” in the amplitude response—this is similar to
the case of LSP/D = 0.5. The first synchronization occurs in the narrow range Ur = 11–
11.5, which is associated with a dominant oscillation frequency f ∗

Y /fn ≈ 1 (more precisely,
slightly smaller than the structural natural frequency). The corresponding PSD of trans-
verse force exhibits both odd and even high-order harmonics. The second synchronization
occurs over the more extended range Ur = 15–20, during which a weaker third-harmonic at
fY /fn ≈ 3 is present in the PSD of Y (see Fig. 3.18 (b)). While the PSD of CL is regular
and structured—clearly containing only the odd-harmonics of the fundamental frequency
at fCL

/fn = 3, 5, and 7. Of these odd harmonics, the third harmonic is the strongest
while other higher components progressively diminish in strength. The third synchroniza-
tion occurs around Ur ≈ 29, and its dynamical characteristics are similar to that of the
second branch—the main difference is that the fifth harmonic in the PSD of transverse
force becomes stronger and is comparable to the third harmonic.

Another interesting feature that is easily overlooked is the presence of a secondary
(weaker) oscillation in the amplitude response at around Ur ≈ 6 with a maximum ampli-
tude of only 0.05D—occurring just before the onset of galloping. The flow field analysis
below will show that this small vibration is induced by the vortex shedding (viz., a VIV
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Figure 3.18: The branch identification of cylinder-plate assembly with LSP/D = 0.75. The
notations used here have been described in Fig. 3.15. The assembly undergoes an unlimited
galloping response, with three synchronizations identified: namely, 1:2 at Ur = 11–11.5,
1:3 at Ur = 15–20 and 1:5 at Ur = 29–30. The onset of synchronization is signalled by a
“kink” in the amplitude response.
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response) that has not attained lock-in—more precisely, the oscillation frequency here is
“synchronized” to the Strouhal frequency, rather than the natural frequency. In view of
this, it is reasonable to treat this secondary oscillation as merely the initial stage of a VIV.

The dynamical features in the synchronization branch of the cylinder-plate assembly
with LSP/D = 0.75 are similar to those for LSP/D = 0.5. The vortex shedding in the
1:2, 1:3 and 1:5 synchronization branches involve vortices shed alternately from one side of
the assembly to the other—the pattern of this shedding has been identified as “2×(2S)”,
“3×(2S)” and “5×(2S)”, respectively. However, the wake pattern associated with 1:2
synchronization branch is asymmetric—this pattern is associated with the presence of an
elongated and bent vortex.

Group III: LSP/D = 1–1.5

The third group involves cylinder-plate assemblies with LSP/D = 1, 1.25 and 1.5. The
most striking feature of this group is that the assemblies experience first a VIV lock-in
regime (albeit with a very small amplitude over a narrow range of Ur) before the galloping
onset, then an unlimited galloping regime (with vibration amplitude always increasing
with Ur without apparent self-limiting mechanism). The cylinder-plate assembly with
LSP/D = 1.5 will be used as an exemplar for the analysis of the branching characteristics
and synchronization properties for assemblies in this group.

As shown in Fig. 3.19 (a), the amplitude in the galloping regime increases smoothly
and monotonically with Ur, except for the existence of several “kinks” in the amplitude
curve (where the slope is discontinuous). The branch identification here suggests that
the even- and odd-multiple synchronizations appear successively with increasing Ur with
frequency ratios of 1:2, 1:3, 1:4, 1:5, 1:6, 1:7, and so forth. Moreover, the reduced velocity
ranges associated with the even-multiple synchronizations are generally narrower than
those associated with the odd-multiple synchronizations. Finally, we note that a “kink”
in the amplitude response always signals the onset of a synchronization branch in the
galloping regime.

In contrast to the case for LSP/D = 0.75, a distinct lock-in regime is present before the
galloping for the cases of LSP/D = 1, 1.25, and 1.5. Although the amplitude response here
is only a small bump with a magnitude less than about 0.06D, the response nevertheless
embodies the major characteristics of VIV such as lock-in (f ∗

Y ≈ fn) as well as a sudden
phase shift between Y and CL when out of lock-in (see panel (b) in Fig. 3.19). It is
remarkable that in this lock-in branch, the oscillation frequency is not strictly locked on
the natural frequency—rather, on a value that is slightly smaller (more precisely, 0.9fn).
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Figure 3.19: The branch identification of cylinder-plate assembly with LSP/D = 1.5.
The notations used here have been described in Fig. 3.15. Four synchronizations have
been identified: namely, one lock-in branch (1:1 at Ur = 5.25–6.5) and three galloping
synchronizations (beginning with a “kink”)—1:3 at Ur = 11.5–16.5, 1:4 at Ur = 18, and
1:5 at Ur = 22–25. The lift components CLc and CLp are out-of-phase at Ur = 6.5–8.
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This is a so-called “soft lock-in” in the terminology of Darbhamulla and Bhardwaj [34].
For simplicity, hereinafter, we will still use “lock-in” to refer to this case.

The wake modes in the 1:1, 1:3, 1:4 and 1:5 synchronization branches are “2S”, “3×(2S)”,
“4×(2S)” and “5×(2S)”, respectively. These wake modes are associated with regular
elliptically-shaped vortices shed alternately from one side to the other of the assembly.

Group IV: LSP/D = 1.75–2

The fourth group is for LSP/D=1.75 and 2, in which the transverse force responsible
for VIV at small reduced velocity increases dramatically, which leads to an earlier onset
of VIV at around Ur = 3–4 and a wider lock-in range. A comprehensive analysis of the
branching behavior and the wake modes in the synchronizations for this group of assemblies
is provided for the cylinder-plate assembly with LSP/D = 2.

As shown in Fig. 3.20, five synchronizations are identified for assembly with LSP/D = 2,
namely, 1:1 at Ur = 3.5–7, 1:3 at Ur = 12–18, 1:5 at Ur = 19–20, 1:6 at Ur = 24, and 1:7
at Ur = 27–29.

Figure 3.21 further exhibits the temporal evolution of the instantaneous vorticity over
one oscillation cycle at time intervals of T/12 for the assembly with LSP/D = 2. It is
evident that the wake mode and vortex shape in the lock-in regime are different from
those in the galloping synchronizations. The former is characterized by a “2S” mode and
elliptical vortices. While the latter exhibits “n×(2S)” wake mode where n is determined
by the frequency ratio f ∗

CL
/f ∗

Y , namely, n = 3, 5, 6, and 7 at Ur = 17, 19, 24, and 28,
respectively. Furthermore, it is seen that the shear layers around the oscillating assembly
are significantly extended in the streamwise direction and the vortices shed downstream
of the obstacle have markedly irregular shapes—this is particularly evident at Ur = 17
where the crescent-shaped vortices SIII and -SI and vortices SII and -SIII in the shape of
a quasi-parallelogram (due to the drag with the front and back vortices) are clearly seen.
All the wake modes in Fig. 3.21 are anti-symmetric.

Some new dynamical features emerge for the cylinder-plate assemblies in Group IV.
Firstly, the VIV onset occurs at a smaller value of Ur ≈ 3.5 and the lock-in range is widened
to Ur ≈ 3.5–7—the vibration amplitudes in this range increase to about 0.2D. These
features are related to the sudden increase of the transverse force CL on the assemblies up to
2.0 (significantly larger than the value of 0.2 observed for previous cases) in the VIV regime.
Secondly, the range of Ur where the phase between CLc and CLp is significantly out-of-phase
becomes wider. Moreover, the quasi-steady regime associated with very small (practically
zero) oscillations in the amplitude response is narrower than the Ur range corresponding
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Figure 3.20: The branch identification of cylinder-plate assembly with LSP/D = 2. The
notations used here have been described in Fig. 3.15. Five synchronizations are identified:
namely, one lock-in (1:1 at Ur = 3.5–7) and four galloping synchronizations—1:3 at Ur =
12–18, 1:5 at Ur = 19–20, 1:6 at Ur = 24, and 1:7 at Ur = 27–29. Only 1:5 and 1:7
synchronizations are signalled by a “kink” in the amplitude response. The lift components
CLc and CLp are out-of-phase at Ur = 7–10.
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Figure 3.21: Instantaneous vorticity fields in one oscillation cycle T of a freely-vibrating
cylinder-plate assembly with LSP/D = 2 at five reduced velocities for five synchronizations:
(a) Ur = 4 for 1:1; (b) Ur = 17 for 1:3; (c) Ur = 19 for 1:5; (d) Ur = 24 for 1:6; and, (e)
Ur = 28 for 1:7. The corresponding wake modes are “2S”, “3×(2S)”, “5×(2S)”, “6×(2S)”
and “7×(2S)”, respectively.
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to the region where the phase ϕ between CLc and CLp is significantly out-of-phase for the
Group IV assemblies. This is different from the Group III where the width of the quasi-
steady regime is equal to the width in the Ur range where ϕ is significantly different than
zero (out-of-phase condition). Thirdly, a 1:3 synchronization that occurs immediately after
the galloping onset and the unsynchronized regime where the characteristic frequency for
the transverse displacement and transverse force are equal (present in the Groups II and
III) is absent in the Group IV. Finally, the number of “kinks” in the amplitude response
is decreased for the Group IV because these “kinks” do not necessarily signal the onset of
each synchronization in the galloping regime, which is not the case for the Groups II and
III. The reasons for this will be explored in Section 3.4.3.

Group V: LSP/D = 2.5–4

The last group (Group V) concerns cylinder-plate assemblies with LSP/D = 2.5–4. In this
group, two new branches in the amplitude response emerge that have not been seen (or
reported) previously—namely, the still (quiescent) branch and the initial galloping branch.
The former emerges at either very small reduced velocity before the VIV onset or at larger
Ur in the region corresponding to VIV lock-out but before the galloping onset, during
which both the structure and flow are perfectly “still” (quiescent)—a term that we use to
describe the situation where the cylinder-plate assembly is not moving (so, Y = 0) and
the flow field does not exhibit any wake dynamics (e.g., vortex shedding). In contrast, the
flow dynamics in the initial galloping branch is enhanced immediately after the onset of
galloping—here the structure oscillation is associated with a new fluid phenomenon known
as wake meandering.

Figure 3.22 shows that the cylinder-plate assembly with LSP/D = 2.5 has various syn-
chronizations, including a VIV branch, an initial galloping branch and three odd-multiple
synchronizations. In comparison, the assemblies with longer plate lengths only have an ini-
tial galloping branch (LSP/D = 3–3.5) or a VIV branch (LSP/D = 4) at least for Ur ≤ 30.
Owing to its rich response characteristics, the case of LSP/D = 2.5 is taken as the example
for the analysis of assemblies in Group V.

Figure 3.23 displays the temporal variations of flow field associated with the cylinder-
plate assembly with LSP/D = 2.5 at four representative values of the reduced velocity:
namely, at Ur = 4, 19, 23 and 25 selected from the VIV branch and three galloping
synchronizations (1:3, 1:5 and 1:7). The vorticity fields display obvious differences in
the dynamics of the assembly with LSP/D = 2.5 compared to those with shorter plate
lengths. For example, for the 1:3 and 1:5 synchronizations, the closely-connected vortices
downstream of the assembly have a more elongated shape in the streamwise direction and
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Figure 3.22: The branch identification of cylinder-plate assembly with LSP/D = 2.5. The
notations used here have been described in Fig. 3.15. An initial galloping branch (pink
vertical strip) is identified at Ur = 12–15. A still branch (gray vertical strip) is identified
at Ur = 2–3.5 and 10–12. Four synchronizations are identified: namely, one lock-in (1:1)
at Ur = 3.5–7.5 and three galloping synchronizations—1:3 at Ur = 15–23, 1:5 at Ur = 23–
24, and 1:7 at Ur = 24–25. Only the 1:5 synchronization is signalled by a “kink” in the
amplitude response. The lift components CLc and CLp are out-of-phase at Ur = 7.5–10.
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Figure 3.23: Instantaneous vorticity fields in one oscillation cycle T of cylinder-plate as-
sembly with LSP/D = 2.5 at four reduced velocities for four synchronizations: (a) Ur = 4
for 1:1; (b) Ur = 19 for 1:3; (c) Ur = 23 for 1:5; and, (d) Ur = 25 for 1:7. The wake modes
for the first two cases are “2S” and “2×(P+S)”, respectively. There is no identifiable wake
pattern for the third case. For the fourth case, the associated wake pattern is “7×(2S)”.
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these vortices are shed in the far-wake region. Moreover, there are six and ten vortices
shed in total at Ur = 19 and Ur = 23, respectively, although sometimes this fact is not easy
to discern owing to the large number of oscillating shear layers that are detached from the
structure in an unbroken succession. With this caveat, a careful perusal of Fig. 3.23 yields
the following identification of the vortex shedding modes. The wake mode at Ur = 19 is
“2×(P+S)”, rather than “3×(2S)”, with (-SI , SI) being one pair (P) of vortices that are
shed together followed by a single (S) vortex -SII , whereas (-SIII , SII) and SIII are shed
as the second (P+S) pair. For Ur = 23 in Fig. 3.23 (c), the wake mode appears to be
rather complicated with no clear-cut pattern. More specifically, it is suggested here that
two continuous vortices -SI and -SII appear to lead to a triplet (T) vortex shedding with
SI , and a similar pattern applies to (-SIV , SII , SIII). The other smaller vortices (e.g.,
-SIII and SIV ) have no clear-cut (unambiguously identifiable) vortex shedding pattern. At
Ur = 25 in Fig. 3.23 (d), the wake pattern is easily identifiable again as a “7×(2S)” mode.

Précis

Table 3.5 summarizes the key takeaways of this section in terms of the various synchro-
nizations and their corresponding reduced velocity ranges for cylinder-plate assembly with
LSP/D = 0 to 4 at 2 ≤ Ur ≤ 30.

3.4.2 Mechanism Analysis

Although the effect of the splitter-plate length on the branching behavior of the cylinder-
plate assembly, as well as on the dynamic characteristics in the synchronization branches
of the amplitude response, have been analyzed in detail in Section 3.4.1, a number of
aspects related to the physical mechanisms responsible for these characteristics have not
been resolved. These unresolved issues are the focus of this section.

Group I: LSP/D = 0-0.5

A careful perusal of the branching behavior for the cylinder-plate assemblies in Group I
(LSP/D = 0–0.5) raises a number of questions. To address these questions, we analyze the
flow field in greater detail.

Firstly, why is the VIV regime of a circular cylinder significantly widened when we
attach even a short splitter-plate of length LSP/D = 0.25 to the cylinder? To answer this
question, Fig. 3.24 zooms in on the vorticity field in the immediate region around the
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Figure 3.24: Instantaneous interaction between the shear layers and the vortex behind
moving body: (a) circular cylinder at Ur = 5 and 8; (b) assembly with LSP/D = 0.25
at Ur = 5, 8, 11; and, (c) assembly with LSP/D = 0.5 at Ur = 11, 19.5. Snapshots are
obtained at oscillation maxima (t = 0 and T/8) and minima (t = 4T/8 and 5T/8).
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Figure 3.25: Vortex shedding mode in the range of reduced velocities that are close to
the transition from VIV to galloping for cylinder-plate assembly with LSP/D = 0.5. An
oscillation cycle is divided into the (a) first and (b) second halves of the cycle. At Ur = 10,
VIV response corresponds to a “2S” wake mode. At Ur = 10.5, three vortices are shed in
total, whereas at Ur = 11, a galloping response is triggered with “2×(2S)” wake mode.
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Table 3.5: Summary of branching (synchronization) behaviors for cylinder-plate assemblies
for LSP/D = 0–4.

LSP/D 1:1 1:2 1:3 1:4 1:5 1:6 1:7 SB1 IGB2

bare 4.5–8.5 / / / / / / / /
0.25 5–10.5 / / / / / / / /
0.50 5.5–10 11–11.5 19–19.5 / / / / / /
0.75 / 11–11.5 15–20 / 29–30 / / / /
1.00 5.75–6.5 10–10.5 14–19 ∼21 26–28 / / / /
1.25 5.25–6.5 / 12.5–18 19–20 23–26 / / / /
1.50 5.25–6.5 / 11.5–16.5 ∼18 22–25 / / / /
1.75 3.5–6.5 / 11–14 ∼17 20–22 / 29–30 / /
2.00 3.5–7 / 12–18 / 19–20 ∼24 27–29 / /

2.50 3.5–7.5 / 15–23 / 23–24 / 24–25
2–3.5,
10–12

12–15

3.00 4–9 / / / / / /
2–4,
9–13

13–30

3.50 3.5–8.5 / / / / / /
2–3.5,
8.5–18

18–30

4.00 4–8.5 / / / / / /
2–4,
8.5–30

/

1. SB represents the still branch.
2. IGB represents the initial galloping branch.

free-vibrating bare circular cylinder and the cylinder-plate assembly with the objective of
understanding how the flow is modified by the presence of the splitter-plate and on how
the shear layer evolves as a function of the reduced velocity. The exhibited results are
for those time instants close to the oscillation maxima and minima (viz., t = 0 and T/8
around +Ymax, t = 4T/8 and 5T/8 around −Ymax). A perusal of Fig. 3.24 (a) shows that
the vortex behind the bare circular cylinder at Ur = 5 has completely merged with the
shear layer of the same sign (viz., positive vortex (red) around +Ymax and negative vortex
(blue) around −Ymax). However, at Ur = 8, the system oscillations are small—in this case,
the slender shear layers generated by the high velocity have little or no contact with the
vortices shed by the cylinder. In contrast, for the assembly with LSP/D = 0.25 shown
in Fig. 3.24 (b), it is seen that at Ur = 8, a vortex is formed at the tip of splitter plate
and interacts strongly with the shear layers—this interaction sustains the oscillation of
the assembly at Ur value at which the bare cylinder is nearly stationary. As Ur increases
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further to 11, the shear layers become so elongated that the 0.25D splitter plate cannot
interact with them any longer and the size of the tip vortex becomes much smaller, yielding
a small-amplitude oscillation and a transition out of lock-in. Therefore, the attachment of
a splitter plate of length 0.25D to the cylinder ensures a stronger interaction between the
tip vortex and the shear layers at larger values of Ur, and for this reason the VIV regime is
extended significantly to the range Ur = 4.5–12. Similarly, the reduced velocity range for
the body oscillation is extended to Ur = 5–20 for the assembly with LSP/D = 0.5 (albeit
the oscillation amplitude is still limited) as shown in Fig. 3.24 (c).

Secondly, why does a galloping regime emerge when we attach a splitter-plate of length
LSP/D = 0.5 and why does the observed galloping here occur only over a limited reduced
velocity range? In view of the fact that a large vortex-shedding frequency is a characteristic
feature of the galloping regime, Fig. 3.25 displays the vortex mode over one oscillation cycle
for three values of Ur (viz., Ur = 10, 10.5 and 11). These values of Ur are close to the
transition from VIV to galloping. For Ur = 10, the VIV regime is associated with a “2S”
mode—however, the vortices shed here are more slender in shape compared to the more
elliptically-shaped vortices shed from this assembly at lower Ur = 6 (cf. Fig. 3.17 (a)).
Furthermore, for Ur = 10.5, the one large vortex system generated near the body splits
into two smaller vortices as it evolves downstream. Consequently, three vortices are shed
in total during one oscillation cycle. Finally, for Ur = 11, the wake mode is “2×(2S)”,
which is associated with galloping.

Thirdly, why does the number of vortices shed during one oscillation cycle increase with
Ur? To address this question, let us focus on the first half of the cycle shown in Fig. 3.25
(a). A counter-clockwise slender vortex SI is shed in the wake at Ur = 10—this shape of
vortex is more likely to break up into multiple smaller vortices compared to an elliptically-
shaped vortex. At Ur = 10.5, this vortex (which has a distinct bent shape) is composed
of two parts—namely, a horizontal and vertical part evident at t = 0 to 2T/8 and these
two parts break apart into two smaller vortices (SI and SII) at t = 3T/8. At Ur = 11, the
highly-bent (deformed) shape of the upper shear layer breaks apart into the two vortices
SI and SII—as a result, these vortices are more separated than those at Ur = 10.5. The
second half of the oscillation cycle is exhibited in Fig. 3.25 (b)—the corresponding vortical
structures are the mirror reflection (about a horizontal axis) of those in Fig. 3.25 (a).
Given this, it appears that a higher inflow velocity tends to accelerate the growth of shear
layers in the streamwise direction which facilitates the “piling” up of the vorticity at the
downstream terminus of the shear layers (delineated by the black circles in Fig. 3.25). This
“piling up” of the vorticity causes the shear layers to bend. When two bent shear layers
interact and develop downstream, vortices are generated and shed from the layers more
readily.
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Groups II and III: LSP/D = 0.75-1.5

Although the cylinder-plate assembly with LSP/D = 0.75 (Group II) undergoes only an
initial VIV (without lock-in) at a small Ur, it nevertheless undergoes unlimited galloping
at higher Ur and, as a result, has similar branching behavior as those with LSP/D = 1–
1.5 (Group III). Here, we provide an in-depth discussion concerning several fundamental
aspects of the dynamics observed in Groups II and III.

One intriguing aspect of the dynamics of assemblies in Groups II and III is the following
puzzle: why is the VIV occurring at low Ur suppressed before the eventual onset of gallop-
ing, rather than there being a smooth transition from VIV to galloping as for the assembly
with LSP/D = 0.5? From a more careful analysis of the dynamics of assemblies belonging
to Groups II and III, it is suggested that this behavior is the result of a rapid increase in
the phase difference ϕ between the two transverse force components acting on the cylinder
(CLc) and on the splitter plate (CLp). From a careful examination of the solid lines marked
by diamonds in Fig. 3.19 (c), it is seen that ϕ increases rapidly once VIV occurs—which,
in turn, results in a decreasing total transverse force on the vibrating assembly, thus sup-
pressing the occurrence of strong VIV. More precisely, when ϕ ≈ 180◦ (out-of-phase), the
total force acting on the assembly is near zero. As a consequence, VIV is almost completely
suppressed—indeed, the assembly exhibits only very small oscillations (with an amplitude
of only about 0.02D). This phase reversal from 0◦ (in-phase) to 180◦ (out-of-phase) occurs
over a small range of Ur (delineated using the two vertical red lines in Fig. 3.19 (a)). At the
end of this Ur range, ϕ sharply decreases back to 0◦ with increasing Ur, at which point the
galloping occurs. At this point, the total transverse force acting on the assembly increases
rapidly, provoking galloping. Within the galloping regime, ϕ increases slowly with Ur, but
never exceeds 90◦.

Another question is why does the galloping onset become larger when attaching longer
splitter-plate? The quasi-steady regime in the amplitude response that occurs after the
suppression of VIV and before the galloping onset is of ϕ ≈ 180◦ or of ϕ decreasing towards
0◦. It is worth noting that the quasi-steady region (e.g., Ur = 8–9.5 for LSP/D = 1.5 in
Fig. 3.19) correlates exactly with the region where CLc and CLp are increasingly out-of-
phase. Furthermore, the Ur range corresponding to the quasi-steady regime increases with
plate length—hence, the galloping onset is delayed to larger values of Ur with increasing
plate length following the cessation of VIV.
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Figure 3.26: Temporal evolution of instantaneous shear layers around a cylinder-plate
assembly over one oscillation cycle at a time interval of T/12: (a) LSP/D = 1.5 at Ur = 4;
(b) LSP/D = 1.5 at Ur = 5.5; (c) LSP/D = 2 at Ur = 4; and, (d) LSP/D = 2 at Ur = 5.5.
Both values of Ur correspond to the VIV branch. The positive and negative peaks in the
cycle occur at time t = 0 and t = 6T/12, respectively.
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Groups IV: LSP/D = 1.75-2

As mentioned in Section 3.4.1, the most striking feature of the cylinder-plate assembly in
Group IV is the presence of a strong transverse force which induces the secondary VIV
responses. To examine this phenomenon in greater detail, it is useful to study the formation
and evolution of the shear layers that are generated around the assembly. To this purpose,
Fig. 3.26 displays the comparison of the dynamical evolution of the shear layers formed
around a bare circular cylinder and two cylinder-plate assemblies (with LSP/D = 1.5
and 2) undergoing small VIV at low reduced velocity. More precisely, the assembly with
LSP/D = 1.5 is quasi-stationary at Ur = 4 and exhibits only a very small oscillation
amplitude of Ymax = 0.06D with a small lift coefficient of CL,rms = 0.2 at Ur = 5.5 (see
Fig. 3.19). In stark contrast, for the assembly with LSP/D = 2, the oscillation amplitude
Ymax = 0.15D is about three times as large and the lift coefficient of CL,rms = 2 is ten
times as large at Ur = 4 (see Fig. 3.20).

A perusal of Figs. 3.26 (a) and (c) shows that at Ur = 4, increasing the plate length
from 1.5D to 2D results in a stronger flow in the near wake involving the generation of a
tip vortex (at the free end of the plate)—this vortex merges with the shear layers and with
vortices shed from these shear layers owing to the fact that the longer plate is more likely
to interact with the to-and-fro motion of the shear layers that “lift off” (partial detach)
from the cylinder surface downstream of the obstacle. By contrast, the plate length of
LSP/D = 1.5 is too short to interact significantly with these shear layers, so the wake
field is almost steady. At an increased value of Ur = 5.5, both splitter plates only interact
weakly with the shear layers—a similar vorticity field is generated here but for a different
reason. A larger value of the incident flow facilitates the bending of the shear layers and
the vortices shed from these layers, so a shorter plate length LSP/D = 1.5 can interact
with these aspects of the flow to induce a small oscillation on the assembly (see Fig. 3.26
(b)). On the other hand, for an assembly with LSP/D = 2, the total transverse force
decreases rapidly after the VIV onset because of the increasing phase difference between
CLc and CLp (e.g., ϕ ≈ 90◦ at Ur = 5.5) which, in turn, results in smaller system oscillations
(cf. Fig. 3.26 (d)). The key takeaway of this analysis is that the inclusion of a splitter plate
with a length greater than or equal to 1.75D can induce strong interactions between the
plate tip vortex and the shear layers formed around the structure at the lower values of Ur.
This physical mechanism generates large transverse force on the cylinder-plate assembly
which is responsible for the stronger secondary oscillations with a wider VIV branch and
an earlier onset.

Finally, it is noted that the larger transverse force on the cylinder-plate assembly with
LSP/D ≥ 1.75 induces a relatively small VIV motion with an amplitude of only one-third
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(Ymax = 0.2D) that for the assemblies with LSP/D = 0–0.5 (Ymax = 0.6D). The reason
for this may stem from the fact that a cylinder with a much longer splitter-plate requires
a much larger driving force in order to sustain the oscillation.

Group V: LSP/D = 2.5-4

For assemblies in Group V, we focus on the emergence of the still branch and initial
galloping branch.

To begin, it is important to state the differences between the still branch and the
quasi-steady regime. These differences can be seen from an examination of the time series
of Y and CL and of the instantaneous vorticity field as shown in Fig. 3.27. With refer-
ence to Figs. 3.19 and 3.20, the reduced velocity ranges before VIV onset and after VIV
lock-out, but before the galloping onset, are referred to as the quasi-steady regime. As
shown in Fig. 3.27 (a), the amplitudes of Y (t) and CL(t) gradually increase with time and
reach (attain) a stable periodic motion (albeit with approximately—but not exactly—zero
transverse displacement and a transverse force of ≈ 10−4–10−2) after a certain interval of
time. Moreover, the meandering of the shear layers promotes vortex shedding, especially
at larger reduced velocity (e.g., Ur = 10). Here, the vortices are expected to be generated
and shed earlier, resulting in larger magnitudes of Y (t) and CL(t), compared to those at
lower reduced velocity (e.g., Ur = 3). By contrast, the still branch is associated with very
different time series variations and wake patterns. Indeed, a careful perusal of Fig. 3.27 (b)
shows that Y (t) and CL(t) consist of a rapidly varying impulse with a small amplitude at
the earlier times which subsequently decay to a near zero and constant value. Moreover,
the flow over the assembly is completely steady in the sense that there are no interactions
between the shear layers and the vortex shedding. Therefore, it should be stressed that
the quasi-steady regime and the still branch correspond to distinct branches in terms of
the physical mechanisms responsible for these two regimes and the manifestation of the
dynamical characteristics arising from these mechanisms. This is the case even though
plots of Ymax and CL,rms as a function of Ur are very similar.

A natural question follows from these considerations: why does the still branch appear
when the plate length increases from 2D to 2.5D at same reduced velocity? From a com-
parison of the near-wake regions in Figs. 3.27 (aiii)–(aiv) and (biii)–(biv), it is seen that
the shear layers on both sides of the stationary assembly have a fixed length of about 2.5D
(marked using vertical black lines in the figure), regardless of the plate length and the
reduced velocity. As a result, the two shear layers interact with one another for a given
incident flow if the plate length is shorter than 2.5D, while no longer interact once the
plate exceeds 2.5D and the vortex shedding occurs only in the far wake. In the latter
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Figure 3.27: Time series of the instantaneous displacement (black curve) and lift coefficient
(red curve) and the wake patterns within (a) quasi-steady regime for LSP/D = 2 and (b)
still branch for LSP/D = 2.5 at two reduced velocities: namely, Ur = 3 (parts (i) and (iii))
and Ur = 10 (parts (ii) and (iv)).
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Figure 3.28: Snapshots of the instantaneous vorticity fields in one oscillation period T for
the initial galloping branch: (a) LSP/D = 2.5 at Ur = 14; (b) LSP/D = 3 at Ur = 14; and,
(c) LSP/D = 3.5 at Ur = 30.

case, the upper and lower shear layers are completely isolated by a plate whose length is
equal to or greater than 2.5D—consequently, the flow remains parallel and straight as it
moves downstream (viz., the flow is purely steady in the sense that it appears not to evolve
downstream). Note that the still branch is present even for LSP/D ≥ 2.5.

Another interesting thing is that a quasi-steady regime exists between the VIV and still
branches for a plate length LSP/D = 2.5 at Ur = 7.5–10. However, for LSP/D = 3, the end
of VIV regime at Ur = 9, determined by the phase shift between Y and CL, is coincident
with the start (onset) of the still branch. Furthermore, for plate lengths LSP/D = 3.5–4,
the VIV branch overlaps the still branch—the system transitions to the still branch before
VIV lock-out. Indeed, for LSP/D = 2.5–4, the still branch between the VIV lock-out
and the onset of galloping widens with plate lengths. More precisely, for plate lengths
LSP/D = 2.5, 3, 3.5 and 4, the VIV regimes start at Ur = 10, 9, 8.5, and 8.5 and stops at
Ur = 12, 13, 18, and a value > 30, respectively. The upshot of this analysis is that a longer
splitter plate attached to a circular cylinder is prone to become stationary (so, no motion)
even for a reduced velocity as large as 30. This is because the longer plate fully separates
the upper and lower shear layers from each other and, as a result, it is more difficult for
these shear layers to interact with each other, except perhaps under a very large incident
flow velocity.

We examine in detail the initial galloping branch. From a perusal of the PSD of Y and
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Figure 3.29: Temporal evolution of the instantaneous shear layer around cylinder-plate
assembly over one oscillation cycle: (a) LSP/D = 2 at Ur = 30; (b) LSP/D = 2.5 at
Ur = 14; (c) LSP/D = 2.5 at Ur = 30; (d) LSP/D = 3 at Ur = 30; and, (e) LSP/D = 3.5
at Ur = 30.
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CL for assembly with LSP/D = 2.5, we see that in the initial galloping branch, CL has a
simpler power spectrum (consisting only of the fundamental frequency) compared to that
of Y (consisting of the fundamental frequency and a third harmonic). For LSP/D = 3.5,
the spectra of Y and CL consist of only one oscillation frequency. This is an interesting dy-
namic characteristic of a cylinder-plate assembly that does not seem to have been reported
previously, which raises the following questions: is the oscillation observed in the initial
galloping regime induced by flow (viz., is the oscillation here is FIV)? If yes, what type
of response does this regime belong to—viz., VIV or galloping or some other mechanism?
Does vortex shedding from the body occur in this regime? To address these questions, it is
necessary to focus our attention on the instantaneous wake dynamics.

Figure 3.28 shows a number of snapshots of the instantaneous vorticity field over one
oscillation cycle for the initial galloping branch associated with assembly of LSP/D = 2.5–
3.5. A perusal of this figure shows that there is no vortex shedding as the system oscillates—
this fact explains the much simpler power spectrum of CL. Furthermore, the two sinuous
thread-like shear layers that form on the upper and lower surfaces of the cylinder have
the appearance of two meandering plumes—more precisely, the two shear layers meander
to-and-fro in concert with one another as they develop (“disperse”) in the streamwise
direction. Indeed, for a larger incident flow velocity associated with Ur = 30 (see Fig. 3.28
(c)), the two shear layer “plumes” are almost parallel to one another and they move to-
and-fro in the transverse direction in concert with one another and with the cylinder-plate
assembly—albeit, the meandering of the two shear layers are in the opposite (counter)
direction to that of the assembly.

From these considerations, the system oscillations in the initial galloping branch are
still related to the flow—however, it is not accompanied by the vortex shedding but, rather,
is associated with the meandering of shear layers. From this perspective, this phenomenon
should be interpreted as a special galloping regime that is distinct from the classical forms
of galloping where a rapid vortex shedding from a body (e.g., square cylinder) is expected
to occur. The special regime of galloping observed here for certain assembly signals the
onset of galloping for these cases which is why we refer to it as the initial galloping branch.

To ascertain the reason for the emergence of the initial galloping branch for cylinder-
plate assembly with longer plate length, Fig. 3.29 exhibits in detail the influence of plate
length and reduced velocity on the temporal evolution of the two shear layers. At Ur = 30,
the galloping associated with a rapid vortex shedding occurs for LSP/D = 2–2.5—this
is directly related to the interaction and merger of the plate tip vortex with one or the
other of the two shear layers (highlighted by the circled regions in Figs. 3.29 (a) and (c)).
In contrast, for longer plate lengths LSP/D = 3–3.5 at the same Ur, the plate can move
closer to one or the other of the shear layers (owing to its greater length) but the plate tip
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vortex does not interact or merge with them (see Figs. 3.29 (d) and (e)). Consequently,
the shear layers are less affected in this case, which, in turn, result in a “gentler” form of
wake dynamics (meandering rather than vortex shedding).

A longer splitter plate can effectively separate the upper and lower shear layers so there
can be no interaction between them. This occurs for LSP/D = 2.5 and, as a result, the
initial galloping branch is first observed for this case and becomes wider with increasing
plate lengths thereafter. The effect of reduced velocity can be seen by comparing Figs. 3.29
(b) and (c). For Ur = 14, an initial galloping branch associated with wake meandering
is observed, in contrast to that at Ur = 30 where galloping is associated with vortex
shedding. Consequently, increasing Ur can strengthen the mutual interaction between the
splitter plate and the shear layers formed on the cylinder—as a result, the flow dynamics
associated with galloping is transferred from wake meandering to vortex shedding. It is
expected that the assembly with LSP/D = 3–4 might display various branch patterns that
include synchronizations similar to those with shorter plates.

3.4.3 A Further Discussion

“Kinks” in the amplitude response

The presence of “kinks” in the amplitude response has been noted previously in the context
of the simpler galloping instability of a square cylinder [195, 194]. In these investigations,
the “kink” was also referred to as a “step” or a “plateau” representing the near constant
or slow growth of the amplitude with Ur. The vibration amplitude in classical galloping
increases linearly with Ur once a critical reduced velocity is exceeded [195]. However, the
presence of one or more “kinks” in the amplitude response “destroys” the linear growth of
Ymax with increasing Ur—the amplitude response can be partitioned by the “kinks” into
various sections. After a “kink”, Ymax increases linearly again but at a smaller rate (as
measured by the slope of amplitude curve) until the next “kink”. Therefore, a “kink” in
the amplitude response can be interpreted as a deceleration or buffering zone that limits
the rapid increase of the vibration amplitude in the galloping regime.

From the detailed analysis of the branching behavior of a cylinder-plate assembly with
various plate lengths conducted previously, the presence of a “kink” in the amplitude re-
sponse (if one exists) is often observed at the onset of a galloping synchronization. In order
to understand the connection between “kink” and synchronization, we compile the informa-
tion on those assemblies with “kinks” in their amplitude responses (viz., LSP/D = 0.5–2.5)
in Table 3.6, which includes the details of the characteristic frequencies in the spectra of
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Table 3.6: Frequency content of the displacement (Y ) and the transverse force coefficient
(CL) in the various galloping synchronization (GS) branches for cylinder-plate assemblies
with LSP/D = 0.5–2.5. The Arabic numbers in spectra column refer to the fundamental
frequency (1) as well as the order of harmonics present in the frequency spectra.

LSP/D No.(GS) Spectra (Y ) Spectra (CL) “kink”

0.5
1 1 1,2,3,4 ✓
2 1 1,3,5,7 ✓

0.75
1 1 1,2,3,4 ✓
2 1,3 1,3,5,7 ✓
3 1,3,5 1,3,5,7,9 ✓

1

1 1 1,2,3,4 ✓
2 1,3 1,3,5,7 ✓
3 1,3 1,2,3,4,5,6 ✓
4 1,3 1,3,5,7 ✓

1.25
1 1,3 1,3,5 ✓
2 1,3 1,2,3,4,5,6 ✓
3 1,3 1,3,5,7,9 ✓

1.5
1 1,3 1,3,5 ✓
2 1,3 1,3,4,5 ✓
3 1,3 1,3,5,7 ✓

1.75

1 1,3 1,3 ×
2 1,3 1,3,4 ×
3 1,3 1,3,5,7 ✓
4 1,3 1,3,5,7,9 ×

2

1 1,3 1,3 ×
2 1,3 1,3,5 ✓
3 1,3 1,3,5,6 ×
4 1,3 1,3,5,7,9 ✓

2.5
1 1,3 1,3 ×
2 1,3 1,3,5,7 ✓
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Y and CL associated with the galloping synchronizations and whether a “kink” signals the
onset of each of these branches. The results in Table 3.6 are compiled from information
obtained from the figures exhibiting the branching behavior and power spectral density
information presented earlier in this paper (viz., Figs. 3.15, 3.18, 3.19, 3.20 and 3.22) and
from similar figures provided in the supplementary material. A careful examination of Ta-
ble 3.6 suggests that if the CL-spectrum exhibits a more complex form with more harmonic
frequencies than that of Y , then a “kink” is present at the onset of synchronization in the
amplitude response. Alternatively, there is no “kink” if the spectra of CL and Y have the
same frequency content. This also explains why no “kink” appears before lock-in branch
where the spectra of CL and Y are identical. It should be noted that the absence of a
“kink” before the third synchronization for LSP/D = 2 is probably due to limited reso-
lution of the amplitude response here—a higher resolution of Ur might enable the “kink”
to be adequately resolved and identified. It can be concluded that the more complex and
irregular vortex shedding patterns as revealed in the transverse force spectrum (in the
synchronization branch) result in a moderation of the growth of the oscillation amplitude
in the galloping regime.

In summary, if a high-order harmonic emerges in the transverse force spectrum, a “kink”
will be present in the amplitude response, followed by an integral-multiple synchronization
between the system oscillation and the associated vortex shedding, during which Ymax

linearly increases with Ur (with a smaller growth rate) until the appearance of next (still)
higher-order harmonic in the CL-spectrum. The synchronizations in the galloping regime
emerge in same order as the emergence of the high-order harmonics in the CL-spectrum.
For longer plate lengths (LSP/D ≥ 2.5), the initial galloping branch associated with wake
meandering may appear before this sequence of synchronizations in the galloping regime.

Comparison of galloping for square cylinder and cylinder-plate assembly

In this section, we compare the classical galloping response of a square cylinder with that of
a cylinder-plate assembly based on the branching behaviors reported in the present study
and those from a representative experimental study conducted by Zhao et al. [195].

For a square cylinder undergoing galloping with a steadily increasing amplitude, Zhao
et al. [195] experimentally identified three odd-multiple synchronizations (1:1, 1:3, and 1:5).
These investigators explained the absence of even-multiple synchronizations for a square
cylinder as follows. They noted that the mean fluid force acting on the body during one
complete oscillation cycle is zero, which must be true necessarily if a clear-cut alternating
pattern of the vortex shedding is manifest (e.g., such as a “2S” mode that is representative
of the classical Kármán vortex). If so, this “2S” mode must be repeated an integral number
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of times in a half-oscillation cycle for the even-multiple synchronizations (viz., the wake
mode must necessarily be “(n/2)×(2S)” for a 1:n synchronization where n = 2, 4, 6, . . .
is even). This form of wake mode will generate a zero fluid force on the moving body
and, as a result, cannot have any continuous influence on the system oscillations. This is
the reason why even-multiple synchronizations cannot appear in the galloping of a square
cylinder.

In contrast, both even- and odd-multiple synchronizations are identified in the galloping
regime of a cylinder-plate assembly in this study, although the Ur range for the former is
always narrower than that for the latter. The presence of even-multiple synchronizations
in galloping of an assembly is due to the disruption of the alternating vortex shedding.
The detailed flow information presented in Sections 3.4.2 has shown that for an even-
multiple synchronization, the vortices are always not shed alternately from both sides of
the body—rather, the vortex shedding here may display more complicated patterns like
the “T+S” mode in the 1:2 synchronization for LSP/D = 0.5, so the mean transverse force
during a half-oscillation cycle is not zero. In consequence of the asymmetry in the vortex
shedding over each half-oscillation cycle, even-multiple synchronizations can be supported
in the galloping regime of a cylinder-plate assembly. In some cases, the even-multiple
synchronizations might be absent (e.g., the absence of 1:4 and 1:6 synchronizations for
LSP/D = 0.75 and 1.75). The upshot of this analysis is that the wake flow behind an
assembly undergoing galloping exhibits more complicated dynamics compared to that of a
square cylinder and, as a result, can support both even- and odd-multiple synchronizations
unlike that of a square cylinder.

3.5 Nonlinear Characteristics Analysis

The objective of this section is to elucidate the nonlinear dynamical characteristics of the
FIV of cylinder-plate assembly, in terms of the beating phenomenon, the limit-cycles and
the vortex-shedding modes.

A comprehensive overview of FIV dynamics of a cylinder-plate assembly is displayed
in Fig. 3.30. This figure exhibits the branching behavior of the cylinder-plate assembly in
the (LSP/D,Ur) plane. In this diagram, the lock-in branch (region shaded in green) occurs
for a wide swath of plate lengths from LSP/D = 0–4 at small reduced velocity Ur = 4–
12. In contrast, the galloping regime (region enclosed by the purple solid line) is present
only for splitter-plates of greater lengths at larger reduced velocity. A strong interaction
between VIV and galloping occurs for LSP/D = 0.5–0.75, but this interaction is reduced
significantly with increasing plate length.
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Figure 3.30: The identification and characterization of the branching behavior of a cylinder-
plate assembly in the (LSP/D,Ur) plane. The assembly is undergoing a flow-induced
vibration in a low-Reynolds number of Re = 100 with a mass ratio of m∗ = 10 and a
zero structural damping (ζ = 0). The galloping regime is enclosed within the solid purple
line. The synchronization branches are shaded in green (VIV regime), blue (odd-multiple
synchronization in the galloping regime), and dark purple (even-multiple synchronization
in the galloping regime). The initial galloping and the still (quiescent) branches are shaded
in light purple and grey, respectively. The square symbols in the plane delineate various
types of beating phenomena of the lift coefficient—Type 1 (red squares), Type 2 (green
squares), Type 3 (yellow squares), Type 4 (blue squares) and Type 5 (unfilled squares).
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The regions in the (LSP/D,Ur) plane associated with various synchronizations in the
galloping regime with various frequency ratios f ∗

Y /f
∗
CL

are indicated by different colors.
Here, f ∗

Y and f ∗
CL

are the fundamental frequencies associated with the transverse displace-
ment Y (t) and the transverse force coefficient CL(t), respectively—the integral modes of
synchronization are characterized by f ∗

Y /f
∗
CL

= 1:n where n = 2, 3, 4, 5, 6, and 7. The
even-multiple synchronizations (region shaded in dark purple) occur over a more restricted
region of the (LSP/D,Ur) plane than the odd-multiple synchronizations (region shaded in
blue), especially the 1:6 synchronization. Moreover, the initial galloping branch (region
in light purple) associated with wake meandering occurs immediately after the onset of
galloping for the longer splitter-plates with LSP/D ≥ 2.5.

In addition to the colored regions, the remainder of the (LSP/D,Ur) plane (white re-
gion within purple solid line) represents the non-synchronization of the system oscillations
and vortex shedding. Typically, non-synchronizations display very complicated and irreg-
ular dynamical characteristics. The various square symbols scattered across the various
branches correspond to the occurrence of beating in the time series of the transverse dis-
placement and lift coefficient which will be explained in greater detail later in Section 3.5.1.
In addition to the VIV and galloping regimes, the dynamics of the cylinder-plate assem-
bly can exhibit a quasi-still status (associated with very small structural oscillations and
weak wake dynamics) for the case of shorter splitter-plate or a so-called still (quiescent)
branch (associated with no structural motion and wake dynamics) for the case of a longer
splitter-plate (region shaded in grey).

3.5.1 Beating Phenomenon

Beating in the VIV regime

For a cylinder-plate assembly undergoing FIV, the temporal variations of the transverse
displacement and the transverse force coefficient are generally periodic (viz., the time
series repeat its values at regular intervals with a single amplitude and a single frequency).
However, in some cases, the lift coefficient CL can exhibit prominent aperiodicity with
a time-varying amplitude—resulting in beating (amplitude modulation). Moreover, the
transverse displacement Y can also exhibit quasi-periodic oscillations, but the nature of
these oscillations can be subtle. This section characterizes the properties of beating in
the time variations of CL. The square symbols in Fig. 3.30 mark the locations in the
(LSP/D,Ur) plane corresponding to the different types of beating in CL(t). A careful
examination of this figure shows that the beating of CL(t) occurs with higher probability
for cylinder-plate assemblies with short and moderate splitter-plate lengths (LSP/D < 2),

95



at values of the reduced velocity close to either the boundaries of VIV regime or in the
non-synchronization branch of the galloping regime.

The beating in the time series of CL has different characteristics depending on the
splitter-plate length and the reduced velocity. To examine these dynamics in greater detail,
Fig. 3.31 displays the time series of transverse displacement Y (t) (grey lines) and lift
coefficient CL(t) (black lines) and the local frequency associated with lift coefficient fCL

(red lines) for selected combinations of LSP/D and Ur. Following the lead of Zhao and
Zhao [194], the local frequency is defined as the reciprocal of the local period, which refers
to the duration between two consecutive zero-crossing points (from negative to positive)
in the time series of a signal. Using the local frequency associated with the transverse
displacement fY , Zhao and Zhao [194] identified two types of beating associated with the
FIV of a rectangular cylinder with rounded corners: namely, Type A where fY varies
around the structural natural frequency fn for a square cylinder and Type-B where fY
varies between the Strouhal frequency fSt and fn for a circular cylinder. By contrast, the
beating of CL(t), corresponding to the FIV of a cylinder-plate assembly, exhibits much
more complex characteristics. Consequently, we identify five distinctive types of beating
in the temporal variations of fCL

in the present work.

Figure 3.31 (a) shows a Type 1 beating for which fSt is less than fn and the local
frequency fCL

fluctuates between these two frequency (lower and upper) limits. For the
first two cases, the temporal variations of fCL

are significant—fluctuating strongly between
the lower and upper limits. In contrast, the beating in CL(t) for the third case is very
weak—fCL

(t) exhibits very small fluctuations near the lower frequency limit of fSt. These
results in conjunction with those exhibited in Fig. 3.30 suggest that a Type 1 beating
occurs either near the onset of VIV for a bare circular cylinder (e.g., Ur = 4.5 is within the
initial branch of VIV for a bare circular cylinder) or near the onset of pure galloping for
a cylinder-plate assembly (e.g., Ur = 6.5 corresponds to the onset of pure galloping for a
cylinder-plate assembly with LSP/D = 0.75). The third case in Fig. 3.31 (a) corresponding
to LSP/D = 1.75 at Ur = 5 is a special case where beating in CL(t) occurs in the middle
of VIV regime. In accordance to the analysis conducted in Sections 3.3–3.4, the transverse
displacement of the assembly with LSP/D = 1.75 exhibited a sudden decrease to near
zero at Ur = 5 during VIV and then increased again before the transition to lock-out—this
behavior was different from the other assemblies where a more gradual and smooth decrease
of the transverse displacement in the VIV was observed as lock-out was approached. A
perusal of the third panel in Fig. 3.31 (a) provides a possible reason—in this case, the
local frequency fCL

(t) is nearly constant and equal to the vortex-shedding frequency of
the stationary cylinder-plate assembly (viz., fSt) with the consequence that a structure
subjected to such a transverse force will correspondingly exhibit a near stationary behavior
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Figure 3.31: Time series of Y (grey) and CL (black) for various combinations of LSP/D
and Ur. These time series are superimposed on the time variations of the local frequency
of lift coefficient fCL

(red), the structural natural frequency fn (blue) and the Strouhal
frequency fSt (green). Five distinctive types of beating are classified: (a)–(e) Type 1–5.
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(with little or no transverse displacement).

Figure 3.31 (b) shows a Type 2 beating where fn is less than fSt (opposite of Type 1
beating). In a Type 2 beating, the local frequency fCL

(t) fluctuates around either fn or
fSt with reference to the weaker or stronger oscillations of lift coefficient, respectively. A
Type 3 beating exhibited in Fig. 3.31 (c) is very similar to a Type 2 beating—the only
difference is fCL

is invariably larger than fn (in contrast to a Type 2 beating where fCL
can

be approximately equal to fn in certain cases) and fluctuates only around fSt. A careful
examination of Fig. 3.30 indicates that Type 2 and Type 3 beatings are present near the
boundaries either of VIV for a bare circular cylinder or of galloping for a cylinder-plate
assembly undergoing self-limited oscillation (e.g., LSP/D = 0.25 and 0.5). Furthermore,
the value of fCL

can approach the value of fSt a certain times which, in turn, implies a state
corresponding to the suppression of the system vibration. A Type 3 beating corresponds
typically to the circumstance where fCL

is not locked on to fn and is either larger or smaller
than fSt.

Figure 3.31 (d) displays a Type 4 beating which is characterized by a periodic variation
of fCL

around a value that is slightly larger than fSt. It is well known that the vortex-
shedding frequency is generally larger than the vibration frequency in the galloping regime.
Consequently, a larger value of fCL

implies a more rapid vortex shedding from the structure
which, in turn, makes the dynamical system more prone to galloping. For this reason, a
Type 4 beating occurs at the onset of galloping for cylinder-plate assemblies with longer
splitter-plates (e.g., LSP/D = 1–2). From Section 3.4, it is known that splitter-plates with
lengths LSP/D ≥ 2.5 induces an initial galloping branch associated with wake meandering
once a critical value of the reduced velocity is exceeded. A natural question is why does
the onset of galloping for a cylinder-plate assembly with LSP/D = 0.75 trigger a Type 1
beating rather than a Type 4 beating as is the case for assemblies with LSP/D = 1–2?
This arises from the inherent differences in geometry. For assembly with LSP/D = 0.75,
fn is larger than fSt, while the opposite is true for assemblies with LSP/D = 1–2.

Figure 3.31 (e) displays a Type 5 beating—here, fCL
is invariably smaller in value

than both fn and fSt. Furthermore, fCL
approach fn with increasing Ur for each plate

length. Both the amplitude and the local frequency associated with a Type 5 beating
are characterized by small fluctuations—these occur in the unsynchronized branch of the
galloping regime for cylinder-plate assemblies with LSP/D ≥ 0.5.

The taxonomy of different types of beating identified for a cylinder-plate assembly can
be compared to those of a rectangular cylinder with rounded corners [194]. We note that
Zhao and Zhao [194] conducted an analysis of the beating characteristics associated with
the transverse displacement Y of a rectangular cylinder in the low reduced-velocity range

98



Figure 3.32: The periodic beating behavior in the amplitude envelope of time history of
a signal. The beating intensity is defined as the difference between largest peak value
(high-peak) and lowest peak value (low-peak) over one beating period.

only and identified two types of beating in this range. The reduced-velocity range here is
associated with the VIV regime—naturally, a rectangular cylinder with rounded corners
can also exhibit galloping at larger values of the reduced velocity. In marked contrast,
the present work focuses on the beating characteristics of the lift coefficient CL for both
the VIV and galloping regimes, and identifies five types of beating for the cylinder-plate
assembly using the same classification schema—based on the local frequency—as used by
Zhao and Zhao [194]. It is stressed that a cylinder-plate assembly exhibits a more complex
and subtle amplitude modulation than that of a rectangular cylinder with rounded corners,
exhibiting a broader and richer spectrum of nonlinear beating characteristics. The differ-
ences in the flow and structural dynamics associated with a cylinder-plate assembly and
a rectangular cylinder—two significantly different geometrical structures—are responsible
for the important differences in the types of beating supported by these two structures.

Beating in the galloping regime

The local frequency was used to classify the different types of beating for a cylinder-plate
assembly at the smaller values of the reduced velocity Ur corresponding to the VIV regime.
In addition to the local frequency, the beating phenomenon can be characterized using a
number of global properties. One attribute is the symmetry of amplitude modulation
over one beating period [194]. Most of the examples displayed in Fig. 3.31 involve time
series whose amplitude modulations are symmetric (or, quasi-symmetric). However, some
examples such as those corresponding to the second and third panels of Fig. 3.31 (c)
exhibit randomly-changing amplitudes with no clear-cut increasing or decreasing trends—
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the time series of CL assumes the shape of a comb or pitchfork tines. Periodicity is another
important attribute that can be used to characterize the beating. Most of the examples
of symmetric beating displayed in Fig. 3.31 are also periodic, whereas the more random
beatings associated with comb-shaped patterns in the CL(t) have more complex variations
that do not exhibit any clear-cut repetitions in the amplitude modulation over one beating
period. A schematic depicting a periodic beating is given in Fig. 3.32.

In addition to beating that occurs in the VIV regime, it should be stressed that the
beating phenomenon also occurs at the larger values of Ur corresponding to the galloping
regime—open squares in Fig. 3.30 are examples of this. From the perspective of local
attributes, the beating in the galloping regime is similar to that exhibited in Fig. 3.30 (e)
with reference to a Type 5 beating. In light of this, we proceed to analyze beating from a
global perspective.

Figure 3.33 shows some selected examples of beating in the galloping regime (marked by
the squares with crosses in Fig. 3.30), with respect to LSP/D and Ur. These beatings are
characterized in terms of the time series of lift coefficient (black curves) and the amplitude
envelope of time series (red curves) which encapsulates the changes in the amplitude of
CL over time. As shown, the plate length and reduced velocity affect the characteristics
of beating primarily by two geometrical properties: namely, symmetry and periodicity.
For example, the beatings displayed in Fig. 3.33 are periodic, except for the case shown in
Fig. 3.33 (b) where the amplitude modulation increases and decreases rapidly resulting in a
comb-like (pitchfork-tines-like) amplitude envelope. Moreover, most of beatings in Fig. 3.33
are associated with symmetric or quasi-symmetric amplitude modulations, except for the
case displayed in Fig. 3.33 (f)—the pattern of beating here is asymmetric with an amplitude
modulation consisting of a slow rate of increase followed by a rapid rate of decrease in the
amplitude resulting in a skewed triangular-shaped envelope over one beating period. The
periodic and symmetric beatings shown in Fig. 3.33 are characterized by different beating
periods and intensities (viz., the difference in value between the high peak (maximum)
and the low peak (minimum) in the amplitude envelope during one beating period—see
Fig. 3.32). Furthermore, it is noted that as the splitter-plate length increases, the beating
intensity decreases and tends to zero for a splitter-plate of sufficient length (see Figs. 3.33
(h)–(n)). Finally, a careful perusal of Fig. 3.33 suggests that there is no obvious (simple)
relationship between the beating in the galloping regime and the reduced velocity.

Energy transfer during beating

The FIV of a bluff body involves a bidirectional fluid-structure interaction—the vibrations
are initialized and sustained by the energy extracted from the fluid flow by the elastically-
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Figure 3.33: Time series of the transverse force coefficient CL (black curves) and the cor-
responding amplitude envelopes (red curves) for a number of selected examples of beating
in the galloping regime. The examples are characterized by the plate length LSP/D of the
cylinder-plate assembly and the reduced velocity Ur.
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supported body. In view of this, a careful analysis of the energy transfer between the
fluid and the body is useful for providing deeper insights into the physical mechanisms
underpinning FIV and the concomitant characteristics of the nonlinear beating. The energy
transferred to the cylinder-plate assembly per unit length (of cylinder) in each cycle of the
oscillation is given by:

P =

∫ t+T

t

Fy(t)y
′(t) dt , (3.5)

where T is the oscillation cycle, Fy(t) is the transverse force per unit length, y′(t) is the
transverse velocity of the body (recall that y(t) is the dimensional transverse displacement).
An energy-based analysis of various dynamical systems subjected to FIV has shown that
P is either positive or negative—depending on the kinematics of the oscillation. The
positivity or negativity of the energy transfer P increases or decreases the amplitude of
oscillations, respectively [98]. Moreover, if the structural damping is zero, the oscillation
of the dynamical system reaches a stable state when P = 0—the phase difference between
the transverse displacement and the transverse fluid force acting on the body is either 0◦

or 180◦ [73, 194].

The energy per cycle transferred to or from the surrounding flow by the cylinder-
plate assembly at a low-Reynolds number (Re = 100) is shown in Fig. 3.34 (a) as a
function of the splitter-plate length LSP/D and the amplitude of the non-dimensional
transverse displacement Ymax for Ur = 6 in the VIV regime. Furthermore, the time series
of the non-dimensional transverse displacement Y (t) for three selected plate lengths are
displayed in Figs. 3.34 (b), (c), and (d) for LSP/D = 0 (bare circular cylinder), 0.75
and 4, respectively. At Ur = 6, all the oscillations in Y (t) are purely periodic without
any amplitude modulation. More precisely, Y (t) gradually increases with time at first
and eventually reaches a stationary state of vibration—in this state, the vibrations have a
constant amplitude and are characterized by a single frequency (“pure tone”). However, the
transients in the initial stage of temporal development are different (sometimes irregular)
for various splitter-plate lengths. The stationary state of vibration (that is eventually
attained) implies that a dynamic equilibrium has been established in the dynamical system
with no net (zero) energy transfer (per oscillation cycle) between the vibrating body and
the surrounding fluid—this observation is consistent with previous studies.

Next, it is of interest to investigate the energy transfer between the cylinder-plate
assembly and the surrounding fluid during the presence of beating. To this objective,
Fig. 3.35 displays the time series of transverse displacement Y (t) together with the total
energy transfer P (t) (first column of panels) and the net energy transferred over one oscil-
lation cycle Pnet(t) (second column of panels) for six selected examples of beating involving
various plate length LSP/D and reduced velocity Ur. We focus on the role of the two lift
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Figure 3.34: (a) Isopleths of the energy transfer per unit length (in J/m) between the
elastically-supported cylinder-plate assembly and surrounding flow shown as a function of
the non-dimensional amplitude of the transverse displacement (Ymax) and the splitter-plate
length (LSP/D) at a fixed value of the reduced velocity Ur = 6 within the VIV regime.
The black dashed line represents the condition of zero energy transfer. Time series of the
transverse displacement Y (t) at Ur = 6 for (b) a bare circular cylinder, (c) a cylinder-plate
assembly with LSP/D = 0.75, and (d) a cylinder-plate assembly with LSP/D = 4.

components on the generated power: namely, the energy transferred to the cylinder Pnet,C

and to the splitter-plate Pnet,SP , as well as the energy transferred by the total lift (Pnet,T ) on
the entire assembly. Even though the beating of Y (t) is less obvious than that of the CL(t),
fluctuations in the amplitude peaks can, nevertheless, provide useful and physically insight-
ful information regarding the relationship between the dynamics of the energy transfer and
that of the local oscillations. As an example, for the bare circular cylinder (see Fig. 3.35
(a)), the energy transfer is positive for the second oscillation cycle (τ = 3200–3208) yielding
to a positive net energy transfer of 0.1 J/m—the corresponding amplitude of Y exhibits
a subtle increase from a second peak of 0.2 to a third peak of 0.25. In contrast, the en-
ergy transfer is mostly negative over the third oscillation cycle (τ = 3208–3217) giving a
negative energy transfer of −0.7 J/m with a decrease in the corresponding amplitude of Y
during this cycle to a fourth peak of 0.2. For the cylinder-plate assembly (see Figs. 3.35
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Figure 3.35: (a) Time series of Y (t) (dashed black lines) and the energy transferred per unit
length over one oscillation cycle between the structure (cylinder-plate assembly) and the
surrounding fluid (solid red lines). (b) Time series of the total net energy per unit length
Pnet,T transferred to the cylinder-plate assembly, the energy per unit length transferred to
the cylinder Pnet,C only, and the energy per unit length transferred to the splitter-plate
Pnet,SP only. The examples shown here are selected values of the splitter-plate length
LSP/D and the reduced velocity Ur.
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(b)–(f)), the temporal variations in the amplitude during beating are also consistent with
these observations—viz., a net positive energy transfer P (the oscillating system receives
energy from the surrounding flow) increases the amplitude of Y , whereas a net negative
P (the oscillating system loses energy to the surrounding flow) decreases the amplitude of
Y . This is consistent with results for a rectangular cylinder with rounded corners reported
by Zhao and Zhao [194]. Furthermore, a careful examination of Figs. 3.35 (bii)–(fii) shows
that the net energy extracted by the splitter-plate from the surrounding fluid is always
greater than zero (viz., positive), while that extracted by the circular cylinder is invariably
less than zero (viz., negative), with the total net energy transfer fluctuating around the
zero level. This implies that for an oscillating cylinder-plate assembly, the splitter-plate
absorbs the energy from fluid, whereas the circular cylinder dissipates the energy into the
surrounding flow. The sum of these two energies determines the local oscillations of the
amplitude. In Fig. 3.35 (f), the net energy transfer per oscillation cycle is zero, so the
periodic oscillations of the dynamical systems attain a stationary state—the amplitude of
the oscillations is constant in time.

The beating phenomenon associated with the oscillations of the transverse displacement
and lift coefficient (and, especially the latter) is an essential nonlinear characteristic of the
cylinder-plate assembly undergoing FIV. The amplitude modulation is a quasi-periodic
phenomenon and dominated by two different characteristic frequencies—one is associated
with the oscillation frequency of the dynamical system and the other is the beating fre-
quency [103]. Moreover, beating is closely related to the flow patterns and vortex dynamics
in the wake. In light of this, a more in-depth analysis is required in order to explore the
underlying physics of the beating phenomenon for the cylinder-plate assembly (see Sec-
tion 3.5.3).

3.5.2 Nonlinear Dynamical Characteristics

In this section, a number of important nonlinear dynamical features (e.g., limit cycle, bi-
furcations, and presence of chaos) in the non-synchronization branches of a cylinder-plate
assembly are examined in detail using a number of different methodologies: time series anal-
ysis, power spectral density (PSD) analysis, phase-plane portrait analysis, and Poincaré
maps. The focus here is still the lift force (CL) acting on a cylinder-plate assembly owing
to its much stronger nonlinearity in comparison to that of the transverse displacement (Y ).

We provide a brief description of the methodologies used to characterize the various
aspects of the nonlinear dynamics of a cylinder-plate assembly. A phase-plane portrait is
a geometric visualization of the temporal evolution of a dynamical system—in its simplest
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Figure 3.36: Schematic depiction of the geometric visualization tools used to analyze the
nonlinear dynamics of a dynamical system. A dynamical quantity of interest is q. The
time series q(t) is a periodic oscillation with a quasi-sinusoidal waveform, corresponding to
the closed orbits in the three-dimensional phase space (q, q′, q′′) which start from the origin
of the space, gradually spiral outward and finally converge to the stable limit cycle when
a stationary state of the oscillatory motion is reached. The red points correspond to the
intersections between closed orbits and the Poincaré section (q′′ = 0).

manifestation, the time development of a dynamical quantity (e.g., Y (t)) is plotted against
its time derivative, or generalized velocity (e.g., Y ′(t)). In other words, the axes of a
phase-plane portrait are the state variables of the dynamical system. The topology of a
phase-plane portrait is inextricably associated with the states of the dynamical system—for
example, a fixed point and a closed orbit correspond to a static equilibrium and a periodic
motion of the dynamical system, respectively. Moreover, the shape of the closed orbits is
reflective of the period, amplitude, waveform, and energy of the temporal variations. The
common single elliptical orbit in the phase plane is representative of a simple harmonic
oscillation with a sinusoidal waveform. For highly complex systems, the closed orbits can
be rather irregular—interpretations for these types of orbits will be provided below with
reference to the dynamics of a cylinder-plate assembly. A limit cycle is an unique closed
trajectory in the phase plane for which all neighboring trajectories can approach it as time t

106



goes to (1) infinity (stable or attractive limit cycle) and (2) negative infinity (unstable limit
cycle). A particular type of limit cycle can be indicative of the presence of a self-sustained
vibration in a dynamical system such as a circular cylinder undergoing VIV. A Poincaré
map is another common geometric visualization tool that can be used, especially when the
topological characteristics of the trajectories in the phase plane are too complex to extract
any useful information—Poincaré maps may be especially relevant for dynamical systems
that involve bifurcations and chaos. A Poincaré map can be constructed as follows: (1)
define a Poincaré section transverse to the flow; (2) record the intersections of the closed
orbits with this section; and, (3) map from Poincaré section to itself. More information
concerning these various methodologies for the analysis of nonlinear dynamical systems
can be found in Strogatz [152].

Figure 3.36 is a schematic depiction of the geometric visualization tools used in this
study for the nonlinear analysis of an elastically-supported cylinder-plate assembly. The
oscillation of a dynamical quantity of interest q(t) leads to multiple closed orbits in the
three-dimensional phase space (q, q′, q′′) and to an elliptically-shaped limit cycle when a
stationary state of the oscillatory motion is achieved. There are multiple intersections
(red points) of the closed orbits and the q′′ = 0 plane in Poincaré map. Note that only
those instances when the trajectory transitions from a positive to a negative value are
considered in the analysis. Finally, it is stressed that all results reported in this section are
obtained after the stationary state of the oscillatory motion of the dynamical system has
been reached.

Figures 3.37–3.40 display the amplitude response (maximum transverse displacement
Ymax as a function of Ur) with branching and various statistical characteristics of lift co-
efficient (power spectral density normalized by the maximum power, phase-plane portrait,
and Poincaré section) of cylinder-plate assemblies for four plate lengths (LSP/D = 0.5,
0.75, 1.5 and 2). Three values of the reduced velocity are considered for each plate length.

For LSP/D = 0.5, the analysis is conducted at Ur = 13.5, 18 and 19.5—these three
values of Ur are within the unsynchronized branch of the galloping regime (marked with
the red dots in Fig. 3.37 (a)). A perusal of Fig. 3.37 (bi) shows that the time variations in
CL(t) at Ur = 13.5 repeat every three oscillation cycles (viz., three period-doubling oscilla-
tion). This suggestion is also supported by a closed trajectory consisting of three distinct
circulations in the phase-plane portrait (see Fig. 3.37 (di)). Each of these three circulations
involve a band of trajectories (rather than three clear-cut limit cycles), implying that the
beatings in CL(t) at Ur = 13.5 are not identical to each other—these correspond to a quasi-
periodic beating. Moreover, the time variations of CL(t) exhibit a small deviation from
a pure sinusoidal waveform—this is also supported by the presence of multiple harmonic
frequencies in the associated power spectrum shown in Fig. 3.37 (ci). Taken together, these
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Figure 3.37: (a) Amplitude response of the cylinder-plate assembly with LSP/D = 0.5.
Dynamical characteristics of lift coefficient with respect to (b) time series CL(t), (c) power
spectral density, (d) phase-plane portrait (CL, C

′
L), and (e) Poincaré section, at three

representative reduced velocities: (i) Ur = 13.5, (ii) Ur = 18, (iii) Ur = 19.5.
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Figure 3.38: (a) Amplitude response of the cylinder-plate assembly with LSP/D = 0.75.
Dynamical characteristics of lift coefficient with respect to (b) time series CL(t), (c) power
spectral density, (d) phase-plane portrait (CL, C

′
L), and (e) Poincaré section, at three

representative reduced velocities: (i) Ur = 6.5, (ii) Ur = 8.5, (iii) Ur = 13.5.
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Figure 3.39: (a) Amplitude response of the cylinder-plate assembly with LSP/D = 1.5.
Dynamical characteristics of lift coefficient with respect to (b) time series CL(t), (c) power
spectral density, (d) phase-plane portrait (CL, C

′
L), and (e) Poincaré section, at three

representative reduced velocities: (i) Ur = 17, (ii) Ur = 20, (iii) Ur = 25.
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Figure 3.40: (a) Amplitude response of the cylinder-plate assembly with LSP/D = 2.0.
Dynamical characteristics of lift coefficient with respect to (b) time series CL(t), (c) power
spectral density, (d) phase-plane portrait (CL, C

′
L), and (e) Poincaré section, at three

representative reduced velocities: (i) Ur = 11, (ii) Ur = 23, (iii) Ur = 26.
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characteristics are responsible for the fact that the corresponding Poincaré map consists of
more than three clusters of points (see Fig. 3.37 (ei)). At Ur = 18 and 19.5, the beatings
in CL(t) over a short time window appear to exhibit a periodic behavior (albeit, of a more
complex and subtle) nature. However, this periodicity disappears when examined over a
longer time window. The complex trajectories and point sets in the phase portraits and
Poincaré sections, respectively, also imply that for Ur = 18 and 19.5 there is no discernible
deterministic pattern in the time variations of CL—these variations appear chaotic and
may be associated with the much stronger harmonic content in the CL power spectrum.

For a cylinder-plate assembly with LSP/D = 0.75 at Ur = 6.5 corresponding to the
onset of galloping, the quasi-periodic and symmetric beating in CL(t) is congruous with a
five period-doubling oscillation. This assertion is supported by the donut-shaped trajectory
in the phase-plane portrait of Fig. 3.38 (di) and by the presence of five clusters of points
in the Poincaré section of Fig. 3.38 (ei). Moreover, the power spectrum of CL consists of
two closely-spaced frequencies—the primary frequency peak at f/fn = 0.95 corresponds to
characteristic oscillation in CL(t), whereas the secondary peak at f/fn = 0.76 is associated
with the time-varying beating (amplitude modulation) in CL(t) which becomes more obvi-
ous when examined over a longer time window. Previous studies [122, 170] showed that the
local beating phenomenon is due to the presence of these two closely-spaced frequencies,
resulting in a frequency shift in CL(t) from the Strouhal frequency to the structural natural
frequency. At Ur = 8.5, the amplitude modulation of CL(t) is very small—as a result, the
phase-plane consists of a series of tightly-bunched elliptically-shaped orbits that constitute
the limit cycles (cf. Fig. 3.38 (dii)) and the Poincaré section consists of one (extended)
cluster of points (cf. Fig. 3.38 (eii)). The three period-doubling oscillation of CL(t) at
Ur = 13.5 is similar to that at the same value of the reduced velocity shown in Fig. 3.37.

For the cylinder-plate assembly with LSP/D = 1.5, we focus on the beating in the region
of the amplitude response near the 1:3, 1:4, and 1:5 synchronization branches. Inspection
of the time series of CL in Fig. 3.39 suggests that the beating phenomenon in these regions
is less obvious—more precisely, there is little or no discernible amplitude modulation in the
CL time series. Moreover, the limit cycles in the phase-plane portraits are not circular (or,
elliptical) in shape but, rather, consist of multiple “bulges” in their closed-looped orbits.
In summary, the oscillations in CL(t) for a cylinder-plate assembly with LSP/D = 1.5 are
effectively periodic or quasi-periodic, without any evidence for chaotic behavior.

For the cylinder-plate assembly with LSP/D = 2, the beating in the time series of CL

is less obvious. However, at larger reduced velocities Ur = 23 and 26, the limit cycles in
the phase-plane portrait become more complex (viz., they consist of a tangle of closed-loop
orbits) and the point set structure of the Poincaré section consists of a multiplex of points
with no discernible pattern.
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Although the time sequences of the lift coefficient can be very similar for the cylinder-
plate assembly with various LSP and Ur, this similarity is deceptive as these highly nonlin-
ear oscillations can have significantly different signatures with respect to their phase-plane
portraits and Poincaré sections. To distinguish their nonlinear dynamical characteristics,
a conjoint analysis of the limit cycles in the phase-plane and the point sets in the Poincaré
sections is conducted with reference to Figs. 3.37–3.40. As a result, we identify three types
of distinctive nonlinearities associated with the FIV of a cylinder-plate assembly.

A Type-I nonlinear oscillation is characterized by wider loops (multiple closed orbits)
in the limit cycles and a small (limited) number of point clusters in the Poincaré section.
These characteristics are representative of a quasi-periodic amplitude modulation (beat-
ing) and a period-doubling oscillation. The corresponding phase-plane portrait consists of
either loops of similar size that intersect one another before closing to form a closed orbit
(Figs. 3.37 (di), 3.38 (diii), and 3.39 (d)) or loops that appear to be stacked on top of one
another to give the appearance of a donut-shaped orbit (Figs. 3.38 (di), 3.38 (dii), and
3.40 (di)). A Type-I nonlinear oscillation occurs in a cylinder-plate assembly with mod-
erate splitter-plate lengths (e.g., LSP/D = 0.75 and 1.5) or in a cylinder-plate assembly
with either a short or a long splitter-plate at small values of the reduced velocity (e.g.,
LSP/D = 0.5 at Ur = 12.5 and LSP/D = 2 at Ur = 11).

A Type-II nonlinear oscillation is evident in Figs. 3.37 (ii) and 3.37 (iii)—the limit cycles
in the phase-plane portrait have a “slinky” appearance consisting of numerous helical loops
and the point set of the Poincaré section consists of clusters of points arranged in a closed
loop (deformed ring). These characteristics are representative of a long-period beating
where the maxima and minima of the amplitude envelope vary slowly in time. This type
of nonlinear oscillation occurs only in a cylinder-plate assembly with a short splitter-plate
length near the termination of the VIV regime in the amplitude response.

A Type-III nonlinear oscillation (see Figs. 3.40 (ii) and 3.40 (iii)) has the following
distinctive signature: namely, the limit cycles appear to be disordered in the sense that
the loops have different shapes and combine to give the appearance of a tangled web of
“string” and the point set of the associated Poincaré section consists of point clusters that
are arranged in a loop that has a similar shape to that of the phase-plane portrait. This
type of nonlinear oscillation occurs in a cylinder-plate assembly with a long splitter-plate
length at large values of the reduced velocity.
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Figure 3.41: Division of consecutive oscillation cycles during beating.

3.5.3 Wake Modes During Beating

In this section, the wake modes associated with the various types of beating are studied.
Based on the beating observed in Section 3.5.1, two representative scenarios are analyzed:
namely, (1) a periodic beating in the cylinder-plate assembly with LSP/D = 0.75 at Ur =
10; and, (2) an aperiodic beating in the cylinder-plate assembly with LSP/D = 0.5 at
Ur = 14.

Before we begin the analysis, it is necessary to clarify how to split a consecutive sequence
of oscillation cycles into representative constituent parts during beating. One strategy is
to use the division method proposed by Sen [132]. This method consists of three steps: (1)
calculate the uniform oscillation cycle based either on the vibration frequency or the vortex-
shedding frequency; (2) choose a starting time and identify several successive oscillation
cycles; and, (3) divide each of these cycles into a number of equal segments. Unfortunately,
this division method seems not very appropriate for the analysis of dynamical system
oscillations on a cycle-by-cycle basis because the local frequency of beating can change as
explained earlier in Section 3.5.1, implying that the temporal period of each cycle during
beating is different. To circumvent this difficulty, we use an alternative method to identify
the period of a sequence of consecutive cycles based on the positions of the positive and
negative peaks in each cycle. In Fig. 3.41, two positive peaks (located at A and B) and one
negative peak (located at C) are determined for a given time sequence of the transverse
displacement. With this determination, the time period from A to B is taken to correspond
to an oscillation cycle. Next, the time intervals AC and BC are divided into four equal
parts. An oscillation cycle, of course, can also be determined as the time period between
two negative peaks. The division method used here minimizes the influence of the local
frequency of beating and, as a result, we obtain a more accurate identification of the wake
mode.
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Figure 3.42: Six consecutive oscillation cycles (C1–C6) for analyzing the wake modes of
quasi-periodic beating, in terms of the time series of Y (black curve) and CL (red curve).
Blue curves connect multiple positive and negative peaks during beating of CL(t) and
determine the amplitude envelope.

Wake modes during periodic beating

Figure 3.42 exhibits the time sequence of the transverse displacement Y and lift coeffi-
cient CL over six consecutive oscillation cycles (C1–C6) for a cylinder-plate assembly with
LSP/D = 0.75 at Ur = 10—this reduced velocity corresponds to the non-synchronization
branch before the 1:2 synchronization (see Fig. 3.38 (a)). An examination of the amplitude
envelopes (blue lines) shows that the beating here is periodic (viz., the beating pattern re-
peats for every five oscillation cycles) and symmetric (viz., the positive peak is the mirror
image of the succeeding negative peak about the horizontal line CL = 0). To study the flow
structures that trigger this periodic beating, Fig. 3.43 exhibits the instantaneous vorticity
field of the cylinder-plate assembly at various temporal snapshots in C1–C6 (more precisely,
there are eight snapshots shown for each cycle). In this figure, the clockwise (negative)
and counter-clockwise (positive) vortices are shown in blue and red, respectively.

In the first cycle, two counter-rotating vortices (S and -S) are shed alternately from
the lower and upper shear layers of the cylinder at t = 2T/8 and t = 4T/8 (T is the
period of one oscillation cycle) to form a typical anti-symmetric 2S mode. This pattern is
repeated again at t = 6T/8 to t = 7T/8. Therefore, the vortex-shedding mode in C1 is
unambiguously identified as “2×(2S)” (viz., a 2S wake mode shed twice over one oscillation
cycle).

In the second cycle, the wake dynamics of the cylinder-plate assembly is more complex.
More specifically, a positive vortex is first shed from the lower shear layer at t = T , followed
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Figure 3.43: Snapshots of the instantaneous vorticity field over six consecutive oscillation
cycles (each cycle with period T ) for a cylinder-plate assembly with LSP/D = 0.75 at Ur =
10. Each cycle includes eight vorticity snapshots equally spaced in time. The corresponding
wake modes are “2×(2S)”, “S+SA”, “G(SB+2S)+S”, “2×(2S)”, “SA+G(SB+2S)”, and
“2×(2S)”, respectively.

116



by a downstream extension of the upper shear layer over the first half of C2 which then
coalesces to form a specially-shaped vortex (denoted by -SA) at t = T + 5T/8. We note
that the vortex -SA identified here has the shape of a right-angle bend consisting of an
elongated streamwise portion and an elliptical form in the cross-flow direction, which is
similar to the composite vortex designated as S1S2 by Sen [132]. The major difference in
these two vortical forms is as follows: -SA always occurs as a whole entity in our analysis,
whereas the S1S2 mode can appear individually either as an S1 or an S2 vortex—this is
due to the particular division method used in the analysis conducted by Sen [132]. In
consequence, the wake mode in C2 is identified as S+SA.

At the beginning of the third cycle, a group of vortices is shed together from the cylinder-
plate assembly—these include an elongated and slightly curved vortex in the streamwise
direction (SB) and a pair of counter-rotating elliptically-shaped vortices (S and -S). We note
that the crescent-shaped vortex SB observed here appears to be unique to the cylinder-plate
assembly. At t = 2T + 6T/8, another vortex -S is shed from the upper shear layer of the
cylinder. In view of this, the vortex-shedding mode for C3 is identified as G(SB+2S)+S,
where G is used to designate a group of vortices.

The fourth cycle is seen to have simpler wake dynamics, with “2×(2S)” mode identified.
In the fifth cycle, a counter-clockwise right-angled-shaped vortex SA is generated initially
and shed at t = 4T + T/8—following this event, three additional vortices (-SB and (2S))
are shed as one group at t = 4T +4T/8. In consequence, the wake mode in C5 is identified
as “SA+G(SB+2S)”. Finally, the wake pattern in C6 is identical to that in C1—the vortex-
shedding pattern corresponds to a “2×(2S)” wake mode. The upshot of this analysis is
that the vortex-shedding pattern of an elastically-mounted cylinder-plate assembly with
LSP/D = 0.75 repeats over an interval of time spanning five consecutive oscillation cycles.

Except for the periodicity, the beating in Fig. 3.42 also exhibits symmetry. Not co-
incidentally, a global view of the vorticity field reveals that the wake patterns in C1, C2
and the first half of C3 (encompassing a time span of 2.5T in total) are anti-symmetric
to that in second half of C3, C4 and C5 (again encompassing a total time span of 2.5T ).
This anti-symmetric vortex-shedding pattern is consistent with the five period-doubling
oscillation of the symmetrical beating exhibited in Fig. 3.42.

Wake modes during aperiodic beating

The amplitude envelope of some oscillatory motions of a cylinder-plate assembly can be
irregular—indeed, complex enough that the time variations of the amplitude modulation
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Figure 3.44: Eleven consecutive oscillation cycles (C1–C11) for analyzing the wake modes
of aperiodic beating of the lift coefficient. Time series of the transverse displacement Y
and lift coefficient CL are shown as the black and red curves, respectively.

appear to be random. In this section, we focus on the wake dynamics associated with an
aperiodic beating.

To this purpose, Fig. 3.44 displays the time series of the transverse displacement Y and
lift coefficient CL over a temporal duration encompassing eleven consecutive oscillation
cycles (C1 to C11) of the cylinder-plate assembly with LSP/D = 0.5 at Ur = 14. This
reduced velocity corresponds to the unsynchronized regime between the 1:2 and 1:3 syn-
chronization branches (see Fig. 3.37 (a)). We note that each cycle starts from the negative
peak (minimum transverse displacement) rather than from the positive peak (maximum
transverse displacement) in Fig. 3.42. Fig. 3.44 shows that the maximum amplitude of
CL(t) exhibits time-varying peaks and valleys without discernible pattern—there is no
regularity or periodicity in the amplitude modulation.

Figure 3.45 displays snapshots of the instantaneous vorticity field for five selected cycles:
namely, C1, C5, C7, C9, and C11. In the first cycle, a group of three vortices G(SB+2S)
is shed at t = 2T/8 and this is followed by the shedding of three additional elliptically-
shaped vortices (two -S and one S) in succession at t = 5T/8, 6T/8, and 7T/8. From these
considerations, the wake mode of C1 is identified as “G(SB+2S)+1.5×(2S)”. In the fifth
cycle, “one and a half” 2S vortices (two S and one -S vortices) are shed initially, followed
by the generation of a right-angled counter-clockwise rotating vortex (-SA)—hence, the
wake mode of C5 is “1.5×(2S)+SA”. In the seventh cycle, a positive right-angled vortex
SA is shed at t = 6T + 2T/8 and this is immediately followed by the generation of a 2S
vortex. At the end of the seventh cycle, another negative right-angled vortex -SA is shed.
This multiplet of vortices shed in C7 is identified as a “2×SA+2S” wake mode. The ninth
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Figure 3.45: Snapshots of the instantaneous vorticity field over five selected oscillation
cycles (C1, C5, C7, C9, and C11) for a cylinder-plate assembly with LSP/D = 0.5 at
Ur = 14. Each cycle includes eight snapshots of the vorticity equally spaced in time.
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cycle is associated with a “SA+G(SB+2S)” wake mode. Furthermore, the eleventh cycle
involves a more complex wake pattern—a “2S” wake mode is shed initially, followed by a
right-angled vortex SA and a three-vortex group “G(-SB+2S)”. Finally, the vortex-shedding
patterns associated with the other cycles are summarized as follows: “SA+G(SB+2S)” for
C2, “1.5×(2S)+SA” for C3, “(2S)+SA+G(SB+2S)” for C4, “G(SB+2S)+1.5×(2S)” for C6
and C8, and “1.5×(2S)+SA” for C10.

The vortex-shedding mode associated with the quasi-periodic beating adheres also to a
cyclic pattern with a period that encompasses a number of oscillation cycles (viz., the wake
mode is repetitive with a period occupying n consecutive oscillation cycles for an n-period
beating). Consequently, there is a close relationship between the wake dynamics and the
transverse force. In contrast, the highly irregular and asymmetric wake modes lead to an
aperiodic beating with no discernible pattern.

Relationship between beating intensity and flow structures

A careful examination of Figs. 3.42 and 3.44 suggests that the multiple amplitude peaks
during one beating cycle of CL(t) can exhibit different intensities (i.e., higher peaks (marked
by the green circle) and lower peaks (marked by the pink circle) in the amplitude envelope).
A natural question arises here: Is there any underlying relationship between the different-
intensity amplitude peaks and specific flow patterns?

To address this question, we examine the instantaneous vorticity field in Figs. 3.43
and 3.45, where the temporal snapshots corresponding to the higher and lower peaks of
the amplitude envelope are highlighted in the panels with the green and pink borders,
respectively. The higher peak of the amplitude envelope is associated with the shedding
of a big circular- or elliptically-shaped vortex (demarcated using the green box in panels
with the green borders) from the shear layer of the cylinder. In contrast, the lower peak
of the amplitude envelope appears to arise from the steady growth of a group of three
vortices that are present downstream of the assembly—this process is not accompanied by
any vortex shedding.

The instantaneous vorticity fields at t = 8T/12 for the 1:5, 1:6 and 1:7 synchroniza-
tion branches of a cylinder-plate assembly with LSP/D = 2 are displayed Fig. 3.46. The
oscillations of both the transverse displacement and lift coefficient within the synchro-
nization branches are highly periodic, consisting of a single amplitude and frequency—no
beating occurs, so the beating intensity is zero. This is most likely due to the presence of
elliptically-shaped vortices associated with an anti-symmetric “n×(2S)” vortex-shedding
pattern, as shown in Fig. 3.46.
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Figure 3.46: Temporal snapshots of the instantaneous vorticity field for the 1:5, 1:6 and 1:7
synchronization branches of a cylinder-plate assembly with LSP/D = 2. In this example,
CL undergoes a periodic oscillation without beating.

The wake modes associated with beating are invariably asymmetric—these modes can
have a multitude of forms and frequently consist of multiplets that are composed of a
number of basic (atomic) vortices. In addition to the conventional elliptically-shaped
vortex, two new vortical shapes have been identified for a cylinder-plate assembly: namely,
a right-angled vortex (designated SA) and the crescent-shaped vortex (designated SB) that
are associated with the occurrence of beating. Moreover, the vortex SB often occurs as a
basic component, together with two additional elliptically-shaped vortices, to form a three-
vortex group (multiplet). As a consequence, the wake dynamics observed for a cylinder-
plate assembly is more complex than that for a square cylinder reported in Sen [132].

3.6 Chapter Summary

In this chapter, the transverse FIV of an elastically-mounted circular cylinder-plate as-
sembly with various plate lengths in the range of 0 ≤ LSP/D ≤ 4 is investigated using
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numerical simulation at a low Reynolds number Re = 100, with a mass ratio of 10 and a
zero structural damping ratio.

For LSP/D ≤ 0.5, a self-limiting oscillation is induced on the cylinder-plate assembly—
this consists of either a VIV-only response (LSP/D = 0.25) or an integrated VIV-galloping
response (LSP/D = 0.5). In comparison to the pure VIV of a bare circular cylinder, the
former case has a significantly extended lock-in range, whereas the latter case has a larger
Ur range for structural motion with a smaller oscillation frequency. For cylinder-plate
assemblies with 0.75 ≤ LSP/D < 4, an unlimited oscillation is triggered consisting of a
steadily increasing vibration amplitude that is preceded by a VIV regime before the onset
of galloping. The two regimes here become increasingly separated from one another as LSP

increases (viz., from a significant to no overlap between VIV and galloping). The lift force
acting on the circular cylinder has an important contribution on the structural oscillation.
In contrast, the lift component acting on the splitter-plate affects more on the dynamics
of surrounding flow.

The influence of the splitter-plate length on the branching behavior of the
assembly’s FIV is particularly emphasized, as well as the associated flow dy-
namics and physical mechanisms underpinning these behaviors. Based on branch-
ing behavior, five groups of the assembly are categorized: Group I (LSP/D ≤ 0.5) with a
self-limited oscillation; Group II (LSP/D = 0.75) with a pure galloping oscillation; Groups
III–V (0.75 < LSP/D < 4) with a gradually separated VIV (secondary) and galloping
(dominated).

Both even- and odd-multiple synchronization branches between the structural oscilla-
tion and the vortex shedding are identified for the FIV of cylinder-plate assembly, which
appear successively in increasing order, viz., f ∗

Y : f ∗
CL

= 1:n where n = 1, 2, 3, and so
forth. More precisely, one observes synchronizations with frequency ratios of 1:2, 1:3, and
1:5 for LSP/D = 0.75, of 1:1, 1:2, 1:3, 1:4, and 1:5 for LSP/D = 1, of 1:1, 1:3, 1:4, and
1:5 for LSP/D = 1.25–1.5, of 1:1, 1:3, 1:4, 1:5, and 1:7 for LSP/D = 1.75, of 1:1, 1:3,
1:5, 1:6, and 1:7 for LSP/D = 2, of 1:1, 1:3, 1:5 and 1:7 for LSP/D = 2.5, and of 1:1 for
LSP/D = 3–4. It should be noted that the interesting “Kinks” in the amplitude response
of a cylinder-plate assembly within the galloping regime occur at the onset of the synchro-
nization if the highest harmonic frequency in the power spectrum of CL is larger than that
in the power spectrum of Y . The presence of “kinks” results in a slower linear growth
of the maximum vibration displacement with reduced velocity. In contrast to the “step”
and slow-growth “kink” observed in the galloping of a square cylinder, the “kink” in the
amplitude response of a cylinder-plate assembly can exhibit a decrease with Ur for certain
plate lengths (LSP/D = 0.75–1.25).
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The rich spectrum of branching behavior is associated with the more complex wake
dynamics and concomitant vortex-shedding patterns observed for cylinder-plate assembly.
To be specific, the classical alternating vortex shedding with a “2S” wake mode occurs in
the lock-in branch. In the galloping regime, the odd-multiple synchronization is featured by
“n×(2S)” mode (viz., repeat “2S” mode for n times in an oscillation cycle), while the wake
patterns associated with the even-multiple synchronizations tend to be more complicated
and irregular (e.g., “T+S”, “P+S”).

Two new branches are identified (for the first time) for a cylinder-plate assembly with
longer plate length LSP/D ≥ 2.5. One is the so-called initial galloping branch immedi-
ately after the onset of galloping, in which the system oscillation is accompanied by wake
meandering, rather than vortex shedding. The other is still branch where the structure is
stationary (viz., no vibration) and the flow field is steady (viz., no vortex shedding or me-
andering of the shear layers). The still branch is essentially due to the complete separation
of the shear layers generated on the upper and lower surfaces of the cylinder through the
presence of the longer splitter plate.

The nonlinear dynamical characteristics of the cylinder-plate assembly un-
dergoing FIV are also significantly affected by the plate length and reduced
velocity. The beating phenomenon (or amplitude modulation) of the oscillation in the lift
coefficient usually occurs near the boundary of VIV or in the non-synchronization branch
of galloping. In the former, five types of beating are identified based on the relationship
between the local frequency of the beating, the structural natural frequency fn and the
Strouhal frequency fSt. For the latter case, the beating is characterized qualitatively in
terms of global characteristics (periodicity and symmetry). The (net) power transfer be-
tween the vibrating assembly and surrounding fluid during beating can be either positive
or negative—the former is associated with an increase and the latter with a decrease in
the oscillation amplitudes of both Y and CL.

Three types of nonlinear oscillations are identified for a cylinder-plate assembly. A
Type-I nonlinearity is characterized by either a donut-shaped orbit or a limit-cycle con-
sisting of a small number of closed orbits that intersect one another—these correspond to
a quasi-periodic beating with a period-doubling oscillation. This situation occurs for an
assembly with a moderate splitter-plate length (e.g., LSP/D = 0.75–1.5) over a wide range
of Ur, or for an assembly with either a long (e.g., LSP/D = 2) or short (e.g., LSP/D = 0.5)
splitter-plate at small Ur. A Type-II nonlinearity exhibits wide limit cycles composed of
numerous loops and corresponds to a long-period beating, which occurs for an assembly
with a short splitter-plate near the termination of VIV. A Type-III nonlinearity is associ-
ated with disordered phase-plane portraits and corresponds to a chaotic form of oscillation,
which occurs for an assembly with a long splitter-plate length at large Ur.
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Two new vortex shapes that are specific to the oscillation of a cylinder-plate assem-
bly have been identified: namely, a right-angled vortex SA and a crescent-shaped vortex
SB. Each of these vortices frequently occur in a multiplet of three vortices that includes
two additional elliptically-shaped vortices. Moreover, a wake mode that repeats every n
consecutive oscillation cycles leads to a quasi-periodic beating with an n period-doubling
oscillation, while an irregular and disordered wake mode is associated with an aperiodic
beating having a random amplitude envelope.
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Chapter 4

FIV of Elliptical Cylinder-Plate
Assembly with Various Aspect Ratios

4.1 Problem Description

This chapter investigates the transverse FIV of an elliptical cylinder with a splitter-plate
attachment immersed in a laminar flow (Re = 100). As shown in Fig. 4.1, the (elliptical)
cylinder-plate assembly is elastically supported by a spring–mass–damper in the transverse
(y) direction and subjected to a uniform free-stream velocity U in the streamwise (x)
direction. The aspect ratio of the cross-section of the elliptical cylinder is defined as
AR = b/a where a and b are respectively the lengths of the ellipse in x and y directions, so
the area of the ellipse is A = πab. An important quantity—the equivalent length D of the
elliptical cylinder—is defined as the diameter of the “equivalent” circular cylinder whose
cross-section has the same area as that of the elliptical cylinder, so D = 2(ab)1/2. The
rigid splitter-plate has a non-dimensional length LSP/D and width WSP/D = 0.06. The
incident velocity U is aligned with either the major or minor axes of the elliptical cylinder
depending on the orientation of the cylinder—for example, when AR > 1, the minor axis
is aligned in the streamwise direction.

In this chapter, six aspect ratios of the elliptical cylinder are studied: namely, AR = 0.5,
0.67, 0.75, 1, 1.5 and 2. The case AR = 1 corresponds to a circular cylinder. The ellipses
with AR = 0.5 and 2 are geometrically identical, but have a different orientation with
respect to the flow incident angle—more precisely, for the cases AR = 0.5 and 2, the major
and minor axes of the ellipse are oriented in streamwise direction, respectively. The same
is true for the cases AR = 0.67 and 1.5. The range of aspect ratios (0.5 ≤ AR ≤ 2)
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Figure 4.1: A sketch of an elastically-mounted elliptical cylinder-plate assembly constrained
to oscillate in the transverse direction. An equivalent circle (with diameter D) whose cross-
sectional area is equal to that of an ellipse (with length a and width b) is plotted as the
dashed curve.

studied here is determined from some previous works related to the FIV of an elliptical
cylinder—these values correspond to a moderate (but not large) geometric deviation from
a circular cylinder [192] and this AR range is large enough to explore the influence of the
aspect ratio on the dynamic response of an elliptical cylinder-plate assembly. Finally, with
the splitter-plate length fixed at a value of LSP/D = 0.5, the cases investigated herein
correspond to the FIV response occurred in a limited range of reduced velocity.

In order to make a comparison of the cases involving various aspect ratios, the di-
mensionless quantities used in this chapter are normalized with respect to the equivalent
diameter D, rather than the ellipse dimension in the y direction (viz., b) [61, 79, 192] or
the length of the major axis (viz., a for AR < 1 and b for AR > 1) [108]. All the compu-
tations are conducted at Re = 100, with a low mass ratio of m∗ = 10 and zero structural
damping ratio ζ = 0 in order to facilitate high-amplitude oscillations in the system. Other
non-dimensional parameters have similar definitions with that in Chapter 3.

The numerical methodology used in this chapter has been described and validated in
detail in Chapter 3. Fig. 4.2 displays the structured grid topology in whole domain and
around an elliptical cylinder-plate system.
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Figure 4.2: The computational mesh used for the numerical simulation of the FIV of an
elliptical cylinder-plate assembly: (a) entire domain; (b) in the vicinity of the elliptical
cylinder and the splitter-plate.

4.2 FIV Occurred in a Limited Range of Ur

This section discusses in detail the free vibration of an elliptical cylinder with aspect ratio
in the range AR = 0.5–2 to which a splitter-plate of length LSP/D = 0.5 is attached.
As a consequence, all the FIV cases investigated herein are self-limited, viz., the range of
reduced velocity over which the assembly undergoes oscillations is limited. The attributes
that will be explored include the vibration (oscillatory) characteristics (Section 4.2.1), the
branching behavior in conjunction with the power spectral density (PSD) of the transverse
vibration displacement Y and the lift coefficient CL (Section 4.2.2) as well as the dynamical
characteristics in the synchronization and non-synchronization branches of the amplitude
response (Sections 4.2.3–4.2.4).

4.2.1 Vibration Characteristics

The effects of the elliptical ratio AR and reduced velocity Ur on the self-limited FIV re-
sponse of an elliptical cylinder-plate assembly are examined with respect to the maximum
vibration amplitude Ymax, the non-dimensional dominant frequency of the transverse os-
cillation f ∗

Y /fn, and the aerodynamic forces responsible for these oscillations—the latter
includes the root-mean-square lift coefficient CL,rms and the time-averaged (mean) drag
coefficient CD,mean. These quantities of interest are exhibited as a function of Ur ranging
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from 2 to 30 for six values of the elliptical ratio (viz., AR = 0.5, 0.67, 0.75, 1, 1.5 and 2)
in Fig. 4.3.

An examination of Fig. 4.3 (a) shows that the elliptical cylinder-plate assemblies with
AR = 0.5 and 0.67 are stationary (viz., these assemblies do not vibrate). The plots of Ymax

as a function of Ur for these two cases remain at a near-zero value over the entire reduced
velocity range—this is associated with a near-zero value of the lift coefficient as seen in
Fig. 4.3 (c) and with a constant value of the drag coefficient (viz., CD,mean = 0.83 and 0.93
for AR = 0.5 and 0.67, respectively) as seen in Fig. 4.3 (d). However, there are essential
differences between these two cases, which are particularly evident on a comparison of their
frequency responses as seen in Fig. 4.3 (b). A vibration frequency of zero implies that
the structural motion is completely suppressed in the elliptical cylinder-plate assembly
with AR = 0.5. However, for AR = 0.67, f ∗

Y /fn is no longer zero—rather, it is equal
to the vortex-shedding frequency of the stationary assembly (with a Strouhal frequency
fSt = 0.158). This suggests that the elliptical cylinder-plate assembly with AR = 0.67
actually undergoes oscillations, albeit with a very small amplitude (viz., Ymax ≈ 0.001D).
These two stationary cases will be analyzed and explored in greater detail in Section 4.4.2.

In marked contrast, the elliptical cylinder-plate assemblies with AR ≥ 0.75 undergo
a self-limited FIV. Furthermore, changing AR has a significant impact on the resulting
dynamic response—more precisely, the maximum vibration amplitude and the effective
range of Ur (over which the assembly oscillates) are altered. For example, the onset velocity
in an elliptical cylinder-plate assembly with AR = 0.75 is Ur = 6—the oscillation in
this structure occurs over a limited range Ur = 6–14, resulting in a maximum transverse
displacement of Ymax = 0.36D. As AR increases to unity (circular cylinder), the FIV
response occurs over a much wider range Ur = 6–20, associated with a smaller onset
Ur = 5 and a larger maximum vibration amplitude Ymax = 1D. For the case of AR = 1.5,
the structural oscillation in the assembly is further enhanced—the vibration occurs over a
wider range Ur = 6–24, showing a larger Ymax of around 2D, although the onset velocity is
roughly the same as that of the circular cylinder-plate assembly. From these considerations,
it is seen that increasing AR from 0.75 to 1.5 leads gradually to the promotion of a self-
limited FIV in the assembly through both an enlargement of the effective reduced-velocity
range and an increase in the value of Ymax. In contradistinction, when the aspect ratio is
AR = 2, this trend is reversed in certain respects—more precisely, the Ur range with FIV
is reduced significantly (viz., Ur = 6–16), although Ymax and the onset velocity remain
essentially the same.

Unlike the amplitude response, the frequency response exhibited in Fig. 4.3 (b) does
not depend strongly on the aspect ratio. Indeed, all the dominant frequencies of the
transverse displacement for all cases of the aspect ratio are essentially the same, which
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Figure 4.3: (a) The non-dimensional maximum transverse displacement Ymax; (b) the
dominant frequency of oscillation f ∗

Y /fn; (c) the root-mean-square lift coefficient CL,rms;
and, (d) the mean drag coefficient CD,mean. All these quantities are plotted as a function
of Ur for six values of elliptical ratio: AR = 0.5, 0.67, 0.75, 1, 1.5 and 2.
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are approximately equal to the structural natural frequency (viz., f ∗
Y /fn is in the range

0.9–1.0) within the FIV regime and are equal to the associated Strouhal frequencies out
of the FIV regime. Moreover, both the lift and drag coefficients exhibit a rapid increase
near the onset velocity of FIV—larger peak values of the lift are associated with larger
maximum transverse displacements (cf. Figs. 4.3 (a) and (c)) and the maximum drag
increases monotonically with an increasing elliptical ratio (see Fig. 4.3 (d)).

4.2.2 Branching Behavior

Figure 4.4 displays the branch identification in the vibration amplitude responses of various
elliptical cylinders (AR = 0.75, 1, 1.5 and 2) with a splitter-plate attachment of length
LSP/D = 0.5. Figs. 4.5–4.6 show the corresponding power spectral density (PSD) isopleths
of the frequency in the system vibration fY and in the transverse force acting on the
assembly fCL

. The construction of PSD contours in this section is the same as that in
Section 3.4.1.

As can be seen in Fig. 4.4 (a), no synchronization branch between the system oscillation
and the vortex shedding is identified for AR = 0.75, although its amplitude response
exhibits a broad maximum. This is further supported by the fact that the dominant
frequency of the transverse displacement is a constant with a value around fn (see Fig. 4.5
(b)) over Ur = 6–14. Furthermore, the power spectrum of lift coefficient over this reduced-
velocity range consists of a constant dominant frequency (dark-colored horizontal band) of
about fn and harmonic frequencies (light-colored diagonal band) as seen in Fig. 4.6 (b).
This analysis suggests that the self-limited FIV of an elliptical cylinder-plate assembly with
AR = 0.75 is still associated with the vortex shedding from the assembly. However, the
vortices are not shed at an integral multiple of the system oscillation frequency—that’s
why no synchronization branch is observed. Moreover, the absence of synchronization may
explain why the Ymax = 0.4D here is smaller than other cases.

In marked contrast, three synchronization branches corresponding to f ∗
Y /f

∗
CL

= 1:1,
1:2 and 1:3 are evident for the elliptical cylinder-plate assemblies with AR = 1, 1.5 and
2, as seen in Figs. 4.4 (b)–(d). In these cases, the assemblies enter the lock-in regime
(or, 1:1 synchronization) at a reduced velocity slightly larger than the onset of VIV—the
VIV response occurs over a certain reduced-velocity range (viz., Ur = 5.5–10 for AR = 1,
Ur = 6–9.5 for AR = 1.5, Ur = 6–8 for AR = 2). The corresponding PSD isopleths of the
transverse displacement only exhibit a single (dominant) frequency (see Figs. 4.5 (c)–(e)),
while that of the lift coefficient display multiple weaker odd harmonics with fCL

/fn = 3,
5, and 7 as is evident on examination of Figs. 4.6 (c)–(e).
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Figure 4.4: The branch identification of the FIV for an elliptical cylinder-plate assembly
with a fixed plate length LSP/D = 0.5 and various aspect ratios: (a)–(d) AR = 0.75, 1, 1.5
and 2. In each case, the maximum transverse displacement Ymax and the root-mean-square
lift coefficient CL,rms are shown as function of Ur. The synchronization branches in the
amplitude response are identified as the shaded regions with different colours. “Kinks” in
the amplitude responses are marked by the red boxes.
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Figure 4.5: (a) The maximum transverse displacement Ymax as a function of Ur for an
elliptical cylinder-plate assembly with various aspect ratios. PSD of Y plotted against
fY /fn and Ur for (b)–(e) AR = 0.75, 1, 1.5 and 2. In (b)-–(e), the vertical, horizontal
and diagonal dashed lines represent the boundaries of synchronization branches, the unit
normalized frequency fY /fn = 1 and the Strouhal frequency fSt, respectively. The solid
line with squares represents the phase difference ϕ between the oscillations in Y and CL.
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Figure 4.6: (a) The maximum transverse displacement Ymax as a function of Ur for an
elliptical cylinder-plate assembly with various aspect ratios. PSD (logarithmic scale) of CL

plotted against fY /fn and Ur for (b)–(e) AR = 0.75, 1, 1.5 and 2. Other notations used
here are the same as those in Fig. 4.5.
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In Figs. 4.4 (b)–(d), it is seen that the beginning of the 1:2 synchronization is associated
with the presence of a “kink” in the amplitude response (marked by the red box). The 1:2
synchronization is either separated from (for AR = 1) or contiguous with (for AR = 1.5
and 2) the lock-in regime. The corresponding Ur ranges are Ur = 11–11.5 for AR = 1,
Ur = 9.5–12 for AR = 1.5, and Ur = 8–12 for AR = 2. In the 1:2 synchronization,
the transverse displacement PSD consists of a single dominant frequency around fn, but
the power spectrum of the transverse force has a more complicated frequency structure
consisting of both odd- and even-harmonics.

Near the upper bound for the existence of self-limited oscillations in the elliptical
cylinder-place assembly, a 1:3 synchronization branch is identified. This branch is either
separate from (for AR = 1 and 1.5) or contiguous with (for AR = 2) the 1:2 synchroniza-
tion. The corresponding reduced-velocity ranges are Ur = 19–19.5 for AR = 1, Ur = 19–23
for AR = 1.5, and Ur = 12–14.5 for AR = 2. Moreover, the assembly oscillates primarily
at fn, although the third-harmonic is evident within the 1:3 synchronization for the case
AR = 1.5 (cf. Fig. 4.5 (d)). However, in the transverse force PSD, the even harmonics
(fCL

/fn = 2, 4, 6) disappear and the odd harmonics (fCL
/fn = 3, 5, 7) become more

prominent—this is especially true for the third-harmonic whose power level is compara-
ble to (for AR = 1 and 2) or even larger than (for AR = 1.5) that of the fundamental
frequency.

In summary, increasing AR of an elliptical cylinder-plate assembly from AR = 1 to 2
reduces the lock-in regime, widens the Ur range over which the higher-order (e.g., 1:2 and
1:3) synchronization branches occur, and results in a more complicated frequency structure
in the transverse force power spectra. However, the aspect ratio has no significant effect
either on the frequency content of the transverse displacement power spectra or on the
dominant frequency of Y and CL.

4.2.3 Periodic Oscillation in Synchronization Branch

This section focuses on various aspects of the dynamical response in the synchronization
branches identified above (viz., 1:1, 1:2 and 1:3), including time series, phase portraits,
Lissajous figures, power spectra of the transverse displacement Y and lift coefficient CL, as
well as the associated vortex-shedding patterns. Owing to the fact that no synchronization
branch is observed in an elliptical cylinder-plate assembly with AR = 0.75, we focus only
on the elliptical cylinder-plate assemblies with AR = 1, 1.5 and 2.
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Figure 4.7: Dynamical characteristics in the 1:1 synchronization branch (viz., lock-in) for
an elliptical cylinder-plate assembly with (a) AR = 1 and Ur = 8; (b) AR = 1.5 and
Ur = 8; and, (c) AR = 2 and Ur = 7. The dynamical characteristics are displayed in
terms of the time series of Y and CL (first column of panels), the phase portraits CL–C

′
L

and Y -Y ′ (second column of panels), the Lissajous figures Y -CL (third column of panels),
and the normalized power spectra of Y and CL (fourth column of panels). In all plots, the
results for Y and CL are presented as black and red curves, respectively.

The 1:1 synchronization

The effect of the aspect ratio of an elliptical cylinder-plate assembly on the dynamical
characteristics in the 1:1 (or, lock-in) synchronization branch is displayed in Fig. 4.7 for
a reduced velocity of either Ur = 7 or 8. The oscillations of Y (t) and CL(t) for all three
aspect ratios are clearly periodic as is evident on examination of the time series (first
column of panels) and the closed curves of the associated phase portraits and Lissajous
figures (second and third columns of panels). Moreover, as AR increases from 1 to 1.5,
CL(t) is no longer sinusoidal—the elliptical shape of associated phase portrait CL-CL

′

becomes more irregular, the number of closed loops in the Lissajous curve Y -CL increases
from 1 to 3, and a third-harmonic frequency is present in the power spectrum of CL(t).
These characteristics suggest that the dynamics become more complex with an increase
in the aspect ratio. For the largest value of AR = 2 studied herein, the complexity of
the lock-in regime increases further. This is evident on perusal of Fig. 4.7 (c)—CL(t)
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Figure 4.8: Instantaneous vorticity fields in one oscillation cycle T within the 1:1 synchro-
nization branch (viz., lock-in) for an elliptical cylinder-plate assembly with (a) AR = 1
and Ur = 8; (b) AR = 1.5 and Ur = 8; and, (c) AR = 2 and Ur = 7. The “2S” mode is
observed for the three cases.
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exhibits a more complex temporal waveform and CL-CL
′ and Y -CL consist of multiple

loops, suggesting the emergence of not only a strong third-harmonic frequency but also a
weaker fifth-harmonic frequency in the CL power spectrum. By contrast, the transverse
displacement Y is basically not affected by aspect ratio.

Figure 4.8 exhibits the more complex flow dynamics within the lock-in regime with
increasing AR. For a circular cylinder-plate assembly (cf. Fig. 4.8 (a)), two counter-
rotating elliptically-shaped vortices, consisting of a counter-clockwise positive vortex SI

and a clockwise negative vortex -SI , are shed alternately during one oscillation cycle to
form the classical Kármán vortex street downstream of the assembly. For this case, the
wake mode is identified as a regular “2S” mode. A similar vortex-shedding pattern is
observed for the case AR = 1.5 at the same reduced velocity Ur = 8 as is evident on
examination of Fig. 4.8 (b). However, in this case, the shape of the vortex consists of a
core with a long trailing tail when it is shed from the shear layer formed along the cylinder
surface and, subsequently, this tail disappears gradually as it evolves downstream to form a
circular vortex consisting of only the core region. In Fig. 4.8 (c), the flow pattern becomes
even more complex at a larger aspect ratio AR = 2. Although there are still two vortices
shed alternately over one oscillation cycle, each vortex shed here is composed of two small
vortices. More precisely, two connected small vortices SI,1 and SI,2 are evident at t = 0 and
t = T/8, respectively, which are shed together at t = 2T/8 to form a larger swallow-tail-
shaped vortex SI—this vortex subsequently merges into the downstream vortex street. A
similar pattern occurs for the negative vortices shed at t = 4T/8–6T/8. It stressed that the
two opposite-signed parallel vortex streets formed in the wake are unique to the elliptical
cylinder-plate assembly with AR = 2.

The 1:2 synchronization

Figure 4.9 exhibits the dynamical characteristics associated with the 1:2 synchronization
branch for various aspect ratios (namely, AR = 1, 1.5 and 2) of an elliptical cylinder-plate
assembly at Ur = 11. The most striking feature is the asymmetrical characteristics of the
transverse force for the elliptical cylinders with non-unity aspect ratios—CL(t) exhibits
two local maxima for each peak value observed in the Y (t) (cf. Figs. 4.9 (bi) and (ci)).
The phase portraits CL-CL

′ and Lissajous figures Y -CL are also asymmetric (cf. Figs. 4.9
(bii), (biii), (cii), and (ciii)). The asymmetry displayed here can be closely associated
with distinctive vortex-shedding patterns—this will be explored further in the analysis
presented in Fig. 4.10. Furthermore, it is seen that even-multiple harmonics are present
in the power spectra of CL and the second harmonic has a larger power level than other
harmonics—indeed, this is the reason for the identification of this branch as a 1:2 synchro-
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Figure 4.9: Dynamical characteristics in the 1:2 synchronization branch for an elliptical
cylinder-plate assembly with (a) AR = 1 and Ur = 11; (b) AR = 1.5 and Ur = 11; and,
(c) AR = 2 and Ur = 11. The notations used here are the same as those described in the
caption of Fig. 4.7.

nization. Similar to the lock-in regime, an increasing aspect ratio is associated with more
complex dynamics in the 1:2 synchronization branch—this is evident on a comparison of
the sinusoidal waveform of CL(t) for AR = 1 with the more complex waveforms of CL(t)
for AR = 1.5 and 2 and the more complex loop structure in the associated phase portraits.

Compared to the simple “2S” mode of the lock-in regime, the vortex-shedding patterns
associated with the 1:2 synchronization branch are generally more complex. As shown in
Fig. 4.10 (a), the “2S” mode is repeated twice (viz., “2×(2S)”, with four vortices are shed
in total) over one oscillation cycle for a circular cylinder-plate assembly at Ur = 11. As
reported in Section 3.4.1, the wake mode in the 1:2 synchronization for a circular cylinder-
plate assembly is “T+S” (triplet and singlet) for Ur = 11.5. For AR = 1.5, the vortex-
shedding pattern in the 1:2 synchronization has a similar behavior as that for AR = 1—the
wake mode transitions from a “2S” mode to a “T+S” mode with an increasing value of Ur.
For example, in Fig. 4.10 (b), the triplet of vortices, namely, -SI , -SII , SI (delineated by the
box with the black dashed lines), is shed at t = 3T/8 and then a single vortex SII is shed
at t = 6T/8 to form a “T+S” mode at Ur = 11. Figs. 4.10 (c)–(e) display the complex
vortex-shedding patterns associated with three values of the reduced velocity—namely,
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Figure 4.10: Instantaneous vorticity fields in one oscillation cycle within the 1:2 synchro-
nization branch for an elliptical cylinder-plate assembly with (a) AR = 1 and Ur = 11; (b)
AR = 1.5 and Ur = 11; (c) AR = 2 and Ur = 8; (d) AR = 2 and Ur = 10; and, (e) AR = 2
and Ur = 11. The wake modes are identified as “2×(2S)”, “T+S”, “±(2S)”, “2×(2S)” and
an irregular mode for the five cases, respectively.

139



Ur = 8, 10 and 11 in the 1:2 synchronization branch for AR = 2. At Ur = 8, the two “2S”
modes shed in one oscillation cycle are not simply a repetition of one another—rather, they
are inverses of each other (viz., (SI , -SI) and (-SII , SII)), which suggests a non-alternating
vortex-shedding pattern which is identified as a “±(2S)” mode here. At Ur = 10, the wake
mode is “2×(2S)”, and the first primary vortex SI is composed of two smaller vortices
designated as SI,1 and SI,2. The irregular vortex-shedding pattern at Ur = 11 does not
belong to any known wake mode. More specifically, one pair of vortices (SI , -SI) are
shed first, then a single negative vortex -SII is shed, followed by the shedding of another
vortex -SIII and, finally, a positive vortex SII is shed. Hence, five vortices are shed in total
over one oscillation cycle. The shapes of the vortices and/or the vortex-shedding patterns
shown in Fig. 4.10 are anti-symmetric and this is consistent with the asymmetry in the
dynamical characteristics displayed in Fig. 4.9. Furthermore, the wake modes in the 1:2
synchronization branch are different at different values of the reduced velocity.

The 1:3 synchronization

Figure 4.11 displays the dynamical characteristics associated with the 1:3 synchronization
branch. It is noted the reduced velocity associated with the 1:3 synchronization for AR = 2
(viz., Ur = 12–14) is smaller than that for AR = 1 and 1.5 (Ur ≥ 19). In view of this,
we display only the dynamical characteristics of the assembly at Ur = 13 (rather than
Ur = 19) for the case of AR = 2.

A careful examination of the power spectra of CL shows that the even harmonics of
the fundamental frequency are absent and only the odd harmonics are present. Moreover,
the third harmonic in these CL-power spectra is significantly more prominent than that in
the corresponding power spectra for the 1:1 synchronization. For AR = 1.5, the CL power
associated with the third harmonic is even larger than that of the fundamental frequency
as seen in Fig. 4.11 (biv). This implies that the transverse force here is dominated by
the third-harmonic frequency. The corresponding CL(t) shows the presence of multiple
local maxima within every cycle of Y (cf. Fig. 4.11 (bi)), albeit the waveform is still
periodic. However, the phase portrait CL-CL

′ shown in Fig. 4.11 (bii) consists of multiple
(closed) loops that is suggestive of a quasi-periodic beating [180]. The nonlinear dynamics
associated with the 1:3 synchronization branch for AR = 2 does not exhibit an increase in
complexity, owing to the fact that it corresponds to a smaller reduced velocity of Ur = 13.

The vortex-shedding patterns corresponding to the 1:3 synchronization branch are
shown in Fig. 4.12. A “3×(2S)” wake mode (viz., a “2S” mode repeated three times
in one oscillation cycle) is identified for the cases of AR = 1 and 1.5 at Ur = 19 on a
careful perusal of Figs. 4.12 (a)–(b). In Fig. 4.12 (c), it is seen that one pair of vortices
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Figure 4.11: Dynamical characteristics in the 1:3 synchronization branch for an elliptical
cylinder-plate assembly with (a) AR = 1 and Ur = 19; (b) AR = 1.5 and Ur = 19; and,
(c) AR = 2 and Ur = 13. The notations used here are the same as those described in the
caption of Fig. 4.7

.

(SI , -SI) are shed together at t = T/8, followed by the subsequent shedding of a single
vortex -SII at t = 2T/8. This combination of vortices forms the so-called “P+S” mode over
the first quarter of the oscillation cycle. Moreover, this process repeats again, albeit with
opposite signs of the vortices, at t = 5T/8 and 6T/8 in the last quarter of the oscillation
cycle. Therefore, the wake mode over one oscillation cycle is identified as “2×(P+S)” for
AR = 2 at Ur = 13.

Summary

For the elliptical cylinder-plate assembly undergoing a self-limited FIV, increasing the
aspect ratios AR will increase the complexity of the flow dynamics associated with the
synchronization branches. However, an increasing AR has essentially no effect on the
temporal variations in the transverse displacement Y . Furthermore, all the Lissajous plots
shown in Figs. 4.7, 4.9 and 4.11 are inclined towards the first and third quadrants of the
(Y,CL) plane—this implies that CL and Y are in-phase in the various synchronization
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Figure 4.12: Instantaneous vorticity fields in one oscillation cycle within the 1:3 synchro-
nization branch for an elliptical cylinder-plate assembly with (a) AR = 1 and Ur = 19; (b)
AR = 1.5 and Ur = 19; and, (c) AR = 2 and Ur = 13. The wake modes are “3×(2S)”,
“3×(2S)” and “2×(P+S)”, respectively. 142



branches. This is also supported by the zero phase shift in the oscillations between CL and
Y in Fig. 4.5, except for the 1:3 synchronization for AR = 1.5 where ϕ is around 90◦—this
may be due to the much stronger harmonic components in Fig. 4.11.

The branch identification of the lock-in regime and the 1:2 and 1:3 synchronizations also
suggests that the self-limited FIV studied herein is essentially associated with an integrated
VIV and galloping response, rather than a pure VIV response.

4.2.4 Aperiodic Oscillation in Non-Synchronization Branch

This section explores the non-synchronization branch in the reduced-velocity range between
the synchronization branches, which corresponds to white regions in the amplitude response
curves shown in Fig. 4.4, with the exception of the regime close to the lower and upper
boundaries of the FIV response. More specifically, the entire range of Ur (viz., Ur = 6–14)
is associated with the non-synchronization branch for the case of AR = 0.75 (see Fig. 4.4
(a)). For AR = 1 and 1.5, the non-synchronization branch occurs primarily between the
1:2 and 1:3 synchronizations, viz., Ur = 12–18 as is evident on a perusal of Figs. 4.4 (b)–
(c). A non-synchronization branch does not present for AR = 2 as can be seen in Fig. 4.4
(d). From these considerations, it is evident that the non-synchronization branch in the
amplitude response can also exist over a large range of Ur—as a result, it is important to
investigate the dynamical characteristics corresponding to these regimes.

Analysis of nonlinear dynamical system

Figures. 4.13–4.15 exhibit some statistical quantities in the non-synchronization branch;
namely, the power spectra of the transverse coefficient CL (top panel), as well as the time
series, phase portraits and the Poincaré sections of CL at three representative reduced
velocities for AR = 0.75, 1 and 1.5.

A perusal of Fig. 4.13 (a) shows that the power spectra of CL in the non-synchronization
branch for an elliptical cylinder-plate assembly with AR = 0.75 is simple; namely, it is
composed of a primary frequency (largest peak with a value around fn) and a secondary
frequency (lower peak) with a value which increases from fn to 2fn as Ur increases from 7
to 13. These two frequency components correspond to the horizontal dark region and the
oblique lighter region over the reduced-velocity range as is seen in Fig. 4.6 (b). It is this
increasing secondary frequency with Ur that results in the absence of a synchronization
between the structural oscillations and the vortex shedding in this case. In Figs. 4.13 (bi),
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Figure 4.13: Quantities of interest associated with the non-synchronization branch for an
elliptical cylinder-plate assembly with AR = 0.75. (a) Power spectra (normalized by the
maximum power) of CL over Ur = 7–13. (i) Time series of CL; (ii) phase portraits CL-C

′
L;

and, (iii) Poincaré sections at three reduced velocities: namely, (b)–(d) Ur = 11, 12 and
13. The amplitude envelopes of the time series are shown as red curves.
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Figure 4.14: Quantities of interest associated with the non-synchronization branch for an
elliptical cylinder-plate assembly with AR = 1. (a) Power spectra (normalized by the
maximum power) of CL over Ur = 12–18. (i) Time series of CL; (ii) phase portraits CL-C

′
L;

and, (iii) Poincaré sections at two reduced velocities: namely, (b)–(c) Ur = 14 and 17. The
amplitude envelopes of the time series are shown as red curves.
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Figure 4.15: Quantities of interest associated with the non-synchronization branch for an
elliptical cylinder-plate assembly with AR = 1.5. (a) Power spectra (normalized by the
maximum power) of CL over Ur = 13–18. (i) Time series of CL; (ii) phase portraits CL-C

′
L;

and, (iii) Poincaré sections at two reduced velocities: namely, (b)–(c) Ur = 14 and 17. The
amplitude envelopes of the time series are shown as the red curves.
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(ci) and (di), the time series of CL exhibits a beating phenomenon, which is a character-
istic feature of the non-synchronization branch. The corresponding phase portrait CL-C

′
L

is composed of multiple interleaved orbits, rather than one clear-cut limit cycle as in a
synchronization branch. For example, the slow beating in Fig. 4.13 (bi) is reflected in the
presence of a wide loop in the corresponding CL-C

′
L plane in Fig. 4.13 (bii). In contrast,

the more rapid beating in Figs. 4.13 (ci) and (di) correspond to the donut-shaped closed
curves in the phase portraits (see Figs. 4.13 (cii) and (dii)) and in either the partially
opened or closed ring of points in the Poincaré sections of CL evident on examination of
Figs. 4.13 (ciii) and (diii), respectively.

Useful information on the topological characteristics of the trajectories in the phase
plane can be obtained using Poincaré maps [98]. For example, in Fig. 4.13 (ciii), the
Poincaré section for CL(t) consists of seven point clusters—these correspond to seven
periodic-doubling oscillations (viz., the pattern of beating repeats itself over seven os-
cillation cycles). By contrast, the random distribution of points in the Poincaré sections
of CL(t) exhibited in Figs. 4.13 (biii) and (diii) are indicative of more chaotic (rather than
quasi-periodic) motions.

In the non-synchronization branch of the circular cylinder-plate assembly, the power
spectra of CL(t) shown in Fig. 4.14 (a) exhibit a secondary frequency at f/fn = 2 (second
harmonic) for Ur = 12 (lower end of the non-synchronization branch coinciding roughly
with the upper end of the 1:2 synchronization branch)—the power in the second harmonic
decreases and that in the third harmonic increases as Ur increases from 12 to 18. Note that
Ur = 18 is the upper end of the non-synchronization branch which coincides roughly with
the lower end (onset) of the 1:3 synchronization branch. In the range of Ur = 12–18, the
second and third harmonics are present and all the higher-order harmonics are essentially
negligible as seen in Fig. 4.14 (a). At Ur = 14, the beating in the CL(t) is irregular,
which leads to a complex set of closed and intersecting loops in the phase portrait and
a complex distribution of points in the Poincaré section (see Figs. 4.14 (bii) and (biii),
respectively). At Ur = 17, the amplitude envelope repeats over a temporal duration
of five oscillation cycles—the time variations of CL are strongly non-sinusoidal and the
corresponding phase portrait and Poincaré map are complex and irregular (see Figs. 4.14
(cii) and (ciii), respectively).

The power spectra of CL(t) for an elliptical cylinder-plate assembly with AR = 1.5 is
displayed in Fig. 4.15 (a) for Ur = 13–18 associated with the non-synchronization branch.
These power spectra are complex, exhibiting multiple frequency peaks—these frequency
peaks include harmonics of the fundamental frequency, as well as non-harmonics. At the
upper end of the non-synchronization branch (Ur = 18), a prominent frequency in the
power spectrum of CL(t) is associated with the third harmonic (viz., f/fn = 3)—the
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Figure 4.16: Four consecutive oscillation cycles in the time series of Y (black curve) and
CL (red curve) for an elliptical cylinder-plate assembly with AR = 1.5 at Ur = 14. The
red dashed curves delineate the amplitude envelope of CL.

upper end of the non-synchronization branch coincides approximately with the lower end
(onset) of the 1:3 synchronization branch. More precisely, the power level associated with
the third harmonic here is comparable to that of the fundamental frequency. Fig. 4.15 (bi)
shows the presence of a periodic beating in the CL(t) at Ur = 14—here, the beating period
is three times that of the oscillation period—the phase portrait exhibits three closed and
intersecting orbits (see Fig. 4.15 (bii)). However, this highly non-sinusoidal waveform leads
to a random point-set topology in the associated Poincaré section displayed in Fig. 4.15
(biii)—interestingly, there are more than three points in this Poincaré section. By contrast,
the beating in the time series of CL at Ur = 17 is very irregular and does not yield a well-
defined amplitude envelope (see Fig. 4.15 (ci)). Indeed, the temporal oscillations of CL

appear to be chaotic and this is supported by the associated phase portrait and Poicaré
section exhibited in Figs. 4.15 (cii) and (ciii), respectively.

Aperiodic wake patterns

The vortex-shedding mode associated with the observed beating of CL for an elliptical
cylinder-plate assembly with AR = 1.5 at Ur = 14 (in the non-synchronization branch
that lies between the 1:2 and 1:3 synchronizations) is investigated here. Using the division
method of successive cycles in Section 3.5, four consecutive oscillation cycles (labelled
cycle 1, 2, 3, and 4 in Fig. 4.16) have been identified in the time series of Y . Next, a
delineation of the amplitude envelope in the CL(t) demonstrates that the beating pattern
in this case repeats after every three oscillation cycles. Fig. 4.17 displays the corresponding
instantaneous vorticity fields for the temporal duration of the four cycles.
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Figure 4.17: Instantaneous vorticity fields over four consecutive oscillation cycles (labelled
cycle 1, 2, 3, and 4) used for the vortex-shedding analysis associated with the three-period
beating in Fig. 4.16. 149



A careful perusal of Fig. 4.17 (a) shows that there are four vortices shed in the first
cycle—these vortices consist of a single negative vortex -SI and a group of three vortices SI ,
SII , and -SII (delineated within the dashed-lined black box). In consequence, the vortex-
shedding pattern is identified as a “T+S” mode. Note that the elongated vortex SI and
the circular vortex SII remain attached to one another as they are shed from the structure.
The vortex-shedding pattern in the second cycle is similar to that in the first cycle—more
precisely a group of three vortices -SI , -SII , and SI and a single positive vortex SII are shed
in the second cycle. Again, two vortices with the same sign in the vortex group (namely,
-SI and -SII) are connected to each other as they are shed (initially) from the structure.
In marked contrast, the third cycle in Fig. 4.17 (c) is seen to exhibit wake dynamics with
greater complexity—six vortices are shed in total. More specifically, these six vortices
consist of two distinct and anti-symmetric groups consisting of three vortices each. The
vortex-shedding pattern of the fourth cycle is identical to that of the first cycle. This
observation is consistent with the 3-period repetitive beating identified previously from a
perusal of CL(t) in Fig. 4.16.

4.3 FIV Occurred in an Unlimited Range of Ur

This section analyzes the unlimited FIV of various elliptical cylinders (0.5 ≤ AR ≤ 2)
with a splitter plate of LSP/D = 0.75, in terms of the vibration responses, the branching
behaviors and the dynamical characteristics in synchronized and unsynchronized regimes.
Furthermore, the free oscillation of an elliptical cylinder with a much longer splitter plate
of LSP/D = 2.5 is discussed.

4.3.1 Vibration Characteristics

Figure 4.18 compares the free oscillation induced on an elliptical cylinder-plate assembly for
various aspect ratios (AR = 0.5–2) and for two lengths of splitter-plate (LSP/D = 0.75 and
2.5)—the quantities of interest displayed here include the maximum amplitude response
Ymax, the frequency ratio f ∗

Y /fn, and the root-mean-square lift CL,rms and the mean drag
CD,mean exerted on the assembly by the fluid. An examination of this figure shows that all
the assemblies experience an unlimited FIV in which Ymax generally increases with Ur. The
analysis in Section 4.2 shows that the FIV mode (viz., whether self-limited or unlimited) is
determined primarily by the splitter-plate length. In consequence, in this section we still
focus on the influence of aspect ratio on FIV of elliptical cylinder-plate assembly where
the fixed splitter-plate length has been chosen to provoke an unlimited FIV.
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Figure 4.18: Effect of aspect ratio AR (0.5 ≤ AR ≤ 2.5) on the vibration response of an
elliptical cylinder-plate assembly with LSP/D = 0.75 and 2.5. (a) The maximum transverse
displacement Ymax; (b) the frequency ratio f ∗

Y /fn; (c) the root-mean-square lift coefficient
CL,rms; and, (d) the mean drag coefficient CD,mean as a function of Ur.
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For the assembly with LSP/D = 0.75, we have investigated six aspect ratios in the
range from 0.5 to 2 (see Fig. 4.18). Similar to the limited FIV, no oscillation occurs in
the assembly with the two smallest aspect ratios (viz., AR = 0.5 and 0.67)—indeed, the
amplitude response, the characteristic oscillation frequency and the lift coefficient have
values near zero (see Figs. 4.18 (a)–(c)) and the streamwise drag force is constant with
respect to Ur (viz., CD,mean ≈ 0.83 and 0.92 for AR = 0.5 and 0.67, respectively, on
examination of Fig. 4.18 (d)). Even so, the dynamical behavior of the assembly for AR =
0.5 slightly differs from that for AR = 0.67—the frequency responses in Fig. 4.18 (b) show
that f ∗

Y /fn ≈ 0 for AR = 0.5 over the entire reduced-velocity range Ur = 2–30, whereas
that for AR = 0.67 exhibits a rapid increase to f ∗

Y /fn ≈ 1 over Ur = 5–6.

For aspect ratios AR ≥ 0.75, an unlimited oscillation can be induced in the elliptical
cylinder-plate assembly. An increasing value of AR provokes oscillations in two aspects:
namely, the onset of FIV occurs at lower values of Ur (e.g., the onset is Ur = 9, 6.5, 6 and
5 for AR = 0.75, 1, 1.5 and 2, respectively) and the maximum transverse displacement
increases with AR as is evident on a careful perusal of the amplitude responses in Fig. 4.18
(a). In stark contrast, the influence of the aspect ratio on the frequency response appears
to be less obvious—indeed, it can be seen that f ∗

Y /fn varies only over a small range from
0.8 to 0.95 for AR varying from 0.75 to 2 (cf. Fig. 4.18 (b)). In Fig. 4.18 (c), the lift force
acting on the assembly attains a maximum value around the onset velocity and gradually
decreases with Ur. Moreover, CL,rms is sensitive to the changes in the aspect ratio as
evidenced by the lift curves in Fig. 4.18 (c). More specifically, the maximum lift coefficient
increases by approximately a factor of three (e.g., from 0.5 to 1.4) as AR increases from
0.75 to 1, While this increase becomes slower (e.g., from 1.4 to 2.3) for AR from 1 to 2.
Unlike the lift force, the maximum drag force increases proportionally with AR: namely,
the maximum value of CD,mean is 1, 1.3, 2 and 2.6 for AR = 0.75, 1, 1.5 and 2, respectively
(cf. Fig. 4.18 (d)). Finally, it is noted that CD,mean is constant over Ur = 2–30.

The unlimited FIV response of an elliptical cylinder-plate assembly with a larger plate
length LSP/D = 2.5 is also exhibited in Fig. 4.18 for AR = 1 and 1.5. The effect of AR on
the maximum transverse displacement, the dominant oscillation frequency and fluid forces
acting on the assembly are similar to those for LSP/D = 0.75. The major difference is the
higher onset of FIV (viz., Ur = 12 and 9 for AR = 1 and 1.5, respectively) and the lower
dominant oscillation frequency (f ∗

Y /fn = 0.43 and 0.45 for AR = 1 and 1.5, respectively)
for the case LSP/D = 2.5. The analysis conducted here implies that increasing AR leads to
a slight increase in the f ∗

Y /fn, whereas increasing LSP/D has precisely the opposite effect,
namely, that of significantly reducing f ∗

Y /fn.

Following from this analysis and some results reported in Section 4.2, the influence of
the aspect ratio of an elliptical cylinder-plate assembly on their self-limited or unlimited
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FIV response can be summarized as follows. A self-limited FIV in the assembly increases
with AR at least over the range of AR = 0.75–1.5. However, the effective reduced-velocity
range over which a self-limited FIV occurs is reduced for AR = 2. In contrast, for the
unlimited FIV in the assembly, both the amplitude of the structural oscillation and the
effective reduced-velocity range increase monotonically with AR—this effect is independent
of the splitter-plate length provided, of course, the length is large enough to provoke an
unlimited FIV response in the assembly.

4.3.2 Branching Behavior

The branching behavior of the unlimited FIV provoked on an elliptical cylinder-plate assem-
bly with LSP/D = 0.75 and aspect ratios ranging from 0.75 to 2 are exhibited in Fig. 4.19.
The corresponding power spectral density (PSD) isopleths of the transverse displacement
Y and the lift coefficient CL as a function of Ur and the normalized frequency—either
fY /fn or fCL

/fn—are displayed in Figs. 4.20 and 4.21, respectively.

For the oblate (AR < 1) elliptical cylinder-plate assembly with AR = 0.75, it is
seen that only one odd-multiple synchronization is present within the unlimited oscilla-
tion range—more specifically, f ∗

Y /f
∗
CL

= 1:3 at Ur = 15–16.5 whose onset is signalled by
a “kink” in the amplitude response (delineated by the red box in Fig. 4.19 (a)). As a
consequence, this assembly experiences a pure galloping response. The PSD isopleths of
Y and CL exhibit a simple form. More precisely, the dominant frequency in the transverse
displacement oscillation occurs at fY /fn = 0.8 in the galloping regime (see Fig. 4.20 (b)),
whereas the lift coefficient exhibits an evident third-harmonic at fCL

/fn = 2.4 to give a
1:3 synchronization branch. Moreover, the harmonic frequencies in the oscillations of lift
coefficient gradually increase to higher order thereafter with Ur as is evident from a perusal
of Fig. 4.21 (b). From this behavior, it is reasonable to suggest that a 1:5 synchronization
branch may be present in the galloping regime at larger values of the reduced velocity than
considered herein.

In comparison to an oblate elliptical cylinder-plate assembly, a circular cylinder-plate
assembly exhibits more synchronization branches in the amplitude response that occur over
a wider reduced-velocity range. More precisely, these regimes correspond to f ∗

Y /f
∗
CL

= 1:2,
1:3 and 1:5 at Ur = 11–11.5, 15–20 and 29–30, respectively. The onset of each branch
is signalled by a “kink” in the amplitude response as is evident from an examination of
Fig. 4.19 (b). Note that there are small oscillations with Y/D ≈ 0.05 at about Ur = 6—this
corresponds to the initial stage of a VIV that has not attained “lock-in” (see Section 3.4). In
consequence, the unlimited FIV response of a circular cylinder-plate assembly still consists
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Figure 4.19: Branching behavior of an unlimited FIV response provoked on an elliptical
cylinder-plate assembly of various aspect ratios and a fixed splitter-plate length LSP/D =
0.75. The maximum transverse displacement Ymax (left vertical axis) and the root-mean-
square lift coefficient CL,rms (right vertical axis) are plotted as a function of Ur for (a)–(d)
AR = 0.75, 1, 1.5 and 2. The synchronization branches are shaded in different colours.
“Kinks” in the amplitude response are delineated by red boxes.
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Figure 4.20: (a) The maximum transverse displacement Ymax as a function of Ur for an
elliptical cylinder-plate assembly with AR = 0.75–2 and LSP/D = 0.75. PSD (logarithmic
scale) of Y exhibited as a function of fY /fn and Ur for (b)–(e) AR = 0.75, 1, 1.5 and 2.
Other notations used here are the same as that in Fig. 4.5.
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Figure 4.21: (a) The normalized amplitude responses and (b)–(e) PSD of CL for AR =
0.75–2 and LSP/D = 0.75. Other notations used here are the same as that in Fig. 4.5.
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primarily of galloping. In addition to the fundamental frequency of f ∗
Y /fn ≈ 0.85, a third

harmonic gradually emerges at Ur ≥ 16 in the power spectrum of Y as is evident in Fig. 4.20
(c). In contrast, the CL power spectrum exhibits a more complex harmonic structure—
only odd harmonics are present in the odd (1:3 and 1:5) synchronization branches, whereas
both odd and even harmonics are present in the even (1:2) synchronization branch.

For a prolate (AR > 1) elliptical cylinder-plate assembly with aspect ratios of AR = 1.5
and 2, the most striking branching characteristic is that a 1:1 synchronization branch (i.e.,
“lock-in”) corresponding to the VIV regime is present at a lower value of the reduced
velocity. This branch is succeeded at larger values of Ur by several high-order synchroniza-
tion branches with f ∗

Y /f
∗
CL

= 1:2, 1:3, 1:4 and 1:5 in the galloping regime. Consequently,
these assemblies experience an integrated VIV and galloping response. As is evident from
Fig. 4.19 (c), the five synchronization branches are separated from each other. Further-
more, the onset of the 1:2, 1:3 and 1:4 synchronization branches is signalled by a “kink”
in the amplitude response. For the assembly with AR = 2 shown in Fig. 4.19 (d), the
first three synchronization branches are integrated with one another without any clear-cut
boundaries between them (viz., f ∗

Y /f
∗
CL

= 1:1, 1:2 and 1:3 at Ur = 6–7, 10–13 and 14–21
respectively). Consequently, two transition regions are present, namely, Ur = 7–10 between
1:1 and 1:2 synchronizations and Ur = 13–14 between 1:2 and 1:3 synchronizations. These
transition regimes are identified by their vortex-shedding patterns which will be discussed
in greater detail in Section 4.3.3.

Another interesting branching behavior for a prolate (AR > 1) elliptical cylinder-plate
assembly is that the 1:3 synchronization branch appears to be further split into two parts.
The first sub-branch—Ur = 15–17 for AR = 1.5 and Ur = 14–17 for AR = 2–is character-
ized by three properties, namely, a near constant maximum transverse displacement Ymax

as a function of Ur, the presence of a single frequency in the Y power spectrum, and the
existence of a number of weaker and lower-order harmonic components in the CL power
spectrum. In marked contrast, the second sub-branch (viz., Ur = 17–22 for AR = 1.5 and
Ur = 17–21 for AR = 2) is characterized by an increase in the Ymax as a function of Ur,
the presence of a third harmonic in the Y power spectrum, and the existence of stronger
and higher-order harmonic components in the CL power spectrum. The subdivision of the
1:3 synchronization branch is closely associated with the transition in the vortex-shedding
patterns in this regime—this will be investigated in greater detail in Section 4.3.3.

4.3.3 Periodic Oscillation in Synchronization Branch

This section investigates the influence of aspect ratio on the dynamical characteristics and
the vortex-shedding models within the synchronization branches in the amplitude response
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of an elliptical cylinder-plate assembly. To this purpose, we analyze the behavior of the
oscillatory time series of the transverse displacement Y (t) and lift coefficient CL(t).

“Lock-in” regime

Figure 4.22 compares the dynamic characteristics and vortex-shedding patterns in the 1:1
synchronization branch for an elliptical cylinder-plate assembly with AR = 1.5 and 2 at
Ur = 6, as well as in the transition regime that occurs between the 1:1 and 1:2 synchroniza-
tion branches for the assembly with AR = 2 at Ur = 7–8. As shown in Figs. 4.22 (a)–(c),
the transverse displacement time series Y (t) consists of a periodic sinusoidal variation with
one fundamental frequency—this is reflected in the presence of a circular limit cycle in the
Y -Y ′ phase plane. Increasing the value of AR results in a non-sinusoidal waveform for the
CL(t) and this manifestation is associated with the more complex shapes of the phase por-
traits of CL(t) (red curve in Fig. 4.22 (bii) for AR = 2 at Ur = 6). Moreover, the increasing
number of harmonic components present in the power spectra of CL(t) with increasing AR
and/or Ur (cf. Figs. 4.22 (aiv), (biv), and (civ)) are reflected in the increasing complexity
of the corresponding Lissajous figures that exhibit increasingly complex loop structures
with increasing AR (cf. Figs. 4.22 (aiii) and (biii) for AR = 1.5 and 2, at Ur = 6) and/or
Ur (cf. Figs. 4.22 (biii) and (ciii) at Ur = 6 and 8, for AR = 2). In the transition regime
between the 1:1 and 1:2 synchronization branches for AR = 2 at Ur = 8, the temporal
waveform of CL(t) is noticeably non-sinusoidal owing to the presence of a larger number
of stronger harmonics in the corresponding power spectrum.

A careful inspection of Figs. 4.22 (d) and (e) shows that the vortex-shedding pat-
tern associated with the 1:1 synchronization branch is a “2S” wake mode consisting two
counter-rotating vortices (SI and -SI) that are shed alternately during one oscillation cy-
cle. Furthermore, the vortex shape is strongly dependent on the aspect ratio; namely, the
elliptically-shaped vortices are shed for AR = 1.5, whereas the vortices shed for AR = 2
consist of a vortex core with a trailing “tail” (marked using a black circle in Fig. 4.22 (e)).

In the transition regime between the 1:1 and 1:2 synchronization branches for AR = 2,
the vortex shedding exhibits some new characteristic features. In Fig. 4.22 (f) for AR = 2
and Ur = 7, it is evident that a large positive vortex SI is first shed at t = 0 (beginning of
an oscillation cycle of period T ), followed by the shedding of a small slender vortex with
the same sign (designated here as TI) at t = T/4—this vortex appears to be the tail of the
next positive vortex. A similar vortex-shedding pattern occurs in the next half oscillation,
except that the shed vortices have a negative sign (-SI and -TI). The wake flow dynamics
exhibited in Fig. 4.22 (g) for AR = 2 and Ur = 8 is different—the vortex-shedding pattern
here involves a large vortex and a small “tail” vortex with the opposite sign that are shed

158



Figure 4.22: Dynamical characteristics of the “lock-in” regime for an elliptical cylinder-
plate assembly with (a) AR = 1.5 and (b) AR = 2 at Ur = 6 and of the transition regime
between the 1:1 and 1:2 synchronizations for (c) AR = 2 at Ur = 8. The evolution of
instantaneous vorticity fields during one oscillation cycle T is displayed for (d) AR = 1.5
at Ur = 6; (e) AR = 2 at Ur = 6; (f) AR = 2 at Ur = 7; and, (g) AR = 2 at Ur = 8.
The “2S” and “quasi-2S” modes are identified in the “lock-in” and transition regimes,
respectively. 159



together as a pair—more precisely, (-SI , TI) and (SI , -TI) are shed in one oscillation cycle.
Moreover, the large vortices -SI and SI are not elliptically shaped as those in Fig. 4.22
(f), but instead have a long tail. This dramatic change in the vortex-shedding pattern is
only due to the marginally greater value of the reduced velocity Ur = 8 in Fig. 4.22 (g). It
is evident that in the transition regime, four vortices are shed in total in each oscillation
cycle—these vortices have the characteristic vortex-tail structural pattern where the “tail”
vortex is smaller and possesses a weaker vorticity than that of the primary vortex. In view
of this, we identify the wake mode in the transition regime as a “quasi-2S” mode.

Odd-multiple synchronization in the galloping regime

Figures 4.23–4.24 display the dynamical characteristics and wake modes associated with
the 1:3 synchronization branch for elliptical cylinder-plate assembly with aspect ratios in
the range AR = 0.75–2. In particular, two representative values of the reduced velocity
(i.e., Ur = 16 and 20) are selected for AR = 1.5 and 2, which correspond to the two
sub-branches of the 1:3 synchronization branch.

To begin, we study the influence of the aspect ratio on the 1:3 synchronization branch
at Ur = 16. As evident from an inspection of Figs. 4.23 (a)–(c) and (e), increasing AR
from 0.75 to 2 results in a more complex time variation in CL(t), a more irregular phase
portrait of CL-C

′
L, and in the presence of a stronger third harmonic in the power spectrum

of CL. In marked contrast, increasing the aspect ratio of the assembly has little influence on
the comparable characteristics for the transverse displacement Y (t). The corresponding
vortex-shedding patterns are displayed in Figs. 4.24 (a)–(d). A perusal of these figures
shows that for all values of the aspect ratio studied herein, the vortex-shedding pattern
of the 1:3 synchronization branch corresponds to a “3×(2S)” wake mode. However, we
note that some of the vortices shed from the assembly transition from an oblong shape (for
AR ≤ 1) to a more elongated shape (for AR > 1). More precisely, with increasing AR,
the vortices SII and -SIII (marked by the black box in Figs. 4.24 (c) and (d)) shed from
the assembly for AR = 1.5 and 2 become more slender and sinuous with increasing AR.

Next, we investigate the influence of the reduced velocity for the elliptical cylinder-
plate assembly with AR = 1.5 and 2. As is evident on examination of Figs. 4.23 (d) and
(f), increasing Ur from 16 to 20 results in the emergence of a strong third harmonic (with
an amplitude comparable to that of the fundamental frequency) in the power spectrum
of CL. As a result, the corresponding CL(t) is characterized by multiple peaks of various
amplitudes and the associated phase portrait CL-C

′
L exhibits a complex loop structure

with the various loops intersecting with one another. A careful inspection of Fig. 4.24 (e)
shows that the vortex-shedding pattern adheres to a “3×(2S)” wake mode—however, the
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Figure 4.23: Dynamical characteristics of the 1:3 synchronization branch for an elliptical
cylinder-plate assembly with (a) AR = 0.75, (b) AR = 1, (c, d) AR = 1.5, and (e, f)
AR = 2 at two values of reduced velocity (viz., Ur = 16 and 20).
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Figure 4.24: Instantaneous vorticity field over one oscillation cycle T in the 1:3 synchro-
nization branch for an elliptical cylinder-plate assembly with (a) AR = 0.75, (b) AR = 1,
(c) AR = 1.5 and (d, e) AR = 2 at Ur = 16 and 20. The 1:3 synchronization branch is
associated with a “3×(2S)” mode. 162



vortices here are more strongly oriented in the “vertical” direction and consist of larger
and more slender vortices (SII , -SIII) owing to the larger value of the reduced velocity.

The vortex-shedding pattern associated with an elliptical cylinder-plate assembly re-
flects the nature of the oscillatory response of the structure. To this point, the maximum
transverse displacement increases significantly with AR for a given fixed reduced velocity
(e.g., Ymax/D = 0.6, 1, 1.6 and 2 for AR = 0.75, 1, 1.5 and 2, respectively, at Ur = 16).
This is probably due to the shedding of more slender vortices at the larger values of the as-
pect ratio—these vortices are shed when near the maximum and minimum of the transverse
displacement in each oscillation cycle (viz., the vortex SII is shed at t = 3T/8 just before
the occurrence of the positive peak and the vortex -SIII is shed at t = 7T/8 just before
the occurrence of the negative peak in the oscillation cycle in Fig. 4.24 (e)). Furthermore,
the value of Ymax is almost constant in the first sub-branch of the 1:3 synchronization,
whereas Ymax increases with Ur in the second sub-branch. This is true for an elliptical
cylinder-plate assembly with AR = 1.5 and 2. This can be explained as follows. For these
two aspect ratios, the orientation of the slender vortices shed by the assembly transitions
from an oblique orientation to an almost vertical orientation (viz., parallel to the transverse
direction) as the reduced velocity increases. The near constant value of Ymax (in the first
sub-branch) will accordingly begin to increase with Ur after a critical value of the reduced
velocity has been exceeded. This occurs at Ur = 17 for AR = 1.5 and 2. As a result,
the 1:3 synchronization branch is divided into two characteristic sub-branches as noted
previously.

Figure 4.25 exhibits the dynamical characteristics of the 1:5 synchronization branch
for the elliptical cylinder-plate assembly with various aspect ratios. It is seen that for
the CL power spectrum, the fifth harmonic is significant and the seventh harmonic is
evident—this more complex power spectrum is associated with the more complex temporal
variations in CL(t) and the more complex system of loops in the associated phase portrait
CL-C

′
L. An increase in AR has a similar effect on the dynamical characteristics in the

1:5 synchronization branch as those in the 1:3 synchronization branch described above.
Correspondingly, the wake mode is identified as “5×(2S)”.

Even-multiple synchronization in the galloping regime

Figures 4.26–4.27 present the 1:2 and 1:4 synchronization branches for an elliptical cylinder-
plate assembly with AR = 1, 1.5 and 2 at Ur = 11 and Ur = 24. These figures also exhibit
the transition regime between the 1:2 and 1:3 synchronizations branches for AR = 2 at
Ur = 13–14. The most remarkable aspect of an even-multiple synchronization is that,
in contrast to anti-symmetric odd-multiple synchronization branches described above, the
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Figure 4.25: Dynamical characteristics of the 1:5 synchronization branch for an elliptical
cylinder-plate assembly with (a)–(c) AR = 1, 1.5 and 2 at Ur = 29 and 30. The vortex-
shedding pattern over one oscillation cycle T is exhibited in (d)–(e) where a “5×(2S)”
mode is identified. 164



Figure 4.26: Dynamical characteristics of the 1:2 synchronization branch for an elliptical
cylinder-plate assembly with (a)–(c) AR = 1, 1.5 and 2 at Ur = 11. The transition regime
between the 1:2 and 1:3 synchronizations for the assembly with (d) AR = 2 at Ur = 14.
Instantaneous vorticity field during one oscillation cycle for (e)–(g) AR = 1, 1.5 and 2 at
Ur = 11; and, AR = 2 at (h)–(i) Ur = 13 and 14. The “2×(2S)” and “quasi-2×(2S)”
modes are supported by the 1:2 synchronization and the transition regime, respectively.
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Figure 4.27: Dynamical characteristics of the 1:4 synchronization branch for an elliptical
cylinder-plate assembly with (a)–(b) AR = 1.5 and 2 at Ur = 24 (c)–(d) Instantaneous
vorticity field during one oscillation cycle T . The 1:4 synchronization branch supports a
“4×(2S)” mode.
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characteristic plots of the lift coefficient and flow patterns are asymmetric. This is evident
from the asymmetric CL(t) about the CL = 0 line, the asymmetric phase-plane portraits
CL-C

′
L, and the asymmetric Lissajous figures Y –CL about the origin. Other aspects of

the dynamical characteristics and flow dynamics of the even-multiple synchronizations are
similar to those described in the odd-multiple synchronizations. For example, increasing
AR produces higher and stronger harmonic frequency components in the power spectrum
of CL(t), but has a negligible effect in that of the transverse displacement. In addition,
the vortex-shedding modes for the 1:2 and 1:4 synchronization branches are “2×(2S)” (see
Figs. 4.26 (e)–(g)) and “4×(2S)” (see Figs. 4.27 (c)–(d)), respectively.

The transition regime between the 1:2 and 1:3 synchronizations for an elliptical cylinder-
plate assembly with AR = 2 occurs over Ur = 13–14—this is determined following a careful
analysis of the shape and number of vortices shed over one oscillation cycle. More precisely,
at Ur = 13, a “2S” mode (vortices SI and -SI) is observed in the first part of the oscillation
cycle. In the second part, an unusual flow pattern occurs: namely, the negative vortex -SII

is followed by a same-signed “tail” vortex (-TI) and, subsequently, this is accompanied by
the shedding of a positive vortex SII (see Fig. 4.26 (h)). Consequently, five vortices are
shed during one oscillation cycle at Ur = 13. This number is midway between the four
vortices (i.e., “2×(2S)”) shed in the 1:2 synchronization branch and the six vortices (i.e.,
“3×(2S)”) shed in the 1:3 synchronization branch. At Ur = 14, the “2S” wake mode is
shed twice in the first part of the oscillation cycle, which is followed in the second part
by the shedding of a positive elliptically-shaped vortex SIII and a negative tail vortex -TI

(see Fig. 4.26 (i)). Although the total number of vortices shed during one oscillation cycle
here is six, the vorticity associated with the last vortex is smaller than that in the 1:3
synchronization branch—so, the transition branch occurs at Ur = 14.

In summary, the synchronization branch between the structural oscillation and the
vortex shedding from the elliptical cylinder-plate assembly exhibit highly periodic dynam-
ical characteristics—these can be either anti-symmetric (odd-multiple synchronizations)
or asymmetric (even-multiple synchronizations). For an unlimited FIV of the amplitude
response of an elliptical cylinder-plate assembly, the vortex shedding in a synchronization
branch generally conforms to an “n×(2S)” wake mode where n is the ratio of the vortex-
shedding to the vibration frequency. The vortices in this wake mode are alternately shed
from one side of the assembly to the other. However, it is noted that “tail” vortices can oc-
cur in the transition regime between two synchronization branches. In marked contrast, the
wake modes observed in the synchronization branches of a self-limited FIV of an elliptical
cylinder-plate assembly are generally more complex (e.g., “T+S”, “P+S” in Section 4.2)
compared to those observed in an unlimited FIV of the assembly.
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4.3.4 Aperiodic Behavior in Non-Synchronization Branch

In Fig. 4.19, it is evident that there exist regions between the synchronization branches
in the amplitude response of an elliptical cylinder-plate assembly. These regions cor-
respond to the non-synchronization branches in the galloping regime. For AR ≤ 1.5,
the non-synchronization branches account for a considerable proportion in the amplitude
response—the reduced-velocity range associated with these branches is comparable to or
even greater than that for the synchronization branches.

Figure 4.28 displays the power spectra of the lift coefficient CL for reduced veloci-
ties in the range 6 ≤ Ur ≤ 30 for an elliptical cylinder-plate assembly with various as-
pect ratios (AR = 0.75–2). These power spectra provide a comparison of the frequency
content of the CL power spectra associated with the synchronization (colored lines) and
non-synchronization (black lines) branches in the galloping regime. First, the assembly
with larger aspect ratio is associated with power spectra with a more complex frequency
structure—this observation applies in both the synchronization and non-synchronization
branches. Second, the frequency content is composed of a fundamental frequency and a
number of odd (e.g., third and fifth) harmonics in the odd-synchronization branches (e.g.,
1:1, 1:3, and 1:5). In contrast, both even and odd (e.g., second, third, fourth and fifth)
harmonics of the fundamental frequency are present in the even-synchronization branches
(e.g., 1:2, 1:4). Additionally, the CL power spectra of the synchronization branch are essen-
tially invariant (unchanged) as a function of Ur. In stark contrast, the CL power spectra
varies with Ur in the non-synchronization branch—ever higher-order harmonics emerge
with increasing Ur as is evident on a careful perusal of Figs. 4.28 (a) and (b).

The harmonics in the CL power spectra in two successive synchronization branches
are seen to evolve in the non-synchronization branch lying between these two branches
(viz., a particular harmonic in the CL power spectrum for the lower-order synchronization
transitions to an associated harmonic in that for the next higher-order synchronization
in the intervening non-synchronization branch). For example, in an elliptical cylinder-
plate assembly with AR = 1.5 shown in Fig. 4.28 (c), the fundamental frequency in the
CL power spectrum of the 1:1 synchronization branch evolves smoothly through the non-
synchronization branch at Ur = 9–10 (see the single grey dashed line) to give the associated
second harmonic in the CL power spectrum of the 1:2 synchronization branch. Furthermore,
the second and third harmonics in the CL power spectrum of the 1:3 synchronization
branch appears to both contribute to an associated harmonic in that of the 1:4 and 1:5
synchronization branches as it undergoes a smooth transition in the frequency content of
the power spectra associated with the intervening non-synchronization branches (see the
pair of dashed gray lines in Fig. 4.28 (c)). In marked contrast, for an elliptical cylinder-
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Figure 4.28: The normalized power spectra of the lift coefficient CL for reduced velocities
in the range from 6 to 30 for an elliptical cylinder-plate assembly with (a)–(d) AR = 0.75,
1, 1.5 and 2.
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plate assembly with AR = 2 displayed in Fig. 4.28 (d), there is no non-synchronization
branch between the 1:1, 1:2 and 1:3 synchronization branches.

The preceding analysis demonstrates that the frequencies in the CL power spectrum
corresponding to a non-synchronization branch are not necessarily harmonics of a funda-
mental frequency—these frequencies are a signature of the underlying aperiodic dynamics
in the branch. The typical phenomenon associated with aperiodic dynamics is the presence
of an amplitude modulation (or “beating”) in the CL(t). Fig. 4.29 provides an example of
the aperiodic characteristics of the lift coefficient in the non-synchronization branch—the
signature of the aperiodic dynamics is evident in the CL(t), the phase portrait CL-C

′
L and

the Poincaré section for elliptical cylinder-plate assembly with various aspect ratios and
at a number of representative reduced velocities. Indeed, it is seen that the CL(t) exhibit
complex variations over a number of scales, the phase-plane portrait CL-C

′
L consists of

multiple overlapping and intersecting loops, and the Poincaré section is composed of a
complex point set (rather than simply a single point)—these characteristics are indicative
of the highly aperiodic nature of the dynamics in the non-synchronization branch.

A few cases shown in Fig. 4.29 exhibit a quasi-periodic dynamical behavior (e.g., a
period-doubling oscillation). For example, the dynamics shown in Fig. 4.29 (c) corresponds
to a period-3 beating for the amplitude of CL as is evident on inspection of the trajectory
in the phase-space portrait CL-C

′
L (similar to that seen in the periodic oscillations in the

synchronization branch) and of the presence of three clusters of points in the corresponding
Poincaré section. The dynamics displayed in Fig. 4.29 (d) is also a period-3 oscillation as
evidenced by the fact that the CL(t) repeats every three oscillation cycles. In comparison
to the CL time series exhibited in Fig. 4.29 (c), the corresponding time series in Fig. 4.29
(d) is substantially more complex—indeed, the dynamics here corresponds to a larger
value of the aspect ratio (i.e., AR = 1.5) and of the reduced velocity (i.e., Ur = 23).
The greater complexity in the time series for this case is reflected also in the greater
complexity in the associated phase-plane portrait CL-C

′
L and in a greater number of point

clusters in the associated Poincaré section. The example shown Fig. 4.29 (f) is a period-5
oscillation. The CL time series here exhibits temporal variations on multiple time scales.
The remaining examples in Fig. 4.29 are associated with aperiodic dynamics which can
manifest a symmetric beating (e.g., Figs. 4.29 (ai)and (bi)), a non-symmetric beating (e.g.,
Fig. 4.29 (ei)), or a completely irregular beating without a clear-cut (discernible) amplitude
envelope (e.g., Fig. 4.29 (gi)). An increasing value of the aspect ratio and/or the reduced
velocity is associated with a more nonlinear dynamics in the non-synchronization branch.

Figure 4.30 displays the flow pattern over a number of consecutive oscillation cycles for
an elliptical cylinder-plate assembly with LSP/D = 0.75 and AR = 1.5 at Ur = 28. This
flow pattern corresponds to a period-5 oscillation. An inspection of this pattern shows that
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Figure 4.29: Dynamical characteristics in the non-synchronization branches of an elliptical
cylinder-plate assembly with LSP/D = 0.75. The dynamical characteristics consist of (i)
the time series of Y (grey lines) and CL (blue lines); (ii) phase portrait CL-C

′
L; and, (iii)

Poincaré section. The red dashed lines delineate the amplitude envelope of CL(t).
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Figure 4.30: The instantaneous vorticity field over five consecutive oscillation cycles for an
elliptical cylinder-plate assembly with LSP/D = 0.75 and AR = 1.5 at Ur = 28. This is a
period-5 oscillation. 172



the vortex shedding corresponds to an “n×(2S)” wake mode. At Ur = 28, which is located
in the non-synchronization branch between the 1:4 and 1:5 synchronization branches, n can
have a value of either four (cycles 2 and 4) or five (cycles 1, 3 and 5). A few non-elliptically-
shaped vortices are present during the vortex-shedding process (e.g., the elongated vortices
delineated within the black box). The wake mode in cycle 6 (not shown here) is identical
to that of cycle 1—this implies that a period-5 oscillation is associated with this vortex-
shedding pattern.

4.3.5 Elliptical Cylinder-Plate Assembly with a Longer Splitter-
Plate

Sections 4.3.2–4.3.4 focus on how the aspect ratio of an elliptical cylinder-plate assembly
affects the dynamical characteristics of the assembly’s unlimited FIV response. In accor-
dance to Chapter 3, a longer splitter-plate can provoke a VIV and galloping response on a
cylinder-plate assembly at small and large values of the reduced velocity, respectively. In
this section, we focus on the dynamic characteristics associated with an elliptical cylinder-
plate assembly with AR = 1 and 1.5, but with a longer splitter-plate of LSP/D = 2.5.

Figure 4.31 shows a comparison of the branching behavior of an elliptical cylinder-plate
assembly with LSP/D = 2.5 for aspect ratios of 1 and 1.5. As shown in Fig. 4.31 (a), a
“lock-in” regime and three consecutive odd-multiple (i.e., 1:3, 1:5 and 1:7) synchronization
branches that about one another in the galloping regime are observed for AR = 1. In addi-
tion, two special branches—the still branch (grey) and initial galloping branch (pink)—are
identified based on their unique dynamical characteristics (viz., the steady-state dynamics
of structure and flow for the former and the presence of wake meandering for the latter).
The corresponding PSDs of fY /fn and fCL

/fn exhibit a simple frequency structure. When
AR is increased from 1 to 1.5, the elliptical cylinder-plate assembly still exhibits a clear-cut
separation in the VIV and galloping responses. However, the branching behavior of the
amplitude response is significantly different as is evident from an examination of Fig. 4.31
(b). First, two even-multiple (i.e., 1:4 and 1:6) synchronization branches, with narrow
reduced-velocity ranges, are present in the amplitude response at about Ur = 14 and 24.
The 1:3 synchronization branch is absent for AR = 1.5. Furthermore, the synchronization
branches in this case are separated from each other. Second, the still and initial galloping
branches that are specific to the assembly with a longer splitter-plate, are absent. The cor-
responding PSDs of fY /fn and fCL

/fn are more complex than those for AR = 1, including
stronger and higher-order harmonic components in the spectrum.
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Figure 4.31: The unlimited FIV of an elliptical cylinder-plate assembly with LSP/D = 2.5
for (a) AR = 1 and (b) 1.5, in terms of the branching behavior of amplitude response and
PSD of Y and CL. Other notations used here are the same as those in Figs. 4.19–4.21.
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4.4 Mechanism Analysis

This section discusses some aspects related to the physical mechanisms underpinning cer-
tain interesting (unusual) dynamical characteristics of an elliptical cylinder-plate assembly
described above.

Figures 4.32–4.33 display in the (AR, Ur) plane the branching behavior and wake mode
of the elliptical cylinder-plate assembly experiencing the limited (LSP/D = 0.5) and
unlimited (LSP/D = 0.75) FIV. The black solid lines circle the effective range for FIV
responses, while the outside region represents the steady-state regimes. The synchronized
branches are shaded in different colors, and the unsynchronized regimes are in white. As
shown, a larger aspect ratio does not alter the nature of the dynamic response induced on
an elliptical cylinder-plate assembly. The nature of the dynamic response is determined
primarily by the length of the splitter-plate (e.g., a self-limited FIV response is provoked for
an assembly with LSP/D = 0.5, an unlimited integrated VIV-galloping response appears
for LSP/D = 0.75, and a separated VIV and unlimited galloping response is provoked for
LSP/D = 2.5. However, larger values of AR affect the branching behavior of the amplitude
response and the corresponding vortex-shedding pattern due to the significant increase in
the complexity of the frequency content in the power spectrum of the lift coefficient. In
some sense, a simultaneous increase in both AR and Ur can achieve the same effect with
respect to the FIV response of an elliptical cylinder-plate assembly.

4.4.1 Why does an elliptical cylinder-plate assembly with AR = 2
and LSP/D = 0.5 have a narrow FIV range?

The reduced-velocity range over which the limited FIV of an elliptical cylinder-plate as-
sembly occurs increases with AR (at least over the range of AR = 0.75–1.5). However,
when the aspect ratio is 2, this trend reverses—the effective Ur range becomes smaller by
a factor of roughly three compared to that for AR = 1.5.

To understand why this happens, we conduct a re-analysis of the branching behavior in
this assembly. Two limiting cases shown in Fig. 4.4, namely, the smallest and largest values
of the aspect ratio for which FIV occurs in the assembly (viz., AR = 0.75 and AR = 2), ex-
hibit a significantly narrower range of FIV response. Moreover, only a non-synchronization
and a synchronization branch are observed in the amplitude response for AR = 0.75 and 2,
respectively. In stark contrast, the branching behavior for AR = 1 and 1.5 includes both
synchronization and non-synchronization branches in their amplitude responses, leading to
a wider range of FIV for these cases. This suggests that the significantly reduced FIV range
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Figure 4.32: The branching behavior and wake mode for an elliptical cylinder-plate assem-
bly with LSP/D = 0.5 in the (AR, Ur) plane. The assembly’s FIV response occurs over a
limited Ur range.
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Figure 4.33: The branching behavior and wake mode of an elliptical cylinder-plate assembly
with LSP/D = 0.75 in the (AR, Ur) plane. The assembly’s FIV response occurs over an
unlimited Ur range.
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Figure 4.34: Power spectra of CL obtained from an elliptical cylinder-plate assembly with
AR = 2 and LSP/D = 0.5 for Ur = 6–14.

for AR = 2 may be due to the absence of a non-synchronization branch. Fig. 4.34 supports
this hypothesis—all the frequency peaks in the CL-power spectra for AR = 2 are aligned
with one another over Ur = 6–14. The contiguity of the three synchronization branches
(viz., 1:1, 1:2, and 1:3) with no intervening non-synchronization branch between any of
them and the alignment of the frequency peaks in the associated CL-power spectra across
the range of reduced velocities associated with these three branches result in a monotonic
increase in the amplitude response observed for AR = 2.

The analysis here provides a clearer understanding of the role of synchronization and
non-synchronization branches in the amplitude response of an elliptical cylinder-plate as-
sembly experiencing a limited FIV response. In the synchronization branch, the dynamics
of the structure and flow are periodic and strongly correlated with one another. Further-
more, the number of vortices shed over one oscillation cycle is an integral multiple of two
(even). All these factors act together to enhance the FIV response of the assembly. In
contrast, in the non-synchronization branch, there is less correlation in the dynamics of
the structure and flow and the vortices shed from the assembly are more random, lead-
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ing to more irregular wake modes. From this perspective, the non-synchronization branch
appears to play the role of a transitional branch in the switch from a lower-order to a
higher-order synchronization branch in the amplitude response. In this passage, the am-
plitude response may change slope or even decrease with increasing Ur (viz., the response
is not necessarily monotonic). Furthermore, the non-synchronization branch (if one ex-
ists) serves to extend the effective Ur range over which the FIV response occurs. It is
noted that increasing the aspect ratio from 0.75 to 2 tends to promote synchronization,
while suppresses non-synchronization. Finally, the self-limited nature of the FIV response
for the elliptical cylinder-plate assembly studied herein is due to the fixed splitter-plate
length LSP/D = 0.5. It is expected that a longer plate length will provoke a non-limited
(galloping-dominated) FIV response.

4.4.2 Why is FIV inhibited in the elliptical cylinder-plate assem-
bly with AR < 0.75?

The numerical simulations conducted herein suggest that there exists a critical value of
aspect ratio (AR)cri (more precisely, 0.67 < (AR)cri ≤ 0.75 for Re = 100 with LSP/D =
0.5) below which an elliptical cylinder-plate assembly undergoes no oscillation. Therefore,
a natural question is: why can’t FIV be provoked in an elliptical cylinder-plate assembly
with an aspect ratio less than (AR)cri?

To address this question, we examine the flow dynamics surrounding an elastically-
mounted elliptical cylinder-plate assembly. Our numerical simulations demonstrate that
the structural oscillation is not induced in the assembly for AR = 0.5 and 0.67. Even so,
we note that these cases are associated with different wake patterns. For AR = 0.5, the
assembly does not oscillate and the surrounding flow does not exhibit any dynamics on an
examination of Figs. 4.35 (ai) and (bi). However, for AR = 0.67, the assembly undergoes
oscillations with a very small amplitude (viz., Ymax ≈ 0.002D), accompanied by alternative
vortex shedding in the wake (see Figs. 4.35 (aii) and (bii)). For larger values of AR = 0.75
and 1, the assembly exhibits a clear-cut FIV with a more evident vortex shedding.

A careful examination of the near wake shows that the structural oscillation is highly
correlated with the location of the flow separation. Figs. 4.35 (c) and (d) compare the
zoomed-in instantaneous vorticity fields around an elliptical cylinder-plate assembly for
various aspect ratios at times t = 3T/8 and t = 7T/8, respectively. The points, designated
asA andB, identify the separation points of flow from the surface of the elliptical cylinder—
these points are seen to move gradually towards the leading edge (viz., windward side) of
the assembly with increasing AR, owing to the fact that the major axis (larger dimension)
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Figure 4.35: A comparison of the structural oscillations and the flow surrounding the
elliptical cylinder-plate assembly with AR = 0.5–1 and LSP/D = 0.5 at Ur = 6. (a) Time
series of Y (black) and CL (red) for AR = 0.5 (left panel) and AR = 0.67 (right panel).
(b) The flow patterns surrounding the assembly at time t = T for (i)–(iv) AR = 0.5, 0.67,
0.75 and 1. Zoomed-in view of the instantaneous vorticity field around the assembly at
times (c) t = 3T/8 and (d) t = 7T/8 for (i)–(iv) AR = 0.5, 0.67, 0.75 and 1.
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of the elliptical cylinder is along the transverse direction. From these considerations, it
seems that the earlier the flow separation occurs, the greater is the susceptibility for the
assembly to undergo FIV (all other factors remain the same such as Ur and LSP/D). This
explains why an elliptical cylinder-plate assembly with an aspect ratio less than a certain
critical value cannot experience oscillatory motions.

As noted earlier in Section 2.1.2, Zhao et al. [192] interpreted the amplified VIV response
of an elliptical cylinder with a large aspect ratio as the consequence of a reduced afterbody
for such geometry. This is similar to the explanation provided here in the context of an
elliptical cylinder-plate assembly. The main difference is that for the assembly, the effect of
aspect ratio is related to the change in the position of the flow separation point, rather than
the size of afterbody (which is difficult to define precisely for an elliptical cylinder-plate
assembly).

4.5 Chapter Summary

In this chapter, both the limited and unlimited FIV responses of an elliptical cylinder-plate
assembly are investigated using numerical simulation at Re = 100, with a mass ratio of
10 and zero structural damping ratio. The aspect ratio AR and the splitter-plate length
LSP affect the dynamical characteristics of the free oscillation of an elliptical cylinder-plate
assembly.

First, the elliptical ratio AR determines whether an oscillation can be triggered in
the assembly—a critical value for 0.67 < (AR)cri < 0.75 is required for this to occur
at Re = 100. Because if the minor axis of elliptical cylinder (oriented in the transverse
direction) is too short, the flow separation point occurs too far back on the windward
surface of the elliptical cylinder to provoke an oscillatory motion. Second, the splitter-
plate length LSP determines primarily the nature of the FIV response that can be induced
on the assembly (viz., whether the response is limited or unlimited in terms of the reduced-
velocity range).

For LSP/D = 0.5, the FIV response of the elliptical cylinder-plate assembly occurs in a
limited reduced-velocity range. From the viewpoint of structural vibration, no oscillation
is induced on the assembly with an aspect ratio smaller than the critical value (0.67 <
(AR)cri < 0.75 at Re = 100). Increasing the value of aspect ratio to 0.75 ≤ AR ≤ 1.5,
the assembly’s FIV is significantly amplified, not only occurring over a wider Ur range
(e.g., Ur = 6–14 for AR = 0.75 and Ur = 6–24 for AR = 1.5) but also displaying a larger
maximum transverse displacement (e.g., Ymax = 0.36D for AR = 0.75 and Ymax = 2D for
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AR = 1.5). However, the assembly with a larger aspect ratio of AR = 2 exhibits FIV over
a narrow Ur range of Ur = 6–16 due to the absence of non-synchronization branch in the
amplitude response.

By contrast, the elliptical ratio has only a limited impact on the branching behavior
in the amplitude response—no synchronization for AR = 0.75, and three synchronizations
(with f ∗

Y /f
∗
CL

= 1:1, 1:2 and 1:3) for AR = 1–2. The self-limited FIV of assembly is
thus identified as an integrated VIV and galloping. In general, increasing AR leads to
an increase in the complexity of dynamical characteristics observed in the synchronization
branch. For example, although a classical “2S” mode is identified in the 1:1 synchronization
branch (lock-in regime), the shape of vortex becomes more complex for larger AR—an
elliptically-shaped vortex is shed in the wake for AR = 1, a vortex with a tail is present for
AR = 1.5, and a signature swallow-tailed vortex and a parallel vortex street are observed
for AR = 2. The 1:2 synchronization is associated with asymmetric wake modes (e.g.,
“2×(2S)”, “T+S”, “±(2S)”) or irregular wake patterns depending on AR. In the 1:3
synchronization, the vortex shedding again exhibits a regular and alternating pattern (e.g.,
“3×(2S)” and “2×(P+S)” wake modes).

The non-synchronization branch is characterized by the aperiodic and highly-nonlinear
flow dynamics (e.g., beating and chaotic oscillations of the lift coefficient CL), in which
the structure oscillation and the vortex shedding are not correlated with one another. In
fact, the non-synchronization branch functions as a transition in the passage from a lower-
order to a higher-order synchronization branch in the amplitude response and leads to an
increased reduced-velocity range for FIV in the elliptical cylinder-plate assembly.

For LSP/D = 0.75 and 2.5, the FIV response of the elliptical cylinder-plate assembly
occurs in an unlimited reduced-velocity range. In this case, a larger AR always provokes a
stronger unlimited FIV response through a reduction of the onset velocity and a concomi-
tant increase the vibration amplitude.

For branching behavior, increasing AR results in the generation of more synchronization
branches in the amplitude response (e.g., AR = 0.75 has a 1:3 synchronization branch;
AR = 1 is associated with 1:2, 1:3 and 1:5 synchronization branches; and, AR = 1.5 and
2 have corresponding 1:1, 1:2, 1:3, 1:4 and 1:5 synchronization branches). Accordingly, an
unlimited FIV response can transition from a galloping-dominated to an integrated VIV-
galloping response. In particular, transition regimes are present between the 1:1 and 1:2
and between the 1:2 and 1:3 synchronization branches in the amplitude response for an
elliptical cylinder-plate assembly with AR = 2.

A regular alternating vortex-shedding pattern is observed in the various synchronization
branches of the response—the pattern is associated with an “n×(2S)” wake mode for a 1:n
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synchronization branch. However, the shape of the vortices that are shed from the assembly
are affected by the aspect ratio AR and the reduced velocity Ur. For example, increasing
AR results in the shedding of slender vortices at times corresponding to the amplitude
maxima of the transverse displacement. Furthermore, increasing Ur results in a more
vertical orientation (viz., oriented more strongly in the transverse direction) in the vortices
that are shed from the assembly. This leads to a subdivision of the 1:3 synchronization
branches for assembly with AR = 1.5 and 2. In addition, a “quasi-2S” mode and a
“quasi-2×(2S)” wake mode are present in the transition regimes (viz., the regime between
the 1:1 and 1:2 synchronization branches and between the 1:2 and 1:3 synchronization
branches). The vortices shed in the transition regime consist of a combination of a primary
elliptically-shaped vortex and a secondary weaker “tail”-shaped vortex. The number of
vortices shed in the transition regime is between those of the two synchronization branches
that bracket it on either side. By contrast, the non-synchronization branch is characterized
by aperiodic oscillations (e.g., amplitude modulation of CL(t)) and the period-doubling
oscillation associated with the vortex-shedding pattern marking the transition from a lower-
order to a higher-order synchronization branch.
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Chapter 5

GA–Optimized Nonlinear Grey-Box
Model for FIV

5.1 Problem Description

It is known that the coupled wake-oscillator model includes two differential equations,
namely, the structure equation in terms of vibrating displacement (Y ) and the fluid equa-
tion in terms of lift coefficient (CL) or wake rotation angle (θ). Besides the independent
variables, the equation system also has various undetermined parameters. As a conse-
quence, determining appropriate model parameters (viz., model identification) is crucially
important to the application of phenomenological models to predict the FIV phenomenon.

In previous studies, the model parameters are often decided through experimental
data or engineering experience. For example, the undetermined coefficients in the orig-
inal Facchinetti model (Eqs. (5.3)–(5.4)) can be directly determined from the stationary
tests (e.g., m∗ = 250, ζ = 0.0031, St = 0.2, CL0 = 0.3, CD = 2.0 for Reynolds number in
the sub-critical range 300–150,000) and the forced-oscillation tests (e.g., ϵ = 0.3, A = 12),
or calculated from given parameters (e.g., γ = CD/(4πSt), δ = 1/(StUr)). Similarly, the
newly introduced parameters related to the θ-based wake oscillator in the original Mannini
model [97], such as the size of wake lamina, can be evaluated by means of the flow visual-
ization. To be specific, the two new physical parameters are expressed as a function of St,
fm and h∗, viz., ζf = 4

√
2St2h∗fm/π and l̄∗ = 1/8πSt2h∗, where h∗ = 1.8 is determined by

the definition of wake oscillator for rectangular cylinder with a side ratio of 1.5.

However, the experiment- and experience-based determination of model parameters has
some inherent deficiencies. First, the parameter without clear physical meaning is often
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estimated by fitting to the experimental data (such as ϵ and A of the original Facchinetti
model), which means the resulted parameter works only for the specific experimental con-
dition. Second, not all physical parameters can be easily derived from measurements. For
example, Mannini et al. [97] mentioned that the Magnus effect coefficient fm for a sharp-
edged body was questionable and not straightforward, so they calibrated fm based on
experimental data. Third, the instantaneous flow visualization is not always available and
the parameter value is somewhat arbitrary and subjective depending on the researcher.

In this chapter, we first improve the two kinds of wake-oscillator models based on the
lift coefficient CL and the wake angular displacement θ. Then, a genetic algorithm (GA)
enhanced grey-box nonlinear model estimation framework is proposed to evaluate the free
parameters of wake-oscillator model. This data-driven methodology to determine model
parameters is verified under two different scenarios, namely, the VIV of a circular cylinder
and the galloping of a circular cylinder-plate assembly with LSP/D = 0.75. The estimation
data used here is from the simulation dataset in Chapter 3.

5.2 Improved Mathematical Model

5.2.1 Improved Wake-Oscillator Model Based on CL

Original Facchinetti model

As mentioned in Chapter 2.4, one of the most popular wake-oscillator models that ap-
ply the aerodynamic force coefficient as fluid variable is the coupled model proposed by
Facchinetti et al. [39] in 2004 (called as Facchinetti model hereafter). This mathematical
model applies the basic Van der Pol kernel to describe the transverse VIV of a circular
cylinder in stationary uniform flow (see Fig. 5.1).

The structure oscillator and wake oscillator are respectively expressed in the following
dimensional forms:

mÿ + cẏ + ky =
1

2
ρU2DCL, (5.1)

q̈ + εωvs

(
q2 − 1

)
q̇ + ωvs

2q =
A

D
ÿ. (5.2)

In Eq. (5.1), the total mass m = mosc+ma takes into account both the structure mass mosc

and the fluid-added mass ma =
CaρπD2

4
(where Ca = 1 for circular cylinder). Similarly, the

structure damping c = csys+cf includes both the viscous damping csys and the fluid-added

185



Figure 5.1: A schematic model of an elastically mounted circular cylinder undergoing the
cross-flow VIV due to the aerodynamic fluid force acting on the oscillating body.

damping cf = γωvsρD
2 (where the coefficient γ, also called the stall parameter, is related

to the drag coefficient through γ = CD

4πSt
). Other quantities include the stiffness k, the fluid

density ρ, the free-stream velocity U , the cylinder diameter D, the lift coefficient CL and
the transverse displacement y, velocity ẏ, acceleration ÿ of the oscillating body. It should
be noted that Facchinetti model is a two-dimensional model, so all mass, damping and
stiffness parameters are defined per unit length. In Eq. (5.2), the generalized fluid variable
q can be any physical quantity that characterizes the fluctuation of near wake theoretically,
which is still related to the lift coefficient in Facchinetti model by q = 2 CL

CL0
(where CL0

is the reference lift coefficient observed on a fixed circular cylinder subjected to vortex
shedding). The forcing term expressed as acceleration coupling models the effects of the
structural motion on the surrounding fluid. Other quantities include the vortex-shedding
angular frequency ωvs =

2πStU
D

and two constant parameters ϵ and A.

The corresponding non-dimensional dynamical system can be written as:

Ÿ +
(
2ξδ +

γ

m∗

)
Ẏ + δ2Y =

1

8π2St2m∗
CL0

2
q, (5.3)

q̈ + ε
(
q2 − 1

)
q̇ + q = AŸ . (5.4)

The overdot in Eqs. (5.3)–(5.4) refers to the derivative with respect to the dimensionless
time τ = ωvst. Other dimensionless terms include the dimensionless displacement Y = y

D
,

the structural mass ratio m∗ = m
ρD2 , the structural damping ratio ξ = csys

2ωnm
with ωn being

the structural natural angular frequency ωn =
√

k
ms+ma

, and the frequency ratio δ = ωn

ωvs
.
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Figure 5.2: A schematic of a bluff body experiencing transverse galloping.

In order to adapt to the numerical results under various flow speeds, the non-dimensional
expressions with respect to the frequency ratio δ are first reformulated in terms of the re-
duced velocity Ur =

U
fnD

by δ = 1
StUr

, so Eq. (5.3) becomes:

Ÿ +

(
2ξ

StUr

+
γ

m∗

)
Ẏ +

1

St2Ur
2Y =

1

8π2St2m∗
CL0

2
q. (5.5)

Improved Facchinetti model

The original Facchinetti model can only predict the VIV of circular cylinder but cannot
describe the galloping-type oscillation of other shapes, because it does not include the rele-
vant physics. As reviewed in Chapter 2.4.3, the quasi-steady theory is a common analytical
tool to calculate the fluid force causing galloping. In Fig. 5.2, the aerodynamic force in
the transverse direction Fy can be calculated by projecting the lift and drag (measured in
the static wind-tunnel tests on a stationary body under various incidence angles α) along
y-axis. The quasi-steady transverse force coefficient CQS

L is therefore a function of α, and
of α ≈ tanα = ẏ/U (assuming the body’s velocity ẏ is much smaller than that of the
incoming flow U).

On this basis, Parkinson and Smith [118] employed a seventh-order polynomial to ap-
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proximate CQS
L over the pertinent range of α, which has the following dimensional form:

CQS
L = A1

(
ẏ

U

)
+ A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

+ A7

(
ẏ

U

)7

, (5.6)

where Ai (i = 1, 3, 5, 7) are fitting coefficients of odd polynomial terms depending on the
Reynolds number. The corresponding dimensionless form reads:

CQS
L = A1 (2πSt) Ẏ + A3 (2πSt)

3 Ẏ 3 + A5 (2πSt)
5 Ẏ 5 + A7 (2πSt)

7 Ẏ 7. (5.7)

This approximation for CQS
L (α) was then incorporated as a forcing term in the governing

equation of a linear mass–spring–damper to form the single-equation analytical model for
the pure galloping oscillation.

From above discussions, the most straightforward way to include both VIV and gal-
loping in a wake-oscillator model is to simply superimpose the two aerodynamic force
components inducing VIV and galloping in a linear fashion [32, 159]. Therefore, the forc-
ing term in Eq. (5.1) should be of (CL +CQS

L ). The new motion equation of structure has
the following dimensionless form:

Ÿ +
2ξ

StUr

Ẏ +
1

St2Ur
2Y =

1

8π2St2m∗

[
CL0

2
q + A1 (2πSt) Ẏ + . . .+ A7 (2πSt)

7 Ẏ 7

]
. (5.8)

It should be noted that the seventh-order polynomial expression of CQS
L in Eq. (5.8) also

includes even terms, viz. CQS
L =

∑7
i=1Ai(2πSt)

iẎ i, which is more generalized than the
odd-only approximation. Moreover, the stall term (viz., the fluid-added damping term
γẎ /m∗) in the structure equation of original Facchinetti model (Eq. (5.3)) is implicitly
incorporated in the term of Ẏ on the right hand side and the effect of γ is represented by
a constant coefficient A1. The wake oscillator (Eq. (5.4)) is also modified by including an
extra velocity coupling as the forcing term, which reads:

q̈ + ε
(
q2 − 1

)
q̇ + q = B1Ÿ +B2Ẏ , (5.9)

where Bi (i = 1, 2) is fitting coefficient.

In order to directly use the numerical results (viz., the time sequences of displacement
Y and lift coefficient CL) in Chapters 3–4, the wake variable q in Eqs. (5.8)–(5.9) needs
to be converted to the lift coefficient CL through q = 2CL/CL0. The modified dynamical
system consists of the following two ordinary differential equations (ODE):

Ÿ +
2ξ

StUr

Ẏ +
1

St2Ur
2Y =

1

8π2St2m∗

[
CL + A1 (2πSt) Ẏ + . . .+ A7 (2πSt)

7 Ẏ 7
]
, (5.10)

188



C̈L + ε

(
4

CL0
2CL

2 − 1

)
ĊL + CL = B1Ÿ +B2Ẏ . (5.11)

As shown, the coupled wake-oscillator model after multiple measures of improvement
(Eqs. (5.10)–(5.11)) is now explicitly formulated with respect to Y and CL.

5.2.2 Improved Wake-Oscillator Model Based on θ

In addition to taking the instantaneous lift coefficient as the fluid variable, another ma-
jor class of wake oscillator is based on the wake rotation angle θ (see Chapter 2.4.2). A
representative is the coupled wake-oscillator model for FIV of a rectangular cylinder pro-
posed by Mannini et al. [97] in 2018 (called as Mannini model hereafter) with the following
dimensional form:

mÿ + csysẏ + ky =
1

2
ρU2D

(
CL + CQS

L

)
, (5.12)

Ī θ̈ − C̄

(
1− 4fm

2

CL0
2 θ

2

)
θ̇ + k̄θ =

Ī

l̄
ÿ +

k̄

U
ẏ. (5.13)

As shown, the forcing term in Eq. (5.12) is composed of two parts, namely, the aerodynamic
lift inducing VIV:

CL = fm

(
θ − ẏ

U

)
, (5.14)

and the quasi-steady lift inducing galloping:

CQS
L = A1

ẏ

U
+ A3

(
ẏ

U

)3

+ A5

(
ẏ

U

)5

+ A7

(
ẏ

U

)7

. (5.15)

The model parameter fm is related to the Magnus effect and can be determined from
experimental tests on a rotating cylinder [159]. CL0 represents the amplitude of fluctuating
lift coefficient due to vortex shedding on a stationary body. Other aerodynamic parameters
in Eq. (5.13) depend on the definition of wake oscillator, such as the moment of inertia Ī,
the fluid damping C̄, the spring constant k̄ and the half length of wake lamina l̄. Moreover,
the oscillating mass m, the structural damping csys and the system stiffness k are defined
per unit length for a two-dimensional model.

Mannini et al. [97] normalized Eqs. (5.12)–(5.13) using the dimensionless quantities
proposed in earlier θ-based wake-oscillator models [160, 159], such as the dimensionless
time τ = ωnt, the frequency ratio δ = ωn

ωvs
, etc. To be consistent with the CL-based

model in Section 5.2.1, the non-dimensional formulation of Mannini model is re-derived
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here by using the dimensionless definitions in Eqs. (5.10)–(5.11). In addition, some new
dimensionless quantities are introduced to fit the wake oscillator with respect to the angular
displacement of wake lamina θ. Those are the damping ratio of wake oscillator ζf = C̄

2ωvsĪ
,

the non-dimensional half length of wake lamina l̄∗ = l̄/D and the vortex shedding frequency

ωvs = 2πStU
D

=
√

k̄
Ī
. As a consequence, the dimensionless system of the second-order

differential equations are expressed as:

Ÿ +
2ξ

StUr

Ẏ +
1

St2Ur
2Y =

1

8π2St2m∗

[
fmθ + A1 (2πSt) Ẏ + . . .+ A7 (2πSt)

7 Ẏ 7
]
, (5.16)

θ̈ − 2ζf

(
1− 4fm

2

CL0
2 θ

2

)
θ̇ + θ =

1

l̄∗
Ÿ + 2πStẎ . (5.17)

As shown, the second term of CL (viz., −fmẏ/U in Eq. (5.14)) is included in the constant
coefficient A1 and does not appear explicitly in Eq. (5.16). Here we also add even terms
in the polynomial approximation of CQS

L .

Finally, the fluid variable θ also needs to be converted into CL through Eq. (5.14). The
resulting differential equations are:

Ÿ +
2ξ

StUr

Ẏ +
1

St2Ur
2Y =

1

8π2St2m∗

[
CL + A1 (2πSt) Ẏ + . . .+ A7 (2πSt)

7 Ẏ 7
]
, (5.18)

C̈L + 2ζf

(
4

CL0
2CL

2 − 1
)
ĊL + CL +M = −2πfmSt

...
Y + fm

(
1
l̄∗
+ 4πζfSt

)
Ÿ − 64π3ζffm

3St3

CL0
2 Ÿ Ẏ 2,

where, M =
16πζffmSt

CL0
2

(
Ÿ CL

2 + 2Ẏ ĊLCL

)
+

32π2ζffm
2St2

CL0
2

(
2Ÿ Ẏ CL + Ẏ 2ĊL

)
.

(5.19)

It can be seen that the CL-based model and the θ-based model have identical structure
oscillators (Eqs. (5.10) and (5.18)). However, the latter has a much more complex wake
oscillator by comparing Eq. (5.19) to Eq. (5.11). To be specific, a big mixing part of Y ,
CL as well as their first and second derivatives appears on the left hand side (denoted by
M) to provide four extra nonlinear terms. In addition, the forcing term on the right hand
side also displays a complicated composition of

...
Y , Ÿ and Ÿ Ẏ 2.

5.3 GA–Optimized Nonlinear Grey-Box Model

This section proposes a genetic algorithm optimized nonlinear grey-box model to estimate
the parameters of the nonlinear dynamical systems described in Section 5.2 (viz., the
improved Facchinetti model and Mannini model).
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As the name suggests, the grey-box identification technique (also called semi-physical
modeling) is used for the system with a priori knowledge, viz., some internal physics of how
the dynamical system works is known, but some model parameters must be determined
empirically. From this perspective, the grey-box model combines the black-box model
(built on statistical information without any prior knowledge) and the white-box model
(built on first principles). In our case, the coupled wake-oscillator models consisting of two
differential equations are constructed based on the physical insights into the FIV response,
accompanied by some unknown parameters—this is a perfect scenario to utilize the grey-
box technique for model identification.

5.3.1 The State-Space Model

The first step is to construct the nonlinear state-space model based on the differential
equations, which has the following general representation:

ẋ = f (x, u, H) , (5.20)

y = g (x, u, H) , (5.21)

where x, u, y and H represent the state, input, output and parameter vectors, respec-
tively. The functions f and g can have any parameterization. Note that the coupled
wake-oscillator models in Section 5.2 are related to the time series modelling without any
exogenous input signals (viz., u = 0) and has two outputs of displacement and lift coeffi-
cient (viz., y = [y1(t) y2(t)]

T = [Y (t) CL(t)]
T ) that the model seeks to predict. The state

and parameter vectors can be different for different wake-oscillator models.

The improved Facchinetti model (Eqs. (5.10)–(5.11)) gives the following state-space
structure in terms of the state response and output response:

ẋ(t) =


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)

 =


x2(t)

1
8π2St2m∗

[
x3(t) + CQS

L

]
− 2ξ

StUr
x2(t)− 1

St2Ur
2x1(t)

x4(t)

B1ẋ2(t) +B2x2(t)− ε
(

4
CL0

2x3
2(t)− 1

)
x4(t)− x3(t)

 , (5.22)

y(t) =

[
y1(t)
y2(t)

]
=

[
x1(t)
x3(t)

]
. (5.23)

The state vector includes four states:

x = [x1(t) x2(t) x3(t) x4(t)]
T =

[
Y (t) Ẏ (t) CL(t) ĊL(t)

]T
. (5.24)
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CQS
L is the intermediate variable:

CQS
L =

7∑
i=1

Ai (2πSt)
i x2

i(t). (5.25)

The parameter vector include fifteen parameters:

H = [m∗ ξ Ur CL0 St ε A1 A2 A3 A4 A5 A6 A7 B1 B2]
T . (5.26)

The state-space formulation describing the fluid-structure dynamics from the improved
Mannini model (Eqs. (5.18)–(5.19)) takes the following form (with the same output re-
sponse as Eq. (5.23)):

ẋ(t) =


ẋ1(t)
ẋ2(t)
ẋ3(t)
ẋ4(t)
ẋ5(t)

 =



x2(t)
1
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8π2St2m∗

(
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)
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StUr
x3(t)− 1

St2Ur
2x2(t)

x5(t)

−2πfmStẋ3(t) + fm
(

1
l̄∗
+ 4πζfSt

)
x3(t)− 64π3ζffm

3St3

CL0
2 x3(t)x2

2(t)

−2ζf (
4

CL0
2x4

2(t)− 1)x5(t)− x4(t)−M


.

(5.27)

The corresponding state vector includes five states:

x = [x1(t) x2(t) x3(t) x4(t) x5(t)]
T =

[
Y (t) Ẏ (t) Ÿ (t) CL(t) ĊL(t)

]T
. (5.28)

Three intermediate variables are defined:

M =
16πζffmSt

CL0
2

[
x3(t)x4

2(t) + 2x2(t)x4(t)x5(t)
]
+

32π2ζffm
2St2

CL0
2

[
2x2(t)x3(t)x4(t) + x2

2(t)x5(t)
]
,

CQS
L =

7∑
i=1

Ai (2πSt)
i x2

i(t),

˙CQS
L = x3(t)

7∑
i=1

iAi (2πSt)
i x2

i−1(t).

(5.29)

The parameter vector also includes fifteen parameters:

H =
[
m∗ ξ Ur CL0 St fm l̄∗ ζf A1 A2 A3 A4 A5 A6 A7

]T
. (5.30)
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In our case, above explicit state-space models are programmed into the C MEX files
in MATLAB to improve the execution speed, which specifies how to update the states
(compute dx function) and compute the outputs (compute y function). Then, the C MEX
files are compiled to feed as the model structure during the grey-box estimation procedure.

5.3.2 Model Parameter Estimation

The MATLAB System Identification Toolbox™ is utilized to estimate the model param-
eters, which is generally a two-step procedure. First, the MATLAB function idnlgrey is
used to create an initial nonlinear grey-box model (a time-continuous system). Second,
the MATLAB function nlgreyest is used to identify the unknown parameters based on the
estimation data. The detailed simulation and estimation techniques used in this section
are described below, which are determined after a lot of trial and error.

Simulation method

The above ODE systems have the similar structure with the Van der Pol oscillator, which
is a stiff problem—the solution being sought varies slowly, but there are nearby solutions
that vary rapidly, so the numerical method must take small steps to obtain satisfactory
results. In order to numerically integrate the stiff equation in a high efficiency in MATLAB,
instead of using the standard ODE solver ode45 we apply the function ode15s [138, 139],
a variable-step and variable-order solver based on the numerical differentiation formulas of
orders 1 to 5, to solve the state-space equations derived in Section 5.3.1. The remaining
simulation settings use the default values, such as the absolute error tolerance of 1e-6 and
the relative error tolerance of 1e-3.

Loss function

The loss function (or cost function) is a function of the error between the model output
and the estimation dataset, which will be minimized to determine the optimal parameters
during the process of estimation.

Without considering the effects of regularization, output weight or error thresholds, the
present grey-box model uses a purely quadratic loss function with the following form:

Loss =
1

N

N∑
i=1

eY (i) + eCL
(i), (5.31)
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where N is the number of data samples in the estimation data; e represents the error vector
between the estimation data and model output (with hat operator), viz., eY = Y − Ŷ ,

eCL
= CL − ĈL. As shown, the loss function has the same expression with the mean

squared error (MSE).

The Trust-Region-Reflective Newton algorithm (lsqnonlin) from MATLAB’s Optimiza-
tion Toolbox™ is used to implicitly compute the sum of squares of all error components in
Eq. (5.31) and find a local minimum Loss using the nonlinear least-squares search method.
As a consequence, the best-fitting model parameters can be estimated by iteratively vary-
ing the parameter vector H so as to minimize the loss function. More information about
the lsqnonlin function can be found in [31, 83].

In the context of parameter estimation, the gradient refers to the derivative of the
explicitly given loss function (viz., the error vector between model output and estimation
data) with respect to the free parameters to be estimated, which can be calculated by
numerically perturbing the unknown parameters and measuring their effects on the simu-
lation error. The gradient computation uses the default methods, such as the differencing
scheme (randomly choose from forward, backward or central approximation), the size of
minimum (1.49e-10) and maximum (infinite) perturbations of unknown parameters, etc.

Evaluation of model performance

The normalized root mean squared error (NRMSE) between the model response and the
estimation data is expressed as:

NRMSE =

√
1
N

∑N
i=1 |y(i)− ŷ(i)|2

σ
=

∥y − ŷ∥2
∥y − ȳ∥2

, (5.32)

where ∥ • ∥2 indicates the 2-norm of a vector; y is the estimation data; ŷ is the output
of estimated model; ȳ = 1

N

∑N
i=1 y(i) is the mean of y. As shown, the root mean squared

error (RMSE) is normalized by the standard derivation σ =

√∑N
i=1|y(i)−ȳ(i)|2

N
.

To quantitatively assess the quality of the identified model, the NRMSE fitness value
(in percentage) is used in the present grey-box model, as defined by:

fit = 100

(
1− ∥y − ŷ∥2

∥y − ȳ∥2

)
. (5.33)

The fit varies between -Inf (bad fit) to 100 (perfect fit).
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5.3.3 Parameter optimization based on genetic algorithm

When invoking idnlgrey, in addition to specifying the MEX-file storing the model structure
and the related techniques, it is also necessary to give the initial conditions including
the initial values of model parameters and states. The initial states are identical to the
state response of the first sample in the estimation data. And in our case, the states
are fixed to their initial values during the model identification procedure. The initial
parameters, by contrast, are often difficult to determine, especially if involving non-physical
parameters such as A1 to A7 in Eqs. (5.26) and (5.30). Most importantly, the optimization
routines for estimating the model parameters can even fail if poor starting values are
provided [91]. Therefore, the computationally heavy task of parameter estimation should
start with reasonable initial guesses of parameters.

In order to find an optimum set of model parameters, the genetic algorithm (GA)
is integrated into the construction of nonlinear grey-box model. The genetic algorithm
is a stochastic global search method for solving optimization problem built up on the
basis of natural genetics, imitating the process that drives the natural biological evolution.
Applying the principle of survival of the fittest, GA repeatedly modifies a population of
potential individuals to produce successively better approximations to a solution. At each
generation, GA selects individuals from the current population to be parents according
to their level of fitness in the problem domain and uses them to produce children for the
next generation by applying some genetic operators borrowed from natural genetics. Over
successive generations, the population of individuals evolves to be better suited to the
environment than the initial population, just as in natural adaptation.

The Genetic Algorithm Toolbox, a public MATLAB package developed by the Depart-
ment of Automatic Control and Systems Engineering of the University of Sheffield [29, 28],
is utilized here for the optimization of model parameters. The premise to use GA is to
specify the necessary arguments, mainly referring to the data structure and the genetic
properties. The former includes the number of parameters to be estimated Nvar, the num-
ber of individuals in a population Nind (viz., population size) and the binary length of
individual parameter Lind. The latter involves the generation gap rate Rgap ≤ 1 (viz., the
entire population is not reproduced in each generation), the crossover rate px, the mutation
rate pm and the maximum number of iterations. Table 5.1 shows the settings used in the
present GA optimization problem. Note that the binary scheme is used inside the GA gen-
erational loop, while the objective value and fitness value have a phenotype representation
(in real value).

The major GA optimization procedure is described as follows:
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Table 5.1: Optimization properties of genetic algorithm.

NO. Properties Method or Value

1 Number of free parameters (Nvar) 4–12
2 Population size (Nind) 10
3 Binary length of individual (Lind) 15
4 Selection method stochastic universal sampling
5 Generation gap (Rgap) 0.9
6 Crossover method single-point
7 Crossover rate (Px) 0.7
8 Mutation rate (Pm) 0.01
9 Maximum iterations 15

1. Create an initial uniformly-distributed random binary population using the routine
crtbp and return a matrix of dimension Nind × (Nvar × Lind). Note that each row
corresponds to a particular individual that represents a set of values of parameters
in our case.

2. Evaluate the objective values for each individual in the initial population, which
returns a real-valued column vector of length Nind. It should be noted that a com-
plete procedure of grey-box estimation for wake-oscillator model is integrated in the
calculation of objective value.

3. Assign the non-negative fitness to the individuals using the routine ranking and
return a same-dimensional vector as Step 2. It is critical to note that the individuals
with smaller objective value will receive higher fitness.

4. Selection operator: select a given number of individuals from the current popu-
lation as parents according to their fitness, using the routine select with stochastic
universal sampling. The more suited to the “environment” the individual is, the
more likely it will be chosen to form children (survival of the fittest). The returned
matrix has a dimension of (Rgap ×Nind)× (Nvar × Lind).

5. Crossover operator: the single-point crossover [100] (swap one gene between two
selected individuals) is implemented to recombine pairs of parents at given probability
(px) to produce new offspring, using the routine recombin. The returned matrix has
the same dimension as that in the Step 4.
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6. Mutation operator: the mutation applies random changes to individual parents
at given probability (pm) to produce new offspring using the routine mut, with same-
dimensional matrix returned.

7. Duplicate the best individual (with the highest fitness value) in the current generation
to ensure its size equals to Nind (viz., fitness-based re-insertion) and calculate the
objective values of the reinserted offspring generation, using the routine reins.

8. Repeat Steps 3–8 until the given maximum iterations are reached.

The objective function of GA optimization is defined as the sum of NRMSE of two
outputs (Y (t) and CL(t)) from the wake-oscillator model. The evolution of the objective
value as a function of iterations in one GA optimization procedure is described in Fig. 5.3.
Although the mean NRMSE of each generation shows a high fluctuation, the minimum
NRMSE remains almost unchanged after three generations, implying that the maximum
fifteen iterations should be enough for a successful process of GA optimization.

As a consequence, an optimal group of model parameters can be obtained by using the
grey-box estimation procedure. Fig. 5.4 gives the complete flowchart of the GA-optimized
grey-box estimation framework. This entails writing a MATLAB program that applies the
Genetic Algorithm Toolbox™ and the System Identification Toolbox™.

5.4 Results and Discussions

Using the proposed GA–optimized grey-box estimation framework, the identification of the
coupled wake-oscillator models based on lift coefficient and wake rotation angle is performed
in this section, in terms of the VIV of a circular cylinder and the FIV of a circular cylinder-
plate assembly. The estimation data comes from the comprehensive simulation database
established in Chapter 3, which is downsampled to run at a sample time of 0.1 s.

5.4.1 Configuration of Model Parameters

The parameter vectors for above two types of models (see Eqs. (5.26) and (5.30)) include
all the candidate parameters that can be estimated by grey-box identification. However,
the state of model parameters can be either free, or fixed to a non-zero value, or fixed to
zero.
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Figure 5.3: The evolution of minimum and mean objective values as a function of iterations
in one optimization procedure of genetic algorithm.

The estimation dataset is obtained at a mass ratio of 10 and zero structural damping.
According to this, the values of model parameters m∗ and ζ can be derived and keep fixed
during the grey-box identification. It should be noted that the definition of mass ratio for
simulation data is m∗

CFD = 4m
πρD2 , which is slightly different from that of the wake-oscillator

model m∗
wom = m

ρD2 . Therefore, the mass ratio should be fixed to m∗ = 7.854 during model
estimation. The structural damping ratio ζ is still fixed to zero. Another fixed parameter
Ur is also consistent with the estimation data.

The state of parameter determines the model structure because the parameter always
be zero removes the corresponding term from the differential equations. Therefore, in order
to obtain the optimal model structure, various combinations of free parameters are tested
in this section.

When configuring fixed and free parameters, some constraints must be taken into con-
sideration. For CL-based wake-oscillator model (Eq. (5.26)), except for the three fixed
parameters (m∗, ζ and Ur), there are two more constraints: (i) the physical parameters
CL0, St and ϵ are always positive and free to estimate; (ii) B1 and B2 cannot be fixed
to zero at the same time to ensure the right hand side of fluid equation is not zero. For
θ-based wake-oscillator model (Eq. (5.30)), five parameters have definite physical meaning,
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Figure 5.4: Flow chart of the GA-optimized grey-box estimation framework.
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Figure 5.5: Time series of Y and CL for VIV of circular cylinder at Ur = 5. The CL-based
model is identified when various even polynomial terms are free to estimate: Case 1—no
even polynomial coefficient; Case 2—A2; Case 3—A2 and A4; Case 4—A2, A4 and A6.

namely, CL0, St, ζf , fm and l̄∗, which are always free to estimate. With the exception of
fm, the other four parameters are always positive. As a consequence, the adjustable free
parameters of θ-based model are polynomial coefficients A1 to A7.

As mentioned in Section 5.2, the inclusion of both odd and even polynomial terms on
the right-hand-side of Y –ODE is a more generalized form of the typical QS model (only
with the odd terms). However, it is still unclear of the influencing mechanism of these
terms on the solution of the coupled ODE system. Therefore, a preliminary test is first to
be carried out to determine if it is necessary to consider the even terms.

Figures 5.5–5.6 compare the simulation data and the grey-box model outputs in terms
of Y (t) and CL(t) for VIV of a circular cylinder at Ur = 5. Cases 1–4 are obtained by
including various combinations of even-order polynomial terms (viz. Ai(2πSt)

iẎ i where
i = 2, 4, 6) in the right hand side of Y –ODE for the CL-based model, while Cases 5–
8 considers the superposition of the first-order polynomial and various even terms. As
shown in Fig. 5.5, the inclusion of only even terms, regardless of their number or order,
will lead to an asymmetric time history of Y , which is inconsistent with the physics as
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Figure 5.6: Time series of Y and CL for VIV of circular cylinder at Ur = 5. The CL-
based grey-box model is estimated when various odd and even polynomial terms are free
to estimate: Case 5—A1; Case 6—A1 and A2; Case 7—A1, A2 and A4; Case 8—A1, A2,
A4 and A6.

described by Parkinson and Smith [118]. By contrast, adding an odd term like the first-
order polynomial A1(2πSt)Ẏ is a cure for this problem. Fig. 5.6 demonstrates that the
estimated model can reach very high accuracy of 99% fitness for Y (t) and 95% fitness for
CL(t), with either only odd term (Case 5) or the combination of odd and even terms (Case
6–8). As a consequence, containing the odd polynomials seems to be necessary to generate
the physical outputs, while the even term, apparently, does not help much to improve
the model performance but increase the model complexity. All these preliminary results
are considered when configuring various combinations of model parameters. Table 5.2
gives several representative combinations of parameters for the two types of wake-oscillator
models.
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Figure 5.7: The VIV response of a circular cylinder in terms of the transverse displacement
and lift coefficient as a function of Ur, surrounded by the time series of Y (black) and CL

(red) at eight representative values of Ur. Note that the periodic and beating oscillations
are respectively marked by blue and red points in the amplitude response.
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Table 5.2: Configurations of parameters for the wake-oscillator models based on CL (Case
1-X) and θ (Case 2-X). 1–fixed to zero, 0–free.

Cases A1 A2 A3 A4 A5 A6 A7 B1 B2

1-1 0 1 1 1 1 1 1 0 1
1-2 0 1 1 1 1 1 1 0 0
1-3 0 1 0 1 1 1 1 0 0
1-4 0 1 0 1 0 1 0 0 0
1-5 0 0 1 1 1 1 1 0 0
1-6 0 1 0 1 1 1 1 0 1
1-7 0 1 0 1 0 1 0 0 1

2-1 0 1 1 1 1 1 1 / /
2-2 0 1 0 1 1 1 1 / /
2-3 0 1 0 1 0 1 1 / /
2-4 0 1 0 1 0 1 0 / /
2-5 0 0 1 1 1 1 1 / /

5.4.2 VIV of a Circular Cylinder

The first simulation dataset involves the pure VIV of a circular cylinder, which occurs at
Ur = 4–9. As shown in Fig. 5.7, the time histories of Y and CL at eight representative
values of Ur are selected as estimation data to identify the free parameters of the CL-based
and θ-based wake-oscillator models using the GA–optimized grey-box framework. It should
be noted that the oscillations of the two cases at top right display the beating phenomenon,
namely, Ur = 4.5 near the onset and Ur = 8.5 near the end velocity. While other cases are
characterized by the highly-periodic oscillations.

Structure of CL-based wake oscillator model

First, we compare the acceleration coupling (with B1 as a free parameter, viz. Case 1-1)
and the velocity–acceleration coupling (with B1 and B2 as free parameters, viz. Case 1-2)
in the CL differential equation. Fig. 5.8 displays the periodic oscillations in the time series
of Y and CL for the VIV response of a circular cylinder at Ur = 6. The estimation data
indicates that Y (t) is characterized by the sinusoidal waves, for which both two cases show
quite high accuracy of more than 99%. By contrast, the CL(t) curve is deformed around
the locations of maximum and minimum and displays a double peak phenomenon, which

203



Figure 5.8: The time series of Y and CL for VIV of a circular cylinder at Ur = 6 from
estimation data and CL-based wake-oscillator models. For Case 1-1, the estimated param-
eters are CL0 = 0.1894, St = 0.1590, ϵ = 2.6422, A1 = 0.3976 and B1 = 0.1737. For Case
1-2, the estimated parameters are CL0 = 0.0818, St = 0.1591, ϵ = 0.7283, A1 = 0.4380,
B1 = −0.3356 and B2 = 0.8748.

is more difficult to fit using the mathematical model. As a consequence, the fitness of both
cases decreases to less than 90%. Even so, Case 1-2 has a higher fitness value of 88.58%
than that of Case 1-1 (83.86%), which is due to the inclusion of the velocity coupling
with coefficient B2 in the CL–ODE. Moreover, the velocity–acceleration coupling seems
to exhibit some advantages in the quasi-periodic oscillations, which is particularly evident
on a careful perusal of Fig. 5.9. As mentioned above, the oscillations in Y (t) and CL(t)
have a beating phenomenon at Ur = 4.5. In this case, the prediction accuracy of Case
1-2 for the two signals are respectively 96.52% and 92.76%, which is much better than
the highest precision (88.18% and 84.51%) that the Case 1-1 can reach with reasonable
parameters. In addition to the non-sinusoidal oscillation or beating oscillation, the CL-
based wake oscillator model with B1 and B2 is superior to that with only B1 at various
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Figure 5.9: The time series of Y and CL for VIV of a circular cylinder at Ur = 4.5
from estimation data and CL-based wake-oscillator models. For Case 1-1, the estimated
parameters are CL0 = 0.6, St = 0.1607, ϵ = 0, A1 = 0.2458 and B1 = 1.8165. For Case
1-2, the estimated parameters are CL0 = 0.5715, St = 0.1589, ϵ = 0.016, A1 = 0.7711,
B1 = 1.8253 and B2 = 1.1840.
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Figure 5.10: Fitness of Y (t) (top) and CL(t) (bottom) from Case 1-1 and Case 1-2 for VIV
of a circular cylinder at different reduced velocities.

values of reduced velocity. As indicated in Fig. 5.10, the orange square (Case 1-1) is
generally located above the green square (Case 1-2) for the prediction of Y (t) and CL(t).

Second, we focus on the forcing term of Y –ODE to determine how many odd-order
polynomial terms of Ẏ should be reserved for the accuracy of model prediction. As men-
tioned in Section 5.2.1, the classical quasi-steady theory applies a seventh-order polynomial
fitting with four odd-terms of Ẏ (viz., Ai(2πSt)

iẎ i where i = 1, 3, 5, 7) included, which
corresponds to the Case 1-4 in Table 5.2. However, the inclusion of more high-order poly-
nomials means the theoretical model becomes increasingly complex and thus is difficult to
popularize and use in a large amount. Therefore, some simpler structures are investigated
here, such as that with the first-order polynomial forcing term (viz., Case 1-2), as well as
with the first- and third-order polynomial forcing terms (viz., Case 1-3).

A comparison between above three cases is given for either the periodic and non-
sinusoidal oscillations at Ur = 6 and 7 (see Table 5.3), or the quasi-periodic oscillations at
Ur = 4.5 and 8.5 (see Table 5.4), in terms of the estimated values of free parameters and the
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Table 5.3: Estimated CL-based wake oscillator model with different odd polynomial terms.
The estimation data is associated with the VIV of a circular cylinder at Ur = 6 and 7.

Parameter Case 1-2 Case 1-3 Case 1-4 Case 1-2 Case 1-3 Case 1-4

Ur 6 6 6 7 7 7
CL0 0.0818 0.0958 0.1039 0.0376 0.0380 0.0355
St 0.1591 0.1591 0.1591 0.1593 0.1592 0.1592
ϵ 0.7283 0.9697 1.1290 0.4070 0.4742 0.4232
A1 0.4380 0.0870 6.3447 0.3559 -0.0477 -1.2229
A3 / 1.3787 -131.44 / 3.4486 61.9098
A5 / / 762.42 / / -586.26
A7 / / -1287.10 / / 1564.50
B1 -0.3356 -0.2779 -0.2322 -0.0481 -0.0506 -0.0555
B2 0.8748 0.8014 0.7182 -0.0375 -0.0376 -0.0401

FitY (%) 99.42 99.45 98.75 99.45 99.46 99.42
FitCL

(%) 88.49 88.64 88.44 67.96 68.21 68.02

Table 5.4: Estimated CL-based wake oscillator model with different odd polynomial terms.
The estimation data is associated with the VIV of a circular cylinder at Ur = 4.5 and 8.5.

Parameter Case 1-2 Case 1-3 Case 1-4 Case 1-2 Case 1-3 Case 1-4

Ur 4.5 4.5 4.5 8.5 8.5 8.5
CL0 0.5585 0.4914 1.6016 0.1335 0.1336 0.1364
St 0.1589 0.1590 0.1590 0.1587 0.1586 0.1587
ϵ 0.0161 0.0128 0.1325 0.8314 0.8320 0.8026
A1 0.7676 0.3696 -0.0085 0.2323 -0.0688 -1.1706
A3 / 2.1455 -125.60 / 15.001 -90.9856
A5 / / 1423.40 / / 19683.78
A7 / / -3570.83 / / -514776.9
B1 1.8255 1.8093 1.8034 -0.0171 -0.0166 0.0050
B2 1.2289 1.2681 0.5452 -0.0274 -0.0237 -0.0310

FitY (%) 96.70 97.07 95.93 96.91 96.64 95.97
FitCL

(%) 92.76 92.77 92.04 70.55 70.28 70.03
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corresponding fitness of Y (t) and CL(t). Comparing Case 1-2 with Case 1-3, it can be found
that the value of A1 is greatly reduced due to the appearance of A3, while other parameters
(viz., CL0, St, ϵ, A1 and B2) not change too much. But the inclusion of the third-order
polynomial term A3(2πSt)

3Ẏ 3 does not obviously promote the model prediction. In fact,
the fitness value from Case 1-3 is only slightly higher than that from Case 1-2. If further
increasing the number of odd polynomials, such as Case 1-4 with A1, A3, A5 and A7, the
prediction accuracy of the CL-based wake oscillator model would, unexpectedly, decrease
to a certain degree, especially for the instantaneous vibration displacement Y (t).

It is worth mentioning that based on the author’s experience, it is more difficult to
apply a successful GA–optimized grey-box identification procedure on Case 1-4, not only
because it has more (nice) free parameters to estimate, but also because the reasonable
variation ranges of the non-physical coefficients (A1, A3, A5 and A7) are unclear, which can
only be determined by sufficient replicates of estimation tests. It is certain that there are
some tricks to help evaluate the optimal model parameters. For example, many results in
this section demonstrate that the estimated value of St remains almost unchanged among
different reduced velocities and model structures, which is also a measure of an efficient
estimation procedure. As a consequence, the Strouhal number can be fixed to a constant
value to reduce the difficulty in estimating a complex model. The results of Case 1-4 shown
in Tables 5.3–5.4 are the optimal estimate after many attempts and obtained by fixing St.
Based on this, we may reasonably conclude that the forcing term of four odd polynomials
has no beneficial effect on the model prediction. It should be noted that we don’t rule out
the possibility that a better set of parameters may be existential for Case 1-4. However,
it is not cost-efficient to make massive estimations just for the possible small accuracy
increase.

Third, we analyze the contribution made by the even (second-order) polynomial term
A2(2πSt)

2Ẏ 2 to the model prediction. Table 5.5 compares the estimated model parameters
and fitness of Case 1-2 and Case 1-5 at four representative values of reduced velocity.
Obviously, the two cases have nearly the same prediction accuracy at different Ur. At
Ur = 7, Case 1-5 leads to a higher value of FitY (99.28%) but a smaller value of FitCL

(68.17%), so the total NRMSE of the two outputs is still very close to that of Case 1-2.
Moreover, the value of A2 is an order of magnitude lower than the value of A1.

From above analysis, Case 1-2 can be considered as the optimal structure of CL-based
wake oscillator model to predict the VIV response of a circular cylinder. The estimated
values of six free parameters (viz., CL0, St, ϵ, A1, B1 and B2) are plotted with respect to
the reduced velocity in Fig. 5.11. It should be noted that the optimal parameter can vary
in a certain range and end up with the almost identical model accuracy. So the variation
ranges of parameters at each value of Ur are also marked with the error bar in Fig. 5.11.
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Figure 5.11: Estimated parameters of CL-based wake oscillator model with an optimal
structure for VIV of circular cylinder. (a)–(f) represent CL0, St, ϵ, A1, B1 and B2 as a
function of Ur.
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Table 5.5: Estimated parameters for CL-based wake oscillator model with (Case 1-2) and
without (Case 1-5) the second-order polynomial term. The estimation data is associated
with the quasi-periodic oscillation for VIV of a circular cylinder at Ur = 6, 7, 4.5 and 8.5.

Parameter
Case
1-2

Case
1-5

Case
1-2

Case
1-5

Case
1-2

Case
1-5

Case
1-2

Case
1-5

Ur 6 6 7 7 4.5 4.5 8.5 8.5
CL0 0.0818 0.0904 0.0376 0.0215 0.5585 0.8488 0.1335 0.1337
St 0.1591 0.1591 0.1593 0.1593 0.1589 0.1589 0.1587 0.1587
ϵ 0.7283 0.8593 0.4070 0.1291 0.0161 0.0336 0.8314 0.8341
A1 0.4380 0.4373 0.3559 0.4109 0.7676 0.7951 0.2323 0.2388
A2 / 0.0392 / 0.0585 / -0.1158 / -0.0252
B1 -0.3356 -0.3027 -0.0481 -0.0746 1.8255 1.8257 -0.0171 -0.0151
B2 0.8748 0.8272 -0.0375 -0.0488 1.2289 1.0644 -0.0274 -0.0255

FitY (%) 99.42 99.38 96.91 99.28 96.70 96.32 96.91 96.85
FitCL

(%) 88.49 88.63 70.55 68.17 92.76 92.74 70.55 70.51

The first thing to note is that all model parameters, except the Strouhal number St,
display an optimum value varying with Ur. By contrast, St is a constant value of about
0.159 over Ur = 4–9, which is coincidentally very close to the value of St (around 0.16) for
the flow over a stationary circular cylinder from the simulation data (see Section 5.4.3 for
more details). In other words, the estimated St in this section, although estimated within
a wide range, can always perfectly match the physical value. This consistency also proves
that the grey-box estimation procedure here is physically reasonable. Another physical
parameter CL0 represents the lift coefficient acting on a stationary circular cylinder due
to the vortex shedding. Instead of fixed to a constant value, CL0 displays a trend similar
to that of the root-mean-square of instantaneous lift coefficient CLc,rms as a function of Ur

(see the dashed line in Fig. 5.7), which is also a theoretical basis for the rationality of model
estimation. The variations of A1 and B1 have something in common with that of CL0, for
example, they generally decrease with Ur and then slightly increase when approaching the
end velocity of VIV (see Figs. 5.11 (d)–(e)). Moreover, the optimal values of above four
parameters do not vary much at the same reduced velocity, except to say that when close
to the two boundaries of VIV regime (e.g., the error bar of CL0 and A1 becomes visible at
Ur = 4, 4.5 and 9). By contrast, a careful perusal of Figs. 5.11 (c) and (f) shows that the
ϵ and B2 do not have a clear-cut smooth trend with Ur, and their optimum values vary in
a wide range at multiple reduced velocities within the VIV regime.

210



Table 5.6: Estimated parameters of θ-based wake oscillator model with various combi-
nations of even and odd polynomial terms. The estimation data is associated with the
non-sinusoidal periodic oscillation for VIV of a circular cylinder at Ur = 6 and 7.

Parameter Case 2-1 Case 2-2 Case 2-5 Case 2-1 Case 2-2 Case 2-5

Ur 6 6 6 7 7 7
CL0 0.1649 0.1640 0.1638 0.0531 0.0568 0.0544
St 0.1591 0.1590 0.1591 0.1593 0.1593 0.1593
ζf 0.9362 0.8946 0.9063 0.6947 0.4479 0.6960
fm 0.0688 0.0684 0.0717 -0.0039 -0.0211 -0.0040
l̄∗ 0.7272 0.7653 0.8113 0.8892 1.5950 0.9914
A1 0.4654 2.4406 0.4654 0.3244 1.9201 0.3287
A2 / / 0.0705 / / 0.0888
A3 / -8.0755 / / -12.89 /

FitY (%) 99.33 98.72 99.40 99.23 98.79 99.12
FitCL

(%) 88.78 88.23 88.57 66.05 66.25 65.93

Structure of θ-based wake oscillator model

For θ-based wake oscillator model, three new physical parameters, viz., ζf (equivalent
to the Van der Pol constant ϵ in the CL-based model to a certain extent), fm and l̄∗,
are introduced to form a fairly complicated forcing term of CL–ODE, which replaces the
velocity–acceleration coupling with coefficients B1 and B2 in the CL-based model. There-
fore, only the polynomial terms involving A1 to A7 that included in the Y –ODE needs a
discussion here.

Similarly, we first analyze the influence of odd polynomial terms through a comparison
of three cases, namely, Case 2-1 (with A1), Case 2-2 (with A1, A3) and Case 2-4 (with
A1, A3, A5, A7) in Table 5.2. For VIV of a circular cylinder, we still focus on the model
prediction of the non-sinusoidal periodic oscillations at Ur = 6 and 7, as well as the quasi-
periodic oscillations at Ur = 4.5 and 8.5. Tables 5.6–5.7 list the estimated parameters
and the fitness values of Case 2-1 and Case 2-2. As shown, the inclusion of the third-
order polynomial term A3(2πSt)

3Ẏ 3 does not cause significant changes in other model
parameters except A1. To be specific, the value of A1 experiences either a more than five
times increase at Ur = 6 and 7, or a slight increase at Ur = 4.5 and 8.5, accompanied
by a negative value of A3. In addition, there is roughly an equal prediction accuracy of
Case 2-1 and Case 2-2 at different values of reduced velocity. As for the Case 2-4 with the
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Table 5.7: Estimated parameters of θ-based wake oscillator model with various combi-
nations of even and odd polynomial terms. The estimation data is associated with the
quasi-periodic oscillation for VIV of a circular cylinder at Ur = 4.5 and 8.5.

Parameter Case 2-1 Case 2-2 Case 2-5 Case 2-1 Case 2-2 Case 2-5

Ur 4.5 4.5 4.5 8.5 8.5 8.5
CL0 0.5989 0.5887 0.4514 0.1350 0.1348 0.1342
St 0.1589 0.1589 0.1591 0.1586 0.1586 0.1586
ζf 0.0150 0.0139 0.0109 0.4121 0.4138 0.4084
fm 1.0888 1.0607 1.4086 -0.0447 -0.0408 -0.0427
l̄∗ 0.4997 0.4933 0.5770 1.6200 1.5918 1.9222
A1 0.7035 0.8855 0.6236 0.2252 0.3038 0.2173
A2 / / -0.9337 / / 0.0294
A3 / -0.8600 / -4.2169 /

FitY (%) 96.69 96.79 96.69 96.76 96.64 96.76
FitCL

(%) 92.47 92.53 92.04 70.82 70.79 70.77

most odd polynomial terms, no effective or successful grey-box estimation procedure can
be conducted on such a complex structure after several attempts. Furthermore, the VIV
response of circular cylinder mainly involves a simpler (viz., quasi-sinusoidal temporal series
of lift coefficient) structural oscillation at low reduced velocity—for this case including too
many odd polynomials will considerably increase the model complexity but not improve
the accuracy. All these demonstrate that including the first-order polynomial term (viz.,
Case 2-1) is sufficient for a θ-based wake oscillator model to predict the pure VIV of a
circular cylinder well. This conclusion is similar to that for a CL-based model.

On the basis of above discussion, we further investigate the addition of an even (second-
order) polynomial term to the Y –ODE of the θ-based model, viz. Case 2-5 in Table 5.2.
As shown in Tables 5.6–5.7, the estimated value of A2 can be either a quite small positive
with an order of 0.01 (e.g., A2 = 0.07, 0.08 and 0.03 at Ur = 6, 7 and 8.5 respectively) or
a negative (e.g., A2 = −0.93 at Ur = 4.5). But, nevertheless, the addition of A2 has little
effect on the values of other parameters. Most importantly, the Cases 2-1 and 2-5 have
almost identical accuracy for Y (t) and CL(t)—this means the inclusion of A2(2πSt)

2Ẏ 2 in
the Y –ODE is not necessary.

Above analysis on the influence of odd and even polynomial terms indicates that in
addition to the inherent five physical parameters (viz., CL0, St, ζf , fm and l̄∗), the optimal
θ-based wake oscillator model should include the first-order polynomial A1(2πSt)Ẏ in the
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Figure 5.12: Estimated parameters of θ-based wake oscillator model with an optimal struc-
ture for VIV of circular cylinder. (a)–(f) represent CL0, St, ζf , fm, l̄

∗ and A1 as a function
of Ur.
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right hand side of Y –ODE, in order to predict the pure VIV of a circular cylinder. As a
consequence, it includes six free parameters in total as that of the optimal CL-based model
(viz., Case 1-2). The estimated parameters are also plotted as a function of Ur in Fig. 5.12.

Similar to Figs. 5.11 (a)–(b), the model estimation procedure here is also meaningful for
two reasons: (i) the Strouhal number St is fixed at 0.16 for different reduced velocities; (ii)
the variation of CL0 with Ur basically follows the trend of the instantaneous lift coefficient
CLc,rms. The damping ratio of fluid ζf in the θ-based model is equivalent to the Van der Pol
constant ϵ in the CL-based model to a certain extent, so their plots display similar patterns
(see Fig. 5.11 (c) and Fig. 5.12 (c)). Such analogy is also true for the coefficient A1 of the
first-order polynomial (see Fig. 5.11 (d) and Fig. 5.12 (f)). As shown in Fig. 5.12 (d), the
parameter related to the Magnus effect fm has a quite small value of order 0.01 except
near the onset of VIV. By contrast, the parameter measuring the size of the oscillating
near-weak region l̄∗ shows a more random variation with Ur. And its optimal value can
vary within a wide range at multiple reduced velocities in the VIV regime (see Fig. 5.12
(e)).

A careful perusal of Fig. 5.12 shows that the parameters CL0, St and A1 are always
estimated to the same value for each Ur (viz., with very narrow error bar) except near
the VIV onset. However, the optimal values of other three parameters ζf , fm and l̄∗ have
a wide variation range with visible error bars, and their different combinations can reach
almost the same model accuracy. This presents challenges for the grey-box estimation
of the θ-based wake oscillator model. By contrast, the CL-based model shows an easier
estimation procedure because it only has one parameter with higher uncertainty—that is
the Van der Pol constant ϵ, as is evident in Fig. 5.11.

5.4.3 Galloping of a Circular Cylinder-Plate Assembly

This case study involves the pure galloping of a circular cylinder-plate assembly with
LSP/D = 0.75. As shown in Fig. 5.13, eleven representative values of reduced velocity
are selected from various response regimes, including the 1:2 (Ur = 11), 1:3 (Ur = 15,
17, 19) and 1:5 (Ur = 29) synchronization branches, as well as the non-synchronization
branches (Ur = 9, 13, 21, 23, 25 and 27). The corresponding time series of Y and CL are
also plotted in Fig. 5.13, with the top six representing the quasi-periodic oscillations of
non-synchronization and the bottom five representing the periodic oscillations of synchro-
nization.

In contrast to the pure VIV of circular cylinder, the galloping response is always associ-
ated with more complex structural oscillations and vortex-shedding patterns, as indicated
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Figure 5.13: The galloping response of a circular cylinder-plate assembly with LSP/D =
0.75 in terms of Y and CL as a function of Ur, surrounded by Y (t) (black) and CL(t) (red)
at eleven representative values of Ur. The periodic and beating oscillations are respectively
marked by blue and red points in the amplitude response.
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Table 5.8: Estimated parameters for CL-based wake oscillator model with (Case 1-2) and
without (Case 1-5) the second-order polynomial term. The estimation data is associated
with the quasi-periodic oscillation for VIV of a circular cylinder at Ur = 9, 25, 27 and 29.

Parameter
Case
1-1

Case
1-2

Case
1-1

Case
1-2

Case
1-1

Case
1-2

Case
1-1

Case
1-2

Ur 9 9 25 25 27 27 29 29
CL0 2.0897 1.8753 0.0197 0.0331 0.1123 0.1184 0.1041 0.0975
St 0.1554 0.1553 0.1570 0.1570 0.1569 0.1569 0.1570 0.1570
ϵ 0.0203 0.0221 0.0001 0.0002 0.0008 0.0009 0.0042 0.0035
A1 0.2728 0.2479 0.0458 0.0198 0.0329 0.0260 0.0378 0.0156
B1 -6.5843 -6.5910 -5.6211 -5.6120 -5.5736 -5.5733 -5.4993 -5.5020
B2 / 0.0149 / 0.0254 / 0.0068 / 0.0209

FitY (%) 97.94 97.27 98.27 98.26 98.42 98.42 98.25 98.26
FitCL

(%) 95.50 95.53 65.80 65.86 63.95 63.96 62.02 62.06

by the more severely distorted time trajectories of CL at much higher reduced velocities in
Fig. 5.13. Due to this, the prediction of galloping using wake oscillator model is theoreti-
cally more challenging than that of pure VIV.

Structure of CL-based wake oscillator model

For CL-based wake oscillator model, the first thing is still to determine whether it is
necessary to include the velocity-coupling B2Ẏ as a forcing term in the CL–ODE. Table 5.8
compares the model performance of Case 1-1 and Case 1-2 at four values of reduced velocity,
which represent both the oscillation with beating phenomenon (Ur = 9, 25 and 27) and
the highly periodic oscillation (Ur = 29). According to the discussions in Section 5.4.2, the
term B2Ẏ might improve the model accuracy if CL displays a non-sinusoidal time history,
so here we focus more on the higher values of Ur where the non-sinusoidal oscillations
can occur. As indicated, the inclusion of B2 has little effect on either the values of other
parameters or the fitness of Y and CL. In addition, the estimated B2 is quite small with
an order of 0.01, which means the velocity coupling has a limited influence on the model
prediction. Therefore, B2 can be set to be zero during the model estimation.

In order to determine a reasonable forcing term of Y –ODE, the influence of various odd
polynomial terms Ai(2πSt)

iẎ i is then investigated by comparing three cases, viz., Case
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Figure 5.14: Fitness of Y (t) (top) and CL(t) (bottom) from Case 1-1 and Case 1-6 for
galloping of a circular cylinder-plate assembly at larger reduced velocity.

1-1 (i = 1), Case 1-6 (i = 1, 3) and Case 1-7 (i = 1, 3, 5, 7) in Table 5.2. Among them,
only B1 is free to estimate to provide an acceleration coupling term in the CL–ODE.

Figure 5.14 compares the fitness values of Y (t) and CL(t) from Case 1-1 and Case 1-6 at
higher values of Ur. As shown, both cases can obtain a much higher accuracy in predicting
the oscillation of Y (more than 96%) comparing to that of CL (around 60%-80%), which is
due to the severe distortion of CL(t) at larger Ur. Moreover, Case 1-6 obviously performs
better than Case 1-1 for the prediction of CL(t), while a little bit worse than Case 1-1 for
Y (t). Overall, including both the first- and third-order polynomial terms has a positive
effect on the performance of CL-based wake oscillator model.

Another thing worth noting is that in the process of model estimation, we find the
Case 1-1 seems unable to find a reasonable solution at certain values of Ur. For example,
Table 5.9 lists three unsuccessful predictions of Case 1-1 at Ur = 13. Although Y (t) and
CL(t) have a high accuracy up over 90%, the corresponding model parameters can be
unreasonable. To be specific, the CL0 of Solution 1 has an unrealistic high value of 6.2751.
If the variation range of CL0 is prescribed as 0–0.7 during estimation, the optimal value of ϵ
would be unrealistic small to reach the same accuracy as Solutions 2–3. In fact, we cannot
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Table 5.9: Estimated parameters and fitness of Y (t) and CL(t) at Ur = 13. Invalid solutions
from Case 1-1 (Solutions 1–3) and Case 1-2 (Solution 4), as well as a valid solution from
Case 1-6 (Solution 5). The unreasonable parameter is marked in box.

Parameter Solution 1 Solution 2 Solution 3 Solution 4 Solution 5

CL0 6.2751 0.7000 0.3447 4.2737 0.6149
St 0.1564 0.1564 0.1564 0.1564 0.1564
ϵ 0.0310 1.62×10−9 3.65×10−6 0.0627 0.0078
A1 0.0829 0.1257 0.1396 0.1137 -0.1375
A3 / / / / 2.2103
B1 -6.0007 -5.9917 -5.9757 -5.9888 -5.9692
B2 / / / -0.0578 /

FitY (%) 98.55 98.64 98.31 98.61 98.48
FitCL

(%) 94.06 93.91 93.39 94.33 93.92

find a reasonable set of parameters at Ur = 13 using Case 1-1 after many failed attempts.
And this tricky problem cannot be fixed by adding a free parameter of B2, as indicated by
Solution 4 still with a high value of CL0 = 4.2737 using Case 1-2. However, the inclusion
of two odd polynomial terms has the potential to solve this problem as Solution 5 from
Case 1-6. As a consequence, the CL-based wake oscillator model should contain at least
A1(2πSt)Ẏ and A3(2πSt)

3Ẏ 3 in the Y –ODE in order to give a meaningful prediction of
galloping response.

We further investigate whether the model results would be more accurate by adding
more odd polynomial terms, viz., Case 1-7 with A1, A3, A5 and A7 as free parameters.
Figs. 5.15–5.16 compare the estimation data with the model results from Cases 1-1, 1-6 and
1-7, in terms of the oscillations of Y (t) and CL(t) at Ur = 19 and 29. As shown, the three
cases show a very good agreement with the estimation data for the prediction of Y (t) with
sine waveform. In addition, the Case 1-7 substantially improves the model performance to
predict CL(t) with either a slight (Ur = 19) or a severe (Ur = 29) deformation, because
the inclusion of more odd polynomial terms can help to capture the local variations of CL

trajectories with time. By contrast, Cases 1-1 and 1-6 can only produce the rough trend
of CL(t). From this perspective, it is necessary to include the free parameters A1, A3, A5

and A7 in the CL-based wake oscillator model for a better prediction of galloping response.

The effect of the even polynomial term on the model prediction can be negligible, similar
to that for the VIV of a circular cylinder. In addition, considering that the structure of
Case 1-7 already has eight free parameters to estimate, the forcing term A2(2πSt)

2Ẏ 2 will
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Figure 5.15: The time series of Y and CL for galloping of a circular cylinder-plate assembly
with LSP/D = 0.75 at Ur = 19 from estimation data and CL-based wake-oscillator models.
For Case 1-1, the estimated parameters are CL0 = 0.1553, St = 0.1563, ϵ = 0.0007,
A1 = 0.0682 and B1 = −6.1186. For Case 1-6, the estimated parameters are CL0 = 0.2073,
St = 0.1563, ϵ = 0.0025, A1 = −0.8891, A3 = 8.7814 and B1 = −6.0558. For Case
1-7, the estimated parameters are CL0 = 0.3375, St = 0.1563, ϵ = 0.0184, A1 = 0.9373,
A3 = −163.4914, A5 = 2572.8800, A7 = −10073.8521 and B1 = −5.5171.
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Figure 5.16: The time series of Y and CL for galloping of a circular cylinder-plate assembly
with LSP/D = 0.75 at Ur = 29 from estimation data and CL-based wake-oscillator models.
For Case 1-1, the estimated parameters are CL0 = 0.1041, St = 0.1570, ϵ = 0.0042,
A1 = 0.0378 and B1 = −5.4993. For Case 1-6, the estimated parameters are CL0 = 0.2884,
St = 0.1570, ϵ = 0.0474, A1 = −0.4622, A3 = 5.1627 and B1 = −5.4442. For Case 1-7,
the estimated parameters are CL0 = 0.0492, St = 0.1570, ϵ = 0.0010, A1 = −1.1962,
A3 = −49.2549, A5 = 1495.0582, A7 = −8154.3825 and B1 = −4.9050.

220



not be included in the Y –ODE to avoid the model getting too complicated.

From above analysis, the CL-based wake oscillator model has the optimal structure of
Case 1-7 to predict the pure galloping response of a cylinder-plate assembly with LSP/D =
0.75, which considers a seventh-order odd polynomial forcing term in the Y –ODE and an
acceleration coupling term in the CL–ODE. The variations of the eight free parameters
with respect to Ur are described in Fig. 5.17. It can be seen that the Strouhal number
St still has a constant value of around 0.156 for different reduced velocities. The value of
CL0 decreases from 2 to 0.1 over Ur = 9–30, which basically follows the trend of the root-
mean-square of lift coefficient on the assembly CL,rms in Fig. 5.13. These features prove
the rationality of the grey-box estimation procedure here. For galloping response, the Van
der Pol constant ϵ is less than 0.15. Once entering the 1:3 synchronization (Ur ≥ 15), the
value of ϵ becomes much smaller of around 0.01–0.02. Conversely, the coefficient associated
with the acceleration coupling B1 generally increases with Ur within the range from -7 to
-4. In Figs. 5.17 (e)–(h), the four coefficients of odd polynomial terms have more random
estimated values. But the sure thing is that A1 and A5 are always positive, while A3 and
A7 are always negative, which is consistent with some previous studies [58].

Structure of θ-based wake oscillator model

For the θ-based wake oscillator model, the main point of the discussion is how many
polynomial terms should be contained in the right hand side of Y –ODE. Here we still
ignore the minimal influence of even polynomial terms based on previous experience.

Figure 5.18 compares the θ-based wake oscillator model with various combinations of
odd polynomial terms Ai(2πSt)

iẎ i (viz., Case 2-1 with i = 1, Case 2-2 with i = 1, 3,
Case 2-3 with i = 1, 3, 5 and Case 2-4 with i = 1, 3, 5, 7) and the estimation data
in terms of the time history of CL at two representative values of reduced velocity, viz.,
Ur = 19 and Ur = 29. As shown, the model results of Cases 2-1 and 2-2 are quite similar
with a nearly the same accuracy of about FitCL

= 73% at Ur = 19 and FitCL
= 67%

at Ur = 29—this means the third-order polynomial has on obvious contribution to the
estimated model. While if further adding the fifth-order polynomial in the forcing term of
Y –ODE, the fitness values of CL are significantly increased to FitCL

= 86% at Ur = 19 and
FitCL

= 83% at Ur = 29, as indicated by the green curves in Fig. 5.18. However, applying
all four odd polynomials terms in Case 2-4 achieves very similar prediction accuracy with
that of Case 2-3, maybe with a slight increase of about 1%, but this is at the expense
of model complexity with nine free parameters to estimate. From this perspective, Case
2-3 with three (first-, third- and fifth-order) odd polynomial terms should be the optimal
structure for a θ-based wake oscillator model to predict the galloping response well. In this
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Figure 5.17: Estimated parameters of CL-based wake oscillator model with optimal struc-
ture for the galloping of circular cylinder-plate assembly. (a)–(h) represent CL0, St, ϵ, A1,
A3, A5, A7 and B1 as a function of Ur.
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Figure 5.18: Time history of CL from estimation data and estimated wake-oscillator models
(Cases 2-1, 2-2, 2-3 and 2-4) at (a) Ur = 19 and (b) Ur = 29.
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Table 5.10: Fitness value of Y (columns 2–3) and CL (columns 4–5) associated with the
VIV of circular cylinder from the best-structured CL-based (Case 1-2) and θ-based (Case
2-1) wake oscillator models.

Ur Case 1-2 Case 2-1 Case 1-2 Case 2-1

4 98.85 98.42 99.77 99.59
4.5 96.70 96.69 92.76 92.47
5 99.44 99.41 95.50 94.66
6 99.21 99.33 88.52 88.78
7 99.45 99.42 67.96 66.01
8 99.37 99.30 95.35 90.34
8.5 96.91 96.76 70.55 70.82
9 98.84 99.01 99.00 99.12

case, the model has eight free parameters like that of the CL-based wake oscillator model
(viz., Case 1-7).

The variation of the estimated values of model parameters with respect to Ur is given in
Fig. 5.19. Again, the value of St is fixed at around 0.156, and the CL0 generally decreases
with Ur as the lift coefficient acting on a moving assembly (see CL,rms in Fig. 5.13). By
contrast, other three physical parameters (ζf , fm and l̄∗) don’t display clear-cut patterns.
Moreover, when including three odd polynomial terms, A1 and A5 are always negative but
A3 is positive.

5.4.4 A Further Discussion

In this section, some interesting phenomena displayed during the model estimation using
the grey-box framework are further discussed.

First, the best-structured wake oscillator models based on CL and θ are compared in
terms of their potentials to predict VIV and galloping responses. As shown in Table 5.10,
for the simpler VIV of a circular cylinder, the optimal structures of the two models include
six free parameters to estimate, and they can basically achieve the same prediction accu-
racy. Moreover, the optimal CL-based model can give some advantages in predicting the
time history of CL (e.g., FitCL

= 95.35% for Case 1-2 and FitCL
= 90.34% for Case 2-1 at

Ur = 8). By contrast, for the complex galloping response of cylinder-plate assembly, the
optimal model structures have eight free parameters. And the wake oscillator model based
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Figure 5.19: Estimated parameters of θ-based wake oscillator model with optimal structure
for the galloping of circular cylinder-plate assembly. (a)–(h) represent CL0, St, ζf , fm, l̄

∗,
A1, A3 and A5 as a function of Ur. 225



Figure 5.20: Fitness value of Y (up) and CL (bottom) associated with the galloping of
a circular cylinder-plate assembly with LSP/D = 0.75 from the best-structured CL-based
(Case 1-7) and θ-based (Case 2-3) wake oscillator models.

on θ obviously reaches higher precision for the prediction of Y (t) and CL(t), especially at
larger values of reduced velocities (marked by the black box in Fig. 5.20). This finding may
indicate that more physical parameters contained in the θ-based wake oscillator model are
helpful in predicting the galloping response.

Second, we focus on the fixed Strouhal number during model estimation. Figs. 5.21–
5.22 show the time history of lift coefficient acting on a stationary circular cylinder and a
stationary cylinder-plate assembly with LSP/D = 0.75, associated with the flow patterns
around the fixed structure over one oscillation cycle of CL. According to the vortex-
shedding frequency, the Strouhal number is found to be St = 0.16 for LSP = 0 and St =
0.147 for LSP/D = 0.75—this is consistent with the large-amplitude but low-frequency
galloping response. The periodic variations of instantaneous vorticity fields also indicate
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Figure 5.21: Time history of lift coefficient and instantaneous vorticity field of a stationary
circular cylinder at Re = 100.
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Figure 5.22: Time history of lift coefficient and instantaneous vorticity field of a stationary
circular cylinder-plate assembly with LSP/D = 0.75 at Re = 100.
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that the near-wake flow behind a cylinder-plate assembly is characterized by the elongated
boundary layers and slower vortex shedding.

As mentioned in Section 5.4.2, for VIV of a circular cylinder, the estimated Strouhal
number St = 0.159 is consistent with the vortex shedding frequency from simulation for
flow over a stationary circular cylinder, which justifies the wake-oscillator models based on
CL and θ. Likewise, for galloping of a circular cylinder-plate assembly, the Strouhal number
of wake-oscillator model is estimated to be a slightly smaller value of 0.156—this does not
agree with St = 0.147 from numerical simulations. The inconsistency of St may indicate
that the model estimation may not very physically reasonable. In fact, we have tried to
control the value of St to be fixed at 0.147 during estimation, but the corresponding fitness
of Y and CL can only reach about 80%.

To the author’s knowledge, the relatively poor performance of the wake-oscillator model
in predicting the galloping response may be relevant with the intrinsic defects of the quasi-
steady assumption. In other words, a higher order polynomial approximation may not be
able to model the fluid force responsible for the galloping precisely. As a consequence,
the complex oscillations of Y and CL at larger reduced velocities might be less predictable
using the wake-oscillator model.

5.5 Chapter Summary

In this chapter, the coupled wake-oscillator models to predict the FIV response are inves-
tigated from the perspective of model identification and parameter estimation, based on
the simulation data for the VIV and galloping responses at Re = 100.

First, the classical wake-oscillator models based on the lift coefficient CL and wake
angular displacement θ are improved from multiple aspects. To be specific, the CL-based
VIV model is extended to predict the galloping response by including the quasi-steady
galloping force in the structure equation. Here, a generalized polynomial approximation
with both even and odd terms is applied to model the driving force of galloping. Moreover,
both the acceleration coupling and velocity coupling are added in the fluid equation. In
order to directly use the simulation data with time history of lift coefficient CL, the wake-
oscillator model is reformulated by converting the implicit fluid variables (e.g., q for the
CL-based model and θ for the θ-based model) into the explicit CL. Based on above model
structures, a genetic algorithm enhanced nonlinear grey-box framework is proposed to
estimate the free parameters.
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The proposed framework is verified by two scenarios, namely, VIV of a circular cylin-
der and galloping of a circular cylinder-plate assembly with LSP/D = 0.75, focusing on
the optimal structures of various wake-oscillator models. For the simpler VIV, the best-
structured model has six free parameters to estimate, viz., CL0, St, ϵ, A1, B1, B2 for a
CL-based model, and CL0, St, ζf , fm, l̄

∗, A1 for a θ-based model. In other words, the first-
order polynomial term A1(2πStẎ ) is enough for a wake-oscillator model to predict the VIV
response. For the complex galloping, more high-order polynomial terms are necessary in
the optimal model, which has eight free parameters, viz., CL0, St, ϵ, A1, A3, A5, A7, B1

for a CL-based model and CL0, St, ζf , fm, l̄
∗, A1, A3, A5 for a θ-based model. Note that

the even polynomial terms lead to non-symmetrical time series and have extremely weak
effect on the model prediction.

Comparing the CL-based and θ-based wake oscillator models, it can be found that
the latter displays a better performance in predicting the galloping response, which may
be due to the fact that it has more (five) physical parameters. However, the estimated
Strouhal number St = 0.156 of wake-oscillator models is higher than that from simulation
(St = 0.147), which could be associated with the inherent defect of the quasi-steady
assumption to model the fluid fore for galloping.
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Chapter 6

Conclusions and Future Works

This thesis focuses on the transverse FIV response of an elastically-supported cylinder-
plate assembly. For one thing, extensive full-order numerical simulations are carried out to
systematically investigate the influence of the geometrical shape (viz., the length of splitter
plate and the aspect ratio of cylinder) and the reduced velocity on the assembly’s FIV from
different aspects. On this basis, a complete simulation database is established, which allows
for all aspects of the FIV response of a cylinder-plate assembly to be covered. For another,
a genetic algorithm optimized nonlinear grey-box framework is proposed to estimate the
free parameters of the improved wake-oscillator models for the FIV phenomenon, which
is verified by the simulation dataset regrading to the VIV and galloping responses. The
conclusions are summarized as follows.

The two dimensional laminar flow over an elastically-supported circular cylinder-plate
assembly with m∗ = 10 and ζ = 0 is simulated at Re = 100, involving extensive spans
of the splitter-plate length LSP/D = 0–4 and reduced velocity Ur = 2–30. The research
has found that an increase in the LSP would substantially affect nearly every aspect of the
assembly’s FIV response, including the structural vibrations, the branching behaviors, the
flow dynamics and the nonlinear dynamical features.

1. For LSP/D ≤ 0.5, a self-limited FIV, either a pure VIV (LSP/D = 0.25) or an
integrated VIV-galloping (LSP/D = 0.5) is induced on the assembly. Using the
classical VIV of a circular cylinder as a reference, the former shows a 1.5 times
larger lock-in range, whereas the latter has a three times wider Ur-range with a
low-frequency oscillation. For 0.75 ≤ LSP/D < 4, an unlimited FIV is triggered
on the assembly—this consists of a steadily increasing vibration amplitude in the
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galloping regime that is preceded by a VIV regime. As LSP increases, the two regimes
become increasingly separated from strongly-overlapped to no overlap. Moreover,
the structural vibration and flow dynamics are affected more by the lift forces on the
circular cylinder and on the splitter-plate, respectively.

2. Both even- and odd-multiple synchronization branches are supported by the assembly,
which appear successively in increasing order, viz., f ∗

Y : f ∗
CL

= 1:n where n = 1, 2,
3, and so forth. If the highest harmonic of CL-spectrum is larger than that of Y -
spectrum, the synchronization starts with a (step, slow-growth or decrease) “kink” in
the amplitude response. For LSP/D ≥ 2.5, two new branches are identified: (i) the
initial galloping branch associated with wake meandering occurs immediately after
the galloping onset; (ii) the still branch characterized by the stationary assembly and
steady flow appears due to the complete uncoupling of upper and lower shear layers.
Based on branching behaviors, the assemblies are categorized into five groups.

3. The beating phenomenon occurred near the VIV boundaries is categorized into five
distinct types based on the relationship between local frequency, fn and fSt, while
that occurred in the non-synchronized galloping regime is elucidated from a global
perspective (e.g., periodicity and symmetry). Moreover, three nonlinear oscillations
are identified based on their limit cycles and Poincaré sections. The Type-I non-
linearity characterized by the donut-shaped orbits corresponds to a period-doubling
oscillation. The Type-II nonlinearity exhibiting wide limit cycles composed of nu-
merous closed loops corresponds to a long-period beating. The Type-III nonlinearity
associated with disordered phase-plane portraits corresponds to a chaotic oscillation.

4. The synchronization branch is accompanied by cyclical vortex-shedding modes with
elliptical vortices, such as the classical “2S” mode for 1:1 synchronization, the regu-
lar “n×(2S)” mode for higher-order odd synchronizations and more complex modes
(e.g., “T+S”, “P+S”) for higher-order even synchronizations. By contrast, the non-
synchronization branch is associated with non-periodic wake modes that consisting
of irregular vortices, such as the newly observed right-angled vortex SA and crescent-
shaped vortex SB, which leads to strong nonlinear dynamical characteristics.

The synergy effect of the aspect ratio of cylinder (AR) and the splitter-plate length
(LSP ) on the FIV of an elliptical cylinder-plate assembly is numerically investigated by the
simulations under same conditions, which involves various combinations of AR (0.5, 0.67,
0.75, 1, 1.5 and 2) and LSP/D (0.5, 0.75 and 2.5).
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1. Each geometrical factor stresses on different aspects in influencing the assembly’s
FIV. The aspect ratio determines whether a FIV can be induced in the assembly—a
critical value of 0.67 < ARcri < 0.75 is required for this to occur at Re = 100,
because the flow separation point on the windward surface of a horizontal ellipse is
too far back to provoke an oscillatory motion. For a triggered FIV (AR > ARcri),
the splitter-plate length determines its fundamental vibration mode to be limited
(LSP/D = 0.5) or unlimited (LSP/D = 0.75 and 2.5), while changing AR only has
an impact on the vibration level.

2. As AR increases, the self-limited FIV is significantly amplified for 0.75 ≤ AR ≤ 1.5
but weakened for AR = 2. The former is associated with a wider effective Ur range
(e.g., Ur = 6–14 for AR = 0.75 and Ur = 6–24 for AR = 1.5) and a larger maximum
vibration amplitude (e.g., Ymax = 0.36D for AR = 0.75 and Ymax = 2D for AR =
1.5). While the latter occurs over a narrower range Ur = 6–16 owing to the absence
of non-synchronization branch in the amplitude response. By contrast, a larger AR
always enhances the FIV that occurred in an unlimited Ur range by reducing its onset
velocity and increasing its vibration amplitude.

3. According to the identified synchronization branch with f ∗
Y /f

∗
CL

= 1 : n, the assem-
bly’s self-limited FIV is an integrated VIV and galloping response—no synchroniza-
tion for AR = 0.75 and three synchronizations (n = 1, 2, 3) for AR = 1–2, while
the unlimited FIV transitions from a pure galloping (n = 3 for AR = 0.75; n = 2,
3, 5 for AR = 1) to an integrated VIV-galloping (n = 1, 2, 3, 4, 5 for AR = 1.5–
2) with increasing AR. In addition, the non-synchronization regime functions as a
transition in the passage from lower- to higher-order synchronizations and leads to a
wider effective Ur range with FIV response.

4. The complexity of flow dynamics is also increased with AR. For the self-limited FIV,
the 2S mode of lock-in is associated with more complex vortex shapes—elliptically-
shaped vortex for AR = 1, vortex with a tail for AR = 1.5 and swallow-tailed vortex
for AR = 2, while the wake modes in the high-order synchronizations can be either
anti-symmetric (e.g., “3×(2S)” and “2×(P+S)” in the 1:3 synchronization) or non-
symmetric (e.g., “2×(2S)”, “T+S”, “±(2S)” in the 1:2 synchronization). For the
unlimited FIV, the 1 : n synchronization branch is associated with regular “n×(2S)”
mode. But some particular flow dynamics can induce special branching behaviors.
For example, the slender vortices oriented more in the transverse direction lead to
the subdivision of 1:3 synchronization for AR = 1.5 and 2. The “quasi-2S” and
“quasi-2×(2S)” wake modes consisting of a primary elliptical vortex and a secondary
tail vortex lead to the transition regimes between synchronizations.
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Last, the FIV response is investigated using the mathematical models, which are iden-
tified by a genetic algorithm optimized nonlinear grey-box estimation framework. The
optimal model structures to predict different FIV responses are discussed based on the
simulation dataset of the cylinder-plate assembly obtained above.

1. The previous coupled wake-oscillator models based on lift coefficient CL and wake
angular displacement θ are improved from multiple aspects. For CL-based model, the
quasi-steady fluid force is included in the Y –ODE to give it ability to predict VIV
and galloping, and both acceleration and velocity coupling terms are added in the
CL–ODE. Moreover, the seventh-order polynomial approximation from QS theory
includes both even and odd terms to give a more generalized expression of galloping
force. Most importantly, the fluid variable is converted into the explicit lift coefficient
from the implicit lift (q) in CL-based model or from the wake rotation angle in θ-based
model, in order to directly use the time history of CL in the simulation dataset.

2. Based on the improved wake-oscillator models, a nonlinear grey-box estimation frame-
work is proposed to determine the free model parameters. The integration of genetic
algorithm into the proposed framework effectively optimizes the model parameters.
The rationality is verified by applying the GA-optimized grey-box model to the pre-
diction of both VIV and galloping responses.

3. For the VIV of a circular cylinder, the acceleration–velocity coupling (for CL-based
model) and the first-order polynomial approximation A1(2πSt)Ẏ (for CL- and θ-
based models) can accurately predict the time series of Y and CL. Therefore, the
optimal model structures include six free parameters, which are CL0, St, ϵ, A1, B1,
B2 for a CL-based model, and CL0, St, ζf , fm, l̄

∗, A1 for a θ-based model. The
two models can achieve similar accuracy in the prediction of VIV. Moreover, the
estimated Strouhal number St = 0.16 is consistent with that from simulations.

4. For the galloping of a circular cylinder-plate assembly with LSP/D = 0.75, more high-
order polynomial terms are necessary to predict the severely distorted waveform in
the oscillation of CL. To be specific, eight free parameters are included in the optimal
CL-based model (viz., CL0, St, ϵ, A1, A3, A5, A7, B1) and θ-based model (viz., CL0,
St, ζf , fm, l̄∗, A1, A3, A5). The θ-based model shows a better performance in
predicting galloping, probably because it has more (five) physical parameters. In
addition, the inconsistency of the estimated St = 0.156 and the simulated St = 0.147
may be due to the inherent defects of the QS assumption to model the galloping fore.
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It should be noted that the conclusions summarized above can provide the guidance
for the engineering application of cylinder-plate assembly, such as fluid energy harvester.
For example, the effect of aspect ratio on the amplitude response can help to design an
optimal elliptical cylinder, while the effect of splitter-plate length can be used to generate
an optimal power curve, following which the assembly can reach high power generation.

In the future, the FIV response of a cylinder-plate assembly can be investigated from
the following aspects.

1. The effect of Reynolds number on the assembly’s FIV can be studied by carrying out
high-Re and 3D numerical simulations, which can be verified by experimental data.

2. The GA-optimized nonlinear grey-box model can be combined with the actuator-line
model (ALM) and the existing CFD solver (e.g. OpenFOAM) to develop a reduced-
order simulation tool for the FIV response.

3. The cylinder-plate can have different structure features, such as replacing the smooth
cylinder with prismatic body, or replacing the rigid plate with flexible plate.

4. The prediction of FIV can be investigated using deep learning (DL) methods. For ex-
ample, one possible strategy [109] is to use the DL-based reduced order model (ROM)
to first reduce the full-order CFD dataset using some reduced-order algorithms (e.g.
proper orthogonal decomposition) and then learn the dynamics from the reduced
dataset using some neural networks (e.g. long short-term memory neural network).

235



References

[1] Hyung Taek Ahn and Yannis Kallinderis. Strongly coupled flow/structure inter-
actions with a geometrically conservative ALE scheme on general hybrid meshes.
Journal of Computational Physics, 219(2):671–696, 2006.

[2] Huseyin Akilli, Besir Sahin, and N Filiz Tumen. Suppression of vortex shedding
of circular cylinder in shallow water by a splitter plate. Flow Measurement and
Instrumentation, 16(4):211–219, 2005.

[3] Helmi Al-Jamal and Charles Dalton. Vortex induced vibrations using large eddy sim-
ulation at a moderate Reynolds number. Journal of Fluids and Structures, 19(1):73–
92, 2004.

[4] G Alonso and J Meseguer. A parametric study of the galloping stability of two-
dimensional triangular cross-section bodies. Journal of Wind Engineering and In-
dustrial Aerodynamics, 94(4):241–253, 2006.
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